Date: March 2016

OBJECT MANAGEMENT GROUP

Architecture-Driven Modernization:
Knowledge Discovery Meta-Model (KDM)

Version 1.4

convenience document with changebars

OMG Document Number: ptc/2016-02-03
Standard document URL: http://www.omg.org/spec/KDM/1.4
Normative Machine Consumable Files:

http://www.omg.org/spec/KDM/20160201/kdm.cmof
http://www.omg.org/spec/KDM/20160201/action.xsd
http://www.omg.org/spec/KDM/20160201/build.xsd
http://www.omg.org/spec/KDM/20160201/code.xsd
http://www.omg.org/spec/KDM/20160201/conceptual.xsd
http://www.omg.org/spec/KDM/20160201/core.xsd
http://www.omg.org/spec/KDM/20160201/data.xsd
http://www.omg.org/spec/KDM/20160201/event.xsd
http://www.omg.org/spec/KDM/20160201/kdm.xsd
http://www.omg.org/spec/KDM/20160201/platform.xsd
http://www.omg.org/spec/KDM/20160201/source.xsd
http://www.omg.org/spec/KDM/20160201/structure.xsd
http://www.omg.org/spec/KDM/20160201/ui.xsd
Non-normative Machine Consumable Files:
http://www.omg.org/spec/KDM/20160201/kdm.ecore
http://www.omg.org/spec/KDM/20160201/kdm.mdxml

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS

Copyright © 2006, Flashline

Copyright © 2006, IBM

Copyright © 2006, KDM Analytics
Copyright © 2006, Klocwork, Inc.

Copyright © 2016, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission

of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMl
Logo™, CWM™, CWM Logo™, IIOP™ IMM™, MOF™ | OMG Interface Definition Language (IDL)™ , and OMG
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the
testing suites.

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they
may find by completing the Issue Reporting Form listed on the main web page
http://www.omg.org, under Documents, Report a Bug/lIssue
(http://www.omg.org/report_issue.htm).

0.1 OMG'S ISSUE REPORTING PROCEDURE 1
1 Preface xv
2 Scopel

3 Conformance 1

3.1 KDM Domains 2

3.2 Compliance Levels 3
3.2.1 Meaning and Types of Compliance 4

Normative References 6
Terms and Definitions 7

Symbols 9

~N o o b

Additional Information 9

7.1 Changes to Other OMG Specifications 9

7.2 How to Read this Specification 9
7.2.1 Diagram format 11

8 Specification Overview 13

9 KDM 17

9.1 Overview 17

9.2 Organization of the KDM Packages 18
Subpart | - Infrastructure Layer 21
10 Core Package 23

10.1 Overview 23
10.2 Organization of the Core Package 23

10.3 Elements Class Diagram 23

10.3.1 Element Class (abstract) 24

10.3.2 AnnotatableElement Class (abstract) 24
10.3.3 AnnotationElement Class (abstract) 25
10.3.4 ExtendableElement Class (abstract) 25
10.3.5 ExtensionElement Class (abstract) 25
10.3.6 ModelElement Class (abstract) 26

10.4 CoreEntities Class Diagram 26
10.4.1 KDMEntity Class (abstract) 27

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10.5 CoreRelations Class Diagram 29
10.5.1 KDMRelationship Class (abstract) 29
10.5.2 KDMEntity (additional properties) 30
10.6 AggregatedRelations Class Diagram 31
10.6.1 AggregatedRelationship Class 32
10.6.2 KDMEntity (additional properties) 34
10.6.3 KDMRelationship (additional properties) 35
10.7 Datatypes Class Diagram 35

10.7.1 Boolean Type (datatype) 36
10.7.2 String Type (datatype) 36
10.7.3 Integer Type (datatype) 36

11 The Package named “kdm” 37

11.1 Overview 37
11.2 Organization of the KDM Framework 37

11.3 Framework Class Diagram 38
11.3.1 FrameworkElement Class (abstract) 38
11.3.2 KDMModel Class (abstract) 39
11.3.3 KDMEntity (additional properties) 41
11.3.4 Segment Class 41
11.4 Audit Class Diagram 42
11.4.1 Audit Class 43
11.4.2 ModelElement (additional properties) 44
11.5 Extensions Class Diagram 44

11.5.1 Stereotype Class 46

11.5.2 TagDefinition Class 48

11.5.3 ExtensionFamily Class 49

11.5.4 ExtendableElement (additional properties) 50
11.6 ExtendedValues Class Diagram 51

11.6.1 ExtendedValue Class (abstract) 51
11.6.2 TaggedValue Class 52
11.6.3 TaggedRef Class 53

11.7 Annotations Class Diagram 53

11.7.1 Attribute Class 54
11.7.2 Annotation Class 55
11.7.3 AnnotatableElement (additional properties) 56

12 Source Package 57

12.1 Overview 57
12.2 Organization of the Source Package 58
12.3 InventoryModel Class Diagram 59

i Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.3.1 InventoryModel Class 60

12.3.2 AbstractinventoryElement Class (abstract) 60
12.3.3 AbstractinventoryRelationship Class (abstract) 61
12.3.4 Inventoryltem Class (generic) 61

12.3.5 InventoryContainer Class (generic) 62

12.3.6 Directory Class 63

12.3.7 Project Class 63

12.4 Inventorylnheritances Class Diagram 64

12.5 Inventoryltems Class Diagram 65

12.5.1 SourceFile Class 65
12.5.2 Model Class 66

12.5.3 Document Class 67
12.5.4 ImageFile Class 67
12.5.5 AudioFile Class 67
12.5.6 DataFile Class 68

12.5.7 Service Class 68

12.5.8 ConfigFile Class 68
12.5.9 LinkableFile Class (generic) 69
12.5.10 ObjectFile Class 69
12.5.11 LibraryFile Class 70
12.5.12 ExecutableFile Class 70

12.6 Traceability Class Diagram 70

12.6.1 SourceRef Class 71
12.6.2 Track Class 72
12.6.3 KDMEntity (additional properties) 73

12.7 Regions Class Diagram 73

12.7.1 Region Class (abstract) 74
12.7.2 SourceRegion Class 75

12.7.3 BinaryRegion Class 75

12.7.4 ReferenceableRegion Class 76

12.8 InventoryRelations Class Diagram 76

12.8.1 DependsOn Class 77
12.8.2 TraceableTo Class 78

12.9 ExtendedinventoryElements Class Diagram 78

12.9.1 InventoryElement Class (generic) 79
12.9.2 InventoryRelationship Class (generic) 79

Subpart Il - Program Elements Layer 81
13 Code Package 85

13.1 Overview 85
13.2 Organization of the Code Package 85
13.3 CodeModel Class Diagram 86

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

13.3.1 CodeModel Class 87

13.3.2 AbstractCodeElement Class (abstract) 88
13.3.3 AbstractCodeRelationship Class (abstract) 88
13.3.4 Codeltem Class (abstract) 88

13.3.5 ComputationalObject Class (generic) 88
13.3.6 Datatype Class (generic) 89

13.4 Codelnheritances Class Diagram 89

13.5 Modules Class Diagram 90

13.5.1 Module Class (generic) 90
13.5.2 CompilationUnit Class 91
13.5.3 SharedUnit Class 92
13.5.4 LanguageUnit Class 92
13.5.5 CodeAssembly Class 93
13.5.6 Package Class 93

13.6 ControlElements Class Diagram 93

13.6.1 ControlElement Class (generic) 94

13.6.2 CallableUnit Class 95

13.6.3 CallableKind Data Type (enumeration) 95
13.6.4 MethodUnit Class 96

13.6.5 MethodKind data type (enumeration) 96
13.6.6 ExportKind data type (enumeration) 97

13.7 DataElements Class Diagram 98

13.7.1 DataElement Class (generic) 99

13.7.2 StorableUnit Class 100

13.7.3 StorableKind data type (enumeration) 100
13.7.4 ltemUnit Class 101

13.7.5 IndexUnit Class 101

13.7.6 MemberUnit Class 101

13.7.7 ParameterUnit Class 102

13.8 ValueElements Class Diagram 103

13.8.1 ValueElement Class (generic) 103
13.8.2 Value Class 104
13.8.3 ValuelList Class 104

13.9 Datatypes Class Diagram 105

13.10 PrimitiveTypes Class Diagram 106

13.10.1 PrimitiveType Class (generic) 106
13.10.2 BooleanType Class 107

13.10.3 CharType Class 107

13.10.4 OrdinalType Class 107

13.10.5 DateType Class 108

13.10.6 TimeType Class 108

13.10.7 IntegerType Class 108

13.10.8 DecimalType Class 108

13.10.9 ScaledType Class 109

13.10.10 FloatType Class 109

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

13.11

13.12

13.13

13.14

13.15

13.16

13.17

13.18

13.19

13.20

13.10.11 VoidType Class 109
13.10.12 StringType Class 109
13.10.13 BitType Class 110
13.10.14 BitstringType Class 110
13.10.15 OctetType Class 110
13.10.16 OctetstringType Class 111

EnumeratedTypes Class Diagram 111
13.11.1 EnumeratedType Class 111

CompositeTypes Class Diagram 112

13.12.1 CompositeType Class (generic) 112
13.12.2 ChoiceType Class 113
13.12.3 RecordType Class 113

DerivedTypes Class Diagram 115

13.13.1 DerivedType Class (generic) 115
13.13.2 ArrayType Class 116

13.13.3 PointerType Class 117

13.13.4 RangeType Class 117

13.13.5 BagType Class 118

13.13.6 SetType Class 118

13.13.7 SequenceType Class 119

Signature Class Diagram 119

13.14.1 Signature Class 119

13.14.2 ParameterKind (enumeration) 120
DefinedTypes Class Diagram 120
13.15.1 DefinedType Class (generic) 121
13.15.2 TypeUnit Class 121

13.15.3 SynonymUnit Class 122
ClassTypes Class Diagram 122
13.16.1 ClassUnit Class 122

13.16.2 InterfaceUnit Class 123

Templates Class Diagram 124

13.17.1 TemplateElement Class (generic) 124
13.17.2 TemplateUnit Class 125

13.17.3 TemplateParameter Class 125
13.17.4 TemplateType Class 126
TemplateRelations Class Diagram 126
13.18.1 InstanceOf Class 127

13.18.2 ParameterTo Class 127
InterfaceRelations Class Diagram 130
13.19.1 Implements Class 131

13.19.2 ImplementationOf Class 131

TypeRelations Class Diagram 134

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

13.20.1 HasType Class 135
13.20.2 HasValue Class 135

13.21 ClassRelations Class Diagram 140
13.21.1 Extends Class 140

13.22 PreprocessorDirectives Class Diagram 142

13.22.1 PreprocessorDirective Class (generic) 142
13.22.2 MacroUnit Class 144

13.22.3 MacroKind data type (enumeration) 144
13.22.4 MacroDirective Class 144

13.22.5 IncludeDirective Class 145

13.22.6 Conditional Directive Class 145

13.23 PreprocessorRelations Class Diagram 145

13.23.1 Expands Class 146

13.23.2 GeneratedFrom Class 147

13.23.3 Includes Class 148

13.23.4 VariantTo Class 150

13.23.5 Redefines Class 151
13.24 Comments Class Diagram 153

13.24.1 CommentUnit Class 153

13.24.2 AbstractCodeElement Class (additional properties) 154
13.25 Visibility Class Diagram 154

13.25.1 Namespace Class 154

13.26 VisibilityRelations Class Diagram 155
13.26.1 Visibleln Class 155
13.26.2 Imports Class 157

13.27 ExtendedCodeElements Class Diagram 157

13.27.1 CodeElement Class (generic) 158
13.27.2 CodeRelationship Class (generic) 158

14 Action Package 161

Vi

14.1 Overview 161
14.2 Organization of the Action Package 161

14.3 ActionElements Class Diagram 161

14.3.1 ActionElement Class 162

14.3.2 AbstractActionRelationship Class (abstract) 163
14.3.3 BlockUnit Class 164

14.3.4 AbstractCodeElement (additional properties) 165

14.4 Actionlnheritances Class Diagram 165

14.5 ActionFlow Class Diagram 165
14.5.1 ControlFlow Class (generic) 166

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

14.5.2 EntryFlow Class 167
14.5.3 Flow Class 168
14.5.4 TrueFlow Class 168
14.5.5 FalseFlow Class 169
14.5.6 GuardedFlow Class 169
14.6 CallableRelations Class Diagram 170
14.6.1 Calls Class 171
14.6.2 Dispatches Class 172
14.7 DataRelations Class Diagram 173

14.7.1 Reads Class 174
14.7.2 Writes Class 174
14.7.3 Addresses Class 175
14.7.4 Creates Class 175
14.8 ExceptionBlocks Class Diagram 176

14.8.1 ExceptionUnit Class 176
14.8.2 TryUnit Class 177
14.8.3 CatchUnit Class 177
14.8.4 FinallyUnit Class 177

14.9 ExceptionFlow Class Diagram 180

14.9.1 ExitFlow Class 182
14.9.2 ExceptionFlow Class 182

14.10 ExceptionRelations Class Diagram 183
14.10.1 Throws Class 183

14.11 InterfaceRelations Class Diagram 184
14.11.1 CompliesTo Class 184

14.12 UsesRelations Class Diagram 185
14.12.1 UsesType Class 185

14.13 ExtendedActionElements Class Diagram 186
14.13.1 ActionRelationship Class (generic) 186

15 Micro KDM 189
Subpart Il - Runtime Resources Layer 201
16 Platform Package 205

16.1 Overview 205

16.2 Organization of the Platform Package 206

16.3 PlatformModel Class Diagram 207

16.3.1 PlatformModel Class 207
16.3.2 AbstractPlatformElement Class (abstract) 208
16.3.3 AbstractPlatformRelationship Class (abstract) 208

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Vii

16.4 Platforminheritances Class Diagram 209

16.5 PlatformResources Class Diagram 209

16.5.1 PlatformResource Class 210
16.5.2 NamingResource Class 211
16.5.3 MarshalledResource Class 211
16.5.4 MessagingResource Class 211
16.5.5 FileResource Class 212

16.5.6 ExecutionResource Class 212
16.5.7 LockResource Class 212
16.5.8 StreamResource Class 212
16.5.9 DataManager Class 213
16.5.10 PlatformEvent Class 213
16.5.11 PlatformAction Class 213
16.5.12 ExternalActor Class 214

16.6 PlatformRelations Class Diagram 214
16.6.1 BindsTo Class 214

16.7 ProvisioningRelations Class Diagram 215
16.7.1 Requires Class 215

16.8 PlatformActions Class Diagram 216

16.8.1 ManagesResource Class 216
16.8.2 ReadsResource Class 217
16.8.3 WritesResource Class 217
16.8.4 DefinedBy Class 218

16.8.5 ProducesPlatformEvent 218

16.9 Deployment Class Diagram 219

16.9.1 DeploymentElement Class (generic) 220
16.9.2 DeployedComponent Class 220

16.9.3 DeployedSoftwareSystem Class 220
16.9.4 Machine Class 221

16.9.5 DeployedResource Class 221

16.10 RuntimeResources Class Diagram 222
16.10.1 RuntimeResource (generic) 222
16.10.2 Process Class 223
16.10.3 Thread Class 223
16.11 RuntimeActions Class Diagram 223
16.11.1 Loads Class 224
16.11.2 Spawns Class 224
16.12 ExtendedPlatformElements Class Diagram 224

16.12.1 PlatformElement Class (generic) 225
16.12.2 PlatformRelationship Class (generic) 225

17 Ul Package 227

viii

17.1 Overview 227

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17.2 Organization of the Ul Package 228

17.3 UlModel Class Diagram 228

17.3.1 UIModel Class 229
17.3.2 AbstractUIElement Class (abstract) 229
17.3.3 AbstractUIRelationship Class (abstract) 230

17.4 Ullnheritances Class Diagram 230

17.5 UIResources Class Diagram 231

17.5.1 UIResource Class (generic) 231
17.5.2 UIDisplay Class (generic) 232
17.5.3 Screen Class 232

17.5.4 Report Class 232

17.5.5 UlField Class 232

17.5.6 UlEvent Class 233

17.5.7 UlAction Class 233

17.6 UlRelations Class Diagram 233
17.6.1 UlFlow Class 234
17.6.2 UlLayout Class 234

17.7 UlActions Class Diagram 235

17.7.1 Displays Class 235
17.7.2 Displaysimage Class 236
17.7.3 ManagesUI Class 236
17.7.4 ReadsUI Class 236
17.7.5 WritesUI Class 237
17.7.6 ProducesUIEvent Class 237
17.8 ExtendedUIElements Class Diagram 238

17.8.1 UlElement Class (generic) 238
17.8.2 UIRelationship Class (generic) 239

18 Event Package 241

18.1 Overview 241
18.2 Organization of the Event Package 242

18.3 EventModel Class Diagram 242

18.3.1 EventModel Class 243
18.3.2 AbstractEventElement Class (abstract) 243
18.3.3 AbstractEventRelationship Class (abstract) 244

18.4 Eventinheritances Class Diagram 244

18.5 EventResources Class Diagram 244

18.5.1 EventResource Class (generic) 245
18.5.2 Event Class 245

18.5.3 State Class 246

18.5.4 InitialState Class 246

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.5.5 Transition Class 246
18.5.6 OnEntry Class 246
18.5.7 OnExit Class 246
18.5.8 EventAction Class 247

18.6 EventRelations Class Diagram 247
18.6.1 NextState Class 247
18.6.2 ConsumesEvent Class 248

18.7 EventActions Class Diagram 248

18.7.1 ReadsState Class 249
18.7.2 ProducesEvent Class 250
18.7.3 HasState Class 250

18.8 ExtendedEventElements Class Diagram 250

18.8.1 EventElement Class (generic) 251
18.8.2 EventRelationship Class (generic) 251

19 Data Package 253

19.1 Overview 253
19.2 Organization of the Data Package 254

19.3 Data Model Class Diagram 254

19.3.1 DataModel Class 255
19.3.2 AbstractDataElement Class (abstract) 255
19.3.3 AbstractDataRelationship Class (abstract) 256

19.4 Data Inheritances Class Diagram 256

19.5 DataResources Class Diagram 257

19.5.1 DataResource Class (generic) 257
19.5.2 DataContainer Class (generic) 258
19.5.3 Catalog Class 258

19.5.4 RelationalSchema Class 258
19.5.5 DataEvent Class 259

19.5.6 DataAction Class 259

19.6 ColumnSet Class Diagram 260

19.6.1 ColumnSet (generic) 261
19.6.2 RelationalTable Class 261
19.6.3 RelationalView Class 264
19.6.4 DataSegment Class 264
19.6.5 RecordFile Class 266

19.7 Keylndex Class Diagram 272

19.7.1 IndexElement Class (generic) 272
19.7.2 UniqueKey Class 273

19.7.3 ReferenceKey Class 273

19.7.4 Index Class 273

19.8 Key Relations Class Diagram 274

X Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

19.8.1 KeyRelationship Class 274

19.9 DataActions Class Diagram 275

19.9.1 ReadsColumnSet Class 275
19.9.2 WritesColumnSet Class 276
19.9.3 ManagesData Class 276
19.9.4 HasContent Class 277

19.9.5 ProducesDataEvent Class 277

19.10 StructuredData Class Diagram 283

19.10.1 XMLSchema 283
19.10.2 AbstractContentElement (abstract) 284

19.11 ContentElements Class Diagram 284

19.11.1 Contentltem (generic) 285
19.11.2 ComplexContentType 285
19.11.3 SimpleContentType 285
19.11.4 ContentRestriction 286
19.11.5 AllContent Class 288
19.11.6 SeqContent Class 288
19.11.7 ChoiceContent Class 289
19.11.8 GroupContent Class 289
19.11.9 MixedContent Class 289
19.11.10 ContentAttribute Class 289
19.11.11 ContentElement Class 289
19.11.12 ContentReference Class 290

19.12 ContentRelations Class Diagram 294

19.12.1 TypedBy Class 295
19.12.2 DatatypeOf Class 295
19.12.3 ReferenceTo Class 296
19.12.4 ExtensionTo Class 296
19.12.5 RestrictionOf Class 297
19.13 ExtenededDataElements Class Diagram 297

19.13.1 ExtendedDataElement Class 298
19.13.2 DataRelationship Class 298

Subpart IV - Abstractions Layer 301
20 Structure Package 303

20.1 Overview 303
20.2 Organization of the Structure Package 304

20.3 StructureModel Class Diagram 304

20.3.1 StructureModel Class 305

20.3.2 AbstractStructureElement Class (abstract) 305
20.3.3 AbstractStructureRelationship Class (abstract) 306
20.3.4 Subsystem Class 306

20.3.5 Layer Class 306

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20.3.6 Component Class 306
20.3.7 SoftwareSystem Class 307
20.3.8 ArchitectureView Class 307

20.4 Structurelnheritances Class Diagram 307

20.5 ExtendedStructureElements Class Diagram 308

20.5.1 StructureElement Class (generic) 308
20.5.2 StructureRelationship Class (generic) 309

21 Conceptual Package 311

21.1 Overview 311
21.2 Organization of the Conceptual Package 312

21.3 ConceptualModel Class Diagram 313

21.3.1 ConceptualModel 314
21.3.2 AbstractConceptualElement (abstract) 314
21.3.3 AbstractConceptualRelationship Class (abstract) 315

21.4 Conceptuallnheritances Class Diagram 315

21.5 ConceptualElements Class Diagram 315

21.5.1 ConceptualContainer Class 316
21.5.2 TermUnit 316

21.5.3 FactUnit 317

21.5.4 RuleUnit 317

21.5.5 ConceptualRole 317

21.5.6 BehaviorUnit Class 318

21.5.7 ScenarioUnit Class 318

21.6 ConceptualRelations Class Diagram 319
21.6.1 ConceptualFlow Class 319

21.7 ExtendedConceptualElements Class Diagram 327

21.7.1 ConceptualElement Class (generic) 327
21.7.2 ConceptualRelationship Class (generic) 328

22 Build Package 329

Xii

22.1 Overview 329
22.2 Organization of the Build Package 330

22.3 BuildModel Class Diagram 330

22.3.1 BuildModel Class 331

22.3.2 AbstractBuildElement Class (abstract) 331
22.3.3 AbstractBuildRelationship Class (abstract) 331
22.3.4 Supplier Class 331

22.3.5 Tool Class 331

22.3.6 SymbolicLink Class 332

22.4 BuildInheritances Class Diagram 332

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

22.5 BuildResources Class Diagram 332

22.5.1 BuildResource Class 333
22.5.2 BuildComponent Class 334
22.5.3 BuildDescription Class 334
22.5.4 BuildLibrary Class 334
22.5.5 BuildProduct Class 334
22.5.6 BuildStep Class 335

22.6 BuildRelations Class Diagram 335

22.6.1 LinksTo Class 335
22.6.2 Consumes Class 336
22.6.3 Produces Class 336
22.6.4 SupportedBy Class 337
22.6.5 SuppliedBy Class 337
22.6.6 DescribedBy Class 338

22.7 ExtendedBuildElements Class Diagram 339

22.7.1 BuildElement Class (generic) 340
22.7.2 BuildRelationship Class (generic) 340

23 Annex A - Semantics of the Micro KDM
Action Elements 343

23.1 Comparison Actions 343

23.2 Actions Related to the Primitive Numerical Datatypes 344
23.3 Actions Related to Bitwise Operations on Primitive Datatypes 345
23.4 Control Actions 347

23.5 Actions Related to Access to Datatypes 349

23.6 Actions Related to Type Conversions 352

23.7 Actions Related to StringType Operations 352

23.8 Actions Related to SetType Operations 353

23.9 Actions Related to SequenceType Operations 353

23.10 Actions Related to BagType Operations 354

23.11 Actions Related to Resources 355

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Xiii

Xiv Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at;

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

. Business Rules and Process Management Specifications

Language Mappings
. IDL/Language Mapping Specifications
e Other Language Mapping Specifications

Middleware Specifications
. CORBA/IIOP
¢ CORBA Component Model
. Data Distribution
e Specialized CORBA

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4 XV

Modeling and Metadata Specifications

. UML
. MOF
e XMl

« CWM

. Profile specifications.

Modernization Specifications
. KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
. CORBAservices
* CORBAfacilities
. OMG Domain specifications
. OMG Embedded Intelligence specifications
. OMG Security specifications
All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and

may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as 1SO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
http://www.omg.org/

Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

XVi Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4

Note — Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.
Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://www.omg.org/report_issue.htm.

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4 XVii

xviii Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4

1 Scope

This specification referred to as the Knowledge Discovery Meta-model (KDM), defines a meta-model for representing
existing software, its elements, associations, and operational environments. This is the first in the series of specifications
related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects
that involve existing software systems by offering interoperability and exchange of data between tools produced by
different vendors.

One common characteristic of various tools that address SwWA and ADM challenge is that they analyze existing software
artifacts (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Any
tool that operates on existing software produces a portion of the knowledge about the system. Tool-specific knowledge
may be limited in scope, restricted to a particular source language, and/or particular transformation, and/or operational
environment. Often such tool-specific knowledge is not be exported in any explicit format. For example, such knowledge
may be used internally by the tool: a compiler generates precise facts about a compilation unit only to discard it as soon
as the object file is generated. Even when access to tool-specific knowledge is provided, it implies commitment to a
proprietary definition and may involve a proprietary physical format. All the above may hinder interoperability between
different tools, integration of several pieces of knowledge about the same system and development of common content.
The meta-model for Knowledge Discovery provides a common ontology and an interchange format that facilitates the
exchange of data contained within individual tool models that represent existing software. The meta-model represents the
physical and logical elements of software as well as their relations at various levels of abstraction. The primary purpose
of this meta-model is to enable a common interchange format that allows interoperability between modernization and/or
software assurance tools, services, and their respective intermediate representations. This meta-model also allows
development of common vendor-neutral content (patterns, rules, metrics, etc.) for modernization and software assurance
based on standard KDM meta-elements instead of proprietary intermediate representations of software and software
systems.

2 Conformance

KDM is defined via the Meta-Object Facility (MOF). KDM determines the interchange format via the XML Metadata
Interchange (XMI) by applying the standard MOF to XMI mapping to the KDM MOF model. The interchange format
defined by KDM is called the KDM XMI schema. The KDM XMI schema is provided as the normative part of this
specification.

NOTE:KDM14-304

KDM elements are defined in several packages identified by the following XMI namespace URIs:

Table 2.1 XMI namespace URIs for KDM packages

KDM Package Namespace URI XSD Schema location
Core http://lwww.omg.org/spec/KDM/20160201/core core.xsd
kdm http://www.omg.org/spec/KDM/20160201/kdm kdm.xsd
Source http://www.omg.org/spec/KDM/20160201/source source.xsd
Code http://www.omg.org/spec/KDM/20160201/code code.xsd
Action http://www.omg.org/spec/KDM/20160201/action action.xsd
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 1

Table 2.1 XMI namespace URIs for KDM packages

KDM Package Namespace URI XSD Schema location
Platform http://www.omg.org/spec/KDM/20160201/platform platform.xsd

ul http://www.omg.org/spec/KDM/20160201/ui ui.xsd

Event http://www.omg.org/spec/KDM/20160201/event event.xsd

Data http://www.omg.org/spec/KDM/20160201/data data.xsd

Structure http://www.omg.org/spec/KDM/20160201/structure structure.xsd

Conceptual http://www.omg.org/spec/KDM/20160201/conceptual conceptual.xsd

Build http://www.omg.org/spec/KDM/20160201/build build.xsd

KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms, and
programming languages. Not all of its capabilities are equally applicable to all platforms, applications, or programming
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers to integrate multiple facts about a complex enterprise application, as the complexity
of modern enterprise applications involves multiple platform technologies and programming languages. In order to
achieve interoperability and integration of information about different facets of an enterprise application from multiple
analysis tools, this specification defines several compliance levels thereby increasing the likelihood that two or more
compliant tools will support the same or compatible meta-model subsets. KDM follows the principle of separation of
concerns to allow selection of only those parts of the meta-model that are of direct interest to a particular tool vendor.
Separation of concerns in the design of KDM is embodied in the concept of KDM domains.

2.1 KDM Domains

Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). Each KDM domain defines an architectural viewpoint. The viewpoint language for the domain is defined by
the corresponding KDM package that defines meta-model elements to represent particular facts of the system under study
that are essential to the given domain. The meta-model elements defined by all KDM packages constitute the ontology for
describing existing software systems. For example, the Code and Action package define the viewpoint language for the
Code domain that represent individual code elements of the system under study, such as variables, procedures and
statements. The Structure packages defines the viewpoint language for the Structure domain that represents architectural
elements of the same system, such as subsystems and components. The Conceptual package corresponds to the Business
Rules domain and defines the viewpoint language to represent behavioral elements of the same system such as features or
business rules. KDM formally defines traceability between facts, aggregation and derivation of facts across domains.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Inventory,
Code, Build, Structure, Data, Business Rules, Ul, Event, Platform, and micro KDM.

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy

2 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless,
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as
explained below.

Larvely gl esimplianee

[e A ETEN alomirey
Huild Salrmr e limim Hosisress Bules 171 Eveni Plailsrm Analysis
dommuain dinmiidn dogiain divmain demmais domialn deakein Semriin
L] == i - = : .I;
Ly = 3 B i P i

Dromain of coanpllance

Figure 2.1 - Domains and levels of KDM compliance

2.2

Compliance Levels

In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are three KDM compliance levels:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Level 0 (LO) - This compliance level addresses the Inventory and Code domains and is determined by the following
KDM packages: Core, kdm, Source, Code, and Action packages. It provides an entry-level of knowledge discovery
capability. More importantly, it represents a common denominator that can serve as a basis for interoperability between
different categories of KDM tools.

To be LO compliant, a tool shall completely support all meta-model elements within all packages for LO level.

Level 1 (L1) - This level addresses the remaining KDM domains and extends the capabilities provided by Level 0.
Specifically, this level is determined by the following packages: Build, Structure, Data, Conceptual, Ul, Event,
Platform, as well as the set of constraints for the micro KDM domain defined in sub clause 14 “Micro KDM,” and
Annex A “Semantics of the Micro KDM Action Elements.” These packages are grouped to form above-mentioned
domains. More importantly, this level represents a layer where tools could be complimentary since their focus would
be in different areas of concern.

To be L1 compliant for a given KDM domain, a tool shall completely support all meta-model elements defined by the
corresponding packages and satisfy all semantic constraints specified for the domain.

Level 2 (L2) - This level is the union of L1 levels for all KDM domains. A tool compliant at the L2 level shall be
compliant to each domain at L1.

2.2.1 Meaning and Types of Compliance

Compliance to Level 1 (L1) for a certain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0Q)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at a Level 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of
information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that
KDM domain at L1 and complete set of concepts defined at LO.

For a given compliance level, a KDM implementation can provide:

The capability to analyze physical artifacts of existing applications and export their representations based on the XMl
schema corresponding to the given compliance level.

The capability to import representations of existing software systems based on the XMI schema corresponding to the
given compliance level and perform operations suggested by the corresponding packages.

Table 2.2 - Compliance Statements

Compliance Statement

Compliance Level Import-Analysis Import API Export
LO Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Import KDM models based on - Import KDM models based - Provide capability to analyze
complete KDM XMI schema into on complete KDM XMI existing artifacts for specified
existing tool. schema. programming language or
- Implement mapping between KDM - Support KDM API defined multiple languages.
and existing internal representation of by the KDM Core package. - Generate XMI documents
the tool. - Support KDM framework corresponding to the KDM XMl
- Extend operations of existing tool to as defined in the package schema.
support meta-model elements of KDM named “kdm.” - Support KDM framework as
framework. - Support KDM API defined defined by the package named
- Extend operations of existing tool to by the Code and Action “kdm.”
support meta-model elements of Code packages. - Support Code and Action
and Action packages. - Support traceability to the packages.
- Extend operations of existing tool to physical artifacts of the - Provide traceability back to
support traceability to the physical application as defined in the | the physical artifacts as
artifacts of the application from Source | Source package. defined by the Source
package. package.
L1 STRUCTURE Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Structure architecture components of
Structure package. package. existing application and
generate KDM Structure model
according to Structure
package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table 2.2 - Compliance Statements

DATA Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Data persistent data components of
Data package. package. existing application for
specified database system and
generate KDM Data model
according to Data package.
PLATFORM Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Platform and platform artifacts for specified
Platform package. Runtime packages. platform and generate KDM
Platform model according to
Platform package.
BUILD Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Build build artifacts for specified
Build package. package. build environment and
generate KDM Build model
according to Build package.
ul Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Ul package. user interface artifacts for
Ul package. specified user interface system
and generate KDM Ul model
according to Ul package.
EVENT Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Event artifacts related to event-driven
Event package. package. runtime frameworks and state-
transition behavior and
generate KDM Event model
according to Event package.
BUSINESS Compliant tool shall: Compliant tool shall: Compliant tool shall:
- Demonstrate LO compliance for - Demonstrate LO - Demonstrate LO compliance
analysis. compliance for import. for export.
- Extend operations of existing tool to - Support KDM API as - Provide capability to analyze
support meta-model elements of the defined by the Conceptual conceptual and behavior
Conceptual package. package. artifacts (e.g., domain
concepts, business rules,
scenarios) of existing
application and generate KDM
Conceptual model according to
Conceptual package.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table 2.2 - Compliance Statements

MICRO KDM

Compliant tool shall:

- Demonstrate LO compliance for
analysis.

- Extend operations of existing tool to
support micro KDM actions as
specified in Chapter 14 micro KDM
and Annex A.

Compliant tool shall:

- Demonstrate LO
compliance for import.

- Support micro KDM
actions as specified in
Chapter 14 micro KDM and
Annex A.

Compliant tool shall:

- Demonstrate LO compliance
for export.

- Provide capability to analyze
artifacts of existing application
to the level of detail specified in
Chapter 14 and Annex A
provide the mapping of
semantics of the existing
application as it is determined
by the programming languages
and the runtime platform into
KDM micro actions and
generate KDM models that
represent the same meaning.

L2

Compliant tool shall:

- Demonstrate LO import compliance
for analysis.

- Demonstrate L1 import-analysis
compliance for all KDM domains.

Compliant tool shall:

- Demonstrate LO
compliance for import.
- Support KDM API as
defined by all KDM
packages.

Compliant tool shall:

- Demonstrate LO export
compliance.

- Demonstrate L1 export
compliance for all KDM
domains.

3

Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to or revisions of any of these publications do not apply.

NOTE:KDM14-56

ISO/IEC 19505-1:2012 “Information technology - Object Management Group Unified Modeling Language (OMG
UML), Infrastructure” (OMG Unified Modeling Language (OMG UML), Infrastructure http:// www.omg.org/spec/
UML/2.4.1/Infrastructure) http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/)

ISO/IEC 19508:2014, “Information technology - Object Management Group Meta Object Facility (MOF) Core”
(OMG Meta Object Facility (MOF) Specification (Version 2.4.2) - http://www.omg.org/spec/MOF/2.4.2)

ISO/IEC 19509:2014, “Information technology - Object Management Group XML Metadata Interchange (XMI)”
(XML Metadata Interchange - http://www.omg.org/spec/XM1/2.4.2)

ISO/IEC 11404:2007, "Information technology — General-Purpose Datatypes (GPD)"

Semantics of Business Vocabularies and Business Rules (SBVR) version 1.2 - http://www.omg.org/spec/SBVR/1.2

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

4 Terms and Definitions

This subclause contains only those terms which are used in a specialized way throughout the KDM specification. The
majority of terms in KDM are used either according to their accepted dictionary definitions or according to commonly
accepted definitions that may be found in ISO glossaries or other well-known collections of software engineering terms.
Some combinations of common terms used in KDM, while not meriting glossary definition, are explained for clarity in
the context where they are used.

Abstraction: A view of an object that focuses on the information relevant to a particular purpose and ignores the
remainder of the information.

Aggregation: a derived relationship between two elements that are groups of other elements that represents all individual
relationships between the grouped elements of the two groups.

Architecture-Driven Modernization (ADM): ADM is the process of understanding and evolving existing software
assets of a system of interest. ADM focuses at collecting, sharing, utilizing, transforming, presenting, maintaining, and
storing models of the architectural aspects of existing systems. ADM does not preclude source-to-source migrations
(where appropriate), but encourages user organizations to consider modernization from an analysis and design
perspective. In doing so, project teams ensure that obsolete concepts or designs are not propagated into modern languages
and platforms.

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the
final product provides.

Build process: a process of transforming of project code base into usable applications. The end result of a software build
is a collection of files that constitute a product in a distributable package. In this case, package can mean a standalone
application, Web service, compact disc, hotfix, or bug fix. Each step of a build process is a transformation performed by
software running on a general purpose computer. A simple software build may involve compiling a single source code file
into an executable code. A complex software build may involve orchestrating hundreds of versions of thousands of files
with millions of lines of source code such that a correct executable code results from the compilation. The implementation
of a system also involves deploying the build onto the system nodes, and applying appropriate configuration settings.

Component: a functionally or logically distinct part of a system. A component may be hardware or software and may be
subdivided into other components. Often a component is a physical, replaceable part of a system that packages
implementation and provides the realization of a set of interfaces. Such component represents a physical piece of
implementation of a system, including software code (source, binary or executable) or equivalents such as scripts or
command files.

Container: a model element that owns one or more distinct elements through the special “owns” (“contains”)
relationships between the container element and owned elements. “Containment” relationships form a special group of the
corresponding owned elements. No element has more than one container.

Domain: An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners
in that area.

Element: one of the parts of a compound or complex whole. For example, a model element, a meta-model element.

Group: a number of model elements regarded as a unit formed by traceability relationships to a single distinct element.
An element may be part of multiple groups, including a single group formed by the “containment” relationships between
a container and its owned elements. An element is said to group together one or more elements, if these elements have
traceability relationships to the element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 7

Hierarchy: an arrangement of model elements according to traceability relationships, where an element that “owns” or
“group” other elements is considered at a higher level than the owned (grouped) elements.

Interface: (1) a shared boundary or connection between two dissimilar objects, devices or systems through which
information is passed. The connection can be either physical or logical. (2) a named set of operations that characterize the
behavior of an entity.

Item: that which can be individually described or considered. See also Component, Element, Unit, Module.

KDM Entity: a meta-model element (as well as the corresponding model elements) that represents a thing of significance
of the system of interest, about which information needs to be known or held. A KDM entity is an abstraction of some
element of the system of interest that has a distinct, separate existence objective or conceptual reality, a self-contained
piece of data that can be referenced as a unit. As a model element each KDM entity is an instance of some specific meta-
model element and it usually the endpoint of distinct KDM relationships.

KDM instance: a collection of KDM model elements that represent one or more views of the system of interest.
KDM model: a meta-model element (as well as the corresponding model elements) that is a container for a KDM view

KDM Relationship: a meta-model element (as well as the corresponding model elements) that represents some semantic
association between elements of the system of interest. All KDM relationships are binary. As a model element each KDM
relationship is an instance of some specific meta-model element.

Meta-model: A special kind of model that specifies the abstract syntax of a modeling language. The typical role of a
metamodel is to define the semantics for how model elements in a model get instantiated. A model typically contains
model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel elements.

Meta-model element: an element of a meta-model from which model elements are instantiated.

Model: A model represents a system of interest, from the perspective of a related set of concerns. The model is related to
the system by an explicit or implicit isomorphism. Models are instances of MOF meta-models and therefore consist of
model elements and links between them.

Model element: instance of a meta-model element

Module: (1) A program unit that is discrete and identifiable with respect to compiling, combining with other units, and
loading; for example, the input to, or output from, an assembler, compiler, linkage editor, or executive routine. (2) A
logically separable part of a program.

Resource: any physical or virtual component of limited availability within a computer system available for a given
purpose and managed by the runtime platform.

Runtime platform: the set of hardware and software components that implement the services utilized by the application
software. A runtime system generally controls how several tasks are scheduled to run, and manages resources. Its
provisions for the programmer typically form an Application Programming Interface- a set the well-documented ways of
using the system.

Segment: A collection of data that corresponds to one or more coherent views of a system of interest that is stored or
transferred as a unit.

Software artifact: A software artifact is a tangible machine-readable document created during software development.
Examples are requirement specification documents, design documents, source code and executables.

8 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Software asset: A software asset is a description of a partial solution (such as a component or design document) or
knowledge (such as requirements database or test procedures) that engineers use to build or modify software products. A
software asset is a set of one or more related artifacts that have been created or harvested for the purpose of applying that
asset repeatedly in subsequent contexts. The asset consumer is an architect or a designer of any type of IT or business
process solutions from solution business modeling, analysis (assets used are models) and design to application
development (assets used are pieces of code).

Traceability: The degree to which a relationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software component match.

Unit : (1) a piece or an integrated assembly of parts serving to perform one particular function (2) A software element
that is not subdivided into other elements.

User interface: An interface that enables information to be passed between a human user and hardware or software
components of a computer system.

View: A representation of a whole system from the perspective of a related set of concerns.

Viewpoint: A specification of the conventions for constructing and using a view. A pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the techniques for its creation and
analysis.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Other OMG Specifications

There are no changes to other OMG specifications.

6.2 How to Read this Specification

The rest of this document contains the technical content of this specification.

Chapter 7. Specification overview - Provides design rationale for the KDM specification
Chapter 8. KDM - Gives the overview of the packages of KDM

Subpart | - Infrastructure Layer

Chapter 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling
services to other classes, and define fundamental constraints.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 9

Chapter 10. Package named “kdm” - Describes the key infrastructure elements that determine patterns for constructing
KDM models and integrating them. This package defines several static elements that are shared by all KDM instances.
This package determines the queries against KDM instances.

Chapter 11. Source package - Describes meta-model elements that provide traceability from KDM facts to the original
representation of the physical artifact (for example, source code).

Subpart Il - Program Elements Layer

Chapter 12. Code package - Describes meta-model elements that capture programming artifacts as provided by
programming languages, such as data types, procedures, macros, prototypes, templates, etc.

Chapter 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package
defines detailed endpoints for most KDM relations. The key element related to behavior is a KDM action. Other packages
depend on the Action package to use actions in further modeling aspects of existing applications such as features,
scenarios, business rules, etc.

Chapter 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.
Subpart 111 - Runtime Resources Layer

Chapter 15. Platform package - Describes the meta-model elements that represent operating environments of existing
software systems. Application code is not self-contained, as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Platform package provides meta-model elements to address the following:

* Resources that Runtime platforms provide to components

« Services that are provided by the platform to manage the life-cycle of each resource
« Control-flow between components as it is determined by the platform

« Error handling across application components

« Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the
Runtime package further addresses the physical aspects of operating environments, such as deployment.

Chapter 16. Ul package - Describes the meta-model elements that represent knowledge related to user interfaces,
including their logical composition, sequence of operations, etc.

Chapter 17. Event package - Describes meta-model elements that represent basic elements related to behavior of
applications in terms of states, transitions between states, events, messages and responses.

Chapter 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Subpart IV - Abstractions Layer

Chapter 19. Structure package - Describes the meta-model elements that represent the logical organization of the software
system in terms of logical subsystems, architectural layers, components and packages.

Chapter 20. Conceptual package - Describes the meta-model elements that represent facts related to the business domain
of the existing system and provide traceability to other KDM facts.

10 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Chapter 21. Build package - Describes the meta-model elements that represent the facts related to the build process of the
software system (including but not limited to the engineering transformations of the “source code” to “executables”).

6.2.1 Diagram format

NOTE:KDM14-289

UML class diagrams in this specification are used to mechanically produce the Meta-Object Facility (MOF) definition of
KDM, and the corresponding KDM XMI schema. The following conventions are adopted for all class diagrams
throughout this specification:

« An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
« the marked association end is owned by the classifier, and
« the opposite (unmarked) association end is owned by the association.
« An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,

 each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association).

« additionally, properties “owner,” “group,” and “model” are automatically renamed to ownerProperty,
groupProperty, and modelProperty respectively.

« Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

« the constraint {subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

 aconstraint {redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

< Derived union is indicated by placing constraint {union} in the proximity of the association end to which it applies.
The corresponding association endpoint is marked as derived and read only.

 If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is a lowercase letter. In addition, if the name of the class to which the end is attached
starts has a meaningful prefix of uppercase letters, for example XMLxxxx, KDMxxx, UlxxxX, the entire uppercase
prefix is modified to become lowercase. For example, the above words become xmlIxxxx, kdmxxx, uixxxx. By
convention, association ends that are owned by the association are also considered non-navigable and are often left
unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal constraints -
| although there may be needed for other purposes, such as MOF language bindings that use the metamodel.

« unlabeled association ends attached to the class KDM Entity that correspond to KDM Relationships are
additionally prefixed with “in” or “out” according to the direction of the relationship. The corresponding properties
at the KDM Relationship class side are “to” and “from.” For example, association ends for the ActionElement
class corresponding to the associations to ControlFlow class are named “inControlFlow” (the counterpart of the
“to” endpoint from the ControlFlow side) and “outControlFlow” (the counterpart of the “from” endpoint from the
ControlFlow side).

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 11

» KDM specification explicitly defines several operations that correspond to navigable derived association ends where
the corresponding association end is owned by the class. These operations constitute the high-level interface to KDM
models. Such operations are redundant from the MOF perspective as they are already implied by the derived

properties. A specialized, non-derived version of the corresponding property is provided through the mechanism of
association specialization and redefinition.

« Associations that are not explicitly named, are given names that are constructed according to the following production
rule:

“A_" <class-namel> “ ” <association-end-name2>

where <class-namel> is the name of the class that owns the first association end and <association-end-name2>
is the name of the second association end.

NOTE:KDM14-12

« Classes marked with a stereotype “<<enumeration>>" represent MOF enumerations

NOTE:KDM14-302

» Classes marked with a stereotype “<<dataType>> represent MOF DataType elements

12 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

7 Specification Overview

This specification defines a meta-model for representing information related to existing software, its elements,
associations, and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and
modernization tools, services, and their respective models. More specifically, (KDM) defines a common ontology and an
interchange format that facilitates the exchange of data currently contained within individual tool models that represent
existing software. The meta-model represents the physical and logical elements of software as well as their relationships
at various levels of abstraction.

KDM groups facts about existing systems into several domains each of which corresponds to an 1SO 42010 architectural
viewpoint. Each KDM domain is represented by one or more KDM packages which formalize the viewpoint language for
the domain. KDM focuses at the entities and their relationships that are essential for the given domain. A KDM
representation of a given software system - a KDM instance - is a collection of facts about that system. These facts are
organized into KDM models per each domain. KDM model corresponds to an ISO 42010 architectural view. KDM facts
are further organized into meaningful groups called segments. A KDM segment may include one or more architectural
views of the given system. KDM instances may be part of the complete architectural description of the system, as defined
by ISO 42010, in which case additional requirements of 1SO 42010 shall be satisfied by the overall document. KDM
instances are represented as XML documents conforming to the KDM XMI schema.

fnfrastriciure frar

Ahstractions E.?.I-'uﬂ.-' Canceplual
= = (1]
; "4
| Data i A,
I .\-\-H'\- II
- i,
s 1 F,
f Action vent
Platform -
. Frog Elampnis &
Strocture — Easild e o

Resouwre aper

Figure 7.1 - Layers, packages, and separation of concerns in KDM
KDM specification is organized into the following 4 layers:
 Infrastructure Layer
« Program Elements Layer

¢ Runtime Resource Layer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 13

e Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to
represent a certain independent facet of knowledge related to existing software systems.

Logically, KDM consists of 9 models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. Most KDM domains are defined by a single package, with the exception of the Code domain, which
is split between the Code and the Action packages.

The Infrastructure Layer consists of the following 3 packages: Core, “kdm”, and Source. Core package and the package
named “kdm” do not describe separate KDM models. Instead these packages define common meta-model elements that
constitute the infrastructure for other packages. The Source package defines the Inventory model, which enumerates the
artifacts of the existing software system and defines the mechanism of traceability links between the KDM elements and
their original representation in the “source code” of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code
model that represents the implementation level assets of the existing software system, determined by the programming
languages used in the developments of the existing software system. The Code package focuses on the named items from
the “source code” and several basic structural relationships between them. The Action package focuses on behavior
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software
systems.

The Runtime Resources Layer consists of the following 4 packages: Platform, Ul, Event, and Data.
The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information:
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files.
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:

NOTE:KDM14-32

« KDM is a Meta-Object Facility (MOF) model.

« KDM defines an ontology for describing existing software systems. The ontology defined by KDM is related to the
elements of existing software systems, the relationships between these elements, as well as the elements of the
operational environment of the software system. KDM ontology addresses both physical elements (for example, a
procedure, a variable, a table), which are originally represented by language-specific artifacts of the software (for
example source code), as well as logical elements (for example, user interface elements, concepts that are implemented
by the software, architectural components of the software, such as layers, etc.).

14 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

KDM defines a set of concepts that can be used, for example, as the foundation of a pattern language; and KDM
defines a schema for representing facts about specific existing software systems

KDM is designed in such a way that KDM facts can be represented as W3C Resource Description Framework (RDF)
triples

KDM can be extended to represent language-specific, application-specific, and implementation-specific entities and
relationships.

KDM models extensively use containment relationship: it is possible to group several entities into a typed container,
that will further on represent the entire collection of grouped entities via aggregated relationships. KDM defines
multiple hierarchies of entities via containers and groups.

KDM provides model refactoring capabilities, for example, a KDM tool can support moving entities between
containers and map changes in the model to changes in the code through traceability links.

KDM is aligned with ISO/IEC 11404 General-Purpose Datatypes and OMG Semantics of Business Vocabularies and
Business Rules (SBVR).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 15

16

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

8 KDM

8.1 Overview

KDM specifies a comprehensive set of common concepts required for understanding existing software systems in
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of

domain-specific, application-specific, or implementation-specific knowledge.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

Higher-level, implicit,

experts, analysts Conceptual

Primitives, explicit, COde

automaticall§ extracted

\
fra/{work

met{model

Figure 8.1 - Structure of KDM Packages

- Ab i
Build Structure Laysgract o
Runtime
Data | Event | Ul Platform el
. Program
Actl on Elements
Layer
Source
Infrastructure
kdm i
Core

The KDM specification contains 12 packages; each package is defined by one or more class diagrams.

The Core package defines the basic meta-elements (entity, relationship, container hierarchies, etc.) and well-formedness

rules of KDM models.

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging

packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each
package depends on the Core package. The nature of this dependency is that the meta-model elements defined by each
package are subclasses of one of the meta-model elements defined in the Core package. Also, each package depends on
the package with name “kdm.” Each KDM package above the package with name “kdm” in Figure 8.1 defines a KDM
model, which corresponds to a certain facet of knowledge about an existing software system. The package with name

“kdm” provides the infrastructure for all KDM models. The nature of the dependency on the package with name “kdm” is
as follows. First, each package defines a subclass of the KDMModel class, defined in that package. Second, each package

provides several concrete classes that are instantiated in each KDM instance as part of the infrastructure. Third, the
package with name “kdm” defines several important mechanisms that are used by all KDM models: the annotation
mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The corresponding
meta-model elements can be instantiated by any KDM model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge
automatically, for example by implementing a bridge to an existing software development environment. Such bridge
provides a mapping from the programming language (or languages) used for the development of the existing software
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces
of this knowledge are implicitly represented by the original source code of the software system and the corresponding
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the
programming language (or languages) used for the development of the existing software system, but by the corresponding
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further
analyzed and transformed by various KDM tools.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM instance is a single, integrated representation of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages

KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and
relations. The KDM has the following organization:

« The Core package defines the basic abstractions of KDM.
e The package with name “kdm” provides shared context for all KDM models.

« The Source package defines meta-model elements that represent the inventory of the physical artifacts of the existing
software system and defines the key traceability mechanism of KDM - how KDM facts references back to their
original representation in the artifacts of the software system (for example, source code).

« The Code package defines meta-model elements that represent the low-level building blocks of software, such as
procedures, datatypes, classes, variables, etc. (as determined by a programming language).

< Action package defines meta-model elements that represent statements as the end points of relations, and the majority
of low-level KDM relations.

« Platform package defines meta-model elements that represent the run time resources used by the software system, as
well as relationships determined by the run-time platform.

« Ul package defines the meta-model elements that represent the user-interface aspects of the software system.

« Event package defines meta-model elements that represent event-driven aspects of the software system, such as events,
states, state transitions, as well as relationships determined by the event-driven semantics of the run-time framework.

« Data package defines meta-model elements that represent persistent data aspects of the software system.

18 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

« Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same
system.

» Conceptual package defines meta-model elements that represent the domain-specific elements of the software system.

< Build package defines meta-model elements that represent the artifacts related to the build process of the software
system (including but not limited to the engineering transformations of the “source code” to “executables”).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 19

20

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart | - Infrastructure Layer

NOTE:KDM14-30

KDM is a large specification, since it provides a vocabulary and an intermediate representation for several facets of
knowledge about existing enterprise software systems. In order to manage the complexity of KDM, a small set of
concepts was selected and systematically used throughout the entire specification. These concepts are defined in the so-
called Infrastructure Layer. It consists of the following 3 packages:

e Core
e kdm
e Source

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the classes defined in the Core package. The two fundamental classes of the Core
package are KDMEntity and KDMRelationship. An entity is a thing of significance, about which information needs to be
known or held. A KDM entity is an abstraction of some element of an existing software system, that has a distinct,
separate existence, a self-contained piece of data that can be referenced as a unit. Each KDM package defines several
meta-model elements that represent specific entities for a particular KDM domain.

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several meta-model elements
that represent specific relationships for a particular KDM domain. Such relationships are called “explicit” relations. All
KDM relationships are binary.

