Date: January 2009

OBJECT MANAGEMENT GROUP

Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM)

Version 1.1

OMG Document Number: formal/2009-01-02

Standard document URL: http://www.omg.org/spec/KDM/1.1

Associated Schema Files*: http://www.omg.org/spec/KDM/20080201
http://www.omg.org/spec/KDM/20080202

Original file(s)*: ptc/08-02-10 (CMOF), ptc/08-02-11 (XSD), ptc/08-03-02 (submission without change bars),
ptc/08-03-04 (submission change bar version)

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS

Copyright © 2006, Flashline

Copyright © 2006, IBM

Copyright © 2006, KDM Analytics

Copyright © 2006, Klocwork, Inc.

Copyright © 2009, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patentsthat are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or

mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THISPUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TOANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk asto the quality and performance of software devel oped using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XM
Logo™, CWM™, CWM Logo™, IIOP™ MOF™ | OMG Interface Definition Language (IDL)™ , and OMG Systems
Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company
names mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at al times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the

software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmww.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

Table of Contents

PIEIACE .t e e Xiii
Y o3] 01 =PRI 1
2 CONTOIMANCE ..ot e e e e e e e e e eeeaebbaaaas 1
2.1 KDM DOMAINS ..oiitiiiiiiiaeee e ee ettt a s e e e e e e e e e e eeeeeaessbaas e e aeeeeeeaaeeeeeeeenesnes 1

2.2 COMPUANCE LEVEIS ...ttt e e e e e e e e eeeeaeeees 2

2.2.1 Meaning and Types of COMPIIANCEccooiiiiiiiiiiiiiee e a e 3

3 NOrmative REFEIENCESoiiiii i 5
4 Terms and DefinitiONSooooiiiiiiiiiii e s 5
D SYMBOIS 5
6 Additional INTOrMAatioNeiiiiiii e 5
6.1 Changes to Other OMG SpecCifiCationsoooiiiiiiiiiiiiiiiii e 5

6.2 How to Read this SPeCIfiCationcccceceiiiiiiiiii i e e e e ee e 6

6.3 ACKNOWIEAGEMENLS ... e e e e e e e e e e e e e eaeeaeenes 7

7 SPECITICAtION OVEIVIEW ...ciiviiiiiieeieiiie et e et e e e e et e e e e eeaaan s 9
B K DM e 11
8.1 OVEIVIBW ..ttt e ettt e e e e e e e e e et e et eae e bbbt s e e e e e e e e eaeeeeeeeessesnnees 11

8.2 Organization of the KDM PacCKagescceeeeiiiiiiiiiiiiiiiiiiiisiie e e e e e eeeeeeeeeeaennnnns 12

S I 000] gl =o€ (o 1= PSSP 15
0.1 OVEIVIEW ...ttt et e e e e e e e e et e e e e e e e s e bbbttt ettt ettt eeeeeeeeeaeaaeessssaanannns 15

9.2 Organization of the Core Packagecccooovviiiiiiiiiiiiiii e 15

9.3 CoreEntities Class DIiagramuuuuriiiiiiiieeeeeeeeeeeeeeeeieeeranns e e s e e e aeaaaaeeeeees 15

9.3.1 Element Class (ADSIrACt)uuviiiiiiiieeeiiiiiiiiiee e e e e e e e e s re e e e e e e e e e e annn 16

9.3.2 ModelElement Class (ADSIrACL)uuvviiieeieiiiiiiciiiee e e 16

9.3.3 KDMENtity Class (ADSIraCt)c.uviiiiiiiieiii i e e rrere e e e e e 17

9.4 CoreRelations Class DIagramcooioeeeeeeeee et a e e e e eeeeeees 18

9.4.1 KDMRelationship Class (ADStract)cccocuviiiiiiiiiee e a e e 18

9.4.2 KDMENtity (2dditional ProPerti€S) ...eeeeieeeiiiiciiiiiiiieeee e s e s et e e e e e e e e s s sreereer e e e e e e e e e 19

9.5 AggregatedRelations Class Diagramoooeeieiiiiiiiiiiiiiiiiirre e 20

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 i

9.5.1 AggregatedRelationship Classcc.euueiiiiiieoiiiiii e 21

9.5.2 KDMEntity (2dditional ProPerti€S)uuuuerieiieeiiiiiiiiiiiieeeeee e e e e e e ses s e e e e e e e e se s e anreeee e 23

9.6 Datatypes Class Diagramcccccoeeeiieeiiiiiiiiieeeiiiiicriss e e e e e e e e e e e e 23
I 2o To] LT T T Y] o Tl (o L= U= 10 o 1) 23

I IS (o [I/ L= (o F= =14 1=) SR 23

Rl [l (= To [T o Y/ o To I (o = 1= 10 o 1) SR 24

10 KDM PACKAGE ...oiiiiiiiiiii ettt e e e et e e e e e ee e e e e eenee 25
LO.1 OVEBIVIEBW ..ttt e e e e e e e e e ekt e ettt ettt e e e e e e e e e e ea e e e nnnnnneene e 25
10.2 Organization of the KAm Packagecccccceeiiiiiiiiiiiiiiiiiiee e e e e e ee e 25
10.3 Framework Class DIagramcoeeuueeuuirmuiiiaireee e e ee e eeeeeeeeesiannn e e e e e aaeeeeeas 26
10.3.1 KDMFramework Class (ADStracCt)ooooiiiiiiiieieeeeee e 27

10.3.2 KDMModel Class (ADSIrACE)uueiiiiiiiiieeeeieitiie ittt 27

10.3.3 KDMERntity (additional ProPerti€S)uoeeoiiiiiiiiiiiiie e e 28

10.3.4 SEOMENE CIASS ..eiiiiiiiiii ittt ettt et e e e e e e s s e e bbb bbbt e et e e e e e e e e e ananbsaeeeeeaaeaaesaannns 29

10.4 Audit Class DIagQramccoeeeuiuuuuiiiiiiiiss s e e e e e e eeeeeeeeeeeearaa e e e e eaeeaeeeeeeeeesennnnes 30
L0.4. 1 AUAIE ClASS ..eeeeeeeiiiiiiee sttt ettt e sttt e st e e e s b e e e e sb e e e e e annne s 30

10.4.2 KDMFramework (additional properties)coccuuveeieeiiiiieeiiiiiiiiieee e 31

10.5 EXtensions Class Diagramc.uuuuruueiiiiiiieeeeeeeeeieeseeeeeiesssnnnnn e e eeaaaaeseeees 31
10.5.1 StErEOLYPE CIASS ..eiiiiiiiiieiiii ittt e ettt e e e e e e e e bt b et e e e aa e e e e e s nbbbbeaeeeeeaaaa s 33

10.5.2 TagDefINItION ClASS ...cciiiiiiiiiiiieii ettt e e e e e e e e e e e e e e e e e e annns 35

10.5.3 EXtenSiONFamily ClaSSccccuueiiiiiiiiiaaie et e e e e e e 36

10.5.4 ModelElement (additional properties)ccuuuveeeieiiairiiiiiiieeee e 36

10.6 ExtendedValues Class Diagramcccccceoiiiiieeiiieieieiieeeieesiiesess e e e e e e eaaeeeees 37
10.6.1 ExtendedValue Class (aDSIract)cccvvcuiiiiiiiiieee e e e e s e e e e e e e e enenns 37

O ST 1= To o [= o LY 2= LU 1T O = 1 USRS 38

O T T 1= To o [= o | LT - T SRR 38

10.7 Annotations Class DIAgIamuueueiiirieeee et ee et e e e e e e e eeeeeeeeanees 39
10.7.1 AIFDULE CIASS ..oevieiiiii ettt et e e 40

10.7.2 ANNOLALION CIASS ...ciiviiiiiiii ittt 41

10.7.3 Element (additional PropertieS).......ueeeeeeeeeeiiiiiiiiieeereee e e e s e sssreieeer e e e e e e e s e snanrererereeee s 41

i Yo U ot =l = o €= Vo I = PSPPI 43
P11 OVEBIVIEW .ttt e e e e e e e e e e e ekttt ettt et e e e e e e e e e e e aa e s e nnnnnnnene e 43
11.2 Organization of the Source Packagecccccovviiiiiiiiiiiiiiiiiiee e 43
11.3 InventoryModel Class Diagramcccoieeieeeeeeeeeeeeeeeeiiiiiiiininaseeeeeeeeaeeeeesesnnnns 44
11.3.2 INVENtOrYMOAE] CIASScoiiiiiiiii ettt e e e e e e e eeeeaae e as 45

11.3.2 AbstractinventoryElement Class (ADSLract)c.eeeiiiiiiiiiiiiiiiiieeee e 46

11.3.3 AbstractinventoryRelationship Class (abStract)...........cooviiiiiiiiiiiiiiiiiiieeeeeeeeen 46

11.3.4 Inventoryltem ClasSS (GENEIIC) . ..uuuuutiiiaaaie ettt e e e e e e e e e s e eeeeaeeas 46

11.3.5 SOUICERIIE ClASSueeiiiiiiiiiieeet ettt e e e 47

121.3.6 IMAGE ClASS .. uuettiiiiiiiaeai ettt ettt e ettt et e e e e e e e s bbb e et e e e e e e e e e e aasnbbenbeeaaaaaaeaaas 47

i Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

11.3.7 Configuration CIASSccccvuiiiiiieiiee s icce e e e e e e s e r e e e e e e s e s as e e e areaaeeeeseannns 48

11.3.8 ResoUurceDesCriPtioN ClASSccciiiiiiciiiiiiiiiiee e e e s st e e e e e e e s s s e e e e eee e e s e s snnnnnes 48

11.3.9 BINAIYFIIE CIASS .ieeiiiiicitie ettt e e e e e e s s e e e e e e e e s s s e n e ereeeaaeeeeeeannnns 48

11.3.10 EXECULADIEFIlE CIASSeiiiiiiiiiiieiiiiiie ettt 48

11.3.11 InventoryContainer Class (gENEIIC)ccccuurrrieiieeiee e s s et e e e e e e e sss e e e eae e e 48
I 300 2 I 1 =T (o] A G - T PEERRT 49

TG 300 G B = (0 = o O = TSRS 49

11.4 Inventorylnheritances Class Diagramcccooeeeeeeeeieieiieeeieeices e eee e e 50
11.5 InventoryRelations Class Diagram.........ccccuuuuuiriiiiiiiiiieieee e 50
11.5.1 DePeNndSON ClASScocoiiieieiiiietiea ettt e e e e ettt e e e e e e e s e snbbebbeeeaaaaaeaeeeaannane 51

11.6 SourceRef Class DIiagramooouuuiiiuiiiiiiiiiieeeeeeeeeeeeeeeeaeeern e e e e e e e eaeeeeees 52
11.6.1 SOUICERET CIASS ...oiiiiiiie ettt e e e e e bbb e e e e e e e e e e sanaaes 52

11.6.2 SOUIrCEREGION CIASSiiiiiiiiiee ettt e ettt e e e e e e e e s st bbb e e e e eaaaeeeeaannaes 53

11.7 ExtendedInventoryElements Class Diagramccccccvvvvvviviiiiiiiiiiinniineeeeeeenn 54
11.7.1 InventoryElement Class (QENEIIC)cccceeiiieeiiieee e eess st e e e e e e e s s s s e e e e e e e e e e s nnnenes 55

11.7.2 InventoryRelationship Class (JENETIC) ...cccvvvriiiiieeeee it e e e e e e e e e e e e e e e e e nanes 55

12 COUE PACKAGE ..uuiiiiiiiiiiiie ettt e e e e 59
L12.1 OVEIVIEW .ttt ettt ettt s e e e e e e e e e e e e e et e e e ee e st besb i a e e e e e e e eaeeaeeas 59
12.2 Organization of the Code PacCKagecceceeiiiiiiiiiiiiiieeeesree e 59
12.3 CodeModel Class DIagramccuuuuuuuuuiiiiaanaeee et e e e e e eeeeeees 60
12.3.1 COAEMOUEI CIASS ...ttt ettt ettt e e e e e e e e s st bbb e e e e e eeaaeeeeaannnns 61

12.3.2 AbstractCodeElement Class (ADSLract) ... 61

12.3.3 AbstractCodeRelationship Class (abSIract)ceeeeieiiiiiiiiiiiiiiiieee e 62

12.3.4 Codeltem Class (BDSIFACL)ciiiiiiiii ittt a e e 62

12.3.5 ComputationalObject Class (ADSIrAC)ceeiiiiiiiiiiiiiiiiiei e 62

12.3.6 Datatype Class (ADSIrACE)eiiiiiiiiiie e 63

12.4 Codelnheritances Class Diagramcccccooviiiieieeeeeeeeeeeeieeesiesssne e s e eaeeaaaes 63
12.5 Modules Class DIagramcoooiiiiiiiiimiiiiareaae e e e e e eeeeeeeerresr e e e e e e e e 63
12.5.1 MOAUIE ClASS (GENEIIC)...uuuureieieeiieeeeiiieeiitiee e e e e e e e s s ss s aeereeaeaesesasasssbnreereeeaeaeesannns 64

12.5.2 CompilatioNUNIt CIASSuuveiiiiiiieeeiiiiiiiieie e e e e e e s s s e e e e e e e s e s s snnaesbereeeaeaaeeeeaannnns 65

12.5.3 ShAr€dUNIL CIASS ...eeeiiiiiiiiiiieiiiiiie ettt sttt st e s st e e e snbbbe e e e e snneeeas 65

12.5.4 LanguageURNIt CIASSccccviiiiiieiiie i et cstiee e er e e e e e s s st e e e e e e e e s e s senb et eeeeaeeeeseeannnnes 65

12.5.5 COAEASSEMDIY CIASSuuiviiiiiiiiiieeii st e e e e e e s s r e e e e e e e e e s st eeeeeeeeeseeannenes 66

D2 ST SR o= Tod & Vo =T O - TSRS 66

12.6 ControlElements Class DIagramocoooioieeeeeeeieeeeieeeieiiiiinee e a e 66
12.6.1 ControlElement Class (GENEIIC)ccau it e e ettt a e e e e e e e e e e e anes 67

12.6.2 CallableUnit CIaSSottt et e e e e e e s e bbb s e e e e e e e e e e e anrenes 68

12.6.3 CallableKind Data Type (ENUMErated)cueiiiiiiiiiiiiiiieiiiee e e e 68

12.6.4 MethOAURNIL CIASS ..ottt ettt e e e e e e e e s st et e e e e eaaaeeeeaaannnes 68

12.6.5 MethodKind data type (ENUMErAtiON)coeiiiiiiiiiiiiiieieee e e e e e eeeees 69

12.7 DataElements Class Diagramcooocciiiiiiiiiiiiiiiiiieeie e 70

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 iii

12.7.1 DataElement Class (JENEIIC) ...uururiiiiiieeiieiiiiiier e ee e e e e e s sesrbn e e e e ae e e e s e snnrnrreereeeeeeanean 71

12.7.2 StOrableUNIt CIASSoiiiiiiiiiie ittt e bt e e e e e nbe s 72
12.7.3 StorableKind data type (ENUMErAtioN)ccccvviiiiiieeee i e e e e 72
12.7.4 ExportKind data type (ENUMErAtioN)ccccvuviiiiiiiiee e e e e e e s s s sere e e e e e e e e e e 73
12.7.5 BEMUNIE ClASS ..eiiiiiiiiiiieiiteit ettt ettt e e et e e e s et e e e s e nbe e e e e e nenes 73
12.7.6 INAEXUNIE CIASSveiiiiei ittt ettt e et e e et e e e e snneeeas 73
12.7.7 MeMDEIUNIE ClASS ...eeiiiiiiiiiiie ittt e e st e e st e e e e nneees 74
12.7.8 PArameterUNIt CIASSccuveeiiiiiiiiei ittt sttt e s e e et e e e e e enees 74
12.8 ValueElements Class Diagramccccoeeeeieeiiiiiieieeiieciieiiisn s e e e e e e e e e eeaeeeees 75
12.8.1 ValueElement Class (ADSIFAC)ccvveeiiiiiiiiiiiiiieiiee et e e ererr e e e e 75
12.8.2 VAIUE ClASS ...eeeeiiiiiiiiii ettt ettt e e e et e e st e e e e e b e e e nnaes 76
12.8.3 VAIUELISE ClASS ...uetiiiiiiiiiiiii ettt sttt ettt e e sab e e s e nnaneeeas 76
12.9 PrimitiveTypes Class DIagramccoieeiiiiiiiiiiieieiiiee e e e et eeeanaaas 77
12.9.1 PrimitiveTYPe ClasS (JENEIIC) ..uuuuurriieiieeie e ittt eer e e e e e e sssistesbee e e e e aeesss e snnrnneneneeeeeeanean 78
12.9.2 BOOIEANTYPE ClASS ..ieiiiiiciiiiiiiiiiiee e e s e ettt et e e e e e et s e st e e e e e ee e e e s s snnrnaneeneeaeeeeennnnns 78
D2 T B O g - T I o =T - T PPEEEERR 79
12.9.4 OrdinalTYPE ClASS ..eeveeeiiiiiiiieieie ettt e e e e e e e e e e e e e e e e s s annbanbraereneaeeees 79
12.9.5 DAETYPE ClASS ..oeiiiieieiiiiiiiiiiie ettt e e e e e e e s s e st e e e e e e e e e s s e nrnaeeaeraaeeaeeeanns 79
12.9.6 TIMETYPE CIASS .eieieieeiei ittt et e e e s e sttt e e e e e e e s e s ss st rereaeeeeassssssansraareeeeaeaeesaansnns 79
12.9.7 INtEQEITYPE ClASS .oeeiiieiiiiiciciitiie e et e e e e e e s s et e e e e e ae e e e s s snrnnrenreeneeeaeeas 80
12.9.8 DECIMAITYPE CIASS ..coeeeieiiici ittt e e e e e s e e e e e e e s s e s benrreeeeeeeeas 80
12.9.9 SCAlEATYPE CIASS ..oeivieeieeiiiiciitiie e et e e e s e e e e e e e e s st r e e e aee e s s e s s banbranrenaaeeaes 80
D2 T O I o o i Y oL T O = 1 SRR 80
D2 T I Y o T o l I3/ 1= 1 =TT SRR 81
12.9.12 SHNGTYPE ClIASS .oeeiieeieiiiiiiiitiieie et r e e e e e e s s s r e e e aee e s s s ansbnnrennrenaaeeaeas 81
12.9.13 BITYPE ClASS ..evvieiieiiiiiiiiitieie et e ettt e e e e e e e e s st e e e e e e e e e s s e s snnnre e e enaaeeeeeennnnns 81
12.9.14 BItStHNGTYPE ClASS ..cceeeiiiiieiii et e e e e e s e e e e e e e e s s e s areeeeeeeees 81
12.9.15 OCLEITYPE ClASS ..ooevieeeee ittt e e e e e e s e e e e e e ae e e e s s s rearreneaeenes 82
12.9.16 OCtetStHNGTYPE ClASS ...uvvviiiiiiiiiie e e i e e e e e e e e e s s s e e e aeeeeeeenans 82
12.10 EnumeratedTypes Class DIagram ..ot 82
12.10.1 ENUMEratedTYPE CIASS ...cccccvviiiiiiieiieeie e iiiiteie et e e e e e e e s e s e e e e e e e e s s e anntanrraneeeeaeeees 83
12.11 CompositeTypes Class Diagramcooooiiiiiiiiiiiiiiiiiiies e eeeieeaeees 83
12.11.1 CompositeType Class (GENEIIC) ..cceiieiiieiiiiiitiiet ittt e e e e e e 83
12.11.2 ChOICETYPE ClASS ...iiiiiiitiiiieeii ettt e e e e e e e b bbb e e e e e e e e e e s e snnbbareeeaaaaaaeaaaanns 84
12.11.3 RECOIATYPE ClASS ...ttt ettt ettt e e e e e e e e e st e e e e e e aaa e e e s 85
12.12 DerivedTypes Class Diagramcccccoeeeoieeeeiiiiieeeieeeiieiiinns s e e e e e eaeeaeaeeeees 86
12.12.1 DerivedType ClasS (ENEIIC) ...ruitiiiiaaaia ittt et e e e e e ettt e e e e e e e e e s sabe e eeeeeaaeaaeas 86
12.12.2 AITAYTYPE CIASS ..eeeiiiiieiiiiitit ettt e e e e e e ettt e e e e e e e e e s anb e bbeaeeeeaaaaaeas 87
12.12.3 POINTEITYPE ClIASS oiiiiiiiiiiittie ittt et e e ettt e e e e e e e e e e anbreeaaaaaaeaa s 88
12.12.4 RANGETYPE ClASS ..coeeiiiiiteetee ettt e e e e e e bbb reeeeaaeeeas 88
12.12.5 BAGTYPE CIASS ..eitiiiiiiiiiiiiitte ettt et e e e e e ettt e e e e e e e e e e anbbebbeeeeeeaaeaeeas 89
12.12.6 SELTYPE ClASS .oeiiiiiiiiiiiiiiittti ittt e e e e e e e e bbbt e e e e e e e e e s e e bbb beaeeeeaaaeeeeaanans 89
12.12.7 SEqUENCETYPE CIASS ..ottt ettt ettt a e e e e e e nbe e aeeeaaaeaeeas 90
12.13 Signature Class DIagrameuuuruiiiiiiiieeeeeeeeeeeeeeeeaeesiansa e e s e e eaeeeeaeeeeees 90
12.13.1 SIGNALUIE CIASS ..eeeiiiiiiieiiii ittt ettt e e e e e e s e bbb e et e e e e e e e e e s nbnnbeaeeeeeaaaaeas 90

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12.14

12.15

12.16

12.17

12.18

12.19

12.20

12.21

12.22

12.23

12.24

12.13.2 ParameterKind enumeration datatyPeccceeeiiiiiiiiiiiiiieece e e e e e 91

DefinedTypes Class Diagramccoooiiiiiiiieiiiiiiiis e 91
12.14.1 DefinedType Class (ADSIraCt)c.cceiiiiciieiieiiiiie e a e 92
12.14.2 TYPEUNIL CIASS oiiiiiiiiieiieiie e st e e e e e s et e et e e e e e e s s st e e e e e aeeessssnntanbeeeeaaeeeeeeeannnnnns 92
12.14.3 SYNONYMUNIE CIASS ..uuuieiiiiiiiiieeeie s i ecieee e e e e e e e s s st e e e e ae e e s e s senbanbeeeeeeeeeesesannnne 93
ClassTypes Class Diagram........c.euuuuuuuuiiiaiinaaeee et a e e e 93
12.15.1 ClaSSUNIL CIASS ..veeiiiiiiiiiiie ettt ittt s sttt ettt e e sttt e e st e e s s bt e e e e sbtbr e e e s snaneeees 93
12.15.2 INterfac@UNIt ClIASSueiiiiiiiiiiie it ettt snaeee s 94
Templates Class DIagramuuuueeuiiiiiree et e e e e eeeeeaeeenee 94
12.16.1 TeMPIAtEUNIL CIASSuiieiiiiiiiiieeeie s et e e e e e e s s e e e e e e e e s e s s a e e e e eeeeeeeeannnnnes 95
12.16.2 TemplateParameter Classccoviiiiiuiiiiiiiiie st e e e e e e e e e e e e e e e snnenes 95
12.16.3 TEMPIALETYPE ClASS ...uuvivieiiiiiiiee e it e e s s e e e e e e e s e e s s e e e eeeeeeesannnnes 96
TemplateRelations Class Diagramccoooiiiiiiiiiiiiiiiiiiea e eeeeeeeeeeiieees 96
12.17.2 INStANCEOS ClIASS ...ttt ettt bttt e e e e e e e e s st aab e e e e eeaaeeeeaannnns 97
12.17.2 PArameterTO CIASSuueieiiiiiiieiaiai ittt ettt et e e e e e e e et b e e e e e e e e e e e e e annanes 97
InterfaceRelations Class Diagramoooeuviiiiiiiiiiiiineeeeeeee e 100
12.18.2 IMPIEMENLS CIASS ...ttt e e e e e eeeaaaae e ns 101
12.18.2 ImplementationOf CIASSciiiiiiiiiiiiiiiiee et a e e e e e 102
TypeRelations Class Diagramcccceeoiiiieieieeieeieceeiees s e e e e e ee e 105
12.19.1 HASTYPE ClIASS oiiiiiiiiiiiiiititieit ettt e e e e ettt e e e e e e e e e e s anb b e e e eeaaaaaeeans 105
12.19.2 HASVAIUE CIASS .. .ieiiiiiiiiiiiieeit ettt ettt e e e e e e e e s e e e e e aaaeeeans 106
ClassRelations Class Diagramcceoeiiiieeeeeeieeeeee e a e e ae e 109
12.20.1 EXIENAS CIASS ..uvveiiieiiiiiiie ittt ettt s sttt sttt e e st e e s sttt e e e e nb b e e e e s e nnteeas 109
Preprocessor Class Diagramccccceeiiiiiiiiiiincciii e 111
12.21.1 PreprocessorDirective Class (QENETIC)uuvuriiiiiieeiieiiiiiiiiier e e e e e e s sesrreeeeer e e e e e e 111
12.21.2 MACIOUNIL CIASS ...viiiiiiiiiie ettt e et e e st e e s e b e e e s snbbbe e e s e anneeas 113
12.21.3 MacroKind data type (ENUMEIAtION)eeeeviieeeeiiiiiiieiee e e ee e e e e s s ssenrrreereeeeeeeeesennnes 113
12.21.4 MACIODIrECHVE CIASSvveiiiiiiiiiie ittt e e ettt st e e st e e s e eneeeas 114
12.21.5 INCIUAEDIFECHVE ClASScciiviiiiiiiiiiiie ettt 114
12.21.6 Conditional DIr€CtIVE ClIASScceiiiiiiiiiiiiiiiiie it e e 114
PreprocessorRelations Class Diagramcccooovveeeeieiiiiiieieeiiiiiienene e 115
Dy R b o 7= L [0 £ O - U PR 115
12.22.2 GeneratedFrOmM ClIASSiicuiiiiiiiiiiiee sttt et ree e e sbae e e s snreee s 116
12.22.3 INCIUAES ClASS ...veiiiiiiiiiiie ittt ettt et et e e e ee e e s areeeas 118
12.22.4 VArIANTTO CIASS ...eviiiiiiiiiie ittt et e e st e e s e st b e e e s ebbbe e e e e enbeas 119
12.22.5 REAEFINES ClASS ...eiiiiiiiiiie ettt st e et e e e e e nbeas 120
Comments Class DIagramcoeuueuuuiiiiiiiieie et e e 122
12.23.1 ComMENLUNIE CIASS ...ttt e e e e e e e e e e 122
12.23.2 AbstractCodeElement Class (additional properties)cccccceeiiiiiiviiieeenieeennennnns 123
Visibility Class DIagQrame.cooiiiiiiieeeeeeee et e e e e e e e e e e e e e eeeeens 123
12.24.1 NAMESPACE ClASSueuiiiiiiiiiiieeae ittt e ettt e e e e e e e e s bbbb b e eeeaaaaaeeeeaaanes 123

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 \Y

12.25 VisibilityRelations Class Diagramccovvveeiiiiiiiiiiiiiiiiieee e eeeeeeseeeseeeensinnnns 124

12.25.1 VISIDIEIN CIASS ...eoiiiiiiiiriieiie ettt 124

D22 T 11 g o o] g £ 4 - 1SS 125

12.26 ExtendedCodeElements Class Diagramccoeuuviiiieiiiiiinninneeneeeeeeeeeee 126
12.26.1 CodeElement Class (QENEIIC)uuuuiiiiieeeeeiieeciiiiieeeeee e e e ss e s e e e e e e e e e s nsnnneenaeeeees 126

12.26.2 CodeRelationship Class (QENENIC)cccoviieiiiiiiiiiiieeee e e e e e 127

13 ACHION PACKAQE ..coiiiiiii it 129
13,1 OVEIVIEBW ettt e e s e e e e e e e e e e e e et e eete e bbe b e e e e e e e e eaaeaeeeeeens 129
13.2 Organization of the Action Packagecccccceeeeiiiieiiiieiiiccies e 129
13.3 ActionElements Class Diagramccooeeeiiiiiiiieieiiiiiisies e e e e e e e e e eeeeeeeeesnnnnns 129
13.3.1 ACiONEIEMENT ClASS ..ciiiiiiiiiiiiiiiie ittt e e e e e e e e e eee s 130

13.3.2 AbstractActionRelationship Class (abStract).............ceeieiiiiiiiiiiiiieiieee i, 131

13.3.3 BIOCKURNIL CIASS ...eiiiiiieiiiiiteee ettt e e e e e e et eeeeaaeeas 131

13.3.4 ControlElement (additional Properties)occcuuuiiiiieiiiiiii e 132

13.4 Actioninheritances Class Diagramccccccceviieiieeeeiiiiiiisen e e e e e e eeeeeeeee 132
13.5 ACtiONFIOW Class DIagramuuueuuuuiiiieaieeeee ettt e e e e e e eeees 133
13.5.1 ControlFIOW ClasS (QENETIC)ueeeiiiieieiiai ittt e e e e e e e reeeaeaae s 133

13.5.2 ENIYFIOW CIASS ..eeiiiiiiiieiiiiittee ettt e e e ettt e e e e e e e e e s s e annnb b b beeeeeaaeens 134

L1353 FIOW ClASS ..ttt e ettt ettt bttt e e e e e e e e e et bbbt e e e e e e e e e e e e e nnbnsbreneeas 134

13.5.4 TPUEFIOW CIASS ..eeiiiiiiiaiiiiiitee ettt e e e ettt e e e e e e e e e s e abe bbb reeaaaaaeens 135

13.5.5 FAISEFIOW CIASS ..eeeeiiiiiiiiiiiiet ettt et e e e e e e e s e abnnbeeeeeas 135

13.5.6 GUArdedFIOW ClASScoiiiiiiiiieieie et e e e e e e eeeeaaeeas 136

13.6 CallableRelations Class Diagramccccoiviiiieeiiiiiiiiiirias e e e eeeeeeeeeeeeeennnnnn 136
13.6.1 CallS ClASS ...eiiiiiieiiiiie ettt e ettt e e e e e e e e s s a bbb et e e e e e e e e e e e e e nnbenbeaeeaas 137

13.6.2 DISPALCNES CIASS ...eeeeiiiiiiieii ittt et e e et e e e e e e e e e s e e b enbeeeeeas 138

13.7 DataRelations Class Diagramccccccooeiieeeeieiiiieeieieeiiisnsss s e e e e e e e aeeeaaeeees 139
13.7.1 REAAS ClASS ...euiteiiiiiiiieiia ittt ettt e e e e e e e e et b bbbt e e e e e e e e e e e e eanbbenbeeeaaas 140

L13.7.2 WITES ClASS .iuieiieiieiieie e e e ettt e e ettt e e e e e e e e e s st bbb et e e e e e e e e e e e sasnnnbbnbeeeaaas 140

13.7.3 AAIESSES CIASS .utreeiiiiiiiiiiii ittt ettt e et e e e e s e et e e e e e e e e e e e e s e nnbenbeeeeaas 141

13.7.4 CrEateS CIASS ...utttiieiiiieiaiii ittt ettt e et e e e e e e s e s e bbb e et e e et e e e e e e e s s nnbsnbeeeeeas 141

13.8 ExceptionBlocks Class Diagramccccooeeeeeeeiiiiiiiieeiiiiiiinin e e e e e e e aaeeees 142
13.8.1 EXCEPLONUNIL CIASS ..iiiiiieiiiiiciiieiiiee et e e e e e e s e s st r e e e e e e e e s s s nrenreeeeees 143

R 2R B2 I Y1 U L g T O = 1SS 143

13.8.3 CAChUNIL ClASS ...eeiviieiiiieeiiiie ittt 143

13.8.4 FINAIIYUNIL CIASS ...vvvviiiiiiieeiiiiiiiiiiie et s st e e e e e e e s e s s e e e e e e e e e s s nnnnennreneeees 144

13.9 ExceptionFlow Class Diagramcccooooiieeiiiiiiiiieieieeeiiiiiir e 146
13.9.1 EXItFIOW ClIASS .uvveeiriieeiiiie ittt ettt ne e 147

13.9.2 EXCEPLONFIOW CIASS ...cccoiiiiiiiiiiiie ettt e e e s r e e e e e e e s e e snennrrane e 148

13.10 ExceptionRelations Class Diagramccoouiiiiiiiiiiiiiiiiiinnn e eeeeee 148
13.10.1 TRIOWS CIASS ...uveeiiriiiiieieirei ettt e et nn e e nn e e s e e s e e nnnee s 148

Vi

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

13.11 InterfaceRelations Class Diagramccccceeeeiiiiieeeeeieeieieeeeeis e 149

13.11.1 CoMPLIESTO CIASSuvuerriieiiiiieieee e i e it ee e e e e e e e e s e e e e e e e e e ae s st anbenereeaeaeeeeaann 149

13.12 UsesRelations Class DIiagramccccoooiooeeioiieiiieeieiieiiiiiis e e e eeee 150
13.12.1 USESTYPE ClASS ...ciiiiiiiiiieiiiiee ettt et e e e e s e et e e e e e e e e e s e s snnn e aaneeeaeaeeeas 150

13.13 ExtendedActionElements Class Diagramcoooovviiiiiiiiiiiiiinnineee e 151
13.13.1 ActionRelationship Class (JENETIC)ccouuvuriiiiieeieeaie it a e 151

I o o T 5 P 153
15 Platform PacKagecooii i 163
L15.1 OVEIVIEBW ..ottt ettt ettt ettt ettt ettt e e e e e e e e e e e e e e nne e e ee e 163
15.2 Organization of the Platform Package ..o, 163
15.3 PlatformModel Class Diagramcceviiieeiieeeeeeieeceeeeviesinsns e e e e eeeaeeeens 164
15.3.1 PlatformMOdel CIAaSScuiiiiiiiiiiiaii ittt e e e e e e 164

15.3.2 AbstractPlatformElement Class (ADStracCt) ... 165

15.3.3 AbstractPlatformRelationship Class (abStract)oooocviiiiiiiiiiiiiiiiieeeeeee e 165

15.4 Platforminheritances Class Diagramcccccceiiiiviiiieiiiiiiiisine e e e e eeeee 166
15.5 PlatformResources Class Diagramccccceeeieeiiiieiceeeiiiiies e e e e e aeeaes 166
15.5.1 RESOUICETYPE CIASS ..iiiiiiiiiiiiiie e ettt et ettt e et e e e e e e s e e beaeeeaaaaaeaaas 167

15.5.2 NamMINQGRESOUICE CIASS ...euetiiiiiiaiiiiiiiiitiie ittt e e e e e e e e s aaab b be e e e e e e e e e e e e annes 168

15.5.3 MarshalledRESOUICE ClaSSuiiiiiiiiiiiiiiitie ettt e e e e e e e 168

15.5.4 MessagiNngRESOUICE ClASScciiiiiiiiiiiiiiiiiie et 168

15.5.5 FIlERESOUICE ClASSeuiiiiiiiiiiiaiie ettt ettt e e e e e e et e e e e e aaaaeeeaaan 169

15.5.6 EXECULIONRESOUICE CIASS ...uttiiiiiiiiaiiiiiiiiiiitie ettt et e e e e e e nbe e e e e aaaeeeens 169

15.5.7 LOCKRESOUICE CIASSuuieiiiiiieiiiiie ettt ettt et e e e e e e et ea e e e e e e e e as 169

15.5.8 StreamRESOUICE ClIASSuuiiiiiiiiiiiiii it a e e e e 169

15.5.9 DAtaManNager CIASSuuiiiiiiiieieiaa ettt e e ettt e e e e e e e e s ibb b b reeeaaaaeeeeaaaanes 169
15.5.20 PlatfOrmMEVENT ClASSeeeeiiiiiiiiiee ittt e e e e e e e 170
15.5.11 PlatfOrmMACLON CIASSuuuiiiiiiiiiiiaeei ettt e e e eeeeaaaaeeeens 170
15.5.12 EXIErNAIACIOr ClASSueiiiiiiiiiiiee ettt e e e e eeeaaaee e as 170

15.6 PlatformRelations Class Diagramccccoveeieeieiiiiiiieieiiinses e e e e e e eeae 171
15.6.1 BINASTO CIASS ..eeiiiiiiiiiiiiiiiitie ettt e e e e e e e ettt et e e e e e e e e e e b e beseeeaaaaaeeans 171

15.7 ProvisioningRelations Class Diagramccccccvvviiiiiiiiiiiiiiiiinine e eeeeeeeeaeeeee 171
15.7.1 REQUIIES ClASS ..ieiiiiiiiiiiiiiie it e e e e s sttt e et e e e e e e s s st e e e e aae e e s s s s ssnnebrneeeeaaeeessannnnes 172

15.8 PlatformActions Class DIiagramccccoooiiooeioiiiiiiieiiiieiiiiiis s eeees 172
15.8.1 ManNageSRESOUICE CIASS ...uuuuiiiiiieeiiiiiiiiiiiiiie e et e e e s s st r e e e e e e e e s s reaereaeaeeeeeas 173

15.8.2 REAASRESOUICE CIASSoiiiiriiiriiiiiiiee ittt et 174

15.8.3 WItESRESOUICE ClASSeiiireeiriiiiiieie ettt ettt 174

15.8.4 DEfINEABY CIASS ..ieeieiiiieiiiiiiiieie et e ettt e e e e e s s s e e e e e e e e s e s sennnrneeaeeeaeaeeeaaas 174

15.9 Deployment Class Diagramocouueuuuiuuiiiieeieeee e eeeeeeeeeeeriiinn e e e e e eeees 175
15.9.1 DeployedComponeNnt CIASScuieeiiiiiiiiiiiiiieie et e es s s e e e e e e aereaaaee e 176

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 vii

15.9.2 DeployedSoftwareSystem CIaSsSccoviiiiiiiiiiieiiee e e e e e e nnerrrre e e ae e e 177

15.9.3 MACKINE ClIASS .. .vviiiiiie ittt 177

15.9.4 DeployedRESOUICE CIASS ...ciicuviiiiiiiiieieee e s ittt e e e e s e e e s ss s st eeerae e e e e s ennnnnreeneeeees 178

15.10 RuntimeResources Class Diagramccouvveveiiuiiiiiiiiiieeeeeeeeeeeeeeeeeeenninnnns 178
15.10.1 RUNLIMERESOUICE (JENETIC) ..uuvrrrirerieieeeeesiiesiiieeteeeeesaeeesssssstnnteeerereeeseessnnsnnnsnnneenees 179
15.10.2 PrOCESS ClASS ...veeiiirieiiirieiiiee ittt ettt sne e e e nne e nnn e e nnne e e s nnnee e 179
15.10.3 THre@d CIaSSeeiiiieieiiiiieii ettt e e e 179

15.11 RuntimeActions Class Diagramcoooiiiiiiiiiiiiiiiiiiiaa e e e e eeeeeeseieeen 179
15.11.1 LOAAS ClASS ..eieueeeiiiieeiirie st ee et n et ne e st et e s e e s e e nnne e 180

L T80 I 2 o F= L1 S 1 o TSR 181

15.12 ExtenededPlatformElements Class Diagramccccccoeeeiveieieeiiiinieeeeeniiennne 181
15.12.1 PlatformElement Class (QENEIIC)uuvieiieriiiiiiiiieiee et e ee s e e e e e e e s e snrreeaeee e 182
15.12.2 PlatformRelationship Class (QENEIIC)ccovieiiiiiiiieiee e e e 182

IO 1 - Vo] 2= Vo = P 183
L16.1 OVEIVIEW ..eeeeeiiiiiiae e ettt s e a e e e e e e e e e e e e eeeeetettbbta e e e e e e e e eaaeaeeeeeees 183
16.2 Organization of the Ul Package ..o 183
16.3 UIModel Class DIagramuucoiiiiiiieeeeeeeeeeeeeeeeeieiaiisssnsns s e e s e eeeeaaseesesesens 183
16.3.1 UIMOAEI CIASS ...eeeiieiiiieieeie ittt ettt ettt e e e e e e ettt e e e e e e e e e e s nnnbesbeeeeeas 184

16.3.2 AbstractUIElement Class (ADSLracCt)ooooiiiiiiiiiiiiee e 184

16.3.3 AbstractUIRelationship Class (abSIract)cccuuviiiieiiiiiiiieeeee e 185

16.4 Ullnheritances Class DIiagramccccoeeiiiieiiiieeeiiiiicssses e e e e e e e e eeeeeeeeessinnnns 185
16.5 UIResources Class Diagramccccoeiieeeeeeieieeieeeeeeiiiiiisssss s e s e e eeeeeneaseeeesnnnnnn 186
16.5.1 UIRESOUICE ClaSS (JENEIIC) ..uuvurrrriieiieiaaaeei ittt ittt e e e e e e sttt eeea e e e e e e s e nbeebeeeeeas 187

16.5.2 UIDisplay Class (QENEIIC) ...ccouurieiiiiiieiaee ettt e e ettt e e e e e e e e e e s snebee e eee s 187

16.5.3 SCIEEM ClASS ...uuieiieiiiiiiiiie ettt ettt et e e e e e e e e et et e e e e e e e e e e e e s nbeebeeneeas 187

16.5.4 REPOIT CIASSuuteiiiiiiiieiee ettt ettt et e e e e e e e s bbbt e e e e e e e e e e e s e nnnbeebeeeeeas 187

16.5.5 UIFIEIA ClASSuteiiiiiiiieieiii ittt e ettt e e e e e e e e e e s e e e aeeeae s 188

16.5.6 UIEVENT CIASSeeiiiiiiiiiiiaii ittt ettt e e e e e e ettt e e e e e e e e e e s nanbbeebeeeeeas 188

16.5.7 UIACLON CIASS ..utttiiiiiiiiiiaii ittt ettt ettt e e e e e e e s e bbb e e e e e e e e e e e e sassnnbesbeeeeeas 188

16.6 UIRelations Class Diagramccccoeoeioieeeeeeeieeesieeeeieiiinianssss s e e e e eeeeeaaeeeaeeeens 189
16.6.1 UIFIOW CIASS ...uuteiiiiiiiieieiie ittt ettt e e e e e e e e e bbbt e et e e e e e e e e e e e nanbeeebeeaeeas 189

16.6.2 UILAYOUL CIASS ..eiiiiiiiiiieiiititie ettt ettt e et e e e e e e ettt et e e e e e e e e e s nnbbsbaaeaaaaaaeeas 189

16.7 UIACLIONS Class DIAQramuuuueiiiiiiiieeeeeeeeeeeeeeeieeaiisasnnnsss s s e s e eeeaeaaeeseneeens 190
16.7.1 DiISPIAYS ClASS ...vviieeiiiieieiiiiiiiititie et e e e e e s e s s st r e e e e e e s e e s st ereeeaaeeeeseannnnnnrraneees 191

16.7.2 DisplaySIMage ClassSccoiiiuuuiiiiiiiiee e ces s ee et e e e s e s e s rreee e e e e e e s s s nnraarrane e 191

16.7.3 MANAGESUI CIASS ..evviiiiiiieiii i ie et e s e e e e e e e s s s e r e e e e e e e e s s e nrnnreeeeees 191

16.7.4 REAUASUI ClIASSeeiiiieie ettt ettt sn e e e 192

16.7.5 WIESUI CIASS ..eviiiiiii ettt et et n e e e nnne e s 192

16.8 ExtendedUIElements Class Diagramccoooiiiiiiiiiiiiiiiiinnennee e eeeeeeeeeeiieeens 193
16.8.1 UIEIEmMeNt Class (QENETIC) ...icccuurriieieieeeeeeisiiictiieetee et e e e e e s s ssesetrnee e e e e e e e e s s e snnnsrnreeeeeeeeeas 193

viii

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

16.8.2 UIRelationship Class (JENEIIC) ...uuvieieeiiii it e e er e e e e e e s e s aare e e e e e e 193

17 EVENT PACKAGE ..ottt 195
L17.1 OVEIVIEW ..ottt ettt e e et e e e e e e e s ettt ettt ettt e e e e e e e e e e e e e e e e e eanaenaanabbbbeeees 195
17.2 Organization of the Event Packageccccceeeeiiiiiiiiiiiiiee e 195
17.3 EventModel Class DIagramuuueuiiiiinieeieeeeeeeeeeeeeeeevitininss e eee e 195

