Date: December 2010

OBJECT MANAGEMENT GROUP

Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM)

Version 1.3

OMG Document Number: ptc/2010-12-12
Standard document URL: http://www.omg.org/spec/KDM/1.3
Associated Schema Files*: ptc/2009-05-22

ptc/2009-05-23

ptc/2009-05-24

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS

Copyright © 2006, Flashline

Copyright © 2006, IBM

Copyright © 2006, KDM Analytics

Copyright © 2006, Klocwork, Inc.

Copyright © 2009, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELTIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™, CWM Logo™, I[IOP™ | MOF™ , OMG Interface Definition Language (IDL)™ , and OMG Systems Modeling
Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is

and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page Attp://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

OMG’s Issue Reporting Procedure 1
Preface xv

1 Scope 1

2 Conformance 1
2.1 KDM Domains 1

2.2 Compliance Levels 2
2.2.1 Meaning and Types of Compliance 3

Normative References 6
Terms and Definitions 6

Symbols 8

o O A W

Additional Information 9

6.1 Changes to Other OMG Specifications 9

6.2 How to Read this Specification 9
6.2.1 Diagram format 10

6.3 Acknowledgements 11
Specification Overview 13

KDM 17

8.1 Overview 17
8.2 Organization of the KDM Packages 18

Part | - Infrastructure Layer 21

9 Core Package 23
9.1 Overview 23
9.2 Organization of the Core Package 23

9.3 CoreEntities Class Diagram 23

9.3.1 Element Class (abstract) 24
9.3.2 ModelElement Class (abstract) 24
9.3.3 KDMEntity Class (abstract) 25

9.4 CoreRelations Class Diagram 26

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

9.4.1 KDMRelationship Class (abstract) 26

9.4.2 KDMEntity (additional properties) 27
9.5 AggregatedRelations Class Diagram 28

9.5.1 AggregatedRelationship Class 29

9.5.2 KDMEntity (additional properties) 31
9.6 Datatypes Class Diagram 31

9.6.1 Boolean Type (datatype) 31
9.6.2 String Type (datatype) 31
9.6.3 Integer Type (datatype) 31

10 The Package named “kdm” 33
10.1 Overview 33

10.2 Organization of the KDM Framework 33

10.3 Framework Class Diagram 34
10.3.1 KDMFramework Class (abstract) 35
10.3.2 KDMModel Class (abstract) 35
10.3.3 KDMEntity (additional properties) 36
10.3.4 Segment Class 37
10.4 Audit Class Diagram 38
10.4.1 Audit Class 38
10.4.2 KDMFramework (additional properties) 39
10.5 Extensions Class Diagram 39

10.5.1 Stereotype Class 41

10.5.2 TagDefinition Class 43

10.5.3 ExtensionFamily Class 44

10.5.4 ModelElement (additional properties) 45
10.6 ExtendedValues Class Diagram 45

10.6.1 ExtendedValue Class (abstract) 46
10.6.2 TaggedValue Class 47
10.6.3 TaggedRef Class 47

10.7 Annotations Class Diagram 48

10.7.1 Attribute Class 48
10.7.2 Annotation Class 49
10.7.3 Element (additional properties) 50

11 Source Package 51
11.1 Overview 51
11.2 Organization of the Source Package 52

11.3 InventoryModel Class Diagram 53

11.3.1 InventoryModel Class 53
11.3.2 AbstractinventoryElement Class (abstract) 54

ii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

11.3.3 AbstractinventoryRelationship Class (abstract) 54
11.3.4 Inventoryltem Class (generic) 55
11.3.5 SourceFile Class 55

11.3.6 Image Class 56

11.3.7 Configuration Class 56

11.3.8 ResourceDescription Class 56

11.3.9 BinaryFile Class 56

11.3.10 ExecutableFile Class 57

11.3.11 InventoryContainer Class (generic) 57
11.3.12 Directory Class 57

11.3.13 Project Class 58

11.4 Inventorylnheritances Class Diagram 58

11.5 InventoryRelations Class Diagram 59
11.5.1 DependsOn Class 59

11.6 SourceRef Class Diagram 60
11.6.1 SourceRef Class 60
11.6.2 SourceRegion Class 62
11.7 ExtendedInventoryElements Class Diagram 63

11.7.1 InventoryElement Class (generic) 63
11.7.2 InventoryRelationship Class (generic) 64

Part Il - Program Elements Layer 65

12 Code Package 69

12.1 Overview 69
12.2 Organization of the Code Package 69

12.3 CodeModel Class Diagram 70

12.3.1 CodeModel Class 71

12.3.2 AbstractCodeElement Class (abstract) 71
12.3.3 AbstractCodeRelationship Class (abstract) 72
12.3.4 Codeltem Class (abstract) 72

12.3.5 ComputationalObject Class (generic) 72
12.3.6 Datatype Class (generic) 73

12.4 Codelnheritances Class Diagram 73

12.5 Modules Class Diagram 74

12.5.1 Module Class (generic) 74
12.5.2 CompilationUnit Class 75
12.5.3 SharedUnit Class 75
12.5.4 LanguageUnit Class 76
12.5.5 CodeAssembly Class 76
12.5.6 Package Class 76

12.6 ControlElements Class Diagram 77

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.6.1 ControlElement Class (generic) 77
12.6.2 CallableUnit Class 78

12.6.3 CallableKind Data Type (enumerated) 78
12.6.4 MethodUnit Class 79

12.6.5 MethodKind data type (enumeration) 79

12.7 DataElements Class Diagram 80

12.7.1 DataElement Class (generic) 81

12.7.2 StorableUnit Class 82

12.7.3 StorableKind data type (enumeration) 82
12.7.4 ExportKind data type (enumeration) 83
12.7.5 ltemUnit Class 83

12.7.6 IndexUnit Class 83

12.7.7 MemberUnit Class 84

12.7.8 ParameterUnit Class 84

12.8 ValueElements Class Diagram 85

12.8.1 ValueElement Class (generic) 85
12.8.2 Value Class 86
12.8.3 ValuelList Class 86

12.9 PrimitiveTypes Class Diagram 87

12.9.1 Primitive Type Class (generic) 88
12.9.2 BooleanType Class 88
12.9.3 CharType Class 89

12.9.4 OrdinalType Class 89
12.9.5 DateType Class 89

12.9.6 TimeType Class 89

12.9.7 IntegerType Class 90
12.9.8 DecimalType Class 90
12.9.9 ScaledType Class 90
12.9.10 FloatType Class 90
12.9.11 VoidType Class 91
12.9.12 StringType Class 91
12.9.13 BitType Class 91

12.9.14 BitstringType Class 91
12.9.15 OctetType Class 92
12.9.16 OctetstringType Class 92

12.10 EnumeratedTypes Class Diagram 92
12.10.1 EnumeratedType Class 93

12.11 CompositeTypes Class Diagram 93

12.11.1 CompositeType Class (generic) 93
12.11.2 ChoiceType Class 94
12.11.3 RecordType Class 95

12.12 DerivedTypes Class Diagram 96

12.12.1 DerivedType Class (generic) 96
12.12.2 ArrayType Class 97
12.12.3 PointerType Class 98

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.12.4 RangeType Class 98
12.12.5 BagType Class 99
12.12.6 SetType Class 99
12.12.7 SequenceType Class 100
12.13 Signature Class Diagram 100
12.13.1 Signature Class 100
12.13.2 ParameterKind Enumeration Datatype 101
12.14 DefinedTypes Class Diagram 101
12.14.1 DefinedType Class (abstract) 102
12.14.2 TypeUnit Class 102
12.14.3 SynonymUnit Class 103
12.15 ClassTypes Class Diagram 103
12.15.1 ClassUnit Class 103
12.15.2 InterfaceUnit Class 104
12.16 Templates Class Diagram 104

12.16.1 TemplateUnit Class 105
12.16.2 TemplateParameter Class 105
12.16.3 TemplateType Class 106

12.17 TemplateRelations Class Diagram 106
12.17.1 InstanceOf Class 107
12.17.2 ParameterTo Class 107

12.18 InterfaceRelations Class Diagram 110
12.18.1 Implements Class 111
12.18.2 ImplementationOf Class 112

12.19 TypeRelations Class Diagram 115
12.19.1 HasType Class 115
12.19.2 HasValue Class 116

12.20 ClassRelations Class Diagram 119
12.20.1 Extends Class 120

12.21 Preprocessor Class Diagram 121

12.21.1 PreprocessorDirective Class (generic) 122
12.21.2 MacroUnit Class 123

12.21.3 MacroKind data type (enumeration) 124
12.21.4 MacroDirective Class 124

12.21.5 IncludeDirective Class 125

12.21.6 Conditional Directive Class 125

12.22 PreprocessorRelations Class Diagram 125

12.22.1 Expands Class 126
12.22.2 GeneratedFrom Class 127
12.22.3 Includes Class 128
12.22.4 VariantTo Class 130
12.22.5 Redefines Class 131

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.23 Comments Class Diagram 132

12.23.1 CommentUnit Class 133

12.23.2 AbstractCodeElement Class (additional properties) 133
12.24 Visibility Class Diagram 134

12.24.1 Namespace Class 134

12.25 VisibilityRelations Class Diagram 135
12.25.1 VisibleIn Class 135
12.25.2 Imports Class 136
12.26 ExtendedCodeElements Class Diagram 137

12.26.1 CodeElement Class (generic) 137
12.26.2 CodeRelationship Class (generic) 137

13 Action Package 139
13.1 Overview 139
13.2 Organization of the Action Package 139

13.3 ActionElements Class Diagram 139

13.3.1 ActionElement Class 140

13.3.2 AbstractActionRelationship Class (abstract) 141
13.3.3 BlockUnit Class 141

13.3.4 AbstractCodeElement (additional properties) 142

13.4 Actionlnheritances Class Diagram 142

13.5 ActionFlow Class Diagram 143

13.5.1 ControlFlow Class (generic) 143
13.5.2 EntryFlow Class 144

13.5.3 Flow Class 145

13.5.4 TrueFlow Class 145

13.5.5 FalseFlow Class 146

13.5.6 GuardedFlow Class 146

13.6 CallableRelations Class Diagram 147
13.6.1 Calls Class 148
13.6.2 Dispatches Class 149

13.7 DataRelations Class Diagram 150

13.7.1 Reads Class 151
13.7.2 Writes Class 151
13.7.3 Addresses Class 152
13.7.4 Creates Class 152

13.8 ExceptionBlocks Class Diagram 153

13.8.1 ExceptionUnit Class 154
13.8.2 TryUnit Class 154
13.8.3 CatchUnit Class 154
13.8.4 FinallyUnit Class 155

vi Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.9 ExceptionFlow Class Diagram 157
13.9.1 ExitFlow Class 158
13.9.2 ExceptionFlow Class 159

13.10 ExceptionRelations Class Diagram 159
13.10.1 Throws Class 159

13.11 InterfaceRelations Class Diagram 160
13.11.1 CompliesTo Class 160

13.12 UsesRelations Class Diagram 161
13.12.1 UsesType Class 161

13.13 ExtendedActionElements Class Diagram 162
13.13.1 ActionRelationship Class (generic) 162

14 Micro KDM 165
Part lll - Runtime Resources Layer 171

15 Platform Package 175

15.1 Overview 175
15.2 Organization of the Platform Package 176

15.3 PlatformModel Class Diagram 177

15.3.1 PlatformModel Class 177
15.3.2 AbstractPlatformElement Class (abstract) 178
15.3.3 AbstractPlatformRelationship Class (abstract) 178

15.4 PlatformInheritances Class Diagram 179

15.5 PlatformResources Class Diagram 179

15.5.1 ResourceType Class 180
15.5.2 NamingResource Class 181
15.5.3 MarshalledResource Class 181
15.5.4 MessagingResource Class 181
15.5.5 FileResource Class 182

15.5.6 ExecutionResource Class 182
15.5.7 LockResource Class 182
15.5.8 StreamResource Class 182
15.5.9 DataManager Class 182
15.5.10 PlatformEvent Class 183
15.5.11 PlatformAction Class 183
15.5.12 ExternalActor Class 183

15.6 PlatformRelations Class Diagram 184
15.6.1 BindsTo Class 184

15.7 ProvisioningRelations Class Diagram 184

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 vii

15.7.1 Requires Class 185

15.8 PlatformActions Class Diagram 185

15.8.1 ManagesResource Class 186
15.8.2 ReadsResource Class 187
15.8.3 WritesResource Class 187
15.8.4 DefinedBy Class 187

15.9 Deployment Class Diagram 188

15.9.1 DeployedComponent Class 189
15.9.2 DeployedSoftwareSystem Class 190
15.9.3 Machine Class 190
15.9.4 DeployedResource Class 191
15.10 RuntimeResources Class Diagram 191

15.10.1 RuntimeResource (generic) 192
15.10.2 Process Class 192
15.10.3 Thread Class 192
15.11 RuntimeActions Class Diagram 192
15.11.1 Loads Class 193
15.11.2 Spawns Class 194
15.12 ExtendedPlatformElements Class Diagram 194

15.12.1 PlatformElement Class (generic) 195
15.12.2 PlatformRelationship Class (generic) 195

16 Ul Package 197

16.1 Overview 197
16.2 Organization of the Ul Package 198

16.3 UlModel Class Diagram 198

16.3.1 UIModel Class 199
16.3.2 AbstractUIElement Class (abstract) 199
16.3.3 AbstractUIRelationship Class (abstract) 200

16.4 Ullnheritances Class Diagram 200

16.5 UIResources Class Diagram 201

16.5.1 UIResource Class (generic) 202
16.5.2 UlIDisplay Class (generic) 202
16.5.3 Screen Class 202

16.5.4 Report Class 202

16.5.5 UIField Class 203

16.5.6 UlEvent Class 203

16.5.7 UlAction Class 203

16.6 UlRelations Class Diagram 204

16.6.1 UIFlow Class 204
16.6.2 UlLayout Class 204

viii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16.7 UlActions Class Diagram 205

16.7.1 Displays Class 206
16.7.2 Displaysimage Class 206
16.7.3 ManagesUI Class 206
16.7.4 ReadsUI Class 207
16.7.5 WritesUI Class 207
16.8 ExtendedUIElements Class Diagram 208

16.8.1 UlElement Class (generic) 208
16.8.2 UlRelationship Class (generic) 208

17 Event Package 211

17.1 Overview 211
17.2 Organization of the Event Package 212

17.3 EventModel Class Diagram 212

17.3.1 EventModel Class 213
17.3.2 AbstractEventElement Class (abstract) 213
17.3.3 AbstractEventRelationship Class (abstract) 214

17.4 Eventlnheritances Class Diagram 214

17.5 EventResources Class Diagram 214

17.5.1 EventResource Class (generic) 215
17.5.2 Event Class 215

17.5.3 State Class 216

17.5.4 InitialState Class 216

17.5.5 Transition Class 216

17.5.6 OnEntry Class 216

17.5.7 OnExit Class 217

17.5.8 EventAction Class 217

17.6 EventRelations Class Diagram 217

17.6.1 NextState Class 218
17.6.2 ConsumesEvent Class 218

17.7 EventActions Class Diagram 218

17.7.1 ReadsState Class 219
17.7.2 ProducesEvent Class 219
17.7.3 HasState Class 220

17.8 ExtendedEventElements Class Diagram 220

17.8.1 EventElement Class (generic) 221
17.8.2 EventRelationship Class (generic) 221

18 Data Package 223

18.1 Overview 223
18.2 Organization of the Data Package 224

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.3 Data Model Class Diagram 224

18.3.1 DataModel Class 225
18.3.2 AbstractDataElement Class (abstract) 226
18.3.3 AbstractDataRelationship Class (abstract) 226

18.4 Data Inheritances Class Diagram 226

18.5 DataResources Class Diagram 227

18.5.1 DataResource Class (generic) 228
18.5.2 DataContainer Class (generic) 228
18.5.3 Catalog Class 229

18.5.4 RelationalSchema Class 229
18.5.5 DataEvent Class 230

18.5.6 DataAction Class 230

18.6 ColumnSet Class Diagram 231

18.6.1 ColumnSet (generic) 231
18.6.2 RelationalTable Class 232
18.6.3 RelationalView Class 234
18.6.4 DataSegment Class 235
18.6.5 RecordFile Class 237

18.7 Keylndex Class Diagram 242

18.7.1 IndexElement Class (generic) 242
18.7.2 UniqueKey Class 243

18.7.3 ReferenceKey Class 243

18.7.4 Index Class 243

18.8 Key Relations Class Diagram 244
18.8.1 KeyRelationship Class 244

18.9 DataActions Class Diagram 245

18.9.1 ReadsColumnSet Class 245
18.9.2 WritesColumnSet Class 246
18.9.3 ManagesData Class 246
18.9.4 HasContent Class 247

18.10 StructuredData Class Diagram 252

18.10.1 XMLSchema 252
18.10.2 AbstractContentElement (abstract) 253

18.11 ContentElements Class Diagram 253

18.11.1 Contentltem (generic) 254
18.11.2 ComplexContentType 254
18.11.3 SimpleContentType 255
18.11.4 ContentRestriction 255
18.11.5 AllContent Class 258
18.11.6 SeqContent Class 258
18.11.7 ChoiceContent Class 258
18.11.8 GroupContent Class 258
18.11.9 MixedContent Class 259

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.11.10 ContentAttribute Class 259

18.11.11 ContentElement Class 259

18.11.12 ContentReference Class 259
18.12 ContentRelations Class Diagram 264

18.12.1 TypedBy Class 265
18.12.2 DatatypeOf Class 266
18.12.3 ReferenceTo Class 266
18.12.4 ExtensionTo Class 266
18.12.5 RestrictionOf Class 267
18.13 ExtenededDataElements Class Diagram 267

18.13.1 ExtendedDataElement Class 268
18.13.2 DataRelationship Class 268

Part IV - Abstractions Layer 271

19 Structure Package 273

19.1 Overview 273
19.2 Organization of the Structure Package 274

19.3 StructureModel Class Diagram 274

19.3.1 StructureModel Class 275

19.3.2 AbstractStructureElement Class (abstract) 275
19.3.3 AbstractStructureRelationship Class (abstract) 276
19.3.4 Subsystem Class 276

19.3.5 Layer Class 276

19.3.6 Component Class 276

19.3.7 SoftwareSystem Class 277

19.3.8 ArchitectureView Class 277

19.4 Structurelnheritances Class Diagram 277

19.5 ExtendedStructureElements Class Diagram 278

19.5.1 StructureElement Class (generic) 278
19.5.2 StructureRelationship Class (generic) 278

20 Conceptual Package 281

20.1 Overview 281
20.2 Organization of the Conceptual Package 283

20.3 ConceptualModel Class Diagram 283

20.3.1 ConceptualModel 284
20.3.2 AbstractConceptualElement (abstract) 285
20.3.3 AbstractConceptualRelationship Class (abstract) 286

20.4 Conceptuallnheritances Class Diagram 286

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Xi

20.5 ConceptualElements Class Diagram 286

20.5.1 ConceptualContainer Class 287
20.5.2 TermUnit 288

20.5.3 FactUnit 288

20.5.4 RuleUnit 288

20.5.5 ConceptualRole 288

20.5.6 BehaviorUnit Class 289

20.5.7 ScenarioUnit Class 289

20.6 ConceptualRelations Class Diagram 290
20.6.1 ConceptualFlow Class 290

20.7 ExtendedConceptualElements Class Diagram 298

20.7.1 ConceptualElement Class (generic) 298
20.7.2 ConceptualRelationship Class (generic) 299

21 Build Package 301

21.1 Overview 301
21.2 Organization of the Build Package 302

21.3 BuildModel Class Diagram 302

21.3.1 BuildModel Class 303

21.3.2 AbstractBuildElement Class (abstract) 303
21.3.3 AbstractBuildRelationship Class (abstract) 303
21.3.4 Supplier Class 303

21.3.5 Tool Class 304

21.3.6 SymbolicLink Class 304

21.4 BuildInheritances Class Diagram 304

21.5 BuildResources Class Diagram 304

21.5.1 BuildResource Class 305
21.5.2 BuildComponent Class 306
21.5.3 BuildDescription Class 306
21.5.4 BuildStep Class 306

21.6 BuildRelations Class Diagram 306

21.6.1 LinksTo Class 307
21.6.2 Consumes Class 308
21.6.3 Produces Class 308
21.6.4 SupportedBy Class 309
21.6.5 SuppliedBy Class 309
21.6.6 DescribedBy Class 310

21.7 ExtendedBuildElements Class Diagram 311

21.7.1 BuildElement Class (generic) 312
21.7.2 BuildRelationship Class (generic) 312

22 Annex A - Semantics of the Micro KDM Action Elements (normative) 313

xii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

22.1 Comparison Actions 313

22.2 Actions Related to the Primitive Numerical Datatypes 314
22.3 Actions Related to Bitwise Operations on Primitive Datatypes 314
22.4 Control Actions 316

22.5 Actions Related to Access to Datatypes 319

22.6 Actions Related to Type Conversions 321

22.7 Actions Related to StringType Operations 322

22.8 Actions Related to SetType Operations 322

22.9 Actions Related to SequenceType Operations 323

22.10 Actions Related to BagType Operations 324

22.11 Actions Related to Resources 324

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 xiii

xiv Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http:/ www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http.//www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

. Business Rules and Process Management Specifications

Language Mappings
. IDL/Language Mapping Specifications
. Other Language Mapping Specifications

Middleware Specifications
. CORBA/IIOP
. CORBA Component Model
. Data Distribution

. Specialized CORBA

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3 XV

Modeling and Metadata Specifications

. UML
. MOF
. XMI

. CWM

. Profile specifications.

Modernization Specifications
+ KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications

. CORBAservices

. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications

. OMG Security specifications
All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and

may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as ISO
standards. Please consult Attp.//www.iso.org

OMG Contact Information

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
http://’www.omg.org/

Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetical/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

XVi Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to Attp./www.omg.org/
technology/agreement.htm.

Roadmap

This roadmap provides a list of documents including the original submission and all documents that were generated
during the finalization task force process.

The source documents for this specification include:

Alpha: admtf/2006-03-01 (submission)
Associated Schema files: admtf/2006-03-02

The FTF process generated the following documents:

Beta 1: ptc/2006-06-07 (a.k.a. final adopted specification)

Beta 2: ptc/2007-03-04: convenience document with change bars
ptc/2007-03-06: convenience document without change bars
ptc/2007-03-14: addendum to FTF report
ptc/2007-03-17: XML, MDL, CMOF
ptc/2007-03-18: XMI and examples

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3

xviii Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.3

1 Scope

This specification defines a meta-model for representing existing software, its elements, associations, and operational
environments, referred to as the Knowledge Discovery Meta-model (KDM). This is the first in the series of specifications
related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects
that involve existing software systems by insuring interoperability and exchange of data between tools provided by
different vendors.

One common characteristic of various tools that address SwA and ADM challenge is that they analyze existing software
artifacts (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Any
tool that operates on existing software produces a portion of the knowledge about existing software system. However,
such tool-specific knowledge may not be exported in any explicit format. For example, such knowledge may be used
internally by the tool: a compliler generates precise knowledge about a compilation unit only to discard it as soon as the
object file is generated. Tool-specific knowledge may be limited in scope, restricted to a particular source language, and/
or particular transformation, and/or operational environment. All the above may hinder interoperability between different
tools. The meta-model for Knowledge Discovery provides a common ontology and an interchange format that facilitates
the exchange of data contained within individual tool models that represent existing software. The meta-model represents
the physical and logical elements of software as well as their relations at various levels of abstraction. The primary
purpose of this meta-model is to enable a common interchange format that will allow interoperability between existing
modernization and software assurance tools, services, and their respective intermediate representations.

2 Conformance

KDM is defined via Meta-Object Facility (MOF). KDM determines the interchange format via the XML Metadata
Interchange (XMI) by applying the standard MOF to XMI mapping to the KDM MOF model. The interchange format
defined by KDM is called the KDM XMI schema. The KDM XMI schema is provided as the normative part of this
specification.

KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms, and
programming languages. Not all of its capabilities are equally applicable to all platforms, applications, or programming
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers to integrate multiple facts about a complex enterprise application, as the complexity
of modern enterprise applications involves multiple platform technologies and programming languages. In order to
achieve interoperability and especially the integration of information about different facets of an enterprise application
from multiple analysis tools, this specification defines several compliance levels thereby increasing the likelihood that
two or more compliant tools will support the same or compatible meta-model subsets. This suggests that the meta-model
should be structured modularly, following the principle of separation of concerns, with the ability to select only those
parts of the meta-model that are of direct interest to a particular tool vendor. Separation of concerns in the design of KDM
is embodied in the concept of KDM domains.

21 KDM Domains

Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). Each KDM domain defines an architectural viewpoint. The viewpoint language for the domain is defined by
the corresponding KDM package that defines meta-model elements to represent particular facts of the system under study
that are essential to the given domain. The meta-model elements defined by all KDM packages constitute the ontology for
describing existing software systems. For example, the Code and Action package define the viewpoint language for the

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 1

Code domain that represent individual code elements of the system under study, such as variables, procedures and
statements. The Structure packages defines the viewpoint language for the Structure domain that represents architectural
elements of the same system, such as subsystems and components. The Conceptual package corresponds to the Business
Rules domain and defines the viewpoint language to represent behavioral elements of the same system such as features or
business rules. KDM formally defines traceability between facts, aggregation and derivation of facts across domains.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Inventory,
Code, Build, Structure, Data, Business Rules, Ul, Event, Platform, and micro KDM.

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy
would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless,
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as
explained below.

Levels of compliance

12 = All KDM domains

Build Structure Data Business Rules UI Event Platform Analysis

domain domain domain domain domain domain domain domain
i Mi
L1=> Build| structure | Data |Conceptual UI | Event |Flatfor ;;;O

Lo =

Core + kdm + Source + Code + Action

Domain of compliance

Figure 2.1 - Domains and levels of KDM compliance

2.2 Compliance Levels

In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are three KDM compliance levels:

* Level 0 (LO) - This compliance level addresses the Inventory and Code domains and is determined by the following
KDM packages: Core, kdm, Source, Code, and Action packages. It provides an entry-level of knowledge discovery
capability. More importantly, it represents a common denominator that can serve as a basis for interoperability between

2 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

different categories of KDM tools.

To be LO compliant, a tool shall completely support all meta-model elements within all packages for LO level.

e Level 1 (L1) - This level addresses the remaining KDM domains and extends the capabilities provided by Level 0.
Specifically, this level is determined by the following packages: Build, Structure, Data, Conceptual, Ul, Event,
Platform, as well as the set of constraints for the micro KDM domain defined in sub clause 14 “Micro KDM,” and
Annex A “Semantics of the Micro KDM Action Elements.” These packages are grouped to form above-mentioned
domains. More importantly, this level represents a layer where tools could be complimentary since their focus would
be in different areas of concern.

To be L1 compliant for a given KDM domain, a tool shall completely support all meta-model elements defined by the
corresponding packages and satisfy all semantic constraints specified for the domain.

e Level 2 (L2) - This level is the union of L1 levels for all KDM domains. A tool compliant at the L2 level shall be
compliant to each domain at L1.

2.2.1 Meaning and Types of Compliance

Compliance to Level 1 (L1) for a certain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at a Level 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of
information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that
KDM domain at L1 and complete set of concepts defined at LO.

For a given compliance level, a KDM implementation can provide:

» The capability to analyze physical artifacts of existing applications and export their representations based on the XMI
schema corresponding to the given compliance level.

* The capability to import representations of existing software systems based on the XMI schema corresponding to the
given compliance level and perform operations suggested by the corresponding packages.

Table 2.1 - Compliance Statements

Compliance Statement

Compliance Level Import-Analysis Import API Export

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 3

Table 2.1 - Compliance Statements

LO Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Import KDM models based on - Import KDM models based - Provide capability to analyze
complete KDM XMI schema into on complete KDM XMI existing artifacts for specified
existing tool; schema; programming language or
- Implement mapping between KDM - Support KDM API defined multiple languages;
and existing internal representation of by the KDM Core package; - Generate XMI documents
the tool; - support KDM framework corresponding to the KDM XMl
- Extend operations of existing tool to as defined in the package schema;
support meta-model elements of KDM named “kdm”; - Support KDM framework as
framework; - Support KDM API defined defined by the package named
- Extend operations of existing tool to by the Code and Action “kdm”;
support meta-model elements of Code | packages; - Support Code and Action
and Action packages; - Support traceability to the packages;
- Extend operations of existing tool to physical artifacts of the - Provide traceability back to
support traceability to the physical application as defined inthe | the physical artifacts as
artifacts of the application from Source | Source package. defined by the Source
package. package.
L1 STRUCTURE Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Structure architecture components of
Structure package. package. existing application and
generate KDM Structure model
according to Structure
package.
DATA Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Data persistent data components of
Data package. package. existing application for
specified database system and
generate KDM Data model
according to Data package.
PLATFORM Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Platform and platform artifacts for specified
Platform package. Runtime packages. platform and generate KDM
Platform model according to
Platform package.
BUILD Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Build build artifacts for specified
Build package. package. build environment and
generate KDM Build model
according to Build package.
4 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Table 2.1 - Compliance Statements

ul Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Ul package. user interface artifacts for
Ul package. specified user interface system
and generate KDM Ul model
according to Ul package;
EVENT Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Event artifacts related to event-driven
Event package. package. runtime frameworks and state-
trasition behavior and
generate KDM Event model
according to Event package.
BUSINESS Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Conceptual conceptual and behavior
Conceptual package. package. artifacts (e.g., domain
concepts, business rules,
scenarios) of existing
application and generate KDM
Conceptual model according to
Conceptual package;
MICRO KDM Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis; compliance for import; for export;
- Extend operations of existing tool to - Support micro KDM - Provide capability to analyze
support micro KDM actions as actions as specified in artifacts of existing application
specified in section 14 micro KDM and section 14 micro KDM and to the level of detail specified in
Appendix 1 Appendix 1 section 14 and Appendix 1
provide the mapping of
semantics of the existing
application as it is determined
by the programming languages
and the runtime platform into
KDM micro actions and
generate KDM models that
represent the same meaning

L2

Compliant tool shall:

- Demonstrate LO import compliance
for analysis;

- Demonstrate L1 import-analysis
compliance for all KDM domains.

Compliant tool shall:

- Demonstrate LO
compliance for import;
- Support KDM API as
defined by all KDM
packages.

Compliant tool shall:

- Demonstrate LO export
compliance;

- Demonstrate L1 export
compliance for all KDM
domains.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to or revisions of any of these publications do not apply.

* OMG UML Infrastructure Specification, ver.2.3, formal/2010-05-03

* OMG Meta-Object Facility (MOF) Specification, ver. 2.0, formal/06-01-01

*+ OMG MOF XML Metadata Interchange (XMI) Specification, ver. 2.1, formal/05-09-01

* OMG Semantics of Business Vocabularies and Business Rules (SBVR) Specification, ver. 1.0 formal/08-01-02
* ISO/IEC 11404:2007 Information technology -- General-Purpose Datatypes (GPD)

4 Terms and Definitions

This subclause contains only those terms which are used in a specialised way throughout the KDM specification. The
majority of terms in KDM are used either according to their accepted dictionary definitions or according to commonly
accepted definitions that may be found in ISO glossaries or other well-known collections of software engineering terms.
Some combinations of common terms used in KDM, while not meriting glossary definition, are explained for clarity in
the context where they are used.

Abstraction: A view of an object that focuses on the information relevant to a particular purpose and ignores the
remainder of the information.

Aggregation: a derived relationship between two elements that are groups of other elements that represents all individual
relationships between the grouped elements of the two groups.

Architecture-Driven Modernization (ADM): ADM is the process of understanding and evolving existing software
assets of a system of interest. ADM focuses at collecting, sharing, utilizing, transforming, presenting, maintaining and
storing models of the architectural aspects of existing systems. ADM does not preclude source-to-source migrations
(where appropriate), but encourages user organizations to consider modernization from an analysis and design
perspective. In doing so, project teams ensure that obsolete concepts or designs are not propagated into modern languages
and platforms.

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the
final product provides.

Build process: a process of transforming of project code base into usable applications. The end result of a software build
is a collection of files that consitute a product in a distributable package. In this case, package can mean a standalone

application, Web service, compact disc, hotfix, or bug fix. Each step of a build process is a transformation performed by
software running on a general purpose computer. A simple software build may involve compiling a single source code file
into an executable code. A complex software build may involve orchestrating hundreds of versions of thousands of files
with millions of lines of source code such that a correct executable code results from the compilation. The implementation
of a system also involves deploying the build onto the system nodes, and applying appropriate configuration settings.

6 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Component: a functionally or logically distinct part of a system. A component may be hardware or software and may be
subdivided into other components. Often a component is a physical, replaceable part of a system that packages
implementation and provides the realization of a set of interfaces. Such component represents a physical piece of
implementation of a system, including software code (source, binary or executable) or equivalents such as scripts or
command files.

Container: a model element that owns one or more distinct elements through the special "owns" ("contains")
relationships between the container element and owned elements. "Containment" relationships form a special group of
the corresponding owned elements. No element has more than one container.

Domain: An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners
in that area.

Element: one of the parts of a compound or complex whole. For example, a model element, a meta-model element.

Group: a number of model elements regarded as a unit formed by traceability relationships to a single distinct element.
An element may be part of multiple groups, including a single group formed by the "containment" relationships between
a container and its owned elements. An element is said to group together one or more elements, if these elements have
traceability relationships to the element.

Hierarchy: an arrangement of model elements according to traceability relationships, where an element that "owns" or
"group" other elements is considered at a higher level than the owned (grouped) elements.

Interface: (1) a shared boundary or connection between two dissimilar objects, devices or systems through which
information is passed. The connection can be either physical or logical. (2) a named set of operations that characterize the
behavior of an entity

Item: that which can be individually described or considered. See also Component, Element, Unit, Module.

KDM Entity: a meta-model element (as well as the corresponding model elements) that represents a thing of significance
of the system of interest, about which information needs to be known or held. A KDM entity is an abstraction of some
element of the system of interest that has a distinct, separate existence objective or conceptual reality, a self-contained
piece of data that can be referenced as a unit. As a model element each KDM entity is an instance of some specific meta-
model element and it usually the endpoint of distinct KDM relationships.

KDM instance: a collection of KDM model elements that represent one or more views of the system of interest.
KDM model: a meta-model element (as well as the corresponding model elements) that is a container for a KDM view

KDM Relationship: a meta-model element (as well as the corresponding model elements) that represents some semantic
association between elements of the system of interest. All KDM relationships are binary. As a model element each KDM
relationship is an instance of some specific meta-model element.

Meta-model: A special kind of model that specifies the abstract syntax of a modeling language. The typical role of a
metamodel is to define the semantics for how model elements in a model get instantiated. A model typically contains
model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel elements.

Meta-model element: an element of a meta-model from which model elements are instantiated.

Model: A model represents a system of interest, from the perspective of a related set of concerns. The model is related to
the system by an explicit or implicit isomorphism. Models are instances of MOF meta-models and therefore consist of
model elements and links between them.

Model element: instance of a meta-model element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 7

Module: (1) A program unit that is discrete and identifiable with respect to compiling, combining with other units, and
loading; for example, the input to, or output from, an assembler, compiler, linkage editor, or executive routine. (2) A
logically separable part of a program.

Resource: any physical or virtual component of limited availability within a computer system available for a given
purpose and managed by the runtime platform.

Runtime platform: the set of hardware and software components that implement the services utilized by the application
software. A runtime system generally controls how several tasks are scheduled to run, and manages resources. Its
provisions for the programmer typically form an Application Programming Interface- a set the well-documented ways of
using the system.

Segment: A collection of data that corresponds to one or more coherent views of a system of interest that is stored or
transferred as a unit.

Software artifact: A software artifact is a tangible machine-readable document created during software development.
Examples are requirement specification documents, design documents, source code and executables.

Software asset: A software asset is a description of a partial solution (such as a component or design document) or
knowledge (such as requirements database or test procedures) that engineers use to build or modify software products. A
software asset is a set of one or more related artifacts that have been created or harvested for the purpose of applying that
asset repeatedly in subsequent contexts. The asset consumer is an architect or a designer of any type of IT or business
process solutions from solution business modeling, analysis (assets used are models) and design to application
development (assets used are pieces of code).

Traceability: The degree to which a relationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software component match.

Unit : (1) a piece or complex of apparatus serving to perform one particular function (2) A software element that is not
subdivided into other elements.

User interface: An interface that enables information to be passed between a human user and hardware or software
components of a computer system.

View: A representation of a whole system from the perspective of a related set of concerns.

Viewpoint: A specification of the conventions for constructing and using a view. A pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the techniques for its creation and
analysis.

5 Symbols

There are no symbols defined in this specification.

8 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

6 Additional Information

6.1 Changes to Other OMG Specifications

There are no changes to other OMG specifications.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.

Chapter 7. Specification overview - Provides design rationale for the KDM specification
Chapter 8. KDM - Gives the overview of the packages of KDM

Part I - Infrastructure Layer

Chapter 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling
services to other classes, and define fundamental constraints.

Chapter 10. Package named “kdm” - Describes the key infrastructure elements that determine patterns for constructing
KDM models and integrating them. This package defines several static elements that are shared by all KDM instances.
This package determines the queries against KDM instances.

Chapter 11. Source package - Describes meta-model elements that provide traceability from KDM facts to the original
representation of the physical artifact (for example, source code).

Part II - Program Elements Layer

Chapter 12. Code package - Describes meta-model elements that capture programming artifacts as provided by
programming languages, such as data types, procedures, macros, prototypes, templates, etc.

Chapter 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package
defines detailed endpoints for most KDM relations. The key element related to behavior is a KDM action. Other packages
depend on the Action package to use actions in further modeling aspects of existing applications such as features,
scenarios, business rules, etc.

Chapter 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.
Part III - Runtime Resources Layer

Chapter 15. Platform package - Describes the meta-model elements that represent operating environments of existing
software systems. Application code is not self-contained, as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Platform package provides meta-model elements to address the following:

* Resources that Runtime platforms provide to components
» Services that are provided by the platform to manage the life-cycle of each resource
* Control-flow between components as it is determined by the platform

» Error handling across application components

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 9

* Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the
Runtime package further addresses the physical aspects of operating environments, such as deployment.

Chapter 16. UI package - Describes the meta-model elements that represent knowledge related to user interfaces,
including their logical composition, sequence of operations, etc.

Chapter 17. Event package - Describes meta-model elements that represent basic elements related to behavior of
applications in terms of states, transitions between states, events, messages and responses.

Chapter 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Part IV - Abstractions Layer

Chapter 19. Structure package - Describes the meta-model elements that represent the logical organization of the software
system in terms of logical subsystems, architectural layers, components and packages.

Chapter 20. Conceptual package - Describes the meta-model elements that represent facts related to the business domain
of the existing system and provide traceability to other KDM facts.

Chapter 21. Build package - Describes the meta-model elements that represent the facts related to the build process of the
software system (including but not limited to the engineering transformations of the “source code” to “executables”).

6.2.1 Diagram format

Meta-model diagrams in this specification are used to mechanically produce the Meta-Object Facility (MOF) definition of
KDM, and the corresponding KDM XMI schema. The following conventions are adopted for all metamodel diagrams
throughout this specification:

* An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and
* the opposite (unmarked) association end is owned by the association.
* An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,
» each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

m"nn

* additionally, properties "owner", "group" and "model" are automatically renamed to ownerProperty, groupProperty
and modelProperty respectively.

» Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

 the constraint {subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

+ aconstraint {redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

10 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

* Derived union is indicated by placing constraint {union} in the proximity of the association end to which it applies.
The corresponding association endpoint is marked as derived and read only.

» Ifan association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. In addition, if the name of the class to which the end is attached
starts has a meaningful prefix of uppercase letters, for example XMLxxxx, KDMxxx, Ulxxxx, the entire uppercase
prefix is modified to become lowercase. For example, the above words become xmlxxxx, kdmxxx, uixxxx. (Note that,
by convention, non-navigable association ends are often left unlabeled since, in general, there is no need to refer to
them explicitly either in the text or in formal constraints - although there may be needed for other purposes, such as
MOF language bindings that use the metamodel.)

* unlabeled association ends attached to the class KDM Entity which correspond to KDM Relationships are
additionally prefixed with "in" or "out" according to the direction of the relationship. The corresponding properties
at the KDM Relationship class side are "to" and "from". For example, association ends for the ActionElement class
corresponding to the associations to ControlFlow class are named "inControlFlow" (the counterpart of the "to"
endpoint from the ControlFlow side) and "outControlFlow" (the counterpart of the "from" endpoint from the
ControlFlow side)

* Associations that are not explicitly named, are given names that are constructed according to the following production
rule:

"A " <class-namel> " " <association-end-name2>

where <class-namel> is the name of the class that owns the first association end and <association-end-name2> is
the name of the second association end

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 1"

12

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

7 Specification Overview

This specification defines a meta-model for representing information related to existing software, its elements,
associations, and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and
modernization tools, services, and their respective models. More specifically, (KDM) defines a common ontology and an
interchange format that facilitates the exchange of data currently contained within individual tool models that represent
existing software. The meta-model represents the physical and logical elements of software as well as their relationships
at various levels of abstraction.

KDM groups facts about existing systems into several domains each of which corresponds to an ISO 42010 architectural
viewpoint. Each KDM domain is represented by one or more KDM packages which formalize the viewpoint language for
the domain. KDM focuses at the entities and their relationships that are essential for the given domain. A KDM
representation of a given software system - a KDM instance - is a collection of facts about that system. These facts are
organized into KDM models per each domain. KDM model corresponds to an ISO 42010 architectural view. KDM facts
are further organized into meaningful groups called segments. A KDM segment may include one or more architectural
views of the given system. KDM instances may be part of the complete architectural description of the system, as defined
by ISO 42010, in which case additional requirements of ISO 42010 shall be satisfied by the overall document. KDM
instances are represented as XML documents conforming to the KDM XMI schema.

Infrastructure fayer

Abstractions fayer L] ALE

Program Elements layer

Structure
Resource layer

Figure 7.1 - Layers, packages, and separation of concerns in KDM
KDM specification is organized into the following 4 layers:

e Infrastructure Layer

* Program Elements Layer

* Runtime Resource Layer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 13

* Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to
represent a certain independent facet of knowledge related to existing software systems.

Logically, KDM consists of 9 models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. Most KDM domains are defined by a single package, with the exception of the Code domain, which
is split between the Code and the Action packages.

The Infrastructure Layer consists of the following 3 packages: Core, “kdm”, and Source. Core package and the package
named “kdm” do not describe separate KDM models. Instead these packages define common meta-model elements that
constitute the infrastructure for other packages. The Source package defines the Inventory model, which enumerates the
artifacts of the existing software system and defines the mechanism of traceability links between the KDM elements and
their original representation in the “source code” of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code
model that represents the implementation level assets of the existing software system, determined by the programming
languages used in the developments of the existing software system. The Code package focuses on the named items from
the “source code” and several basic structural relationships between them. The Action package focuses on behavior
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software
systems.

The Runtime Resources Layer consists of the following 4 packages: Platform, UI, Event, and Data.
The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information:
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files.
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:
» KDM is a Meta-Object Facility (MOF) model.
+ KDM is an Entiry-Relationship model.

+ KDM can be extended to represent language-specific, application-specific, and implementation-specific entities and
relationships.

» KDM models are composable (it is possible to group several entities into a typed container, that will further on
represent the entire collection of grouped entities via aggregated relationships). KDM defines multiple hierarchies of
entities via containers and groups.

14 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

» KDM provides model refactoring capabilities, for example, a KDM tool can support moving entities between
containers and map changes in the model to changes in the code through traceability links.

* KDM is aligned with ISO/IEC 11404 General-Purpose Datatypes and OMG Semantics of Business Vocabularies and
Business Rules (SBVR).

» KDM defines an ontology for describing existing software systems. The ontology defined by KDM is related to the
elements of existing software systems, the relationships between these elements, as well as the elements of the
operational environment of the software system. KDM ontology addresses both physical elements (for example, a
procedure, a variable, a table), which are originally represented by language-specific artifacts of the software (for
example source code), as well as logical elements (for example, user interface elements, concepts that are implemented
by the software, architectural components of the software, such as layers, etc.).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 15

16

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

8 KDM

8.1 Overview

KDM specifies a comprehensive set of common concepts required for understanding existing software systems in
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of
domain-specific, application-specific, or implementation-specific knowledge.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

. Lo . Abstractions
I;(l[il s_,l:;:i,y:trslphcm Conceptual Bulld StI'U.CtUI'e } Layer
Runtime
R«
] Data | Event | Ul Platform Ly
. Program
Primitives, explicit, COde ACthIl Iiial;nrlents
automaticallj extracted
Source
) Infraptructure
work k d m Layef
’
metg-model C ore

Figure 8.1 - Structure of KDM Packages
The KDM specification contains 12 packages; each package is defined by one or more class diagrams.

The Core package defines the basic meta-elements (entity, relationship, container hierarchies, etc.) and well-formedness
rules of KDM models.

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging
packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each
package depends on the Core package. The nature of this dependency is that the meta-model elements defined by each
package are subclasses of one of the meta-model elements defined in the Core package. Also, each package depends on
the package with name “kdm”. Each KDM package above the package with name “kdm” in Figure 8.1 defines a KDM
model, which corresponds to a certain facet of knowledge about an existing software system. The package with name
“kdm” provides the infrastructure for all KDM models. The nature of the dependency on the package with name “kdm”
is as follows. First, each package defines a subclass of the KDMModel class, defined in that package. Second, each
package provides several concrete classes that are instantiated in each KDM instance as part of the infrastructure. Third,
the package with name “kdm” defines several important mechanisms that are used by all KDM models: the annotation
mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The corresponding
meta-model elements can be instantiated by any KDM model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 17

The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge
automatically, for example by implementing a bridge to an existing software development environment. Such bridge
provides a mapping from the programming language (or languages) used for the development of the existing software
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces
of this knowledge are implicitly represented by the original source code of the software system and the corresponding
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the
programming language (or languages) used for the development of the existing software system, but by the corresponding
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further
analyzed and transformed by various KDM tools.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM instance is a single, integrated representation of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages

KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and
relations. The KDM has the following organization:

* The Core package defines the basic abstractions of KDM.
* The package with name “kdm” provides shared context for all KDM models.

* The Source package defines meta-model elements that represent the inventory of the physical artifacts of the existing
software system and defines the key traceability mechanism of KDM - how KDM facts references back to their
original representation in the artifacts of the software system (for example, source code).

* The Code package defines meta-model elements that represent the low-level building blocks of software, such as
procedures, datatypes, classes, variables, etc. (as determined by a programming language).

* Action package defines meta-model elements that represent statements as the end points of relations, and the majority
of low-level KDM relations.

+ Platform package defines meta-model elements that represent the run time resources used by the software system, as
well as relationships determined by the run-time platform.

» Ul package defines the meta-model elements that represent the user-interface aspects of the software system.

* Event package defines meta-model elements that represent event-driven aspects of the software system, such as events,
states, state transitions, as well as relationships determined by the event-driven semantics of the run-time framework.

« Data package defines meta-model elements that represent persistent data aspects of the software system.

18 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

» Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same
system

* Conceptual package defines meta-model elements that represent the domain-specific elements of the software system.

» Build package defines meta-model elements that represent the artifacts related to the build process of the software
system (including but not limited to the engineering transformations of the “source code” to “executables”).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 19

20

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Part | - Infrastructure Layer

KDM is a large specification, since it provides an intermediate representation for several facets of knowledge about
existing enterprise software systems. In order to manage the complexity of KDM, a small set of concepts was selected and
systematically used throughout the entire specification. These concepts are defined in the so-called Infrastructure Layer.
It consists of the following 3 packages:

¢ Core
¢ kdm
e Source

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the classes defined in the Core package. From the meta-model perspective KDM is
an entity-relationship representation. So, the two fundamental classes of the Core package are KDMEntity and
KDMRelationship. An entity is a thing of significance, about which information needs to be known or held. A KDM
entity is an abstraction of some element of an existing software system, that has a distinct, separate existence, a self-
contained piece of data that can be referenced as a unit. Each KDM package defines several meta-model elements that
represent specific entities for a particular KDM domain.

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several meta-model elements
that represent specific relationships for a particular KDM domain. All KDM relationships are binary.

KDM defines two special relationships:
* containment
* grouping

Some KDM entities are containers for other entities. There is a special container ownership (containment) relationship
between a container and the entities that are directly owned by this container. Some KDM entities are groups of other
KDM entities. There is a special group association (grouping) relationship between the group and the entities that are
directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special
relationships of containment and grouping and regular relationships of the entity-relationship model.

Core package defines a reflective API to KDM representation. Other KDM packages extend this API by specific
operations, corresponding to specific facets of knowledge about existing software systems.

The Core package is aligned with the OMG SBVR specification, as it provides an abstraction of existing software systems
in the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between
KDM entities). Indeed, most of the KDM specification is a definition of a language- and platform-independent ontology
of existing software systems. This alignment is important since KDM can be viewed as a standard vocabulary related to
descriptions of existing software systems. SBVR rules can be written using this vocabulary to formally describe further
properties of existing software systems.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 21

The package with name “kdm” defines several elements that together constitute the framework of each KDM instance.
The framework determines the physical structure of a KDM representation. The elements of the framework are present in
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM
representation consists of one or more Segments, where each Segment owns several KDM models. Each KDM package
defines some specific type of KDM model, which addresses a certain specific facet of knowledge about existing software
systems. Individual KDM implementations may support one or more selected KDM models, as defined in the KDM
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about
the existing software system and integrate them into a single coherent representation. Further, KDM designs facilitate
incremental implementations, where certain pieces of knowledge about the existing software is collected by analyzing
more lower level KDM representations. According to this approach certain KDM tools may perform a “KDM
enrichment” process, a “KDM to KDM transformation,” where a tool analyzes the input KDM model and produces one or
more additional Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their
“original” language-dependent representation in the source code of the existing software system, for which the KDM
views are created. This is an important part of the KDM Infrastructure, because other KDM packages use this mechanism
to refer to the source code and the physical artifacts of the existing software system.

22 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

9 Core Package

9.1 Overview

The Core package provides basic constructs for creating and describing meta-model classes in all specific KDM packages.
Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and
determine the reflective API to KDM instances.

9.2 Organization of the Core Package

The KDM specification uses packages to control complexity and bring together logically interrelated classes. The Core
package defines a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints
implemented by all other KDM packages.

The Core package consists of the following four class diagrams:
+ CoreEntities
» CoreRelations
* AggregatedRelations
» Datatypes

The Core package depends on no other packages.

9.3 CoreEntities Class Diagram

The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the
CoreEntities class diagram are shown in Figure 9.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 23

Element

1

ModelElement
+/owner +/group
{union} , .
KDMEntity {union}
<name : String .

0..1 0

0+ 0.*

+/groupedElement
+/ownedElement {union}
{union}

Figure 9.1 - CoreEntities Class Diagram

9.3.1 Element Class (abstract)

An Element is an atomic constituent of a model. In the meta-model, an Element is the top meta-element in the KDM class
hierarchy. Element is an abstract meta-model element.

Semantics

Element is the common parent from all meta-model elements of KDM. Most subclasses of Element can own annotations and
user-defined attributes through mechanisms defined in the kdm package.

9.3.2 ModelElement Class (abstract)

A ModelElement is an element that represents some aspect of the existing system.

In the meta-model, a ModelElement is the base for all meta-elements of KDM. All other meta-elements are either direct
or indirect subclasses of ModelElement. ModelElement is an abstract meta-model element.

A ModelElement can be extended through the lightweight extension mechanism.
Superclass

Element

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software
system. The subclasses of Element that are not the subclasses of the ModelElement class are the auxiliary elements of the
Infrastructure Layer.

24 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Each subclass of the ModelElement meta-model element can be extended through the light-weight extension mechanism
defined in the package named “kdm”.

9.3.3 KDMENntity Class (abstract)

A KDMEntity is a named model element that represents an artifact of existing software systems.

In the meta-model, KDMEntity is a subclass of ModelElement. Each KDM package defines specific KDM entities that
are direct or indirect subclasses of KDMEntity. A KDMEntity can be either an atomic element, a container for some
KDMEntities, or a group of some KDMEntities. Container and group introduce implicit relationships between entities and
are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a KDMEntity
with which other entities are associated. A KDMEntity can be owned by at most one container, and can be associated with

Zero or many groups.

Superclass

ModelElement

Attributes

name: String

Associations

owner:KDMEntity[0..1]

group:KDMEntity[0..*]

Constraints

An identifier for the KDM entity.

KDM entity that owns the current element. This property determines a meta-level interface
to KDM entities. This property is a derived union. Some KDM entities define a concrete set
of owned elements that are subtypes of KDMEntity. In KDM this is represented by the
CMOF “derived union” mechanism. Concrete properties subset the “union” properties of the
parent classes, defined in the Core package. The owner of a KDM entity is defined as the
container for which the given entity is an owned entity.

Set of KDM entities with which the current element is associated. This property determines
a meta-level interface to KDM entities. This property is a derived union. Some KDM entities
define a concrete set of grouped elements that are the subtypes of KDMEntity. In KDM this
is represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package. The group of a KDM
entity is defined as the group for which the given entity is a grouped entity. Each KDM
entity can be associated with multiple groups.

1. KDMEntity should not reference self as groupedElement

Operations

getOwner(): KDMEntity[0..1]

This operation returns the KDM entity that is the owner of the current KDM
Entity. The owner entity is a KDM container. There can be at most one owner
for each given entity.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 25

getOwnedElement(): KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current
KDM Entity. Only KDM containers can own other entities.

getGroup():KDMEntity[0..*] This operation returns the set of KDM Entities that have a group association
to the current KDM Entity. The group entity is a KDM group. Unlike KDM
containers, there may be many groups that have an association to a given
entity.

getGroupedElement(): KDMEntity[0..*] This operation returns the set of KDM entities that are “grouped” by the
current KDM entity. Only KDM groups can have group associations to other
entities.

Semantics

An entity is a thing of significance, about which information needs to be known or held. A KDM entity is an abstraction
of some element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that
can be referenced as a unit. Each KDM package defines several meta-model element that represent specific entities for a
particular KDM domain.

9.4 CoreRelations Class Diagram

The Core class diagram defines key meta-model associations of KDM models. The classes and associations of the
CoreRelations class diagram are shown in Figure 9.2.

ModelElement

+/ownedRelation
{union} KDMRelationship
0..*

0..
+/outbound 0.
{union}

+/inbound
{union}

+
+from to

KDMEntity

Figure 9.2 - CoreRelations Class Diagram

9.4.1 KDMRelationship Class (abstract)

A KDMRelationship is a model element that represents semantic association between two entities.

26 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are
typed associations between some specific subclasses of KDMEntity.

Superclass
ModelElement
Associations
to: KDMEntity[1] The target entity (also referred to as the to-endpoint of the relationship). This property determines
a meta-level interface to KDM relationships. Every specific KDM relationship redefines the to-
endpoint to a particular subtype of KDMEntity. In KDM this is represented by the CMOF
“subsets” mechanism. Concrete properties redefine the properties of the parent classes, defined in
the Core package.
from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property
determines a meta-level interface to KDM relationships. Every specific KDM relationship
redefines the from-endpoint to a particular subtype of KDMEntity. In KDM this is represented by
the CMOF “subsets” mechanism. Concrete properties redefine the properties of the parent
classes, defined in the Core package.
Operations
getTo(): KDMEntity[1] This operation returns the KDM entity that is the to-endpoint (the target) of the current
relationship
getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the
current relationship.
Semantics

KDMRelationship meta-model element is an abstract element. The concrete KDM relationships between KDM entities in
KDM views are instances of concrete subclasses of KDMRelationship. Each instance of KDMRelationship has exactly
one target and exactly one origin. Each concrete subclass of KDMRelationship defines the acceptable types of its
endpoints.

9.4.2 KDMEntity (additional properties)

Associations

ownedRelation: KDMRelationship[0..*] Primitive KDM relationships that originate from the current entity.
Operations

getinbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current

KDMEntity is the to-endpoint of these relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 27

getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the from-endpoint of these relationships.

getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity owns these relationships.

Constraints

1. The set of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the
from property is the given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the
ownedRelation association is required to manage relationship elements. KDM relationships are owned by the entity,
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association
class with to- and from- properties.

9.5 AggregatedRelations Class Diagram

The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part
of the “meta-level” interface to KDM models, along with interfaces defined by KDMEntity and KDMRelationship.

Overall management and lifecycle of the Aggregated Relationships is determined by the operations of the KDMEntity
class.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.3.

ModelElement

RelationSet

+aggregate

AggregatedRelationship +relation
<density : Integer

KDMRelationship

0..* 0.*

+from
KD M E ntity

Figure 9.3 - AggregatedRelations Class Diagram

28 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

9.5.1 AggregatedRelationship Class

The set of AggregatedRelationship elements for a given entity represents all primitive relationships between the entities
that are transitively owned by the given entity as well as the entity itself. This is a concrete class, because an
AggregatedRelationship can be instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and
exchanged too, if necessary). The lifecycle of the Aggregated Relationships can be explicitly managed by the operations
of the KDMEntity class.

Superclass
ModelElement
Attributes
density:Integer The number of primitive relationships in the aggregated set.
Associations
relation:KDMRelationship[0..”] The set of primitive KDM relationships represented by the aggregated relationship.
to: KDMEntity[1] The target container of the relationships in the aggregated set. All relationships in the
aggregated set should terminate at the target container or at some entity that is
contained directly or indirectly in the target container.
from:KDMEntity[1] The source container of the relationships in the aggregated set. All relationships in
the aggregated set should originate from the source container or from some entity
that is contained directly or indirectly in the source container.
Constraints

1. To- and from-endpoints should be distinct.
2. The density should be greater than or equal to 1.

3. The density should be the same as the number of primitive relationships represented by the given aggregated
relationship.

Semantics

AggregatedRelationhips is determined by how atomic elements are owned by containers (or referenced by groups) in the
following way:

1. AggregatedRelationship between two entities (no owned elements) represents the set of regular KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity
is the to-endpoint of the relationship).

2. AggregatedRelationship between an entity and a container (or group) represents the set of all regular KDM
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned by the
given container (directly or indirectly).

3. AggregatedRelationship between a container (or group) and an entity represents the set of all regular relationships
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned by the given
container (directly or indirectly).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 29

4. AggregatedRelationship between two containers represents the set of all regular KDM relations such that the from-
endpoint is an entity owned by the first container and the to-endpoint is an entity owned by the other container.

A regular KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an implied
density of 1. An AggregatedRelationship represents a set of regular KDM relationships. It has density of greater or equal
than 1 and no concrete type (as it may represent regular KDM relationships of different types). An
AggregatedRelationship cannot be constructed between two entities if there are no regular KDM relationships between
them (according to the definition above).

The relationship “x in* C” means that x is in container C or in some sub-container of C, transitively.

For relationship R, let R’ be the corresponding aggregated relationship.

Given containers C1 and C2 and the relationship R, let

P = {(x,y) : x in* Cl and y in* C2 and x R y}

That is, P is the set of pairs such that x is in* C1 and y is in* C2 and x R y.

Then

ClI R’ C2iff P[>0

C1 and C2 are related by the aggregated relationship R’ if and only if there is at least one pair in the set P.

The density of C1 “' C2 is then simply |P|, the size of the set P.

R

1=

Figure 9.4 - AggregatedRelationships illustrated

Figure 9.4 illustrates Containers and aggregated relationships. It uses the following notation. UML package symbols C1
and C2 represent KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association
indicates the direction of the relationship, when there are no arrows at either end of the association (as in the Figure 9.4),
this indicates two relationships, one in each direction. The numbers at the ends of associations, such as “+2”, represent the
density of the corresponding KDM relationship. The KDM density has a different interpretation than UML multiplicity:
since KDM represents an existing application, the exact relationships and their number is what the model captures. KDM
model is not a model that represents constraints, like the ones used during the design phase, rather, this is a model that
captures precise knowledge about the application. So, the KDM densities are exact.

Aggregated relationships are collections of more primitive relationships, which at the end are some basic code facts, for
example “procedure x calls procedure y.” Such basic fact has density 1. A primitive code relationship represents some
basic fact about the existing application. Now, when there are two or more such facts, for example “procedure x in

30 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

module A calls procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an
aggregated relationship between modules A and B with density 2 (2=1+1). In this case, the aggregated relationship
represents the collection of the two primitive relationships between modules A and B.

9.5.2 KDMENntity (additional properties)

Operations
createAggregation(otherEntity: KDMEntity) This operation creates an aggregated relationship such that the
current entity is the from-endpoint of the aggregated relation and the
“otherEntity” is the to-endpoint. The new aggregated relationship is
owned by the model to which owns the current entity (either directly
or indirectly through container ownership).
deleteAggregation This operation deletes the given aggregated relationship.

(aggregatedRelation:AggregatedRelationship)

getinAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the target is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the origin is the current KDM Entity.

9.6 Datatypes Class Diagram

The Datatypes class diagram collects together utility data types for the Core package. Each class at the Datatypes class
diagram is a subclass of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.5.