KDM defines several built-in relationships, most notably:
e containment
e grouping

These built-in relations allow defining some KDM entitites as containers for other entities. There is a special container
ownership (containment) relationship between a container and the entities that are directly owned by this container. Some
KDM entities are groups of other KDM entities. There is a special group association (grouping) relationship between the
group and the entities that are directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special
relationships of containment and grouping and explicit relations.

Core package defines a high-level reflective interface to KDM models. Other KDM packages extend this interface by
specific operations, corresponding to specific facets of knowledge about existing software systems.

The Core package is aligned with the OMG SBVR specification, as KDM provides an abstraction of software systems in
the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between KDM
entities). The largest part of the KDM specification is a definition of a language- and platform-independent vocabulary for
describing software systems. SBVR statements and rules can be written using this vocabulary to formally describe
properties of software systems as common standard-based content.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 21

The package named “kdm” defines several elements that together constitute the framework of each KDM instance. The
framework determines the physical structure of a KDM representation. The elements of the framework are present in
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM
instance consists of one or more Segments, where each Segment may own several KDM models (KDM facts, views of a
particular software system). Each KDM package defines some specific collection of meta-model elements, which
addresses a certain specific facet of knowledge about existing software systems (a KDM domain, an architectural
viewpoint). Individual KDM implementations may support one or more selected KDM domains, as defined in the KDM
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about
the existing software system and integrate them into a single coherent representation. Further, KDM design facilitates
incremental implementations, where certain pieces of knowledge about the existing software are produced by analyzing
more basic KDM facts. According to this approach certain KDM tools may perform a “KDM enrichment” process, a
“KDM to KDM transformation,” where a tool analyzes the input KDM model and produces one or more additional
Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their
“original” language-dependent representation in the source code of the existing software system, for which the KDM
views are created. This is an important part of the KDM Infrastructure, because other KDM packages use this mechanism
to refer to the source code and the physical artifacts of the existing software system.

22 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

9 Core Package

NOTE:KDM14-58, KDM14-233

9.1 Overview

The Core package provides basic constructs for creating and describing meta-model classes in all specific KDM packages.

Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and
determine the high-level interface to KDM models.

9.2 Organization of the Core Package

NOTE:KDM14-58

The KDM specification uses packages to manage complexity and bring together logically interrelated classes. The Core
package defines a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints

implemented by all other KDM packages.
The Core package consists of the following five class diagrams:
e Elements
» CoreEntities
* CoreRelations
e AggregatedRelations
e Datatypes

The Core package depends on no other packages.

9.3 Elements Class Diagram

NOTE:KDM14-58, KDM14-233

The Elements class diagram describes the top level abstract classes that identify the main categories of elements in KDM. The

classes and associations of the Elements class diagram are shown in Figure 9.1

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

23

[T

AR OVAERR T A AR LD E AT

i v RSN AT oy —vp———

Mo ey

Figure 9.1 - CoreEntities Class Diagram

9.3.1 Element Class (abstract)

NOTE:KDM14-58 (moved here)

An Element is an atomic constituent of a model. The Element class is the top meta-element in the KDM class hierarchy.
Element is an abstract meta-model element.

Semantics

Element is the common parent from all meta-model elements of KDM.

9.3.2 AnnotatableElement Class (abstract)

NOTE:KDM14-58, KDM14-233

Some elements of KDM can be annotated with AnnotationElements. Annotations supply additional information to a
particular KDM element. The particular annotations are represented as subclasses of AnnotationElement and are
described in the package named “kdm”. The AnnotatableElement is one of the abstract top meta-elements in the KDM
class hierarchy. Its purpose is to represent KDM elements that can annotated and to distinguish them from the
AnnotationElement. The key subclass of AnnotatableElement is ExtendableElement.

Superclass

Element

Semantics

AnnotatableElement represents the subclasses of Element can own annotations and user-defined attributes through
mechanisms defined in the package name “kdm”.

24 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

9.3.3 AnnotationElement Class (abstract)

NOTE:KDM14-58, KDM14-233

AnnotationElement represents various annotations to AnnotatableElements. The AnnotationElement class is one of the
abstract top meta-elements in the KDM class hierarchy. Its purpose is to represent utility KDM elements that describe
annotations to other KDM elements, and that themselves can not be annotated. The concrete subclasses to
AnnotationElement are provided in the package named “kdm”.

Superclass

Element

Semantics

AnnotationElement represents various annotations that can be owned by AnnotatableElement. Concrete subclasses of
AnnotationElement are defiend in the package named “kdm”.

9.3.4 ExtendableElement Class (abstract)

NOTE:KDM14-58, KDM14-233

Some KDM elements can be extended through the light-weight extension mechanism. Extensions introduce new
“extended” meta-model classes that represent specialized subsets within the extent of their base KDM element. Extended
elements can have new properties. Extensions are represented by the subclasses of the ExtensionElement class, and are
described in the package named “kdm”. The ExtendableElement is one of the abstract top meta-elements in the KDM
class hierarchy. Its purpose is to represent the KDM elements that can be extended and to distinguish them from the
ExtensionElement. The key subclass of ExtendableElement is ModelElement.

Superclass

AnnotatableElement

Semantics

ExtendableElement describes the subclasses of Element can be extended through the light-weight extension mechanism
defined in the package named “kdm”.

9.3.5 ExtensionElement Class (abstract)

NOTE:KDM14-58, KDM14-233

ExtensionElement represents various elements that provide the light-weight extension mechanism of KDM.
ExtensionElement is one of the abstract top meta-elements in the KDM class hierarchy. Its purpose is to represent the
elements that are part of the light-weight extension mechanism and that themselves cannot be extended (but can be
annotated using the AnnotationElement). The concrete subclasses of ExtensionElement are described in the package
named “kdm”.

Superclass

AnnotatableElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 25

Semantics

ExtensionElement describes the subclasses of Element that are parts of the light-weight extension mechanism to KDM.
Concrete subclasses of ExtensionElement are defiend in the package named “kdm”.

9.3.6 ModelElement Class (abstract)

NOTE:KDM14-58, KDM14-233 (moved to here)

A ModelElement is an element that represents some aspect of the existing system. The ModelElement is one of the
abstract top meta-model elements in the KDM class hierarchy. The key subclasses of ModelElement are KDMEntity and
KDMRelationship. Most of the meta-model elements in KDM are subclasses of either KDMEntity or KDMRelationship.
Another important subclass of ModelElement is FrameworkElement defined in the package named “kdm”.

A ModelElement can be extended through the lightweight extension mechanism.

Superclass

ExtendableElement

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software
system. The subclasses of Element that are not the subclasses of the ModelElement class are the auxiliary elements of the
Infrastructure Layer.

Each subclass of the ModelElement meta-model element can be extended through the light-weight extension mechanism
defined in the package named “kdm.”

9.4 CoreEntities Class Diagram

NOTE:KDM14-58

The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the
CoreEntities class diagram are shown in Figure 9.2.

26 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Mo AEheassiey

AOEanry

vowredEarent FoupssEmmant

Figure 9.2 - CoreEntities Class Diagram

9.4.1 KDMEntity Class (abstract)

NOTE:KDM14-235, KDM14-289

A KDMEntity is a named model element that represents an artifact of existing software systems.

In the meta-model, KDMEntity is a subclass of ModelElement. Each KDM package defines specific KDM entities that
are direct or indirect subclasses of KDMEntity. A KDMEntity can be an atomic element, a container for some
KDMEntities, and/or a group of some KDMEntities. Container and group introduce built-in relationships between entities
and are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a
KDMEntity with which other entities are associated. A KDMEntity can be owned by at most one container, and can be
associated with zero or many groups.

Superclass

ModelElement

Attributes

name: String An identifier for the KDM entity.

Associations

| / owner:KDMEntity[0..1] KDM entity that owns the current element. This property determines a high-level interface
to KDM entities. This property is a derived union. Some KDM entities define a concrete set
of owned elements that are subtypes of KDMEntity. In KDM this is represented by the
CMOF “derived union” mechanism. Concrete properties subset the “union” properties of the
parent classes, defined in the Core package. The owner of a KDM entity is defined as the
container for which the given entity is an owned entity.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 27

/ group:KDMEntity[0..*] Set of KDM entities with which the current element has a group association. This property
determines a high-level interface to KDM entities. This property is a derived union. Some
KDM entities define a concrete set of grouped elements that are the subtypes of KDMEntity.
In KDM this is represented by the CMOF “derived union” mechanism. Concrete properties
subset the “union” properties of the parent classes, defined in the Core package. The group
of a KDM entity is defined as the element for which the given entity is a grouped entity.
Each KDM entity can be associated with multiple groups.

/ ownedElement[0..*] Set of KDM elements that are owned by the current element. This property determines a
high-level interface to KDM entities. This property is a derived union. Some KDM entities
define a concrete set of owned elements that are subtypes of KDMEntity. In KDM this is
represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package.

/ groupedElement[0..*] Set of KDM elements that have a group association with the current element. This property
determines a high-level interface to KDM entities. This property is a derived union. Some
KDM entities define a concrete set of grouped elements that are the subtypes of KDMEntity.
In KDM this is represented by the CMOF “derived union” mechanism. Concrete properties
subset the “union” properties of the parent classes, defined in the Core package.

Constraints

1. KDMEntity should not reference self as groupedElement.

Operations

getOwner(): KDMEntity[0..1] This operation returns the KDM entity that is the owner of the current KDM
Entity. The owner entity is a KDM container. There can be at most one owner
for each given entity.

getOwnedElement(): KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current
KDM Entity. Only KDM containers can own other entities.

getGroup():KDMEntity[0..*] This operation returns the set of KDM Entities that have a group association
to the current KDM Entity. The group entity is a KDM group. Unlike KDM
containers, there may be many groups that have an association to a given
entity.

getGroupedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are “grouped”” by the
current KDM entity. Only KDM groups can have group associations to other
entities.

Semantics

An entity is a thing of significance, about which information needs to be known or held. A KDM entity is an abstraction
of some element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that
can be referenced as a unit. Each KDM package defines several meta-model elements that represent specific entities for a
particular KDM domain. Specific subclasses of KDMEntity constitute the noun terms of the vocabulary defined by KDM.
Each KDM package defines a viewpoint language, consisting of noun terms represented as subclasses of KDMEntity, and
verb terms represented as subclasses of KDMRelationship.

28 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Derived association ends owner, ownedElement, group, groupedElement are owned by the class. Explicit operations are
defined for navigation as part of the high-level interface to KDM maodels. Individual KDM packages define subtypes of
KDMEntity with specific subtypes of allowed owner, group, groupedElement and ownedElement in each package.

9.5 CoreRelations Class Diagram

NOTE:KDM14-30, KDM14-289

The CoreRelations class diagram defines the key associations of KDM models, called “explicit relations” between KDM
entities. The classes and associations of the CoreRelations class diagram are shown in Figure 9.3.

LUT T

i
veowerend lndn b ‘{
i

ALV el s i

=t bl simbaerd

Figure 9.3 - CoreRelations Class Diagram

9.5.1 KDMRelationship Class (abstract)

NOTE:KDM14-30, KDM14-235, KbM14-289

A KDMRelationship is a model element that represents semantic association between two entities.

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are
typed associations between some specific subclasses of KDMEntity.

Superclass

ModelElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 29

Associations

/ to: KDMEntity[1] The target entity (also referred to as the to-endpoint of the relationship). This property determines
a high-level interface to KDM relationships. Every specific KDM relationship redefines the to-
endpoint to a particular subtype of KDMEntity. In KDM this is represented by the CMOF
“subsets” mechanism. Concrete properties redefine the properties of the parent classes, defined in
the Core package.

/ from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property
determines a high-level interface to KDM relationships. Every specific KDM relationship
redefines the from-endpoint to a particular subtype of KDMEntity. In KDM this is represented by
the CMOF “subsets” mechanism. Concrete properties redefine the properties of the parent
classes, defined in the Core package.

Operations
getTo(): KDMEntity[1] This operation returns the KDM entity that is the to-endpoint (the target) of the current
relationship.
getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the
current relationship.
Semantics

KDMRelationship is an abstract meta-model element. Concrete relationships between KDM entities in KDM views are
instances of concrete subclasses of KDMRelationship. Each instance of KDMRelationship has exactly one target and
exactly one origin. Each concrete subclass of KDMRelationship defines the acceptable types of its endpoints.

Each KDM package defines a viewpoint language, consisting of noun terms represented as subclasses KDMEntity, and
verb terms represented as subclasses of KDMRelationship. Relations defined as subclasses of KDMRelationship are
"explicit" and consitute the majority of the vocabulary defined by KDM. Explicit relations can be mapped to RDF triples.
KDM also includes several "built-in" relations, such as "ownedElement" and "groupedElement” defined at the
CoreEntities class diagram and several others. KDM "built-in" relations as well as attributes of KDMEntities can be also
mapped to RDF triples. The key difference between explicit and built-in relations is how they are used in the Aggregated
Relations mechanism. Only explicit relations can be aggregated. On the other hand, the Aggregated Relations mechanism
uses “ownedElement” and “groupedElement” built-in relations to define aggregations. Other built-in relations cannot be
aggregated and always remain as associations between the original endpoints.

Derived association ends to and from are owned by the class. They are redefined in individual KDM Models. Explicit
operations getTo and getFrom are defined for navigation as part of the high-level interface to KDM models. Individual
KDM packages define specific subtypes of KDMRelationship where the endpoints are specific subtypes of KDMEntity in
each package.

9.5.2 KDMEntity (additional properties)

NOTE:KDM14-235, KDM14-289

30 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

/ ownedRelation: KDMRelationship[0..*] Set of explicit KDM relationships that originate from the current entity.
/ inbound: KDMRelationship[0..*] Set of explicit KDM relationships that have the current entity as their
target.
/ outbound:KDMRelationship[0..*] Set of explicit KDM relationships that originate from the current entity.
Operations
getinbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current

KDMERntity is the to-endpoint of these relations.

getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the from-endpoint of these relationships.

getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity owns these relationships.

Constraints

1. The set of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the
from-property is the given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the
ownedRelation association is required to manage relationship elements. KDM relationships are owned by the entity,
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association
class with to- and from- properties.

Derived association ends inbound, outbound are owned by the associations. Derived association end ownedRelation is
owned by the class. Explicit operations are defined for navigation as part of the high-level interface to KDM models.
Individual KDM packages define subtypes of KDMRelationship which determine allows inbound, outbound and
ownedRelation for specific subtypes of KDMEntity in each package.

9.6 AggregatedRelations Class Diagram

NOTE:KDM14-214, KDM14-235, KDM14-289

The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part
of the high-level interface to KDM maodels, along with interfaces defined by KDMEntity and KDMRelationship classes.

The lifecycle of Aggregated Relationships is managed by the operations of the KDMEntity class. AggregatedRelations are
owned by a KDMEntity class that is the from-endpoint of the aggregated relation, similar to explicit KDM relations.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.4.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 31

|

Helpaproel

B ey et Lo BT

|Aq-nnua|mhumnmn AR apbvicn| MO el D

+ g iy

Dol i adiar

agoregared el alions Origy

19T Ao aies

Oty

Figure 9.4 - AggregatedRelations Class Diagram

9.6.1 AggregatedRelationship Class

NOTE:KDM14-30, KDM14-235, KDM14-289

The set of AggregatedRelationship elements for a given entity represents all explicit relationships between the entities
that are transitively owned by the given entity as well as the entity itself. One AggregatedRelationship represents
collection of individual KDMRelationship elements (and can can be referred to as their aggregate). The aggregation rules
are defined in the semantics sections. AggregatedRelationship is a concrete class, because an AggregatedRelationship can
be instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and exchanged too, if necessary).
KDMEntity class defines operations for managing the lifecycle of owned AggregatedRelationships.

Superclass

ModelElement

Attributes

/ density:Integer

Associations

relation:KDMRelationship[0..*]

to: KDMEntity[1]

The number of explicit relationships in the aggregated set. This property is derived.

The set of explicit KDM relationships represented by the aggregated relationship.

The aggregation to-endpoint of the relationships in the aggregated set. All
relationships in the aggregated set should terminate at the entity that is the to-
endpoint or at some entity that is owned (or grrouped) directly or indirectly by the to-
endpoint.

32 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

from:KDMEntity[1] The aggregation from-endpoint of the relationships in the aggregated set. All
relationships in the aggregated set should originate from the entity that is the from-
endpoint or from some entity that is owned (or grouped) directly or indirectly by the
from-endpoint.

Constraints
1. To- and from-endpoints should be distinct.
2. The density should be greater than or equal to 1.

3. The density should be equal to the number of explicit relationships represented by the given aggregated
relationship.

Semantics

AggregatedRelationhip is determined by how elements are owned by containers (or referenced by groups) in the
following way:

1. AggregatedRelationship between two entities (no owned elements) represents the set of explicit KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity
is the to-endpoint of the relationship).

2. AggregatedRelationship between an entity and a container (or group) represents the set of all explicit KDM
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned (or
grouped) by the given container (directly or indirectly).

3. AggregatedRelationship between a container (or group) and an entity represents the set of all explicit relationships
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned (or grouped) by the
given container (directly or indirectly).

4. AggregatedRelationship between two containers (and/or groups) represents the set of all explicit KDM relations
such that the from-endpoint is an entity owned (or grouped) by the first container and the to-endpoint is an entity
owned (or grouped) by the other container.

An explicit KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an
implied density of 1. An AggregatedRelationship represents a set of explicit KDM relationships. It has density of greater
or equal than 1 and no concrete type (as it may represent explicit KDM relationships of different types). An
AggregatedRelationship cannot be constructed between two entities if there are no explicit KDM relationships between
them (according to the definition above).

The relationship “x in* C” means that x is in container C or in some sub-container of C, transitively.
For relationship R, let R’ be the corresponding aggregated relationship.

Given containers C1 and C2 and the relationship R, let

P={(xy):xin*Clandyin* C2 and x R y}

That is, P is the set of pairs such that x is in* Cl andy isin* C2and X R y.

Then

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 33

ClR’C2iff|P|>0
C1 and C2 are related by the aggregated relationship R’ if and only if there is at least one pair in the set P.

The density of C1 *' C2 is then simply |P|, the size of the set P.

EN——

|==

Figure 9.5 - AggregatedRelationships illustrated

Figure 9.5 illustrates Containers and aggregated relationships. It uses the following notation. UML package symbols C1
and C2 represent KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association
indicates the direction of the relationship, when there are no arrows at either end of the association (as in Figure 9.5), this
indicates two relationships, one in each direction. The numbers at the ends of associations, such as “+2,” represent the
density of the corresponding KDM relationship. The KDM density has a different interpretation than UML multiplicity:
since KDM represents an existing application, the exact relationships and their number is what the model captures. KDM
model is not a model that represents constraints, like the ones used during the design phase, rather, this is a model that
captures precise knowledge about the application. So, the KDM densities are exact.

Aggregated relationships are collections of more explicit relationships, which represent some basic facts, for example,
“procedure x calls procedure y.” Such basic fact has density 1. An explicit code relationship represents some basic fact
about the existing application. Now, when there are two or more such facts, for example “procedure x in module A calls
procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an aggregated
relationship between modules A and B with density 2 (2=1+1). In this case, the aggregated relationship represents the
collection of the two explicit relationships between modules A and B as aggregation from- and to-endpoints.

Association ends to, from, owner and relation are owned by the class.

9.6.2 KDMENntity (additional properties)

NOTE:KDM14-214, KDM14-235, KDM14-289

Associations

aggregatedRelation:AggregatedRelationship[0..*] The set of aggregated relationships owned by this KDM entity.

/ inAggregated: AggregatedRelationship[0..*] The set of aggregated relations for which the current KDM
entity is the aggregation to-endpoint.

/ outAggregated:AggregatedRelationship|[0..*] The set of aggregated relations for which the current KDM
entity is the aggregation from-endpoint.

34 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Operations

createAggregation(otherEntity: KDMEntity) This operation creates an aggregated relationship such that the
current entity is the aggregation from-endpoint of the aggregated
relation and the “otherEntity” is the aggregation to-endpoint. The
new aggregated relationship is owned by the current entity which
becomes the from-endpoint of the aggregated relationship.

deleteAggregation This operation deletes the given aggregated relationship.
(aggregatedRelation:AggregatedRelationship)

getinAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the aggregation to-endpoint is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the aggregation from-endpoint is the current KDM Entity.

Constraints

1. AggregatedRelationship shall be owned by the KDMEntity that is the aggregation from-endpoint of the aggregated
relationship

Semantics

Derived association ends inAggregated, outAggregated are owned by the class. Explicit operations are defined for
navigation as part of the high-level interface to KDM models. Association end aggregatedRelation is owned by the class.

9.6.3 KDMRelationship (additional properties)

NOTE:KDM14-289

Associations

| aggregate:AggregatedRelationship[0..*] The set of aggregated relationships that include this KDM
relationship.

Semantics

Derived association end aggregate is owned by the class. No explicit operations for navigation are defined for this derived
property. This derived property is the inverse of the relation property of AggregatedRelationship.

9.7 Datatypes Class Diagram

NOTE:KDM14-12, KDM14-302

The Datatypes class diagram describes several predefined data types for the Core package. Each class at the Datatypes
class diagram is an instance of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.6.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 35

§kn T pas ST e s Sl T ppsins
Siring Bookean Nl

Figure 9.6 - Datatypes Class Diagram

9.7.1 Boolean Type (datatype)

The meta-model uses predefined Boolean type to represent some KDM attributes, KDM operations, and their parameters.

9.7.2 String Type (datatype)

The meta-model uses predefined String type to represent some KDM attributes, KDM operations, and their parameters.

9.7.3 Integer Type (datatype)

The meta-model uses predefined Integer type to represent some KDM attributes, KDM operations, and their parameters.

36 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10 The Package named “kdm”

10.1 Overview

The package named “kdm” defines the key infrastructure elements that determine patterns for constructing KDM views of
existing software systems. KDM views (also referred to as KDM instances) are collections of the elements that are
instances of the meta-model elements defined by the KDM specification, where each KDM element represents a certain
element of the existing system. Although each KDM instance is a model of the corresponding existing software system,
KDM instance is not a model that represents constraints, like the ones used during the design phase, rather, this is an
intermediate representation that captures precise knowledge about the system.

Implementers of KDM tools are guided by a mapping from the elements of programming languages, runtime platforms,
and other artifacts of existing software systems into KDM elements, using semantic description and implementer’s
guidelines of this specification. The package named “kdm” describes several infrastructure elements that are present in
each KDM instance. Together with the elements defined in the Core package these elements constitute the so-called KDM
Framework. The remaining KDM packages provide meta-model elements that represent various elements of existing
systems.

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension
meta-model pattern). KDM Framework is part of the Infrastructure Layer together with the elements defined in the Source
package.

10.2 Organization of the KDM Framework

The package with name “kdm” is a collection of classes and associations that define the overall structure of KDM
instances. From the infrastructure perspective, KDM instances are organized into segments and then further into specific
models. There are 9 kinds of models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. From the architectural perspective, each KDM package defines an architectural viewpoint. KDM
model is the key mechanism to organize individual facts into architecture views. From the infrastructure perspective, a
KDM model is a typed container for meta-model element instances (collection of facts organized into an architectural
view). From the meta-model perspective, each KDM model is represented by a separate KDM package that defines a
collection of the meta-model elements, which can be used to represent the facts about the given existing systems from a
particular viewpoint. KDM framework defines a common superclass model element for all models - the KDMModel class.
KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding to a particular
model kind and to a particular instance of such element in a concrete representation of some existing system. Explicit
disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when necessary.

KDM model is the key unit of a KDM instance. KDM segment can own one or more models. A segment is a minimal unit
of exchange in the KDM ecosystem. Segments can be nested.

The implementer shall provide an adequate partitioning of the KDM instance into multiple models and segments. On the
other hand, the implementers of KDM import tools should not make any assumptions about the organization of KDM
model elements into models or organization of models into segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model
segment describe artifacts that involve a single programming language and a single platform.

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be
integrated to provide a coherent holistic view.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 37

The package with name “kdm” consists of the following 5 class diagrams:
» Framework — defines the basic elements of the KDM framework.
e Audit — defines audit information for KDM model elements.
< Annotations - provides user-defined attributes and annotations to the modeling elements.
< Extensions - a class diagram that defines the overall organization of the light-weight extension mechanism of KDM.
« ExtendedValues - the tagged values used by the light-weight extension mechanism.

The package with name “kdm” depends only on the Core package.

10.3 Framework Class Diagram

The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM
instances.

The classes and association of the Framework diagram are shown in Figure 10.1.

NOTE:KDM14-13, KDM14-134, KDM14-214

sruT ;5 e ExlEnsiong

rpalmrmcnt mily

Extiefs borF amily

SP2TE

Sepgmant

St HsnpoEkaTanm

Figure 10.1 - Framework Class Diagram

10.3.1 FrameworkElement Class (abstract)

NOTE:KDM14-13, KDM14-134, KDM14-138, KDM14-289

38 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The FrameworkElement meta-model element is an abstract class that describes the common properties of all KDM
Framework elements. FrameworkElement class is extended by Segment and KDMModel classes. These elements may
own KDM light-weight extensions (extensionFamily property). The KDM extension mechanism is described further in
this clause.

Superclass

ModelElement

Attributes

name: String [0..*] The name of the framework element.

Associations

extensionFamily:ExtensionFamily [0..*] Extensions for the current model segment. This
association end is owned by the class.

Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. The
implementer shall:

« arrange instances of the KDM model elements into models (constrained only by the definition of each model).
« arrange KDM models into one or more segments.

e provide names to KDM models and KDM segments.

10.3.2 KDMModel Class (abstract)

NOTE:KDM14-13, KDM14-135, KDM14-214, KDM14-289

A KDMModel is an abstract class that defines common properties of KDM model instances that are collections of facts
about a given software system from the same architectural viewpoint of one of the KDM domains. KDM defines several
concrete subclasses of the KDMModel class, each of which defines a particular kind of a KDM model. The architectural
viewpoint is define by the corresponding KDM package. A KDM model instance is an architectural view of the given
system.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’s assume
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

¢ The meta-model elements for KDM model “foo” are described in a separate package, called “foo.”
e The package defines a concrete subclass of the KDMModel, called “FooModel.”

e The package defines a common abstract parent for all KDM entities specific to this KDM model, called
“AbstractFooElement.” This class extends the KDMEntity class from the Core package.

« The package defines a common abstract parent for all KDM relationship specific to this KDM model, called
“AbstractFooRelationship.” This class extends KDMRelationship class from the Core package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 39

¢ Class “FooModel” owns class “AbstractFooElement.” This association subsets the association between the
KDMModel and KDMEntity defined at the Framework class diagram.

e Class “AbstractFooElement” owns zero or more AbstractFooRelationship elements.

e The package “foo” includes a “Foolnheritances” class diagram, describing inheritances of “FooModel,”
“AbstractFooElement,” and “AbstractFooRelationship” classes, as well as any other common properties related to the
KDM Infrastructure, such as properties related to the Source package.

« The package “foo” includes “ExtendedFooElements” diagram that defines two generic meta-model elements
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass

FrameworkElement

Associations

/ ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM model defines
specific subclasses of KDMEntity class.

Operations
getOwnedElement(): KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current
KDM Model
Semantics

The implementer shall arrange instances of the KDM model elements into models (constrained only by the definition of
each model) and to provide name attributes for each KDM model instance. A KDM model instance may be empty or may
contain one or more instances of the elements allowed for this KDM model. A particular KDM instance may contain no
KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models
in KDM Program Elements and Infrastructure layer. There should be no associations from the Program Elements and
Infrastructure layer models to Resource and Abstractions layer models.

Derived association end ownedElement is owned by the class. Explicit operations are defined for navigation as part of the
high-level interface to KDM models. Each KDM package defines specific subtypes of KDMModel and a collection of the
corresponding subtypes of KDMEntity and KDMRelationship classes. Each subclass of KDMModel and related subtypes
of KDMEntity and KDMRelationship define a viewpoint. Instances of these classes for a given software system constitue
one or more KDM models (KDM views).

Association end owner is owned by the association. This property is considered non-navigable in KDM.

40 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10.3.3 KDMEntity (additional properties)

NOTE:KDM14-289

Associations

/ model: KDMModel[0..1] Instance of KDM Model that owns this KDM entity.
Operations
getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM
Entity.
Semantics

Derived association end model is owned by class. Explicit operations are defined for navigation as part of the high-level
interface to KDM models. Each KDM package defines specific subtypes of KDMModel and a collection of the
corresponding subtypes of KDMEntity classes. The model property of such subclass of KDMEntity is an instance of a
specific subtype of KDMModel from the same KDM package.

10.3.4 Segment Class

NOTE:KDM14-13, KDM14-289

The Segment element is a container for a meaningful set of facts about an existing software system. Each segment may
include one or more KDM model instances and thus represents a collection of one or more architectural views for a given
software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without owners is the
top segment of the KDM model.

Superclass
FrameworkElement

Associations

segment: Segment[0..*] Nested Segment elements owned by the current Segment.

model: KDMModel[0..*] The set of KDM models owned by the current segment. Each KDM model defines an
architectural viewpoint. KDM model defines specific meta-model elements (entities and
relationships specific to the viewpoint) that collectively define the viewpoint language.

Semantics

Association ends model and segment are owned by the class. Association end owner is owned by the association. This
property is considered non-navigable in KDM.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 41

The implementer shall arrange KDM models into segments and to provide name attributes for each KDM segment
instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may contain one
or more KDM maodels of a given kind.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple
derivative models from the Program Elements and Infrastructure layer.

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models
into KDM segments.

Example

NOTE:KDM14-15, KDM14-308

<?xm version="1.0" encodi ng="UTF-8""?>
<kdm Segnent xm ns:xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdn="ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdni'
xm ns: source="http://ww. ong. or g/ spec/ KDM 20160201/ source" nane="Franewor k Exanpl e">

<audit xm:id="id.0" description="Illustration of KDM Framework" author="KDM FTF" dat e="04-03-2007">
<attribute xm:id="id.1" tag="approved" val ue="yes"/>
</ audit >

<segnent xm:id="id.2" nane="foobar"/>
<nmodel xm :id="id.3" xm:type="code: CodeMdel " nanme="fo0">
<annotation xm:id="id.4" text="This is a sanple instance of a Code nodel"/>
</ nodel >
<nodel xmi:id="id.5" xm:type="source:lnventoryMdel" nane="bar">
<annotation xm:id="id.6" text="This is a sanple of an Inventory nodel"/>
</ nodel >
</ kdm Segnent >

10.4 Audit Class Diagram

NOTE:KDM14-58, KDM14-132, KDM14-13, KDM14-57, KDM14-241, KDM14-289

The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2.

42 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Exreandadie Eheaaiw
LR |

LR v ([

Figure 10.2 - Audit Class Diagram

10.4.1 Audit Class

NOTE:KDM14-58, KDM14-132, KDM14-13, KDM14-57, KDM14-241, KDM14-289

Audit class represents basic audit information associated with KDM model elements. The Audit element allows
associating provenance, argument as well as other metadata with arbitrary KDM model elements.

Superclass

ExtendableElement

Attributes
description:String Contains the description related to the Audit of the element (the Audit message).
author:String Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.
date:String Contains the date when the model element was created.

Associations

owner:ModelElement[1] The owner of the current Audit element

Constraints

1. date should be represented in “dd-mm-yyyy” format

Semantics

The Audit element provides some extra “audit” information in the form of human readable text.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 43

Each model element can have zero or more Audit instances associated with it. The collection of Audit elements is not
ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,”
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For
example, “04-03-2007” corresponds to the “4th of March 2007.”

The content of the Audit element is provided by the implementer or the analyst.
KDM does not constrain the “description” attribute.

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element,
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or
segment.

Audit element can own Annotation elements and Attribute elements. The Audit.description is the primary description and
any associated annotations may be used as optional secondary descriptions.

Audit element can be extended with ExtensionElement using the light-weight extensibility mechanism.
Association end owner is owned by the class.
Example

See example in the “Segment Class” sub clause.

10.4.2 ModelElement (additional properties)

NOTE:KDM14-57, KDM14-289

Audit elements can be owned by any subclass of the ModelElement element, including segment or model.

Associations

audit:Audit[0..*] The list of Audit element instances for the given instance of ModelElement, including Segment or
Model.

Semantics

Association end audit is owned by the class.

10.5 Extensions Class Diagram

NOTE:KDM14-58, KDM14-243

The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “extended” meta-model elements to KDM.
A “extended” meta-model element is a base meta-model element with extended meaning, and possibly with extended
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of

44 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:
1. Define a stereotype (introduce the partial kind of a meta-model element):

« A stereotype definition includes the name of class of the allowed base elements. This class can be a particular
concrete meta-model element, a generic element, or an abstract meta-model element.

2. Define tags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition
includes the name of the extended attribute and the name of the type of the element (represented as a string).
Values of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype
defines its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework
elements (KDM models and segments).

4. Use extended model elements in KDM instances by using the base meta-model element instance with one or more
stereotypes:

e Concrete tag values can be added to the “extended” element if the stereotype defines tags.
« Each tag value is associated with the corresponding tag definition.
e The complete kind of the new element is defined as the union of all stereotypes added to the element.

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element.
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of
the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model
defines two viewpoint-specific generic elements: a generic entity and a generic relationship for the given KDM model.
They too can be used as extension points.

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between
tags or stereotypes. The implementer shall select the most specific extension points, by defining stereotypes in such a way
that they use the base elements with the most specific semantic description (closer to the bottom of the KDM class
hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 45

Er i Anihmanr

= Lo T | o
o
Entiris ionF isialy
T
e
Stereatype Tagh
= e gl g [mriderie o =l3g = =
e B2 0] i > o
e FppEa L L
i n 11l L]
Enirigins
ExdwrateteSiverant Ertendeciaie |
g — 1
ird| - "
i

Extendadaluss

Figure 10.3 - Extensions Class Diagram

10.5.1 Stereotype Class

NOTE:KDM14-58, KDM14-243, KDM14-289

The stereotype concept provides a way of branding (classifying) certain elements so that they behave as if they were the
instances of new extended meta-model constructs. These elements have the same structure (attributes, associations,
operations) as similar non-stereotyped elements of the same kind. The stereotype may specify additional required tagged
values that apply to these elements. In addition, a stereotype may be used to indicate a difference in meaning or usage
between two elements with identical structure.

Stereotype is a named element. TaggedValues attached to a Stereotype apply to each ExtendableElement branded by that
Stereotype.

A Stereotype specifies the name of the base element to which it can be added.
Superclass

ExtensionElement

Attributes
name:String Specifies the name of the stereotype.
type:String Specifies the name of the base element to which the stereotype applies.

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

46 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

owner:ExtensionFamily[1] ExtensionFamily that owns the current stereotype

Constraints

1. Tags associated with ExtendableElement should not clash with any meta attributes associated with this model
element.

2. A model element should have at most one tagged value with a given tag name.
3. A stereotype should not extend itself.

4. A Stereotype can be added to ExtendableElement if its class is the same as the value of the type attribute of the
Stereotype, or one of its subclasses.

5. The values of the type attribute of the TagDefinition are restricted to the names of the subclasses of
ExtendableElement and the names of the core datatypes. Names of the core datatypes (“Boolean,” “String,”
“Integer”) define attributes of the extended meta-model element. The corresponding values are represented as
instances of the TaggedValue class. Names of the subclasses of ExtendableElement (for example, “KDMEntity,” or
“Audit”) define associations of the extended meta-element and the corresponding values are represented as
instances of the TaggedRef class.

Semantics
Stereotypes should not change the semantics of the base meta-model element.

A KDM model element with one or more stereotypes has the semantics of the base element with some additional
semantic constraints. The complete kind of the new element is defined as the union of all stereotypes added to the
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class,
with the new attributes corresponding to the tag definitions.

Association ends tag and owner are owned by the class.

Example

NOTE:KDM14-15, KDM14-308

<?xm version="1.0" encodi ng="UTF-8""?>
<kdm Segnment xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: action=http://ww. ong. or g/ spec/ KDM 20160201/ acti on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdn="ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdml' nane="St er eot ype Exanpl e">
<extensionFam |y xm :id="id.0" nane="Exanpl e extensions">
<stereotype xm:id="id.1" nanme="Java nethod"/>
<stereotype xm:id="id.2" name="C++ nethod"/>
<stereotype xm:id="id.3" name="C++ procedure"/>
<stereotype xm:id="id.4" name="C++ friend">
<tag xm:id="id.5" tag="friend_of" type="ClassUnit"/>
</ stereotype>
<stereotype xm:id="id.6" name="I|sFriendO"/>
<stereotype xm:id="id.7" name="native call">
<tag xm:id="id.8" tag="inplenented in" type="String"/>
</ st ereotype>
</ ext ensi onFamni | y>
<nodel xm:id="id.9" xm:type="code: CodeMdel " nane="Exanple">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 47

<codeEl ement xm :id="id.10" xm:type="code: C assUnit" nane="mycl ass">
<codeEl ement xm :id="id.11" xm:type="code: MethodUnit" stereotype="id.2"
name="fo0" type="id.12">
<codeEl enent xm :id="id.12" xm :type="code: Si gnature" nane="foo"/>
</ codeEl enment >
</ codeEl enent >
<codeEl ement xm :id="id.13" xm:type="code: CallableUnit" stereotype="id.4 id.3"
nanme="bar" type="id.16" kind="regul ar">
<taggedVal ue xm :id="id. 14" xm:type="kdm TaggedRef" tag="id.5" reference="id.10"/>
<codeRel ation xm :id="id.15" xm :type="code: CodeRel ati onshi p" stereotype="id. 6"
to="id. 10" fron¥"id.13"/>
<codeEl enent xm :id="id.16" xm :type="code: Si gnature" nane="bar"/>
</ codeEl enent >
</ nodel >
<nmodel xm:id="id.17" xm :type="code: CodeModel ">
<codeEl ement xm :id="id.18" xm:type="code: C assUnit" stereotype="id.1l">
<codeEl enent xm :id="id.19" xm :type="code: Met hodUnit" stereotype="id.1l"
nanme="foobar" type="id.23">
<codeEl ement xm :id="id.20" xm:type="action: ActionEl ement" stereotype="id.7"
nane="al">
<actionRelation xm:id="id.21" xm:type="action:Calls" stereotype="id.7"
to="id. 13" fron¥"id.20">
<taggedVal ue xm :id="id.22" xm:type="kdm TaggedVal ue" tag="id.8" value="C'/>
</ actionRel ati on>
</ codeEl enment >
<codeEl ement xm :id="id.23" xm:type="code: Si gnature" nane="foobar"/>
</ codeEl enment >
</ codeEl enent >
</ nodel >
</ kdm Segnent >

10.5.2 TagDefinition Class

NOTE:KDM14-58, KDM14-243, KDM14-289

Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
extended information about existing software systems to only those tools that share a common understanding of the
specific tagged value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass

ExtensionElement

48 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Attributes

tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.

type:String Specifies the type of the value attribute.

Associations

owner:Stereotype[1] Stereotype that owns the current TagDefinition

Constraints

1. The “value” attribute of the TaggedValue should be valid according to the type specified in the corresponding
TagDefinition.

2. The target of the “ref” association of the TaggedRef should be of the type specified in the corresponding
TagDefinition, or one of its subtypes.

3. If the type of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,” “StringType,”
“IntegerType™), the corresponding value should be an instance of the TaggedValue class.

4. If the type of the TaggedDefinition is a name of some other KDM element (for example, “KDMEntity,” or
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics

ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags
is outside of the KDM specification and should be communicated by implementers to the users of the extended models.
Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions
can still be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic
KDM semantic rules are applied.

Association end owner is owned by the class.
Example

See example in the “Stereotype Class” sub clause.

10.5.3 ExtensionFamily Class

NOTE:KDM14-58, KDM14-134, KDM14-289

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and their corresponding tag definitions.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 49

Superclass

ExtensionElement

Attributes

name:String Provides the name of the extension family.

Associations

stereotype:Stereotype[0..*] The set of stereotypes that are owned by the extension family.
owner:FrameworkElement[1] The FrameworkElement (Segment or KDMModel) that owns he current extension
family
Semantics

ExtensionFamily provides a named container for stereotype definitions. The implementer shall arrange stereotype
definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in a separate
segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into families.

Association ends stereotype and owner are owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.5.4 ExtendableElement (additional properties)

NOTE:KDM14-58, KDM14-289

Associations

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

stereotype:Stereotype|[0..*] the stereotype

Constraints

1. Each tagged value added to a ExtendableElement must conform to a certain tag definition owned by the stereotype
of that ExtendableElement (the tag association of the TaggedValue should refer to a TaggedDefinition that is
owned by a Stereotype of the ExtendableElement). A tagged value conforms to a tag definition when the value
conforms to the type of the TagDefinition. Full validation of lightweight extensions can only be performed
dynamically by a suitable KDM import tool, since the purpose and the semantics of an extension is not defined by
the KDM standard.

2. Stereotype can be associated with a certain instance of a ExtendableElement if the type of the ExtendableElement
is the same as the type property in the stereotype definition, or one of its subclasses.

50 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

Association ends taggedValue and stereotype are owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.6 ExtendedValues Class Diagram

| NOTE:KDM14-58

ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value
construct.

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

Eir Pis il il
Ol i |
ExlvndacViake - TaegDi firsitian

TaggediyaimeDedrition H

I Hi

Taggie eV i TagpeaRel

gt Il

Rl rainidi
1] sretarercs

L pedniis e
COTE|

Figure 10.4 - ExtendedValue Class Diagram

10.6.1 ExtendedValue Class (abstract)

| NOTE:KDM14-58, KDM14-289

ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values: the TaggedValue
and the TaggedRef. ExtendedValue class defines common properties for these classes.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 51

Superclass

ExtensionElement

Associations

tag:TagDefinition[1] the reference to the tag definition of the corresponding stereotype

Semantics

ExtendedValue is a additional attribute to an extended KDM meta-model element. ExtendedValue element represents the
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stereotype
element defines the “extended meta-model element that provides the context for the new attributes. ExtendedValue
elemens that correspond to a Stereotype shall be instantiated every time a new extended meta-model element, defined by
a Stereotype, is instantiated. This is an important difference between ExtendedValues and KDM attributes, which are not
related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the
allowed values.

Each instance of ExtendedValue has an association to the corresponding TagDefinition. Association end tag is owned by
the class.

10.6.2 TaggedValue Class

NOTE:KDM14-30, KDM14-58

A tagged value allows information to be attached to any model element in the form of a “tagged value” pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition.

Superclass

ExtendedValue

Attributes

Value:String Contains the current value of the TaggedValue.

Constraints

1. The value of the TaggedValue instance should conform to the type of the corresponding TagDefinition.

52 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

TaggedValue element represents simple atomic extended attributes. The type constraint of the value, defined in the
corresponding TagDefinition can be the name of any KDM primitive datatype (for example, “StringType,”
“BooleanType,” etc.).

Example

See example in the “Stereotype Class” sub clause.

10.6.3 TaggedRef Class

NOTE:KDM14-136, KDM14-289

A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of the
subtypes of that type.

Superclass

ExtendedValue

Associations

reference:ModelElement[1] Designates the model element referred to by the extended value.

Constraints

1. The model element that is the target of the reference association must be of the type, specified by the type attribute
of the tag definition that is the target of the tag association of the tagged ref element.

Semantics

TagRef represents complex extended attributes, which are associations to other KDM elements. TagDefinition can be a
name of any KDM meta-model element (for example, “KDMEntity,” “AbstractCodeElement,” “ControlElement,” or
“CallableUnit”). Association end reference is owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.7 Annotations Class Diagram

NOTE:KDM14-58, KDM14-132

The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag,
value> to an individual element instance. This is complimentary to the light-weight extension mechanism, which provides

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 53

a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances
of the same meta-model element may own completely different user-defined attributes (and some may have none at all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of KDM instances. They may be used by implementer to add specific information to an individual element.
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag
definitions are first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5.

A T DS AR
(1= (]

I —

o At bt s

Afirkiuie
Frrry = afribnsis

Elementatinbuie

Annoiaien

E Hes®hiia FlArtin ok Lusii

Figure 10.5 - Annotations Class Diagram

10.7.1 Attribute Class

NOTE:KDM14-58, KDM14-132, KDM14-289

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define extended new
model element, and tagged values specify additional attributes of these extended model elements). Tagged values are only
associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

Superclass

AnnotationElement

Attributes

tag:Name Contains the name of the attribute. This name determines the semantics that are applicable to the
contents of the value attribute.

54 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

value:String Contains the current value of the attribute.

Associations

owner:Element[1] The AnnotatableElement that owns the current Attribute.

Constraints

1. Attribute cannot have further annotations or attributes

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It may be determined by the user or the
implementer conventions. Tools may provide capability to add arbitrary attributes to the instances of the model to supply
information needed for their operations beyond the basic semantics of KDM. Such information can support analysis of
KDM models.

An attribute element is not related to a particular meta-model element. It does not define a extended attribute to an
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of
instances. Association end owner is owned by the class.

Example

See example in the “Segment Class” sub clause.

10.7.2 Annotation Class

NOTE:KDM14-58, KDM14-132, KDM14-289

Annotations allow textual descriptions to be attached to any instance of a model element.

Superclass

AnnotationElement

Attributes

text:String Contains the text of the annotation to the target model element.

Associations

owner:Element[1] The AnnotatableElement that owns the current Annotation.

Constraints

1. Annotation cannot have further annotations or attributes.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 55

Semantics

Annotation allows associating a human-readable text with an instance of any Element. Association end owner is owned
by the class.

Example

See example in the “Segment Class” sub clause.

10.7.3 AnnotatableElement (additional properties)

NOTE:KDM14-58, KDM14-289

Associations

attribute:Attribute[0..*] The set of attributes owned by the given element.
annotation:Annotation[0..*] The set of annotations owned by the given element.
Semantics

No assumptions should be made regarding the order of attributes or annotations associated with a particular instance.
Association ends attribute and annotation are owned by the class.

56 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

11 Source Package

11.1 Overview

NOTE:KDM14-131, KDM14-60

The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of existing
systems, such as source files, images, configuration files, resource descriptions, etc. The Source package also represents
traceability links between instances of KDM meta-elements and the corresponding regions of source code. It represents
the link between the KDM instance and the artifacts of the existing system it represents.

The Source package offers several capabilities for linking instances of the KDM representation to the corresponding
artifacts:

« Inlining the corresponding source code in the form of a “snippet” into KDM representation.
< Linking a KDM element to a region of the source code within some physical artifact of the system being modeled.

« Explicit relation between any KDM element (via the Track element) and another KDM element, including elements
that represent an artifact in the InventoryModel

A given KDM representation can implement either of the approaches, all of them, or none.

KDM Source packages uses URI reference to identify the location of an artifact. When a KDM element is linked to the
source code within a particular physical artifact of the existing system (regardless of the existence of the corresponding
snippet), KDM offers an additional two options:

e The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the URI reference of the artifact is determined through the Inventory Model.

« The link can be made stand-alone and explicitly specify the URI reference of the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, this is
indicated by the “language” attribute.

The Source package defines an architectural viewpoint for the Inventory domain. It is determined by the entire software
development environment of the existing software system.

« Concerns:
e What are the artifacts (software items) of the system?

« What is the general role of each artifact (for example, is it a source file, a binary file, an executable or a
configuration description)?

¢ What is the organization of the artifacts (into directories and projects)?
¢ What are the dependencies between the artifacts?
« Viewpoint language:

Inventory views conform to KDM XMI schema. The viewpoint language for the Inventory architectural
viewpoint is defined by the Source package. It includes an abstract entity AbstractinventoryElement, several
generic entities, such as Inventoryltem and InventoryContainer, as well as several concrete entities, such as

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 57

SourceFile, ObjectFile, ImageFile, Directory, etc. The viewpoint language for the Inventory architectural
viewpoint also includes TraceableTo and DependsOn relationships, which are subclasses of
AbstractinventoryRelationship.

¢ Analytic methods:
The Inventory architectural viewpoint supports the following main kinds of checking:

e What artifacts depend on the given artifact?

The Inventory viewpoint also supports check in combinations with other KDM architectural viewpoint to determine
the original artifacts that correspond to a given KDM element.

¢ Construction methods:

¢ Inventory views that correspond to the KDM Inventory architectural viewpoint are usually constructed by
directory scanning tools, which identify files and their types.

e Construction of an Inventory view is determined by the particular development and deployment environments of
the existing software system.

e Construction of an Inventory view is determined by the semantics of the environment as well as the semantics of
the corresponding artifacts, and is based on the mapping from the given environment to KDM.

e The mapping from a particular environment to KDM may produce additional information (system-specific, or
environment-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations.

As a general rule, in a given KDM instance, each instance of the inventory model represents a a set of resources,
identifiable by URI references. A resource is any artifact that has identity, such as a file, an electronic document, an
image, a service and a collection of other resources. Exceptions to this rule are:

« InventoryModel element, which is a part of the KDM instance infrastructure. This meta-model element is a container
for the instances of other inventory meta-model elements.

< SourceRef and Region elements that represent traceability links between other instances of KDM meta-model
elements and source code of an existing software system.

< Track element that together with the TraceableTo relation represents traceability links between instances of KDM
entities, including links from KDMEntities to Inventoryltem elements.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability
mechanism between KDM entities, including links between KDM entities and the elements of the InventoryModel, or
KDM entities and the regions of the physical artifacts of the existing software system that they represent.

11.2 Organization of the Source Package

NOTE:KDM14-229

The Source package consists of the following 6 class diagrams:
« InventoryModel

« Inventorylnheritances

58 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

e Inventoryltems
* InventoryRelations
» SourceRef
e ExtendedInventoryElements
The Source package depends on the following packages:
» Core

e kdm

11.3 InventoryModel Class Diagram

NOTE:KDM14-60, KDM14-229, KbM14-131

InventoryModel class diagram defines meta-model elements that represent the physical artifacts of the existing software
system. This model corresponds to the inventory of the artifacts. The InventoryModel class diagram follows the uniform
pattern for KDM model to extend the KDM Framework with specific meta-model elements. InventoryModel defines the
following meta-model elements determined by the KDM model pattern:

« InventoryModel class
e AbstractinventoryElement class
< AbstractinventoryRelationship class

The InventoryModel class diagram defines meta-model elements to represent several important categories of artifacts
according to their functional role in software systems. Software artifacts are local or network resources, identifiable by
URI resources. These meta-model elements are subclasses of the common parent class Inventoryltem. The Inventory
model also provides a generic KDM container called InventoryContainer and two specific containers: Directory and
Project.

The classes and associations of the InventoryModel are shown in Figure 11.1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 59

Irrw iy N o | —— A i i i T T A

Inuber iy iy =ireem iorp s ler n
| St BS crwernisd ki |

rirvearicryElnrmand
D507 (e B OE Mva)

A frav ploveanapERmens
o I
1ireenizryElren]
[wisns eis swresiEereni|
Inventoryl onlaimar
-n..'r.T.'\l
Irrranlarglem
s P e pbAE i R TET
pain Diritpery
L (% 1
Twi’ prdh
Projact
———

Figure 11.1 - InventoryModel Class Diagram

11.3.1 InventoryModel Class

The InventoryModel is a specific KDM model that owns collections of facts related to the physical artifacts of the
existing software system. InventoryModel is a container for the instances of Inventoryltems. InventoryModel corresponds
to the inventory of the physical artifacts of the existing software system.

Superclass

KDMModel

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the inventory model.

Semantics

InventoryModel is a container for instances of inventory elements. The implementer shall arrange inventory elements into
one or more inventory models. KDM import tools shall not make any assumptions about the organization of inventory
items into inventory models.

11.3.2 AbstractinventoryElement Class (abstract)

NOTE:KDM14-60, KDM14-137, KDM14-58, KDM14-208, KDM14-247

The AbstractinventoryElement is the abstract parent class for all inventory entities.

60 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

KDMEntity

Associations

inventoryRelation:AbstractinventoryRelationship[0..*] ~ The set of inventory relations owned by the inventory
element.

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be
used as an extension point for defining new extended inventory entities.

11.3.3 AbstractinventoryRelationship Class (abstract)

NOTE:KDM14-58

The AbstractinventoryRelationship is the abstract parent class for all inventory relationships.
Superclass

KDMRelationship

Constraints

Semantics

From the meta-model perspective, this element is a common parent for all inventory relationships. This element is
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in
stereotype definitions. Inventory package provides a concrete class InventoryRelationship with under specified semantics,
which can be used as an extension point for defining new extended inventory relationships.

11.3.4 Inventoryltem Class (generic)

NOTE:KDM14-60, KDM14-131, KDM14-237, KDM14-249

Inventoryltem is a generic meta-model element that represents any artifact of an existing software system. This class is
further subclasses by several concrete meta-model elements with more precise semantics. However, Inventoryltem can be
used as an extended modeling element with a stereotype.

Superclass

AbstractinventoryElement

Attributes

version:String Provides the ability to track version or revision numbers.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 61

path:String URI reference of the resource.

format:String Optional description of the format of the Inventoryltem
md5:String Optional MD5 hash signature of the resource using the MD5 message-digest algorithm
Semantics

The implementer shall provide a mapping from concrete types of the physical artifacts involved in the engineering of an
existing software system into concrete subclasses of the Inventoryltem. The implementer shall map each artifact of the
existing software system to some instance of KDM Inventoryltem.