17.3.1 EVENIMOUE] CIASS ...ciiiiiiiiitiiie ettt ettt et e e e e e e s e aeeeaaaaae e s 196
17.3.2 AbstractEventElement Class (aDStract)cciiioiiiiiiiiiiiiii e 196
17.3.3 AbstractEventRelationship Class (abStract) ... 197
17.4 Eventinheritances Class Diagramccccooiirooiiiiiiiiiiiiiiiiiins e 197
17.5 EventResources Class DIagramuuueoiiiiiineieee et 198
17.5.1 EventResource Class (gENEIIC) ..uvueeiiiiice e e ee e e ee st r e e e e e e e sesnreeneereeeaeeeens 199
17.5.2 EVENE CIASS ..iiiiviiiiiie ittt ettt e e n e s nne e e s ne e nnn e nnne e nn e nnn 199
17.5.3 STALE CIASS ..veiiirieiieeeiie ettt ettt 199
17.5.4 INMIAISTALE ClASS ...o.uveiiiieieiree ettt 199
17.5.5 TranSition ClASSveiiiiiiiiiiie ittt 200
ST ST O T o] =] 1Y O = T R 200
17.5.7 ONEXIE ClASSeveiiirieiiiie ettt ettt ettt et re e e e nnne e 200
17.5.8 EVENEACHON ClASS ...veiiiieieriiiieiiiiie sttt sttt e e 200
17.6 EventRelations Class DIiagramcooiiroeeieeeeiieieeeeieeiiiiiiinnn e eeee e 201
17.6.1 NEXISTALE ClASS ...cuvviiireieiieieie ettt n e enns 201
17.6.2 CONSUMESEVENT CIASSoiiviiiiiiiiiiieeeie ettt 201
17.7 EventActions Class DIiagramcoeuuiuuuiiiiiiiiaineeee e e e ee e 202
17.7.1 REAASSIALE ClASS ...coiiiiiiiiiiiiieii ettt e et e et e e e e e e e s e e e e e aaaaa e as 202
17.7.2 ProdUCESEVENT CIASS ...ttt ettt e e e e e e e e e e e e e e aeeeens 203
17.7.3 HASSLALE ClASS ...cooeiiiitiiiiiie ettt et e e e e e e st e e e e e e e e e e e e e e annnees 203
17.8 ExtendedEventElements Class Diagramccccccvvvvvvviiiiiiiiiiiiniineeeeeeeeeeee 204
17.8.1 EventElement Class (QENEIIC)eeiiiiiaiiii ittt e e e e e 204
17.8.2 EventRelationship Class (QENEIIC)cccouiiiiiiiiiiieee e 204

18 Data PaCKaAge ...uuiiieiiiiiii e 207
L18.1 OVEIVIEW ..eiiiiiitiiiiiiiiee et te e et e e e e e e e e s e ettt ettt e et e e e e e e e e e e e e e e e aanaeannanbebneeee 207
18.2 Organization of the Data Packagecccceeeeiiiiiiiiiiiiii e 207
18.3 Data Model Class DIagramoeuuuuuuuiiiiinieaeee et e e 207

18.3.1 DAtAMOUE] ClIASSveiiiriiiiieeiitiiie sttt 208
18.3.2 AbstractDataElement Class (ADSLract)ccccccvvveeoiiiiiiir e 209
18.3.3 AbstractDataRelationship Class (abStract)ccccccccveviiiiiiiiiiieee e 209
18.4 Data Inheritances Class Diagramccccoooooioiiiiiiiiiiiiiiiiiiiii e 209
18.5 DataResources Class Diagrameeeiiiieeieeeeeeeieeeeieesiisiinnsns e e e eeeeeaeeaens 210
18.5.1 DataResource Class (QENETIC) .iiuveeiiiiiiciiiiiieeeeete e e ss st eee e e e e e e e e e se s aereeaaeee e 211

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 iX

18.5.2 DataContainer Class (JENEIIC) ..uuuuriiiiieeeiiiiiciieerere e e e ee e ssse st rer e e e e e e e e an s snneenrnereaaeees 211

S TC O | - 1 Lo N 0 - T PR 212
18.5.4 RelationalSChema CIAaSSuuuiiiiiiieiiii et e e e e e e e e e e e eeeees 212
18.5.5 DAtAEVENE ClASScovevieiiiiiiiiie ettt e e e e e e e e s e e e e e s eeeban s eeseeeeees 213
18.5.6 DAtAACLION CIASScovvvveiiiiiiieiee ettt e e e e e e e s e e e e e s e eab e e sereeees 213
18.6 ColumnSet Class Diagram...........uceieieeieeeeeeeeieeeieeeiiiiss s s e e e e e e e eeeeeeeesaennnnnnes 214
18.6.1 COIUMNSEL (GENEIIC) wevveieeeeii i ettt e et e e e e e s er st e e e e e e e e s s s s se bbb reeeeeeaeesansnnrennneeeeeas 214
18.6.2 RelatioNalTable ClASScooiieiii i e e e e e e e e e e eaeees 215
18.6.3 RElAtIONAIVIEW CIASS ...uiiiiiiiiieie et e e e e e e s e e e e s e eeb s e e e eeeeeen 217
18.6.4 DataSegMENt CIASSccccuuiiiiiiiiiieee e st esc e e e e e e e s as st e e e e e e e e s e e e n e an e eeees 218
18.6.5 RECOIAFIIE CIASS .. coevvveniiiiieeiie ettt e e e e e e e s e e e e e s eeaa e e s eeeeees 220
18.7 KeyIndex Class DIagramcceciiiiiiiiiiieeeeeiiei e e e e e e et e e e e eaenans 225
18.7.1 IndexElement Class (QENEIIC) ...uuuuiiiiiiieeeeiiiieiiietieee e et e e e ss s st r e e e e e e e e s snnnnreenaeeeeens 225
18.7.2 UNIQUEKEY ClASS ..eeviiiiiieieiii ittt et e e s sttt e e e e e e s s s st e e e e e e e e e e e s e nnrenrenneees 226
18.7.3 REfErenCEKEY CIASScceiiiiiiiietiiiiiie et e e e e e e e e e e e e e ss e rareeeeees 226
S T [T [O F= 1= 226
18.8 Key Relations Class Diagramcccooeeiiiiiiiiiieieieiis e e e eeeeenans 227
18.8.1 KeyRelationship Classcccuuiiiiiiiiiie e e e e e ee e 227
18.9 DataActions Class DIagramcuuiiiiiiiiiiiiiie et e e e e e eeenns 228
18.9.1 REAdSCOIUMNSEL CIASS ...uiiiiiiiiiie ettt e e e e e et e e e s e s st e e s b e e sbaaees 228
18.9.2 WIItESCOIUMNSEL ClIASS ...uiiiitiiiiii ettt e e et e e e e e st s e s aba e e saanes 229
18.9.3 MANAgeSDALA CIASS ...cciiiiiiiiiiiiiitie ittt ettt a e e e 229
18.9.4 HASCONIENT CIASS ...evuniiiiiieii et e e et e e s e e e e e s s e e e e e e e eaaeeees 230
18.10 StructuredData Class Diagramcccccoeiiieeieeiieiiieeeeieiiiiin s e e e e e e e aeeeens 235
18.10.1 XIMLSCREIMA ..eneiiiieei ettt e e e e et e e e e e e e e e e e s es s s e e eaeeaees 235
18.10.2 AbstractContentElement (ADSLract)cc.eeviiiiiiiiiiiiee e 236
18.11 ContentElements Class Diagramcccoovviviiiiiiiiiiiiiiiene e eeeeeeeeeeeeeesnnnnnn 236
18.11.1 ContentItem (GENEIIC) ..ccoiiiiiiiiitie ettt e e et e e e e e e e e e e e e ennbenbeeeeeas 237
18.11.2 ComMPIEXCONIENTTYPE ..cciiiiiiiitieie et e ettt e e e e e e et e e e e e e e e e e e s e aannnbesbeeeeeas 237
18.11.3 SIMPIECONENTTYPE ..oiiiieiii ittt e e e e e et e e e e e e e e e e s e e nbeebeeeeeas 238
18.11.4 CONENTRESIICTON .uuviieeiiiiiie it e e et e e e e st e e e s e s saa s e st eeesbaseaes 238
18.11.5 AlICONIENT ClASS ...evniiiiieie ettt e e e e e e e e e e et e e s e e e eea s e e enaaeeees 241
18.11.6 SEUCONIENT CIASS ..eiiiiiiiiiii ittt ittt e ettt e e e e e e e e e s ettt e e eea e e e e e e e e nnresbeeeeeas 241
18.11.7 ChOIiCECONTENT CIASS ...euuiieiiiiiie it e e e e e e e e s e e e s e e s s e s e et e e aeaaeeees 241
18.11.8 GroupConteNnt ClASSccooiiiueiiiiiiiiieia ettt e e e e r et e e e e e e e s e e aeeebeeee s 241
18.11.9 MIXEACONIENE CIASS ...evuniiieiiii et e e e e e e e e e e e e e s e e e eea s eaeeaaeaees 242
18.11.10 CONtENTAIIIDULE ClaSS.....civeeiieeie et e et e e e e e sa e e s e e e sba e 242
18.11.11 ConteNtEIEMENT CIASSccvuniiiii it e e e e et r e e e e e s e e eaees 242
18.11.12 ConteNtREEIrENCE ClASSiieeiiii ettt e e e e e e e aees 242
18.12 ContentRelations Class Diagramccccceviieiieeeiiiiiiiiinins e e e e e e e eeeeee 247
18.12.1 TYPEABY ClASS ..eeeeiiiieieiiiii ittt e e st e e e e e e e s e s e et e e e e e e e e e s e s nnnnerrenees 248
18.12.2 DatatyPeOT ClASS ...oiieiiiiiiiieiiiiiie et e e e e e e e s e s et e e e e e e e s e e 249
18.12.3 REFEIENCETO CIASS .evvvniiiiiiiiii ettt e ettt e e e e e e e e et s e e e s e e easseeaaa e esererees 249
18.12.4 EXtENSIONTO CIASS ..cevvriiiiiiieiii et e s e et e s e e s eabaa e e e e e s aabaan e eeaaees 249

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

18.12.5 ReESINCHONOT CIASS ...oevvuiiiiiiiieiee ettt e e e e e s s e e s e et e e e e e s eaaban s eeaaens 250

18.13 ExtenededDataElements Class Diagramccccvvvvevveviiniiiniiieineeeeeeeeeeee 250
18.13.1 ExtendedDataEIemENt ClASSccceciirriiiiriieiiiieieee e 251
18.13.2 DataRelationShip ClaSScuiiiiieiiiiiiiiiieie e e e e e e 251

19 SEruCtUre PACKaQe ...oouvuiiiiiiiiiiii ettt a e 255

LO.1 OVEBIVIEBW ..ttt ettt ettt ettt ettt e e e e e e e e e e e e e e e e ee e 255

19.2 Organization of the Structure Packagecccccceeiiiiiiiiieiiiiiiiiiic e 255

19.3 StructureModel Class DIagrameooiiiiieeiee e 255
19.3.1 StruCtUreMOTEl ClASSeeiiiiiiiiiieie et e e 256
19.3.2 AbstractStructureElement Class (abStract) ... 256
19.3.3 AbstractStructureRelationship Class (abstract) ..., 257
19.3.4 SUDSYSLEM ClASS ...iiiiiiiiiiiiiiei ittt ettt e et e e e e e e e s eaeeaaaaeeeeas 257
19.3.5 LAYEE ClASS ..eetiiiiiiiiiiiititi ettt e ettt e et e e e e e e e e e bbbt e et e e e e e e e e e s e anbbbrbeeeeaaaeaaeaeann 257
19.3.6 COMPONENT CIASS ...ciiiiiiiiiiiiiieit ettt ettt e e e e e e e e et e e e e e e e e e e e s e aannbebeaeeaaaaaeaaans 257
19.3.7 SOftWAreSYSLEM ClIASSuuiiiiiiiiiiiai ittt e e e e e e aaaeeeeas 258
19.3.8 ArChiteCtUIrEVIEW CIASSeieiiiiiiiie ittt e s anneas 258

19.4 Structurelnheritances Class Diagramcccccceeeiiiiieeeeeieiiieie e eeeeae 258

19.5 ExtendedStructureElements Class Diagramcoooevvuiiiviiiiiiinninneeeeeeeeee 258
19.5.1 StructureElement Class (JENETIC) ...cceeviei it e e ee e e e e e e e e 259
19.5.2 StructureRelationship Class (QENEFIC)ccuuvuiiiiiieeeie i 259

20 Conceptual PaCKageccoviiiiiiiiiiiieie et 261

20.1 OVEIVIEW ...ttt et et e e e e e e e e e e e e bbbt e et et et e e e e e e e aeaaaaeananaanns 261

20.2 Organization of the Conceptual Packagecccccoviiiiiiiiiiiiinine e, 262

20.3 ConceptualModel Class Diagramccooovviiiiieeiiiiiiiiiiease e e e e e e eeeeeeeeennnnnen 262
20.3.1 CONCEPLUAIMOTEIceiieiiie et e e e e e ee e e e e e e e as 63
20.3.2 AbstractConceptualElement (ADStract)oocuiiiiiiiiiiiii e 264
20.3.3 AbstractConceptualRelationship Class (abstract)ccccoviiiiiiieiiiiieeee, 265

20.4 Conceptuallnheritances Class Diagramceeuvuviiiiiiiinnieeeeeeeeeeeeeeeesiinnnns 265

20.5 ConceptualElements Class Diagramcccovvevveiiiiiiiiiiieisee e eeeeeeeeeeeeessiennns 265
20.5.1 ConceptualContaiNer CIASSuuuiiiiiiiiaaeaie ittt e et e e e e e e e e e e eeeeas 266
20.5.2 TEIMUNIT okt e et e e ekt e e e e s b e e e e annbe e e e e enreas 267
20.5.3 FACTUNIL ..ttt e e e e e e e s s s bbbt et e e e e e e e e e e e s e nnnnbrnbeeeeaas 267
20.5.4 RUIBUNIL <.ttt et e e e e e e e ettt e e e e e e e e e e e e e nbanbraeeeas 267
20.5.5 CONCEPLUAIROIE ..ottt e e e e e re e e as 267
20.5.6 BENAVIOTUNIE CIASSccciiiiiiiiieiiiiiie ettt 268
20.5.7 SCENANOUNIL CIASSeiiiiiiiiiiiiiiiie ettt e e e e e 268

20.6 ConceptualRelations Class Diagramccovveveiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeninnnns 269
20.6.1 CoNCEPLUAIFIOW CIASS ..ottt e e e e e e e s e b e eee e 269

20.7 ExtendedConceptualElements Class Diagramccccceeeevvieieeeeevieeeeeeennnnnnns 277

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 Xi

20.7.1 ConceptualElement Class (QENENIC) ..uuuviiiieeiiiiiiieiieeere e e e e s e e err e e e e e e s eee s 277

20.7.2 ConceptualRelationship Class (QENETIC)ccccvvviiiiieiiee e e e ee s 278

21 BUIID PACKAQE ... 279
2 Rt R O 1= V1 USROS 279
21.2 Organization of the Build Packagecccccvvvvveiiiiiiiiiiiiii e 279
21.3 BuildModel Class DIagramcccooeeiooiiiiiiiiiiiiiiieiiieeas e e e eeeeeeeeeennnnn 279
21.3.1 BUIIAMOUEI CIASS ..evuviiuiiiiiiiiiii it s s e e e e e e e e e e e e e eeeaeeaneneees 280

21.3.2 AbstractBuildElement Class (abStract)ooocuiiiiiiiiiiiie e 280

21.3.3 AbstractBuildRelationship Class (abStract)ccccveveeeee i 281

P2 T B @ T T 1 T - TS 281

PG TR oL]l - T PP PPPROPPPPR 281

21.3.6 SYMDONICLINK ClASS ...evviiieeeiiiiiiiiiie ittt ee e e e s e e e e e e e e e s s nnnnrnneees 281

21.4 BuildInheritances Class Diagramcviiieeiiiiiiiiiiieeeeeis e 282
21.5 BuildResources Class Diagramccooiiiiiiiiiiiiiiiiiiiaeena e e e eeeeeeeeeeeeennnnen 282
21.5.1 BUIIARESOUICE ClASS ...cciiiiiiiiiieiiiiiie ettt e et e e s e snbreeeeenne 283

21.5.2 BUIIdCOMPONENT CIASS ...oeeeeeiiiiiiiieiieee e e st e e e e e e s s ere e e e e e e e s e s nenareane e 283

21.5.3 BUIlADESCHIPLION CIASS ...oivieeiiiiiiiieiie et ee e ettt e e e e s s s e e e e e e e e s e s nneenreaee e 283

P I 2 TN 1[0 IS (= o O - TS 284

21.6 BuildRelations Class Diagramcccooeeiiiiiiiiiieiieiiiis e 284
21.6.1 LINKSTO ClASS ..uteiieiiiiiiiieeiitiiiee ettt ettt ettt ettt e e st e e e e snbe et e e s snnba e e e s e snbeeeeeennn 284

21.6.2 CONSUMES ClASS ...iiiiiiiiiiiiie ettt ettt e e et e e s sebe e e s e snbeeeeeenne 285

21.6.3 ProduCES CIASS ...ciiiuiiiieiiiiiiie ittt ettt ettt e et e e et e e e e et b e e e e nnb e e e e annnes 286

21.6.4 SUPPOIEABY CIASS ..uvveeiiiiieieiiiiiiiiiieiee et et e e e et s e sttee e e e e e e e e s s st eeeeeaeeeeseanannnnnreaeeees 286

21.6.5 SUPPIEABY CIASS ...uvuiieiiiiieeieiiiiiiiiiieie st et e e e e s s e e e e e e e s s s st ae e e e aeee e e s s e nnnanrnneees 287

21.6.6 DESCHDEUBY CIASS ..vviiiiiiiiiieiiiiiiiiie et e e e e e s s et ee et e e e e e s s s st e e e e e e e e e s e annnnreeeeees 287

21.7 ExtendedBuildElements Class Diagramcccoeeeiieiiiiiiiiiieeeceeiiiie e, 289
21.7.1 BUIldEIEMENt ClaSS (QENEIIC) ...uueeiiiiiiiiiieee ettt rr e e e e e e e eeebe e 289

21.7.2 BuildRelationship Class (QENEIIC)uueiiiiiiaiiiiiiiiiiiee ittt ee e 289
Annex A - Semantics of the Micro KDM Action Elementscccceeveeee 291

Xii

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://mww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

. Business Rules and Process Management Specifications

Language Mappings
. IDL/Language Mapping Specifications
. Other Language Mapping Specifications

Middleware Specifications
. CORBA/IIOP
. CORBA Component Model
. Data Distribution
e Specialized CORBA

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.1 xiii

Modeling and Metadata Specifications

. UML
. MOF
« XMl

. CWM

. Profile specifications.

Modernization Specifications
. KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
. CORBAservices
e CORBAfacilities
. OMG Domain specifications
. OMG Embedded Intelligence specifications
. OMG Security specifications
All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and

may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as SO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
http: //mwww.omg.org/
Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Xiv Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.1

Note — Terms that appear in italics are defined in the glossary. Italic text al so represents the name of a document, specification,

or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.

Roadmap

This roadmap provides a list of documents including the original submission and all documents that were generated

during the finalization task force process.

The source documents for this specification include:

Alpha: admtf/2006-03-01 (submission)
Associated Schema files: admtf/2006-03-02

The FTF process generated the following documents:

Beta 1: ptc/2006-06-07 (a.k.a. final adopted specification)

Beta 2. ptc/2007-03-04:
ptc/2007-03-06:
ptc/2007-03-14:
ptc/2007-03-17:
ptc/2007-03-18:

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.1

convenience document with change bars
convenience document without change bars
addendum to FTF report

XML, MDL, CMOF

XMI and examples

XV

XVi Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.1

1 Scope

This specification defines a meta-model for representing existing software assets, their associations, and operational
environments, referred to as the Knowledge Discovery Meta-model (KDM). This isthe first in the series of specifications
related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects
that involve existing software systems by insuring interoperability and exchange of data between tools provided by
different vendors.

One common characteristic of various tools that address SwA and ADM challenge is that they analyze existing software
assets (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Each
tool produces a portion of the knowledge about existing software assets. Such tool-specific knowledge may be implicit
(“hard-coded” in the tool), restricted to a particular source language, and/or particular transformation, and/or operational
environment. All the above may hinder interoperability between different tools. The meta-model for Knowledge
Discovery provides a common repository structure that facilitates the exchange of data contained within individual tool
models that represent existing software assets. The meta-model represents the physical and logical assets at various levels
of abstraction. The primary purpose of this meta-model is to provide a common interchange format that will allow
interoperability between existing modernization and software assurance tools, services, and their respective intermediate
representations.

2 Conformance

KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms, and
programming languages. Not all of its capabilities are equally applicable to all platforms, applications, or programming
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers by allowing integration information about a complex enterprise application from
multiple sources, as the complexity of modern enterprise applications involves multiple platform technologies and
programming languages. In order to achieve interoperability and especially the integration of information about different
facets of an enterprise application from multiple analysis tools, this specification defines several compliance levels
thereby increasing the likelihood that two or more compliant tools will support the same or compatible meta-model
subsets. This suggests that the meta-model should be structured modularly, following the principle of separation of
concerns, with the ability to select only those parts of the meta-model that are of direct interest to a particular tool vendor.
Consequently, the definition of compliance for KDM requires a balance to be drawn between modularity and ease of
interchange. Separation of concerns in the design of KDM is embodied in the concept of KDM domains.

2.1 KDM Domains

Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). Each KDM domain consists of a single KDM package that defines meta-model elements to represent
particular aspects of the system under study. KDM domains correspond to the well-known concept of architecture views.
For example, the Structure domain enables users to discover architectural elements of source code from the system under
study, while the Business Rules domain provides users with behavioral elements of the same system such as features or
process rules.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Build,
Structure, Data, Business Rules, Ul, Event, Platform, and micro KDM.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 1

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy
would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless,
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as
explained below.

Levels of compliance

L2 = All KDM deomains

Build Structure Data Business Rules UI Event Platform Analysis
L1= Build| structure | Data |Conceptual Ul | Event |Platfon MJ]:{;;IO
Lo = Core + kdm + Source + Code + Action

Domain of compliance

Figure 2.1 - Domains and levels of KDM compliance

2.2 Compliance Levels

In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are two KDM compliance levels:

e Level 0(LO) - Thiscompliance level contains the following KDM packages: Core, kdm, Source, Code, and Action
packages. It provides an entry-level of knowledge discovery capability. More importantly, it represents a common
denominator that can serve as abasis for interoperability between different categories of KDM tools.

To be LO compliant, atool must completely support all model elements within all packages for LO level.

e Level 1(L1)- Thislevel addresses KDM domains and extends the capabilities provided by Level 0. Specifically, it
adds the following packages: Build, Structure, Data, Conceptual, Ul, Event, Platform, aswell as the set of constraints
for the micro KDM domain defined in sub clause 14 “Micro KDM,” and Annex A “Semantics of the Micro KDM
Action Elements.” These packages are grouped to form above-mentioned domains. More importantly, thislevel
represents alayer where tools could be complimentary since their focus would be in different areas of concern. This
would be an additional reason why L0 interoperability (which at thislevel would be viewed as information sharing

2 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

between tools) is mandated. In this case interoperability at this level would be viewed as correlation between tools to
complete knowledge puzzle that end user might need to perform a particular task.

To be L1 compliant for agiven KDM domain, atool must completely support all model elements defined by the
package for that domain and satisfy all semantic constraints specified for that domain.

e Level 2(L2) - Thislevel istheunion of L1 levelsfor all KDM domains.

2.2.1 Meaning and Types of Compliance

Complianceto Level 1 (L1) for acertain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. Thisalso implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at aLevel 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of
information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that
KDM domain at L1 and complete set of concepts defined at LO.

For a given compliance level, a KDM implementation can provide:

« The capability to analyze physical artifacts of existing applications and export their representations based on the XMl
schema corresponding to the given compliance level.

e The capability to import representations of existing software systems based on the XMI schema corresponding to the

given compliance level and perform operations suggested by the corresponding packages.

Table 2.1 - Compliance Statements

Compliance Statement

Compliance L evel

Import-Analysis

Import API

Export

operations of existing tool to support
meta-model elements of the Structure
package.

import;Support KDM API as
defined by the Structure
package.

LO Import KDM models based on Import KDM models based Provide capability to analyze
complete KDM XMI schema into on complete KDM XMl artifacts of an application for
existing tool; schema; specified programming
support specified mapping between support KDM API defined language or multiple
KDM and existing model in the tool; by the KDM Core package; languages;
extend operations of existing tool to support KDM framework as Generate XMI documents
support meta-model elements of KDM defined in the Kdm corresponding to the KDM XMl
framework; package; schema;
extend operations of existing tool to support KDM API defined Support KDM framework as
support meta-model elements of Code by the Code and Action defined by the Kdm package;
and Action packages; packages; Support Code and Action
extend operations of existing tool to support traceability to the packages;
traceability to the physical artifacts of physical artifacts of the Provide traceability back to the
the application from Source package. application as defined inthe | physical artifacts as defined by

Source package. the Source package.

L1 STRUCTURE LO compliance for analysis;extend LO compliance for LO compliance for

export;Provide capability to
analyze architecture
components of existing
application and generate KDM
Structure model according to
Structure package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Table 2.1 - Compliance Statements

DATA LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Data persistent data components of
Data package. package. existing application for

specified database system and
generate KDM Data model
according to Data package.

PLATFORM LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Platform and platform artifacts for specified
Platform package. Runtime packages. platform and generate KDM

Platform model according to
Platform package.

BUILD LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Build build artifacts for specified
Build package. package. build environment and

generate KDM Build model
according to Build package.

ul LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Ul package. user interface artifacts for
Ul package. specified user interface system

and generate KDM Ul model
according to Ul package;

EVENT LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Event artifacts related to event-driven
Event package. package. runtime frameworks and state-

trasition behavior and
generate KDM Event model
according to Event package.

BUSINESS LO compliance for analysis; LO compliance for import; LO compliance for export;
extend operations of existing tool to Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Conceptual conceptual and behavior
Conceptual package. package. artifacts (e.g., domain

concepts, business rules,
scenarios) of existing
application and generate KDM
Conceptual model according to
Conceptual package;

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Table 2.1 - Compliance Statements

MICRO KDM LO compliance for analysis; extend LO compliance for import; LO compliance for export;
operations of existing tool to support Support micro KDM actions Provide capability to analyze
micro KDM actions as specified in as specified in section 14 artifacts of existing application

section 14 micro KDM and Appendix 1 | micro KDM and Appendix 1 to the level of detail specified in
section 14 and Appendix 1
provide the mapping of
semantics of the existing
application as it is determined
by the programming languages
and the runtime platform into
KDM micro actions and
generate KDM models that
represent the same meaning

L2 LO import compliance for analysis; LO compliance for import; LO export compliance;
L1 import-analysis compliance for all Support KDM API as L1 export compliance for all
KDM domains. defined by all KDM KDM domains.
packages.

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to or revisions of any of these publications do not apply.

e UML 2. Infrastructure Specification
e MOF 2.0 Specification

4 Terms and Definitions

There are no special terms or definitions in this specification.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Other OMG Specifications

There are no changes to other OMG specifications.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 5

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.

Chapter 7. Specification overview - Provides design rationale for the KDM specification
Chapter 8. KDM - Gives the overview of the packages of KDM

Part | - The KDM Infrastructure Layer

Chapter 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling
services to other classes, and define fundamental constraints.

Chapter 10. KDM package - Describes the key infrastructure elements that determine patterns for constructing KDM
models and integrating them. This package defines several static elements that are shared by all KDM models. This
package determines the queries against KDM models.

Chapter 11. Source package - This package describes meta-model elements for specifying the linkage between the KDM
model artifacts and their physical implementations in the artifacts of existing software. Elements of the Source package
allow viewing the source code, corresponding to KDM model elements.

Part Il - The Program Elements L ayer

Chapter 12. Code package - Describes meta-model elements that capture programming artifacts as provided by
programming languages, such as data types, procedures, macros, prototypes, templates, etc.

Chapter 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package
defines detailed endpoints for most KDM relations. The key element related to behavior isa KDM action. Other packages
depend on the Action package to use actions in further modeling aspects of existing applications such as features,
scenarios, business rules, etc.

Chapter 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.
Part I11 - The Runtime Resources L ayer

Chapter 15. Platform package - Describes the meta-model elements for representing operating environments of existing
software systems. Application code is not self-contained, as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Platform package provides meta-model elements to address the following:

* Resources that Runtime platforms provide to components

* Servicesthat are provided by the platform to manage the life-cycle of each resource
« Control-flow between components asit is determined by the platform

 Error handling across application components

 Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the
Runtime package further addresses the physical aspects of operating environments, such as deployment.

6 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Chapter 16. Ul package - Describes the meta-model elements to represent knowledge related to user interfaces, including
their logical composition, sequence of operations, etc.

Chapter 17. Event package - Describes meta-model elements that represent basic elements related to behavior of
applications in terms of events, messages and responses.

Chapter 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Part IV - Abstractions Layer

Chapter 19. Structure package - Describes the meta-model elements for representing the logical organization of the
software system in terms of logical subsystems, architectural layers, components and packages.

Chapter 20. Conceptual package - Describes the meta-model elements for representing business domain knowledge about
existing applications in the context of other KDM views.

Chapter 21. Build package - Describes the meta-model elements for representing the artifacts involved in building the
software system (the engineering view of the software system).

6.3 Acknowledgements

The following companies submitted and/or supported parts of this specification:

e Allen Systems Group, Inc
* BluePhoenix
 EDS
e Fashline
* IBM
* Klocwork, Inc.
* KDM Analytics
» SoftwareRevolution
e Tactical Strategy Group, Inc
e Unisys
The following persons were members of the core team that designed and wrote this specification: Nikolai Mansourov,

Michael Smith, Djenana Campara, Larry Hines, William Ulrich, Howard Hess, Henric Gomez, Chris Caputo, Vitaly
Khusidman, Barbara Errickson-Connor.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Pete Rivett, Adam Neal, Sumeet Malhotra, Jim Rhyne, Mark Dutra, Sara Porat, Fred
Cummins, Manfred Koethe, Alena Laskavaia, Alain Picard.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 7

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

7 Specification Overview

This specification defines a meta-model for representing information related to existing software assets, their associations,
and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and
modernization tools, services, and their respective models. More specifically, (KDM) provides a common repository
structure that facilitates the exchange of data currently contained within individual tool models that represent existing
software assets. The meta-model represents the physical and logical software assets at various levels of abstraction as
entities and relations.

KDM separates knowledge about existing systems into several orthogonal facets that are well-known in software
engineering and are often referred to as Architecture Views.

Infrastructure layer

4

//'/ Programn Elernents layer

Figure 7.1 - Layers, packages, and separation of concerns in KDM
KDM specification is organized into the following 4 layers:

¢ KDM Infrastructure Layer

¢ Program Elements Layer

¢ Runtime Resource Layer

e Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to
represent a certain independent facet of knowledge related to existing software systems.

Logically, KDM consists of 9 models. Each KDM model is described by one KDM package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 9

The KDM Infrastructure Layer consists of the following 3 packages: Core, kdm, and Source. Core and kdm packages do
not describe separate KDM models. Instead these packages define common meta-model elements that constitute the
infrastructure for other packages. The Source package defines the Inventory model, which enumerates the artifacts of the
existing software system and defines the mechanism of traceability links between the KDM elements and their original
representation in the “source code” of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code
model that represents the implementation level assets of the existing software system, determined by the programming
languages used in the developments of the existing software system. The Code package focuses on the named items from
the “source code” and several basic structural relationships between them. The Action package focuses on behavior
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software
systems.

The Runtime Resource Layer consists of the following 4 packages: Platform, Ul, Event, and Data.
The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information:
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files.
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:
 KDM isaMOF modd.
« KDM isan Entiry-Relationship model.
« KDM defines an ontology for describing existing software systems.

« KDM can be extended to capture language-specific, application-specific, and implementation-specific entities and
relationships.

« KDM defines multiple hierarchies of entities via containers and groups.

« KDM models are composable (it is possible to group several entities into a typed container, that will further on
represent the entire collection of grouped entities via aggregated relationships).

« Analyst isableto refactor the model (for example, by moving entities between containers) and map changes in the
model to changes in the software through traceability links.

« KDM isaligned with ISO/IEC 11404 Language-Independent Datatypes and SBVR.

10 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

8 KDM

8.1 Overview

KDM specifies a comprehensive set of common concepts required for understanding existing software systems in
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of
domain-specific, application-specific, or implementation-specific knowledge.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

i implici . Abstractions
pafe iy Conceptual | Build Structure } e
Runtime
Data | Event | Ul Platform Rosouree
. Program
Primitives, eXplicit, Code Actions LEﬁI;;mts
automatical |y extracted
Source
Infrastructure
frm{/vork kdm Layt
ma{model C ore

Figure 8.1 - Structure of KDM Packages
The KDM contains 12 packages; each package is defined by one or more class diagrams.

Core KDM package defines the basic meta-classes (entity, relationship, container hierarchies, etc.) and well-formedness
rules of KDM models.

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging
packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each
KDM package depends on the Core package. The nature of this dependency is that the meta-elements defined by each
package are subclasses of one of the core classes. Also, each package depends on the kdm package. Each KDM package
above the kdm package defines a KDM model, which corresponds to a certain facet of knowledge about an existing
software system. The Kdm package provides the infrastructure for all KDM models. The nature of the dependency on the
kdm package is twofold. First, each package defines a subclass of the KDMModel class, defined in the kdm package.
Second, each kdm package provides several concrete classes that are instantiated in each KDM representation as part of
the infrastructure. kdm package defines several important mechanisms that are used by al KDM models: the annotation
mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The meta-model
elements that support these mechanisms can be instantiated by any KDM model.

The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 11

automatically, for example by implementing a bridge to an existing software development environment. Such bridge
provides a mapping from the programming language (or languages) used for the development of the existing software
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces
of this knowledge are implicitly represented by the original source code of the software system and the corresponding
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the
programming language (or languages) used for the development of the existing software system, but by the corresponding
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further
analyzed and transformed by various KDM toals.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM representation is a single, integrated repository of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages

KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and
relations. The KDM has the following organization:

» The Core package defines the basic abstractions of KDM.
« The Kdm package provides static context shared by all KDM models.

» The Source package definesthe inventory of the physical artifacts of the existing software system and referencesto the
source code.

» The Code package defines the low-level building blocks of application source files, such as procedures, datatypes,
classes, etc. (as determined by a programming language).

« Action package defines end points of relations, and the majority of KDM relations.

« Platform package defines artifacts, related to the run time platform of the enterprise application.

« Ul package defines the user-interface aspects of the application.

« Event package defines a common concept related to event-driven programming.

« Data package defines the persistent data aspects of an application.

« Structure package defines the architectural components of existing application, subsystems, layers, packages, etc.
e Conceptual package defines the domain-specific elements of an application.

« Build package defines the artifacts related to engineering of an application.

12 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Part | - KDM Infrastructure Layer

KDM is alarge specification, since it provides an intermediate representation for several facets of knowledge about
existing enterprise software systems. In order to manage the complexity of KDM, a small set of concepts was selected and
systematically used throughout the entire specification. These concepts are defined in the so-called KDM Infrastructure
Layer. It consists of the following 3 packages:

e Core
e kdm
e Source

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the core classes. From the meta-model perspective KDM is an entity-relationship
representation. So, the two fundamental classes of the Core package are KDMEntity and KDMRelationship. An entity is
a thing of significance, about which information needs to be known or held. A KDM entity is an abstraction of some
element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that can be
referenced as a unit. Each KDM package defines several entity types representing specific abstractions related to a certain
viewpoint on existing software systems.

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several relationship types
representing specific abstractions related to a certain viewpoint on existing software systems. All KDM relationships are
binary.

KDM defines two special relationships:
e containment

e grouping

Some KDM entities are containers for other entities. There is a special container ownership (containment) relationship
between a container and the entities that are directly owned by this container. Some KDM entities are groups of other
KDM entities. There is a specia group association (grouping) relationship between the group and the entities that are
directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special
relationships of containment and grouping and regular relationships of the entity-relationship model.

Core package defines a reflective APl to KDM representation. Other KDM packages extend this API by specific
operations, corresponding to specific facets of knowledge about existing software systems.

Small KDM Coreis aligned with the OMG SBVR specification, as it provides an abstraction of existing software systems
in the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between
KDM entities). Indeed, most of the KDM specification is a definition of a language- and platform-independent ontol ogy
of existing software systems. This alignment is important since KDM can be viewed as a standard vocabulary related to
descriptions of existing software systems. SBVR rules can be written using this vocabulary to formally describe further
properties of existing software systems.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 13

The kdm package defines several elements that together constitute the framework of each KDM representation. The
framework determines the physical structure of a KDM representation. The elements of the framework are present in
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM
representation consists of one or more Segments, where each Segment owns several KDM models. Each KDM package
defines some specific type of KDM model, which addresses a certain specific facet of knowledge about existing software
systems. Individual KDM implementations may support one or more selected KDM models, as defined in the KDM
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about
the existing software system and integrate them into a single coherent representation. Further, KDM designs facilitate
incremental implementations, where certain pieces of knowledge about the existing software is collected by analyzing
more lower level KDM representations. According to this approach certain KDM tools may perform a “KDM
enrichment” process, a“KDM to KDM transformation,” where atool analyzes the input KDM model and produces one or
more additional Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their
“original” language-dependent representation in the source code of the existing software system, for which the KDM
representation is created. This is an important part of the KDM Infrastructure, because other KDM packages use this
mechanism to refer to the source code and the physical artifacts of the existing software system.

14 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

9 Core Package

9.1 Overview

The Core package provides basic constructs for creating and describing meta-model classesin all specific KDM packages.
Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and
determine the reflective APl to KDM instances.

9.2 Organization of the Core Package

The KDM uses packages to control complexity and bring together logically interrelated classes. The Core package defines
a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints implemented by
all other KDM packages.

The KDM Core package consists of the following four class diagrams:
o CoreEntities
» CoreRelations
e AggregatedRelations
e Datatypes

The Core package depends on no other packages.

9.3 CoreEntities Class Diagram

The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the
CoreEntities class diagram are shown in Figure 9.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 15

Element

1

ModelElem ent

+/owner +/group
{union} N .
KD MEntity {union}
winame : String

+/groupedElement
+/ownedElement {union}

{union}
Figure 9.1 - CoreEntities Class Diagram

9.3.1 Element Class (abstract)

An element is an atomic constituent of a model. In the meta-model, an Element is the top meta-element in the KDM class
hierarchy. Element is an abstract meta-model element.

Semantics

Element is the common parent from all meta-model elements of KDM. Most subclasses of Element can own annotations and
user-defined attributes through mechanisms defined in the kdm package.

9.3.2 ModelElement Class (abstract)
A model element is an element that represents some aspect of the existing system.

In the meta-model, a Model Element is the base for all meta-elements of KDM. All other meta-elements are either direct
or indirect subclasses of ModelElement. Model Element is an abstract meta-model element.

A ModelElement can be extended through the lightweight extension mechanism.
Superclass
Element

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software
system. The subclasses of Element that are not the subclasses of the Model Element class are the auxiliary elements of the
KDM infrastructure.

16 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Each subclass of the Model Element meta-model element can be extended through the light-weight extension mechanism

defined in the kdm package.

9.3.3 KDMEntity Class (abstract)

A KDM entity is a named mod

el element that represents an artifact of existing software systems.

In the meta-model, KDMERntity is a subclass of Model Element. Each KDM package defines specific KDM entities that
are direct or indirect subclasses of KDMEntity. A KDMEntity can be either an atomic element, a container for some
KDMEntities, or agroup of some KDMEntities. Container and group introduce implicit relationships between entities and
are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a KDMEntity
with which other entities are associated. A KDMEntity can be owned by at most one container, and can be associated with

Zero or many groups.

Superclass

M odel Element

Attributes

name: String

Associations

owner:KDMEntity[0..1]

group:KDMEntity[0..*]

Constraints

An identifier for the KDM entity.

KDM entity that owns the current element. This property determines a meta-level interface
to KDM entities. This property is aderived union. Some KDM entities define a concrete set
of owned elements that are subtypes of KDMEntity. In KDM this is represented by the
CMOF “derived union” mechanism. Concrete properties subset the “union” properties of the
parent classes, defined in the Core package. The owner of a KDM entity is defined as the
container for which the given entity is an owned entity.

Set of KDM entities with which the current element is associated. This property determines
ameta-level interfaceto KDM entities. This property isaderived union. Some KDM entities
define a concrete set of grouped elements that are the subtypes of KDMEntity. In KDM this
is represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package. The group of aKDM
entity is defined as the group for which the given entity is a grouped entity. Each KDM
entity can be associated with multiple groups.

1. KDMEntity can have either the ownedElement or groupedElement, but not both.

2. KDMEntity should not reference self as groupedElement

Operations

getOwner(): KDMEntity[O0..1]

This operation returns the KDM entity that is the owner of the current KDM
Entity. The owner entity isaKDM container. There can be at most one owner
for each given entity.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 17

getOwnedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current
KDM Entity. Only KDM containers can own other entities.

getGroup():KDMEntity[0..*] This operation returns the set of KDM Entities that have a group association
to the current KDM Entity. The group entity isaKDM group. Unlike KDM
containers, there may be many groups that have an association to agiven
entity.

getGroupedElement(): KDMEntity[O0..*] This operation returns the set of KDM entities that are “grouped” by the
current KDM entity. Only KDM groups can have group associations to other
entities.

Semantics

An entity is athing of significance, about which information needs to be known or held. A KDM entity is an abstraction
of some element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that
can be referenced as a unit. Each KDM package defines several entity types representing specific abstractions related to a
certain viewpoint on existing software systems.

9.4 CoreRelations Class Diagram

The Core class diagram defines key meta-model associations of KDM models. The classes and associations of the
CoreRelations class diagram are shown in Figure 9.2.

ModelElement

+/ownedRelation T

{union} KDMRelationship

0..*

0“*
+/outbound 0.
{union}

+/inbound
{union}

1 1
+/to

+/from {union}

KDMEntity

Figure 9.2 - CoreRelations Class Diagram

9.4.1 KDMRelationship Class (abstract)

A KDM relationship is a model element that represents semantic association between two entities.

18 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are
typed associations between some specific subclasses of KDMEntity.

Superclass

Model Element

Associations

to: KDMEntity[1] Thetarget entity (also referred to asthe to-endpoint of the relationship). This property determines
ameta-level interface to KDM relationships. This property is a derived union. Every specific
KDM relationship redefines the to-endpoint to a particular subtype of KDMEntity. In KDM thisis
represented by the CMOF “redefines” mechanism. Concrete properties redefine the “ union”
properties of the parent classes, defined in the Core package.

from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property
determines ameta-level interface to KDM relationships. This property is a derived union. Every
specific KDM relationship redefines the from-endpoint to a particular subtype of KDMEntity. In
KDM thisis represented by the CMOF “redefines” mechanism. Concrete properties redefine the
“union” properties of the parent classes, defined in the Core package.

Constraints

Operations
getTo(): KDMEntity[1] This operation returnsthe KDM entity that is the to-endpoint (the target) of the current
relationship
getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the
current relationship.
Semantics

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several relationship types
representing specific abstractions related to a certain viewpoint on existing software systems. All KDM relationships are
binary.

9.4.2 KDMEntity (additional properties)

Associations

ownedRelation: KDMRelationship[0..*] Primitive KDM relationships that originate from the current entity.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 19

Operations

getinbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the to-endpoint of these relations.

getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the from-endpoint of these relationships.

getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity owns these relationships.

Constraints

The set of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the from
property is the given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the
ownedRelation association is reguired to manage relationship elements. KDM relationships are owned by the entity,
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association
class with to- and from- properties.

9.5 AggregatedRelations Class Diagram

The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part
of the “meta-level” interface to KDM models, along with interfaces defined by KDMEntity and KDMRelationship.

Overal management and lifecycle of the Aggregated Relationships is determined by the operations of the KDMEntity
class.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.3.

20 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

ModelElement

RelationSet

+aggregate

AggregatedRelationship

+relation

<density : Integer

KDMRelationship

0..* 0.*

from
KD M E ntity

+/outAggregated

Hgin

Figure 9.3 - AggregatedRelations Class Diagram

9.5.1 AggregatedRelationship Class

The set of aggregated relationships for a given entity represents all primitive relationships between the entities that are

transitively owned by the given entity as well as the entity itself. This is a concrete class, because an
AggregatedRelationship can be instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and
exchanged too, if necessary). The lifecycle of the Aggregated Relationships can be explicitly managed by the operations

of the KDMEntity class.

Superclass

Model Element

Attributes

density:Integer

Associations

relation:KDMRelationship[0..*]

to: KDMEntity[1]

from:KDMEntity[1]

The number of primitive relationships in the aggregated set.

The set of primitive KDM relationships represented by the aggregated relationship.

The target container of the relationshipsin the aggregated set. All relationsin the
aggregated set should terminate at the target container or at some entity that is
contained directly or indirectly in the target container.

The source container of the relationships in the aggregated set. All relationshipsin
the aggregated set should originate from the source container or from some entity
that is contained directly or indirectly in the source container.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

21

Constraints
1. To- and from-endpoints should be distinct.
2. The density should be greater than or equal to 1.