<<datatype>>
<<datatype>> Boolean
String

<<datatype>>
Integer

Figure 9.5 - Datatypes Class Diagram

9.6.1 Boolean Type (datatype)

The meta-model uses the Boolean type to represent some KDM attributes, KDM operations, and their parameters.

9.6.2 String Type (datatype)

The meta-model uses the String type to represent some KDM attributes, KDM operations, and their parameters.

9.6.3 Integer Type (datatype)

The meta-model uses the Integer type to represent some KDM attributes, KDM operations, and their parameters.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 31

32

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

10 The Package named “kdm”

10.1 Overview

The package named “kdm” defines the key infrastructure elements that determine patterns for constructing KDM views of
existing software systems. KDM views (also referred to as KDM instances) are collections of the elements that are
instances of the meta-model elements defiend by the KDM specification, where each KDM element represents a certain
element of the existing system. Although in the technical sense, KDM instance is a model of the corresponding existing
software system, KDM instance is not a model that represents constraints, like the ones used during the design phase,
rather, this is an intermediate representation that captures precise knowledge about the system.

Implementers of KDM tools are guided by a mapping from the elements of programming languages, runtime platforms,
and other artifacts of existing software systems into KDM elements, using semantic description and implementer's
guidelines of this specification. The package named “kdm” describes several infrastructure elements which are present in
each KDM instance. Together with the elements defined in the Core package these elements constitute the so-called KDM
Framework. The remaining KDM packages provide meta-model elements that represent various elements of existing
systems.

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension
meta-model pattern). KDM Framework is part of the Infrastructure Layer together with the elements defined in the Source
package.

10.2 Organization of the KDM Framework

The package with name “kdm” is a collection of classes and associations that define the overall structure of KDM
instances. From the infrastructure perspective, KDM instances are organized into segments and then further into specific
models. There are 9 kinds of models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. From the architectural perspective, each KDM package defines an architectural viewpoint. KDM
model is the key mechanism to organize individual facts into architecture views. From the infrastructure perspective, a
KDM model is a typed container for meta-model element instances (collection of facts organzied into an architectural
view). From the meta-model perspective, each KDM model is represented by a separate KDM package that defines a
collection of the meta-model elements, which can be used to represent the facts about the given existing systems from a
particular viewpoint. KDM framework defines a common superclass model element for all models - the KDMModel class.
KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding to a particular
model kind and to a particular instance of such element in a concrete representation of some existing system. Explicit
disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when necessary.

KDM model is the key unit of a KDM instance. KDM segment can own one or more models. A segment is a minimal unit
of exchange in the KDM ecosystem. Segments can be nested.

The implementer shall provide an adequate partitioning of the KDM instance into multiple models and segments. On the
other hand, the implementers of KDM import tools should not make any assumptions about the organization of KDM
model elements into models or organization of models into segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model
segment describe artifacts that involve a single programming language and a single platform.

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be
integrated to provide a coherent holistic view.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 33

The package with name “kdm” consists of the following 5 class diagrams:
* Framework — defines the basic elements of the KDM framework.
* Audit — defines audit information for KDM model elements.
* Annotations - provides user-defined attributes and annotations to the modeling elements.
» Extensions - a class diagram that defines the overall organization of the light-weight extension mechanism of KDM.
» ExtendedValues - the tagged values used by the light-weight extension mechanism.

The package with name “kdm” depends only on the Core package.

10.3 Framework Class Diagram

The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM
instances.

The classes and association of the Framework diagram are shown in Figure 10.1.

ModelElement
. (from core)
Extensions
+extensionFamily \ f KDMEntity
0..* (from core)

KDM Framework <name : String
wname : String

ExtensionFamily

+/ownedEle ment

0. {union}

+/model

+owner 0..1 {union}

+model
+segment Segment KDM Model
0.* 1 0..*
Segments TO-J Models
+owner 0..1
+/model

AggregatedRelations

0.*
+/aggregatedRelation

AggregatedRelationship

(from core)
sdensity : Integer

Figure 10.1 - Framework Class Diagram

34 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

10.3.1 KDMFramework Class (abstract)

The KDMFramework meta-model element is an abstract class that describes the common properties of all KDM
Framework elements. KDMFramework class is extended by Segment and KDMModel classes. These elements are
containes for KDM light-weight extensions (extension property). The KDM extension mechanism is described further in
this chapter.

Superclass

ModelElement

Attributes

name: String [0..*] The name of the framework element.

Associations

extension: ExtensionFamily [0..*] Extensions for the current model segment.

Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. The
implementer shall:

» arrange instances of the KDM model elements into models (constrained only by the definition of each model)
» arrange KDM models into one or more segments

* provide names to KDM models and KDM segments

10.3.2 KDMModel Class (abstract)

A KDMModel is an abstract class that defines common properties of KDM model instances which are collections of facts
about a given software system from the same architectural viewpoint of one of the KDM domains. KDM defines several
concrete subclasses of the KDMModel class, each of which defines a particular kind of a KDM model. The architectural
viewpoint is define by the corresponding KDM package. A KDM model instance is an architectural view of the given
system.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’s assume
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

* The meta-model elements for KDM model “foo” are described in a separate package, called “foo.”
* The package defines a concrete subclass of the KDMModel, called “FooModel.”

* The package defines a common abstract parent for all KDM entities specific to this KDM model, called
“AbstractFooElement.” This class extends the KDMEntity class from the Core package.

* The package defines a common abstract parent for all KDM relationship specific to this KDM model, called
“AbstractFooRelationship.” This class extends KDMRelationship class from the Core package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 35

¢ C(Class “FooModel” owns class “AbstractFooElement.” This association subsets the association between the
KDMModel and KDMEntity defined at the Framework class diagram.

e Class “AbstractFooElement” owns zero or more AbstractFooRelationship elements.

* The package “foo” includes a “Foolnheritances” class diagram, describing inheritances of “FooModel,”
“AbstractFooElement,” and “AbstractFooRelationship” classes, as well as any other common properties related to the
KDM Infrastructure, such as properties related to the Source package.

* The package “foo” includes “ExtendedFooElements” diagram that defines two generic meta-model elements
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass
KDMFramework
Associations
ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM
model defines specific subclasses of KDMEntity class.
aggregatedRelation:AggregatedRelationship[0..*] Instances of KDM aggregated relations owned by the model.
Semantics

The implementer shall arrange instances of the KDM model elements into models (constrained only by the definition of
each model) and to provide name attributes for each KDM model instance. A KDM model instance may be empty or may
contain one or more instances of the elements allowed for this KDM model. A particular KDM instance may contain no
KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models
in KDM Program Elements and Infrastructure layer. There should be no associations from the Program Elements and
Infrastructure layer models to Resource and Abstractions layer models.

10.3.3 KDMENntity (additional properties)

Operations

getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM
Entity

36 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

10.3.4 Segment Class

The Segment element is a container for a meaningful set of facts about an existing software system. Each segment may
include one or more KDM model instances and thus represents a collection of one or more architectural views for a given
software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without owners is the
top segment of the KDM model.

Superclass
KDMFramework
Associations
segment: Segment[0..*] Nested Segment elements owned by the current Segment
model[0..*]:KDMModel The set of KDM models owned by the current segment. Each KDM model defines an
architectural viewpoint. KDM model defines specific meta-model elements (entities and
relationships specific to the viewpoint) that collectively define the viewpoint language
Semantics

The implementer shall arrange KDM models into segments and to provide name attributes for each KDM segment
instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may contain one
or more KDM models of a given kind.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple
derivative models from the Program Elements and Infrastructure layer.

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models
into KDM segments.

Example

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xm :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: code="http://schena. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: kdne" htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdnt'
xm ns: source="http://schema. ong. or g/ spec/ KDM 1. 2/ sour ce" name="Franmewor k Exanpl e">

<audit xm:id="id.0" description="Illustration of KDM Franework" author="KDM FTF" dat e="04-03-2007">
<attribute xm:id="id.1" tag="approved" val ue="yes"/>
</ audit>

<segment xm:id="id.2" name="foobar"/>
<nmodel xm:id="id.3" xm:type="code: CodeModel " nane="foo0">
<annotation xm:id="id.4" text="This is a sanple instance of a Code nodel"/>
</ model >
<model xm:id="id.5" xm:type="source:lnventoryMdel" nane="bar">
<annotation xm:id="id.6" text="This is a sanple of an Inventory nodel"/>
</ nodel >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 37

</ kdm Segnent >

10.4 Audit Class Diagram

The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2.

Element

(from core)

KDMFramework

Audits 0:*
+audit

Audit
&description : String
&author : String
<date : String

Figure 10.2 - Audit Class Diagram

10.4.1 Audit Class

Audit class represents basic audit information associated with KDM models.

Superclass
Element
Attributes
description:String Contains the description of the Framework element.
author:String Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.
date:String Contains the date when the model element was created
Constraints

1. date should be represented in “dd-mm-yyyy” format

Semantics

The Audit element provides some extra “audit” information in the form of human readable text.

38 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Each Framework element can have zero or more Audit instances associated with it. The collection of Audit elements is
not ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,”
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For
example, “04-03-2007 corresponds to the “4th of March 2007.”

The content of the Audit element is provided by the implementer or the analyst.
KDM does not constrain the “description” attribute.

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element,
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or
segment.

Audit element can own Annotation elements and Attribute elements. The Audit.description is the primary description and
any associated annotations may be used as optional secondary descriptions.

Example

See example in the KDMFramework section.

10.4.2 KDMFramework (additional properties)

Audit elements can be owned by any subclass of the KDMFramework element, including segment or model.

Associations

audit:Audit[0..%] The list of Audit element instances for the given instance of KDMFramework (segment or model)

10.5 Extensions Class Diagram

The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “virtual” meta-model elements to KDM. A
“virtual” meta-model element is a base meta-model element with extended meaning, and possibly with extended
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of
KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:
1. Define a stereotype (introduce the partial kind of a meta-model element):

* A stereotype definition includes the name of class of the allowed base elements. This class can be a particular
concrete meta-model element, a generic element or an abstract meta-model element

2. Define tags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition
includes the name of the extended attribute and the name of the type of the element (represented as a string).
Values of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype
defines its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 39

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework
elements (KDM models and segments).

4. Use extended model elements in KDM instances by using the base meta-model element instance with one or more
stereotypes:

* Concrete tag values can be added to the “virtual” element if the stereotype defines tags.
* Each tag value is associated with the corresponding tag definition.
* The complete kind of the new element is defined as the union of all stereotypes added to the element.

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element.
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of
the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model
defines two “wildcard” generic elements: a generic entity and a generic relationship for the given KDM model. They too
can be used as extension points.

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between
tags or stereotypes. The implementer shall select the most specific extension points, by defining stereotypes in such a way
that they use the base elements with the most specific semantic description (closer to the bottom of the KDM class
hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.

40 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Element

TagD efinition

«tag : String

(from core) \

ExtensionFamily

<name : String

Stereotypes

1
Stereotype /
0..*

“t <name : String
&/f <“type : String +stereotype

<type : String | 0..* Tags .*

+stereotype

Extension

0..*

ModelElement

+taggedValue 1 (from core)
ExtendedValue

0..* ExtendedValues

Figure 10.3 - Extensions Class Diagram

10.5.1 Stereotype Class

The stereotype concept provides a way of branding (classifying) model elements so that they behave as if they were the
instances of new virtual meta-model constructs. These model elements have the same structure (attributes, associations,

operations) as similar non-stereotyped model elements of the same kind. The stereotype may specify additional required
tagged values that apply to model elements. In addition, a stereotype may be used to indicate a difference in meaning or
usage between two model elements with identical structure.

In the meta-model the Stereotype is a subclass of Element. Stereotype is a named model element. TaggedValues attached
to a Stereotype apply to all ModelElements branded by that Stereotype.

A Stereotype specifies the name of the base class to which it can be added.

Superclass

Element

Attributes

name:String

type:String

Specifies the name of the stereotype.

Specifies the name of the model element to which the stereotype applies.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

41

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

Constraints

1. Tags associated with model element should not clash with any meta attributes associated with this model element.
2. A model element should have at most one tagged value with a given tag name.

3. A stereotype should not extend itself.

4. A Stereotype can be added to ModelElement if its class is the same as the baseClass, or one of its subclasses.

5. The values of the Type attribute of the TagDefinition are restricted to the names of the KDM meta-elements.
Names of the core datatypes (“Boolean,” “String,” “Integer”) define attributes of the extended meta-model
element. The corresponding values are represented as instances of the TaggedValue class. Names of other KDM
meta-elements (for example, “KDMEntity,” or “Audit”) define associations of the extended meta-element and the
corresponding values are represented as instances of the TaggedRef class.

Semantics
Stereotypes should not change the semantics of the base meta-model element.

A KDM model element with one or more stereotypes has the semantics of the base element with some additional
semantic constraints. The complete kind of the new element is defined as the union of all stereotypes added to the
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class,
with the new attributes corresponding to the tag definitions.

Example

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmi :version="2.1"
xm ns: xm ="http://schena. ong. org/ spec/ XM /2. 1"
xm ns: action="http://schema. ong. or g/ spec/ KDM 1. 2/ acti on"
xm ns: code="http://schenma. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: kdnme"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt' name=" St er eot ype Exanpl e">
<extensionFam |y xm :id="id.0" name="Exanpl e extensions">
<stereotype xm:id="id.1" nane="Java nethod"/>
<stereotype xm:id="id.2" nane="C++ net hod"/>
<stereotype xm:id="id.3" name="C++ procedure"/>
<stereotype xm:id="id.4" name="C++ friend">
<tag xm:id="id.5" tag="friend_of" type="ClassUnit"/>
</ st ereotype>
<stereotype xm:id="id.6" nane="|sFriendOf"/>
<stereotype xm:id="id.7" nane="native call">
<tag xm:id="id.8" tag="inplemented in" type="String"/>
</ st ereotype>
</ ext ensi onFam | y>
<nmodel xm:id="id.9" xm:type="code: CodeMddel " name="Exanpl e">
<codeEl enent xm:id="id. 10" xm :type="code: d assUnit" nane="nycl ass">
<codeEl enent xm:id="id. 11" xm:type="code: Met hodUnit" stereotype="id.2"
nane="foo" type="id.12">
<codeEl ement xm:id="id.12" xm :type="code: Signature" name="fo0"/>

42 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</ codeEl erment >
</ codeEl erment >
<codeEl ement xm :id="id.13" xm:type="code: CallableUnit" stereotype="id.4 id.3"
nane="bar" type="id. 16" kind="regular">
<t aggedVal ue xm :id="id. 14" xm:type="kdm TaggedRef" tag="id.5" reference="id.10"/>
<codeRel ation xmi :id="id.15" xm:type="code: CodeRel ati onshi p" stereotype="id. 6"
to="id. 10" fron¥"id. 13"/>
<codeEl ement xm :id="id.16" xm:type="code: Signature" name="bar"/>
</ codeEl erment >
</ nodel >
<model xm :id="id.17" xm:type="code: CodeModel ">
<codeEl enent xm :id="id.18" xm:type="code: d assUnit" stereotype="id.1l">
<codeEl ement xm :id="id.19" xm :type="code: Met hodUnit" stereotype="id.1l"
name="f oobar" type="id.23">
<codeEl ement xm :id="id.20" xm:type="action:Acti onEl enent" stereotype="id.7"
name="al">
<actionRel ation xm:id="id.21" xm:type="action:Calls" stereotype="id.7"
to="id. 13" fron¥"id.20">
<t aggedVal ue xm :id="id.22" xm:type="kdm TaggedVal ue" tag="id.8" value="C'/>
</ actionRel ati on>
</ codeEl erment >
<codeEl enent xm :id="id.23" xm:type="code: Signature" nane="foobar"/>
</ codeEl ement >
</ codeEl ement >
</ model >
</ kdm Segment >

10.5.2 TagDefinition Class

Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
extended information about existing software systems to only those tools that share a common understanding of the
specific tagged value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass

Element

Attributes

tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 43

type:String Specifies the type of the value attribute.

Constraints

1. The “value” attribute of the TaggedValue should be valid according to the type specified in the corresponding
TagDefinition.

2. The target of the “ref” association of the TaggedRef should be of the type specified in the corresponding
TagDefinition, or one of its subtypes.

3. If the type of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,” “StringType,”
“IntegerType”), the corresponding value should be an instance of the TaggedValue class.

4. If the type of the TaggedDefinition is a name of some other KDM meta-element (for example, “KDMEntity,” or
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics

ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags
is outside of the KDM specification and should be communicated by implementers to the users of the extended models.
Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions
can still be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic
KDM semantic rules are applied.

Example

See example in the Stereotype class section.

10.5.3 ExtensionFamily Class

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and their corresponding tag definitions.

Superclass

Element

Attributes

name:String Provides the name of the extension family.

Associations

stereotype:Stereotype[0..%] The set of stereotypes that are owned by the extension family.

44 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

ExtensionFamily provides a named container for stereotype definitions. The implementer shall arrange stereotype
definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in a separate
segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into families.

Example

See example in the Stereotype class section.

10.5.4 ModelElement (additional properties)

Associations
taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.
stereotype:Stereotype[0..*] The stereotype

Constraints

1. Each tagged value added to a ModelElement must conform to a certain tag definition owned by the stereotype of
that ModelElement (the tag association of the TaggedValue should refer to a TaggedDefinition that is owned by a
Stereotype of the ModelElement). A tagged value conforms to a tag definition when the value conforms to the type
of the TagDefinition. Conformance of lightweight extensions can only be validated dynamically by a suitable
KDM import tool, since lightweight extensions are not defined by the KDM standard.

2. Stereotype can be associated with a certain instance of a ModelElement if the type of the ModelElement is the
same as the type property in the stereotype definition, or one of its subclasses.

Example

See example in the Stereotype class section.

10.6 ExtendedValues Class Diagram

ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value
construct.

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 45

Element
(from core)

TaggedValueDefinition o
TagDefinition

ExtendedValue *tag [Wtag : String
0.* 1 |S<stype : String

TaggedValue TaggedRef
<svalue : String

0..*
Reference

+reference 1

ModelElement

(from core)

Figure 10.4 - ExtendedValue Class Diagram

10.6.1 ExtendedValue Class (abstract)

ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values: the TaggedValue
and the TaggedRef. ExtendedValue class defines common properties for these classes.

Superclass

Element

Associations

tag [1]: TagDefinition the reference to the tag definition of the corresponding stereotype

Semantics

ExtendedValue is a “virtual” attribute to an extended KDM meta-model element. ExtendedValue element represents the
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stercotype
element defines the “virtual” meta-model element that provides the context for the new attributes. “Virtual” attributes are
instantiated every time a new “virtual” meta-model element, defined by a Stereotype is instantiated. This is an important
difference between ExtendedValues and KDM attributes, which are not related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the
allowed values.

Each instance of ExtendedValue has an association to the corresponding TagDefinition.

46 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

10.6.2 TaggedValue Class

A tagged value allows information to be attached to any model element in the form of a “tagged value” pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition. In the meta-model, TaggedValue is a subclass of
Element.

Superclass
ExtendedValue

Attributes

Value:String Contains the current value of the TaggedValue.

Constraints
1. The value of the TaggedValue instance should conform to the type of the corresponding TagDefinition.
Semantics

TaggedValue element represents simple atomic “virtual” attributes. The type constraint of the value, defined in the
corresponding TagDefinition can be the name of any KDM primitive type (for example, “StringType,” “BooleanType,”
etc.).

Example

See example in the Stereotype class section.

10.6.3 TaggedRef Class

A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of its
subtypes. In the meta-model, TaggedRef is a subclass of ExtendedValue.

Superclass

ExtendedValue
Associations
ref:ModelElement[1] Designates the model element referred to by the extended value.

Constraints

1. The model element that is the target of the ref association must be of the type, specified by the type attribute of the
tag definition that is the target of the tag association of the tagged ref element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 47

Semantics

TagRef represents complex “virtual” attributes, which are associations to other KDM elements. TagDefinition can be a
name of any KDM meta-model element (for example, “KDMEntity,” “AbstractCodeElement,” “ControlElement,” or
“CallableUnit”).

Example

See example in the Stereotype class section.

10.7 Annotations Class Diagram

The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag,
value> to an individual element instance. This is complimentary to the light-weight extension mechanism, which provides
a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances
of the same meta-model element may own completely different user-defined attributes (and some may have none at all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of KDM instances. They may be used by implementer to add specific information to an individual element.
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag
definitions as first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5.

Element
(from core)

Annotation
wtext : String

Attribute
<tag : String
<value : String

0..*
+annotation

ntAnnotation

+owner
Element

+
(from core) owner

Figure 10.5 - Annotations Class Diagram

10.7.1 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define virtual new
model element, and tagged values specify additional attributes of these virtual model elements). Tagged values are only

48 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

In the meta-model, TaggedValue is a subclass of Element.

Superclass
Element
Attributes
tag:Name Contains the name of the attribute. This name determines the semantics that are applicable to the
contents of the value attribute.
value:String Contains the current value of the attribute.
Constraints

1. Attribute cannot have further annotations or attributes

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It may be determined by the user or the
implementer conventions. Tools may provide capability to add arbitrary attributes to the instances of the model to supply
information needed for their operations beyond the basic semantics of KDM. Such information can support analysis of
KDM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of
instances.

Example

See example in the KDMFramework section.

10.7.2 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element. The meta-model Annotation
class is a subclass of Element.

Superclass

Element

Attributes

text:String Contains the text of the annotation to the target model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 49

Constraints

1. Annotation cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element.

Example

See example in the KDMFramework section.

10.7.3 Element (additional properties)

Associations
attribute:Attribute[0..*] The set of attributes owned by the given element.
annotation:Annotation[0..*] The set of annotations owned by the given element.
Semantics

No assumptions should be made regarding the order of attributes or annotations associated with a particular instance.

50 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

11 Source Package

11.1 Overview

The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of the
existing system, such as source files, images, configuration files, resource descriptions, etc. The Source package also
represents traceability links between instances of KDM meta-elements and the regions of source code, which is
represented by these meta-model elements. It represents the link between the KDM instance and the artifacts of the

existing system it represents.

The Source package offers two capabilities for linking instances of the KDM representation to the corresponding artifacts:
* Inlining the corresponding source code in the form of a “snippet” into KDM representation
* Linking a KDM element to a region of the source code within some physical artifact of the system being modeled

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers an additional two options:

* The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

* The link can be made stand-alone and explicitly specify the path to the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, this is
indicated by the “language” attribute.

The Source package defines an architecural viewpoint for the Inventory domain. It is determined by the entire software
development environment of the existing software system.

* Concerns:
* What are the artifacts (software items) of the system?

» What is the general role of each artifact (for example, is it a source file, a binary file, an executable or a
configuration description)?

* What is the organization of the aritifacts (into directories and projects)?
* What are the dependencies between the artifacts?
* Viewpoint language:

Inventory views conform to KDM XMI schema. The viewpoint language for the Inventory architectural
viewpoint is defined by the Source package. It includes an abstract entity AbstractinventoryElement, several
generic entities, such as Inventoryltem and InventoryContainer, as well as several concrete entities, such as
SourceFile, BinaryFile, Image, Directory, etc. The viewpoint language for the Inventory architectural viewpoint
also includes DependsOn relationship, which are subclasses of AbstractinventoryRelationship.

* Analytic methods:

The Inventory architectural viewpoint supports the following main kinds of checking:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 51

» What artifacts depend on the given artifact?

The Inventory viewpoint also supports check in combinations with other KDM architectural viewpoint to determine
the original artifacts that correspond to a given KDM element.

¢ Construction methods:

» Inventory views that correspond to the KDM Inventory architectural viewpoint are usually constructed by
directory scanning tools, which identify files and their types.

* Construction of an Inventory view is determined by the particular development and deployment environments of
the existing software system

» Construction of an Inventory view is determined by the semantics of the environment as well as the semantics of
the corresponding artifacts, and it based on the mapping from the given environment to KDM

* The mapping from a particular environment to KDM may produce additional information (system-specific, or
environment-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations

As a general rule, in a given KDM instance, each instance of the inventory model represents a file, or a set of files.
Exceptions to this rule are:

* InventoryModel element, which is a part of the KDM instance infrastructure. This meta-model element is a container
the instances of other inventory meta-model elements.

* SourceRef and SourceRegion meta-elements that represent traceability links between other instances of KDM meta-
model elements and source code of the existing software system.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability
mechanism between other KDM elements and the regions of the physical artifacts of the existing software system that
they represent.

11.2 Organization of the Source Package

The Source package consists of the following 5 class diagrams:
* InventoryModel
* Inventorylnheritances
* InventoryRelations
* SourceRef
* ExtendedInventoryElements
The Source package depends on the following packages:
* Core

¢ kdm

52 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

11.3 InventoryModel Class Diagram

InventoryModel class diagram defines meta-model elements that represent the physical artifacts of the existing software
system. This model corresponds to the inventory of the artifacts. The InventoryModel class diagram follows the uniform
pattern for KDM model to extend the KDM Framework with specific meta-model elements. InventoryModel defines the
following meta-model elements determined by the KDM model pattern:

* InventoryModel class
» AbstractInventoryElement class
* AbstractInventoryRelationship class

In addition, the InventoryModel class diagram defines a concrete KDM entity for each artifact, such a SourceFile, an
Image, a ResourceDescription, a Configuration description, a BinaryFile, and an ExecutableFile. These meta-model
elements are subclasses of the common parent class Inventoryltem. The Inventory model also provides a generic KDM
container called InventoryContainer and two specific containers: Directory and Project.

The classes and associations of the InventoryModel are shown at Figure 11.1.

+inventoryRelation
InventoryModeI {subsets ownedRelation}

+model

{subsets model}
0..1 0.*
0..* 1 .
+inventoryElement +inventoryElement

AbstractinventoryElement {subsets ownedElement}

AbstractinventoryRelationship

{subsets ownedElement}

*
0. +owner

{subsets owner}

0..1
InventoryContainer

i

Directory
<path : String

Inventoryltem
cversion : String
cpath : String

SourceFile Project

wlanguage : String
wencoding : String

ExecutableFile

BinaryFile

Image

Configuration

ResourceDescription

Figure 11.1 - InventoryModel Class Diagram

11.3.1 InventoryModel Class

The InventoryModel is a specific KDM model which owns collections of facts related to the physical artifacts of the
existing software system. InventoryModel is a container for the instances of Inventoryltems. InventoryModel corresponds
to the inventory of the physical artifacts of the existing software system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 53

Superclass

KDMModel

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the inventory model.

Semantics

InventoryModel is a container for instances of inventory elements. The implementer shall arrange inventory elements into
one or more inventory models. KDM import tools shall not make any assumptions about the organization of inventory
items into inventory models.

11.3.2 AbstractinventoryElement Class (abstract)
The AbstractlnventoryElement is the abstract parent class for all inventory entities.

Superclass

KDMEntity

Associations

inventoryRelationship:AbstractinventoryRelationship[0..] ~ The set of inventory relations owned by the inventory element

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be
used as an extension point for defining new “virtual” inventory entities.

11.3.3 AbstractinventoryRelationship Class (abstract)
The AbstractInventoryRelationship is the abstract parent class for all inventory relationships.

Superclass

KDMRelationship

54 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints

Semantics

From the meta-model perspective, this element is a common parent for all inventory relationships. This element is
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in
stereotype definitions. Inventory package provides a concrete class InventoryRelationship with under specified semantics,
which can be used as an extension point for defining new “virtual” inventory relationships.

11.3.4 Inventoryltem Class (generic)

Inventoryltem is a generic meta-model element that represents any artifact of an existing software system. This class is
further subclasses by several concrete meta-model elements with more precise semantics. However, Inventoryltem can be
used as an extended modeling element with a stereotype.

Superclass

AbstractInventoryElement

Attributes
version:String Provides the ability to track version or revision numbers.
path:String Location of the build resource.

Semantics

The implementer shall provide a mapping from concrete types of the physical artifacts involved in the engineering of the
existing software system into concrete subclasses of the Inventoryltem. The implementer shall map each artifact of the
existing software system to some instance of KDM Inventoryltem.

11.3.5 SourceFile Class

The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of
KDM whose purpose is to provide links between code elements and their physical implementations using the
SourceRegion mechanism from the Source package.

Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM
specification explicitly defines semantics of source files.

Superclass

Inventoryltem

Attributes

language:String Indicates the language of the source file.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 55

encoding:String An optional attribute that represents the encoding of the characters in the file.

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

KDM tools may use the information from the artifacts of the existing software system, accessible through the
SourceRegion mechanism. It is recognized that different encodings are used around the world, and it may be desired for
KDM processors to read code snippets from the files that use them.

Specification of encoding is aligned with the XML specification from W3C. Each artifact of an existing system may use
a different encoding for its characters. The default encoding for SourceFile is “UTF-8.” Encodings other that UTF-8
should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding label. For
example, “UTF-16,” “ISO-10646-UCS-2,” “ISO-8859-2,” “ISO-2022-JP,” “Shift JIS,” and “EUC-JP,” etc. Encoding of
the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information
in the source file, through the mechanism of the SourceRegion.KDM tools shall at a minimum support UTF-8.

11.3.6 Image Class

Image element is used to represent image files.

Superclass

Inventoryltem

Semantics

11.3.7 Configuration Class

Configuration element is used to represent various configuration files.

Superclass

Inventoryltem

Semantics

11.3.8 ResourceDescription Class

ResourceDescription element is used to represent resource description files.

Superclass

Inventoryltem

Semantics

11.3.9 BinaryFile Class

BinaryFile element is used to represent binary files.

56 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

Inventoryltem

Semantics

11.3.10 ExecutableFile Class

ExecutableFile element is used to represent executable files for a particular platform.

Superclass

Inventoryltem

Semantics

11.3.11 InventoryContainer Class (generic)

The InventoryContainer meta-model element provides a container for instances of Inventoryltem elements.

Superclass

AbstractInventoryElement

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the container.

Constraints

1. InventoryContainer should have at least one stereotype.

Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and
individual inventory items). InventoryContainer instances represent tree-like container structures in which the leaf
elements are individual Inventoryltem instances. Each InventoryContainer represents the entity set of Inventoryltems
owned by that container directly or indirectly.

11.3.12 Directory Class
The Directory class represents directories as containers that own inventory items.

Superclass

InventoryContainer

Attributes

path:String Location of the directory

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in
file systems.

In addition to the general semantics of the InventoryContainer, Directory ownership structure determines the full “path”
for each individual inventory item in the following way. For a given Directory item, the full “path” to an inventory item,
owned by this Directory directly or indirectly, is a sequence of strings, the first element of which is the “path” attribute of
the Directory, and subsequent elements are name attributes of the directory items such that each directory item is owned
by the previous directory item and that last directory item owns the inventory item. Any Project containers, involved in

this ownership structure are ignored.

11.3.13 Project Class
The Project meta-model element represents an arbitrary logical container for inventory items.

Superclass

InventoryContainer

Semantics
Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers.

Example

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xm :version="2.1"
xm ns: xm ="http://schema. ong. or g/ spec/ XM/ 2. 1"
xm ns: kdme"htt p: //schema. ong. or g/ spec/ KDM 1. 2/ kdnt
xm ns: source="http://schenma. ong. or g/ spec/ KDM 1. 2/ source" nane="lnventory Exanple">
<nodel xm:id="id.0" xm:type="source:lnventoryMdel">
<inventoryEl enent xm:id="id.1" xm:type="source: SourceFile" name="a.c">
<inventoryRelation xm:id="id.2" xm:type="source: DependsOn" to="id.5" from="id.1"/>
</invent or yEl enent >
<i nventoryEl ement xm :id="id.3" xm:type="source: SourceFile" nane="b.c">
<inventoryRelation xm:id="id.4" xm:type="source: DependsOn" to="id.5" fronm"id.3"/>
</i nvent oryEl ement >
<inventoryEl enent xm:id="id.5" xm:type="source: SourceFile" name="ab.h"/>
<inventoryEl enent xm:id="id.6" xm:type="source:Directory">
<i nventoryEl ement xm:id="id.7" xm:type="source:lnmge"/>
<i nventoryEl ement xm :id="id.8" xm:type="source:lnmge"/>
</invent oryEl enent >
<inventoryEl enent xm:id="id.9" xm:type="source: SourceFile" nanme="makefile"/>
<inventoryEl enent xm :id="id.10" xm:type="source: Executabl eFile" nane="ab.exe"/>
</ nodel >
</ kdm Segnent >

11.4 Inventorylnheritances Class Diagram

InventoryInheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.

58 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

KDM Model
(from kdm)

KD M E ntity

(from core)

1

1

KDMRelationship
(from core)

1

AbstractinventoryElement

AbstractinventoryRelationship

InventoryModel

Figure 11.2 - Inventorylnheritances Class Diagram

11.5 InventoryRelations Class Diagram

InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes

and associations for this diagram are shown in Figure 11.3.

AbstractinventoryRelationship

DependsOn

+Hom_| apstractinventoryElement

+to

1

1

{redefines from} {redefines to}

Figure 11.3 - InventoryRelations Class Diagram

11.5.1 DependsOn Class

DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which

one inventory element requires another inventory element during one or more steps of the engineering process.

Associations

from:AbstractinventoryElement[1]

to:AbstractinventoryElement[1]

the base inventory item

another inventory item on which the base item depends

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

59

Constraints

1. An inventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. The implementer may capture certain aspects knowledge of the engineering
process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of the
Infrastructure Layer, which is available to all KDM implementations at various compliance levels. KDM Build package
that constitutes a separate L1.Build compliance point, defines additional meta-model elements that represent the the facts
involved in the build process of the software system (including but not limited to the engineering transformations of the
“source code” to “executables”).

When the origin of the DependsOn relationship is an Inventory container, this means that all elements owned by this
container (directly or indirectly) depend on the target of the relationship.

When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

11.6 SourceRef Class Diagram

The SourceRef class diagram defines a set of meta-model elements whose purpose is to provide traceability links between
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class
diagram shown in Figure 11.4 captures these classes and their relations.

Element
(from core)

Source Ref
«language : String
wsnippet : String

SourceRegion +region 1
wstartLine : Integer .
SourceRegions

wstartPosition : Integer(=
<endLine : Integer 0. {ordered}
<endPosition : Integer

<language : String 0.*
<path : Strin
path : String N
Artifact SourceFile

0.1/language : String
<encoding : String

Figure 11.4 - SourceRef Class Diagram

11.6.1 SourceRef Class

The SourceRef class represents a traceability link between a particular model element and the corresponding source code.

60 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

Element
Attributes
language: String Optional attribute. Indicates the source language of the snippet attribute.
snippet:String Optional attribute. The source snippet for the given KDM element. The snippet may have
some internal structure, for example XML tags corresponding to an abstract syntax tree
of the code fragment. The interpretation of code snippets is outside the scope of the
KDM.
Constraints

1. Language indicator has to be provided using at least one of the following methods:
* As the attribute of the SourceRef element.
* As the attribute of the SourceRegion element.
* As the attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.

2. If both the snippet and the language attributes of the SourceRef element are present, then the language attribute
should describe the nature of the code snippet, in which case the nature of the source code region accessible
through the SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not
present, then the language attribute of the SourceRef element overrides the language attribute of the SourceRegion
element, which in turn overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “source”
representation as part of a physical artifact of the existing software system. KDM element that defines a traceability link to its
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:
* Inlining the corresponding source code in the form of a “snippet” into KDM representation.
» Linking a KDM element to a region of the source code within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

* The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

* The link can be made stand-alone and explicitly specify the path to the artifact.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 61

KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the
primary one and other elements are considered secondary. Secondary traceability links may be used to represent
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or
target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language”
attributes, so that KDM tools can select the appropriate representation to display.

The implementer shall provide adequate traceability links.

11.6.2 SourceRegion Class

The SourceRegion class provides a pointer to a single region of source. The SourceRegion element provides the capability
to precisely map model elements to a particular region of source that is not necessarily text. The nature of the source code
within the physical artifact is indicated by the language attribute of the SourceRegion element or the language attribute of
the SourceFile element. The language attribute of the SourceRegion element overrides that of the SourceFile element if
both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass
Element
Attributes
startLine: Integer The line number of the first character of the source region.
startPosition:Integer Provides the position of the first character.of the source region.
endLine:Integer The line number of the last character of the source region.
endPosition:Integer The position of the last character of the source region.
language:String Optional attribute. The language indicator of the source code for the given source region.
path:String Optional attribute. The location of the physical artifact that contains the given source
region.
Associations
file:SourceFile[0..1] This association allows zero or more SourceRegion elements to be associated with a
single SourceFile element of the Inventory Model.
Constraints

1. The location of the source file should be provided using at least one of the following methods:
* Path attribute of the SourceRegion element.

* Path attribute of the SourceFile element of the Inventory model.

62 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

The path attribute should uniquely identify the physical artifact. The nature of the path attribute is outside of the scope of
the KDM. For example, this can be a URIL

Individual SourceRef elements may own multiple SourceRegion elements that represent a situation where there are
multiple disjoint regions of source code that correspond to the given KDM element.

11.7 ExtendedinventoryElements Class Diagram

The ExtendedInventoryElements class diagram defines two “wildcard” generic elements for the inventory model as
determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and
associations of the ExtendedInventoryElements diagram are shown in Figure 11.5.

AbstractinventoryRelationship

AbstractinventoryElement

<——— | InventoryRelationship
1

+from 0.. 0
{redefines from} b

InventoryElement +to 1

{redefines to} KD M Entity
(from core)

Figure 11.5 - ExtendedinventoryElements Class Diagram

11.7.1 InventoryElement Class (generic)

The InventoryElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractInventoryElement
Constraints

1. InventoryElement should have at least one stereotype.

Semantics

An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 63

“virtual” meta-model entity type of the inventory model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.7.2 InventoryRelationship Class (generic)

The InventoryRelationship class is a generic meta-model element that can be used to define new “virtual” inventory
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractInventoryRelationship

Associations
from:AbstractinventoryElement[1] the inventory element origin endpoint of the relationship
to:KDMEntity[1] the target of the relationship

Constraints

1. InventoryRelationship should have at least one stereotype.

Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the inventory model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

64 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Part Il - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming languages.

Packages of the Program Elements Layes define an architecture viewpoint for the Code domain.
* Concerns:
* What are the computational elements of the system?
* What are the modules of the system?
* What is the low-level organization of the computational elements?
» What are the datatypes used by the computational elements?
* What are the units of behaviour of the system?

* What are the low-level relationships between the code elements, in particular what are the control-flow and data-
flow relationships ?

* What are the important non-computational elements?
* How computational elements and modules are related to the physical artifacts of the system?
* Viewpoint language:

Code views conform to KDM XMI schema. The viewpoint language for the Code architectural viewpoint is
defined by the Code and Action packages. It includes several abstract entities, such as AbstractCodeElement and
Codeltem, several generic entities, such as Datatype, ComputationalObject and Module, as well as several
concrete entities, such as StorableUnit, CallableUnit, CompilationUnit and ActionElement. The viewpoint
language for the Code architectural viewpoint also includes several relationships, which are subclasses of
AbstractCodeRelationship and AbstractActionRelationship.

* Analytic methods:
The Code architectural viewpoint supports the following main kinds of checking:

» Composition (for example, what code elements are owned by a CompilationUnit, SharedUnit or a CodeAssembly;
what action elements are owned by a CallableUnit)

+ Data flow (for example, what action elements read from a given StorableUnit; what action elements write to a
given StorableUnit; what action elements create dynamic instances of a given Datatype; what action elements
address a particular StorableUnit; what data element are being read as actual parameters in a call)

* Control flow (for example, what CallableUnit is used in a call; what action element is executed after the given
action element; what action elements are executed before the given action element; what data element is used to
dispatch control flow from a given action element; what action element is executed after the given element under
what conditions; what is the exceptional flow of control; what action elements are executed as entry points to a
given module or a CallableUnit)

» Datatypes (for example, what is the datatype of the given storable unit; what is the base datatype of the given
pointer type; what is the base datatype of the given element of the record type; what is the signature of the given
CallableUnit)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 65

Other kind of checking are related to the interfaces, templates and pre-processor. All relationships defined in the
Code model are non-transitive. Additional computations are required to derive, for example, all action elements
that can be executed after the given action element, or all CallableUnits that a given action element can dispatch
control to.

The KDM mechanism of aggregated relationship is used to derive relationships between KDM elements that own
or reference various Code elements (usually, Module and CodeAssembly) based on the low-level relationship
between individual Code elements

¢ Construction methods:

* Code views that correspond to the KDM Code architectural viewpoint are usually constructed by parser-like tools
which take artifacts of the system as the input and produce one or mode Code views as output

+ Construction of the Code view is determined by the syntax and semantics of the programming language of the
corresponding artifact, and it based on the mapping from the given programming language to KDM; such
mapping is specific only to the programming language and not to a specific software system

* The mapping from a particular programming language to KDM may produce additional information (system-
specific, or programming language-specific, or extractor tool-specific). This information can be attached to
KDM elements using stereotypes, attributes or annotations

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:
* Code
* Action

Code package defines Codeltems (named elements determined by the programming language, the so-called “symbols,”
“definitions,” etc.) and structural relations between them. Codeltems are further categorized into ComputationalObject,
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which
detemine the control- and data- flows between code items.

Description of the Code package is further subdivided into the following parts:
* Code Elements representing Modules
* Code Elements representing Computational Objects
* Code Elements representing Datatypes
* Code Elements representing Preprocessor Directives
* Miscellaneous Code Elements

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex user-
defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym type).
KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

66 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):
» suffix “Element” - usually designates a generic meta-model element.
+ suffix “Type” - designates a meta-model element representing some datatype.

» suffic “Unit” - designates a concrete meta-model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 67

68

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12 Code Package

12.1 Overview

The Code package defines a set of meta-model elements whose purpose is to represent implementation level program
elements and their associations. It is determined by one or more programming languages used in the design of the given
existing software system. Code package includes meta-model elements, which represent common program elements
supported by various programming languages, such as data types, data items, classes, procedures, macros, prototypes, and
templates.

As a general rule, in a given KDM instance, each instance of the code meta-model element represents some programming
language construct, determined by the programming language of the existing software system. Each instance of a code
meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software
system. Exceptions to this rule are:

 instances of the CodeModel meta-model element that are parts of the KDM infrastructure. This meta-model element is
a container for other code element instances.

 instances of code element that explicitly represent certain abstractions provided by a programming language, such as
primitive datatypes and predefined datatypes.

12.2 Organization of the Code Package
The Code package consists of the following 24 class diagrams:

* CodeModel

* Codelnheritances
* Modules

* ControlElements

» DataElements

* Values

e PrimitiveTypes

* EnumeratedTypes
* CompositeTypes

e DerivedTypes

» Signature

* DefinedTypes

* ClassTypes

* Templates

* TemplateRelations
* ClassRelations

* TypeRelations

* InterfaceRelations

* PreprocessorDirectives

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 69

* PreprocessorRelations

* Comment

* Visibility

* VisibilityRelations

» ExtendedCodeFElements

The Code package depends on the following packages:

e Source
¢ Core
¢ kdm

12.3 CodeModel Class Diagram

The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to implementation-level program elements and their associations.

The CodeModel diagram defines the following classes determined by the KDM model pattern:

e CodeModel — a class representing a model for CodeElement.

* AbstractCodeElement — a class representing an abstract parent class for all KDM entities that can be used to model
code.

» AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program
elements:

* Codeltem

* ComputationalObject
» Datatype

* Module

The class diagram shown in Figure 12.1 captures these classes and their relations.

70 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

CodeModel

AbstractCodeRelationship

+model

{subsets model}

+codeElement 0.

{subsets ownedElement}

0..* ~ +codeRelation
{subsets ownedRelation}

AbstractCodeElement

Codeltem

D atatype ComputationalObject

Figure 12.1 - CodeModel Class Diagram

12.3.1 CodeModel Class

Module

The CodeModel is the specific KDM model that owns collections of facts about the existing software system such that
these facts correspond to the Code domain. CodeModel is the only model of the Program Elements Layer of KDM.
CodeModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

codeElement:AbstractCodeElement[0..*] {ordered}

Semantics

The set of the top-level elements that are defined in this code model.
The CodeModel element is the owner of such CodeElement. This
property subsets the ownedElement property of KDMModel
derived union.

CodeModel is a container for code elements. The implementer shall arrange code elements into one or more code models.
KDM import tools should not make any assumptions about the organization of code elements into code models.

12.3.2 AbstractCodeElement Class (abstract)

The AbstractCodeElement is an abstract class representing any generic determined by a programming language.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

71

Superclass

KDMEntity
Associations
codeRelation:CodeRelation[0..*] The set of code relations owned by this code model.
source: SourceRef[0..1] Link to the physical artifact for the given code element.
Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the
Code model.

12.3.3 AbstractCodeRelationship Class (abstract)
The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language.

Superclass

KDMRelationship

Semantics

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Code
model.

12.3.4 Codeltem Class (abstract)

Codeltem class represents the named elements determined by the programming language (the so-called “symbols,”
“definitions,” etc.). There are AbstractCodeElements that are not Codeltems, for example ActionElements that are defined
in the Action package.

Superclass
AbstractCodeElement
Semantics

Codeltem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.

12.3.5 ComputationalObject Class (generic)

ComputationalObject class represents the named elements determined by the programming language, which describe
certain computational objects at the runtime, for example, procedures, and variables.

Superclass

Codeltem

72 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints
1. Instance of the ComputationalObject element should have at least one stereotype.

Semantics

ComputationalObject is a generic element with under specified semantics that can be used as an extension point to define
new “virtual” meta-model elements that represent specific named control elements or data elements that do not fit into
semantic categories of the concrete subclasses of ComputationalObject.

12.3.6 Datatype Class (generic)
Datatype class represents the named elements determined by the programming language that describes datatypes.
Superclass
Codeltem
Constraints
1.Instance of the Datatype element should have at least one stereotype.

Semantics

Datatype is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named datatypes that do not fit into semantic categories of the
concrete subclasses of Datatype.

12.4 Codelnheritances Class Diagram

The Codelnheritances class diagram defines how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.2 captures these relations.

KDM Model KDM Entity KDMRelationship

(from kdm) (from core) (from core)

i T

CodeModel AbstractCodeRelationship

AbstractCodeElement

0..1

CodeSource

+source
0.*

SourceRef
(from source)

Figure 12.2 - Codelnheritances Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 73

Section | - Code Elements Representing Modules

12.5 Modules Class Diagram

The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages,
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these
classes and their associations.

Codeltem
% +towner . AbstractCodeElement
{subsets owner} 0..
Module

0.1 +codeElement
/ {subsets ownedElement
ordered}

LanguageUnit

CompilationUnit Package

i

SharedUnit

CodeAssembly

Figure 12.3 - Module Class Diagram

12.5.1 Module Class (generic)

The Module class is a generic KDM modeling element that represents an entire software module or a component, as
determined by the programming language and the software development environment. A module is a discrete and
identifiable program unit that contains other program elements and may be used as a logical component of the software
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and
the implementation. In the context of representing existing software systems, modules provide the context for establishing
the associations between the programming language elements that are owned by them, especially when the same logical
component of a software product line is compiled multiple times with different compilation options and linked into
multiple executables. Instances of the Module class represent the logical containers for program elements determined by
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.

Superclass

Codeltem

74 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

codeElement:AbstractCodeElement[0..*] {ordered} The list of owned CodeElement

Constraints
1. Module class and its subclasses should not own SourceRef elements.
2. Code Model cannot directly own any code elements other than the subclasses of the Module class.
3. Every code element should be owned by some instance of the Module class or its subclasses.
4. Instance of the Module element should have at least one stereotype.
5. No other code element should own Module elements and its subclasses.
Semantics

Module is a logical container for program elements. Subclasses of Module element define semantically distinct flavors
Module, representing common categories of containers.

The implementer shall select an appropriate subclass of the Module element.

12.5.2 CompilationUnit Class

The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A
compilation unit is a logical part of the existing software system that is sufficiently complete to be processed by the
corresponding software development environment. Compilation unit is usually related to some artifact of the existing
software system, for example, a physical source file. Compilation units are supported by the selected programming
languages of the existing software system and as determined by the corresponding engineering process.

Superclass
Module
Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a
SourceFile in the InventoryModel.

12.5.3 SharedUnit Class

The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected
programming languages of the existing software system and as determined by the engineering process.

Superclass

Module

Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

of

75

12.5.4 LanguageUnit Class

The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements
determined by a particular programming language.

Superclass

Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is a logical container that owns definitions of primitive and predefined datatypes for a particular language,
as well as other common elements for a particular programming language. LanguageUnit may or may not correspond to a
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. The
implementer shall add such files to the InventoryModel. Primitive datatypes usually do not have any corresponding files,
in this situation the LanguageUnit does not have a counterpart in the InventoryModel.

12.5.5 CodeAssembly Class

The CodeAssembly represents a logical container for the program elements that were built together (for example,
compiled and linked into an executable, so that all variant selection during the compilation and static linking was resolved
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. A source file may
produce a different logical model when, for example, compiled and linked for a different hardware platform, or for a
different operating system. The CodeAssembly represents a collection of entities that have been analyzed together. A
different variant of the conceptual family of software systems (even involving same compilation units) may need to be
cloned into a separate CodeAssembly.

Superclass
Module

Semantics

CodeAssembly is a logical container that provides the context for entities and relationships for a collection of program
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

12.5.6 Package Class

The Package class is a subtype for Module that logical collections of program elements, as directly supported by some
programming languages, such as Java.

Superclass

Module

Semantics

A Package is a logical container for program elements as well as Modules. Packages can be nested.

76 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Section Il - Code Elements Representing Computational Objects

12.6 ControlElements Class Diagram

The ControlElements class diagram defines basic meta-model elements to represent callable computational objects, suc
as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.

ComputationalObject . Datatype
i SignatureType ob
+owner
ControlElement %
AbstractCodeElement
0.1 oA
+codeElement
{subsets ownedElement
ordered}
CallableUnit MethodUnit pr———
@kind : CallableKind bl :
@kind : MethodKind MethodKind
Sexport : ExportKind wmethod
] zconstructor
<<enumeration>> wdestructor
CallableKind Goperator
wexternal wvirtual
wregular @abstract
«operator Zunknown
wstored
<unknown

Figure 12.4 - ControlElements Class Diagram

12.6.1 ControlElement Class (generic)

The ControlElement class is a common superclass that defines attributes for callable code elements. In the meta-model
has the role of an endpoint for some KDM relations.

Superclass

ComputationalObject

Attributes and Associations

type:Datatype[0..1] Optional association to the datatype of this control element
codeElement:AbstractCodeElement[0..*] {ordered} Represents owned code elements, such as local definitions and
actions.
Constraints

1. ControlElement should have at least one stereotype.

2. ControlElement should own a Signature.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

h

it

7

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named control constructs that do not fit into semantic categories of
the concrete subclasses of ControlElement.

ControlElement represents named items of the software system that describe certain behavior that can be performed by
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units
and high-level programming languages.

ControlElement owns other program elements, which can include nested ControlElements.

12.6.2 CallableUnit Class

The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

ControlElement

Attributes

kind:CallableKind indicator of the kind of the callable unit

Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. This is a
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the
invocation stack.

A CallableUnit represents global or local procedures and functions.
12.6.3 CallableKind Data Type (enumerated)
CallableKind enumerated data type specifies some common properties of the CallableUnit.

Literal values

regular specifies a regular definition of a procedure or function

external specifies an external procedure (a prototype, definition is elsewhere)
operator specifies a definition of an operator

stored specifies a stored procedure in DataModel

unknown properties are unknown

78 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.6.4 MethodUnit Class

The MethodUnit represents member functions owned by a ClassUnit.

Superclass
CallableElement
Attributes
kind:MethodKind indicator of the kind of the method represented by this element
export: ExportKind Represents the visibility of the method (public, private,
protected).
Semantics

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and
destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly
(by reference).

12.6.5 MethodKind data type (enumeration)

MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model
element.

Literal Values

method The MethodUnit represents a regular member function.

constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

virtual The MethodUnit represents a virtual method.

abstract The MethodUnit represents an abstract method or member of an Interface.
unknown The kind of the MethodUnit is none of the above.

Example (C language)

int main(int argc, char* argv
) pr(i ntf(“Hell o, W)rld\gn’[)];) ¢

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmi:version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 79

xm ns: action="http

xm ns: code="http:/

xm ns: kdne"http://

xm ns: source="http
nane="Hel | oWr| d Exanpl ">

<model xmi:id="id.0" xm:type="code: CodeMdel " name="Hel | oWorl d">

<codeEl ement xmi :id="id.1" xm:type="code: Conpil ationUnit" name="hello.c">
<codeEl ement xmi:id="id.2" xm:type="code: Cal |l abl eUnit"

-/ / schema. ong. or g/ spec/ KDM 1. 2/ acti on"
hena. ong. or g/ spec/ KDM 1. 2/ code"
enma. ony. or g/ spec/ KDM 1. 2/ kdni

schema. ong. or g/ spec/ KDM 1. 2/ sour ce"

-oun—
~>0 ~

~ nanme="mai n" type="id.5" kind="regular">

<source xm:id="id.3" |anguage="C' snippet="int main(int argc, char* argv[]) {}"/>
<entryFlow xm :jid="id, 4" to="id.12" fron¥"id.2"/>)
<codeEl ement xm :id="id.5" xm:type="code: Signature" nane="nain">

<source xm:id="id.6" snippet="int main(int argc, char * ar v}]); ">

<parameterUnit xm:id="id. nane="argc" type="id.25" pos="1"/>

<paraneterUnit xm:id="id.8" name="argv" type="id.9" pos="2">

<codeEl enent xmi:id="id. 9" xmi:type="code: ArrayType">
<itemnit xm:id="id.10" type="id.19"/>

</ codeEl enent >
</paranmeterUnit>)))
<paraneterUnit xm:id="id.11" type="id.25" kind="return"/>
</ codeEl ement>]])))
<codeEl ement. xmi :id="id. 12" xm :type="action: Acti onEl enent" nane="al" kind="Call">
<source xni:id="id. 13" |anguage="C" snippet="printf("Hello, Wrld!\n&uot;);"/>
<codeEl ement xmi:id="id.14" xm :type="code: Val ue"
name="" ; Hel I o, Wérld!\n"" type="id.19"/>]
<actionRelation xm:id="id.15" xm :type="action: Reads" to="id. 14"
<actionRelation xm:id="id.16" xm:type="action:Calls" to="id.20"
<actionRelation xm:id="id. 17" xm :type="action: ConpliesTo"
to="id. 20" from"id.12"/>

frome"id. 12"/ >
from"id. 12"/ >

</ codeEl enent >
</ codeEl enment >
</ codeEl enent>)))
<codeEl enent xm :id="id. 18" xnmi:type="code: LanguageUnit">
<codeEl ement xmi:id="id.19" xm:type="code: Stri ngTyBej' name="char *
<codeEl ement xm :id="id.20" xm:type="code: Cal | abl eUnit" name="print
<codeEl enent xmi:id="id.21" xni:type="code: Signature" name="printf"
<parameterUnit xm:id="id.22" nanme="" type="id.25" kind="return"
<paraneterUnit xmi:id="id.23" name="format" type="id. 19" pos="1"/
<paraneterUnit xm:id="id.24" name="argunents" ki nd="variadi c" pos="2"/>
</ codeEl ement >
</ codeEl emrent >)))
<codeEl enent xm :id="id.25" xm:type="code:|ntegerType" nanme="int"/>
</ codeEl ement >
</ model >))
<model xmi:id="id.26" xni:type="source:lnventoryMdel " name="Hel | oWrld">
<i nventoryEl enent xm :id="1d.27" xm:type="source: SourceFile"
nane="hel | 0. ¢" | anguage="C"'/>

">
f" type="id.21">

>
pos="0"/>
>

[eNeNoX

</ nodel >
</ kdm Segmnent >

12.7 DataElements Class Diagram

The DataElements class diagram defines meta-model constructs to represent the named data items of existing software
systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5
shows these classes and their associations.

80 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

StorableUnit

<kind : StorableKind

ltemUnit

wexport : ExportKind

ComputationalObject +codeElement [ftype
{subsets ownedElement} Datatype
b\ Q.
DataElement +towner
Dext : String {subsets owner} Type
asize :Integer| o «
MemberUnit ParameterUnit

<kind : ParameterKind
<pos : Integer

<<enumeration>> <<enumeration>>

IndexUnit StorableKind ExportKind
<global <public
«local wprivate
wstatic wprotected
swexternal <final
wregister <unknown
szunknown

Figure 12.5 - DataElement Class Diagram

12.7.1 DataElement Class (generic)

The DataElement class is a generic modeling element that defines the common properties of several concrete classes that
represent the named data items of existing software systems (for example, global and local variables, record files, and
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is
more specific than CodeElement.

Superclass
ComputationalObject
Attributes
ext:String Optional extension representing the original representation of the data element.
size: Integer Specifies the optional constraint on the number of elements any value of the storable element may

contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

81

Associations

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype of the current
DataElement.
type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.
Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an
existing software system, that do not fit into more precise semantics of the subclasses of DataElement.

Constraints

1. DataElement class should have at least one Stereotype.

12.7.2 StorableUnit Class

StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software
system.

Superclass
DataElement
Attribute
kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see
StorableKind enumeration datatype).
Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.

12.7.3 StorableKind data type (enumeration)

StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle,
visibility, and memory type.

Literal values

global specifies a global variable
local specifies a local variable
static specifies a global variable with restricted scope

82 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

external specifies an external variable (a prototype)
register specifies a temporary variable

unknown properties are unknown

12.7.4 ExportKind data type (enumeration)

ExportKind enumeration data type defines several common properties of a MemberUnit and MethodUnit related to their
visibility and other properties.

Literal values

public specifies a public member or method
private specifies private member or method
protected specifies a protected member or method
final specifies final member or method
unknown properties are unknown

12.7.5 ItemUnit Class

ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM
data relations that describe access to complex datatypes.

Superclass
DataElement
Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective,
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit,
but also by the identity of the owner element.

12.7.6 IndexUnit Class

IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. Instances
of IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass
DataElement
Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 83

12.7.7 MemberUnit Class

MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain
existing computational object, while the computational object corresponding to a MemberUnit is usually determined by
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines
some additional attributes.

Superclass
DataFlement
Attributes
export:ExportKind Represents the visibility of the member (public, private, protected).
Constraints
1. MemberUnit can be owned only by a ClassUnit.

Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.8 ParameterUnit Class

ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class
are endpoints of KDM data relations that describe access to formal parameters.

Superclass
DataElement

Attributes

kind:ParameterKind optional attribute defining the parameter passing convention for the attribute

pos:Integer position of the attribute in the signature

Constraints
1. Return parameter of a signature does not have a pos attribute.
2. Return ParameterUnit is a signature should have a kind="return.”

3. There can be at most one ParameterUnit within a certain Signature with a return kind.

84 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of
programming languages that allow named parameters (binding of actual parameters by name rather than by a position),
the producer of the KDM model is responsible for computing correct positions of the named parameters and determining
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is
described in “Signature Class Diagram” on page 100.

12.8 ValueElements Class Diagram

ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

DataElement
wext : String
wsize : Integer

+valueElement

{subsets ownedElement
ordered}

ValueElement

Value ValuelList

+owner
{subsets owner}

Figure 12.6 - ValueElements Class Diagram

12.8.1 ValueElement Class (generic)

ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class.

Superclass

DataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 85

Constraints
1. ValueElement and its subclasses should not have owned code elements.
2. ValueElement and its subclasses cannot be used as the target of relations Writes, and Addresses.
3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype.

ValueElement class and its subclasses correspond to ISO/IEC 11404 literals and values. The datatype of the value is
represented by the type property (defined for its superclass DataElement class).

12.8.2 Value Class

Value class is a meta-model element that represents values used in the artifacts of existing software systems.

Superclass
ValucElement

Semantics

Value class corresponds to ISO/IEC 11404 literals of primitive types, such as boolean-literal, state-literal, enumerated-
literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal, void-literal,
pointer-literal, bitstring-literal, string-literal.

The name attribute of the ValueClass represents the name or a string representation of the value.

12.8.3 ValuelList Class

The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass

ValueElement

Associations

valueElement:ValueElement[0..*] component values

Semantics

A ValueList is a data element associated with a single value of some non-primitive datatype. The value of the complex
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to ISO/IEC 11404 values for aggregated datatypes such as choice-value, record-value, set-value,
sequence-value, bag-value, array-value, table-value.

86 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Section Il - Code Elements Representing Datatypes

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes

* primitive datatypes (for example, Integer, Boolean),
* complex user-defined datatypes (for example, array, pointer, sequence), and
+ named datatypes (for example, a class, a synonym type).

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are
provided further in the text of the specification.

12.9 PrimitiveTypes Class Diagram

The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.7.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 87

D atatype

% Bitstring Type OctetstringType
PrimitiveType
OctetType
BooleanType
BitType
StringType
FloatType P
CharType VoldT
oidType
; IntegerType Scaled Type
TimeType

DecimalType

DateType

Figure 12.7 - PrimitiveTypes Class Diagram

12.9.1 PrimitiveType Class (generic)

The PrimitiveType is a generic meta-model element that represents primitive data types determined by various
programming languages.