The format attribute describes the organization of the Inventoryltem. For SourceFile the value of format attribute is
assumed "text", and the structure is defined by the language attribute. Examples of format for various subclasses of

Inventoryltem are: "xml", "html", "json", "csv", "text", " mp3","css".

ms word", "coff", "java class", "jpeg",

Inventoryltems are identified by a URI reference. The semantics of the URI references in KDM is aligned with the W3C
XML specification, and IETF RFC 3986. Inventoryltem shall be identified by a relative URI reference that refers to a
resource by describing the difference within a hierarchical namespace between the reference context and the target URI.
The reference context for identification of Inventoryltem is provided by the hierarchy of Directory elements and their
“path” attributes. Inventoryltem that is not owned by any Directory element shall be identified by a full URI reference.
The full URI of an Inventoryltem that is owned by one or more Directory element in resolved in the context the URIs of
the directory hierarchy in the following way. For a given Directory item, the URI reference to an inventory item, owned
by this Directory directly or indirectly, is a sequence of strings, the first element of which is the URI reference of the
Directory, subsequent elements are the “path” attributes of the directory elements such that each directory element is
owned by the previous directory element and that last directory element owns the inventory item. The last component of
the full URI to the inventory item is the “path” attribute of the inventory item. The slash ("/") character shall be used to
delimit components that are significant to the hierarchical interpretation of a URI identifier. The “name” attributes of the
directory elements in the hierarchy as well as the “name” attribute of the inventory item itself are ignored in the process
of URI resolution. Any Project containers involved in this hierarchical structure are ignored.

Only the “path” attributes contribute to the determination of the full URI reference. The “name” attribute does not
contribute to the determination of the full URI reference. The “path” attribute conforms to the URI syntax, including
escaping rules, query components, etc. The “name” attribute provides the name of the Inventoryltem. In certain cases, the
name may be the same string as the last component of the path. The implementer shall use the “path” attribute for
identification of a resource, and shall provide appropriate “name” for the resource.

An optional MD5 hash signature can be computed for the content of the resource to provide ability to detect changes in
the content of the resource. The 128-bit (16-byte) hash value produced by the MD5 message-digest algorithm is
represented in text format as a string of exactly 32 characters [0-9a-fA-F] that correspond to the digits of the hexadecimal
number.

11.3.5 InventoryContainer Class (generic)
The InventoryContainer meta-model element provides a container for instances of Inventoryltem elements.

Superclass

AbstractinventoryElement

62 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the container.

Constraints

1. InventoryContainer should have at least one stereotype.

Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and
individual inventory items). InventoryContainer instances represent tree-like hierarchical structures in which the leaf
elements are individual Inventoryltem instances. Each InventoryContainer represents the entity set of Inventoryltems
owned by that container directly or indirectly.

11.3.6 Directory Class

NOTE:KDM14-131, KDM14-249

The Directory class represents directories as containers that own inventory items.

Superclass

InventoryContainer

Attributes

path:String URI reference of the directory

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in

file systems.

Directory elements are identified by a URI reference. The semantics of the URI references in KDM is aligned with the

W3C XML specification, and IETF RFC 3986. Directory element that is not owned by any other directory element (a root
directory element) shall be identified by a full URI reference. Hierarchical structure of directory elements determines the

URI reference for each owned directory element in the following way. The URI reference of a given directory element,

owned by some root directory element directly or indirectly, is a sequence of strings, the first element of which is the URI

reference of the root directory, subsequent elements are the “path” attributes of the directory elements such that each
directory element is owned by the previous directory element; the last component of the URI reference is the “path”

attribute of the directory element. The slash ("/") character shall be used to delimit components that are significant to the

hierarchical interpretation of a URI identifier. The “name” attributes of the directory elements in the hierarchy are
ignored in the process of URI resolution. Any Project containers involved in this hierarchical structure are ignored.

The implementer shall determine the appropriate root directory elements.

11.3.7 Project Class

NOTE:KDM14-131

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The Project meta-model element represents an arbitrary logical container for inventory items.
Superclass

InventoryContainer

Semantics

Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers. The Project
element does not contribute to the hierarchical resolution of the relative URI references of Inventoryltems

Example

NOTE:KDM14-15, KDM14-131, KDM14-249, KDM14-308

<?xm version="1.0" encodi ng="UTF-8""?>
<kdm Segnment xml ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: kdnme"ht t p: // www. ong. or g/ spec/ KDM 20160201/ kdnt'
xm ns: source="http://ww. ong. or g/ spec/ KDM 20160201/ sour ce" nane="Inventory Exanple">
<nodel xm:id="id.0" xm:type="source:lnventoryMdel">
<inventoryEl enent xm:id="id.1" xm:type="source: SourceFile" name="a.c"
path="file://local host/nyproject/abc/a.c">
<inventoryRelation xm:id="id.2" xm:type="source: DependsOn" to="id.5" from="id.1"/>
</invent oryEl enent >
<i nventoryEl ement xm:id="id.3" xnm:type="source: SourceFile" nane="b.c"
path="file://local host/nyproject/abc/b.c">
<inventoryRel ation xm:id="id.4" xm:type="source: DependsOn" to="id.5" from="id.3"/>
</i nvent oryEl ement >
<i nventoryEl ement xm:id="id.5" xm:type="source: SourceFile" nane="ab.h"
path="http://reliabl epartner.conicoll aboration/nyconpany/ nmyproject/abc/ab. h"/>
<i nventoryEl ement xm:id="id.6" xni:type="source:Directory" name="shared"
path="file://local host/nyproject/shared">
<inventoryEl enent xm:id="id.7" xm:type="source:Directory" name="inages"
pat h="i mages" >
<i nventoryEl ement xm:id="id.8" xm:type="source:lmge" name="ingl" path="ingl.jpg"/>
<i nventoryEl ement xmi:id="id.9" xm:type="source:lnmage" name="ing2.jpg" path="ing2.jpg"/>
</i nvent or yEl enent >
</inventoryEl ement >
<inventoryEl ement xm :id="id.10" xm:type="source: SourceFile" name="nmakefile"
path="file://local host/nyproject/build/ makefile"/>
<i nventoryEl ement xmi:id="id.11" xm:type="source: Executabl eFile" nanme="ab. exe"
path="file://1 ocal host/ nyproject/deliverabl es/ ab. exe">
</ nodel >
</ kdm Segnent >

11.4 Inventorylnheritances Class Diagram

Inventorylnheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.

64 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

HE ook Dy R il s dis
LB el Fasctd]
I iy ol | Audvs D wedon y Ehvrra ol et Pl - -

Figure 11.2 - Inventorylnheritances Class Diagram

11.5 Inventoryltems Class Diagram

NOTE:KDM14-229, KDM14-60, KbM14-131

Inventoryltems class diagram is determined by the KDM model pattern. This diagram defines how the classes of the
InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.3.

I i m
o - L
npalh -
o wiormd
et - Saring
SaurcaFie
imnpumge SEing
ancoding | SEng
DariaFile
ez | Do eret it

AusioFile | [imegaFin

Figure 11.3 - Inventoryltems Class Diagram

11.5.1 SourceFile Class

Eiwkl

LinkakdeFike

ObHeIFil

CosfigFile

Exsirinbie File

LitwaryFik

NOTE:KDM14-229, KDM14-60

The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of
KDM whose purpose is to provide links between code elements and their physical implementations using the

SourceRegion mechanism from the Source package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 65

Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM
specification explicitly defines semantics of source files.

Superclass

Inventoryltem

Attributes

language:String Indicates the language of the source file.

encoding:String An optional attribute that represents the encoding of the characters in the file.
Semantics

The SourceFile element represents source files that determine the structure and the behavior of software systems. A
source file usually has plain text format. The logical organization of a source file is usually determined by a certain
language, such a a programming language, a data definition language, etc. KDM models outside of the Infrastructure
layer provide viewpoint languages to describe the common elements of software systems and provide references to the
corresponding source files.

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

KDM tools may use the information from the artifacts of the existing software system, accessible through the
SourceRegion mechanism. It is recognized that different charactersets and character encoding schemas are used around
the world, and it may be desired for KDM processors to read code snippets from the files that use them.

Specification of character encoding is aligned with the XML specification from W3C. Each artifact of an existing system
may use a different encoding for its characters. The default encoding for SourceFile is “UTF-8.” Encodings other that
UTF-8 should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding label.
For example, “UTF-16,” “ISO-10646-UCS-2,” “ISO-8859-2,” “1SO-2022-JP,” “Shift_JIS,” and “EUC-JP,” etc. Encoding
of the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information
in the source file, through the mechanism of the SourceRegion. KDM tools shall at a minimum support UTF-8.

11.5.2 Model Class

NOTE:KDM14-60

Model element represents various model artifacts that are related to the software system.

Superclass

Inventoryltem

66 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

Model element represents various model artifacts that are related to the software system. The format of a document can be
plain text, structured text, such as xml, or one of the many binary formats. A Model element complements SourceFile,
because it determine the structure and behavior of the software system in an indirect way, by determining the structure and
behavior of the source files through the techniques known as model-based engineering.

11.5.3 Document Class

NOTE:KDM14-60

Document element represents various textual documents that are related to the software system.

Superclass

Inventoryltem

Semantics

Document element represents various textual documents that are related to the software system. The format of a document
can be plain text, formatted text, where style information is included, or one of the many binary formats, in which some
portions must be interpreted as binary objects (encoded integers, real numbers, images, etc.). A Document is different from
a SourceFile, because it does not determine the structure and behavior of the software system (but may describe it).
Document element can be used to represent an arbitrary information item related to the system. Other model element can be
linked to particular Document element using traceability links.

11.5.4 ImageFile Class

NOTE:KDM14-60

ImageFile element represents visual images, such as still graphical images, animated images or video.

Superclass

Inventoryltem

Semantics

ImageFile element represents visual images that combine shapes and color to inform, illustrate, entertain, or to guide viewers
to particular information. ImageFile can be used to create a graphical interface for the user of a software system. ImageFile can
be content of the software system, or part of the related documentation. Graphical images, animated images and video are
elements of multimedia technology. A rich multimedia resource that combines video and audio shall be represented as an
Instance of ImageFile. An ImageFile requires certain capability to render.

11.5.5 AudioFile Class

NOTE:KDM14-60

AudioFile element element represents resources related to audio content form.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 67

Superclass

Inventoryltem

Semantics

AudioFile element represents resources related to audio content form, for example, digital recording or generation of sound
waves such as voice, singing, instrumental music or sound effects. AudioFile can be used to create the user interface of a
software system, or as part of its content. Audio is an element of multimedia technology. AudioFile requires certain capability
to produce sound.

11.5.6 DataFile Class

NOTE:KDM14-60

DataFile element represents variety of plain text or binary files that are used as input to some elements of a software
system.

Superclass
Inventoryltem

Semantics

DataFile element represents variety of plain text or binary files that are used as input to some elements of a software system
during the runtime phase. Data files may include csv files, Excel spreadsheets, database files, xml files, json files, etc. DataFile
is often similar to a ConfigFile. KDM implementation shall select appropriate element based on its role in the system.

11.5.7 Service Class

NOTE:KDM14-60

Service element represents a network resource that exposes some operations.

Superclass

Inventoryltem

Semantics

Service element represents a network resource that exposes some operations, such as a Web service. For example, REST web
services provide a uniform set of stateless operations to manipulate a certain resource. A service may be described in machine-
processable format, such as WSDL, and may be registered to facilitate service discovery. Usually a service uses a certain

protocol to exchange data. In KDM models a Service resource can be a binding target for various platform resource elements.

11.5.8 ConfigFile Class

NOTE:KDM14-60

ConfigFile element represents various configuration files.

68 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

Inventoryltem

Semantics

ConfigFile element represents configuration files, such as property lists, initial settings for user applications, server processes,
operating system settings, or even simple databases. Configuration files often use plain text format, "us-ascii" character set,
and are line-oriented. Configuration files are usually used during compilation, linking or initialization phases of the lifecycle
of a software system. ConfigFile that is used during the runtime phase is similar to DataFile. For example, a simple database
can be also represented as a DataFile. KDM implementation shall select appropriate element based on its role in the system.

11.5.9 LinkableFile Class (generic)

NOTE:KDM14-60

LinkableFile element represents various forms of relocatable machine code that is usually not directly executable.
Superclass
Inventoryltem
Constraints
e 1. LinkableFile should have at least one Stereotype.

Semantics

A LinkableFile element represents various forms of relocatable machine code that is usually not directly executable.
LinkableFile is a generic element, which introduces an extension point for the light-weight extension mechanism. Concrete
subclasses of LinkableElement are ObjectFile and LibraryFile.

11.5.10 ObjectFile Class

NOTE:KDM14-60

ObjectFile element represents relocatable bytecode or machine code with additional metadata.

Superclass

LinkableFile

Semantics

An object file is a file containing relocatable machine code that is usually not directly executable. Usually object files are used
as input to the linker, which in turn typically generates an executable or library by combining parts of object files.

In addition object files may contain metadata used for linking or debugging, such as information to resolve symbolic cross-
references between different modules, relocation information, stack unwinding information, comments, program symbols,
debugging or profiling information.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 69

11.5.11 LibraryFile Class

NOTE:KDM14-60

LibraryFile element represents libraries of machine code or bytecode.

Superclass

LinkableFile

Semantics

A library is a collection of reusable bytecode or machine code with a well-defined interface. A static library allows access to
the code implemented by a library during the build of the invoking program. A shared or dynamic library can be accessed after
the executable has been invoked to be executed, either as part of the process of starting the execution, or in the middle of
execution.

Most compiled languages have a standard library and also allow create custom libraries. Most modern software systems
provide libraries that implement the majority of system services.

11.5.12 ExecutableFile Class

NOTE:KDM14-251

ExecutableFile element represents executable files (machine code or bytecode) for a particular platform.
Superclass
Inventoryltem

Semantics

ExecutableFile element represents executable files (machine code or bytecode) for a particular platform. ExecutableFile
element assumes some binary format. Scripts and other interpreted files with text format are usually represented by a
SourceFile element. Implementater shall select appropriate element based on its role in the system.

11.6 Traceability Class Diagram

NOTE:KDM14-69, KDM14-208

Traceability class diagram defines a set of meta-model elements whose purpose is to provide traceability links between
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class
diagram shown in Figure 11.4 captures these classes and their relations.

70 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A e e E b Tenl A L @ Db r ey EEe s
COiG |

SourcaRal [1 Trach

SowrceRegifea
sepoien |0

R giors
ML

Figure 11.4 - Traceability Class Diagram

11.6.1 SourceRef Class

NOTE:KDM14-58, KDM14-208, KDM14-253

The SourceRef class represents a traceability link between a particular model element and the corresponding source code.

Superclass

AnnotatableElement

Attributes
language: String (Optional attribute) - indicates the source language of the snippet attribute.
snippet:String (Optional attribute) - The source snippet for the given KDM element. The snippet may

have some internal structure, for example XML tags corresponding to an abstract syntax
tree of the code fragment. The interpretation of code snippets is outside the scope of the
KDM.

Associations

region: Region[0..*] (Optional attribute) - A list of Region elements that provide further details related to the
physical representation of the element.

Constraints
1. Language indicator has to be provided using at least one of the following methods:

« As the attribute of the SourceRef element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 71

« As the attribute of the SourceRegion element.
« As the attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.

2. If both the snippet and the language attributes of the SourceRef element are present, then the language attribute
should describe the nature of the code snippet, in which case the nature of the source code region accessible
through the SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not
present, then the language attribute of the SourceRef element overrides the language attribute of the SourceRegion
element, which in turn overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “source”
representation as part of a physical artifact of the existing software system. KDM element that defines a traceability link to its
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:
 Inlining the corresponding source code in the form of a “snippet” into KDM representation.
e Linking a KDM element to a region within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

e The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the URI reference of the artifact is determined through the Inventory Model.

< The link can be made stand-alone and explicitly specify the URI reference of the artifact as the “path” attribute of the
Region element.

KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the
primary one and other elements are considered secondary. Secondary traceability links may be used to represent
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or
target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language”
attributes, so that KDM tools can select the appropriate representation to display.

The implementer shall provide adequate traceability links.

11.6.2 Track Class

NOTE:KDM14-208

Track is part of the KDM's traceability mechanism.

Superclass

AbstractinventoryElement

Attributes

description:String Description of the nature of the traceability link

72 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

owner:KDMEntity[0..1] the logical origin element for the traceability link

Semantics

The Track element is the origin of the TraceableTo relations between arbitrary KDM elements. Since the Track element
and the TraceableTo relation are both defined as part of the InventoryModel, they can be added to any KDMEntity
element in any KDMModel. The Track element can be extended so that additional attributes can be added.

11.6.3 KDMEntity (additional properties)

NOTE:KDM14-208

Associations

source: SourceRef[0..] Link to the physical artifact of the element.

track:Track[0..*] origin of explicit traceability relations to other KDM entities

11.7 Regions Class Diagram

NOTE:KDM14-207, KDM14-255

The Regions class diagram defines a set of meta-model elements whose purpose is to provide detailed information
regarding the regions within the physical artifacts of that system. This detailed references may accompany traceability
links represented by the SourceRef element. The class diagram shown in Figure 11.5 captures these classes and their
relations.

AL S E T ear
o0 |

- . Inventaryftam
Rugeon — I i
o - :L
1 gk -
SeurcaRisgion BinaryRagien Rl b Mo gien
-
Figure 11.5 - Regions Class Diagram
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 73

11.7.1 Region Class (abstract)

NOTE:KDM14-207

The Region element is an abstract element that identifies a single region within a resource that is considered to be the
physical artifact of the corresponding KDM element.

Superclass

AnnotatableElement

Attributes
format:String (Optional attribute) - describes the organization of the physical artifact
path:String (Optional attribute) - full URI reference of the physical artifact that contains the given region

Associations

file:Inventoryltem[0..1] This association allows zero or more Region elements to be associated with a single
Inventoryltem element of the Inventory Model.

Constraints
1. The location of the source file should be provided using at least one of the following methods:

« Path attribute of the Region element

« Path attribute of the referenced Inventoryltem element of the Inventory model

Semantics

The Region element identifies a single region within some physical artifact of the corresponding KDM element. The
concrete subclasses of the Region element provide the capability to precisely map model elements to a particular region
of source that can be text, binary, or any other format.

The “format” attribute describes the organization of the artifact. The format attribute has the same semantic as the format
attribute of Inventoryltem. The exact nature of the artifacts is described either in the format attribute (from abstract
Region class), or in the format attribute of the Inventoryltem. The format attribute in Region takes precedence over the
format attribute in Inventoryltem. Individual SourceRef elements may own multiple Region elements that represent a
situation where there are multiple disjoint regions that correspond to the given KDM element. These regions may have
different format.

A KDM element can be linked to the corresponding particular physical artifact (regardless of the existence of the
corresponding snippet) in the following two ways:

e The Region element can utilize the element of the KDM inventory model to identify the particular physical artifact, in
which case the URI reference of the artifact is determined through the Inventory Model. Subclasses of Region may
refer to specific subclass of Inventoryltem.

< The Region element can be made stand-alone and explicitly specify the URI reference of the artifact as the “path”
attribute of the Region element.

74 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The path attribute is the URI reference that should uniquely identify the physical artifact.

11.7.2 SourceRegion Class

NOTE:KDM14-207, KDM14-166, KDM14-257

The SourceRegion element identifies a single region within some Inventoryltem that is the physical representation of the
corresponding KDM element The SourceRegion element provides the capability to precisely map model elements to a
particular region of source code in text format. The nature of the source code within the physical artifact is indicated by
the language attribute of the SourceRegion element or the language attribute of the SourceFile element. The language
attribute of the SourceRegion element overrides that of the SourceFile element if both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass
Region
Attributes
startLine: Integer The line number of the first character of the source region.
startPosition:Integer Provides the position of the first character of the source region.
endLine:Integer The line number of the last character of the source region.
endPosition:Integer The position of the last character of the source region.
language:String (Optional attribute) - The language indicator of the source code for the given source

region.

Constraints
1. The file attribute of the SourceRegion element shall refer to an Inventoryltem with text format
Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

11.7.3 BinaryRegion Class

NOTE:KDM14-207, KDM14-239

The BinaryRegion element identifies a single region within some Inventoryltem that has binary format.

Superclass

Region

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 75

Attributes

startAddr: Integer The address of the first byte of the binary region.
endAddr:Integer The address of the last byte of the binary region.
Semantics

The BinaryRegion element identifies a single region within some Inventoryltem that has binary format. The exact nature
of the format is described either in the format attribute (from abstract Region class), or in the format attribute of the
Inventoryltem. The format attribute in BinaryRegion takes precedence over the format attribute in Inventoryltem.

Specification of a BinaryRegion assumes that the corresponding resource is a sequence of bytes, where each byte has 8-
bit size, representable as an octet. Addresses in a BinaryRegion are represented as non-negative integers. The address of
the first byte in a binary resource is 0. For example, an address that may be displayed as a C-like string "0x00AQ" is
represented as an integer 160.

11.7.4 ReferenceableRegion Class

NOTE:KDM14-207

The ReferenceableRegion element identifies a single element within some Inventoryltem using a custom reference.
Superclass
Region

Attributes

ref: String The reference to the element.

Semantics

The ReferenceableRegion element identifies a single element within some Inventoryltem. The exact nature of the format
is described in the format attribute (from abstract Region class), or in the format attribute of the Inventoryltem. The
format attribute in ReferenceableRegion takes precedence over the format attribute in Inventoryltem. The semantics of the
reference is outside of the scope of KDM. The implementer shall provide appropriate reference.

11.8 InventoryRelations Class Diagram

NOTE:KDM14-69, KDM14-208, KDM14-231

InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes
and associations for this diagram are shown in Figure 11.6.

76 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

o sy i Dl O T A VR A

Dependson TracoaleTe

1 S D0 el

Lot bR S s LS Filratel) |nuprenty csiound]

— _—
1 Al frac fioranforplaomes | Trisch MR iy |
T +i8 [T i |

i e

. [redefiras i R .
rechadinan o reciaiinan. from] + aoiafiran i)

Figure 11.6 - InventoryRelations Class Diagram

11.8.1 DependsOn Class

NOTE:KDM14-69

DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which
one inventory element requires another inventory element during one or more steps of the engineering process.

Superclass

AbstractinventoryRelationship

Associations

from:AbstractinventoryElement[1] the base inventory item

to:AbstractinventoryElement[1] another inventory item on which the base item depends

Constraints

1. An inventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. The implementer may capture certain aspects knowledge of the engineering
process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of the
Infrastructure Layer, which is available to all KDM implementations at various compliance levels. KDM Build package
that constitutes a separate L1.Build compliance point, defines additional meta-model elements that represent the facts
involved in the build process of the software system (including but not limited to the engineering transformations of the
“source code” to “executables”).

When the origin of the DependsOn relationship is an Inventory container, this means that all elements owned by this
container (directly or indirectly) depend on the target of the relationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 77

When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

11.8.2 TraceableTo Class

NOTE:KDM14-69, KDM14-208

TraceableTo class is a meta-model element that represents an optional relationship between any KDMEntity and an
Inventoryltem. This relationship represents situations where the KDMEntity is traceable to the inventory element during
one or more steps of the engineering process. For example, a Module element in the CodeModel can be traceable to a
certain SourceFile.

Superclass

AbstractinventoryRelationship

Associations

from:Track[1] The Track element that is owned by some KDMEntity

to:KDMEntity[1] another KDMEntity to which the owner of the Track element is traceable to

Constraints

1. A KDMEntity should not be traceable to itself.

Semantics

The TraceableTo relationship is optional. The implementer may capture certain aspects of the knowledge extraction
process or engineering process in the form of “TraceableTo” relations to inventory items. “TraceableTo” relationship is
part of the Infrastructure Layer, which is available to all KDM implementations at various compliance levels.
"TraceableTo" relation is related to the SourceRef mechanism that is also provided by the InventoryModel. However, in
contrast to the SourceRef mechanism, the "TraceableTo" relation is an explicit relation between any KDMEntity (through
the owned Track element) and some other KDMEntity, including an Inventoryltem.

KDM Build package that constitutes a separate L1.Build compliance point, defines additional meta-model elements that
represent the facts involved in the build process of the software system, including but not limited to the engineering
transformations of the “source code” to “executables”.

11.9 ExtendedInventoryElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedinventoryElements class diagram defines two viewpoint-specific generic elements for the inventory model
as determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and
associations of the ExtendedInventoryElements diagram are shown in Figure 11.7.

78 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AL i D O e T D i

gl

srvaT
1=z
i ran] By i

A sz fracinweenionplamans I pnbior y Fow Ll boris hogs

[mebasm oo tmubmeain inSound

ImwanlaryERmen

Figure 11.7 - ExtendedInventoryElements Class Diagram

11.9.1 InventoryElement Class (generic)

NOTE:KDM14-58

The InventoryElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractinventoryElement
Constraints

1. InventoryElement should have at least one stereotype.

Semantics

An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the inventory model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.9.2 InventoryRelationship Class (generic)

NOTE:KDM14-58

The InventoryRelationship class is a generic meta-model element that can be used to define new extended inventory
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractinventoryRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 79

Associations

from:AbstractinventoryElement[1] the inventory element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. InventoryRelationship should have at least one stereotype.
Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the inventory model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

80 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart Il - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming languages.

Packages of the Program Elements Layer define an architecture viewpoint for the Code domain.

e Concerns:

What are the computational elements of the system?

What are the modules of the system?

What is the low-level organization of the computational elements?
What are the datatypes used by the computational elements?
What are the units of behavior of the system?

What are the low-level relationships between the code elements, in particular what are the control-flow and data-
flow relationships ?

What are the important non-computational elements?

How are computational elements and modules related to the physical artifacts of the system?

« Viewpoint language:

Code views conform to KDM XMI schema. The viewpoint language for the Code architectural viewpoint is
defined by the Code and Action packages. It includes several abstract entities, such as AbstractCodeElement and
Codeltem, several generic entities, such as Datatype, ComputationalObject and Module, as well as several
concrete entities, such as StorableUnit, CallableUnit, CompilationUnit, and ActionElement. The viewpoint
language for the Code architectural viewpoint also includes several relationships, which are subclasses of
AbstractCodeRelationship and AbstractActionRelationship.

e Analytic methods:

The Code architectural viewpoint supports the following main kinds of checking:

Composition (for example, what code elements are owned by a CompilationUnit, SharedUnit, or a
CodeAssembly; what action elements are owned by a CallableUnit)?

Data flow (for example, what action elements read from a given StorableUnit; what action elements write to a
given StorableUnit; what action elements create dynamic instances of a given Datatype; what action elements
address a particular StorableUnit; what data element are being read as actual parameters in a call)?

Control flow (for example, what CallableUnit is used in a call; what action element is executed after the given
action element; what action elements are executed before the given action element; what data element is used to
dispatch control flow from a given action element; what action element is executed after the given element under
what conditions; what is the exceptional flow of control; what action elements are executed as entry points to a
given module or a CallableUnit)?

Datatypes (for example, what is the datatype of the given storable unit; what is the base datatype of the given
pointer type; what is the base datatype of the given element of the record type; what is the signature of the given
CallableUnit)?

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 81

Other kinds of checking are related to the interfaces, templates, and pre-processor. All relationships defined in the Code
model are non-transitive. Additional computations are required to derive, for example, all action elements that can be
executed after the given action element, or all CallableUnits that a given action element can dispatch control to.

The KDM mechanism of aggregated relationship is used to derive relationships between KDM elements that own or
reference various Code elements (usually, Module and CodeAssembly) based on the low-level relationship between
individual Code elements.

¢ Construction methods:

e Code views that correspond to the KDM Code architectural viewpoint are usually constructed by parser-like
tools that take artifacts of the system as the input and produce one or mode Code views as output.

e Construction of the Code view is determined by the syntax and semantics of the programming language of the
corresponding artifact, and is based on the mapping from the given programming language to KDM; such
mapping is specific only to the programming language and not to a specific software system.

e The mapping from a particular programming language to KDM may produce additional information (system-
specific, or programming language-specific, or extractor tool-specific). This information can be attached to
KDM elements using stereotypes, attributes, or annotations.

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:

¢ Code
* Action

Code package defines Codeltems (named elements determined by the programming language, the so-called “symbols,”
“definitions,” etc.) and structural relations between them. Codeltems are further categorized into ComputationalObject,
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which
detemine the control- and data- flows between code items.

Description of the Code package is further subdivided into the following parts:

¢ Code Elements representing Modules

* Code Elements representing Computational Objects
e Code Elements representing Datatypes

e Code Elements representing Preprocessor Directives
* Miscellaneous Code Elements

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex user-
defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym type).
KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

82 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):
e suffix “Element” - usually designates a generic meta-model element.
e suffix “Type” - designates a meta-model element representing some datatype.

« suffix “Unit” - designates a concrete meta-model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 83

84

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12

Code Package

General Information

12.1 Overview

The Code package defines a set of meta-model elements whose purpose is to represent implementation level program
elements and their associations. It is determined by one or more programming languages used in the design of the given
existing software system. Code package includes meta-model elements, which represent common program elements
supported by various programming languages, such as data types, data items, classes, procedures, macros, prototypes, and
templates.

As a general rule, in a given KDM instance, each instance of the code meta-model element represents some programming
language construct, determined by the programming language of the existing software system. Each instance of a code
meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software
system. Exceptions to this rule are:

instances of the CodeModel meta-model element that are parts of the KDM infrastructure. This meta-model element is
a container for other code element instances.

instances of code element that explicitly represent certain abstractions provided by a programming language, such as
primitive datatypes and predefined datatypes.

12.2 Organization of the Code Package

NOTE:KDM14-225

The Code package consists of the following 25 class diagrams:

1.
2.

8.
9.

CodeModel

Codelnheritances

. Modules

. ControlElements
. DataElements

. Values

. Datatypes

PrimitiveTypes

Enumerated Types

10.CompositeTypes

11.DerivedTypes

12.Signature

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 85

13.DefinedTypes
14.ClassTypes
15.Templates
16.TemplateRelations
17.ClassRelations
18.TypeRelations
19.InterfaceRelations
20.PreprocessorDirectives
21.PreprocessorRelations
22.Comment
23.Visibility
24 VisibilityRelations
25.ExtendedCodeElements
The Code package depends on the following packages:

e Source
e Core
e kdm

12.3 CodeModel Class Diagram

NOTE:KDM14-81

The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to implementation-level program elements and their associations.

The CodeModel diagram defines the following classes determined by the KDM model pattern:

e CodeModel - a class representing a model for CodeElement.

« AbstractCodeElement — a class representing an abstract parent class for all KDM entities that can be used to model
code.

« AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program
elements:

* Codeltem
e ComputationalObject
e Datatype

86 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

e Module
e PreprocessorDirective

The class diagram shown in Figure 12.1 captures these classes and their relations. Classes Module and
PreprocessorDirective are defined in separate sections.

C ot Mode] -
X
ke maeial AAE A TE e TR S D
s ode gl
{nutans enedTelion
aiie Emmend
subma by rarecE ey U7
A DR LT O ST
1
[i= T
L :|', ':._Hﬂ
Datacype Compulatienakiect "1 Moule

Figure 12.1 - CodeModel Class Diagram

12.3.1 CodeModel Class

The CodeModel is the specific KDM model that owns collections of facts about the existing software system such that
these facts correspond to the Code domain. CodeModel is the only model of the Program Elements Layer of KDM.
CodeModel follows the uniform pattern for KDM models.

Superclass
KDMModel
Associations
codeElement:AbstractCodeElement[0..*] {ordered} The set of the top-level elements that are defined in this code model.
The CodeModel element is the owner of such CodeElement. This

property subsets the ownedElement property of KDMModel
derived union.

Semantics

CodeModel is a container for code elements. The implementer shall arrange code elements into one or more code models.
KDM import tools should not make any assumptions about the organization of code elements into code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 87

12.3.2 AbstractCodeElement Class (abstract)

NOTE:KDM14-74, KDM14-81, KDM14-208

The AbstractCodeElement is an abstract class representing any generic determined by a programming language. The key
subclasses of AbstractCodeElement are Codeltem and ActionElement.

Superclass

KDMEntity

Associations

codeRelation:CodeRelation[0..*] The set of code relations owned by this code element.

Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the
Code model.

12.3.3 AbstractCodeRelationship Class (abstract)

The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language.
Superclass

KDMRelationship

Semantics

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Code
model.

12.3.4 Codeltem Class (abstract)

Codeltem class represents the named elements determined by the programming language (the so-called “symbols,”
“definitions,” etc.). There are AbstractCodeElements that are not Codeltems, for example ActionElements that are defined
in the Action package.

Superclass

AbstractCodeElement

Semantics

Codeltem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.

12.3.5 ComputationalObject Class (generic)

NOTE:KDM14-58

88 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ComputationalObject class represents the named elements determined by the programming language, which describe
certain computational objects at the runtime, for example, procedures, and variables.

Superclass
Codeltem
Constraints
1. Instance of the ComputationalObject element should have at least one stereotype.
Semantics

ComputationalObject is a generic element with under specified semantics that can be used as an extension point to define
new extended meta-model elements that represent specific named control elements or data elements that do not fit into
semantic categories of the concrete subclasses of ComputationalObject.

12.3.6 Datatype Class (generic)

NOTE:KDM14-58, KDM14-81

Datatype class represents the named elements determined by the programming language that describes datatypes. The key
subclasses of Datatype are: PrimitiveType, EnumeratedType, CompositeType, DerivedType, Signature, DefinedType,
ClassUnit, InterfaceUnit, TemplateElement.

Superclass
Codeltem
Constraints
1.Instance of the Datatype element should have at least one stereotype.
Semantics

Datatype is a generic element with under-specified semantics that can be used as an extension point to define new
extended meta-model elements that represent specific named datatypes that do not fit into semantic categories of the
concrete subclasses of Datatype.

12.4 Codelnheritances Class Diagram

NOTE:KDM14-208

The Codelnheritances class diagram defines how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.2 captures these relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 89

HOER e Do Mg
jeana)

L oot HOERENy

[

C it Wb | AbatraciCoode b iearam Adwirac i aoe e drianyin

Figure 12.2 - Codelnheritances Class Diagram

Code Elements Representing Modules

12.5 Modules Class Diagram

The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages,
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these
classes and their associations.

ETATHS
[mls owree|

Hoduie sindel e

Adurirac it oo e

Languagaling |~ i W e |nulrknts swredEkee= | ok pd
; .

Coonmipika ol it F
Ay Packape
[LY
[

I Cooeha B g ivi By
Sharedini

| Figure 12.3 - Modules Class Diagram

12.5.1 Module Class (generic)

| NOTE:KDM14-23

The Module class is a generic KDM modeling element that represents an entire software module or a component, as
determined by the programming language and the software development environment. A module is a discrete and
identifiable program unit that contains other program elements and may be used as a logical component of the software
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and
the implementation. In the context of representing existing software systems, modules provide the context for establishing

| 90 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

the associations between the programming language elements that are owned by them, especially when the same logical
component of a software product line is compiled multiple times with different compilation options and linked into
multiple executables. Instances of the Module class represent the logical containers for program elements determined by
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.
Superclass

Codeltem

Associations

codeElement:AbstractCodeElement[0..*] {ordered} The list of owned CodeElement

Constraints

1. Module class and its subclasses should not own SourceRef elements.

2. Code Model cannot directly own any code elements other than the subclasses of the Module class.

3. Every code element should be owned by some instance of the Module class or its subclasses.

4. Instance of the Module element should have at least one stereotype.

5. No other code element should own Module elements and its subclasses.

6. If Module directly owns ActionElement, then the Module shall own EntryFlow to the logically first ActionElement
Semantics

Module is a logical container for program elements. Subclasses of Module element define semantically distinct flavors of
Module, representing common categories of containers.

The implementer shall select an appropriate subclass of the Module element.

12.5.2 CompilationUnit Class

NOTE:KDM14-23. KDM14-26, KDM14-249

The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A
compilation unit is a logical part of the existing software system that is sufficiently complete to be processed by the
corresponding software development environment. Compilation unit is usually related to some artifact of the existing
software system, for example, a physical source file. Compilation units are supported by the selected programming
languages of the existing software system and as determined by the corresponding engineering process.

Superclass

Module

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 91

Constraints

1. When CompilationUnit owns one or more initialization BlockUnit, the CompilationUnit shall own EntryFlow
relation to the logically first initialization block

Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a
SourceFile in the InventoryModel. Implementer shall determine appropriate name of the CompilationUnit. This name may
or may not be the same as the name of the corresponding SourceFile, if one is available. On the other hand, the “path” of
SourceFile element of the InventoryModel shall include all "extensions", etc. The path attribute shall uniquely identify the
SourceFile in the filesystem, described by the InventoryModel.

CompilationUnit may own initialization blocks. The EntryFlow relation shall refer to the logically first initialization
block. Semantics of initialization blocks is described in section “BlockUnit Class”

Example

See example in section “HasValue Class”

12.5.3 SharedUnit Class

The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected
programming languages of the existing software system and as determined by the engineering process.

Superclass

Module

Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.

12.5.4 LanguageUnit Class

The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements
determined by a particular programming language.

Superclass

Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is a logical container that owns definitions of primitive and predefined datatypes for a particular language,
as well as other common elements for a particular programming language. LanguageUnit may or may not correspond to a
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. The
implementer shall add such files to the InventoryModel. Primitive datatypes usually do not have any corresponding files,
in this situation the LanguageUnit does not have a counterpart in the InventoryModel.

92 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.5.5 CodeAssembly Class

NOTE:KDM14-23

The CodeAssembly represents a logical container for the program elements that were built together (for example,
compiled and linked into an executable, so that all variant selection during the compilation and static linking was resolved
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. A source file may
produce a different logical model when, for example, compiled and linked for a different hardware platform, or for a
different operating system. The CodeAssembly represents a collection of entities that have been analyzed together. A
different variant of the conceptual family of software systems (even involving same compilation units) may need to be
cloned into a separate CodeAssembly.

Superclass
Module
Semantics

CodeAssembly is a logical container that provides the context for entities and relationships for a collection of program
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

The EntryFlow relation shall refer to the logically first initialization block, which is usually the "master" initialization
block that refers to initialization of owned CompilationUnit in correct order and then refer to the entry point of the
CodeAssembly, for example, "main”. Semantics of initialization blocks is described in section “BlockUnit Class”.

Example

See example in section “HasValue Class”.

12.5.6 Package Class

The Package class is a subtype for Module that logical collections of program elements, as directly supported by some
programming languages, such as Java.

Superclass

Module

Semantics

A Package is a logical container for program elements as well as Modules. Packages can be nested.

Code Elements Representing Computational Objects

12.6 ControlElements Class Diagram

NOTE:KDM14-64, KDM14-306

The ControlElements class diagram defines basic meta-model elements to represent callable computational objects, such
as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 93

™
/ K
*,

CakahisLing
ward | Calabest
a8 Bt | B

S+ R ITPr B
Callabiakind

o b Pl
reguly
e
MRl

T

El;r'ng._n:]',-pr""

-t

- | Datatype

— AbrtractCodvEsemant

N N e
[nbupin ownas| +

i

yusbass rawned MTEET, o Sered]

",

Y

Mithodlni

T T —
ipxpor - Exporike
vl inal E

s Sinle -
1o
rmlbwiraci

Figure 12.4 - ControlElements Class Diagram

12.6.1 ControlElement Class (generic)

L R TR
et K irad

Tl Fua]
Copl 1
hirdi et 154
OpEi e
Jer—

alE R R
Exporikind
(LT3

ke

s b

i r—

NOTE:KDM14-192,

KDM14-58

The ControlElement class is a common superclass that defines attributes for callable code elements. In the meta-model it
has the role of an endpoint for some KDM relations.

Superclass

ComputationalObject

Attributes and Associations

type:Datatype|0..1]

codeElement:AbstractCodeElement[0..*] {ordered}

Operations

getSignature():Signature[0..1]

getReturnType():Datatype[0..1]

Constraints

Optional association to the datatype of this control element

Represents owned code elements, such as local definitions and

actions.

Signature of the current ControlElement

Return Datatype of the current ControlElement.

1. ControlElement should have at least one stereotype.

94

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

2. ControlElement should own a Signature.
3. The Signature retrned by the getSignature operation isthe Signature owned by the ControlElement

4. 4. The DataType returned by the getReturnType operation is the Datatype of theParameterUnit owned by the
Signature of the current ControlElement, where the ParameterKind of the ParameterUnit is "return"

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new
extended meta-model elements that represent specific named control constructs that do not fit into semantic categories of
the concrete subclasses of ControlElement.

ControlElement represents named items of the software system that describe certain behavior that can be performed by
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units
and high-level programming languages.

ControlElement owns other program elements, which can include nested ControlElements.

12.6.2 CallableUnit Class

NOTE:KDM14-64

The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

ControlElement

Attributes
kind:CallableKind indicator of the kind of the callable unit
isStatic:Boolean indicates that the element is declared as “static” (is visible only
in the owner CompilationUnit)
Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. This is a
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the
invocation stack.

A CallableUnit represents global or local procedures and functions.

12.6.3 CallableKind Data Type (enumeration)

CallableKind enumerated data type specifies some common properties of the CallableUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 95

Literal values

regular
external
operator
stored

unknown

specifies a regular definition of a procedure or function

specifies an external procedure (a prototype, definition is elsewhere)
specifies a definition of an operator

specifies a stored procedure in DataModel

properties are unknown

12.6.4 MethodUnit Class

NOTE:KDM14-64, KDM14-66

The MethodUnit represents member functions owned by a ClassUnit.

Superclass

ControlElement

Attributes

kind:MethodKind
export: ExportKind
isFinal:Boolean

isStatic:Boolean

isVirtual:Boolean

isAbstract:Boolean

Semantics

indicator of the kind of the method represented by this element
represents the visibility of the method (public, private, protected)
indicates that the method may not be redefined in a subtype

indicates that the method characterizes the ClassUnit (true) or individual
instances (false)

indicates that the method is declared as virtual

indicates that the method is declared as abstract or is the part of an interface

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and

destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly

(by reference).

12.6.5 MethodKind data type (enumeration)

NOTE:KDM14-64

96

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model
element.

Literal Values

method The MethodUnit represents a regular member function.
constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

unknown The kind of the MethodUnit is none of the above.

12.6.6 ExportKind data type (enumeration)

NOTE:KDM14-64, KDM14-221

ExportKind enumeration data type defines several common properties of a MemberUnit, MethodUnit or entire ClassUnit
related to their visibility and other properties.

Literal values

public specifies a public member, method or class
private specifies private member, method or class
protected specifies a protected member, method or class
unknown properties are unknown

Example (C language)

NOTE:KDM14-15, KDM14-308

int min(int argc, char* argv
pr(i ntf("Hello, W)rld\gn'[)];) ¢

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segrent xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdme"htt p: // www. ong. or g/ spec/ KDM 20160201/ kdnt'
xm ns: source="http://ww. ong. or g/ spec/ KDM 20160201/ sour ce"
~ name="Hel | oWr| d Exanple">
<nmodel xmi:id="id.0" xm:type="code: CodeMbdel " nane="Hel | oWor| d">
<codeEl ement xmi:id="id.1" xm:type="code: Conpil ationUnit" name="hello.c">
<codeEl ement xmi:id="id.2" xm:type="code: Cal | abl eUnit"
~ name="mai n" type="id.5" kind="regular">
<source xmi:id="id.3" |anguage="C' snippet="int main(int argc, char* argv[]) {}"/>
<entryFlow xm :id="id, 4" to="id.12" fron¥"id.2"/>)
<codeEl ement xmi rid="id.5" xnmi:type="code: Si gnature" name="nain">
<source xm:id="id.6" sni p[;etz'l nt main(int argc, char * ar v;]) ">
<paranmeterUnit xm:id="id. 7" nane="argc" type="id.25" pos="1"/>
<paraneterUnit xm:id="id.8" nane="argv" type="id.9" pos="2">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 97

<codeEl enent xmi:id="id. 9" xm:type="code: ArrayType">
<itenmUnit xm:id="id.10" type="i1d.19"/>
</ codeEl enent >
</paranmeterUnit>)))
<paraneterUnit xm:id="id.11" type="id.25" kind="return"/>
</ codeEl enent>)))))
<codeEl ement. xm :id="id. 12" xm :type="action: Acti onEl enent" name="al" kind="Call">
<source xmi:id="id. 13" |anguage="C" snippet="printf(&yuot;Hello, World!\n");"/>
<codeEl ement xm :id="id.14" xm :type="code: Val ue"
nane="" ; Hel | o, Worl d!\ n" ;" type="id.19"/>))
<actionRel ation xm :id="id. 15" xm :type="action: Reads" to="id. 14" fron"id.12"/>
<actionRel ation xm :id="id. 16" xm:type="action:Calls" to="id.20" from="id.12"/>
<actionRel ation xm :id="id. 17" xm :type="action: ConpliesTo"
to="id.20" froms"id.12"/>
</ codeEl enent >
</ codeEl enment >
</ codeEl enent>)))
<codeEl ement xm :id="id, 18" xm :type="code: LanguageUnit">"

<codeEl ement xm :id="id. 19" xm :type="code: Stri ngTy[)Jej' name="char *"/>)
<codeEl ement xm :id="id, 20" xm :type="code: Cal | abl eUnit" nanme="printf" type="id.21">
<codeEl ement xmi 1id="id.21" xni:type="code: Signature" name="printf">
<paranmeterUnit xm:id="id. 22" nane="" type="id.25" kind="return" pos="0"/>
<paraneterUnit xmi:id="id.23" name="format" type="id. 19" pos="1"/>
<paraneterUnit xm:id="id.24" nane="argunments" kind="variadic" pos="2"/>

</ codeEl enent >
</ codeEl enent>)))
<codeEl ement xm:id="id.25" xm:type="code: |ntegerType" name="int"/>
</ codeEl enent >
</ nmodel >))
<nodel xmi:id="id.26" xm:type="source:lnventoryhMdel " name="HelloWrld">
<i nventoryEl enent xmi:id="1d.27" xm:type="source: SourceFil e"
nane="hel | 0. ¢" | anguage="C"'/ >
</ model >

</ kdm Segnent >

12.7 DataElements Class Diagram

NOTE:KDM14-64, KDM14-306

The DataElements class diagram defines meta-model constructs to represent the named data items of existing software

systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5
shows these classes and their associations.

98

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

G piratonal b c

Tipe

DataElemert 0. Datatype
wpal - d
"l . e nr
" | LD N AT |
'1" -INEE*" :l‘
- Esbamm maenedt mes;
b5 - - e
i \ . -
.-'". \" H"‘--\. ---"‘-\-\..
y " T, T
i | ."' H"-\. -,
/ X
L - Parartater e
. Y, Mermibsr Ui
Saor abilaLinie | ' —
e —— TR -. --F;- o= 1 o
= k! s5Firc
bl W k -:EII|| silinal - [i
Iradeaiind
smnersarntons =
Siarablekind Enpmi=Find
e [
e [
P [
s e]
i Raen

Figure 12.5 - DataElement Class Diagram

12.7.1 DataElement Class (generic)

The DataElement class is a generic modeling element that defines the common properties of several concrete classes that
represent the named data items of existing software systems (for example, global and local variables, record files, and
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is
more specific than CodeElement.

Superclass

ComputationalObject

Attributes
ext:String Optional extension representing the original representation of the data element.
size: Integer Specifies the optional constraint on the number of elements any value of the storable element may

contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 99

Associations

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype of the current
DataElement.
type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.
Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an
existing software system, that do not fit into more precise semantics of the subclasses of DataElement.

Constraints

1. DataElement class should have at least one Stereotype.

12.7.2 StorableUnit Class

NOTE:KDM14-64

StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software
system.

Superclass

DataElement

Attribute
kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see
StorableKind enumeration datatype).
isStatic:Boolean indicates that the element is declared as “static” (visible only in the owner
CompilationUnit)
Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.

12.7.3 StorableKind data type (enumeration)

StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle,
visibility, and memory type.

100 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Literal values

global specifies a global variable

local specifies a local variable

external specifies an external variable (a prototype)
register specifies a temporary variable

unknown properties are unknown

12.7.4 ltemUnit Class

ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM
data relations that describe access to complex datatypes.

Superclass
DataElement

Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective,
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit,
but also by the identity of the owner element.

12.7.5 IndexUnit Class

NOTE:KDM14-182

IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. Instances
of IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass
DataElement
Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element. When an IndexUnit is omitted, it is
assumed to be a data element of IntegerType.

12.7.6 MemberUnit Class

NOTE:KDM14-64

MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 101

existing computational object, while the computational object corresponding to a MemberUnit is usually determined by
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines
some additional attributes.

Superclass

DataElement

Attributes
export:ExportKind Represents the visibility of the member (public, private, protected).
isFinal:Boolean indicates that the member may not be redefined in a subtype
isStatic:Boolean indicates that the member characterizes the ClassUnit (true) or individual

class instances (false)

Constraints
1. MemberUnit can be owned only by a ClassUnit.
Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.7 ParameterUnit Class

NOTE:KDM14-64

ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class
are endpoints of KDM data relations that describe access to formal parameters.

Superclass

DataElement

Attributes
kind:ParameterKind optional attribute defining the parameter passing convention for the attribute
isFinal:Boolean indicates that the parameter may not be written to (may not be the endpoint of
a Writes relationship)
pos:Integer position of the attribute in the signature

Constraints
1. Return parameter of a signature does not have a pos attribute.

2. Return ParameterUnit is a signature should have a kind="return.”

102 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

3. There can be at most one ParameterUnit within a certain Signature with a return Kind.

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of
programming languages that allow named parameters (binding of actual parameters by name rather than by a position),
the producer of the KDM model is responsible for computing correct positions of the named parameters and determining
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is
described in section “Signature Class Diagram”.

12.8 ValueElements Class Diagram

ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

v s v e

vaxi

'l'lIJI.EI-lrl'llrll |

Valu Vahsiiss |

e

BLbOAl CPATE

Figure 12.6 - ValueElements Class Diagram

12.8.1 ValueElement Class (generic)

ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class.

Superclass

DataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 103

Constraints
1. ValueElement and its subclasses should not have owned code elements.
2. ValueElement and its subclasses cannot be used as the target of relations Writes and Addresses.
3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype.

ValueElement class and its subclasses correspond to ISO/IEC 11404 literals and values. The datatype of the value is
represented by the type property (defined for its superclass DataElement class).

12.8.2 Value Class

Value class is a meta-model element that represents values used in the artifacts of existing software systems.

Superclass
ValueElement

Semantics

Value class corresponds to ISO/IEC 11404 literals of primitive types, such as boolean-literal, state-literal, enumerated-
literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal, void-literal,
pointer-literal, bitstring-literal, string-literal.

The name attribute of the ValueClass represents the name or a string representation of the value.
12.8.3 ValueList Class
The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass

ValueElement

Associations

valueElement:ValueElement[0..*] component values

Semantics

A ValueList is a data element associated with a single value of some non-primitive datatype. The value of the complex
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to ISO/IEC 11404 values for aggregated datatypes such as choice-value, record-value, set-value,
sequence-value, bag-value, array-value, table-value.

104 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Code Elements Representing Datatypes

12.9 Datatypes Class Diagram

NOTE:KDM14-225

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes:

e primitive datatypes (for example, Integer, Boolean),
« complex user-defined datatypes (for example, array, pointer, sequence), and
« named datatypes (for example, a class, a synonym type).

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are
provided further in the text of the specification.

The Datatypes class diagrams provides an overview of meta-elements that represent datatypes common to various
programming languages. The key subclasses of Datatype are illustrated at Figure 12.7. Individual classes are defined in
the subsequent sections.

Dacatype
Prim Rive Typs EnumisaladType Comtgas iba Ty pe Dinriv el Ty i Dralirmd Typsa
Sqnare
Clagskink ImierfaceUnd

mAbukecl
ik Firkal

Tempiateti=man

i ot

Figure 12.7 - Datatypes Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 105

12.10 PrimitiveTypes Class Diagram

NOTE:KDM14-21

The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.8.

Datatype
BitTypa
VoRiT ype e
- Btslring Typss
BpcleanType —_
—)
: . S0 N N T T ——
OrdinalType & __-"' P L RH —
A / B R AN .
~ # / [oo ™, . R
.-__.-"' F ll.' | 1 1 'H,.H “‘-KK Oetstatsing Ty pe
; | \ \
Chuar Type y Fy | \ "-___ “‘xh .
a5 £ ; | A y ™ \H‘“
/ ! 1 b h ",
5 | | 1 ™ e,
/ , ,
£ I L ". ..\ ",
_f / | g Ty pe .."-. BcakdTypa FoaType
Bir e Tyes Tema Type |
o hgreg| - Sivea I i
| Do malTy o

Figure 12.8 - PrimitiveTypes Class Diagram

12.10.1 PrimitiveType Class (generic)

NOTE:KDM14-58

The PrimitiveType is a generic meta-model element that represents primitive data types determined by various
programming languages.

Superclass
Datatype

Constraints

1. PrimitiveType should have at least one stereotype.

Semantics

106 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

PrimitiveType element has under specified semantics. It can be used as an extension point to define new extended meta-model
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of
PrimitiveType class.

12.10.2 BooleanType Class

The BooleanType is a meta-model element that represents Boolean data types common to various programming
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass
PrimitiveType
Semantics

The KDM BooleanType class corresponds to ISO/IEC 11404 Boolean datatype.

12.10.3 CharType Class

NOTE:KDM14-21

The CharType is a meta-model element that represents character data types common to various programming languages.
Character is a family of datatypes whose value spaces are character-sets.

Superclass
PrimitiveType

Attributes

charset:String I1SO identification of the characterset

Semantics
The KDM CharType class corresponds to ISO/IEC 11404 Character datatype.