3. The density should be the same as the number of primitive relations represented by the given aggregated
relationship.

Semantics

AggregatedRelations are determined by how atomic elements are owned by containers (or referenced by groups) in the
following way:

1. AggregatedRelationship between two entities (no owned elements) represents the set of regular KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity
is the to-endpoint of the relationship).

2. AggregatedRelationship between an entity and a container (or group) represents the set of all regular KDM
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned by the
given container (directly or indirectly).

3. AggregatedRel ationship between a container (or group) and an entity represents the set of all regular relationships
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned by the given
container (directly or indirectly).

4. AggregatedRelation between two containers represents the set of all regular KDM relations such that the from-
endpoint is an entity owned by the first container and the to-endpoint is an entity owned by the other container.

A regular KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an implied
density of 1. An AggregatedRelationship represents a set of regular KDM relationships. It has density of greater or equal
than 1 and no concrete type (as it may represent regular KDM relationships of different types). An
AggregatedRelationship cannot be constructed between two entities if there are no regular KDM relationships between
them (according to the definition above).

The relation “x in* C” means that x is in container C or in some sub-container of C, transitively.

For relation R, let R’ be the corresponding aggregated relation.

Given containers C1 and C2 and the relation R, let

P={(xy):xin* Clandy in* C2 and X Ry}

That is, P is the set of pairs such that x isin* Clandy isin* C2and x Ry.

Then

Cl1R C2iff |P|>0

C1 and C2 are related by the aggregated relation R’ if and only if there is at least one pair in the set P.

The density of C1 ‘' C2 is then simply |P|, the size of the set P.

22 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

CEE—

1=

Figure 9.4 - AggregatedRelations illustrated

Figure 9.4 illustrates Containers and aggregated relations. It uses the following notation. UML package symbols represent
KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association indicates the
direction of the relation (there should be at least one arrow; arrows at both ends indicate two relations, one in each
direction).Numbers at the ends of associations represent the density of the corresponding KDM relationship. The KDM
density has a different interpretation that UML multiplicity: since KDM represents an existing application, the exact
relations and their number is what the model captures. KDM model is not a model that represents constraints, like the
ones used during the design phase, rather, this is a model that captures precise knowledge about the application. So, the
KDM densities are exact.

Aggregated relations are collections of more primitive relations, which at the end are some basic code fact, for example
“procedure x calls procedure y.” Such basic fact has density 1. The primitive code relation represents some basic fact
about the existing application. Now, when there are two or more such facts, for example “procedure x in module A calls
procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an aggregated relation
between modules A and B with density 2 (2=1+1). In this case, the aggregated relation represents the collection of the
two primitive relations between modules A and B.

9.5.2 KDMENntity (additional properties)

Operations
createAggregation(otherEntity: KDMEntity) This operation creates an aggregated rel ationship such that the
current entity is the from-endpoint of the aggregated relation and the
“otherEntity” isthe to-endpoint. The new aggregated relationship is
owned by the model to which ownsthe current entity (either directly
or indirectly through container ownership).
deleteAggregation This operation deletes the given aggregated relationship.

(aggregatedRelation:AggregatedRelationship)

getinAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the target is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the origin isthe current KDM Entity.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 23

9.6 Datatypes Class Diagram

The Datatypes class diagram collects together utility data types for the Core package. Each class at the Datatypes class
diagram is a subclass of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.5.

<<datatype>>
<<datatype>> Boolean
String

<<datatype>>
Integer

Figure 9.5 - Datatypes Class Diagram

9.6.1 Boolean Type (datatype)

The meta-model uses the Boolean type to represent some KDM attributes, KDM operations, and their parameters.

9.6.2 String Type (datatype)

The meta-model uses the String type to represent some KDM attributes, KDM operations, and their parameters.

9.6.3 Integer Type (datatype)

The meta-model uses the Integer type to represent some KDM attributes, KDM operations, and their parameters.

24 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

10 KDM Package

10.1 Overview

The Kdm package defines key infrastructure elements that determine patterns for constructing KDM representations of
existing software systems. KDM representations (also referred to as KDM instances) are instances of the KDM (which is
a meta-model), where each KDM element represents a certain element of the existing system. Although in the technical
sense, KDM instance is a model of the corresponding existing software system, KDM instance is not a model that
represents constraints, like the ones used during the design phase, rather, this is an intermediate representation that
captures precise knowledge about the application.

Implementers of KDM tools are responsible for defining a mapping from the elements of programming languages,
runtime platforms, and other artifacts of existing software systems into KDM elements, using semantic description and
implementer's guidelines of this specification. Kdm package describes several infrastructure elements which are present in
each KDM instance. Together with the elements defined in the Core package these elements constitute the so-called KDM
framework. The remaining KDM packages provide meta-model elements that represent the artifacts of existing systems.

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension
meta-model pattern). KDM Framework is part of the KDM Infrastructure together with the elements defined in the Source
package.

10.2 Organization of the Kdm Package

The Kdm package is a collection of classes and associations that define the overall structure of KDM instances. From the
infrastructure perspective, KDM instances are organized into segments and then further into specific models. There are 9
kinds of models, corresponding to some well-known concerns of software engineering. From the architectural perspective,
each KDM model represents a particular view of the existing system. From the infrastructure perspective, a KDM model
is atyped container for model element instances. From the meta-model perspective, KDM model is represented by a
separate package that defines a collection of the meta-model elements, which can be used to build representations of the
particular view of existing systems. KDM framework defines a common superclass model element for all models - the
KDMModel class. KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding
to a particular model kind and to a particular instance of such element in a concrete representation of some existing
system. Explicit disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when
necessary.

KDM model isthe key unit of a KDM instance. KDM segment can own one or more models. A segment isaminimal unit
of exchange in the KDM ecosystem. Segments can be nested.

Implementer’s responsibility is to provide an adequate partitioning of the KDM instance into multiple models and
segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model
segment describe artifacts that involve a single programming language and a single platform.

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be
integrated to provide a coherent holistic view.

The Kdm package consists of the following 5 class diagrams:

* Framework — defines the basic elements of the kdm framework.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 25

* Audit —defines audit information for KDM model elements.

« Annotations - provides user-defined attributes and annotations to the modeling elements.

« Extensions- aclass diagram that defines the overall organization of the light-weight extension mechanism of KDM.
« ExtendedValues - the tagged values used by the light-weight extension mechanism.

The Kdm package depends only on the Core package.

10.3 Framework Class Diagram

The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM
instances.

The classes and association of the Framework diagram are shown in Figure 10.1.

ModelElement
(from core)

Extensions

_ _ L f KDMEntity
0“:ext nsionFamily \ (from core)

KDMFramework @name : String
&name : String

ExtensionFamily

+/ownedElement

0% {union}

+/model

+owner 0.1 {union}

+model
+segment Segment KDM Model
O..* l 0“*
Segments 0..1 M odels
+owner 0.1
+/model

AggregatedRelations

0..*

+/aggregatedRelation

AggregatedRelationship
(from core)

wdensity : Integer

Figure 10.1 - Framework Class Diagram

26 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

10.3.1 KDMFramework Class (abstract)

The KDMFramework meta-model element is an abstract class that describes the common properties of all KDM
Framework elements. KDMFramework class is extended by Segment and KDMModel classes. Each KDM Framework is
the container for KDM light-weight extensions (extension property). The KDM extension mechanism is described further
in this chapter.

Superclass

M odel Element

Attributes

name: String [0..*] The name of the framework element.

Associations

extension: ExtensionFamily [0..*] Extensions for the current model segment.

Constraints

Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. It is the
implementer’s responsibility to

« arrange instances of the KDM model elements into models (constrained only by the definition of each model)
e arrange KDM modelsinto one or more segments
e provide namesto KDM models and KDM segments

The implementers of KDM import tools should not make any assumptions about the organization of KDM instances.

10.3.2 KDMModel Class (abstract)

A KDM maodel corresponds to one of the well-known architecture views of software systems. KDM defines several
concrete subclasses of the KDMModel class.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’'s assume
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

e The meta-model elementsfor KDM model “foo” are described in a separate package, called “foo.”
« The package defines a concrete subclass of the KDMModel, called “FooModel.”

* The package defines a common abstract parent for all KDM entities specific to this KDM model, called
“AbstractFooElement.” This class extends the KDMEntity class from the Core package.

« The package defines a common abstract parent for all KDM relationship specific to this KDM model, called
“ AbstractFooRelationship.” This class extends KDMRel ationship class from the Core package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 27

¢ Class“FooModel” owns class “ AbstractFooElement.” This association subsets the association between the
KDMModel and KDMEntity defined at the Framework class diagram.

¢ Class*“AbstractFooElement” owns zero or more AbstractFooRel ationship elements.

e The package “foo” includes a “Fool nheritances’ class diagram, describing inheritances of “FooModel,”
“ AbstractFooElement,” and “ AbstractFooRelationship” classes, aswell as any other common properties related to the
KDM Infrastructure, such as properties related to the Source package.

e The package “foo” includes “ ExtendedFooElements’ diagram that defines two generic meta-model elements
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass

KDM Framework

Associations

ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM
model defines specific subclasses of KDMEntity class.

aggregatedRelation:AggregatedRelationship[0..*] Instances of KDM aggregated relations owned by the model.

Constraints

Semantics

It is the implementer’s responsibility to arrange instances of the KDM model elements into models (constrained only by
the definition of each model) and to provide name attributes for each KDM model instance. A KDM model instance may
be empty or may contain one or more instances of the elements allowed for this KDM model. A particular KDM instance
may contain no KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models
in KDM Program Elements and Infrastructure layer. There should be no associations from the Program Elements and
Infrastructure layer models to Resource and Abstractions layer models.

The implementers of KDM import tools should not make any assumptions regarding the organization of the content into
KDM models.

10.3.3 KDMEntity (additional properties)

Operations

getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM
Entity

28 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

10.3.4 Segment Class

The Segment element represents a coherent set of logically related KDM models that together provide a useful view of an
existing software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without
owners is the top segment of the KDM model.

Superclass

KDM Framework

Associations

segment: Segment[0..*] Nested Segment elements owned by the current Segment

model[0..*]:KDMModel The set of KDM models owned by the current segment. Each KDM model defines KDM
entities representing a certain view of the existing software system. Each KDM model
defines specific meta-model elements.

Constraints

Semantics

It is the implementer’s responsibility to arrange KDM models into segments and to provide name attributes for each KDM
segment instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may
contain one or more KDM models of a given kind.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple
derivative models from the Program Elements and Infrastructure layer.

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models
into KDM segments.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.1/source" name="Framework Example"s>
<audit xmi:id="1d.0" description="Illustration of KDM Framework" author="KDM FTF" date="04-03-2007">
<attribute xmi:id="id.1" tag="approved" value="yes"/>
</audit>
<segment xmi:id="id.2" name="foobar"/>
<model xmi:id="id.3" xmi:type="code:CodeModel" name="foo">
<annotation xmi:id="id.4" text="This is a sample instance of a Code model"/>
</model>

<model xmi:id="id.5" xmi:type="source:InventoryModel" name="bar"s>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 29

<annotation xmi:id="id.6" text="This is a sample of an Inventory model"/>
</model>
</kdm:Segment >

10.4 Audit Class Diagram

The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2.

Element
(from core)
KDMFramework
1
Audits 0%
_ Audit
+audit ‘description : String
wauthor : String
wdate : String

Figure 10.2 - Audit Class Diagram

10.4.1 Audit Class

Audit class represents basic audit information associated with KDM models.

Superclass
Element
Attributes
description:String Contains the description of the Framework element.
author:String Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.
date:String Contains the date when the model element was created, in “ dd-mm-yyyy” format.

Constraints

1. date should be represented in “dd-mm-yyyy” format

Semantics

The Audit element provides some extra “audit” information in the form of human readable text.

30 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Each Framework element can have zero or more Audit instances associated with it. The collection of Audit elementsis
not ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,”
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For
example, “04-03-2007" corresponds to the “4th of March 2007.”

It is the implementer’s and the analyst’s responsibility to provide the content of the Audit element.
KDM does not constrain the “description” attribute.

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element,
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or
segment.

Audit element can own Annotation elements and Attribute elements. The Audit.description is the primary description and
any associated annotations may be used as optional secondary descriptions.

Example

See example in the KDMFramework section.

10.4.2 KDMFramework (additional properties)

Associations

audit:Audit[0..*] Thelist of Audit element instances for the given instance of KDMFramework (segment or model)

10.5 Extensions Class Diagram

The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “virtual” meta-model elementsto KDM. A
“virtual” meta-model element is a base meta-model element with extended meaning, and possibly with extended
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of
KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:
1. Define a stereotype (introduce the partial kind of a meta-model element):

* A stereotype definition includes the name of class of the allowed base elements. This class can be a particular
concrete meta-model element, a generic element or an abstract meta-model element

2. Define tags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition
includes the name of the extended attribute and the name of the type of the element (represented as a string).
Values of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype
defines its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 31

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework
elements (KDM models and segments).

4. Use extended model elementsin KDM instances by using the base meta-model element instance with one or more
stereotypes:

« Concrete tag values can be added to the “virtual” element if the stereotype defines tags.
e Eachtag valueis associated with the corresponding tag definition.
e The complete kind of the new element is defined as the union of all stereotypes added to the element.

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element.
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of
the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model
defines two “wildcard” generic elements. a generic entity and a generic relationship for the given KDM model. They too
can be used as extension points.

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between
tags or stereotypes. It is the implementer’s responsibility to select the most specific extension points, by defining
stereotypes in such a way that they use the base elements with the most specific semantic description (closer to the
bottom of the KDM class hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.

32 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Element

(from core)
\ ExtensionFamily

<name : String

Stereotypes

1
Stereotype /

<name : String 0.x

TagDefinition <+ta/g/’ =type : String +stereotype
<itag : String 1

Stype : String | 0.x 1ags *
+stereotype
Extension
O“k
ModelElement
+taggedValue 1 (from core)

ExtendedValue

0..* ExtendedValues

Figure 10.3 - Extensions Class Diagram

10.5.1 Stereotype Class

The stereotype concept provides a way of branding (classifying) model elements so that they behave as if they were the
instances of new virtual meta-model constructs. These model elements have the same structure (attributes, associations,

operations) as similar non-stereotyped model elements of the same kind. The stereotype may specify additional required
tagged values that apply to model elements. In addition, a stereotype may be used to indicate a difference in meaning or
usage between two model elements with identical structure.

In the meta-model the Stereotype is a subclass of ModelElement. Stereotype is a named model element. TaggedValues
attached to a Stereotype apply to all Model Elements branded by that Stereotype.

A Stereotype specifies the name of the base class to which it can be added.

Superclass
Element
Attributes
name:String Specifies the name of the stereotype.
type:String Specifies the name of the model element to which the stereotype applies.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 33

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

Constraints

1. Tags associated with model element should not clash with any meta attributes associated with this model element.
2. A model element should have at most one tagged value with a given tag name.

3. A stereotype should not extend itself.

4. A Stereotype can be added to ModelElement if its class is the same as the baseClass, or one of its subclasses.

5. The values of the Type attribute of the TagDefinition are restricted to the names of the KDM meta-elements.
Names of the core datatypes (“Boolean,” “String,” “Integer”) define attributes of the extended meta-model
element. The corresponding values are represented as instances of the TaggedValue class. Names of other KDM
meta-elements (for example, “KDMEntity,” or “Audit”) define associations of the extended meta-element and the
corresponding values are represented as instances of the TaggedRef class.

Semantics
Stereotypes should not change the semantics of the base meta-model element.

A KDM model element with one or more stereotypes has the semantics of the base element with some additional
semantic constraints. The complete kind of the new element is defined as the union of all stereotypes added to the
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class,
with the new attributes corresponding to the tag definitions.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm" name="Stereotype Example">
<extensionFamily xmi:id="id.0" name="Example extensions"x>
<stereotype xmi:id="id.l1l" name="Java method"/>
<stereotype xmi:id="id.2" name="C++ method"/>
<stereotype xmi:id="id.3" name="C++ procedure"/>
<stereotype xmi:id="1d.4" name="C++ friend">
<tag xmi:id="id.5" tag="friend of" type="ClassUnit"/>
</stereotype>
<stereotype xmi:id="id.6" name="IsFriendOf"/>
<stereotype xmi:id="id.7" name="native call">
<tag xmi:id="1id.8" tag="implemented in" type="String"/>
</stereotype>
</extensionFamily>
<model xmi:id="1id.9" xmi:type="code:CodeModel" name="Example">
<codeElement xmi:id="id.10" xmi:type="code:ClassUnit" name="myclass">
<codeElement xmi:id="id.11" xmi:type="code:MethodUnit" stereotype="id.2"
name="foo" type="id.12">
<codeElement xmi:id="id.12" xmi:type="code:Signature" name="foo"/>

34 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

</codeElement>
</codeElement>
<codeElement xmi:id="1d.13" xmi:type="code:CallableUnit" stereotype="id.4 id.3"
name="bar" type="id.1l6" kind="regular"s>
<taggedvValue xmi:id="1id.14" xmi:type="kdm:TaggedRef" tag="id.5" reference="id.10"/>
<codeRelation xmi:id="id.15" xmi:type="code:CodeRelationship" stereotype="id.é6"
to="id.10" from="id.13"/>
<codeElement xmi:id="1id.16" xmi:type="code:Signature" name="bar"/>
</codeElement>
</model>
<model xmi:id="id.17" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.18" xmi:type="code:ClassUnit" stereotype="id.1">
<codeElement xmi:id="1d.19" xmi:type="code:MethodUnit" stereotype="id.1"
name="foobar" type="1id.23">
<codeElement xmi:id="1d.20" xmi:type="action:ActionElement" stereotype="id.7"
name="al">
<actionRelation xmi:id="id.21" xmi:type="action:Calls" stereotype="id.7"
to="id.13" from="id.20">
<taggedvalue xmi:id="1id.22" xmi:type="kdm:TaggedvValue" tag="id.8" value="C"/>
</actionRelation>
</codeElement>
<codeElement xmi:id="1d.23" xmi:type="code:Signature" name="foobar"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

10.5.2 TagDefinition Class

Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
extended information about existing software systems to only those tools that share a common understanding of the
specific tagged value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass

Element

Attributes

tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 35

type:String Specifies the type of the value attribute.

Constraints

1. The “value” attribute of the TaggedValue should be valid according to the type specified in the corresponding
TagDefinition.

2. The target of the “ref” association of the TaggedRef should be of the type specified in the corresponding
TagDefinition, or one of its subtypes.

" ou

3. If the type of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,
“IntegerType”), the corresponding value should be an instance of the TaggedValue class.

StringType,”

4. If the type of the TaggedDefinition is a name of some other KDM meta-element (for example, “KDMEntity,” or
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics

ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags
is outside of the KDM specification and should be communicated by implementers to the users of the extended models.
Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions
can still be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic
KDM semantic rules are applied.

Example

See example in the Stereotype class section.

10.5.3 ExtensionFamily Class

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and their corresponding tag definitions.

Superclass

Element

Attributes

name:String Provides the name of the extension family.

Associations

stereotype: Stereotype[0..*] The set of stereotypes that are owned by the extension family.

36 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints

Semantics

ExtensionFamily provides a named container for stereotype definitions. It is an implementer’s responsibility to arrange
stereotype definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in
a separate segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into
families.

Example

See example in the Stereotype class section.

10.5.4 ModelElement (additional properties)

Associations

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

stereotype:Stereotype[0..*] The stereotype

Constraints

1. Each tagged value added to a Model Element must conform to a certain tag definition owned by the stereotype of
that Model Element (the tag association of the TaggedValue should refer to a TaggedDefinition that is owned by a
Stereotype of the Model Element). A tagged value conforms to a tag definition when the value conforms to the type
of the TagDefinition. Conformance of lightweight extensions can only be validated dynamically by a suitable
KDM import tool, since lightweight extensions are not defined by the KDM standard.

2. Stereotype can be associated with a certain instance of a ModelElement if the type of the ModelElement is the
same as the type property in the stereotype definition, or one of its subclasses.

Example

See example in the Stereotype class section.

10.6 ExtendedValues Class Diagram

ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value
construct.

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 37

Element
(from core)

ﬁl TaggedValueDefinition "

TagDefinition

ExtendedValue +tag |Btag : String
0.+ , |Estype : String
TaggedValue TaggedRef
<value : String
0..*
Reference

+reference 1

ModelElement
(from core)

Figure 10.4 - ExtendedValue Class Diagram

10.6.1 ExtendedValue Class (abstract)

ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values: the TaggedVaue
and the TaggedRef. ExtendedValue class defines common properties for these classes.

Superclass

Element

Associations

tag [1]: TagDefinition the reference to the tag definition of the corresponding stereotype

Semantics

ExtendedValue is a “virtual” attribute to an extended KDM meta-model element. ExtendedValue element represents the
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stereotype
element defines the “virtual” meta-model element that provides the context for the new attributes. “Virtual” attributes are
instantiated every time a new “virtual” metamodel element, defined by a Stereotype is instantiated. This is an important
difference between ExtendedValues and KDM attributes, which are not related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the
allowed values.

Each instance of ExtendedValue has an association to the corresponding TagDefinition.

38 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

10.6.2 TaggedValue Class

A tagged value allows information to be attached to any model element in the form of a “tagged value’ pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition. In the meta-model, TaggedValue is a subclass of
Element.

Superclass

ExtendedValue

Attributes

Value:String Contains the current value of the TaggedValue.

Constraints

The value of the TaggedValue instance should conform to the type of the corresponding TagDefinition.

Semantics

TaggedVal ue element represents simple atomic “virtual” attributes. The type constraint of the value, defined in the
corresponding TagDefinition can be the name of any KDM primitive type (for example, “StringType,” “BooleanType,”
etc.).

Example

See example in the Stereotype class section.

10.6.3 TaggedRef Class

A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of its
subtypes. In the meta-model, TaggedRef is a subclass of ExtendedValue.

Superclass

ExtendedValue

Associations

ref:Model Element[1] Designates the model element referred to by the extended value.

Constraints

1. The model element that is the target of the ref association must be of the type, specified by the type attribute of the
tag definition that is the target of the tag association of the tagged ref element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 39

Semantics

TagRef represents complex “virtual” attributes, which are associations to other KDM elements. TagDefinition can be a
name of any KDM meta-model element (for example, “KDMEntity,” “ AbstractCodeElement,” “ControlElement,” or
“CallableUnit”).

Example

See example in the Stereotype class section.

10.7 Annotations Class Diagram

The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag,
value> to an individual element instance. This is complimentary to the light-weight extension mechanism, which provides
a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances
of the same meta-model element may own completely different user-defined attributes (and some may have none at al).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of KDM instances. They may be used by implementer to add specific information to an individual element.
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag
definitions as first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5.

Element
(from core)
: Annotation
AttrlbuFe <text : String
<tag : String
<value : String
o 0.*

+annotation

EleméntAnnotation

+owner
Element

+owner
(from core)

Figure 10.5 - Annotations Class Diagram

10.7.1 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value’ pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged val ues,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define virtual new
model element, and tagged values specify additional attributes of these virtual model elements). Tagged values are only

40 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

In the meta-model, TaggedValue is a subclass of Element.

Superclass
Element
Attributes
tag:Name Containsthe name of the attribute. This name determines the semanticsthat are applicableto the
contents of the value attribute.
value:String Contains the current value of the attribute.

Constraints

1. Attribute cannot have further annotations or attributes

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It must be determined by the user or the
implementer conventions. It is expected that some tools will provide capability to add arbitrary attributes to the instances
of the model to supply information needed for their operations beyond the basic semantics of KDM. Such information
could support analysis of KDM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of
instances.

Example

See example in the KDMFramework section.

10.7.2 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element. The meta-model Annotation
class is a subclass of Element.

Superclass

Element

Attributes

text:String Contains the text of the annotation to the target model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 41

Constraints

1. Annotation cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element.
Example

See example in the KDMFramework section.

10.7.3 Element (additional properties)

Associations

attribute:Attribute[0..*] The set of attributes owned by the given element.

annotation:Annotation[0..*] The set of annotations owned by the given element.

Constraints

Semantics

No assumptions should be made regarding the order of attributes or annotations associated with a particular instance.

42 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

11 Source Package

11.1 Overview

The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of the
existing system, such as source files, images, configuration files, resource descriptions, etc. The Source package also
represents traceability links between instances of KDM meta-elements and the regions of source code, which is
represented by these meta-model elements. It represents the convergence between the KDM intermediate representation
and the application source it represents.

The Source package offers two capabilities for linking instances of the KDM representation to the corresponding artifacts:
 Inlining the corresponding source code in the form of a“snippet” into KDM representation
« Linking aKDM element to aregion of the source code within some physical artifact of the system being modeled

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

¢ Thelink can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

« Thelink can be made stand-alone and explicitly specify the path to the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, thisis
indicated by the “language” attribute.

The Source package defines the KDM Inventory model that corresponds in part to the engineering view of the existing
software system. It is determined by the entire software development environment of the existing software system. As a
general rule, in agiven KDM instance, each instance of the inventory model represents afile, or a set of files. Exceptions
to thisrule are:

e InventoryModel element, which isa part of the KDM instance infrastructure. This meta-model element is a container
the instances of other inventory meta-model elements.

« SourceRef and SourceRegion meta-elements that represent traceability links between other instances of KDM meta-
model elements and source code of the existing software system.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability
mechanism between other KDM elements and the regions of the physical artifacts of the existing software system that
they represent.

11.2 Organization of the Source Package
The Source package consists of the following 5 class diagrams:
e InventoryModel

« Inventorylnheritances

* InventoryRelations

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 43

* SourceRef
« ExtendedlnventoryElements

The Source package depends on the following packages:
* Core

¢ kdm

11.3 InventoryModel Class Diagram

InventoryModel class diagram defines meta-model elements that represent the artifacts of the existing software system as
“first class citizens” on the KDM instance. This model corresponds to the inventory of the artifacts. The InventoryModel
class diagram follows the uniform pattern for KDM model to extend the KDM Framework with specific meta-model
elements related to the engineering view of existing software systems. InventoryModel defines the following meta-model
elements determined by the KDM model pattern:

e InventoryModel class
e AbstractinventoryElement class
e AbstractinventoryRelationship class

In addition, the InventoryModel class diagram defines a concrete KDM entity for each artifact, such a SourceFile, an
Image, a ResourceDescription, a Configuration description, a BinaryFile, and an ExecutableFile. These meta-model
elements are subclasses of the common parent class Inventoryltem. The Inventory model also provides a generic KDM
container called InventoryContainer and two specific containers: Directory and Project.

The classes and associations of the InventoryModel are shown at Figure 11.1.

44 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

+inventoryRelation
InventoryModel {subsets ownedRelation}

+model

{subsets model}
0.1 0..*
0..* 1)
+inventoryElement +inventoryElement

AbstractinventoryElement {subsets ownedElement}

AbstractinventoryRelationship

{subsets ownedElement}

0..*

+owner
1 {subsets owner}

0.
InventoryC ontainer

AN

Directory Proiect
<path : String rojec

Inventoryltem
Ziversion @ String
path : String

SourceFile
language : String
gencoding : String

ExecutableFile

BinaryFile

Image

Configuration

ResourceDescription

Figure 11.1 - InventoryModel Class Diagram

11.3.1 InventoryModel Class

The InventoryModel is a specific KDM model which corresponds to the physical (engineering) view of the existing
software system. InventoryModel is a container for the instances of Inventoryltems. InventoryModel corresponds to the
inventory of the physical artifacts of the existing software system.

Superclass

KDMModel

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the inventory model.

Constraints

Semantics

InventoryModel is a container for instances of inventory elements. It is the implementer’s responsibility to arrange
inventory elements into one or more inventory models. KDM import tools should not make any assumptions about the
organization of inventory items into inventory models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 45

11.3.2 AbstractinventoryElement Class (abstract)

The AbstractinventoryElement is the abstract parent class for all inventory entities.
Superclass

KDMEntity

Associations

inventoryRelationship:AbstractinventoryRelationship[0..¥] ~ The set of inventory relations owned by the inventory element

Constraints

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be
used as an extension point for defining new “virtual” inventory entities.

11.3.3 AbstractinventoryRelationship Class (abstract)

The AbstractinventoryRelationship is the abstract parent class for all inventory relationships.

Superclass

KDMRelationship
Constraints

Semantics

From the meta-model perspective, this element is a common parent for al inventory relationships. This element is
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in
stereotype definitions. Inventory package provides a concrete class InventoryRelationship with under specified semantics,
which can be used as an extension point for defining new “virtual” inventory relationships.

11.3.4 Inventoryltem Class (generic)

Inventoryltem is a generic meta-model element that represents any artifact of an existing software system. This class is
further subclasses by several concrete meta-model elements with more precise semantics. However, Inventoryltem can be
used as an extended modeling element with a stereotype.

Superclass

AbstractInventoryElement

46 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Attributes

version:String Provides the ability to track version or revision numbers.
path:String Location of the build resource.
Semantics

It is the implementer’s responsibility to provide a mapping from concrete types of the physical artifacts involved in the
engineering of the existing software system into concrete subclasses of the Inventoryltem. It is the implementer’s
responsibility to map each artifact of the existing software system to some instance of KDM Inventoryltem.

11.3.5 SourceFile Class

The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of
KDM whose purpose is to provide links between code elements and their physical implementations using the
SourceRegion mechanism from the Source package.

Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM
specification explicitly defines semantics of source files.

Superclass

Inventoryltem

Attributes

language:String Indicates the language of the source file.

encoding: String An optional attribute that represents the encoding of the charactersin the file.
Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

KDM tools may use the information from the artifacts of the existing software system, accessible through the
SourceRegion mechanism. It is recognized that different encodings are used around the world, and it may be desired for
KDM processors to read code snippets from the files that use them. The requirement for KDM tools isto read information
in UTF-8.

Specification of encoding is aligned with the XML specification from W3C. Each artifact of an existing system may use
a different encoding for its characters. The default encoding for SourceFile is “UTF-8." Encodings other that UTF-8
should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding label. For
example, “UTF-16,” “1SO-10646-UCS-2,” “1S0O-8859-2,” “1S0-2022-JR” “Shift_JIS,” and “EUC-JR,” etc. Encoding of
the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information
in the source file, through the mechanism of the SourceRegion.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 47

11.3.6 Image Class

The Image is used to represent image files.

Superclass

Inventoryltem

Semantics

11.3.7 Configuration Class

The Configuration is used to represent various configuration files.

Superclass

Inventoryltem

Semantics

11.3.8 ResourceDescription Class

The ResourceDescription is used to represent resource description files.

Superclass

Inventoryltem

Semantics

11.3.9 BinaryFile Class

The BinaryFile is used to represent binary files.

Superclass

Inventoryltem

Semantics

11.3.10 ExecutableFile Class

The ExecutableFile is used to represent executable files for a particular platform.

Superclass

Inventoryltem

Semantics

11.3.11 InventoryContainer Class (generic)

The InventoryContainer meta-model element provides a container for instances of Inventoryltem elements.

48 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Superclass

AbstractlnventoryElement

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the container.

Constraints

1. InventoryContainer should have at least one stereotype.

Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and
individual inventory items). InventoryContainer instances represent tree-like container structures in which the leaf
elements are individual Inventoryltem instances. Each InventoryContainer represents the entity set of Inventoryltems
owned by that container directly or indirectly.

11.3.12 Directory Class
The Directory class represents directories as containers that own inventory items.

Superclass

InventoryContainer

Attributes

path:String Location of the directory

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in
file systems.

In addition to the general semantics of the InventoryContainer, Directory ownership structure determines the full “path”
for each individual inventory item in the following way. For a given Directory item, the full “path” to an inventory item,
owned by this Directory directly or indirectly, is a sequence of strings, the first element of which is the “path” attribute of
the Directory, and subsegquent elements are name attributes of the directory items such that each directory item is owned
by the previous directory item and that last directory item owns the inventory item. Any Project containers, involved in
this ownership structure are ignored.

11.3.13 Project Class
The Project meta-model element represents an arbitrary logical container for inventory items.

Superclass

InventoryContainer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 49

Semantics
Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.1/source" name="Inventory Example">
<model xmi:id="1d.0" xmi:type="source:InventoryModel">
<inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c">
<inventoryRelation xmi:id="id.2" =xmi:type="source:DependsOn" to="id.5" from="id.1"/>
</inventoryElement>
<inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c">
<inventoryRelation xmi:id="id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>
</inventoryElement>
<inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"/>
<inventoryElement xmi:id="id.6é" xmi:type="source:Directory"s>
<inventoryElement xmi:id="id.7" xmi:type="source:Image"/>
<inventoryElement xmi:id="id.8" xmi:type="source:Image"/>
</inventoryElement>
<inventoryElement xmi:id="id.9" xmi:type="source:SourceFile" name="makefile"/>
<inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>
</model>
</kdm: Segment >

11.4 Inventorylnheritances Class Diagram

Inventorylnheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.

KDMRelationship

(from core)

KDM Model KD M E ntity
(from kdm)

(from core)

1 1

Abs[rac[|nventoryE|em ent AbstractlnventoryR elationship

InventoryModel

Figure 11.2 - Inventorylnheritances Class Diagram

11.5 InventoryRelations Class Diagram

InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes
and associations for this diagram are shown in Figure 11.3.

50 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractinventoryRelationship

DependsOn

+from_| AbstractinventoryElement |_ *10
1 1
{redefines from} {redefines to}

Figure 11.3 - InventoryRelations Class Diagram

11.5.1 DependsOn Class

DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which
one inventory element requires another inventory element during one or more steps of the engineering process.

Associations

from:AbstractinventoryElement[1] the base inventory item

to:AbstractinventoryElement[1] another inventory item on which the base item depends

Constraints

1. An inventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. It is the implementer’s responsibility to capture certain aspects knowledge of the
engineering process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of
the Infrastructure Layer, which is available to al KDM implementations at various compliance levels. KDM Build
package that constitutes a separate L1.Build compliance point, defines more precise meta-model elements to represent the
engineering view of the software system.

When the origin of the DependsOn relationship is an Inventory container, this means that al elements owned by this
container (directly or indirectly) depend on the target of the relationship.

When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 51

11.6 SourceRef Class Diagram

The SourceRef class diagram defines a set of meta-model elements whose purpose is to provide traceability links between
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class
diagram shown in Figure 11.4 captures these classes and their relations.

Element
(from core)

SourceRef
<language : String
wsnippet: String

SourceRegion +region f

wstartLine : Integer .
SstartPosition : Integer[~ SourceRegions
@endLine : Integer 0.. {ordered}

sendPosition : Integer

<language : String 0.*
<path : Strin
2 2 +ile
SourceFile SourceFile

0.1i&language : String
«encoding : String

Figure 11.4 - SourceRef Class Diagram

11.6.1 SourceRef Class

The SourceRef class represents a traceability link between a particular model element and the corresponding source code.

Superclass
Element
Attributes
language: String Optional attribute. Indicates the source language of the snippet attribute.
shippet:String Optional attribute. The source snippet for the given KDM element. The snippet may have

some internal structure, for example XML tags corresponding to an abstract syntax tree
of the code fragment. The interpretation of code snippets is outside the scope of the
KDM.
Constraints
Language indicator has to be provided using at least one of the following methods:
» Asthe attribute of the SourceRef element.
¢ Asthe attribute of the SourceRegion element.

« Asthe attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.

52 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

If both the snippet and the language attributes of the SourceRef element are present, then the language attribute should
describe the nature of the code snippet, in which case the nature of the source code region accessible through the
SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not present, then the
language attribute of the SourceRef element overrides the language attribute of the SourceRegion element, which in turn
overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “ source”
representation as part of a physical artifact of the existing software system. KDM element that defines atraceability link to its
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:
 Inlining the corresponding source code in the form of a“snippet” into KDM representation.
e Linking aKDM element to aregion of the source code within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

e Thelink can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

* Thelink can be made stand-alone and explicitly specify the path to the artifact.

KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the
primary one and other elements are considered secondary. Secondary traceability links may be used to represent
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or
target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language”
attributes, so that KDM tools can select the appropriate representation to display.

It is the implementer’s responsibility to provide adequate traceability links.

11.6.2 SourceRegion Class

The SourceRegion class provides a pointer to a single region of source. The SourceRegion element provides the capability
to precisely map model elementsto a particular region of source that is not necessarily text. The nature of the source code
within the physical artifact is indicated by the language attribute of the SourceRegion element or the language attribute of
the SourceFile element. The language attribute of the SourceRegion element overrides that of the SourceFile element if
both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass

Element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 53

Attributes

startLine: Integer The line number of the first character of the source region.

startPosition:Integer Provides the position of the first character.of the source region.

endLine:Integer The line number of the last character of the source region.

endPosition:Integer The position of the last character of the source region.

language:String Optional attribute. The language indicator of the source code for the given source region.

path:String Optional attribute. The location of the physical artifact that contains the given source
region.

Associations

file:SourceFile[0..1] This association allows zero or more SourceRegion elements to be associated with a
single SourceFile element of the Inventory Model.

Constraints
The location of the source file should be provided using at least one of the following methods:
« Path attribute of the SourceRegion element.

« Path attribute of the SourceFile element of the Inventory model.

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

The path attribute should uniquely identify the physical artifact. The nature of the path attribute is outside of the scope of
the KDM. For example, this can be a URI.

Individual SourceRef elements may own multiple SourceRegion elements that represent a situation where there are
multiple digjoint regions of source code that correspond to the given KDM element.
11.7 ExtendedInventoryElements Class Diagram

The ExtendedInventoryElements class diagram defines two “wildcard” generic elements for the inventory model as
determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and
associations of the ExtendedInventoryElements diagram are shown in Figure 11.5.

54 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractinventoryRelationship

AbstractinventoryElement

<—— | InventoryRelationship
1

+from 0.. 0. *
{redefines from} h

InventoryElement +to 1
{redefines to}

K DM Entity
(from core)

Figure 11.5 - ExtendedInventoryElements Class Diagram

11.7.1 InventoryElement Class (generic)

The InventoryElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractlnventoryElement

Constraints
1. InventoryElement should have at least one stereotype.

Semantics

An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the inventory model. Thisis one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.7.2 InventoryRelationship Class (generic)

The InventoryRelationship class is a generic meta-model element that can be used to define new “virtual” inventory
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractlnventoryRelationship

Associations

from:AbstractinventoryElement[1] the inventory element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 55

Constraints
1. InventoryRelationship should have at least one stereotype.
Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the inventory model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

56 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Part Il - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming |anguages.

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:
* Code
e Action

Code package defines Codeltems (named elements determined by the programming language, the so-called “symbols,”
“definitions,” etc.) and structural relations between them. Codeltems are further categorized into Computational Object,
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which
detemine the control- and data- flows between code items.

Description of the Code package is further subdivided into the following parts:
« Code Elements representing Modules
« Code Elements representing Computational Objects
« Code Elements representing Datatypes
« Code Elements representing Preprocessor Directives
» Miscellaneous Code Elements

Data representation of KDM is aligned with 1SO/IEC 11404 (Language-Independent datatypes) standard. In particular,
KDM provides distinct meta-model elements for “data elements” (for example, global and local variables, constants,
record fields, parameters, class members, array items, and pointer base elements) and “ datatypes.” Each data element has
an association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex
user-defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym
type). KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-
model elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):
e suffix “Element” - usually designates a generic meta-model element.
o suffix “Type” - designates a meta-model element representing some datatype.

« suffic“Unit” - designates a concrete meta-model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 57

58

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12 Code Package

12.1 Overview

The Code package defines a set of meta-model elements whose purpose is to represent implementation level program

elements and their associations. This facet of knowledge about existing software systems corresponds to the logical view.

It is determined by one or more programming languages used in the design of the particular existing software system.
Code package includes meta-model elements, which represent common program elements supported by various
programming languages, such as data types, data items, classes, procedures, macros, prototypes, and templates.

Asageneral rule, in agiven KDM instance, each instance of the code meta-model element represents some programming
language construct, determined by the programming language of the existing software system. Each instance of a code

meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software
system. Exceptions to this rule are:

12.2 Organization of the Code Package

The Code package consists of the following 24 class diagrams:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

instances of the CodeM odel meta-maodel element that are parts of the KDM infrastructure. This meta-model element is

acontainer for other code element instances.

instances of code element that explicitly represent certain abstractions provided by a programming language, such as

primitive datatypes and predefined datatypes.

CodeModel

Codel nheritances
Modules

Control Elements
DataElements
Values
PrimitiveTypes
EnumeratedTypes
CompositeTypes
DerivedTypes
Signature
DefinedTypes
ClassTypes
Templates
TemplateRel ations
ClassRelations
TypeRelations
InterfaceRel ations
PreprocessorDirectives

59

« PreprocessorRelations
e Comment
» Visibility
+ VisibilityRelations
» ExtendedCodeElements
The Code package depends on the following packages:

e Source
 Core
e kdm

12.3 CodeModel Class Diagram

The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to implementation-level program elements and their associations.

The CodeModel diagram defines the following classes determined by the KDM model pattern:

e CodeModel —aclass representing a model for CodeElement.

» AbstractCodeElement — a class representing an abstract parent class for all KDM entities that can be used to model
code.

» AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program
elements:

e Codeltem

e Computational Object
e Datatype

e Module

The class diagram shown in Figure 12.1 captures these classes and their relations.

60 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

CodeModel

AbstractCodeRelationship

+model
{subsets model}

0.~ +codeRelation
{subsets ownedRelation}

+codeElement 0..*

{subsets ownedElement}

AbstractCodeElement

Codeltem

D atatype ComputationalObject Module

Figure 12.1 - CodeModel Class Diagram

12.3.1 CodeModel Class

The CodeModel is the specific KDM model that corresponds to the logical view of the implementation of the existing
software system. CodeModel is the only model of the Program Elements Layer of KDM. CodeModel follows the uniform
pattern for KDM models.

Superclass

KDMModel

Associations

codeElement:AbstractCodeElement[0..*] {ordered} The set of thetop-level elementsthat are defined in this code model.
The CodeModel element is the owner of such CodeElement. This
property subsets the ownedElement property of KDMM odel
derived union.

Constraints

Semantics

CodeModel is a container for code elements. It is the implementer’s responsibility to arrange code elements into one or
more code models. KDM import tools should not make any assumptions about the organization of code elements into
code models.

12.3.2 AbstractCodeElement Class (abstract)

The AbstractCodeElement is an abstract class representing any generic determined by a programming language.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 61

Superclass

KDMEntity

Associations

codeRelation:CodeRelation[0..*] The set of code relations owned by this code model.

source: SourceRef[0..1] Link to the physical artifact for the given code element.

Constraints

Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the
Code model.

12.3.3 AbstractCodeRelationship Class (abstract)

The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language.
Superclass

KDMRelationship

Constraints

Semantics

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Code
model.

12.3.4 Codeltem Class (abstract)

Codeltem class represents the named elements determined by the programming language (the so-called “symbols,”
“definitions,” etc.). There are AbstractCodeElements that are not Codeltems, for example ActionElements that are defined
in the Action package.

Superclass

AbstractCodeElement
Semantics

Codeltem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.

12.3.5 ComputationalObject Class (generic)

Computational Object class represents the named elements determined by the programming language, which describe
certain computational objects at the runtime, for example, procedures, and variables.

Superclass

Codeltem

62 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints

1. Instance of the Computational Object element should have at |east one stereotype.

Semantics

Computational Object is a generic element with under specified semantics that can be used as an extension point to define
new “virtual” meta-model elements that represent specific named control elements or data elements that do not fit into
semantic categories of the concrete subclasses of Computational Object.

12.3.6 Datatype Class (generic)
Datatype class represents the named elements determined by the programming language that describes datatypes.
Superclass
Codeltem
Constraints
1.Instance of the Datatype element should have at least one stereotype.
Semantics

Datatype is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named datatypes that do not fit into semantic categories of the
concrete subclasses of Datatype.

12.4 Codelnheritances Class Diagram

The Codel nheritances class diagram defines how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.2 captures these relations.

KDM Model K DM E ntity KDMRelationship
(from kdm) (from core) (from core)

i T

CodeModel AbstractCodeRelationship

AbstractCodeElement

0.1

CodeSource

+source
0.*

SourceRef
(from source)

Figure 12.2 - Codelnheritances Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 63

Section | - Code Elements Representing Modules

12.5 Modules Class Diagram

The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages,
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these
classes and their associations.

Codeltem

+
% {subszgnoi/rner) 0. AbstractCodeElement

Module

0..1 +codeElement
/ {subsets ownedElement
ordered}

LanguageUnit

CompilationUnit Package

i

SharedUnit

CodeAssembly

Figure 12.3 - Module Class Diagram

12.5.1 Module Class (generic)

The Module class is a generic KDM modeling element that represents an entire software module or a component, as
determined by the programming language and the software development environment. A module is a discrete and
identifiable program unit that contains other program elements and may be used as a logical component of the software
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and
the implementation. In the context of representing existing software systems, modules provide the context for establishing
the associations between the programming language elements that are owned by them, especially when the same logical
component of a software product line is compiled multiple times with different compilation options and linked into
multiple executables. Instances of the Module class represent the logical containers for program elements determined by
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.