Superclass
Datatype
Constraints
1. PrimitiveType should have at least one stereotype.

Semantics

PrimitiveType element has under specified semantics. It can be used as an extension point to define new “virtual” meta-model
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of
PrimitiveType class.

12.9.2 BooleanType Class

The BooleanType is a meta-model element that represents Boolean data types common to various programming
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass

PrimitiveType

88 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

The KDM BooleanType class corresponds to ISO/IEC 11404 Boolean datatype.

12.9.3 CharType Class

The CharType is a meta-model element that represents character data types common to various programming languages.
Character is a family of datatypes whose value spaces are character-sets.

Superclass
PrimitiveType
Semantics

The KDM CharType class corresponds to ISO/IEC 11404 Character datatype.

12.9.4 OrdinalType Class

The OrdinalType class is a meta-model element that represents ordinal datatypes available in some programming
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer).
Ordinal is the infinite enumerated type.

Superclass
PrimitiveType
Semantics

The KDM OrdinalType class corresponds to ISO/IEC 11404 Ordinal datatype.

12.9.5 DateType Class

The DateType is a meta-model element that represents built-in data types related to dates.
Superclass

PrimitiveType

Semantics

12.9.6 TimeType Class

The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions
thereof.

Superclass

PrimitiveType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 89

Semantics

The KDM TimeType class corresponds to ISO/IEC 11404 Time datatype. The interpretation of the details of the Time
datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the
KDM representation of an existing system to systematically identify the detailed information regarding the details of the
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.9.7 IntegerType Class

The IntegerType is a meta-model element that represents integer data type common to various programming languages.
Integer is the mathematical datatype comprising exact integer values.

Superclass
PrimitiveType
Semantics

The KDM IntegerType class corresponds to ISO/IEC 11404 Integer datatype.

12.9.8 DecimalType Class

The DecimalType is a meta-model element that represents decimal data types common to various programming
languages.

Superclass
PrimitiveType
Semantics

The KDM DecimalType class corresponds to ISO/IEC 11404 Integer datatype.

12.9.9 ScaledType Class

The ScaledType is a meta-model element that represents fixed point data types common to various programming
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass
PrimitiveType
Semantics

The KDM ScaledType class corresponds to ISO/IEC 11404 Scaled datatype.

12.9.10 FloatType Class

The FloatType is a meta-model element that represents float data types common to various programming languages. Float
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real
numbers.”

90 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass
PrimitiveType
Semantics

The KDM FloatType class corresponds to ISO/IEC 11404 Real datatype.

12.9.11 VoidType Class

The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages.
Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no
information is a given instance.

Superclass
PrimitiveType
Semantics

The KDM VoidType class corresponds to ISO/IEC 11404 Void datatype.

12.9.12 StringType Class

The StringType is a meta-model element that represents string data type common to various programming languages.
String is a datatype representing strings of characters from standard character-sets.

Superclass
PrimitiveType
Semantics

The KDM StringType class corresponds to ISO/IEC 11404 defined datatype Character string. The interpretation of the
details of the character encoding of the StringType is outside of the scope of KDM. Multibyte character strings can be
represented as StringType with a stereotype.

12.9.13 BitType Class

The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is
the datatype representing the binary digits “0” and “1.”

Superclass
PrimitiveType
Semantics

The KDM BitType class corresponds to ISO/IEC 11404 defined datatype Bit.

12.9.14 BitstringType Class

The BitstringType class is a meta-model element that represents bit string datatypes available in some programming
languages. Bitstring is the datatype of variable-length strings of binary digits.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 91

Superclass
PrimitiveType
Semantics

The KDM BitstringType class corresponds to ISO/IEC 11404 defined datatype Bit string.

12.9.15 OctetType Class

The OctetType class is a meta-model element that represents octet datatypes available in some programming languages.
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings.

Superclass
PrimitiveType
Semantics

The KDM OctetType class corresponds to ISO/IEC 11404 defined datatype Octet.

12.9.16 OctetstringType Class

The OctetstringType class is a meta-model element that represents octet string datatypes available in some programming
languages. Octet string is a variable-length encoding using 8-bit codes.

Superclass
PrimitiveType
Semantics

The KDM OctetstringType class corresponds to ISO/IEC 11404 defined datatype Octet string.

12.10 EnumeratedTypes Class Diagram

The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.8.

D atatype
f 0.”
EnumeratedType 1 Value
+
+owner value
{subsets owner} {subsets ownedElement
ordered}

Figure 12.8 - EnumeratedTypes Class Diagram

92 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.10.1 EnumeratedType Class

The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number
of distinguished values.

Superclass

Datatype

Associations

value:Value[0..*] {ordered} The list of enumerated literals defined for the given EnumeratedType.

Semantics

EnumeratedType corresponds to ISO/IEC 11404 Enumerated and State families of datatypes. Enumerated datatype is a
family of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State is a
family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not make
distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the
EnumeratedType.

12.11 CompositeTypes Class Diagram

The CompositeTypes class diagram defines meta-model elements that.represent common composite datatypes provided by
various programming languages; for example records, structures, and unions. Composite datatypes is a broad category of
user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple
component datatypes.

The classes and associations of the StructuredTypes diagram are shown in Figure 12.9.

Datatype

4 +owner

{subsets owner}

CompositeType - lte m Unit
0..1 0.*
{sub:gg rglw%réi:ltE lement
Record Type ChoiceType ordered}

Figure 12.9 - CompositeTypes Class Diagram

12.11.1 CompositeType Class (generic)

The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records,
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 93

container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class.
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype.
CompositeType class is a more specific meta-model element than CodeElement.

Superclass

Datatype

Associations

itemUnit:ItemUnit[0..”] {ordered} The list of named items that represent components of the composite datatype; for
example representing the individual fields of a record.

Constraints

1. CompositeType class should be used with a stereotype.

Semantics

CompositeType class corresponds to ISO/IEC 11404 generated datatypes each of whose values is made up of values of
component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve a field list
in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents the
name of the field-type. The datatype of the field-type is represented by the type attribute of the ItemUnit.

CompositeType class is an extended meta-model element, that can be used to represent generated datatypes of an existing
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that ItemUnit.

12.11.2 ChoiceType Class

The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing
software systems, each of whose values is a single value from any of a set of alternative datatypes. An example of a
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM
representation, each alternative datatype is represented as an ItemUnit.

Superclass

CompositeType

Semantics

The ChoiceType corresponds to ISO/IEC 11404 choice generated datatype. KDM representation does not explicitly
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is
represented by the type attribute of the ItemUnit owned by the ChoiceType.

94 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.11.3 RecordType Class

The RecordType class is a meta-model element that represents record datatypes: user-defined datatypes in existing
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,”
which is represented by the Name attribute of the ItemUnit owned by the RecordType. Examples of record datatypes
include a structure in C, a record in Cobol.

Superclass

CompositeType

Semantics

The RecordType corresponds to ISO/IEC 11404 record aggregate datatype. The Name attribute of each ItemUnit owned
by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of the
ItemUnit owned by the ChoiceType.

Example (Cobol)
01 StudentDetails.

02 Studentld PIC 9(7).
02 St udent Nane.
03 FirstName PI C X(10).
03 Mddlelnitial PIC X
03 Sur nane Pl C X(15).

02 DateBirth.

03 DayO'Birth PI C 99.

03 MonthO'Birth PIC 99.

03 YearOFBirth PIC9€4;.
02 Cour seCode PI C X(4

MOVE " Doyl e" To Surnane

<?xm version="1.0" encodi ng " UTF- 8" 2>
<kdm Segment xmi: version="2.1"
xm ns: xm = httﬁ //schema ong. org/ spec/ XM /2.1
xm ns:action="http://schema. ong. or g/ spec/ KDMl 2/ action”
xm ns: code="http://schena. ony. or}q/spec/ KDM 1. 2/ code"
xm ns: kdnme" http // schema. ong. or g/ spec/ KDM 1. 2/ kdnt'
name="Record Exanpl e’
<nmodel xm:id="1d. 0 xm : type— code: CodeModel "
<codeEl ement xnmi : id=" id. Xm : type— code: Oonrpl lationUnit">

<codeEl ement xm :id=" |d 2" xm: pe- 'code: St orableUnit"
nane="St udent Det al type="id.3">)
<codeEl enent xm :id="id.3" xm: type— code: RecordType name=" St udent Det ai | s" >
<itenmUnit xm:id="id.4" name="Student|D" type— id 23 ext ="PIC 9(7)"/>
<itemUnit xm:id="id.5" nanme="Student Name" ﬁpe— "i d.
<codeEl enent Xmi: |d: id.6" xm:type="code: ecordType name=" St udent Nare" >
<itemnit xmi:id=" id. 7" nams "FirstName" type="id.24" ext="PlC)glO) size="10"/>
<itemnit xm:id="id.8" name="M ddl eNane" type=" id. 24" ext="PIC X" size="1"/>
<itemUnit xm:id="id.9" name="Surnane" type="id.24" ext="PIC X(15)" size="15"/>

</ codeEl enment >
</itenUnit>
<itenmUnit xm:id="id.10" nane="DateO Birth">]
<codeEl ement xmi:id="id. 11" xm: t\éae- code: Recor dType" nane="DateOfBirth">
<itemnit xm: |d— id. 12" nane="DayCfBirth" type=" |d 23" ext="PIC 99" sjze="2"/>
<itemnit xm:id="id. 13" name="MnthOBirth" type="id. 23" ext="PIC 99" size="2"/>
<itemnit xm:id="id.14" name="YearOf Birth" type="id.23" ext="PIC 9(4)"
size="4"/>
</ codeEl enment >
</itennit>))]
<itemnit xm:id="id.15" name="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
</ codeEl ement >
</ codeEl ement>)])]
<codeEl enent xmi:id="id. 16" xm:type="action: Bl ockUnit">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 95

<codeEl ement xm :id="id.17" xm:type="action: Acti onEl enent">
<codeEl ement xmi :id="id.18" xm :type="code: Val ue"
nanme=" " ; Doyl e" ; " type="id. 24"/ >

<actionRelation xm:id="id. 19" xm :type="action: Addresses" to="id.2" from="id.17"/>
<actionRelation xm:id="id.20" xm :type="action: Reads" to="id. 18" fron¥"id.17"/>
<actionRelation xm:id="id.21" xm:type="action:Wites" to="id. 9" from="id.17"/>

</ codeEl ement >

</ codeEl enent >

</ codeEl enent>])]

<codeEl ement xmi :id="id.22" xm :type="code: LanguageUni t" name="Cobol
<codeEl ement xm :id="id.23" xm :type="code: Deci nal Type"/>
<codeEl ement xm :id="id.24" xm:type="code: StringType"/>

</ codeEl enment >

</ nodel >
</ kdm Segnent >

common definitions">

12.12 DerivedTypes Class Diagram

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes
diagram are shown in Figure 12.10.

ltemUnit Datatype
1
+itemUnit
{subsets ownedElement}
+owner 0.1 D erivedType PointerType
{subsets owner}
SequenceType
<size : Integer
RangeType BagType

ArrayType

<lower : Integer

asize : Integer

<size : Integer

SetType

<upper : Integer

@size : Integer

+owner 0.1
{subsets owner}
+indexUnit
{subsets ownedElement} 1
IndexUnit

Figure 12.10 - DerivedTypes Class Diagram

12.12.1 DerivedType Class (generic)

DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics.
DerivedType class is a KDM container. KDM models of existing software systems usually use the concrete subclasses of
DerivedType class. DerivedType class itself is a concrete class and can be used as an extended meta-model element, with
a stereotype. DerivedType class is a more specific meta-model element than CodeElement.

96 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

Datatype

Associations

itemUnit:ltemUnit[1] The ItemUnit that represents the base class of the derived type.

Constraints
1. DerivedType class should be used with a stereotype.

Semantics

DerivedType class corresponds to several ISO/IEC 11404 aggregated datatypes, whose values are made up of values of a
single component datatype. DerivedType class is an extended meta-model element, that can be used to represent
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the
element-type is represented by the type attribute of the ItemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.

12.12.2 ArrayType Class

The ArrayType is a meta-model element that represents array datatypes.
Superclass

DerivedType

Attributes

size:Integer the size of the array (the maximum number of elements)

Associations

indexUnit:IndexUnit[1] the index of the array

Semantics

ArrayType corresponds to ISO/IEC 11404 array datatype. The name attribute of the ItemUnit can be omitted if the
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned
by the ArrayType. The IndexItem represents the index of the array. The name attribute of the IndexUnit can be omitted.

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the
next (internal) dimension and so on.

Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 97

12.12.3 PointerType Class

The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference
to values of another datatype, designated the element datatype.

Superclass

DerivedType

Semantics

PointerType corresponds to ISO/IEC 11404 pointer generated datatype. From ISO perspective the pointer datatype is not
an aggregated datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the
ItemUnit owned by the PointerType can be omitted. The datatype of the element-type is represented by the type attribute
of the ItemUnit owned by the PointerType.

Example (C)

struct tlist f
struct tlist * next;
int val ue;

} * phead, * pcurrent;

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xni:version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: code="http://schema. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: action="http://schema. ong. or g/ spec/ KDM 1. 2/ acti on"
xm ns: kdme" htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt
nane="Li nkedLi st Exanpl e">
<nodel xmi:id="id, 0" xm:type="code: CodeMbdel ">]
<codeEl ement xm:id="id.1" xm:type="action:Bl ockUnit">
<codeEl ement xm:id="id.2" xm:type="code: StorableUnit"
name="phead" type="id.3" kind="unknown">
<codeEl ement xm :id="id.3" xm :type="code: Poi nt er Type" >
<itemnit xm:id="id.4" type="id.5">]
<codeEl ement xmi:id="id.5" xm:type="code: Recor dType" name="t|ist">
<itemnit xm:id="id.6" nanme="next" type="id.3"/>
<itemUnit xmi:id="id. 7" nane="value" type="id.8">)
<codeEl ement xmi:id="id.8" xni:type="code:|ntegerType" name="int"/>
</itenmnit>
</ codeEl enent >
</itenmnit>
</ codeEl ement >
</ codeEl ement>]])
<codeEl ement xmi:id="id. 9" xm :type="code: Storabl eUnit"
name="pcurrent" type="id.3" kind="unknown"/>
</ codeEl enent >
</ nodel >
</ kdm Segmnent >

12.12.4 RangeType Class

RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper
and/or lower bounds on the value space.

Superclass

DerivedType

98 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Attributes

lower: Integer the optional lower boundary of the range
upper: Integer the optional upper boundary of the range
Constraints

1. At least one boundary value attribute should be present.

Semantics

RangeType corresponds to ISO/IEC 11404 range subtype. From ISO perspective the range subtype is not an aggregated
datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned
by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of the ItemUnit
owned by the RangeType.

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.

12.12.5 BagType Class

BagType class is a meta-model element that represents bag types in existing software systems: the user-defined datatypes,
whose values are collections of instances of values from the element datatype. Bag types allow multiple instances of the
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass
DerivedType
Semantics

BagType corresponds to ISO/IEC 11404 bag aggregated datatype. The Name attribute of the ItemUnit owned by the
BagType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the BagType.

12.12.6 SetType Class

SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the
mathematical set.

Superclass
DerivedType
Semantics

SetType corresponds to ISO/IEC 11404 set aggregated datatype. The Name attribute of the ItemUnit owned by the
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the SetType.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 99

12.12.7 SequenceType Class

SequenceType class is a meta-model element that represents sequence types in existing software systems: the user-defined
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass
DerivedType

Semantics

SequenceType corresponds to ISO/IEC 11404 sequence aggregated datatype. The Name attribute of the ItemUnit owned
by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit
owned by the SequenceType.

12.13 Signature Class Diagram

The Signature class diagram defines meta-model elements, which represent the signature concept common to various
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.11.

Datatype
+owner
{subsets owner} +parameterUnit
Signature {subsets ownedElement
0.1 ordered}
0- -*
;;er;ur;n:gm; ParameterUnit
bval <kind : ParameterKind

szN:;ee «pos : Integer

<byReference

<variadic

areturn

wthrows

wexception

wicatchall

<unknown

Figure 12.11 - Signature Class Diagram

12.13.1 Signature Class

The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various
programming languages.

Superclass

Datatype

100 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

parameterUnit:ParameterUnit[0..*] the list of parameters of the current Signature

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of
datatypes, corresponding to the procedure-type of ISO/IEC 11404 standard. Second, it corresponds to a specific data
element as part of a computational object represented by a ControlElement. In this second sense, the Signature element
corresponds to the mechanism of formal and actual parameters.

12.13.2 ParameterKind Enumeration Datatype

ParameterKind datatype defines the kind of parameter passing conventions.

Literals
byValue parameter is passed by value
byName parameter is passed by name
byReference parameter is passed by reference
variadic parameter is variadic
return parameter being returned
throws parameter represents an exception thrown by the procedure
exception parameter to a catch block
catchall special parameter to a catch block
unknown parameter passing convention is unknown
Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this
means that the Signature does not define a return value.

12.14 DefinedTypes Class Diagram

DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by a type
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.12.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 101

+codeElement
{subsets ownedElement}

+ype Datatype 0.1

BaseType

+owner
{subsets owner}

DefinedType

TypeUnit SynonymType

Figure 12.12 - DefinedTypes Class Diagram

12.14.1 DefinedType Class (abstract)

The DefinedType class is an abstract class that defines the common properties of several concrete classes that are used to
represent type declarations in existing software systems.

Superclass
Datatype
Associations
codeElement:Datatypel[0..] Anonymous datatypes used in the definition of the datatype.
type:Datatype[1] The datatype of the DefinedType that describes the values of the
corresponding datatype.
Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined
datatype.

12.14.2 TypeUnit Class

The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define
the value-space of a new datatype, which is distinct from any other datatype.

Superclass

DefinedType

102 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

TypeUnit corresponds to ISO/IEC 11404 New datatype declaration and New generator declarations.

12.14.3 SynonymUnit Class

The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the
type name to be a synonym for another datatype.

Superclass

DefinedType

Semantics

SynonymUnit corresponds to ISO/IEC 11404 Renaming declarations.

12.15 ClassTypes Class Diagram

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.13.

Datatype

ClassUnit
wisAbstract: Boolean

Interface Unit

+owner

+owner

subsets owner]
{subsets owner} { }

+codeElement
{subsets ownedElement
ordered}

+codeElement Codeltem“

{subsets ownedElement
ordered}

Figure 12.13 - ClassTypes Class Diagram

12.15.1 ClassUnit Class

The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype
is a named datatype that represents a class: an ordered collection of named elements, each of which can be another
Codeltem, such as a MemberUnit or a MethodUnit.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 103

Attributes

isAbstract:Boolean the indicator of an abstract class
Associations

codeElement:Codeltem[0..*{ordered} the list of class members
Semantics

ClassUnit is a named container for an ordered collection of named elements, each of which can be another Codeltem,
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested
ClassUnits), internal datatype definitions, etc. From the runtime perspective, ClassUnit represents a family of
computational objects, called class instances. MemberUnits and MethodUnits of a certain ClassUnit are identified both by
the name of the member or method, as well as by a direct or indirect identification of the corresponding class instance.

12.15.2 InterfaceUnit Class

The InterfaceUnit is a meta-model element that represents the interface concept common to various programming
languages.

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns a list of
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an
InterfaceUnit may be targets of Calls relations.

Superclass
Datatype

Associations

codeElement:Codeltem[0..*] {ordered} The list of TypeElements that corresponds with the target Interface.

Semantics

InterfaceUnit is a logical container for code items. InterfaceUnit corresponds to a compile time description of the
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as
ControlElements, which in the representation of an existing software may be the targets of certain relationships, since the
binding between the interface and the actual computational objects may occur at runtime.

12.16 Templates Class Diagram

The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. Figure 12.14 shows these classes and their associations.

104 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

D atatype

TemplateUnit

TemplateType 0.1

+owner
{subsets owner}

+codeElement
{subsets ownedElement

ordered} 0..*
Codeltem

TemplateParameter

Figure 12.14 - Templates Class Diagram

12.16.1 TemplateUnit Class

The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming
languages; for example, Ada generics, Java generics, C++ templates.

Superclass
Datatype

Associations

codeElement:Codeltem[1] template formal parameters and the base datatype or computational object

Constraints
1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.

Semantics

The TemplateUnit class corresponds to a type declaration with formal type parameters from the ISO/IEC 11404. TemplateUnit
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned
by the TemplateUnit.

12.16.2 TemplateParameter Class

TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model,
TemplateParameter is a subclass of TypeElement.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 105

Semantics

TemplateParameter represents a formal parameter of a type declaration with formal parameters (corresponding to ISO/IEC
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal
parameters is positional.

12.16.3 TemplateType Class

TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType
class owns the actual parameters to the datatype reference, represented by ‘“ParameterTo” relationships. The
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced
parameterized datatype. TemplateType has the role of a Datatype.

Superclass
Datatype

Constraints

1. TemplateType class should be the origin only to template relations “InstanceOf” and ‘“ParameterTo.”

Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal
type parameters from the ISO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit,
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented
by the “InstanceOf” relationship.

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type
parameters is positional.

12.17 TemplateRelations Class Diagram

The TemplateRelations class diagram defines KDM relationships that are related to the concept of an template. Figure
12.16 shows these classes and their associations.

106 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractCodeRelationship

ParameterTo
Instance Of
0.7« 0.*

+to
1 {redefines to}

+from
{redefines from}

+to
{redefines to}

{redefines from}

TemplateUnit

Codeltem AbstractCodeElement

Figure 12.15 - TemplateRelations Class Diagram

12.17.1 InstanceOf Class

The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for
example, a ClassUnit) and a TemplateUnit. In the meta-model InstanceOf is a subclass of AbstractCodeRelationship.

Superclass

AbstractCodeRelationship

Associations
from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of a template.
to:TemplateUnit[1] The TemplateUnit that is being instantiated.

Constraints

1. The to- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.17.2 ParameterTo Class

The ParameterTo is a meta-model element that represents an actual type parameter in the context of a reference to a
parameterized entity. ParameterTo is “parametrization” relation between an AbstractCodeElement (for example, a
TemplateType or an ActionElement) and a Codeltem.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 107

Superclass

AbstractCodeRelationship

Associations
from:AbstractCodeElement[1] the reference to the parameterized entity (the context of the actual type parameter)
to:Codeltem[1] actual parameter to template instantiation

Constraints

1. ParameterTo relationship should be owned only by TemplateType or ActionElement.
2. The to- and from- endpoints of the relationship should be different.
Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Example (Java)

class foo { | i _
static <T> void fromArrayToCol |l ection(T[] a, Collection<T> c) {
for (T o: ae
i:.add 0);

voi d dermo() {]
String[] sa = new String[100];)]
Col Il ection<String> cs = new ArrayLi st<String>();)
fromArrayToCol | ection(sa, cs);// T inferred to be String

—

}

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xmi:version="2.1"
xm ns: xm ="htt ﬁ: /I schema. ong. org/ spec/ XM /2. 1"]
xm ns:action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on"
xm ns: code="http://schema. ong. or?/ spec/ KDM 1. 2/ code"
xm ns: kdne"htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdnt'
name="Tenpl ate Exanple">
<mpdel Xxmi:id="id.0" xm:type="code: CodeMdel ">)
<codeEl enent xm :id="id.1" xm:type="code: Cl assUnit" name="foo">
<codeEl ement xmi:id="id.2" xm:type="code: Tenpl ateUnit"
name="fromArrayToCol | ecti on& t; T>">
<codeEl ement xm :id="id.3" xm:type="code: Tenpl at ePar aneter" name="T"/>
<codeEl emrent xmi:id="id.4" xm_:type="code: Met hodUnit"
name="fromArrayToCol [ecti on" type="id.6">
<entryFlow xm :id="id.5" to="id.14" fron¥"id.4"/>
<codeEl ement xmi:id="id.6" xnmi:type="code: Signature">
<paranmeterUnit xm:id="id.7" nane="a">
<codeEl enent xm:id="id.8" xm:type="code: ArrayType">
<itemUnit xmi:id="id.9" type="id.3"/>
</ codeEl enent >
</ paranmeterUnit>]]
<paraneterUnit xmi:id="id.10" name="c" type="id.11">
<codeEl ement xm :id="id. 11" xm :type="code: Tenpl at eType"
nane="Col | ection& t; T1>">
<codeRel ation xm:id="id.12" xni:type="code: Paraneter To"
o to="id.3" from="id. 11"/>
<codeRel ation xm :id="id. 13" xm: ty/o ="code: | nst anceCf "
to="id. 75" from="id. 11"/>
</ codeEl enent >
</ paranmet er Uni t >

108 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</ codeEl ement>)]))
<codeEl ement xmi :id="id.14" xni:type="action:ActionEl ement"
nanme="al" ki nd="Conpound" >))
<codeEl ement xmi:id="id.15" xm:type="action: Acti onEl enent"

~ nanme="al. 1" kind="Call"> "]
<actionRelation xm :id="id.16" xm :type="action: Addresses"

) to="id.7" frome"id.15"/>])]
<actionRel ation xm_:id="id. 17" xm:type="action:Calls" to="id.81" fron¥"id.15"/>
<actionRelation xm:id="id. 18" xm:type="action:Flow' to="id.19" fron¥"id.15"/>

</ codeEl enent >)]))
<codeEl ement xmi:id="id.19" xm:type="action: Acti onEl enent"
~_ name="al. 2" kind="Call">
<codeEl ement xm :id="id.20" xm:type="code: Storabl eUnit"
nanme="t 1" type="id. 88" kind="register"/>
pid="id. 21" "xmi:type="action: Addr esses"
to="id. 40" from="id.19"/>

<actionRel ati on xmi

<actionRel ation xm :id="id.22" xm:type="action:Calls" to="id.83" fronr"id.19"/>
<actionRel ation xm:id="id.23" xm:type="action:Wites" to="id.20" from="id.29"/>
<actionRel ation xm:id="id.24" xm:type="action:Flow' to="id.25" fron="id.19"/>

</ codeEl ement>))))
<codeEl ement xmi:id="id.25" xm:type="action: Acti onEl enent"

) ~name="1.3" kind="Condition">)]
<actionRel ation xm_:id="id.26" xm:type="action: Reads" to="id.20" fron¥"id.25"/>
<actionRelation xm:id="id.27" xm:type="action: TrueFl ow'

) to="id. 29" frone"id.25"/> .
<actionRelation xm :id="id.28" xm:type="action: Fal seFl ow'

to="id.39" from="id.25"/>
</ codeEl enent >)]))
<codeEl ement xn1:|d:"|d.29",xnl:tzge:"actlon:ActlonElenEnt"

] nanme="al. 4" kind="Call">]
<actionRelation xm :id="id.30" xm:type="action: Addr esses"

) ~to="id.40" frone"id.29"/>)))
<actionRel ation xm:id="id.31" xm:type="action:Calls" to="id.82" fron¥"id.29"/>

<actionRel ation xm:id="id. 32" xm:type="action:Wites" to="id.44" from="id.29"/>
<actionRelation xm:id="id.33" xm:type="action: Flow' to="id.34" frone"id.29"/>

</ codeEl ement>])))

<codeEl enment xn1:|d="|d.34".xnl:tzgez"actlon:ActlonEIenent"

) ‘nanme="al. 5" kind="Call">)
<actionRelation xm :id="id.35" xm:type="action: Addresses"

) ~to="id. 10" fron¥"id.34"/>)))
<actionRelation xm:id="id.36" xm:type="action: Reads" to="id.44" from="id. 34"/>
<actionRel ation xm:id="id.37" xm:type="action:Calls" to="id.84" fron¥"id.34"/>
<actionRel ation xm :id="id.38" xm:type="action:Flow to="id.19" fron¥"id.34"/>

</ codeEl ement >)])))
<codeEl ement xmi :id="id.39" xm:type="action:Acti onEl ement" nane="1.6" ki nd="Nop"/>
<codeEl ement xmi:id="id.40" xmi:type="code: StorableUnit"
nane="iter" type="id.41" kind="register">
<codeEl ement xm :id="id. 41" xm:type="code: Tenpl at eType" name="Iterator& t; T1>">
<codeRel ation xm:id="id. 42" xmi:type="code:|lnstanceCc"
) o to="id. 78" frone"id.41"/>
<codeRel ation xm :id="id. 43" xm :type="code: Par anet er To"
to="id.3" from"id.41"/>
</ codeEl enent >
</ codeEl ement>])
<codeEl emrent xmi:id="id. 44" xnl:tgpe;"code:StorableUnlt"
] ~ nane="0" type="id.3" kind="local"/>))
<actionRel ation xm:id="id.45" xm:type="action:Flow' to="id.15" frone"id.14"/>
</ codeEl enment >
</ codeEl enent >
</ codeEl enent>))))
<codeEl ement xm :id="id. 46" xm :type="code: Met hodUnit" name="denp" type="id.47">
<codeEl ement xm :id="id. 47" xm :type="code: Signature"/>
<codeEl ement xmi :id="id.48" xni:type="code: StorableUnit"
name="sa" type="id. 49" kind="|ocal ">
<codeEl ement xm :id="id.49" xm :type="code: ArrayType" nanme="ar2">
<itemUnit xm:id="id.50" type="id.89"/>
</ codeEl enment >
</ codeEl ement>]))])
<codeEl ement xm :id="id.51" xmi:type="action:ActionEl ement” name="deno.1" ki nd="New'>
<codeEl ement xm :id="id.52" xm :type="code: Val ue" nane="100" type="id.90"/>
<actionRel ation xm:i id. 53" xm:type="action: Reads" to="id.52" from="id.51"/>
<actionRel ation xm :i id. 54" xm:type="action: Creates" to="id.49" fron¥"id.51"/>
<actionRel ation xm:id="id.55" xm:type="action: Wites" to="id.48" fron¥"id.51"/>
<actionRel ation xm:i id. 56" xm:type="action: Flow'/>
</ codeEl enent>])
<codeEl ement xmi:id="id.57" xm:type="code: StorableUnit"

[eNoNoNoN

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 109

name="cs" type="id.58" kind="|ocal">
<codeEl ement xm :id="id, 58" xm_:type="code: Tenpl at eType"
nanme="Col | ection&t; String>">))
<codeRel ati on xm_:id="id.59" xm:type="code: ParaneterTo" to="id.89" fron¥"id.58"/>
<codeRel ation xm :id="id.60" xm:type="code:|lnstanceOf" to="id.75" from="id.58"/>
</ codeEl enent >
</ codeEl enent>]])))
<codeEl ement xm :id="id,61" xm:type="action:ActionEl enent” name="deno. 2" ki nd="New'>
<codeEl ement xm :id="id.62" xm:type="code: Tenpl at eType"

) nane="ArrayList&t; String>">))
<codeRel ation xm_:id="id. 63" xm:type="code: ParaneterTo" to="id.89" fron¥"id.62"/>
<codeRel ation xm :id="id.64" xm:type="code:|lnstanceO*" to="id.85" from="id.62"/>

</ codeEl enment >]
<actionRel ation xm
xmi
xm

‘i d. 65" xm:type="action:Creates" to="id.62" fron¥"id.51"/>
'id. 66" xm:type="action:Wites" to="id.57" from="id.61"/>
'id. 67" xm:type="action:Fl ow'/>

<actionRel ation
<actionRel ation
</ codeEl ement>)])))
<codeEl ement xmi:id="id.68" xm:type="action:ActionEl enment" nane="deno.3" kind="Call">
<codeRel ation xm :id="id. 69" xni:type="code:|nstanced" to="id.2" fron¥"id.68"/>
<codeRel ation xm :id="id. 70" xm :type="code: ParaneterTo" to="id.89" fronr"id.68"/>
<actionRelation xm:id="id.71" xm :type="action: Reads" to="id. 48" fron¥"id.68"/>
<actionRel ation xm :id="
<actionRel ation xnmi:id
</ codeEl enent >
</ codeEl enment >
</ codeEl enent>)))
<codeEl ement xmi:id="id. 74" xni:type="code: LanguageUnit" name="Conmon Java dat atypes">
<codeEl ement xm :id="id. 75" xm:type="code: TenplateUnit" nanme="Col | ectioné&t;T>">
<codeEl ement xmi :id="id.76" xm:type="code: Tenpl at eParaneter" nane="T"/>
<codeEl ement xm:id="id.77" xm:type="code: Cl assUnit" name="Col |l ection"/>
</ codeEl enent >]]]
<codeEl ement xm :id="id, 78" xm :type="code: TenplateUnit" nanme="Iterator& t; T>">
<codeEl ement xmi:id="id.79" xm:type="code: Tenpl at eParaneter" nane="T"/>
<codeEl ement xmi:id="id.80" xm:type="code:C assUnit" nanme="Iterator">
<codeEl ement xm :id="id.81" xm:type="code: Met hodUnit"
~name="jterator" Kind="constructor"/>
<codeEl ement xmi:id="id.82" xm :type="code: Met hodUni t" name="next"/>
<codeEl ement xm :id="id.83" xm :type="code: Met hodUnit" nane="hasNext"/>
<codeEl ement xm :id="id.84" xm:type="code: Met hodUni t" nane="add"/>
</ codeEl ement >
</ codeEl emrent >))])
<codeEl ement xmi :id="id.85" xm:type="code: Tenpl ateUnit" name="ArrayList&t; T>">
<codeEl ement xmi:id="id. 86" xm:type="code: Tenpl at eParaneter” name="T"/>
<codeEl enment xm :id="id.87" xm:type="code: ClassUnit" name="ArrayList"/>
</ codeEl ement>)
<codeEl ement xmi:id="id. 88" xm:type="code: Bool eanType" nane="Bool ean"/>
<codeEl enment xm:id="id. 89" xm:type="code: StringType" name="String"/>
<codeEl enment xm :id="id.90" xm:type="code:|nteger Type" name="Integer"/>
</ codeEl ement >
</ nodel >
</ kdm Segnent >

d
d=
d=
d=

d. 72" xm:type="action: Reads" to="id.57" from="id.68"/>
d. 73" xm:type="action:Calls" to="id.4" from="id.68"/>

12.18 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the
corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in
Figure 12.16.

110 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractCodeRelationship

0- Implements : o
ImplementationOf
0.*
+from +from
+to {redefines from} 1 1 {redefines from} o
! Codeltem | 1 {redefines to}

{redefines to}

Figure 12.16 - InterfaceRelations Class Diagram

12.18.1 Implements Class

The Implements is a meta-model element that represents “implementation” association between a Codeltem (for example,
a ClassUnit) and an InterfaceUnit. “Implements” relationship is similar to “Extends.” For example, Java “implements”
construct can be represented by KDM “Implements” relationship.

Superclass

AbstractCodeRelationship

Associations
from:Codeltem[1] The Codeltem that implements a certain InterfaceUnit.
to:Codeltem[1] The InterfaceUnit that is being implemented by Codeltem.
Constraints

1. The from- and to- endpoints should be different.

Semantics

See next section

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 1M1

12.18.2 ImplementationOf Class

The ImplementationOf is a meta-model element that represents “implementation” association between a Codeltem; for
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit.
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object,
common to various programming languages. While the “Implements” relationship is between entire containers (the target
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

* Particular MethodUnit of a ClassUnit that “Implements” an InterfaceUnit, is an “ImplementationOf” a particular
MethodUnit, owned by that InterfaceUnit.

* A CallableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration
(the prototype) of that CallableUnit.

* A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass

AbstractCodeRelationship

Associations
from:Codeltem[1] Codeltem that implements a certain “declaration.”
to:Codeltem[1] “declaration” that is being implemented by the Codeltem.
Constraints

1. It is obligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target is a
ControlElement or the origin is a DataElement and the target is a DataElement.

2. The kind attribute of the Codeltem at the origin of the ImplementationOf relationship should not be equal to
“external.”

3. The kind attribute of the Codeltem at the target of the ImplementationOf relationship should be equal to “external”
or “abstract.”

4. The from- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a ComputationalObject (ControlElement or DataElement) with kind
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a ControlElement,
Signature represents the procedure type, but not the declaration entity itself.

If both the definition and the declaration of some computational object “foo” are available:
* The definition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

» For a certain action element that uses “foo,” the target of the KDM callable or data relations will be the definition of
“f00.”

» The action element that uses “foo” may be the origin of a “CompliesTo” action relationship (defined at the
InterfaceRelations class diagram of the Action package) to the declaration of “foo.”

12 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about

the existing software system:

» For a certain action element that uses “bar,” the target of the KDM callable or data relations will be the declaration of

“baI’.”

e The action element that uses “bar”” may be the origin of a “CompliesTo” action relationship (defined at the

InterfaceRelations class diagram of the Action package) to the declaration of “bar.”

Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation units in
complex ways, the existing software system may have multiple declarations for the same computational object, or even
different computational objects with the same name but different properties that are used in different contexts. In this
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if

different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):

package flip;
public interface i Flip {
) public int flip(int i);
package flip;
public class foo inplenents iFlip {
public foo(){}
public flip(int i) {
) return i * -1;
}
package flip;

public cl as.s' Fl'i pdient é))
public static void main(String[] args) {
f f= new foo();

0, L= 1o o000},
LSRR
}

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmni:version="2.1"
xm ns: xm ="htt ﬁ: /I schena. ong. org/ spec/ XM /2. 1"]
xm ns: action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on”
xm ns: code="http://schema. ong. or?/ spec/ KDM 1. 2/ code"
xm ns: kdnme"htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdnt'
name="| nterface Exanple">
<nmodel xm :id="id.0" xm :t)llpez"pode: CodeModel ">

<codeEl enent xm :id="id,1" xm:type="code: Package" name="flip">
<codeEl ement xm :id="id.2" xm:type="code: Cl assUnit" nanme="foo">
<codeRel ation xm :id="id.3" xm :type="code:|npl ements" to="id.21" fronr
<codeEl ement xmi:id="id.4" xm:type="code: Met hodUnit" name="flip" type=

<codeRel ation xm :id="id.5" xm :type="code:|nplementationCf"
o to="id.22" frone"id. 4"/>
<entryFlow xm :id="id.6" to="id.10" fron¥"id.4"/>]
<codeEl ement xm :id="id.7" xmi:type="code: Signature” name="flip">
<paraneterUnit xm:id="id.8" name="i" t%pezj'l d. 53"/>
<paraneterUnit xm:id="id. 9" type="id.53" kind="return"/>
</ codeEl enent>]))]
<codeEl ement xm :id="id.10" xm :type="action:ActionEl ement”
nanme="d1" kind="Miltiply">

<codeEl ement xmi:id="id.11" xm:type="code: Val ue" name="-1" type="id.53"/>

<codeEl ement xmi:id="id. 12" xm :type="code: Storabl eUnit"
] ~ nanme="t5" _tdype:"l d.53" kind="register"/>
<actionRelation xm:id="i

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

d
d

2
2

"

3"

>
>

. 13" xm:type="action: Reads" to="id.8" from="id.1

0"/ >

113

<actionRel ation xm:id="id. 14" xm :type="action: Reads" to="id. 11" fron¥"id.10"/>
<actionRel ation xm :id="id. 15" xm :type="action:Wites" to="id.12" fronF"id.10"/>
<actionRelation xm:id="id. 16" xm:type="action:Flow' to="id.17" frone"id. 10"/ >
</ codeEl enent >)
<codeEl enent xmi:id="i
<actionRel ation xm:
</ codeEl enent >
</ codeEl ement >)
<codeEl enent xmi:id="id. 19" xm type="code: Met hodUni t "
name="f oo" ype—"l d. 20" ki nd="constructor"
<codeEl ement xm:id="id.20" xm:type="code: Si gnature" nanme= "foo"/>
</ codeEl enment >
</ codeEl enment >])
<codeEl enent xmi:id="id. 21" xni: type—"code InterfaceUnit" name="I|Flip">
<codeEl ement xm :id="id.22" xm:type="code: Met hodUnit"
nams-"fl ip" type—"l d. 23" kind="abstract"/>
<codeEl ement xm: |d " d. 23" xm :type=" pode Si gnature" nanme="flip">
<par amnet er Uni t tid="id. 24" pame="i" %pe-"l d. 53" pos="1"/>
<par anet er Uni t id="id. 25" type—"l d.5 ki nd="r et ur n" pos="0"/>
</ codeEl enment >
</ codeEl ement>]
<codeEl enent xm :id="id.26" xm:type="code: dassUnit"” name="Flipclient" .
<codeEl ement xm :id="id.27" xm :type="code: Met hodUnit" nane="nain" type-"ld 29" >
<entryFlow xm :id="id, 28" to="id.35" frone"id.27"/>
<codeHEl enent xmi:id="id.29" xni:type="code: Si gnature" name="main">
<parameterUnit xm:id="id.30" nane="args" type="id.31" pos="1">
<codeEl ement xmi ;id="id.31" xni:type="code: ArrayType">
<itenmlnit xm:id="id.32" name=' args[] type="id. 54"/ >
</ codeEl enent >
</ par amet er Uni t >
</ codeEl enent >

type- action: ActionEl emrent” nane="d2" ki nd="Return">
id="i d 18" :type="action: Reads" to="id.12" from="id.17"/>

—Q.

<codeEl ement xm :id="i d 33" xm pe="code: St or abl eUn| t"
~ name="f" e—| .2" kind="|ocal "
<codeEl enent xm :id="id. 34" type— code: St or abl eUnl t"

nane="g" type-"i d. 21" ki nd="local "/>)
<codeEl enent xmi :id="id. 35" xni:type="action:ActionElenent” name="al" ki nd="New'>
<actionRel ation xm :id="id. 36" xm :type="action: Creates" to="id.2" fron¥"id.35"/>
<actionRel ation xm:id="id. 37" xm:type="action:Wites" to="id.33" fronF"id.35"/>
<actionRelation xm:id="id. 38" xm:type="action:Flow' to="id.39" frone"id.35"/>
</ codeEl ement >))
<codeEl enment xm :id="id.39" xm:type="acti on Acti onEl ement "

] ~ name="a2" kind=" thodCaII
<actionRel ation xm:id="id.40" xm: gpe— actl on: Conpl i esTo"

] ~ to="id. 20" from:"|d3'/>)
<actionRel ation xm:id="id. 41" xm: S3/pe:” action: Addr esses"

]) 0=_|d33'ﬁ from:"ld.3'/>)))
<actionRelation xm:id="id.42" xm:type="action:Calls" to="id.19" from="id.39"/>
<actionRelation xm:id="id. 43" xm:type="action: Flow' to="id.44" frone"id.39"/>

</ codeEl ement >)
<codeEl ement xm :id="id. 44" xm:t pe—"actl on: Acti onEl emrent "

] ~ name="a3" ki nd—"%ynCas)]

<actionRel ation xm:id="id. 45" xm: type— action: Reads" to="id.33" fron¥"id.44"/>
<actionRel ation xm :id= "id. 46" xm: type— action: UsesType" to="id.21" from="id. 44"/ >

<actionRelation xm:id="id. 47" xni:type="action:Wites" to="id. 34" frong"id. 44"/>

<actionRel ation xm :id="id.48" xm:type="action: Flow' to="id.49" fronm="id.44"/>
</ codeEl ement >)
<codeEl enent xmi:id="id.49" xni:type="action: Actl onEl enent "

name="a4" ki nd=" I nterfaceCal | "
<actionRel ati on xm id="id. 50" xm S%/pe-” act i on Conpl i esTo"
"id. 23" frome"id. 4

<actionRel ati on xm. id="id.51" xm: gpe— "action: Addresses”

] ~ to="id. 34" from:"|d4))]

<actionRel ation xm:id="id.52" xm:type="action:Calls" to="id.22" from="id.49"/>
</ codeEl enment >
</ codeEl enment >
</ codeEl enment >

</ codeEl enent >))

<codeEl ement xm :id="id.53" :type="code: | nt eger Type" name="int"/>

<codeEl enent xm :id="id.54 xm type="code: Stri ngType" name="String"/>

</ nodel >
</ kdm Segnent >

114 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.19 TypeRelations Class Diagram

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.17.

AbstractCodeRelationship

HasType

HasValue

0.% 0.*

+from
+to
{redefines to}

redefines from} +from

{redefines from} !

+
1 {redeﬁnetsoto Datatype

1 1
AbstractCodeElement Codeltem

Figure 12.17 - TypeRelations Class Diagram

12.19.1 HasType Class

The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element.

Superclass

AbstractCodeRelationship

Associations
from:Codeltem[1] the source data element
to:Datatype[1] the target datatype element
Constraints

1. The from- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates this information if the
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in
AggregatedRelationships.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 115

12.19.2 HasValue Class

The HasValue is a specific meta-model element that represents semantic relation between a data element and its
initialization element, which can be a data element or an action element for complex initializations that involve
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action
elements in the initialization code.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] the source data element

to:AbstractCodeElement[1] the target AbstractCodeElement (datatype or action element)
Constraints

1. If the target of the HasValue is an ActionElement, then this ActionElement should have an outgoing Writes or
Addresses relationship to the Codeltem that is the source of the HasValue relationship.

Semantics

HasValue relationship as an optional way to represent initialization. The target of the HasValue relationship can be a Value for
simple initializations that involve constants, or Data Element for simple initializations that involve another data element, or an
ActionElement that writes to the source element for complex initializations involving expressions.

In micro KDM initialization is represented by explicit initialization actions with appropriate control flow. Initialization actions
should be owned by special initialization block units. Control flow semantics of initializations (especially for initializations of
global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represente
control flow. It provides a convenient way to associate a data element with its value.

Example (C++)
[*----d.h---%/
prlv_atfe: int num

int x) { this->numex; printf(“Hell
Wprk() { printf(“This is % worki ng\

1%---a. cpp---*/
#i ncl udeppd. h"

int gl=0;
D dl?l);

[*---b. cpp--*/

#i nclude "d. h"

extern D di;

D d222);

mai n()

i nt
*

o, thisis %\n”, x); }
n”, this->num;

116 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xni:version="2.1"

xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"]

xm ns:action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on”
xm ns: code="http://schenma. ong. or g/ spec/ KDM 1. 2/ code"

xm ns: kdnme"htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdnt'

name="C assD Exanpl e">

<codeEl enent xm:id="id. 1"

xm :id="1d, 0" xni:type="code: CodeMdel ">
xni : type="code: CodeAssenbl y" >

<entryFlow xm :id="id. 120" to="1d.94" from="id.1"/>

<codeEl ement xmi:id="id.2" xm:type="code: ConpilationUnit" name="a.cpp">
<entryFlow xm :id="id. 121" to="id. 10" fron¥"id.2"/>])

<codeEl ement xm :id="id.3" xm:type="code:|ncludeDirective" name="inmpl">
<codeRel ation xm:id="id.4" xm:type="code:Includes" to="id.22" from="id.3"/>

</ codeEl enent>]])

<codeEl ement xmi :id="id.5" xm:type="code: Storabl eUnit" name="gl" t
<codeRel ation xm:id="id.6" xm:type="code: HasVal ue" to="id. 20" f

</ codeEl enent>]])

<codeEl ement xm :id="id.7" xm:type="code: Storabl eUnit" name="d1" ty
<codeRel ation xm :id="id.8" xm :type="code: HasType" to="id.23" fro
<codeRel ation xm :id="id.9" xmi:type="code:|nplenmentati onOX"

to="id. 47" frome"id. 7"/>)]

<codeRel ation xm :id="id.124" xm :type="code: HasVal ue" to="id. 16" from="id.7"/>

e="id. 105" >
%/gmf'i d.5"/>

</ codeEl enment >

d="id. 13" xm :type="action: Reads" to="id.20" fron¥"id.12"/>
d="id. 14" xm:type="action:Wites" to="id.5" from="id.12"/>
d="id. 15" xm:type="action: Flow' to="id.16" from="id.12"/>

<codeEl enent xm :id="id.10" xmi:type="action: Bl ockUnit" name="bi1" kind="Init”>
<ent r%/FI ow xm:id="id. 11" to="id. 12" fron¥"id.10"/>]))
<codeEl ement xmi:id="id.12" xmi:type="action: ActionElement" nanme="i 1" ki nd="Assign">
s
s

[
<actionRel ation
<actionRelation xm:i
<actionRel ation xmi:i

</ codeEl enent>)
<codeEl enent xm:id="id.1
] =

X X
33

6" xmi:type="action: ActionEl enent" nane="i2" kind="Calls">
"id. 17" xm :type="action: Reads" to="id. 21" fron¥"id.16"/>
"id.18" xm :type="action:Calls" to="id.25" fron¥"id.16"/>
"id.19" xm:type="action:Wites" to="id. 7" fronm"id.16"/>

<actionRelation xm:id

<actionRelation xm:id

<actionRel ation xnmi:id

</ codeEl ement>]

<codeEl ement xmi :id="i

<codeEl enent xmi :id="i
</ codeEl enment >

[eNeX

20" xm :type="code: Val ue" nane="0"/>
21" xm :type="code: Val ue" nane="1"/>

</ codeEl enent >

<codeEl enent xm :id="id, 22" xm:type="code: SharedUnit" name="d. h">
<codeEl ement xm :id="id, 23" xm:type="code: C assUnit" name="D"'>
<codeEl ement xmi :id="id.24" xni:type="code: Member Unit"
nane="nunt type="id. 105" export="private"/>
<codeEl ement xm :id="id.25" xm :type="code: Met hoduni t" name="D"'>
<entryFlow xm :id="id. 26" to="id.28" from="id.25"/>
<codeEl ement xmi:id="id.27" xm:type="code: Val ue")
name="" ; Hel l o, this is %\ n&uot;" type="id.111"/>
<codeEl ement xm:id="id.28" xm:type="action: Acti onEl enent"
~ nane="a4" kind="Assign"> "])]
<actionRelation xm:id="id.29" xm:type="action: Reads" to="id. 37" from="id.28"/>
<actionRelation xm :id="id.30" xm:type="action:Wites" to="id.24" from"id.28"/>
<actionRelation xm:id="id.31" xm:type="action: Flow' to="id.32" frone"id.28"/>
</ codeEl ement >)))))
<codeEl ement xm :id="id.32" xm:type="action:ActionEl enent" nane="a5" kind="Call">
<actionRel ation xm :id="id.33" xm:type="action: Reads" to="id.27" fron¥"id.32"/>
<actionRel ation xm:id="id.34" xm:type="action: Reads" to="id.37" from"id.32"/>
<actionRel ation xm :id="id.35" xm:type="action:Calls" to="id.106" fronm="id. 32"/>
</ codeEl ement>])]
<codeEl ement xmi:id="id.36" xni:type="code:Signature" name="D">
<paraneterUnit xm:id="id. 37" name="x" pos="1"/>
</ codeEl enent >
</ codeEl enent>)))
<codeEl ement xm :id="id.38" xm:type="code: Met hodUnit" name="work">
<codeEl ement xmi:id="id.39" xm:type="code: Val ue"
name="" This is %l worki ng\ n" ; "/ >)
<codeEl ement xm :id="id.40" xm:type="action:ActionEl enent" nane="a6" kind="Call">
<actionRel ation xm :id="id.41" xm:type="action: Reads" to="id.39" fron¥"id.40"/>
<actionRelation xm:id="id.42" xm:type="action: Reads" to="id.24" from="id. 40"/>
<actionRel ation xm :id="id.43" xm:type="action:Calls" to="id.106" fron="id. 40"/ >
</ codeEl enment >
</ codeEl enment >
</ codeEl enent >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 117

</ codeEl enent >]])])
<codeEl ement xm :id="id.44" xm :type="code: ConpilationUnit" nane="b.cpp">
<entryFlow xm :id="id, 122" to="id. 87" fron¥"id. 44"/>))
<codeEl ement xm :id="id.45" xm :type="code:|ncludeDirective" name="inmp2">
<codeRel ation xm :id="id.46" xm :type="code:|ncludes" to="id.22" frone"id.45"/>
</ codeEl ement>]]]
<codeEl ement xmi :id="id. 47" xni:type="code: StorableUnit"
nane="extern d1" kind="external"/>))
<codeEl ement xm :id="id.48" xm :type="code: Cal |l abl eUnit" nane="nain">
<entryFlow xm :id="id.49" to="id.70" fron¥"id.48"/>
<codeEl ement xmi :id="id.50" xm :type="code: StorableUnit" nane="[2" typ
<codeRel ation xm :id="id.51" xm:type="code: HasVal ue" to="id. 20" fro
</ codeEl enent >]]]
<codeEl ement xm :id="id.52" xm :type="code: Storabl eUnit" nane="d2">)
<codeRel ation xmi :id="id.53" xni:type="code: HasType" to="id.23" fron¥"id.52"/>
<codeRel ati on xm :id="id. 125" xm :type="code: HasVal ue" to="id.89" from="id.52"/>
</ codeEl ement>)]))
<codeEl ement xm :id="id. 54" xm :type="code: Storabl eUnit" nane="d3" ttype:"l_d. 55" >
<codeRel ation xm :id="id. 126" xm :type="code: HasVal ue" to="id.79" frone"id.54"/>
<codeEl ement xm ;i d="id.55" xm:type="code: Poi nter Type">
<itemnit xm:id="id.56" type="id.23">])
<codeRel ation xmi:id="id. 57" xm:type="code: HasType" to="id. 23" fron¥"id.56"/>
</itennit>
</ codeEl enent >
</ codeEl enent >]])))
<codeEl ement xmi:id="id.58" xm:type="action:ActionEl enent" nane="al" kind="Call">
<actionRel ation xm:id="id.59" Xxm :type="action:Calls" to="id.38" fron¥"id.58"/>
<actionRel ation xm :id="id.60" xm :type="action: Addresses” to="id.7" from="id.58"/>
<actionRel ation xm:id="id.61" xm :type="action: ConpliesTo"
] - to="id. 47" from="id.58"/>)])
<actionRel ation xm:id="id. 62" xm:type="action: Flow' to="id.63" from="id.58"/>
</ codeEl ement>)])))
<codeEl ement xmi:id="id.63" xm:type="action:ActionEl enent" nane="a2" kind="Call">
<actionRel ation xm:id="id. 64" xm:type="action:Calls" to="id.38" fron¥"id.63"/>
<actionRel ation xmi:id="id. 65" xni:type="action:Addresses"
] ~ to="id. 52" from="id.63"/>)])
<actionRel ation xm:id="id. 66" xm:type="action:Flow' to="id.67" from="id.63"/>
</ codeEl ement>)])))
<codeEl ement xmi:id="id.67" xm:type="action: ActionEl enent" nane="a3" kind="Call">
<actionRelation xmi:id="id.68" xm:type="action:Calls" to="id.38" fronm="id.67"/>
<actionRel ation xm:id="id. 69" xni:type="action:Addresses”
to="id.56" from="id.67"/>

e="id. 105" >
n="id. 50"/ >

</ codeEl ement>)))))))
<codeEl ement xmi:id="id.70" xm:type="action: Bl ockUnit" nane="bi2" kind="Init”>
<codeEl ement xmi:id="id.71" xm:type="action: ActionEl enent"

) ~name="i 3" ki nd="Assi gn">)))
<actionRelation xm:id="id.72" xm:type="action: Reads" to="id.20" from"id.71"/>

<actionRelation xm:id="id.73" xm:type="action:Wites" to="id.50" frons"id.71"/>
<actionRel ation xm:id="id.74" xm:type="action:Flow' to="id.79" from="id.71"/>
</ codeEl ement>)]))])
<codeEl ement xm :id="id.75" xm :type="action:ActionEl enent" name="i4" ki nd="New'>
<actionRelation xm:id="id.76" Xxm:type="action: Creates"
) ~to="id.23" frone"id.75"/>])))
<actionRelation xm:id="id.77" xm:type="action: Wites" to="id.54" frons"id.75"/>
<actionRel ation xm:id="id.78" xm:type="action:Flow' to="id.79" from="id.75"/>
</ codeEl ement>)]))
<codeEl ement xmi:id="id.79" xm :type="action: Acti onEl enent"

) ~name="i 5" kind="MethodCall">))
<actionRel ation xm :id="id.80" xm:type="action: Reads" to="id.85" from"id.79"/>
<actionRel ation xm :id="id.81" xm:type="action: Addresses"

to="id.54" from="id.79"/>

<actionRel ation xm:id="id.82" xm:type="action:Calls" to="id.25" from"id.79"/>
<actionRel ation xm :id="id.83" xm:type="action:Wites" to="id.56" frons"id.79"/>
<actionRel ation xm:id="id. 84" xm:type="action:Flow' to="id.58" from="id.79"/>

</ codeEl ement>)]
<codeEl ement xmi :id="id.85" xm :type="code: Val ue" nane="3"/>
<entryFl ow xm :id="id.86" to="id.71" from="id.70"/>
</ codeEl enent >
</ codeEl ement>]])))])
<codeEl ement xmi:id="id. 87" xm:type="action: Bl ockUnit" nane="bi 3" kind="Init">
<entryFlow xm :id="id.88" to="id.89" fronr"id.87"/>])
<codeEl ement xmi:id="id.89" xm :type="action:ActionEl enent" nane="i6" kind="Call">
<actionRelation xmi:id="id.90" Xxm:type="action: Reads" to="id.93" fron"id.89"/>
<actionRelation xm:id="id.91" xm:type="action:Calls" to="id.25" from"id.89"/>
<actionRel ation xm:id="id. 92" xm:type="action:Wites" to="id.52" from="id.89"/>
</ codeEl enment >

118 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<codeEl ement xmni:id="id.93" xm:type="code: Val ue" name="2" type="id.105"/>
</ codeEl enent >
</ codeEl enent>)))))])
<codeEl enent xm :id="id. 94" xny:txg ="action: Bl ockUnit" name="bi 4" kind="Init">
<entryFlow xm :id="id, 95" to="id. 96" fronr"id.94"/>))]
<codeEl ement xm :id="id.96" xm:type="action:ActionEl enent" name="i7" kind="Init">
<entryFlow xm :id="id. 97" to="id. 10" fron¥"id.96"/>))
<actionRel ation xm:id="id. 98" xm:type="action:Flow' to="id.99" frone"id.96"/>
</ codeEl enent>))]])]]
<codeEl ement xmi :id="id.99" xni:type="action:ActionEl enent” name="i8" kind="Init">
<entryFlow xm :id="id.100" to="id.87" fron¥"id.99"/>))
<actionRel ation xm:id="id. 101" xm :type="action: Flow' to="id.102" from="id.99"/>
</ codeEl ement>)]))])
<codeEl ement xmi :id="id. 102" xm:type="action:ActionEl enent” name="i9" Kkind="Call">
<actionRelation xm:id="id. 103" xm :type="action:Calls" to="id.48" from="id.102"/>
</ codeEl enent >
</ codeEl erment >
</ codeEl enent>)]]
<codeEl ement xm :id="id, 104" xm :type="code: LanguageUnit">)
<codeEl ement xm :id="id.105" xni:type="code:|nteger Type" name="int"/>
<codeEl ement xm :id="id. 106" xm :type="code: Cal | abl eUnit" name="printf" type="id.107">
<codeEl ement xm :id="id. 107" xm :type="code: Signature" name="printf">
<paraneterUnit xm:id="id.108" type="id. 105" kind="return" pos="0"/>
<paranmeterUnit xni:id="id.109" nane="format" type="id.111" pos="1"/>
<paraneterUnit xm:id="id.110" name="argunents" type="id. 112"
ki nd="vari adi c" pos="2"/>
</ codeEl enent >
</ codeEl ement>
<codeEl enent xm:id
<codeEl enent xm :id
</ codeEl enment >
</ nodel >
</ kdm Segnent >

111" xmi:type="code: StringType" nanme="char *"/>

="id.
="id. 112" xm :type="code: Voi dType"/ >

12.20 ClassRelations Class Diagram

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes.
The classes and associations of the ClassRelations diagram are shown in Figure 12.18.

AbstractCodeRelationship

0.
0" Extends
+from +o
{redefines from} {redefines to}
Ml 11

Datatype 2

Figure 12.18 - ClassRelations Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 119

12.20.1 Extends Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented
languages.

Superclass

AbstractCodeRelationship

Associations
from:Datatype[1] the child Class
to:Datatype[1] the parent Class
Constraints

1. The from- and to- endpoints should be different.

Semantics

Extends relationship represents the associations between two datatypes in which the first datatype (called the “child” class)
“subclasses” the second datatype (called the “parent” class) by inheriting the semantics and owned elements of the parent
class.

Section IV - Code Elements representing Preprocessor Directives

A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It
is different than let’s say an HTML/Javascript program or programs with embedded assembler routines where there is
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing,
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex).

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation
perspective the SQL statement itself is very much what we want to capture along with the various data elements and
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that
generates some low-level code that will translate into a call to some library. By capturing this as generated code and
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its
execution realm. And our relationship between the “SQL language” elements to the “native” code elements that are
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a
couple of SourceRef would be very limiting indeed.

Preprocessor directive is a language/dialect on its own and it should be handled and treated as a first class citizen in
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabled
L0 KDM tool can seamlessly ignore the embedded language and work only with the primary language. The implementer
shall either:

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.