Attribute charset identifies a character set for the CharType. Semantics of charset is aligned with "repertoir-identifier" in
ISO 11404. If this attribute is omitted, the default character set is 1SO-8859-1. For the list of valid character set
identifiers, refer to 1SO 11404, Appendix A, or IANA character sets, RFC 2978.

12.10.4 OrdinalType Class

The OrdinalType class is a meta-model element that represents ordinal datatypes available in some programming
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer).
Ordinal is the infinite enumerated type.

Superclass
PrimitiveType
Semantics

The KDM Ordinal Type class corresponds to ISO/IEC 11404 Ordinal datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 107

12.10.5 DateType Class

The DateType is a meta-model element that represents built-in data types related to dates.
Superclass

PrimitiveType

Semantics

12.10.6 TimeType Class

The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions
thereof.

Superclass
PrimitiveType
Semantics

The KDM TimeType class corresponds to ISO/IEC 11404 Time datatype. The interpretation of the details of the Time
datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the
KDM representation of an existing system to systematically identify the detailed information regarding the details of the
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.10.7 IntegerType Class

The IntegerType is a meta-model element that represents integer data type common to various programming languages.
Integer is the mathematical datatype comprising exact integer values.

Superclass
PrimitiveType
Semantics

The KDM IntegerType class corresponds to ISO/IEC 11404 Integer datatype.

12.10.8 DecimalType Class

The DecimalType is a meta-model element that represents decimal data types common to various programming
languages.

Superclass
PrimitiveType
Semantics

The KDM DecimalType class corresponds to ISO/IEC 11404 Integer datatype.

108 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.10.9 ScaledType Class

The ScaledType is a meta-model element that represents fixed point data types common to various programming
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass
PrimitiveType
Semantics

The KDM ScaledType class corresponds to ISO/IEC 11404 Scaled datatype.

12.10.10 FloatType Class

The FloatType is a meta-model element that represents float data types common to various programming languages. Float
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real
numbers.”

Superclass
PrimitiveType
Semantics

The KDM FloatType class corresponds to ISO/IEC 11404 Real datatype.

12.10.11 VoidType Class

The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages.
\Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no
information is a given instance.

Superclass
PrimitiveType
Semantics

The KDM VoidType class corresponds to ISO/IEC 11404 Void datatype.

12.10.12 StringType Class

NOTE:KDM14-21

The StringType is a meta-model element that represents string data type common to various programming languages.
String is a datatype representing strings of characters from standard character-sets.

Superclass

PrimitiveType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 109

Attributes

charset:String I1SO identification of the characterset

Semantics
The KDM StringType class corresponds to ISO/IEC 11404 defined datatype Character string.

Attribute charset identifies a character set for the StringType. Semantics of charset is aligned with "repertoir-identifier" in
ISO 11404. If this attribute is omitted, the default character set is 1ISO-8859-1. For the list of valid character set
identifiers, refer to 1SO 11404, Appendix A, or IANA character sets, RFC 2978.

12.10.13 BitType Class

The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is
the datatype representing the binary digits “0” and “1.”

Superclass
PrimitiveType
Semantics

The KDM BitType class corresponds to ISO/IEC 11404 defined datatype Bit.

12.10.14 BitstringType Class

The BitstringType class is a meta-model element that represents bit string datatypes available in some programming
languages. Bitstring is the datatype of variable-length strings of binary digits.

Superclass
PrimitiveType
Semantics

The KDM BitstringType class corresponds to ISO/IEC 11404 defined datatype Bit string.

12.10.15 OctetType Class

The OctetType class is a meta-model element that represents octet datatypes available in some programming languages.
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings.

Superclass
PrimitiveType
Semantics

The KDM OctetType class corresponds to ISO/IEC 11404 defined datatype Octet.

110 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.10.16 OctetstringType Class

The OctetstringType class is a meta-model element that represents octet string datatypes available in some programming
languages. Octet string is a variable-length encoding using 8-bit codes.

Superclass
PrimitiveType
Semantics

The KDM OctetstringType class corresponds to ISO/IEC 11404 defined datatype Octet string.

12.11 EnumeratedTypes Class Diagram

The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.9.

Dataryps

EniifmeidaladTypa Walue

= Bl

subain raracfiamasi croies e,

Figure 12.9 - EnumeratedTypes Class Diagram

12.11.1 EnumeratedType Class

NOTE:KDM14-72

The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number
of distinguished values.

Superclass

Datatype

Associations
value:Value[0..*] {ordered} The list of enumerated literals defined for the given EnumeratedType.

Constraints

1. Each ValueElement owned by an EnumeratedType shall have its type property set to this EnumeratedType.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 111

Semantics

EnumeratedType corresponds to ISO/IEC 11404 Enumerated and State families of datatypes. Enumerated datatype is a
family of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State is a
family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not make
distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the
EnumeratedType.

Some programming languages, for example Java, allow enumerated type with methods and other elements. Such
datatypes are represented as ClassUnit, containing the corresponding Value element.

12.12 CompositeTypes Class Diagram

The CompositeTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages (for example, records, structures, and unions). Composite datatypes is a broad category
of user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple
component datatypes.

The classes and associations of the CompositeTypes diagram are shown in Figure 12.10.

Dataiype

|

C ogpecs Ba Ty pe | pemiing |

__'ﬁ._!',_ TEPATE
p . S — ——
-~ i by pLi=a el cwnesCiprrani FarTel
_." P ——
RuecerdTyea Chedce Ty p

Figure 12.10 - CompositeTypes Class Diagram

12.12.1 CompositeType Class (generic)

NOTE:KDM14-225

The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records,
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM
container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class.
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype.
CompositeType class is a more specific meta-model element than Datatype.

Superclass

Datatype

112 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

itemUnit:ItemUnit[0..*] {ordered} The list of named items that represent components of the composite datatype; for
example representing the individual fields of a record.

Constraints

1. CompositeType class should be used with a stereotype.

Semantics

CompositeType class corresponds to ISO/IEC 11404 generated datatypes each of whose values is made up of values of
component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve a field list
in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents the
name of the field-type. The datatype of the field-type is represented by the type attribute of the ItemUnit.

CompositeType class is an extended meta-model element, that can be used to represent generated datatypes of an existing
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that ItemUnit.

12.12.2 ChoiceType Class

The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing
software systems, each of whose values is a single value from any of a set of alternative datatypes. An example of a
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM
representation, each alternative datatype is represented as an ItemUnit.

Superclass

CompositeType

Semantics

The ChoiceType corresponds to ISO/IEC 11404 choice generated datatype. KDM representation does not explicitly
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is
represented by the type attribute of the ItemUnit owned by the ChoiceType.

12.12.3 RecordType Class

The RecordType class is a meta-model element that represents record datatypes: user-defined datatypes in existing
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,”
which is represented by the Name attribute of the ItemUnit owned by the RecordType. Examples of record datatypes
include a structure in C, a record in Cobol.

Superclass

CompositeType

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 113

Semantics

The RecordType corresponds to ISO/IEC 11404 record aggregate datatype. The Name attribute of each ItemUnit owned
by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of the
ItemUnit owned by the ChoiceType.

Example (Cobol)

NOTE:KDM14-15, KDM14-308

01 StudentDetails.

02 Studentld PIC 9(7).
02 Student Narre.
03 FirstName PI C X(10).
03 Mddlelnitial PIC X
03 Sur name Pl C X(15).

02 DateOBirth.
03 DayO'Birth PI C 99.
03 MonthOFBirth PIC 99.
03 YearOBirth PIC9243.
02 Cour seCode PIC X(4

MOVE " Doyl e" To Surnane

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns:xm ="http://ww. ong. or g/ spec/ XM/ 20110701"
xm ns:action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://wm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdme"htt p: / / ww. ong. or g/ spec/ KDM 20160201/ kdnt'
nane="Record Exanpl e">
<nmodel xm:id="1d,0" xm: type-"code CodeModel "
<codeEl enent xmi : id="i d. type—"code Corrpl lati onUnit">
<codeEl ement xm :id="i d 2" xm pe="code: St or abl eUni t "
nanme=" St udent Det al s" type="id.3">
<codeEl ement xm :id="id.3" xm:type= code Recor dType" nanme=" St udent Det ai | s" >
<itemnit xm:id="id.4" nanme="Student| D' type="id.23" ext="PIC 9(7)"/>
<itemUnit xm:id="id.5" name="Student Name" tﬁpe—"l d.6">
<codeEl ement xnj:id="id.6" xm:type="code: Recor d.T pe" nanme="St udent Nane" >
<itenmUnit xm:id="id.7" name= “FirstName" ty . 24" ext="PIC X(10)" size="10"/>
<itenmnit xmi:id="id.8" name="M ddl eNarre" pe—"l d. 24" ext="PIC X" size="1"/>
<itenmUnit xm:id="id.9" name="Surnane" type— id. 24" ext="PIC X(15)" size="15"/>
</ codeEl enent >
<fitemnit>))
<itemUnit xm:id="id.10" nane="DateC Birth">
<codeEl ement xmi:id="id. 11" xni:type="code; RecordType" nane="DateOfBirth">
<itenmnit xmi:id="id.12" name="DayOBirth" type="1d.23" ext="PI C 99" size="2"/>
<itenmUnit xmi:id="id.13" nanme="MonthO Birth" type="id.23" ext="PIC 99" sjze="2"/>
<itemUnit xm:id="id.14" nar/ne "YearOFBirth" type="id.23" ext="PIC 9(4)"
size="4"/>
</ codeEl enent >
<[itemnit>))]
<itenmUnit xm:id="id.15" nane="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
</ codeEl enent >
</ codeEl enent>))))
<codeEl enent xni:id="id. 16" xni :type="action: Bl ockUnit">
<codeEl ement xm :id="id. 17" xm: type— action: Acti onEl enent " >
<codeEl enent xmi :id="id. 18" xni:type="code: Val ue"
name= " & uot ; Doyl e 8UOt ' ty e—"l d. 24"/ >)
<actionRel ation xm i d=" id "action: Addresses"” to="id.2" from"i
<actionRel ation xm :id="i d. 20" xm : type-"actl on: Reads" to-"l_d 18" frome"id.
<actionRel ation xm:id="id.21" xm:type="action:Wites" to="id.9" fronm="id.
</ codeEl enent >
</ codeEl enent >
</ codeEl ement>) o
<codeEl ement xm:id="id. 22" xm: type— code: LanguageUni t" nanme="Cobol common definitions">
<codeEl ement xmi:id="id.23" xni:type="code: Deci nmal Type"/>
<codeEl ement xmi:id="id.24" xm:type="code: StringType"/>
</ codeEl enment >
</ nodel >
</ kdm Segnent >

114 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.13 DerivedTypes Class Diagram

NOTE:KDM14-128, KDM14-182

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes
diagram are shown in Figure 12.11.

Datatyp
=i
gemUng |"=mdnd — DarvedType
| — || 2.1
|sukrsein craresr] o -,
. T T
7 - _: N Saquerc i Typs
{Rabanm. rasn ol R, - / i ., T iz B
N ! - _
i ! ., T
- 4 1 .,
- i 1 e
- ri ! ", 1 SETyYpE
- ¢ L1 ™
- F 4 ¥
-..-._ F II "'\.H E1E
~ .'. 1 .\\'\'\.
.,
Ay Type PaimieaType RargeType “n_
vacn ™~
EapType
P
P 'R —|_‘,—
|iudri oty cwrer] S g o T
Imubmaiy mramery |- h i
{aubmain wrer]
0.1 +ndeuling
indeslini | oo o S
rn B .
| I. e

| St 45 ZwrssREdivea]

Figure 12.11 - DerivedTypes Class Diagram

12.13.1 DerivedType Class (generic)

Inide pin o Emmasri|

NOTE:KDM14-225

DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics.
DerivedType class is a KDM container. KDM models of existing software systems usually use the concrete subclasses of

DerivedType class. DerivedType class itself is a concrete class
a stereotype. DerivedType class is a more specific meta-model

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery

and can be used as an extended meta-model element, with
element than Datatype.

Meta-model (KDM), v1.4 115

Associations

itemUnit:ltemUnit[1] The ItemUnit that represents the base class of the derived type.

Constraints

1. DerivedType class should be used with a stereotype.

Semantics

DerivedType class corresponds to several ISO/IEC 11404 aggregated datatypes, whose values are made up of values of a
single component datatype. DerivedType class is an extended meta-model element, that can be used to represent
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the
element-type is represented by the type attribute of the ItemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.

12.13.2 ArrayType Class

NOTE:KDM14-182, KDM14-129

The ArrayType is a meta-model element that represents array datatypes.
Superclass
DerivedType

Attributes

size:Integer the size of the array (the maximum number of elements)

Associations

indexUnit:IndexUnit[0..1] the optional index of the array

Constraints

1. Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.

Semantics

ArrayType corresponds to ISO/IEC 11404 array datatype. The name attribute of the ItemUnit can be omitted if the
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned
by the ArrayType. The Indexltem represents the index of the array. The name attribute of the IndexUnit can be omitted.
When an Indexltem is omitted, it is assumed to be a data element of IntegerType

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the
next (internal) dimension and so on.

116 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.13.3 PointerType Class

NOTE:KDM14-166

The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference
to values of another datatype, designated the element datatype.

Superclass

DerivedType

Semantics

PointerType corresponds to ISO/IEC 11404 pointer generated datatype. A pointer generates a datatype, each of whose
values constitutes a means of reference to values of another datatype, designated as the element datatype. THe values of
a pointer datatype are atomic. From SO perspective the pointer datatype is not an aggregated datatype, which leads to
some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned by the PointerType can
be omitted. The datatype of the element-type is represented by the type attribute of the ItemUnit owned by the
PointerType.

Example (C)

NOTE:KDM14-15, KDM14-308

struct tlist f
struct tlist * next;
int val ue;

} * phead, * pcurrent;

<?xm version="1.0" encodi ng="UTF- 8" ?>
<kdm Segnent xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: code="http://wwm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: action=""http://ww. ong. or g/ spec/ KDM 20160201/ acti on"
xm ns: kdme"htt p: / / www. ong. or g/ spec/ KDM 20160201/ kdnf
nane="Li nkedLi st Exanpl e">
<nmodel xmi:id="id.0' xm:type="code: CodeMdel ">)
<codeEl ement xmi:id="id.1" xm:type="action: Bl ockUnit">
<codeEl ement xmi:id="id.2" xmi!type="code: Storabl eUnit"
name="phead" type="1d.3" kind="unknown">
<codeEl ement xmi:id="id.3" xm:type="code: Poi nt er Type">
<itemnit xm:id="id.4" type="id.5">)
<codeEl ement xmi:id="id.5" xm:type="code: RecordType" name="tlist">
<itemnit xm:id="id.6" nanme="next" type="id.3"/>
<itemUnit xmi:id="id.7" nane="val ue" type="id.8">)
<codeEl emrent xm :id="id.8" xni:type="code:|ntegerType" nanme="int"/>
</itemnit>
</ codeEl enent >
</itemnit>
</ codeEl enent >
</ codeEl ement>)))
<codeEl emrent xmi:id="id.9" xm:type="code: Storabl eUnit"
nane="pcurrent" type="id.3" ki nd="unknown"/>
</ codeEl enent >
</ nodel >
</ kdm Segment >

12.13.4 RangeType Class

NOTE:KDM14-128

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 117

RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper
and/or lower bounds on the value space.

Superclass

DerivedType

Associations

lower: Value[0..1] the optional lower boundary of the range

upper: Value[0..1] the optional upper boundary of the range

Constraints
1. At least one boundary value element should be present.

2. The type property of a boundary Value element owned by a RangeType shall be the same as the type property of
the owned ItemUnit of this RangeType instance

Semantics

RangeType corresponds to ISO/IEC 11404 range subtype. From ISO perspective the range subtype is not an aggregated
datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned
by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of the ItemUnit
owned by the RangeType.

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.

12.13.5 BagType Class

BagType class is a meta-model element that represents bag types in existing software systems: the user-defined datatypes,
whose values are collections of instances of values from the element datatype. Bag types allow multiple instances of the
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass
DerivedType
Semantics

BagType corresponds to ISO/IEC 11404 bag aggregated datatype. The Name attribute of the ItemUnit owned by the
BagType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the BagType.

12.13.6 SetType Class

SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the
mathematical set.

Superclass

DerivedType

118 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

SetType corresponds to ISO/IEC 11404 set aggregated datatype. The Name attribute of the ItemUnit owned by the
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the SetType.

12.13.7 SequenceType Class

SequenceType class is a meta-model element that represents sequence types in existing software systems: the user-defined
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass
DerivedType
Semantics

SequenceType corresponds to ISO/IEC 11404 sequence aggregated datatype. The Name attribute of the ItemUnit owned
by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit
owned by the SequenceType.

12.14 Signature Class Diagram

NOTE:KDM14-306

The Signature class diagram defines meta-model elements, which represent the signature concept common to various
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.12.

Dty
T T
Parameierkind
- Par daseod a7 L it T
Sigrature spowaresinrling |dkrs " !
. pae =
sl - E urd
oW Lt T
Wl
[wubanty. cwne) nE i
Eoa. Cer e T Ty, o s al=t
R

Figure 12.12 - Signature Class Diagram

12.14.1 Signature Class

The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various
programming languages.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 119

Associations

parameterUnit:ParameterUnit[0..*] the list of parameters of the current Signature

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of
datatypes, corresponding to the procedure-type of ISO/IEC 11404 standard. Second, it corresponds to a specific data
element as part of a computational object represented by a ControlElement. In this second sense, the Signature element
corresponds to the mechanism of formal and actual parameters.

12.14.2 ParameterKind (enumeration)

ParameterKind datatype defines the kind of parameter passing conventions.

Literals
byValue parameter is passed by value
byName parameter is passed by name
byReference parameter is passed by reference
variadic parameter is variadic
return parameter being returned
throws parameter represents an exception thrown by the procedure
exception parameter to a catch block
catchall special parameter to a catch block
unknown parameter passing convention is unknown
Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this
means that the Signature does not define a return value.

12.15 DefinedTypes Class Diagram

NOTE:KDM14-80, KDM14-225

DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by a type
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.13.

120 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Typalint Sy nariy m Type

Figure 12.13 - DefinedTypes Class Diagram

12.15.1 DefinedType Class (generic)

NOTE:KDM14-225

The DefinedType is generic class that defines the common properties of several concrete classes that represent type
declarations in existing software systems. KDM models of existing software systems usually use the concrete subclasses
of DefinedType class. DefinedType class itself is a concrete class and can be used as an extended meta-model element,
with a stereotype.

Superclass

Datatype

Associations

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype.

type:Datatype[1] The datatype of the DefinedType that describes the values of the
corresponding datatype.

Constraints
1. DefinedType class shall be used with at least one stereotype

Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined
datatype.

12.15.2 TypeUnit Class

The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define
the value-space of a new datatype, which is distinct from any other datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 121

Superclass
DefinedType
Semantics

TypeUnit corresponds to ISO/IEC 11404 New datatype declaration and New generator declarations.

12.15.3 SynonymuUnit Class

The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the
type name to be a synonym for another datatype.

Superclass

DefinedType

Semantics

SynonymUnit corresponds to ISO/IEC 11404 Renaming declarations.

12.16 ClassTypes Class Diagram

NOTE:KDM14-64, KDM14-139, KDM14-221, KDM14-306

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.14.

D ari vty pe
Classlnk
Inferfacelini
sigAbairact - [.
amFirm |
carLITET i apurparifing - Cxportk AN
ExpariHied ~purent |51
st {nubs el owmer]
::'-.I.:-r"- |auEsnls owrer|
FLErEPAT
Coedronpnd
=f (eS| e =zcdabmar]
He—— | —_—
.-
ik pin crarasiliamari cavie: e [niburiy awrasiliamari oo e

Figure 12.14 - ClassTypes Class Diagram

12.16.1 ClassUnit Class

NOTE:KDM14-64, KDM14-72, KDM14-139, KDM14-221

122 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype
is a named datatype that represents a class: an ordered collection of named elements, each of which can be another
Codeltem, such as a MemberUnit or a MethodUnit.

Superclass
Datatype
Attributes
isAbstract:Boolean the indicator of an abstract class
isFinal:Boolean indicates that the ClassUnit may not have subtypes (may not be the
to-endpoint of Extends relationship)
exportKind:ExportKind represents the visibility of the method (public, private, protected)

Associations

codeElement:AbstractCodeElement[0..*[{ordered the list of class members and methods

}

Semantics

ClassUnit is a named container for an ordered collection of named elements, each of which can be another Codeltem,
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested
ClassUnits), internal datatype definitions, etc.

A class that has a finite set of named literals like a Java enum can be represented as a ClassUnit containing Value
elements. These Value elements shall have the name corresponding to name of the literal and they shall all have the type
property set to the containing ClassUnit. Simple Java enum with just a set of literals can still be represented as an
EnumeratedType instance.

From the runtime perspective, ClassUnit represents a family of computational objects, called class instances.
MemberUnits and MethodUnits of a certain ClassUnit are identified both by the name of the member or method, as well
as by a direct or indirect identification of the corresponding class instance.

12.16.2 InterfaceUnit Class

The InterfaceUnit is a meta-model element that represents the interface concept common to various programming
languages.

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns a list of
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an
InterfaceUnit may be targets of Calls relations.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 123

Associations

codeElement:Codeltem[0..*] {ordered} The list of TypeElements that corresponds with the target Interface.

Semantics

InterfaceUnit is a logical container for code items. InterfaceUnit corresponds to a compile time description of the
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as
ControlElements, which in the representation of an existing software may be the targets of certain relationships, since the
binding between the interface and the actual computational objects may occur at runtime.

12.17 Templates Class Diagram

NOTE:KDM14-81, KDM14-139, KDM14-223

The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. Figure 12.15 shows these classes and their associations.

Cararypi
Templaiek pmeni
e - -
Tiarn pba b Par meves tar & Templylelfnit
.-"- |
_.-".
.-
e g, rAa=er)
Tamplabs Ty
ol T nr
|suks pls oored Bemen, el
Adu tracfCode Svrramt

Figure 12.15 - Templates Class Diagram

12.17.1 TemplateElement Class (generic)

NOTE:KDM14-81, KDM14-223

The TemplateElement is a generic meta-model element that represents various code elements related to templates, their
parameters and instantiations.

Superclass

Datatype

124 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. TemplateElement class shall be used with at least one stereotype

Semantics

This class is extended by several concrete meta-model elements that represent several common template elements. KDM
representations of existing systems are expected to use concrete subclasses of TemplateElement, however this class itself is
a concrete meta-model element and can be used as an extended element with an appropriate stereotype to represent other
types of template elements not covered by the standard subclasses. Semantics of template elements in KDM is described
later in this sub clause.

12.17.2 TemplateUnit Class

NOTE:KDM14-81, KDM14-223, KDM14-139

The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming
languages; for example, Ada generics, Java generics, C++ templates.

Superclass

TemplateElement

Associations

codeElement:AbstractCodeElement[0..*] template formal parameters and the base datatype or computational object

Constraints
1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.

Semantics

The TemplateUnit class corresponds to a type declaration with formal type parameters from the ISO/IEC 11404. TemplateUnit
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned
by the TemplateUnit.

12.17.3 TemplateParameter Class

NOTE:KDM14-81, KDM14-145, KDM14-223

TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model,
TemplateParameter is a subclass of TemplateElement.

Superclass

TemplateElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 125

Semantics

TemplateParameter represents a formal parameter of a type declaration with formal parameters (corresponding to ISO/IEC
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal
parameters is positional.

12.17.4 TemplateType Class

NOTE:KDM14-81, KDM14-223

TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType
class owns the actual parameters to the datatype reference, represented by “ParameterTo” relationships. The
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced
parameterized datatype. TemplateType has the role of a Datatype.

Superclass

TemplateElement

Constraints

1. TemplateType class should be the origin only to template relations “InstanceOf” and “ParameterTo.”

Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal
type parameters from the 1ISO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit,
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented
by the “InstanceOf” relationship.

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type
parameters is positional.

12.18 TemplateRelations Class Diagram

NOTE:KDM14-231

The TemplateRelations class diagram defines KDM relationships that are related to the concept of an template. Figure
12.16 shows these classes and their associations.

126 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Abs e rCooeRila e

B ubAaa Nl Ik pin giparsd BUEALE I RSl g e i e el
— 1 ParamiterTo s tanceoe
b o - :
" X
s ekt W HIAT e ragefira io)
Bk " redalnen o) {reciafinas from)
1
I T
Codinem AbswracrCogsEiomin | Tamplatalink

]

Figure 12.16 - TemplateRelations Class Diagram

12.18.1 InstanceOf Class

The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for
example, a ClassUnit) and a TemplateUnit. In the meta-model InstanceOf is a subclass of AbstractCodeRelationship.

Superclass

AbstractCodeRelationship

Associations

from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of a template.

to:TemplateUnit[1] The TemplateUnit that is being instantiated.

Constraints

1. The to- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.18.2 ParameterTo Class

The ParameterTo is a meta-model element that represents an actual type parameter in the context of a reference to a
parameterized entity. ParameterTo is “parametrization” relation between an AbstractCodeElement (for example, a
TemplateType or an ActionElement) and a Codeltem.

Superclass

AbstractCodeRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 127

Associations

from:AbstractCodeElement[1] the reference to the parameterized entity (the context of the actual type parameter)

to:Codeltem[1] actual parameter to template instantiation

Constraints
1. ParameterTo relationship should be owned only by TemplateType or ActionElement.
2. The to- and from- endpoints of the relationship should be different.

Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Example (Java)

NOTE:KDM14-15, KDM14-308

class foo {)
static <T> void fromArrayToCol | ection(T[] a, Collection<T> c) {
for (T o : a

c.add(o);
voi d dermo() {
String[] sa = new String[100];)
Col I ection<String> ¢cs = new Arr ayLi st<String>();)
;ro rayToOoIIectlon(sa, cs); / T inferred to be String

}

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xm ns: xm ="http://ww. ong. or g/ spec/ XM / 20110701"
xm ns:action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xn1 ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdnmF"ht t p: / / www. orrg. or g/ spec/ KDM 20160201/ kdnd'
name= Terrpl ate Exanpl e" >
<nodel did="id. 0" xm: type— code CodeMbdel "
<codeEI ement xmi: id=" id, type- code: C assUnlt name="f 00" >
<codeEl enent xmi :id=" |d 2" xm Pe— ‘code: Te IateUnlt
name=' fromArrayToCo lection&t;
<codeE| ement xmi:id="id.3" xnmi:type="code: Te IateParaneter name="T"/ >
<codeEl ement xm:id= d 4" xni:type="code: Met hodUni t"
nane="f r omAr rayToCoI ection" type="id.6">
<entryFl ow xm :id="id, to="id. 14" from="id.4"/>
<codeEl ement xm :id="i 6" xni:type="code: Si gnat ure">
<paranmeterUnit xmi:i d. 7" name="a">
<codeEl enent xmi ;i
<itemUnit xm:id='
</ codeEl enent >
</ paranet er Uni t >
<parameterUnit xm:id="i
<codeEl enent xm :id="i
name= Oollect n& t; T1>">
<codeRel ation xm :id="id.12" xm: type— code: Par anet er To"
to="id. 3" from="id. 11"/
<codeRel ation xm:id="id. 13" xm: ylpe— ‘code: | nstanceOr "
to="id. 75" from"id. 11"
</ codeEl enent >
</ paranet er Uni t >
</ codeEl enent >
<codeEl enent xm id="id. 14" xm : pe— ‘action: Acti onEl enent "
name="al" ki nd=' Oorrpound

r
i

'
"id.8 " xm :type="code: ArrayType" >
i d. 9" type=" |yg3/ yp

d. 10" name— c" type="id. 11">
gjll" :type="code: Tenpl at eType"

o

128 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeEl ement xmi:id="id.15" xm :type="action: Acti onEl enent"

~ nane="al. 1" kind="Call"> ")
<actionRel ation xm :id="id. 16" xm:type="action: Addresses"

) ~to="id.7" from="id. 15"/>))
<actionRel ation xm:id="id.17" xm:type="action:Calls" to="id.81"
<actionRelation xm:id="id. 18" xnm:type="action:Flow' to="id.19"

</ codeEl enent >)]))
<codeEl ement xmi:id="id.19" xm :type="action: Acti onEl enent"
~_ name="al. 2" kind="Call">)
<codeEl ement xmi :id="id.20" xmi:type="code: Storabl eUnit"

)) ~name="t1" type="id.88" kind="register"/>
<actionRel ation xm :id="id. 21" "xm :type="action: Addr esses"

)) _ to="id. 40" fron¥"id.19"/>)
<actionRel ation xm:id="id.22" xm:type="action: Calls" to="id.83"

<actionRel ation xm:id="id.23" xm :type="action:Wites" to="id.20"
<actionRel ation xm :id="id.24" xni:type="action:Fl ow' to="id.25"

</ codeEl enent>))))

<codeEl ement xmi:id="id.25" xm :type="action: Acti onEl enent"

) ~name="1.3" kind="Condition">]
<actionRel ation xm:id="id.26" xm:type="action: Reads" to="id.20"
<actionRelation xm :id="id.27" xm:type="action: TrueFl ow'

) to="id. 29" frone"id.25"/> .
<actionRelation xm :id="id.28" xm: t)/pe:" acti on: Fal seFl ow'

to="id. 39" from="id.25"/>
</ codeEl enent >)))]
<codeEl ement xm:id="id.29" xm: tége:" action: Acti onEl ement "

) ‘nanme="al. 4" kind="Call">]
<actionRel ation xm :id="id.30" xm:type="action: Addr esses”

) ~to="id.40" from="id.29"/>))
<actionRel ation xm:id="id.31" xm:type="action:Calls" to="id.82"

<actionRel ation xm :id="id. 32" xm :type="action: Wites" to="id. 44"
<actionRelation xm:id="id.33" xnm:type="action: Flow' to="id.34"

from"id. 15"/ >
from"id. 15"/ >

from"id.19"/>
from"id.29"/>
from"id. 19"/ >

from"id. 25"/ >

from"id.29"/>
froms"id. 29"/ >
frome"id.29"/>

</ codeEl enent >

<codeEl enrent xm :id="id.34" xm: té{flelzu action: Acti onEl enent "
">

) ~nanme="al. 5" Kkind="Cal)
<actionRelation xm :id="id.35" xni:type="action: Addresses"

) ~to="id. 10" from="id.34"/> .] .
<actionRel ation xmi:id="id.36" xm:type="action: Reads" to="id.44" fron¥"id.34"/>
<actionRel ation xm:id="id. 37" xm:type="action:Calls" to="id.84" from="id.34"/>

<actionRel ation xm :id="id.38" xm:type="action:Flow to="id.19" from="id.34"/>
</ codeEl ement >)))))
<codeEl ement xmi :id="id.39" xnmi:type="action:ActionEl ement” nane="1.6" ki nd="Nop"/>
<codeEl emrent xmi:id="id.40" xm :type="code: Storabl eUnit"
nane="iter" type="id.41" kind="register">
<codeEl ement xmi:id="id. 41" xm:type="code: Tenpl at eType"
<codeRel ation xm:id="id.42" xm:type="code:|lnstanceC "
i o to="id. 78" fron¥"id. 41"/>
<codeRel ation xm :id="id. 43" xm :type="code: Par anet er To"
to="id.3" from="id.41"/>

nane="I|teratoré& t; T1>">

</ codeEl enent >
</ codeEl enent>)))
<codeEl emrent xmi:id="id. 44" xni: tgpez_" code: St or abl eUni t "
) ~ nane="0" t_)épe="| d. 3" kind="local"/>)
<actionRel ation xm :id="id.45" xm:type="action:Flow' to="id. 15"
</ codeEl enment >
</ codeEl enent >
</ codeEl ement>))))
<codeEl emrent xmi:id="id.46" xm :type="code: Met hodUnit" nanme="denp" type="id.47">
<codeEl ement xmi:id="id.47" xm:type="code: Signature"/>
<codeEl ement xmni :id="id.48" xni:type="code: StorableUnit"
name="sa" type="id. 49" kind="|ocal ">
<codeEl ement xmi:id="id.49" xm :type="code: ArrayType"
<itenmnit xm:id="id.50" type="id.89"/>
</ codeEl enent >
</ codeEl ement>)))))
<codeEl ement xmi:id="id,51" xm:type="action:ActionEl ement" name="denp. 1" ki nd="New'>
<codeEl enent xmi:id="id.52" xm:type="code: Val ue" nane="100" tz_/)ge:"l d. 90"/ >
<actionRel ation xm:id="i g 53" xm :type="action: Reads" to="id.52" fronm="id.51"/>

frome"id. 14"/ >

name="ar 2" >

<actionRel ation xm :id="id.54" xm:type="action:Creates" to="id.49" fron¥"id.51"/>
<actionRelation xm:id="id.55" xm:type="action: Wites" to="id.48" from="id.51"/>
<actionRel ation xm:id="id.56" xm:type="action:Flow'/>

</ codeEl ement>)))

<codeEl ement xmi :id="id.57" xni:type="code: StorableUnit"

name="cs" type="id.58" kind="I|ocal">
<codeEl ement xm :id="id, 58" xm :type="code: Tenpl at eType"
nane="Col | ection& t; String>">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 129

<codeRel ation xmi:id="id.59" xm:type="code: ParaneterTo" to="id.89" frone"id.58"/>
<codeRel ation xm :id="id.60" xm:type="code:|lnstanceO*" to="id.75" from="id.58"/>
</ codeEl enent >
</ codeEl enent>)))))
<codeEl ement xm :id="id, 61" xm:type="action:ActionEl ement” name="deno.2" ki nd="New'>
<codeEl ement xm :id="id. 62" xm:type="code: Tenpl at eType"

) n.arT.e:"A.rrang st&l't; String>">))
<codeRel ation xmi:id="id.63" xm:type="code: ParaneterTo" to="id.89" fron¥"id.62"/>
<codeRel ation xm :id="id.64" xm :type="code:|lnstanceO" to="id.85" from="id.62"/>

</ codeEl enent > o)))) .
<actionRel ation xm :id="id.65" xnm:type="action:Creates" to="id.62" fronr"id.51"/>
<actionRel ation xm :id="id.66" xm:type="action:Wites" to="id.57" from"id.61"/>
<actionRel ation xm:id="id. 67" xm:type="action:Fl ow'/>
</ codeEl ement>)))))
<codeEl ement xmi:id="id.68" xm:type="action:ActionEl enent" nane="deno.3" kind="Call">
<codeRel ation xm :id="id. 69" xmi:type="code:|nstanced" to="id.2" fronms"id, 68"/>
<codeRel ation xm :id="id, 70" xm :type="code: ParaneterTo" to="id.89" fronr"id.68"/>
<actionRelation xm :id="id. 71" xm:type="action: Reads" to="id.48" frons"id.68"/>
<actionRel ation xm :id="id. 72" xm :type="action: Reads" to="id.57" fron¥"id.68"/>
<actionRelation xm:id="id. 73" xm:type="action:Calls" to="id.4" fronm"id.68"/>
</ codeEl enent >
</ codeEl enment >
</ codeEl ement>)))
<codeEl ement xni:id="id. 74" xni:type="code: LanguageUnit"” name="Common Java datatypes">
<codeEl ement xm :id="id. 75" xm :type="code: TenplateUnit" name="Col | ection&t;T>">
<codeEl ement xm :id="id.76" xm:type="code: Tenpl at eParaneter" nanme="T"/>
<codeEl ement xm:id="id.77" xm:type="code: d assUnit" nanme="Coll ection"/>
</ codeEl enent >)))
<codeEl ement xm :id="id, 78" xm :type="code: Tenpl ateUnit" name="Iterator& t; T>">
<codeEl ement xm :id="id. 79" xm:type="code: Tenpl at eParaneter" nane="T"/>
<codeEl ement xm :id="id.80" xm:type="code:d assUnit" nanme="Iterator">
<codeEl ement xm :id="id.81" xm:type="code: Met hodUnit"
~name="jterator" Kind="constructor"/>
<codeEl ement xm :id="id.82" xm :type="code: Met hodUnit" name="next"/>
<codeEl ement xm :id="id.83" xmi:type="code: Met hodUnit" name="hasNext"/>
<codeEl ement xmi:id="id.84" xm:type="code: Met hodUnit" nane="add"/>
</ codeEl enent >
</ codeEl enent>))))
<codeEl ement xm :id="id, 85" xm :type="code: Tenpl ateUnit" nane="ArrayList&t; T>">
<codeEl emrent xm :id="id. 86" xm:type="code: Tenpl at eParaneter" name="T"/>
<codeEl ement xm:id="id.87" xm:type="code: CassUnit" name="ArraylList"/>
</ codeEl enent>))
<codeEl erent xm :id="id. 88" xm :type="code: Bool eanType" nane="Bool ean"/>
<codeEl ement xm :id="id.89" xm :type="code: StringType" name="String"/>
<codeEl ement xm :id="id.90" xm:type="code:|nteger Type" name="Integer"/>
</ codeEl enment >
</ nodel >
</ kdm Segnent >

12.19 InterfaceRelations Class Diagram

NOTE:KDM14-231

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the
corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in
Figure 12.17.

130 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A e e i T o it

ImphEianis vy s e i e
1 |
3)
: | 0
(e LR el] =
-
[wutust oultered; nulnets orlrzarel " by

Figure 12.17 - InterfaceRelations Class Diagram

12.19.1 Implements Class

The Implements is a meta-model element that represents “implementation” association between a Codeltem (for example,
a ClassUnit) and an InterfaceUnit. “Implements” relationship is similar to “Extends.” For example, Java “implements”
construct can be represented by KDM “Implements” relationship.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] The Codeltem that implements a certain InterfaceUnit.

to:Codeltem[1] The InterfaceUnit that is being implemented by Codeltem.

Constraints

1. The from- and to- endpoints should be different.

Semantics

See next sub clause

12.19.2 ImplementationOf Class

The ImplementationOf is a meta-model element that represents “implementation” association between a Codeltem; for
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit.
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object,
common to various programming languages. While the “Implements” relationship is between entire containers (the target
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

e Particular MethodUnit of a ClassUnit that “Implements” an InterfaceUnit, is an “ImplementationOf” a particular

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 131

MethodUnit, owned by that InterfaceUnit.

¢ A CallableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration
(the prototype) of that CallableUnit.

e A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] Codeltem that implements a certain “declaration.”

to:Codeltem[1] “declaration” that is being implemented by the Codeltem.

Constraints

1. It is obligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target is a
ControlElement or the origin is a DataElement and the target is a DataElement.

2. The kind attribute of the Codeltem at the origin of the ImplementationOf relationship should not be equal to
“external.”

3. The kind attribute of the Codeltem at the target of the ImplementationOf relationship should be equal to “external”
or “abstract.”

4. The from- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a ComputationalObject (ControlElement or DataElement) with kind
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a ControlElement,
Signature represents the procedure type, but not the declaration entity itself.

If both the definition and the declaration of some computational object “foo” are available:
e The definition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

« For a certain action element that uses “foo,” the target of the KDM callable or data relations will be the definition of
“fOO_”

* The action element that uses “foo” may be the origin of a “CompliesTo” action relationship (defined at the
InterfaceRelations class diagram of the Action package) to the declaration of “foo”.

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about
the existing software system:

« For a certain action element that uses “bar”, the target of the KDM callable or data relations will be the declaration of
learfl.

e The action element that uses “bar” may be the origin of a “CompliesTo” action relationship (defined at the
InterfaceRelations class diagram of the Action package) to the declaration of “bar”.

132 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation units in
complex ways, the existing software system may have multiple declarations for the same computational object, or even
different computational objects with the same name but different properties that are used in different contexts. In this
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if
different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):

NOTE:KDM14-15, KDM14-147, KDM14-308

package flip;
er

ublic interfa ace i Fli
f public int fllpE)(l{nt i);
package flip;
public cltc;;llss ffoo (I) lements i Flip {
u
Bbl c flip(int i) {
) return i * -1;
}
ackage flip;
Bublig clasg FlipCie é
public static v 0| mai n(String[] args) {
AR
i Fli =(i Fli
) f.fllpp?ls)o; P
}

<?xm version="1.0" encodi ng="UTF-8"?>

<kdm Segnent xm ns: xm ="http://ww. ong. or g/ spec/ XM / 20110701"
xm ns: action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdne"htt p: // www. ong. or g/ spec/ KDM 20160201/ kdnd'

nane="1Int erface Exanple">

<nodel xmi:id="id, 0" xni:type="code: CodeMdel "
<codeEl enent xmi:id="id.1" xm: type=" code: Package nanme="flip">

<codeEl enment xm id="id. 2" xm:type="code: O assUnit" name="foo">

<codeRel ati on xm’ ;id="id. 3" xm:type="code:|nplenents" to="id.21" frone"id. 2"/>
<codeEl ement xm :id="id. _4" Xm : type— code: Met hodUni t" nane="flip" type="id.23">
<codeRel ati on xm :id="id.5" t ype="code: | npl ement ati onCf "
to="id.22" from:|d4/>
<entryFlow xm :id="id, 6" to="id.10" fron¥"id.4"/>
<codekl ement xmi: |d— |d 7" xmtype=" code Si gnat ur e” narre— flip">
<par anet er Uni t id="id.8" name="i gpe— "id. 53"/
<par anet er Uni t id="id. 9" type="id.5 ki nd="ret urn ">

</ codeEl enent >)
<codeEl ement xmi:id="id.10" xm : t&ﬁ)e— action: Acti onEl enent”
nanme="d1" kind="Miltiply">]
<codeEl ement xmi:id="id. 11 xm type="code: Val ue” name="-1" type="id.53"/>
<codeEl ement xmi:id="id. type="code: Storabl eUnit"
) ~ nanme="t5" dype— i d 3" kind="register"/>]
<actionRel ation xm :id="i stype="action: Reads" to="id.8" from= id 10"/ >

<actionRel ation xm :id="id. 14" xm type="action: Reads" to="id.11" from="id.10"/>
<actionRel ation xm :id="id. 15" xm type="action: Wites" to="id.12" fr m:'ld.lo"/>
<actionRel ation xm :id="id. 16" :type="action: Fl ow' to="id.17" from:"l d. 10"/ >

</ codeEl ement >
<codeEl ement xm:id="id.17" xm: type- action: Acti onEl enent" name="d2" ki nd="' Return >
<acti onRel ation xmi:id="id.18" :type="action: Reads" to="id.12" from="id.17"/>
</ codeEl enent >
</ codeEl ement>)))
<codeEl ement xm:id="id. 19" xm:type="code: Met hodUnit"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 133

nanme="f 00" type—"i d. 20" ki nd="constructor"
<codeEl ement xmi:id="id.20" xm:type="code: Signature" nanme= "foo"/ >
</ codeEl enent >
</ codeEl enent >))
<codeEl ement xm:id="id, 21" xm: type-"code InterfaceUnit" name="IFlip">
<codeEl ement xm :id="id.22" xm:type="code: Met hodUnit"
_ name="flip" type—"l d. 23" kind="abstract"/>
<codeEl emrent xmi: |d:"| d. 23" xm :type=" pode Si gnature" nanme="flip">
<par anet er Uni t tid="id. 24" pame="i" gpe-"l d.53" pos="1"/>
<par anet er Uni t id="id. 25" type—"l d.5 ki nd="return" pos="0"/>
</ codeEl enent >
</ codeEl ement>)
<codeEl enent xmi :id="id.26" xm:type="code:dassUnit" name="Flipclient">
<codeEl ement xm :id="id.27" xm:type="code: Met hodUnit" nane="nain" type="id.29">
<entryFlow xmi:id="id, 28" to="id.35" frone"id.27"/>
<codeEl enent xmi:id="id.29" xm :type="code: Si gnature” nanme="main">
<paranmeterUnit xm:id="id.30" name- ‘args” type="id.31" pos="1">
<codeEl ement xmi :id="id.31" xni:type="code: ArrayType">
<itemlnit xm:id="id.32" nanme= args[] type="id. 54"/ >
</ codeEl enent >
</ paranet er Uni t >
</ codeEl enent >

<codeEl emrent xmi:id="i d 33" xm pe="code: Storabl eUn| t"
name="f" e— | .2" Kkind="|ocal"
<codeEl ement xmi :id="id. 34" .t&/pe— code: St or abl eUnl t"
nane="g" typ e-" 21" kind="Iocal "/>)
<codeEl ement xm :id="id. 35" ;type="act i on: Acti onEl enent” name="al" ki nd="New'>

<actionRel ation xm:i d—"i d 36" xm :type="action: Creates" to="id.2" from"id.35"/>
<actionRel ation xm :id="id. 37" xm:type="action:Wites" to="id.33" fronms"id.35"/>
<actionRelation xm:id="id. 38" xm:type="action:Flow' to="id.39" fronm"id.35"/>
</ codeEl enent>)
<codeEl ement xmi:id="id.39" xm:type="acti on Acti onEl enent "

) ~ name="a2" kind= ! thodCaII
<actionRel ation xm :id="id. 40" xm : gpe- act i on: Conpl i esTo"

) . to="id. 20" frorn:"|d3'/>)
<actionRel ation xm:id="id.41" xm: gpef' acti on: Addr esses”

)) o='j|d33'[from:"ld.3'/>]])
<actionRel ation xm :id="id. 42" xm :type="action:Calls" to="id.19" fron¥"id.39"/>
<actionRelation xm:id="id.43" xm:type="action: Flow' to="id.44" from"id.39"/>

</ codeEl ement >)
<codeEl ement xmi:id="id.44" xni:type="act | on: Acti onEl ement "
nanme="a3" ki nd= ! nCast))
<actionRel ation xmi:id="id.45" xm: type— action: Reads" to="id.33" fron¥"id.44"/>
<actionRelation xm :id="id. 46" xm: type- action: UsesType" to="id.21" from"id.44"/>
<actionRelation xm:id="id. 47" xm:type="action:Wites" to="id. 34" from="id.44"/>
<actionRel ation xm :id="id.48" xm:type="action: Flow' to="id.49" from="id.44"/>
</ codeEl ement>))
<codeEl ement xmi:id="id.49" xni:type="action: Act i onEl enent "
name="a4" ki nd= "\/ rtual Cal I "
<actionRel ati on xm i d="id.50" xni:type=" act i on: Conpl i esTo"
"id. 23" from"id. 49"/ >
<actionRel ati on xm_ id="id.51" xm:type="action: Addresses"

) ~ to="id. 34" from="id.49"/>)))

<actionRelation xm:id="id.52" xm:type="action:Calls" to="id.22" from="id.49"/>

</ codeEl enent >
</ codeEl enent >

</ codeEl enent >

</ codeEl enment >
<codeEl enent xmi :
<codeEl enent xmi :

</ model >
</ kdm Segnent >

. 53" xm :type="code: | nt eger Type" name="int"/>
. 54" xm :type="code: StringType" nane="String"/>

12.20 TypeRelations Class Diagram

NOTE:KDM14-231

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.18.

134 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A iy 0T e R PR

5l He W] HasVa b (B35 o T DT Le Has Ty B Ul D] |

[=]

v shan om [——
e o T -

riwislnes ram| |

i
A Erar Al ool Sl i

Figure 12.18 - TypeRelations Class Diagram

12.20.1 HasType Class

The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] the source data element

to:Datatype[1] the target datatype element

Constraints

1. The from- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates this information if the
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in
AggregatedRelationships.

12.20.2 HasValue Class

NOTE:KDM14-23, KDM14-259

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 135

The HasValue is a specific meta-model element that represents semantic relation between a data element and its
initialization element, which can be a data element or an action element for complex initializations that involve
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action
elements in the initialization code.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] the source data element

to:AbstractCodeElement[1] the target AbstractCodeElement (datatype or action element)

Constraints

1. If the target of the HasValue is an ActionElement, then this ActionElement should have an outgoing Writes or
Addresses relationship to the Codeltem that is the source of the HasValue relationship.

Semantics

HasValue relationship as an optional way to represent initialization. The target of the HasValue relationship can be a Value for
simple initializations that involve constants, or Data Element for simple initializations that involve another data element, or an
ActionElement that writes to the source element for complex initializations involving expressions.

In micro KDM initialization is represented by explicit initialization actions with appropriate control flow. Initialization actions
should be owned by special initialization block units. Control flow semantics of initializations (especially for initializations of
global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represent
control flow. It provides a convenient way to associate a data element with its value.

Semantics of initialization blocks is described in section “BlockUnit Class”.