Superclass

Codeltem

64 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

codeElement:AbstractCodeElement[0..*] {ordered} Thelist of owned CodeElement

Constraints
1. Module class and its subclasses should not own SourceRef elements.
2. Code Model cannot directly own any code elements other than the subclasses of the Module class.
3. Every code element should be owned by some instance of the Module class or its subclasses.
4. Instance of the Module element should have at least one stereotype.

5. No other code element should own Module elements and its subclasses.

Semantics

Module is alogical container for program elements. Subclasses of Module element define semantically distinct flavors of
Module, representing common categories of containers.

It is the implementer’s responsibility to select an appropriate subclass of the Module element.

12.5.2 CompilationUnit Class

The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A
compilation unit is alogical part of the existing software system that is sufficiently complete to be processed by the
corresponding software development environment. Compilation unit is usually related to some artifact of the existing
software system, for example, a physical source file. Compilation units are supported by the selected programming
languages of the existing software system and as determined by the corresponding engineering process.

Superclass

Module

Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a
SourceFile in the InventoryModel.

12.5.3 SharedUnit Class

The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected
programming languages of the existing software system and as determined by the engineering process.

Superclass
Module
Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 65

12.5.4 LanguageUnit Class

The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements
determined by a particular programming language.

Superclass

Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is alogical container that owns definitions of primitive and predefined datatypes for a particular language,
as well as other common elements for a particular programming language. L anguageUnit may or may not correspond to a
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. It is
the implementer’s responsibility to add such files to the InventoryModel. Primitive datatypes usually do not have any
corresponding files, in this situation the LanguageUnit does not have a counterpart in the InventoryModel.

12.5.5 CodeAssembly Class

The CodeAssembly represents a logical container for the program elements that were built together (for example,
compiled and linked into an executable, so that all variant selection during the compilation and static linking was resolved
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. Same source files
may produce a different logical model (for example, when compiled and linked for a different hardware platform, or for
a different operating system). The CodeAssembly represents a collection of entities that have been analyzed together. A
different variant of the conceptual family of software systems (even involving same compilation units) may need to be
cloned into a separate CodeAssembly.

Superclass
Module
Semantics

CodeAssembly is alogical container that provides the context for entities and relationships for a collection of program
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

12.5.6 Package Class

The Package class is a subtype for Module that logical collections of program elements, as directly supported by some
programming languages, such as Java.

Superclass

Module

Semantics

A Package is alogical container for program elements as well as Modules. Packages can be nested.

66 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Section Il - Code Elements Representing Computational Objects

12.6 ControlElements Class Diagram

The Control Elements class diagram defines basic meta-model elements to represent callable computational objects, such

as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.

ComputationalObject

Datatype

7

ControlElement

. type m——
+owner

* {subsets owner}
&\ AbstractCodeElement

CallableUnit

<kind : CallableKind

0--1 0.+

+code Element
{subsets ownedElement

ordered}

<<enumeration>>
MethodKind
<method
constructor

MethodUnit

<kind : MethodKind
wexport : ExportKind

<<enumeration>>

CallableKind

wexternal
wregular
woperator
wstored
<unknown

<destructor
woperator
@virtual
<abstract
<unknown

Figure 12.4 - ControlElements Class Diagram

12.6.1 ControlElement Class (generic)

The Control Element class is a common superclass that defines attributes for callable code elements. In the meta-model it
has the role of an endpoint for some KDM relations.

Superclass

Computational Object

Attributes and Associations

type:Datatype|0..1]

codeElement:AbstractCodeElement[0..*] {ordered}

Constraints

Optional association to the datatype of this control element

Represents owned code elements, such as local definitions and
actions.

1. ControlElement should have at least one stereotype.

2. ControlElement should own a Signature.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

67

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named control constructs that do not fit into semantic categories of
the concrete subclasses of Control Element.

ControlElement represents named items of the software system that describe certain behavior that can be performed by
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units
and high-level programming languages.

ControlElement owns other program elements, which can include nested Control Elements.

12.6.2 CallableUnit Class
The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

Control Element

Attributes

kind:CallableKind indicator of the kind of the callable unit

Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. Thisis a
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the
invocation stack.

A CallableUnit represents global or local procedures and functions.
12.6.3 CallableKind Data Type (enumerated)
CallableKind enumerated data type specifies some common properties of the CallableUnit.

Literal values

regular specifies aregular definition of a procedure or function

external specifies an external procedure (a prototype, definition is elsewhere)
operator specifies a definition of an operator

stored specifies a stored procedure in DataM odel

unknown properties are unknown

68 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12.6.4 MethodUnit Class
The MethodUnit represents member functions owned by a ClassUnit.

Superclass

CallableElement

Attributes
kind:MethodKind indicator of the kind of the method represented by this element
export: ExportKind Represents the visibility of the method (public, private,
protected).
Semantics

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and
destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly
(by reference).

12.6.5 MethodKind data type (enumeration)

MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model
element.

Literal Values

method The MethodUnit represents a regular member function.

constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

virtual The MethodUnit represents a virtual method.

abstract The MethodUnit represents an abstract method or member of an Interface.
unknown The kind of the MethodUnit is none of the above.

Example (C language)

int main(int argc, char* argv([]) {
} printf (“*Hello, World\n”);

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 69

xmlns:action="http://schema.omg. org/spec/KDM/l 1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg. org?spec/KDM/l 1/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.1/source"
name="HelloWorld Example">
<model xmi:id="id.0" xmi:type="code:CodeModel" name="HelloWorld"s
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="hello.c">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit"
name="main" type="1id.5" kind="regular">
<source xmi:id="id.3" language="C" snippet="int main(int argc, char* argv([]) {}"/>
<entryFlow xmi:id="1id.4" to="id.12" from="id.2"/>
<codeElement xmi:id="id.5" xmi:type="code:Signature" name="main">
<source xmi:id="1d.6" snippet="int main(int argc, char * argv[]);"/>
<parameterUnit xmi:id="id.7" name="argc" type="id.25" pos="1"/>
<parameterUnit xmi:id="id.8" name="argv" type="id.9" pos="2">
<codeElement xmi:id="1id.9" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.10" type="1id.19"/>

</codeElement >
</parameterUnit>
<parameterUnit xmi:id="id.11" type="id.25" kind="return"/>
</codeElement>
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="al" kind="Call"s>
<source xmi:id="id.13" language="C" snippet="printf ("Hello, World!\n");"/>

<codeElement xmi:id="id.14" xmi:type="code:Value"
name="" ;Hello, World!\n"" type="id.19"/>
<actionRelation xmi:id="1id.15" xmi:type="action:Reads" to="id.14" from="id. 12"/>
<actionRelation xmi:id="id.16" xmi:type="action:Calls" to="id.20" from="id. 12"/>
<actionRelation xmi:id="id.17" xmi:type="action:CompliesTo"
to="id.20" from="id.12"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.18" xmi:type="code:LanguageUnit">
<codeElement xmi:id="id.19" xmi:type="code:StringType" name="char *"/>
<codeElement xmi:id="id.20" xmi:type="code:CallableUnit" name="printf" type="id.21">
<codeElement xmi:id="id.21" xmi:type="code:Signature" name="printf"s
<parameterUnit xmi:id="id.22" name="" type="1d.25" kind="return" pos="0"/>
<parameterUnit xmi:id="id.23" name="format" type="id.19" pos="1"/>
<parameterUnit xmi:id="id.24" name="arguments" kind="variadic" pos="2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.25" xmi:type="code:IntegerType" name="int"/>
</codeElement>
</model>
<model xmi:id="id.26" xmi:type="source:InventoryModel" name="HelloWorld"s
<inventoryElement xmi:id="1id.27" xmi:type="source:SourceFile"
name="hello.c" language="C"/>
</model>
</kdm: Segment >

12.7 DataElements Class Diagram

The DataElements class diagram defines meta-model constructs to represent the named data items of existing software
systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5
shows these classes and their associations.

70 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

StorableUnit

ComputationalObject +codeElement [ftype
{subsets ownedElement} Datatype
0,.1
DataE lement +owner
Pext : String {subsets owner} Type
wsize s Integer| g«
MemberUnit ParameterUnit

<kind : ParameterKind

<kind : StorableKind

<export : ExportKind Bpos : Integer

ltemUnit

<<enumeration>> <<enumeration>>

IndexUnit StorableKind ExportKind
<global <public
wlocal <private
wstatic <protected
wexternal <final
wregister <unknown
<unknown

Figure 12.5 - DataElement Class Diagram

12.7.1 DataElement Class (generic)

The DataElement class is a generic modeling element that defines the common properties of several concrete classes that
represent the named data items of existing software systems (for example, global and loca variables, record files, and
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is
more specific than CodeElement.

Superclass

Computational Object

Attributes

ext:String

size: Integer

Optional extension representing the original representation of the data element.

Specifies the optional constraint on the number of elements any value of the storable element may
contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

71

Associations

codeElement:Datatype|0..*] Anonymous datatypes used in the definition of the datatype of the current
DataElement.
type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.
Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an
existing software system, that do not fit into more precise semantics of the subclasses of DataElement.

Constraints

1. DataElement class should have at |east one Stereotype.

12.7.2 StorableUnit Class

StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software
system.

Superclass
DataElement
Attribute
kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see
StorableKind enumeration datatype).
Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.

12.7.3 StorableKind data type (enumeration)

StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle,
visibility, and memory type.

Literal values

global specifies aglobal variable
local specifies alocal variable
static specifies aglobal variable with restricted scope

72 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

external specifies an external variable (a prototype)
register specifies atemporary variable

unknown properties are unknown

12.7.4 ExportKind data type (enumeration)

ExportKind enumeration data type defines several common properties of a MemberUnit and MethodUnit related to their
visibility and other properties.

Literal values

public specifies a public member or method
private specifies private member or method
protected specifies a protected member or method
final specifies final member or method
unknown properties are unknown

12.7.5 ltemUnit Class

ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM
data relations that describe access to complex datatypes.

Superclass

DataElement

Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective,
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit,
but also by the identity of the owner element.

12.7.6 IndexUnit Class

IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. Instances
of IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass
DataElement
Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 73

12.7.7 MemberUnit Class

MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain
existing computational object, while the computational object corresponding to a MemberUnit is usually determined by
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines
some additional attributes.

Superclass
DataElement

Attributes
export:ExportKind Represents the visibility of the member (public, private, protected).

Constraints

1. MemberUnit can be owned only by a ClassUnit.

Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.8 ParameterUnit Class

ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class
are endpoints of KDM data relations that describe access to formal parameters.

Superclass

DataElement

Attributes
kind:ParameterKind optional attribute defining the parameter passing convention for the attribute
pos:Integer position of the attribute in the signature

Constraints
1. Return parameter of a signature does not have a pos attribute.
2. Return ParameterUnit is a signature should have a kind="return.”

3. There can be at most one ParameterUnit within a certain Signature with a return kind.

74 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of
programming languages that allow named parameters (binding of actual parameters by name rather than by a position),
the producer of the KDM model is responsible for computing correct positions of the named parameters and determining
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is
described in “Signature Class Diagram” on page 90.

12.8 ValueElements Class Diagram

ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

DataElement

siext : String
wsize : Integer

+valueElement

{subsets ownedElement
ordered}

ValueElement

Value ValueList

+owner
{subsets owner}

Figure 12.6 - ValueElements Class Diagram

12.8.1 ValueElement Class (generic)

ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class.

Superclass

DataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 75

Constraints
1. ValueElement and its subclasses should not have owned code elements.
2. ValueElement and its subclasses cannot be used as the target of relations Writes, and Addresses.
3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype.

ValueElement class and its subclasses correspond to | SO/IEC 11404:1996 literals and values. The datatype of the value is
represented by the type property (defined for its superclass DataElement class).

12.8.2 Value Class

Value class is a meta-model element that represents values used in the artifacts of existing software systems.
Superclass
ValueElement

Semantics

Value class corresponds to 1SO/IEC 11404:1996 literals of primitive types, such as boolean-literal, state-literal,
enumerated-literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal,
void-literal, pointer-literal, bitstring-literal, string-literal.

The name attribute of the ValueClass represents the name or a string representation of the value.
12.8.3 ValueList Class
The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass

ValueElement

Associations

valueElement:ValueElement[0..*] component values

Semantics

A Valuelist is a data element associated with a single value of some non-primitive datatype. The value of the complex
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to | SO/IEC 11404:1996 values for aggregated datatypes such as choice-value, record-value, set-
value, sequence-value, bag-value, array-value, table-value.

76 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Section Ill - Code Elements Representing Datatypes

Data representation of KDM is aligned with 1SO/IEC 11404 (Language-Independent datatypes) standard. In particular,
KDM provides distinct meta-model elements for “data elements” (for example, global and local variables, constants,
record fields, parameters, class members, array items, and pointer base elements) and “ datatypes.” Each data element has
an association “type” to its datatype. KDM distinguishes

« primitive datatypes (for example, Integer, Boolean),
« complex user-defined datatypes (for example, array, pointer, sequence), and
« named datatypes (for example, a class, a synonym type).

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are
provided further in the text of the specification.

12.9 PrimitiveTypes Class Diagram

The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.7.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 77

D atatype

% BitstringType OctetstringType
Primitive Type
OctetType
BooleanType
BitType
| OrdinalType |
StringType
FloatType i
CharType VoidT
oidType
- IntegerType StaledType
TimeType

DecimalType

DateType

Figure 12.7 - PrimitiveTypes Class Diagram

12.9.1 PrimitiveType Class (generic)

The PrimitiveType is a generic meta-model element that represents primitive data types determined by various
programming languages.

Superclass
Datatype
Constraints
1. PrimitiveType should have at least one stereotype.

Semantics

PrimitiveType element has under specified semantics. It can be used as an extension point to define new “virtual” meta-model
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of
PrimitiveType class.

12.9.2 BooleanType Class

The BooleanType is a meta-model element that represents Boolean data types common to various programming
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass

PrimitiveType

78 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

The KDM BooleanType class corresponds to 1SO/IEC 11404:1996 Boolean datatype.

12.9.3 CharType Class

The CharType is a meta-model element that represents character data types common to various programming |anguages.
Character is afamily of datatypes whose value spaces are character-sets.

Superclass
PrimitiveType
Semantics

The KDM CharType class corresponds to |SO/IEC 11404:1996 Character datatype.

12.9.4 OrdinalType Class

The Ordina Type class is a meta-model element that represents ordinal datatypes available in some programming
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer).
Ordinal is the infinite enumerated type.

Superclass
PrimitiveType
Semantics

The KDM Ordinal Type class corresponds to |SO/IEC 11404:1996 Ordinal datatype.
12.9.5 DateType Class

The DateType is a meta-model element that represents built-in data types related to dates.
Superclass

PrimitiveType

Semantics

12.9.6 TimeType Class

The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions
thereof.

Superclass

PrimitiveType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 79

Semantics

The KDM TimeType class corresponds to ISO/IEC 11404:1996 Time datatype. The interpretation of the details of the
Time datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the
KDM representation of an existing system to systematically identify the detailed information regarding the details of the
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.9.7 IntegerType Class

The IntegerType is a meta-model element that represents integer data type common to various programming languages.
Integer is the mathematical datatype comprising exact integer values.

Superclass
PrimitiveType
Semantics

The KDM IntegerType class corresponds to 1 SO/IEC 11404:1996 Integer datatype.

12.9.8 DecimalType Class

The Decimal Type is a meta-model element that represents decimal data types common to various programming
languages.

Superclass
PrimitiveType
Semantics

The KDM Decimal Type class corresponds to | SO/IEC 11404:1996 Integer datatype.

12.9.9 ScaledType Class

The ScaledType is a meta-model element that represents fixed point data types common to various programming
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass
PrimitiveType
Semantics

The KDM ScaledType class corresponds to 1SO/IEC 11404:1996 Scaled datatype.

12.9.10 FloatType Class

The FloatType is a meta-model element that represents float data types common to various programming languages. Float
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real
numbers.”

80 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Superclass
PrimitiveType
Semantics

The KDM FloatType class corresponds to |SO/IEC 11404:1996 Real datatype.

12.9.11 VoidType Class

The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages.
Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no
information is a given instance.

Superclass
PrimitiveType
Semantics

The KDM VoidType class corresponds to |SO/IEC 11404:1996 Void datatype.

12.9.12 StringType Class

The StringType is a meta-model element that represents string data type common to various programming |anguages.
String is a datatype representing strings of characters from standard character-sets.

Superclass
PrimitiveType
Semantics

The KDM StringType class corresponds to |SO/IEC 11404:1996 defined datatype Character string. The interpretation of
the details of the character encoding of the StringType is outside of the scope of KDM. Multibyte character strings can be
represented as StringType with a stereotype.

12.9.13 BitType Class

The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is
the datatype representing the binary digits “0” and “1.”

Superclass
PrimitiveType
Semantics

The KDM BitType class corresponds to | SO/IEC 11404:1996 defined datatype Bit.

12.9.14 BitStringType Class

The BitStringType class is a meta-model element that represents bit string datatypes available in some programming
languages. Bitstring is the datatype of variable-length strings of binary digits.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 81

Superclass
PrimitiveType
Semantics

The KDM BitstringType class corresponds to 1SO/IEC 11404:1996 defined datatype Bit string.

12.9.15 OctetType Class

The OctetType class is a meta-model element that represents octet datatypes available in some programming languages.
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings.

Superclass
PrimitiveType
Semantics

The KDM OctetType class corresponds to |SO/IEC 11404:1996 defined datatype Octet.

12.9.16 OctetStringType Class

The OctetStringType class is a meta-model element that represents octet string datatypes available in some programming
languages. Octet string is a variable-length encoding using 8-bit codes.

Superclass
PrimitiveType
Semantics

The KDM OctetstringType class corresponds to |SO/IEC 11404:1996 defined datatype Octet String.

12.10 EnumeratedTypes Class Diagram

The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.8.

D atatype
f 0.*
EnumeratedType 1 Value
+owner +value
{subsets owner} {subsets ownedElement
ordered}

Figure 12.8 - EnumeratedTypes Class Diagram

82 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12.10.1 EnumeratedType Class

The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number
of distinguished values.

Superclass

Datatype

Associations

value:Value[0..*] {ordered} Thelist of enumerated literals defined for the given EnumeratedType.

Semantics

EnumeratedType corresponds to 1SO/IEC 11404:1996 Enumerated and State families of datatypes. Enumerated datatype
is afamily of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State
is a family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not
make distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the
EnumeratedType.

12.11 CompositeTypes Class Diagram

The CompositeTypes class diagram defines meta-model el ements that.represent common composite datatypes provided by
various programming languages; for example records, structures, and unions. Composite datatypes is a broad category of
user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple
component datatypes.

The classes and associations of the StructuredTypes diagram are shown in Figure 12.9.

D atatype

% +owner

CompositeType Ebsers owner} ItemUnit
0..1 0..*
{sub:(ieE rc?walwr(;j;ltE lement
Record Type ChoiceType ordered}

Figure 12.9 - CompositeTypes Class Diagram

12.11.1 CompositeType Class (generic)

The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records,
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 83

container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class.
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype.
CompositeType class is a more specific meta-model element than CodeElement.

Superclass

Datatype

Associations

itemUnit:ltemUnit[0..*] {ordered} = Thelist of named items that represent components of the composite datatype; for
example representing the individual fields of arecord.

Constraints

1. CompositeType class should be used with a stereotype.

Semantics

CompositeType class corresponds to | SO/IEC 11404:1996 generated datatypes each of whose values is made up of values
of component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve afield
list in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents
the name of the field-type. The datatype of the field-type is represented by the type attribute of the [temUnit.

CompositeType class is an extended meta-model element, that can be used to represent generated datatypes of an existing
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that ItemUnit.

12.11.2 ChoiceType Class

The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing
software systems, each of whose values is a single value from any of a set of alternative datatypes. An example of a
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM
representation, each alternative datatype is represented as an ItemUnit.

Superclass
CompositeType
Constraints

Semantics

The ChoiceType corresponds to |SO/IEC 11404:1996 choice generated datatype. KDM representation does not explicitly
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is
represented by the type attribute of the ItemUnit owned by the ChoiceType.

84 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12.11.3 RecordType Class

The RecordType class is a meta-model element that represents record datatypes. user-defined datatypes in existing
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,”
which is represented by the Name attribute of the IltemUnit owned by the RecordType. Examples of record datatypes
include a structure in C, a record in Cobol.

Superclass

CompositeType
Constraints

Semantics

The RecordType corresponds to |SO/IEC 11404:1996 record aggregate datatype. The Name attribute of each ItemUnit
owned by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of
the ItemUnit owned by the ChoiceType.

Example (Cobol)

01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 FirstName PIC X(10).

03 MiddleInitial PIC X.

03 Surname PIC X(15).
02 DateOfBirth.

03 DayOfBirth PIC 99.

03 MonthOfBirth PIC 99.
03 YearOfBirth PIC 9(4).
02 CourseCode PIC X(4).

MOVE "Doyle" To Surname

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="Record Example">
<model xmi:id="1id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1l" xmi:type="code:CompilationUnit">
<codeElement xmi:id="1id.2" xmi:type="code:StorableUnit"
name="StudentDetails" type="id.3">
<codeElement xmi:id="id.3" xmi:type="code:RecordType" name="StudentDetails">
<itemUnit xmi:id="id.4" name="StudentID" type="1d.23" ext="PIC 9(7)"/>
<itemUnit xmi:id="id.5" name="StudentName" type="id.6">
<codeElement xmi:id="id.6" xmi:type="code:RecordType" name="StudentName">
<itemUnit xmi:id="id.7" name="FirstName" type="id.24" ext="PIC X(10)" size="10"/>
<itemUnit xmi:id="id.8" name="MiddleName" type="1d.24" ext="PIC X" size="1"/>
<itemUnit xmi:id="id.9" name="Surname" type="id.24" ext="PIC X(15)" size="15"/>
</codeElement>
</itemUnits>
<itemUnit xmi:id="id.10" name="DateOfBirth"s>
<codeElement xmi:id="1id.11" xmi:type="code:RecordType" name="DateOfBirth">
<itemUnit xmi:id="id.12" name="DayOfBirth" type="id.23" ext="PIC 99" size="2"/>
<itemUnit xmi:id="id.13" name="MonthOfBirth" type="id.23" ext="PIC 99" size="2"/>
<itemUnit xmi:id="id.14" name="YearOfBirth" type="1id.23" ext="PIC 9(4)"
size="4"/>
</codeElement>
</itemUnits>
<itemUnit xmi:id="id.15" name="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.1l6" xmi:type="action:BlockUnit">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 85

<codeElement xmi:id="id.17" xmi:type="action:ActionElement">
<codeElement xmi:id="id.18" xmi:type="code:Value"
name="" ;Doyle"" type="id.24"/>
<actionRelation xmi:id="1d.19" xmi:type="action:Addresses" to="id.2" from="1id.17"/>
<actionRelation xmi:id="1d.20" xmi:type="action:Reads" to="id.18" from="1id.17"/>
<actionRelation xmi:id="1id.21" xmi:type="action:Writes" to="id.9" from="id.17"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.22" xmi:type="code:LanguageUnit" name="Cobol common definitions">
<codeElement xmi:id="id.23" xmi:type="code:DecimalType"/>
<codeElement xmi:id="id.24" xmi:type="code:StringType"/>
</codeElement>
</model>
</kdm: Segment >

12.12 DerivedTypes Class Diagram

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes
diagram are shown in Figure 12.10.

ltemUnit Datatype
1
+itemUnit
{subsets ownedElement}
PointerType
+owner 0.1 DerivedType w
{subsets owner}
SequenceType
asize : Integer
RangeType NEVTE BagType
<lower : Integer y yp wsize : Integer

Gupper : hteger <size : Integer SetType
@size : Integer

+owner 0.1
{subsets owner}

+indexUnit
{subsets ownedElement} 1

IndexUnit

Figure 12.10 - DerivedTypes Class Diagram

12.12.1 DerivedType Class (generic)

DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics.
DerivedType classis a KDM container. KDM models of existing software systems usually use the concrete subclasses of
DerivedType class. DerivedType class itself is a concrete class and can be used as an extended meta-model element, with
a stereotype. DerivedType class is a more specific meta-model element than CodeElement.

86 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Superclass

Datatype

Associations

itemUnit:ltemUnit[1] The ItemUnit that represents the base class of the derived type.

Constraints

1. DerivedType class should be used with a stereotype.

Semantics

DerivedType class corresponds to several 1SO/IEC 11404:1996 aggregated datatypes, whose values are made up of values
of a single component datatype. DerivedType class is an extended meta-model element, that can be used to represent
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the
element-type is represented by the type attribute of the IltemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.

12.12.2 ArrayType Class

The ArrayType is a meta-model element that represents array datatypes.
Superclass

DerivedType

Attributes

size:Integer the size of the array (the maximum number of elements)

Associations

indexUnit:IndexUnit[1] the index of the array

Constraints

Semantics

ArrayType corresponds to |SO/IEC 11404:1996 array datatype. The name attribute of the ItemUnit can be omitted if the
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned
by the ArrayType. The IndexItem represents the index of the array. The name attribute of the IndexUnit can be omitted.

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the
next (internal) dimension and so on.

Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 87

12.12.3 PointerType Class

The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference
to values of another datatype, designated the element datatype.

Superclass

DerivedType
Constraints

Semantics

PointerType corresponds to 1SO/IEC 11404:1996 pointer generated datatype. From |SO perspective the pointer datatype
is not an aggregated datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of
the ItemUnit owned by the PointerType can be omitted. The datatype of the element-type is represented by the type
attribute of the ItemUnit owned by the PointerType.

Example (C)

struct tlist ({
struct tlist * next;
int value;

} * phead, * pcurrent;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="LinkedList Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="action:BlockUnit">
<codeElement xmi:id="id.2" xmi:type="code:StorableUnit"
name="phead" type="1id.3" kind="unknown">
<codeElement xmi:id="id.3" xmi:type="code:PointerType">
<itemUnit xmi:id="id.4" type="id.5">
<codeElement xmi:id="id.5" xmi:type="code:RecordType" name="tlist">
<itemUnit xmi:id="id.6" name="next" type="id.3"/>
<itemUnit xmi:id="id.7" name="value" type="id.8">
<codeElement xmi:id="1id.8" xmi:type="code:IntegerType" name="int"/>
</itemUnits>
</codeElement >
</itemUnits>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.9" xmi:type="code:StorableUnit"
name="pcurrent" type="id.3" kind="unknown"/>
</codeElement>
</model>
</kdm: Segment >

12.12.4 RangeType Class

RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper
and/or lower bounds on the value space.

Superclass

DerivedType

88 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Attributes

lower: Integer the optional lower boundary of the range

upper: Integer the optional upper boundary of the range

Constraints

1. At least one boundary value attribute should be present.

Semantics

RangeType corresponds to 1SO/IEC 11404:1996 range subtype. From 1SO perspective the range subtype is not an
aggregated datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the
ItemUnit owned by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of
the ItemUnit owned by the RangeType.

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.

12.12.5 BagType Class

BagType class is ameta-model element that represents bag types in existing software systems: the user-defined datatypes,
whose values are collections of instances of values from the element datatype. Bag types alow multiple instances of the
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass

DerivedType

Semantics

BagType corresponds to | SO/IEC 11404:1996 bag aggregated datatype. The Name attribute of the ItemUnit owned by the
BagType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the BagType.

12.12.6 SetType Class

SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the
mathematical set.

Superclass
DerivedType
Semantics

SetType corresponds to |SO/IEC 11404:1996 set aggregated datatype. The Name attribute of the ItemUnit owned by the
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the SetType.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 89

12.12.7 SequenceType Class

SequenceType class is a meta-model element that represents sequence types in existing software systems: the user-defined
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass

DerivedType

Semantics

SequenceType corresponds to 1SO/IEC 11404:1996 sequence aggregated datatype. The Name attribute of the ItemUnit
owned by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the
ItemUnit owned by the SequenceType.

12.13 Signature Class Diagram

The Signature class diagram defines meta-model elements, which represent the signature concept common to various
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.11.

Datatype
+owner
{subsets owner} +parameterUnit
Signature {subsets ownedElement
0.1 ordered}
0. .*

;;::;neeg;%;z ParameterUnit

BovVal kind : ParameterKind

m%g#}i “Pos : Integer

wbyReference

“variadic

return

wthrows

wexception

wcatchall

w@unknown

Figure 12.11 - Signature Class Diagram

12.13.1 Signature Class

The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various
programming languages.

Superclass

Datatype

90 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

parameterUnit:ParameterUnit[0..*] the list of parameters of the current Signature

Constraints

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of
datatypes, corresponding to the procedure-type of 1SO/IEC 11404 standard. Second, it corresponds to a specific data
element as part of a computational object represented by a ControlElement. In this second sense, the Signature element
corresponds to the mechanism of formal and actual parameters.

12.13.2 ParameterKind Enumeration Datatype

ParameterKind datatype defines the kind of parameter passing conventions.

Literals

byValue parameter is passed by value

byName parameter is passed by name

byReference parameter is passed by reference

variadic parameter is variadic

return thisisareturn parameter

throws parameter represents an exception thrown by the procedure

exception parameter to a catch block

catchall special parameter to a catch block

unknown the parameter passing convention is unknown
Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this
means that the Signature does not define a return value.

12.14 DefinedTypes Class Diagram

DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by atype
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.12.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 91

+codeElement
0.1 {subsets ownedElement}

+ype _ | Datatype
1
BaseType
+owner
DefinedType {subsets owner}
0.*
0.1
TypeUnit SynonymType

Figure 12.12 - DefinedTypes Class Diagram

12.14.1 DefinedType Class (abstract)

The DefinedType class is an abstract class that defines the common properties of several concrete classes that are used to
represent type declarations in existing software systems.

Superclass

Datatype

Associations

codeElement:Datatypel0..*] Anonymous datatypes used in the definition of the datatype.

type:Datatype[1] The datatype of the DefinedType that describes the values of the
corresponding datatype.

Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined
datatype.

12.14.2 TypeUnit Class

The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define
the value-space of a new datatype, which is distinct from any other datatype.

Superclass

DefinedType

92 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

TypeUnit corresponds to |SO/IEC 11404:1996 New datatype declaration and New generator declarations.

12.14.3 SynonymuUnit Class

The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the
type name to be a synonym for another datatype.

Superclass

DefinedType

Semantics

SynonymUnit corresponds to 1SO/IEC 11404:1996 Renaming declarations.

12.15 ClassTypes Class Diagram

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.13.

Datatype

ClassUnit
«tisAbstract: Boolean

Interface Unit

+owner

+owner

subsets owner]
{subsets owner} { }

+codeElement
{subsets ownedElement
ordered}

0.*
Codeltem

+codeElement

{subsets ownedElement
ordered}

Figure 12.13 - ClassTypes Class Diagram

12.15.1 ClassUnit Class

The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype

is a named datatype that represents a class: an ordered collection of named elements, each of which can be another
Codeltem, such as a MemberUnit or a MethodUnit.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

93

Attributes

isAbstract:Boolean the indicator of an abstract class

Associations

codeElement:Codeltem[0..*]{ordered} thelist of class members

Constraints

Semantics

ClassUnit is a named container for an ordered collection of named elements, each of which can be another Codeltem,
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested
ClassUnits), internal datatype definitions, etc. From the runtime perspective, ClassUnit represents a family of
computational objects, called class instances. MemberUnits and MethodUnits of a certain ClassUnit are identified both by
the name of the member or method, as well as by a direct or indirect identification of the corresponding class instance.

12.15.2 InterfaceUnit Class

The InterfaceUnit is a meta-model element that represents the interface concept common to various programming
languages.

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns a list of
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an
InterfaceUnit may be targets of Calls relations.

Superclass

Datatype

Associations

codeElement:Codeltem[0..*] {ordered} Thelist of TypeElements that corresponds with the target Interface.

Constraints

Semantics

InterfaceUnit is alogical container for code items. InterfaceUnit corresponds to a compile time description of the
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as
ControlElements, which in the representation of an existing software may be the targets of certain relationships, since the
binding between the interface and the actual computational objects may occur at runtime.

12.16 Templates Class Diagram

The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. Figure 12.14 shows these classes and their associations.

94 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

D atatype

TemplateUnit

TemplateType 0.1

+owner
{subsets owner}

+codeElement
{subsets ownedElement
ordered} 0..*

Codeltem

TemplateParameter

Figure 12.14 - Templates Class Diagram

12.16.1 TemplateUnit Class

The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming
languages; for example, Ada generics, Java generics, C++ templates.

Superclass
Datatype

Associations

codeElement:Codeltem[1] template formal parameters and the base datatype or computational object

Constraints
1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.

Semantics

The TemplateUnit class corresponds to atype declaration with formal type parameters from the |SO/IEC 11404. TemplateUnit
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned
by the TemplateUnit.

12.16.2 TemplateParameter Class

TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model,
TemplateParameter is a subclass of TypeElement.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 95

Constraints

Semantics

TemplateParameter represents a formal parameter of a type declaration with formal parameters (corresponding to | SO/IEC
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal
parameters is positional.

12.16.3 TemplateType Class

TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType
class owns the actual parameters to the datatype reference, represented by “ParameterTo” relationships. The
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced
parameterized datatype. TemplateType has the role of a Datatype.

Superclass

Datatype

Constraints

1. TemplateType class should be the origin only to template relations “InstanceOf” and “ParameterTo.”

Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal
type parameters from the | SO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit,
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented
by the “InstanceOf” relationship.

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type
parameters is positional.

12.17 TemplateRelations Class Diagram

The TemplateRelations class diagram defines KDM relationships that are related to the concept of an template. Figure
12.16 shows these classes and their associations.

96 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractCodeRelationship

ParameterTo

Instance Of

+to
1 {redefines to}

+from
{redefines fom}

+to
{redefines to}

{redefines from}

TemplateUnit

Codeltem AbstractCodeElement

Figure 12.15 - TemplateRelations Class Diagram

12.17.1 InstanceOf Class

The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for
example, a ClassUnit) and a TemplateUnit. In the meta-model InstanceOf is a subclass of AbstractCodeRelationship.

Superclass

AbstractCodeRel ationship

Associations

from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of atemplate.

to:TemplateUnit[1] The TemplateUnit that is being instantiated.

Constraints
1. The to- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.17.2 ParameterTo Class

The ParameterTo is a meta-model element that represents an actual type parameter in the context of areference to a
parameterized entity. ParameterTo is “ parametrization” relation between an AbstractCodeElement (for example, a
TemplateType or an ActionElement) and a Codeltem.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

97

Superclass

AbstractCodeRel ationship

Associations

from:AbstractCodeElement[1] the reference to the parameterized entity (the context of the actual type parameter)

to:Codeltem[1] actual parameter to template instantiation

Constraints
1. ParameterTo relationship should be owned only by TemplateType or ActionElement.
2. The to- and from- endpoints of the relationship should be different.

Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Example (Java)

class foo
static <T> void fromArrayToCollection (T[] a, Collection<T> c) {
for (T o : a)
c.add (o) ;

void demo()
String[] sa = new String[100];
Collection<String> c¢s = new ArrayList<Strings();
fromArrayToCollection(sa, cs);// T inferred to be String

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="Template Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1l" xmi:type="code:ClassUnit" name="foo">
<codeElement xmi:id="id.2" xmi:type="code:TemplateUnit"
name="fromArrayToCollection<T>">
<codeElement xmi:id="id.3" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="id.4" xmi:type="code:MethodUnit"
name="fromArrayToCollection" type="id.é6">
<entryFlow xmi:id="1id.5" to="id.14" from="id.4"/>
<codeElement xmi:id="1id.6" xmi:type="code:Signature">
<parameterUnit xmi:id="id.7" name="a">
<codeElement xmi:id="id.8" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.9" type="1d.3"/>
</codeElement>
</parameterUnit>
<parameterUnit xmi:id="1d.10" name="c" type="id.11">
<codeElement xmi:id="1id.11" xmi:type="code:TemplateType"
name="Collection<T1l>">
<codeRelation xmi:id="id.12" xmi:type="code:ParameterTo"
to="id.3" from="id.11"/>
<codeRelation xmi:id="id.13" xmi:type="code:InstanceOf"
to="id.75" from="id.11"/>
</codeElement>
</parameterUnit>

98 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

</codeElement>
<codeElement xmi:id="id.14" xmi:type="action:ActionElement"
name="al" kind="Compound">
<codeElement xmi:id="1d.15" xmi:type="action:ActionElement"
name="al.l" kind="Call">
<actionRelation xmi:id="id.16" xmi:type="action:Addresses"
to="id.7" from="id.15"/>
<actionRelation xmi:id="id.17" xmi:type="action:Calls" to="id.81" from="id.15"/>
<actionRelation xmi:id="1id.18" xmi:type="action:Flow" to="1d.19" from="id.15"/>
</codeElement>
<codeElement xmi:id="id.19" xmi:type="action:ActionElement"
name="al.2" kind="Call">
<codeElement xmi:id="1d.20" xmi:type="code:StorableUnit"
name="t1l" type="1id.88" kind="register"/>
<actionRelation xmi:id="id.21" xmi:type="action:Addresses"
to="id.40" from="id.19"/>
<actionRelation xmi:id="id.22" xmi:type="action:Calls" to="1id.83" from="1d.19"/>
<actionRelation xmi:id="id.23" xmi:type="action:Writes" to="id.20" from="id.29"/>
<actionRelation xmi:id="id.24" xmi:type="action:Flow" to="id.25" from="id.19"/>
</codeElement>
<codeElement xmi:id="id.25" xmi:type="action:ActionElement"
name="1.3" kind="Condition">
<actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.20" from="id.25"/>
<actionRelation xmi:id="id.27" xmi:type="action:TrueFlow"
to="id.29" from="id.25"/>
<actionRelation xmi:id="id.28" xmi:type="action:FalseFlow"
to="id.39" from="id.25"};
</codeElement>
<codeElement xmi:id="id.29" xmi:type="action:ActionElement"
name="al.4" kind="Call">
<actionRelation xmi:id="id.30" xmi:type="action:Addresses"
to="id.40" from="id.29"};
<actionRelation xmi:id="id.31" xmi:type="action:Calls" to="id.82" from="1d.29"/>
<actionRelation xmi:id="1id.32" xmi:type="action:Writes" to="id.44" from="id.29"/>
<actionRelation xmi:id="1id.33" xmi:type="action:Flow" to="id.34" from="id.29"/>
</codeElement>
<codeElement xmi:id="1d.34" xmi:type="action:ActionElement"
name="al.5" kind="Call">
<actionRelation xmi:id="id.35" xmi:type="action:Addresses"
to="id.10" from="id.34"/>
<actionRelation xmi:id="id.36" xmi:type="action:Reads" to="id.44" from="1id.34"/>
<actionRelation xmi:id="id.37" xmi:type="action:Calls" to="id.84" from="1id.34"/>
<actionRelation xmi:id="1id.38" xmi:type="action:Flow" to="1d.19" from="id.34"/>
</codeElement>
<codeElement xmi:id="1d.39" xmi:type="action:ActionElement" name="1.6" kind="Nop"/>
<codeElement xmi:id="1d.40" xmi:type="code:StorableUnit"
name="iter" type="1d.41" kind="register"s>
<codeElement xmi:id="id.41" xmi:type="code:TemplateType" name="Iterator<T1l>">
<codeRelation xmi:id="id.42" xmi:type="code:InstanceOf"
to="1id.78" from="id.41"/>
<codeRelation xmi:id="1d.43" xmi:type="code:ParameterTo"
to="1id.3" from="id.41"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.44" xmi:type="code:StorableUnit"
name="o" type="id.3" kind="local"/>
<actionRelation xmi:id="1id.45" xmi:type="action:Flow" to="id.15" from="id.14"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.46" xmi:type="code:MethodUnit" name="demo" type="1id.47">
<codeElement xmi:id="1id.47" xmi:type="code:Signature"/>
<codeElement xmi:id="id.48" xmi:type="code:StorableUnit"
name="sa" type="id.49" kind="local">
<codeElement xmi:id="1id.49" xmi:type="code:ArrayType" name="ar2">
<itemUnit xmi:id="id.50" type="1d.89"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.51" xmi:type="action:ActionElement" name="demo.l" kind="New">
<codeElement xmi:id="id.52" xmi:type="code:Value" name="100" type="id.90"/>
<actionRelation xmi:id="1d.53" xmi:type="action:Reads" to="id.52" from="id.51"/>
<actionRelation xmi:id="1id.54" xmi:type="action:Creates" to="id.49" from="id.51"/>
<actionRelation xmi:id="id.55" xmi:type="action:Writes" to="id.48" from="id.51"/>
<actionRelation xmi:id="1id.56" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="id.57" xmi:type="code:StorableUnit"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 99

name="cs" type="id.58" kind="local">
<codeElement xmi:id="id.58" xmi:type="code:TemplateType"
name="Collection<String>">
<codeRelation xmi:id="1id.59" xmi:type="code:ParameterTo" to="1id.89" from="id.58"/>
<codeRelation xmi:id="1d.60" xmi:type="code:InstanceOf" to="id.75" from="id.58"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="demo.2" kind="New">
<codeElement xmi:id="id.62" xmi:type="code:TemplateType"
name="ArrayList<String>">
<codeRelation xmi:id="1id.63" xmi:type="code:ParameterTo" to="id.89" from="id.62"/>
<codeRelation xmi:id="1d.64" xmi:type="code:InstanceOf" to="id.85" from="id.62"/>
</codeElement>
<actionRelation xmi:id="1id.65" xmi:type="action:Creates" to="id.62" from="id.51"/>
<actionRelation xmi:id="1id.66" xmi:type="action:Writes" to="id.57" from="id.61"/>
<actionRelation xmi:id="id.67" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="id.68" xmi:type="action:ActionElement" name="demo.3" kind="Call">
<codeRelation xmi:id="1d.69" xmi:type="code:InstanceOf" to="id.2" from="1id.68"/>
<codeRelation xmi:id="1d.70" xmi:type="code:ParameterTo" to="id.89" from="id.68"/>
<actionRelation xmi:id="id.71" xmi:type="action:Reads" to="id.48" from="1d.68"/>
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.57" from="1id.68"/>
<actionRelation xmi:id="id.73" xmi:type="action:Calls" to="id.4" from="id.68"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.74" xmi:type="code:LanguageUnit" name="Common Java datatypes">
<codeElement xmi:id="id.75" xmi:type="code:TemplateUnit" name="Collection<T>">
<codeElement xmi:id="id.76" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="id.77" xmi:type="code:ClassUnit" name="Collection"/>
</codeElement>
<codeElement xmi:id="id.78" xmi:type="code:TemplateUnit" name="Iterator<T>">
<codeElement xmi:id="id.79" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1d.80" xmi:type="code:ClassUnit" name="Iterator"s>
<codeElement xmi:id="id.81" xmi:type="code:MethodUnit"
name="iterator" kind="constructor"/>
<codeElement xmi:id="1id.82" xmi:type="code:MethodUnit" name="next"/>
<codeElement xmi:id="id.83" xmi:type="code:MethodUnit" name="hasNext"/>
<codeElement xmi:id="id.84" xmi:type="code:MethodUnit" name="add"/>
</codeElement>

</codeElement>

<codeElement xmi:id="id.85" xmi:type="code:TemplateUnit" name="ArrayList<T>">
<codeElement xmi:id="1id.86" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="id.87" xmi:type="code:ClassUnit" name="ArrayList"/>

</codeElement>

<codeElement xmi:id="1id.88" xmi:type="code:BooleanType" name="Boolean"/>

<codeElement xmi:id="1id.89" xmi:type="code:StringType" name="String"/>

<codeElement xmi:id="id.90" xmi:type="code:IntegerType" name="Integer"/>
</codeElement>

</model>
</kdm: Segment >

12.18 InterfaceRelations Class Diagram
The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations’ by the

corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in
Figure 12.16.

100 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractCodeRelationship

0..*
Implements 0.*
ImplementationOf
0“*
+rom +rom
+to {redefines from} 1 1 {redefines fom} +t0
1 1 {redefines to}

Codeltem

{redefines to}

Figure 12.16 - InterfaceRelations Class Diagram

12.18.1 Implements Class

The Implements is a meta-model element that represents “implementation” association between a Codeltem (for example,
a ClassUnit) and an InterfaceUnit. “Implements” relationship is similar to “Extends.” For example, Java “implements’
construct can be represented by KDM “Implements” relationship.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] The Codeltem that implements a certain I nterfaceUnit.

to:Codeltem[1] The InterfaceUnit that is being implemented by Codeltem.