120 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

3. Represent both the embedded and the generated primary code and relations between the two.

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:
» originally coded in the primary language
* included from another file by a preprocessor
» generated by a preprocessor as an expansion of an embedded language directive
» selected by satisfying appropriate conditions by the preprocessor
KDM provides the following modeling elements for representing preprocessor directives:

* PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete
preprocessor directives.

* MacroUnit -representation of macro definitions.

* MacroDirective - representation of an embedded language construct as distinguishable from the primary language
construct. This is also known as a Macro Call.

* IncludeDirective - representation of an include directive of a preprocessor.

* ConditionalDirective - representation of a pre-processor conditional branch.

12.21 Preprocessor Class Diagram

The Preprocessor class diagram defines the meta-model elements to represent embedded language constructs and to
support common modeling situations resulting from the use of a language preprocessor (for example, preprocessor
defined as part of the C language, or the preprocessing capabilities of Cobol).

The class diagram in Figure 12.19 shows these classes and their associations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 121

AbstractCodeElement +codeEleme nt
0..* {subsets ownedElement}

PreprocessorD irective

0.1 +owner
{subs ets owner}

ConditionalDirective

MacroUnit
<kind : MacroKind

IncludeDirective

<<enumeration>>
MacroKind
MacroDirective <regular
<option
<undefined
<e xternal
<unknown

Figure 12.19 - Preprocessor Class Diagram

12.21.1 PreprocessorDirective Class (generic)

PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some
programming languages (for example, the C language preprocessor capabilities). This class is extended by several
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor
directives in KDM is described later in this section.

Superclass
AbstractCodeElement
Associations
codeElement:AbstractCodeElement[0..*] This optional code element represents the content of the preprocessor
directive.
Constraints

1. PreprocessorDirective should have a stereotype.

Semantics

From the KDM perspective, each preprocessor directive (an embedded language statement) is a container for code
elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich
representation of the embedded language directives. The implementer may provide additional information using
stereotypes. The macro declaration is just code written for example in the “Cpreprocessor” language and can be

122 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

represented using standard KDM constructs, such as CodeElements, Action, Flow etc., if needed or light-weight extension
elements, like Stereotypes and ExtendedValues. In many situations, the right implementation choice is to leave the
directive as an empty container with a name, and likely, a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this
section only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. The
implementer may either clone the included code elements or to reuse them and keep a single copy in the SharedUnit. The
recommended approach is to clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

» Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not
contain any pre-processor directives, and relationships expand and alternative; information about the embedded
language cannot be recovered from the KDM representation.

+ Ignore the generated primary code, provide a high-fidelity representation to the embedded construct; the embedded
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded
into the primary code may not be recovered from the KDM instance (but in general, the embedded construct provides
a better choice, since it is the construct introduced by the developer).

* Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of
KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and
Alternative); there is a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

* Represent both the embedded constructs and the primary code, provide the high fidelity representation to the
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated
code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the
entire BlockUnit to the corresponding embedded construct.

12.21.2 MacroUnit Class

MacroUnit class represents macro definitions common to several programming languages. Although KDM allows
semantic-rich contents of MacroUnit (as it is a subclass of a ControlElement), usually it is sufficient to represent a macro
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic
information about the macro definition.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 123

Superclass

PreprocessorDirective

Attributes

kind:MacroKind additional semantic properties of the macro definition

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usually in the form of a
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string
manipulation. However, the optional owned code element may be used to represent these.

The implementer shall select a particular strategy to represent macro units.
12.21.3 MacroKind data type (enumeration)
MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

regular Macro definition has a body and may have parameters.
option Macro definition without a body and parameters, only a name.
undefined This value represents an undefined macro as the target for some relations in the

representation of default branches of conditional compilation and variants.
external external compilation option

unknown unknown class of a macro definition

12.21.4 MacroDirective Class

MacroDirective class represents the so-called “macro call,” the occurrence of a macro name (possible with parameters) in
the primary code, such that the preprocessor recognizes it and “expands” by substituting the macro directive construct
with its “definition.” A block of “generated” code elements that represent the primary code resulting from macro
expansion may be associated with the MacroDirective.

Superclass

PreprocessorDirective

124 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

MacroDirective represents the so-called “macrocall,” or an occurrence of a macro name (possibly with the actual
parameters) which is substituted by the body of the macro definition in which the occurrences of the formal parameters
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the
origin of the action relationships to the actual parameters to the MacroDirective.

12.21.5 IncludeDirective Class

IncludeDirective class represents the so-called include directive, common to several programming languages and their
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include
directive is usually related to a SharedUnit (for example, a copybook in Cobol, or a header file in C). A block of
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the
include directive. Semantics of the IncludeDirective class is described later in this section in more detail.

Superclass

PreprocessorDirective

Semantics

IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a
stand-alone CompilationUnit.

12.21.6 Conditional Directive Class

ConditionalDirective class represents the so-called “variant” of a software system, resulting from the use of conditional
compilation capabilities, common to several programming languages and their preprocessors (for example the #if ...
#endif and #ifdef ... #endif directives of the preprocessor of the C language). ConditionalDirective represents a single
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of
the ConditionalDirective class is described later in this section in more detail.

Superclass
PreprocessorDirective
Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the
selected variant. The block of “generated” code identifies the corresponding conditional directive.

12.22 PreprocessorRelations Class Diagram

The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language
constructs and pre-processor directives, common to several programming languages.

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.20.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 125

AbstractCodeRelationship

VariantTo /

Expands

+to -
{redefines to} v Redefines
rom .
{redefines from} .
+from]
Includes 0..* {redefin m} 4 1
PreprocessorDirective
+from
0..* 1

{redefines from} 1

+to
{redefines to}

+to
{redefines to} 0." | GeneratedFrom
AbstractCodeElement o

1
+from
{redefines from}

Figure 12.20 - PreprocessorRelations Class Diagram

12.22.1 Expands Class

Expands class represents the relationship between a MacroUnit to another MacroUnit or from a MacroDirective to a
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit
or MacroDirective.

Superclass

AbstractCodeRelationship

Associations
to:MacroUnit[1] the target MacroUnit
from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.
Semantics

The implementer shall identify and represent associations between MacroUnits, as well as a MacroDirective and the
corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor support
for the implementer guidelines.

126 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

12.22.2 GeneratedFrom Class

GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular,
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class,
the resulting code may represent one of the following:

» ‘“generated” code that corresponds to a certain MacroDirective.
* “included” code that corresponds to a certain IncludeDirective.
+ “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “generated” code and target the corresponding
PreprocessorDirective.

Superclass

AbstractCodeRelationship

Associations
to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor
directive that was involved in producing the code.
from:AbstractCodeElement[1] The BlockUnit that owns the “generated” code.
Constraints

1. The origin of the GeneratedFrom relationship should be a BlockUnit.

Semantics

See the general description of the preprocessor directives for the implementer’s guidelines.

Example (C preprocessor)

ﬁggﬂﬂg %TA’Q'(E?B§(A5:(> &EF%)A, B) ? (A : (B))
GVAX(p+q, r+s)

1

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xni:version="2.1"
xm ns: xm ="htt ﬁ: /I schena. ong. org/ spec/ XM /2. 1"]
xm ns:action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on”
xm ns: code="http://schena. onyg. or}g/ spec/ KDM 1. 2/ code"
xm ns: kdme"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt
name="Macro_ Directive Exanple">
<model xm:id="id, 0" xm:type="code: CodeMdel ">))
<codeEl enent xm :id="id,1" xm:type="code: Conpil ationUnit">
<codeEl ement xmi:id="id.2" xm :type="code: MacroUnit" nanme="GVAX">
<sour ce | anguage="Cpr epr ocessor "
. snippet="#define GVAX(A B) g=(GI(A B) ? (A) : SB)) >
<codeRel ation xm :id="id.3" xm:type="code: Expands" to="id.4" fron="id.2"/>
</ codeEl enent>)))
<codeEl ement xmi:id="id.4" xm:type="code: MacroUnit" name="GI">
<sour ce | anguage="Cpreprocessor"' snippet="#define GI(A B) ((A > (B))"/>
</ codeEl enent>)]))
<codeEl enent xm :id="id.5" xm:type="action:Bl ockUnit">)
"id.6" xm:type="code: Storabl eUnit" name="p" type="id.49"/>
id 7" xm:type="code: Storabl eUnit" nane="q" type="id.49"/>
id. 8" xm:type="code: StorableUnit" name="r" type="id.49"/>

i
id=
<codeEl enent xm :id="
<codeEl enent xm :id="

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 127

<codeEl ement xm :id="id. 9" xm:type="code: StorableUnit" name="s" type="id.49"/>
<codeEl enent xmi:id="id. 10" xni:type="code: StorableUnit" name="g" type="id.49"/>
<codeEl ement xm :id="id. 11" xm :type="code: MacroDirective" nanme="ml">
<source xm:id="i :12".Ianguage;'cpreprocessor" sni ppet =" GVAX(p+q, r+s); "/ >
<codeRel ation xm:id="id.13" xm :type="code: Expands"” to="id.2" from"id.11"/>
</ codeEl ement>]]))
<codeEl ement xm :id="id. 14" xm :type="action: Bl ockUnit" name="bml">)
<codeRel ation xm :id="id. 15" xm:type="code: GeneratedFront to="id. 11" from="id. 14"/ >
<codeEl enent xmi :id="id. 16" xni:type="action:ActionEl enent">
<source xn1:|d="|d.%7z(lan uag?='C;) 2 () (Y
sni ppet ="g=(((p+ ? > (r+s 2 (p*q) - (r+s));"/> .
<codeEl enment xn]:?d:fld.lgf xn1:type:"actlon:AptlonEIenEnt" nane="al" ki nd="Add">
<actionRel ation xm :id="id. 19" Xxm :type="action: Reads" to="id.6" from="id.18"/>
<actionRel ation xm :id="id.20" xm:type="action: Reads" to="id. 10" fron¥"id. 18"/>
<actionRel ation xm:id="id.21" xm:type="action:Wites" to="id.47" fron¥"id. 18"/>
<actionRel ation xm:id="id.22" xm:type="action:Flow' to="id.23" from="id.18"/>
</ codeEl enent>)])))
<codeEl ement xm :id="id.23" xm:type="action: ActionEl enent" name="a2" ki nd="Add">
<actionRel ation xm :id="id. 24" xm :type="action: Reads" to="id.8" from"id.23"/>
<actionRel ation xm :id="id.25" xm :type="action: Reads" to="id.9" from="id.23"/>
<actionRel ation xm :id="id.26" xm:type="action: Wites" to="id. 48" fron¥"id.23"/>
<actionRel ation xmi:id="id.27" xm:type="action: Flow' fron¥"id.23"/>
</ codeEl enent>)]))
<codeEl ement xmi :id="id.28" xm :type="action: ActionEl enent"
name="a3" ki nd="G eat er Than">]
<codeEl ement xmi:id="id.29" Xxni:type="code: StorableUnit"
~ nane="c" type="id.50" kind="register"/>)
<actionRel ation xmi:id="id.30" xm:type="action: Reads" to="id. 47" fron¥"id.
<actionRel ation xm:id="id.31" xm:type="action: Reads" to="id. 48" fron¥"id.
to="id. fronF|£

oI n

<actionRelation xm:id="id.32" xm:type="action: Wites" "id. 29" _
<actionRel ation xm:id="id.33" xnm:type="action: Flow' to="id.34" fron¥"i
</ codeEl enent>)]))
<codeEl ement xmi :id="id.34" xm:type="action: ActionEl enent"
_ nanme="a3. 1" ki nd="Condition">)
<actionRel ation xm :id="id.35" xm:type="action: Reads"
] to="id. 29" fronm="id.34"/>)
<actionRel ation xm :id="id.36" xm:type="action: TrueFl ow'
) to="id. 38" fron="id.28"/>)
<actionRel ation xm:id="id.37" xm:type="action: Fal seFl ow
to="id. 42" from="id.34"/>
</ codeEl ement>)]))
<codeEl ement xmi:id="id.38" xm:type="action:ActionEl enent"
name="a4" ki nd="Assi gn">

<actionRelation xm:id="id.39" xm:type="action: Reads" to="id.47" from"id.38"/>
<actionRel ation xm :id="id.40" xm :type="action: Wites" to="id.10" fron¥"id.38"/>
<actionRel ation xm :id="id.41" xm:type="action: Flow' to="id.46" from="id.38"/>

</ codeEl ement>)]))
<codeEl ement xmi:id="id.42" xm :type="action: Acti onEl enent"

) ~name="a5" ki nd="Assi gn">)))
<actionRel ation xm:id="id.43" xm:type="action: Reads" to="id. 48" from="id. 42"/>
<actionRel ation xm:id="id.44" xm:type="action:Wites" to="id.7" fron¥"id.42"/>
<actionRel ation xm:id="id.45" xm:type="action: Flow' to="id.46" from="id.42"/>

</ codeEl ement >]))])
<codeEl ement xm:id="id.46" xm:type="action: ActionEl ement" nanme="a6" ki nd="Nop"/>
<codeEl ement xmi:id="id. 47" xm:type="code: StorableUnit"
name="t 1" type="id. 49" kind="register"/>
<codeEl ement xm :id="id. 48" xm :type="code: Storabl eUnit"
name="t 2" type="id. 49" kind="register"/>
</ codeEl enment >
</ codeEl ement >
<codeEl emrent xmi:id
<codeEl ement xm:id
</ codeEl enment >
</ codeEl ement >
</ nodel >
</ kdm Segnent >

12.22.3 Includes Class

Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being
included.

49" xm :type="code: | nteger Type" nane="int"/>
50" xm :type="code: Bool eanType" name="bool ean"/>

id.
"id.

128 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractCodeRelationship

Associations
from:AbstractCodeElement[1] the code elements being included (usually a SharedUnit)
from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.
Constraints

1. The origin of the Includes relationship should be an IncludeDirective.

Semantics

The implementer shall identify and represent include relationships according to the semantics of the particular
preprocessor.

Example (C preprocessor)

...C2...

[*---a.c---*/

#include “a. h”
.cl...

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xni:version="2.1"
xm ns: xmi ="http://schema. ong. org/ spec/ XM /2. 1"]
xm ns:action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on”
xm ns: code="http://schenma. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: kdm"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt
name="1ncl ude Directive Exanple">
<model xmi:id="id.0" xni:type="code: CodeMbdel ">
<extensionFamily xm:id="1d. 1" >
<stereotype xm:id="id.2" nanme="sanple"/>
</ extensionFam |y>]]
<codeEl ement xm :id="id,3" xmi:type="code: SharedUnit" name="a.h">]
<codeEl ement xmi i d="id.4" xm:type="code: CodeEl ement"” stereotype="id.2" name="cl">
<source xm:id="id.5" |anguage="C'/>
</ codeEl enent>)]]
<codeEl ement xmi :id="id.6" xm:type="code: CodeEl ement"” stereotype="id.2" nane="c2">
<source xm:id="id.7" |anguage="C'/>
</ codeEl enent >
</ codeHl ement>)]]])
<codeEl enent xm :id="id,8" xm:type="code: Conpil ationUnit" name="a.c">
<codeEl ement xm :id="id.9" xm:type="code:|ncludeD rective">
<sour ce | anguage="Cpreprocessor' sni ppet="#i nclude "a.h""/>
<codeRel ation xm :id="1d.10" xm :type="code:|ncludes"” to="id.3" from="id.9"/>
</ codeEl enent>)))]
<codeEl ement xm :id="id. 11" xm :type="action: Bl ockUnit" name="bl"> .
<codeRel ation xm :id="id. 12" xm :type="code: CeneratedFront to="id.9" from="id.11"/>
<codeEl ement xm :id="id.13" xm :type="code: CodeEl emrent "
stereotype="id. 2" name="cl_cl one">
<source xm:id="id.14" |anguage="C'/>
</ codeEl enent>])
<codeEl ement xmi :id="id. 15" xm :type="code: CodeEl enent"
stereotype="id. 2" name="c2_cl one">
<source xm:id="id.16" |anguage="C'/>
</ codeEl enent >
</ codeEl enent>)))]
<codeEl ement xm :id="id, 17" xm :type="action: Bl ockUnit" name="b2">
<codeEl ement xm :id="id. 18" xm :type="action:ActionEl ement” name="al">
<actionRel ation xm:id="id.19" Xxm:type="action: ActionRel ati onshi p"
to="id. 13" from="id. 18"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 129

</ codeEl enent >
</ codeEl enent >
</ codeEl enent >
</ nodel >
</ kdm Segnent >

12.22.4 VariantTo Class

VariantTo class represents the relationship between variants of a software product line with conditional compilation. This
relationship connects the ConditionalDirective to each alternative branch of the conditional compilation directive. KDM
representation is expected to identify a single “default” variant, to which additional variants are alternatives. There is no
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship
GeneratedFrom connecting it to the corresponding ConditionalDirective. The “default” variant is expected to have a
VariantTo relationship to every alternative branch.

Superclass

AbstractCodeRelationship

Associations
to:PreprocessorDirective[1] ConditionalDirective class that represents an alternative variant of the
conditional.
from:PreprocessorDirective[1] A ConditionalDirective class that represents the default variant of the
conditional.
Constraints

1. The origin of the VariantTo relationship should be a ConditionalDirective.

2. The target of the VariantTo relationship should be a ConditionalDirective.

Semantics

The implementer shall identify and represent the variants and associations between the “generated” code and the
corresponding conditional directive according to the semantics of the preprocessor. See the general description of the
preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

#define UNI X 1
1 UNI X | DEBUG

ot
| f def UNI X
%él se
dendi 1

<?xm version="1.0" encodi ng " UTF- 8" 7>
<kdm Segment xni:version="2.
xm ns: xni =" httﬁ //scherra ong. org/ spec/ XM / 2. 1"
xm ns: acti on=" ttp: !/ schena. onrg org/ spec/ KDM 1. 2/ acti on"
xm ns: code="http://schema. ong. / spec/ KDM 1. 2/ code”
xm ns: kdnme"ht t p: //scherra ong. org spec/ KDM 1. 2/ kdnt
nanme="Variants Exanpl e">
<rmodel xm:id="id.0" xm:type="code: CodeMbdel ">

130 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<codeEl ement xmi:id="id.1" xm:type="code: Macrounit” nanme="UN X">
<sour ce | anguage="Cproprocessor" snippet="#define UNIX 1"/>

</ codeEl enent>)])]

<codeEl ement xmi :id="id.2" xmi:type="code: MacroUnit" name="DEBUG' ki nd="external"/>

<codeEl ement xm :id="id,3" xm:type="code: Storabl eUnit" name="g" type="id.4">
<codeEl enent xmi:id="id.4" xm:type="code:|ntegerType"/>

</codeHl ement>)] o])

<codeEl ement xmi :id="id.5" xm:type="code: Conditional Directive" name="cl">
<source | anguage="Cpreprocessor" snippet="#if UNI X | DEBUG'/>)
<codeRel ation xm :id="1d.6" xnmi:type="code: Expands" to="id.1" froms"id.5"/>
<codeRel ation xm:id="id.7" xm:type="code: Expands" to="id.2" fron="id.5"/>

</ codeEl enent>)]])

<codeEl ement xmi :id="id.8" xm:type="action:Bl ockUnit" name="b1l"> .
<codeRel ation xm ;id="id.9" xm :type="code: CeneratedFront to="id.5" from="id.8"/>
<codeEl ement xmi :id="id.10" xni:type="action:ActionEl enent” nanme="al" ki nd="Assign">

<source xm:id="id.11" |anguage="C' sni ppet="g=123"/>

<codeEl enent xm :id="id. 12" xn :type="code: Value" name="123" type="id.4"/>
<actionRel ation xm :id="id.13" xni:type="action: Reads" to="id.12" from="id.10"/>
<actionRel ation xm:id="id.14" xm:type="action:Wites" to="id.3" fron¥"id.10"/>

</ codeEl enent >

</ codeEl enent>)) o !)

<codeEl ement xmi :id="id.15" xmi:type="code: Conditional Directive" name="c2">
<source | anguage="Cpreprocessor” sni ppet="#ifdef UN X'/>)
<codeRel ation xm :id="1d. 16" xmi:type="code: Expands" to="id.1" from="id. 15"/>
<codeRel ation xm :id="id.17" xm :type="code: Variant To" to="id.25" from="id.15"/>

</ codeEl enent>))))

<codeEl enent xm :id="id. 18" xm :type="action: Bl ockUnit" name="b2">]
<codeRel ation xm :id="id.19" xm :type="code: Cener at edFron to="id.15" from="id. 18"/>
<codeEl enent xm:id="id.20" xm:type="action: Acti onEl enent" nane="a2" ki nd="Assign">

<source xm:id="id.21" |anguage='C' snippet="g=123"/>]

<codeEl ement xmi :id="id.22" xni:type="code: Val ue" name="1" type="id.4"/>
<actionRel ation xm :id="id.23" xm :type="action: Reads" to="id.22" from="id.20"/>
<actionRelation xm:id="id.24" xm:type="action:Wites" to="id.3" fronm="id.20"/>

</ codeEl enent >

</ codeEl enent>)) o))

<codeEl ement xmi :id="id.25" xni:type="code: Conditional Directive" name="c3">
<source | anguage="Cpreprocessor” sni ppet="+#el se"/>))
<codeRel ation xm :id="i1d.26" xm:type="code: Expands" to="id.1" from="id.25"/>

</ codeEl enent>)))]

<codeEl ement xm :id="id.27" xm :type="action: Bl ockUnit" name="b3">

<codeRel ation xm:id="id.28" xm :type="code: Generat edFrom to="id.25" from="id.27"/>
<codeEl ement xmi :id="id.29" xni:type="action:ActionEl enent” nanme="a3" ki nd="Assign">
<source xm:id="id.30" |anguage="C' snippet="g=123"/>]
<codeEl ement xm :id="id.31" xm :type="code: Value" nane="2" type="id.4"/>
<actionRel ation xm :id="id.32" xni:type="action: Reads" to="id.31" from="id.29"/>
<actionRel ation xm :id="id. 33" xm:type="action:Wites" to="id.3" fron¥"id.29"/>

</ codeEl enent >
</ codeEl enent >
</ nodel >
</ kdm Segnent >

12.22.5 Redefines Class

Redefines class represents the relationship between a MacroUnit and another MacroUnit (usually with the same name) where
the origin MacroUnit is a redefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the
redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are
expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current”
definition at the given point.

Superclass

AbstractCodeRelationship

Associations
to:MacroUnit[1] the old MacroUnit
from:PreprocessorDirective[1] the new MacroUnit

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 131

Constraints

1. The origin of the Redefines relationship should be a MacroUnit.

Semantics

The implementer shall identify and represent redefinitions of macro units according to the semantics of the particular
preprocessor.

Example (C preprocessor)

#define A 1
#define A 2
#undef A

#pragma once

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmni:version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: code="http://schema. ony. or}q/ spec/ KDM 1. 2/ code"
xm ns: kdnme"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt
name="Preprocessor Directives exanple">
<model Xxmi:id="id.0" xni:type="code: CodeMdel ">
<extensionFam ly xm:id="id. 1" >]
<stereotype xmi:id="id.2" name="directive">]
<tag xm:id="id.3" tag="directive_type" type="String"/>
</ st ereot ¥_pe_>
</ extensionFam |y> i .
<codeEl ement xmi id="id.4" xm:type="code: MacroUnit" nanme="A">
<sour ce | anguage="Cpreprocessor" snippet="#define A 1"/>
</ codeEl ement >)])))
<codeEl ement xmi :id="id.5" xm:type="code: MacroUnit" nanme="DEBUG" ki nd="option">
<sour ce | anguage="Cpreprocessor" sni ppet ="#defi ne DEBUG'/ >
</codeEl ement >)])
<codeEl ement xmi:id="id.6" xm:type="code: MacroUnit" nanme="A">
<sour ce | anguage="Cpreprocessor" snippet="#define A 2"/>]
<codeRel ation xm:id="1d.7" xm:type="code: Redefines" to="id.4" from"id.6"/>
</ codeEl enent>)])))
<codeEl ement xmi :id="id.8" xm:type="code: MacroUnit" name="A" ki nd="undefined">
<sour ce | anguage="Cpreprocessor” sni ppet="#undef A"/>))
<codeRel ati on xm:id="1d.9" xm:type="code: Redefines" to="id.6" fron"id.8"/>
</ codeEl enent > o]]])]
dl<codeEI ement xm:id="id.10" xm:type="code: PreprocessorDirective" stereotype="id.2"
nane="d1" >
<taggedVal ue xm :id="id. 11" xm :type="kdm TaggedVal ue" tag="id.3" val ue="pragma once"/>
<sour ce | anguage="Cpreprocessor" sni ppet ="#pragm once"/>
</ codeEl enent >
</ nodel >
</ kdm Segmnent >

Section V - Miscellaneous Code Elements

12.23 Comments Class Diagram

The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the
Comments diagram are shown in Figure 12.21.

132 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractCodeElement ModelElement

(from core)

{subsets owner}
+owner

Comments CommentUnit
<text : String

+comment 0..*
{subsets ownedElement
ordered}

Figure 12.21 - Comments Class Diagram

12.23.1 CommentUnit Class

The CommentUnit is a meta-model element that represents comments in existing systems (including any special
comments). CommentUnit element can be used to introduce comments during transformation of the existing system
(including special comments).

Superclass

ModelElement

Attributes

text:String the representation of the comment

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. The
implementer shall make an adequate decision on how to associate line comments with the surrounding elements in the
source code.

12.23.2 AbstractCodeElement Class (additional properties)

Associations

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 133

Semantics

12.24 Visibility Class Diagram

The Visibility class diagram defines meta-model elements that represent visibility of code elements in their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.22.

+groupedCode
{subsets groupedElement} Codeltem

0..”

NamespaceUnit

+group
{subsets group}

Figure 12.22 - Visibility Class Diagram

12.24.1 Namespace Class

The Namespace is a specific meta-model element that represents the target of the VisibleIn or Imports visibility
relationships.

Superclass
Codeltem
Associations
groupedCode:Codeltem[0..*] A KDM group of code elements that belong to the namespace. The actual
owners of these elements are the corresponding modules, not the namespace,
since namespaces can, in general cross cut the module boundaries.
Constraints

1. Namespace element should not belong to own group.

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses.
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

134 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

An anonymous namespace can represent a group of code elements that are the target of an Imports relationship.

12.25 VisibilityRelations Class Diagram

The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their
corresponding containers. The classes and associations of the Visibility diagram are shown in Figure 12.22.

AbstractCodeRelationship

+from +from
{redefines from} {redEﬁW\
1
Visibleln 4\ Codeltem oo Imports
o .
1 1 {redefines to} ‘ 0.*

*
- {redefines to}

Figure 12.23 - VisibilityRelations Class Diagram

12.25.1 Visibleln Class

The Visibleln is a specific meta-model element that represents semantic relation between two code items, where one
provides the restricted visibility context for another code item.

Superclass

AbstractCodeRelationship

Associations
from:Codeltem[1] The Codeltem visibility of which is specified.
to:Codeltem[1] The Codeltem that provides the visibility context.
Semantics

Visibleln optional relationship represents an association between a code item and one of the containers that corresponds to the
visibility scope of the first item. This relationship is optional, since all other KDM relationships are determined by the
semantics of the target language, including the visibility rules.

Example

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xni:version="2.1"
xm ns: xm ="htt ﬂ: /I schema. ong. or g/ spec/ XM /2. 1")
xm ns:action="http://schenma. ony. org/ spec/ KDM 1. 2/ acti on"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 135

xm ns: code="http://schema. ong. or?/ spec/ KDM 1. 2/ code"
xm ns: kdme" htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt
nanme="Visibility and Comment Exanple">
<mpdel xmi:id="id.0" xm:type="code: CodeMdel ">
<codeEl enent xm :id="id.1" xm:type="code: CodeAssenbl t/J>
<codeEl ement xm :id="id.2" xm:type="code: Nanespacelnit"
nanme="ab" gr oupedCode="id. 4 id.9 1d.13"/>
<codeEl ement xm :id="id,3" xm:type="code: ConpilationUnit" nane="a">
<codeEl enent xmi:id="id.4" xm:type="code: Cal | abl eUnit"
name="f 00" type="id.8" kind="regul ar">
<conment text="Conment #1 to foo"/>
<comment text="Comment #2 to foo"/>))]
<codeRel ation xm :id="id.5" xm:type="code: Visibleln" to="id.2" fron¥"id.4"/>
<codeEl ement xm :id="id.6" xm:type="action:ActionEl enent" name="al">
<conment xmi:id="id.7" text="Conment to action elenment al"/>
</ codeEl enent >]]]
<codeEl enent xm:id="id.8" xm:type="code: Signhature" nanme="foo"/>
</ codeEl ement>]]]
<codeEl ement xmi:id="id.9" xm:type="code:|nteger Type" name="int">
<comment xm :id="id.10" text="Comment to integer tyPe"/>)
<codeRel ation xm:id="id.11" xm :type="code:Visibleln" to="id.2"/>
</ codeEl enment >
</ codeEl ement>)))))
<codeEl ement xm :id="id. 12" xm :type="code: Conpil ationUnit" nane="b">
<codeEl ement xmi:id="id.13" xm :type="code: Recor dType" name="bar">
<comment xm :id="id.14" text="Comment to record t?/pe bar"/>)
<codeRel ation xm :id="id.15" xm :type="code: Visibleln" to="id.2" from="id.13"/>
<itemnit xm:id="id.16" nanme="foobar" type="id.9">
<comment xm:id="id.17" text="Comment to itemunit foobar"/>)
<codeRel ation xm :id="id.18" xm :type="code: Visibleln" to="id.13" fron¥"id.16"/>
</itenmnit>
</ codeEl enent >
</ codeEl enent >
</ codeEl enment >
</ nodel >
</ kdm Segnent >

12.25.2 Imports Class

The Imports meta-model element represents an association between two Codeltems where one Codeltem “imports”
definitions from another. The “import” relationship is common to several programming languages (for example, the
import statement in Java). In this relationship the origin Codeltem (usually, a CompilationUnit or a subclass of Module)
resolves the visibility of certain names that are defined (owned) by the target Codeltem (usually, another CompilationUnit
or some other subclass of Module, but possibly a NamespaceUnit from another Codeltem, or even an individual code
element). The Imports class simply represents the “import” relationships between Codeltem, for example, for tracking
dependencies between packages. KDM representations themselves do not require additional import statements in order to
have relationships between Codeltem, or even between different models.

Superclass

AbstractCodeRelationship

Associations
from:Codeltem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.
to:Codeltem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.
Constraints

1. The origin of the Imports relationship should be a subclass of Module.

136 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

The implementer shall identify and represent import directives and their targets according to the semantics of the
programming language of the existing software system.
12.26 ExtendedCodeElements Class Diagram

The ExtendedCodeElements class diagram defines two “wildcard” generic elements for the code model as determined by
the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.22.

AbstractCodeRelationship

Codeltem CodeRelationship
+from 0.*
{redefines from} 0.+
N +to
{redefines to}
CodeElement 1

KDMEntity

(from core)

Figure 12.24 - ExtendedCodeElements Class Diagram

12.26.1 CodeElement Class (generic)

The CodeElement is a generic meta-model element that can be used to define new “virtual” meta-model elements through
the KDM light-weight extension mechanism.

Superclass

Codeltem

Constraints
1. CodeElement should have at least one stereotype.

Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the code model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.26.2 CodeRelationship Class (generic)

The CodeRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 137

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1]

to:KDMEntity[1]

Constraints

the Codeltem

the KDMEntity

1. CodeRelationship should have at least one stereotype.

Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM

representation.

138

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13 Action Package

13.1 Overview

The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule,
in a given KDM instance, each instance of an action element represents some programming language construct,
determined by the programming language of the existing software system. Each instance of an action meta-model element
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually
represents one or more statements, and an action relationship usually represents a usage of a name in a statement.

13.2 Organization of the Action Package
The Action package consists of the following 11 class diagrams:

* ActionElements

* ActionFlow

* Actionlnheritances

+ CallableRelations

» DataRelations

* ExceptionBlocks

* ExceptionFlow

* ExceptionRelations

* InterfaceRelations

» UsesRelations

» ExtendedActionElements

The Action package depends on the following packages:

¢ Core
¢ kdm
« Source

13.3 ActionElements Class Diagram

In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with
specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 139

model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action
package defines most of the relationship types to the Code model. Together, Action and Code packages constitute the

Program Elements Layer of KDM.

The ActionElements diagram defines the following classes determined by the KDM model pattern:

* ActionElement — main class of the Action package.

» AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations.

+actionRelation

{subsets ownedRelation

+codeElement
{subsets ownedElement} g *

{subsets owner}

ordered}
ActionElement ‘1//% AbstractActionRelationship
<kind : String 0.+
¢
S — 0..1
BlockUnit AbstractCodeElement
+owner (from code)

(from code)

AbstractCodeElement

Figure 13.1 - ActionElements Class Diagram

13.3.1 ActionElement Class

+entryFlow
{subsets ownedRelation}

EntryFlow

The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for primitive relations.
ActionElement can be linked to the original representation through the SourceRef element from the Source package.

Superclass

AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.

140 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

actionRelation:ActionRelationship[0..*] Action relationships originating from the given action element.

codeElement: AbstractCodeElement[0..*] Owned code elements (for example, nested action elements, or nested
BlockUnits, or nested definitions of datatypes and computational objects).

Constraints
1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements.
Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even
a part of a programming language statement. The implementer shall select the granularity of the action elements. As a
minimum, each ControlElement should own at least one ActionElement so that it can be the endpoint of all
ActionRelationships originating from the corresponding ControlElement. Static analysis grade KDM implementations
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex
A. For non-micro KDM implementation, the value of the kind is not normative.

The implementer shall map programming language statements and other descriptions of behavior into KDM
ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action
represents an entire set of leaf actions owned directly or indirectly.

13.3.2 AbstractActionRelationship Class (abstract)

The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an
ActionElement.

Superclass

KDMRelationship

Semantics

Usually, an action relationship corresponds to some usage of a name in a programming language statement. Action
relationships originate from ActionElements as opposed to code relationships that originate from code elements.
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

13.3.3 BlockUnit Class

The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 141

Superclass

ActionElement

Associations

codeElement:AbstractCodeElement[0..*] owned code elements including nested BlockUnits

Semantics

A BlockUnit is a logical container for action elements. BlockUnit is similar to a composite ActionElement that can also
contain nested ActionElement and data elements. BlockUnit represents the entire set of leaf Actions, owned by the
BlockUnit directly or indirectly.

13.3.4 AbstractCodeElement (additional properties)

Associations
entryFlow:EntryFlow[0..*] EntryFlow relationships that associate the given abstract code element and some
action elements owned by it, which are designated as the entry actions.
Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple
EntryFlow elements represent nondeterministic control flow.

13.4 ActionInheritances Class Diagram

The Actionlnheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2
captures these classes and their associations.

AbstractCodeElement

(from code)

KDMRelationship
(from core)

ActionElement
<kind : String AbstractActionRelationship

Figure 13.2 - Actioninheritances Class Diagram

142 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.5 ActionFlow Class Diagram

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements.
The class diagram shown in Figure 13.3 captures these classes and their relations.

AbstractActionRelationship

1 +t0
0.* {redefines to}
{redgfines from}

ZontolRlon ActionElement | 4
0.7 <kind : String M
+o 0.*
\—T 1 {redefines to} 0.*
Flow +from {redefines from}

+from

1

FalseFlow AbstractCodeElement

(from code)

GuardedFlow

TrueFlow

Figure 13.3 - ActionFlow Class Diagram

13.5.1 ControlFlow Class (generic)

The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is
further subclassed with more specific modeling elements. ControlFlow class could be used to represent programming
constructs that are not covered by any of the specific subclasses as an extension point.

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] the origin of the control flow
to:ActionElement[1] The target of control flow, when represented by the next action element in
the trace determined by the control flow.
Constraints

1. ControlFlow class should always be used with a stereotype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 143

Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base
element for new “virtual” meta-model elements, representing specific control flow relationships not covered by the
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

The implementer shall map control flow mechanisms of the given programming language into ControlFlow meta-
elements. The implementer shall adequately represent the control flows of the existing system by a set of action elements
and ControlFlow relationships between them.

13.5.2 EntryFlow Class

The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or
action, from Module to initialization block, from a callable unit to the inititialization block, from a class to the
initialization block or from a compound action to the first internal action.

Superclass

AbstractActionRelationship

Associations
from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that
represents its behavior.
to:ActionElement[1] The action element that is selected when the owner element is called.
Constraints

1. Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a
corresponding EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

2. The “to” attribute of an EntryFlow element should be an ActionElement that is owned by the
AbstractCodeElement that is the “from™ attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind "Init."

2. Initialization code can belong to a ControlElement, CompilationUnit, or CodeAssembly.

144 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

3. The EntryFlow relationship is used in a uniform way for describing entry points to other KDM code elements. It
should be used for any type of special flows, e.g., entry to a CodeAssembly to init Block or action, from Module
to init block, from callable unit to init block, from class to init block, or from compound action to the first internal
action.

4. The CodeAssembly should have custom initialization block that consists of a sequence of action elements,
including action elements with action kind="Init” and an EntryFlow relation to the initialization blocks of the
owned CompilationUnits (and other owned elements when appropriate), and an action element with action
kind="Calls” and a Calls relation to the logical entry point (for example, the CallableUnit “main”). The
initialziation blocks of compilation units referred to by custom initialization block in a CodeAssembly do not need
to have the Flow relationship at their respective last action element. The control flow is resumed with the Flow
relationship of the initialization action in the custom initialization block. See example at “HasValue Class” on
page 116..

13.5.3 Flow Class

The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to
the “from” attribute of the Flow.

Superclass
ControlFlow
Constraints

1. If there is one or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same
action element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.4 TrueFlow Class
The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that
» the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

+ the ActionElement that corresponds to the “to” attribute of the TrueFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the TrueFlow when the value of the condition is true.

Superclass
ControlFlow
Constraints

1. If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow elements that
have the same ActionElement as the “from” attribute (but there can be FalseFlow).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 145

Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal,
when condition is not satisfied.

13.5.5 FalseFlow Class

The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such
that

» the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and

+ the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the FalseFlow when the value of other conditions is not satisfied.

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements.
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedFlow.

Superclass

ControlFlow

Constraints
1. If there exists a FalseFlow element, there should be either:

* a corresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same
ActionElement as the “from” attribute, or

« one or more GuardedFlow elements that have the same ActionElement as the “from” attribute, and

» there are no other relationship elements that are subclasses of FlowRelationship that have the same ActionElement as
the “from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.6 GuardedFlow Class

The GuardedFlow class is a modeling element that represents control flow relationship between two or more
ActionElements such that:

* the ActionElement that corresponds to the “from” attribute of the GuardedFlow represents the selection statement (for
example, a “switch” statement); and

+ the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that
determines a branch of control flow; and

* the branch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedFlow
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the
guarded condition in the context of the selection statement is satisfied.

146 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch
of control flow, for example, to represent the default branch of a switch statement.

Superclass

ControlFlow

Constraints

1. If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of
FlowRelationship that have the same ActionElement as the “from™ attribute, with exception of one or more
GuardedFlow elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that corresponds to the “to” attribute of the GuardedFlow has
kind="Guard”. It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram

The CallableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate
ActionElement to ControlElement and represent control flows of the existing software system.

The CallableRelations diagram describes the following types:

+ Calls - is a modeling element that represents a call-type relationship between an ActionElement and a CallableElement
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the
CallableElement represents the element being called.

» Dispatches - is a modeling element that represents a call-type of relationship between an ActionElement and a data
item, in which the ActionElement represents some form of a call, and the data item represents a pointer to a procedure

type.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 147

The class diagram shown in Figure 13.4 captures these classes and their relations.

AbstractActionRelationship

Dispatches el
o 0.* +from 0.*
" \&deqnes from} 1 0.~
; +from
ActionElement {redefines fom} +t
@kind : String °
1 {redefines to}
ControlElement
(from code)
+to
{redefines to}
1

DataElement
(from code)

wext : String
wsize : Integer

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class

Calls is a modeling element that represents a call-type relationship between an ActionElement and a ControlElement or
one of its subclass elements. The ActionElement represents some form of a call statement, and the ControlElement
represents the element being called. In the meta-model the Calls element is a subclass of ActionRelationship.

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] the action element from which the call relation originates
to:ControlElement[1] the target ControlElement

148 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

Calls relationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent a call to a
procedure, a static method, a non-static method of a particular object instance, a virtual method, or an interface element.

Calls relation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.

Precise semantics of a call can be represented by the “kind” element of the owner ActionElement, according to the guidelines
provided in the “micro KDM” compliance point.

13.6.2 Dispatches Class

Dispatches is a modeling element that represents a call-type of relationship between an ActionElement and a data item.
The ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The action element from which the call relation originates.
to:DataElement[1] The data element that represents the pointer to a procedure type.
Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be
required to determine the real targets of the Dispatches call.

Example (C)

R G
int bar(int 1) {}
void foobar() {

oP=Poo:
Ef =bar ;
pf(1);

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmi:version="2.1"
xm ns: xm ="htt ﬁ: /I schena. ong. org/ spec/ XM /2. 1"]
xm ns:action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on”
xm ns: code="http://schema. ong. or?/ spec/ KDM 1. 2/ code"]
xm ns: kdme"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdn? nane="Di spat ch Exanpl e">
<nodel xm :id="id, 0" xm:type="code: CodeMddel ">]) !
<codeEl ement xm :id="id.1" xm:type="code: Conpil ationUnit" name="Di spatch.c">
<codeEl enent xm :id="id.2" xm:type="code: Cal | abl eUnit"
~ nane="foo" type="id.15" kind="regular">))
<codeRel ation xm :id="id.3" xm:type="code: HasType" to="id. 14" fronms"id.2"/>
<codeEl enent xm :id="id.4" xm:type="code: Signature" name="foo">
<parameterUnit xmi:id="id.5" name="a" type="id.13"/>
<paranmeterUnit xm:id="id.6" type="id.13" kind="return"/>
</ codeEl enent >
</ codeEl enent>)]]
<codeEl enent xm :id="id.7" xm:type="code: Cal | abl eUnit"
nane="bar" type="id. 15" kind="regul ar">

<codeRel ation xm :id="id.8" xm:type="code: HasType" to="id. 14" from="id. 7"/ >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 149

<codeEl enent xm :i
<paraneterUnit x
<paraneterUnit x

</ codeEl enent >

</ codeEl enent >

9" xmi:type="code: Si gnature” name="bar">
'id. 10" hanme="a" type="id.13"/>
"id. 11" type="id.1 ki nd="return"/>

33?'-

<codeEl enent xmi:id="id. 12" xni:type="code: Storabl eUnit" name="pf" type="id.14"/>
<codeEl ement xmi:id="id.13" xni:type="code:|nteger Type" name="int"/>
<codeEl ement xm :id="id, 14" xm: type—"code Typelni t" name="fp" type="id.15">
<codeEl enment xm id="id.15" xni:type=" code i gnature” nane="f">
<parameterUnit xm:id="id. 16" nane="a" gpe—"l d.13"/>
<par anet erUm xm:id="id. 17" type="id.1 ki nd="return"/>

</ codeEl enent >
</ codeEl enent >])
<codeEl ement xm :id="id.18" xm :type="code: Cal |l abl eUnit" nane="foobar" type="id.33">
<entryFlow xm :id="id, 19" to="id.20" frone"id.18"/>
<codeEl ement xmi : |d-"| d. 20" xmi:type="action:ActionEl enent” name="al” kind="Assign">
<actionRel ation sid="id. 21" xm :type="action: Addresses" to="id.2" fron¥"id.20"/>
<actionRelation xm:id="id. 22" xm:type="action:Wites" to="id.12" fron¥"id.20"/>
<actionRel ati on xm cid="id. 23" xmi: type="action: Fl ow' to="id. 24" from="id.20"/>
</ codeEl enent >

<codeEl enent xmi:id="id. 24" xm :type="action:ActionElenent” name="a2" kind="Assign">
<actionRel ation xm :id="id. 25" xm :type="action: Addresses" to="id.2" fron¥"id.24"/>
<actionRelation xm:id="id. 26" xm:type="action:Wites" to="id. 12" fronr"id.24"/>
<actionRelation xm:id="id.27" xm:type="action: Flow' to="id.28" frone"id.24"/>

</ codeEl enent>]

<codeEl ement xm :id="i
<codeEl ement xm :id=
<actionRel ation xmi:

8" xm: type=" action: Acti onEl enent" nane="a3" kind="PtrCall">

i

. . . I d

<actionRelation xm:i g
i

f

. 29" xm type="code: Val ue” name="1" type="id.13"/>

"id. 30" xm:type="action: Reads" to="id. 12" fron¥"id.28"/>
'id. 31" xm type="action: Reads" to="id.29" frone"id.28"/>
‘id. 32" xm:type="action: D spatches"

om="id. 28"/>

<actionRel ation xm:

to="id. 12"
</ codeEl ement>)])
<codeEl enment xm :id="id.33" xm:type="code: Si gnature" nane="foobar"/>

</ codeEl enent >
</ codeEl ement >
</ nmodel >
</ kdm Segmnent >

13.7 DataRelations Class Diagram

The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at
Figure 13.5.

150 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractActionRelationship

DataElement
(from code)

wext : String

@size : Integer

ComputationalObject
(from code)

+to 1
{redefines to}
0 "*

Addresses

{redefines to}

0.*

Datatype
(from code)

0
Writes

+from Creates

{redefines frgm}
1

ActionElement efines from}
<kind : String 1

Figure 13.5 - DataRelations Class Diagram

13.7.1 Reads Class

The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the
DataElement).

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The action element that owns the Reads relationship.
to:DataElement[1] The DataElement that is the source of the flow of data.
Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain
data element to the corresponding data element according to the semantics of the programming language of the existing

software system.

13.7.2 Writes Class

The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The action element that owns the Writes relationship.
to:DataElement[1] The DataElement that is the sink of the flow of data.
Semantics

Writes relationship represents an association between an action element, which implements a flow of data to a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.3 Addresses Class

Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied
to the elements of the data structure, or where an address of a data element is taken.

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The action element that owns the Addresses relationship.
to:ComputationalObject[1] The Computational object that is being accessed.
Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data
element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.4 Creates Class

The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a
new instance of the Datatype.

Superclass

AbstractActionRelationship

152 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

from:ActionElement[1]

to:Datatype[1]

Semantics

Creates relationship represents an association between an action element that creates a new instance of a certain data

The action element that owns the Creates relationship.

The DataElement that is instantiated by the ActionElement.

element to the corresponding datatype according to the semantics of the programming language of the existing software

system.

13.8 ExceptionBlocks Class Diagram

The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the

optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to

have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special

ParameterKind value kind="exception” to represent parameter passing via exception mechanism or kind="catchall” to

represent the catch all construct in C++.

BlockUnit
ExceptionUnit
TryUnit
FinallyUnit

Figure 13.6 - ExceptionBlocks Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

CatchUnit

153

13.8.1 ExceptionUnit Class

ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which
can own both ActionElement (for example, statements in the catch-block) as well as Codeltem (for example, parameters
to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass
BlockUnit

Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2 TryUnit Class

TryUnit class is a meta-model element that represents try-blocks common to several programming languages. TryUnit is
a container for action elements and associated definitions of Codeltems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass
ExceptionUnit

Semantics

TryUnit represents a try-block.

13.8.3 CatchUnit Class

CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object
passed to the catch-block by the exception-handling mechanism.

Superclass
ExceptionUnit

Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow
relationship that originates from some TryUnit.

154 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow

relationship.

13.8.4 FinallyUnit Class

FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is

associated with the code responding TryUnit through an ExitFlow relation.

Superclass

ExceptionUnit

Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow

relationship that originates from some TryUnit.

2. TryUnit should not be associated with more than one FinallyBlock.

Semantics

FinallyBlock represents a finally-block associated with a certain try-block.

Example

.<?xm_ version="1.0" encodi ng="UTF-8"?>

<kdm Segnent xni:version="2.1"
xm ns: xm ="htt ﬁ: /I schena. ong. org/ spec/ XM /2. 1"]
xm ns:action="http://schema. ong. org/ spec/ KDM 1. 2/ acti on”
xm ns: code="http://schema. ong. or g/ spec/ KDM 1. 2/ code"

xm ns: kdne"htt p: // schenma. ong. or g/ spec/ KDM 1. 2/ kdm' nane="Excepti ons Exanpl e" >

<mpdel xmi :id="id.0" xn:type="code: CodeMdel ">)
<codeEl enent xm:id="id.1" xm:type="code: d assUnit" nanme="A">

<codeEl enent xm:id="id.2" xm:type="code: Met hodUnit" nane="foo0">

<entryFlow xm:id="id.3" to="id. 4" from"id.2"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<codeHl enent xm :id="id.4" xm:type="action: TryUnit" name="t1">)
<codeEl enent xm :id="id.5" xm:type="action:ActionEl ement” name="al" kind="Call">
<actionRel ation xm:id="id.6" xm:type="action:Calls" to="id.23" fronm="id.5"/>
</ codeEl enent > o)))))
<actionRel ation xm:id="id.7" xm:type="action:Flow' to="id.5" from="id.4"/>
<actionRel ation xm :id="id.8" xm:type="action: Excepti onFl ow'
)) to="id. 10" from="id.4"/>)))
<actionRelation xm:id="id. 9" xm:type="action:ExitFlow' to="id.17" from="id.4"/>
</ codeEl ement>]]))
<codeEl epent xm :id="id, 10" xm :type="action: CatchUnit" name="cl">)
<codeE| ement xmi:id="id.11" xni:type="code: ParaneterUnit" name="e" type="id.67"/>
<codeEl ement xm :id="id. 12" xm :type="action: ActionEl ement" name="a2" kind="Call">
<codeEl ement xmi:id="id.13" xm:type="code: Val ue")

] ~nanme="" ; Sonet hi ng went w ong" ;" type="id.69"/>]
<actionRelation xm:id="id. 14" xm :type="action: Reads" to="id. 13" fron¥"id. 12"/>
<actionRel ation xm:id="id.15" xm:type="action:Calls" to="id.66" from="id.12"/>

</ codeEl enent > o)]]))
<actionRel ation xm:id="id.16" xm :type="action: Flow' to="id.12" from="id.10"/>
</ codeEl enent>)))))
<codeEl enent xm :id="id, 17" xm :type="action:FinallyUnit" name="f1">)
<codeEl ement xm :id="id. 18" xm:type="action:ActionEl ement" name="a3" kind="Call">
<codeEl ement xmi:id="id.19" xm:type="code: Val ue"

] ~ nanme="" ; Good bye" ;" type="id.69"/>]
<actionRelation xm:id="id.20" xm :type="action: Reads" to="id.19" fron¥"id. 18"/>
<actionRel ation xm:id="id.21" xm:type="action:Calls" to="id.66" from="id.18"/>

</ codeEl enent > o)]]))
<actionRel ation xm:id="id.22" xm:type="action: Flow' to="id.18" from="id.17"/>
</ codeEl enent >

155

</ codeEl enent >]]]
<codeEl ement xm :id="id.23" xm:type="code: Met hodUnit" nane="bar">
<entryFlow xm :id="id. 24" to="id.25" fron¥"id.23"/>
<codeEl ement xmi:id="id.25" xm:type="action:TryUnit" nane="t2">
<codeEl ement xmi:id="id.26" xm:type="action: Acti onEl enent"
~ nanme="a4" kind="ArrayRepl ace">
<source xmi:id="id.27" |anguage="Java’ sni p{)/et ="arr[20] =20"/>)
<codeEl ement xmi :id="id.28" xm :type="code: Val ue" nane="20" type="id.70"/>
<actionRel ation xm:id="id. 29" xm: tgpe:” acti on: Addr esses"
to="id. 59" from"id.26"/>

<actionRel ation xm:id="id.30" xm:type="action: Reads" to="id.28" fron¥"id.26"/>
<actionRel ation xm:id="id.31" xm :type="action: Reads" to="id.28" fron¥"id.26"/>
<actionRel ation xm :id="id. 32" xm :type="action:Wites" to="id.61" frons"id.26"/>
<actionRelation xm:id="id. 33" xm:type="action: Flow' to="id.34" frone"id.26"/>

</ codeEl ement>]])))
<codeEl ement xmi:id="id.34" xm:type="action: ActionEl enent" nanme="a5" kind="Call">
<actionRel ation xm:id="id.35" xm :type="action: Reads" to="id.59" fron¥"id.34"/>
<actionRel ation xm:id="id.36" xm:type="action:Calls" to="id.66" from="id.42"/>
</ codeEl enment > o]]]]]
<actionRelation xm:id="id.37" xm:type="action: Fl ow' to="id.26" from="id.25"/>
<actionRelation xm :id="id.38" xm:type="action: Excepti onFl ow'
)) to="id. 40" from="id.25"/>)
<actionRelation xm:id="id.39" xm:type="action: ExitFl ow'/>
</ codeEl ement>]]))
<codeEl ement xmi :id="id.40" xm :type="action: CatchUnit" nane="c2">)
<codeEl enent xni:id="id. 41" xni:type="code: ParaneterUnit" name="e" type="id.68"/>
<codeEl ement xmi :id="id.42" xm :type="action: ActionEl enent" nane="a6" kind="Call">
<codeEl ement xmi:id="id.43" xm :type="code: Val ue"

) ~name="" ; Cops" ;" type="id.69"/>))
<actionRel ation xm:id="id.44" xm:type="action: Reads" to="id. 43" fron¥"id.47"/>
<actionRel ation xm:id="id.45" xm :type="action:Calls" to="id.66" fron¥"id.42"/>
<actionRelation xm:id="id. 46" xm:type="action:Flow' to="id.47" frone"id.42"/>

</ codeEl ement>]])))
<codeEl ement xm :id="id.47" xm :type="action: ActionEl enent” name="a7" ki nd="Throw">
<codeEl ement xm:id="id. 48" xm:type="code: Val ue")

] __hame="" ; Vnt too faré"" type="id.69"/>]
<actionRel ation xm:id="id.49" xm :type="action:Reads" to="id.48" fron¥"id.47"/>
<actionRel ation xm:id="id.50" xm:type="action: Throws"/>

</ codeEl enment > o)))))
<actionRel ation xm:id="id.51" xm:type="action: Flow' to="id.42" fronm="id. 40"/ >
</ codeEl emrent>)])])
<codeEl ement xmi:id="id.52" xm:type="action:FinallyUnit" nane="f2">)
<codeEl ement xmi:id="id.53" xm:type="action: Acti onEl ement"” name="a8" ki nd="Call">
<actionRelation xm:id="id.54" xm:type="action: Reads" to="id.59" from"id.53"/>
<actionRel ation xm:id="id.55" xm:type="action:Calls" to="id.66" from="id.42"/>
</ codeEl enment > o)))))
<actionRelation xm:id="id.56" xm:type="action:Flow' to="id.53" frone"id.52"/>
</ codeEl ement>]]]
<codeEl emrent xmi:id="id.57" xm:type="code: Signature">
<paraneterUnit xm:id="id.58" type="id.63" kind="throws"/>
</ codeEl enent >
</ codeEl ement>)))
<codeEl ement xm:id="id.59" xm:type="code: Menber Unit"
nane="arr" type="id. 60" size="10">
<codeEl emrent xmi:id="id. 60" xm:type="code: ArrayType">
<itenmUnit xmi:id="id.61" type="id.70"/>
<i ndexUnit xm:id="id.62" type="id.70"/>
</ codeEl enment >
</ codeEl enent >
</ codeEl enent>]))
<codeEl ement xm :id="id.63" xmi:type="code: d assUnit"
) name="NMor eDescri pti veException" isAbstract="true">)
<codeRel ati on xm :id="id.64" xm:type="code: Extends" to="id. 67" from="id.63"/>
</ codeEl ement >
</ nmodel >)) o
<model xmi:id="id, 65" xni:type="code: CodeMddel " name="Java conmon definitions">
<codeEl ement xm :id="id.66" xnmi:type="code: CallableUnit" name="println"/>
<codeEl ement xm :id="id.67" xm:type="code: d assUnit" name="Exception"/>

<codeEl enent xm :id="id.68" xni:type="code:d assUnit"

_hame="Arr ayl ndexQut Of BoundsExcepti on" isAbstract="false"/>
<codeEl ement xm :id="id. 69" xm :type="code: StringType"/>
<codeEl enment xmi:id="id.70" xm:type="code:|ntegerType"/>

</ nodel >
</ kdm Segnent >

156 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.9 ExceptionFlow Class Diagram

ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions.

There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw,
to a CallableElement that represents the catcher of the exception. The ExceptionFlow target is either the local CatchUnit
that will handle the exception or point back to the TryUnit.

Exception flow elements are optional for L0 KDM models. KDM export tools at LO compliance level may lack the full
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be
further analyzed by a different tool to add more information about the flow of control determined by the exception
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined
exceptions, tools should normally be able to capture the origin points by analyzing the various methods invoked and
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go a long way
in supporting complex analysis.

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if there is a finally clause, a finally flow would go from the TryUnit to the FinallyUnit to cover the finalization. The
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “The exception
handling mechanism is a non local control structure based on stack unwinding that can be seen as an alternative return
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 157

AbstractActionRelationship

ExceptionFlow

E xitF low 0.

ActionElement
«zkind : String

+to
1 {redefines to}

{redefines to}

Figure 13.7 - ExceptionFlow Class Diagram

13.9.1 ExitFlow Class

ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example,
ExitFlow can be used to relate a try-block with the corresponding finally-block.

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] ActionElement (for example, a try-block) for which the “on-exit” behavior
was specified.
to:ActionElement[1] ActionElement (usually, a finally-block) that represents the behavior that is
invoked upon successful exit of the origin block (“on exit”).
Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

158 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

13.9.2 ExceptionFlow Class

The ExceptionFlow relationship represents an exception flow relationship between a TryUnit and the corresponding
CatchUnit, or between a particular action element that can raise an exception to the corresponding CatchUnit.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the exception flow

to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.
Constraints

1. The target action element of the ExceptionFlow relationship should be a CatchUnit.

Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the
existing software system.

13.10 ExceptionRelations Class Diagram

The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships
associated with exception handling mechanism common to various programming languages.

AbstractActionRelationship

ActionEle ment +from
<kind : String re(%efines from}

\ 4 | DataElement
0. Throws //> (from code)

0..* +to
{redefines to}

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1 Throws Class

The Throws class is a meta-model element that represents throw-statements supported by several programming languages.
These are the user-defined throws for exception, as opposed to the so-called normal system exceptions and runtime
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their
throw entity, using the Throws relationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 159

See ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling mechanism.

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The ActionElement that throws the exception.
to:DataElement[1] the exception data element being thrown
Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data
element that is associated with that exception. The implementer shall identify and represent these associations according
to the semantics of the programming language of the existing software system.

13.11 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

AbstractActionRelationship

CompliesTo

0.* 3
+from 0..
{redefines from}

ActionElement 1

<kind : String o]
{redefines to} Codeltem
(from code)

Figure 13.9 - InterfaceRelations Class Diagram

13.11.1 CompliesTo Class

The CompliesTo is a meta-model element that represents an association between an action element that “uses” some
computational object, and the “declaration” of that computational object.

160 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The origin of the relationship; action element that “uses” some computational
object.
to:Codeltem[1] the “declaration” of that computational object
Constraints

1. The kind attribute of the Codeltem at the target of the CompliesTo relationship should be equal to “external” or
“abstract.”

2. The action element that is the origin of the “CompliesTo” relationship should own a callable or data action
relationship to some computational object and the target of CompliesTo relationship should be one of the
declarations of that computational object.

Semantics

See InterfaceRelations section of the Code package chapter.

13.12 UsesRelations Class Diagram

The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their
relations.

AbstractActionRelationship

UsesType
0.* 0.* +o
1 {redefines to}
1
ActionElement {r:L’:ﬂnmeS from) l’?rf;ai};gs
=kind : String ()

Figure 13.10 - UsesRelations Class Diagram

13.12.1 UsesType Class

The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 161

Superclass

AbstractActionRelationship

Associations
from:ActionElement[1] The action element that performs a type cast or a type conversion.
to:Datatype[1] The datatype involved in a type operation.

Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind”
attribute of the action element. See the “micro KDM” chapter.

13.13 ExtendedActionElements Class Diagram

The ExtendedActionElements class diagram defines an additional “wildcard” generic element for the code model as
determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedActionElements diagram are shown in Figure 13.11.

AbstractActionRelationship

ActionRelationship

1 0..* 0.*

ActionElement +from
=kind : String +to 1 | KDMEntity

{redefines from} {redefines to} (from core)

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1 ActionRelationship Class (generic)

The ActionRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractActionRelationship

162 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

from:ActionElement[1] the origin action element
to:KDMEntity[1] the target KDM entity
Constraints

1. ActionRelationship should have at least one stereotype.
Semantics

An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 163

164 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

14 Micro KDM

This chapter describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM
compliance point (“micro KDM”).

Let’s use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing
software system. The term “macro action” should not be confused with the preprocessor directives common to certain
programming languages.