Example (C++)

NOTE:KDM14-15, KDM14-24, KDM14-25, KDM14-308

[*----d.h---*/
class D {
prlvate int num

u
B(lnt x this->nunex; printf("Hello, this is %\n", x); }
work() { prlntf(This is % worki ng\ n", this->num;

oo-a. ---)
#i ncl udeppd. h"
int g1=0;

D di(1);

[*---b. cpp--*/

#include "d. h"

extern D di;

il

mai n

ol
* new

dl. work

d2. wor k

d3- >work();

136 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns:xmi ="http://ww. ong. or g/ spec/ XM /20110701"
Xxm ns:action="http://ww.ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://wm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdnF"htt p: / / www. ong. or g/ spec/ KDM 20160201/ kdnft'
nane="C assD Exanple">
<nodel xni:id="1d.0" xni:type="code: CodeMddel " >
<codeEl ement xni:id="id.1" xni:type="code: CodeAssenbl y">
<entryFlow xm :id="id. 120" to="id.94" frone"id.1"/>)
<codeEl ement xmi:id="id.2" xm:type="code: ConpilationUnit" name="a.cpp">
<entryFlow xm :id="id. 121" to="id. 10" fron¥"id.2"/>))
<codeEl ement xm :id="id.3" xm:type="code:|ncludeDirective" name="inpl">
<codeRel ati on xm:id="id.4" xm :type="code:|lncludes" to="id.22" from="id.3"/>
</ codeEl ement>))))
<codeEl ement xmi:id="id.5" xm:type="code: StorableUnit" nane="gl" type="id.105">
<codeRel ati on xm:id="id.6" xm :type="code: HasVal ue" to="id.20" from="id.5"/>
</ codeEl ement>))))
<codeEl ement xmi:id="id.7" xm:type="code: Storabl eUnit" name="dl" type="id.23">
<codeRel ation xm :id="id.8" xm:type="code: HasType" to="id. 23" fron¥"id.7"/>
<codeRel ation xm :id="id.9" xm:type="code:|nplenentationt"
to="id. 47" fronF"id. 7"/>))
<codeRel ation xm :id="id.124" xm :type="code: HasVal ue" to="id. 16" fron¥"id.7"/>

</ codeEl enent >

<codeEl ement xm:id="id.10" xm :type="action: Bl ockUnit" name="bi 1" kind="Init">
<ent rgFI ow xm :id="id. 11" to="id. 12" fron¥"id. 10"/>)))
<codeEl ement xmi:id="id.12" xmi:type="action: ActionEl ement" nane="i 1" ki nd="Assign">
<actionRel ation xm :id="id. 13" xm :type="action: Reads" to="id.20" fron¥"id.12"/>
<actionRelation xm :id="id. 14" xm :type="action:Wites" to="id.5" fron¥"id.12"/>
<actionRel ation xm:id="id. 15" xm:type="action:Flow' to="id.16" fronm"id.12"/>

</ codeEl enent >

<codeEl ement xmi:id="id.16" xm :type="action: ActionEl ement" name="i2" kind="Calls">
<actionRel ation xm :id="id.17" Xm :type="action: Reads" to="id.21" fron¥"id.16"/>
<actionRel ation xm :id="id. 18" xm :type="action:Calls" to="id.25" fron¥"id.16"/>
<actionRel ation xm :id="id.19" xm:type="action:Wites" to="id. 7" from="id.16"/>

</ codeEl ement>))
<codeEl ement xmi:id="id.20" xm :type="code: Val ue" nane="0"/>
<codeEl ement xm:id="id.21" xm:type="code: Val ue" nane="1"/>
</ codeEl enent >
</ codeEl enent >]]]
<codeEl ement xmi:id="id, 22" xm :type="code: SharedUnit" nane="d.h">
<codeEl ement xmi:id="id, 23" xm:type="code:d assUnit" nane="D' >
<codeEl ement xmi :id="id.24" xni:type="code: Merber Unit"
nane="nunt type="id. 105" export="private"/>
<codeEl ement xmi :id="id.25" xni:type="code: Met hodUnit" nane="D"
met hodKi nd="const ruct or " tgpez"l d. 36" >
<entryFlow xm :id="id, 26" to="id.28" from"id.25"/>
<codeEl ement xmi:id="id.27" xm :type="code: Val ue")
name="" ; Hel l o, this is %\ n"" type="id.111"/>
<codeEl ement xmi:id="id.28" xm:type="action: Acti onEl ement"

~ nane="a4_1" kind="This"> "))
<actionRel ation xmi:id="id.30" xm:type="action: Wites"

- to="id. 113" fron¥"id.28"/>)))
<actionRel ation xm:id="id.31" xm:type="action:Flow' to="id.114" from="id.28"/>
<codeEl ement xmi:id="id. 113" xmi:type="code: StorableUnit"

nane="r 1" kind="register" type="id.55">
</ codeEl enent >
</ codeEl ement>))))
<codeEl ement xmi:id="id.114" xm :type="action: Acti onEl ement" name="a4_2"

ki nd="Menber Repl ace" >))
<actionRel ation xm:id="id.115" xm:type="action: Addresses"

. to="id. 113" from="id. 114"/> i
<actionRelation xm:id="id.116" xm :type="action: Reads"

~to="id.37" from="id.114"/>))
<actionRel ation xm:id="id.117" xm:type="action: Wites"

. to="id.24" frome"id. 114"/> .
<actionRel ation xm:id="id.118" xm :type="action: Fl ow'

to="id. 32" frome"id. 114"/ >
</ codeEl enent>)))))
<codeEl emrent xmi :id="id.32" xm:type="action:ActionEl enent" name="a5" kind="Call">
<actionRelation xm:id="id.33" xm:type="action: Reads" to="id.27" from"id.32"/>
<actionRel ation xm:id="id.34" xm:type="action: Reads" to="id.37" fron¥"id.32"/>
<actionRel ation xm:id="id.35" xm:type="action:Calls" to="id.106" from="id.32"/>
</ codeEl enent >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 137

<codeEl enent xmi:id="id.36" xni:type="code: Si gnature" nanme="D">
<paraneterUnit xm:id="id.37" nane="x" pos="1"/>
</ codeEl enent >
</ codeEl enent>)]
<codeEl ement xm :id="id.38" xm:type="code: Met hodUnit" name="work"
nmet hodKi nd="net hod" type="id. 126">
<codeEl ement xmi :id="id.39" xm :type="code: Val ue"
nanme="" ; This is % worki ng\ n""/>))
<codeEl ement xmi:id="id.40" xm:type="action:ActionEl ement" name="a6_1" ki nd="This">
<actionRel ation xm:id="id.41" xm:type="action: Wites"
. to="id. 119" from="id. 40"/ >)
<actionRel ation xm:id="id. 42" xm:type="action: Fl ons"
to="id.120" from="id. 40"/ >)
<codeEl ement xmi:id="id.119" xm :type="code: Storabl eUnit"
name="r2" kind="register" type="id.55">
</ codeEl enment >
</ codeEl enent>)))
<codeEl enent xm :id="id.120" xmi:type="action:ActionEl ement" nanme="a6_2"
ki nd="Menber Sel ect">))
<actionRel ation xm:id="id.121" xm :type="action: Addresses"
_ to="id. 119" from="id.120"/> .
<actionRel ati on xm:id="id. 122" xm :type="action: Reads"
~to="id.39" fron¥"id.120"/>))
<actionRel ation xm:id="id.123" xm :type="action: Wites"
~to="id. 125" fron¥"id.120"/>]
<actionRel ation xm:id="id.124" xm :type="action: Fl ows"
to="id. 40" from="id.120"/>)
<codeEl ement xmi:id="id. 125" xm :type="code: St orabl eUnit"
name="r 3" kind="register" type="id.105">
</ codeEl enent >
</codeEl enent >)]]]]
<codeEl ement xmi :id="id.40" xm:type="action:ActionEl enent" name="a6" kind="Call">
<actionRelation xm :id="id.41" xm:type="action: Reads" to="id.39" fron¥"id.40"/>
<actionRel ation xm :id="id.42" xm :type="action: Reads" to="id. 125" from="id. 40"/ >
<actionRelation xm:id="id.43" xm:type="action:Calls" to="id. 106" from="id. 40"/>
</ codeEl enent >)))
<codeEl ement xm :id="id. 126" xm :type="code: Si gnature" nane="work">
</ codeEl enent >

</ codeEl enent >
</ codeEl enent >
</ codeEl enent>)))))
<codeEl emrent xm :id="id. 44" xm:type="code: ConpilationUnit" name="b.cpp">
<entryFlow xm :id="id, 122" to="id. 87" from="id.44"/>))
<codeEl ement xm :id="id. 45" xm:type="code:|ncludeDirective" name="inmp2">
<codeRel ation xm :id="id.46" xm :type="code:|lncludes" to="id.22" from="id.45"/>
</ codeEl ement>))
<codeEl ement xm :id="id, 47" xm:type="code: Storabl eUnit"
name="d1" ki nd="exterhal "/>)))
<codeEl ement xm :id="id.48" xm:type="code: Callabl eUnit" nane="main" type="id.127">
<entr¥FIow xm:id="id. 49" to="id.70" from="id.48"/>)
<codeEl ement xmni:id="id. 127" xm :type="code: Si gnature" name="main">
</ codeEl ement >)))
<codeEl ement xm :id="id.50" xm :type="code: StorableUnit" nane="|2" typ
<codeRel ation xm :id="id.51" xm :type="code: HasVal ue" to="id.20" fro
</ codeEl ement>))
<codeEl ement xm :id="id.52" xm :type="code: Storabl eUnit" name="d2">
<codeRel ation xmi:id="id.53" xm:type="code: HasType" to="id. 23" fron¥"id.52"/>
<codeRel ati on xm:id="id. 125" xm:type="code: HasVal ue" to="id. 89" from="id.52"/>
</ codeEl ement>)]))
<codeEl emrent xm :id="id. 54" xm :type="code: Storabl eUnit" nane="d3" typez"yd.55">
<codeRel ation xm :id="id. 126" xm :type="code: HasVal ue" to="id.79" from="id.54"/>
<codeEl ement xm :id="id.55" xm :type="code: Poi nt er Type">
<itemUnit xm:id="id.56" type="id.23">))
<codeRel ation xm :id="id. 57" xm :type="code: HasType" to="id.23" from="id.56"/>
</itenbnit>
</ codeEl enment >
</ codeEl ement>)))))
<codeEl ement xm :id="id.58" xm:type="action:ActionEl enent" name="al" kind="Call">
<actionRelation xmi:id="id.59" Xxm:type="action:Calls" to="id.38" from="id.58"/>
<actionRelation xm :id="id.60" xm:type="action: Addresses" to="id. 7" from"id.58"/>
<actionRel ation xm :id="id.61" xn1:tgpe:”actlon:Cbnpl|esTo"
) - to="id. 47" from="id.58"/>)))
<actionRelation xm:id="id. 62" xm:type="action:Flow' to="id.63" from="id.58"/>
</ codeEl enent >)])))
<codeEl emrent xmni:id="id.63" xni:type="action: Acti onEl enent" nane="a2" kind="Call">

"id. 105" >
id.

e=
n="id. 50"/ >

138 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRel ation xm :id="id. 64" xm :type="action:Calls" to="id.38" fron¥"id.63"/>
<actionRelation xm:id="id.65" xm: té/pe:" action: Addr esses”
) ~ to="id.52" fron¥"id.63"/>)))
<actionRel ation xm:id="id. 66" xm:type="action:Flow to="id.67" from"id.63"/>
</ codeEl ement>)))))
<codeEl ement xmi:id="id.67" xm:type="action:ActionEl enent" nane="a3" kind="Call">
<actionRel ation xm :id="id.68" xm :type="action:Calls" to="id.38" fron¥"id.67"/>
<actionRelation xm:id="id.69" xm: t}/pe:" action: Addr esses”
to="id.56" from="id.67"/>
</ codeEl enent >)])))))
<codeEl ement xm :id="id, 70" xm :type="action: Bl ockUnit" name="bi 2" kind="Init">
<codeEl ement xmi:id="id. 71" xm:type="action: Acti onEl enent"

) ~name="i 3" ki nd="Assign">)])

<actionRel ation xmi:id="id.72" xm:type="action: Reads" to="id. 20" frons"id.71"/>
<actionRel ation xm:id="id.73" xm :type="action:Wites" to="id.50" from="id.71"/>
<actionRel ation xm:id="id.74" xm :type="action:Flow' to="id.75" from"id.71"/>
</ codeEl enent>))))))
<codeEl ement xmi:id="id.75" xm:type="action: ActionEl ement" name="i4" ki nd="New'>
<actionRel ation xm :id="id. 76" xmi:type="action:Creates"
) o to="id, 23" from"id,75"/>))))
<actionRelation xm:id="id.77" xm :type="action:Wites" to="id.54" frons"id.75"/>
<actionRel ation xm:id="id.78" xm:type="action:Flow to="id.79" from"id.75"/>
</ codeEl ement>))))
<codeEl ement xmi:id="id. 79" xm :type="action: Acti onEl enent"

) ~name="i5" kind="MethodCall">])
<actionRel ation xm:id="id.80" xm:type="action: Reads" to="id.85" fron¥"id.79"/>
<actionRelation xm :id="id.81" xnm:type="action: Addresses"

to="id.54" fronm="id.79"/>

<actionRel ation xmi:id="id.82" xm:type="action:Calls" to="id.25" frons"id.79"/>
<actionRel ation xm:id="id.83" xm:type="action:Wites" to="id.56" fronm="id.79"/>
<actionRel ation xm :id="id. 84" xm:type="action:Flow to="id.58" from"id.79"/>

</ codeEl ement>))
<codeEl ement xmi:id="id.85" xm :type="code: Val ue" nane="3"/>
<entryFl ow xm :id="id. 86" to="id. 71" from="id.70"/>
</ codeEl enent >
</ codeEl ement>)))])])
<codeEl ement xmi:id="id.87" xm:type="action:Bl ockUnit" name="bi 3" kind="Init">
<entryFlow xm :id="id, 88" to="id.89" fronr"id.87"/>))
<codeEl ement xmi:id="id.89" xm :type="action:ActionEl enent" nane="i6" kind="Call">
<actionRel ation xmi:id="id.90" Xxm:type="action: Reads" to="id.93" fron¥"id.89"/>
<actionRelation xm :id="id.91" xm :type="action:Calls" to="id.25" fron¥"id.89"/>
<actionRel ation xm:id="id. 92" xm:type="action:Wites" to="id.52" from="id.89"/>
</ codeEl ement>)))
<codeEl ement xm :id="id.93" xm:type="code: Val ue" nanme="2" type="id.105"/>
</ codeEl enent >
</ codeEl ement>))))))
<codeEl ement xmi:id="id. 94" xm:type="action: Bl ockUnit" name="master" kind="Init">
<entryFlow xm :id="id. 95" to="id. 96" fronr"id.94"/>)))
<codeEl ement xmi:id="id. 96" xm :type="action: Acti onEl ement” name="i7" kind="Init">
<entryFlow xm :id="id.97" to="id.10" fronm"id.96"/>))
<actionRel ation xm :id="id.98" xm:type="action:Calls" to="id.2" from="id.96"/>
<actionRelation xmi:id="id.99" xm:type="action:Calls" to="id.44" from="id.96"/>
<actionRel ation xm:id="id. 100" xm :type="action:Calls" to="id.48" from="id.96"/>
</ codeEl enent >
</ codeEl enent >
</ codeEl ement>)))
<codeEl ement xmi:id="id, 104" xm :type="code: LanguageUnit">)
<codeEl erent xmi:id="id.105" xmi:type="code:|ntegerType" nane="int"/>)
<codeEl ement xmi:id="id.106" xm:type="code: CallableUnit" name="printf" type="id.107">
<codeEl ement xm :id="id. 107" xm :type="code: Signature" name="printf">
<paraneterUnit xmi:id="id.108" type="id.105" kind="return" pos="0"/>
<paraneterUnit xmi:id="id.109" nane="format" type="id. 111" pos="1"/>
<paranmeterUnit xm:id="id.110" nanme="argunents" type="id. 112"
ki nd="vari adi c* pos="2"/>
</ codeEl enent >
</ codeEl ement>
<codeEl emrent xmi:id
<codeEl enent xmi:id
</ codeEl enent >
</ model >
</ kdm Segnent >

id. xni:type="code: StringType" nane="char *"/>
"id. 112" xm :type="code: Voi dType"/ >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 139

12.21 ClassRelations Class Diagram

NOTE:KDM14-231

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes.
The classes and associations of the ClassRelations diagram are shown in Figure 12.19.

A e W ook e it D
|k gl oeiSoas] [Exlansds Subiils ilerafad;
.." I [L.”
wiroeT
1efee, It FisHn i
[ratatype

Figure 12.19 - ClassRelations Class Diagram

12.21.1 Extends Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented
languages.

Superclass

AbstractCodeRelationship

Associations

from:Datatype[1] the child Class

to:Datatype[1] the parent Class

Constraints

1. The from- and to- endpoints should be different.

Semantics

Extends relationship represents the associations between two datatypes in which the first datatype (called the “child” class)
“subclasses” the second datatype (called the “parent” class) by inheriting the semantics and owned elements of the parent
class.

140 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Code Elements representing Preprocessor Directives

A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It
is different than let’s say an HTML/Javascript program or programs with embedded assembler routines where there is
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing,
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex).

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation
perspective the SQL statement itself is very much what we want to capture along with the various data elements and
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that
generates some low-level code that will translate into a call to some library. By capturing this as generated code and
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its
execution realm. And our relationship between the “SQL language” elements to the “native” code elements that are
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a
couple of SourceRef would be very limiting indeed.

Preprocessor directive is a language/dialect on its own and it should be handled and treated as a first class citizen in
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabled
L0 KDM tool can seamlessly ignore the embedded language and work only with the primary language. The implementer
shall either:

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.
3. Represent both the embedded and the generated primary code and relations between the two.

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:

« originally coded in the primary language
« included from another file by a preprocessor
« generated by a preprocessor as an expansion of an embedded language directive
« selected by satisfying appropriate conditions by the preprocessor
KDM provides the following modeling elements for representing preprocessor directives:
« PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete
preprocessor directives.
< MacroUnit -representation of macro definitions.

< MacroDirective - representation of an embedded language construct as distinguishable from the primary language
construct. This is also known as a Macro Call.

« IncludeDirective - representation of an include directive of a preprocessor.
< ConditionalDirective - representation of a pre-processor conditional branch.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 141

12.22 PreprocessorDirectives Class Diagram

The PreprocessorDirectives class diagram defines the meta-model elements to represent embedded language constructs
and to support common modeling situations resulting from the use of a language preprocessor (for example, preprocessor
defined as part of the C language, or the preprocessing capabilities of Cobol).

The class diagram in Figure 12.20 shows these classes and their associations.

ez ooiallsmasi
A b (o R Silrith TSkt
Freproc essarDirecive

s el

BLCH BN SWTHE|

Condtiond D ek

Ing kxie Direciive

n b TR T

Nacro ind

Hl:rul:.‘lrrﬂnll

.
A
sl el e

i W g

T, Y

Figure 12.20 - PreprocessorDirectives Class Diagram

12.22.1 PreprocessorDirective Class (generic)

PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some
programming languages (for example, the C language preprocessor capabilities). This class is extended by several
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor
directives in KDM is described later in this sub clause.

Superclass

AbstractCodeElement

Associations

codeElement:AbstractCodeElement[0..*] This optional code element represents the content of the preprocessor
directive.

142 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. PreprocessorDirective should have a stereotype.

Semantics

From the KDM perspective, each preprocessor directive (an embedded language statement) is a container for code
elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich
representation of the embedded language directives. The implementer may provide additional information using
stereotypes. The macro declaration is just code written for example in the “Cpreprocessor” language and can be
represented using standard KDM constructs, such as CodeElements, Action, Flow etc., if needed or light-weight extension
elements, like Stereotypes and ExtendedValues. In many situations, the right implementation choice is to leave the
directive as an empty container with a name, and likely, a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this
sub clause only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. The
implementer may either clone the included code elements or to reuse them and keep a single copy in the SharedUnit. The
recommended approach is to clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

« Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not
contain any pre-processor directives, and relationships expand and alternative; information about the embedded
language cannot be recovered from the KDM representation.

« Ignore the generated primary code, provide a high-fidelity representation to the embedded construct; the embedded
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded
into the primary code may not be recovered from the KDM instance (but in general, the embedded construct provides
a better choice, since it is the construct introduced by the developer).

« Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of
KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and
Alternative); there is a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

« Represent both the embedded constructs and the primary code, provide the high fidelity representation to the
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 143

code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the
entire BlockUnit to the corresponding embedded construct.

12.22.2 MacroUnit Class

MacroUnit class represents macro definitions common to several programming languages. Although KDM allows
semantic-rich contents of MacroUnit (as it is a subclass of a ControlElement), usually it is sufficient to represent a macro
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic
information about the macro definition.

Superclass
PreprocessorDirective

Attributes

kind:MacroKind additional semantic properties of the macro definition

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usually in the form of a
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string
manipulation. However, the optional owned code element may be used to represent these.

The implementer shall select a particular strategy to represent macro units.
12.22.3 MacroKind data type (enumeration)
MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

regular Macro definition has a body and may have parameters.
option Macro definition without a body and parameters, only a name.
undefined This value represents an undefined macro as the target for some relations in the

representation of default branches of conditional compilation and variants.
external external compilation option

unknown unknown class of a macro definition

12.22.4 MacroDirective Class

MacroDirective class represents the so-called “macro call”, the occurrence of a macro name (possible with parameters) in
the primary code, such that the preprocessor recognizes it and “expands” by substituting the macro directive construct
with its “definition”. A block of “generated” code elements that represent the primary code resulting from macro
expansion may be associated with the MacroDirective.

144 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

PreprocessorDirective

Semantics

MacroDirective represents the so-called “macrocall”, or an occurrence of a macro name (possibly with the actual
parameters), which is substituted by the body of the macro definition in which the occurrences of the formal parameters
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the
origin of the action relationships to the actual parameters to the MacroDirective.

12.22.5 IncludeDirective Class

IncludeDirective class represents the so-called include directive, common to several programming languages and their
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include
directive is usually related to a SharedUnit (for example, a copybook in Cobol, or a header file in C). A block of
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the
include directive. Semantics of the IncludeDirective class is described later in this sub clause in more detail.

Superclass

PreprocessorDirective

Semantics
IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a
stand-alone CompilationUnit.

12.22.6 Conditional Directive Class

ConditionalDirective class represents the so-called “variant” of a software system, resulting from the use of conditional
compilation capabilities, common to several programming languages and their preprocessors (for example the #if ...
#endif and #ifdef ... #endif directives of the preprocessor of the C language). ConditionalDirective represents a single
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of
the ConditionalDirective class is described later in this sub clause in more detail.

Superclass
PreprocessorDirective

Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the
selected variant. The block of “generated” code identifies the corresponding conditional directive.

12.23 PreprocessorRelations Class Diagram

NOTE:KDM14-231

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 145

The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language
constructs and pre-processor directives, common to several programming languages.

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.21.

A i Drae N oo T i e D
[], T 7
| EJI-!'.I'ﬂ:i

!wubmain rasdhoend) Ll el

VaramTa |submnin oigund Y- (wbas inbowrd) Hadelines
n.* 3
| siletpis npoing] bl " : »:
whrom P Al BB H O eS|
(patadwark g -+ ’ u
ol Tl wuirs 155
s 1]
frasnfine Io) PraprocisdorDirsctive
P . skam
[radel ra boer]
Includes Teaiba iy oot g 1 i I
- iredelgog o] — i i dF i
|recatiinan o)
m— {sutmaty ntzund] |

) i N
(ol Bimsund) akam 0
1 ke wirh | bbis. b (mabasn aahoared:
A D i G ST

Figure 12.21 - PreprocessorRelations Class Diagram

12.23.1 Expands Class

Expands class represents the relationship between a MacroUnit to another MacroUnit or from a MacroDirective to a
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit
or MacroDirective.

Superclass

AbstractCodeRelationship

Associations

to:MacroUnit[1] the target MacroUnit
from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.
Semantics

The implementer shall identify and represent associations between MacroUnits, as well as a MacroDirective and the
corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor support
for the implementer guidelines.

146 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.23.2 GeneratedFrom Class

GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular,
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class,
the resulting code may represent one of the following:

e “generated” code that corresponds to a certain MacroDirective.
« “included” code that corresponds to a certain IncludeDirective.
« “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “generated” code and target the corresponding
PreprocessorDirective.

Superclass

AbstractCodeRelationship

Associations

to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor
directive that was involved in producing the code.

from:AbstractCodeElement[1] The BlockUnit that owns the “generated” code.

Constraints

1. The origin of the GeneratedFrom relationship should be a BlockUnit.

Semantics

See the general description of the preprocessor directives for the implementer’s guidelines.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

ﬁggﬂﬂg gxﬁ&’(ﬁ?é(%i &Er%, B) ? (A : (B))
GVAX(p+g, r+s)

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns:xmi ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns:action="http://ww.ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://wm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdme"htt p: // www. ong. or g/ spec/ KDM 20160201/ kdnf
nanme="Macro Directive Exanple”>
<nmodel xmi:id="id. 0" xm:type="code: CodeMdel ">))
<codeEl ement xmi:id="id.1" xm :type="code: Conpil ationUnit">
<codeEl ement xmi:id="id.2" xmtype="code: MacroUnit" nanme="GvAX">
<source | anguage="Cpr eprocessor "
. snippet ="#define GVAX(A B) g=(GI(A B) ? (A) : gB))" >
<codeRel ation xm:id="id.3" xm:type="code: Expands" to="id.4" from="id.2"/>
</ codeEl ement>)))
<codeEl ement xmi:id="id.4" xm:type="code: MacroUnit" name="GI">
<sour ce | anguage="Cpreprocessor" snippet="#define GI(A B) ((A > (B))"/>
</ codeEl enment >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 147

<codeEl ement xm :id="id.5" xm:type="action: Bl ockUnit">)
<codeEl ement xm :id="id.6" xm:type="code: Storabl eUnit" name="p" type="id.49"/>
<codeEl ement xm :id="id.7" xm:type="code: Storabl eUnit" name="q" type="id.49"/>
<codeEl ement xm :id="id.8" xm:type="code: Storabl eUnit" name="r" type="id.49"/>
<codeEl ement xm :id="id.9" xm:type="code: Storabl eUnit" name="s" type="id.49"/>
<codeEl ement xmi:id="id.10" xni:type="code: StorableUnit" name="g" type="id.49"/>
<codeEl ement xm :id="id.11" xm :type="code: MacroDirective" name="ml">
<source xm:id="id.12" | anguage='Cpreprocessor" sni ppet =" GVAX(p+q, r+s); "/ >

<codeRel ation xm:id="id.1 frone"id. 11"/ >
</ codeEl enent>))))
<codeEl ement xm :id="id. 14" xm :type="action: Bl ockUnit" name="bml">)
<codeRel ation xm :id="id. 15" xmi:type="code: GeneratedFroni to="id. 11" fron&"id. 14"/>
<codeEl ement xmi :id="id.16" xmi:type="action:ActionEl enent">
<source xm:i dt="| d. (17'('(I ans;uag((af)’) 2 () (ey
sni ppet ="g=(((p*q) > (r+s 2 (prq) : (r+s));"/> .
<codeEl enent xmi : |gd=j'| d. 18" xm :type="action: Acti on?EI ement” nane="al" ki nd="Add">
<actionRel ation xm :id="id.19" Xm:type="action: Reads" to="id.6" from="id.18"/>
<actionRelation xm :id="id.20" xm:type="action: Reads" to="id.10" fron¥"id. 18"/>
<actionRel ation xm :id="id.21" xm :type="action:Wites" to="id.47" frone"id.18"/>
<actionRel ation xm:id="id.22" xm :type="action:Flow' to="id.23" fronm"id.18"/>
</ codeEl enent>)])))
<codeEl ement xm :id="id.23" xm:type="action:ActionEl ement” name="a2" ki nd="Add">
<actionRel ation xm :id="id.24" Xxni:type="action: Reads" to="id.8" from="id.23"/>
<actionRel ation xm :id="id.25" xm:type="action: Reads" to="id.9" from="id.23"/>
<actionRel ation xm :id="id.26" xm:type="action:Wites" to="id.48" frone"id.23"/>
<actionRel ation xm:id="id.27" xm:type="action: Flow' frone"id.23"/>
</ codeEl enent>))))
<codeEl ement xm :id="id.28" xm :type="action:ActionEl enent”
nane="a3" ki nd="G eat er Than">)
<codeEl enent xm :id="id.29" xm:type="code: Storabl eUnit"
nane="c" type="id.50" kind="register"/>

" Xm:type="code: Expands" to="id.2

<actionRelation xm:id="id.30" xm:type="action:Reads" to="id. 47" fron¥"id.28"/>
<actionRelation xm :id="id.31" xm:type="action: Reads" to="id. 48" fron¥"id.28"/>
<actionRel ation xm :id="id.32" xm:type="action:Wites" to="id.29" frone"id.28"/>
<actionRel ation xm:id="id.33" xm:type="action:Flow' to="id.34" fronm"id.28"/>
</ codeEl enent>))))
<codeEl ement xm :id="id.34" xm:type="action:ActionEl enent”
_ nane="a3. 1" ki nd="Condition">)
<actionRelation xm:id="id. 35" xm:type="action: Reads"
) ‘to="id.29" from="id.34"/>)
<actionRel ation xm :id="id.36" xm: t)/pe:" action: TrueFl ow'
) to="id.38" from="id.28"/>)
<actionRelation xmi:id="id.37" xm:type="action: Fal seFl ow'
to="id.42" from="id.34"/>
</ codeEl enent>)]))
<codeEl erent xm :id="id.38" xm:type="action: Acti onEl ement”
) ~name="a4" ki nd="Assi gn">)))
<actionRelation xm :id="id.39" xm:type="action: Reads" to="id. 47" fron¥"id.38"/>
<actionRel ation xm :id="id. 40" xm:type="action: Wites" to="id.10" from="id.38"/>

<actionRelation xm:id="id.41" xm :type="action: Flow' to="id.46" from"id.38"/>
</ codeEl enent>)]))
<codeEl erent xm :id="id. 42" xm:type="action: Acti onEl ement”

) ~name="a5" ki nd="Assi gn">)))
<actionRelation xm:id="id.43" xm:type="action: Reads" to="id.48" fron¥"id.42"/>
<actionRel ation xmi:id="id.44" xm:type="action:Wites" to="id.7" fronm"id.42"/>
<actionRel ation xm:id="id.45" xm :type="action: Flow' to="id.46" fronme"id. 42"/>

</ codeEl enent >)))))
<codeEl ement xmi:id="id.46" xmi:type="action: ActionEl enent" name="a6" ki nd="Nop"/>
<codeEl ement xm :id="id. 47" xm :type="code: Storabl eUnit"
nane="t 1" type="id. 49" kind="register"/>
<codeEl emrent xm :id="id. 48" xm :type="code: Storabl eUnit"
nane="t 2" type="id. 49" kind="register"/>
</ codeEl enent >
</ codeEl ement>
<codeEl ement xm :i
<codeEl ement xmi i
</ codeEl enment >
</ codeEl enent >
</ nodel >
</ kdm Segnent >

12.23.3 Includes Class

Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being

9" xni:type="code: | nteger Type" name="int"/>
0" xm :type="code: Bool eanType" name="bool ean"/>

148 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

included.

Superclass

AbstractCodeRelationship

Associations

from:AbstractCodeElement[1] the code elements being included (usually a SharedUnit)

from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.

Constraints
1. The origin of the Includes relationship should be an IncludeDirective.

Semantics

The implementer shall identify and represent include relationships according to the semantics of the particular
preprocessor.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

J*2- @l c---*]
#i ncl ude "a. h"
.cl...

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns:xmi ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns:action="http://ww.ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code=""http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdme"htt p: // www. ong. or g/ spec/ KDM 20160201/ kdnf
nanme="1ncl ude Directive Exanple">
<nodel xni:id="id.0" xni:type="code: CodeMdel ">
<extensionFam |y xmi:id="id. 1" >
<stereotype xm:id="id.2" nane="sanple"/>
</ extensionFam |ly>))
<codeEl ement xmi:id="id.3" xm:type="code: Sharedunit" name="a.h">)
<codeEl ement xmi i d="id. 4" xmtype="code: CodeEl ement" stereotype="id.2" nane="cl">
<source xm:id="id.5" |anguage="C'/>
</ codeEl enent >)])
<codeEl ement xmi 1id="id.6" xm:type="code: CodeEl ement" stereotype="id.2" nane="c2">
<source xm:id="id.7" |anguage="C'/>
</ codeEl enment >
</ codeEl ement>)))))
<codeEl ement xmi:id="id.8" xm:type="code: ConpilationUnit" nane="a.c">
<codeEl ement xmi:id="id.9" xm:type="code:|ncludeDirective">
<source | anguage="Cpreprocessor ' sni ppet="#i nclude "a. h""/>
<codeRel ati on xm:id="1d.10" xm:type="code:|ncludes" to="id.3" fron"id.9"/>
</ codeEl enent >]]))
<codeEl ement xmi:id="id.11" xm :type="action: Bl ockUnit" nane="b1l">)
<codeRel ation xm :id="id. 12" xni :type="code: GeneratedFrom to="id.9" from="id.11"/>
<codeEl ement xmi:id="id. 13" xm :type="code: CodeEl enent"
stereotype="id.2" nane="cl_cl one">
<source xm:id="id.14" |anguage="C'/>
</ codeEl enent >)]
<codeEl ement xmi:id="id.15" xm :type="code: CodeEl enent"
stereotype="id. 2" nane="c2_cl one">
<source xm:id="id.16" |anguage="C'/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 149

</ codeEl enent >

</ codeEl ement>))))

<codeEl ement xm :id="id, 17" xm :type="action: Bl ockUnit" nane="b2">
<codeEl ement xm :id="id.18" xm :type="action: ActionEl enent" nanme="al">

<actionRel ation xm :id="id.19" Xxm :type="action: ActionRel ati onship"
to="id.13" from="id.18"/>

</ codeEl enent >

</ codeEl enment >

</ codeEl enent >
</ nodel >
</ kdm Segnent >

12.23.4 VariantTo Class

VariantTo class represents the relationship between variants of a software product line with conditional compilation. This
relationship connects the ConditionalDirective to each alternative branch of the conditional compilation directive. KDM
representation is expected to identify a single “default” variant, to which additional variants are alternatives. There is no
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship
GeneratedFrom connecting it to the corresponding ConditionalDirective. The “default” variant is expected to have a
VariantTo relationship to every alternative branch.

Superclass

AbstractCodeRelationship

Associations

to:PreprocessorDirective[1] ConditionalDirective class that represents an alternative variant of the
conditional.

from:PreprocessorDirective[1] A ConditionalDirective class that represents the default variant of the
conditional.

Constraints
1. The origin of the VariantTo relationship should be a ConditionalDirective.

2. The target of the VariantTo relationship should be a ConditionalDirective.

Semantics

The implementer shall identify and represent the variants and associations between the “generated” code and the
corresponding conditional directive according to the semantics of the preprocessor. See the general description of the
preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

#define UNI X 1
#if UNI X | DEBUG

i
Ifdef UNIX
ggllse
fondif

150 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns:xmi ="http://ww. ong. or g/ spec/ XM /20110701"
Xxm ns:action="http://ww.ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://wm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdnme"htt p: / / ww. ong. or g/ spec/ KDM 20160201/ kdnt
nanme="Variants Exanple">
<nodel xni:id="id.0" xni:type="code: CodeMbdel ">)
<codeEl ement xmi:id="id.1" xm :type="code: MacroUnit" nane="UN X"'>
<sour ce | anguage="Cproprocessor" snippet="#define UNI X 1"/>
</ codeEl enment >)]))
<codeEl ement xmi:id="id.2" xm :type="code: MacroUnit" nanme="DEBUG' ki nd="external"/>
<codeEl ement xm:id="id.3" xm:type="code: StorableUnit" name="g" type="id.4">
<codeEl ement xm :id="id.4" xm:type="code:|ntegerType"/>
</ codeEl ement>)) o))
<codeEl ement xni :id="id.5" xmi:type="code: Conditional Directive" name="cl">
<source | anguage="Cpreprocessor" snippet="#if UN X | DEBUG'/>)
<codeRel ation xm :id="1d.6" xm:type="code: Expands" to="id.1" fron¥"id.5"/>
<codeRel ation xm:id="id.7" xm:type="code: Expands" to="id.2" from="id.5"/>
</ codeEl enment >]])]
<codeEl ement xmi:id="id.8" xm:type="action:Bl ockUnit" nane="bl">)
<codeRel ation xm :id="id.9" xni:type="code: CeneratedFronm to="id.5" from"id.8"/>
<codeEl ement xmi:id="id. 10" xm :type="action: ActionEl enent" nanme="al" ki nd="Assign">
<source xm:id="id.11" |anguage='C' sni ppet="g=123"/>

<codeEl ement xmi:id="id. 12" xm :type="code: Value" nane="123" type="id.4"/>
<actionRel ation xm:id="id. 13" xm :type="action: Reads" to="id.12" fron¥"id.10"/>
<actionRel ation xm:id="id. 14" xm:type="action:Wites" to="id.3" from="id.10"/>

</ codeEl enent >
</ codeEl enent >]] o]]
<codeEl ement xmi :id="jd.15" xni:type="code: Conditional Directive" name="c2">
<source | anguage="Cpreprocessor"” snippet="#ifdef UN X'/>]
<codeRel ation xm :id="1d. 16" xm :type="code: Expands" to="id. 1" fronm&"id.15"/>
<codeRel ation xm:id="id. 17" xm:type="code: Vari ant To" to="id. 25" from="id.15"/>
</ codeEl ement>))))
<codeEl ement xmi:id="id.18" xm :type="action: Bl ockUnit" nanme="b2">

<codeRel ation xm :id="id. 19" xm :type="code: Generat edFron’ to="id. 15" fron¥"id.18"/>
<codeEl ement xmi i d="id.20" xni:type="action:ActionEl enent” name="a2" ki nd="Assign">
<source xm:id="id.21" |anguage='C' sni ppet="g=123"/>)
<codeEl ement xmi:id="id.22" xm :type="code: Value" nanme="1" type="id.4"/>
<actionRelation xm:id="id.23" xm :type="action: Reads" to="id.22" fron¥"id.20"/>
<actionRel ation xm:id="id.24" xm:type="action:Wites" to="id.3" from="id.20"/>

</ codeEl enent >
</ codeEl ement>)) o))
<codeEl ement xm:id="id.25" xm :type="code: Conditional Directive" name="c3">
<source | anguage="Cpreprocessor” sni ppet="+#el se"/>))
<codeRel ati on xm :id="1d.26" xm:type="code: Expands" to="id. 1" from="id.25"/>
</ codeEl ement>))))
<codeEl ement xmi:id="id.27" xm:type="action: Bl ockUnit" nane="b3">
<codeRel ation xm :id="id.28" xn:type="code: Generat edFron' to="id. 25"
<codeEl ement xmi i d="id.29" xni:type="action:ActionEl enent” name="a3"
<source xm:id="id.30" |anguage="C"' sni ppet="g=123"/>)
<codeEl ement xm :id="id.31" xm:type="code: Value" name="2" type="id
<actionRel ation xm:id="id.32" xm:type="action: Reads" to="id.31" f
<actionRelation xm:id="id.33" xm:type="action:Wites" to="id.3" f
</ codeEl enent >
</ codeEl enment >
</ nodel >
</ kdm Segnent >

12.23.5 Redefines Class

Redefines class represents the relationship between a MacroUnit and another MacroUnit (usually with the same name) where
the origin MacroUnit is a redefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the
redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are
expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current”
definition at the given point.

Superclass

AbstractCodeRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 151

Associations

to:MacroUnit[1] the old MacroUnit

from:PreprocessorDirective[1] the new MacroUnit

Constraints
1. The origin of the Redefines relationship should be a MacroUnit.

Semantics

The implementer shall identify and represent redefinitions of macro units according to the semantics of the particular
preprocessor.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

#define A 1
#define A 2
#undef A

#pragma once

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: code="http://wm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdn¥"htt p: // wwwv. ong. or g/ spec/ KDM 20160201/ kdnt
name="Preprocessor Directives exanple">
<nodel Xni:id="id.0" xni:type="code: CodeMbdel ">
<extensionFam ly xm:id="id. 1" > _
<stereotype xm:id="id.2" nane="directive">)
<tag xm:id="id.3" tag="directive_type" type="String"/>
</ stereot Iy_pe_>
</ ext ensi onFami | y>)) .
<codeEl ement xmiid="id.4" xm:type="code: Macrolnit" name="A">
<sour ce | anguage="Cpreprocessor" snippet="#define A 1"/>
</ codeEl ement>)))))
<codeEl ement xmi:id="id.5" xm:type="code: Macrolnit" name="DEBUG' ki nd="option">
<sour ce | anguage="Cpreprocessor" sni ppet="#defi ne DEBUG'/ >
</ codeEl ement>)))
<codeEl ement xmi:id="id.6" xm:type="code: Macrolnit" name="A">
<sour ce | anguage="Cpreprocessor " sni ppet="#define A 2"/>]
<codeRel ation xm :id="1d.7" xm:type="code: Redefi nes" to="id.4" from="id.6"/>
</ codeEl enent >)]]))
<codeEl ement xni:id="id.8" xmi:type="code: MacroUnit" name="A" ki nd="undefined">
<sour ce | anguage="Cpreprocessor" sni ppet="#undef A"'/>))
<codeRel ati on xm :id="1d.9" xm:type="code: Redefi nes" to="id.6" from="id.8"/>
</ codeEl enent>))))
<codeEl emrent xmi:id="id.10" xm: t)g)ez" code: PreprocessorDirective"
stereotype="id. 2" nanme="dl1">)
<t aggedVal ue xm:id="id. 11" xm :type="kdm TaggedVal ue" tag="id.3" val ue="pragma once"/>
<sour ce | anguage="Cpreprocessor" sni ppet="#pragma once"/>
</ codeEl enment >
</ nodel >
</ kdm Segnent >

Miscellaneous Code Elements

152 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.24 Comments Class Diagram

The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the
Comments diagram are shown in Figure 12.22.

sr|
{nubaat oenedt e, orSered

Commenlsil |

A 0 N0 N wramer LOMITENE
1

suEsply oW

Figure 12.22 - Comments Class Diagram

12.24.1 CommentUnit Class

NOTE:KDM14-29

The CommentUnit is a meta-model element that represents comments in existing systems (including any special
comments). CommentUnit element can be used to introduce comments during transformation of the existing system
(including special comments).

Superclass

ModelElement

Attributes

text:String the representation of the comment

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. The
implementer shall make an adequate decision on how to associate line comments with the surrounding elements in the
source code.

CommentUnit is a special element as it is a subclass of ModelElement, and not of KDMEntity. In addition to owned
CodeElement, each AbstractCodeElement can own zero or more ordered CommentUnit. The order of CommentUnit is
independent on the order of owned CodeElement. CommentUnit does not have SourceRef. The only connection of
CommentUnit to the SourceFile is through the owner code element.

KDM implementation shall decide how to associate CommentUnit with the corresponding code element. At a minimum,
CommentUnit shall be owned by the corresponding Module, but typically they are owned by some Codeltem that are
owned by the Module. Thus, each code element can have one or more SourceRef as well as associated comments.
CommentUnit may be derived from sources other than the original SourceFile.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 153

CommentUnit is similar to Annotation element, however since CommentUnit is a subclass of ModelElement, it shall
represent the text related to the system under investigation, and opposed to an Annotation, which shall represent text
added during analysis.

Example

See example in section “Visibleln Class”.

12.24.2 AbstractCodeElement Class (additional properties)

Associations

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement

Semantics

12.25 Visibility Class Diagram

The Visibility class diagram defines meta-model elements that represent visibility of code elements in their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.23.

| pin grea gl e o —
o |

M i i o iU |

Figure 12.23 - Visibility Class Diagram

12.25.1 Namespace Class

The Namespace is a specific meta-model element that represents the target of the Visibleln or Imports visibility
relationships.

Superclass

Codeltem

154 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

groupedCode:Codeltem[0..*] A KDM group of code elements that belong to the namespace. The actual
owners of these elements are the corresponding modules, not the namespace,
since namespaces can, in general cross cut the module boundaries.

Constraints
1. Namespace element should not belong to own group.

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses.
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

An anonymous namespace can represent a group of code elements that are the target of an Imports relationship.

12.26 VisibilityRelations Class Diagram

NOTE:KDM14-231

The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their
corresponding containers. The classes and associations of the VisibilityRelations diagram are shown in Figure 12.24.

o i e L i ki Dt

4oy -

spdefinan from; — radedinan from}
Winilkain £ oxde e

el pei b, DaRER R . : : (rmlea Ounrsra) -
e "e b
ra
n ubmaiy inEoind 'Mr'n'\-'.l ol ik 1E4 FUERHS Flansf)

Figure 12.24 - VisibilityRelations Class Diagram

12.26.1 Visibleln Class

The Visibleln is a specific meta-model element that represents semantic relation between two code items, where one
provides the restricted visibility context for another code item.

Superclass

AbstractCodeRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 155

Associations

from:Codeltem[1] The Codeltem visibility of which is specified.
to:Codeltem[1] The Codeltem that provides the visibility context.
Semantics

Visibleln optional relationship represents an association between a code item and one of the containers that corresponds to the
visibility scope of the first item. This relationship is optional, since all other KDM relationships are determined by the
semantics of the target language, including the visibility rules.

Example

NOTE:KDM14-15, KDM14-178, KDM14-308

File a.cpp

nanespace ab

[* comrent #1 to foo */

/1 comrent #2 to foo

f 0o() .

L ; //coment to action elenent al }

i
anmespace ab {
/ Comment to record type bar
truct bar)
int // Comment to integer type)
foobar ; // Comment to itemunit foobar }

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns:action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://wwm. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdme"ht t p: / / www. on%(or g/ spec/ KDM 20160201/ kdnt
nane="Visibility and Comment anpl e" >
<nodel xmi:id="id.0" xni:type="code: CodeMdel ">
<codeEl ement xm:jid="id, 1" xn1:type="code:CodeAssenblﬂ'?
<codeEl ement xm :id="id.2" xm:type="code: NanespaceUnit"
nanme="abp" groupeddee:"ld.4 id9i1d. 13"/>
<codeEl ement xm :id="id,3" xm:type="code: ConpilationUnit" nane="a">
<codeEl ement xm :id="id.4" xn]:tgpe:Tcode:CaIIabIeUnlt"
nane="foo" type="id.8" kind="regular">
<commrent text="Conmment #1 to foo"/>
<comment text="Conment #2 to foo"/>))
<codeRel ation xm :id="id.5" xm:type="code:Visibleln" to="id.2" from="id.4"/>
<codeEl ement xm :id="id.6" xm:type="action:ActionEl enent” ki nd="Nop" name="al">
<comment xmi:id="id.7" text="Conment to action elenent al"/>
</ codeEl enent>)))
<codeEl ement xm:id="id.8" xm:type="code: Signature" nanme="foo"/>
</ codeEl enent>)))
<codeEl ement xm :id="id. 9" xm:type="code:|nteger Type" nanme="int">
<comment xm:id="id.10" text="Comment to integer tyPe"/>
<codeRel ation xm :id="id.11" xm :type="code:Visibleln" to="id.2"/>
</ codeEl enent >
</ codeEl ement>)))))
<codeEl ement xm :id="id, 12" xm :type="code: Conpil ati onUnit" name="b">
<codeEl ement xm :id="id. 13" xm :type="code: RecordType" nanme="bar">
<comment xm:id="id.14" text="Conment to record.trpe bar"/>)
<codeRel ation xm :id="id.15" xm :type="code:Visibleln" to="id.2" from="id.13"/>
<itemUnit xm:id="id.16" nane="foobar" type="id.9">
<comment xm:id="id.17" text="Conmment to itemunit foobar"/>)
<codeRel ation xm :id="id.18" xm :type="code: Visibleln" to="id.13" fron="id.16"/>
</itenmnit>
</ codeEl enent >
</ codeEl enent >
</ codeEl enment >
</ nodel >

156 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</ kdm Segment >

12.26.2 Imports Class

The Imports meta-model element represents an association between two Codeltems where one Codeltem “imports”
definitions from another. The “import” relationship is common to several programming languages (for example, the
import statement in Java). In this relationship the origin Codeltem (usually, a CompilationUnit or a subclass of Module)
resolves the visibility of certain names that are defined (owned) by the target Codeltem (usually, another CompilationUnit
or some other subclass of Module, but possibly a NamespaceUnit from another Codeltem, or even an individual code
element). The Imports class simply represents the “import” relationships between Codeltem, for example, for tracking
dependencies between packages. KDM representations themselves do not require additional import statements in order to
have relationships between Codeltem, or even between different models.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.

to:Codeltem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.
Constraints
1. The origin of the Imports relationship should be a subclass of Module.

Semantics

The implementer shall identify and represent import directives and their targets according to the semantics of the
programming language of the existing software system.

12.27 ExtendedCodeElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedCodeElements class diagram defines two viewpoint-specific generic elements for the code model as
determined by the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.25.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 157

A v e i e s

i

T ‘|' s
{ reckelinas o

Eoddreas | (oo from CodeReiations g ﬁ'ﬂ"&?«:rl‘r
E = - . FE
‘, Sl g b rsErard {sulrigty nbound]
CogeElement

Figure 12.25 - ExtendedCodeElements Class Diagram

12.27.1 CodeElement Class (generic)

NOTE:KDM14-58

The CodeElement is a generic meta-model element that can be used to define new extended meta-model elements through
the KDM light-weight extension mechanism.

Superclass

Codeltem

Constraints
1. CodeElement should have at least one stereotype.

Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended
meta-model entity type of the code model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.27.2 CodeRelationship Class (generic)

NOTE:KDM14-58

The CodeRelationship is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] the Codeltem

158 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

to:KDMEntity[1] the KDMEntity

Constraints
1. CodeRelationship should have at least one stereotype.
Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

159

160 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

13 Action Package

13.1 Overview

The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule,
in a given KDM instance, each instance of an action element represents some programming language construct,
determined by the programming language of the existing software system. Each instance of an action meta-model element
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually
represents one or more statements, and an action relationship usually represents a usage of a name in a statement.

13.2 Organization of the Action Package
The Action package consists of the following 11 class diagrams:
» ActionElements
» ActionFlow
» ActionlInheritances
 CallableRelations
» DataRelations
« ExceptionBlocks
e ExceptionFlow
e ExceptionRelations
* InterfaceRelations
» UsesRelations
» ExtendedActionElements
The Action package depends on the following packages:
* Core
e kdm

e Source

13.3 ActionElements Class Diagram

NOTE:KDM14-63, KDM14-190

In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with
specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 161

model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action
package defines most of the relationship types to the Code model. Together, Action, and Code packages constitute the
Program Elements Layer of KDM.

The ActionElements diagram defines the following classes determined by the KDM model pattern:
¢ ActionElement — main class of the Action package.

< AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations.

A s e 0 - Dt i vonies A
vas e R e |2
{nubs ety owresdM sintion . oo e,
AclisnElmict 1
-
-
1 i b b
Bschling | R
st tain ERRL
44 banre. e ol T, O 3Rl
Abina e (W pain Edpmet

o]

Figure 13.1 - ActionElements Class Diagram

13.3.1 ActionElement Class

NOTE:KDM14-30, KDM14-190, KDM14-23

The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for a large number of
explicit KDM relations that describe control and data flow between various code elements. ActionElement can be linked
to the original representation through the SourceRef element from the Source package.

Superclass

AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.

162 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

actionRelation: ActionRelationship[0..*] Ordered action relationships originating from the given action element.

{ordered}

codeElement: AbstractCodeElement]0..*] Ordered owned code elements (for example, nested action elements, or
nested BlockUnits, or nested definitions of datatypes and computational
objects).

Constraints
1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements.

2. Compound ActionElement shall have an EntryFlow to the logically first owned ActionElement

Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even
a part of a programming language statement. The implementer shall select the granularity of the action elements. As a
minimum, each ControlElement should own at least one ActionElement so that it can be the endpoint of all
ActionRelationships originating from the corresponding ControlElement. Static analysis grade KDM implementations
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex
A. For non-micro KDM implementation, the value of the kind is not normative.

The implementer shall map programming language statements and other descriptions of behavior into KDM
ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action
represents an entire set of leaf actions owned directly or indirectly.

ActionRelation owned by ActionElement are ordered. This is used, for example, to match actual and formal parameters,
and to represent access to composite and derived datatypes.

13.3.2 AbstractActionRelationship Class (abstract)

The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an
ActionElement.

Superclass
KDMRelationship

Semantics

Usually, an action relationship corresponds to some usage of a hame in a programming language statement. Action
relationships originate from ActionElements as opposed to code relationships that originate from code elements.
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 163

13.3.3 BlockUnit Class

NOTE:KDM14-23, KDM14-22, KDM14-259

The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements.
BlockUnit can also represent initialization blocks of individual ControlElement, ClassUnit, CompilationUnit and
CodeAssembly. These BlockUnit own ActionElement related to initialization of global, static and local variables and
creation of static objects.

Superclass

ActionElement

Associations

codeElement:AbstractCodeElement[0..*] owned code elements including nested BlockUnits

Constraints

1. BlockUnit shall have an EntryFlow relation to the logically first ActionElement

Semantics

A BlockUnit is a logical container for action elements. BlockUnit is similar to a composite ActionElement that can also
contain nested ActionElement and data elements. BlockUnit represents nested ActionElement which are found in the
given software system, while a generic compound ActionElement is an internal mechanism to manage complex
ActionElement collections, in particular, those related to micro-KDM.

BlockUnit is used as a container for various ActionElement that are involved in the initialization of global, static and
local variables in various CompilationUnit of a CodeAssembly. Such BlockUnit are called “initialization blocks". In
micro KDM, an initialization block shall have a kind="Init". Semantics of the initialization blocks describes
representation of control and data flow between initialization blocks using EntryFlow, Flow and Calls relations.

Semantics of initialization blocks:

1) Each CompilationUnit shall have an EntryFlow relation to the first initialization block for the CompilationUnit, if one
is required.

2) Each initialization block shall have Flow relation to next initialization block within the same CompilationUnit, if
required.

3) KDM implementation shall provide correct initialization order between multiple initialization blocks within each
CompilationUnit.

4) Code Assembly shall have an EntryFlow relation to the initialization block, called the "master” initialization block, if
one is required.

5) KDM implementation shall provide correct initialization order between initialization blocks of separate modules. This
order is typically undefined in the programming language and depends on the linker and the order in which modules are
built.

6) KDM implementation shall determine appropriate owner for the initialization blocks.

164 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

7) KDM implementation shall provide appropriate chaining of initialization blocks across separate CompilationUnits
within a CodeAssembly through the "master” initialization block in the CodeAssembly. The "master” initialization block
owned by CodeAssembly owns an ActionElement with a sequence of Calls relations to each CompilationUnit that has an
initialization block, in appropriate order. The last Calls relation is to the entry point of the CodeAssembly, for example,
"main". Further, the initialization ActionElement owned by initialization blocks can be targets of HasValue relations from
the corresponding DataElements.

Example
See example in section “HasValue Class”.
13.3.4 AbstractCodeElement (additional properties)

Associations

entryFlow:EntryFlow[0..*] EntryFlow relationships that associate the given abstract code element and some
action elements owned by it, which are designated as the entry actions.
Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple
EntryFlow elements represent nondeterministic control flow.

13.4 Actioninheritances Class Diagram

The ActionlInheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2
captures these classes and their associations.

st

T ey | ATV i v A |

Rz Lo ek Amﬁ'irl.;n‘-um'lhdrlunr.hp

Figure 13.2 - ActionIinheritances Class Diagram

13.5 ActionFlow Class Diagram

NOTE:KDM14-231

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements.
The class diagram shown in Figure 13.3 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 165

AL D D Do

[uanls mhoa e

{recirfinan
o Iy i sewtiry Pl
| el wwirs 155 s sbmii, L pdi el e
C onenalFlos AciienEhement r——
.-"_"r__:!: I'-l:'_ n- = fpubueiy ingound]
~ & 1 1
~ g LY |nuEnpls cuiEzamd]
i et culsund) kit
s ; "" |reciatines drom)
.l_.r Y o
R L [resdelres. ko]
' '.‘_ i
J.. b1 ‘
TeusFiom FatiuFlow 5, EstractCodpfiament |
L o) a1
i
GuardedFlow

Figure 13.3 - ActionFlow Class Diagram

13.5.1 ControlFlow Class (generic)

NOTE:KDM14-58

The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is
further subclassed with more specific modeling elements. ControlFlow class could be used to represent programming
constructs that are not covered by any of the specific subclasses as an extension point.

Superclass

AbstractActionRelationship

Associations

from:ActionElement|[1] the origin of the control flow

to:ActionElement[1] The target of control flow, when represented by the next action element in
the trace determined by the control flow.

Constraints

1. ControlFlow class should always be used with a stereotype.

166 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base
element for new extended meta-model elements, representing specific control flow relationships not covered by the
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

The implementer shall map control flow mechanisms of the given programming language into ControlFlow meta-
elements. The implementer shall adequately represent the control flows of the existing system by a set of action elements
and ControlFlow relationships between them.

13.5.2 EntryFlow Class

NOTE:KDM14-23

The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or
action, from CompilationUnit to initialization block, from a callable unit to the initialization block, from a class to the
initialization block, from BlockUnit to the logically first internal action or from a compound action to the logically first
internal action.

Superclass

AbstractActionRelationship

Associations

from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that
represents its behavior.

to:ActionElement[1] The action element that is selected when the owner element is called.

Constraints

1. Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a
corresponding EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

2. The “to” attribute of an EntryFlow element should be an ActionElement that is owned by the
AbstractCodeElement that is the “from” attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind "Init."

2. Initialization code can belong to a ControlElement, CompilationUnit, or CodeAssembly.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 167

3. The EntryFlow relationship is used in a uniform way for describing entry points to other KDM code elements. It
should be used for any type of special flows, e.g., entry to a CodeAssembly to initialization Block or action, from
Module to initialization block, from callable unit to initialization block, from class to initialization block, or from
compound action to the first internal action.

4. The CodeAssembly shall include the "master” initialization block that owns an ActionElement with action
kind="Init" and a sequence of Calls relaitons to the inidividual CompilationUnits in appropriate order, followed by
another Calls relation to to the logical entry point of the CodeAssembly, for example "main". The initialization
blocks of individual CompilationUnit referred to by the "master” block do not need to have the Flow relationship
at their last action element. The control flow is returned to "master" initialization block.