Constraints

1. The from- and to- endpoints should be different.

Semantics

See next section

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 101

12.18.2 ImplementationOf Class

The ImplementationOf is a meta-model element that represents “implementation” association between a Codeltem; for
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit.
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object,
common to various programming languages. While the “Implements” relationship is between entire containers (the target
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

e Particular MethodUnit of a ClassUnit that “Implements’ an InterfaceUnit, is an “ImplementationOf” a particular
MethodUnit, owned by that InterfaceUnit.

« A CadlableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration
(the prototype) of that CallableUnit.

e A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] Codeltem that implements a certain “ declaration.”

to:Codeltem[1] “declaration” that is being implemented by the Codeltem.

Constraints

1. It is obligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target is a
ControlElement or the origin is a DataElement and the target is a DataElement.

2. The kind attribute of the Codeltem at the origin of the ImplementationOf relationship should not be equal to
“external.”

3. The kind attribute of the Codeltem at the target of the ImplementationOf relationship should be equal to “external”
or “abstract.”

4. The from- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a Computational Object (Control Element or DataElement) with kind
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a Control Element,
Signature represents the procedure type, but not the declaration entity itself.

If both the definition and the declaration of some computational object “foo” are available:
« Thedefinition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

« For acertain action element that uses “foo,” the target of the KDM callable or data relations will be the definition of
“ fOO.H

« Theaction element that uses “foo” may be the origin of a“CompliesTo” action relationship (defined at the
InterfaceRel ations class diagram of the Action package) to the declaration of “foo.”

102 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about
the existing software system:

« For acertain action element that uses “bar,” the target of the KDM callable or data relations will be the declaration of
“bar.”

« The action element that uses “bar” may be the origin of a“CompliesTo” action relationship (defined at the
InterfaceRel ations class diagram of the Action package) to the declaration of “bar.”

Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation units in
complex ways, the existing software system may have multiple declarations for the same computational object, or even
different computational objects with the same name but different properties that are used in different contexts. In this
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if
different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):

package flip;
public interface iFlip
} public int flip(int 1i);

package flip;

public class foo implements iFlip {
public foo()
public flip(int 1) {
} return 1 * -1;

}

package flip;
public class FlipClient
public static void main(String[] args) {
foo f= new foo() ;
iFlip g=(iFlip) £;
£.£1ip(100) ;

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="Interface Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1l" xmi:type="code:Package" name="flip">
<codeElement xmi:id="1d.2" xmi:type="code:ClassUnit" name="foo">
<codeRelation xmi:id="1d.3" xmi:type="code:Implements" to="id.21" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="code:MethodUnit" name="flip" type="id.23">
<codeRelation xmi:id="id.5" xmi:type="code:ImplementationOf"
to="1d.22" from="1d.4"/>
<entryFlow xmi:id="id.6" to="id.10" from="id.4"/>
<codeElement xmi:id="id.7" xmi:type="code:Signature" name="flip">
<parameterUnit xmi:id="id.8" name="i" type="id.53"/>
<parameterUnit xmi:id="id.9" type="id.53" kind="return"/>
</codeElement>
<codeElement xmi:id="1d.10" xmi:type="action:ActionElement"
name="dl" kind="Multiply">
<codeElement xmi:id="id.11" xmi:type="code:Value" name="-1" type="id.53"/>
<codeElement xmi:id="id.12" xmi:type="code:StorableUnit"
name="t5" type="1id.53" kind="register"/>
<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.8" from="id.10"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 103

<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.11" from="id.10"/>
<actionRelation xmi:id="id.15" xmi:type="action:Writes" to="id.12" from="id.10"/>
<actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.17" from="id.10"/>
</codeElement>
<codeElement xmi:id="id.17" xmi:type="action:ActionElement" name="d2" kind="Return"s>
<actionRelation xmi:id="1id.18" xmi:type="action:Reads" to="id.12" from="id.17"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.19" xmi:type="code:MethodUnit"
name="foo" type="id.20" kind="constructor"s
<codeElement xmi:id="id.20" xmi:type="code:Signature" name="foo"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.21" xmi:type="code:InterfaceUnit" name="IFlip">
<codeElement xmi:id="id.22" xmi:type="code:MethodUnit"
name="flip" type="1id.23" kind="abstract"/>
<codeElement xmi:id="id.23" xmi:type="code:Signature" name="flip">
<parameterUnit xmi:id="id.24" name="i" type="id.53" pos="1"/>
<parameterUnit xmi:id="id.25" type="1id.53" kind="return" pos="0"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.26" xmi:type="code:ClassUnit" name="Flipclient">
<codeElement xmi:id="id.27" xmi:type="code:MethodUnit" name="main" type="id.29">
<entryFlow xmi:id="1id.28" to="id.35" from="id.27"/>
<codeElement xmi:id="1d.29" xmi:type="code:Signature" name="main">
<parameterUnit xmi:id="1id.30" name="args" type="id.31" pos="1">
<codeElement xmi:id="id.31" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.32" name="args[]" type="1id.54"/>
</codeElement >
</parameterUnit>
</codeElement>
<codeElement xmi:id="id.33" xmi:type="code:StorableUnit"
name="f" type="id.2" kind="local"/>
<codeElement xmi:id="1d.34" xmi:type="code:StorableUnit"
name="g" type="id.21" kind="local"/>
<codeElement xmi:id="id.35" xmi:type="action:ActionElement" name="al" kind="New">
<actionRelation xmi:id="1id.36" xmi:type="action:Creates" to="id.2" from="id.35"/>
<actionRelation xmi:id="1id.37" xmi:type="action:Writes" to="id.33" from="id.35"/>
<actionRelation xmi:id="1id.38" xmi:type="action:Flow" to="id.39" from="id.35"/>
</codeElement>
<codeElement xmi:id="id.39" xmi:type="action:ActionElement"
name="a2" kind="MethodCall">
<actionRelation xmi:id="id.40" xmi:type="action:CompliesTo"
to="1id.20" from="1d.39"/>
<actionRelation xmi:id="id.41" xmi:type="action:Addresses"
to="id.33" from="1id.39"/>
<actionRelation xmi:id="1id.42" xmi:type="action:Calls" to="id.19" from="1id.39"/>
<actionRelation xmi:id="1d.43" xmi:type="action:Flow" to="id.44" from="id.39"/>
</codeElement>
<codeElement xmi:id="id.44" xmi:type="action:ActionElement"
name="a3" kind="DynCast">
<actionRelation xmi:id="1id.45" xmi:type="action:Reads" to="id.33" from="id.44"/>
<actionRelation xmi:id="1d.46" xmi:type="action:UsesType" to="id.21" from="1id.44"/>
<actionRelation xmi:id="1d.47" xmi:type="action:Writes" to="1id.34" from="id.44"/>
<actionRelation xmi:id="1id.48" xmi:type="action:Flow" to="1d.49" from="id.44"/>
</codeElement >
<codeElement xmi:id="id.49" xmi:type="action:ActionElement"
name="a4" kind="InterfaceCall">
<actionRelation xmi:id="id.50" xmi:type="action:CompliesTo"
to="1id.23" from="1d.49"/>
<actionRelation xmi:id="id.51" xmi:type="action:Addresses"
to="1d.34" from="1d.49"/>
<actionRelation xmi:id="1id.52" xmi:type="action:Calls" to="id.22" from="1d.49"/>
</codeElement>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.53" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.54" xmi:type="code:StringType" name="String"/>
</model>
</kdm: Segment >

104 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12.19 TypeRelations Class Diagram

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.17.

AbstractCodeRelationship

HasValue HasType
0.7 0..*
0.% >
+from
+to i
dei . redefines from} +from 1
{redefines to} {redefines from}
+to
1 {redefines to} Datatype

1

AbstractCodeE*Iement

T
Codeltem

Figure 12.17 - TypeRelations Class Diagram

12.19.1 HasType Class

The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] the source data el ement

to:Datatype[1] the target datatype element

Constraints

1. The from- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates this information if the
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in
AggregatedRel ationships.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 105

12.19.2 HasValue Class

The HasValue is a specific meta-model element that represents semantic relation between a data element and its
initialization element, which can be a data element or an action element for complex initializations that involve
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action
elements in the initialization code.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] the source data element

to:AbstractCodeElement[1] the target AbstractCodeElement (datatype or action element)

Constraints

1. If the target of the HasValue is an ActionElement, then this ActionElement should have an outgoing Writes or
Addresses relationship to the Codeltem that is the source of the HasValue relationship.

Semantics

HasValue relationship as an optional way to represent initialization. Thetarget of the HasVa ue relationship can be aValuefor
simpleinitializations that involve constants, or Data Element for simpleinitializations that involve another data element, or an
ActionElement that writes to the source el ement for complex initializations involving expressions.

Inmicro KDM initialization is represented by explicit initialization actions with appropriate control flow. Initialization actions
should be owned by special initialization block units. Control flow semantics of initializations (especially for initializations of
global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represente
control flow. It provides a convenient way to associate a data element with its value.

Example (C++)

[*----d.h---%/
class D {
private: int num;
public:

D(int x) { this->num=x; printf (“Hello, this is %d\n”, x); }
work () { printf (“This is %d working\n”, this->num);

/*---a.cpp---*/
#include "d.h"
int gl=0;

D di(1);

/*---b.cpp--*/
#include "d.h"
extern D di;

D d2(2);

main()
int 12=0;
D * d3=new D(3);
dl.work () ;
d2.work () ;
d3->work () ;

106 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="ClassD Example">
<model xmi:id="1id.0" xmi:type="code:CodeModel" >
<codeElement xmi:id="id.1l" xmi:type="code:CodeAssembly">
<entryFlow xmi:id="1d.120" to="1d.94" from="id.1"/>
<codeElement xmi:id="id.2" xmi:type="code:CompilationUnit" name="a.cpp">
<entryFlow xmi:id="id.121" to="1d.10" from="id.2"/>
<codeElement xmi:id="1id.3" xmi:type="code:IncludeDirective" name="impl">
<codeRelation xmi:id="1id.4" xmi:type="code:Includes" to="id.22" from="id.3"/>
</codeElement >
<codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="gl" type="id.105">
<codeRelation xmi:id="id.6" xmi:type="code:HasValue" to="1id.20" from="id.5"/>
</codeElement>
<codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="dl" type="id.23">
<codeRelation xmi:id="1d.8" xmi:type="code:HasType" to="id.23" from="id.7"/>
<codeRelation xmi:id="1id.9" xmi:type="code:ImplementationOf"
to="1d.47" from="id.7"/>
<codeRelation xmi:id="1d.124" xmi:type="code:HasValue" to="id.l16" from="id.7"/>

</codeElement>
<codeElement xmi:id="id.10" xmi:type="action:BlockUnit" name="bil" kind="Init”>
<entryFlow xmi:id="id.11" to="id.12" from="id.10"/>
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="il" kind="Assign">
<actionRelation xmi:id="1id.13" xmi:type="action:Reads" to="id.20" from="id.12"/>
<actionRelation xmi:id="1id.14" xmi:type="action:Writes" to="id.5" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Flow" to="id.16" from="id.12"/>
</codeElement>
<codeElement xmi:id="id.16" xmi:type="action:ActionElement" name="i2" kind="Calls">
<actionRelation xmi:id="1id.17" xmi:type="action:Reads" to="id.21" from="id.16"/>
<actionRelation xmi:id="1d.18" xmi:type="action:Calls" to="id.25" from="id.1l6"/>
<actionRelation xmi:id="1d.19" xmi:type="action:Writes" to="id.7" from="id.1l6"/>
</codeElement>
<codeElement xmi:id="id.20" xmi:type="code:Value" name="0"/>
<codeElement xmi:id="id.21" xmi:type="code:Value" name="1"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.22" xmi:type="code:SharedUnit" name="d.h">
<codeElement xmi:id="1d.23" xmi:type="code:ClassUnit" name="D">
<codeElement xmi:id="id.24" xmi:type="code:MemberUnit"
name="num" type="id.l105" export="private"/>
<codeElement xmi:id="id.25" xmi:type="code:MethodUnit" name="D">
<entryFlow xmi:id="id.26" to="id.28" from="id.25"/>
<codeElement xmi:id="id.27" xmi:type="code:Value"
name="" ;Hello, this is %d\n"" type="id.111"/>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement"
name="a4" kind="Assign">
<actionRelation xmi:id="1id.29" xmi:type="action:Reads" to="1id.37" from="1d.28"/>
<actionRelation xmi:id="id.30" xmi:type="action:Writes" to="id.24" from="id.28"/>
<actionRelation xmi:id="1id.31" xmi:type="action:Flow" to="id.32" from="id.28"/>
</codeElement>
<codeElement xmi:id="id.32" xmi:type="action:ActionElement" name="a5" kind="Call">
<actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.27" from="1id.32"/>
<actionRelation xmi:id="id.34" xmi:type="action:Reads" to="1id.37" from="id.32"/>
<actionRelation xmi:id="id.35" xmi:type="action:Calls" to="id.106" from="id.32"/>
</codeElement>
<codeElement xmi:id="id.36" xmi:type="code:Signature" name="D">
<parameterUnit xmi:id="id.37" name="x" pos="1"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.38" xmi:type="code:MethodUnit" name="work"s>
<codeElement xmi:id="id.39" xmi:type="code:Value"
name="" ;This is %d working\n""/>
<codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="a6" kind="Call">
<actionRelation xmi:id="id.41" xmi:type="action:Reads" to="1id.39" from="1d.40"/>
<actionRelation xmi:id="id.42" xmi:type="action:Reads" to="id.24" from="id.40"/>
<actionRelation xmi:id="id.43" xmi:type="action:Calls" to="1id.106" from="id.40"/>
</codeElement>
</codeElement>
</codeElement >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 107

</codeElement>
<codeElement xmi:id="id.44" xmi:type="code:CompilationUnit" name="b.cpp">
<entryFlow xmi:id="1id.122" to="1d.87" from="id.44"/>
<codeElement xmi:id="1d.45" xmi:type="code:IncludeDirective" name="imp2">
/<codeRe1ation xmi:id="1d.46" xmi:type="code:Includes" to="id.22" from="id.45"/>
</codeElement>
<codeElement xmi:id="1d.47" xmi:type="code:StorableUnit"
name="extern dl1" kind="external"/>
<codeElement xmi:id="id.48" xmi:type="code:CallableUnit" name="main">
<entryFlow xmi:id="1id.49" to="id.70" from="id.48"/>
<codeElement xmi:id="id.50" xmi:type="code:StorableUnit" name="12" type="1id.105">
/<codeRe1ation xmi:id="1d.51" xmi:type="code:HasValue" to="id.20" from="id.50"/>
</codeElement >
<codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="d2">
<codeRelation xmi:id="1d.53" xmi:type="code:HasType" to="id.23" from="id.52"/>
/<codeRe1atlon xmi:id="1d.125" xmi:type="code:HasValue" to="id.89" from="id.52"/>
</codeElement>
<codeElement xmi:id="id.54" xmi:type="code:StorableUnit" name="d3" type="id.55">
<codeRelation xmi:id="id.126" xmi:type="code:HasValue" to="id.79" from="id.54"/>
<codeElement xmi:id="id.55" xmi:type="code:PointerType">
<itemUnit xmi:id="id.56" type="1id.23">
;codeRelation xmi:id="1d.57" xmi:type="code:HasType" to="id.23" from="id.56"/>
</itemUnit>
</codeElement>
</codeElement>
<codeElement xmi:id="id.58" xmi:type="action:ActionElement" name="al" kind="Call">
<actionRelation xmi:id="1d.59" xmi:type="action:Calls" to="id.38" from="id.58"/>
<actionRelation xmi:id="1id.60" xmi:type="action:Addresses" to="id.7" from="id.58"/>
actionRelation xmi:id="id.61" xmi:type="action:CompliesTo"
) to="id.47" from="id.5§%>> P
/<actionRe1ation xmi:id="1d.62" xmi:type="action:Flow" to="id.63" from="id.58"/>
</codeElement>
<codeElement xmi:id="id.63" xmi:type="action:ActionElement" name="a2" kind="Call">
<actionRelation xmi:id="1id.64" xmi:type="action:Calls" to="id.38" from="1id.63"/>
actionRelation xmi:id="id.65" xmi:type="action:Addresses"
) to="id.52" from="id.6§%>>
/<actionRe1ation xmi:id="1d.66" xmi:type="action:Flow" to="id.67" from="id.63"/>
</codeElement>
<codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="a3" kind="Call">
<actionRelation xmi:id="1id.68" xmi:type="action:Calls" to="id.38" from="1id.67"/>
actionRelation xmi:id="id.69" xmi:type="action:Addresses"
) to="id.56" from="id.6%%>>
</codeElement>
<codeElement xmi:id="id.70" xmi:type="action:BlockUnit" name="bi2" kind="Init”>
codeElement xmi:id="id.71" xmi:type="action:ActionElement"
) name="1i3" kind:”Asg}%n”>
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.20" from="id.71"/>
<actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.50" from="id.71"/>
/<actionRe1ation xmi:id="1d.74" xmi:type="action:Flow" to="id.79" from="id.71"/>
</codeElement>
<codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="i4" kind="New">
actionRelation xmi:id="id.76" xmi:type="action:Creates"
) to="id.23" from="id.75"7§
<actionRelation xmi:id="id.77" xmi:type="action:Writes" to="id.54" from="id.75"/>
/<actionRe1ation xmi:id="1d.78" xmi:type="action:Flow" to="id.79" from="id.75"/>
</codeElement>
<codeElement xmi:id="id.79" xmi:type="action:ActionElement"
name="1i5" kind="MethodCall">
<actionRelation xmi:id="id. xmi:type="action:Reads o="1id. rom="1id. >
ti Relati i:id="id.80" i:t "acti Reads" to="id.85" £ "id.79"/
actionRelation xmi:id="id.81" xmi:type="action:Addresses"
) to="id.54" from="id.79" E
<actionRelation xmi:id="1id.82" xmi:type="action:Calls" to="id.25" from="id.79"/>
<actionRelation xmi:id="id.83" xmi:type="action:Writes" to="id.56" from="1id.79"/>
/<actionRe1ation xmi:1d="1id.84" xmi:type="action:Flow" to="id.58" from="id.79"/>
</codeElement>
<codeElement xmi:id="id.85" xmi:type="code:Value" name="3"/>
y ifﬁ;fyFlﬂf xmi:id="id.86" to="id.71" from="id.70"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.87" xmi:type="action:BlockUnit" name="bi3" kind="Init”>
<entryFlow xmi:id="1id.88" to="id.89" from="id.87"/>
<codeElement xmi:id="id.89" xmi:type="action:ActionElement" name="i6" kind="Call">
<actionRelation xmi:id="id.90" xmi:type="action:Reads" to="1id.93" from="id.89"/>
<actionRelation xmi:id="1id.91" xmi:type="action:Calls" to="id.25" from="1d.89"/>
/<actionRelation xmi:id="1d.92" xmi:type="action:Writes" to="id.52" from="id.89"/>
</codeElement >

108 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<codeElement xmi:id="1id.93" xmi:type="code:Value" name="2" type="id.105"/>

</codeElement>
</codeElement>
<codeElement xmi:id="1d.94" xmi:type="action:BlockUnit" name="bi4" kind="Init">
<entryFlow xmi:id="1d.95" to="id.96" from="1id.94"/>
<codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="1i7" kind="Init">
<entryFlow xmi:id="1id.97" to="1d.10" from="id.96"/>
<actionRelation xmi:id="1d.98" xmi:type="action:Flow" to="1d.99" from="id.96"/>
</codeElement >
<codeElement xmi:id="1d.99" xmi:type="action:ActionElement" name="1i8" kind="Init">
<entryFlow xmi:id="1d.100" to="1d.87" from="id.99"/>
<actionRelation xmi:id="1d.101" xmi:type="action:Flow" to="id.102" from="id.99"/>
</codeElement>
<codeElement xmi:id="id.102" xmi:type="action:ActionElement" name="i9" kind="Call">
<actionRelation xmi:id="1d.103" xmi:type="action:Calls" to="1d.48" from="id.102"/>
</codeElement>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.104" xmi:type="code:LanguageUnit">
<codeElement xmi:id="id.105" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.106" xmi:type="code:CallableUnit" name="printf" type="id.107">
<codeElement xmi:id="1d.107" xmi:type="code:Signature" name="printf">
<parameterUnit xmi:id="1id.108" type="id.105" kind="return" pos="0"/>
<parameterUnit xmi:id="1id.109" name="format" type="id.1l1l1l" pos="1"/>
<parameterUnit xmi:id="1d.110" name="arguments" type="id.112"
kind="variadic" pos="2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.111" xmi:type="code:StringType" name="char *"/>
<codeElement xmi:id="id.112" xmi:type="code:VoidType"/>
</codeElement>
</model >
</kdm: Segment >

12.20 ClassRelations Class Diagram

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes.
The classes and associations of the ClassRelations diagram are shown in Figure 12.18.

AbstractCodeRelationship

0.*

Extends

+rom +o
{redefines from} {redefines to}
1
Datatype -

Figure 12.18 - ClassRelations Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 109

12.20.1 Extends Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented
languages.

Superclass

AbstractCodeRelationship

Associations

from:Datatype[1] the child Class

to:Datatype[1] the parent Class

Constraints

1. The from- and to- endpoints should be different.

Semantics

Extends relationship represents the associations between two datatypesin which the first datatype (called the “ child” class)
“subclasses’ the second datatype (called the “ parent” class) by inheriting the semantics and owned el ements of the parent
class.

Section IV - Code Elements representing Preprocessor Directives

A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It
is different than let’s say an HTML/Javascript program or programs with embedded assembler routines where there is
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing,
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex).

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation
perspective the SQL statement itself is very much what we want to capture along with the various data elements and
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that
generates some low-level code that will translate into a call to some library. By capturing this as generated code and
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its
execution realm. And our relationship between the “SQL language” elements to the “native’ code elements that are
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a
couple of SourceRef would be very limiting indeed.

Preprocessor directive is a language/dialect on its own and it should be handled and treated as a first class citizen in
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabl ed
LO KDM tool can seamlessly ignore the embedded language and work only with the primary language. The implementer
will have the choice to either:

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.

110 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

3. Represent both the embedded and the generated primary code and relations between the two.

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:
e originaly coded in the primary language
 included from another file by a preprocessor
« generated by a preprocessor as an expansion of an embedded language directive
« selected by satisfying appropriate conditions by the preprocessor
KDM provides the following modeling elements for representing preprocessor directives:

* PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete
preprocessor directives.

« MacroUnit -representation of macro definitions.

e MacroDirective - representation of an embedded |anguage construct as distinguishable from the primary language
construct. Thisis also known asaMacro Call.

« IncludeDirective - representation of an include directive of a preprocessor.

« Conditional Directive - representation of a pre-processor conditional branch.

12.21 Preprocessor Class Diagram

The Preprocessor class diagram defines the meta-model elements to represent embedded language constructs and to
support common modeling situations resulting from the use of a language preprocessor (for example, preprocessor
defined as part of the C language, or the preprocessing capabilities of Coboal).

The class diagram in Figure 12.19 shows these classes and their associations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 111

AbstractCodeElement +codeElement
0..* {slibsets ownedElement}

PreprocessorD irective

+owner
0..1
{subs ets owner}

ConditionalDirective

MacroUnit
<kind : MacroKind

IncludeDirective

<<enumeration>>
MacroKind
MacroDirective <regular
<option
<«undefined
e xternal
<unknown

Figure 12.19 - Preprocessor Class Diagram

12.21.1 PreprocessorDirective Class (generic)

PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some
programming languages (for example, the C language preprocessor capabilities). This class is extended by several
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor
directives in KDM is described later in this section.

Superclass

AbstractCodeElement

Associations

codeElement:AbstractCodeElement[0..*] This optional code element represents the content of the preprocessor
directive.
Constraints

1. PreprocessorDirective should have a stereotype.

Semantics

From the KDM perspective, each preprocessor directive (an embedded |anguage statement) is a container for code

elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich
representation of the embedded |anguage directives. This is up to the implementer. The macro declaration is just code
written for example in the “Cpreprocessor” language and can be represented using standard KDM constructs, such as

112 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

CodeElements, Action, Flow etc., if needed or light-weight extension elements, like Stereotypes and ExtendedValues. In
many situations, the right implementation choice is to leave the directive as an empty container with a name, and likely,
a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this
section only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. KDM does not
restrict implementers whether to clone the included code elements or to reuse them and keep a single copy in the
SharedUnit. However, many KDM implementations will usually clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

« Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not
contain any pre-processor directives, and relationships expand and alternative; information about the embedded
language cannot be recovered from the KDM representation.

« Ignorethe generated primary code, provide a high-fidelity representation to the embedded construct; the embedded
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded
into the primary code may not be recovered from the KDM representation (but in general, the embedded construct
provides a better representation, sinceit is the view that devel opers have).

* Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of
KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and
Alternative); thereis a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

* Represent both the embedded constructs and the primary code, provide the high fidelity representation to the
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated
code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the
entire BlockUnit to the corresponding embedded construct.

12.21.2 MacroUnit Class

MacroUnit class represents macro definitions common to several programming languages. Although KDM allows
semantic-rich contents of MacroUnit (as it is a subclass of a ControlElement), usually it is sufficient to represent a macro
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic
information about the macro definition.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 113

Superclass

PreprocessorDirective

Attributes

kind:MacroKind additiona semantic properties of the macro definition

Constraints

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usualy in the form of a
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string
manipulation. However, the optional owned code element may be used to represent these.

It is the implementer’s responsibility to select a particular strategy to represent macro units.

12.21.3 MacroKind data type (enumeration)

MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

regular Macro definition has a body and may have parameters.

option Macro definition without a body and parameters, only a name.

undefined This value represents an undefined macro as the target for some relations in the
representation of default branches of conditional compilation and variants.

external external compilation option

unknown unknown class of a macro definition

12.21.4 MacroDirective Class

MacroDirective class represents the so-called “macro call,” the occurrence of a macro name (possible with parameters) in
the primary code, such that the preprocessor recognizes it and “expands’ by substituting the macro directive construct
with its “definition.” A block of “generated” code elements that represent the primary code resulting from macro
expansion may be associated with the MacroDirective.

Superclass

PreprocessorDirective

114 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

MacroDirective represents the so-called “macrocall,” or an occurrence of a macro name (possibly with the actual
parameters) which is substituted by the body of the macro definition in which the occurrences of the formal parameters
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the
origin of the action relationships to the actual parameters to the MacroDirective.

12.21.5 IncludeDirective Class

IncludeDirective class represents the so-called include directive, common to several programming languages and their
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include
directive is usually related to a SharedUnit (for example, a copybook in Cabol, or a header file in C). A block of
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the
include directive. Semantics of the IncludeDirective class is described later in this section in more detail.

Superclass

PreprocessorDirective

Semantics

IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a
stand-alone CompilationUnit.

12.21.6 Conditional Directive Class

Conditional Directive class represents the so-called “variant” of a software system, resulting from the use of conditional
compilation capabilities, common to several programming languages and their preprocessors (for example the #if ...
#endif and #ifdef ... #endif directives of the preprocessor of the C language). Conditional Directive represents a single
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of
the Conditional Directive class is described later in this section in more detail.

Superclass
PreprocessorDirective
Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the
selected variant. The block of “generated” code identifies the corresponding conditional directive.

12.22 PreprocessorRelations Class Diagram

The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language
constructs and pre-processor directives, common to several programming languages.

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.20.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 115

AbstractCodeRelationship

VariantTo /7

Expands

+to

O“*
{redefines to} Redefines
rom K
{redefines from} .
+from
Includes 0..* {redefin m} 4 1
\ PreprocessorDirective
0..* +from 1 {redefines fram}

h {redefines from} 1
+to

{redefines to}

+to 1
{redefines to} 0. | GeneratedFrom

AbstractCodeElement

1
+from
{redefines from}

Figure 12.20 - PreprocessorRelations Class Diagram

12.22.1 Expands Class

Expands class represents the rel ationship between a MacroUnit to another MacroUnit or from a MacroDirective to a
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit
or MacroDirective.

Superclass

AbstractCodeRelationship

Associations

to:MacroUnit[1] the target MacroUnit
from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.
Semantics

It isthe implementer’ s responsibility to identify and represent associations between MacroUnits, as well as a MacroDirective
and the corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor
support for the implementer guidelines.

116 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

12.22.2 GeneratedFrom Class

GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular,
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class,

the resulting code may represent one of the following:
e “generated” code that correspondsto a certain MacroDirective.

e “included” code that corresponds to a certain IncludeDirective.

« “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “generated” code and target the corresponding

PreprocessorDirective.

Superclass

AbstractCodeRelationship

Associations

to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor

directive that was involved in producing the code.

from:AbstractCodeElement[1] The BlockUnit that owns the “generated” code.

Constraints

1. The origin of the GeneratedFrom relationship should be a BlockUnit.

Semantics

See the general description of the preprocessor directives for the implementer’ s guidelines.

Example (C preprocessor)

#define GT(A,B) ((A) > (B))
#define GMAX(A,B) g=(GT(A,B) ? (A) : (B))
GMAX (p+q, r+s);

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="Macro Directive Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1l" xmi:type="code:CompilationUnit">
<codeElement xmi:id="1d.2" xmi:type="code:MacroUnit" name="GMAX">
<source language="Cpreprocessor"
snippet="#define GMAX(A,B) g=(GT(A,B) ? (&) : (B))"/>
<codeRelation xmi:id="1d.3" xmi:type="code:Expands" to="id.4" from="id.2"/>
</codeElement>
<codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="GT">
<source language="Cpreprocessor" snippet="#define GT(A,B) ((A) > (B))"/>
</codeElement >
<codeElement xmi:id="id.5" xmi:type="action:BlockUnit">
<codeElement xmi:id="id.6" xmi:type="code:StorableUnit" name="p" type="id.49"/>
<codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="qg" type="id.49"/>
<codeElement xmi:id="id.8" xmi:type="code:StorableUnit" name="r" type="id.49"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

117

<codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="s" type="id.49"/>
<codeElement xmi:id="id.10" xmi:type="code:StorableUnit" name="g" type="1d.49"/>
<codeElement xmi:id="id.11" xmi:type="code:MacroDirective" name="ml">
<source xmi:id="id.12" language="Cpreprocessor" snippet="GMAX (p+q,r+s);"/>
<codeRelation xmi:id="1d.13" xmi:type="code:Expands" to="id.2" from="id.11"/>
</codeElement>
<codeElement xmi:id="id.14" xmi:type="action:BlockUnit" name="bml">
<codeRelation xmi:id="1d.15" xmi:type="code:GeneratedFrom" to="id.11" from="id.14"/>
<codeElement xmi:id="id.16" xmi:type="action:ActionElement">
<source xmi:id="1d.17" language="C"
snippet="g=(((p+q) > (r+s)) ? (p+q) : (r+s));"/>
<codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="al" kind="Add">
<actionRelation xmi:id="1id.19" xmi:type="action:Reads" to="id.6" from="id.18"/>
<actionRelation xmi:id="1id.20" xmi:type="action:Reads" to="1d.10" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.47" from="id.18"/>
<actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.23" from="id.18"/>
</codeElement >
<codeElement xmi:id="id.23" xmi:type="action:ActionElement" name="a2" kind="Add">
<actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.8" from="id.23"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.9" from="id.23"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.48" from="id.23"/>
<actionRelation xmi:id="1id.27" xmi:type="action:Flow" from="id.23"/>
</codeElement>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement"
name="a3" kind="GreaterThan">
<codeElement xmi:id="id.29" xmi:type="code:StorableUnit"
name="c" type="id.50" kind="register"/>
<actionRelation xmi:id="1id.30" xmi:type="action:Reads" to="1d.47" from="id.28"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="1id.48" from="id.28"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.29" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
</codeElement>
<codeElement xmi:id="id.34" xmi:type="action:ActionElement"
name="a3.1" kind="Condition">
<actionRelation xmi:id="id.35" xmi:type="action:Reads"
to="id.29" from="id.34"/>
<actionRelation xmi:id="id.36" xmi:type="action:TrueFlow"
to="id.38" from="id.28"/>
<actionRelation xmi:id="id.37" xmi:type="action:FalseFlow"
to="id.42" from="id.34"/>
</codeElement>
<codeElement xmi:id="id.38" xmi:type="action:ActionElement"
name="a4" kind="Assign">
<actionRelation xmi:id="1id.39" xmi:type="action:Reads" to="1id.47" from="id.38"/>
<actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.10" from="id.38"/>
<actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.46" from="id.38"/>
</codeElement>
<codeElement xmi:id="id.42" xmi:type="action:ActionElement"
name="a5" kind="Assign">
<actionRelation xmi:id="1id.43" xmi:type="action:Reads" to="1d.48" from="id.42"/>
<actionRelation xmi:id="1id.44" xmi:type="action:Writes" to="id.7" from="id.42"/>
<actionRelation xmi:id="1id.45" xmi:type="action:Flow" to="id.46" from="id.42"/>
</codeElement>
<codeElement xmi:id="id.46" xmi:type="action:ActionElement" name="a6" kind="Nop"/>
<codeElement xmi:id="1d.47" xmi:type="code:StorableUnit"
name="tl" type="1d.49" kind="register"/>
<codeElement xmi:id="id.48" xmi:type="code:StorableUnit"
name="t2" type="1d.49" kind="register"/>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.49" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.50" xmi:type="code:BooleanType" name="boolean"/>
</codeElement >
</codeElement>
</models>
</kdm: Segment >

12.22.3 Includes Class

Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being
included.

118 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Superclass

AbstractCodeRelationship

Associations

from:AbstractCodeElement[1] the code elements being included (usually a SharedUnit)

from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.

Constraints
1. The origin of the Includes relationship should be an IncludeDirective.
Semantics

It is the implementer’s responsibility to identify and represent include relationships according to the semantics of the
particular preprocessor.

Example (C preprocessor)

[*---a.h---%/

cl
L..C2. ..
/*---a.c---%*/
#include “a.h”
...cl. ..

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="Include Directive Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<extensionFamily xmi:id="id.1" >
<stereotype xmi:id="id.2" name="sample"/>
</extensionFamily>
<codeElement xmi:id="1id.3" xmi:type="code:SharedUnit" name="a.h">
<codeElement xmi:id="1id.4" xmi:type="code:CodeElement" stereotype="id.2" name="cl">
<source xmi:id="id.5" language="C"/>
</codeElement>
<codeElement xmi:id="1id.6" xmi:type="code:CodeElement" stereotype="id.2" name="c2">
<source xmi:id="id.7" language="C"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="code:CompilationUnit" name="a.c">
<codeElement xmi:id="1d.9" xmi:type="code:IncludeDirective">
<source language="Cpreprocessor" snippet="#include "a.h""/>
<codeRelation xmi:id="1d.10" xmi:type="code:Includes" to="id.3" from="id.9"/>
</codeElement>
<codeElement xmi:id="1d.11" xmi:type="action:BlockUnit" name="bl">
<codeRelation xmi:id="1d.12" xmi:type="code:GeneratedFrom" to="id.9" from="id.11"/>
<codeElement xmi:id="1d.13" xmi:type="code:CodeElement"
stereotype="1id.2" name="cl clone">
<source xmi:id="id.14" language="C"/>
</codeElement>
<codeElement xmi:id="1d.15" xmi:type="code:CodeElement"
stereotype="id.2" name="c2 clone">
<source xmi:id="id.1l6é" language="C"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.17" xmi:type="action:BlockUnit" name="b2">
<codeElement xmi:id="1d.18" xmi:type="action:ActionElement" name="al">
<actionRelation xmi:id="id.19" xmi:type="action:ActionRelationship"
to="id.13" from="id.18"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 119

</codeElement>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.22.4 VariantTo Class

VariantTo class represents the relationship between variants of a software product line with conditional compilation. This
relationship connects the Conditional Directive to each alternative branch of the conditional compilation directive. KDM
representation is expected to identify asingle “default” variant, to which additional variants are alternatives. Thereisno
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship
GeneratedFrom connecting it to the corresponding Conditional Directive. The “ default” variant is expected to have a
VariantTo relationship to every alternative branch.

Superclass

AbstractCodeRelationship

Associations

to:PreprocessorDirective[1] Conditional Directive class that represents an aternative variant of the
conditional.

from:PreprocessorDirective[1] A Conditional Directive class that represents the default variant of the
conditional.

Constraints
1. The origin of the VariantTo relationship should be a Conditional Directive.

2. The target of the VariantTo relationship should be a Conditional Directive.

Semantics

It is the implementer’s responsibility to identify and represent the variants and associations between the “ generated” code
and the corresponding conditional directive according to the semantics of the preprocessor. See the general description of
the preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

#define UNIX 1
#if UNIX | DEBUG

g=1;
#endif
Ifdef UNIX
#;lse

g=2

#endif

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"

name="Variants Example">

<model xmi:id="id.0" xmi:type="code:CodeModel">

120 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<codeElement xmi:id="1id.1" xmi:type="code:MacroUnit" name="UNIX">
<source language="Cproprocessor" snippet="#define UNIX 1"/>
</codeElement>
<codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="DEBUG" kind="external"/>
<codeElement xmi:id="id.3" xmi:type="code:StorableUnit" name="g" type="id.4">
<codeElement xmi:id="id.4" xmi:type="code:IntegerType"/>
</codeElement>
<codeElement xmi:id="id.5" xmi:type="code:ConditionalDirective" name="cl">
<source language="Cpreprocessor" snippet="#if UNIX | DEBUG"/>
<codeRelation xmi:id="1d.6" xmi:type="code:Expands" to="id.l1" from="id.5"/>
<codeRelation xmi:id="id.7" xmi:type="code:Expands" to="id.2" from="id.5"/>
</codeElement>
<codeElement xmi:id="1d.8" xmi:type="action:BlockUnit" name="bl">
<codeRelation xmi:id="1d.9" xmi:type="code:GeneratedFrom" to="id.5" from="id.8"/>
<codeElement xmi:id="id.10" xmi:type="action:ActionElement" name="al" kind="Assign"s>
<source xmi:id="id.11" language="C" snippet="g=123"/>
<codeElement xmi:id="id.12" xmi:type="code:Value" name="123" type="id.4"/>
<actionRelation xmi:id="1id.13" xmi:type="action:Reads" to="id.12" from="1d.10"/>
<actionRelation xmi:id="id.14" xmi:type="action:Writes" to="1d.3" from="1id.10"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.15" xmi:type="code:ConditionalDirective" name="c2">
<source language="Cpreprocessor" snippet="#ifdef UNIX"/>
<codeRelation xmi:id="1d.16" xmi:type="code:Expands" to="id.1l" from="id.15"/>
<codeRelation xmi:id="1d.17" xmi:type="code:VariantTo" to="id.25" from="id.15"/>
</codeElement>
<codeElement xmi:id="id.18" xmi:type="action:BlockUnit" name="b2">
<codeRelation xmi:id="1d.19" xmi:type="code:GeneratedFrom" to="id.15" from="id.18"/>
<codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="a2" kind="Assign"s>
<source xmi:id="id.21" language="C" snippet="g=123"/>
<codeElement xmi:id="1id.22" xmi:type="code:Value" name="1" type="id.4"/>
<actionRelation xmi:id="1id.23" xmi:type="action:Reads" to="id.22" from="1d.20"/>
<actionRelation xmi:id="1id.24" xmi:type="action:Writes" to="1id.3" from="id.20"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.25" xmi:type="code:ConditionalDirective" name="c3">
<source language="Cpreprocessor" snippet="#else"/>
<codeRelation xmi:id="1d.26" xmi:type="code:Expands" to="id.1l" from="id.25"/>
</codeElement>
<codeElement xmi:id="1d.27" xmi:type="action:BlockUnit" name="b3">
<codeRelation xmi:id="1d.28" xmi:type="code:GeneratedFrom" to="id.25" from="id.27"/>
<codeElement xmi:id="id.29" xmi:type="action:ActionElement" name="a3" kind="Assign"s>
<source xmi:id="id.30" language="C" snippet="g=123"/>
<codeElement xmi:id="id.31" xmi:type="code:Value" name="2" type="id.4"/>
<actionRelation xmi:id="1id.32" xmi:type="action:Reads" to="id.31" from="1id.29"/>
<actionRelation xmi:id="1id.33" xmi:type="action:Writes" to="1id.3" from="1d.29"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.22.5 Redefines Class

Redefines class represents the rel ationship between a MacroUnit and another MacroUnit (usually with the same name) where

the origin MacroUnit is a redefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the

redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are

expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current”
definition at the given point.

Superclass

AbstractCodeRelationship

Associations

to:MacroUnit[1] the old MacroUnit

from:PreprocessorDirective[1] the new MacroUnit

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

121

Constraints

1. The origin of the Redefines relationship should be a MacroUnit.

Semantics

It isthe implementer’ s responsibility to identify and represent redefinitions of macro units according to the semantics of the
particular preprocessor.

Example (C preprocessor)

#define A 1
#define A 2
#undef A
#pragma once

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org?spec/KDM/l.l/kdm"
name="Preprocessor Directives example">
<model xmi:id="id.0" xmi:type="code:CodeModel" >
<extensionFamily xmi:id="id.1" >
<stereotype xmi:id="id.2" name="directive">
<tag xmi:id="1id.3" tag="directive type" type="String"/>
</stereotype>
</extensionFamily>
<codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="A">
<source language="Cpreprocessor" snippet="#define A 1"/>
</codeElement>
<codeElement xmi:id="id.5" xmi:type="code:MacroUnit" name="DEBUG" kind="option"s>
<source language="Cpreprocessor" snippet="#define DEBUG"/>
</codeElement>
<codeElement xmi:id="id.6" xmi:type="code:MacroUnit" name="A">
<source language="Cpreprocessor" snippet="#define A 2"/>
<codeRelation xmi:id="1d.7" xmi:type="code:Redefines" to="id.4" from="id.6"/>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="code:MacroUnit" name="A" kind="undefined">
<source language="Cpreprocessor" snippet="#undef A"/>
<codeRelation xmi:id="1d.9" xmi:type="code:Redefines" to="id.6" from="id.8"/>
</codeElement>
<codeElement xmi:id="1id.10" =xmi:type="code:PreprocessorDirective" stereotype="id.2"
name="d1l">
<taggedvalue xmi:id="id.11" xmi:type="kdm:TaggedValue" tag="1id.3" value="pragma once"/>
<source language="Cpreprocessor" snippet="#pragma once"/>
</codeElement >
</models>
</kdm: Segment >

Section V - Miscellaneous Code Elements

12.23 Comments Class Diagram

The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the
Comments diagram are shown in Figure 12.21.

122 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractCodeElement ModelElement

(from core)

{subsets owner}
+owner

Comments CommentUnit
wtext : String

+comment 0..*
{subsets ownedElement
ordered}

Figure 12.21 - Comments Class Diagram

12.23.1 CommentUnit Class

The CommentUnit is a meta-model element that represents comments in existing systems (including any special
comments). CommentUnit element can be used to introduce comments during transformation of the existing system
(including special comments).

Superclass

M odel Element

Attributes

text:String the representation of the comment

Constraints

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. It is
the implementer’s responsibility to make an adequate decision on how to associate line comments with the surrounding
elements in the source code.

12.23.2 AbstractCodeElement Class (additional properties)

Associations

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 123

Constraints

Semantics

12.24 Visibility Class Diagram

The Visihility class diagram defines meta-model elements that represent visibility of code elementsin their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.22.

+groupedCode
{subsets groupedElement} Codeltem

0.*

NamespaceUnit

+group
{subsets group}

Figure 12.22 - Visibility Class Diagram

12.24.1 Namespace Class

The Namespace is a specific meta-model element that represents the target of the Visibleln or Imports visibility
relationships.

Superclass

Codeltem

Associations
groupedCode:Codeltem[0..*] A KDM group of code elements that belong to the namespace. The actual

owners of these elements are the corresponding modul es, not the namespace,
since namespaces can, in general cross cut the module boundaries.

Constraints

1. Namespace element should not belong to own group.

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses.
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

124 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

An anonymous hamespace can represent a group of code elements that are the target of an Imports relationship.

12.25 VisibilityRelations Class Diagram

The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their
corresponding containers. The classes and associations of the Visibility diagram are shown in Figure 12.22.

AbstractCodeRelationship

+from +from
{redefines from} {redefiwg\
1
Visibleln 4\ Codeltem o Imports
+to N
1 1 {redefines to} ‘0..*

*
- {redefines to}

Figure 12.23 - VisibilityRelations Class Diagram

12.25.1 Visibleln Class

The Visibleln is a specific meta-model element that represents semantic relation between two code items, where one
provides the restricted visibility context for another code item.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] The Codeltem visibility of which is specified.

to:Codeltem[1] The Codeltem that provides the visibility context.

Constraints

Semantics

Visibleln optional relationship represents an association between a code item and one of the containers that corresponds to the
visibility scope of thefirst item. Thisrelationship is optional, since all other KDM relationships are determined by the
semantics of the target language, including the visibility rules.