A KDM “macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which
links it to the artifacts of the existing software system. KDM LO compliance point does not specify the semantics of a
KDM “macro action” leaving it up to implementers to design the mapping from the programming languages involved in
the artifacts of the existing software systems and KDM.

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with
predefined semantics.

According to the “micro KDM” approach, the original “macro action” is treated as a container that owns certain “micro
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM
constrains the patterns of how to map the statements of the existing system as determined by the programming language
into KDM. This is similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft .NET.

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for
control and data flow analysis. Micro KDM is a rather high-level IR. Micro KDM actions are aligned with the ISO 11404
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for
representing program elements.

Separation into a “macro action” and “micro actions” allows:

» The flexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example
to a source file or to an AST, providing a meaningful source ref (a macro action can still represent one or more
statements in the original existing system), and

» provides precise representation of the original “macro action” through a mapping to micro actions with predefined
semantics.

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control
and data flow analysis.

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned
ActionRelationships represent the parameters to the action element.

Each micro KDM action has the following 5 parts (Action Kind, Outputs, Inputs, Control, and Extras):

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 165

Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the
“Call” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case
sensitive strings in Annex A.

Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

Inputs - Ordered incoming Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for a micro action.

Control - owned outgoing control flow relationships for the action.

Extras - owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind. For
example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model shall be a micro KDM action, where the operation performed by the

action is designated by the value of the action kind, specified in the list of the micro actions in Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and

runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM
model is determined by the semantics of the micro actions.

Semantics

Semantics of KDM micro actions is defined in Annex A: “Semantics of the Micro KDM Action Elements.”

Example

z=1+(x,y);
*d[x+3]=1;
dly+3]=&z;
y=*d[x+3];

function foo does not comply to micro KDM semantic constraints;

function bar complies to micro KDM

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent

Xm :version="2.1"

xm ns: xm ="http://schema. ong. or g/ spec/ XM/ 2. 1"

xm ns:action="http://schenma. ong. or g/ spec/ KDM 1. 2/ acti on"

xm ns: code="http://schema. ong. or g/ spec/ KDM 1. 2/ code"

xm ns: kdm="htt p://schema. ong. or g/ spec/ KDM 1. 2/ kdni' nane="M cro KDM Exanpl e" >

<nodel xm:id="id.0" xm:type="code: CodeMbdel ">

166

<codeEl enent xm:id="id.1" xm:type="code: CodeAssenbl y">

<codeEl enent xm:id="id.2" xm:type="code: CallableUnit" nanme="foo" kind="regular">
<entryFl ow xm:id="id.3" to="id. 4" from="id.2"/>
<codeEl ement xm:id="id.4" xm:type="action:ActionEl enent” nanme="f1" ki nd="unknown">
<source xm:id="id.5" |anguage="C"' snippet="z=1+f(x,y)"/>
<actionRelation xm:id="id.6" xm:type="action:Calls" to="id.107" from="id.4"/>
<actionRelation xm:id="id.7" xm:type="action: Reads" to="id.97" fron="id.4"/>
<actionRelation xm:id="id.8" xm:type="action: Reads" to="id.98" fron="id.4"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<actionRelation xm:id="id.9" xm:type="action:Wites" to="id.99"
<actionRelation xm:id="id.10" xm:type="action: Reads" to="id. 105"

from="id. 4"/ >
from="id. 4"/>

<actionRelation xm:id="id.11" xm:type="action:Flow' from="id.4"/>

</ codeEl enent >
<codeEl ement xmi:id="id.12" xm:type="action:ActionEl ement" name="f2"

ki nd="unknown" >

<source xm:id="id.13" |anguage="C"' snippet="*d[x+3]=1;d[y+3] =&anp; z; y=*d[x+3]; "/ >

<actionRelation xm:id="id.14" xm:type="action:Reads" to="id.97"

from"id. 12"/ >

<actionRelation xm:id="id.15" xm:type="action: Addresses" to="id. 100" frone"id.12"/>

<acti onRelation xm:id="id.16" xm:type="action: Reads" to="id. 106"
<actionRelation xm:id="id.17" xm:type="action: Reads" to="id. 105"

from"id. 12"/ >
from"id. 12"/ >

<actionRelation xm:id="id.18" xm:type="action: Addresses" to="id. 100" frone"id.12"/>

<actionRelation xm:id="id.19" xm:type="action:Reads" to="id.98"
<acti onRelation xm:id="id.20" xm:type="action:Reads" to="id.106"

from"id. 12"/ >
from="id. 12"/ >

<actionRelation xm:id="id.21" xm:type="action: Addresses" to="id.99" fronr"id.12"/>

<actionRelation xm:id="id.22" xm:type="action:Wites" to="id.98"

from="id. 4"/>

<actionRelation xm:id="id.23" xm:type="action: Addresses" to="id. 100" frone"id.12"/>

<actionRelation xm:id="id.24" xm:type="action:Reads" to="id.97"
<actionRelation xm:id="id.25" xm:type="action:Reads" to="id.106"
</ codeEl enent >
</ codeEl enment >

from"id. 12"/ >
from"id. 12"/ >

<codeEl ement xm:id="id.26" xm:type="code: CallableUnit" name="bar" kind="regular">

<entryFlow xm:id="id.27" to="id.28" from="id.26"/>
<codeEl ement xmi:id="id.28" xm:type="action:ActionEl ement" name="bl"
<source xm:id="id.29" |anguage="C"' snippet="z=1+f(x,y)"/>
<codeEl ement xmi:id="id.30" xm:type="code: StorableUnit" nane="t1"
type="id. 112" kind="register"/>

ki nd="conmpound" >

<codeEl ement xmi:id="id.31" xm:type="action:ActionElement" name="bl.1" kind="Call">

<actionRelation xm:id="id.32" xm:type="action:Calls" to="id.107" from="id.28"/>

<actionRelation xm:id="id.33" xm:type="action: Reads" to="id.97" fron¥"id.28"/>

<actionRelation xm:id="id.34" xm:type="action: Reads" to="id.98" fron¥"id.28"/>

<actionRelation xm:id="id.35" xm:type="action:Wites" to="id.30" from="id.31"/>

<actionRelation xm:id="id.36" xm:type="action:Flow from="id.31"/>

</ codeEl enent >

<codeEl ement xmi:id="id.37" xm:type="action:ActionElement" name="bl.2" kind="Add">

<actionRelation xm:id="id.38" xm:type="action: RReads" to="id.105" from="id.37"/>

<actionRelation xm:id="id.39" xm:type="action: Reads" to="id.30" fron¥"id.37"/>

<actionRel ation xm:id="id.40" xm :type="action:Wites" to="id.99" from="id.37"/>

</ codeEl ement >
<actionRelation xm:id="id.41" xm:type="action:Flow' to="id.31" f
</ codeEl ement >
<codeEl ement xmi:id="id.42" xm:type="action:ActionEl ement" name="b2"
<source xm:id="id.43" |anguage="C"' snippet="*d[x+3]=1; d[y+3] =&anp
<codeEl ement xm:id="id.44" xm:type="code: StorableUnit" nane="t2"
type="id. 103" kind="register"/>
<codeEl ement xm:id="id.45" xnm:type="code: StorableUnit" nane="t3"
type="id. 112" kind="register"/>
<codeEl ement xm:id="id.46" xni:type="code: StorableUnit" nane="t4"
type="id. 112" kind="register"/>
<codeEl ement xm:id="id.47" xm:type="code: StorableUnit" nanme="t5"
type="id. 103" kind="register"/>
<codeEl ement xmi:id="id.48" xni:type="code: StorableUnit" nane="t6"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

rom="id.28"/>

ki nd="conpound" >
;Z,y=*d[x+3];"/>

167

168

type="id. 112" kind="register"/>
<codeEl ement xm :id="id.49" xm:type="code: StorableUnit" nanme="t7"
type="id. 103" kind="register"/>
<codeEl ement xm :id="id.50" xm:type="action:ActionEl erent" nanme="b2.1" ki nd="Add">

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enment >

xm :id="id.51" xm:type="action:Reads" to="id.97" frone"id.50"/>
xm :id="id.52" xm:type="action:Reads" to="id.106" fron¥"id.50"/>
xm:id="id.53" xm:type="action:Wites" to="id.44" fron¥"id.50"/>
xm :id="id.54" xm:type="action:Flow' to="id.55" from="id.50"/>

<codeEl ement xm :id="id.55" xm:type="action: Acti onEl enent" nane="b2.2" kind="ArraySel ect">

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enent >

xm :id="id.56" xm:type="action:Addresses" to="id.100" fron¥"id.55"/>
xm :id="id.57" xm:type="action:Reads" to="id.102" fron¥"id.55"/>

xm :id="id.58" xm:type="action:Reads" to="id.44" frone"id.55"/>
xm:id="id.59" xm:type="action:Wites" to="id.45" fron¥"id.55"/>

xm :id="id.60" xm:type="action:Flow' from="id.55"/>

<codeEl ement xm :id="id.61" xm:type="action:ActionEl erent"” name="b2.3" kind="PtrRepl ace">

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enent >

xm :id="id.62" xm:type="action:Reads" to="id.45" frone"id.61"/>
xm :id="id.63" xm:type="action:Reads" to="id.105" fron¥"id.61"/>
xm:id="id.64" xm:type="action:Wites" to="id.104" from="id.61"/>
xm :id="id.65" xm:type="action:Flow' to="id.66" from="id.61"/>

<codeEl ement xm :id="id. 66" xm:type="action:ActionEl ement" name="b2.4" kind="Add">

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enent >

xm:id="id. 67" xm:type="action:Reads" to="id.98" frone"id.12"/>
xm :id="id.68" xm:type="action:Reads" to="id.106" fron¥"id.12"/>
xm:id="id.69" xm:type="action:Wites" to="id.46" fronr"id.66"/>
xm:id="id. 70" xm:type="action:Flow' to="id.71" from="id.66"/>

<codeEl ement xm:id="id.71" xm:type="action:ActionEl erent" name="b2.5" kind="Ptr">

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enent >

xm:id="id. 72" xm:type="action: Addresses" to="id.99" from="id.12"/>
xm:id="id. 73" xm:type="action:Wites" to="id.47" fron¥"id.71"/>
xm:id="id.74" xm:type="action:Flow' to="id.75" from"id.71"/>

<codeEl ement xm :id="id.75" xm:type="action:ActionEl ement" nanme="b2.6" kind="ArrayRepl ace">

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enent >

xm:id="id.76" xm:type="action:Addresses" to="id.100" fron¥"id.12"/>
xm:id="id. 77" xm:type="action:Reads" to="id.46" frone"id.75"/>
xm:id="id. 78" xm:type="action:Reads" to="id.47" frone"id.75"/>
xm:id="id. 79" xm:type="action:Wites" to="id.102" from="id.75"/>
xm :id="id.80" xm:type="action:Flow' from="id.75"/>

<codeEl ement xm :id="id.81" xm:type="action:ActionEl erent" name="b2.7" kind="Add">

<actionRel ation

<actionRel ation

<actionRel ation

<actionRel ation
</ codeEl enent >

xm :id="id.82" xm:type="action:Reads" to="id.97" frone"id.12"/>
xm :id="id.83" xm:type="action:Reads" to="id.106" from="id.12"/>
xm :id="id.84" xm:type="action:Wites" to="id.48" from="id.81"/>

xm :id="id.85" xm:type="action:Flow from="id.81"/>

<codeEl ement xm :id="id.86" xm:type="action:ActionEl enent" name="b2.8" kind="ArraySel ect">

<actionRel ation
<actionRel ation
<actionRel ation
<actionRel ation

xm :id="id.87" xm:type="action: Addresses" to="id.100" frome"id.12"/>
xm :id="id.88" xm:type="action: RReads" to="id.48" from="id.86"/>

xm :id="id.89" xm:type="action:Reads" to="id.102" from="id.86"/>

xm :id="id.90" xm:type="action:Wites" to="id.49" from="id.86"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<actionRel ation xm:id="id. 91" to="i
</ codeEl enent >

xm :id="id.92"

xm :type="action: Fl ow

<codeEl ement xm :type="action: Acti onEl ement"

name="b2. 9"

d. 92" from="id.86"/>

ki nd="Ptr Sel ect">

<actionRelation xm:id="id.93" xm:type="action: Reads" to="id.49" fron¥"id.92"/>
<actionRelation xm:id="id.94" xm :type="action: Reads" to="id.104" from="id.92"/>
<actionRelation xm:id="id.95" xm:type="action:Wites" to="id.98" from="id.92"/>
</ codeEl enent >
<actionRelation xm:id="id.96" xm:type="action:Flow' to="id.50" from="id.42"/>

</ codeEl ement >
</ codeEl enent >

<codeEl ement xm:id="id.97" xm:type="code: StorableUnit" name="x"
<codeEl ement xm:id="id.98" xm:type="code: StorableUnit" name="y"
<codeEl ement xm:id="id.99" xm:type="code: StorableUnit" name="z"
<codeEl ement xm :id="id.100" xm :type="code: StorableUnit" name="d"
<codeEl ement xmi:id="id. 101" xm:type="code: ArrayType" name="">

<itemUnit xm:id="id.102" nane="d[]" type="id.103">
<codeEl ement xm :id="id. 103" xm:type="code: Poi nter Type">
<itenmUnit xm :id="id.104" nane="*d[]" type="id.112"/>
</ codeEl ement >
</itemnit>

</ codeEl ement >
</ codeEl enent >

type="id. 112"/ >
type="id. 112"/ >
type="id. 112"/ >

type="id. 101" >

<codeEl ement xm :id="id.105" xm :type="code: Val ue" name="1" type="id.112"/>
<codeEl ement xm :id="id.106" xm :type="code: Val ue" nanme="3" type="id.112"/>
<codeEl ement xm :id="id.107" xm :type="code: CallableUnit" name="f" type="id.108">
<codeEl ement xmi:id="id.108" xm :type="code: Signature">
<paranmeterUnit xm:id="id.109" nane="a" type="id.112" pos="1"/>
<paraneterUnit xm:id="id.110" nane="b" type="id.112" pos="2"/>
<paraneterUnit xm:id="id.111" type="id. 112" kind="return"/>

</ codeEl ement >
</ codeEl enent >
</ codeEl enent >
<codeEl ement xm :id="id. 112" xm :type="code: | ntegerType"
</ nodel >

</ kdm Segment >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

name="int"/>

169

170 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Part lll - Runtime Resources Layer

This section describes common patterns for representing the operating environment of existing software systems. The
following are the common properties of the Runtime Resources Layer packages Data, Ul, Platform, and Event:

» They provide modeling elements to represent “resources” (something managed by the runtime platform).
* They provide abstract “resource actions” to manage these resources.

* These actions are implemented by the program elements as one or more API calls to some external platform-specific
packages.

» There is a binding involved between the actions and the resources.

* Resource may involve some “inverted” control in the form of callbacks and event handlers, allowing applications to be
programmed in event-driven style.

* The content of the information flow involving the resource is associated with some data organization.

» Resource often has a certain state, and tracking the changes of the state over time may be an important concern in
understanding the logic of the existing system.

Since Runtime Resources Layer packages capture high-value knowledge about the existing system and its operating
environment, which may involve advance analysis and some manual expertise KDM is designed in such a way that the
Runtime Resources Layer analysis can use KDM models from the Program Elements Layer as input and produce Runtime
Resources Layer models as output. There should be no references from lower KDM layers to higher layers; therefore, new
Runtime Resources Layer models can be built on top of existing Program Element layer models.

Packages of the Runtime Resources Layer package systematically uses the following KDM patterns:

» Each Runtime Resources Layer package defines entities and containers to represent specific “resources.” Each
package may define additional elements to represent additional concerns. For example, the Data package involves less
resource definitions, and focuses on the representation of various data organization capabilities. The Event package
provides the meta-model elements for representing state, state transitions caused by events. States, transitions, and
events can be considered as runtime platform resources. The Ul package provides the meta-model elements for
representing user interfaces. User interfaces can also be considered runtime platform resources. The Platform package
deals with conventional runtime platform resources, such as inter-process communication, the use of registries,
management of data, etc.

* Each Runtime Resources Layer package defines specific structural relations between “resources.” For example, the
Platform package defines relationship BindsTo, which represents a logical association between two resources.

» Each Runtime Resources Layer package defines specific resource actions to represent manipulation of resource
through API calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base
abstract class for the corresponding package. This class is named AbstractXXXElement, where “XXX" is the name of
the package. So, the resource action is not a subclass of ActionElement, and this promotes modularity between KDM
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or
more ActionElements through property called “abstraction.” Each resource action also has the property called
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original
API calls as they were represented in the Program Elements layer input model. The “abstraction” property uses KDM
container mechanism to add the behavior counterparts to the API calls that represent the true logic of the resource
operation, including the flow of data and control. The “abstracted” ActionElements are owned directly by the
corresponding resource action, and are not part of any Code model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 171

* The nature of the resource-specific operation performed by a particular resource action is represented by the “kind”
attribute of the resource actions. The resource action owns resource action relations through the “abstraction” action
container. It is the owned “abstracted” action that is the direct owner of the resource action relationship.

+ “abstraction” action container property is in fact systematically added to all elements of Runtime Resources Layer
packages. This way each resource can use the meta-model elements defined in the Program Elements layer to specify
behavior specific to that resource.

* The “abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided
by runtime platforms. This pattern can be separately referred to as the KDM Event pattern. Each Runtime Resources
Layer package defines its own meta-model element for representing events. For example, the Ul package defines the
class UIEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements.
Calls relation originating from such an abstracted action element represents the “callback” mechanism, provided by
several runtime platforms.

Runtime Resources Layer packages are independent, however they can offer additional capabilities when more than one
is implemented. In order not to enforce any particular order in which these packages should be implemented, KDM
involves the following approach: resource action relationships are subclasses of the AbstractActionRelationship class
from the Action Package. In the full KDM implementation that uses all packages, all resource actions are available for
any ActionElement. Code models should not use the extended relationships. The extended resource action relationships
can only be used by the actions in “abstraction” action containers in Runtime Resources Layer models. A notable example
of this mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an
element of an event model with any resource. Another example is the “HasContent” relation defined in the Data package,
which allows associating an element of a data model with any resource.

» The “abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource
actions” and between resources to provide abstractions of the flow between “resource actions.”

* The Runtime Resources Layer patterns are aligned with the micro KDM, which allow precise modeling of behavior
related to resources as the foundation for holistic high-fidelity analysis of existing software systems. It can be achieved
by associating sets of precise micro KDM actions with “abstraction” action containers.

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform
independence.

172 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Binding time

* Generation time binding

* Language & platform design binding

e Versioning time

* Compile time binding, including

* macro expansion
» Templates

* Product line variants defined by conditional compilation

* Link time binding
* Deployment time binding
* Initialization time binding

¢ Run time

Binding Time

What is being bound

Result

Generation time

Syntax, variant, pattern, mapping, etc.

Generated code

Language & platform design

Syntax, entities and relations,
including platform resource types

Source code

Versioning

Module source files

Module version

Compile time

Intra-module relations (def-use)

Module

-- Macro

Syntax, macro to expanded code

Expanded macro (source code)

-- Template

Template parameters

Template instance

-- Product line variant defined by
conditional compilation and
includes

Conditional compilation, macro,
includes, symbolic links.

Component Variant

(static) Link time

Intra-component relations within
deployable component

Deployed Component

Deployment time

Resource names to resources (using
platform-specific configuration files)

Deployed System

Initialization time

Component implementation to
component interface; major processes
and threads; dynamic linking,
dynamic load (using platform-specific
configuration files).

System

Run time

User input, object factory, virtual
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

173

174 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

15

Platform Package

15.1 Overview

Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments
of existing software systems. Application code is not self-contained as it is determined not only by the selected
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

Runtime platform consists of many diverse elements (platform parts).

Platform provides resources to deployment components.

Platform provides services that are related to resources.

Application code invokes services to manage the life-cycle of a resource.

Control flow between application components is often determined by the platform.
Platform provides error handling across application components.

Platform provides integration of application components.

Examples of Platform Parts include UNIX OS File System, UNIX OS process management system, Windows 2000, OS/
390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo, CORBA,
HTTP, TCP/IP, Eclipse, EJB, JMS, Database middleware, Servlets.

Platform package defines an architectural viewpoint for the Platform domain.

Concerns:

* What are the resources used by the software system?

* What elements of the run-time platform are used by the software system?

* What behaviour is associated with the resources of the run-time platform?

* What control flows are initiated by the events in the resources?

* What control flows are initiated by the run-time environment?

* What are the bindings to the run-time environment?

* What are the deployment configurations of the software system?

* What are the dynamic/concurrent threads of activity within the software system?
Viewpoint language:

Platform views conform to KDM XMI schema. The viewpoint language for the Platform architectural viewpoint
is defined by the Platform package. It includes an abstract entity AbstractPlatformElement, several generic
entities, such as ResourceType, RuntimeResource, as well as several concrete entities, such as PlatformAction,
PlatformEvent, External Actor, MarshalledResource, NamingResource, etc. The viewpoint language for the
Platform architectural viewpoint also includes several relationships, which are subclasses of
AbstractPlatformRelationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 175

e Analytic methods:
The Platform architectural viewpoint supports the following main kinds of checking:

» Data flow (for example, what action elements read from a given resource; what action elements write to a given
resource; what action elements manage a given resource; including indirect data flow using a
MarshalledResource or a MessagingResource where a particular resource is used to perform a data flow between
the "send" action element and the "receive" action element)

* Control flow (for example, what action elements are triggered by events in a given resource; what action elements
operate on a given resource)

* Identify of resource instances based on resource handles in various modules
Platform Views are used in combination with Code views and Inventory views.
* Construction methods:

 Platform views that correspond to the KDM Platform architectural viewpoint are usually constructed by analyzing
Code views for the given system as well as the platform-specific configuration artifacts. The platform extractor
tool uses the knowledge of the API and semantics for the given run-time platform to produce one or mode
Platform views as output

* As an alternative, for some languages like Cobol, in which the elements of the run-time platform are explicitly
defined by the language, the platform views are produced by the parser-like tools which take artifacts of the
system as the input and produce one or mode Platform views as output (together with the corresponding Code
views)

+ Construction of the Platform view is determined by the semantics of the run-time platform, and it based on the
mapping from the given run-time platform to KDM; such mapping is specific only to the run-time platform and
not to a specific software system

* The mapping from a particular run-time platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations

15.2 Organization of the Platform Package
The Platform package consists of the following 10 class diagrams:

* PlatformModel

* PlatformInheritances

» PlatformResources

» PlatformRelations

» PlatformActions

* ProvisioningRelations
* Deployment

* RuntimeResources

* RuntimeActions

« ExtendedPlatformElements

176 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

The Platform package depends on the following packages:

* Core

* kdm

* Code

* Action

15.3 PlatformModel Class Diagram

The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM
model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

PlatformModel

0..1
+mode
{subsets mo%e,}
+platformElement
1
{subsets ownedElement} 0.+

AbstractPlatformElement

+owner 0.1

{subsets owner}

+abstraction

{subsets ownedElement

ordered} 0..*

ActionElement
(from action)

Figure 15.1 - PlatformModel Class Diagram

15.3.1 PlatformModel Class

AbstractPlatformRelationship

0..* .
+relation
{subsets ownedRelation}

0..*

+group
{subsets group}

+implementation
{subsets groupedElement}
0..%

AbstractCodeElement
(fom code)

PlatformModel is a specific KDM model that owns collections of facts about the existing software system such that these
facts correspond to the Platform domain. PlatformModel provides a container for platform elements.

Superclass

KDMModel

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

177

Associations

platformElement:PlatformElement[0..*] owned platform elements

Semantics

PlatformModel is a logical container for platform elements. The implementer shall arrange platform elements into one or
more platform models.

15.3.2 AbstractPlatformElement Class (abstract)

The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of
software systems.

Superclass

KDMEntity

Associations
platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.
abstraction: ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to the AbstractCodeElement element that are
represented by the current PlatformElement from some CodeModel.

source:SourceRef[0..%] traceability links owned by the given platform element

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel.

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the
PlatformElement.

15.3.3 AbstractPlatformRelationship Class (abstract)

The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform
entities.

178 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

KDMRelationship

Semantics

An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

15.4 Platforminheritances Class Diagram

The PlatformInheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.
The classes and associations of the PlatformInheritances diagram are shown in Figure 15.1.

KDMModel
(from kdm)

KD M Entity

(from core)

KDMRelationship
(from core)

PlatformModel

AbstractPlatform Element

AbstractPlatform Relationship

0.1

Platform Source

+source

0..*

SourceRef
(from source)

Figure 15.1 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and
associations of the PlatformResources diagram are shown in Figure 15.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

179

+platformElement AbstractPlatformElement

0.*
{subsets ownedElement}

PlatformAction
ResourceType 2kind : String ’?—/0..1
0..1
+owner .
{subsets owner} owner
{subsets owner}
MarshalledResource”| ExternalActor
D,/ataManager
\
NamingResource ,’
LockResourc% StreamResource {subsets ownedElement}
MessagingResourgé ;
PlatformE vent é_J
. wkind : String R
E xecutionResource FileResource 0..

+platformElement

Figure 15.2 - PlatformResources Class Diagram

15.5.1 ResourceType Class

The ResourceType is a meta-model element that represents a platform resource. The purpose of a platform is to simplify
application development by closing the gap between the application domain and the facilities that are available to
application programmers. The latter are referred to as platform resources. Examples of resource types include UNIX File,
UNIX IO Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX
semaphore, UNIX shared memory segment, OS/390 VSAM file, JDBC connection, HTTP session, HTTP request, UNIX
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource.

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system.
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource
may be associated with logical packages for a particular programming language.

Superclass

AbstractPlatformElement

180 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

platformElement:AbstractPlatformElement[0..*] The set of platform elements that are owned by the given
ResourceType.

Semantics
ResourceType may represent an individual runtime resource instance or a container for several such instances.

The implementer shall identify runtime resources used by the existing software system according to the semantics of the
platform used by the existing system, resource configuration files, and other appropriate sources of information.

Specific subclasses of ResourceType define specific categories of resources available to implementers. Other types of
resources can be represented by a generic instance of ResourceType meta-model element with a stereotype.

15.5.2 NamingResource Class

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of ResourceType.

Superclass
ResourceType

Semantics

15.5.3 MarshalledResource Class

MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource
is a subclass of ResourceType.

Superclass

ResourceType
Semantics

15.5.4 MessagingResource Class

MessagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

Superclass

ResourceType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 181

Semantics

15.5.5 FileResource Class

FileResource represents platform resources that provide any non-database related storage. In the meta-model the
FileResource class is a subclass of ResourceType.

Superclass

ResourceType

Semantics

15.5.6 ExecutionResource Class

ExecutionResource represents dynamic Runtime elements (e.g., process or thread).

Superclass

ResourceType

Semantics

15.5.7 LockResource Class

LockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass

ResourceType

Semantics

15.5.8 StreamResource Class

StreamResource represents a simple input/output resource, for example UNIX-like stream.

Superclass

ResourceType
Semantics

15.5.9 DataManager Class

DataManager represents a database management system. DataManager is associated with particular data elements that
represent the data description of the data managed by the data manager.

Superclass

ResourceType

182 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

15.5.10 PlatformEvent Class

The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

ResourceType

Attributes

kind:String Represents the nature of the action performed by this Event.

Semantics

15.5.11 PlatformAction Class

PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the
action represented by a particular element is designated by its “kind” attribute.

Superclass

AbstractPlatformElement

Attributes

kind:String Represents the nature of the action performed by this element.

Associations

platformElement:PlatformEvent[0..*] The set of platform events that are owned by the given PlatformAction.

15.5.12 ExternalActor Class

ExternalActor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model ExternalActor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass

PlatformAction

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 183

15.6 PlatformRelations Class Diagram

The PlatformRelations class diagram defines associations between ResourceTypes. The classes and associations of the
PlatformRelations diagram are shown in Figure 15.3.

AbstractPlatformRelationship

0.*) 0.*
BindsTo
1
+rom +o
1, {redefines from} {redefines to} | KDMEntity
ResourceType (from core)

Figure 15.3 - PlatformRelations Class Diagram
15.6.1 BindsTo Class
BindsTo defines a semantic association between two ResourceTypes.

Superclass

PlatformRelationship

Associations

from:ResourceType[1] The ResourceType that is the source of the relationship (the from-endpoint).

to:KDMEntity[1] The KDMEntity to which the current Resource is bound (the to-endpoint).

Semantics

15.7 ProvisioningRelations Class Diagram

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.4.

184 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractPlatformRelationship

Requires
+from
{redefines from}
0.* 0.*
+to 1

{redefines to 1 DeployedComponent

AbstractPlatform Element

Figure 15.4 - ProvisioningRelations Class Diagram

15.7.1 Requires Class

Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass
PlatformRelationship
Associations
from:DeployedComponent[1] The DeployedComponent that is the source of the relationship (the from-
endpoint).
to:AbstractPlatformElement[1] The AbstractPlatformElement that is the target of the relationship (the to-
endpoint).
Semantics

15.8 PlatformActions Class Diagram

The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.5.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 185

AbstractActionRelationship

(from action)
ReadsResource
WritesResource 0
ManagesResource
0.7\ 0.
DefinedB
I ’ tto +to
f +fro {redefines to} def .
+
0.* 0.* {redefines I%r(-())rnQ} {redefines to}
{redefings fromijedefines form}] 1, 1
+to Resource Type
*to 1 {redefines to}

[\

defines t
1 {[edefines to} +from 1| ActionElement

Codeltem {redefines from (from action)
(from code) <kind : String

Figure 15.5 - PlatformActions Class Diagram

15.8.1 ManagesResource Class

ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the
“kind” attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:ResourceType[1] the resource being accessed

Constraints:

1. This relationship should not be used in Code models.

186 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

15.8.2 ReadsResource Class

ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:ResourceType[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models

15.8.3 WritesResource Class

WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:ResourceType[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models.

15.8.4 DefinedBy Class

DefinedBy is a meta-model element that represents association between a platform resource and the logical package that
describes the interface to this resource. The Codeltem at the to-endpoint of this KDM relationship is usually an interface
or a package.

Superclass

Action::AbstractActionRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 187

Associations

from:ActionElement[1] “abstracted” action owned by some resource
to:Codeltem[1] the Codeltem describing the resource
Constraints

1. This relationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. The implementer shall correctly associate the platform resource with the
corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical description
of the package usually refers to some external implementation, as platform resources are usually described by some third-
party packages, provided as part of the runtime platform of the application. Individual API calls corresponding to the
given resource, should have the CompliesTo relations to the individual API descriptions the definition represented by the
Codeltem at the to-endpoint of the DefinedBy relationship.

15.9 Deployment Class Diagram

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.6.

188 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractPlatform Element

DeployedSoftwareSystem

0..* R
Machine

+group
{subsets group}

+deployedResource
{subsets ownedElement}

+owner
{subsets owner}

+groupedComponent
{subsets groupedElement}

0. +deployedComponent D eployedResource
{sybsets ownedElement}
D eployed Component 01
ploy P +owner
0* {subsets owner}
+group
{subsets group}
+platformElement 0.*

0..* {subsets ownedElement} ResourceType

+groupedCode Module

{subsets groupedElement}

(from code)

Figure 15.6 - Deployment Class Diagram

15.9.1 DeployedComponent Class

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform parts
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

Superclass

AbstractPlatformElement

Associations

groupedCode:Module[0..%] The code components that are deployed to the target DeployedComponent (KDM
grouping association).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 189

Semantics

15.9.2 DeployedSoftwareSystem Class

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. Each SoftwareSystem involves one or more Components. Some components
can be involved in more than one SoftwareSystem (allowing description of the so-called Software Product Lines). Each
Component involves one or more model Modules. Again, each Module can be involved in more than one Component.
Component is a unit of deployment. Each logical component can be deployed multiple times, each time represented by a
unique DeploymentComponent element. DeployedSoftwareSystem is a counterpart of the corresponding logical
SoftwareSystem.

Superclass

AbstractPlatformElement

Associations
groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.
Semantics

15.9.3 Machine Class

The Machine is a meta-model element that represents the hardware node which hosts deployed components.

Superclass

AbstractPlatformElement

Associations
deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.
deployedResource:DeployedResource[0..*] The set of DeployedResource elements deployed to this node.
Semantics

190 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

15.9.4 DeployedResource Class

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of ResourceType elements.
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated
with multiple DeployedResources.

Superclass

AbstractPlatformElement

Associations
platformElement:ResourceType[0..*] The set of ResourceTypes that are deployed into the target
DeployedResource.
Semantics

15.10 RuntimeResources Class Diagram

The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example,
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in
many cases relations between the dynamically created instances of processes and threads are an essential part of the
knowledge of existing systems. Another example of dynamic structures involves deployed components that are loaded
dynamically.

The classes and associations of the RuntimeResources diagram are shown in Figure 15.7.

ResourceType

I

RuntimeResource

Thread Process

Figure 15.7 - RuntimeResources Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 191

15.10.1 RuntimeResource (generic)

The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource
is used as the endpoint of certain relationships.

Superclass

ResourceType

Semantics

15.10.2 Process Class

The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Semantics
15.10.3 Thread Class
The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

Superclass

RuntimeResource

Semantics

15.11 RuntimeActions Class Diagram

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.8.

192 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractPlatformRelationship

DeployedComponent +o

) Loads
{redefines to} 0. o
RuntimeResource | _*o Spawns
1 0.4
{redefines to}
+
+from from

redefines from
{redefines from} 1 {)

ActionElement
(from action)

<kind : String

Figure 15.8 - RuntimeActions Class Diagram

15.11.1 Loads Class

The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

AbstractPlatformRelationship

Associations
from:ActionElement[1] “abstracted” action element owned by some resource
to:DeploymentComponent[1] The component that is being loaded.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 193

Semantics

15.11.2 Spawns Class

The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation”
relationship between a SpawningService action endpoint and the RunnableInterface (Process or Thread).

Superclass

AbstractPlatformRelationship

Associations
from:ActionElement[1] “abstracted” action element owned by some resource
to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being
spawned.
Semantics

15.12 ExtendedPlatformElements Class Diagram

The ExtendedPlatformElements class diagram defines two “wildcard” generic elements for the code model as determined
by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.9.

AbstractPlatform Rel ationship

tHfrom
<——— PlatformRelationship

1 e

{redefines from}

AbstractPlatformElement

0.*

(0}
1 {redefines to}

PlatformElement KDMEntity
(from core)

Figure 15.9 - ExtendedPlatformElements Class Diagram

194 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

15.12.1 PlatformElement Class (generic)

The PlatformElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformElement

Constraints
1. PlatformElement should have at least one stereotype
Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity types of the platform model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

15.12.2 PlatformRelationship Class (generic)

The PlatformRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformRelationship

Associations
from:AbstractPlatformElement[1] the platform element endpoint
to:KDMEntity[1] the target of the relationship
Constraints

1. PlatformRelationship should have at least one stereotype
Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the platform model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 195

196 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

16 Ul Package

16.1 Overview

The UI package defines a set of meta-model elements whose purpose is to represent facets of information related to user
interfaces, including their composition, their sequence of operations, and their relationships to the existing software
systems.

The Ul package defines an architectural viewpoint for the Ul domain.

* Concerns:
* What are the distinct elements of the user interface of the systems?
* What is the organization of the user interface?
* How user interface uses artifacts of the system (for example, images) ?
* What data flows originate from the user interface ?
* What data flows output to the user interface?
* What control flows are initiated by the user interface?

* Viewpoint language:

UI views conform to KDM XMI schema. The viewpoint language for the Ul architectural viewpoint is defined
by the UI package. It includes an abstract entity AbstractUIElement, several generic entities, such as UIResource,
UlDisplay, as well as several concrete entities, such as Screen, Report, UIField, UlAction, UlEvent, etc. The
viewpoint language for the Ul architectural viewpoint also includes several relationships, which are subclasses of
AbstractUIRelationship.

* Analytic methods:
The UI architectural viewpoint supports the following main kinds of checking:

+ Data flow (for example, what action elements read from a given Ul element; what action elements write to a given
UI element; what action elements manage a given Ul element)

» Control flow (for example, what action elements are triggered by events in a given Ul element; what action
elements operate on a given Ul element)

* Workflow (what UI elements will be displayed after the given one; what Ul elements are displayed before the
given one)

UI Views are used in combination with Code views and Inventory views.
* Construction methods:

» Ul views that correspond to the KDM Ul architectural viewpoint are usually constructed by analyzing Code views
for the given system as well as the Ul-specific configuration artifacts. The UI extractor tool uses the knowledge
of the API and semantics for the given run-time platform to produce one or mode Ul views as output

* As an alternative, for some languages like Cobol, in which the elements of the Ul are explicitly defined by the
language, the Ul views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode UI views as output (together with the corresponding Code views)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 197

* Construction of the UI view is determined by the semantics of the UI platform, and it based on the mapping from
the given UI platform to KDM; such mapping is specific only to the Ul platform and not to a specific software
system

* The mapping from a particular UI platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations.

16.2 Organization of the Ul Package
The UI package consists of the following 6 class diagrams:

* UlModel

* Ullnheritances

» UlResources

» UlRelations

* UlActions

» ExtendedUIElements

The UI package depends on the following packages:

* Action
* Code

* kdm

* Source
* Core

16.3 UlModel Class Diagram

The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to static representations of the principal components of a user interface. The class diagram
shown in Figure 16.1 captures these classes and their relations.

198 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

UlModel

AbstractUIRelationship

+model

{subsets model} +UIRelation

{subsets ownedRelation}

+UIElement

*

AbstractUIElement | °-

+group
{subsets group}

+owner
{subsets owner}

+abstraction

{subsets ownedElement . .
+implementation

ordered}
0 {subsets groupedElement} 0..*
ActionEIe.ment AbstractC odeElement
(from action) (from code)

Figure 16.1 - UIModel Class Diagram
16.3.1 UlModel Class
The UIModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass

KDMModel

Associations

UlElement:UlElement[0..*] user interface elements owned by the given UIModel

Semantics

UIModel provides a container for various user-interface elements. The implementer shall arrange user-interface elements
into one or more UIModel containers.

16.3.2 AbstractUIElement Class (abstract)

The AbstractUIElement is the abstract superclass for various concrete user interface elements. As such, it is the class that
represents both compound and elementary items in a model of a system’s user interface.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 199

Associations

UIRelation:AbstractUIRelationship[0..*] UI relationships originating from the given Ul element
abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to AbstractCodeElement from some CodeModel that
are represented by the current UI element.

source: SourceRef[0..1] link to the physical artifact for the given UI element

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

The implementer shall map specific user interface element types determined by the particular user-interface system of the
existing software system, into concrete subclasses of the AbstractUIElement. The implementer shall map each user
interface element into some instance of the AbstractUIElement. Implementation elements are one or more
ComputationalObjects or ActionElements from some CodeModel that are represented by the current Ul element.
“Abstraction” actions may be used to represent precise semantics of the Ul Element.

16.3.3 AbstractUIRelationship Class (abstract)
The AbstractUIRelationship is the abstract superclass for various user interface relationships.

Superclass

KDMRelationship

Semantics

The implementer shall map specific user interface association types determined by the particular user-interface system of
the existing software system, into concrete subclasses of the AbstractUIRelationship. The implementer shall map each
user interface association into some instance of the AbstactUIRelationship.

16.4 Ulinheritances Class Diagram

The Ullnheritances class diagram defines how classes of the UI package are related to the meta-model elements defined
in the Core package. The classes and associations that make up the Ullnheritances class diagram are shown in Figure
16.2.

200 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

(from kdm) (from core) (from core)
UlModel AbstractUIRelationship
AbstractU IE lem ent
0..1
UISqgurce
+source .
SourceRef

(from source)

Figure 16.2 - Ulinheritances Class Diagram

16.5 UIResources Class Diagram

The UlResource class diagram defines several specific KDM containers that own collections of user interface elements.
The class diagram shown in Figure 16.3 captures these classes and their relations.

+UIElement
{subsets ownedE lement}

AbstractUIElement

UIResource UlAction
g Zikind : String €
0..1
+owner
{subsets ownemn} +owner
{subsets owner}
UDisplay
UlField
UIEvent
<kind : String o
Screen +UElement
Report {subsets ownedElement}

Figure 16.3 - UIResources Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 201

16.5.1 UIResource Class (generic)

The UlResource is the superclass for several user interface elements that can be containers for other user interface
elements. For example, it represents a compound unit of display. This is a generic element.

Superclass

AbstractUIElement

Associations

UlElement:UIElement[0..*] UI elements owned by this UIResource

Constraints
1. UIResource should have at least one stereotype.
Semantics

UlResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2 UlDisplay Class (generic)

The UlDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UIResource

Constraints
1. UIDisplay should have at least one stereotype.
Semantics

UlDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3 Screen Class

The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of AbstractUIElement and its subclasses.

Superclass
UlDisplay
Semantics

16.5.4 Report Class

The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of AbstractUIElement and its subclasses.

202 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass
UlDisplay

Semantics

16.5.5 UlField Class

The UlField is a unit of display, such as a control on a form, a text field on a character-mode terminal, or a field printed
on a report.

Superclass

UIResource

Semantics

16.5.6 UlEvent Class

The UlEvent class is a meta-model element representing various events and callbacks associated with user interfaces.
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

UIResource

Attributes
kind:String represents the nature of the action performed by this Event

16.5.7 UlAction Class

UlAction class follows the pattern of a “resource action” class, specific to the Ul package. The nature of the action
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUIElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

UlElement:UIEvent[0..*] UI events owned by this UlAction

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 203

16.6 UlRelations Class Diagram

The UlRelations class diagram provides basic meta-model constructs to define the binding between elements of a display
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

AbstractUIRelationship

0.
0.* UIFlow
0..*
UlLayout +from
0.* {redefines fram}
1
1 1 AbstractUIEle ment
UIResource |
" +o
to +from {redefines to}
{redefines to} {redefines from}

Figure 16.4 - UIRelations Class Diagram

16.6.1 UlFlow Class

The UlFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of
Display to another.

Superclass

AbstractUIRelationship

Associations

from:AbstractUIElement[1]

to:AbstractUIElement[1]

Semantics

16.6.2 UlLayout Class

The UlLayout relationship class captures an association between two instances of Display — one that defines the content
for a portion of a user interface, and one that defines its layout.

204 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractUIRelationship

Associations
from:UIResource[1] the origin UI Resource
to:UIResource[1] the target Ul Resource
Semantics

16.7 UlActions Class Diagram

The UlActions class diagram defines several KDM relations for the UI package. It provides basic meta-model constructs
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may

generate.

The class diagram shown in Figure 16.5 captures these classes and their relations.

AbstractActionRelationship
(from action)

AbstractU IRelationship

+to
{redefines to}

UIResource

ManagesU| 1

+to
{redefines to}

Displaysimage

Displays

ReadsUI

+to WritesUlI

1{redefines to}

0.~

Image

(ffom source) m} +from

redefines fr
1

+from

{redefin
{redefines from}

+from -
{redefines from} | ActionElement
(from action)

<zkind : String

Figure 16.5 - UlActions Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 205

16.7.1 Displays Class

The Displays relationship class represents the relationship between an instance of CallableInterface and the instance of
UlElement that is presented on the interface as a result of the execution of the Callablelnterface.

Superclass

AbstractUIRelationship

Associations
from:ActionElement[1] the ActionElement that displays a certain Ul resource
to:UIResource[1] the target Ul resource

Semantics

16.7.2 Displaysimage Class

The DisplaysImage captures the relationship between an image file — an instance of Image — and its presentation on a user
interface — an instance of DisplayUnit.

Superclass

AbstractUIRelationship

Associations
from:ActionElement[1] The ActionElement that displays a certain Image.
to:Image[1] the target Image element

Semantics

16.7.3 ManagesUIl Class

ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources that are not related to the flow of data to and from the resource. ManagesUI relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the UIAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

206 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

from:ActionElement[1] “abstracted” action owned by some resource
to:UIResource[1] the user interface resource being accessed
Constraints

1. This relationship should not be used in Code models.

16.7.4 ReadsUIl Class

ReadsUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:UIResource[1] the user interface resource being accessed
Constraints

1. This relationship should not be used in Code models.

16.7.5 WritesUI Class

WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:UIResource[1] the user interface resource being accessed
Constraints

1. This relationship should not be used in Code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 207

16.8 ExtendedUIElements Class Diagram

The ExtendedUIElements class diagram defines two “wildcard” generic elements for the Ul model as determined by the
KDM model pattern: a generic Ul entity and a generic UI relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

AbstractUIRelationship

AbstractUIElement
<——— | UlRelationship
1 0.*
+from 0.
{redefines from} +o
{redefines to}
UIElement) KDMEntity
(from core)

Figure 16.6 - ExtendedUIElements Class Diagram

16.8.1 UlElement Class (generic)

The UlElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractUIElement

Constraints
1. UIElement should have at least one stereotype.
Semantics

A UI entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the Ul model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

16.8.2 UlRelationship Class (generic)

The UlRelationship relationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractUIRelationship

208 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

from:AbstractUIElement[1] the origin UI element
to:KDMEntity[1] the target KDM entity
Constraints

1. UIRelationship should have at least one stereotype.
Semantics

A UI relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the Ul model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 209

210 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

17 Event Package

17.1 Overview

The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of
applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions,
and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based
runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

The Event packages defines an architectural viewpoint for the Event domain.
* Concerns
* What are the distinct states involved in the behaviour of the software system?
* What are the events that cause transitions between states?
* What action elements are executed in a given state?
* Viewpoint language:

Event views conform to KDM XMI schema. The viewpoint language for the Event architectural viewpoint is
defined by the Event package. It includes an abstract entity AbstractEventElement, generic entity EventResource,
UlDisplay, as well as several concrete entities, such as State, Transition, Event, EventAction, etc. The viewpoint
language for the UI architectural viewpoint also includes several relationships, which are subclasses of
AbstractEventRelationship.

» Analytic methods:
The Event architectural viewpoint supports the following main kinds of checking:
» Reachability (for example, what states are reachable from the given state)

» Control flow (for example, what action elements are triggered by a given state transition; what action elements will
be executed for a given traversal of the state transition graph)

« Data flow (what data sequences correspond to a given traversal of the state transition graph)

Event Views are used in combination with Code views, Data views, Platform views and Inventory views.

¢ Construction methods:

» Event views that correspond to the KDM Event architectural viewpoint are usually constructed by analyzing Code
views for the given system as well as the configuration artefacts specific to the event-driven framework. The
Event extractor tool uses the knowledge of the API and semantics of the event-driven framework to produce one
or mode Event views as output

 Construction of the Event view is determined by the semantics of the event-driven framework, and it based on the
mapping from the given event-driven framework to KDM; such mapping is specific only to the event-driven
framework and not to a specific software system

* The mapping from a particular event-driven framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 21

17.2 Organization of the Event Package

The Event package consists of the following 6 class diagrams:

EventModel
EventInheritances
EventResources
EventRelations
EventActions

ExtendedEventElements

The Event package depends on the following packages:

Core
kdm
Source
Code

Action

17.3 EventModel Class Diagram

The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific

meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

EventModel

AbstractEventRelationship

0..*

+model

{subsets model}

+eventElement
{subsets ownedElement}

AbstractEventElement

+eventRelation
{subsets ownedRelation}

+group
{subsets group}

A

+owner

+abstraction
{subsets owner}
{subs ets ownedElement
ordered}

0..*

ActionElement
(from action)

Figure 17.1 - EventModel Class Diagram

212

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

+implementation
{subsets groupedElement}

0.*

AbstractCodeElement
(from code)

17.3.1 EventModel Class

The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass

KDMModel

Associations

eventElement:AbstractEventElement[0..*] event elements owned by the given event model

Semantics

EventModel is a container for instances of event elements. The implementer shall arrange event elements into one or
more event models.

17.3.2 AbstractEventElement Class (abstract)

The AbstractEventElement is an abstract superclass for various event elements.

Superclass

KDMEntity

Associations
eventRelation:AbstractEventRelationship[0..*] event relations owned by the give element
abstraction:ActionElement[0..*] owned “abstracted” action elements
implementation:AbstractCodeElement[0..”] group association to AbstractCodeElement elements from some

CodeModel that are represented by the current EventElement

source:SourceRef[0..”] traceability links to the “source code” of the artifact

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclass of ComputationalObject or ActionElement.
3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more ComputationalObjects or ActionElements that are represented by
the current EventElement. “Abstraction” actions can be used to represent precise semantics of the EventElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 213

17.3.3 AbstractEventRelationship Class (abstract)

The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model
element for representing various relations involving states and events.

Superclass

KDMRelationship

Semantics

17.4 Eventlnheritances Class Diagram

The EventInheritances class diagram defines how classes of the Event package are related to the the meta-model elements
defined in the Core package. The classes and associations that make up the EventInheritances diagram are shown in

Figure 17.2.

KDMModel KD M Entity KDMRelationship
(from kdm) (from core) (from core)
EventModel AbstractEventElement AbstractEventRelationship
0..1

EventSource

+source 0_*
SourceRef
(from source)

Figure 17.2 - Eventinheritances Class Diagram

17.5 EventResources Class Diagram

The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures
these classes and their relations.

214 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

+eventElement
{subsets ownedElement} | Ay ctractEventElement

{subsets owner} M
EventResource Zkind : String €
+owner’ 0.1
- +owner
{subsets owner}
g +
State Transition eventElement
Event {subsets ownedElement}
«kind : String
0..*

hitialState OnEntry OnExit

Figure 17.3 - EventResourcesClass Diagram

17.5.1 EventResource Class (generic)

The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

AbstractEventElement

Associations

eventElement:AbstractEventElement[0..*] Event elements owned by this EventResource

Semantics
17.5.2 Event Class
The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

EventResource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

215

Attributes

kind:String represents the nature of this Event

Semantics

17.5.3 State Class

The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm,
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass

EventResource

17.5.4 InitialState Class
The InitialState class is a subclass of the State class. It represents a default initial state.

Superclass

State

17.5.5 Transition Class

The Transition class represents a transition that is performed when a certain event is consumed is a certain state.
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by
using the “ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually,
this is a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action
element can be used.

Superclass

EventResource

17.5.6 OnEntry Class

The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been entered.

Superclass

Transition

216 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

17.5.7 OnExit Class

The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been

Superclass

Transition

17.5.8 EventAction Class

EventAction class follows the pattern of a “resource action” class, specific to the event package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractEventElement
Attributes
kind:String represents the nature of the action performed by this element

Associations

eventElement:Event[0..*] The set of Event elements that is owned by the current EventAction
element.

17.6 EventRelations Class Diagram

EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

AbstractEventRelationship

NextState
0.* 0.* ConsumesEvent {redsfines to}
+to
0 1
1 +to
{redefines to} Event
State 1
1 Transition +from
+from {redefines from}

{redefines from}

Figure 17.4 - EventRelations Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 217

17.6.1 NextState Class

The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based
frameworks this information can be derived from the initialization of framework specific data structures. When there
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action
containers associated with various elements involved.

Superclass

AbstractEventRelationship

Associations
to:Transition[1] the transition
from:State[1] the state

17.6.2 ConsumesEvent Class

The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event.
For example, in statically configured state-machine based frameworks this information can be derived from the
initialization of framework specific data structures.

Superclass

AbstractEventRelationship

Associations
from:Transition[1] the transition
to:Event[1] the event

17.7 EventActions Class Diagram

The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

218 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractActionRelationship
(from action)

A

ReadsState ProducesEvent
1 0> 0.+
0.0 \ % -
Event 110
State | *to kind : Stringeefines to} HasState
{redefines to}
0..*
{n-"éfdrgfmes from} 0..*
+from 1 1 ffrom
{redefines from} +to
{redefines fom} | ActionElement | ! 1 {redefines to}
ol:::c;n-asc?rti);g AbstractEventElement

Figure 17.5 - EventActions Class Diagram

17.7.1 ReadsState Class

ReadsState class follows the pattern of a “resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that
owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:EventResource[1] the event resource being accessed
Constraints:

1. This relationship should not be used in Code models.

2. The to endpoint of the relationship should be State of one of its subclasses.

17.7.2 ProducesEvent Class

ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
EventAction that owns this relationship through the “abstracted” action container property.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 219

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:EventResource[1] the event resource being produced
Constraints

1. This relationship should not be used in Code models.

2. The “to” endpoint of the relationship should be Event.

17.7.3 HasState Class

HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of
an event model with any resource.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:EventResource[1] the event resource being accessed
Constraints

1. This relationship should not be used in Code models.

17.8 ExtendedEventElements Class Diagram

The ExtendedEventElements class diagram defines two “wildcard” generic elements for the event model as determined by
the KDM model pattern: a generic event entity and a generic event relationship.

The classes and associations of the ExtendedEventElements diagram are shown in Figure 17.6.

220 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractEventRelationship

AbstractEventElement

1 EventRelationship

0..
+from -
{redefines from} ON KD M E ntity

(from core)

-

+to
{redefines to}

EventElement

Figure 17.6 - ExtendedEventElements Class Diagram

17.8.1 EventElement Class (generic)

The EventElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractEventElement

Constraints
1. EventElement should have at least one stereotype.
Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the event model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

17.8.2 EventRelationship Class (generic)

The EventRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractEventRelationship

Associations
from:AbstractEventElement[1] the event element origin endpoint of the relationship
to:KDMEntity[1] the target of the relationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 221

Constraints
1. EventRelationship should have at least one stereotype.

Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM

representation.

222 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18 Data Package

18.1 Overview

The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the
existing software system. Facts in the Data domain are usually determined by a Data Description Language (for example,
SQL) but may in some cases be determined by the code elements. KDM Data model uses the foundation provided by the
Code package related to the representations of simple datatypes. KDM Data model represents complex data repositories,
such as record files, relational databases, structured data stream, XML schemas and documents.

The KDM Data package defines an architectural viewpoint for the Data domain.
* Concerns
* What is the organization of persistent data in the software systems?
* What are the information model supported by the software system?
* What action elements read persistent data?
* What action elements write persistent data?
* What control flows are determined by the events corresponding to persistent data?
* Viewpoint language

Data views conform to KDM XMI schema The viewpoint language for the Data architectural viewpoint is
defined by the Data package. It includes abstract entities AbstractDataElement, AbstractContentElement, generic
entities DataResource, DataContainer, Contentltem, as well as several concrete entities, such as Catalog,
RelationalSchema, DataEvent, DataAction, ColumnSet, RecordFile, XMLSchema, etc. The viewpoint language
for the Data architectural viewpoint also includes several relationships, which are subclasses of
AbstractDataRelationship.

* Analytic methods:
The Data architectural viewpoint supports the following main kinds of checking:

» Data aggregation (the set of data items accessible from the given ColumnSet by adding data items through foreign
key relationships to other tables)

Data Views are used in combination with Code views and Inventory views.

¢ Construction methods:

» Data views that correspond to the KDM Data architectural viewpoint are usually constructed by analyzing Data
Definition Language artifacts for the given data management platform. The Data extractor tool uses the
knowledge of the data management platform to produce one or mode Data views as output

* As an alternative, for some languages like Cobol, in which some elements of the Data are explicitly defined by the
language, the Data views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode Data views as output (together with the corresponding Code views)

* Construction of the Data view is determined by the semantics of the data management platform, and it based on
the mapping from the given data management platform to KDM; such mapping is specific only to the data
management platform and not to a specific software system

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 223

» The mapping from a particular data management platform to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations

18.2 Organization of the Data Package

The Data package consists of the following 11 class diagrams:

» Data Model

» Data Inheritance
» RelationalData

* ColumnSet

* StructuredData

» ContentElements
» ContentRelations
* Keylndex

+ KeyRelations

e DataActions

« ExtendedDataElements

The Data Package depends on the following packages:

* Core

e kdm

* Source
* Code

e Action

18.3 Data Model Class Diagram

The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the

DataModel class diagram.

224

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

DataModel

AbstractDataR elationship

0.*
+dataRelation

{subsets ownedRelation}

+model
{subsets model}

+dataElement
{subsets ownedElement}

AbstractDataElement
0..1
+owner
+abstraction
{subsets ownedElement {subsets owner}
ordered}
ActionElement 0.*
(from action)
ekind : String

Figure 18.1 - Data Model

18.3.1 DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

dataElement :DataElement[0..”] data elements owned by the given DataModel

Semantics

Data model is a logical container for the instances of data elements. The implementer shall arrange the instances of the
data elements into one or more DataModels.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 225

18.3.2 AbstractDataElement Class (abstract)

The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data
element within a system. For example, a Customer Number is one type of data element that might be found within a
system. Data model defines several specific subclasses of AbstractDataElement, corresponding to common subcategories
of data elements.

Superclass

KDMEntity

Associations

abstraction: ActionElement[1] the “abstracted” actions that are owned by the current element
dataRelation:DataRelation[0..*] data relationships that originate from this data element

source: SourceRef[0..1] link to the physical artifact for the given data element

Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API
calls in the code model. Abstracted actions own action relations to elements of code model, as well as some data relations.

Abstracted actions are ordered. The first action is the entry point.

18.3.3 AbstractDataRelationship Class (abstract)

An AbstractDataRelationship class is an abstract superclass of the meta-model elements that represent associations
between data elements.

Superclass

KDMRelationship

Semantics

AbstractDataRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data
model.

18.4 Data Inheritances Class Diagram

The Datalnheritances Diagram in Figure 18.2 shows how the meta-model elements defined in the Data package are
related to the meta-model elements defined in the Core package. Each of the Data Package classes within this diagram
inherits certain properties from KDM classes defined within the Core Package.

226 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

KDMModel
(from kdm)

I

DataModel

KDM Entity

(from core)

I

KDMRelationship

(from core)

r

AbstractDataElement

AbstractDataRelationship

0..1

DataSource

+source

0..*

SourceRef
(from source)

Figure 18.2 - Datalnheritances Diagram

18.5 DataResources Class Diagram

The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM

framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

The DataResources diagram defines the framework for various data models. This framework follows the common pattern
of the Runtme Resource Layer. Data model defines a generic DataResource meta-model element that represents various

resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources.

Data model includes AbstractDataContent element which is a direct subclass of AbstractDataElement, and not a subclass
of DataResource. Subclasses of AbstractContentElement are owned by XMLSchema element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

227

AbstractDataElement

+dataElement
{subsets ownedElement}
0..*

DataResource

+owner
{subsets owner}
- 0.1 +owner
DkatZACStlon R DataEvent {subsets owner}
wkind : String @@= [@kind : Stri -
9 0.* A & S DataContainer
+group 0.1
{sugsets group} +dataElement
0.* {subsets ownedElement}
Catalog RelationalSchema
+owner
{subsets owner} 0.1
0.* +implementation .
{subsets groupedElement} 0.
ActionElement Codeltem
(from action) (from code) | +codeElement
{subsets ownedElement}

Figure 18.3 - RelationalData Class Diagram

18.5.1 DataResource Class (generic)

The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent
and IndexElement.

Superclass
AbstractDataFlement
Constraints
1. DataResource should have at least one stercotype

Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that
1s associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base
element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that can

integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2 DataContainer Class (generic)

The DataContainer class is a generic meta-model element that represents various database containers.

228 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

DataResource

Associations

dataElement :DataResource[0..*] owned data resources

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that
is a logical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the
base element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that
can integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3 Catalog Class
The Catalog class is the top level container that represents a relational or a hierarchical database.

Superclass

DataContainer

Semantics

18.5.4 RelationalSchema Class
The RelationalSchema class is a relational database schema.

Superclass

DataContainer

Associations

codeElement:Codeltem][0..*] Stored procedures owned by this schema.

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example,
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data
actions.” Abstracted actions represent a “virtual” data manipulation statement, which is being implemented through
embedded data manipulation constructs (and the corresponding “generated” API calls).

In the situation of the data manipulation and data description scripts that are executed directly by the relational database
engine, KDM allows more tight integration of the corresponding Codeltem with the Data Model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 229

18.5.5 DataEvent Class

The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of
stored procedures, the so-called triggers. KDM models database events as “first class citizens” of the KDM
representation.

Superclass

DataResource

Attributes

kind :String semantic description of the data event

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on a table or view.
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataFlement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure,
which is represented as a CallableUnit, owned by a certain RelationalSchema. Trigger is associated with a data event
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a
certain DataContainer.

18.5.6 DataAction Class

DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractDataElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

implementation:ActionElement[0..*] group association to ActionElement represented by the current DataAction

dataElement:DataEvent[0..*] event elements owned by the current DataAction

230 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

DataAction represents a “virtual” action element that represents the logical action performed by the runtime platform of
the existing software system.

18.6 ColumnSet Class Diagram

The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases,
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4
captures these classes and their relations.

DataContainer

+owner
{subsets owner} . .
0.. ltemUnit
ColumnSet (from code)
0..1
+itemUnit
{subsets ownedElement
ordered}
DataSegment
RecordFile
RelationalView RelationalTable

Figure 18.4 - ColumnSet Class Diagram

18.6.1 ColumnSet (generic)

The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields).
Columns are modeled as ItemUnits.