Additional semantics of initialization blocks is described in sections “BlockUnit Class” and “HasValue Class”.

Example

See example in section “HasValue Class”.

13.5.3 Flow Class

The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to
the “from” attribute of the Flow.

Superclass
ControlFlow
Constraints

1. If there is one or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same
action element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.4 TrueFlow Class
The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that
« the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

« the ActionElement that corresponds to the “to” attribute of the TrueFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the TrueFlow when the value of the condition is true.

Superclass
ControlFlow
Constraints

1. If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow elements that
have the same ActionElement as the “from” attribute (but there can be FalseFlow).

168 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal,
when condition is not satisfied.

13.5.5 FalseFlow Class

The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such
that

« the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and

« the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the FalseFlow when the value of other conditions is not satisfied.

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements.
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedFlow.

Superclass

ControlFlow

Constraints
1. If there exists a FalseFlow element, there should be either:

e acorresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same
ActionElement as the “from” attribute, or

+ one or more GuardedFlow elements that have the same ActionElement as the “from” attribute, and

« there are no other relationship elements that are subclasses of FlowRelationship that have the same
ActionElement as the “from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.6 GuardedFlow Class

The GuardedFlow class is a modeling element that represents control flow relationship between two or more
ActionElements such that:

« the ActionElement that corresponds to the “from” attribute of the GuardedFlow represents the selection statement (for
example, a “switch” statement); and

« the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that
determines a branch of control flow; and

« the branch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedFlow
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the
guarded condition in the context of the selection statement is satisfied.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 169

FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch
of control flow, for example, to represent the default branch of a switch statement.

Superclass

ControlFlow

Constraints

1. If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of
FlowRelationship that have the same ActionElement as the “from” attribute, with exception of one or more
GuardedFlow elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that corresponds to the “to” attribute of the GuardedFlow has
kind="Guard.” It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram

NOTE:KDM14-23, KDM14-231

The CallableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate
ActionElement to ControlElement and represent control flows of the existing software system.

The CallableRelations diagram describes the following types:

e Calls - is amodeling element that represents a call-type relationship between an ActionElement and a CallableElement
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the
CallableElement represents the element being called.

« Dispatches - is a modeling element that represents a call-type of relationship between an ActionElement and a data
item, in which the ActionElement represents some form of a call, and the data item represents a pointer to a procedure

type.

170 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The class diagram shown in Figure 13.4 captures these classes and their relations.

A D DT i DR RS
—]
Dk patePu & - = nd] "
H msanly sutboand [Calls
'
|rubpin nEoang " naisapdn. nbepsrd;
- .
Iresisline s &
1 radnirea iz|
—_—
DartaElemani [l (R
| 0 | |CooE)]
rhi
Hi 1 1 rosielnes rom
rainlirea |
{redefres Fromd

Bz ponE ki m

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class

NOTE:KDM14-23, KDM14-147

Calls is a modeling element that represents a call-type relationship between an ActionElement and a Codeltem, which can
be a ControlElement or one of its subclasses, or an entire CompilationUnit. The ActionElement represents some form of
a call statement, and the Codeltem represents the element being called. In the meta-model the Calls element is a subclass
of ActionRelationship.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the action element from which the call relation originates
to:Codeltem[1] the target Codeltem
Semantics

Calls relationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent a call to a
procedure, a static method, a non-static method of a particular object instance, a virtual method, or an interface element. Calls
relationship also represents the control flow between initialization blocks.

Calls relation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.
Precise semantics of a call can be represented by the “kind” element of the owner ActionElement, according to the guidelines

provided in the “micro KDM” compliance point.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 171

When a method call by pointer or reference, a virtual method or an interface element are called, the name of the method is
known, and KDM uses relation Calls which is to an explicitly defined ControlElement and a "VirtualCall" micro action kind.
When a procedural call by pointer is made, the name of the target procedure is not known, and KDM uses relation Dispatches,
which is to a DataElement and a micro action kind "PtrCall". In each case the exact target of the call is not known statically.

Example

See examples in sections “CallableUnit Class”, “HasValue Class”, “Dispatches Class” and Chapter 14 “Micro KDM”.

13.6.2 Dispatches Class

NOTE:KDM14-147

Dispatches is a modeling element that represents a by pointer relationship between an ActionElement and a data item. The
ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element from which the call relation originates.
to:DataElement[1] The data element that represents the pointer to a procedure type.
Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be
required to determine the real targets of the Dispatches call.

When a method call by pointer or reference, a virtual method or an interface element are called, the name of the method
is known, and KDM uses relation Calls which is to an explicitly defined ControlElement and a "VirtualCall" micro action
kind. When a procedural call by pointer is made, the name of the target procedure is not known, and KDM uses relation
Dispatches, which is to a DataElement and a micro action kind "PtrCall". In each case the exact target of the call is not
known statically.

Example (C)

NOTE:KDM14-15, KDM14-19, KDM14-308

int bar(int
voi d foobar ()

oP=Poo:
Ef =bar ;
pf(1);

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns:xm ="http://ww. ong. or g/ spec/ XM/ 20110701"
Xxm ns:action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://wm. ong. or g/ spec/ KDM 20160201/ code")
xm ns: kdne"htt p: // www. ong. or g/ spec/ KDM 20160201/ kdm' nane="Di spat ch Exanpl e" >

172 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<nodel xmi:id="id.0" xni:type="code: CodeMddel ">))]
<codeEl ement xm:id="id.1" xm :type="code: Conpil ationUnit" name="Di spatch.c">
<codeEl ement xmi:id="id.2" xm:type="code: Cal | abl eUnit"
_ nanme="foo" tyge:"l d. 4" kind="regul ar">))
<codeRel ation xm:id="id.3" xm:type="code: HasType" to="id. 14" fron¥"id.2"/>
<codeEl ement xmi:id="id.4" xm:type="code: Signature" nane="foo">
<parameterUnit xm:id="id.5" name="a" tgpezj'l d.13"/>
<paraneterUnit xm:id="id.6" type="id.13" kind="return"/>
</ codeEl enent >
</ codeEl enent >)])
<codeEl ement xmi:id="id. 7" xm:type="code: Cal | abl eUnit"
~ nane="bar" type="id.9" kind="regular">))
<codeRel ation xm :id="id.8" xm:type="code: HasType" to="id. 14" fron¥"id.7"/>
<codeEl ement xmi:id="id.9" xm:type="code: Signature" nane="bar">
<paraneterUnit xm:id="id.1l0" nhane="a" tgpef_'l d.13"/>
<paraneterUnit xm:id="id.11" type="id. 13" kind="return"/>
</ codeEl enent >
</ codeEl enent>))]
<codeEl ement xmi:id="id.13" xni:type="code:|nteger Type" nanme="int"/>
<codeEl ement xmi:id="id.14" xm:type="code: TypeUnit" name="fp" tP/pe:"l d.34">
<codeEl enent _xmi :id="id. 34" xni:type="code: Poi nter Type" name="pf" >)
<codeEl enent _xmi :id="id. 35" xni:type="code:|tenbnit" name="ipf" type="id.15">
<codeEl ement xmi :id="id.15" xm: ti/ e="code: Si gnature" nane="f">
<paranmeterUnit xm:id="id.16" nane="a" tgpe:'_'l d.13"/>
<paraneterUnit xm:id="id.17" type="id.13" kind="return"/>
</ codeEl enent >
</ codeEl enent >
</ codeEl enent >
</ codeEl ement>))))
<codeEl ement xmi:id="id.18" xm :type="code: Cal | abl eUnit" nane="foobar" type="id.33">
<entryFlow xm :id="id. 19" to="id.20" fronme"id.18"/>
<codeElement xm :id="id.12" xm : t)/pe="code: Storabl eUnit" nanme="pf"
ki nd="l ocal " type="id.14"/>
<codeHEl enment xmi :id="i
<actionRel ation xm
<actionRel ati on xmi
<actionRel ation xm:i
</ codeEl ement>)
<codeEl enent xm:id="id.2
] =

d. 20" xm :type="action: ActionEl enent" nane="al" kind="Ptr">
id="id. 21" xm :type="action: Addresses" to="id.2" fronr"id.20"/>
d="id. 22" xm:type="action:Wites" to="id.12" fron¥"id.20"/>
d="id. 23" xm:type="action: Flow' to="id.24" from="id.20"/>

4" xm :type="action: Acti onEl enent" nanme="a2" kind="Ptr">
"id. 25" xmi:type="action: Addresses"” to="id.2" fronF"id.24"/>
"id.26" xm:type="action:Wites" to="id., 12" fron¥"id.24"/>
"id. 27" xm:type="action:Flow' to="id.28" from"id.24"/>

<actionRelation xm:id
<actionRelation xm:id
<actionRelation xm:id

</ codeEl ement>)))))

<codeEl ement xmi:id="id.28" xm:type="action: Acti onEl ement" nanme="a3" kind="PtrCall">
<codeEl ement xm :id="id.29" xm:type="code: Val ue" name="1" type="id.13"/>
<actionRel ation xm:id="id.30" xm:type="action: Addresses" to="id. 12" fron¥"id.28"/>
<actionRelation xm:id="id.31" xm:type="action: Reads" to="id.29" fron¥"id.28"/>
<actionRel ation xm :id="id.32" xm :type="action: D spatches"

to="id.12" from="id.28"/>
</ codeEl ement>)))
<codeEl ement xm :id="id.33" xm:type="code: Si gnature" nanme="foobar"/>
</ codeEl enment >
</ codeEl enent >
</ model >
</ kdm Segment >

13.7 DataRelations Class Diagram

NOTE:KDM14-231

The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at
Figure 13.5.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 173

A ¢ DAL DT e DR

DataElemient
1 =i

(=l
| rindlnEs. b L L rindEes 1|

o+ (sebe inbound)

|nubuwiy rbond]
Abdresses Ruwtds Wrines Grodies
o 3" [0. e o:
) ciuboen by Culbrourall T [us=aniy culboansd] [mutamiy. nbosrad,
(L0 o S — |resiabnan o)
: , N !) {hwhati oultsmane;
|SuErS S SulEansl|] ActonERmen 1
rom
s "
|rediabnal o) 1 SR 1 i [redeines. 12|
s 1
. " [redulran brzm| —
Compaiatknallopct {1 iy Datarype
|ende) s

Figure 13.5 - DataRelations Class Diagram

13.7.1 Reads Class

The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the
DataElement).

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Reads relationship.
to:DataElement[1] The DataElement that is the source of the flow of data.
Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.2 Writes Class

The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

174 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Writes relationship.
to:DataElement[1] The DataElement that is the sink of the flow of data.
Semantics

Writes relationship represents an association between an action element, which implements a flow of data to a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.3 Addresses Class

Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied
to the elements of the data structure, or where an address of a data element is taken.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Addresses relationship.
to:ComputationalObject[1] The Computational object that is being accessed.
Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data
element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.4 Creates Class

The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a
new instance of the Datatype.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Creates relationship.

to:Datatype[1] The DataElement that is instantiated by the ActionElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 175

Semantics

Creates relationship represents an association between an action element that creates a new instance of a certain data
element to the corresponding datatype according to the semantics of the programming language of the existing software
system.

13.8 ExceptionBlocks Class Diagram

The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the
optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to
have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special
ParameterKind value kind="exception” to represent parameter passing via exception mechanism or kind="catchall” to
represent the catch all construct in C++.

Bl K Uil

-

Exceptaniin |
",
N

RS

& i .

Trylina | Catchiwit
| FnlI!:II1I

Figure 13.6 - ExceptionBlocks Class Diagram

13.8.1 ExceptionUnit Class

ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which
can own both ActionElement (for example, statements in the catch-block) as well as Codeltem (for example, parameters
to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass

BlockUnit

176 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2 TryUnit Class

TryUnit class is a meta-model element that represents try-blocks common to several programming languages. TryUnit is
a container for action elements and associated definitions of Codeltems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass

ExceptionUnit

Semantics

TryUnit represents a try-block.

13.8.3 CatchUnit Class

CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object
passed to the catch-block by the exception-handling mechanism.

Superclass

ExceptionUnit

Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow
relationship that originates from some TryUnit.

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow
relationship.

13.8.4 FinallyUnit Class

FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is
associated with the code responding TryUnit through an ExitFlow relation.

Superclass

ExceptionUnit

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 177

Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow
relationship that originates from some TryUnit.

2. TryUnit should not be associated with more than one FinallyBlock.
Semantics
FinallyBlock represents a finally-block associated with a certain try-block.

Example (Java)

NOTE:KDM14-15, KDM14-16, KDM14-183, KDM14-308

class A
void foo() {
try {

bar () ;

cat ch(Exception e% {)
println("Somet hing went wong");

finally {
FI’I ntl n(" Good bye");
hrows MoreDescri ptiveException {

this.arr[20] = 20;
rintln(arr);

voi d bar(
r

t
try {

catch (1 ndexCQut O BoundsException e) {

println("Cops");
throw new "went too far"

: }
flnalllypr{i ntin(arr); }

int[] arr = new int[10]

cl ass MoreDescripti veException extends Exception {
public MoreDescriptiveException(String nsg){
?uper(msg) ;

}

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnent xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code")
xm ns: Igdm:"_httg: /I wamv. ong. or g/ spec/ KDM 20160201/ kdni nane="Excepti ons Exanpl e">
<nodel xmi:id="id.0" xni:type="code: CodeMdel ">)
<codeEl ement xmi:id="id,1" xm:type="code: d assUnit" nane="A">
<codeEl emrent xm:id="id.2" xm:type="code: Met hodUnit" nanme="fo00"
net hodKi nd="net hod" type="id.71">
<entryFlow xm :id="id.3" to="id.4" fron="id.2"/>
<codeEl ement xm:id="id.71" xm:type="code: Si gnature">
</ codeEl enent>))))
<codeEl ement xmi:id="id.4" xm:type="action: TryUnit"
<entryFlow xmi:id="id.91" to="id.5" from="id. 4"/>)
<codeEl ement xm :id="id.5" xm:type="action:ActionEl ement” name="al" kind="Call">
<actionRelation xm:id="id. 6" xm:type="action:Calls" to="id.23" frone"id.5"/>
</ codeEl enent >

nanme="t 1" >

id 7" xm:type="action:Flow' to="id.5" fron¥"id.4"/>
d. 8" xm :type="action: ExceptionFl ow'
0" from="id. 4"/ >
<actionRel ation xm :id="id.9" xm:type="action:ExitFlow' to="id.17" from="id.4"/>
</ codeEl enent >

<codeEl emrent xmi:id="id.10" xm :_té/pez" action: CatchUnit" nane="cl">
<entryFl ow xm :id="id.92" to="id.12" from="id. 10"/>

178 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeEl enent xni:id="id.11" xni:type="code: ParaneterUnit" nanme="e" type="id.67"/>
<codeEl ement xmi:id="id, 12" xm :type="action: ActionEl enent" nane="a2" kind="Call">
<codeEl ement xmi:id="id.13" xm:type="code: Val ue")

) _nane="" ; Sonet hi ng went w ong" ;" type="id.69"/>)
<actionRel ation xm :id="id.14" xm :type="action: Reads" to="id.13" fron¥"id.12"/>
<actionRel ation xm:id="id. 15" xnm:type="action:Calls" to="id.66" from="id.12"/>

</ codeEl enent > o) . .))
<actionRel ation xm:id="id. 16" xm:type="action:Flow' to="id.12" frone"id. 10"/ >
</ codeEl ement>)))])
<codeEl ement xmi:id="id.17" xm :.té/pez" action: FinallyUnit" name="f1">
<entryFlow xm :id="id.93" to="id. 18" fron¥"id.17"/>)
<codeEl ement xmi:id="id, 18" xm :type="action: ActionEl enent" nane="a3" kind="Call">
<codeEl ement xmi:id="id. 19" xm :type="code: Val ue"

) _ nane="" ; Good bye" ;" type="id.69"/>)
<actionRel ation xm :id="id.20" xm :type="action: Reads" to="id.19" fron¥"id.18"/>
<actionRel ation xm :id="id.21" xm:type="action:Calls" to="id.66" from="id.18"/>

</ codeEl enent > o)))))
<actionRel ation xm:id="id.22" xm:type="action:Flow' to="id.18" fronme"id. 17"/ >
</ codeEl enent >
</ codeEl ement>)))
<codeEl ement xmi:id="id.23" xm :type="code: Met hodUnit" nane="bar"
net hodKi nd="net hod" type="id.57">)
<entryFlow xm :id="id, 24" to="id.25" fronr"id.23"/>
<codeEl ement xmi:id="id.25" xm :_té/pe:" action: TryUnit" nanme="t2">
<entryFlow xm :id="id. 94" to="id.26" frone"id.25"/>
<codeEl ement xmi:id="id.26" xm:type="action: Acti onEl enent"
~_ nane="a4" kind="ArrayRepl ace">
<source xm:id="id.27" |anguage="Java' snippet="arr[20]=20"/>)
<codeEl ement xmi:id="id.28" xm :type="code: Val ue" nane="20" type="id.70"/>
<actionRel ation xm:id="id.29" xm :type="action: Addresses"

) . to="id.59" fron¥"id.26"/>)))
<actionRel ation xm :id="id.30" xni:type="action: Reads" to="id.28" frone"id.
<actionRel ation xm :id="id.31" xm :type="action: Reads" to="id.28" fron¥"id.26"/>
<actionRel ation xm :id="id. 32" xm :type="action:Wites" to="id.61" from="id.26"/>
<actionRel ation xm:id="id. 33" xm:type="action:Flow' to="id.34" frone"id.26"/>

</ codeEl ement>)
<codeEl ement xm:id="id.3
<actionRel ation xm :id=
<actionRel ation xni:id=
</ codeEl enment > o)))))
<actionRel ation xm:id="id. 37" xm:type="action: Flow' to="id.26" from="id.25"/>
<actionRel ation xm :id="id.38" xm:type="action: Excepti onFl ow
)) to="id. 40" from="id.25"/>)))
<actionRel ation xm:id="id.39" xm:type="action: ExitFlow' to="id.52" from="id.25"/>
</ codeEl ement>))))
<codeEl emrent xmi:id="id.40" xm :_té/pez" action: CatchUnit" nanme="c2">
<entryFlow xm :id="id.95" to="id.42" fronF"id.40"/>))
<codeEl enent xni:id="id. 41" xni:type="code: ParaneterUnit" nane="e" type="id.68"/>
<codeEl ement xmi:id="id. 42" xm :type="action: Acti onEl ement"” name="a6" ki nd="Call">
<codeEl ement xmi:id="id.43" xm:type="code: Val ue"

) ~ nane="" ; Cops" ; " type="id.69"/>))
<actionRel ation xm:id="id.44" xm:type="action: Reads" to="id.43" fron¥"id.47"/>
<actionRel ation xm:id="id.45" xm:type="action:Calls" to="id.66" fron"id.42"/>
<actionRelation xm:id="id. 46" xm:type="action:Flow' to="id.72" from="id. 42"/>

</ codeEl emrent > . .) . .
<codeEl ement xmi:id="id.72" xm:type="action: Acti onEl ement" name="a8" ki nd="New'>
<codeEl ement xm :id="id.73" xm:type="code: Storabl eUnit"
~ type="id. 69" kind="|ocal"/>)
<actionRel ation xm:id="id.74" xm:type="action: Creates"
~ to="id.48" fron¥"id.72"/>)))
<actionRel ation xm:id="id:75" xm:type="action:Flow' to="id.76" fronm="id.72"/>
</ codeEl ement>))))
<codeEl enent xm :id="id. 76" xm :type="action:ActionEl enent" name="a8"
ki nd="Met hodCal | ">)
<codeEl enent xmi:id="id. 48" xni:type="code: Val ue"
~ nanme=""Went too far"" type="id.69"/>
<actionRel ation xm:id="id. 77" xm:type="action: Addresses"
~ to="id.73" from"id.76"/>)))
<actionRelation xm:id="id.78" xm:type="action: Reads" to="id.48" fron¥"id.76"/>
<actionRelation xmi:id="id.79" xm:type="action:Calls" to="id.73" from="id.76"/>
<actionRel ation xm:id="id: 80" xm:type="action:Flow' to="id.47" frone"id.72"/>
</ codeEl enent>)))))
<codeEl erent xmi:id="id.47" xm :type="action: Acti onEl ement” nanme="a7" ki nd="Throw'>
<codeEl ement xm :id="id. 48" xm:type="code: Val ue")

) . nanme="" ; Vent too far"" type="id.69"/>)

<actionRel ation xm :id="id.49" xnm:type="action:Reads" to="id.48" from="id.47"/>

oo
N
R
<

\

4" xm :type="action: Acti onEl ement” name="a5" kind="Call">
"id.35" xm:type="action: Reads" to="id.59" fron¥"id.34"/>
"id.36" xm:type="action:Calls" to="id.66" frone"id.42"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 179

<actionRel ation xm :id="id.50" xm:type="action: Throws" to="id.73" from="id.47"/>
</ codeEl enent > o)))))
<actionRelation xm:id="id.51" xm:type="action: Flow' to="id.42" frone"id.40"/>
</ codeEl enent>))) i)
<codeEl ement xmi:id="id.52" xm :.té/pe:" action: FinallyUnit" nanme="f2">
<entryFlow xm :id="id.96" to="id.53" frone"id.52"/>)
<codeEl ement xm :id="id.53" xm:type="action: ActionEl enent" name="a8" kind="Call">
<actionRel ation xm :id="id.54" Xm:type="action: Reads" to="id.59" fronm="id.53"/>
<actionRel ation xm :id="id.55" xm:type="action:Calls" to="id.66" from="id.42"/>
</ codeEl enent > o)))))
<actionRelation xm:id="id.56" xm:type="action:Flow' to="id.53" fronm"id.52"/>
</ codeEl enent>)))
<codeEl ement xm :id="id.57" xm :type="code: Si gnature">
<paraneterUnit xm:id="id.58" type="id.63" kind="throws"/>
</ codeEl enent >
</ codeEl enent >)))
<codeEl ement xm :id="id.59" xm :type="code: Menber Uni t"
nane="arr" type="id. 60" size="10">
<codeEl ement xm :id="id. 60" xm :type="code: ArrayType">
<itemnit xm:;id="id.61" type="id.70"/>
<indexUnit xm:id="id.62" type="id.70"/>
</ codeEl enent >
</ codeEl enent >
</ codeEl enent>)))
<codeEl ement xmi:id="id.63" xm:type="code:d assunit"
) name="Mbr eDescri pt1 veException" isAbstract="true">)
<codeRel ation xm :id="id.64" xm:type="code: Ext ends" to="id. 67" fron¥"id.63"/>
<codeEl ement xm :id="id.81" xm :type="code: Met hodUnit"
nanme="Mor eDescri ptiveExcepti on" net hodKi nd="constructor" type="86" >
<entryFlow xm :id="id.82" to="id.83" fronr"id.81"/>
<codeEl ement xmi:id="id.83" xni:type="action:ActionEl enent”
nanme="a9" ki nd="Met hodCal | ">))
<actionRel ation xm:id="id.84" xm:type="action: Reads"
~ to="id.87" fronr"id.83"/>)
<actionRel ation xm:id="id.85" xm:type="action:Calls"
to="id. 88" from="id.83"/>
</ codeEl enent >]])
<codeEl ement xmi :id="id.86" xm: té/ e="code: Si gnature">)
<paraneterUnit xm:id="id.87" type="id. 69" name="nsg" ki nd="byVal ue"/>
</ codeEl enent >
</ codeEl enent >
</ codeEl enent >
</ model >

<nodel xmi:id="id, 65" xm:type="code: CodeMddel " nane="Java conmon definitions">
<codeEl ement xm:id="id.66" xm :type="code: Cal | abl eUnit" name="println"/>
<codeEl emrent xmi:id="id. 67" xm:type="code: d assUnit" nanme="Exception"/>

<codeEl ement xmi:id="id.88" xm :type="code: Met hodUnit"
nanme="Exception" net hodKi nd="constructor" type="id.89" >
<codeEl emrent xmi:id="id.89" xm:t Sez"code:_& gnature">)
<paraneterUnit xm:id="id.90" type="id.69" name="nsg" ki nd="byVal ue"/>
</ codeEl enent >
</ codeEl enment >
</ codeEl enent >

<codeEl ement xmi:id="id.68" xm:type="code:d assUnit"
_hame="Arr ayl ndexQut Of BoundsException” isAbstract="fal se"/>
<codeEl ement xm:id="id.69" xm:type="code: StringType"/>

<codeEl enent xm :i
</ nodel >
</ kdm Segnent >

. 70" xm :type="code: | nt eger Type"/ >

13.9 ExceptionFlow Class Diagram

NOTE:KDM14-61, KDM14-231

ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions.

180 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw,
to another ActionElement that represents the catcher of the exception. The ExceptionFlow target could be a local
CatchUnit that will handle the exception or a point back to the TryUnit or simply another ActionElement.

Exception flow elements are gptional for LO KDM models. KDM export tools at LO compliance level may lack the full
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be
further analyzed by a different tool to add more information about the flow of control determined by the exception
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined
exceptions, tools should normally be able to capture the origin points by analyzing the various methods invoked and
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go a long way
in supporting complex analysis.

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if there is a finally clause, a finally flow would go from the TryUnit to the FinallyUnit to cover the finalization. The
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “The exception
handling mechanism is a non local control structure based on stack unwinding that can be seen as an alternative return
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 181

i i 8 E A PR A

ExitFleaw Sl Sl barsd] 05 05, DL Ex ppinnFlow

Hom
S il ol =T [ruzamis. nbard:

{redefirem from | [redeleea For|
i

.
ActionElsment

Tl
|relEld | ek i

Figure 13.7 - ExceptionFlow Class Diagram

13.9.1 ExitFlow Class

ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example,
ExitFlow can be used to relate a try-block with the corresponding finally-block.

Superclass
AbstractActionRelationship
Associations

from:ActionElement[1] ActionElement (for example, a try-block) for which the “on-exit” behavior
was specified.

to:ActionElement[1] ActionElement (usually, a finally-block) that represents the behavior that is
invoked upon successful exit of the origin block (“on exit™).

Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

13.9.2 ExceptionFlow Class

NOTE:KDM14-61

182 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The ExceptionFlow relationship represents an exception flow of control between an ActionElement that produces an
exception, such as a TryUnit, and the ActionElement that handles the exception, such as the corresponding CatchUnit.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the exception flow
to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.
Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the
existing software system.

13.10 ExceptionRelations Class Diagram

NOTE:KDM14-231

The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships
associated with exception handling mechanism common to various programming languages.

A A LA DA D e

— |redainan o) spciafinan
B U e Thirorws DariaE ki
sind ; 5i — 1=

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1 Throws Class

The Throws class is a meta-model element that represents throw-statements supported by several programming languages.
These are the user-defined throws for exception, as opposed to the so-called normal system exceptions and runtime
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their
throw entity, using the Throws relationship.

See sections ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling
mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 183

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The ActionElement that throws the exception.
to:DataElement[1] the exception data element being thrown
Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data
element that is associated with that exception. The implementer shall identify and represent these associations according
to the semantics of the programming language of the existing software system.

13.11 InterfaceRelations Class Diagram

NOTE:KDM14-231

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

A & i LA DR akha Dt fiade

Ireciatinan frem) win

AciieEument L . ComplasTa — | Codeitam
T o L]

[nstanis. culboans {subs el mbmnd|
Figure 13.9 - InterfaceRelations Class Diagram

13.11.1 CompliesTo Class

The CompliesTo is a meta-model element that represents an association between an action element that “uses” some
computational object, and the “declaration” of that computational object.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The origin of the relationship; action element that “uses” some computational
object.
to:Codeltem[1] the “declaration” of that computational object

184 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. The kind attribute of the Codeltem at the target of the CompliesTo relationship should be equal to “external” or
“abstract.”

2. The action element that is the origin of the “CompliesTo” relationship should own a callable or data action
relationship to some computational object and the target of CompliesTo relationship should be one of the
declarations of that computational object.

Semantics

See section InterfaceRelations of the Code package chapter.

13.12 UsesRelations Class Diagram

NOTE:KDM14-231

The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their
relations.

A i trie A € PRV e s g

cEnnlkemanl L UsesType resiingg i Databype
e 1 = = " (i

[el nbmnd]
Figure 13.10 - UsesRelations Class Diagram
13.12.1 UsesType Class

The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that performs a type cast or a type conversion.

to:Datatype[1] The datatype involved in a type operation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 185

Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind”
attribute of the action element. See the “micro KDM” chapter.

13.13 ExtendedActionElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedActionElements class diagram defines an additional viewpoint-specific generic element for the code model
as determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedActionElements diagram are shown in Figure 13.11.

A e e] & Do i s e
B = .
B liorE il Pl Bl
£ o | P ArtienRemliorshp 't iy
T pom
1
BidFL Iy s P gaibgady. inbond

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1 ActionRelationship Class (generic)

NOTE:KDM14-58

The ActionRelationship is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the origin action element

to:KDMEntity[1] the target KDM entity

Constraints
1. ActionRelationship should have at least one stereotype.

Semantics

186 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship types of the code model. This is one of the KDM extension points that can integrate

additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 187

188 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

14 Micro KDM

This clause describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM
compliance point (“micro KDM”).

Let’s use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing
software system. The term “macro action” should not be confused with the preprocessor directives common to certain
programming languages.

A KDM *“macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which
links it to the artifacts of the existing software system. KDM LO compliance point does not specify the semantics of a
KDM *“macro action” leaving it up to implementers to design the mapping from the programming languages involved in
the artifacts of the existing software systems and KDM.

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with
predefined semantics.

According to the “micro KDM” approach, the original “macro action” is treated as a container that owns certain “micro
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM
constrains the patterns of how to map the statements of the existing system as determined by the programming language
into KDM. This is similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft.NET.

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for
control and data flow analysis. Micro KDM is a rather high-level IR. Micro KDM actions are aligned with the 1SO 11404
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for
representing program elements.

Separation into a “macro action” and “micro actions” allows:

« The flexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example
to a source file or to an AST, providing a meaningful source ref (a macro action can still represent one or more
statements in the original existing system), and

< provides precise representation of the original “macro action” through a mapping to micro actions with predefined
semantics.

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control
and data flow analysis.

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned
ActionRelationships represent the parameters to the action element.

Each micro KDM action has the following 5 parts (Action Kind, Outputs, Inputs, Control, and Extras):

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 189

< Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the
“Call” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case
sensitive strings in Annex A.

e Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

« Inputs - Ordered incoming Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for a micro action.

< Control - owned outgoing control flow relationships for the action.

« Extras - owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind. For
example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model shall be a micro KDM action, where the operation performed by the
action is designated by the value of the action kind, specified in the list of the micro actions in Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and
runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM
model is determined by the semantics of the micro actions.

Semantics
Semantics of KDM micro actions is defined in Annex A: “Semantics of the Micro KDM Action Elements.”

Example

NOTE:KDM14-15, KDM14-76, KDM14-308

z=1+f(x,y);
*d[x+3]=1;
dly+3]=&z;
y=*d[x+3];

function foo does not comply to micro KDM semantic constraints;
function bar complies to micro KDM

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xml ns: xm ="http://ww. ong. org/ spec/ XM /20110701"
xm ns:action="http://ww. ong. or g/ spec/ KDM 20160201/ acti on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: kdnme"ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdm' name="M cro KDM Exanpl e" >
<model xm:id="id.0" xm:type="code: CodeMbdel ">
<codeEl ement xm:id="id.1" xm:type="code: CodeAssenbl y">
<codeEl ement xm :id="id.2" xm:type="code: CallableUnit" nane="foo" kind="regular">
<entryFlow xm:id="id.3" to="id.4" frone"id.2"/>
<codeEl ement xm:id="id.4" xm:type="action:ActionEl ement" name="f1" ki nd="unknown">
<source xm:id="id.5" |language="C"' snippet="z=1+f(x,y)"/>
<actionRelation xm:id="id.6" xm:type="action:Calls" to="id.107" fron¥"id.4"/>
<actionRelation xm:id="id.7" xm:type="action: Reads" to="id.97" frone"id.4"/>

190 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xm:id="id.8"

xm : type="action: Reads"

to="id.98" f

<actionRelation xm:id="id.9" xm:type="action:Wites" to="id.99"
<actionRelation xm:id="id.10" xm :type="action: Reads" to="id. 105"
<actionRelation xm:id="id.11" xm:type="action:Flow' to="id.12" f

</ codeEl enent >
<codeEl enent
<source xm:id="id.13"

xm :id="id. 12"
| anguage="C"

xm :type="action: Acti onEl enent"
sni ppet ="*d[x+3] =1; d[y+3] =&anp; z; y=*d[x+3]; "/ >

name="f 2"

ronF"id. 4"/ >
from="id. 4"/ >
from="id.4"/>
ronF"id. 4"/ >

ki nd="unknown" >

<actionRelation xm:id="id.14" xm :type="action: Reads" to="id.97" fron¥"id.12"/>
<actionRelation xm:id="id.15" xm:type="action: Addresses" to="id.100" from="id.12"/>
<actionRelation xm:id="id.16" xm:type="action: Reads" to="id.106" from="id.12"/>
<actionRelation xm:id="id.17" xm:type="action: Reads" to="id.105" from="id.12"/>
<actionRelation xm:id="id.18" xm:type="action: Addresses" to="id.100" from="id.12"/>
<actionRelation xm:id="id.19" xm :type="action: Reads" to="id.98" fronr"id.12"/>
<actionRelation xm:id="id.20" xm:type="action: Reads" to="id.106" from="id.12"/>
<actionRelation xm:id="id.21" xm:type="action: Addresses" to="id.99" fron¥"id.12"/>
<actionRelation xm:id="id.22" xm:type="action:Wites" to="id.98" from="id.4"/>
<actionRelation xm:id="id.23" xm:type="action: Addresses" to="id.100" from="id.12"/>
<actionRelation xm:id="id.24" xm:type="action:Reads" to="id.97" frone"id.12"/>
<actionRelation xm:id="id.25" xm:type="action:Reads" to="id.106" from="id.12"/>
</ codeEl ement >
</ codeEl enent >
<codeEl ement xmi:id="id.26" xm:type="code: CallableUnit" nane="bar" kind="regular">

<entryFl ow xm :id="id.27"
<codeEl enent
<source xm:id="id.29"

<codeEl enent xm :id="id.
type="id. 112"
<codeEl enent xm :id="id.

<actionRel ation xm :id="id.

<actionRel ation xm

<actionRel ation xm
<actionRel ation xm
<actionRel ation xm
</ codeEl enent >

<codeEl enent xm :id="id.

<actionRel ation xm :id="id.38"
<actionRel ation xm :id="id.39"
<actionRel ation xm :id="id.40"

</ codeEl enent >

<actionRelation xm:id="id.41"

</ codeEl enent >
<codeEl enent
<source xm:id="id.43"

<codeEl emrent xm:id="id.
type="id. 103"
<codeEl ement xmi:id="id.
type="id. 103"
<codeEl emrent xm:id="id.
type="id. 112"
<codeEl emrent xm:id="id.

to="id. 28"
xm :type="action: Acti onEl enent"
sni ppet ="z=1+f (x,y)"/ >

xm :id="id.28"
| anguage="C"

xm :id="id. 42"
| anguage="C"
<entryFl ow xm :id="id.96"

from="id.26"/>

30" xm :type="code: Storabl eUnit"
ki nd="regi ster"/>

to="id.50" from="id.42"/>

44" xm :type="code: Storabl eUnit"
ki nd="regi ster"/>

45" xm :type="code: Storabl eUnit"
ki nd="regi ster"/>

46" xm :type="code: StorableUnit"
ki nd="regi ster"/>

47" xm :type="code: StorableUnit"

xm :type="action: Acti onEl enent"
sni ppet ="*d[x+3] =1; d[y+3] =&anp; z; y=*d[x+3] ; "/ >

nanme="b1"

name="t 1"

nanme="b2"

name="t 2"
name="t 3"
name="t 4"
name="t5"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ki nd="conpound" >

31" xm:type="action:ActionEl ement" name="bl.1" kind="Call">
32" xm:type="action:Calls" to="id.107" frone"id.28"/>
;id="id.33" xm:type="action: Reads" to="id.97" from="id.28"/>
;id="id.34" xm:type="action: Reads" to="id.98" from="id.28"/>
:id="id.35" xm:type="action:Wites" to="id.30" from="id.31"/>
;id="id.36" xm:type="action:Flow to="id.37" frone"id.31"/>
37" xm:type="action:ActionEl ement" name="bl.2" kind="Add">
xm :type="action: Reads" to="id. 105" from="id.37"/>
xm :type="action: Reads" to="id.30" frone"id.37"/>
xm :type="action: Wites" to="id.99" from="id.37"/>
xm :type="action: Flow' to="id.31" from="id.28"/>

ki nd="conpound" >

191

type="id. 103"
<codeEl ement xm :id="id.
type="id. 112"
<codeEl emrent xm :id="id.
type="id. 103"
<codeEl ement xm :id="id.

<actionRel ation xm:id="id.51"
<actionRelation xm:id="id.52"
<actionRelation xm:id="id.53"
<actionRel ation xm:id="id.54"

</ codeEl ement >
<codeEl enent

<actionRel ation xm:id="id.

<actionRel ation xm:

<actionRel ation xm:
<actionRel ation xm:
</ codeEl ement >

<codeEl ement xm :id="id.
<actionRel ati on
<actionRel ation xm
<actionRel ation xm
<actionRel ation xm
</ codeEl ement >

<codeEl ement xm :id="id.
<actionRel ati on
<actionRel ation xm
<actionRel ation xm
<actionRel ation xm
</ codeEl enment >

<codeEl enent xm :id="id.

xm :id="id.55"
<actionRel ation xm:id="id.

xm :id="id. 62"

xm:id="id. 67"

ki nd="regi ster"/>

48" xm :type="code: Storabl eUnit" nane="t6"
ki nd="regi ster"/>
49" xm :type="code: Storabl eUnit" nane="t7"

ki nd="regi ster"/>

50" xm :type="action: ActionEl ement" name="b2.1" ki nd="Add">
xm :type="action: Reads" to="id.97" from="id.50"/>
xm :type="action: Reads" to="id. 106" from="id.50"/>
xm :type="action: Wites" to="id.44" from="id.50"/>
xm :type="action: Fl ow' to="id.55" from="id.50"/>

xm :type="action: Acti onEl ement" nanme="b2.2" kind="ArraySel ect">

56" xm :type="action: Addresses" to="id.100" fron¥"id.55"/>
57" xm :type="action: Reads" to="id.102" fron¥"id.55"/>
id="id.58" xm:type="action: Reads" to="id.44" from="id.55"/>
id="id.59" xm:type="action:Wites" to="id.45" from="id.55"/>
id="id.60" xm:type="action:Flow' to="id.61" fronme"id.55"/>
61" xm :type="action: ActionEl ement" name="b2.3" ki nd="PtrRepl ace">
xm :type="action: Addresses" to="id.45" fron¥"id.61"/>
id="id.63" xm:type="action: Reads" to="id.105" fron¥"id.61"/>
id="id.64" xm:type="action:Wites" to="id.104" fronr"id.61"/>
;id="id.65" xm:type="action:Flow' to="id.66" from="id.61"/>
66" xm :type="action:ActionEl ement" nanme="b2.4" ki nd="Add">

xm :type="action: Reads" to="id.98" from="id.12"/>
;id="id.68" xm:type="action: Reads" to="id.106" fron¥"id.12"/>
id="id.69" xm:type="action:Wites" to="id.46" fronr"id.66"/>
id="id.70" xm:type="action:Flow' to="id.71" from="id.66"/>
71" xm :type="action: ActionEl ement" name="b2.5" kind="Ptr">

<actionRelation xm:id="id.72" xm:type="action: Addresses" to="id.99" fron¥"id.12"/>
<actionRelation xm:id="id.73" xm:type="action:Wites" to="id.47" from="id.71"/>
<actionRelation xm:id="id.74" xm:type="action:Flow' to="id.75" from="id.71"/>

</ codeEl ement >

<codeEl ement xm :id="id.75" xm:type="action:ActionEl enent" name="b2.6" kind="ArrayRepl ace">

<actionRelation xm:id="id.76" xm:type="action:Addresses" to="id.100" from="id.12"/>
<actionRelation xm:id="id.77" xm:type="action:Reads" to="id.46" from="id.75"/>
<actionRelation xm:id="id.78" xm:type="action:Reads" to="id.47" from="id.75"/>
<actionRelation xm:id="id.79" xm:type="action:Wites" to="id.102" from="id.75"/>
<actionRelation xm:id="id.80" xm:type="action:Flow' to="id.81" from="id.75"/>

</ codeEl ement >

<codeEl enent xm:id="id.81" xm:type="action: ActionEl ement" name="b2.7" ki nd="Add">
<actionRel ation xm:id="id.82" xm:type="action:Reads" to="id.97" from="id.12"/>
<actionRel ation xm:id="id.83" xm:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xm:id="id.84" xm:type="action:Wites" to="id.48" fronm="id.81"/>
<actionRel ation xm:id="id.85" xm:type="action:Flow' to="id.86" from="id.81"/>

</ codeEl enment >
<codeEl enent

192

xm :id="id.86"
<actionRel ation xm:id="id.87"
<actionRel ation xm:id="id.88"

xm :type="action: Acti onEl ement" nane="b2.8" kind="ArraySel ect">
xm :type="action: Addresses" to="id. 100" from="id.12"/>
xm :type="action: Reads" to="id.48" from="id.86"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xm:id="id.89" xm:type="action:Reads" to="id.102" from="id. 86"/>
<actionRelation xm:id="id.90" xm :type="action:Wites" to="id.49" from="id.86"/>
<actionRelation xm:id="id.91" xm :type="action:Flow' to="id.92" from="id.86"/>
</ codeEl ement >
<codeEl ement xm:id="id.92" xm:type="action:ActionEl ement" nane="b2.9" kind="PtrSelect">
<actionRelation xm:id="id.93" xm:type="action: Addresses" to="id.49" frone"id.92"/>
<actionRelation xm:id="id.94" xm :type="action: Reads" to="id. 104" from="id.92"/>
<actionRelation xm:id="id.95" xm:type="action:Wites" to="id.98" from="id.92"/>
</ codeEl ement >
</ codeEl ement >
</ codeEl enent >
<codeEl ement xm:id="id.97" xm:type="code: StorableUnit" nane="x" type="id.112"/>
<codeEl ement xmi:id="id.98" xm:type="code: StorableUnit" nane="y" type="id.112"/>
<codeEl ement xmi:id="id.99" xm:type="code: StorableUnit" nane="z" type="id.112"/>
<codeEl ement xmi:id="id.100" xm :type="code: StorableUnit" name="d" type="id.101">
<codeEl ement xm :id="id.101" xm:type="code: ArrayType" nanme="">
<itemUnit xm:id="id.102" name="d[]" type="id.103">
<codeEl ement xm :id="id. 103" xm :type="code: Poi nter Type">
<itemUnit xm:id="id.104" nane="*d[]" type="id.112"/>
</ codeEl enent >
</itemnit>
</ codeEl ement >
</ codeEl enent >
<codeEl ement xmi:id="id.105" xm :type="code: Val ue" name="1" type="id.112"/>
<codeEl ement xmni:id="id.106" xm :type="code: Val ue" name="3" type="id.112"/>
<codeEl ement xmi:id="id.107" xm :type="code: CallableUnit" name="f" type="id.108">
<codeEl ement xm :id="id.108" xm :type="code: Signature">
<paranmeterUnit xm:id="id.109" name="a" type="id.112" pos="1"/>
<paranmeterUnit xm:id="id.110" name="b" type="id. 112" pos="2"/>
<paranmeterUnit xm:id="id.111" type="id. 112" kind="return"/>
</ codeEl ement >
</ codeEl enent >
</ codeEl enent >
<codeEl ement xmi:id="id. 112" xm :type="code: | ntegerType" nanme="int"/>
</ nodel >
</ kdm Segnent >

Example (C)

NOTE:KDM14-28

int i;
int sum=0;

for(i=0;i<10;i++) {sumt=i;}

KDM outline illustrating only the essential elements related to micro KDM:
I nteger Type name="int" id="int"

Val ue nane="0" id="0" type="int"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 193

Val ue nane="10" id="10" type="int"
StorableUnit name="i" type="int" kind="gl obal"
Storabl eUnit name="sun!' type="int" Kkind="gl obal"
HasVal ue 0
Acti onEl enent id="al" Kkind="conpound"
Acti onEl ement id="a2" ki nd="Assign"
Reads "0"
Wites "i"
Fl ows "a3"
ActionEl ement id="a3" kind="LessThan"
Reads "i"
Reads " 10"
TrueFl ow "a4"
Fal seFl ow "a4"
ActionEl ement id="a4" kind="Add"
Reads "sunft
Reads "i"
Wites "sunt
Fl ows "ab5"
ActionEl ement id="a5" kind="Incr"
Addresses "i"
Fl ows "a3"
Acti onEl ement id="a6" ki nd="Nop"
Example (C++)
NOTE:KDM14-28
int sunv0
for(int i=0;i<10;i++) {sumt=i;}

KDM outline illustrating only the essential elements related to micro KDM:

ki nd="gl obal "

I nteger Type name="int" id="int"

Val ue nane="0" id="0" type="int"

Val ue name="10" id="10" type="int"

Storabl eUnit name="suni' type="int"
HasVal ue "0"

Acti onEl ement id="al"
St orabl eUni t

Visib

194

type="int"

ki nd="1 ocal "

ki nd="conpound"
name="i"
eln "al"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Acti onEl enent id="a2" kind="Assign"

Reads " 0"
Wites "i"
Fl ows "a3"

Act i onEl ement i d="a3" kind="LessThan"

Reads "i"
Reads " 10"
TrueFl ow "a4"
Fal seFl ow "a4"
Acti onEl ement id="a4" kind="Add"
Reads "suni
Reads "i"
Wites "sunf

Fl ows "ab"

Act i onEl ement i d="a5" kind="Incr"

Addresses "i"
Fl ows "a3"

Acti onEl ement i d="a6" ki nd="Nop"

Example (C++)

NOTE:KDM14-18

Consider the following C++ fragment:
struct foo {

int x;

float vy;

int bar(return x+2; }
b
struct foo var;

struct foo* pvar;

Below there are several C++ statements in the context of the above fragment and the outline of the corresponding KDM,

illustrating only the essential elements related to micro KDM:

var.x = 5; Acti onEl erent id="al"

Addr esses "var"

Reads "5"
Wites "x"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ki nd="Menber Repl ace"

195

(&var)->y = 14.3; ActionEl enent id="al" kind="Ptr"

Addresses "var
Wites "r1"
Fl ows "a2"
ActionEl ement id="a2" kind="PtrSelect"
Addresses "r1"
Wites "r2"
Fl ows "a3"
Acti onEl enent id="a3" kind="MenberRepl ace"
Addresses "r2"
Reads "14.3"
Wites "y"
pvar->y = 22.4; ActionEl ement id="al" kind="PtrSelect”
Addresses "pvar"
Wites "r1"
Fl ows "a2"
Acti onEl ement id="a2" kind="Menber Repl ace"
Addresses "r1"
Reads "22.4"
Wites "y"
(*pvar),x =6; Acti onEl ement id="al" kind="PtrSel ect"
Addresses "pvar"
Wites "r1"
Fl ows "a2"
Acti onEl enent id="a2" kind="Menber Repl ace"

Addresses "rl1"

Reads "6"
Wites "x"
var.bar(1); ActionEl ement id="al" kind="MethodCall"
Addresses "var"
Reads " 1"
Calls "bar"

196 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

pvar->bar(1) Acti onEl ement id="al" kind="PtrSelect"
Addr esses "pvar"
Wites "ri1"
Fl ows "a2"
Acti onEl ement id="a2" kind="Virtual Call"
Addr esses "r1"
Reads " 1"
Calls "bar"
(&var)->bar(1); ActionEl enent id="al" kind="Ptr"

Addr esses "var"
Wites "rl1"
Fl ows "a2"
Acti onEl emrent id="a2" kind="Virtual Call"
Addr esses "r1"
Reads " 1"
Calls "bar"

Example (C++)

NOTE:KDM14-18, KDM14-261

Consider the following C++ fragment:

interface foo {

int bar(int);
b
class foobar inplements foo {
int x;
float vy;
int bar(int x){ return x+2;}
b
foo x=new foobar();
X. bar(1);

Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

I nteger Type id="int"
Fl oat Type id="float"
InterfaceUnit id="foo"

Met hodUnit nane="bar"

id="foo_bar"

Signature id="bar_signature"

Par anet er Uni t

i d="p1"

i sAbstract="true"

type="int"

met hodKi nd="net hod"

ki nd=" By Name"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

type="bar _si gnature"

197

ParameterUnit id="p2" type="int" kind="return"
ClassUnit name="foobar" id="foobar"
| npl enents "foo"
MenberUnit id="x" type="int"
Member Unit i d="y" type="float"
Met hodUnit nane="foobar" id="foobar_constr" nmethodKi nd="constructor"
Met hodUni t name="bar" id="foobar_bar" nmethodKi nd="net hod" type="foobar_bar_si gnature"
I mpl enentati onOf "foo_bar"
Si gnature id="foobar_bar_signature"
ParaneterUnit id="p3" nane="x" type="int" ki nd="ByNanme"
ParameterUnit id="p4" type="int" kind="return"
StorableUnit id="var_x" nane="x" type="foo"
ActionEl ement id="al" kind="New"
Addr esses "var_x"
Creates "foobar"
Fl ow "a2"
ActionEl ement id="a2" kind="MethodCall"
Addresses "var_x"
Calls "foobar_constr"
Fl ow "a3"
ActionEl ement id="a3" kind="Virtual Call"
Addr esses "var_x"
Reads "1"
Calls "foo_bar"

Example (C++)

NOTE:KDM14-18

class foo {
int x;
float vy;
static int getNane(return "foo"; }
b
foo:: get name();
Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

Acti onEl ement id="al" kind="Call"
Calls "get Nane"

198 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Example (C++)

NOTE:KDM14-18

Consider the following C fragment:
int bar(int x) {return x+ 2; }
typedef int (*pbar) (int);
pbar foo=bar;
(*pbar) (1);
Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:
ActionEl ement id="al" kind="PtrCall"
Addr esses "pbar"
Reads " 1"
Di spat ches "pbar"

Example (C++)

NOTE:KDM14-166

int i;
int *pi=&;

int & ri=i;

DataElement “pi” and “ri” shall be represented by the same KDM, so "ext" attribute could be used to distinguish between

them. The two DataElement can be also distinguished by their initialization.

KDM fragment outlining the essential micro actions:
I nt eger Type id="int" nanme="int"
Poi nter Type id="tpi" name="pint"

ItemUnit id="itpi" type="int" ext="int* tpi"
Poi nter Type id="tri" pame="rint"

ItemUnit id="itri" type="int" ext="int& tri"
StorableUnit id="i" name="i" type="int" ext="int i"
StorableUnit id="pi" nane="pi" type="pint"

HasType "tpi"

HasVal ue "al"

StorableUnit id="ri" nanme="ri" type="rint"

HasType "tri"

HasVal ue "i"

Bl ockUnit id="bi" kind="Init"
EntryFl ow "al"
ActionEl ement id="al" kind="Ptr"

Addresses "i"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

199

Wites "pi"

Below there are several C++ statements in the context of the above fragment and the outline of the corresponding KDM,
illustrating only the essential elements related to micro KDM:

i=1; ActionEl ement id="al" Kkind="Assign"
Reads " 1"
Wites "i"

(*pi)=1; ActionEl enent id="al" kind="PtrReplace"
Addresses "pi"
Reads "1"
Wites "itpi"

ri=2; Acti onEl ement id="al" Kkind="PtrRepl ace"
Addresses "ri"
Reads "2"
Wites "itri"

Example (C++)

NOTE:KDM14-166

References in C++ methods are handled through "byReference" ParameterKind as follows:

void square(int x, int& result)

{ result = x * x; }

KDM fragment outlining the essential micro actions:

I nt eger Type id="int" nane="int"

Cal | abl eUnit id="cul" name="square" type="sl"

Signature id="s1"

ParaneterUnit id="pl" nane="x" type="int" Kkind="byVal ue"
ParanmeterUnit id="p2" name="result" type="int" Kkind="byReference"
EntryFl ow "al"
ActionEl enent id="al" kind="Muiltiply"

Reads "pl"
Reads "p1l"
Wites "p2"

Note, that there is no ParameterUnit with kind="return", and no ActionElement with kind="Return"

200 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart Ill - Runtime Resources Layer

This sub part describes common patterns for representing the operating environment of existing software systems. The
following are the common properties of the Runtime Resources Layer packages Data, Ul, Platform, and Event:

They provide modeling elements to represent “resources” (something managed by the runtime platform).
They provide abstract “resource actions” to manage these resources.

These actions are implemented by the program elements as one or more API calls to some external platform-specific
packages.

There is a binding involved between the actions and the resources.

Resource may involve some “inverted” control in the form of callbacks and event handlers, allowing applications to be
programmed in event-driven style.

The content of the information flow involving the resource is associated with some data organization.

Resource often has a certain state, and tracking the changes of the state over time may be an important concern in
understanding the logic of the existing system.

Since Runtime Resources Layer packages capture high-value knowledge about the existing system and its operating
environment, which may involve advance analysis and some manual expertise KDM is designed in such a way that the
Runtime Resources Layer analysis can use KDM models from the Program Elements Layer as input and produce Runtime
Resources Layer models as output. There should be no references from lower KDM layers to higher layers; therefore, new
Runtime Resources Layer models can be built on top of existing Program Element layer models.