Example

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 125

xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
name="Visibility and Comment Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="id.2" xmi:type="code:NamespaceUnit"
name="ab" groupedCode="id.4 id.9 id.13"/>
<codeElement xmi:id="id.3" xmi:type="code:CompilationUnit" name="a">
<codeElement xmi:id="id.4" xmi:type="code:CallableUnit"
name="foo" type="id.8" kind="regular'"s>
<comment text="Comment #1 to foo"/>
<comment text="Comment #2 to foo"/>
<codeRelation xmi:id="1d.5" xmi:type="code:VisibleIn" to="id.2" from="id.4"/>
<codeElement xmi:id="id.6" xmi:type="action:ActionElement" name="al">
<comment xmi:id="id.7" text="Comment to action element al"/>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="code:Signature" name="foo"/>
</codeElement>
<codeElement xmi:id="id.9" xmi:type="code:IntegerType" name="int">
<comment xmi:id="1id.10" text="Comment to integer type"/>
<codeRelation xmi:id="1d.11" xmi:type="code:VisibleIn" to="id.2"/>
</codeElement>
</codeElement >
<codeElement xmi:id="id.12" xmi:type="code:CompilationUnit" name="b">
<codeElement xmi:id="1d.13" xmi:type="code:RecordType" name="bar">
<comment xmi:id="id.14" text="Comment to record type bar"/>
<codeRelation xmi:id="1d.15" xmi:type="code:VisibleIn" to="id.2" from="id.13"/>
<itemUnit xmi:id="id.16" name="foobar" type="id.9">
<comment xmi:id="id.17" text="Comment to item unit foobar"/>
<codeRelation xmi:id="1d.18" xmi:type="code:VisibleIn" to="id.13" from="id.16"/>
</itemUnits>
</codeElement>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.25.2 Imports Class

The Imports meta-model element represents an association between two Codeltems where one Codeltem “imports’
definitions from another. The “import” relationship is common to several programming languages (for example, the
import statement in Java). In this relationship the origin Codeltem (usually, a CompilationUnit or a subclass of Module)
resolves the visibility of certain names that are defined (owned) by the target Codeltem (usually, another CompilationUnit
or some other subclass of Module, but possibly a NamespaceUnit from another Codeltem, or even an individual code
element). The Imports class simply represents the “import” relationships between Codeltem, for example, for tracking
dependencies between packages. KDM representations themselves do not require additional import statements in order to
have relationships between Codeltem, or even between different models.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.

to:Codeltem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.

Constraints

1. The origin of the Imports relationship should be a subclass of Module.

126 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

It isthe implementer’ s responsibility to identify and represent import directives and their targets according to the semantics of
the programming language of the existing software system.

12.26 ExtendedCodeElements Class Diagram

The ExtendedCodeElements class diagram defines two “wildcard” generic elements for the code model as determined by
the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.22.

AbstractCodeRelationship

Codeltem CodeRelationship

+from 0..*
{redefines from}

+to
{redefines to}

CodeElement 1

KDMEntity
(from core)

Figure 12.24 - ExtendedCodeElements Class Diagram

12.26.1 CodeElement Class (generic)

The CodeElement is a generic meta-model element that can be used to define new “virtual” meta-model elements through
the KDM light-weight extension mechanism.

Superclass

Codeltem

Constraints
1. CodeElement should have at |east one stereotype.

Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of anew “virtua”
meta-model entity type of the code model. Thisis one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.26.2 CodeRelationship Class (generic)

The CodeRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 127

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1]

to:KDMEntity[1]

Constraints

the Codeltem

the KDMEntity

1. CodeRelationship should have at least one stereotype.

Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the code model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM

representation.

128

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

13 Action Package

13.1 Overview

The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule,
in agiven KDM instance, each instance of an action element represents some programming language construct,
determined by the programming language of the existing software system. Each instance of an action meta-model element
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually
represents one or more statements, and an action relationship usually represents a usage of a name in a statement.

13.2 Organization of the Action Package
The Action package consists of the following 11 class diagrams:
» ActionElements
» ActionFlow
» Actionlnheritances
» CadllableRelations
» DataRelations
« ExceptionBlocks
« ExceptionFlow
e ExceptionRelations
e InterfaceRelations
» UsesRelations
» ExtendedActionElements
The Action package depends on the following packages:
e Core
e kdm
» Source

e Core

13.3 ActionElements Class Diagram

In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with
specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 129

model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action
package defines most of the relationship types to the Code model. Together, Action and Code packages constitute the
Program Elements Layer of KDM.

The ActionElements diagram defines the following classes determined by the KDM model pattern:
« ActionElement —main class of the Action package.

« AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations.

+actionRelation
{subsets ownedRelation

ordered}
ActionE lement ‘1//% AbstractActionRelationship
<kind : String
0”*
¢
" 0.1
BlockUnit AbstractCodeElement
+towner (from code)
{subsets owner}
0.1
+codeElement +entryFlow
{subsets ownedE lement} ¢ « {subsets ownedRelation}
0..*
AbstractCodeElement
(from code) EntryFlow

Figure 13.1 - ActionElements Class Diagram

13.3.1 ActionElement Class

The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for primitive relations.
ActionElement can be linked to the original representation through the SourceRef element from the Source package.

Superclass

AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.

130 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

actionRelation:ActionRelationship[0..*] Action relationships originating from the given action element.

codeElement: AbstractCodeElement[0..*] Owned code elements (for example, nested action elements, or nested
BlockUnits, or nested definitions of datatypes and computational objects).

Constraints

1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements.

Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even
a part of a programming language statement. It is the implementer’s responsibility to select the granularity of the action
elements. As a minimum, each Control Element should own at least one ActionElement so that it can be the endpoint of
all ActionRelationships originating from the corresponding Control Element. Static analysis grade KDM implementations
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex
A. For non-micro KDM implementation, the value of the kind is not normative.

It is the implementer’s responsibility to map programming language statements and other descriptions of behavior into
KDM ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action
represents an entire set of leaf actions owned directly or indirectly.

13.3.2 AbstractActionRelationship Class (abstract)

The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an
ActionElement.

Superclass

KDMRelationship
Constraints

Semantics

Usually, an action relationship corresponds to some usage of a name in a programming language statement. Action
relationships originate from ActionElements as opposed to code relationships that originate from code elements.
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

13.3.3 BlockUnit Class

The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 131

Superclass

ActionElement

Associations

codeElement:AbstractCodeElement[0..*] owned code elements including nested BlockUnits

Constraints

Semantics

A BlockUnit is alogical container for action elements. BlockUnit is similar to a composite ActionElement that can also
contain nested ActionElement and data elements. BlockUnit represents the entire set of leaf Actions, owned by the
BlockUnit directly or indirectly.

13.3.4 AbstractCodeElement (additional properties)

Associations

entryFlow:EntryFlow][0..*] EntryFlow relationships that associate the given abstract code element and some
action elements owned by it, which are designated as the entry actions.

Constraints

Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple
EntryFlow elements represent nondeterministic control flow.

13.4 Actioninheritances Class Diagram

The Actionlnheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2
captures these classes and their associations.

AbstractCodeElement
(from code)

KDMRelationship
(from core)

ActionElement
<kind : String AbstractActionRelationship

Figure 13.2 - ActionIinheritances Class Diagram

132 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

13.5 ActionFlow Class Diagram

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements.
The class diagram shown in Figure 13.3 captures these classes and their relations.

AbstractActionRelationship

1 +10
0..* {redefines to}
{redgfines from}

ActionElement | 4
0..x @kind : String

ControlFlow

EntryF low

+to

\—T 1 {redefines to} 0..
Flow +from

{redefines from}
+from
1

AbstractCodeElement
(from code)

*

FalseFlow

GuardedFlow

TrueFlow

Figure 13.3 - ActionFlow Class Diagram

13.5.1 ControlFlow Class (generic)

The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is
further subclassed with more specific modeling elements. ControlFlow class could be used to represent programming
constructs that are not covered by any of the specific subclasses as an extension point.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the control flow

to:ActionElement[1] The target of control flow, when represented by the next action element in
the trace determined by the control flow.

Constraints

1. ControlFlow class should always be used with a stereotype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 133

Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base
element for new “virtual” meta-model elements, representing specific control flow relationships not covered by the
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

It is the implementer’s responsibility to map control flow mechanisms of the given programming language into
ControlFlow meta-elements. It is implementer’s responsibility to adequately represent the control flows of the existing
system by a set of action elements and ControlFlow relationships between them.

13.5.2 EntryFlow Class

The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or
action, from Module to initialization block, from a callable unit to the inititialization block, from a class to the
initialization block or from a compound action to the first internal action.

Superclass

AbstractActionRel ationship

Associations

from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that
represents its behavior.

to:ActionElement[1] The action element that is selected when the owner element is called.

Constraints

« Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a corresponding
EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

¢ The"“to” attribute of an EntryFlow element should be an ActionElement that is owned by the AbstractCodeElement
that isthe “from™ attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind "Init."
2. Initialization code can belong to a ControlElement, CompilationUnit, or CodeAssembly.

3. The EntryFlow relationship is used in a uniform way for describing entry points to other KDM code elements. It
should be used for any type of specia flows, e.g., entry to a CodeAssembly to init Block or action, from Module
to init block, from callable unit to init block, from class to init block, or from compound action to the first internal
action.

134 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

4. The CodeAssembly should have custom initialization block that consists of a sequence of action elements,
including action elements with action kind="Init" and an EntryFlow relation to the initialization blocks of the
owned CompilationUnits (and other owned elements when appropriate), and an action element with action
kind="Calls” and a Calls relation to the logical entry point (for example, the CallableUnit “main”). The
initialziation blocks of compilation units referred to by custom initialization block in a CodeAssembly do not need
to have the Flow relationship at their respective last action element. The control flow is resumed with the Flow
relationship of the initialization action in the custom initialization block. See example at “HasValue Class’ on
page 106..

13.5.3 Flow Class

The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to
the “from” attribute of the Flow.

Superclass

Control Flow

Constraints

1. If there is one or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same
action element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of contral.

13.5.4 TrueFlow Class
The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that
« the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

« the ActionElement that correspondsto the “to” attribute of the TrueFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the TrueFlow when the value of the condition is true.

Superclass
Control Flow
Constraints

If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow elements that have
the same ActionElement as the “from” attribute (but there can be FalseFlow).

Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal,
when condition is not satisfied.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 135

13.5.5 FalseFlow Class

The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such
that

« the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and

« the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the FalseFlow when the value of other conditionsis not satisfied.

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements.
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedFlow.

Superclass

ControlFlow

Constraints
If there exists a FalseFlow element, there should be either:

« acorresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same
ActionElement as the “from” attribute, or

* one or more GuardedFlow elements that have the same ActionElement as the “from” attribute, and

 there are no ather relationship elements that are subclasses of FlowRelationship that have the same ActionElement as
the“from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.6 GuardedFlow Class

The GuardedFlow class is a modeling element that represents control flow relationship between two or more
ActionElements such that:

« the ActionElement that correspondsto the “from” attribute of the GuardedFlow represents the selection statement (for
example, a“switch” statement); and

« the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that
determines a branch of control flow; and

« thebranch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedH ow
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the
guarded condition in the context of the selection statement is satisfied.

FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch
of control flow, for example, to represent the default branch of a switch statement.

Superclass

Control Flow

136 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints

If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of
FlowRelationship that have the same ActionElement as the “from” attribute, with exception of one or more GuardedFlow
elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that correspondsto the “to” attribute of the GuardedFlow has
kind="Guard" . It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram

The CallableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate
ActionElement to ControlElement and represent control flows of the existing software system.

The CallableRelations diagram describes the following types:

e Cadlls-isamodeling element that represents a call-type rel ationship between an ActionElement and a CallableElement
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the
CallableElement represents the element being called.

« Dispatches - is amodeling element that represents a call-type of relationship between an ActionElement and a data
item, in which the ActionElement represents some form of acall, and the dataitem represents a pointer to a procedure

type.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 137

The class diagram shown in Figure 13.4 captures these classes and their relations.

AbstractActionRelationship

Dispatches el
o= 0..* +from 0..*
b \gdeﬁnes from} 0.*
1 1
; +from
ActionElement {redefines from} +
«kind : String 0
1 {redefines to}
ControlElement
(from code)
+to
{redefines to}
1
DataElement
(from code)
wext : String

wsize : Integer

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class

Callsis a modeling element that represents a call-type relationship between an ActionElement and a Control Element or
one of its subclass elements. The ActionElement represents some form of a call statement, and the Control Element
represents the element being called. In the meta-model the Calls element is a subclass of ActionRelationship.

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] the action element from which the call relation originates

to:ControlElement[1] the target Control Element

Constraints

138 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

Callsrelationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent acall to a
procedure, a static method, a non-static method of a particular object instance, avirtual method, or an interface element.

Callsrelation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.

Precise semantics of acall can be represented by the “kind” element of the owner ActionElement, according to the guidelines
provided in the “micro KDM” compliance point.

13.6.2 Dispatches Class

Dispatches is a modeling element that represents a call-type of relationship between an ActionElement and a data item.
The ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element from which the call relation originates.

to:DataElement[1] The data element that represents the pointer to a procedure type.

Constraints

Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be
required to determine the real targets of the Dispatches call.

Example (C)

typedef int (*fp)
int foo(int 1i){}
int bar(int 1)
void foobar()
fp pf;
pf=foo;
pf=bar;
*pf (1) ;

(int 1);

{}

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm" name="Dispatch Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="1id.1" xmi:type="code:CompilationUnit" name="Dispatch.c">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit"
name="foo" type="id.15" kind="regular"s>
<codeRelation xmi:id="1d.3" xmi:type="code:HasType" to="id.14" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="code:Signature" name="foo">
<parameterUnit xmi:id="id.5" name="a" type="id.13"/>
<parameterUnit xmi:id="id.6" type="id.13" kind="return"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.7" xmi:type="code:CallableUnit"
name="bar" type="id.1l5" kind="regular">
<codeRelation xmi:id="1d.8" xmi:type="code:HasType" to="id.14" from="id.7"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 139

<codeElement xmi:id="1d.9" xmi:type="code:Signature" name="bar">
<parameterUnit xmi:id="id.10" name="a" type="id.13"/>
<parameterUnit xmi:id="id.11" type="id.13" kind="return"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.12" xmi:type="code:StorableUnit" name="pf" type="id.14"/>
<codeElement xmi:id="id.13" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.14" xmi:type="code:TypeUnit" name="fp" type="id.1l5">
<codeElement xmi:id="id.15" xmi:type="code:Signature" name="f">
<parameterUnit xmi:id="id.1l6" name="a" type="id.13"/>
<parameterUnit xmi:id="id.l17" type="id.13" kind="return"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.18" xmi:type="code:CallableUnit" name="foobar" type="id.33">
<entryFlow xmi:id="id.19" to="id.20" from="id.18"/>
<codeElement xmi:id="1d.20" xmi:type="action:ActionElement" name="al" kind="Assign">
<actionRelation xmi:id="1id.21" xmi:type="action:Addresses" to="id.2" from="1d.20"/>
<actionRelation xmi:id="1id.22" xmi:type="action:Writes" to="id.12" from="id.20"/>
<actionRelation xmi:id="1id.23" xmi:type="action:Flow" to="id.24" from="id.20"/>
</codeElement>
<codeElement xmi:id="id.24" xmi:type="action:ActionElement" name="a2" kind="Assign">
<actionRelation xmi:id="1id.25" xmi:type="action:Addresses" to="1id.2" from="1id.24"/>
<actionRelation xmi:id="1id.26" xmi:type="action:Writes" to="id.12" from="id.24"/>
<actionRelation xmi:id="1id.27" xmi:type="action:Flow" to="1id.28" from="id.24"/>
</codeElement>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="a3" kind="PtrCall"s>
<codeElement xmi:id="1id.29" xmi:type="code:Value" name="1" type="1id.13"/>
<actionRelation xmi:id="1id.30" xmi:type="action:Reads" to="id.12" from="1d.28"/>
<actionRelation xmi:id="1id.31" xmi:type="action:Reads" to="id.29" from="id.28"/>
<actionRelation xmi:id="id.32" xmi:type="action:Dispatches"
to="id.12" from="id.28"/>
</codeElement>
<codeElement xmi:id="id.33" xmi:type="code:Signature" name="foobar"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

13.7 DataRelations Class Diagram

The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at
Figure 13.5.

140 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractActionRelationship

DataElement

: . (from code)
Compl:tauon:lIObJect wext . String
(from code) @size : Integer
+to 1
{redefines to}
0.*
Py {redefines to}
0.*
Reads
Datatype
(from code)
- 0
Writes
o__*
+from Creates

{redefines frgm}
1

ActionElement efines from}
«kind : String 1

Figure 13.5 - DataRelations Class Diagram

13.7.1 Reads Class

The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the
DataElement).

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Reads relationship.

to:DataElement[1] The DataElement that is the source of the flow of data.

Constraints

Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.2 Writes Class

The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 141

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that owns the Writes relationship.

to:DataElement[1] The DataElement that is the sink of the flow of data.

Constraints

Semantics

Writes relationship represents an association between an action element, which implements a flow of datato a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.3 Addresses Class

Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied
to the elements of the data structure, or where an address of a data element is taken.

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that owns the Addresses relationship.

to:ComputationalObject[1] The Computational object that is being accessed.

Constraints

Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data
element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.4 Creates Class

The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a
new instance of the Datatype.

Superclass

AbstractActionRel ationship

142 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

from:ActionElement[1] The action element that owns the Creates relationship.

to:Datatype[1] The DataElement that is instantiated by the ActionElement.

Constraints

Semantics

Creates relationship represents an association between an action element that creates a new instance of a certain data
element to the corresponding datatype according to the semantics of the programming language of the existing software
system.

13.8 ExceptionBlocks Class Diagram

The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the
optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to
have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special
ParameterKind value kind="exception” to represent parameter passing via exception mechanism or kind="catchall” to
represent the catch all construct in C++.

BlockUnit

b

ExceptionUnit

TryUnit CatchUnit

FinallyUnit

Figure 13.6 - ExceptionBlocks Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 143

13.8.1 ExceptionUnit Class

ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which
can own both ActionElement (for example, statements in the catch-block) as well as Codeltem (for example, parameters
to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass

BlockUnit

Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2 TryUnit Class

TryUnit class is a meta-model element that represents try-blocks common to severa programming languages. TryUnit is
a container for action elements and associated definitions of Codeltems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass
ExceptionUnit
Semantics

TryUnit represents a try-block.

13.8.3 CatchUnit Class

CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object
passed to the catch-block by the exception-handling mechanism.

Superclass
ExceptionUnit
Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow
relationship that originates from some TryUnit.

144 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow

relationship.

13.8.4 FinallyUnit Class

FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is

associated with the core responding TryUnit through an ExitFlow relation.

Superclass

ExceptionUnit

Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow

relationship that originates from some TryUnit.

2. TryUnit should not be associated with more than one FinallyBlock.

Semantics

FinallyBlock represents a finally-block associated with a certain try-block.

Example

.<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm" name="Exceptions Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1l" xmi:type="code:ClassUnit" name="A">
<codeElement xmi:id="id.2" xmi:type="code:MethodUnit" name="foo">
<entryFlow xmi:id="1id.3" to="id.4" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="action:TryUnit" name="t1l">

<codeElement xmi:id="id.5" xmi:type="action:ActionElement" name="al" kind="Call">
<actionRelation xmi:id="id.6" xmi:type="action:Calls" to="1d.23" from="id.5"/>
</codeElement>
<actionRelation xmi:id="id.7" xmi:type="action:Flow" to="id.5" from="id.4"/>
<actionRelation xmi:id="id.8" xmi:type="action:ExceptionFlow"
to="1d.10" from="id.4"/>
<actionRelation xmi:id="1id.9" xmi:type="action:ExitFlow" to="id.l17" from="id.4"/>
</codeElement>
<codeElement xmi:id="id.10" xmi:type="action:CatchUnit" name="cl">
<codeElement xmi:id="id.11" xmi:type="code:ParameterUnit" name="e" type="id.67"/>
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="a2" kind="Call">
<codeElement xmi:id="id.13" xmi:type="code:Value"
name="" ; Something went wrong"" type="id.69"/>
<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.13" from="id.12"/>
<actionRelation xmi:id="1id.15" xmi:type="action:Calls" to="id.66" from="id.12"/>
</codeElement>
<actionRelation xmi:id="1id.16" xmi:type="action:Flow" to="id.12" from="id.10"/>
</codeElement>
<codeElement xmi:id="id.17" xmi:type="action:FinallyUnit" name="£f1">
<codeElement xmi:id="1id.18" xmi:type="action:ActionElement" name="a3" kind="Call">
<codeElement xmi:id="id.19" xmi:type="code:Value"
name="" ; Good bye"" type="id.69"/>
<actionRelation xmi:id="1id.20" xmi:type="action:Reads" to="id.19" from="1d.18"/>
<actionRelation xmi:id="1id.21" xmi:type="action:Calls" to="id.66" from="1d.18"/>
</codeElement>
<actionRelation xmi:id="1id.22" xmi:type="action:Flow" to="1d.18" from="id.17"/>
</codeElement>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 145

</codeElement>
<codeElement xmi:id="id.23" xmi:type="code:MethodUnit" name="bar"s>
<entryFlow xmi:id="id.24" to="id.25" from="id.23"/>
<codeElement xmi:id="1d.25" xmi:type="action:TryUnit" name="t2">
<codeElement xmi:id="id.26" xmi:type="action:ActionElement"
name="a4" kind="ArrayReplace">
<source xmi:id="id.27" language="Java" snippet="arr[20]=20"/>
<codeElement xmi:id="1id.28" xmi:type="code:Value" name="20" type="id.70"/>
<actionRelation xmi:id="1id.29" xmi:type="action:Addresses"
to="id.59" from="id.26"/>
<actionRelation xmi:id="1d.30" xmi:type="action:Reads" to="id.28" from="1id.26"/>
<actionRelation xmi:id="1id.31" xmi:type="action:Reads" to="id.28" from="1id.26"/>
<actionRelation xmi:id="1id.32" xmi:type="action:Writes" to="id.61" from="id.26"/>
<actionRelation xmi:id="1d.33" xmi:type="action:Flow" to="id.34" from="id.26"/>
</codeElement>
<codeElement xmi:id="1d.34" xmi:type="action:ActionElement" name="a5" kind="Call"s>
<actionRelation xmi:id="1id.35" xmi:type="action:Reads" to="id.59" from="1id.34"/>
<actionRelation xmi:id="1id.36" xmi:type="action:Calls" to="id.66" from="id.42"/>
</codeElement>
<actionRelation xmi:id="id.37" xmi:type="action:Flow" to="id.26" from="id.25"/>
<actionRelation xmi:id="id.38" xmi:type="action:ExceptionFlow"
to="id.40" from="id.25"/>
<actionRelation xmi:id="1id.39" xmi:type="action:ExitFlow"/>
</codeElement>
<codeElement xmi:id="1d.40" xmi:type="action:CatchUnit" name="c2">
<codeElement xmi:id="id.41" xmi:type="code:ParameterUnit" name="e" type="id.68"/>
<codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="aé6" kind="Call">
<codeElement xmi:id="1d.43" xmi:type="code:Value"
name="" ; Oops&gquot ;" type="1id.69"/>
<actionRelation xmi:id="1id.44" xmi:type="action:Reads" to="id.43" from="1id.47"/>
<actionRelation xmi:id="1id.45" xmi:type="action:Calls" to="id.66" from="1id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.47" from="id.42"/>
</codeElement>
<codeElement xmi:id="1id.47" xmi:type="action:ActionElement" name="a7" kind="Throw">
<codeElement xmi:id="id.48" xmi:type="code:Value"
name="" ;Went too far"" type="id.69"/>
<actionRelation xmi:id="1d.49" xmi:type="action:Reads" to="id.48" from="1id.47"/>
<actionRelation xmi:id="1id.50" xmi:type="action:Throws"/>
</codeElement>
<actionRelation xmi:id="id.51" xmi:type="action:Flow" to="1d.42" from="id.40"/>
</codeElement>
<codeElement xmi:id="id.52" xmi:type="action:FinallyUnit" name="f2">
<codeElement xmi:id="1id.53" xmi:type="action:ActionElement" name="a8" kind="Call"s>
<actionRelation xmi:id="1id.54" xmi:type="action:Reads" to="id.59" from="1id.53"/>
<actionRelation xmi:id="1id.55" xmi:type="action:Calls" to="id.66" from="id.42"/>
</codeElement>
<actionRelation xmi:id="id.56" xmi:type="action:Flow" to="id.53" from="id.52"/>
</codeElement>
<codeElement xmi:id="id.57" xmi:type="code:Signature">
<parameterUnit xmi:id="id.58" type="id.63" kind="throws"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.59" xmi:type="code:MemberUnit"
name="arr" type="id.60" size="10">
<codeElement xmi:id="id.60" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.61" type="1d.70"/>
<indexUnit xmi:id="id.62" type="1id.70"/>
</codeElement>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.63" xmi:type="code:ClassUnit"
name="MoreDescriptiveException" isAbstract="true">
<codeRelation xmi:id="1d.64" xmi:type="code:Extends" to="id.67" from="id.63"/>
</codeElement>
</models>
<model xmi:id="id.65" xmi:type="code:CodeModel" name="Java common definitions"s>
<codeElement xmi:id="1d.66" xmi:type="code:CallableUnit" name="println"/>
<codeElement xmi:id="id.67" xmi:type="code:ClassUnit" name="Exception"/>
<codeElement xmi:id="id.68" xmi:type="code:ClassUnit"
name="ArrayIndexOutOfBoundsException" isAbstract="false"/>
<codeElement xmi:id="id.69" xmi:type="code:StringType"/>
<codeElement xmi:id="id.70" xmi:type="code:IntegerType"/>
</model>
</kdm: Segment >

146 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

13.9 ExceptionFlow Class Diagram

ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions.

There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw,
to a CallableElement that represents the catcher of the exception. The ExceptionFlow target is either the local CatchUnit
that will handle the exception or point back to the TryUnit.

Exception flow elements are gptional for LO KDM models. KDM export tools at LO compliance level may lack the full
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be
further analyzed by a different tool to add more information about the flow of control determined by the exception
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined
exceptions, tools should normally be able to capture the origin points by analyzing the various methods invoked and
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go along way
in supporting complex analysis.

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if there is afinally clause, afinaly flow would go from the TryUnit to the FinallyUnit to cover the finalization. The
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “The exception
handling mechanism is a hon local control structure based on stack unwinding that can be seen as an alternative return
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 147

AbstractActionRelationship

ExceptionFlow

ExitFlow 0..x

+to 1 | ActionElement

<kind : String

+to

{redefines to} 1 {redefines to}

Figure 13.7 - ExceptionFlow Class Diagram

13.9.1 ExitFlow Class

ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example,
ExitFlow can be used to relate a try-block with the corresponding finally-block.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] ActionElement (for example, atry-block) for which the “on-exit” behavior
was specified.
to:ActionElement[1] ActionElement (usually, afinally-block) that represents the behavior that is

invoked upon successful exit of the origin block (“on exit”).

Constraints

Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

148 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

13.9.2 ExceptionFlow Class

The ExceptionFlow relationship represents an exception flow relationship between a TryUnit and the corresponding
CatchUnit, or between a particular action element that can raise an exception to the corresponding CatchUnit.

Superclass
AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the exception flow

to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.

Constraints

1. The target action element of the ExceptionFlow relationship should be a CatchUnit.

Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the
existing software system.

13.10 ExceptionRelations Class Diagram

The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships
associated with exception handling mechanism common to various programming languages.

AbstractActionRelationship

ActionEle ment +from
<kind : String retiefines from}

\ , | DataElement
fi d
o Thows | ————={ (fom code)

0..* +to
{redefines to}

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1 Throws Class

The Throws classis a meta-model element that represents throw-statements supported by several programming languages.
These are the user-defined throws for exception, as opposed to the so-called nhormal system exceptions and runtime
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their
throw entity, using the Throws relationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 149

See ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling mechanism.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The ActionElement that throws the exception.

to:DataElement[1] the exception data element being thrown

Constraints

Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data
element that is associated with that exception. It is the implementer’s responsibility to identify and represent these
associations according to the semantics of the programming language of the existing software system.

13.11 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations’ by the
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

AbstractActionRelationship

CompliesTo

0.* 3
+from 0..
{redefines from}

ActionElement 1

<kind : String ‘o .
{redefines to} Codeltem
(from code)

Figure 13.9 - InterfaceRelations Class Diagram

13.11.1 CompliesTo Class

The CompliesTo is a meta-model element that represents an association between an action element that “uses’ some
computational object, and the “declaration” of that computational object.

150 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Superclass

AbstractA ctionRel ationship

Associations

from:ActionElement[1] The origin of the relationship; action element that “uses’ some computational
object.
to:Codeltem[1] the “declaration” of that computational object

Constraints

1. The kind attribute of the Codeltem at the target of the CompliesTo relationship should be equal to “external” or
“abstract.”

2. The action element that is the origin of the “CompliesTo” relationship should own a callable or data action
relationship to some computational object and the target of CompliesTo relationship should be one of the
declarations of that computational object.

Semantics

See InterfaceRel ations section of the Code package chapter.

13.12 UsesRelations Class Diagram

The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their
relations.

AbstractActionRelationship

UsesType
0..* 0..* +o
1 {redefines to}
Ty 1
ActionElement +from Datatype
T TR defines f " d
@kind : String {redefines from} (from code)

Figure 13.10 - UsesRelations Class Diagram

13.12.1 UsesType Class

The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 151

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that performs a type cast or a type conversion.

to:Datatype[1] The datatype involved in a type operation.

Constraints

Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind”
attribute of the action element. See the “micro KDM” chapter.

13.13 ExtendedActionElements Class Diagram

The ExtendedA ctionElements class diagram defines an additional “wildcard” generic element for the code model as
determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedA ctionElements diagram are shown in Figure 13.11.

AbstractActionRelationship

ActionRelationship

1 0..* 0.*

ActionElement +rom

<kind : String , +to 1 | KDMEntity
{redefines from} {redefines to} (from core)

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1 ActionRelationship Class (generic)

The ActionRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractActionRel ationship

152 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

from:ActionElement[1] the origin action element

to:KDMEntity[1] the target KDM entity

Constraints
1. ActionRelationship should have at least one stereotype.
Semantics

An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 153

154 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

14 Micro KDM

This chapter describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM
compliance point (“micro KDM").

Let's use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing
software system. The term “macro action” should not be confused with the preprocessor directives common to certain
programming languages.

A KDM “macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which
links it to the artifacts of the existing software system. KDM LO compliance point does not specify the semantics of a
KDM “macro action” leaving it up to implementers to design the mapping from the programming languages involved in
the artifacts of the existing software systems and KDM.

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with
predefined semantics.

According to the “micro KDM” approach, the original “macro action” is treated as a container that owns certain “micro
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM
constrains the patterns of how to map the statements of the existing system as determined by the programming language
into KDM. This is similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft .NET.

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for
control and data flow analysis. Micro KDM is arather high-level IR. Micro KDM actions are aligned with the |SO 11404
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for
representing program elements.

Separation into a “macro action” and “micro actions” allows:

e Theflexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example
to asourcefile or to an AST, providing a meaningful source ref (a macro action can still represent one or more
statements in the original existing system), and

« provides precise representation of the original “macro action” through a mapping to micro actions with predefined
semantics.

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control
and data flow analysis.

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned
ActionRelationships represent the parameters to the action element.

Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras):

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 153

Action Kind - is nature of the operation performed by the micro action. Thisis represented as a“kind” attribute to the
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the
“Call” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case
sensitive stringsin Annex A.

Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for amicro action.

Control part - owned outgoing control flow relationships for the action.

Extras part - owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind.
For exampl e, these can be interface compliance relation “CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model should be a micro KDM action, where the operation performed by

the action is designated by the value of the action kind, specified in the list of the micro actions in Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and

runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM
model is determined by the semantics of the micro actions.

Semantics

Semantics of KDM micro actions is defined in Annex A: “Semantics of the micro KDM action elements.”

Example

z=1+(x.y);
*d[x+3]=1,
dly+3]=&z;
y=*d[x+3];

function foo does not comply to micro KDM semantic constraints;
function bar complies to micro KDM

<?xml version="1.0" encoding="UTF-8"?>

<kdm: Segment

xmi:version="2.1"

xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm" name="Micro KDM Example">

<model xmi:id="id.0" =xmi:type="code:CodeModel">

154

<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit" name="foo" kind="regular"s>
<entryFlow xmi:id="id.3" to="id.4" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="action:ActionElement" name="f1l" kind="unknown"s>
<source xmi:id="id.5" language="C" snippet="z=1+f(x,y)"/>
<actionRelation xmi:id="id.6" xmi:type="action:Calls" to="id.107" from="id.4"/>
<actionRelation xmi:id="id.7" xmi:type="action:Reads" to="1d.97" from="id.4"/>

<actionRelation xmi:id="id.8" xmi:type="action:Reads" to="1d.98" from="id.4"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<actionRelation xmi:id="id.9" xmi:type="action:Writes" to="id.99" from="id.4"/>
<actionRelation xmi:id="id.10" xmi:type="action:Reads" to="id.105" from="id.4"/>
<actionRelation xmi:id="id.11" xmi:type="action:Flow" from="id.4"/>
</codeElement >
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="f2" kind="unknown">
<source xmi:id="id.13" language="C" snippet="*d[x+3]=1;d[y+3]=&z;y=*d[x+3];"/>
<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.97" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Addresses" to="1d.100" from="id.12"/>
<actionRelation xmi:id="id.16" xmi:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.105" from="id.12"/>
<actionRelation xmi:id="id.18" xmi:type="action:Addresses" to="1d.100" from="id.1l2"/>
<actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.98" from="id.12"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="i1d.99" from="id.12"/>
<actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.98" from="id.4"/>
<actionRelation xmi:id="id.23" xmi:type="action:Addresses" to="1d.100" from="id.12"/>
<actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.97" from="id.12"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.106" from="id.12"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.26" xmi:type="code:CallableUnit" name="bar" kind="regular"s>
<entryFlow xmi:id="id.27" to="id.28" from="id.26"/>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="bl" kind="compound">
<source xmi:id="id.29" language="C" snippet="z=1+f(x,y)"/>
<codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t1"
type="1id.112" kind="register"/>
<codeElement xmi:id="id.31" xmi:type="action:ActionElement" name="bl.1" kind="Call">
<actionRelation xmi:id="id.32" xmi:type="action:Calls" to="id.107" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.97" from="id.28"/>
<actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.98" from="id.28"/>
<actionRelation xmi:id="id.35" xmi:type="action:Writes" to="id.30" from="id.31"/>
<actionRelation xmi:id="id.36" xmi:type="action:Flow" from="id.31"/>
</codeElement>
<codeElement xmi:id="id.37" xmi:type="action:ActionElement" name="bl.2" kind="Add">
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.105" from="id.37"/>
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.30" from="id.37"/>
<actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.99" from="id.37"/>
</codeElement>
<actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.31" from="id.28"/>
</codeElement >
<codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="b2" kind="compound">
<source xmi:id="id.43" language="C" snippet="*d[x+3]=1;d[y+3]=&z;y=*d[x+3];"/>
<codeElement xmi:id="id.44" xmi:type="code:StorableUnit" name="t2"
type="1id.103" kind="register"/>
<codeElement xmi:id="id.45" xmi:type="code:StorableUnit" name="t3"
type="id.112" kind="register"/>
<codeElement xmi:id="id.46" xmi:type="code:StorableUnit" name="t4"
type="id.112" kind="register"/>
<codeElement xmi:id="id.47" xmi:type="code:StorableUnit" name="t5"
type="1id.103" kind="register"/>

<codeElement xmi:id="id.48" xmi:type="code:StorableUnit" name="té6"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 155

156

type="1id.112" kind="register"/>
<codeElement xmi:id="id.49" xmi:type="code:StorableUnit" name="t7"
type="1id.103" kind="register"/>

<codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="b2.1" kind="Add">
<actionRelation xmi:id="id.51" =xmi:type="action:Reads" to="id.97" from="id.50"/>
<actionRelation xmi:id="id.52" =xmi:type="action:Reads" to="id.106" from="id.50"/>
<actionRelation xmi:id="id.53" =xmi:type="action:Writes" to="id.44" from="id.50"/>
<actionRelation xmi:id="id.54" xmi:type="action:Flow" to="id.55" from="id.50"/>

</codeElement >

<codeElement xmi:id="id.55" xmi:type="action:ActionElement" name="b2.2" kind="ArraySelect"s>
<actionRelation xmi:id="id.56" xmi:type="action:Addresses" to="id.100" from="id.55"/>
<actionRelation xmi:id="id.57" xmi:type="action:Reads" to="id.102" from="id.55"/>
<actionRelation xmi:id="id.58" xmi:type="action:Reads" to="id.44" from="id.55"/>
<actionRelation xmi:id="id.59" xmi:type="action:Writes" to="id.45" from="id.55"/>
<actionRelation xmi:id="id.60" xmi:type="action:Flow" from="id.55"/>

</codeElement >

<codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="b2.3" kind="PtrReplace">
<actionRelation xmi:id="id.62" xmi:type="action:Reads" to="id.45" from="id.é61"/>
<actionRelation xmi:id="id.63" xmi:type="action:Reads" to="id.105" from="id.61"/>
<actionRelation xmi:id="id.64" xmi:type="action:Writes" to="id.104" from="id.61"/>
<actionRelation xmi:id="id.65" xmi:type="action:Flow" to="id.66" from="id.61"/>

</codeElement >

<codeElement xmi:id="id.66" xmi:type="action:ActionElement" name="b2.4" kind="Add">
<actionRelation xmi:id="id.67" xmi:type="action:Reads" to="id.98" from="id.12"/>
<actionRelation xmi:id="id.68" xmi:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xmi:id="1id.69" =xmi:type="action:Writes" to="id.46" from="id.66"/>
<actionRelation xmi:id="1id.70" xmi:type="action:Flow" to="id.71" from="id.66"/>

</codeElement>

<codeElement xmi:id="id.71" =xmi:type="action:ActionElement" name="b2.5" kind="Ptr">
<actionRelation xmi:id="id.72" xmi:type="action:Addresses" to="id.99" from="id.12"/>
<actionRelation xmi:id="1id.73" xmi:type="action:Writes" to="id.47" from="id.71"/>
<actionRelation xmi:id="1id.74" =xmi:type="action:Flow" to="id.75" from="id.71"/>

</codeElement>

<codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="b2.6" kind="ArrayReplace">

<actionRelation xmi:id="id.76" =xmi:type="action:Addresses" to="1id.100" from="id.12"/>
<actionRelation xmi:id="1id.77" xmi:type="action:Reads" to="id.46" from="id.75"/>
<actionRelation xmi:id="id.78" =xmi:type="action:Reads" to="1id.47" from="id.75"/>
<actionRelation xmi:id="1id.79" =xmi:type="action:Writes" to="id.102" from="id.75"/>
<actionRelation xmi:id="1id.80" xmi:type="action:Flow" from="id.75"/>

</codeElement>

<codeElement xmi:id="id.81" xmi:type="action:ActionElement" name="b2.7" kind="Add">
<actionRelation xmi:id="id.82" xmi:type="action:Reads" to="id.97" from="id.12"/>
<actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xmi:id="id.84" xmi:type="action:Writes" to="id.48" from="id.81"/>
<actionRelation xmi:id="id.85" xmi:type="action:Flow" from="id.81"/>

</codeElement >

<codeElement xmi:id="id.86" xmi:type="action:ActionElement" name="b2.8" kind="ArraySelect'">
<actionRelation xmi:id="id.87" =xmi:type="action:Addresses" to="id.100" from="id.1l2"/>
<actionRelation xmi:id="id.88" =xmi:type="action:Reads" to="1id.48" from="1id.86"/>
<actionRelation xmi:id="id.89" xmi:type="action:Reads" to="id.102" from="id.86"/>

<actionRelation xmi:id="id.90" =xmi:type="action:Writes" to="id.49" from="id.86"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<actionRelation xmi:id="id.91" xmi:type="action:Flow" to="id.92" from="id.86"/>

</codeElement>

<codeElement xmi:id="id.92" xmi:type="action:ActionElement" name="b2.9" kind="PtrSelect">

<actionRelation xmi:id="id.93" xmi:type="action:Reads" to="1d.49" from="id.92"/>

<actionRelation xmi:id="id.94" xmi:type="action:Reads" to="1d.104" from="id.92"/>

<actionRelation xmi:id="id.95" xmi:type="action:Writes" to="id.98" from="id.92"/>

</codeElement>

<actionRelation xmi:id="id.96" xmi:type="action:Flow" to="id.50" from="id.42"/>

</codeElement >
</codeElement>
<codeElement xmi:id="1id.97" xmi:type="code:StorableUnit" name="x" type="id.

<codeElement xmi:id="1id.98" xmi:type="code:StorableUnit" name="y" type="id.

112"/>
112"/>

<codeElement xmi:id="id.99" xmi:type="code:StorableUnit" name="z" type="id.112"/>

<codeElement xmi:id="id.100" xmi:type="code:StorableUnit" name="d" type="1d.101">

<codeElement xmi:id="id.101" =xmi:type="code:ArrayType" name="">
<itemUnit xmi:id="id.102" name="d[]" type="id.103">
<codeElement xmi:id="1d.103" xmi:type="code:PointerType">
<itemUnit xmi:id="1d.104" name="*d[]" type="id.112"/>
</codeElement>
</itemUnit>
</codeElement>
</codeElement>

<codeElement xmi:id="id.105" xmi:type="code:Value" name="1" type="id.112"/>

<codeElement xmi:id="id.106" xmi:type="code:Value" name="3" type="id.112"/>

<codeElement xmi:id="id.107" xmi:type="code:CallableUnit" name="f" type="id

<codeElement xmi:id="id.108" =xmi:type="code:Signature">
<parameterUnit xmi:id="1d.109" name="a" type="id.112" pos="1"/>
<parameterUnit xmi:id="1d.110" name="b" type="id.112" pos="2"/>
<parameterUnit xmi:id="id.111" type="id.112" kind="return"/>
</codeElement >
</codeElement>
</codeElement>
<codeElement xmi:id="1d.112" xmi:type="code:IntegerType" name="int"/>
</model>

</kdm: Segment >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

.108">

157

158 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Part Il - Runtime Resources Layer

This section describes common patterns for representing the operating environment of existing software systems. The
following are the common properties of the Resource Layer packages Data, Ul, Platform, and Event:

They provide modeling elements to represent “resources’ (something managed by the runtime platform).
They provide abstract “resource actions’ to manage these resources.

These actions are implemented by the program elements as one or more API calls to some external platform-specific
packages.

There is abinding involved between the actions and the resources.

Resource may involve some “inverted” control in the form of callbacks and event handlers, allowing applications to be
programmed in event-driven style.

The content of the information flow involving the resource is associated with some data organi zation.

Resource often has a certain state, and tracking the changes of the state over time may be an important concernin
understanding the logic of the existing system.

Since Resource Layer packages capture high-value knowledge about the existing system and its operating environment,
which may involve advance analysis and some manual expertise KDM is designed in such a way that the Resource level
analysis can use KDM models from the Platform Elements Layer as input and produce Resource Layer models as output.
There should be no references from lower KDM layers to higher layers; therefore, new Resource Layer models can be
built on top of existing Program Element layer models.

Resource layer package systematically uses the following KDM patterns:

Each Resource Layer package defines entities and containers to represent specific “resources.” Each package may
define additional elements to represent additional concerns. For example, the Data package involves less resource
definitions, and focuses on the representation of various data organization capabilities. The Event package providesthe
meta-model elements for representing state, state transitions caused by events. States, transitions, and events can be
considered as runtime platform resources. The Ul package provides the meta-model elements for representing user
interfaces. User interfaces can also be considered runtime platform resources. The Platform package deals with
conventional runtime platform resources, such as inter-process communication, the use of registries, management of
data, etc.

Each Resource Layer package defines specific structural relations between “resources.” For example, the Platform
package defines relationship BindsTo, which represents a logical association between two resources.

Each Resource Layer package defines specific resource actions to represent manipulation of resource through API
calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base abstract class for
the corresponding package. This classis named AbstractX XX Element, where “XXX” is the name of the package. So,
the resource action is not a subclass of ActionElement, and this promotes modularity between Resource Layer
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or
more ActionElements through property called “abstraction.” Each resource action also has the property called
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original
API calls asthey were represented in the Program Elements layer input model. The “ abstraction” property uses KDM
container mechanism to add the behavior counterparts to the API callsthat represent the true logic of the resource
operation, including the flow of data and control. The “abstracted” ActionElements are owned directly by the
corresponding resource action, and are not part of any Code model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 159

« The nature of the resource-specific operation performed by a particular resource action is represented by the “kind”
attribute of the resource actions. The resource action owns resource action relations through the “ abstraction” action
container. It isthe owned “abstracted” action that is the direct owner of the resource action relationship.