Superclass

DataContainer

Associations
itemUnit :ItemUnit[0..*] Individual columns owned by this ColumnSet are represented as data elements

Semantics

ColumnSet corresponds to an ISO/IEC 11404 Table datatype, whose values are collections of values in the product space of
one or more field datatypes, such that each value in the product space represents an association among the values of the fields.
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 231

KDM defines several concrete subclasses of ColumnSet to represent several common data organizations, such as relational
Tables and Views, Record files and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.

18.6.2 RelationalTable Class

A RelationalTable is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass

ColumnSet

Semantics

Tables are entities that contain all the data in relational databases. Each table represents a type of data that is meaningful
to its users. A table definition is a collection of columns. In tables, data is organized in a row-and-column format similar
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example,
a table that contains employee data for a company can contain a row for each employee and columns representing
employee information such as employee number, name, address, job title, and home telephone number.

Tables in a relational database have the following main components:

* Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having
columns for ID, color, and weight.

* Rows. Each row represents an individual occurrence of the object modeled by the table. For example, the parts table
would have one row for each part carried by the company.

The PlatformResource that corresponds to RelationalTable is DataManager.

Example (T-SQL)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (IDint primary key, product int, revenue deci nal, dateSi gned date)
CREATE TABLE revenueRecognitions (contract int, amount decinmal, recogni zedOn date,

PRI MARY KEY(contract, recogni zedOn))

CREATE PROCEDURE | NSERT_RECOGNI TI ON
(IN contractIDint, I N anpunt decimal, |IN recognizedOn date, OUT result int)
LANGUAGE SQL
BEG N
I NSERT | NTO revenueRecogniti ons VALUES(contractl D, anount, recognizedOn);
SET result = 1;
END

CREATE TRI GGER r eni nder 1

ON Contracts. revenueRecogni tions
AFTER | NSERT, UPDATE

AS RAI SERROR (' Notify Sales', 16, 10)
ce]

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmi :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns:action="http://schema. ong. or g/ spec/ KDM 1. 2/ acti on"

232 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

xm ns: code="http://schena. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: data="http://schena. ong. or g/ spec/ KDM 1. 2/ dat a"
xm ns: kdne" htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdnt'
xm ns: platform="http://schema. ong. or g/ spec/ KDM 1. 2/ pl at f or i nanme="Schenma Exanpl e">
<nmodel xm :id="id.0" xm:type="data: DataMbdel " name="Contracts">
<dat aEl enent xm:id="id.1" xm:type="data: Rel ati onal Schema" nane="Contracts">
<dat aEl erent xm :id="id.2" xm:type="data: Rel ati onal Tabl " nanme="products">
<dat aEl erent xm :id="id.3" xm:type="data: Uni queKey" nanme="1D"' inplenentation="id.4"/>
<itenmUnit xm:id="id.4" name="ID" type="id.57"/>
<itemUnit xm:id="id.5" name="nanme" type="id.58"/>
<itemUnit xm:id="id.6" name="type" type="id.58"/>
</ dat aEl enment >
<dat aEl ement xm :id="id.7" xm:type="data: Rel ati onal Tabl e" name="contracts">
<dat aEl ement xm :id="id.8" xm:type="data: Uni queKey" name="1D" inplenmentati on="id.11"/>
<dat aEl ement xm :id="id.9" xm:type="data: Ref erenceKey" inplenentation="id.12">
<dataRel ation xmi:id="id.10" xm:type="data: KeyRel ation" to="id.3" from="id.9"/>
</ dat aEl enment >
<itemUnit xm:id="id.11l" nanme="1D" type="id.57"/>
<itemUnit xm:id="id.12" nanme="product" type="id.57"/>
<itemUnit xm:id="id.13" nanme="revenue" type="id.59"/>
<itenmUnit xm:id="id.14" nanme="dateSi gned" type="id.60"/>
</ dat aEl enent >
<dat aEl enent xm :id="id. 15" xm:type="data: Rel ati onal Tabl e" nane="revenueRecognitions">
<dat aEl enent xm :id="id.16" xm:type="data: Uni queKey" i nplenentation="id.25 id.27"/>
<dat aEl ement xm :id="id.17" xm :type="data: Ref erenceKey" inplenentation="id.25">
<dat aRel ation xm :id="id.18" xm :type="data: KeyRel ation" to="id.8" fronr"id.17"/>
</ dat aEl enment >
<dat aEl enent xm :id="id.19" xm :type="data: Dat aEvent" nane="el" kind="I|nsert">
<abstraction xm:id="id.20" nane="el. 1" kind="Call">
<actionRel ation xm:id="id.21" xm:type="action:Calls" to="id.47" from="id.20"/>
</ abstraction>
</ dat aEl enment >
<dat aEl ement xm :id="id.22" xm:type="data: Dat aEvent" nane="e2" ki nd="Update">
<abstraction xm:id="id.23" nane="e2.1" kind="Call">
<actionRel ation xm:id="id.24" xm:type="action:Calls" to="id.47" from="id.23"/>
</ abstraction>
</ dat aEl enment >
<itemUnit xm:id="id.25" name="contract" type="id.57"/>
<itemUnit xm:id="id.26" name="anount" type="id.59"/>
<itemUnit xm:id="id.27" name="recogni zedOn" type="id.60"/>
</ dat aEl enent >
<codeEl ement xmi :id="id.28" xm:type="code: Call abl eUnit" nanme="| NSERT_RECOGN TI ONS" ki nd="regul ar">
<entryFlow xm :id="id.29" to="id.35" from"id.28"/>
<codeEl ement xm :id="id.30" xm:type="code: Signature">
<paraneterUnit xm:id="id.31" nane="contractlD' type="id.57" pos="1"/>
<paraneterUnit xm:id="id.32" nane="anmpunt" type="id.59" pos="2"/>
<paraneterUnit xm:id="id.33" nane="recogni zedOn" type="id. 60" pos="3"/>
<paraneterUnit xm:id="id.34" nane="result" type="id.57" kind="byReference" pos="4"/>
</ codeEl enent >
<codeEl ement xmi :id="id.35" xm:type="action:ActionEl ement" nane="al" kind="Insert">
<source xm:id="id.36" |anguage="SQ"
shi ppet ="1 NSERT | NTO r evenueRecogni ti ons VALUES(contractlD, anount, recognizedOn);"/>
<actionRel ation xm:id="id.37" xm:type="action: Reads" to="id.31" fronr"id.35"/>
<actionRel ation xm:id="id.38" xm:type="action: Reads" to="id.32" frone"id.35"/>
<actionRel ation xm :id="id.39" xm:type="action: Reads" to="id.33" fronr"id.35"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 233

<actionRel ation xm:id="id.40" xm:type="data: WitesCol umSet" to="id.15" frone"id.35"/>
<actionRel ation xm:id="id.41" xm:type="data: ProducesDat aEvent" to="id.19" fron¥"id.35"/>
</ codeEl enent >
<codeEl enent xm:id="id.42" xm:type="action: Acti onEl ement" nanme="a2" ki nd="Assign">
<source xm :id="id.43" |anguage="SQ." snippet="SET result = 1;"/>
<codeEl enent xm:id="id.44" xm:type="code: Val ue" nane="1"/>
<actionRel ation xm:id="id.45" xm:type="action: Reads" to="id. 44" fronme"id. 42"/>
<actionRelation xm:id="id.46" xm:type="action:Wites" to="id.34" frone"id.42"/>
</ codeEl enent >
</ codeEl enent >
<codeEl enent xm:id="id.47" xm:type="code: CallableUnit" name="rem nder1">
<entryFl ow xm :id="id. 48" to="id.49" frone"id.47"/>
<codeHl ement xm:id="id.49" xm:type="action:ActionEl ement" nanme="a3" ki nd="Throw'>
<codeEl ement xm :id="id.50" xm:type="code: Val ueLi st" name="error">
<val ueEl ement xm :id="id.51" xm:type="code: Val ue"
nane="" ; Noti fy sal es! &uot ;" type="id.58"/>
<val ueEl ement xm :id="id.52" xm:type="code: Val ue" nane="16" type="id.57"/>
<val ueEl ement xm :id="id.53" xm:type="code: Val ue" nane="10" type="id.57"/>
</ codeEl enent >
<actionRel ation xm:id="id.54" xm:type="action: Throws" to="id.50" frone"id.49"/>
</ codeEl enent >
</ codeEl enent >
</ dat aEl ement >
</ nodel >
<nmodel xm :id="id.55" xm:type="code: CodeMdel ">
<codeEl ement xm :id="id.56" xm:type="code: LanguageUnit" nane="SQL dat atypes">
<codeEl ement xm :id="id.57" xm:type="code:|ntegerType" nane="sql int"/>
<codeEl enent xm:id="id.58" xm:type="code: StringType" nane="sql varchar"/>
<codeEl enent xm:id="id.59" xm:type="code: Deci mal Type" name="sql decimal"/>
<codeEl enent xm :id="id. 60" xm:type="code: Dat eType" nanme="sql date"/>
<codeEl ement xm :id="id.61" xm:type="code: Bool eanType"/>
</ codeEl erment >
</ nodel >
<nmodel xm :id="id.62" xm:type="platformPlatformnmbdel">
<pl at fornEl enent xm :id="id.63" xm:type="platform External Actor">
<abstraction xm:id="id. 64" >
<actionRel ation xm:id="id.65" xm:type="data: ProducesDat aEvent" to="id.19" fron¥"id. 64"/>
</ abstracti on>
</ pl at f or nEl enent >
</ nodel >
</ kdm Segnent >

18.6.3 RelationalView Class

A Relational View class is a specific subclass of the ColumnSet class that represents Views of relational databases. A view
is a virtual table whose contents are defined by a query. Like a real table, a view consists of a set of named columns and
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of
data come from tables referenced in the query defining the view and are produced dynamically when the view is
referenced.

234 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

A view acts as a filter on the underlying tables referenced in the view. The query that defines the view can be from one
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly
structured data from different servers, each of which stores data for a different region of your organization.

Superclass

ColumnSet

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few
restrictions on modifying data through them.

In KDM, a RelationalView owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the
View can store the corresponding SELECT statement.

18.6.4 DataSegment Class

A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS.

Superclass

ColumnSet

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real
world.

A database segment defines the fields for a set of segment instances similar to the way a relational table defines columns
for a set of rows in a table. In this way, segments relate to relational tables, and fields in a segment relate to columns in a
relational table.

Example (IMS):

DLR_PCB1 PCB TYPE=DB, DBDNAME=DEALERDB, PROCOPT=GO, KEYLEN=42
SENSEG NAME=DEALER, PARENT=0

SENSEG NAME=MODEL, PARENT=DEALER

SENSEG NAME=ORDER, PARENT=MODEL

SENSEG NAME=SALES, PARENT=MODEL

SENSEG NAME=STOCK, PARENT=MODEL

PSBGEN PSBNAME=DLR_PSB, MAXQ=200, LANG=JAVA

END

DBD NAME=DEALERDB, ACCESS=(HDAM CSAM) , RVMNAVE=(DFSHDC40. 1. 10)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 235

SEGM NAME=DEALER, PARENT=0, BYTES=94,

FI ELD NAME=(DLRNO, SEQ, U), BYTES=4, START=1, TYPE=C

FI ELD NAME=DLRNAME, BYTES=30, START=5, TYPE=C

SEGM NAME=MODEL, PARENT=DEALER, BYTES=43

FI ELD NAME=(MODTYPE, SEQ U), BYTES=2, START=1, TYPE=C
FI ELD NAME=MAKE, BYTES=10, START=3, TYPE=C

FI ELD NAME=MODEL, BYTES=10, START=13, TYPE=C

FI ELD NAVME=YEAR, BYTES=4, START=23, TYPE=C

FI ELD NAME=MSRP, BYTES=5, START=27, TYPE=P

SEGM NAME=ORDER, PARENT=MODEL, BYTES=127

FI ELD NAME=(ORDNBR, SEQ, U) , BYTES=6, START=1, TYPE=C
FI ELD NAME=LASTNME, BYTES=25, START=50, TYPE=C

FI ELD NAME=FI RSTNVE, BYTES=25, START=75, TYPE=C
SEGM NAME=SALES, PARENT=MODEL, BYTES=113

FI ELD NAME=(SALDATE, SEQ U), BYTES=8, START=1, TYPE=C
FI ELD NAME=LASTNME, BYTES=25, START=9, TYPE=C

FI ELD NAME=FI RSTNME, BYTES=25, START=34, TYPE=C

FI ELD NAME=STKVI N, BYTES=20, START=94, TYPE=C

SEGM NAME=STOCK, PARENT=MODEL, BYTES=62

FI ELD NAME=(STKVI N, SEQ, U), BYTES=20, START=1, TYPE=C
FI ELD NAME=COLOR, BYTES=10, START=37, TYPE=C

FI ELD NAME=PRI CE, BYTES=5, START=47, TYPE=C

FI ELD NAME=LOT, BYTES=10, START=52, TYPE=C

DBDGEN

FI NI SH

END

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmi :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: code="http://schenma. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: data="http://schenma. ong. or g/ spec/ KDM 1. 2/ dat a"
xm ns: kdne"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdn' name="1MS Exanpl e">
<model xm:id="id.0" xm:type="data: Dat aMbdel ">
<dat aEl enent xm:id="id.1" xm:type="data: Catal og" nane="DEALERDB" >
<dat aEl enent xm:id="id.2" xm:type="data: Dat aSegnent" nane="Deal er">
<dat aEl ement xm :id="id.3" xm:type="data: Dat aSegment" nane="NModel ">
<dat aEl ement xm :id="id.4" xm:type="data: Dat aSegment" nanme="Order">
<dat aEl ement xm :id="id.5" xm:type="data: Uni queKey" inpl enentation="id.6"/>
<itemUnit xm:id="id.6" nanme="ORDNBR' type="id.30" size="2"/>
<itemUnit xm:id="id.7" name="LASTNME" type="id. 30" size="25"/>
<itemUnit xm:id="id.8" nanme="FI RSTNME" type="id.30" size="25"/>
</ dat aEl enent >
<dat aEl ement xm :id="id.9" xm:type="data: Dat aSegment" nane="Sal es">
<dat aEl ement xm :id="id.10" xm :type="data: Uni queKey" inplenentation="id.11"/>
<itemUnit xm:id="id.11" name="SALDATE" type="id. 30" size="8"/>
<itemUnit xm:id="id.12" name="LASTNME" type="id. 30" size="25"/>
<itemUnit xm:id="id.13" name="FI RSTNME" type="id. 30" size="25"/>
<itemUnit xm:id="id.14" name="STKVIN' type="id. 30" size="20"/>
</ dat aEl enent >
<dat aEl ement xm :id="id. 15" xm :type="data: Dat aSegnent" nane="Stock">
<dat aEl ement xm :id="id. 16" xm:type="data: Uni queKey" inplenentation="id.17"/>
<itemUnit xm:id="id.17" name="STKVIN' type="id. 30" size="20"/>
<itemUnit xm:id="id.18" name="COLOR' type="id.30" size="10"/>
<itemUnit xm:id="id.19" name="PRI CE" type="id. 30" size="5"/>

236 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<itemUnit xm:id="id.20" name="LOT" type="id.30" size="10"/>
</ dat aEl emrent >
<dat aEl ement xm :id="id.21" xm:type="data: Uni queKey" inplenmentation="id.22"/>
<itemUnit xm:id="id.22" nane="MODTYPE" type="id. 30" size="2"/>
<itemUnit xm:id="id.23" name="MAKE" size="10"/>
<itenmUnit xm:id="id.24" name="YEAR' size="4"/>
<itenmUnit xm:id="id.25" name="MSRP" type="id.31" size="5"/>
</ dat aEl ement >
<dat aEl ement xm :id="id.26" xm:type="data: Uni queKey" inplenmentation="id.27"/>
<itemUnit xm:id="id.27" nane="DRLNO' type="id.30" size="4"/>
<itemUnit xm:id="id.28" name="DLRNAME" size="30"/>
</ dat aEl emrent >
</ dat aEl ement >
</ model >
<nmodel xm:id="id.29" xm:type="code: CodeMddel " nane="Common | M5 dat at ypes">
<codeEl enent xm :id="id.30" xm:type="code: StringType" name="|IMs type c"/>
<codeEl enent xm :id="id.31" xm:type="code: Deci mal Type" nanme="|Ms type packeddeci mal"/>
</ nodel >
</ kdm Segment >

18.6.5 RecordFile Class

The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or
sequential.

Superclass

ColumnSet

Semantics

In a non-relational database system, a record is an entry in a file, consisting of individual elements of information, which
together provide full details about an aspect of the information needed by the system. Individual elements are held in
fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for
example, date of birth, department code, or full names will be found in a number of fields. A file is a set of records, where
each record is a sequence of fields. A sequential file is a computer file storage format in which one record follows
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (cobol)

The following example illustrates the representation of RecordFile. The CodeModel of this example is incomplete as it focuses
on the DataModel, and well as combined representation involving the CodeModel, DataModel, PlatformModel, and
EventModel.

FI LE- CONTROL.
SELECT SEQUENTI AL- FI LE ASSI GN TO ' A:\ SEQ DAT'
ORGANI ZATI ON | S LI NE SEQUENTI AL.
SELECT | NDEXED- FI LE
ASSI GN TO ' A:\ | NDVAST. DAT'
ORGANI ZATI ON | S | NDEXED
ASSESS | S SEQUENTI AL

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 237

RECORD KEY | S | ND- SOC- SEC- NUM
FI LE STATUS | S | NDEXED- STATUS- BYTES.

FI LE SECTI ON.
FD SEQUENTI AL FI LE
RECORD COTNAI NS 39 CHARACTERS
DATA RECORD | S SEQUENTI AL- RECORD.
01 SEQUENTI AL- RECORD.
05 SEQ SOC- SEG-NUM PI C X(9) .
05 SEQ REST- OF- RECORDPI C X(30) .

FD | NDEXED- FI LE
RECORD CONTAI NS 39 CHARACTERS
DATA RECORD | S | NDEXED- RECORD.
01 | NDEXED- RECORD.
05 | ND- SOC- SEC-NUM Pl C X(9).
05 | ND- REST- OF- RECORDPI C X(30) .

PROCEDURE DI VI SI ON.
0010- UPDATE- MASTER- FI LE.
OPEN | NPUT SEQUENTI AL- FI LE
OUTPUT | NDEXED- FI LE.
PERFORM UNTI L END- OF- FI LE-SW TCH = ' YES
READ SEQUENTI AL- FI LE
AT END
MOVE ' YES' TO END- OF- FI LE- SW TCH
NOT AT END
MOVE SEQ SOC- SEC- NUM TO | ND- SOC- SEC- NUM
MOVE SEQ REST- OF- RECORD TO | ND- REST- OF- RECORD
WRI TE | NDEXED- RECORD
I NVALI D KEY PERFORM 0020- EXPLAI N- WRI TE- ERROR
END- WRI TE
END- READ
END- PERFORM
CLOSE SEQUENTI AL-FI LE
| NDEXED- FI LE.

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xm :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: action="http://schena. ong. or g/ spec/ KDM 1. 2/ acti on"
xm ns: code="http://schema. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: data="http://schena. ong. or g/ spec/ KDM 1. 2/ dat a"
xm ns: event ="http://schena. ong. or g/ spec/ KDM 1. 2/ event "
xm ns: kdne"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt'
xm ns: platform"http://schema. ong. or g/ spec/ KDM 1. 2/ pl at f or i’ nanme="RecordFi | e exanpl e">
<nmodel xm:id="id.0" xm:type="data: Dat aMbdel ">
<dat aEl erent xm :id="id.1" xm:type="data: RecordFile" name="SEQUENTI AL-FI LE">
<itemUnit xm:id="id.2" nane="SEQ SOC- SEC- NUM' type="id. 115" ext="PIC X(9)" size="9"/>
<itemUnit xm:id="id.3" name="SEQ REST- OF- RECORD" type="id.115" ext="PIC X(30)" size="30"/>
</ dat aEl emrent >
<dat aEl ement xm :id="id.4" xm:type="data: RecordFile" nane="|NDEXED FI LE">
<dat aEl ement xm :id="id.5" xm:type="data: Uni queKey" inplenentation="id.7"/>
<dat aEl ement xm :id="id.6" xm:type="data:lndex" inplenentation="id.7"/>
<itemUnit xm:id="id.7" nane="I|ND SOC- SEC- NUM' type="id. 115" ext="PIC X(9)" size="9"/>

238 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<itemUnit xm:id="id.8" nane="|ND REST- OF- RECORD' type="id. 115" ext="PIC X(30)" size="30"/>
</ dat aEl ement >
<dat aEl ement xm :id="id.9" xm:type="data: DataAction" nane="dal" ki nd="open" inplenmentation="id.44">
<abstraction xm:id="id.10" nanme="dal" ki nd="open">
<actionRel ation xm:id="id. 11" xm :type="data: ManagesData" to="id.1" frone"id.10"/>
<actionRel ation xm:id="id. 12" xm :type="platform ManagesResource" to="id.75" from="id.10"/>
</ abstraction>
</ dat aEl emrent >
<dat aEl ement xm :id="id.13" xm:type="data: Dat aAction" nane="da2" ki nd="open" inplenmentation="id.44">
<abstraction xm:id="id. 14" nanme="da2" ki nd="open">
<actionRel ation xm:id="id. 15" xm:type="platform ManagesResource" to="id.79" from="id.14"/>
<actionRel ation xm:id="id.16" xm :type="data: ManagesData" to="id.4" frone"id.14"/>
</ abstraction>
</ dat aEl emrent >
<dat aEl ement xm :id="id.17" xm :type="data: Dat aAction" nane="da3" ki nd="read" inplenmentation="id.47">
<abstraction xm:id="id.18" name="da3" kind="read">
<actionRel ati on xm:id="id.19" xm :type="data: ReadsCol umSet" to="id.1" from="id.18"/>
<actionRel ation xm:id="id.20" xm:type="action:Wites" to="id.2" from="id.18"/>
<actionRel ation xm:id="id.21" xm:type="action:Wites" to="id.3" fronr"id. 18"/>
<actionRel ation xm:id="id.22" xm:type="platform ReadsResource" to="id.75" fron"id.18"/>
</ abstraction>
<dat aEl ement xmi :id="id. 23" name="at end" ki nd="ECF">
<abstraction xm:id="id.24" nane="ael">
<actionRel ati on xm :id="id.25" xm:type="action: Excepti onFlow' to="id.50" from="id.24"/>
</ abstraction>
</ dat aEl ement >
<dat aEl erent xm :id="id.26" nane="not at end" ki nd="NOT EOF">
<abstraction xm:id="id.27" name="nael">
<actionRel ation xm :id="id.28" xm:type="action:Flow' to="id.53" fronr"id.27"/>
</ abstraction>
</ dat aEl ement >
</ dat aEl ement >
<dat aEl ement xm :id="id.29" xm:type="data: Dat aActi on" nane="da4" kind="write"
i mpl enent ati on="id.59">
<abstraction xm:id="id.30" nane="da4" kind="write">
<actionRel ation xm :id="id.31" xm:type="action: Reads" to="id.7" frone"id.30"/>
<actionRel ation xm:id="id.32" xm:type="action: Reads" to="id.8" from="id.30"/>
<actionRel ation xm:id="id.33" xm:type="data: WitesColumSet" to="id.4" fronm="id.30"/>
<actionRel ation xm:id="id.34" xm:type="platform WitesResource" to="id.79" from="id.30"/>
</ abstraction>
<dat aEl ement xmi :id="id.35" name="invalid key" kind="1NVALI D KEY">
<abstraction xm:id="id.36" nane="ikl">
<actionRel ation xm:id="id.37" xm:type="action: Excepti onFl ow' to="id. 62" frons"id.36"/>
</ abstraction>
</ dat aEl emrent >
</ dat aEl enent >
<dat aEl ement xmi :id="id.38" xm:type="data: Dat aAction" nane="da5" ki nd="cl ose">
<abstraction xm:id="id.39" nane="da5" kind="cl ose"/>
</ dat aEl enent >
<dat aEl ement xm :id="id. 40" xm :type="data: Dat aActi on" nane="da6" ki nd="cl ose">
<abstraction xm :id="id.41" nanme="da5" kind="cl ose"/>
</ dat aEl ement >
</ nodel >
<nmodel xm:id="id.42" xm :type="code: CodeMdel ">
<codeEl ement xmi :id="id. 43" xm:type="code: CodeAssenbl y" >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 239

<codeEl ement xm :id="id.44" xm:type="action:Acti onEl ement" name="a0" ki nd="open">
<source xm :id="id.45" |anguage="Cobol "
sni ppet =" OPEN | NPUT SEQUENTI AL- FI LE OUTPUT | NDEXED- FI LE. "/ >
<actionRel ation xm:id="id.46" xm:type="action:Flow' to="id.47" from="id.44"/>
</ codeEl enent >
<codeEl enent xm:id="id.47" xm:type="action: ActionEl ement" nane="al" ki nd="read">
<source xm :id="id.48" |anguage="Cobol" sni ppet="READ SEQUENTI AL- FI LE"/ >
<actionRel ation xm:id="id.49" xm:type="action:Flow' to="id.53" from="id.47"/>
</ codeEl enent >
<codeEl enent xm:id="id.50" xm:type="action: Acti onEl ement" nanme="a2">
<source xm :id="id.51" |anguage="Cobol" snippet="MOVE 'YES TO END- OF- Fl LE- SW TCH'/ >
<actionRel ation xm:id="id.52" xm:type="action:Flow' to="id.64" from="id.50"/>
</ codeEl enent >
<codeEl ement xm :id="id.53" xm:type="action:ActionEl erent" name="a3">
<source xm :id="id.54" |anguage="Cobol" sni ppet="MONE SEQ SOC- SEC- NUM TO | ND- SOC- SEQ- NUM'/ >
<actionRel ation xm:id="id.55" xm:type="action:Flow' to="id.56" from="id.53"/>
</ codeEl enent >
<codeEl enent xm:id="id.56" xm:type="action:ActionEl ement" nanme="a4">
<source xm :id="id.57" |anguage="Cobol" sni ppet="MOE SEQ REST- OF- RECORD TO | ND- REST- OF- RECORD"/ >
<actionRel ation xm:id="id.58" xm:type="action:Flow' to="id.59" from"id.56"/>
</ codeEl enent >
<codeEl enent xm:id="id.59" xm:type="action:ActionEl ement" nane="a5" kind="call">
<source xm :id="id.60" |anguage="Cobol" snippet="WRl TE | NDEXED- RECORD" / >
<actionRel ation xm:id="id.61" xm:type="action:Flow' to="id.64" from="id.59"/>
</ codeEl enent >
<codeEl ement xm :id="id.62" xm:type="action:ActionEl ement" nanme="a6" kind="wite">
<source xm :id="id.63" |anguage="Cobol" sni ppet="PERFORM 0020- EXPLAI N- \RI TE- ERROR"/ >
</ codeEl enent >
<codeEl enent xm:id="id. 64" xm:type="action:ActionEl ement" nanme="a7" kind="wite">
<source xm :id="id.65" |anguage="Cobol" snippet="UNTIL END- OF- FI LE-SWTCH = ' YES' "/ >
<actionRel ation xm:id="id.66" xm:type="action: Fal seFl ow' to="id. 47" from="id.64"/>
<actionRel ation xm:id="id.67" xm:type="action: TrueFl ow' to="id.68" fronF"id.64"/>
</ codeEl enent >
<codeEl enent xm:id="id.68" xm:type="action:ActionEl ement" nanme="a8" ki nd="cl ose">
<source xm :id="id.69" |anguage="Cobol" snippet="Cl ose SEQUENTI AL- FI LE | NDEXED- FI LE. "/ >
</ codeEl enment >
</ codeEl erment >
</ model >
<nmodel xm:id="id.70" xm:type="platform Pl atformvbdel ">
<pl atfornEl ement xm:id="id.71" xm:type="pl atform Depl oyedSoft war eSyst ent' gr oupedConponent="id.73"/>
<pl atfornEl ement xm:id="id.72" xm:type="platform Machi ne">
<depl oyedConponent xm :id="id.73" groupedCode="id. 43"/>
<depl oyedResource xm :id="id.74" >
<pl atfornEl enent xm:id="id.75" xm:type="platform StreanmResource">
<abstraction xm:id="id.76" name="ral" kind="">
<actionRelation xm:id="id. 77" xm:type="data: HasContent" to="id.1" frone"id.76"/>
<actionRel ation xm:id="id.78" xm:type="event: HasState" to="id.89" frone"id.76"/>
</ abstraction>
</ pl at f or nEl enent >
<pl atfornEl enent xm:id="id.79" xm:type="platformFileResource">
<abstraction xm:id="id.80" name="ra2" kind="">
<actionRel ation xm:id="id.81" xm:type="data: HasContent" to="id.4" fron¥"id.80"/>
</ abstraction>
</ pl at f or nEl enent >
</ depl oyedResour ce>

240 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</ pl at f or mEl ement >
<pl atfornEl enent xm:id="id.82" xm:type="platformPlatformAction"

<abstraction xm:id="id.83" nane="pal">
<actionRel ation xm:id="id.84" xm:type="platform ManagesResource" to="id. 75"

name="pal" ki nd="open">
from="id.83"/>

</ abstraction>
</ pl at f or nEl enmrent >
<pl atfornEl enent xm:id="id.85" xm:type="platformPlatformAction"

<abstraction xm:id="id.86" nane="pa2">
<actionRel ation xm:id="id.87" xm:type="platform ManagesResource" to="id.79" from="id.86"/>

name="pa2" ki nd="open">

</ abstraction>
</ pl at f or nEl emrent >
</ nodel >
<nodel xm:id="id.88" xm:type="event:Event Model ">
<event El ement xm :id="id.89" xmi:type="event: Event Resource"
<event El ement xm :id="id.90" xm:type="event:State" name="cl osed">
<event El ement xmi:id="id.91" xm:type="event: Transition" nane="tr1">
xm :id="id.92" xm:type="event: ConsunesEvent" to="id.110" from="id.91"/>
xm :id="id.93" xm:type="event: NextState" to="id.103" from="id.91"/>
xm:id="id.94" xm:type="event: NextState" to="id.95" from"id.91"/>

nanme="sequential -file">

<event Rel ati on

<event Rel ati on

<event Rel ati on
</ event El enent >

</ event El enent >
<event El ement xmi:id="id.95" xm:type="event: State" name="opened.not at end">

<event El ement xmi:id="id.96" xm:type="event: Transition" nane="tr2">

xm :id="id.97" xm:type="event: ConsunesEvent" to="id.111" from="id. 96"/>
xm :id="id.98" xm:type="event: NextState" to="id.103" fron¥"id.96"/>
xm:id="id.99" xm:type="event: NextState" to="id.95" from"id.96"/>

<event Rel ati on
<event Rel ati on
<event Rel ati on

</ event El enent >
<event El ement xmi:id="id.100" xm :type="event: Transition" name="tr3">
xm :id="id.101" xm :type="event: ConsunmesEvent" to="id.112" fronm="id. 100"/ >

<event Rel ati on
xm :id="id.102" xm :type="event: NextState" to="id.90" from="id.100"/>

<event Rel ati on
</ event El enent >

</ event El enent >

<event El ement xm :id="id.103" xm:type="event: State" name="opened.at end">

cid="id.104" xm :type="event:Transition" name="tr4">

xm :id="id.105" xm :type="event: ConsunesEvent" to="id.112" frone"id. 104"/ >
xm :id="id.106" xm :type="event: NextState" to="id.90" from="id.104"/>

<event El ement xm
<event Rel ati on
<event Rel ati on

</ event El enent >
<event El ement xm :id="id.107" xm :type="event: Transition" name="tr5">
<event Rel ation xm:id="id.108" xm:type="event: ConsunmesEvent" to="id. 111" fron¥"id. 107"/>

<event Rel ation xm :id="id.109" xm :type="event: NextState" to="id.103" from="id.107"/>

</ event El enent >

</ event El ement >
<event El ement xm :id="id.110" xm :type="event: Event" name="open" ki nd="open"/>

<event El ement xm:id="id.111" xm :type="event:Event" name="read"/>
<event El ement xm :id="id.112" xm :type="event: Event" name="cl ose"/>
</ event El enent >
</ nodel >
<nmodel xm:id="id.113" xm :type="code: CodeModel ">
<codeEl ement xm :id="id.114" xm :type="code: LanguageUnit">
<codeEl ement xm :id="id.115" xm :type="code: StringType" nane="X"'/>
</ codeEl erment >
</ nodel >
</ kdm Segnent >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

241

18.7 Keylndex Class Diagram

The Keylndex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

DataResource

% +group

{subsets group} .
Ihd exE lem ent ltem Unit
(from code)

0..* 0..*

+implementation
{subsets groupedElement}

Inde x

ReferenceKey

UniqueKey

Figure 18.5 - Keylndex Class Diagram

18.7.1 IndexElement Class (generic)

IndexElement class is a generic meta-model element that defines the common properties of the index items and key items
of persistent data stores. IndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the

IndexElement.

Superclass

DataResource

Associations
implementation : ltemUnit[1] the set of ItemUnits that constitute the index

Constraints:

1. Index owned by a data element should group elements that are owned by that data element.

2. IndexElement should have a stereotype.

Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.

242 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.7.2 UniqueKey Class

A UniqueKey is a meta-model element that represents primary keys in relational database tables, segments of hierarchical
databases, or indexed files. UniqueKey is a group of columns.

Superclass
IndexElement
Constraints
1. UniqueKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to a certain table or relational database or certain fields in an indexed file. A primary
key is one or more columns whose values uniquely identify every row in a table or every record in an indexed file. Normally
an index always exists on the primary key.

18.7.3 ReferenceKey Class

A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a
group of columns.

Superclass
IndexElement
Constraints
1. ReferenceKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key is the primary key of one data structure that is placed into a related data structure to represent a relationship
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey is a
group of one or more columns in a relational database table or segment of a hierarchical database or an indexed file that
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or
with itself.

18.7.4 Index Class
An Index class is a meta-model element that represents an index to a relational or hierarchical database or an indexed file.

Superclass

IndexElement

Constraints

1. Index owned by a data element should group ItemUnit elements that are owned by that data element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 243

Semantics

Index is a mechanism to locate and access data within a database. An index may quote one or more columns and be a
means of enforcing uniqueness on their values.

18.8 Key Relations Class Diagram

Figure 18.6 depicts the key relations within the Data Package. A Key is a way to access data without reading through an
entire data structure sequentially.

AbstractD ataRelationship

-

KeyRelation
0.* 0"
1 1
UniqueKey {rede;:l(és to} {redgﬁrr%@froln}ReferenceKey

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceKey in one data container, with a UniqueKey in another container, which
means that there is one and only one key value for that data.

18.8.1 KeyRelationship Class

A KeyRelationship is a meta-model element that represents an association between a ReferenceKey with the
corresponding UniqueKey.

Superclass

AbstractDataRelationship

Associations
from : ReferenceKey[1] Foreign key is a certain table, segment, or file.
to: UniqueKey[1] Primary key is a certain table, segment, or key.
Semantics

ReferenceKey is a group of one or more columns in a relational database table or segment of a hierarchical database or an
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table,
segment, or file, or with itself.

244 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

18.9 DataActions Class Diagram

DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the
runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one
or more code models through the “implementation” association. Each data action may own one or more “abstracted”
actions, which are used to model detailed resource related semantics.

AbstractActionRelationship
(from action)

ReadsColumnSet

ProducesDataEvent ManagesData

+to
0..* {redefines to} 0.*
+o o 0\\ 0.*
{redefines to} a 1 DataE vent
y <kind : String
ColumnSet
HasContent
+rom
defi fr *
+o 1 {redefines from} +ro : 0.
{redefines-from} 0.
{redefines to} 1 +o
1 +o {redefines to}
o ActionElement [~ ; {redefines to} | !
" (from action) +rom
WritesColumnSet /1 @kind : String {redefines from} AbstractDataElement
0..*
+from

{redefines from}

Figure 18.7 - DataActions Class Diagram

18.9.1 ReadsColumnSet Class

ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:ColumnSet[1] the data resource being accessed

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 245

Constraints
1. This relationship should not be used in Code models.

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.

18.9.2 WritesColumnSet Class

WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to

user interface resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes

relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:ColumnSet[1] the data resource being accessed
Constraints

1. This relationship should not be used in Code models.

Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.

18.9.3 ManagesData Class

Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is no flow of data to or from the resource. ManagesData relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource
to:AbstractDataElement[1] the data resource being accessed
Constraints

1. This relationship should not be used in Code models.

246 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics

Manages represents a certain change of state to a certain AbstractDataElement.

18.9.4 HasContent Class

HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an
element of a data model with any resource.

Superclass

Action::AbstractActionRelationship

Associations
from: ActionElement[1] “abstracted” action owned by some resource
to:AbstractDataElement[1] the data resource being accessed
Constraints

1. This relationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

Example (Java, embedded SQL, JDBC)

CREATE TABLE products (IDint primary key, name varchar, type varchar)
CREATE TABLE contracts (IDint primary key, product int, revenue decimal, dateSigned date)

final String findContractStatenment=
"SELECT * FROM contracts c¢, products p" +
"WHERE ID = ? AND c. product = p.ID";

public void cal cul ateRecognitions(|long contractlD) {
Connecti on db=Dri ver Manager. get Connection("j dbc: odbc: f oobar", "sunny","");
Prepar edSt at enent st nt =db. prepar eSt at ement (fi ndContract St at enent) ;
stnt.setLong(1,contractlD);
Resul t Set contracts=stnt.executeQuery();
contracts. next();
Money t ot al Revenue=Money. dol | ars(contracts. get Bi gDeci mal ("revenue"));
M Dat e recogni ti onDat e=new M Dat e(contracts. get Dat e("dat eSi gned"));

}

<?xm version="1.0" encodi ng="UTF- 8" ?>
<kdm Segnent xm :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: action="http://schena. ong. org/ spec/ KDM 1. 2/ acti on"
xm ns: code="http://schena. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: data="http://schena. ong. or g/ spec/ KDM 1. 2/ dat a"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 247

xm ns: kdnme"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt'
xm ns: platform="http://schema. ong. org/ spec/ KDM 1. 2/ pl at f orni' nane="Data Exanpl e">
<nmodel xm:id="id.0" xm:type="data: Dat aMbdel " name="Contracts">
<dat aEl enent xm:id="id.1" xm:type="data: Rel ati onal Schena" nanme="Contracts">
<dat aEl enent xm:id="id.2" xm:type="data: Rel ati onal Tabl e" nanme="products">
<dat aEl enent xm:id="id.3" xm:type="data: Uni queKey" name="ID"' inplenmentation="id.4"/>
<itenmUnit xmi:id="id.4" nanme="ID" type="id.172"/>
<itemUnit xmi:id="id.5" nanme="nane" type="id.173"/>
<itenmUnit xmi:id="id.6" nane="type" type="id.173"/>
</ dat aEl enent >
<dat aEl enent xm:id="id.7" xm:type="data: Rel ati onal Tabl e" name="contracts">
<dat aEl enent xm:id="id.8" xm:type="data: Uni queKey" nanme="ID"' inplenmentation="id.11"/>
<dat aEl ement xm:id="id.9" xm:type="data: Ref erenceKey" inplenmentation="id.12">
<dat aRel ation xm :id="id.10" xm :type="data: KeyRel ation" to="id.3" fron"id.9"/>
</ dat aEl enent >
<itemUnit xm:id="id.11" nanme="1D" type="id.172"/>
<itemUnit xm:id="id.12" nane="product" type="id.172"/>
<itemUnit xm:id="id.13" nane="revenue" type="id.174"/>
<itemUnit xm:id="id.14" nane="dateSigned" type="id.175"/>
</ dat aEl enent >
</ dat aEl enment >
<dat aEl enent xm :id="id. 15" xm:type="data: DataAction" name="d1" ki nd="Connect"
i npl enent ati on="id.79">
<abstraction xm:id="id.16" nane="dal" ki nd="Connect">
<actionRel ation xm:id="id.17" xm:type="action: Reads" to="id.80" from="id.16"/>
<actionRel ation xm:id="id.18" xm:type="action: Reads" to="id.81" from="id.16"/>
<actionRel ation xm:id="id.19" xm:type="action: Reads" to="id.82" fronm="id.16"/>
<actionRel ation xm:id="id.20" xm:type="platform ManagesResource" to="id.67"/>
</ abstracti on>
</ dat aEl emrent >
<dat aEl erent xm :id="id.21" xm:type="data: Dat aActi on" nane="d2" kind="Sel ect"
i mpl enentation="id.90 id.96 id.104">
<source xm:id="id.22" |anguage="sql"
sni ppet =" " ; sel ect * fromcontracts c, products p where ID = ? and c.product=p.1 D ""/>
<abstraction xm:id="id.23" name="wl" ki nd="Equal ">
<codeEl enent xm :id="id.24" xm:type="code: StorableUnit" name="t1" type="id.176" kind="register"/>
<actionRel ation xm:id="id.25" xm:type="action: Reads" to="id.11" from="id.23"/>
<actionRel ation xm:id="id.26" xm:type="action: Reads" to="id.77" fronm="id.23"/>
<actionRel ation xm:id="id.27" xm:type="action:Wites" to="id.24" frone"id.23"/>
<actionRel ation xm:id="id.28" xm:type="action:Flow' to="id.29"/>
</ abstraction>
<abstraction xm:id="id.29" name="w2" ki nd="Equal ">
<codeEl ement xm :id="id. 30" xm:type="code: StorableUnit" nanme="t2" type="id.176" kind="register"/>
<actionRel ation xm:id="id.31" xm:type="action: Reads" to="id.12" fronm="id.29"/>
<actionRel ation xm:id="id.32" xm:type="action: Reads" to="id.4" from="id.29"/>
<actionRel ation xm:id="id.33" xm:type="action: Wites" fron"id.29"/>
<actionRel ation xm:id="id.34" xm:type="action:Flow' to="id.35" from"id.29"/>
</ abstraction>
<abstraction xm :id="id.35" nane="w3" ki nd="And">
<codeEl ement xm :id="id. 36" xm:type="code: StorableUnit" nanme="t3" type="id.176" kind="register"/>
<actionRel ation xm:id="id.37" xm:type="action: Reads" to="id.24" fronm="id.35"/>
<actionRel ation xm:id="id.38" xm:type="action: Reads" to="id.30"/>
<actionRel ation xm:id="id.39" xm:type="action:Flow' to="id.40" from="id.35"/>
</ abstraction>
<abstraction xm :id="id.40" nane="w4" ki nd="Condition">

248 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<actionRel ation xm:id="id.41" xm:type="action: TrueFl ow' to="id.42" from="id.40"/>
</ abstraction>
<abstraction xm :id="id. 42" nane="sl1" kind="Sel ect">
<actionRel ati on xm:id="id.43" xm:type="data: ReadsCol umSet" to="id.7" from="id.42"/>
<actionRel ation xm:id="id.44" xm:type="action: Reads" to="id. 11" from="id. 42"/>
<actionRel ation xm :id="id.45" xm:type="action: Reads" to="id. 12" from="id. 42"/>
<actionRel ation xm:id="id.46" xm:type="action: Reads" to="id.13" fron¥"id. 42"/>
<actionRel ation xm:id="id.47" xm:type="action: Reads" to="id. 14" fron¥"id. 42"/>
<actionRel ation xm:id="id.48" xm:type="data: ReadsCol umSet" to="id.2"/>
<actionRel ation xm :id="id.49" xm:type="action: Reads" to="id.4" fronr"id.42"/>
<actionRel ati on xm :id="id.50" xm:type="action: Reads" to="id.5" frone"id.42"/>
<actionRel ati on xm :id="id.51" xm:type="action: Reads" to="id.6" frone"id.42"/>
<actionRel ation xm:id="id.52" xm:type="action:Wites" to="id.103" from="id. 42"/>

<actionRel ation xm:id="id.53" xm:type="platform ReadsResource" to="id.67" fron"id.42"/>

</ abstraction>
</ dat aEl ement >
<dat aEl enent xm :id="id.54" xm:type="data: Dat aAction" name="d3" kind="Retrieve"
i npl enentation="id. 115" >
<abstraction xm :id="id.55" name="da2" kind="Assign">
<actionRel ation xm:id="id.56" xm:type="action: Reads" to="id.13" fron¥"id.55"/>
<actionRel ation xm:id="id.57" xm:type="action: Addresses" to="id.103" from="id.55"/>
<actionRel ation xm:id="id.58" xm:type="action:Wites" to="id.117" frone"id.55"/>
</ abstraction>
</ dat aEl ement >
<dat aEl ement xm :id="id.59" xm:type="data: Dat aAction" nane="d4" kind="Retrieve"
i mpl enentation="id.130">
<abstraction xm :id="id.60" name="da3" kind="Assign">
<actionRel ation xm:id="id.61" xm:type="action: Reads" to="id. 14" from="id. 60"/>
<actionRel ation xm:id="id. 62" xm:type="action: Addresses" to="id. 103" from="id.60"/>
<actionRel ation xm:id="id.63" xm:type="action:Wites" to="id.132" fronr"id.60"/>
</ abstraction>
</ dat aEl ement >
</ nmodel >
<nmodel xm :id="id.64" xm:type="platformPlatformbdel">
<pl at fornEl ement xmi:id="id.65" xm:type="platform Machi ne">
<resource xm:id="id.66" >
<resource xm:id="id. 67" xm:type="pl atform Dat aManager" nanme="foobar">
<abstraction xm:id="id.68" nane="dml">
<actionRel ation xm:id="id.69" xm:type="data: HasContent" to="id.1"/>
</ abstraction>
</ resource>
</ resource>
</ pl at f or mEl ement >
</ nodel >
<nmodel xm:id="id.70" xm:type="code: CodeMddel " nane="Application">
<codeEl ement xm :id="id.71" xm:type="code: Cl assUnit" name="Dat aExanpl e">
<codeEl ement xm :id="id.72" xm:type="code: MenberUnit" nane="findContract St atenent">
<codeRel ation xm :id="id.73" xm:type="code: HasVal ue" to="id. 145" frone"id. 72"/>
</ codeEl enent >
<codeEl ement xm:id="id.74" xm:type="code: Met hodUnit" nane="cal cul at eRecogniti ons">
<entryFlow xm :id="id.75" to="id.79" from"id.74"/>
<codeEl ement xm :id="id.76" xm:type="code: Signature">
<paraneterUnit xm:id="id.77" nanme="contractNunber" type="id.179"/>
</ codeEl enent >

<codeEl ement xm :id="id.78" xm:type="code: StorableUnit" name="db" type="id. 155" kind="Iocal"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

249

<codeEl ement xm :id="id.79" xm:type="action:ActionEl erent" name="c1l" kind="Call">
<codeEl ement xm :id="id.80" xm:type="code: Val ue" nanme=""j dbc: odbc: f oobar &uot ; "/ >
<codeEl ement xm :id="id.81" xm:type="code: Val ue" nane="" sunny"" type="id.178"/>
<codeEl enent xm :id="id.82" xm:type="code: Val ue" name="" " ;" type="id.178"/>
<actionRel ation xm:id="id.83" xm:type="action: Reads" to="id.80" fron="id.79"/>
<actionRel ation xm:id="id.84" xm:type="action: Reads" to="id.81" fron="id.79"/>
<actionRel ation xm:id="id.85" xm:type="action: Reads" to="id.82" from="id.79"/>
<actionRel ation xm:id="id.86" xm:type="action:Calls" to="id.154" frone"id.79"/>
<actionRelation xm:id="id.87" xm:type="action:Wites" to="id.78" fronme"id.79"/>
<actionRel ation xm:id="id.88" xm:type="action:Flow' to="id.90" from="id.79"/>
</ codeEl enment >
<codeEl enent xm:id="id.89" xm:type="code: StorableUnit" name="stm" type="id. 161" kind="|ocal"/>
<codeEl ement xm:id="id.90" xm:type="action:ActionEl ement" name="c2" ki nd="MethodCall">
<actionRel ation xm:id="id.91" xm:type="action: Addresses" to="id.78" from="id.90"/>
<actionRel ation xm:id="id.92" xm:type="action: Reads" to="id.72" from="id.90"/>
<actionRel ation xm:id="id.93" xm:type="action:Calls" to="id.156" from="id.90"/>
<actionRel ation xm:id="id.94" xm:type="action:Wites" to="id.89" from="id.90"/>
<actionRel ation xm:id="id.95" xm:type="action:Flow' to="id.96" from="id.90"/>
</ codeEl enent >
<codeEl ement xm:id="id.96" xm:type="action:ActionEl ement" nanme="c3" ki nd="MethodCall">
<codeEl ement xm :id="id.97" xm :type="code: Val ue" nane="1"/>
<actionRel ation xm:id="id.98" xm:type="action: Addresses" to="id.89" fron"id.96"/>
<actionRel ation xm:id="id.99" xm:type="action: Reads" to="id.97" fron"id.96"/>
<actionRel ation xm:id="id.100" xm:type="action: Reads" to="id.77" from="id.96"/>
<actionRel ation xm:id="id.101" xm:type="action:Calls" to="id.162" fron¥"id.96"/>
<actionRel ation xm:id="id.102" xm:type="action: Flow' to="id.104" fronm"id.96"/>
</ codeEl enent >
<codeEl enent xm:id="id.103" xm:type="code: Storabl eUnit" nanme="contracts" type="id. 157"
ki nd="1ocal "/ >
<codeEl enent xm :id="id.104" xm:type="action: Acti onEl ement" nane="c4" ki nd="MethodCall">
<actionRel ation xm:id="id.105" xm:type="action: Addresses" to="id.89" from="id.104"/>
<actionRel ation xm:id="id.106" xm:type="action:Calls" to="id.163" fron¥"id.104"/>
<actionRel ation xm:id="id.107" xm:type="action:Wites" to="id.103" from="id.104"/>
<actionRel ation xm:id="id.108" xm:type="action:Flow' to="id.109" from="id.104"/>
</ codeEl enent >
<codeEl enent xm:id="id.109" xm:type="action: Acti onEl emrent" nane="c5" ki nd="MethodCall">
<actionRel ation xm:id="id.110" xm:type="action: Addresses" to="id.103" from="id.109"/>
<actionRelation xm:id="id.111" xm:type="action:Calls" to="id.158" fron¥"id.109"/>
<actionRel ation xm:id="id.112" xm :type="action: Flow' to="id.114" fron¥"id. 109"/>
</ codeEl enent >
<codeEl ement xm:id="id.113" xm:type="code: StorableUnit" nane="total Revenue" type="id. 165"
ki nd="1ocal "/ >
<codeEl ement xm:id="id.114" xm :type="action: Acti onEl ement" nanme="c6" ki nd="Conpound">
<codeEl ement xm :id="id.115" xm :type="action: Acti onEl ement" name="c6.1" kind="Call">
<codeEl ement xm:id="id.116" xm :type="code: Val ue" nane=""revenue""/>
<codeEl ement xm:id="id.117" xm :type="code: StorableUnit" name="t4" kind="register"/>
<actionRel ation xm:id="id.118" xm :type="action: Addresses" to="id. 103" from="id. 115"/>
<actionRel ation xm:id="id.119" xm:type="action:Calls" to="id.159" frone"id.115"/>
<actionRel ation xm:id="id.120" xm:type="action:Wites" to="id.117" from="id.115"/>
<actionRel ation xm:id="id.121" xm:type="action: Flow' to="id.122" fron¥"id.115"/>
</ codeEl enent >
<codeEl ement xm:id="id.122" xm :type="action: Acti onEl ement" nanme="c6.2" kind="Call">
<actionRel ation xm:id="id.123" xm:type="action: Reads" to="id. 117" fron¥"id.122"/>
<actionRel ation xm:id="id.124" xm:type="action:Calls" to="id.166" frone"id.122"/>
<actionRel ation xm:id="id.125" xm:type="action:Wites" to="id.113" from="id. 122"/>

250 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<actionRel ation xm :id="id.126" xm :type="action: Fl ow'/>
</ codeEl erment >
<actionRel ation xm :id="id.127" xm :type="action: Flow' to="id. 115" fron="id. 114"/>
</ codeEl ement >
<codeEl enent xm :id="id.128" xm:type="code: Storabl eUnit" name="recogni zedDate" type="id. 168"
ki nd="1ocal "/ >
<codeEl ement xm :id="id.129" xm :type="action: ActionEl ement" nane="c7" ki nd="MethodCall">
<codeEl ement xm :id="id.130" xm:type="action: Acti onEl ement" nane="c7.1" kind="Call">
<codeEl ement xm :id="id. 131" xni:type="code: Val ue" nanme="" ; dat eSi gned""/>
<codeEl enent xm :id="id. 132" xm:type="code: StorableUnit" name="t5" kind="register"/>
<actionRel ation xm :id="id. 133" xm:type="action: Addresses" to="id.103" from="id.130"/>
<actionRel ati on xm:id="id. 134" xm:type="action:Calls" to="id.160" from="id.130"/>
<actionRel ation xm:id="id.135" xm:type="action:Wites" to="id.132" from="id.130"/>
<actionRel ation xm:id="id.136" xm:type="action:Flow' to="id.137" fron¥"id. 130"/>
</ codeEl erment >
<codeEl enent xm :id="id. 137" xm:type="action: ActionEl ement"” nane="c7.2" ki nd="New'>
<actionRel ation xm:id="id. 138" xm:type="action:Creates" to="id. 168" fronm="id.137"/>
<actionRel ation xm:id="id. 139" xm:type="action:Wites" to="id.128" from="id.137"/>
<actionRel ation xm :id="id.140" xm :type="action: Fl ow'/>
</ codeEl erment >
<codeEl ement xm :id="id. 141" xm :type="action: Acti onEl ement" nane="c7.3" ki nd="MethodCall">
<actionRel ati on xm :id="id. 142" xm :type="action: Reads" to="id. 132" from="id.137"/>
<actionRel ati on xm:id="id. 143" xm:type="action:Calls" to="id.169" from="id.141"/>
<actionRel ati on xm :id="id. 144" xm :type="action:Wites" to="id.128" from="id. 141"/>
</ codeEl erment >
</ codeEl erment >
</ codeEl erment >
<codeEl enent xm :id="id. 145" xm :type="code: Val ue"
nanme="" ; SELECT * FROM contracts c, products p WHERE | D=? AND c. product =p. | D" ; "
type="id. 178"/ >
<codeEl ement xm :id="id. 146" xm :type="code: MethodUnit" nanme="init" kind="constructor">
<entryFlow xmi:id="id. 147" to="id. 148" frone"id. 146"/ >
<codeEl ement xm :id="id.148" xm :type="action: Acti onEl ement" nane="i1" ki nd="Assign">
<actionRel ati on xm:id="id. 149" xm :type="action: Reads" to="id. 145" fronm="id. 148"/>
<actionRel ati on xm :id="id. 150" xm:type="action:Wites" to="id.72" from="id.148"/>
</ codeEl ement >
</ codeEl erment >
</ codeEl erment >
</ model >
<nmodel xm :id="id.151" xm :type="code: CodeModel " nane="Java packages">
<codeEl ement xmi :id="id.152" xm :type="code: Package" nanme="java.sql">
<codeEl ement xm :id="id.153" xm :type="code: d assUnit" nanme="Driver Manager">
<codeEl ement xm :id="id.154" xm :type="code: Met hodUnit" nane="get Connection" kind="abstract"/>
</ codeEl erment >
<codeEl ement xmi :id="id.155" xm :type="code: C assUnit" nane="Connection">
<codeEl enment xm :id="id.156" xm :type="code: Met hodUnit" name="prepareStatenent” kind="abstract"/>
</ codeEl enent >
<codeEl ement xm :id="id.157" xm :type="code: d assUnit" nanme="Result Set">
<codeEl ement xm :id="id.158" xm :type="code: MethodUnit" nane="next" ki nd="abstract"/>
<codeEl ement xmi :id="id.159" xm :type="code: Met hodUnit" nane="get Bi gDeci mal " ki nd="abstract"/>
<codeEl ement xm :id="id.160" xm :type="code: Met hodUnit" nane="getDate" kind="abstract"/>
</ codeEl erment >
<codeEl ement xm :id="id.161" xm :type="code: d assUnit" nanme="Statenment">
<codeEl ement xm :id="id.162" xm :type="code: Met hodUnit" nane="setLong" ki nd="abstract"/>
<codeEl ement xm :id="id.163" xm:type="code: Met hodUnit" nanme="executeQuery" kind="abstract"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 251

</ codeEl enent >
</ codeEl erment >
<codeEl ement xm :id="id. 164" xm :type="code: Package" nanme="Mney">
<codeEl enent xm :id="id. 165" xm:type="code: Cl assUnit" nane="Money">
<codeEl enent xm:id="id. 166" xm:type="code: Met hodUnit" nanme="dol | ars" ki nd="abstract"/>
</ codeEl enent >
</ codeEl erment >
<codeEl ement xm :id="id.167" xm :type="code: Package" name="M Date">
<codeEl ement xm :id="id. 168" xm:type="code:C assUnit" nane="M Date">
<codeEl enent xm:id="id. 169" xm:type="code: Met hodUnit" nanme="M Date" ki nd="abstract"/>
</ codeEl enent >
</ codeEl enment >
</ model >
<nmodel xm:id="id.170" xm :type="code: CodeMdel " nane="Common Dat at ypes">
<codeEl ement xm:id="id.171" xm :type="code: LanguageUnit" nane="SQL dat atypes">
<codeEl enent xm:id="id.172" xm:type="code:|nteger Type" name="sqgl int"/>
<codeEl enent xm:id="id.173" xm:type="code: StringType" name="sql varchar"/>
<codeEl enent xm:id="id. 174" xm :type="code: Deci mal Type" nane="sql decinmal"/>
<codeEl ement xm :id="id.175" xm :type="code: Dat eType" nane="sql date"/>
<codeEl ement xm :id="id.176" xnmi :type="code: Bool eanType"/>
</ codeEl erment >
<codeEl enent xm:id="id.177" xm:type="code: LanguageUnit" nane="Java dat atypes">
<codeEl enent xm:id="id.178" xm:type="code: StringType"/>
<codeEl enent xm:id="id.179" xm:type="code:|ntegerType" nanme="java |ong"/>
<codeEl ement xm :id="id.180" xm :type="code:|ntegerType" nane="java byte"/>
</ codeEl erment >
</ model >
</ kdm Segnent >

18.10 StructuredData Class Diagram

The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram
shown in Figure 18.8 captures these classes and their relations.

AbstractDataElement
XMLSchema | AbstractContentElement
0..1 0.*
+towner +contentElement
{subsets owner} {subsets ownedElement}

Figure 18.8 - StructuredData Class Diagram

18.10.1 XMLSchema

The XMLSchema class represents the top level container for a KDM metamodel of an XML document.

252 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractDataElement

Associations

contentElement :AbstractContentElement[0..*] Individual content elements owned by this schema.

Semantics

XMLSchema is a logical container for AbstractContentElements as well as some other DataResource elements (for
example, DataEvents).

18.10.2 AbstractContentElement (abstract)

The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the
content of XML schemas and documents as well as various structured data items that can be associated with other KDM
elements.

Superclass

AbstractDataElement

Semantics

AbstractContentElement represents common properties of content elements.

18.11 ContentElements Class Diagram

The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 18.9 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 253

+contentElement
{subsets ownedElement

ordered} " _| AbstractContentElement

0.*
+contentElement
{subsets ownedElement}

+owner
{subsets owner}g 4

Contentitem

ContentType

ComplexContentType +type

1

0..

: +type
MixedContent ContentElement
MemberTypes Gr};)upContent
1
\
\ ContentAttribute
AllContent ChoiceContent \\ContentReference

SimpleContentType
<kind : String

SeqContent

ContentRestriction

<kind : String
<value : String

Figure 18.9 - ContentElements Class Diagram

18.11.1 Contentltem (generic)

The Contentltem class is a generic meta-model element that represents named items and references of the XML schema:
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations
contentElement :AbstractContentElement[0..*] owned content elements
type:ComplexContentType[0..1] content type of the current Contentltem
Semantics

18.11.2 ComplexContentType

The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as
subclasses of ComplexContentType.

254 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*] Owned content elements

Semantics
18.11.3 SimpleContentType
The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

kind:String content kind of the current SimpleContentType

Associations

type:ComplexContentType[0..*] content type of the current Contentltem

Semantics

Simple types, such as string and decimal, are built in to XML Schema, while others are derived from the built-in’s. The kind of
SimpleContentType can be “list,” “union,” “enumeration,” etc.