Packages of the Runtime Resources Layer package systematically uses the following KDM patterns:

Each Runtime Resources Layer package defines entities and containers to represent specific “resources.” Each
package may define additional elements to represent additional concerns. For example, the Data package involves less
resource definitions, and focuses on the representation of various data organization capabilities. The Event package
provides the meta-model elements for representing state, state transitions caused by events. States, transitions, and
events can be considered as runtime platform resources. The Ul package provides the meta-model elements for
representing user interfaces. User interfaces can also be considered runtime platform resources. The Platform package
deals with conventional runtime platform resources, such as inter-process communication, the use of registries,
management of data, etc.

Each Runtime Resources Layer package defines specific structural relations between “resources.” For example, the
Platform package defines relationship BindsTo, which represents a logical association between two resources.

Each Runtime Resources Layer package defines specific resource actions to represent manipulation of resource
through API calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base
abstract class for the corresponding package. This class is named AbstractXXXElement, where “XXX" is the name of
the package. So, the resource action is not a subclass of ActionElement, and this promotes modularity between KDM
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or
more ActionElements through property called “abstraction.” Each resource action also has the property called
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original
API calls as they were represented in the Program Elements layer input model. The “abstraction” property uses KDM
container mechanism to add the behavior counterparts to the API calls that represent the true logic of the resource
operation, including the flow of data and control. The “abstracted” ActionElements are owned directly by the
corresponding resource action, and are not part of any Code model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 201

< The nature of the resource-specific operation performed by a particular resource action is represented by the “kind”
attribute of the resource actions. The resource action owns resource action relations through the “abstraction” action
container. It is the owned “abstracted” action that is the direct owner of the resource action relationship.

« ‘“abstraction” action container property is in fact systematically added to all elements of Runtime Resources Layer
packages. This way each resource can use the meta-model elements defined in the Program Elements layer to specify
behavior specific to that resource.

e The “abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided
by runtime platforms. This pattern can be separately referred to as the KDM Event pattern. Each Runtime Resources
Layer package defines its own meta-model element for representing events. For example, the Ul package defines the
class UlEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements.
Calls relation originating from such an abstracted action element represents the “callback” mechanism, provided by
several runtime platforms.

Runtime Resources Layer packages are independent, however they can offer additional capabilities when more than one
is implemented. In order not to enforce any particular order in which these packages should be implemented, KDM
involves the following approach: resource action relationships are subclasses of the AbstractActionRelationship class
from the Action Package. In the full KDM implementation that uses all packages, all resource actions are available for
any ActionElement. Code models should not use the extended relationships. The extended resource action relationships
can only be used by the actions in “abstraction” action containers in Runtime Resources Layer models. A notable example
of this mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an
element of an event model with any resource. Another example is the “HasContent” relation defined in the Data package,
which allows associating an element of a data model with any resource.

« The “abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource
actions” and between resources to provide abstractions of the flow between “resource actions.”

e The Runtime Resources Layer patterns are aligned with the micro KDM, which allow precise modeling of behavior
related to resources as the foundation for holistic high-fidelity analysis of existing software systems. It can be achieved
by associating sets of precise micro KDM actions with “abstraction” action containers.

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform
independence.

202 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Binding time

e Generation time binding

« Language & platform design binding

e Versioning time

e Compile time binding, including
* macro expansion
« Templates

« Product line variants defined by conditional compilation

¢ Link time binding
e Deployment time binding
 Initialization time binding

¢ Runtime

Binding Time

What is being bound

Result

Generation time

Syntax, variant, pattern, mapping, etc.

Generated code

Language & platform design

Syntax, entities and relations,
including platform resource types

Source code

\ersioning Module source files Module version

Compile time Intra-module relations (def-use) Module
-- Macro Syntax, macro to expanded code Expanded macro (source code)
-- Template Template parameters Template instance

-~ Product line variant defined by
conditional compilation and
includes

Conditional compilation, macro,
includes, symbolic links.

Component Variant

(static) Link time

Intra-component relations within
deployable component

Deployed Component

Deployment time

Resource names to resources (using
platform-specific configuration files)

Deployed System

Initialization time

Component implementation to
component interface; major processes
and threads; dynamic linking,
dynamic load (using platform-specific
configuration files).

System

Run time

User input, object factory, virtual
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

203

204 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15 Platform Package

15.1 Overview

NOTE:KDM14-60

Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments
of existing software systems. Application code is not self-contained as it is determined not only by the selected
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

Runtime platform consists of many diverse elements (platform resources).

Platform provides resources to deployment components.

Platform provides services that are related to resources.

Application code invokes services to manage the life-cycle of a resource.

Control flow between application components is often determined by the platform.

Platform provides error handling across application components.

Platform provides integration of application components.

| Examples of Platform Resources include UNIX OS File System, UNIX OS process management system, Windows 2000,
0S/390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo,
CORBA, HTTP, TCP/IP, Eclipse, EJB, JMS, Database middleware, Servlets.

Platform package defines an architectural viewpoint for the Platform domain.

Concerns:

What are the resources used by the software system?

What elements of the run-time platform are used by the software system?
What behavior is associated with the resources of the run-time platform?
What control flows are initiated by the events in the resources?

What control flows are initiated by the run-time environment?

What are the bindings to the run-time environment?

What are the deployment configurations of the software system?

What are the dynamic/concurrent threads of activity within the software system?

Viewpoint language:

Platform views conform to KDM XMI schema. The viewpoint language for the Platform architectural viewpoint
is defined by the Platform package. It includes an abstract entity AbstractPlatformElement, several generic
entities, such as PlatformResource, RuntimeResource, as well as several concrete entities, such as

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 205

PlatformAction, PlatformEvent, External Actor, MarshalledResource, NamingResource, etc. The viewpoint
language for the Platform architectural viewpoint also includes several relationships, which are subclasses of
AbstractPlatformRelationship.

Analytic methods:

The Platform architectural viewpoint supports the following main kinds of checking:

Data flow (for example, what action elements read from a given resource; what action elements write to a given
resource; what action elements manage a given resource; including indirect data flow using a
MarshalledResource or a MessagingResource where a particular resource is used to perform a data flow between
the “send” action element and the “receive” action element).

Control flow (for example, what action elements are triggered by events in a given resource; what action
elements operate on a given resource).

Identify of resource instances based on resource handles in various modules.

Platform Views are used in combination with Code views and Inventory views.

Construction methods:

Platform views that correspond to the KDM Platform architectural viewpoint are usually constructed by
analyzing Code views for the given system as well as the platform-specific configuration artifacts. The platform
extractor tool uses the knowledge of the API and semantics for the given run-time platform to produce one or
mode Platform views as output.

As an alternative, for some languages like Cobol, in which the elements of the run-time platform are explicitly
defined by the language, the platform views are produced by the parser-like tools which take artifacts of the
system as the input and produce one or mode Platform views as output (together with the corresponding Code
views).

Construction of the Platform view is determined by the semantics of the run-time platform, and it based on the
mapping from the given run-time platform to KDM; such mapping is specific only to the run-time platform and
not to a specific software system.

The mapping from a particular run-time platform to KDM may produce additional information (system-specific,
or platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes, or annotations.

15.2 Organization of the Platform Package

The Platform package consists of the following 10 class diagrams:

206

PlatformModel
PlatformInheritances

PlatformResources

PlatformRelations

PlatformActions

ProvisioningRelations

Deployment

RuntimeResources

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

* RuntimeActions
* ExtendedPlatformElements

The Platform package depends on the following packages:

e Core

e kdm

e Code

* Action

15.3 PlatformModel Class Diagram

The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM

model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

Prlaticirrm A oo |
i

2.1
{uulrsels rrepdel

dAbdriracileforerRalrianyip

gt nillsmasi

4 abaan. e pE e

o e D 970 i e b rr i

Hpalinn
10 ulrka b orereedH kil |

A i 0 O S
1 s ialean osnachar)
- o"
FTWTER o.n g
[Bsrads] {alg0m prol

il Facien |07
Mo ment
BN

Figure 15.1 - PlatformModel Class Diagram

15.3.1 PlatformModel Class

|nusapin greasect et

[nizapdn. camesl TR aered|

PlatformModel is a specific KDM model that owns collections of facts about the existing software system such that these

facts correspond to the Platform domain. PlatformModel provides a container for platform elements.

Superclass

KDMModel

Associations

platformElement:PlatformElement[0..*]

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

owned platform elements

207

Semantics

PlatformModel is a logical container for platform elements. The implementer shall arrange platform elements into one or
more platform models.

15.3.2 AbstractPlatformElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of
software systems. The key subclasses of AbstractPlatformElement are PlatformResource, PlatformAction,
DeploymentResource, and RuntimeResource.

Superclass

KDMEntity

Associations

platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.
abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement|[0..*] Grouped association to the AbstractCodeElement element that are
represented by the current PlatformElement from some CodeModel.

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel.

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the
PlatformElement.

15.3.3 AbstractPlatformRelationship Class (abstract)

The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform
entities.

Superclass

KDMRelationship

Semantics

An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

208 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15.4 Platforminheritances Class Diagram

NOTE:KDM14-208

The PlatformInheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.

The classes and associations of the Platforminheritances diagram are shown in Figure 15.1.

L e T
fam)

A B frec i orm el fioos s

Pt corrr W ool | Abai

Figure 15.1 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram

NOTE:KDM14-60

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and

associations of the PlatformResources diagram are shown in Figure 15.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

209

spdarbss RER e

{nubvenin el e A B iAo Eleeraar
7 o o,
-. .
3
', e,
. -
.9 S
oaTEr , " PlaslermAction | (retmem o
4 s i .\.
bl et E | PlaiomBe s oe ", Hoing T
0 . .1
o N,
. :;_:"' .-'":' "-I.'-.. Ay
) 3
- .-.__.-__.- | AN "
- i L .
.-.-""' .-"'"-. s F I| LY 1‘-\.
£ 1 1Y 5 I |
TP . ’,ﬂ‘ r / | |\ ' x% Extaf nald e
F | S k
v i | Eummgﬂ.
o ._I' ——e]
| ™, i
MamEgResoures ;"r 1 ,
..' | l\'-\,. LY
—""—I LockRescurds SireamBessurce * +pi FormEkeTa
.
W 5. i el -0 £] [sutssets swinsiEmman]
r, 1 L
J_.-' | PlatfharmEvist
7 | ah k]
ErscudicnKescurce FileHesrce

Figure 15.2 - PlatformResources Class Diagram

15.5.1 PlatformResource Class

NOTE:KDM14-60

The PlatformResource is a meta-model element that represents a platform resource. The purpose of a platform is to
simplify application development by closing the gap between the application domain and the facilities that are available
to application programmers. The latter are referred to as platform resources. Examples of resource types include UNIX
File, UNIX 10 Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX
semaphore, UNIX shared memory segment, OS/390 VSAM file, JDBC connection, HTTP session, HTTP request, UNIX
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource.

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system.
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource
may be associated with logical packages for a particular programming language.

Superclass

AbstractPlatformElement

210 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

platformElement:AbstractPlatformElement[0..*] The set of platform elements that are owned by the given
PlatformResource.
Semantics
PlatformResource may represent an individual runtime resource instance or a container for several such instances.

The implementer shall identify runtime resources used by the existing software system according to the semantics of the
platform used by the existing system, resource configuration files, and other appropriate sources of information.

Specific subclasses of PlatformResource define specific categories of resources available to implementers. Other types of
resources can be represented by a generic instance of PlatformResource meta-model element with a stereotype.

15.5.2 NamingResource Class

NOTE:KDM14-60

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

15.5.3 MarshalledResource Class

NOTE:KDM14-60

MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource
is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

15.5.4 MessagingResource Class

NOTE:KDM14-60

MessagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 211

Superclass

PlatformResource

Semantics

15.5.5 FileResource Class

NOTE:KDM14-60

FileResource represents platform resources that provide any non-database related storage. In the meta-model the
FileResource class is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

15.5.6 ExecutionResource Class

NOTE:KDM14-60

ExecutionResource represents dynamic Runtime elements (e.g., process or thread).

Superclass

PlatformResource

Semantics

15.5.7 LockResource Class

NOTE:KDM14-60

LockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass

PlatformResource

Semantics

15.5.8 StreamResource Class

NOTE:KDM14-60

StreamResource represents a simple input/output resource, for example UNIX-like stream.

212 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

PlatformResource

Semantics

15.5.9 DataManager Class

NOTE:KDM14-60

DataManager represents a database management system. DataManager is associated with particular data elements that
represent the data description of the data managed by the data manager.

Superclass

PlatformResource
Semantics

15.5.10 PlatformEvent Class

The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

PlatformResource

Attributes

kind:String Represents the nature of the action performed by this Event.

Semantics

15.5.11 PlatformAction Class

PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the
action represented by a particular element is designated by its “kind” attribute.

Superclass

AbstractPlatformElement

Attributes

kind:String Represents the nature of the action performed by this element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 213

Associations

platformElement:PlatformEvent[0..*] The set of platform events that are owned by the given PlatformAction.

15.5.12 ExternalActor Class

External Actor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model External Actor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass

PlatformAction

Semantics

15.6 PlatformRelations Class Diagram

NOTE:KDM14-60, KDM14-231

The PlatformRelations class diagram defines associations between PlatformResources. The classes and associations of the
PlatformRelations diagram are shown in Figure 15.3.

ik Drae P e Rl Do

L L] rodeines i
Pltsrmisasurci Binda Ta Iﬂ.ﬂﬁw
] - | o

. PP — e
RO MR SUISoird|) . :|'

Figure 15.3 - PlatformRelations Class Diagram

15.6.1 BindsTo Class

NOTE:KDM14-60

BindsTo defines a semantic association between a PlatformResource and its binding target.

Superclass

PlatformRelationship

214 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

| from:PlatformResource[1] The PlatformResource that is the source of the relationship (the from-endpoint).
to:KDMEntity[1] The KDMEntity to which the current Resource is bound (the to-endpoint).
Semantics

Binding relation indicates that the binding target is involved in the operation of the Resource. The binding target can be an

Inventoryltem, or another ResourceType.

15.7 ProvisioningRelations Class Diagram

| NOTE:KDM14-231

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.4.

A g i P A DAOVRE o
+ITTAT:
=k
e] (redeieesd A bt SN e
D pleyedC omponant Hagquires |
| = =
(st castsogrd: cn uhariy inBound]

Figure 15.4 - ProvisioningRelations Class Diagram
15.7.1 Requires Class
Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass

PlatformRelationship

Associations

from:DeployedComponent[1] The DeployedComponent that is the source of the relationship (the from-
endpoint).

to:AbstractPlatformElement[1] The AbstractPlatformElement that is the target of the relationship (the to-
endpoint).

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

215

Semantics

15.8 PlatformActions Class Diagram

NOTE:KDM14-60, KDM14-188, KDM14-231

The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.5.

L o i Do g
T :‘L
CefinedBy Marages Rosmaroe Wi SRR s oo e RoadsResmroe Frodu e s FlafiemEve m
I l:.- n: 0" 0. o’ .- i .
TP p— e i [suirseth sulbound] [fnutests recud] [sdesom nbofre oo el o
[aask: mbeard;
E I] o (B i Pl {Bulliel b nsRrswind)
qH i)= T
i = [resjelmes, i37]
[redelees 1] Irgaeines k) |restebnes fal o |1 i
e o s .
[0 fregefies it} | PladormResource Eeie———
Hond : Sire
e s
ecbalnan rom
[ri=dalrnes Fom| 1 ’ .
ActionElmen et
|mclian] irpinfinas from

*Hrom
Tl efeas 1o |

Figure 15.5 - PlatformActions Class Diagram

15.8.1 ManagesResource Class

NOTE:KDM14-60

ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the
“kind” attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

216 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformResource[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models.

15.8.2 ReadsResource Class

NOTE:KDM14-60

ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformResource[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models

15.8.3 WritesResource Class

NOTE:KDM14-60

WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 217

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformResource[1] the resource being accessed

Constraints

1. This relationship should not be used in Code models.

15.8.4 DefinedBy Class

DefinedBy is a meta-model element that represents association between a platform resource and the logical package that
describes the interface to this resource. The Codeltem at the to-endpoint of this KDM relationship is usually an interface
or a package.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:Codeltem[1] the Codeltem describing the resource

Constraints

1. This relationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. The implementer shall correctly associate the platform resource with the
corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical description
of the package usually refers to some external implementation, as platform resources are usually described by some third-
party packages, provided as part of the runtime platform of the application. Individual API calls corresponding to the
given resource, should have the CompliesTo relations to the individual API descriptions the definition represented by the
Codeltem at the to-endpoint of the DefinedBy relationship.

15.8.5 ProducesPlatformEvent

NOTE:KDM14-188

ProducesPlatformEvent class follows the pattern of a "resource action relationship". This relation represents various
situations where an ActionElement produces a PlatformEvent. The action is usually an "abstracted" action owned by some
platform resource.

Superclass

Action::AbstractActionRelationship

218 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformEvent[1] the PlatformEvent being produced

Constraints

1. 1. This relationship should not be used in Code models.

Semantics

This relation represents various situation where an ActionElement produces a PlatformEvent.

15.9 Deployment Class Diagram

NOTE:KDM14-60, KDM14-81, KDM14-227

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.6.

A i i P i e i s

o Dby o e E e il

G
— =
Machirs
D piligy S an e Sy 1R
o1
R
PP i Tl T
[isands. praag| i o b, e {nibmein raTer]
TR DT i
: {aulriiohi Gf cogsa S e}
T CieployedRescurce
I I
] nr
il (11}
ST silaplrey e o ompa T e L LR T réaT Pl
T T Rt [T L0 T S | Sikrh s raTeind B i | Bk S el |
" ok o T vl
O, OO {eabaamm rasecE Wl
{wabash grospadlismaci]
Plartformsfe s owrce

|enge)

Figure 15.6 - Deployment Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 219

15.9.1 DeploymentElement Class (generic)

NOTE:KDM14-60, KDM14-81, KDM14-227

The DeploymentElement is a generic class is a common meta-model element for various classes related to deployment of
computational objects and related platform resources across multiple nodes. The DeploymentElement class itself is a
concrete class that can be used as an extended code element, with a certain stereotype. As an extended element
DeploymentElement is more specific than AbstractPlatformElement.

Superclass

AbstractPlatformElement

Constraints

1. DeploymentElement class shall be used with at least one stereotype.

Semantics

Concrete subclasses of DeplayedElement are described in subsequent clauses.

15.9.2 DeployedComponent Class

NOTE:KDM14-60, KDM14-81, KDM14-227

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform resources
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

Superclass

DeploymentElement

Associations

groupedCode:Module[0..*] The code components that are deployed to the target DeployedComponent (KDM
grouping association).

Semantics

15.9.3 DeployedSoftwareSystem Class

NOTE:KDM14-81, KDM14-227

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. Each SoftwareSystem involves one or more Components. Some components
can be involved in more than one SoftwareSystem (allowing description of the so-called Software Product Lines). Each

220 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Component involves one or more model Modules. Again, each Module can be involved in more than one Component.
Component is a unit of deployment. Each logical component can be deployed multiple times, each time represented by a
unique DeploymentComponent element. DeployedSoftwareSystem is a counterpart of the corresponding logical
SoftwareSystem.

Superclass

DeploymentElement

Associations

groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.

Semantics

15.9.4 Machine Class

NOTE:KDM14-81, KDM14-227

The Machine is a meta-model element that represents the hardware node which hosts deployed components.

Superclass

DeploymentElement

Associations

deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.
deployedResource:DeployedResource|0..*] The set of DeployedResource elements deployed to this node.
Semantics

15.9.5 DeployedResource Class

NOTE:KDM14-60, KDM14-81, KDM14-227

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of PlatformResource elements.
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated
with multiple DeployedResources.

Superclass

DeploymentElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 221

Associations

platformElement:PlatformResource[0..*] The set of PlatformResource elements that are deployed into the target
DeployedResource.

Semantics

15.10 RuntimeResources Class Diagram

NOTE:KDM14-60

The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example,
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in
many cases relations between the dynamically created instances of processes and threads are an essential part of the
knowledge of existing systems. Another example of dynamic structures involves deployed components that are loaded
dynamically.

The classes and associations of the RuntimeResources diagram are shown in Figure 15.7.

Flartform®as o i

RuniimaR segrce

bl I

Thread Prores
¥

Figure 15.7 - RuntimeResources Class Diagram

15.10.1 RuntimeResource (generic)

NOTE:KDM14-60

The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource
is used as the endpoint of certain relationships.

Superclass

PlatformResource

222 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics
15.10.2 Process Class
The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Semantics

15.10.3 Thread Class

The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

Superclass

RuntimeResource

Semantics

15.11 RuntimeActions Class Diagram

| NOTE:KDM14-231

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.8.

A B P R T i

faubmaiy mrbcared | {subsely Rbmnd]

wom Loads Tepkyed omponent

Bz thoniE ki m
| WD |

0
redalna ko]

{rechefinay W

i 5 FLiniim i Fops o
{idabai rom)

| sikt iy L] Suldat neund]

Figure 15.8 - RuntimeActions Class Diagram

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

223

15.11.1 Loads Class

The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

AbstractPlatformRelationship

Associations

from:ActionElement[1] “abstracted” action element owned by some resource
to:DeploymentComponent[1] The component that is being loaded.
Semantics

15.11.2 Spawns Class

7

The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation
relationship between a SpawningService action endpoint and the Runnablelnterface (Process or Thread).

Superclass

AbstractPlatformRelationship

Associations

from:ActionElement[1] “abstracted” action element owned by some resource
to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being spawned.
Semantics

15.12 ExtendedPlatformElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedPlatformElements class diagram defines two viewpoint-specific generic elements for the code model as
determined by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.9.

224 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A e D i T D e R DO i

el
»poirdiresy FroaT

. fredebres =] MO
_— ars PlaTarife s tep _ .

Y T]

Placiorm Ele it

Figure 15.9 - ExtendedPlatformElements Class Diagram

15.12.1 PlatformElement Class (generic)

NOTE:KDM14-58

The PlatformElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformElement

Constraints
1. PlatformElement should have at least one stereotype
Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity types of the platform model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

15.12.2 PlatformRelationship Class (generic)

NOTE:KDM14-58

The PlatformRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 225

Associations

from:AbstractPlatformElement[1] the platform element endpoint

to:KDMEntity[1] the target of the relationship

Constraints
1. PlatformRelationship should have at least one stereotype

Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the platform model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

226 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

16 Ul Package

16.1 Overview

The Ul package defines a set of meta-model elements whose purpose is to represent facets of information related to user
interfaces, including their composition, their sequence of operations, and their relationships to the existing software

systems.

The Ul package defines an architectural viewpoint for the Ul domain.

e Concerns:

What are the distinct elements of the user interface of the systems?
What is the organization of the user interface?

How user interface uses artifacts of the system (for example, images)?
What data flows originate from the user interface?

What data flows output to the user interface?

What control flows are initiated by the user interface?

« Viewpoint language:

Ul views conform to KDM XMI schema. The viewpoint language for the Ul architectural viewpoint is defined
by the Ul package. It includes an abstract entity AbstractUIElement, several generic entities, such as UIResource,
UlDisplay, as well as several concrete entities, such as Screen, Report, UlField, UlAction, UIEvent, etc. The
viewpoint language for the Ul architectural viewpoint also includes several relationships, which are subclasses of
AbstractUIRelationship.

¢ Analytic methods:

The Ul architectural viewpoint supports the following main kinds of checking:

Data flow (for example, what action elements read from a given Ul element; what action elements write to a
given Ul element; what action elements manage a given Ul element).

Control flow (for example, what action elements are triggered by events in a given Ul element; what action
elements operate on a given Ul element).

Workflow (what Ul elements will be displayed after the given one; what Ul elements are displayed before the
given one).

Ul Views are used in combination with Code views and Inventory views.

* Construction methods:

Ul views that correspond to the KDM Ul architectural viewpoint are usually constructed by analyzing Code
views for the given system as well as the Ul-specific configuration artifacts. The Ul extractor tool uses the
knowledge of the APl and semantics for the given run-time platform to produce one or mode Ul views as output.

As an alternative, for some languages like Cobol, in which the elements of the Ul are explicitly defined by the
language, the Ul views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode Ul views as output (together with the corresponding Code views).

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 227

e Construction of the Ul view is determined by the semantics of the Ul platform, and it based on the mapping
from the given Ul platform to KDM; such mapping is specific only to the Ul platform and not to a specific
software system.

* The mapping from a particular Ul platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes or annotations.

16.2 Organization of the Ul Package
The Ul package consists of the following 6 class diagrams:

¢ UlModel

¢ UllInheritances

¢ UlResources

« UlRelations

e UlActions

« ExtendedUIElements

The Ul package depends on the following packages:

e Action
e Code

e kdm

e Source
* Core

16.3 UIModel Class Diagram

The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to static representations of the principal components of a user interface. The class diagram
shown in Figure 16.1 captures these classes and their relations.

228 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Ui ol

Hrmacda A s frapc LA A o e

suEsnls medel:

s IR pindinn

e T, T

=T
subnabs owrsdE berend: U7
Afgerac AERTen - A A I O N T
" T pleETET b (o]
nr
1 —
S |01 {wabanm prosspd
fubrsin AT N
suEsels Jrousest brand
ek afs ceprredlh mranl ordead |
s pbmirmcfion |0
AL ma3nE heimia i
B3

Figure 16.1 - UIModel Class Diagram
16.3.1 UIModel Class
The UlModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass

KDMModel

Associations

UIElement:UIElement[0..*] user interface elements owned by the given UIModel

Semantics

UlModel provides a container for various user-interface elements. The implementer shall arrange user-interface elements
into one or more UIModel containers.

16.3.2 AbstractUIElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractUIElement is the abstract superclass for various concrete user interface elements. As such, it is the class that
represents both compound and elementary items in a model of a system’s user interface. The key subclasses of
AbstractUIElement are UIResource and UlAction.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 229

Associations

UlRelation:AbstractUIRelationship[0..*] Ul relationships originating from the given Ul element
abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to AbstractCodeElement from some CodeModel that
are represented by the current Ul element.

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

The implementer shall map specific user interface element types determined by the particular user-interface system of the
existing software system, into concrete subclasses of the AbstractUIElement. The implementer shall map each user
interface element into some instance of the AbstractUIElement. Implementation elements are one or more
ComputationalObjects or ActionElements from some CodeModel that are represented by the current Ul element.
“Abstraction” actions may be used to represent precise semantics of the Ul Element.

16.3.3 AbstractUIRelationship Class (abstract)
The AbstractUIRelationship is the abstract superclass for various user interface relationships.
Superclass

KDMRelationship

Semantics

The implementer shall map specific user interface association types determined by the particular user-interface system of
the existing software system, into concrete subclasses of the AbstractUIRelationship. The implementer shall map each
user interface association into some instance of the AbstactUIRelationship.

16.4 Ullnheritances Class Diagram

NOTE:KDM14-208

The Ullnheritances class diagram defines how classes of the Ul package are related to the meta-model elements defined
in the Core package. The classes and associations that make up the UlInheritances class diagram are shown in Figure
16.2.

230 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A ks

PR

Lo | A

Ty

yir)

doar e WA et

Figure 16.2 - Ulinheritances Class Diagram

16.5 UIResources Class Diagram

The UIResource class diagram defines several specific KDM containers that own collections of user interface elements.
The class diagram shown in Figure 16.3 captures these classes and their relations.

L AERME

{subsels caredbimmarcl]

Adsz oSN

ne

PN

IR s Surcs

HTNTHT
dnubmain ATer

o

Ll il play

~

|
UFisad

Seraan Ble port

N\

Figure 16.3 - UIResources Class Diagram

T Ukeien

shing - |

Tl
(msbaarn ramar

N\

FEwani

dhind - SErng

tLIE et

16.5.1 UIResource Class (generic)

% whaa. e e

The UlResource is the superclass for several user interface elements that can be containers for other user interface
elements. For example, it represents a compound unit of display. This is a generic element.

Superclass

AbstractUIElement

Associations

UIElement:UIElement[0..*]

Ul elements owned by this UIResource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 231

Constraints
1. UIResource should have at least one stereotype.
Semantics

UIResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2 UlDisplay Class (generic)

The UlIDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UIResource

Constraints
1. UIDisplay should have at least one stereotype.
Semantics

UlDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3 Screen Class

The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of AbstractUIElement and its subclasses.

Superclass
UlDisplay
Semantics

16.5.4 Report Class

The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of AbstractUIElement and its subclasses.

Superclass
UlDisplay

Semantics

16.5.5 UlField Class

The UlField is a unit of display, such as a control on a form, a text field on a character-mode terminal, or a field printed
on a report.

Superclass
UIResource

232 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

16.5.6 UlEvent Class

The UlEvent class is a meta-model element representing various events and callbacks associated with user interfaces.
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
UIResource

Attributes

kind:String represents the nature of the action performed by this Event

16.5.7 UlAction Class

UlAction class follows the pattern of a “resource action” class, specific to the Ul package. The nature of the action
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUIElement

Attributes

kind:String represents the nature of the action performed by this element
Associations
UIElement:UIEvent[0..*] Ul events owned by this UlAction

Semantics

16.6 UlRelations Class Diagram

NOTE:KDM14-231

The UlRelations class diagram provides basic meta-model constructs to define the binding between elements of a display
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 233

A i IO A s i

LIF low

| S By
ST BlY SR

1 Adns b ipe BN Nersviriet
S
pr i — o

1 [R
|resdalinan. ia] [— o

e 3
jreielmes. bper|

Figure 16.4 - UIRelations Class Diagram

16.6.1 UlFlow Class

The UlFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of
Display to another.

Superclass

AbstractUIRelationship

Associations

from:AbstractUIElement[1]

to:AbstractUIElement[1]

Semantics

16.6.2 UlLayout Class

The UlLayout relationship class captures an association between two instances of Display — one that defines the content
for a portion of a user interface, and one that defines its layout.

Superclass

AbstractUIRelationship

Associations

from:UIResource[1] the origin Ul Resource

to:UIResource[1] the target Ul Resource

234 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

16.7 UlActions Class Diagram

NOTE:KDM14-189, KDM14-231

The UlActions class diagram defines several KDM relations for the Ul package. It provides basic meta-model constructs

to define the sequence of display in a user interface, and the mapping between a user interface and the events it may

generate.

The class diagram shown in Figure 16.5 captures these classes and their relations.

e D 4] £ Dot O S Ay
Abzirac e iansinp Farcliove) }
—f "
- x
sl o |realees. 1
LI
fnubmah inEound] 1 1
a
o 5 - v ! L]
sima Isplags elres 13
play od [LE s =] (rad S | Sk B il |
1 . 1 Maragesi] R rdadi LI Writes Ul
[rubmeiy nbrand] gt moend] .
ket el
| sulenain o] I= : TR i LE ot el [Ia =
(redelines i} P TTEn ST] [ERFSTEL EOT SO e R D
im |1 .
rom
mi:-_m:i-lh apoe {reciwiinas from)
¥ R] 1 v
AcliorE mment fradelres, o)
1 {achon] 1 o
T] ek 17007y
+roaT i sl
|readerlingy Ao b

Figure 16.5 - UlActions Class Diagram

16.7.1 Displays Class

iragedirasy froamd

ProducesUIEvEm

o~
[ndn. inbsndd)

|Sulrs ety oalrmned] 4y (§ [re=deiees ic]

UiEwant
o S

The Displays relationship class represents the relationship between an instance of Callablelnterface and the instance of

UIElement that is presented on the interface as a result of the execution of the Callableinterface.

Superclass

AbstractUIRelationship

Associations

from:ActionElement[1]

to:UIResource[1]

the ActionElement that displays a certain Ul resource

the target Ul resource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

235

Semantics

16.7.2 Displaysimage Class

The Displaysimage captures the relationship between an image file — an instance of Image — and its presentation on a user
interface — an instance of DisplayUnit.

Superclass

AbstractUIRelationship

Associations

from:ActionElement[1] The ActionElement that displays a certain Image.
to:Image[1] the target Image element
Semantics

16.7.3 ManagesUl Class

ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources that are not related to the flow of data to and from the resource. ManagesUI relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the UlAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

Constraints

1. This relationship should not be used in Code models.

16.7.4 ReadsUI Class

ReadsUlI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlIAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

236 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

Constraints

1. This relationship should not be used in Code models.

16.7.5 WritesUI Class

WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

Constraints

1. This relationship should not be used in Code models.

16.7.6 ProducesUIEvent Class

NOTE:KDM14-189

ProducesUIEvent class follows the pattern of a "resource action relationship”. This relation represents various situations
where an ActionElement produces a UIEvent. The action is usually an "abstracted" action owned by some Ul resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIEvent[1] the Ul Event being produces

Constraints

1. This relationship should not be used in Code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 237

Semantics

This relation represents various situation where an ActionElement produces a UlEvent.

16.8 ExtendedUIElements Class Diagram

NOTE:KDM14-58

The ExtendedUIElements class diagram defines two viewpoint-specific generic elements for the Ul model as determined
by the KDM model pattern: a generic Ul entity and a generic Ul relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

A Oy @ PO de Dt S

rednlfrea Fom -
LIIRs |t b b

At s L RE R !

mi ey oginound RUrLA T Mol

UIEke et

Figure 16.6 - ExtendedUIElements Class Diagram

16.8.1 UlElement Class (generic)

NOTE:KDM14-58

The UIElement class is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractUIElement

Constraints
1. UIElement should have at least one stereotype.
Semantics

A Ul entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended
meta-model entity type of the Ul model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

238 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

16.8.2 UlRelationship Class (generic)

NOTE:KDM14-58

The UlRelationship relationship is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractUIRelationship

Associations

from:AbstractUIElement[1] the origin Ul element

to:KDMEntity[1] the target KDM entity

Constraints
1. UlIRelationship should have at least one stereotype.
Semantics

A Ul relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the Ul model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 239

240 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17 Event Package

17.1 Overview

The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of
applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions,
and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based
runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

The Event packages defines an architectural viewpoint for the Event domain.
« Concerns
« What are the distinct states involved in the behavior of the software system?
» What are the events that cause transitions between states?
« What action elements are executed in a given state?
* Viewpoint language:

Event views conform to KDM XMI schema. The viewpoint language for the Event architectural viewpoint is
defined by the Event package. It includes an abstract entity AbstractEventElement, generic entity EventResource,
UlDisplay, as well as several concrete entities, such as State, Transition, Event, EventAction, etc. The viewpoint
language for the Ul architectural viewpoint also includes several relationships, which are subclasses of
AbstractEventRelationship.

e Analytic methods:
The Event architectural viewpoint supports the following main kinds of checking:
« Reachability (for example, what states are reachable from the given state).

e Control flow (for example, what action elements are triggered by a given state transition; what action elements
will be executed for a given traversal of the state transition graph).

« Data flow (what data sequences correspond to a given traversal of the state transition graph).
Event Views are used in combination with Code views, Data views, Platform views, and Inventory views.

* Construction methods:

< Event views that correspond to the KDM Event architectural viewpoint are usually constructed by analyzing
Code views for the given system as well as the configuration artefacts specific to the event-driven framework.
The Event extractor tool uses the knowledge of the API and semantics of the event-driven framework to produce
one or mode Event views as output.

e Construction of the Event view is determined by the semantics of the event-driven framework, and it based on
the mapping from the given event-driven framework to KDM; such mapping is specific only to the event-driven
framework and not to a specific software system.

e The mapping from a particular event-driven framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes, or annotations.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 241

17.2 Organization of the Event Package

The Event package consists of the following 6 class diagrams:

EventModel
Eventlnheritances

EventResources

EventRelations

EventActions

ExtendedEventElements

The Event package depends on the following packages:

Core
kdm
Source
Code
Action

17.3 EventModel Class Diagram

The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

Ew e ook |

TSR

AT ac e eSO

[}

[nubaat modal] prvanif pbin |07

sy BRAEEmEr)
[nubrunin owred Bamari]

A LR T, SRR

A fwfrac i ' A i P o SR

':"..: T ET R TET O

ok L)

o - nr

| Sl BlE Qi oagii

soprar |0,

ralaidh Cwrier; ‘uutnaty grospedblemant]
rabalrecian

|sidrspis wTeni Ebmmaend pakes pdd)

ns
| AceanElman
[El=L]

Figure 17.1 - EventModel Class Diagram

242

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17.3.1 EventModel Class

The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass

KDMModel

Associations

eventElement:AbstractEventElement[0..*] event elements owned by the given event model

Semantics

EventModel is a container for instances of event elements. The implementer shall arrange event elements into one or
more event models.

17.3.2 AbstractEventElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractEventElement is an abstract superclass for various event elements. The key subclasses of
AbstractEventElement are EventResource and EventAction.

Superclass

KDMEntity

Associations

eventRelation:AbstractEventRelationship[0..*] event relations owned by the give element
abstraction:ActionElement|[0..*] owned “abstracted” action elements
implementation:AbstractCodeElement[0..*] group association to AbstractCodeElement elements from some

CodeModel that are represented by the current EventElement

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclass of ComputationalObject or ActionElement.
3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more ComputationalObjects or ActionElements that are represented by
the current EventElement. “Abstraction” actions can be used to represent precise semantics of the EventElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 243

17.3.3 AbstractEventRelationship Class (abstract)

The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model
element for representing various relations involving states and events.

Superclass

KDMRelationship

Semantics

17.4 Eventinheritances Class Diagram

NOTE:KDM14-208

The Eventlnheritances class diagram defines how classes of the Event package are related to the meta-model elements
defined in the Core package. The classes and associations that make up the Eventlnheritances diagram are shown in
Figure 17.2.

Ffar v e T HOMEaty AL e Do e |
[t P -
Eventindsi l AT L a (v B nEN l A pra i va iR fioms igp

Figure 17.2 - Eventinheritances Class Diagram

17.5 EventResources Class Diagram

The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures
these classes and their relations.

244 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A deae iE v e A DER TR

ieecarillamari

moe

) - ™
{nutmsnhs owedElaTasii B —
Hx ~—
| N"‘\ ™ Evemis bon —
- aprs EwvanlRiisunce i - Baring .
q: = A g
o x“-\- [LER T B T
{watas caner, _.-': S
-~ S
7 AN
1r 1] Trarmiition ht
Evaml
s a e E rara
- H] L] A
T i "-k 0.

." x'\-\. ugbanm el et
i b

) s,

| 3
Inbalsiate OnEntry CobxRt

Figure 17.3 - EventResourcesClass Diagram

17.5.1 EventResource Class (generic)

The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

AbstractEventElement
Associations
eventElement:AbstractEventElement[0..*] Event elements owned by this EventResource

Semantics

17.5.2 Event Class

The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

EventResource

Attributes

kind:String represents the nature of this Event

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 245

17.5.3 State Class

The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm,
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass

EventResource

17.5.4 InitialState Class
The InitialState class is a subclass of the State class. It represents a default initial state.

Superclass

State

17.5.5 Transition Class

The Transition class represents a transition that is performed when a certain event is consumed is a certain state.
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by
using the “ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually,
this is a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action
element can be used.

Superclass

EventResource

17.5.6 OnEntry Class

The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been entered.

Superclass

Transition

17.5.7 OnExit Class

The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been exited.

Superclass

Transition

246 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17.5.8 EventAction Class

EventAction class follows the pattern of a “resource action” class, specific to the event package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractEventElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

eventElement:Event[0..*] The set of Event elements that is owned by the current EventAction element.

17.6 EventRelations Class Diagram

NOTE:KDM14-231

EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

A D AT i e

[mutanis nbeord: ‘ puEanls ribwrd
| e | o [Hextstane Consumssivert | [- |
1 | - - :

Sl He Sl nubjuai rarboand frazelres iz

et Transkan 3

Figure 17.4 - EventRelations Class Diagram

17.6.1 NextState Class

The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based
frameworks this information can be derived from the initialization of framework specific data structures. When there
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action
containers associated with various elements involved.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 247

Superclass

AbstractEventRelationship

Associations

to:Transition[1] the transition

from:State[1] the state

17.6.2 ConsumesEvent Class

The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event.
For example, in statically configured state-machine based frameworks this information can be derived from the
initialization of framework specific data structures.

Superclass

AbstractEventRelationship

Associations

from:Transition[1] the transition

to:Event[1] the event

17.7 EventActions Class Diagram

NOTE:KDM14-231

The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

248 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

g e A 2 POV i A

= hel

Has St
ReadsStats Progip; s vant
il L i 0.t —— L T— N —
[mesbanm Inboorady ‘nubmain murdhoured) i ubaaiy inipoursd] {egbupin owiound] P =
g5
HE 5 " .
[radelraa b=} |5 :pciafran i ' k] ' o
— W &
Slwle Evpankt Adgr: i vanitiemment
s © 54
(e gefias from)
wiram |1
ALRinElemani
—_— =1)] AT
1 1
jredelees frpav| iradel ras o)

Figure 17.5 - EventActions Class Diagram

17.7.1 ReadsState Class

ReadsState class follows the pattern of a “resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that
owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

Constraints:
1. This relationship should not be used in Code models.

2. The to endpoint of the relationship should be State of one of its subclasses.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 249

17.7.2 ProducesEvent Class

ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
EventAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement|[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being produced

Constraints
1. This relationship should not be used in Code models.

2. The “to” endpoint of the relationship should be Event.

17.7.3 HasState Class

HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of
an event model with any resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

Constraints

1. This relationship should not be used in Code models.

17.8 ExtendedEventElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedEventElements class diagram defines two viewpoint-specific generic elements for the event model as
determined by the KDM model pattern: a generic event entity and a generic event relationship. The classes and
associations of the ExtendedEventElements diagram are shown in Figure 17.6.

250 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A e D S WD A DVORE A

rhiz | vendalanad)
rraginfiresy froam

A drd e [E e e b Evenifalatanship
foevm)
T B n : |
TG ECS ST [l e
| EwineEkmant

Figure 17.6 - ExtendedEventElements Class Diagram

17.8.1 EventElement Class (generic)

NOTE:KDM14-58

The EventElement class is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractEventElement

Constraints

1. EventElement should have at least one stereotype.

Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

17.8.2 EventRelationship Class (generic)

NOTE:KDM14-58

The EventRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 251

Superclass

AbstractEventRelationship

Associations

from:AbstractEventElement[1] the event element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. EventRelationship should have at least one stereotype.
Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

252 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18

Data Package

18.1 Overview

The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the
existing software system. Facts in the Data domain are usually determined by a Data Description Language (for example,
SQL) but may in some cases be determined by the code elements. KDM Data model uses the foundation provided by the
Code package related to the representations of simple datatypes. KDM Data model represents complex data repositories,
such as record files, relational databases, structured data stream, XML schemas and documents.

The KDM Data package defines an architectural viewpoint for the Data domain.

e Concerns

What is the organization of persistent data in the software systems?
What are the information model supported by the software system?
What action elements read persistent data?
What action elements write persistent data?

What control flows are determined by the events corresponding to persistent data?

« Viewpoint language

Data views conform to KDM XMI schema. The viewpoint language for the Data architectural viewpoint is
defined by the Data package. It includes abstract entities AbstractDataElement, AbstractContentElement, generic
entities DataResource, DataContainer, Contentltem, as well as several concrete entities, such as Catalog,
RelationalSchema, DataEvent, DataAction, ColumnSet, RecordFile,XMLSchema, etc. The viewpoint language
for the Data architectural viewpoint also includes several relationships, which are subclasses of
AbstractDataRelationship.

¢ Analytic methods:

The Data architectural viewpoint supports the following main kinds of checking:

Data aggregation (the set of data items accessible from the given ColumnSet by adding data items through
foreign key relationships to other tables).

Data Views are used in combination with Code views and Inventory views.

« Construction methods:

Data views that correspond to the KDM Data architectural viewpoint are usually constructed by analyzing Data
Definition Language artifacts for the given data management platform. The Data extractor tool uses the
knowledge of the data management platform to produce one or mode Data views as output.

As an alternative, for some languages like Caobol, in which some elements of the Data are explicitly defined by
the language, the Data views are produced by the parser-like tools which take artifacts of the system as the input
and produce one or mode Data views as output (together with the corresponding Code views).

Construction of the Data view is determined by the semantics of the data management platform, and it based on
the mapping from the given data management platform to KDM; such mapping is specific only to the data
management platform and not to a specific software system.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 253

e The mapping from a particular data management platform to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations.

18.2 Organization of the Data Package

The Data package consists of the following 11 class diagrams:

» Data Model

« Data Inheritance
* RelationalData

e ColumnSet

e StructuredData

¢ ContentElements
» ContentRelations
¢ Keylndex

¢ KeyRelations

« DataActions

* ExtendedDataElements

The Data Package depends on the following packages:

* Core

e kdm

e Source
* Code

e Action

18.3 Data Model Class Diagram

The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the

DataModel class diagram.

254

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Dt Maded ——— A el PN PR POV A
-
[}
(kA oo n'
Jirn bt
B ufrien b Croy rain ™ phislean
=131AE € gl
|autrapts cwrsdEmmant] |3
Abwrirac il fe L dSeorant
1
AT 1
.
1w e ien
PT,) e, T] WS el

A c1ban E binsre i

AT |

Figure 18.1 - Data Model

18.3.1 DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

dataElement :DataElement[0..*] data elements owned by the given DataModel

Semantics

Data model is a logical container for the instances of data elements. The implementer shall arrange the instances of the
data elements into one or more DataModels.

18.3.2 AbstractDataElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data
element within a system. For example, a Customer_Number is one type of data element that might be found within a
system. Data model defines several specific subclasses of AbstractDataElement, corresponding to common subcategories
of data elements. The key subclasses of AbstractDataElement are DataResource, DataAction, XMLSchema and
AbstractContentElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 255

Superclass

KDMEntity

Associations

abstraction: ActionElement[1] the “abstracted” actions that are owned by the current element
dataRelation:DataRelation[0..*] data relationships that originate from this data element
Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API
calls in the code model. Abstracted actions own action relations to elements of code model, as well as some data relations.

Abstracted actions are ordered. The first action is the entry point.

18.3.3 AbstractDataRelationship Class (abstract)

An AbstractDataRelationship class is an abstract superclass of the meta-model elements that represent associations
between data elements.

Superclass

KDMRelationship

Semantics

AbstractDataRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data

model.

18.4 Data Inheritances Class Diagram

NOTE:KDM14-208

The Datalnheritances Diagram in Figure 18.2 shows how the meta-model elements defined in the Data package are
related to the meta-model elements defined in the Core package. Each of the Data Package classes within this diagram
inherits certain properties from KDM classes defined within the Core Package.

& riddaked HWE sy ‘ SR e o g
PN St jroTm,
Dataidadal | dbweraciiiatafiemant | | T PR Er———
|

Figure 18.2 - Datalnheritances Diagram

256 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.5 DataResources Class Diagram

The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM
framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

The DataResources diagram defines the framework for various data models. This framework follows the common pattern
of the Runtme Resource Layer. Data model defines a generic DataResource meta-model element that represents various
resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources.
Data model includes AbstractDataContent element which is a direct subclass of AbstractDataElement, and not a subclass
of DataResource. Subclasses of AbstractContentElement are owned by XMLSchema element.

o vl [N Pl BT
g . rdalabimmanl
-; TS |subseis owrssiEsmari]
s 7| DataRessurce
/
/
r,
r _.--'" ﬂ:-
J . 1
-'.-. -
i e - |II
[acalictiomn — DiataE vt .
Hnd : 5 =k in .
- 2 I DamComtainer | sowrer
Kl
Inubenin -_l-'_ ‘;I siaiaf=meni 1 (s, o)
|nubs Foupl _ i
{iutrioli owreslEaTasl] '\
e
i
Canalog Roshart ko FS=C i i i
A el
s el Jroupedt et

pra——" i1
LA ST] 'n-II-
A loeE R M .
BEROT] = srrals D@mani
Ciaaniam silmah rampiEkrraml
o]

Figure 18.3 - RelationalData Class Diagram

18.5.1 DataResource Class (generic)

NOTE:KDM14-58

The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent
and IndexElement.

Superclass

AbstractDataElement

Constraints

1. DataResource should have at least one stereotype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 257

Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that
is associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base
element of a new extended meta-model entity type of the data model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2 DataContainer Class (generic)

NOTE:KDM14-58

The DataContainer class is a generic meta-model element that represents various database containers.
Superclass
DataResource

Associations

dataElement :DataResource[0..*] owned data resources

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that
is a logical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the
base element of a new extended meta-model entity type of the data model. This is one of the KDM extension points that
can integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3 Catalog Class

NOTE:KDM14-58

The Catalog class is the top level container that represents a relational or a hierarchical database.

Superclass

DataContainer

Semantics

18.5.4 RelationalSchema Class

The RelationalSchema class is a relational database schema.

Superclass

DataContainer

258 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

codeElement:Codeltem][0..*] Stored procedures owned by this schema.

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example,
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data
actions.” Abstracted actions represent an additional data manipulation statement, which is being implemented through
embedded data manipulation constructs (and the corresponding “generated” API calls).

In the situation of the data manipulation and data description scripts that are executed directly by the relational database
engine, KDM allows maore tight integration of the corresponding Codeltem with the Data Model.

18.5.5 DataEvent Class

The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of
stored procedures, the so-called triggers. KDM models database events as “first class citizens” of the KDM
representation.

Superclass

DataResource

Attributes

kind :String semantic description of the data event

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on a table or view.
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataElement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure,
which is represented as a CallableUnit, owned by a certain RelationalSchema. Trigger is associated with a data event
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a
certain DataContainer.

18.5.6 DataAction Class

NOTE:KDM14-58

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 259

DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractDataElement

Attributes

kind:String represents the nature of the action performed by this element

Associations

implementation:ActionElement|[0..*] group association to ActionElement represented by the current DataAction
dataElement:DataEvent[0..*] event elements owned by the current DataAction
Semantics

DataAction represents a logical action performed by the runtime platform of the existing software system.

18.6 ColumnSet Class Diagram

The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases,
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4
captures these classes and their relations.

DataContaines

il

L Famillni

Columnset p——
i
_,.-"J -:. ::- L [uubmein owrer]

jadda)

L J . -, +d g e Lved
e f 1 * mzapin canadCisment, rrderrs]
- "
.-"'-. t
o~ 5 e,
"
o I \ ., .
[ataSeegment | b -
\ ",
[l .l .,
h e —
J RwtordFils
Ralitesnaldnm [it T i L

Figure 18.4 - ColumnSet Class Diagram

260 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.6.1 ColumnSet (generic)

The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields).
Columns are modeled as ItemUnits.

Superclass

DataContainer

Associations

itemUnit :ltemUnit[0..*] Individual columns owned by this ColumnSet are represented as data elements.

Semantics

ColumnSet corresponds to an ISO/IEC 11404 Table datatype, whose values are collections of values in the product space of
one or more field datatypes, such that each value in the product space represents an association among the values of the fields.
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associations.

KDM defines several concrete subclasses of ColumnSet to represent several common data organizations, such as relational
Tables and Views, Record files and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.

18.6.2 RelationalTable Class
A RelationalTable is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass

ColumnSet

Semantics

Tables are entities that contain all the data in relational databases. Each table represents a type of data that is meaningful
to its users. A table definition is a collection of columns. In tables, data is organized in a row-and-column format similar
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example,
a table that contains employee data for a company can contain a row for each employee and columns representing
employee information such as employee number, name, address, job title, and home telephone number.

Tables in a relational database have the following main components:

e Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having
columns for ID, color, and weight.

< Rows. Each row represents an individual occurrence of the object modeled by the table. For example, the parts table
would have one row for each part carried by the company.

The PlatformResource that corresponds to RelationalTable is DataManager.