« “abstraction” action container property isin fact systematically added to all elements of Resource Layer packages.
This way each resource can use the meta-model elements defined in the Program Elements layer to specify behavior
specific to that resource.

e The“abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided
by runtime platforms. This pattern can be separately referred to asthe KDM Event pattern. Each Resource Layer
package defines its own meta-model element for representing events. For example, the Ul package defines the class
UlEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements. Calls
relation originating from such an abstracted action element represents the “callback” mechanism, provided by several
runtime platforms.

Resource Layer packages are independent, however they can offer additional capabilities when more than one is
implemented. In order not to enforce any particular order in which these packages should be implemented, KDM involves
the following approach: resource action relationships are subclasses of the AbstractA ctionRelationship class from the
Action Package. In the full KDM implementation that uses all packages, all resource actions are available for any
ActionElement. Code models should not use the extended relationships. The extended resource action relationships can
only be used by the actions in “abstraction” action containers in Resource Layer models. A notable example of this
mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an element of
an event model with any resource. Another example is the “HasContent” relation defined in the Data package, which
allows associating an element of a data model with any resource.

* The“abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource
actions” and between resources to provide abstractions of the flow between “resource actions.”

« The Resource Layer patterns are aligned with the micro KDM, which alow precise modeling of behavior related to
resources as the foundation for holistic high-fidelity analysis of existing software systems. It can be achieved by
associating sets of precise micro KDM actions with “abstraction” action containers.

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform
independence.

160 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Binding time

e Generation time binding

» Language & platform design binding

e Versioning time

e Compiletime binding, including
* Macro expansion
» Templates

« Product line variants defined by conditional compilation

¢ Link time binding
« Deployment time binding

* Initialization time binding

* Runtime
Binding Time What is being bound Result
Generation time Syntax, variant, pattern, mapping, etc. | Generated code
Language & platform design Syntax, entities and relations, Source code

including platform resource types

Versioning Module source files Module version

Compiletime Intra-modul e relations (def-use) Module
-- Macro Syntax, macro to expanded code Expanded macro (source code)
-- Template Template parameters Template instance

-~ Product line variant defined by
conditional compilation and

Conditional compilation, macro,
includes, symbolic links.

Component Variant

includes
(static) Link time Intra-component relations within Deployed Component
deployable component
Deployment time Resource names to resources (using Deployed System
platform-specific configuration files)
Initialization time Component implementation to System

component interface; major processes
and threads; dynamic linking,
dynamic load (using platform-specific
configuration files).

Run time

User input, object factory, virtual
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 161

162 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

15

Platform Package

15.1 Overview

Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments
of existing software systems. Application code is not self-contained as it is determined not only by the selected
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

Runtime platform consists of many diverse elements (platform parts).

Platform provides resources to deployment components.

Platform provides services that are related to resources.

Application code invokes services to manage the life-cycle of aresource.

Control flow between application components is often determined by the platform.
Platform provides error handling across application components.

Platform provides integration of application components.

Examples of Platform Parts include UNIX OS File System, UNIX OS process management system, Windows 2000, OSY/
390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo, CORBA,
HTTP, TCP/IP, Eclipse, EJB, IMS, Database middleware, Servlets.

15.2 Organization of the Platform Package

The Platform package consists of the following 10 class diagrams:

PlatformModel
Platformlnheritances
PlatformResources
PlatformRelations
PlatformActions
ProvisioningRel ations
Deployment
RuntimeResources
RuntimeActions
ExtendedPlatformElements

The Platform package depends on the following packages:

Core
kdm
Code
Action

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 163

15.3 PlatformModel Class Diagram

The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM
model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

PlatformModel

0.1
+modage
{subsets mo%e’}
+platformElement
1
{subsets ownedElement} 0.*

AbstractPlatformElement

+owner 0.1

{subsets owner}

+abstraction

{subsets ownedElement

ordered} 0.x

ActionElement
(from action)

Figure 15.1 - PlatformModel Class Diagram

15.3.1 PlatformModel Class

AbstractPlatformRelationship

0..* .
+relation
{subsets ownedRelation}

0.*

+group
{subsets group}

+implementation
{subsets groupedElement}
0..*

AbstractCodeElement
(from code)

Platform model defines one of the architectural views in support of the principle of separation of concernsin KDM
models. PlatformModel provides a container for platform elements.

Superclass

KDMModel

Associations

platformElement:PlatformElement[0..*]

Constraints

164

owned platform elements

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

PlatformModel is a logical container for platform elements. It is the implementer’s responsibility to arrange platform
elements into one or more platform models.

15.3.2 AbstractPlatformElement Class (abstract)

The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of
software systems.

Superclass

K DMEntity

Associations

platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.
abstraction: ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to the AbstractCodeElement element that are
represented by the current PlatformElement from some CodeM odel.

source:SourceRef[0..*] traceability links owned by the given platform element

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of Computationa Object or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel.

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the
PlatformElement.

15.3.3 AbstractPlatformRelationship Class (abstract)

The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform
entities.

Superclass
KDMRelationship
Constraints

Semantics

An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 165

15.4 Platforminheritances Class Diagram

The Platformlnheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.
The classes and associations of the Platforminheritances diagram are shown in Figure 15.1.

KDMModel K DM Entity KDMRelationship
(from kdm) (from core) (from core)
PlatformModel AbstractPlatform Element AbstractP latform Relationship

0.1

Platform Source

+source
0..*

SourceRef
(from source)

Figure 15.1 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and
associations of the PlatformResources diagram are shown in Figure 15.2.

166 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

+platformElement [Ay syractPlatformElement

0..*
{subsets ownedElement} ZT

PlaformAction

ResourceType wkind : String k—TO 1
0..1
+owner +owner
{subsets owner}

{subsets owner}

MarshalledResource”| ExternalActor

NamingResource

Dﬁtal\/ﬁanager
[
|

LockResourcd StreamResource {subsets ownedElement}
Messaging Resour;/é I
PlatformE vent
. <2kind : String .
ExecutionResource FileResource 0..

+platformElement

Figure 15.2 - PlatformResources Class Diagram

15.5.1 ResourceType Class

The ResourceType is a meta-model element that represents a platform resource. The purpose of a platform is to simplify
application development by closing the gap between the application domain and the facilities that are available to
application programmers. The latter are referred to as platform resources. Examples of resource types include UNIX File,
UNIX 10 Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX
semaphore, UNIX shared memory segment, OS/390 VSAM file, IDBC connection, HTTP session, HTTP request, UNIX
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource.

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system.
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource
may be associated with logical packages for a particular programming language.

Superclass

AbstractPl atformElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 167

Associations

platformElement:AbstractPlatformElement[0..*] The set of platform elements that are owned by the given
ResourceType.

Constraints

Semantics
ResourceType may represent an individual runtime resource instance or a container for several such instances.

It isthe implementer’ s responsibility to identify runtime resources used by the existing software system according to the
semantics of the platform used by the existing system, resource configuration files, and other appropriate sources of
information.

Specific subclasses of ResourceType define specific categories of resources available to implementers. Other types of
resources can be represented by a generic instance of ResourceType meta-model element with a stereotype.

15.5.2 NamingResource Class

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of ResourceType.

Superclass

ResourceType

Semantics

15.5.3 MarshalledResource Class

MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource
is a subclass of ResourceType.

Superclass

ResourceType
Semantics

15.5.4 MessagingResource Class

M essagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

Superclass

ResourceType

168 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

15.5.5 FileResource Class

FileResource represents platform resources that provide any non-database related storage. In the meta-model the
FileResource class is a subclass of ResourceType. It also implements the Datal nterface so that this class can be the
endpoint of Data relations.

Superclass

ResourceType

Semantics

15.5.6 ExecutionResource Class

ExecutionResource represents dynamic Runtime elements (e.g., process or thread).

Superclass

ResourceType

Semantics

15.5.7 LockResource Class

L ockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass

ResourceType

Semantics

15.5.8 StreamResource Class

StreamResource represents a simple input/output resource, for example UNIX-like stream.

Superclass

ResourceType
Semantics

15.5.9 DataManager Class

DataManager represents a database management system. DataM anager is associated with particular data elements that
represent the data description of the data managed by the data manager.

Superclass

ResourceType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 169

Semantics

15.5.10 PlatformEvent Class

The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

ResourceType

Attributes

kind:String Represents the nature of the action performed by this Event.

Semantics

15.5.11 PlatformAction Class

PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the
action represented by a particular element is designated by its “kind” attribute.

Superclass

AbstractPlatformElement

Attributes

kind:String Represents the nature of the action performed by this element.

Associations

platformElement:PlatformEvent[0..*] The set of platform events that are owned by the given PlatformAction.

15.5.12 ExternalActor Class

ExternalActor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model ExternalActor is a PlatformElement. Semantics of External Actors is outside of the scope of KDM.

Superclass

PlatformAction
Constraints

Semantics

170 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

15.6 PlatformRelations Class Diagram

The PlatformRelations class diagram defines associations between ResourceTypes. The classes and associations of the
PlatformRelations diagram are shown in Figure 15.3.

AbstractPlatformRelationship

BindsTo

+to
+Hrom {redefines to}
{redefines from}

ResourceType 1

Figure 15.3 - PlatformRelations Class Diagram
15.6.1 BindsTo Class
BindsTo defines a semantic association between two ResourceTypes.

Superclass

PlatformRelationship

Associations

from:ResourceType[1] The ResourceType that is the source of the relationship (the from-endpoint).

to:ResourceType[1] The ResourceType that is the target of the relationship (the to-endpoint).

Constraints

Semantics

15.7 ProvisioningRelations Class Diagram

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.4.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 171

AbstractPlatform Relationship

Requires
+from
{redefines from}
0..* 0..*
+to 1

{redefines to 1 DeployedComponent

AbstractP latform Element

Figure 15.4 - ProvisioningRelations Class Diagram
15.7.1 Requires Class
Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass

PlatformRelationship

Associations

from:DeployedComponent[1] The DeployedComponent that is the source of the relationship (the from-
endpoint).

to:AbstractPlatformElement[1] The AbstractPlatformElement that is the target of the relationship (the to-
endpoint).

Constraints

Semantics

15.8 PlatformActions Class Diagram

The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.5.

172 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractActionRelationship
(from action)

ReadsResource
WritesResource 0
ManagesResource
0.* 0.*
DefinedBy
+to
+from defi ¢
0.* 0.* {redefines from}) {redefines to}
{redefings fronfredefines form}) 1, 1
+o Resource Type
*to 1 {redefines to}

A\

defines to N
1 }+from 1 | ActionElement

Codeltem {redefines from}__ (from action)
(from code) wkind : String

Figure 15.5 - PlatformActions Class Diagram

15.8.1 ManagesResource Class

ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the
“kind" attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

Constraints:

1. This relationship should not be used in Code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 173

15.8.2 ReadsResource Class

ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRel ationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models

15.8.3 WritesResource Class

WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models.

15.8.4 DefinedBy Class

DefinedBy is a meta-model element that represents association between a platform resource and the logical package that
describes the interface to this resource. The Codeltem at the to-endpoint of this KDM relationship is usually an interface
or a package.

Superclass

Action::AbstractActionRelationship

174 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:Codeltem[1] the Codeltem describing the resource

Constraints

1. This relationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. It is the implementer’s responsibility to correctly associate the platform resource
with the corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical
description of the package usually refers to some external implementation, as platform resources are usually described by
some third-party packages, provided as part of the runtime platform of the application. Individual API calls corresponding
to the given resource, should have the CompliesTo relations to the individual API descriptions the definition represented
by the Codeltem at the to-endpoint of the DefinedBy relationship.

15.9 Deployment Class Diagram

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.6.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 175

AbstractPlatformElement

DeployedSoftwareSystem

0. -
Machine

+group
{subsets group}

+deployedResource
{subsets ownedElement}

+owner
{subsets owner}

+groupedComponent
{subsets groupedElement}

0..* +deployedComponent D eployedResource
{sybsets ownedElement}
D eployed Component 01
+owner
o.* {subsets ownern}
+group
{subsets group}
+platformElement 0.*
0.% {subsets ownedElement} ResourceType
+
groupedCode Module

{subsets groupedElement} (from code)

Figure 15.6 - Deployment Class Diagram

15.9.1 DeployedComponent Class

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform parts
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

Superclass

AbstractPlatformElement

Associations

groupedCode:Module[0..*] The code components that are deployed to the target DeployedComponent (KDM
grouping association).

176 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints

Semantics

15.9.2 DeployedSoftwareSystem Class

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. The logical view of KDM model describes one or more SoftwareSystems.
Each SoftwareSystem involves one or more Components. Some components can be involved in more than one
SoftwareSystem (allowing description of the so-called Software Product Lines). Each Component involves one or more
model Modules. Again, each Module can be involved in more than one Component. Component is a unit of deployment.
Each logical component can be deployed multiple times, each time represented by a unique DeploymentComponent
element. DeployedSoftwareSystem is a counterpart of the corresponding logical SoftwareSystem.

Superclass

AbstractPl atformElement

Associations

groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.

Constraints

Semantics

15.9.3 Machine Class

The Machine is a meta-model element that represents the hardware node which hosts deployed components.

Superclass

AbstractPlatformElement

Associations

deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.

deployedResource:DeployedResource[0..*] The set of DeployedResource elements deployed to this node.

Constraints

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 177

15.9.4 DeployedResource Class

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of ResourceType elements.
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated
with multiple DeployedResources.

Superclass

AbstractPlatformElement

Associations

platformElement:ResourceType|[0..*] The set of ResourceTypes that are deployed into the target
DeployedResource.

Constraints

Semantics

15.10 RuntimeResources Class Diagram

The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example,
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in
many cases relations between the dynamically created instances of processes and threads are an essential part of the
knowledge of existing systems. Another example of dynamic structures involves deployed components that are |oaded
dynamically.

The classes and associations of the RuntimeResources diagram are shown in Figure 15.7.

ResourceType

I

RuntimeResource

Thread Process

Figure 15.7 - RuntimeResources Class Diagram

178 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

15.10.1 RuntimeResource (generic)

The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource
is used as the endpoint of certain relationships.

Superclass

ResourceType

Semantics

15.10.2 Process Class

The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Constraints

Semantics

15.10.3 Thread Class

The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

Superclass

RuntimeResource
Constraints

Semantics

15.11 RuntimeActions Class Diagram

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.8.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 179

AbstractPlatformRelationship

DeployedComponent |,
Loads
1
{redefines to} 0.. 0%
RuntimeResource | *10 Spawns
1 0.4
{redefines to} 0..*
f +rom
+Hrom 1 {redefines from}
{redefines from} 1
ActionElement
(from action)

<kind : String

Figure 15.8 - RuntimeActions Class Diagram

15.11.1 Loads Class

The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

AbstractPlatformRel ationship

Associations

from:ActionElement|[1] “abstracted” action element owned by some resource

to:DeploymentComponent[1] The component that is being |oaded.

180 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints
Semantics

15.11.2 Spawns Class

The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation”
relationship between a SpawningService action endpoint and the Runnablelnterface (Process or Thread).

Superclass

AbstractPlatformRelationship

Associations

from:ActionElement[1] “abstracted” action element owned by some resource
to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being
spawned.

Constraints

Semantics

15.12 ExtendedPlatformElements Class Diagram

The ExtendedPlatformElements class diagram defines two “wildcard” generic elements for the code model as determined
by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.9.

AbstractP latform Relationship

tHfrom
<——— PlafformRelationship

AbstractPlatformElement

{redefines from}

0
1 {redefines to}

PlatformElement KDMEntity
(from core)

Figure 15.9 - ExtendedPlatformElements Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 181

15.12.1 PlatformElement Class (generic)

The PlatformElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformElement

Constraints
1. PlatformElement should have at least one stereotype
Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity types of the platform model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

15.12.2 PlatformRelationship Class (generic)

The PlatformRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformRel ationship

Associations

from:AbstractPlatformElement[1] the platform element endpoint

to:KDMEntity[1] the target of the relationship

Constraints
1. PlatformRelationship should have at least one stereotype
Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the platform model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

182 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

16

Ul Package

16.1 Overview

The Ul package defines a set of meta-model elements whose purpose is to represent facets of information related to user

interfaces, including their composition, their sequence of operations, and their relationships to the existing software

systems.

16.2 Organization of the Ul Package

The Ul package consists of the following 6 class diagrams:

The Ul package depends on the following packages:

UlModel
UlInheritances
UlResources
UlRelations
UlActions
ExtendedUI Elements

Action
Code
kdm
Source
Core

16.3 UIModel Class Diagram

The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to static representations of the principal components of a user interface. The class diagram

shown in Figure 16.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

183

UIModel

AbstractUIRelationship

+model
{subsets model} +UIRelation

{subsets ownedRelation}

+UIElement

*

AbstractUIElement | ©-

+group
{subsets group}

+owner
{subsets owner}

+abstraction
{subsets ownedElement

ordered} +implementation

{subsets groupedElement} 0..*

ActionEIe_ment AbstractC odeElement
(from action) (from code)

Figure 16.1 - UIModel Class Diagram
16.3.1 UIModel Class
The UIModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass

KDMModel

Associations

UIElement:UIElement[0..*] user interface elements owned by the given UIModel

Constraints

Semantics

UIModel provides a container for various user-interface elements. It is the implementer’s responsibility to arrange user-
interface elements into one or more UIModel containers.

16.3.2 AbstractUIElement Class (abstract)

The AbstractUIElement is the abstract superclass for various concrete user interface elements. As such, it is the class that
represents both compound and elementary items in a model of a system’s user interface.

Superclass

KDMEntity

184 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

UlIRelation:AbstractUIRelationship[0..*] Ul relationships originating from the given Ul element
abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to AbstractCodeElement from some CodeModel that
are represented by the current Ul element.

source: SourceRef[0..1] link to the physical artifact for the given Ul element

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of Computationa Object or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

It is the implementer’s responsibility to map specific user interface element types determined by the particular user-
interface system of the existing software system, into concrete subclasses of the AbstractUIElement. It is the
implementer’s responsibility to map each user interface element into some instance of the AbstractUlElement.
Implementation elements are one or more Computational Objects or ActionElements from some CodeModel that are
represented by the current Ul element. “ Abstraction” actions can be used to represent precise semantics of the Ul
Element.

16.3.3 AbstractUIRelationship Class (abstract)

The AbstractUIRelationship is the abstract superclass for various user interface relationships.
Superclass

KDMRelationship

Constraints

Semantics

It is the implementer’s responsibility to map specific user interface association types determined by the particular user-
interface system of the existing software system, into concrete subclasses of the AbstractUIRelationship. It is the
implementer’s responsibility to map each user interface association into some instance of the AbstactUIRelationship.

16.4 Ullnheritances Class Diagram

The Ullnheritances class diagram defines how classes of the Ul package subclass core meta-model elements from the
KDM Core package. The classes and associations that make up the UlInheritances class diagram are shown in Figure
16.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 185

KDMModel KD M E ntity KDMRelationship
(from kdm) (from core) (from core)
UlModel AbstractUIRelationship
AbstractU IE lem ent
0.1
UlSqurce
+source
0“*
SourceRef

(from source)

Figure 16.2 - Ulinheritances Class Diagram

16.5 UIResources Class Diagram

The UIResource class diagram defines several specific KDM containers that own collections of user interface elements.
The class diagram shown in Figure 16.3 captures these classes and their relations.

+UIElement
{subsets ownedE lement}

AbstractUIElement

UIResource UlAction
e okind : String €
0.1
+owner
{subsets owneT} +owner
{subsets owner}
UIDisplay
UlField
UIEvent
<kind : String
0.*
Screen +UElement
Report {subsets ownedElement}

Figure 16.3 - UIResources Class Diagram

186 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

16.5.1 UIResource Class (generic)

The UIResource is the superclass for several user interface elements that can be containers for other user interface
elements. For example, it represents a compound unit of display. This is a generic element.

Superclass

AbstractUl Element

Associations

UlElement:UIElement[0..*] Ul elements owned by this UIResource

Constraints
« UIResource should have at |east one stereotype.
Semantics

UIResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2 UlDisplay Class (generic)

The UlDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UIResource

Constraints
« UlDisplay should have at |east one stereotype.
Semantics

UlDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3 Screen Class

The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of AbstractUIElement and its subclasses.

Superclass
UlIDisplay
Semantics

16.5.4 Report Class

The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of AbstractUlElement and its subclasses.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 187

Superclass

UIDisplay

Semantics

16.5.5 UlField Class

The UIField is a unit of display, such as a control on a form, a text field on a character-mode terminal, or afield printed
on areport.

Superclass
UlResource

Constraints

Semantics

16.5.6 UlEvent Class

The UlEvent class is a meta-model element representing various events and callbacks associated with user interfaces.
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
UlIResource

Attributes

kind:String represents the nature of the action performed by this Event

16.5.7 UlAction Class

UlAction class follows the pattern of a “resource action” class, specific to the Ul package. The nature of the action
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUIElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

UlElement:UIEvent[0..*] Ul events owned by this UlAction

Semantics

188 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

16.6 UlRelations Class Diagram

The UlIRelations class diagram provides basic meta-model constructs to define the binding between elements of a display
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

AbstractUIRelationship

0“*
0.* UIFlow
UlLayout | % +from
0.* {redefines fram}
1
1 1 AbstractU IElement
UlResource | 1
+o
+
0 +from {redefines to}
{redefines to} {redefines from}

Figure 16.4 - UIRelations Class Diagram

16.6.1 UlFlow Class

The UIFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of
Display to another.

Superclass

AbstractUlRelationship

Associations

from:AbstractUIElement[1]

to:AbstractUIElement[1]

Constraints
Semantics

16.6.2 UlLayout Class

The UlLayout relationship class captures an association between two instances of Display — one that defines the content
for a portion of a user interface, and one that defines its layout.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 189

Superclass

AbstractUIRelationship

Associations

from:UIResource[1]

to:UIResource[1]

Constraints

Semantics

the origin Ul Resource

the target Ul Resource

16.7 UlActions Class Diagram

The UlActions class diagram defines several KDM relations for the Ul package. It provides basic meta-model constructs
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may

generate.

The class diagram shown in Figure 16.5 captures these classes and their relations.

AbstractU IRelationship

AbstractActionRelationship
(from action)

Displaysimage

+to
1{redefines to}

Image
(from source)

ManagesuUl

Displays

ReadsUI

0..*

m} +from
redefines fr
1

+from
{redefines from}

ActionElement
(ffom action)

<kind : String

Figure 16.5 - UlActions Class Diagram

190

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

+to
{redefines to}

UIResource

1
+10
{redefines to}

+from
{redefines from}

16.7.1 Displays Class

The Displays relationship class represents the relationship between an instance of Callablelnterface and the instance of
UlElement that is presented on the interface as a result of the execution of the Callablelnterface.

Superclass

AbstractUIRelationship

Associations

from:ActionElement[1] the ActionElement that displays a certain Ul resource

to:UIResource[1] the target Ul resource

Constraints

Semantics

16.7.2 Displaysimage Class

The Displaysimage captures the relationship between an image file — an instance of Image — and its presentation on a user
interface — an instance of DisplayUnit.

Superclass

AbstractUl Relationship

Associations

from:ActionElement[1] The ActionElement that displays a certain Image.

to:lmage[1] the target Image element

Constraints

Semantics

16.7.3 ManagesUI Class

ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources that are not related to the flow of data to and from the resource. ManagesUI relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the UlAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 191

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

Constraints

1. This relationship should not be used in Code models.

16.7.4 ReadsUI Class

ReadsUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

Constraints

1. This relationship should not be used in Code models.

16.7.5 WritesUI Class

WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

Constraints

1. This relationship should not be used in Code models.

192 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

16.8 ExtendedUIElements Class Diagram

The ExtendedUIElements class diagram defines two “wildcard” generic elements for the Ul model as determined by the
KDM model pattern: a generic Ul entity and a generic Ul relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

AbstractUIRelationship

AbstractUIElement

<————— | UlRelationship
1 0..%

+from

{redefines from} +o

{redefines to}

UIElement

KDMEntity

(from core)

Figure 16.6 - ExtendedUIElements Class Diagram

16.8.1 UlElement Class (generic)

The UlElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractUl Element

Constraints
1. UlElement should have at least one stereotype.
Semantics

A Ul entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the Ul model. This is one of the KDM extension points that can integrate additional |anguage-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

16.8.2 UlRelationship Class (generic)

The UlRelationship relationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractUIRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 193

Associations

from:AbstractUIElement[1] the origin Ul element

to:KDMEntity[1] the target KDM entity

Constraints
1. UIRelationship should have at least one stereotype.
Semantics

A Ul relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the Ul model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

194 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

17

Event Package

17.1 Overview

The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of

applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions,

and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based

runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

17.2 Organization of the Event Package

The Event package consists of the following 6 class diagrams:

The Event package depends on the following packages:

EventModel
Eventlnheritances
EventResources
EventRelations
EventActions
ExtendedEventElements

Core
kdm
Source
Code
Action

17.3 EventModel Class Diagram

The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific

meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

195

EventModel AbstractEventRelationship

0..*

+eventRelation
{subsets ownedRelation}

+model

{subsets model}

+eventElement

+group
{subsets ownedElement}

{subsets group}

AbstractEventElement

.1

+owner

+abstraction
{subsets owner}

{subsets ownedElement +implementation

ordered} {subsets groupedElement} g =
0..*
ActionEIe_ment AbstractCodeElement
(from action) (from code)

Figure 17.1 - EventModel Class Diagram

17.3.1 EventModel Class

The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass

KDMModel

Associations

eventElement:AbstractEventElement[0..*] event elements owned by the given event model

Constraints

Semantics

EventModel is a container for instances of event elements. It is the implementer’s responsibility to arrange event elements
into one or more event models.

17.3.2 AbstractEventElement Class (abstract)
The AbstractEventElement is an abstract superclass for various event elements.

Superclass

K DM Entity

196 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

eventRelation:AbstractEventRelationship[0..*] event relations owned by the give element
abstraction:ActionElement[0..*] owned “abstracted” action elements
implementation:AbstractCodeElement|[0..*] group association to AbstractCodeElement elements from some

CodeModel that are represented by the current EventElement

source:SourceRef[0..*] traceability links to the “source code” of the artifact

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclass of Computational Object or ActionElement.
3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more Computational Objects or ActionElements that are represented by
the current EventElement. “Abstraction” actions can be used to represent precise semantics of the EventElement.

17.3.3 AbstractEventRelationship Class (abstract)

The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model
element for representing various relations involving states and events.

Superclass

KDMRelationship
Constraints

Semantics

17.4 Eventinheritances Class Diagram

The Eventlnheritances class diagram defines how classes of the Event package inherit core meta-model classes from
KDM Core package. The classes and associations that make up the Eventinheritances diagram are shown in Figure 17.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 197

KDMModel K DM E ntity KDMRelationship

(from kdm) (from core) (from core)
EventModel AbstractEventElement AbstractEventRelationship
0.1

EventSource

+source 0

SourceRef
(from source)

Figure 17.2 - Eventinheritances Class Diagram

17.5 EventResources Class Diagram

The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures
these classes and their relations.

+eventElement
{subsets ownedElement} | A ptractEventElement

0“*
0.1
{subsets owner} EventAction
- EventResource Zkind : String €@
0..1
+owner +owner
{subsets owner}
State Transition +eventElement
Event {subsets ownedElement}
«kind : String
0..*
hitialState OnEntry OnExit

Figure 17.3 - EventResourcesClass Diagram

198 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

17.5.1 EventResource Class (generic)

The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

AbstractEventElement

Associations

eventElement:AbstractEventElement[0..*] Event elements owned by this EventResource

Constraints

Semantics

17.5.2 Event Class

The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

EventResource

Attributes

kind:String represents the nature of this Event

Constraints

Semantics

17.5.3 State Class

The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm,
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass

EventResource

17.5.4 InitialState Class

The Initial State class is a subclass of the State class. It represents a default initial state.

Superclass

State

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 199

17.5.5 Transition Class

The Transition class represents a transition that is performed when a certain event is consumed is a certain state.
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by
using the “ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually,
thisis a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action
element can be used.

Superclass

EventResource

17.5.6 OnEntry Class

The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been entered.

Superclass

Transition

17.5.7 OnExit Class

The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been

Superclass

Transition

17.5.8 EventAction Class

EventAction class follows the pattern of a“resource action” class, specific to the event package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractEventElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

eventElement:Event[0..*] The set of Event elements that is owned by the current EventAction
element.

200 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

17.6 EventRelations Class Diagram

EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

AbstractEventRelationship

NextState
0.* 0.* ConsumesEvent | {redefines to}
+to
1 +to 0..*
{redefines to} Event
State 1
! Transition +from
+from {redefines from}

{redefines from}
Figure 17.4 - EventRelations Class Diagram

17.6.1 NextState Class

The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based
frameworks this information can be derived from the initialization of framework specific data structures. When there
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action
containers associated with various elements involved.

Superclass

AbstractEventRelationship

Associations

to:Transition[1] the transition

from:State[1] the state

17.6.2 ConsumesEvent Class

The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event.
For example, in statically configured state-machine based frameworks this information can be derived from the
initialization of framework specific data structures.

Superclass

AbstractEventRel ationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 201

Associations

from:Transition[1] the transition

to:Event[1] the event

17.7 EventActions Class Diagram

The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

AbstractActionRelationship
(from action)

A

ReadsState ProducesEvent
1 U 0.*
O”* O”* .
Event +to.
St L o @kind : Stringeefines to} HasState
{redefines to}
0..*
{refrgf{Hes from} 0..*
+f 1 +from
rom 1 {redefines from} +to
{redefines from} | ActionElement | 1 1 {redefines to}
ok(lf:éneg?:;)g AbstractE ventElement

Figure 17.5 - EventActions Class Diagram

17.7.1 ReadsState Class

ReadsState class follows the pattern of a*“resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that
owns this relationship through the “ abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

202 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints:
1. This relationship should not be used in Code models.

2. The to endpoint of the relationship should be State of one of its subclasses.

17.7.2 ProducesEvent Class

ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
EventAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being produced

Constraints
1. This relationship should not be used in Code models.

2. The “to” endpoint of the relationship should be Event.

17.7.3 HasState Class

HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of
an event model with any resource.

Superclass

Action::AbstractActionRel ationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

Constraints

1. This relationship should not be used in Code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 203

17.8 ExtendedEventElements Class Diagram

The ExtendedEventElements class diagram defines two “wildcard” generic elements for the event model as determined by
the KDM model pattern: a generic event entity and a generic event relationship.

The classes and associations of the ExtendedEventElements diagram are shown in Figure 17.6.

AbstractE ventRelationship

AbstractEventElement

1 EventRe lationship

0..
+from -
{redefines from} ON KD M Entity

1 (from core)

+to
{redefines to}

EventElement

Figure 17.6 - ExtendedEventElements Class Diagram

17.8.1 EventElement Class (generic)

The EventElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractEventElement

Constraints
1. EventElement should have at least one stereotype.
Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the event model. Thisis one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

17.8.2 EventRelationship Class (generic)

The EventRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractEventRelationship

204 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Associations

from:AbstractEventElement[1] the event element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. EventRelationship should have at least one stereotype.
Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 205

206 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

18 Data Package

18.1 Overview

The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the
existing software system. This fact of knowledge corresponds to the logical view. It is determined by a data description
language. KDM Data model uses the foundation provided by the Code package related to the representations of simple
datatypes. KD Data model represents complex data repositories, such as record files, relational databases, structured data
stream, XML schemas and documents.

18.2 Organization of the Data Package
The Data package consists of the following 11 class diagrams:

« DataModel

» Datalnheritance
* RelaionaData

e ColumnSet

e StructuredData

« ContentElements
« ContentRelations
« Keylndex

« KeyRelations

« DataActions

» ExtendedDataElements

The Data Package depends on the following packages:

e Core

e kdm

e Source
« Code

e Action

18.3 Data Model Class Diagram

The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the
DataModel class diagram.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 207

DataModel

AbstractDataR elationship

0.*
+dataRelation

+model {subsets ownedRelation}

{subsets model}

+dataElement 0.* 1
{subsets ownedElement}

AbstractDataElement

0.1
+owner
+abstraction subsets owner
{subsets ownedElement { }
ordered}

ActionElement 0..%
(from action)
«kind : String

Figure 18.1 - Data Model

18.3.1 DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

dataElement :DataElement[0..*] data elements owned by the given DataM odel

Constraints

Semantics

Data model is alogical container for the instances of data elements. It is the implementer’s responsibility to arrange the
instances of the data elements into one or more DataModels.

208 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

18.3.2 AbstractDataElement Class (abstract)

The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data
element within a system. For example, a Customer_Number is one type of data element that might be found within a
system. Data model defines several specific subclasses of AbstractDataElement, corresponding to common subcategories
of data elements.

Superclass

KDMEntity

Associations

abstraction: ActionElement[1] the “abstracted” actions that are owned by the current element
dataRelation:DataRelation[0..*] data relationships that originate from this data el ement
source: SourceRef[0..1] link to the physical artifact for the given data element

Constraints

Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API
callsin the code model. Abstracted actions own action relations to elements of code model, as well as some data relations.

Abstracted actions are ordered. The first action is the entry point.

18.3.3 AbstractDataRelationship Class (abstract)

An AbstractDataRel ationship class is an abstract superclass of the meta-model elements that represent associations
between data elements.

Superclass
KDMRelationship
Constraints

Semantics

AbstractDataRel ationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data
model.
18.4 Data Inheritances Class Diagram

The Datal nheritances Diagram in Figure 18.2 shows how various data classes derive from the Core KDM classes. Each of
the Data Package classes within this diagram inherits certain properties from KDM classes defined within the KDM Core
Package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 209

KDMModel

(from kdm) KDM Entity KDMRelationship

(from core) (from core)

1 i ;

DataModel AbstractDataRelationship

AbstractDataElement

0..1

DataSlource

+source 0+

SourceRef
(from source)

Figure 18.2 - Datalnheritances Diagram

18.5 DataResources Class Diagram

The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM
framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

The DataResources diagram defines the framework for various data models. This framework follows the common pattern
of the Runtme Resource Layer. Data model defines a generic DataResource meta-model element that represents various
resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources.
Data model includes AbstractDataContent element which is a direct subclass of AbstractDataElement, and not a subclass
of DataResource. Subclasses of AbstractContentElement are owned by XML Schema element.

210 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

AbstractDataElement

+dataElement
{subsets ownedElement}

O“*
DataResource
+owner
{subsets owner}
- o1 +owner
DkatzActlon - DataEvent {subsets owner}
<kind : String €= ind : Stri -
9 0.* A 8 St DataContainer
+group 0..1
{su%sets group} +dataElement
0. {subsets ownedElement}
Catalog RelationalSchema
+owner
{subsets owner} 0.1
0. +implementation .
{subsets groupedElement} 0..
ActionElement Codeltem
(from action) (from code) | +codeElement
{subsets ownedElement}

Figure 18.3 - RelationalData Class Diagram

18.5.1 DataResource Class (generic)

The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent
and IndexElement.

Superclass

AbstractDataElement

Constraints

1. DataResource should have at least one stereotype

Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that
is associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base
element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2 DataContainer Class (generic)

The DataContainer class is a generic meta-model element that represents various database containers.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 211

Superclass

DataResource

Associations

dataElement :DataResource[0..*] owned data resources

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that
isalogical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the
base element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that
can integrate additional 1anguage-specific, application-specific, or implementer-specific pieces of knowledge into the
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3 Catalog Class
The Catalog class is the top level container that represents a relational or a hierarchical database.
Superclass

DataContainer

Semantics

18.5.4 RelationalSchema Class
The Relational Schema class is a relational database schema.

Superclass

DataContainer

Associations

codeElement:Codeltem([0..*] Stored procedures owned by this schema.

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example,
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data
actions.” Abstracted actions represent a “virtual” data manipulation statement, which is being implemented through
embedded data manipulation constructs (and the corresponding “generated” API calls).

In the situation of the data manipulation and data description scripts that are executed directly by the relational database
engine, KDM allows more tight integration of the corresponding Codeltem with the Data Model.

212 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

18.5.5 DataEvent Class

The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of
stored procedures, the so-called triggers. KDM models database events as “first class citizens’ of the KDM
representation.

Superclass

DataResource

Attributes

kind :String semantic description of the data event

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on a table or view.
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataElement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure,
which is represented as a CallableUnit, owned by a certain Relational Schema. Trigger is associated with a data event
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a
certain DataContainer.

18.5.6 DataAction Class

DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractDataElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

implementation:ActionElement[0..*] group association to ActionElement represented by the current DataAction

dataElement:DataEvent[0..*] event elements owned by the current DataAction

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 213

Semantics

DataAction represents a “virtual” action element that represents the logical action performed by the runtime platform of
the existing software system.

18.6 ColumnSet Class Diagram

The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases,
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4
captures these classes and their relations.

DataContainer

+owner
{subsets owner} .
0..* ltemUnit
ColumnSet (from code)
0..1
+itemUnit
{subsets ownedElement
ordered}
DataSegment
RecordFile
RelationalView RelationalTable

Figure 18.4 - ColumnSet Class Diagram

18.6.1 ColumnSet (generic)

The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields).
Columns are modeled as ItemUnits.

Superclass

DataContainer

Associations

itemUnit :ltemUnit[0..*] Individual columns owned by this ColumnSet are represented as data el ements

Semantics

ColumnSet corresponds to an |SO/IEC 11404 Table datatype, whose values are collections of values in the product space of
one or more field datatypes, such that each value in the product space represents an association among the values of the fields.
Although the field datatypes may beinfinite, any given value of atable datatype contains a finite number of associations.

214 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

KDM defines several concrete subclasses of ColumnSet to represent several common data organi zations, such as relational
Tables and Views, Record files and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.

18.6.2 RelationalTable Class

A Relational Table is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass

ColumnSet

Semantics

Tables are entities that contain all the data in relational databases. Each table represents a type of data that is meaningful
to its users. A table definition is a collection of columns. In tables, data is organized in a row-and-column format similar
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example,
atable that contains employee data for a company can contain a row for each employee and columns representing
employee information such as employee number, name, address, job title, and home telephone number.

Tables in arelational database have the following main components:;

e Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having
columnsfor 1D, color, and weight.

* Rows. Each row represents an individua occurrence of the object modeled by the table. For example, the parts table
would have one row for each part carried by the company.

The PlatformResource that corresponds to Relational Table is DataM anager.

Example (T-SQL)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)
CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date,

PRIMARY KEY (contract, recognizedOn))

CREATE PROCEDURE INSERT RECOGNITION
(IN contractID int, IN amount decimal, IN recognizedOn date, OUT result int)
LANGUAGE SQL
BEGIN
INSERT INTO revenueRecognitions VALUES(contractID, amount, recognizedOn) ;
SET result = 1;
END

CREATE TRIGGER reminderl

ON Contracts.revenueRecognitions
AFTER INSERT, UPDATE

AS RAISERROR ('Notify Sales', 16, 10)
GO

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 215

xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.1/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
xmlns:platform="http://schema.omg.org/spec/KDM/1.1/platform" name="Schema Example">
<model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts"s>
<dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts"s>
<dataElement xmi:id="1id.2" xmi:type="data:RelationalTable" name="products">
<dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>
<itemUnit xmi:id="id.4" name="ID" type="id.57"/>
<itemUnit xmi:id="id.5" name="name" type="1id.58"/>
<itemUnit xmi:id="id.é6" name="type" type="1id.58"/>
</dataElement>
<dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">
<dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>
<dataElement xmi:id="1id.9" xmi:type="data:ReferenceKey" implementation="id.12">
<dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>
</dataElement>
<itemUnit xmi:id="id.11" name="ID" type="id.57"/>
<itemUnit xmi:id="id.12" name="product" type="id.57"/>
<itemUnit xmi:id="id.13" name="revenue" type="1id.59"/>
<itemUnit xmi:id="id.14" name="dateSigned" type="id.60"/>
</dataElement>
<dataElement xmi:id="id.15" xmi:type="data:RelationalTable" name="revenueRecognitions">
<dataElement xmi:id="1id.16" xmi:type="data:UniqueKey" implementation="id.25 id.27"/>
<dataElement xmi:id="1id.17" xmi:type="data:ReferenceKey" implementation="id.25">
<dataRelation xmi:id="id.18" xmi:type="data:KeyRelation" to="id.8" from="id.17"/>
</dataElement>
<dataElement xmi:id="id.19" xmi:type="data:DataEvent" name="el" kind="Insert">
<abstraction xmi:id="id.20" name="el.l" kind="Call">
<actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.47" from="id.20"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1id.22" xmi:type="data:DataEvent" name="e2" kind="Update">
<abstraction xmi:id="id.23" name="e2.1" kind="Call">
<actionRelation xmi:id="id.24" xmi:type="action:Calls" to="id.47" from="id.23"/>
</abstractions>
</dataElement>
<itemUnit xmi:id="id.25" name="contract" type="id.57"/>
<itemUnit xmi:id="id.26" name="amount" type="id.59"/>
<itemUnit xmi:id="id.27" name="recognizedOn" type="id.60"/>
</dataElement>
<codeElement xmi:id="id.28" xmi:type="code:CallableUnit" name="INSERT RECOGNITIONS" kind="regular"s>
<entryFlow xmi:id="1d.29" to="id.35" from="id.28"/>
<codeElement xmi:id="1d.30" xmi:type="code:Signature">
<parameterUnit xmi:id="id.31" name="contractID" type="id.57" pos="1"/>
<parameterUnit xmi:id="id.32" name="amount" type="id.59" pos="2"/>
<parameterUnit xmi:id="id.33" name="recognizedOn" type="id.60" pos="3"/>
<parameterUnit xmi:id="id.34" name="result" type="id.57" kind="byReference" pos="4"/>
</codeElement>
<codeElement xmi:id="1id.35" xmi:type="action:ActionElement" name="al" kind="Insert">
<source xmi:id="id.36" language="SQL"
snippet="INSERT INTO revenueRecognitions VALUES(contractID, amount, recognizedOn);"/>
<actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.31" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.32" from="id.35"/>
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.33" from="id.35"/>

216 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<actionRelation xmi:id="id.40" xmi:type="data:WritesColumnSet" to="id.15" from="id.35"/>
<actionRelation xmi:id="id.41" xmi:type="data:ProducesDataEvent" to="id.19" from="id.35"/>
</codeElement>
<codeElement xmi:id="1d.42" xmi:type="action:ActionElement" name="a2" kind="Assign">
<source xmi:id="id.43" language="SQL" snippet="SET result = 1;"/>
<codeElement xmi:id="id.44" xmi:type="code:Value" name="1"/>
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.44" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Writes" to="1id.34" from="id.42"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.47" xmi:type="code:CallableUnit" name="reminderl"s>
<entryFlow xmi:id="1d.48" to="id.49" from="id.47"/>
<codeElement xmi:id="1d.49" xmi:type="action:ActionElement" name="a3" kind="Throw">
<codeElement xmi:id="1d.50" xmi:type="code:ValueList" name="error"s>
<valueElement xmi:id="id.51" xmi:type="code:Value"
name="" ;Notify sales!"" type="id.58"/>
<valueElement xmi:id="id.52" xmi:type="code:Value" name="16" type="id.57"/>
<valueElement xmi:id="id.53" xmi:type="code:Value" name="10" type="id.57"/>
</codeElement >
<actionRelation xmi:id="id.54" xmi:type="action:Throws" to="id.50" from="id.49"/>
</codeElement>
</codeElement>
</dataElement>
</model>
<model xmi:id="1d.55" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.56" xmi:type="code:LanguageUnit" name="SQL datatypes">
<codeElement xmi:id="1d.57" xmi:type="code:IntegerType" name="sgl int"/>
<codeElement xmi:id="1d.58" xmi:type="code:StringType" name="sqgl varchar"/>
<codeElement xmi:id="1d.59" xmi:type="code:DecimalType" name="sgl decimal"/>
<codeElement xmi:id="1d.60" xmi:type="code:DateType" name="sqgl date"/>
<codeElement xmi:id="1id.61" xmi:type="code:BooleanType"/>
</codeElement>
</model>
<model xmi:id="id.62" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.63" xmi:type="platform:ExternalActor">
<abstraction xmi:id="id.64" >
<actionRelation xmi:id="id.65" xmi:type="data:ProducesDataEvent" to="id.19" from="id.64"/>
</abstraction>
</platformElement>
</model>
</kdm: Segment >

18.6.3 RelationalView Class

A Relational View classis a specific subclass of the ColumnSet class that represents Views of relational databases. A view
isavirtual table whose contents are defined by a query. Like areal table, a view consists of a set of named columns and
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of
data come from tables referenced in the query defining the view and are produced dynamically when the view is
referenced.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 217

A view acts as afilter on the underlying tables referenced in the view. The query that defines the view can be from one
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly
structured data from different servers, each of which stores data for a different region of your organization.