9 ¢

18.11.4 ContentRestriction

The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

Attributes
kind :String type of the content restriction (XML)
value:String value of the constraint

Semantics

kind is an XSD restriction, such as minExclusive, minInclusive, maxExclusive, maxInclusive, totalDigits, fractionDigits,
length, minLength, maxLength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs,
maxOQOccurs, required, fixed; or an XSD enumeration.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 255

Example

<xsd: si npl eType nane="nyl nteger">
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="10000"/>
<xsd: max| ncl usi ve val ue="99999"/>
</ xsd:restriction>
</ xsd: si nmpl eType>

<xsd: si npl eType nane="SKU"'>
<xsd:restriction base="xsd:string">
<xsd: pattern value="\d{3}-[A-Z]{2}"/>
</ xsd:restriction>
</ xsd: si nmpl eType>

<xsd: si npl eType nane="USSt at e" >
<xsd:restriction base="xsd:string">
<xsd: enunerati on val ue="AK"/>
<xsd: enunerati on val ue="AL"/>
<xsd: enunerati on val ue="AR'/ >
<l-- and so on ... -->
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="listOf Myl nt Type" >
<xsd:list itenfType="nylnteger"/>
</ xsd: si nmpl eType>

<xsd: si npl eType nane="USSt at eLi st">
<xsd:list itenlype="USState"/>
</ xsd: si npl eType>

<xsd: si npl eType nane="Si xUSSt at es" >
<xsd:restriction base="USSt at eLi st">
<xsd: |l ength val ue="6"/>
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="zi pUni on">
<xsd: uni on nenber Types="USState |istCf Myl nt Type"/>
</ xsd: si npl eType>

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xm :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: code="http://schenma. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: data="http://schenma. ong. or g/ spec/ KDM 1. 2/ dat a"
xm ns: kdm="http://schema. ong. or g/ spec/ KDM 1. 2/ kdm' name="XM. Si npl e Content Exanple">
<model xm :id="id.0" xm:type="data: Dat aMbdel ">
<dat aEl enent xmi:id="id.1" xm:type="data: XM_.Schema" nanme="Si npl eType exanpl es">
<contentEl enent xm:id="id.2" xm:type="data: Si npl eCont ent Type" nane="MI nteger">
<dataRel ation xm:id="id.3" xm:type="data:RestrictionO" to="id.27" from"id.2"/>
<content El enent xm:id="id.4" xm:type="data: ContentRestriction"
ki nd="m nl ncl usi ve" val ue="10000"/>
<content El ement xm:id="id.5" xm:type="data: ContentRestriction"
ki nd="maxl ncl usi ve" val ue="99999"/ >

256 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</ cont ent El ement >
<contentEl enent xm:id="id.6" xm:type="data:Si npl eCont ent Type" nanme="SKU'>
<dataRel ation xm :id="id.7" xm:type="data:RestrictionO" to="id.29" from="id.2"/>
<content El enent xm:id="id.8" xm:type="data: ContentRestriction"
ki nd="pattern" val ue="" ;\d{3}-[A Z] {2} ""/>
</ cont ent El ement >
<contentEl enent xm:id="id.9" xm:type="data:Si npl eCont ent Type" nanme="USSt ate">
<contentEl enent xm:id="id.10" xm :type="data: Content Restriction"
ki nd="enuner ati on" val ue="" ; AK" ; "/ >
<content El enent xm :id="id.11" xm:type="data: ContentRestriction"
ki nd="enuner ati on" val ue="" ; AL" ;" />
<content El enent xm:id="id.12" xm :type="data: ContentRestriction"
ki nd="enuner ati on" val ue="" ; AR" ; "/ >
</ cont ent El ement >
<contentEl enent xm:id="id.13" xm:type="data: Si npl eContent Type" name="Ilist O Myl nt Type">
<content El enent xm :id="id.14" xm :type="data:ListContent">
<dataRel ation xm:id="id.15" xm:type="data: TypedBy" to="id.2" from="id.14"/>
</ cont ent El ement >
</ cont ent El ement >
<contentEl enent xm :id="id.16" xm:type="data: Si npl eContent Type" nanme="USSt at eLi st">
<contentEl enent xm:id="id.17" xm:type="data:ListContent" name="">
<dataRel ation xmi:id="id.18" xm:type="data: TypedBy" to="id.9" from="id.17"/>
</ cont ent El ement >
</ cont ent El ement >
<contentEl enent xm :id="id.19" xm:type="data: Si npl eContent Type" nanme="Si xUSSt at es" >
<dat aRel ation xm :id="id.20" xm:type="data:RestrictionOf" to="id.16" from="id.19"/>
<contentEl enent xm:id="id.21" xm:type="data: ContentRestriction" kind="Iength" value="6"/>
</ cont ent El ement >
<content El enent xm :id="id.22" xm:type="data: Si npl eContent Type" nanme="zi pUni on">
<content El enent xm :id="id.23" xm:type="data: Uni onContent">
<dat aRel ation xm :id="id.24" xm:type="data: TypedBy" to="id.9" from"id.23"/>
<dat aRel ation xm :id="id.25" xm:type="data: TypedBy" to="id.13" from="id.23"/>
</ cont ent El ement >
</ cont ent El enent >

</ dat aEl enent >
<dat aEl ement xmi :id="id.26" xm:type="data: XM_.Schema" nanme="xsd">

<contentEl enent xm:id="id.27" xm:type="data: Si npl eContent Type" nanme="xsd: |nteger">
<dat aRel ation xm :id="id.28" xm:type="data: DatatypeO" to="id.41" fron¥"id.27"/>

</ cont ent El ement >

<contentEl enent xm:id="id.29" xm:type="data: Si npl eContent Type" nane="xsd: String">
<dat aRel ation xm :id="id.30" xm:type="data:DatatypeO" to="id.42" fronr"id.29"/>

</ cont ent El enent >

<contentEl enent xm:id="id.31" xm:type="data: Si npl eContent Type" name="xsd: Deci mal ">
<dat aRel ation xm :id="id.32" xm:type="data: DatatypeO" to="id.43" fron¥"id.31"/>

</ cont ent El ement >

<contentEl enent xm:id="id.33" xm:type="data: Si npl eContent Type" nane="xsd: positivelnteger">
<dat aRel ation xm :id="id.34" xm:type="data:DatatypeO" to="id.41" fronr"id.33"/>

</ cont ent El enent >

<content El enent xm :id="id.35" xm:type="data:Si npl eContent Type" nane="xsd: date">
<dat aRel ation xm :id="id.36" xm:type="data: DatatypeO" to="id.44" fron¥"id.35"/>

</ cont ent El ement >

<contentEl enent xm:id="id.37" xm:type="data: Si npl eContent Type" nanme="xsd: any"/>

<content El enent xm:id="id.38" xm:type="data:Si npl eContent Type" nane="xsd: NMTOKEN"/ >

</ dat aEl ement >
</ nodel >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

257

<nmodel xm:id="id.39" xm:type="code: CodeMdel ">
<codeEl ement xm :id="id.40" xm :type="code: LanguageUlnit">
<codeEl ement xm :id="id.41" xm:type="code:|ntegerType" nane="xsd integer"/>
<codeEl enent xm:id="id.42" xm:type="code: StringType" nane="xsd string"/>
<codeEl enent xm:id="id.43" xm:type="code: Deci mal Type" nanme="xsd decimal"/>
<codeEl enent xm:id="id.44" xm:type="code: Dat eType" nanme="xsd date"/>
</ codeEl erment >
</ nodel >
</ kdm Segment >

18.11.5 AllContent Class

An AllContent class is a meta-model element that represents complex types with the “all” order indicator.

Superclass

ComplexContentType

Semantics
18.11.6 SeqContent Class
The SeqContent class is a meta-model element that represents complex types with the “sequence” order indicator.

Superclass

ComplexContentType

Semantics
18.11.7 ChoiceContent Class
A ChoiceContent class is a meta-model element that represents complex types with the “choice” order indicator.

Superclass

XMLComplexType

Semantics
18.11.8 GroupContent Class
A GroupContent class is a meta-model element that represents complex types with the “group” group indicator.

Superclass

ComplexContentType

258 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Semantics
18.11.9 MixedContent Class
A MixedContent class is a meta-model element that represents complex types with the “mixed” indicator.

Superclass

ComplexContentType

Semantics

18.11.10 ContentAttribute Class

A ContentAttribute class is a meta-model element that represents the XML “attribute” declaration mechanism of XML
Schemas.

Superclass

Contentltem

Semantics

18.11.11 ContentElement Class

A ContentElement class is a meta-model element that represents the XML “element” declaration mechanism of XML
Schemas.

Superclass

Contentltem

Semantics

18.11.12 ContentReference Class

A ContentReference class is a meta-model element that represents the XML “reference” declaration mechanism of XML
Schemas.

Superclass

Contentltem

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 259

Semantics

Example

<xsd: el enent nane="|etter Body">
<xsd: conpl exType ni xed="true">
<xsd: sequence>
<xsd: el ement nanme="sal utation">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: el enent nane="nane" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el enent nane="quantity" type="xsd: positivel nteger"/>
<xsd: el enent nane="product Nane" type="xsd:string"/>
<xsd: el enent nane="shi pDat e" type="xsd: date" m nCccurs="0"/>
<l-- etc. -->

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nanme="USAddr ess" >
<xsd: sequence>

<xsd: el ement nanme="nane" type="xsd:string"/>
<xsd: el ement name="street" type="xsd:string"/>
<xsd: el enent nane="city" type="xsd: string"/>
<xsd: el enent nane="state" type="xsd:string"/>
<xsd: el enent nane="zip" type="xsd: deci mal "/ >

</ xsd: sequence>
<xsd:attribute name="country" type="xsd: NMTCKEN' fi xed="US"/>
</ xsd: conpl exType>

<xsd: conpl exType name="I|tens">
<xsd: sequence>
<xsd: el ement name="itenm m nOccurs="0" maxCccur s="unbounded">
<xsd: conpl exType>

<xsd: sequence>
<xsd: el enent nane="product Nane" type="xsd:string"/>
<xsd: el enent nane="quantity">

<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">
<xsd: maxExcl usi ve val ue="100"/>
</ xsd:restriction>
</ xsd: si npl eType>

</ xsd: el ement >
<xsd: el ement nanme="USPrice" type="xsd:decimal"/>
<xsd: el enent ref="comment" m nCOccur s="0"/ >
<xsd: el ement nanme="shi pDate" type="xsd:date" m nQOccurs="0"/>

</ xsd: sequence>

<xsd:attribute name="partNunl' type="SKU' use="required"/>

</ xsd: conpl exType>
</ xsd: el ement >
</ xsd: sequence>

260 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</ xsd: conpl exType>

<xsd: el ement name="international Price">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd:restriction base="xsd: anyType">
<xsd:attribute nane="currency" type="xsd:string"/>
<xsd:attribute nane="val ue" type="xsd: deci mal "/ >
</ xsd:restriction>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: conpl exType nane="PurchaseO der Type" >
<xsd: sequence>
<xsd: choi ce>
<xsd: group ref="shi pAndBi |l | "/ >
<xsd: el enent nane="si ngl eUSAddr ess" type="USAddress"/>
</ xsd: choi ce>
<xsd: el ement ref="coment" m nCccurs="0"/>
<xsd: el ement name="itens" type="ltens"/>
</ xsd: sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</ xsd: conpl exType>

<xsd: group id="shi pAndBill">
<xsd: sequence>
<xsd: el enent nane="shi pTo" type="USAddress"/>
<xsd: el enent nane="bill To" type="USAddress"/>
</ xsd: sequence>
</ xsd: gr oup>

<?xm version="1.0" encodi ng="UTF- 8" ?>

<kdm Segnent xm :version="2.1"
xm ns: xm ="http://schema. ong. org/ spec/ XM /2. 1"
xm ns: code="htt p://schema. ony. or g/ spec/ KDM 1. 2/ code"
xm ns: data="http://schena. ong. or g/ spec/ KDM 1. 2/ dat a"

xm ns: kdnme"htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdn' name="XM. Conpl ex Content Exanple">

<nmodel xm:id="id.0" xm:type="data: Dat aMbdel ">
<dat aEl enent xm:id="id.1" xm:type="data: XM_.Schema" nanme="Conpl ex Content">
<content El enent xm:id="id.2" xm:type="data: ContentEl ement" name="|etterBody">
<dataRel ation xm:id="id.3" xm:type="data: TypedBy" to="id.4" frone"id.2"/>
<contentEl enent xm:id="id.4" xm:type="data: M xedContent" name="ml">
<contentEl enent xmi:id="id.5" xm:type="data: SeqContent">
<contentEl enent xm:id="id.6" xm:type="data: ContentEl ement" nane="sal utation">
<dataRel ation xm:id="id.7" xm:type="data: TypedBy" to="id.8" fronr"id.6"/>
<contentEl enent xm:id="id.8" xm:type="data: M xedContent">
<contentEl enent xm:id="id.9" xm:type="data: SeqContent">
<contentEl enent xm:id="id.10" xm :type="data: ContentEl enent" nanme="nane">

<dat aRel ation xm:id="id.11" xm:type="data: TypedBy" to="id.88" from="id.10"/>

</ cont ent El enent >
</ cont ent El enent >
</ cont ent El ement >
</ cont ent El ement >
<contentEl enent xm:id="id.12" xm:type="data: ContentEl enent" nane="quantity">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

261

<dat aRel ation xm:id="id.13" xm:type="data: TypedBy" to="id.92" from="id.12"/>
</ cont ent El enent >
<content El enent xm :id="id.14" xm:type="data: Content El ement" nane="product Nane">
<dat aRel ation xm :id="id.15" xm :type="data: TypedBy" to="id.88" from="id.14"/>
</ cont ent El enent >
<content El enent xm:id="id. 16" xm:type="data: ContentEl enent" nanme="shi pDate">
<dat aRel ation xm :id="id.17" xm:type="data: TypedBy" to="id. 94" fronm="id.16"/>
</ cont ent El enent >
</ cont ent El enent >
</ cont ent El enent >
</ cont ent El enent >
<content El ement xm :id="id.18" xm :type="data: Conpl exContent Type" nanme="USAddress">
<content El enent xmi:id="id.19" xm:type="data: SeqCont ent">
<content El enent xmi:id="id.20" xm:type="data: ContentEl ement" nane="nane">
<dat aRel ation xm :id="id.21" xm:type="data: TypedBy" to="id.88" from="id.20"/>
</ cont ent El enent >
<content El ement xm:id="id.22" xm:type="data: ContentEl enent" name="street">
<dataRel ation xm :id="id.23" xm:type="data: TypedBy" to="id.88" from="id.22"/>
</ cont ent El enent >
<content El enent xmi:id="id.24" xm:type="data: ContentEl ement" nane="city">
<dat aRel ation xm :id="id.25" xm:type="data: TypedBy" to="id.88" from="id.24"/>
</ cont ent El enent >
<content El enent xm :id="id.26" xm:type="data: ContentEl enent" name="state">
<dataRel ation xm :id="id.27" xm:type="data: TypedBy" to="id.88" from="id.26"/>
</ cont ent El enent >
<content El enent xm :id="id.28" xm:type="data: ContentEl ement" nanme="zip">
<dat aRel ation xm :id="id.29" xm:type="data: TypedBy" to="id.88" from="id.28"/>
</ cont ent El enent >
</ cont ent El enent >
<content El enent xm :id="id.30" xm:type="data: ContentAttribute" nane="country">
<dataRel ation xm :id="id.31" xm:type="data: TypedBy" to="id. 97" from="id.30"/>
<content El enent xm:id="id.32" xm:type="data: ContentRestriction"
ki nd="fi xed" val ue="" ; US" ;" />
</ cont ent El enent >
</ cont ent El enent >
<content El ement xm :id="id.33" xm:type="data: Conpl exContent Type" nanme="itens">
<content El enent xmi:id="id.34" xm:type="data: SeqCont ent">
<content El enent xmi:id="id.35" xm:type="data: ContentEl ement" nane="iteni>
<dat aRel ation xm :id="id.36" xm:type="data: TypedBy" to="id.39" from="id.35"/>
<content El enent xm :id="id.37" xm:type="data: ContentRestriction" kind="m nCccurs" val ue="0"/>
<content El ement xm :id="id.38" xm:type="data: ContentRestriction"
ki nd="maxCccurs" val ue="unbounded"/ >
<content El enent xm:id="id.39" xm:type="data: Conpl exCont ent Type" name="i">
<content El ement xm :id="id.40" xm:type="data: SeqCont ent">
<content El ement xm:id="id.41" xm:type="data: ContentEl enent" name="product Namel">
<dat aRel ation xm :id="id. 42" xm:type="data: TypedBy" to="id. 88" fronme"id.41"/>
</ cont ent El ement >
<content El enent xm :id="id.43" xm:type="data: ContentEl enent" nane="quantityl">
<dat aRel ation xm :id="id. 44" xm:type="data: TypedBy" to="id. 45" frome"id. 43"/>
<content El ement xm :id="id.45" xm:type="data: Si npl eCont ent Type" name="st1">
<dat aRel ation xm :id="id. 46" xm:type="data: RestrictionOf" to="id.92" from="id.45"/>
<content El ement xm :id="id.47" xm:type="data: ContentRestriction"
ki nd="maxExcl usi ve" val ue="100"/>
</ cont ent El enent >
</ cont ent El enent >

262 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<content El enent xm:id="id.48" xm:type="data: ContentEl ement" nane="USPrice">
<dat aRel ation xm :id="id.49" xm:type="data: TypedBy" to="id. 90" from="id.48"/>
</ cont ent El enent >
<content El enent xm :id="id.50" xm:type="data: Cont ent Ref erence">
<dataRel ation xm :id="id.51" xm:type="data: ReferenceTo" to="id.83" from="id.50"/>
<content El enent xm:id="id.52" xm:type="data: ContentRestriction"
ki nd="m nCccurs" val ue="0"/>
</ cont ent El enent >
<content El enent xm:id="id.53" xm:type="data: ContentEl ement" nane="shi pDatel">
<dataRel ation xm :id="id.54" xm:type="data: TypedBy" to="id.94" from="id.53"/>
</ cont ent El ement >
</ cont ent El ement >
<content El enent xmi:id="id.55" xm:type="data: ContentAttribute" name="partNum'>
<dat aRel ation xm :id="id.56" xm:type="data: TypedBy" fron¥"id.55"/>
<content El enent xm:id="id.57" xm:type="data: ContentRestriction"
ki nd="use" val ue="required"/>
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
<content El enent xm :id="id.58" xm:type="data: ContentEl enent" name="international price">
<content El enent xm:id="id.59" xm:type="data: Conpl exCont ent Type" nane="">
<dat aRel ation xmi:id="id.60" xm:type="data:RestrictionO" to="id.96" fronm="id.59"/>
<contentEl enent xmi:id="id.61" xm:type="data: ContentAttribute" name="currencyl">
<dat aRel ation xm :id="id.62" xm:type="data: TypedBy" to="id.88" from="id.61"/>
</ cont ent El ement >
<content El enent xm:id="id.63" xm:type="data: ContentAttribute" name="val ue">
<dataRel ation xmi:id="id.64" xm:type="data: TypedBy" to="id.90" from="id.61"/>
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
<content El enent xm :id="id.65" xm:type="data: Conpl exCont ent Type" name="PurchaseO der Type">
<content El enent xm :id="id.66" xm:type="data: SeqContent">
<content El enent xm:id="id.67" xm:type="data: Choi ceContent">
<content El enent xm :id="id. 68" xm:type="data: ContentRef erence">
<dat aRel ation xm :id="id.69" xm:type="data: ReferenceTo" to="id.79" fron¥"id.68"/>
</ cont ent El ement >
<contentEl enent xmi:id="id.70" xm:type="data: ContentEl enent" nane="singl eUSAddr ess" >
<dat aRel ation xm:id="id.71" xm:type="data: TypedBy" to="id.18" from="id.70"/>
</ cont ent El enent >
</ cont ent El enent >
<contentEl enent xm:id="id.72" xm:type="data: Content Ref erence">
<dat aRel ation xm :id="id.73" xmi:type="data: ReferenceTo" to="id.83" fron"id.72"/>
<contentEl enent xmi:id="id.74" xm:type="data: ContentRestriction" kind="m nCccurs" val ue="0"/>
</ cont ent El enent >
<contentEl enent xm:id="id.75" xm:type="data: Content El ement" nane="itens">
<dat aRel ation xm :id="id.76" xm:type="data: TypedBy" to="id.33" from"id.75"/>
</ cont ent El enent >
</ cont ent El ement >
<contentEl enent xmi:id="id.77" xm:type="data: ContentAttribute" name="orderDate">
<dat aRel ation xm :id="id.78" xm:type="data: TypedBy" to="id. 94" from="id.77"/>
</ cont ent El enent >
</ cont ent El enent >
<contentEl enent xm:id="id.79" xm:type="data: GoupContent" name="shi pAndBill">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 263

<content El enent xmi:id="id.80" xm:type="data: SeqContent">
<content El enent xmi:id="id.81" xm:type="data: ContentEl ement"/>
<content El enent xmi:id="id.82" xm:type="data: ContentEl ement"/>
</ cont ent El enent >
</ cont ent El enent >
<content El ement xm :id="id.83" xm:type="data: ContentEl enent" name="comrent">
<dat aRel ation xm :id="id.84" xm:type="data: TypedBy" to="id.88" from="id.83"/>
</ cont ent El enent >
</ dat aEl enent >
<dat aEl enent xm :id="id. 85" xm:type="data: XM_.Schema" nane="xsd">
<content El ement xm :id="id.86" xm:type="data: SinpleContentType" nane="xsd:|nteger">
<dataRel ation xm :id="id.87" xm:type="data: DatatypeOf" to="id.100" from="id.86"/>
</ cont ent El enent >
<contentEl enent xm:id="id.88" xm:type="data:Sinpl eContentType" name="xsd: String">
<dat aRel ation xm :id="id.89" xnmi:type="data: DatatypeO" to="id.101" fron¥"id. 88"/>
</ cont ent El enent >
<content El ement xm :id="id.90" xm:type="data: Si npl eCont ent Type" nane="xsd: Deci nal ">
<dataRel ation xm :id="id.91" xm:type="data: DatatypeOf" to="id.102" from="id.90"/>
</ cont ent El enent >
<contentEl enent xm:id="id.92" xm:type="data: Si npl eContent Type" name="xsd: positivelnteger">
<dat aRel ation xm :id="id.93" xmi:type="data: DatatypeO" to="id.100" fron¥"id.92"/>
</ cont ent El enent >
<content El ement xm:id="id.94" xm:type="data: Si npl eContent Type" nanme="xsd: date">
<dataRel ation xm :id="id.95" xm:type="data: DatatypeOf" to="id.103" from="id.94"/>
</ cont ent El enent >
<contentEl enent xm:id="id.96" xm:type="data:Si npl eContent Type" name="xsd: any"/>
<contentEl enent xm:id="id.97" xm:type="data: Si npl eContent Type" name="xsd: NMTOKEN'/ >
</ dat aEl ement >
</ nodel >
<model xm :id="id.98" xm:type="code: CodeMddel ">
<codeEl ement xm :id="id.99" xm:type="code: LanguageUnit">
<codeEl ement xm :id="id.100" xm :type="code:|ntegerType" nane="xsd integer"/>
<codeEl ement xm :id="id.101" xm :type="code: StringType" nane="xsd string"/>
<codeEl enent xm:id="id. 102" xm :type="code: Deci mal Type" nane="xsd decinmal "/ >
<codeEl enent xm :id="id.103" xm:type="code: Dat eType" nane="xsd date"/>
</ codeEl enment >
</ nodel >
</ kdm Segment >

18.12 ContentRelations Class Diagram

The ContentRelations class diagram provides basic meta-model relationships that represent various structural properties
of the content. The class diagram shown in Figure 18.10 captures these classes and their relations.

264 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractDataRelationship

D atatype Of 0.* ReferenceTo

TypedBy

+from
{redefines from}

+o > +from 1
{redefines to} 1 Contentltem
D atatype {redefines frow} +to

{redefines to}

+
(from code) {reé%fines to}

+from
{redefines from}

+from
{redefines from}

0..*

{redefines to}

ExtensionTo RestrictionOf

0..* {redefines to}

Figure 18.10 - ContentRelations Class Diagram

18.12.1 TypedBy Class

The TypedBy class represents the relationship between a Contentltem and a content type, that can be represented by a
ComplexContentType class or one of its subclasses.

Superclass

AbstractDataRelationship

Associations
from:Contentltem[1] the content element or attribute
to:ComplexContentType[1] the content type element
Constraints

1. The “from” endpoint should be a ContentElement or a ContentAttribute class.

Semantics

TypedBy relationship represents an association between a content element and its type when this type is user-defined.
This relationship is similar to HasType from CodeModel.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 265

18.12.2 DatatypeOf Class

The DatatypeOf class represents the relationship between a CompelxContentType and a Datatype defined in some Code
model.

Superclass

AbstractDataRelationship

Associations
from:ComplexContentType[1] the content type
to:Datatype[1] the datatype element
Semantics

DatatypeOf relationship represents an association between a content type and primitive datatype.

18.12.3 ReferenceTo Class

The ReferenceTo class represents the relationship between a ContentReference and a ContentElement, ContentAttribute, or
ContentGroup definition.

Superclass

AbstractDataRelationship

Associations

from:Contentltem[1] the content reference

to:Contentltem[1] the content element or attribute or group
Constraints

1. The “from” endpoint should be a ContentReference.
2. The “to” endpoint should be a ContentElement, a ContentAttribute, or GroupContent.

Semantics

ReferenceTo relationship represents an association between a content reference and the corresponding definition.

18.12.4 ExtensionTo Class

The ExtensionTo class represents the relationship between two content types, where one type is an extension to another. The
semantics of deriving new types by extension is that as the result a new complex type or simple type is defined that contains all
the elements of the original type plus additional elements that are provided as the extension.

Superclass

AbstractDataRelationship

266 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

from:ComplexContentType[1] the new (extended) content type
to:ComplexContentType[1] the base content type
Constraints
Semantics

ExtensionTo relationship represents an association between a content type and its base type.

18.12.5 RestrictionOf Class

The RestrictionOf class represents the relationship between two content types, where one type is a restriction to another. The
semantics of deriving new types by restriction is that as the result a new complex type or simple type is defined that contains
all the elements and constraints of the original type plus additional constraints that are provided as the restriction.

Superclass

AbstractDataRelationship

Associations
from:ComplexContentType[1] the new (restricted) content type
to:ComplexContentType[1] the base content type
Semantics

RestrictionOf relationship represents an association between a content type and its base type.

18.13 ExtenededDataElements Class Diagram

The ExtendedDataElements class diagram defines two “wildcard” generic elements for the data model as determined by
the KDM model pattern: a generic data entity and a generic data relationship..

The classes and associations of the ExtendedDataElements diagram are shown in Figure 18.11.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 267

AbstractD ataRelationship

AbstractD ataElement
1\ DataRelationship
0..*
+from 0~
{redefines from} v
’
ExtendedDataElement +dt0r t
KDMEntity | edeines to}

(from core)

Figure 18.11 - ExtendedDataElements Class Diagram

18.13.1 ExtendedDataElement Class

The ExtendedDataElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractDataElement

Constraints
1. ExtendedDataElement should have at least one stereotype.
Semantics

A data entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual” meta-
model entity type of the data model. This is one of the KDM extension points that can integrate additional language-specific,
application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

18.13.2 DataRelationship Class

The DataRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractDataRelationship

Associations
from:AbstractDataElement[1] the data element origin endpoint of the relationship
to:KDMEntity[1] the target of the relationship

268 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints
1. DataRelationship should have at least one stereotype.

Semantics

A data relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the data model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM

representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 269

270 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Part IV - Abstractions Layer

Abstraction Layer defines a set of meta-model elements that represent domain-specific and application-specific
abstractions, as well as artifacts related to the build process of the exsting software system. The meta-model elements of
the Abstractions Layer provide various containers and groups to other meta-model elements.

Abstractions Layer defines the following 3 KDM Models:
» Structure
* Conceptual

e Build

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 271

272 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

19 Structure Package

19.1 Overview

Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same

system.

The Structure package defines an architecture viewpoint for the Structure domain. The architectural views based on the
viewpoint defined by the Structure model represent how the structural elements of the software system are related to the
modules defined in the Code views that correspond to the Code architectural viewpoint defined by the Code model. The
architectural viewpoint is defined as follows.

* Concerns:
* What are the structural elements of the system, and what is the organization of these elements?
* What software elements compose the system?
* How the structural elements of the system are related to the computational elements?

* What are the connections of these elements based on the relationships between the corresponding computational
elements?

* What are the interfaces of the structural elements of the system?
* Viewpoint language:

Structure views conform to KDM XMI schema. The viewpoint language for the Structure architectural viewpoint
is defined by the Structure package. It includes abstract entitity AbstractStructureElement, and several concrete
entities, such as Subsystem, Layer, Component, SoftwareSystem, ArchitectureView. The viewpoint language for
the Structure architectural viewpoint also includes an abstract relationship AbstractStructureRelationship.

e Analytic methods:

The Structure architectural viewpoint supports the following main kinds of checking:

» Attachment (are components properly connected?)

* Coupling and cohesion (the number of internal relationship within a component compared to the number of
relationships to other components)

» Efferent and afferent relationship (uses of a component by other components and usages of other component by the
given component)

* Interfaces (what is the required and provided interface of the given component)

Structure Views are used in combination with Code views, Data views, Platform views, Ul views and Inventory
views. Specifically, Structure views corresponding to this architectural viewpoint represent how the structural
elements of the software system are related to the modules defined in the Code views that correspond to the Code
architectural viewpoint, defined by the Code package.

¢ Construction methods:

* Structure views that correspond to the KDM Structure architectural viewpoint are usually constructed by analyzing

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 273

architecture models of the given system. The Structure extractor tool uses the knowledge of the architecture
models to produce one or mode Structure views as output

* As an alternative, structure views can be produced manually using the input from the architect of the system and
architecture documentation

* Construction of the Structure view is determined by the architectural description of the system

» Construction of the Structure views corresponding to a particular architectural description may involve additional
information (system-specific or architecture-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations

The organization of the system may be presented as a single Structure view or a set of multiple Structure view showing
layers, components, subsystems, or packages. The reach of this representation extends from a uniform architecture to
entire family of module-sharing subsystems.

The Structure model owns a collection of StructuralElement instances.

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete,
non-overlapping parts. An undifferentiated architecture is represented by a single Package.

StructuralGroup recursively gathers StructuralElements to represent various architectural divisions. The Software System
subclass provides a gathering point for all the system’s packages directly or indirectly through other Structure elements.
The packages may be further grouped into Subsystems, Layers, and Components, or Architecture Views.

19.2 Organization of the Structure Package

The Structure package defines a collection of meta-model elements whose purpose is to represent architectural
organization of the existing software system.

The Structure package consists of the following 3 class diagrams:
» StructureModel
» Structurelnheritances
* ExtendedStructureElements
The Structure package depends on the following packages:
* Core

¢ kdm

19.3 StructureModel Class Diagram

The StructureModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to high-level structural elements and their associations. The class diagram shown in
Figure 19.1 captures these classes and their relations.

274 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

StructureModel

AbstractStructureRelationship

+model +structureRelationship
(subsets model} {subsets ownedRglation} KD MAggregatedRelationship
(from core)
+structire Eleme nt
{subsets ownedElement} 0.*
0. +agéregated

+structureElement

{subsets ownedElement}" 'y sy actStructure Elem ent 0. | KDM Entity

(from core)

+group

+owner
{subsets owner}

{subsets group}

+imple

mentation

{subsets groupedElement}

Subsystem Component Layer

SoftwareSystem

Architecture View

Figure 19.1 - StructureModel Class Diagram

19.3.1 StructureModel Class

The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all

of the system’s StructuralElements.

Superclass

KDMModel

Associations

structureElement:AbstractStructureElement[0..]

Semantics

19.3.2 AbstractStructureElement Class (abstract)

structure elements owned by the model

The AbstractStructureElement represents an architectural part, related to the organization of the existing software system

into modules.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

275

Associations

structureElement:AbstractStructureElement[0..*] structure elements owned by the model
structureRelationship:AbstractStructureRelationship[0..*]
aggregated:KDMAggregatedRelationship[0..*]

implementation:KDMEntity[0..*]

Semantics
19.3.3 AbstractStructureRelationship Class (abstract)
The AbstractStructureRelationship class.

Superclass

KDMRelationship

Semantics

19.3.4 Subsystem Class

The Subsystem collects the architectural parts of a software subsystem. The parts may be any other StructuralElement.
Superclass

StructureGroup

Semantics

19.3.5 Layer Class

The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any
other StructuralElement.

Superclass

StructureGroup
Semantics

19.3.6 Component Class

The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural
component.

276 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

StructureGroup

Semantics

19.3.7 SoftwareSystem Class

The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.
Superclass

StructureGroup

Semantics

19.3.8 ArchitectureView Class

The ArchitectureView class represents an arbitrary architectural view, as defined by ISO 42010. Within a KDM instance
an ArchitectureView element may be used in a Structure model either stand-alone or in combination with other elements
defined by the Structure package. The KDM ArchitectureView own a collection of KDM entities that corresponds to a
particular architectural view of the software system. To conform to the ISO 42010 requiremens for architectural
description, the creator of the KDM instance should further document the corresponding architectural viewpoint by using
a stereotype to the ArchitectureView element, attributes or annotations).

Superclass
StructureGroup

Semantics

19.4 Structurelnheritances Class Diagram

The Structurelnheritances class diagram shown in Figure 19.2 depicts how the meta-model elements defined in the
Structure package are related to the meta-model elements defined in the Core package. Each of the Structure Package
classes within this diagram inherits certain properties from KDM classes defined within the Core Package.

7 KDMRelationship
KDMModel KD M Entity (from core)
(from kdm) (from core)
% AbstractStructureRelationship
StructureModel

AbstractStructureElement

Figure 19.2 - Structurelnheritances Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 277

19.5 ExtendedStructureElements Class Diagram

The ExtendedStructureElements class diagram defines two “wildcard” generic elements for the structure model as
determined by the KDM model pattern: a generic structure entity and a generic structure relationship.

The classes and associations of the ExtendedStructureElements diagram are shown in Figure 19.3.

AbstractStructureRelationship

AbstractStructureElement

from 1
{redefines from}

0..*

KD M E ntity

(from core)

StructureRelationship

StructureElement

0..* 1
+to
{redefines to}

Figure 19.3 - ExtendedStructureElements Class Diagram

19.5.1 StructureElement Class (generic)

The StructureElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureElement

Constraints
1. StructureElement should have at least one stereotype.
Semantics

A structure entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the structure model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

19.5.2 StructureRelationship Class (generic)

The StructureRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureRelationship

278 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Associations

from:AbstractStructureElement[1] the structure element origin endpoint of the relationship
to:KDMEntity[1] the target of the relationship
Constraints

1. StructureRelationship should have at least one stereotype.
Semantics

A structure relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the structure model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 279

280 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

20 Conceptual Package

20.1 Overview

The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model
during the analysis phase of knowledge discovery from existing code.

The Conceptual package defines an architectural viewpoint for the Business Rules domain.
* Concerns:
* What are the domain terms implemented by the system?
* What are the behaviour elements of the system?
* What are the business rules implemented by the system?
* What are the scenarios supported by the system?
* Viewpoint language:

Conceptual views conform to KDM XMI schema. The viewpoint language for the Conceptual architectural
viewpoint is defined by the Conceptual package. It includes abstract entitity AbstractConceptualElement, and
several concrete entities, such as TermUnit, FactUnit, RuleUnit, Scenario, BehaviorUnit. The viewpoint language
for the Conceptual architectural viewpoint also includes ConceptualFlow relationship, which is a subclass of an
abstract relationship AbstractConceptualRelationship.

e Analytic methods
The Conceptual architectural viewpoint supports the following main kinds of checking:

» Conceptual relationships (what are the relationships between conceptual entities, based on their implementation by
the Code and Data entities?)

* Scenario flow (what are the control flow relationship between the two scenarios based on the flow between action
elements referenced by each scenario)

» BehaviorUnit coupling (what are the control flow and data flow relationships between two behaviour units based
on the action elements referenced by each behaviour unit)

» Business Rule analysis (what is the logic of the business rule based on the action elements referenced by the
business rule)

Conceptual Views are used in combination with Code views, Data views, Platform views, Ul views and
Inventory views.

¢ Construction methods:

* Conceptual views can be produced manually using the input from the information analysis and the architect of the
system and architecture documentation

* Construction of the Conceptual view is determined by the domain model and the architectural description of the
system

* Construction of the Conceptual views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). This information can be attached to KDM

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 281

elements using stereotypes, attributes or annotations

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently,
it provides “concept” classes - TermUnit and FactUnit facilitating mapping to SBVR.

These meta-model elements support the process of mining higher level (conceptual) information from lower-level KDM
models and capturing it as additional KDM entities and relationship, thus allowing further analysis of an enriched model.
KDM Conceptual model is aligned with SBVR specification in the following way. The KDM Conceptual Model allows
representing three “concepts” that are key to SBVR: Term, Fact, and Rule. The following is a mapping of these KDM
“concepts” to the SBVR terminology:

» Term corresponds to SBVR Noun (collectively referring to SBVR Terms and SBVR Names)
* Fact corresponds to SBVR Fact
» Rule represents a condition, group of conditions, or constraint

The SBVR “concepts” (i.e., Term, Fact, and Rule) are not defined in KDM. Instead, the KDM Conceptual Model defines
the implementations of these “concepts” - TermUnit, FactUnit, and RuleUnit. The mapping between KDM and SBVR is
facilitated with the help of (0..*) to (0..*) relationships between pairs (i.e., <Term, TermUnit> and <Fact, FactUnit> and
<Rule, RuleUnit>) as shown in Figure 20.1.

The ConceptualModel also provides “behavior” types - BehaviorUnit and ScenarioUnit that support mapping to various
external models including but not limited to activities/flow chart and swim lane diagrams, and use case scenarios. The
following explains the difference between these “behavior” types:

* BehaviorUnit represents a behavior graph with several paths through the application logic and associated conditions.
The “implementation” of this graph is provided by the ActionElements connected with Flow relations, from the
Program Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction”
of ActionElements since it provides a modeling element for representing a collection of ActionElements that is
meaningful from the application domain perspective, and further manipulate with this representation as a first class
citizen of the ConceptualModel of KDM.

* ScenarioUnit represents a path (or multiple related paths) through the behavior graph. For example, ScenarioUnit
corresponds to a trace through the systems, or a “use case.” ScenarioUnit can own an entire collection of
BehaviorUnits, connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph
in the implementation of the software system. The conditions responsible for navigation between alternative paths
within the graph can be represented as RuleUnits.

» RuleUnit represents a condition, a group of conditions, or a constraint. RuleUnit is a representation for some
meaningful navigation conditions within behavior graphs represented by several BehaviorUnits.

282 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

SBVR

Term Fact Rule
(from SBYR) (frarn SBYR) (fram SBVR)
+term | 07 +fact | 0.7 T
|
Congeptusal
{fram| KDh)
+termimpldmentation i +rulelmplementation
+fact|mp|emewtﬁmon o+
0.* ..h o
TermUnit FactlUnit RuleUnit

{from Conceptual)

(from Conceptual)

(from Conceptual)

Figure 20.1 - Mapping between KDM and SBVR

20.2 Organization of the Conceptual Package

The Conceptual package defines meta-model elements that represent high-level, high-value application-specific
“conceptual” elements of existing software systems and their traceability to other KDM facts.

The Conceptual Package consists of the following 5 class diagrams:

» ConceptualModel

* Conceptuallnheritances
* ConceptualElements

» ConceptualRelations

* ExtendedConceptualElements
The Conceptual package depends on the following packages:

Core
kdm

20.3 ConceptualModel Class Diagram

The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They
provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships
between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge
discovery from existing code. The ConceptualModel diagram defines meta-model elements to represent application-
specific “concept” types, “fact” types, and “rules.” An example of a “concept” is a “customer,” or a “savings account.”

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 283

An example of a “fact” is a “customer opens a new savings account.” An example of a “rule” is “if the initial amount of
money in a saving account is greater than $1000.00, then offer a higher interest account.” Even in a well-designed system
an application-domain specific concept, like “customer” is rarely mapped one-to-one to a single programming language
construct that can be directly discovered in the source code of the existing system. Instead, such “concept” is
implemented by multiple programming language constructs, often spanning multiple source files, programming
languages, and technologies. These KDM meta-model objects and relationships between them provide the foundation for
mining business rules and other high-value application-specific knowledge from existing code.

ConceptualModel follows the regular KDM pattern of extending the common Infrastructure framework by defining a
specific KDM model class, an abstract superclass of all modeling elements in the ConceptualModel - the
AbstractConceptualElement class. ConceptualModel provides another abstract superclass for all relationships, specific to
this model - AbstractConceptualRelationship class. All meta-model elements of the ConceptualModel extend the
AbstractConceptualElement class and implement the “model” and “ownedRelation” properties. Each entity of the
ConceptualModel can own relationships, specific to this model. According to this pattern, each entity should own
relationships that originate from this entity (i.e., the value of the “from” property should be equal to the id of the owner
of the relationship). This framework provides several extension points for the KDM light-weight extension mechanism. In
particular, in accordance to the general KDM pattern, the ConceptualModel framework includes a generic extensible
modeling element ConceptualElement, and a generic ConceptualRelationship class.

The class diagram shown in Figure 20.2 captures these classes and their relations.

ConceptualModel

0..1
AbstractConceptual Relationship

+model
{subsets model}

0.*
ptualRelation
+conceptualElement

{subsets ownedElement}
0..*

+group
{subsets group}

+abstraction
{subsets ownedElement

ActionElement

(from action) KDMEntity
+implementation (from core)

{subsets groupedElement}

Figure 20.2 - ConceptualModel Class Diagram

20.3.1 ConceptualModel

The ConceptualModel class is a specific KDM model that owns collections of facts about conceptual elements
implemented by a given existing software system.

284 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Superclass

KDMModel

Associations

conceptualElement:AbstractConceptualElement[0..*] Identifies the root “concept” elements of the hierarchy of the
conceptual elements contained in the model. The
ConceptualModel can contain zero or more such trees.

Semantics

20.3.2 AbstractConceptualElement (abstract)

AbstractConceptualElement class is the top superclass for the ConceptualModel. It defines several common properties for
all further meta-model elements in the Conceptual Package. In particular, it defines the fundamental “implementation”
property - a KDM grouping mechanism to link conceptual elements to the implementation elements. The
“implementation” property represents the set of elements in lower-level KDM model that represents implementation-
specific high-fidelity knowledge of the software system. The “implementation” property realizes the mapping between the
implementation of a certain concept to the KDM entity representing this concept - some concrete subclass of the
AbstractConceptualElement. The set of KDM entities available through the “implementation” property becomes the
“extent” of the application-specific concept being represented by the conceptual element. The conceptual element itself
becomes the “handle” for the otherwise intangible and abstract high-value application domain specific concept.

It is expected that building conceptual models in general, and especially, determining the appropriate “implementation
set,” is a difficult value-added knowledge discovery process that may involve domain experts and application experts.
KDM framework provides the intermediate representation for capturing the knowledge generated by this process.

Superclass
KDMEntity
Associations
conceptualRelation:AbstractConceptualRelation[0..*] For each concrete instance of AbstractConceptualElement this
property represents the set of conceptual relationships that
originate from this element.
implementation:KDMEntity[0..*] For each concrete instance of AbstractConceptualElement this
property represents the set of KDM entities that realize the
high-level concept in the low-level artifacts of the existing
system.
abstraction:ActionElement[0..*] This element represents action elements that are owned by the
conceptual element and that represent semantic associations for
the conceptual element.
source:SourceRef[0..*] Traceability links to the physical artifacts represented by this

element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 285

Constraints

1. For each conceptual element, the value of the from property of each conceptual relationship, owned by this
element, should be equal to the identity of this element (the “relationship encapsulation” pattern).

20.3.3 AbstractConceptualRelationship Class (abstract)

The AbstractConceptualRelationship class is determined by the KDM model pattern. It provides a common superclass for
specific KDM relationships, defined in the Conceptual package.

Semantics

20.4 Conceptuallnheritances Class Diagram

The Conceptuallnheritance class diagram defines how the conceptual meta-model elements fit into the KDM
Infrastructure. The Conceptuallnheritances class diagram is shown in Figure 20.3.

KD M Entity KDM Relationship
(from core)

KDMModel

(from core)
(from kdm)

ConceptualModel AbstractConceptualElement AbstractConceptualRelationship

0..1
ConceptualSource

+source 0.*

SourceRef
(from source)

Figure 20.3 - Conceptuallnheritances Class Diagram

20.5 ConceptualElements Class Diagram

ConceptualElements class diagram defines specific KDM modeling elements for representing domain-specific concepts as
they are implemented by existing software systems. These elements are concrete subclasses of the AbstractConceptualElement
class.

The classes and association of the ConceptualElements class diagram are shown at Figure 20.4.

286 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

+conceptualElement
AbstractConceptualElement +conceptualElement Role

{subsets ownedElement} 1

0.*

ConceptualRole

+owner 1
{subsets owner}

0.1 C onceptualContainer TermUnit
FactUnit BehaviorUnit

RuleUnit

ScenarioUnit

Figure 20.4 - ConceptualElements Class Diagram

20.5.1 ConceptualContainer Class

The ConceptualContainer class is a generic meta-model element that represents a container for conceptual entities. Several
other concrete conceptual elements are subclasses of ConceptualContainer, so that they can also own other conceptual
elements. The purpose of the ConceptualContainer meta-model element is to facilitate hierarchical organization and grouping
of “concepts” within Conceptual Model. ConceptualContainer also can be used as an extended modeling element with a

stereotype.

Superclass

AbstractConceptualElement

Associations

conceptualElement: AbstractConceptual Element[0..*] elements that are owned by this container

Constraints

1. ConceptualUnit should not own ConceptualRole elements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 287

20.5.2 TermUnit

The TermUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or
PlatformResource layer. From the knowledge discovery perspective, such collection may include program elements
involved in the implementation of a certain application domain concept. A TermUnit then provides a representation of
such concept inside the KDM model, which can be used for further analysis and later exported into a business rule
modeling tool in the process known as application business rules mining. The TermUnit class is aligned with SBVR term
or name concepts. Semantically, a TermUnit represents some “noun concept.”

Superclass

AbstractConceptualElement

Semantics

20.5.3 FactUnit

The FactUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
behavior of the software system (for example, a formula for calculating an allowance can be considered as a fact) or some
property of the software system meaningful in the application domain. FactUnit may be also associated with an arbitrary
collection of the KDM entities. A FactUnit then provides a representation of such property inside the KDM model which
can be used for further analysis and later exported into a business rule modeling tool in the process known as application
business rules mining. The FactUnit class is aligned with SBVR fact type concept. Semantically, a FactUnit represents a
“verb concept,” or an “objectified verb concept,” that can be later used as a noun.

Superclass

ConceptualContainer

Semantics

20.5.4 RuleUnit

The RuleUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
condition or constraint in the software system (for example, a condition under which an allowance can be increased, or a
statement that a certain property should always be satisfied). RuleUnit also may be associated with an arbitrary collection
of the KDM entities (these often involve action elements that represent conditions). A RuleUnit then provides a
representation of such condition or constraint inside the KDM model that can be used for further analysis and later
exported into a business rule modeling tool in the process known as application business rules mining. The RuleUnit class
is aligned with SBVR rule concept. Semantically, a RuleUnit uses some base “verb concept” (usually represented as a fact
type) and adds to it obligation, necessity, qualifications, quantifications, conditions, etc.

Superclass

ConceptualContainer
Semantics
20.5.5 ConceptualRole

The ConceptualRole class represents a role played by a participant in a conceptual association, such as a FactUnit or a

288 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

RuleUnit. ConceptualRole elements are owned by some container, a subclass of ConceptualUnit. The ConceptualRole element
provides a placeholder for capturing the name of this role as the “name” attribute of the class. Additional annotations of
stereotypes can be provided by using the KDM light-weight extension mechanism.

Superclass

AbstractConceptual Unit

Associations

conceptual Element: AbstractConceptual Element[1] represents the participant in the association for the given role

Semantics

20.5.6 BehaviorUnit Class

The BehaviorUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or Platform
Resource layer. From the knowledge discovery perspective, such collection may represent some behavior meaningful in
the application domain (or simply interesting for the analysis, understanding, and modernization of the software system).
A BehaviorUnit then provides a representation of such behavior inside the KDM model that can be used for further
analysis. In particular, larger slices of the program logic can be represented as collections of BehaviorUnit elements
linked by ConceptualFlow relationships.

The BehaviorUnit class represents a behavior graph with several paths through the application logic. The
“implementation” of this graph is provided by the ActionElements connected with Flow relations, from the Program
Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” of
ActionElements since it provides a modeling element for representing a collection of ActionElements that is meaningful
from the application domain perspective, and further manipulate with this representation as a first class citizen of the
ConceptualModel of KDM.

Superclass

ConceptualContainer

20.5.7 ScenarioUnit Class

ScenarioUnit represents a path (or multiple related paths) through the behavior graph of the application logic. For
example, ScenarioUnit corresponds to a trace through the systems, or a “use case.” The “implementation” of this graph is
provided by the ActionElements connected with Flow relations, from the Program Elements KDM layer. Semantically, the
difference between a BehaviorUnit and a ScenarioUnit is that a BehaviorUnit is an abstraction of behavior, while
ScenarioUnit is an abstraction of a trace. For example, an interesting formula, or an algorithm can be represented as a
BehaviorUnit rather than a ScenarioUnit. On the other hand, an interesting data flow path through the application can be
represented as a ScenarioUnit rather than a BehaviorUnit. ScenarioUnit can own an entire collection of BehaviorUnits,
connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph in the
implementation of the software system. The conditions responsible for navigation between alternative paths within the
graph can be represented as RuleUnits.

Superclass

ConceptualContainer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 289

20.6 ConceptualRelations Class Diagram

ConceptualRelations class diagram defines specific conceptual relationship called ConceptualFlow. The classes and
associations involved in the ConceptualRelations class diagram are shown in Figure 20.5.

AbstractConceptual Relationship

ConceptualFlow

+om_ | conceptualContainer o

1 1
{redefines from} {redefines to}

Figure 20.5 - ConceptualRelations Class Diagram

20.6.1 ConceptualFlow Class

The ConceptualFlow class is a KDM relationship defined for the conceptual model. It represents the fact that one
behavior may be continued into some other behavior. When multiple ConceptualFlow relations exist for a given
conceptual element (according to the KDM relationship encapsulation pattern, these relationships should be owned by the
conceptual element and the “from” property of the relationship should be equal to the identity of the element), this means
that the behavior represented by that conceptual element may be continued by either of these flows nondeterministically.
The follow-up behavior is designated by the conceptual element represented by the “to” property of the ConceptualFlow
relationship. When the “to” endpoint of the ConceptualFlow relationship designates a container, this means that any
behavior from that container can be the continuation of the initial behavior. When the “from” endpoint of the
ConceptualFlow relationship is a container, this means that any behavior element owned by that container can be used as
the initial behavior. This relationship provides an abstraction for the Flow relations in the Program Elements layer.
ConceptualFlow relation provides a modeling element for representing behavior slices of the application logic that are
meaningful from the application domain perspective, and further manipulate with this representation as a first class citizen
of the ConceptualModel of KDM.

Superclass

AbstractConceptualRelationship

Associations
from: AbstractConceptualElement[1] represents the initial behavior
to:AbstractConceptualElement[1] represents a potential follow-up behavior

290 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Example

Form Definition
Program Transacti onsApproval File Nanme: MWD319. H m

010 Fieldl - Custoner |ID

011 Field2 - Custoner First Nane
012 Field3 - Custoner Last Nane
013 Field4 (list) — Account Number
014 Field5 (list) — Account Type
015 Field6 (list) — Account Bal ance

Program
Program Transacti onsApproval File Nane: MWD245. HLa

Program begin

100 // Definitions of variables mapable to the form fields
101 Define Cust_ID(Char 20)

102 Define Cust_FNanme (Char 25)

103 Define Cust_LNanme (Char 35)

104 Define Acc_Nunmb(Char 12)[10]

105 Define Acc_Type(Char 2)[10]

106 Define Acc_Bal ance(Currency)][10]
107

108 // Definition of other variables
109 Define Bal (Currency)

110 Define Ind(Ilnteger)

111 Define AdjustedBal (Currency)

112 Define ApproveTrans(Bool ean)

113 Define Al lowance(Currency)

150 // Populating variables entered in the form
151 Fieldl -> Cust_ID

152 Field2 -> Cust_FName

153 Field3 -> Cust_LName

154 Field4[1] -> Acc_Nunb[0]

155 Field5[1] -> Acc_Type[O0]

156 Field6[1] -> Acc_Bal ance[0]

200 // Processing

201 All owance = $100.00 // The allowance shall be calculated for each custoner
202 Ind =1

203 Bal = Acc_Bal ance[lnd - 1]

204 AdjustedBal = Bal + Allowance

240 |f(AdjustedBal > $1000.00)

241 Then ApproveTrans = True
242 El se ApproveTrans = Fal se

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 291

Program end

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xmi:version="2.1"
xm ns: xm ="http://schema. ong. or g/ spec/ XM/ 2. 1"
xm ns:action="http://schenma. ong. or g/ spec/ KDM 1. 2/ acti on"
xm ns: code="http://schema. ong. or g/ spec/ KDM 1. 2/ code"
xm ns: conceptual ="http://schenma. ong. or g/ spec/ KDM 1. 2/ concept ual "
xm ns: kdme"htt p: // schema. ong. or g/ spec/ KDM 1. 2/ kdnt
xm ns: source="http://schenma. ong. or g/ spec/ KDM 1. 2/ sour ce"
xm ns:ui ="http://schema. ong. org/ spec/ KDM 1. 2/ ui " nane="Conceptual Exanple">
<model xm:id="id.0" xm:type="code: CodeModel ">
<codeEl ement xm:id="id.1" xnm:type="code: CodeAssenbl y">
<codeEl ement xm:id="id.2" xm:type="code: StorableUnit" nanme="Cust_ID"
type="id. 127" ext="Char 20" size="20">
<comment xm:id="id.3" text="// Definitions of variables mapable to the form fields"/>
</ codeEl enent >
<codeEl ement xmi:id="id.4" xm:type="code: StorableUnit" name="Cust_FNanme"
type="id. 127" ext="Char 25" size="25"/>
<codeEl ement xmi:id="id.5" xm:type="code: StorableUnit" name="Cust_LNanme"
type="id. 127" ext="Char 35" size="35"/>
<codeEl ement xmi:id="id.6" xm:type="code: StorableUnit" name="Acc_Nunb"
type="id. 7" ext="" size="1">
<codeEl ement xmi:id="id.7" xm:type="code: ArrayType" size="10">
<itemUnit xm:id="id.8" name="Acc_Nunb[]" type="id. 127" ext="Char 12" size="12"/>
</ codeEl enent >
</ codeEl enent >
<codeEl ement xmi:id="id.9" xm:type="code: StorableUnit" name="Acc_Type"
type="id. 10" ext="" size="1">
<codeEl ement xmi:id="id.10" xm:type="code: ArrayType" size="10">
<itemUnit xm:id="id.11" name="Acc_Type[]" type="id. 127" ext="Char 2" size="2"/>
</ codeEl enent >
</ codeEl enent >
<codeEl ement xmi:id="id.12" xm:type="code: Storabl eUnit" nane="Acc_Bal ance"
type="id. 13" ext="" size="1">
<codeEl ement xmi:id="id.13" xm:type="code: ArrayType" size="10">
<itemUnit xm:id="id.214" name="Acc_Bal ance[]" type="id.128" ext="Currency" size="2"/>
</ codeEl enent >
</ codeEl enent >
<codeEl enent xm:id="id.15" xm :type="code: StorableUnit" nane="Bal"
type="id. 128" ext="" size="1" kind="|ocal ">
<conmment xm:id="id.16" text="// Definition of other variables"/>
</ codeEl enent >
<codeEl enent xm:id="id.17" xm :type="code: StorableUnit" nane="Ind"

type="id. 129" ext="" size="1" kind="local"/>
<codeEl enent xm:id="id.18" xni:type="code: Storabl eUnit" nane="AdjustedBal"
type="id. 128" ext="" size="1" kind="local"/>

<codeEl enent xm:id="id.19" xm :type="code: StorableUnit" nane="ApprovedTrans"

292 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

type="id. 130" ext="" size="1" kind="local "/>

<codeEl ement xm:id="id.20" xm:type="code: Storabl eUnit" nane="All owance"

type="id. 128" ext="" size="1" kind="local "/>
<codeEl ement xm:id="id.21" xm:type="action:ActionEl ement" name="il"
<source xm:id="id.22" |anguage="H a" snippet="Fieldl -> Cust_I|D"/
<comment xmi:id="id.23" text="// Populating variables entered in t
<codeEl ement xmi:id="id.24" xm:type="code: Storabl eUnit" nane="Fi el
type="id. 127" kind="register"/>

ki nd="Assi gn" >
>
he forni'/>
d1"

<actionRelation xm:id="id.25" xm:type="action:Reads" to="id.24" from="id.21"/>

<actionRelation xm:id="id.26" xm:type="action:Wites" to="id.2" from="id.21"/>

<actionRelation xm:id="id.27" xm :type="action:Fl ow' to="id.28" f
</ codeEl enment >
<codeEl ement xm:id="id.28" xm:type="action:ActionElement" name="i2"

rom="id.21"/>

ki nd="Assi gn" >

<source xm:id="id.29" |anguage="H a" snippet="Field2 -> Cust_FName"/>

<codeEl ement xmi:id="id.30" xm:type="code: Storabl eUnit" nane="Fiel d2"

type="id. 127" kind="register"/>

<actionRelation xm:id="id.31" xm:type="action: Reads" to="id.30" from="id.28"/>

<actionRelation xm:id="id.32" xm:type="action:Wites" to="id.4" from="id.28"/>

<actionRelation xm:id="id.33" xm:type="action:Fl ow to="id.34" f
</ codeEl enment >
<codeEl ement xm:id="id.34" xm:type="action:ActionEl ement" name="i3"

rom="id.28"/>

ki nd="Assi gn" >

<source xm:id="id.35" |anguage="H a" snippet="Field3 -> Cust_LName"/>

<codeEl ement xmi:id="id.36" xm:type="code: Storabl eUnit" nane="Fiel d3"

type="id. 127" kind="register"/>

<actionRelation xm:id="id.37" xm:type="action:Reads" to="id.36" from="id.34"/>

<actionRelation xm:id="id.38" xm:type="action:Wites" to="id.5" from="id.34"/>

<actionRelation xm:id="id.39" xm:type="action:Fl ow to="id.40" f
</ codeEl enment >
<codeEl ement xm:id="id.40" xm:type="action:ActionEl ement" name="i4"

rom="id.34"/>

ki nd="ArrayRepl ace" >

<source xm:id="id.41" |anguage="H a" snippet="Field5[1] -> Acc_Type[O0]"/>

<codeEl ement xmi:id="id.42" xm:type="code: Val ue" nane="0" type="i

d. 129"/ >

<codeEl ement xmi:id="id.43" xm:type="code: Storabl eUnit" nanme="Fi el d4"

type="id. 127" kind="register"/>
<actionRelation xm:id="id.44" xm:type="action:Reads" to="id.42"

from="id. 40"/ >

<actionRelation xm:id="id.45" xm:type="action: Addresses" to="id.9" from="id.40"/>

<actionRelation xm:id="id.46" xm:type="action:Reads" to="id.43"
<actionRelation xm:id="id.47" xm :type="action:Wites" to="id.8"
<actionRel ation xm:id="id.48" xm:type="action:Fl ow to="id.49" f
</ codeEl enment >
<codeEl ement xm:id="id.49" xm:type="action:ActionEl ement" name="i5"

from="id. 40"/ >
from="id. 40"/ >
rom="id. 40"/ >

ki nd="ArrayRepl ace" >

<source xm:id="id.50" |anguage="H a" snippet="Field4[1l] -> Acc_Nunmb[O0]"/>

<codeEl enent xmi:id="id.51" xm:type="code: Value" nane="0" type="i

d. 129"/ >

<codeEl enent xm:id="id.52" xm:type="code: StorableUnit" nane="Fiel d5"

type="id. 127" kind="register"/>
<actionRelation xm:id="id.53" xm:type="action:Reads" to="id.51"

from="id.49"/>

<actionRel ation xm:id="id.54" xm:type="action: Addresses" to="id.6" from="id.49"/>