Superclass

ColumnSet
Constraints

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few
restrictions on modifying data through them.

In KDM, a Relational View owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the
View can store the corresponding SELECT statement.

18.6.4 DataSegment Class

A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS.

Superclass

ColumnSet
Constraints

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real
world.

A database segment defines the fields for a set of segment instances similar to the way arelational table defines columns
for a set of rows in atable. In this way, segments relate to relational tables, and fields in a segment relate to columnsin a
relational table.

Example (IMS):

DLR_PCB1 PCB TYPE=DB, DBDNAME=DEALERDB, PROCOPT=GO, KEYLEN=42
SENSEG NAME=DEALER, PARENT=0

SENSEG NAME=MODEL, PARENT=DEALER

SENSEG NAME=ORDER, PARENT=MODEL

SENSEG NAME=SALES, PARENT=MODEL

SENSEG NAME=STOCK, PARENT=MODEL

PSBGEN PSBNAME=DLR_ PSB,MAXQ=200, LANG=JAVA

END

DBD NAME=DEALERDB, ACCESS= (HDAM, OSAM) , RMNAME= (DFSHDC40.1.10)

218 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

SEGM NAME=DEALER, PARENT=0,BYTES=94,

FIELD NAME= (DLRNO, SEQ,U) ,BYTES=4, START=1, TYPE=C
FIELD NAME=DLRNAME, BYTES=30, START=5, TYPE=C

SEGM NAME=MODEL, PARENT=DEALER, BYTES=43

FIELD NAME= (MODTYPE, SEQ,U) ,BYTES=2, START=1, TYPE=C
FIELD NAME=MAKE,BYTES=10,START=3, TYPE=C

FIELD NAME=MODEL,BYTES=10,START=13, TYPE=C

FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C

FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P

SEGM NAME=ORDER, PARENT=MODEL, BYTES=127

FIELD NAME= (ORDNBR, SEQ,U) ,BYTES=6,START=1, TYPE=C
FIELD NAME=LASTNME, BYTES=25, START=50, TYPE=C

FIELD NAME=FIRSTNME, BYTES=25,START=75, TYPE=C

SEGM NAME=SALES, PARENT=MODEL, BYTES=113

FIELD NAME= (SALDATE, SEQ,U) ,BYTES=8, START=1, TYPE=C
FIELD NAME=LASTNME, BYTES=25, START=9, TYPE=C

FIELD NAME=FIRSTNME, BYTES=25, START=34, TYPE=C
FIELD NAME=STKVIN,BYTES=20,START=94, TYPE=C

SEGM NAME=STOCK, PARENT=MODEL, BYTES=62

FIELD NAME= (STKVIN, SEQ,U),BYTES=20,START=1, TYPE=C
FIELD NAME=COLOR,BYTES=10,START=37, TYPE=C

FIELD NAME=PRICE,BYTES=5,START=47, TYPE=C

FIELD NAME=LOT,BYTES=10,START=52, TYPE=C

DBDGEN

FINISH

END

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.1/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm" name="IMS Example">
<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:Catalog" name="DEALERDB">
<dataElement xmi:id="id.2" xmi:type="data:DataSegment" name="Dealer">
<dataElement xmi:id="1d.3" xmi:type="data:DataSegment" name="Model">
<dataElement xmi:id="1d.4" xmi:type="data:DataSegment" name="Order">
<dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.6"/>
<itemUnit xmi:id="id.é6" name="ORDNBR" type="id.30" size="2"/>
<itemUnit xmi:id="id.7" name="LASTNME" type="id.30" size="25"/>
<itemUnit xmi:id="id.8" name="FIRSTNME" type="id.30" size="25"/>
</dataElement>
<dataElement xmi:id="1d.9" xmi:type="data:DataSegment" name="Sales">
<dataElement xmi:id="id.10" xmi:type="data:UniqueKey" implementation="id.11"/>
<itemUnit xmi:id="id.11" name="SALDATE" type="id.30" size="8"/>
<itemUnit xmi:id="id.12" name="LASTNME" type="id.30" size="25"/>
<itemUnit xmi:id="id.13" name="FIRSTNME" type="id.30" size="25"/>
<itemUnit xmi:id="id.14" name="STKVIN" type="id.30" size="20"/>
</dataElement>
<dataElement xmi:id="1d.15" xmi:type="data:DataSegment" name="Stock">
<dataElement xmi:id="id.16" xmi:type="data:UniqueKey" implementation="id.17"/>
<itemUnit xmi:id="id.17" name="STKVIN" type="id.30" size="20"/>
<itemUnit xmi:id="id.18" name="COLOR" type="id.30" size="10"/>
<itemUnit xmi:id="id.19" name="PRICE" type="id.30" size="5"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 219

<itemUnit xmi:id="id.20" name="LOT" type="id.30" size="10"/>

</dataElement>

<dataElement xmi:id="id.21" xmi:type="data:UniqueKey" implementation="id.22"/>

<itemUnit
<itemUnit
<itemUnit
<itemUnit

xmi :
xmi :
xmi :

xmi :

</dataElement>
<dataElement xmi:id="id.26" xmi:type="data:UniqueKey" implementation="id.27"/>
<itemUnit xmi:id="id.27" name="DRLNO" type="1id.30" size="4"/>

<itemUnit xmi:id="id.28" name="DLRNAME" size="30"/>

</dataElement>

</dataElement>
</model>

id="id.
id="id.
id="id.
id="id.

22" name="MODTYPE" type="1id.30" size="2"/>
23" name="MAKE" size="10"/>

24" name="YEAR" size="4"/>

25" name="MSRP" type="id.31" size="5"/>

<model xmi:id="1d.29" xmi:type="code:CodeModel" name="Common IMS datatypes">

<codeElement xmi:id="1d.30" xmi:type="code:StringType" name="IMS type c"/>

<codeElement xmi:id="1id.31" xmi:type="code:DecimalType" name="IMS type packeddecimal"/>

</model>
</kdm: Segment >

18.6.5 RecordFile Class

The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or

sequential.

Superclass

ColumnSet
Constraints

Semantics

In a non-relational database system, arecord is an entry in afile, consisting of individual elements of information, which
together provide full details about an aspect of the information needed by the system. Individual elements are held in
fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for
example, date of birth, department code, or full names will be found in a number of fields. A fileis a set of records, where
each record is a sequence of fields. A sequential file is a computer file storage format in which one record follows
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (cobol)

Thefollowing exampleillustrates the representation of RecordFile. The CodeModel of this exampleisincomplete asit focuses
on the DataModel, and well as combined representation involving the CodeM odel, DataM odel, PlatformModel, and

EventModel.

FILE-CONTROL.

SELECT SEQUENTIAL-FILE ASSIGN TO 'A:\SEQ.DAT'
ORGANIZATION IS LINE SEQUENTIAL.

SELECT INDEXED-FILE
ASSIGN TO 'A:\INDMAST.DAT'
ORGANIZATION IS INDEXED
ASSESS IS SEQUENTIAL

220

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

RECORD KEY IS IND-SOC-SEC-NUM
FILE STATUS IS INDEXED-STATUS-BYTES.

FILE SECTION.
FD SEQUENTIAL FILE
RECORD COTNAINS 39 CHARACTERS
DATA RECORD IS SEQUENTIAL-RECORD.
01 SEQUENTIAL-RECORD.
05 SEQ-SOC-SEC-NUM PIC X (9).
05 SEQ-REST-OF-RECORDPIC X(30).

FD INDEXED-FILE
RECORD CONTAINS 39 CHARACTERS
DATA RECORD IS INDEXED-RECORD.
01 INDEXED-RECORD.
05 IND-SOC-SEC-NUM PIC X(9).
05 IND-REST-OF-RECORDPIC X(30).

PROCEDURE DIVISION.
0010-UPDATE-MASTER-FILE.
OPEN INPUT SEQUENTIAL-FILE
OUTPUT INDEXED-FILE.

PERFROM UNTIL END-OF-FILE-SWITCH = 'YES'
READ SEQUENTIAL-FILE
AT END

MOVE 'YES' TO END-OF-FILE-SWITCH
NOT AT END
MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEC-NUM
MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD
WRITE INDEXED-RECORD
INVALID KEY PERFORM 0020-EXPLAIN-WRITE-ERROR
END-WRITE
END-READ
END-PERFORM.
CLOSE SEQUENTIAL-FILE
INDEXED-FILE.

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.1/data"
xmlns:event="http://schema.omg.org/spec/KDM/1.1/event"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
xmlns:platform="http://schema.omg.org/spec/KDM/1.1/platform" name="RecordFile example">
<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:RecordFile" name="SEQUENTIAL-FILE">
<itemUnit xmi:id="id.2" name="SEQ-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>
<itemUnit xmi:id="id.3" name="SEQ-REST-OF-RECORD" type="1d.115" ext="PIC X (30)" size="30"/>
</dataElement>
<dataElement xmi:id="1d.4" xmi:type="data:RecordFile" name="INDEXED-FILE">
<dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.7"/>
<dataElement xmi:id="id.é" xmi:type="data:Index" implementation="id.7"/>
<itemUnit xmi:id="id.7" name="IND-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

221

<itemUnit xmi:id="id.8" name="IND-REST-OF-RECORD" type="1id.115" ext="PIC X(30)" size="30"/>
</dataElement>
<dataElement xmi:id="1id.9" xmi:type="data:DataAction" name="dal" kind="open" implementation="id.44">
<abstraction xmi:id="id.10" name="dal" kind="open">
<actionRelation xmi:id="id.11" xmi:type="data:ManagesData" to="id.l1" from="id.10"/>
<actionRelation xmi:id="id.12" xmi:type="platform:ManagesResource" to="id.75" from="id.10"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1d.13" xmi:type="data:DataAction" name="da2" kind="open" implementation="id.44">
<abstraction xmi:id="id.14" name="da2" kind="open">
<actionRelation xmi:id="id.15" xmi:type="platform:ManagesResource" to="1id.79" from="id.14"/>
<actionRelation xmi:id="id.16" xmi:type="data:ManagesData" to="id.4" from="id.14"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1id.17" xmi:type="data:DataAction" name="da3" kind="read" implementation="id.47">
<abstraction xmi:id="id.18" name="da3" kind="read">
<actionRelation xmi:id="id.19" xmi:type="data:ReadsColumnSet" to="id.l1l" from="id.18"/>
<actionRelation xmi:id="id.20" xmi:type="action:Writes" to="id.2" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.3" from="id.18"/>
<actionRelation xmi:id="id.22" xmi:type="platform:ReadsResource" to="id.75" from="id.18"/>
</abstractions>
<dataElement xmi:id="id.23" name="at end" kind="EOF">
<abstraction xmi:id="id.24" name="ael">
<actionRelation xmi:id="id.25" xmi:type="action:ExceptionFlow" to="id.50" from="id.24"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1id.26" name="not at end" kind="NOT EOF">
<abstraction xmi:id="id.27" name="nael">
<actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.53" from="id.27"/>
</abstractions>
</dataElement>
</dataElement>
<dataElement xmi:id="1d.29" xmi:type="data:DataAction" name="da4" kind="write"
implementation="id.59">
<abstraction xmi:id="id.30" name="da4" kind="write"s>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.7" from="id.30"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.8" from="id.30"/>
<actionRelation xmi:id="id.33" xmi:type="data:WritesColumnSet" to="id.4" from="id.30"/>
<actionRelation xmi:id="id.34" xmi:type="platform:WritesResource" to="id.79" from="id.30"/>
</abstractions>
<dataElement xmi:id="id.35" name="invalid key" kind="INVALID KEY">
<abstraction xmi:id="id.36" name="ik1l">
<actionRelation xmi:id="id.37" xmi:type="action:ExceptionFlow" to="id.62" from="id.36"/>
</abstractions>
</dataElement>
</dataElement>
<dataElement xmi:id="id.38" xmi:type="data:DataAction" name="da5" kind="close">
<abstraction xmi:id="id.39" name="da5" kind="close"/>
</dataElement>
<dataElement xmi:id="1d.40" xmi:type="data:DataAction" name="daé6" kind="close">
<abstraction xmi:id="1d.41" name="da5" kind="close"/>
</dataElement>
</model>
<model xmi:id="id.42" xmi:type="code:CodeModel">
<codeElement xmi:id="id.43" xmi:type="code:CodeAssembly">

222 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<codeElement xmi:id="1d.44" xmi:type="action:ActionElement" name="a0" kind="open">
<gsource xmi:id="id.45" language="Cobol"
snippet="OPEN INPUT SEQUENTIAL-FILE OUTPUT INDEXED-FILE."/>
<actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.47" from="id.44"/>
</codeElement>
<codeElement xmi:id="1d.47" xmi:type="action:ActionElement" name="al" kind="read">
<source xmi:id="id.48" language="Cobol" snippet="READ SEQUENTIAL-FILE"/>
<actionRelation xmi:id="id.49" xmi:type="action:Flow" to="id.53" from="id.47"/>
</codeElement>
<codeElement xmi:id="1d.50" xmi:type="action:ActionElement" name="a2">
<source xmi:id="id.51" language="Cobol" snippet="MOVE 'YES' TO END-OF-FILE-SWITCH"/>
<actionRelation xmi:id="id.52" xmi:type="action:Flow" to="id.é64" from="id.50"/>
</codeElement>
<codeElement xmi:id="1d.53" xmi:type="action:ActionElement" name="a3">
<source xmi:id="id.54" language="Cobol" snippet="MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEQ-NUM"/>
<actionRelation xmi:id="id.55" xmi:type="action:Flow" to="id.56" from="id.53"/>
</codeElement>
<codeElement xmi:id="1d.56" xmi:type="action:ActionElement" name="a4">

<source xmi:id="1id.57" language="Cobol" snippet="MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD"/>

<actionRelation xmi:id="id.58" xmi:type="action:Flow" to="id.59" from="id.56"/>
</codeElement>
<codeElement xmi:id="1d.59" xmi:type="action:ActionElement" name="a5" kind="call">
<source xmi:id="id.60" language="Cobol" snippet="WRITE INDEXED-RECORD"/>
<actionRelation xmi:id="id.61" xmi:type="action:Flow" to="id.64" from="id.59"/>
</codeElement>
<codeElement xmi:id="1d.62" xmi:type="action:ActionElement" name="aé6" kind="write">
<source xmi:id="id.63" language="Cobol" snippet="PERFORM 0020-EXPLAIN-WRITE-ERROR"/>
</codeElement>
<codeElement xmi:id="1d.64" xmi:type="action:ActionElement" name="a7" kind="write"s>
<source xmi:id="id.65" language="Cobol" snippet="UNTIL END-OF-FILE-SWITCH = 'YES'"/>
<actionRelation xmi:id="id.66" xmi:type="action:FalseFlow" to="id.47" from="id.64"/>
<actionRelation xmi:id="id.67" xmi:type="action:TrueFlow" to="id.68" from="id.64"/>
</codeElement>
<codeElement xmi:id="1d.68" xmi:type="action:ActionElement" name="a8" kind="close">
<source xmi:id="id.69" language="Cobol" snippet="Close SEQUENTIAL-FILE INDEXED-FILE."/>
</codeElement>
</codeElement>
</model>
<model xmi:id="1d.70" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.71" xmi:type="platform:DeployedSoftwareSystem" groupedComponent="id
<platformElement xmi:id="id.72" xmi:type="platform:Machine">
<deployedComponent xmi:id="1id.73" groupedCode="id.43"/>
<deployedResource xmi:id="1id.74" >
<platformElement xmi:id="id.75" xmi:type="platform:StreamResource">
<abstraction xmi:id="id.76" name="ral" kind="">
<actionRelation xmi:id="id.77" xmi:type="data:HasContent" to="id.1" from="id.76"/>
<actionRelation xmi:id="id.78" xmi:type="event:HasState" to="id.89" from="id.76"/>
</abstractions>
</platformElement>
<platformElement xmi:id="id.79" xmi:type="platform:FileResource">
<abstraction xmi:id="id.80" name="ra2" kind="">
<actionRelation xmi:id="id.81" xmi:type="data:HasContent" to="id.4" from="id.80"/>
</abstractions>
</platformElement>
</deployedResource>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

.73/ >

223

</platformElement>
<platformElement xmi:id="id.82" xmi:type="platform:PlatformAction" name="pal" kind="open"s>
<abstraction xmi:id="1d.83" name="pal">
<actionRelation xmi:id="id.84" xmi:type="platform:ManagesResource" to="id.75" from="id.83"/>
</abstractions>
</platformElement>
<platformElement xmi:id="id.85" xmi:type="platform:PlatformAction" name="pa2" kind="open">
<abstraction xmi:id="1d.86" name="pa2">
<actionRelation xmi:id="id.87" xmi:type="platform:ManagesResource" to="1id.79" from="id.86"/>
</abstractions>
</platformElement>
</model>
<model xmi:id="1d.88" xmi:type="event:EventModel">
<eventElement xmi:id="id.89" xmi:type="event:EventResource" name="sequential-file">
<eventElement xmi:id="id.90" xmi:type="event:State" name="closed">
<eventElement xmi:id="id.91" xmi:type="event:Transition" name="trl">
<eventRelation xmi:id="1id.92" xmi:type="event:ConsumesEvent" to="id.110" from="id.91"/>
<eventRelation xmi:id="1id.93" xmi:type="event:NextState" to="id.103" from="id.91"/>
<eventRelation xmi:id="1d.94" xmi:type="event:NextState" to="id.95" from="id.91"/>
</eventElement>
</eventElement>
<eventElement xmi:id="id.95" xmi:type="event:State" name="opened.not at end">
<eventElement xmi:id="id.96" xmi:type="event:Transition" name="tr2">
<eventRelation xmi:id="1id.97" xmi:type="event:ConsumesEvent" to="id.111" from="id.96"/>
<eventRelation xmi:id="1d.98" xmi:type="event:NextState" to="id.103" from="id.96"/>
<eventRelation xmi:id="1d.99" xmi:type="event:NextState" to="id.95" from="id.96"/>
</eventElement>
<eventElement xmi:id="id.100" xmi:type="event:Transition" name="tr3">
<eventRelation xmi:id="1d.101" xmi:type="event:ConsumesEvent" to="id.112" from="id.100"/>
<eventRelation xmi:id="1d.102" xmi:type="event:NextState" to="id.90" from="id.100"/>
</eventElement>
</eventElement>
<eventElement xmi:id="id.103" xmi:type="event:State" name="opened.at end">
<eventElement xmi:id="id.104" xmi:type="event:Transition" name="tr4">
<eventRelation xmi:id="1d.105" xmi:type="event:ConsumesEvent" to="id.112" from="id.104"/>
<eventRelation xmi:id="1d.106" xmi:type="event:NextState" to="id.90" from="id.104"/>
</eventElement>
<eventElement xmi:id="id.107" xmi:type="event:Transition" name="tr5">
<eventRelation xmi:id="1d.108" xmi:type="event:ConsumesEvent" to="id.111" from="id.107"/>
<eventRelation xmi:id="1d.109" xmi:type="event:NextState" to="id.103" from="id.107"/>
</eventElement>
</eventElement>
<eventElement xmi:id="id.110" xmi:type="event:Event" name="open" kind="open"/>
<eventElement xmi:id="id.111" xmi:type="event:Event" name="read"/>
<eventElement xmi:id="id.112" xmi:type="event:Event" name="close"/>
</eventElement>
</model>
<model xmi:id="id.113" xmi:type="code:CodeModel">
<codeElement xmi:id="id.114" xmi:type="code:LanguageUnit">
<codeElement xmi:id="1id.115" xmi:type="code:StringType" name="X"/>
</codeElement>
</model>
</kdm: Segment >

224 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

18.7 Keylndex Class Diagram

The Keylndex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

DataResource

% +group

{subsets group} .
Ind exE lem ent lte m U nit
(from code)

0..* 0..*

+implementation

Index {subsets groupedElement}

ReferenceKey

UnigueKey

Figure 18.5 - KeyIndex Class Diagram

18.7.1 IndexElement Class (generic)

IndexElement class is a generic meta-model element that defines the common properties of the index items and key items
of persistent data stores. |ndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the
IndexElement.

Superclass

DataResource

Associations
implementation : ltemUnit[1] the set of ItemUnits that constitute the index

Constraints:

1. Index owned by a data element should group elements that are owned by that data element.

2. IndexElement should have a stereotype.

Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 225

18.7.2 UniqueKey Class

A UniqueKey is ameta-model element that represents primary keys in relational database tables, segments of hierarchical
databases, or indexed files. UniqueKey is a group of columns.

Superclass
IndexElement
Constraints
1. UniqueKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to a certain table or relational database or certain fieldsin an indexed file. A primary
key is one or more columns whose values uniquely identify every row in atable or every record in an indexed file. Normally
an index always exists on the primary key.

18.7.3 ReferenceKey Class

A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a
group of columns.

Superclass
IndexElement
Constraints
1. ReferenceKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key is the primary key of one data structure that is placed into arelated data structure to represent arelationship
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey isa
group of one or more columnsin arelational database table or segment of ahierarchical database or an indexed file that
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or
with itself.

18.7.4 Index Class
An Index class is a meta-model element that represents an index to arelational or hierarchical database or an indexed file.

Superclass

IndexElement

Constraints

1. Index owned by a data element should group ItemUnit elements that are owned by that data element.

226 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Semantics

Index is a mechanism to locate and access data within a database. An index may guote one or more columns and be a
means of enforcing uniqueness on their values.
18.8 Key Relations Class Diagram

Figure 18.6 depicts the key relations within the Data Package. A Key is a way to access data without reading through an
entire data structure sequentialy.

AbstractD ataRelationship

g

KeyRelation
0.
0..*
! 1
UniqueKe +to
d Y {redefines to} re ghtfrom, | ReferenceKey
m}

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceK ey in one data container, with a UniqueKey in another container, which
means that there is one and only one key value for that data.

18.8.1 KeyRelationship Class

A KeyRelationship is a meta-model element that represents an association between a ReferenceK ey with the
corresponding UniqueKey.

Superclass

AbstractDataRel ationship

Associations

from : ReferenceKey[1] Foreign key is a certain table, segment, or file.

to: UniqueKey[1] Primary key is a certain table, segment, or key.

Constraints

Semantics

ReferenceK ey is a group of one or more columnsin arelational database table or segment of a hierarchical database or an
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table,
segment, or file, or with itself.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 227

18.9 DataActions Class Diagram

DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the
runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one
or more code models through the “implementation” association. Each data action may own one or more “abstracted”
actions, which are used to model detailed resource related semantics.

AbstractActionRelationship
(from action)

ReadsColumnSet

ProducesDataEvent ManagesData

+to

0.* {redefines to} 0.*
+to oL 0.% oL
{redefines to} = 1 DataEvent
1 “Kind : String
ColumnSet
HasContent
+from
+o 1 {redefines from} > o
{redefines to}) {redefine; o
+o {redefines to}
o ActionElement [~ 1 fredefines to} 1
- i +from
i (rom action) AbstractDataElement
WritesColumnSet /1 Bkind : String {redefines from}
0.*
+rom

{redefines from}

Figure 18.7 - DataActions Class Diagram

18.9.1 ReadsColumnSet Class

ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

228 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Constraints
1. This relationship should not be used in Code models.

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.

18.9.2 WritesColumnSet Class

WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
user interface resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

Constraints
1. This relationship should not be used in Code models.
Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.

18.9.3 ManagesData Class

Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is no flow of datato or from the resource. ManagesData relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

Constraints

1. This relationship should not be used in Code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 229

Semantics

Manages represents a certain change of state to a certain AbstractDataElement.

18.9.4 HasContent Class

HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an
element of a data model with any resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

Constraints

1. This relationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

Example (Java, embedded SQL, JDBC)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

final String findContractStatements=
"SELECT * FROM contracts c, products p" +
"WHERE ID = ? AND c.product = p.ID ";

public void calculateRecognitions(long contractID) {
Connection db=DriverManager.getConnection ("jdbc:odbc:foobar", "sunny","") ;
PreparedStatement stmt=db.prepareStatement (findContractStatement) ;
stmt.setLong (1, contractID) ;
ResultSet contracts=stmt.executeQuery () ;
contracts.next () ;
Money totalRevenue=Money.dollars (contracts.getBigDecimal ("revenue")) ;
MfDate recognitionDate=new MfDate (contracts.getDate ("dateSigned")) ;

}

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.1/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.1/data"

230 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm"
xmlns:platform="http://schema.omg.org/spec/KDM/1.1/platform" name="Data Example">
<model xmi:id="1d.0" xmi:type="data:DataModel" name="Contracts">
<dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts"s>
<dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">
<dataElement xmi:id="1id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>
<itemUnit xmi:id="id.4" name="ID" type="id.172"/>
<itemUnit xmi:id="id.5" name="name" type="1id.173"/>
<itemUnit xmi:id="id.6" name="type" type="1d.173"/>
</dataElement>
<dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">
<dataElement xmi:id="1id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>
<dataElement xmi:id="1d.9" xmi:type="data:ReferenceKey" implementation="id.12">
<dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>
</dataElement>
<itemUnit xmi:id="id.11" name="ID" type="id.172"/>
<itemUnit xmi:id="id.12" name="product" type="id.172"/>
<itemUnit xmi:id="id.13" name="revenue" type="1d.174"/>
<itemUnit xmi:id="id.14" name="dateSigned" type="id.175"/>
</dataElement>
</dataElement>
<dataElement xmi:id="id.15" xmi:type="data:DataAction" name="dl" kind="Connect"
implementation="id.79">
<abstraction xmi:id="id.16" name="dal" kind="Connect'">
<actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.80" from="id.16"/>
<actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.81" from="id.16"/>
<actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.82" from="id.16"/>
<actionRelation xmi:id="id.20" xmi:type="platform:ManagesResource" to="id.67"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1d.21" xmi:type="data:DataAction" name="d2" kind="Select"
implementation="id.90 id.96 id.104">
<source xmi:id="id.22" language="sgl"
snippet=""select * from contracts c, products p where ID = ? and c.product=p.ID ""/>
<abstraction xmi:id="1id.23" name="wl" kind="Equal">
<codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="t1l" type="id.176" kind="register"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.11" from="id.23"/>
<actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.77" from="id.23"/>
<actionRelation xmi:id="id.27" xmi:type="action:Writes" to="id.24" from="id.23"/>
<actionRelation xmi:id="1d.28" xmi:type="action:Flow" to="1id.29"/>
</abstractions>
<abstraction xmi:id="1d.29" name="w2" kind="Equal">
<codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t2" type="id.176" kind="register"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.12" from="1id.29"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.4" from="id.29"/>
<actionRelation xmi:id="1d.33" xmi:type="action:Writes" from="id.29"/>
<actionRelation xmi:id="id.34" xmi:type="action:Flow" to="id.35" from="id.29"/>
</abstractions>
<abstraction xmi:id="1id.35" name="w3" kind="And">
<codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="t3" type="id.176" kind="register"/>
<actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.24" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.30"/>
<actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.35"/>
</abstractions>
<abstraction xmi:id="1d.40" name="w4" kind="Condition">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 231

<actionRelation xmi:id="id.41" xmi:type="action:TrueFlow" to="id.42" from="id.40"/>
</abstractions>
<abstraction xmi:id="1id.42" name="sl1l" kind="Select"s>
<actionRelation xmi:id="id.43" xmi:type="data:ReadsColumnSet" to="id.7" from="id.42"/>
<actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.11" from="id.42"/>
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.12" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.13" from="id.42"/>
<actionRelation xmi:id="id.47" xmi:type="action:Reads" to="id.14" from="id.42"/>
<actionRelation xmi:id="id.48" xmi:type="data:ReadsColumnSet" to="id.2"/>
<actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.4" from="id.42"/>
<actionRelation xmi:id="id.50" xmi:type="action:Reads" to="id.5" from="id.42"/>
<actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.6" from="id.42"/>
<actionRelation xmi:id="id.52" xmi:type="action:Writes" to="1d.103" from="id.42"/>
<actionRelation xmi:id="id.53" xmi:type="platform:ReadsResource" to="1id.67" from="id.42"/>
</abstractions>
</dataElement>
<dataElement xmi:id="id.54" xmi:type="data:DataAction" name="d3" kind="Retrieve"
implementation="id.115">
<abstraction xmi:id="1d.55" name="da2" kind="Assign">
<actionRelation xmi:id="id.56" xmi:type="action:Reads" to="id.13" from="id.55"/>
<actionRelation xmi:id="id.57" xmi:type="action:Addresses" to="id.103" from="id.55"/>
<actionRelation xmi:id="id.58" xmi:type="action:Writes" to="id.117" from="id.55"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1d.59" xmi:type="data:DataAction" name="d4" kind="Retrieve"
implementation="id.130">
<abstraction xmi:id="1d.60" name="da3" kind="Assign">
<actionRelation xmi:id="id.61" xmi:type="action:Reads" to="id.14" from="id.60"/>
<actionRelation xmi:id="id.62" xmi:type="action:Addresses" to="id.103" from="id.60"/>
<actionRelation xmi:id="id.63" xmi:type="action:Writes" to="id.132" from="id.60"/>
</abstractions>
</dataElement>
</model>
<model xmi:id="id.64" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.65" xmi:type="platform:Machine">
<resource xmi:id="id.66" >
<resource xmi:id="1id.67" xmi:type="platform:DataManager" name="foobar"s>
<abstraction xmi:id="1id.68" name="dml">
<actionRelation xmi:id="id.69" xmi:type="data:HasContent" to="id.1"/>
</abstractions>
</resource>
</resource>
</platformElement>
</model>
<model xmi:id="1id.70" xmi:type="code:CodeModel" name="Application"s>
<codeElement xmi:id="id.71" xmi:type="code:ClassUnit" name="DataExample">
<codeElement xmi:id="id.72" xmi:type="code:MemberUnit" name="findContractStatement">
<codeRelation xmi:id="id.73" xmi:type="code:HasValue" to="id.145" from="id.72"/>
</codeElement>
<codeElement xmi:id="1id.74" xmi:type="code:MethodUnit" name="calculateRecognitions">
<entryFlow xmi:id="1id.75" to="id.79" from="id.74"/>
<codeElement xmi:id="1id.76" xmi:type="code:Signature">
<parameterUnit xmi:id="id.77" name="contractNumber" type="id.179"/>
</codeElement>
<codeElement xmi:id="id.78" xmi:type="code:StorableUnit" name="db" type="id.155" kind="local"/>

232 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

<codeElement xmi:id="1d.79" xmi:type="action:ActionElement" name="cl" kind="Call">
<codeElement xmi:id="1d.80" xmi:type="code:Value" name=""jdbc:odbc:foobar""/>
<codeElement xmi:id="1id.81" xmi:type="code:Value" name=""sunny"" type="id.178"/>

<codeElement xmi:id="1id.82" xmi:type="code:Value" name="&guot;&guot;" type="id.178"/>

<actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.80" from="id.79"/>

<actionRelation xmi:id="id.84" xmi:type="action:Reads" to="id.81" from="id.79"/>

<actionRelation xmi:id="id.85" xmi:type="action:Reads" to="id.82" from="id.79"/>

<actionRelation xmi:id="id.86" xmi:type="action:Calls" to="id.154" from="id.79"/>

<actionRelation xmi:id="id.87" xmi:type="action:Writes" to="id.78" from="id.79"/>

<actionRelation xmi:id="id.88" xmi:type="action:Flow" to="id.90" from="id.79"/>
</codeElement>

<codeElement xmi:id="1d.89" xmi:type="code:StorableUnit" name="stmt" type="id.1l61" kind="local"/>

<codeElement xmi:id="1d.90" xmi:type="action:ActionElement" name="c2" kind="MethodCall">

<actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.78" from="id.90"/>

<actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.72" from="id.90"/>

<actionRelation xmi:id="id.93" xmi:type="action:Calls" to="id.156" from="id.90"/>

<actionRelation xmi:id="id.94" xmi:type="action:Writes" to="id.89" from="id.90"/>

<actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.90"/>
</codeElement>

<codeElement xmi:id="1d.96" xmi:type="action:ActionElement" name="c3" kind="MethodCall">
<codeElement xmi:id="1d.97" xmi:type="code:Value" name="1"/>

<actionRelation xmi:id="id.98" xmi:type="action:Addresses" to="id.89" from="id.96"/>

<actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.97" from="id.96"/>

<actionRelation xmi:id="id.100" xmi:type="action:Reads" to="id.77" from="id.96"/>

<actionRelation xmi:id="id.101" xmi:type="action:Calls" to="id.162" from="id.96"/>

<actionRelation xmi:id="id.102" xmi:type="action:Flow" to="id.104" from="id.96"/>
</codeElement>

<codeElement xmi:id="id.103"
kind="local"/>
<codeElement xmi:id="id.104"

xmi:type="code:StorableUnit" name="contracts" type="id.1l57"

xmi:type="action:ActionElement" name="c4" kind="MethodCall">

<actionRelation xmi:id="id.105" xmi:type="action:Addresses" to="1d.89" from="1id.104"/>

<actionRelation xmi:id="id.106" xmi:type="action:Calls" to="id.163" from="id.104"/>

<actionRelation xmi:id="id.107" xmi:type="action:Writes" to="id.103" from="id.104"/>

<actionRelation xmi:id="id.108" xmi:type="action:Flow" to="id.109" from="id.104"/>
</codeElement>

<codeElement xmi:id="1d.109" xmi:type="action:ActionElement" name="c5" kind="MethodCall"s>

<actionRelation xmi:id="id.110" xmi:type="action:Addresses" to="1d.103" from="id.109"/>
111" xmi:type="action:Calls" to="1id.158" from="id.109"/>

112" xmi:type="action:Flow" to="id.114" from="id.109"/>

<actionRelation xmi:id="id.
<actionRelation xmi:id="id.
</codeElement>
<codeElement xmi:id="id.113"
kind="local"/>
<codeElement xmi:id="1id.114"

xmi:type="code:StorableUnit" name="totalRevenue" type="id.1l65"

xmi:type="action:ActionElement" name="c6" kind="Compound">

<codeElement xmi:id="1d.115" xmi:type="action:ActionElement" name="c6.1" kind="Call">
<codeElement xmi:id="id.116" xmi:type="code:Value" name=""revenue""/>
<codeElement xmi:id="1d.117" xmi:type="code:StorableUnit" name="t4" kind="register"/>

<actionRelation xmi:id="id.118" xmi:type="action:Addresses" to="1d.103" from="id.115"/>

<actionRelation xmi:id="id.119" xmi:type="action:Calls" to="1id.159" from="id.115"/>

<actionRelation xmi:id="id.120" xmi:type="action:Writes" to="id.117" from="id.115"/>

<actionRelation xmi:id="id.121" xmi:type="action:Flow" to="id.122" from="id.115"/>
</codeElement>

<codeElement xmi:id="1d.122" xmi:type="action:ActionElement" name="c6.2" kind="Call">
.123" xmi:type="action:Reads" to="id.117" from="id.122"/>
124" xmi:type="action:Calls" to="id.166" from="id.122"/>

125" xmi:type="action:Writes" to="id.113" from="id.122"/>

<actionRelation xmi:id="id
<actionRelation xmi:id="id.
<actionRelation xmi:id="id.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1 233

<actionRelation xmi:id="id.126" xmi:type="action:Flow"/>
</codeElement>
<actionRelation xmi:id="id.127" xmi:type="action:Flow" to="id.115" from="id.114"/>
</codeElement>
<codeElement xmi:id="id.128" xmi:type="code:StorableUnit" name="recognizedDate" type="id.168"
kind="local"/>
<codeElement xmi:id="1d.129" xmi:type="action:ActionElement" name="c7" kind="MethodCall">
<codeElement xmi:1id="1d.130" xmi:type="action:ActionElement" name="c7.1" kind="Call">
<codeElement xmi:id="1d.131" xmi:type="code:Value" name=""dateSigned""/>
<codeElement xmi:id="1id.132" xmi:type="code:StorableUnit" name="t5" kind="register"/>
<actionRelation xmi:id="id.133" xmi:type="action:Addresses" to="id.103" from="id.130"/>
<actionRelation xmi:id="id.134" xmi:type="action:Calls" to="id.160" from="id.130"/>
<actionRelation xmi:id="id.135" xmi:type="action:Writes" to="id.132" from="id.130"/>
<actionRelation xmi:id="id.136" xmi:type="action:Flow" to="id.137" from="id.130"/>
</codeElement>
<codeElement xmi:id="id.137" xmi:type="action:ActionElement" name="c7.2" kind="New">
<actionRelation xmi:id="id.138" xmi:type="action:Creates" to="id.168" from="id.137"/>
<actionRelation xmi:id="id.139" xmi:type="action:Writes" to="id.128" from="id.137"/>
<actionRelation xmi:id="id.140" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="1id.141" xmi:type="action:ActionElement" name="c7.3" kind="MethodCall">
<actionRelation xmi:id="id.142" xmi:type="action:Reads" to="id.132" from="id.137"/>
<actionRelation xmi:id="id.143" xmi:type="action:Calls" to="id.169" from="id.141"/>
<actionRelation xmi:id="id.144" xmi:type="action:Writes" to="id.128" from="id.141"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.145" xmi:type="code:Value"
name="" ; SELECT * FROM contracts c, products p WHERE ID=? AND c.product=p.ID""
type="1d.178"/>
<codeElement xmi:id="1id.146" xmi:type="code:MethodUnit" name="init" kind="constructor"s>
<entryFlow xmi:id="1d.147" to="1d.148" from="id.146"/>
<codeElement xmi:id="1d.148" xmi:type="action:ActionElement" name="il" kind="Assign">
<actionRelation xmi:id="id.149" xmi:type="action:Reads" to="id.145" from="id.148"/>
<actionRelation xmi:id="id.150" xmi:type="action:Writes" to="id.72" from="id.148"/>
</codeElement>
</codeElement>
</codeElement>
</model>
<model xmi:id="id.151" xmi:type="code:CodeModel" name="Java packages">
<codeElement xmi:id="id.152" xmi:type="code:Package" name="java.sqgl">
<codeElement xmi:id="id.153" xmi:type="code:ClassUnit" name="DriverManager">
<codeElement xmi:id="1id.154" xmi:type="code:MethodUnit" name="getConnection" kind="abstract"/>
</codeElement>
<codeElement xmi:id="1d.155" xmi:type="code:ClassUnit" name="Connection">

<codeElement xmi:id="1id.156" xmi:type="code:MethodUnit" name="prepareStatement" kind="abstract"/>

</codeElement>

<codeElement xmi:id="id.157" xmi:type="code:ClassUnit" name="ResultSet">
<codeElement xmi:id="1d.158" xmi:type="code:MethodUnit" name="next" kind="abstract"/>
<codeElement xmi:id="1d.159" xmi:type="code:MethodUnit" name="getBigDecimal" kind="abstract"/>
<codeElement xmi:id="1d.160" xmi:type="code:MethodUnit" name="getDate" kind="abstract"/>

</codeElement>

<codeElement xmi:id="id.161" xmi:type="code:ClassUnit" name="Statement">
<codeElement xmi:id="1id.162" xmi:type="code:MethodUnit" name="setLong" kind="abstract"/>
<codeElement xmi:id="1d.163" xmi:type="code:MethodUnit" name="executeQuery" kind="abstract"/>

234 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

</codeElement>
</codeElement>

<codeElement xmi:id="1d.164" xmi:type="code:Package" name="Money">

<codeElement xmi:id="1d.165" xmi:type="code:ClassUnit" name="Money">

<codeElement xmi:id="1d.166" xmi:type="code:MethodUnit" name="dollars" kind="abstract"/>

</codeElement>
</codeElement>

<codeElement xmi:id="1d.167" xmi:type="code:Package" name="MfDate">

<codeElement xmi:id="1d.168" xmi:type="code:ClassUnit" name="MfDate">
<codeElement xmi:id="1d.169" xmi:type="code:MethodUnit" name="MfDate" kind="abstract"/>

</codeElement>
</codeElement>
</model>

<model xmi:id="1d.170" xmi:type="code:CodeModel" name="Common Datatypes">

<codeElement xmi:id="1d.171" xmi:type="code:LanguageUnit" name="SQL datatypes">

<codeElement xmi
<codeElement xmi
<codeElement xmi
<codeElement xmi
<codeElement xmi
</codeElement>

:id="id.
:id="id.
:id="id.
:id="id.
:id="id.

172"
173"
174"
175"
176"

xmi
xmi
xmi
xmi

xmi

:type="code:IntegerType" name="sqgl int"/>
:type="code:StringType" name="sgl varchar"/>
:type="code:DecimalType" name="sgl decimal"/>
:type="code:DateType" name="sgl date"/>
:type="code:BooleanType"/>

<codeElement xmi:id="1d.177" xmi:type="code:LanguageUnit" name="Java datatypes"s>

<codeElement xmi:id="1d.178" xmi:type="code:StringType"/>
<codeElement xmi:id="1d.179" xmi:type="code:IntegerType" name="java long"/>

<codeElement xmi:id="1d.180" xmi:type="code:IntegerType" name="java byte"/>

</codeElement>
</model>
</kdm: Segment >

18.10 StructuredData Class Diagram

The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram

shown in Figure 18.8 captures these classes and their relations.

XMLSchema |

AbstractDataElement

AbstractContentElement

0..1

+owner

{subsets owner}

Figure 18.8 - StructuredData Class Diagram

18.10.1 XMLSchema

+contentElement
{subsets ownedElement}

The XML Schema class represents the top level container for a KDM metamodel of an XML document.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

235

Superclass

AbstractDataElement

Associations

contentElement :AbstractContentElement[0..*] Individual content elements owned by this schema.

Semantics

XMLSchemais alogical container for AbstractContentElements as well as some other DataResource elements (for
example, DataEvents).

18.10.2 AbstractContentElement (abstract)

The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the
content of XML schemas and documents as well as various structured data items that can be associated with other KDM
elements.

Superclass

AbstractDataElement

Semantics

AbstractContentElement represents common properties of content elements.

18.11 ContentElements Class Diagram

The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 18.9 captures these classes and their relations.

236 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

+contentElement
{subsets ownedElement
ordered}

+owner
{subsets owner}g 1

ComplexContentType

MixedContent

AllContent ChoiceContent

SeqgContent

0..

AbstractContentElement

ContentType

+type
MemberTypes

Contentkem

0.*
+contentElement
{subsets ownedElement}

GrbupContent
1

ContentElement

|

\

\ContentReference

\

SimpleContentType

<kind : String

ContentRestriction

<kind : String
<value : String

Figure 18.9 - ContentElements Class Diagram

18.11.1 Contentltem (generic)

ContentAttribute

The Contentltem class is a generic meta-model element that represents named items and references of the XML schema:
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*]

type:ComplexContentType[0..1]

Semantics

18.11.2 ComplexContentType

owned content elements

content type of the current Contentltem

The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as

subclasses of ComplexContentType.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

237

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*] Owned content elements

Semantics
18.11.3 SimpleContentType
The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

kind:String content kind of the current SimpleContentType

Associations

type:ComplexContentType[0..*] content type of the current Contentltem

Semantics

Simpletypes, such as string and decimal, are built in to XML Schema, while others are derived from the built-in’s. The kind of
SimpleContentType can be “list,” “union,” “enumeration,” etc.

18.11.4 ContentRestriction

The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

Attributes
kind :String type of the content restriction (XML)
value:String value of the constraint

Semantics

kind isan XSD restriction, such as minExclusive, mininclusive, maxExclusive, maxInclusive, total Digits, fractionDigits,
length, minLength, maxL ength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs,
maxQOccurs, required, fixed; or an XSD enumeration.

238 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.1

Example

<xsd:simpleType name="myInteger">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-2]{2}"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AK"/>
<xsd:enumeration value="AL"/>
<xsd:enumeration value="AR"/>
<!-- and soon ... -->
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="1listOfMyIntType">
<xsd:1list itemType="myInteger"/>
</xsd:simpleType>

<xsd:simpleType name="USStateList">
<xsd:1list itemType="USState"/>
</xsd:simpleType>

<xsd:simpleType name="SixUSStates">
<xsd:restriction base="USStateList">
<xsd:length value="6"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="zipUnion">
<xsd:union memberTypes="USState 1listOfMyIntType"/>
</xsd:simpleType>

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.1/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.1/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.1/kdm" name="XML Simple Content Example">
<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="SimpleType examples">
<contentElement xmi:id="1d.2" xmi:type="data:SimpleContentType" name="MyInteger"s>
<dataRelation xmi:id="id.3" xmi:type="data:RestrictionOf" to="id.27" from="id.2"/>
<contentElement xmi:id="1id.4" xmi:type="data:ContentRestriction"
kind="minInclusive" value="10000"/>
<contentElement xmi:id="id.5" xmi:type="data:ContentRestriction"
kind