<actionRel ation xm:id="id.55" xm:type="action:Reads" to="id.52"
<actionRelation xm:id="id.56" xm:type="action:Wites" to="id.11"
<actionRelation xm:id="id.57" xm:type="action:Flow to="id.58" f
</ codeEl enent >
<codeEl enent xm :id="id.58" xm:type="action:ActionEl ement" name="i6"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

from="id.49"/>
from="id. 49"/ >
rom="id. 49"/ >

ki nd="ArrayRepl ace" >

293

<source xm:id="id.59" |anguage="H a" snippet="Field6[1l] -> Acc_Balance[0]"/>
<codeEl ement xmi:id="id. 60" xm:type="code: Val ue" name="0" type="id.129"/>
<codeEl ement xmi:id="id.61" xm:type="code: Storabl eUnit" nane="Fiel d6"
type="id. 127" kind="register"/>
<actionRelation xm:id="id.62" xm:type="action:Reads" to="id.60" from="id.58"/>
<actionRelation xm:id="id.63" xm:type="action: Addresses" to="id.12" fronr"id.58"/>
<actionRelation xm:id="id.64" xm:type="action:Reads" to="id.61" from="id.58"/>
<actionRelation xm:id="id.65" xm:type="action:Wites" to="id.14" fronr"id.58"/>
<actionRelation xm:id="id.66" xm:type="action:Flow' to="id.67" from="id.21"/>
</ codeEl enent >
<codeEl ement xm:id="id. 67" xm:type="action:ActionEl emrent" nane="pl" kind="Assign">
<source xm:id="id.68" |anguage="H a" snippet="Allowance = $100.00 "/>
<conment xm:id="id.69" text="// Processing"/>
<comment xm:id="id.70" text="// The allowance shall be calculated for each customer"/>
<codeEl ement xmi:id="id.71" xm:type="code: Val ue" name="100.00" type="id.128"/>
<actionRelation xm:id="id.72" xm:type="action:Reads" to="id.71" from="id.67"/>
<actionRelation xm:id="id.73" xm:type="action:Wites" to="id.20" frone"id.67"/>
<actionRelation xm:id="id.74" xm:type="action:Flow' to="id.75" from="id.67"/>
</ codeEl enent >
<codeEl ement xm:id="id.75" xm:type="action:ActionEl ement" nane="p2" kind="Assign">
<source xm:id="id.76" |anguage="H a" snippet="Ind =1"/>
<codeEl ement xmi:id="id.77" xm:type="code: Val ue" name="1" type="id.129"/>
<actionRelation xm:id="id.78" xm:type="action:Reads" to="id.77" from"id.75"/>
<actionRelation xm:id="id.79" xm:type="action:Wites" to="id.17" frone"id.75"/>
<actionRelation xm:id="id.80" xm:type="action:Flow to="id.49" from="id.75"/>
</ codeEl enent >
<codeEl ement xmi:id="id.81" xm:type="action:ActionEl ement" nane="p3" kind="Conpound">
<source xm:id="id.82" |anguage="H a" snippet="Bal = Acc_Balance[lnd - 1]"/>
<codeEl ement xmi:id="id.83" xm:type="code: Val ue" name="1" type="id.129"/>
<codeEl ement xnmi:id="id.84" xm:type="code: StorableUnit" nane="t1"
type="id. 129" ext="" Kkind="register"/>
<codeEl ement xmi:id="id.85" xm:type="action:ActionElenment" name="p3.1" kind="Subtract">
<actionRelation xm:id="id.86" xm:type="action:Reads" to="id.17" from="id.81"/>
<actionRelation xm:id="id.87" xm:type="action: Reads" to="id.83" from="id.81"/>
<actionRelation xm:id="id.88" xm:type="action:Wites" to="id.84" fronr"id.81"/>
<actionRelation xm:id="id.89" xm:type="action:Flow to="id.90" from="id.85"/>
</ codeEl enent >
<codeEl ement xmi:id="id.90" xm:type="action:ActionElement" name="p3.2" kind="ArraySel ect">
<actionRelation xm:id="id.91" xm:type="action: Addresses" to="id.14" from="id.90"/>
<actionRelation xm:id="id.92" xm:type="action: Reads" to="id.84" from="id.81"/>
<actionRelation xm:id="id.93" xm:type="action:Wites" to="id.15" fronr"id.81"/>
</ codeEl enent >
<actionRelation xm:id="id.94" xm:type="action:Flow' to="id.85" from="id.81"/>
<actionRelation xm:id="id.95" xm:type="action:Flow' to="id.96" from="id.81"/>
</ codeEl enent >
<codeEl enent xm:id="id.96" xm:type="action: ActionEl ement" name="p4" Kkind="Assign">
<source xm:id="id.97" |anguage="H a" snippet="AdjustedBal = Bal + Allowance"/>
<actionRelation xm:id="id.98" xm:type="action:Reads" to="id.15" from="id.96"/>
<actionRelation xm:id="id.99" xm:type="action:Reads" to="id.20" from="id.96"/>
<actionRelation xm:id="id.100" xm:type="action:Wites" to="id.18" fron="id.96"/>
<actionRelation xm:id="id.101" xm:type="action:Flow' to="id.49" from="id.96"/>

294 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

</ codeEl ement >
<codeEl ement xm :id="id.102" xm :type="action: Acti onEl enent" name="p5" ki nd="Assign">
<source xm:id="id.103" |anguage="H a" snippet="1f(AdjustedBal > $1000.00)"/>
<codeEl ement xmi:id="id. 104" xm :type="code: Storabl eUnit" name="t2"
type="id. 130" kind="register"/>

<codeEl ement xmi:id="id.105" xm:type="action: Acti onEl enent" nanme="p5.1" kind="Gr eaterThan">

<codeEl ement xmi:id="id. 106" xm :type="code: Val ue" nanme="1000.00" type="id.128"/>
<actionRelation xm:id="id.107" xm :type="action: Reads" to="id.18" fron¥"id.105"/>
<actionRelation xm:id="id.108" xm:type="action: Reads" to="id.106" from="id.105"/>

<actionRelation xm:id="id.109" xnmi:type="action:Wites" to="id.104" from="id.105"/>

<actionRelation xm:id="id.110" xnmi:type="action: Flow' to="id.111" fron¥"id.105"/>
</ codeEl enent >

<codeEl ement xm:id="id.111" xm:type="action: Acti onEl enent" nanme="p5.2" kind="Gr eaterThan">

<actionRelation xm:id="id.112" xm:type="action: Reads" to="id.104" from="id.111"/>

<actionRelation xm:id="id.113" xnm:type="action: TrueFl ow' to="id.115" fron¥"id.111"/>
<actionRelation xm:id="id.114" xm :type="action: Fal seFl ow' to="id. 120" from="id.111"/>

</ codeEl enent >
<codeEl ement xmi:id="id.115" xm:type="action: Acti onEl enent" nanme="p6" ki nd="Assign">
<source xm:id="id.116" |anguage="H a" snippet="Then ApproveTrans = True"/>
<codeEl ement xmi:id="id. 117" xm :type="code: Val ue" name="true" type="id.130"/>
<actionRelation xm:id="id.118" xm:type="action: Reads" to="id.117" from="id.115"/>
<actionRelation xm:id="id.119" xm:type="action:Wites" to="id.19" from="id.115"/>
</ codeEl enent >
<codeEl ement xmi:id="id.120" xm :type="action: Acti onEl enent" nanme="p7" ki nd="Assign">
<source xm:id="id.121" |anguage="H a" snippet="El se ApproveTrans = Fal se"/>
<codeEl ement xmi:id="id. 122" xm :type="code: Val ue" nanme="fal se" type="id.130"/>
<actionRelation xm:id="id.123" xnmi:type="action: Reads" to="id.122" from="id.120"/>
<actionRelation xm:id="id.124" xm:type="action:Wites" to="id.19" from="id.120"/>
</ codeEl enent >
<actionRelation xm:id="id.125" xm:type="action:Flow' to="id.105" fron¥"id.102"/>
</ codeEl enment >
</ codeEl enment >
<codeEl ement xm :id="id. 126" xm :type="code: LanguageUnit">
<codeEl ement xm :id="id.127" xm :type="code: StringType"/>
<codeEl ement xm :id="id.128" xm :type="code: Deci nal Type" nane="Currency"/>
<codeEl ement xm:id="id.129" xm :type="code:|ntegerType"/>
<codeEl ement xm:id="id.130" xm :type="code: Bool eanType"/>
</ codeEl ement >
</ model >
<nmodel xm :id="id.131" xm:type="source:|lnventoryhdel">
<i nventoryEl enent xm :id="id.132" xm:type="source:Directory" path="SOURCES\ H.anguage" >
<i nventoryEl ement xm :id="id.133" xnmi:type="source: SourceFile" name="mD245. H a"/>
<i nventoryEl enent xm:id="id. 134" xm:type="source: SourceFile" name="nmD319. Hf ni'/ >
</inventoryEl ement >
<i nventoryEl enent xm :id="id. 135" xm:type="source:Directory" path="SOURCES\H i b"/>
</ nodel >
<model xm:id="id.136" xm:type="ui:U Mdel">
<Ul El ement xm :id="id.137" xm :type="ui:Screen" nanme="Custonmer |nformation">
<Ul El enent xm :id="id. 138" xm:type="ui: U Field" name="Custonmer |D"'>
<abstraction xm:id="id.139" nane="f1">
<actionRelation xm:id="id.140" xm:type="action:Wites" to="id.24" from="id.139"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

295

</ abstraction>
</ Ul El enent >
<Ul El enent xm :id="id. 141" xm:type="ui:U Field" nane="Customer First Nane">
<abstraction xm:id="id. 142" name="f2">
<actionRelation xm:id="id.143" xm:type="action:Wites" to="id.30" from="id.142"/>
</ abstraction>
</ Ul El enent >
<Ul El enent xm :id="id. 144" xm:type="ui:U Field" nane="Custoner Last Name">
<abstraction xm:id="id. 145" name="f3">
<actionRelation xm:id="id.146" xm:type="action:Wites" to="id.36" from="id.145"/>
</ abstraction>
</ Ul El enent >
<Ul El enent xm :id="id. 147" xm:type="ui:U Field" nane="Account Number">
<abstraction xm:id="id. 148" name="f4">
<actionRelation xm:id="id.149" xm:type="action:Wites" to="id.43" from="id.148"/>
</ abstraction>
</ Ul El enent >
<Ul El enent xm :id="id. 150" xm:type="ui:U Field" nane="Account Type">
<abstraction xm:id="id. 151" name="f5">
<actionRelation xm:id="id.152" xm:type="action:Wites" to="id.52" from="id.151"/>
</ abstraction>
</ Ul El enent >
<Ul El enent xm :id="id. 153" xm:type="ui:U Field" nane="Account Bal ance">
<abstraction xm:id="id. 154" name="f6">
<actionRelation xm:id="id.155" xm:type="action:Wites" to="id.61" from="id.154"/>
</ abstraction>
</ Ul El enent >
</ Ul El enent >

</ model >
<model xm :id="id.156" xni:type="conceptual: Conceptual Model" nane="Custoner |nfornation">

296

<conceptual El enent xm :id="id.157" xm :type="conceptual: TermUnit" name="Account Bal ance"
i mplementation="id.15 id.12 id.17 id.153"/>
<conceptual El enent xm :id="id.158" xm :type="conceptual: TernUnit" name="MaxAdj ust edBal ance"
i mpl ement ation="id. 106"/ >
<conceptual El enent xm :id="id.159" xm :type="conceptual : TernUnit" name="Al | owanceAnount"
i mpl ementation="id.71"/>
<conceptual El enent xm :id="id.160" xm :type="conceptual: TernmUnit" name="Allowance"
i mpl ement ation="id.20"/>
<conceptual El enent xm:id="id.161" xm :type="conceptual : TernUnit" name="AdjustedBal ance"
i mpl ement ation="id. 18"/>
<conceptual El enent xm :id="id.162" xm :type="conceptual : TernUnit" name="AccountBal anceFi el d"
i mpl ement ation="id. 153"/ >
<conceptual El ement xm :id="id.163" xm :type="conceptual : FactUnit"
nanme="Adj ust edBal anceUnder Threshol d" i npl enentati on="id. 105">
<conceptual Rel ation xm:id="id. 164" xm :type="conceptual : Conceptual Fl ow
to="id.178" fron¥"id.163"/>
<conceptual Rel ati on xm:id="id. 165" xm:type="conceptual : Conceptual Fl ow
to="id. 183" fronr"id.163"/>
<conceptual El ement xmi :id="id. 166" xmn :type="conceptual: Conceptual Role" nanme="Adjusted Bal ance"
concept ual El enent="id. 161"/ >
<conceptual El ement xmi:id="id.167" xm :type="conceptual: Conceptual Role" name="Threshol d"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

concept ual El ement ="i d. 158"/ >
</ concept ual El enent >
<conceptual El enent xm :id="id.168" xm :type="conceptual:FactUnit" name="AccountBal anceCal cul ati on"
i mpl ementation="id.58 id.75 id.81">
<conceptual Rel ation xm :id="id. 169" xm :type="conceptual : Conceptual Fl ow
to="id. 172" fron¥"id.168"/>
<conceptual El enent xm:id="id.170" xm :type="conceptual : Conceptual Rol e" nane="Boundary el ement"
concept ual El ement ="i d. 162"/ >
<conceptual El enent xm:id="id.171" xm :type="conceptual : Concept ual Rol e" nane="Account"
concept ual El ement ="i d. 157"/ >
</ concept ual El enent >
<conceptual El enent xm:id="id.172" xm :type="conceptual : FactUnit"
name="Adj ust edBal anceCal cul ati on" i nplementation="id.67 id.96">
<conceptual Rel ation xm :id="id.173" xm :type="conceptual : Conceptual Fl ow
to="id. 163" fron¥"id.172"/>
<conceptual El enent xm:id="id.174" xm :type="conceptual : Concept ual Rol e" nane="Account Bal ance"
concept ual El ement ="i d. 168"/ >
<conceptual El enent xm:id="id.175" xm :type="conceptual : Conceptual Rol e" nane="Al | owance Anpunt"
concept ual El ement ="i d. 159"/ >
</ concept ual El enent >
<conceptual El enent xm:id="id.176" xm:type="conceptual : FactUnit" name="Transacti onApproved"
i mpl ement ation="id.19"/>
<conceptual El enent xm :id="id.177" xm :type="conceptual : FactUnit" name="Transacti onNot Approved"
i mpl ement ation="id.19"/>
<conceptual El enent xm :id="id.178" xm :type="conceptual : Rul eUnit" nanme="ApproveTransaction"
i mpl ement ation="id.105 id.111 id.115">
<source xm:id="id.179" |anguage="SBVR"
sni ppet ="Transaction is approved if adjusted balance is under the threshold"/>
<conceptual Rel ation xm :id="id. 180" xm:type="conceptual : Conceptual Fl ow
to="id. 176" fron¥"id.178"/>
<conceptual El enent xm:id="id.181" xm :type="conceptual : Concept ual Rol €" nane="Condition"
concept ual El ement ="i d. 163"/ >
<conceptual El enent xm:id="id.182" xm :type="conceptual : Concept ual Rol e" nane="Consequence"
concept ual El ement ="i d. 176"/ >
</ concept ual El enent >
<conceptual El enent xm :id="id.183" xm:type="conceptual:RuleUnit" name="Transacti onFail edApproval"
i mpl ement ation="id.105 id.111 id.120">
<conceptual Rel ation xm :id="id. 184" xm:type="conceptual : Conceptual Fl ow
to="id. 177" fron¥"id.183"/>
<conceptual El enent xm :id="id.185" xm :type="conceptual: Conceptual Rol e" nane="NOT condition"
concept ual El ement ="i d. 163"/ >
<conceptual El enent xm :id="id.186" xm :type="conceptual: Conceptual Rol e" nane="consequence"
conceptual El enent="id. 177"/ >
</ concept ual El enent >
<conceptual El ement xm :id="id.187" xm:type="conceptual : ScenarioUnit">
<conceptual El emrent xm :id="id.188" xm :type="conceptual :BehaviorUnit" nanme="Cal cul ate Bal ance"
i mpl ementation="id.58 id.75 id.81">
<conceptual Rel ation xm:id="id. 189" xm :type="conceptual: Conceptual Fl ow'
to="id. 190" from="id.188"/>
</ concept ual El emrent >
<conceptual El erent xm :id="id.190" xm :type="conceptual :BehaviorUnit"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 297

name="Cal cul ate Adjusted Bal ance" inplenentation="id.67 id.96">
<conceptual Rel ati on xm :id="id.191" xm :type="conceptual: Concept ual Fl ow'
to="id.192" fron¥"id.190"/>
</ concept ual El enent >
<concept ual El enent xm :id="id. 192" xm :type="conceptual : Behavi orUnit" nane="Approve Transaction"
i mpl ementation="id.102 id.115 id.120"/>

</ concept ual El enent >
<concept ual El enent xm :id="id.193" xm :type="conceptual : BehaviorUnit" name="Input"

i mplementation="id.21 id.28 id.34 id.40 id.49 id.58">
<conceptual Rel ation xm:id="id.194" xm :type="conceptual : Concept ual Fl ow
to="id.195" fron¥"id.193"/>

</ concept ual El enent >
<conceptual El enent xm :id="id.195" xm :type="conceptual : BehaviorUnit" nanme="Processing"

impl ementation="id.67 id.75 id.81 id.85 id.90 id.96 id.102 id.105 id.111 id.115 id.120"/>

</ model >
</ kdm Segment >

20.7 ExtendedConceptualElements Class Diagram

The ExtendedConceptualElements class diagram defines two “wildcard” generic elements for the conceptual model as
determined by the KDM model pattern: a generic conceptual entity and a generic conceptual relationship.

The classes and associations of the ExtendedConceptualElements diagram are shown in Figure 20.6.

AbstractConceptual Relationship

AbstractConceptualElement

+from 1 0..¢

fredefines from} ConceptualRelationship

KD M Entity
ConceptualElement o 1| (from core)

{redefines to}

Figure 20.6 - ExtendedConceptualElements Class Diagram

20.7.1 ConceptualElement Class (generic)

The ConceptualElement is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualElement

298

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Constraints
1. ConceptualElement should have at least one stereotype
Semantics

A conceptual entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the conceptual model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

20.7.2 ConceptualRelationship Class (generic)

The ConceptualRelationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualRelationship

Associations
from:AbstractConceptualElement[1] the conceptual element origin of the relationship
to:KDMEntity[1] the KDMEntity target of the relationship
Constraints

1. ConceptualRelationship should have at least one stereotype.
Semantics

A conceptual relationship with underspecified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the conceptual model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 299

300 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

21 Build Package

21.1 Overview

The Build package defines meta-model elements that represent the facts involved in the build process of the given
software system (including but not limited to the engineering transformations of the “source code” to “executables”). The
Build package also includes the meta-model elements to represent the artifacts that are generated by the build process.

The Build package defines an architectural viewpoint for the Build domain.
* Concerns:
* What are the inputs to the build process?
* What artifacts are generated during the build process?
* What tools are used to perform build steps?
* What is the workflow of the build process?
* Who are the suppliers of the source artifacts?
* Viewpoint language

Build views conform to KDM XMI schema. The viewpoint language for the Build architectural viewpoint is
defined by the Build package. It includes abstract entity AbstractBuildElement, a generic entity BuildResource as
well as several concrete entities, such as BuildComponent, BuildStep, BuildProduct, BuildDescription, Library.
The viewpoint language for the Build architectural viewpoint also includes several build relationships, which is a
subclass of an abstract relationship AbstractBuildRelationship.

* Analytic methods
* Supply chain analysis (what are the artifacts that depend on a given supplier)
Build Views are used in combination with Inventory views.

* Construction methods:

* Build views that correspond to the KDM Build architectural viewpoint are usually constructed by analyzing build
scripts and build configuration files for the given system. This inputs are specific to the build automation
framework. The Build extractor tool uses the knowledge of the semantics of the build automation framework to
produce one or mode Build views as output

 Construction of the Build view is determined by the semantics of the build automation framework, and it based on
the mapping from the given build automation framework to KDM; such mapping is specific only to the build
automation framework and not to a specific software system

* The mapping from a particular build automation framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 301

21.2 Organization of the Build Package

The Build package defines meta-model elements that represent entities and relationships related to the build process of
an existing software system.

The Build package consists of the following class diagrams:

* BuildModel

* BuildInheritances

* BuildResources

* BuildRelations

» ExtendedBuildRelations

The Build package depends on the following packages:

e« Core
¢ kdm
¢ Source

21.3 BuildModel Class Diagram

The BuildModel class diagram provides basic meta-model elements that represent entities and relationships related to the
build process of an existing software system. The class diagram shown in Figure 21.1 captures these classes and their
relations.

BuildModel

0..1

+model AbstractBuildRelationship

{subsets model}

+buildRelation
{subsets ownedRelation}

buildE lement

-+
{subsets ownedElement} |0..* 1

AbstractBuildElement

Supplier

Tool

SymbolicLink

302 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Figure 21.1 - BuildModel Class Diagram
21.3.1 BuildModel Class
The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

Superclass

KDMModel

Associations

buildElement:AbstractBuildElement[0..*] The set of build elements owned by the model.

Semantics
21.3.2 AbstractBuildElement Class (abstract)
The AbstractBuildElement is the abstract base class from which all other build model elements are extended.

Superclass

KDMEntity

Associations

buildRelationship:AbstractBuildRelationship[0..*] the set of build relations

Semantics
21.3.3 AbstractBuildRelationship Class (abstract)
The AbstractBuildRelationship is the abstract base class.

Superclass

KDMRelationship

Semantics

21.3.4 Supplier Class

The Supplier class models producers of the 3rd party software components as they contribute to the build process.
Superclass

AbstractBuildElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 303

Semantics
21.3.5 Tool Class
The Tool class represents software tools as they are used in the build process.

Superclass

AbstractBuildElement

Semantics

21.3.6 SymbolicLink Class

The SymbolicLink is used to represent symbolic links.

Superclass

AbstractBuildElement

Semantics

21.4 Buildlnheritances Class Diagram

The BuildInheritances class diagram shown in Figure 21.2 depicts how various build classes extend other KDM classes.
Each of the classes shown in this diagram inherits properties from classes found in the Core package.

KDMModel KD MEntity KDM Relationship
(from kdm) (from core) (from core)
BuildModel AbstractBuildElement AbstractBuildRelationship

Figure 21.2 - BuildInheritances Class Diagram

21.5 BuildResources Class Diagram

The BuildResources class diagram provides basic meta-model constructs to model various common build resource and
their relations to the code model. The class diagram shown in Figure 21.3 captures these classes and their relations.

304 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

0.*

+buildElement | ApstractBuildElement

0.*

+owner
{subsets owner}

—

0..1

{subsets ownedElement}

+groupedBuild

+group

, (subsets

BuildResource

sets groupedElement}

P}

+group
{subsets group}

+implementation
{subsets groupedElement}

KDMEntity

Library

BuildComponent

0..

BuildStep

1

0.*

BuildSource

BuildDescription
wtext : String

Figure 21.3 - BuildResources Class Diagram

21.5.1 BuildResource Class

BuildProduct

fsource

(from core)

SourceRef
(from source)

wlanguage : String
wsnippet : String

BuildResource class is a generic meta-model element that represents a container for build elements. It provides a common

superclass for the build elements that can own other build elements. BuildResource is also a group for other KDM
entities. Usually, a Build resource such as a Library, a BuildProduct, or a BuildComponent will group together some

Inventory elements. Certain BuildResource can also group other build elements.

Superclass

AbstractBuildElement

Associations

buildElement:AbstractBuildElement[0..*]
groupedBuild:AbstractBuildElement[0..*]
implementation:KDMEntity[0..*]

source:SourceRef[0..¥]

Constraints

owned build element

grouped build elements (KDM group mechanism)

Link to the physical artifact which is represented by the

BuildResource element

1. BuildResource should either own elements or group elements, but not both.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

305

2. “Implementation” group should not include other Build elements.

3. Build element should not be included in its own groupedBuild group.
Semantics

21.5.2 BuildComponent Class

The BuildComponent class represents binary files that correspond to deployable components, for example executable
files.

Superclass

BuildResource

Semantics

21.5.3 BuildDescription Class

The BuildDescription class is used to model objects such as make files or ant scripts, which describe the build process
itself.

Superclass

BuildResource

Semantics

21.5.4 BuildStep Class

BuildStep class is the key meta-model element of the Build model. It represents a unit of transformation performed by the
build process, during which certain input resources are processed and certain output resources are produced. BuildStep
element is the origin of several build relationships. For example, a Build step “consumes” certain input resources,
“produces” certain output resources, “is defined” by a certain build description, and may be “supported” by a certain tool.

Superclass

BuildResource

Semantics

21.6 BuildRelations Class Diagram

The BuildRelations class diagram defines the various build related relationships. The class diagram shown in Figure 21.4
captures these classes and their relations.

306 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

AbstractBuildRelationship

+to

{redefines to} Tool

BuildDescription
wtext : String

0. 1

SupportedBy

DescribedBy

n}
BuildStep

+fro fre
{redefine er 1

LinksTo Consu;ﬁes SuppliedBy

0.* 0"

0..*
0.* +to
+from &{redeﬁnes to}

{redefines fro 1 5 |_1

u er
SymbolicLink s
{redefines

{redefines to {redefines from}

AbstractBuildElement

Figure 21.4 - BuildRelations Class Diagram
21.6.1 LinksTo Class
The LinksTo class models the relationship between two linked build resources.

Superclass

AbstractBuildRelationship

Associations

from:SymbolicLink[1]
to:AbstractBuildElement[1]

Semantics

Associations

from:AbstractBuildElement[1]

to:AbstractBuildElement[1]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

307

Semantics

21.6.2 Consumes Class

Consumes class defines association between a certain BuildStep element and certain build elements, called the input build
elements. These elements provide the input to the transformation, performed by the build step. For example, the set of
source files is an input to the compilation step.

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step

to:AbstractBuildElement[1] the input build elements for the given step
Semantics

The implementer shall capture the input build elements for a certain build step in the form of “Consumes” relation.

When the target of the “Consumes” relationship owns other build elements, this means that the build step (the origin of
the relationship) depends on all elements owned by the container (directly or indirectly).

When the origin of the “Consumes” relationship is a container that owns one or more build steps (directly or indirectly),
this means that all build steps consume the elements designated as the target of the “Consumes” relationship.

21.6.3 Produces Class

Produces class defines association between a certain BuildStep element and certain build elements, called the output build
elements. These elements are produced as the result of the transformation, performed by the build step. For example, the
set of object files can be produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step

to:AbstractBuildElement[1] the output build elements for the given step
Semantics

The implementer shall capture the output build elements for a certain build step in the form of “Produces” relation.

When the target of the “Produces” relationship owns other build elements, this means that the build step (the origin of the
relationship) produces all elements owned by the container (directly or indirectly).

308 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

When the origin of the “Produces” relationship is a container that owns one or more build steps (directly or indirectly),
this means that the elements designated as the target of the “Produces” relationship are produced in collaboration of all
build steps, and no particular build step is the sole producer.

21.6.4 SupportedBy Class

SupportedBy class defines association between a certain BuildStep element and certain Tool element. The Tool element is
required to perform the build step. For example, a particular version of a complier is required to perform the compilation
step.

Superclass

AbstractBuildRelationship

Associations
from:BuildStep[1] the build step
to:Tool[1] The Tool element that represents the tool performing the transformations represented
by the given step.
Semantics

The implementer shall capture the required Tool elements for a certain build step in the form of “SupportedBy” relation.

21.6.5 SuppliedBy Class

SuppliedBy class defines association between certain build elements and their points of origin, represented by Supplier
element. For example, certain parts of the runtime platform can originate from a software vendor, some libraries can
originate from open source.

Superclass

AbstractBuildRelationship

Associations

from:AbstractBuildElement[1] the build element

to:Supplier[1] The Supplier element that represents the origin of the build element.
Semantics

The implementer shall capture the origin of build elements in the form of “SuppliedBy” relation.

When the origin of the “SuppliedBy” relationship is a container that owns one or more build elements (directly or
indirectly), this means that all elements designated as the source of the “SuppliedBy” relationship are supplied by a
particular Supplier element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 309

21.6.6 DescribedBy Class

DescribedBy class defines association between certain build step and a certain BuildDescription element. These elements
are produced as the result of the transformation, performed by the build step. For example, the set of object files can be
produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations
from:BuildStep[1] the build step
to:BuildDescription[1] The BuildDescription element that describes the transformation represented by the
build step.
Semantics

The implementer shall capture the description of a certain build step in the form of “DescribedBy” relation to some
BuildDescription element.

Example

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xmni :version="2. 1"
xm ns: xm ="http://schena. ong. org/ spec/ XM /2. 1"
xm ns: bui I d="http://schena. ony. or g/ spec/ KDM 1. 2/ bui | d"
xm ns: kdne"htt p: // schena. ong. or g/ spec/ KDM 1. 2/ kdnt'
xm ns: source="http://schenma. ong. or g/ spec/ KDM 1. 2/ source" nanme="Bui |l d Exanpl e">
<nmodel xm:id="id.0" xm:type="source:|nventoryMdel">
<i nventoryEl enent xm:id="id.1" xm:type="source: SourceFile" nanme="a.c">
<inventoryRelation xm :id="id.2" xm:type="source: DependsOn" to="id.5" from"id.1"/>
</i nvent or yEl enent >
<i nventoryEl enent xm:id="id.3" xm:type="source: SourceFile" name="bh.c">
<inventoryRel ation xm :id="id.4" xm:type="source: DependsOn" to="id.5" from"id.3"/>
</i nvent or yEl enent >
<i nventoryEl enent xm:id="id.5" xm:type="source: SourceFile" nane="ab.h"/>
<i nventoryEl enent xm:id="id.6" xm:type="source: D rectory">
<inventoryEl enent xm:id="id. 7" xm:type="source:|nage"/>
<i nventoryEl enent xm:id="id.8" xm:type="source:|nage"/>
</i nvent or yEl enent >
<i nventoryEl enent xm:id="id.9" xm:type="source: SourceFile" nanme="nakefile"/>
<i nventoryEl enent xm:id="id.10" xm:type="source: Executabl eFile" nanme="ab. exe"/>
</ nodel >
<nmodel xmi:id="id.11" xm:type="build: Buil dvbdel ">
<bui | dEl ement xmi :id="id. 12" xm:type="buil d: Buil dConponent "
nane="sources" inplenentation="id.1id.5id.3"/>
<bui | dEl ement xmi :id="id.13" xm :type="buil d: Buil dProduct"
nane="ab product" inplenentation="id.10"/>
<bui | dEl enent xmi:id="id. 14" xm :type="buil d: Buil dSt ep">
<bui |l dRel ation xm :id="id. 15" xm :type="buil d: Descri bedBy" to="id.28" from="id.14"/>

310 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

<bui | dRel ati on xm :id="id.16" xm:type="build: SupportedBy" to="id.30" fron="id.14"/>

<bui | dEI enrent xm :id="id.
<bui | dRel ation xm :id="
<bui | dRel ation xm :id="
<bui | dRel ation xm :id="

</ bui | dEl enent >

<bui | dEI enrent xm :id="id.
<bui | dRel ation xm :id="
<bui | dRel ation xm :id="
<bui | dRel ation xm :id="

</ bui | dEl enent >

<bui | dEl enent xm :i d="id.
<bui | dEl enent xm :i d="id.
<bui | dRel ation xm :id="

</ bui | dEl enent >
</ bui | dEl enent >

17" xm :type="buil d: Bui | dSt ep"

name="conpi |l e">

id. 18" xm:type="build: Consunes" to="id.12" fronm="id.17"/>
id. 19" xm:type="build: Produces" to="id.25" fronm="id.17"/>
id.20" xm:type="build: SupportedBy" to="id.26" from="id.17"/>

21" xm :type="buil d: Bui | dSt ep"

nanme="1i nk" >

id. 22" xm:type="build: Consunes" to="id.25" fronm="id.21"/>
id. 23" xm:type="build: Produces" to="id.13" fron¥"id.21"/>
id. 24" xm:type="build: SupportedBy" to="id.26" from="id.21"/>

25" xm :type="buil d: Bui | dConponent” nane="object files"/>
26" xm :type="buil d: Tool" nane="C conpiler">
id. 27" xm:type="buil d: SuppliedBy" to="id.32" from="id.26"/>

<bui | dEl emrent xmi :id="id. 28" xm :type="build:Buil dDescription" inplementation="id.9">
<source xm :id="id.29" |anguage="shell" snippet="cc $(SOURCE) -0 ab.exe"/>

</ bui | dEl enent >

<bui | dEl ement xmi :id="id.30" xm:type="build: Tool "

nanme=" make" >

<bui | dRel ati on xm :id="id.31" xmi:type="build: SuppliedBy" to="id.32" fronm="id.30"/>

</ bui | dEl enent >

<bui | dEl erent xmi :id="id. 32" xm:type="build: Supplier”

</ nodel >
</ kdm Segnent >

21.7 ExtendedBuildElements Class Diagram

name="Tool s' R Us corp"/>

The ExtendedBuildElements class diagram defines two “wildcard” generic elements for the build model as determined by

the KDM model pattern: a generic build entity and a generic build relationship.

The classes and associations of the ExtendedBuildElements diagram are shown in Figure 21.5.

AbstractBuildRelationship

i

Ab stractBuildElem ent
1\0* BuildRelationship
+from - +o
{redefines from} 0..* {redefines to}
BuildElement 1 | KDMEntity

(from core)

Figure 21.5 - ExtendedBuildElements Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 31

21.7.1 BuildElement Class (generic)

The BuildElement is a generic meta-model element that can be used to define new “virtual” meta-model elements through
the KDM light-weight extension mechanism.

Superclass

AbstractBuildElement

Constraints
1. BuildElement should have at least one stereotype.
Semantics

A build entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the build model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

21.7.2 BuildRelationship Class (generic)

The BuildRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractBuildRelationship

Associations
from:AbstractBuildElement[1] the build element origin of the relationship
to:KDMEntity[1] the KDMEntity target of the relationship
Constraints

1. BuildRelationship should have at least one stereotype.
Semantics

A build relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the build model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

312 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Annex A - Semantics of the Micro KDM Action Elements
(normative)

This normative annex defines the semantics of micro KDM action elements. This section assumes understanding of the
KDM Datatypes.

Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras).

* Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the
micro action. The action kind may designate certain outgoing relationship as part of the Control. For example, the
“call” micro action designated the Calls outgoing relationship as part of Control.

* Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

* Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for a micro action.

» Control part - owned outgoing control flow relationships for the action.

» Extras part - owned relationships other than Reads, Writes and not designated as part of Control by the action Kind.
For example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

A.1 Comparison Actions

Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for Boolean
NOT, which has a single Reads relationship).

Outputs: Optional writes to a DataElement of a Boolean type (no Writes corresponds to an expression statement,
where the result of the operation is ignored; otherwise the result should be stored into a DataElement, which
can be permanent, for example a StorableUnit with a kind other than "register", a MemberUnit, an [temUnit

or a ParameterUnit; or temporary, a StorableUnit with a "register" kind).

Control: Optional single flow - unconditional transfer of control to the next micro action (for example, as part of
complex expressions; no Flow corresponds to a terminal action).

Table A.1 - Comparison Actions

Micro action Semantics

Equals Polymorphic equals for two values of the same datatype, see ISO Equals operation for the
corresponding datatype.

NotEqual Polymorphic “not equal” for two values of the same datatype: not (A==B).

LessThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype; see ISO
InOrder operation for the corresponding datatype.

LessThan Polymorphic “less than” for two values of the same ordered datatype: A<=B and not A==B.

GreaterThan Polymorphic “greater than or equal” for two values of the same ordered datatype: not A<=B.

GreaterThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype: not A<=B or
A==B.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 313

Table A.1 - Comparison Actions

Micro action Semantics

Not Boolean NOT, see ISO Boolean NOT operation.
And Boolean AND, see ISO Boolean AND operation
Or Boolean OR, see ISO Boolean OR operation
Xor Boolean XOR: (A and not B) or (not A and B)

A.2 Actions Related to the Primitive Numerical Datatypes

Inputs: Two ordered Reads relationships to DataElements representing values of the same datatype (except for neg,
succ, incr, decr unary operations, which have a single Reads relationship).

Outputs: Optional single Writes to a DataElement of a type corresponding to the definition of the operation (can be
temporary register or a variable; no Writes corresponds to an expression statement, where the result of the
operation is ignored).

Control: Optional single flow - unconditional transfer of control to the next micro action.

Table A.2 - Numerical actions

Micro action Semantics

Add Polymorphic add operation for two values of the same numeric datatype, see ISO Add
operation for the corresponding datatype.

Multiply Polymorphic multiply operation for two values of the same numeric datatype; see ISO Add
operation for the corresponding datatype.

Negate Polymorphic unary negate operation for two values of the same numeric datatype; see ISO
Negate operation for the corresponding datatype.

Subtract Polymorphic subtract operation for two values of the same numeric datatype; A+ neg B.
Divide Polymorphic divide operation for two values of the same numeric datatype.

Remainder Polymorphic remainder operation for two values of the same IntegerType datatype.
Successor Single Reads; Successor for ordinal or enumerated types, see ISO Successor operation.

A.3 Actions Related to Bitwise Operations on Primitive Datatypes

Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for neg, succ,
incr, decr unary operations, which have a single Reads relationship).

Outputs: Optional single Writes to a DataElement of the same type as the first StorableElement (can be a temporary
register or a variable).

Control: Optional single Flow - unconditional transfer of control.

314 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Table A.3 - Bitwise actions

Micro action Semantics Inputs
BitAnd Bitwise AND on two integers or Two Reads relationships to DataElements
bitstrings or octetstrings representing values of the same datatype
BitOr Bitwise OR on two integers or bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype
BitNot Bitwise NOT on integer or bitstring or Two Reads relationships to DataElements
octetstring representing values of the same datatype
BitXor Bitwise XOR on two integers or bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype
LeftShift Arithmetic bitwise shift left on integer or | First Reads relationship to a DataElement
bitstring or octetsting representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.
RightShift Arithmetic bitwise shift right on integer First Reads relationship to a DataElement
or bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.
BitRightShift Logical bitwise shift right on integer or First Reads relationship to a DataElement
bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

315

A.4 Control Actions

Table A.4 - Control actions

Micro action | Description Inputs Outputs Control
Assign Assignment Single Reads relationship to a | Writes relationship Optional single flow to the
(copy) DataElement representing the | represents the next micro action
value DataElement (except
for a ValueElement)
to which the value of
the input
DataElement is
assigned

Condition Condition Single Reads relationship to a | none TrueFlow & FalseFlow -
DataElement representing the conditional transfer of
Boolean value control

Call Static call Zero or more Reads Optional Writes to Calls relationship to the
relationships to DataElements, | the DataElement that | ControlElement represents
that represent input actual represents the return | the flow of control to the
parameters; ordered; value ControlElement and the
Value of each actual parameter return back; Subsequently
is assigned to the an optional single flow to
corresponding formal the next micro action is
parameter of the performed.
ControlElement.

Correspondence is established
according to the Pos attribute
of the formal parameter in the
signature of the
ControlElement. A sequence
of values is assigned to the
variable argument.

MethodCall Method call Invokes relationship to the Same as Call Calls relationship to the
DataElement that represents MethodUnit represents the
the instance; flow of control to the
Zero or more Reads Method and the return
relationships to DataElements, back; Subsequently an
that represent input actual optional single flow to the
parameters; ordered; next micro action is

performed.
316 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Table A.4 - Control actions

Micro action

Description

Inputs

Outputs

Control

label; the name of
the action is the
label

PtrCall Call via pointer Addresses relationship to the Same as Call This represents a dynamic
DataElement that represents call to one of the possible
the pointer; targets of the pointer

Zero or more Reads (corresponding to the

relationships to DataElements, current value of the

that represent input actual pointer). The Signature of

parameters; ordered; the possible targets is
represented as the type
attribute of the
DataElement; subsequently
an optional single flow to
the next micro action is
performed

VirtualCall Virtual method Invokes relationship to the Same as Call Calls relationship to the

call DataElement that represents MethodUnit represents the

the instance; superclass of the method

Zero or more Reads that will be determined

relationships to DataElements, dynamically. This

that represent input actual represents the flow of

parameters; ordered; control to the Method and
the return back;
Subsequently an optional
single flow to the next
micro action is performed.

Return return Single Reads represents the none Control is returned back to
DataFlement that contains the one of the ControlElements
return value that has performed the call.

This pointer to the none Writes to a Single flow to the next

current instance DataFlement micro action
of the object

Nop dummy none none Optional single flow to the

next micro action

Goto Unconditional none none Single flow to the next

transfer of micro action
control
Label represents a none none Single flow to the next

micro action

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

317

Table A.4 - Control actions

Micro action | Description Inputs Outputs Control
Throw Raising none none Throws relationship to the
exception DataElement that
represents the "exception
object". Optional
ExceptionFlow relationship
to a CatchUnit that
processes the exception
Incr Variable post Single Addresses relationship | Optional Writes Optional single flow to the
increment represents the DataElement relationship to next micro action
operation; whose value is incremented,; another DataElement
to which the previous
value of the
incremented variable
is assigned
Decr Variable post Single Addresses relationship | Optional Writes Optional single flow to the
decrement represents the DataElement relationship to next micro action
operation; whose value is decremented another DataElement
to which the previous
value of the
incremented variable
is assigned
Switch Branching based | Single Reads to the none One or more GuardedFlow
on the value of a | DataElement that represents relations to a second micro
StorableElement | the selector value action with a single Reads
relationship that represents
the guard value. A single
FalseFlow represents the
default branch. This
construct represents
selection of a single branch
for which the value of the
selector is equal to the
value of the guard or the
default branch
318 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Table A.4 - Control actions

Micro action | Description Inputs Outputs Control
Guard Represents start Single Reads relation to a none Single flow unconditional
of the branch of a | DataElement representing the control flow to the first
complex guard value action of the branch
condition
Compound Compound action | none none Single Flow - the entry flow
to the first internal action
element
Init BlockUnit that none none EntryFlow unconditional
contains control flow to the first
initialization internal action
action elements

A.5 Actions Related to Access to Datatypes

Inputs: see table
Outputs: see table.
Control:

Table A.5 - Access actions

optional single Flow to the next micro action (no Flow means a terminal action element).

Micro action Description Inputs Outputs
FieldSelect Access to a particular Single Addresses relationship to a Optional Writes relationship
ItemUnit of a RecordType | DataElement (of a RecordType); Single represents the DataElement
Reads relationship to an ItemUnit (except for a ValueElement)
representing the field being accessed to which the value of the
field is assigned
FieldReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular field of a DataElement (of a RecordType); Single ItemUnit representing the
RecordType Reads to a DataElement representing the | field being modified;
new value
ChoiceSelect Access to a particular Single Addresses relationship to a Optional Writes relationship
ItemUnit of a ChoiceType | DataElement (of a ChoiceType); Single represents the DataElement
Reads relationship to an ItemUnit (except for a ValueElement)
representing the field type being accessed | to which the value of the
field is assigned
ChoiceReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular field of a DataElement (of a ChoiceType); Single ItemUnit representing the
ChoiceType Reads to a DataElement representing the | field being modified;
new value

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

319

Table A.5 - Access actions

Micro action

Description

Inputs

Outputs

Ptr

Access to a pointer to a

Single Addresses relationship to a

Optinal Writes relationship

StorableElement DataElement to the StorableElement
which will hold the new
value

PtrSelect Access to a value via Single Addresses relationship to a Optional Writes relationship
pointer DataElement (of an PointerType); Single | to the ItemUnit of that
Reads relationship to an ItemUnit of that | PointerType
PointerType representing the ItemUnit
being accessed;
PtrReplace Modification of an Single Addresses relationship to a Writes relationship to the
ItemUnit of a PointerType | DataElement (of an PointerType); Last ItemUnit of that PointerType
Reads to a DataElement representing the
new value
ArraySelect Access to a particular Single Addresses relationship to a Optinal Writes relationship
ItemUnit of an ArrayType | DataElement (of an ArrayType); Reads represents the DataElement
relationship to an ItemUnit representing (except for a ValueElement)
the ItemUnit being accessed; Last Reads | to which the value of the
represents the Index ItemUnit is assigned
ArrayReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular ItemUnit of an | DataElement (of an ArrayType); Reads ItemUnit representing the
ArrayType that represents the Index; Last Reads to a | ItemUnit being modified;
DataFlement representing the new value
MemberSelect Access to a particular Invokes relationship to the DataElement | Optional Writes relationship
MemberUnit of a that represents the instance.Single Reads | represents the DataElement
ClassType relationship to an MemberUnit (except for a ValueElement)
representing the member being accessed | to which the value of the
field is assigned
320 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Table A.5 - Access actions

Micro action Description Inputs Outputs
MemberReplace | Modification of a Single Invokes relationship to a Writes relationship to an
particular member of a DataElement (of a ClassType) that MemberUnit representing
ClassType represents the instance of the object being | the member being modified;
accessed.Single Reads to a DataElement
representing the new value
New Creation of a new Creates relationship to the Datatype being | Writes relationship
dynamic instance of a created represents the DataElement
datatype; this has to be (except for a ValueElement)
done separately if to which the reference to the
required; this micro action new dynamic element is
does not invoke the assigned
constructor of the new
object; this has to be done
separately
NewArray Creation of a new Creates relationship to the Datatype being | Writes relationship
dynamic instance of an created; Reads relation to the represents the DataElement
ArrayType datatype DataElement that represents the length of | (except for a ValueElement)
the new array to which the reference to the
new dynamic element is
assigned

A.6 Actions Related to Type Conversions

Inputs: see table
Outputs: see table.
Control:

Table A.6 - Type conversion actions

optional single Flow to the next micro action (no Flow means a terminal action element).

Micro action | Description

Inputs

Outputs

Sizeof Determines the length of a
DataElement (based on the
datatype) or the length of a

Datatype

Reads represents the DataElement;
or
UsesType to the Datatype

Optional writes to a
DataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

321

Table A.6 - Type conversion actions

Micro action | Description Inputs Outputs

Instanceof Performs dynamic type check | Reads represents the DataElement; Optional Writes to a
if the data element is of a UsesType relation represents the datatype | DataElement of a Boolean
certain datatype type;

DynCast Performs a dynamic cast of a | Reads represents the DataElement; Optional Writes to a
DataElement to a certain UsesType relation represents the datatype | DataElement
Datatype

TypeCast Performs a static type Reads represents the DataElement; Optional writes to a
conversion of a DataElement | UsesType relation represents the datatype | DataElement
to a certain Datatype

A.7 Actions Related to StringType Operations
Inputs: see table

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for example a
StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit; or temporary, a
StorableUnit with a "register" kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.7 - StringType actions

Micro action Description Inputs
IsEmpty True is the string x is empty First Reads represents x;
Head Produces the value of the first element in the string x First Reads represents x;
Tail Produces sequence that results from deleting the first element in the | First Reads represents x;
string x
Empty Produces and empty string UsesType to the required type
Append Produces the sequence that is formed by adding a single value y to First Reads represents x;
the end of the string x Second represents y
Note:"==" operation on ISO strings is defined as full comparison, this does not work in Java, which has shallow

comparison of object references.

A.8 Actions Related to SetType Operations

Inputs: see table

322 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Outputs: optional Writes to a DataFlement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for
example a StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit;

or temporary, a StorableUnit with a "register" kind)

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.8 - SetType actions

Micro action Description Inputs

IsIn True is the value x is a member of the set y, else First Reads represents x; Second represents y
false

Subset True if every member of x is a member of y First Reads represents x; Second represents y

Difference Produces the set that consists of the values that are | First Reads represents x; Second represents y

inx and not in 'y

Union Produces the set that consists of the values that are | First Reads represents x; Second represents y
eitherinxoriny

Intersection Produces the set that consists of the values that are | First Reads represents x; Second represents y
bothinx and iny

Select Produces a value of the base type that is in the set x | First Reads represents x;
IsEmpty True is the set x is empty First Reads represents x;
Empty Produces and empty set UsesType to the required type

A.9 Actions Related to SequenceType Operations

Inputs: see table

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for example a
StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit; or temporary, a
StorableUnit with a "register" kind)

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.9 - SequenceType actions

Micro action Description Inputs
IsEmpty True is the sequence x is empty First Reads represents x;
Head Produces the value of the first element in the sequence x First Reads represents x;

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3 323

Table A.9 - SequenceType actions

Micro action

Description

Inputs

Tail

Produces sequence that results from deleting the first element
in the sequence x

First Reads represents Xx;

Empty

Produces and empty sequence

UsesType to the required type

Append

Produces the sequence that is formed by adding a single value y
to the end of the sequence x

First Reads represents x; Second
represents y

A.10 Actions Related to BagType Operations

Inputs: see table

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise the result should be stored into a DataElement, which can be permanent, for

example a StorableUnit with a kind other than "register", a MemberUnit, an ItemUnit or a ParameterUnit;

or temporary, a StorableUnit with a "register" kind)

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.10 - BagType actions

Micro action

Description

Inputs

as many time as it occurs in the bag x

IsEmpty True is the bag x is empty First Reads represents x;

Select Produces a value of the base type that is in the bag x First Reads represents x;

Delete Produces the bag that is formed by deleting one instance | First Reads represents x; Second
of value y from the bag x if any represents y

Empty Produces and empty bag UsesType to the required type

Insert Produces the bag that is formed by adding one instance of | First Reads represents x; Second
value y from the bag x represents y

Serialize Produces the sequence in which each element is repeated | First Reads represents x;

A.11 Actions Related to Resources

Resource micro-actions represent specific statements that are determined by some programming languages and which
manipulate resources provided by the operating environment. Such statements are alternative to using system calls. Kinds in
Table A.11 represent such statements as micro KDM ActionElements. Precise semantics of representing the operating
environment is described in Part 3 Runtime Resource Layer. In particular, a combination of resource actions, resource

relationships and resource events can be used, where the resource micro-action is part of a Code Model, while other elements

can be added in various models of the Resource Layer (Platform, Data, Event or UI).

324

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

Inputs: Zero or more Reads relationships to DataElements; represent input data which is sent to the resource;

ordered

Outputs: Zero or more Writes relationships to DataElements; represents output data which is received from the
resource;

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Extras: optional resource-specific relationships.

Table A.11 - Resource actions

Micro action Description

Platform ActionElement represents a statement that manipulates a
Platform Resource

Data ActionElement represents a statement that manipulates a
Data Resource

Event ActionElement represents a statement that manipulates an
Event Resource

Ul ActionElement represents a statement that manipulates a
UI Resource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

325

326 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.3

A

AbstractActionRelationship class 141
AbstractBuildElement class 303
AbstractCodeElement class 71
AbstractCodeRelationship class 72
AbstractConceptualElement class 285
AbstractConceptualRelationship class 286
AbstractContentElement class 253
AbstractDataElement class 226
AbstractDataRelationship class 226
AbstractEventElement class 213
AbstractEventRelationship class 214
AbstractInventoryElement Class 54
AbstractInventoryElement class 54
AbstractInventoryRelationship class 54
Abstractions Layer 14
AbstractPlatformElement class 178
AbstractPlatformRelationship class 178
AbstractStructureElement class 275
AbstractUIElement class 199
AbstractUIRelationship class 200
Acknowledgements 9, 11

Action package 139

ActionElement class 140
ActionElements class diagram 140
ActionFlow class diagram 143
Actionlnheritances class diagram 142
ActionRelationship class 162
Addresses class 152
AggregatedRelations 29
AggregatedRelations class diagram 28
AllContent class 258

Annotation class 50

Annotation class diagram 48
architectural view 13

architectural viewpoint 13
Architecture-Driven Modernization (ADM) 1
ArchitectureView class 277
ArrayType class 97

atomic element 25

Attribute class 48

Audit class diagram 38

B

BagType class 99

BehaviorUnit class 289
BinaryFile class 56

BindsTo class 184

BitStringType class 91

BitType class 91

BlockUnit class 141
BooleanType class 88

Build package 301
BuildComponent class 306
BuildDescription class 306
BuildElement class 312
BuildInheritances class diagram 304
BuildModel class 303
BuildModel class diagram 302
BuildRelations class diagram 306
BuildRelationship class 312

BuildResource class 305
BuildResources class diagram 304
BuildStep class 306

C

CallableRelations class diagram 147
CallableUnit class 78

Calls class 148

Catalog class 229

CatchUnit class 154

CharType class 89
ChoiceContent class 258
ChoiceType class 94
ClassRelations class diagram 119
ClassTypes class diagram 103
ClassUnit class 103

Code package 69

CodeAssembly class 76
CodeElement class 137
Codelnheritances class diagram 73
Codeltem class 72

CodeModel class 71

CodeModel class diagram 70
CodeRelationship class 137
ColumnSet class 231

ColumnSet class diagram 231
Comments class diagram 132
CommentUnit class 133
compilation unit 75
CompilationUnit class 75
ComplexContentType class 254
compliance levels 2

Compliance to Level 1 3
CompliesTo class 160
Component class 276
CompositeType class 93
CompositeTypes class diagram 93
ComputationalObject class 72
Conceptual package 281
ConceptualContainer class 287
ConceptualElement class 298

ConceptualElements class diagram 286

ConceptualFlow class 290

Conceptuallnheritance class diagram 286

ConceptualModel class 284
ConceptualModel class diagram 283

ConceptualRelations class diagram 290

ConceptualRelationship class 299
ConceptualRole class 288
ConditionalDirective class 125
Configuration class 56
Conformance 1

Consumes class 308
ConsumesEvent class 218
container 25

container ownership 21
containers 21

ContentAttribute class 259
ContentElement class 259
ContentElements class diagram 253
Contentltem class 254

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

ContentReference class 259
ContentRelations class diagram 264
ContentRestriction class 255
context 74

ControlElement class 77
ControlElements class diagram 77
ControlFlow class 143

Core package 23

CoreEntity class diagram 23
Creates class 152

D

Data Package 223

DataAction class 230
DataAction class diagram 245
DataContainer class 228
DataElement class 81
DataElements class diagram 80
DataEvent class 230
Datalnheritances class diagram 226
DataManager class 182
DataModel Class 225
DataModel class diagram 224
DataRelations class diagram 150
DataRelationship class 268
DataResource class 228
DataResources class diagram 227
DataSegment class 235
Datatype class 73

DatatypeOf class 266

DateType class 89
DecimalType class 90
DefinedBy class 187
DefinedType class 102
DefinedTypes class diagram 101
Definitions 6

DependsOn class 59
DeployedComponent class 189
DeployedResource class 191
DeployedSoftwareSystem class 190
Deployment class diagram 188
DerivedType class 96
DerivedTypes class diagram 96
DescribedBy class 310

design characteristics 14
Directory class 57

Dispatches class 149

Displays class 206
DisplaysImage class 206

E

Element 24

enterprise application 1
EntryFlow class 144
EnumeratedType class 93
EnumeratedTypes class diagram 92
Event class 215

Event package 211
EventAction class 217
EventActions class diagram 218
EventElement class 221

328

Eventlnheritances class diagram 214
EventModel class 213

EventModel class diagram 212
EventRelations class diagram 217
EventRelationship class 221

EventResource class 215

EventResources class diagram 214
ExceptionBlocks class diagram 153
ExceptionFlow class 159

ExceptionFlow class diagram 157
ExceptionRelations class diagram 159
ExceptionUnit class 154

ExecutableFile class 57

ExecutionResource class 182

existing software assets 1

existing software systems 1

ExitFlow class 158

Expands class 126

ExtendedActionElements class diagram 162
ExtendedBuildElements class diagram 311
ExtendedCodeElements class diagram 137
ExtendedConceptualElements class diagram 298
ExtendedDataElement class 268
ExtendedDataElements class diagram 267
ExtendedEventElements class diagram 220
ExtendedInventoryElements class diagram 63
ExtendedPlatformElements class diagram 194
ExtendedStructureElements class diagram 278
ExtendedUIElements class diagram 208
ExtendedValue 46

ExtendedValue class 46

ExtendedValues 45

Extends class 120

extension point 88

extension points 40, 137

ExtensionFamily class 44

Extensions class diagram 39

ExtensionTo class 266

ExternalActor class 183

F

facts 21

FactUnit class 288
FalseFlow class 146
FileResource class 182
FloatType class 90

Flow class 145

framework 22

Framework class diagram 34

G

GeneratedFrom class 127
group 25

group association 21
GroupContent class 258
GuardedFlow class 146

H

HasContent class 247
HasState class 220
HasType class 115

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

HasValue class 116

|

Image class 56

ImplementationOf class 112
Implements class 111

Imports class 136

IncludeDirective class 125

Includes class 128

Index class 243

IndexElement class 242

IndexUnit class 83

InitialState class 216

InstanceOf class 107

IntegerType class 90
InterfaceRelations class diagram 110, 160
InterfaceUnit class 104
intermediate representation 33
interoperability 1
InventoryContainer class 57
InventoryElement class 63
Inventorylnheritances class diagram 58
Inventoryltem Class 55
Inventoryltem class 55
InventoryModel 53

InventoryModel Class 53
InventoryModel class 53
InventoryModel class diagram 53
InventoryRelations class diagram 59
InventoryRelationship class 64
issues/problems xvii

ItemUnit class 83

K

KDM domains 1

KDM entity 26

KDM Framework 33

KDM implementation 3
KDM Infrastructure Layer 14
KDM layers 13

KDM model 14, 33

KDM relationship 26

KDM structure 17

KDM TimeType class 90
KDMFramework class 35
KDMModel class 35
KeyIndex class diagram 242
KeyRelations class diagram 244
KeyRelationship class 244

Knowledge Discovery Meta-model (KDM) 1

L

LanguageUnit class 76

Layer 13

Layer class 276

Level 0 (LO) 2

Level 1 (L1) 3

Level 2 (L2) 3

lightweight extension mechanism 24
LinksTo class 307

Loads class 193

LockResource class 182

M

Machine class 190
MacroDirective class 124
MacroUnit class 123
ManagesData class 246
ManagesResource class 186
ManagesUI class 206
mapping 18
MarshalledResource class 181
MemberUnit class 84
MessagingResource class 181
MethodUnit class 79

micro KDM 165
MixedContent class 259
ModelElement 24

models 33

module 74

Module class 74

Modules class diagram 74

N

Namespace class 134
NamingResource class 181
NextState class 218
Normative References 6

o

Object Management Group, Inc. (OMG) xv
OctetStringType class 92

OMG specifications xv

OnEntry class 216

OnExit class 217

operational environment 1

OrdinalType class 89

origin entity 27

P
Package class 76

package named “kdm” 33
ParameterTo class 107
ParameterUnit class 84

Platform model class 177

Platform package 175
PlatformAction class 183
PlatformActions class diagram 185
PlatformElement class 195
PlatformEvent class 183
PlatformInheritances class diagram 179
PlatformModel class diagram 177
PlatformRelations class diagram 184
PlatformRelationship class 195
PlatformResources class diagram 179
PointerType class 98

Preprocessor class diagram 121, 125
PreprocessorDirective class 122
PrimitiveType class 88
PrimitiveTypes class diagram 87
Process class 192

Produces class 308

ProducesEvent class 219

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

329

Program Elements Layer 14
Project class 58
ProvisioningRelations class diagram 184

R

RangeType class 98

Reads class 151
ReadsColumnSet class 245
ReadsResource class 187
ReadsState class 219
ReadsUI class 207
RecordFile class 237
RecordType class 95
Redefines class 131
ReferenceKey class 243
References 6

ReferenceTo class 266
RelationalSchema class 229
RelationalTable class 232
Relational View class 234
Report class 202

Requires class 185
ResourceDescription class 56
ResourceType class 180
RestrictionOf class 267
RuleUnit class 288

Runtime Resource Layer 14
RuntimeActions class diagram 192
RuntimeResources class diagram 191

S

ScaledType class 90
ScenarioUnit class 289
Scope 1

Screen class 202

Segment class 37

segments 33

SeqContent class 258
SequenceType class 100
SetType class 99
SharedUnit class 75
Signature class diagram 100
SimpleContentType class 255
Software Assurance (SWA 1
SoftwareSystem class 277
source code 51

Source package 51, 52
SourceFile class 55
SourceRef class 60
SourceRef class diagram 60
SourceRegion class 62
Spawns class 194

State class 216

Stereotype class 41
StorableUnit class 82
StreamResource class 182
StringType class 91
Structure package 273
StructuredData class diagram 252
StructureElement class 278
Structurelnheritances class diagram 277

330

StructureModel class 275
StructureModel class diagram 274
StructureRelationship class 278
Subsystem class 276

SuppliedBy class 309
SupportedBy class 309
SymbolicLink class 304

Symbols 8

SynonymUnit class 103

T
TagDefinition class 43
TaggedRef class 47
TaggedValue class 47

target entity 27
TemplateParameter class 105
TemplateRelations class diagram 106
Templates class diagram 104
TemplateType class 106
TemplateUnit class 105

terms 21

Terms and definitions 6
TermUnit class 288

Thread class 192

Throws class 159

TimeType class 89

Tool class 304

traceability links 22

Transition class 216

TrueFlow class 145

TryUnit class 154

TypedBy class 265
TypeRelations class diagram 115
TypeUnit class 102
typographical conventions xvi

U

UI package 197

UlAction class 203

UlActions class diagram 205
UlDisplay class 202

UlElement class 208

UlEvent class 203

UlField class 203

UIFlow class 204
Ullnheritances class diagram 200
UlLayout class 204

UIModel class diagram 198
UlRelations class diagram 204
UlRelationship class 208
UlResource class 202
UlResource class diagram 201
UniqueKey class 243
UsesRelations class diagram 161
UsesType class 161

\'

Value class 86

ValueElement class 85
ValueElements class diagram 85
ValueList class 86

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

VariantTo class 130

viewpoint language 13

Visibility class diagram 134
VisibilityRelations class diagram 135
Visibleln class 135

VoidType class 91

w

Writes class 151
WritesColumnSet class 246
WritesResource class 187
WritesUI class 207

X
XMLSchema class 252

Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3 331

332 Architecture-driven Modernization:Knowledge Discovery Meta-model, v1.3