Example (T-SQL)

NOTE:KDM14-15, KDM14-308

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 261

CREATE TABLE products (ID int primry key, name varchar, type varchar)
CREATE TABLE contracts (IDint primary key, product int, revenue decinal, dateSigned date)
CREATE TABLE revenueRecognitions (contract int, anmount decimal, recognizedOn date,

PRI MARY KEY(contract, recognizedOn))

CREATE PROCEDURE | NSERT_RECOGNI Tl ON
(INcontractIDint, IN anmunt decimal, IN recognizedOn date, OUT result int)
LANGUAGE SQL
BEGA N
I NSERT | NTO revenueRecogniti ons VALUES(contractl D, anmount, recogni zedOn);
SET result = 1;
END

CREATE TRI GGER remi nder 1

ON Contracts.revenueRecognitions
AFTER | NSERT, UPDATE

AS RAI SERROR (' Notify Sales', 16, 10)
ce]

<?xm version="1.0" encodi ng="UTF- 8" ?>
<kdm Segrment xm ns:xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns:action="http://ww. ong. org/ spec/ KDM 20160201/ acti on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: data="http://ww. ong. or g/ spec/ KDM 20160201/ dat a"
xm ns: kdne"ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdnt'
xm ns: platforne"http://ww. ong. or g/ spec/ KDM 20160201/ pl at f or ' nanme="Schema Exanpl e" >
<nmodel xm :id="id.0" xm:type="data: Dat aModel " nane="Contracts">
<dat aEl ement xm :id="id.1" xm:type="data: Rel ati onal Schema" nane="Contracts">
<dat aEl enent xm :id="id.2" xm:type="data: Rel ati onal Tabl e" name="products">
<dat aEl enent xm :id="id.3" xm:type="data: Uni queKey" name="ID"' inplenmentation="id.4"/>
<itembnit xm:id="id.4" name="1D"' type="id.57"/>
<itembnit xm:id="id.5" name="nanme" type="id.58"/>
<itembnit xm:id="id.6" name="type" type="id.58"/>
</ dat aEl ement >
<dat aEl enent xm :id="id.7" xm:type="data: Rel ati onal Tabl e" name="contracts">
<dat aEl enent xm :id="id.8" xm:type="data: Uni queKey" name="ID"' inplenentation="id.11"/>
<dat aEl ement xm :id="id.9" xm:type="data: Ref erenceKey" inplenentation="id.12">
<dat aRel ation xm :id="id.10" xm :type="data: KeyRel ation" to="id.3" fron¥"id.9"/>
</ dat aEl ement >
<itemnit xm:id="id.11" nanme="1D"' type="id.57"/>
<itemnit xm:id="id.12" name="product" type="id.57"/>
<itemnit xm:id="id.13" nanme="revenue" type="id.59"/>
<itenmbnit xm:id="id.14" nanme="dateSi gned" type="id.60"/>
</ dat aEl enent >
<dat aEl ement xm :id="id.15" xm:type="data: Rel ati onal Tabl e" nane="revenueRecogni ti ons">
<dat aEl ement xm :id="id. 16" xm:type="data: Uni queKey" inplenentation="id.25 id.27"/>
<dat aEl ement xm :id="id.17" xm :type="dat a: Ref erenceKey" i npl enentati on="id.25">
<dataRel ation xm :id="id.18" xm :type="data: KeyRel ation" to="id.8" frone"id.17"/>
</ dat aEl enent >
<dat aEl ement xm :id="id.19" xm:type="data: Dat aEvent" nane="el" kind="Insert">
<abstraction xm:id="id.20" nane="el.1" kind="Call">
<actionRelation xm:id="id.21" xm:type="action:Calls" to="id.47" fron¥"id.20"/>
</ abstraction>
</ dat aEl enent >
<dat aEl ement xm :id="id.22" xm:type="data: Dat aEvent" nane="e2" ki nd="Update">

262 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<abstraction xm:id="id.23"

name="e2. 1"

ki nd="Cal | ">

<actionRelation xm:id="id.24" xm:type="action:Calls" to="id.47" frone"id.23"/>

</ abstraction>
</ dat aEl enent >

<itemUnit xm:id="id.25"
<itemUnit xm:id="id.26"
<itemUnit xm:id="id.27"

</ dat aEl enent >

nane="contract" type="id.57"/>
nanme="anmount" type="id.59"/>
name="r ecogni zedOn" type="id. 60"/ >

<codeEl ement xm :id="id.28" xm:type="code: Callabl eUnit" name="1NSERT_RECOGN TI ONS"
<entryFlow xm :id="id.29" to="id.35" fronm="id.28"/>

<codeEl enent xm :

id="id.30"

xm

:type="code: Si gnat ure">

<par anet er Uni t
<par anmet er Uni t
<par anmet er Uni t
<par anmet er Uni t
</ codeEl enment >

<codeEl enent xm :
<source xm:id=

xm:id="id.31"

nane="contract| D' type="id.57"

pos="1"/>

xm :id="id.32" name="anount" type="id.59" pos="2"/>

xm :id="id.33" name="recogni zedOn" type="id. 60" pos="3"/>

xm :id="id.34" name="result" type="id.57" kind="byReference" pos=
id="id.35" xm:type="action:ActionEl enent" name="al" kind="Insert
"id.36" | anguage="SQ"

ki nd="regul ar" >

"4 >

"

sni ppet ="1 NSERT | NTO r evenueRecogni ti ons VALUES(contractl D, anount, recognizedOn);"/>

<actionRelation xm :id="id.
<actionRel ati on xm
<actionRel ati on xm
<actionRel ati on xm
<actionRel ati on xm

</ codeEl enent >

id 35"/>

37" xm :type="action: Reads" to="id.31" fronr"id.35"/>
;id="id.38" xm:type="action: Reads" to="id.32" from="id.35"/>
;id="id.39" xm:type="action: Reads" to="id.33" from="id.35"/>
id="id.40" xm:type="data: WitesColumSet" to="id.15" frone"
cid="id. 41" xm :type="data: ProducesDat aEvent" to="id.19" from="id.35"/>

<codeEl ement xm :id="id. 42" xm:type="action: ActionEl enent" nane="a2" ki nd="Assign">

<source xm :id="id.43" |anguage="SQ" sni ppet="SET result
<codeEl ement xmi:id="id.44" xm :type="code: Val ue"

=1;"/>
nanme="1"/>

<actionRelation xm:id="id.45" xm:type="action: Reads" to="id. 44" from="id.42"/>
<actionRelation xm:id="id.46" xm:type="action:Wites" to="id.34" from="id.42"/>

</ codeEl enent >

</ codeEl enent >
<codeEl ement xm :id="id.47" xm:type="code: Callabl eUnit" name="rem nder1">
<entryFlow xm :id="id.48" to="id.49" fronm="id.47"/>

<codeEl ement xmi:id="id.49" xm:type="action: Acti onEl ement"
<codeEl enment xm :id="id.50" xm:type="code: Val uelList"

nanme="a3" ki nd="Thr ow"

name="error">

<val ueEl enent xm:id="id.51" xm:type="code: Val ue"
name="" ; Noti fy sal es! &uot ;" type="id.58"/>
<val ueEl enent xm:id="id.52" xm:type="code: Val ue" nanme="16" type="id.57"/>
<val ueEl ement xm:id="id.53" xm:type="code: Val ue" nane="10" type="id.57"/>
</ codeEl enment >
<actionRelation xm:id="id.54" xm:type="action: Throws" to="id.50" fron="id.49"/>

</ codeEl enent >

</ codeEl enent >

</ dat aEl enent >

xm :id="id.55" xm:type="code: CodeMbodel ">

<codeEl ement xm :id="id.56" xm:type="code: LanguageUnit" nane="SQ. datatypes">

</ model >

<nmodel
<codeEl ement xm :id="id.57"
<codeEl ement xmi:id="id.58"
<codeEl enent xni:id="id.59"
<codeEl enment xni:id="id.60"
<codeEl ement xm :id="id. 61"

</ codeEl enent >
</ model >

xm
xm
xm
xm
xm

:type="code: | nt eger Type" nanme="sqgl int"/>
:type="code: StringType" nane="sql varchar"/>
:type="code: Deci mal Type" name="sql deciml"/>
:type="code: Dat eType" nane="sql date"/>

:type="code: Bool eanType"/ >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

>

263

<model xm:id="id.62" xm:type="platform Pl atfornmvbdel ">
<platfornmEl enent xm :id="id.63" xm:type="platform External Actor">
<abstraction xm:id="id. 64" >
<actionRel ati on xm :id="id.65" xm:type="data: ProducesDat aEvent" to="id. 19" from="id.64"/>
</ abstraction>
</ pl at f or nEl ement >
</ nodel >
</ kdm Segnent >

18.6.3 RelationalView Class

A RelationalView class is a specific subclass of the ColumnSet class that represents Views of relational databases. A view
is a virtual table whose contents are defined by a query. Like a real table, a view consists of a set of named columns and
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of
data come from tables referenced in the query defining the view and are produced dynamically when the view is
referenced.

A view acts as a filter on the underlying tables referenced in the view. The query that defines the view can be from one
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly
structured data from different servers, each of which stores data for a different region of your organization.

Superclass

ColumnSet

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few
restrictions on modifying data through them.

In KDM, a RelationalVView owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the
View can store the corresponding SELECT statement.

18.6.4 DataSegment Class

A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS.

Superclass

ColumnSet

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real
world.

264 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A database segment defines the fields for a set of segment instances similar to the way a relational table defines columns
for a set of rows in a table. In this way, segments relate to relational tables, and fields in a segment relate to columns in a

relational table.

Example (IMS):

NOTE:KDM14-15, KDM14-308

DLR_PCB1 PCB TYPE=DB, DBDNAVE=DEALERDB, PROCOPT=GO, KEYLEN=42

SENSEG NAME=DEALER, PARENT=0

SENSEG NAME=MODEL, PARENT=DEALER

SENSEG NAME=ORDER, PARENT=MODEL

SENSEG NAME=SALES, PARENT=MODEL

SENSEG NAME=STOCK, PARENT=MODEL

PSBGEN PSBNAME=DLR_PSB, MAXQ=200, LANG=JAVA
END

DBD NAME=DEALERDB, ACCESS=(HDAM CSAM , RMNAME=(DFSHDCA40. 1. 10)

SEGM NAME=DEALER, PARENT=0, BYTES=94,

FI ELD NAME=(DLRNO, SEQ, U) , BYTES=4, START=1, TYPE=C
FI ELD NAME=DLRNAME, BYTES=30, START=5, TYPE=C

SEGM NAME=MODEL, PARENT=DEALER, BYTES=43

FI ELD NAME=(MODTYPE, SEQ, U) , BYTES=2, START=1, TYPE=C
FI ELD NAME=MAKE, BYTES=10, START=3, TYPE=C

FI ELD NAME=MODEL, BYTES=10, START=13, TYPE=C

FI ELD NAME=YEAR, BYTES=4, START=23, TYPE=C

FI ELD NAME=MSRP, BYTES=5, START=27, TYPE=P

SEGM NAME=ORDER, PARENT=MODEL, BYTES=127

FI ELD NAME=(ORDNBR, SEQ U) , BYTES=6, START=1, TYPE=C
FI ELD NAME=LASTNME, BYTES=25, START=50, TYPE=C

FI ELD NAME=FI RSTNME, BYTES=25, START=75, TYPE=C
SEGM NAME=SALES, PARENT=MODEL, BYTES=113

FI ELD NAME=(SALDATE, SEQ, U) , BYTES=8, START=1, TYPE=C
FI ELD NAME=LASTNVE, BYTES=25, START=9, TYPE=C

FI ELD NAME=FI RSTNME, BYTES=25, START=34, TYPE=C

FI ELD NAME=STKVI N, BYTES=20, START=94, TYPE=C

SEGM NAME=STOCK, PARENT=MODEL, BYTES=62

FI ELD NAME=(STKVI N, SEQ, U) , BYTES=20, START=1, TYPE=C
FI ELD NAME=COLOR, BYTES=10, START=37, TYPE=C

FI ELD NAME=PRI CE, BYTES=5, START=47, TYPE=C

FI ELD NAME=LOT, BYTES=10, START=52, TYPE=C

DBDGEN

FI NI SH

END

<?xm version="1.0" encodi ng="UTF-8"?>

<kdm Segrment xm ns: xmi ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: dat a="http://ww. ong. or g/ spec/ KDM 20160201/ dat a"
xm ns: kdme" ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdnf nanme="1 M5 Exanpl e" >

<model xm :id="id.0" xm:type="data: Dat aModel ">

<dat aEl ement xm :id="id.1" xm :type="data: Catal og" nanme="DEALERDB" >
<dat aEl ement xm :id="id.2" xm:type="data: Dat aSegnent" nanme="Deal er">
<dat aEl ement xm :id="id.3" xm:type="data: Dat aSegnent" nane="Model ">
<dat aEl ement xm :id="id.4" xm:type="data: Dat aSegnent" nane="Order">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

265

<dat aEl ement xm :id="id.5" xm:type="data: Uni queKey" inplenentation="id.6"/>

<itemUnit xm
<itemUnit xm
<itemUnit xm

</ dat aEl ement >
<dat aEl enent xm :id="id.9" xm:type="data: Dat aSegnent" name="Sal es">

<dat aEl enent

<itemUnit xm
<itemUnit xm
<itemUnit xm
<itemUnit xm

</ dat aEl enent >
<dat aEl ement xm :id="id.15" xm :type="data: Dat aSegnent" name="Stock">

<dat aEl enent

<itemUnit xm
<itemUnit xm
<itemUnit xm
<itemUnit xm

</ dat aEl enent >
<dat aEl ement xm :id="id.21" xm:type="data: Uni queKey" inplenmentation="id.22"/>
<itenmUnit xm:id="id.22" name="MODTYPE" type="id.30" size="2"/>

:id="id.6" nane="ORDNBR' type="id.30" size="2"/>
tid="id. 7" nane="LASTNME" type="id.30" size="25"/>
;id="id.8" name="FI RSTNME" type="id. 30" size="25"/>

xm :id="id. 10" xm:type="data: Uni queKey" inplenmentation="id.11"/>
;id="id. 11" nanme="SALDATE" type="id. 30" size="8"/>

cid="id. 12" nanme="LASTNMVE' type="id.30" size="25"/>

cid="id. 13" name="FI RSTNME" type="id. 30" size="25"/>

id="id. 14" name="STKVIN' type="id. 30" size="20"/>

xm:id="id.16" xm:type="data: Uni queKey" inplenmentation="id.17"/>
tid="id. 17" nane="STKVIN' type="id. 30" size="20"/>

;id="id. 18" name="COLOR' type="id. 30" size="10"/>

cid="id. 19" nanme="PRI CE" type="id. 30" size="5"/>

;id="id.20" name="LOT" type="id.30" size="10"/>

<itemUnit xm
<itemUnit xm
<itemUnit xm

</ dat aEl enent >
<dat aEl ement xm :id="id.26" xm:type="data: Uni queKey" inplenmentation="id.27"/>
<itenmbnit xm:id="id.27" name="DRLNO' type="id. 30" size="4"/>
<itembnit xm:id="id.28" name="DLRNAME" size="30"/>
</ dat aEl ement >
</ dat aEl enent >

</ nodel >

cid="id.23" name="MAKE" size="10"/>
cid="id.24" name="YEAR' size="4"/>
cid="id.25" name="MSRP" type="id.31" size="5"/>

<nmodel xm:id="id.29" xm:type="code: CodeMdel " nane="Common | M5 dat atypes">
<codeEl ement xm :id="id.30" xm:type="code: StringType" nanme="IMs type c"/>
<codeEl enment xm :id="id.31" xm:type="code: Deci mal Type" nanme="I|Ms type packeddeci nal"/>

</ nodel >

</ kdm Segnent >

18.6.5 RecordFile Class

The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or

sequential.

Superclass

ColumnSet

Semantics

In a non-relational database system, a record is an entry in a file, consisting of individual elements of information, which
together provide full details about an aspect of the information needed by the system. Individual elements are held in

fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for
example, date of birth, department code, or full names will be found in a number of fields. A file is a set of records, where

266

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

each record is a sequence of fields. A sequential file is a computer file storage format in which one record follows
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (Cobol)

NOTE:KDM14-15, KDM14-33, KDM14-61, KDM14-308

The following example illustrates the representation of RecordFile. This example is incomplete as it focuses on the
DataModel, and well as combined representation involving the CodeModel, DataModel, PlatformMaodel, and EventModel.
Example uses ItemUnits owned by RecordFile as variables. ExceptionFlow elements are added through the DataModel.

FI LE- CONTROL.

SELECT SEQUENTI AL- FI LE ASSI GN TO ' A:\ SEQ DAT'
ORGANI ZATI ON | S LI NE SEQUENTI AL.

SELECT | NDEXED- FI LE
ASSI GN TO ' A:\ | NDVAST. DAT'
ORGANI ZATI ON | S | NDEXED
ASSESS |'S SEQUENTI AL
RECORD KEY 1S | ND- SOC- SEC- NUM
FI LE STATUS | S | NDEXED- STATUS- BYTES.

FI LE SECTI ON.
FD SEQUENTI AL FI LE
| RECORD CONTAI NS 39 CHARACTERS
DATA RECORD | S SEQUENTI AL- RECORD.
01 SEQUENTI AL- RECORD.
05 SEQ SOC- SEC-NUM PI C X(9) .
05 SEQ REST- OF- RECORDPI C X(30) .

FD | NDEXED- FI LE
RECORD CONTAI NS 39 CHARACTERS
DATA RECORD | S | NDEXED- RECORD.
01 | NDEXED- RECORD.
05 | ND- SOC- SEC-NUM Pl C X(9).
05 | ND- REST- OF- RECORDPI C X(30) .

PROCEDURE DI VI SI ON.
0010- UPDATE- MASTER- FI LE.
OPEN | NPUT SEQUENTI AL- FI LE
QUTPUT | NDEXED- FI LE.
PERFORM UNTI L END- OF- FI LE- SW TCH = ' YES'
READ SEQUENTI AL- FI LE
AT END
MOVE ' YES' TO END- OF- FI LE- SW TCH
NOT AT END
MOVE SEQ SOC- SEC- NUM TO | ND- SOC- SEC- NUM
MOVE SEQ REST- OF- RECORD TO | ND- REST- OF- RECORD
VRI TE | NDEXED- RECORD
I NVALI D KEY PERFORM 0020- EXPLAI N- WRI TE- ERROR
END- VRI TE
END- READ
END- PERFORM
CLOSE SEQUENTI AL- FI LE

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 267

| NDEXED- FI LE.

<?xm version="1.0" encodi ng="UTF- 8" ?>
<kdm Segnment xm ns:xm ="http://ww. ong. org/ spec/ XM /20110701"
xm ns:action="http://ww. ong. org/ spec/ KDM 20160201/ acti on"
xm ns: code=""http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: dat a="http://ww. ong. or g/ spec/ KDM 20160201/ dat a"
xm ns: event ="http://ww. ong. or g/ spec/ KDM 20160201/ event "
xm ns: kdn="ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdnt'
xm ns: platform"http://ww. ong. or g/ spec/ KDM 20160201/ pl at f or ' name="Recor dFi | e exanpl e">
<nodel xmi:id="id.0" xm:type="data: Dat aMbdel ">
<dat aEl ement xm :id="id.1" xm:type="data: RecordFile" name="SEQUENTI AL- FI LE" >
<itemnit xm:id="id.2" name="SEQ SOC- SEC-NUM' type="id. 115" ext="PIC X(9)" size="9"/>
<itemnit xm:id="id.3" nanme="SEQ REST- OF- RECORD' type="id. 115" ext="PIC X(30)" size="30"/>
</ dat aEl enent >
<dat aEl ement xm :id="id.4" xm:type="data: RecordFile" nanme="|NDEXED FI LE" >
<dat aEl enent xm :id="id.5" xm:type="data: Uni queKey" i nplenmentation="id.7"/>
<dat aEl enent xm :id="id.6" xm:type="data:lndex" inplenmentation="id.7"/>
<itemnit xmi:id="id.7" name="|ND SOC- SEC-NUM' type="id. 115" ext="PIC X(9)" size="9"/>
<itemnit xm:id="id.8" nanme="|ND REST- OF- RECORD' type="id. 115" ext="PIC X(30)" size="30"/>
</ dat aEl enent >
<dat aEl ement xm :id="id.9" xm:type="data: Dat aAction" nanme="dal" ki nd="open" inplenmentation="id.44">
<abstraction xm:id="id.10" nane="dal" ki nd="DataAction">
<actionRel ation xm :id="id.11" xm :type="data: ManagesData" to="id.1" fron¥"id.10"/>
</ abstraction>
</ dat aEl enent >
<dat aEl ement xm :id="id.13" xm:type="data: DataAction" nane="da2" ki nd="open" inplenentation="id.44">
<abstraction xm:id="id.14" nane="da2" ki nd="DataAction">
<actionRel ation xm:id="id.16" xm:type="data: ManagesData" to="id.4" fronm="id.14"/>
</ abstraction>
</ dat aEl enent >
<dat aEl ement xm :id="id.17" xm:type="data: DataAction" nane="da3" ki nd="read" inplenentation="id.47">
<abstraction xm:id="id.18" nane="da3" ki nd="DataAction">
<actionRel ation xm :id="id.19" xm :type="data: ReadsCol umSet" to="id.1" frone"id.18"/>
<actionRel ation xm :id="id.20" xm:type="action:Wites" to="id.2" from="id.18"/>
<actionRel ation xm :id="id.21" xm:type="action:Wites" to="id.3" from="id.18"/>
<actionRel ation xm :id="id.22" xm:type="platform ReadsResource" to="id.75" from="id.18"/>
<actionRel ation xm :id="id.22a" xm:type="pl atform ProducesDat aEvent" to="id.23" from="id.18"/>
<actionRel ation xm :id="id.22b" xm :type="pl atform ProducesDat aEvent" to="id.26" from="id.18"/>
</ abstraction>
<dat aEl enent xm :id="id. 23" nane="ECF" ki nd="exception">
<abstraction xm:id="id.24" nane="ael">
<actionRel ation xm :id="id.25" xm:type="action: Excepti onFl ow' to="id.50" fron¥"id.24"/>
</ abstraction>
</ dat aEl ement >
<dat aEl ement xmi :id="id.26" name="NOT EOF" ki nd="exception">
<abstraction xm:id="id.27" nanme="nael">
<actionRel ation xm :id="id.28" xm:type="action:Flow' to="id.53" from"id.27"/>
</ abstraction>
</ dat aEl ement >
</ dat aEl enent >
<dat aEl ement xm :id="id.29" xm:type="data: DataAction" nane="da4" kind="write"
i mpl enent ation="id.59">
<abstraction xm:id="id.30" nanme="da4" ki nd="DataAction">
<actionRel ation xm:id="id.31" xm:type="action: Reads" to="id.7" from="id.30"/>

268 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xm:id="id.32" xm:type="action: Reads" to="id.8" fronr"id.30"/>
<actionRelation xm:id="id.33" xm:type="data: WitesColumSet" to="id.4" frone"id.30"/>
<actionRelation xm:id="id.34" xm:type="platform WitesResource" to="id.79" from="id.30"/>
<actionRelation xm:id="id.34a" xm :type="platform ProducesDat aEvent" to="id.35" frone"id.30"/>
</ abstraction>
<dat aEl ement xmi :id="id.35" nane="1NVALI D KEY" ki nd="exception">
<abstraction xm:id="id.36" nane="ikl">
<actionRelation xm:id="id.37" xm:type="action: Excepti onFl ow' to="id. 62" fron="id.36"/>
</ abstraction>
</ dat aEl ement >
</ dat aEl ement >
<dat aEl ement xmi:id="id.38" xm:type="data: Dat aActi on" nanme="da5" ki nd="cl ose"
i mpl enent ati on="id. 68">
<abstraction xm:id="id.39" nane="da5" ki nd="Pl atformAction">
<actionRelation xm:id="id.39a" xm:type="pl atform ManagesResource" to="id.75" fron="id.39"/>
</ abstraction>
</ dat aEl ement >
<dat aEl ement xmi:id="id.40" xm:type="data: Dat aActi on" nanme="da6" ki nd="cl ose"
i mpl enent ati on="id. 68">
<abstraction xm:id="id.41" nane="da5" ki nd="Pl atformAction"/>
<actionRelation xm:id="id.41la" xm :type="pl atform ManagesResource" to="id.79" fron¥"id.39"/>
</ abstraction>
</ dat aEl ement >
</ nodel >
<nmodel xm:id="id.42" xm:type="code: CodeModel ">
<codeEl ement xm :id="id.43" xm:type="code: CodeAssenbl y">
<entryFl ow xm :id="id.43e" to="id.44" frone"id.43"/>
<codeEl ement xmi:id="id.116" xm :type="code: Storabl eUnit"
nanme="END- OF- FI LE- SW TCH" ki nd="gl obal " type="id. 115"/>
<codeEl ement xmi:id="id.117" xm:type="code: Val ue" name="'YES " type="id.115"/>
<codeEl ement xm :id="id.44" xm:type="action: ActionEl ement" nane="a0" ki nd="Pl atformActi on">
<source xm :id="id.45" |anguage="Cobol"
sni ppet =" OPEN | NPUT SEQUENTI AL- FI LE OUTPUT | NDEXED- FI LE. "/ >
<actionRelation xm :id="id.46" xm:type="action:Flow' to="id.64" fronr"id.44"/>
</ codeEl enent >
<codeEl ement xmi:id="id.64" xm:type="action: ActionEl ement" nane="a7" ki nd="Equal s">
<source xm :id="id.65" |anguage="Cobol" snippet="UNTIL END- OF-FI LE-SWTCH = ' YES' "/ >
<actionRelation xm:id="id.66a" xm:type="action: Reads" to="id.116" from="id.64"/>
<actionRelation xm:id="id.66b" xm:type="action: Reads" to="id. 117" from="id. 64"/>
<actionRelation xm:id="id.66" xm:type="action: Fal seFl ow' to="id. 47" frone"id.64"/>
<actionRelation xm:id="id.67" xm:type="action: TrueFl ow' to="id.68" from="id.64"/>
</ codeEl enent >
<codeEl ement xm :id="id.47" xm:type="action: ActionEl ement" nane="al" ki nd="Pl atformActi on">
<source xm :id="id.48" |anguage="Cobol" snippet="READ SEQUENTI AL- FI LE"/ >
<actionRelation xm:id="id.49" xm:type="action:Flow' to="id.53" fronr"id.47"/>
</ codeEl enent >
<codeEl ement xm :id="id.50" xm:type="action: ActionEl enent" nane="a2" >
<source xm :id="id.51" | anguage="Cobol" snippet="MOE ' YES' TO END- OF- Fl LE- SW TCH"/ >
<actionRelation xm:id="id.52r" xm:type="action: Reads" to="id.117" from="id.50"/>
<actionRelation xm:id="id.52w' xm :type="action:Wites" to="id.116" from="id.50"/>
<actionRelation xm:id="id.52" xm:type="action:Flow' to="id.64" fronr"id.50"/>
</ codeEl enent >
<codeEl ement xm :id="id.53" xm:type="action: ActionEl enent"” nane="a3" ki nd="Assign">
<source xm :id="id.54" |anguage="Cobol" sni ppet="MNE SEQ SOC- SEC- NUM TO | ND- SOC- SEQ- NUM'/ >
<actionRelation xm:id="id.55r" xm:type="action: Reads" to="id.2" frone"id.53"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 269

<actionRelation xm:id="id.55w" xm:type="action:Wites" to="id.7" fron="id.53"/>
<actionRel ation xm :id="id.55" xm:type="action:Flow' to="id.56" from="id.53"/>
</ codeEl enment >
<codeEl enent xm :id="id.56" xm:type="action:ActionEl ement" nane="a4" ki nd="Assign">
<source xm :id="id.57" | anguage="Cobol" snippet="MWNE SEQ REST- OF- RECORD TO | ND- REST- OF- RECORD"/ >
<actionRelation xm:id="id.58r" xm:type="action: Reads" to="id.3" from="id.56"/>
<actionRelation xm:id="id.58w" xm:type="action:Wites" to="id.8" fronr"id.56"/>
<actionRelation xm:id="id.58" xm:type="action:Flow' to="id.59" from="id.56"/>
</ codeEl enment >
<codeEl enent xm :id="id.59" xm:type="action:ActionEl ement" nane="a5" ki nd="Pl atformAction">
<source xm:id="id.60" |anguage="Cobol" snippet="WRlI TE | NDEXED- RECORD"/ >
<actionRel ation xm :id="id.61" xm:type="action:Flow' to="id.64" frone"id.59"/>
</ codeEl enment >
<codeEl ement xm :id="id.62" xm:type="action:ActionEl ement" nanme="a6" kind="Calls">
<source xm :id="id.63" |anguage="Cobol" snippet="PERFORM 0020- EXPLAI N- \RI TE- ERROR"/ >
<actionRel ation xm :id="id.631" xm:type="action:Fl ow' to="id.68" from="id.62"/>
</ codeEl enment >
<codeEl enent xm:id="id.68" xm:type="action:ActionEl enment" nanme="a8" ki nd="Pl atformAction">
<source xm:id="id.69" |anguage="Cobol" snippet="C ose SEQUENTI AL- FI LE | NDEXED- FI LE. "/ >
</ codeEl enment >
</ codeEl enent >
</ model >
<nodel xmi:id="id.70" xm:type="platform Pl atformvbdel ">
<pl atfornEl ement xm :id="id.71" xm :type="pl atform Depl oyedSof t war eSyst enf' gr oupedConponent="id. 73"/>
<platformEl enent xm:id="id.72" xm:type="platform Machi ne">
<depl oyedConponent xm :id="id.73" groupedCode="id. 43"/>
<depl oyedResource xm:id="id.74" >
<pl at fornEl ement xm :id="id. 75" xm:type="platform StreanResource">
<abstraction xm:id="id.76" nane="ral" ki nd="DataAction">
<actionRelation xm:id="id.77" xm:type="data: HasContent" to="id.1" frone"id.76"/>
<actionRelation xm:id="id.78" xm:type="event:HasState" to="id.90" from="id.76"/>
</ abstraction>
</ pl at f or nEl ement >
<pl atfornEl ement xm :id="id.79" xm:type="platformFileResource">
<abstraction xm:id="id.80" nane="ra2" ki nd="DataAction">
<actionRel ation xm :id="id.81" xm:type="data: HasContent" to="id.4" fron¥"id.80"/>
</ abstraction>
</ pl at f or mEl ement >
</ depl oyedResour ce>
</ pl at f or nEl ement >
<platformEl enent xm :id="id.82" xm:type="platformPlatformActi on" name="pal" ki nd="open"
i mpl enentation="id. 44" >
<abstraction xm:id="id.83" nane="pal" kind="PlatformAction">
<actionRel ation xm :id="id.84" xm:type="platform ManagesResource" to="id. 75" from="id.83"/>
<actionRel ation xm :id="id.84e" xm:type="event: ProducesEvent" to="id.110" from="id.83"/>
</ abstraction>
</ pl at f or nEl ement >
<pl atformEl enent xm :id="id.85" xm:type="platformPlatformActi on" name="pa2" ki nd="open"
i mpl ement ation="id. 44" >
<abstraction xm:id="id.86" nane="pa2" ki nd="PlatformAction">
<actionRel ation xm :id="id.87" xm:type="platform ManagesResource" to="id.79" from="id.86"/>
</ abstraction>
</ pl at f or nEl ement >
<pl atfornmEl enent xm:id="id.118" xm:type="platform Pl atformAction" nane="pa3" ki nd="read"
i mpl ementation="id.47">

270 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<abstraction xm:id="id.119" nane="pa3" ki nd="EventAction">
<actionRelation xm:id="id.120" xm :type="event: ProducesEvent" to="id. 111" from="id.119"/>
</ abstraction>
</ pl at f or nEl enent >
<pl atfornEl ement xm:id="id.121" xm:type="platform Pl atformActi on" nanme="pa4" ki nd="cl ose"
i mpl enentation="id.47">
<abstraction xm:id="id.122" nane="pa4" ki nd="EventAction">
<actionRelation xm:id="id.123" xm :type="event: ProducesEvent" to="id.112" from="id. 122"/>
</ abstraction>
</ pl at f or nEl enent >
</ nodel >
<nodel xmi:id="id.88" xm:type="event: Event Model ">
<event El enent xmi:id="id.89" xm:type="event: Event Resource" nane="sequential -file">
<event El enent xmi:id="id.90" xm:type="event: State" name="cl osed">
<event El enent xmi:id="id.91" xm:type="event: Transition" name="tr1">
<event Rel ation xm:id="id. 92" xm :type="event: ConsunesEvent" to="id. 110" from="id.91"/>
<event Rel ation xm:id="id. 93" xm:type="event: NextState" to="id.103" fron¥"id.91"/>
<eventRel ation xm:id="id.94" xm:type="event: NextState" to="id.95" frone"id.91"/>
</ event El enent >

</ event El ement >
<event El enent xmi:id="id.95" xm:type="event: State" name="opened.not at end">

<event El ement xmi:id="id.96" xm:type="event: Transition" nane="tr2">
<eventRel ation xm:id="id. 97" xm:type="event: ConsunesEvent" to="id. 111" from="id. 96"/>
<event Rel ation xm:id="id.98" xm:type="event: NextState" to="id.103" fron¥"id.96"/>
<eventRel ation xm:id="id. 99" xm:type="event: Next State" to="id.95" from="id.96"/>

</ event El enent >

<event El enent xmi:id="id.100" xm:type="event: Transition" name="tr3">
<event Rel ation xm:id="id. 101" xm :type="event: ConsunesEvent" to="id. 112" from="id. 100"/>
<event Rel ation xm:id="id. 102" xm :type="event: NextState" to="id.90" frone"id.100"/>

</ event El enent >

</ event El ement >
<event El enent xmi:id="id.103" xm:type="event: State" nane="opened.at end">

<event El enent xmi:id="id.104" xm:type="event: Transition" name="tr4">
<event Rel ati on xm:id="id. 105" xm :type="event: ConsunesEvent" to="id. 112" from="id. 104"/>
<event Rel ation xm:id="id. 106" xm :type="event: NextState" to="id.90" frone"id.104"/>
</ event El enent >
<event El enent xmi:id="id.107" xm:type="event: Transition" name="tr5">
<eventRel ation xm :id="id.108" xm:type="event: ConsunmesEvent" to="id. 111" from="id. 107"/>
<eventRel ation xm :id="id.109" xm:type="event: Next State" to="id.103" from="id.107"/>
</ event El enent >
</ event El enent >
<event El enent xmi:id="id.110" xm:type="event: Event" nanme="open" ki nd="open"/>
<event El enent xm:id="id.111" xm :type="event: Event" nane="read"/>
<event El enent xmi:id="id.112" xm:type="event: Event" nane="cl ose"/>
</ event El enent >
</ nodel >
<model xm :id="id.113" xni:type="code: CodeMbdel ">
<codeEl ement xm :id="id.114" xm :type="code: LanguageUnit">
<codeEl ement xm :id="id.115" xm :type="code: StringType" nanme="X"'/>
</ codeEl enent >
</ nodel >
</ kdm Segnent >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

271

18.7 Keylndex Class Diagram

The Keylindex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

DataR esaurce
NOERERMEN |igeug Remling |
= T 0
____.-' II K =TT
Inghex | 45, s b s

! .
{ R farerc ehiey
UniqueKey

Figure 18.5 - KeyIndex Class Diagram

18.7.1 IndexElement Class (generic)

IndexElement class is a generic meta-model element that defines the common properties of the index items and key items
of persistent data stores. IndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the
IndexElement.

Superclass

DataResource

Associations

implementation : ItemUnit[1] the set of ItemUnits that constitute the index

Constraints:

1. Index owned by a data element should group elements that are owned by that data element.

2. IndexElement should have a stereotype.

Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.

272 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.7.2 UniqueKey Class

A UniqueKey is a meta-model element that represents primary keys in relational database tables, segments of hierarchical
databases, or indexed files. UniqueKey is a group of columns.

Superclass
IndexElement
Constraints
1. UniqueKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to a certain table or relational database or certain fields in an indexed file. A primary
key is one or more columns whose values uniquely identify every row in a table or every record in an indexed file. Normally
an index always exists on the primary key.

18.7.3 ReferenceKey Class

A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a
group of columns.

Superclass
IndexElement
Constraints
1. ReferenceKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key is the primary key of one data structure that is placed into a related data structure to represent a relationship
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey is a
group of one or more columns in a relational database table or segment of a hierarchical database or an indexed file that
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or
with itself.

18.7.4 Index Class
An Index class is a meta-model element that represents an index to a relational or hierarchical database or an indexed file.

Superclass

IndexElement

Constraints

1. Index owned by a data element should group ItemUnit elements that are owned by that data element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 273

Semantics

Index is a mechanism to locate and access data within a database. An index may quote one or more columns and be a
means of enforcing uniqueness on their values.

18.8 Key Relations Class Diagram

NOTE:KDM14-231

Figure 18.6 depicts the key relations within the Data Package. A Key is a way to access data without reading through an
entire data structure sequentially.

A e rae AN iRl anbie D e

Referenceley

3
C|

Kay Relation e | UniqueHey

redelres o —_— 0 ubsels mboand redainea k=]

Teusbandn. paitae el

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceKey in one data container, with a UniqueKey in another container, which
means that there is one and only one key value for that data.

18.8.1 KeyRelationship Class

A KeyRelationship is a meta-model element that represents an association between a ReferenceKey with the
corresponding UniqueKey.

Superclass

AbstractDataRelationship

Associations

from : ReferenceKey/[1] Foreign key is a certain table, segment, or file.
to: UniqueKey[1] Primary key is a certain table, segment, or key.
Semantics

ReferenceKey is a group of one or more columns in a relational database table or segment of a hierarchical database or an
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table,
segment, or file, or with itself.

274 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.9 DataActions Class Diagram

NOTE:KDM14-187, KDM14-231

DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the
runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one
or more code models through the “implementation” association. Each data action may own one or more “abstracted”
actions, which are used to model detailed resource related semantics.

A Pt ¢ AN e D

et F

[

I

Wirite e Lol umndhe £ Heads Dol el ProsfucesDalalvent MaragesDala HasConfent
b k }
? 0.* 2 : [8" 1
[nzmpin cuisound] Sutnfels nbond) Skt (o R {mpbagi inbound] [auSasin cafboond] |dubseis inbond] . h-'-'-*-'--:\-c- e
LIT B0 T {subs o cwlEoursd
| Sk B o EsEanel]
" {radel re 1z} iredelras Iz| | ot b
1] redel I & 1 ¥
|rechrtina o L o | 4 11
C b Sl DrataEwnn Alfuwdtra cirind Sam ot
Al - F
|recda Y
pudeines bom] ' Wi o
+iroam |1
a
e | AcionERMEn | gy e bom
F |BElan| 1
o sk
1
|renisbngs. broar {redalras o)

Figure 18.7 - DataActions Class Diagram

18.9.1 ReadsColumnSet Class

ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 275

to:ColumnSet[1] the data resource being accessed

Constraints

1. This relationship should not be used in Code models.

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.

18.9.2 WritesColumnSet Class

NOTE:KDM14-187

WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the DataAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

Constraints

1. This relationship should not be used in Code models.

Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.

18.9.3 ManagesData Class

NOTE:KDM14-187

Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to data
resources where there is no flow of data to or from the resource. ManagesData relationship is similar to Addresses
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

276 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

Constraints
1. This relationship should not be used in Code models.
Semantics

Manages represents a certain change of state to a certain AbstractDataElement.

18.9.4 HasContent Class

HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an
element of a data model with any resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed
Constraints
1. This relationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

18.9.5 ProducesDataEvent Class

NOTE:KDM14-187

PoducesDataEvent class follows the pattern of a "resource action relationship". This relation represents various situation
where an ActionElement produces a DataEvent. The action is usually an "abstracted" action owned by some data
resource.

Superclass

Action::AbstractActionRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 277

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:DataEvent[1] the data event being produced

Constraints

1. This relationship should not be used in Code models.

Semantics

This relationship represents various situations where an ActionElement produces a DataEvent.

Example

See examples in Section 18.6.2, “RelationalTable Class” and Section 18.6.5, “RecordFile Class”.

Example (Java, embedded SQL, JDBC)

NOTE:KDM14-15, KDM14-308

CREATE TABLE products (IDint primary key, nanme varchar, type varchar)
CREATE TABLE contracts (IDint primary key, product int, revenue decinal, dateSigned date)

final String findContract Statenment=
"SELECT * FROM contracts c, products p" +
"WHERE ID = ? AND c. product = p.ID";

public void cal cul at eRecognitions(|long contractlD) {
Connecti on db=Dri ver Manager. get Connecti on("j dbc: odbc: f oobar", "sunny","");
Prepar edSt at enent st nt =db. prepar eSt at enent (fi ndContract St at enent) ;
stnt.setLong(1, contractlD);
Resul t Set contracts=stnt.executeQery();
contracts. next();
Money t ot al Revenue=Mbney. dol | ars(contracts. get Bi gDeci mal ("revenue"));
M Dat e recogniti onDat e=new M Dat e(contracts. get Dat e("dat eSi gned"));

}

<?xm version="1.0" encodi ng="UTF-8""?>
<kdm Segnment xm ns: xm ="http://ww. ong. org/ spec/ XM /20110701"
xm ns: action="http://ww. ong. or g/ spec/ KDM 20160201/ act i on"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: dat a="http://ww. ong. or g/ spec/ KDM 20160201/ dat a"
xm ns: kdm="ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdni'
xm ns: platform"http://ww. ong. or g/ spec/ KDM 20160201/ pl at f orni' nanme="Dat a Exanpl e">
<nodel xmi:id="id.0" xm:type="data: Dat aMbdel " nane="Contracts">
<dat aEl ement xm :id="id.1" xm:type="data: Rel ati onal Schena" nanme="Contracts">
<dat aEl ement xm :id="id.2" xm:type="data: Rel ati onal Tabl " nanme="products">
<dat aEl ement xm :id="id.3" xm:type="data: Uni queKey" name="1D"' inplenmentation="id.4"/>
<itemnit xm:id="id.4" name="ID"' type="id.172"/>
<itembnit xm:id="id.5" name="name" type="id.173"/>

278 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<itemUnit xm:id="id.6" name="type" type="id.173"/>
</ dat aEl enent >
<dat aEl ement xm:id="id.7" xm:type="data: Rel ati onal Tabl e" nane="contracts">
<dat aEl ement xmi:id="id.8" xm:type="data: Uni queKey" nane="1D" inpl enentation="id.11"/>
<dat aEl ement xmi:id="id.9" xm:type="data: Ref erenceKey" i nplenentation="id.12">
<dat aRel ation xm :id="id.10" xm :type="data: KeyRel ation" to="id.3" from="id.9"/>
</ dat aEl enent >
<itemUnit xm:id="id.11" name="1D" type="id.172"/>
<itemUnit xm:id="id.12" name="product" type="id.172"/>
<itemUnit xmi:id="id.13" nane="revenue" type="id.174"/>
<itemUnit xm:id="id.14" nane="dateSi gned" type="id.175"/>
</ dat aEl enent >
</ dat aEl enent >
<dat aEl ement xm :id="id.15" xm:type="data: Dat aAction" nanme="dl" ki nd="Connect"
i mpl enent ation="id.79">
<abstraction xm:id="id.16" nane="dal" ki nd="Pl atformAction">
<actionRelation xm :id="id.20" xm:type="platform ManagesResource" to="id.67"/>
</ abstraction>
</ dat aEl enent >
<dat aEl ement xm :id="id.21" xm:type="data: Dat aAction" nane="d2" ki nd="Sel ect"
i mpl enentation="id.90 id.96 id.104">
<source xm :id="id.22" |anguage="sql"
sni ppet =" " ; sel ect * fromcontracts ¢, products p where ID = ? and c.product=p.ID ""/>
<abstraction xm:id="id.23" nane="wl" ki nd="Equal s">
<codeEl ement xm:id="id.24" xm:type="code: StorableUnit" nane="t1" type="id.176" kind="register"/>
<actionRelation xm:id="id.25" xm:type="action: Reads" to="id.11" fron¥"id.23"/>
<actionRelation xm:id="id.26" xm:type="action:Reads" to="id.77" frone"id.23"/>
<actionRelation xm:id="id.27" xm:type="action:Wites" to="id.24" from="id.23"/>
<actionRelation xm:id="id.28" xm:type="action:Flow' to="id.29"/>
</ abstraction>
<abstraction xm:id="id.29" nane="w2" ki nd="Equal s">
<codeEl ement xmi:id="id.30" xm:type="code: StorableUnit" nane="t2" type="id.176" kind="register"/>
<actionRelation xm:id="id.31" xm:type="action: Reads" to="id.12" fron¥"id.29"/>
<actionRelation xm:id="id.32" xm:type="action: Reads" to="id.4" from="id.29"/>
<actionRelation xm:id="id.33" xm:type="action:Wites" from="id.29"/>
<actionRelation xm:id="id.34" xm:type="action:Flow' to="id.35" from="id.29"/>
</ abstraction>
<abstraction xm:id="id.35" nane="w3" ki nd="And">
<codeEl ement xmi:id="id.36" xm:type="code: StorableUnit" nane="t3" type="id.176" kind="register"/>
<actionRelation xm:id="id.37" xm:type="action: Reads" to="id.24" frone"id.35"/>
<actionRelation xm:id="id.38" xm:type="action: Reads" to="id.30"/>
<actionRelation xm:id="id.39" xm:type="action:Flow' to="id.40" fronr"id.35"/>
</ abstraction>
<abstraction xm:id="id.40" nane="w4" ki nd="Condition">
<actionRelation xm:id="id.41" xm:type="action: TrueFl ow' to="id. 42" from="id.40"/>
</ abstraction>
<abstraction xm:id="id.42" name="s1" ki nd="DataAction">
<actionRelation xm:id="id.43" xnm:type="data: ReadsCol umSet" to="id.7" from="id.42"/>
<actionRelation xm:id="id.44" xm:type="action: Reads" to="id. 11" frone"id. 42"/>
<actionRelation xm:id="id.45" xm:type="action: Reads" to="id. 12" fron¥"id. 42"/>
<actionRelation xm:id="id.46" xm:type="action: Reads" to="id.13" fron¥"id.42"/>
<actionRelation xm:id="id.47" xm:type="action: Reads" to="id. 14" fron¥"id. 42"/>
<actionRelation xm:id="id.48" xn:type="data: ReadsCol umSet" to="id.2" from="id.42"/>
<actionRelation xm:id="id.49" xm:type="action: Reads" to="id.4" fronr"id.42"/>
<actionRelation xm:id="id.50" xm:type="action: Reads" to="id.5" fronr"id.42"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 279

<actionRel ation xm:id="id.51" xm:type="action: Reads" to="id.6" from="id.42"/>
<actionRel ation xm :id="id.52" xm:type="action:Wites" to="id.103" from="id.42"/>
<actionRel ation xm :id="id.53" xm:type="platform ReadsResource" to="id.67" from="id.42"/>
</ abstraction>
</ dat aEl enent >
<dat aEl ement xm :id="id.54" xm:type="data: Dat aActi on" name="d3" kind="Retrieve"
i mpl enentation="id.115">
<abstraction xm:id="id.55" nane="da2" ki nd="Dat aAction">
<actionRel ation xm :id="id.56" xm:type="action:Reads" to="id.13" fron¥"id.55"/>
<actionRel ation xm :id="id.57" xm:type="action: Addresses" to="id. 103" from="id.55"/>
<actionRel ation xm :id="id.58" xm:type="action:Wites" to="id.117" frone"id.55"/>
</ abstraction>
</ dat aEl enent >
<dat aEl ement xm :id="id.59" xm:type="data: DataAction" nane="d4" kind="Retrieve"
i mpl enent ati on="id. 130" >
<abstraction xm:id="id.60" nane="da3" ki nd="DataAction">
<actionRel ation xm :id="id.61" xm:type="action: Reads" to="id. 14" from="id.60"/>
<actionRel ation xm :id="id.62" xm:type="action: Addresses" to="id. 103" from="id. 60"/>
<actionRelation xm:id="id. 63" xm:type="action:Wites" to="id.132" from="id.60"/>
</ abstraction>
</ dat aEl enent >
</ nodel >
<nodel xmi:id="id.64" xm:type="platform Pl atformbdel ">
<pl atfornEl ement xm :id="id.65" xm:type="platform Machi ne">
<resource xm:id="id.66" >
<resource xm:id="id. 67" xm:type="pl atform Dat aManager" nanme="foobar">
<abstraction xm:id="id.68" nane="dnl">
<actionRel ation xm :id="id.69" xm:type="data: HasContent" to="id.1"/>
</ abstraction>
</ resource>
</ resource>
</ pl at f or nEl ement >
</ nodel >
<nodel xmi:id="id.70" xm:type="code: CodeModel " nanme="Application">
<codeEl ement xm :id="id.70a" xm :type="code: CodeAssenbl y" nanme="Dat aExanpl e" >
<entryFlow xm :id="id.70e" to="id.146" from="id.70a"/>
<codeEl emrent xm:id="id.71" xm:type="code: CassUnit" name="Dat aExanpl e">
<codeEl ement xm :id="id.72" xm:type="code: MenberUnit" nane="findContract St atenment"
i sFinal ="true" isStatic="true">
<codeRel ation xm :id="id.73" xm:type="code: HasVal ue" to="id. 145" frone"id.72"/>
</ codeEl enent >
<codeEl emrent xm :id="id.74" xm:type="code: Met hodUni t" nane="cal cul at eRecogni ti ons" type="id.76">
<entryFlow xm :id="id.75" to="id.79" from="id.74"/>
<codeEl ement xm :id="id.76" xm:type="code: Si gnature">
<paraneterUnit xm:id="id.77" name="contract Nunber" type="id.179"/>
</ codeEl enent >
<codeEl ement xm :id="id.78" xm:type="code: Storabl eUnit" name="db" type="id.155" kind="I|ocal"/>
<codeEl ement xm :id="id.79" xm:type="action: ActionEl enent" nanme="cl1" kind="Call">
<codeEl ement xm :id="id.80" xm:type="code: Val ue" nanme="" ;j dbc: odbc: f oobar &uot ; "/ >
<codeEl ement xm :id="id.81" xm:type="code: Val ue" nanme="" sunny"" type="id.178"/>
<codeEl erent xm :id="id.82" xm:type="code: Val ue" nanme="" ; "" type="id.178"/>
<actionRel ation xm :id="id.83" xm:type="action: Reads" to="id.80" frons"id.79"/>
<actionRel ation xm :id="id.84" xm:type="action: Reads" to="id.81" frone"id.79"/>
<actionRel ation xm :id="id.85" xm:type="action: Reads" to="id.82" fronr"id.79"/>
<actionRel ation xm :id="id.86" xm:type="action:Calls" to="id.154" frone"id.79"/>

280 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xm :id="id.
<actionRelation xm :id="id.
</ codeEl enent >

87" xm :type="action:Wites" to="id.78" fron="id.79"/>
88" xm :type="action: Flow' to="id.90" frone"id.79"/>

<codeEl ement xmi:id="id.89" xm:type="code: StorableUnit" name="stnt" type="id.161" kind="Iocal"/>
<codeEl ement xmi:id="id.90" xm:type="action:ActionEl ement" nane="c2" ki nd="MethodCall">

<actionRelation xm :id="id.

<actionRelation xm :id="id.

<actionRelation xm :id="id.

<actionRelation xm :id="id.

<actionRelation xm :id="id.
</ codeEl enment >

91" xm :type="action: Addresses" to="id.78" frone"id.90"/>
92" xm :type="action: Reads" to="id.72" fron¥"id.90"/>

93" xm :type="action:Calls" to="id.156" fron="id.90"/>
94" xm :type="action: Wites" to="id.89" frone"id.90"/>
95" xm :type="action: Flow' to="id.96" from="id.90"/>

<codeEl ement xmi:id="id.96" xm:type="action:ActionEl ement" nane="c3" kind="MethodCall">
<codeEl ement xm :id="id.97" xm :type="code: Val ue" nanme="1"/>

<actionRelation xm :id="id.
<actionRelation xm :id="id.
<actionRelation xm :id="id.
<actionRelation xm :id="id.
<actionRelation xm :id="id.

</ codeEl enent >

<codeEl ement xmi:id="id.103"

ki nd="1ocal "/ >

<codeEl ement xmi:id="id.104"
<actionRelation xm :id="id.
<actionRelation xm :id="id.
<actionRelation xm :id="id.
<actionRelation xm :id="id.

</ codeEl enent >

<codeEl ement xmi:id="id.109"
<actionRelation xm :id="id.
<actionRelation xm :id="id.
<actionRelation xm :id="id.

</ codeEl enent >

<codeEl ement xm :id="id.113" xm :type="code: Storabl eUnit" name="t ot al Revenue" type="id. 165"

ki nd="1ocal "/ >
<codeEl ement xmi:id="id.114"

98" xm :type="action: Addresses" to="id.89" from="id.96"/>
99" xm :type="action: Reads" to="id.97" fronr"id.96"/>
100" xm :type="action: Reads" to="id.77" from="id.96"/>
101" xm :type="action:Calls" to="id.162" frone"id.96"/>
102" xm :type="action: Flow' to="id.104" from="id.96"/>

xm :type="code: Storabl eUnit" name="contracts" type="id. 157"

xm :type="action: Acti onEl enent" nanme="c4" ki nd="MethodCal | ">

105" xm :type="action: Addresses" to="id. 89" fron¥"id.104"/>
106" xm :type="action:Calls" to="id.163" fron="id. 104"/ >
107" xm :type="action: Wites" to="id.103" fron¥"id. 104"/ >
108" xm :type="action: Fl ow' to="id.109" from="id.104"/>

xm :type="action: Acti onEl enent" name="c5" ki nd="Met hodCal | ">
110" xm :type="action: Addresses" to="id. 103" from="id.109"/>

111" xm :type="action:Calls" to="id.158" fronm="id.109"/>
112" xm :type="action: Fl ow' to="id. 114" from="id. 109"/>

xm :type="action: Acti onEl enent" nanme="c6" ki nd="Conpound">

<entryFlow xm :id="id.114e" to="id. 115" from="id. 114"/ >
<codeEl ement xm :id="id.115" xm :type="action: ActionEl enent" nane="c6.1" kind="Call">
<codeEl ement xm :id="id.116" xm :type="code: Val ue" nanme="" ;revenue""/>

<codeEl ement xm :id="id.117" xm :type="code: Storabl eUnit" name="t4" kind="register"/>
d. 118" xm :type="action: Addresses" to="id. 103" fron¥"id.115"/>

<actionRelation xm:id="i

<actionRelation xm:id="i

<actionRelation xm:id="i

<actionRelation xm:id="i
</ codeEl enent >

d. 119" xm:type="action:Calls" to="id.159" from="id.115"/>

d. 120" xm:type="action:Wites" to="id. 117" from="id.115"/>

d. 121" xm:type="action: Flow' to="id.122" from"id.115"/>

<codeEl ement xm :id="id.122" xm :type="action: ActionEl enent" nane="c6.2" kind="Call">

<actionRelation xm:id="i
<actionRelation xm :id="i
<actionRelation xm:id="i
<actionRelation xm :id="i
</ codeEl enent >
</ codeEl enent >

<codeEl ement xm :id="id.128" xm :type="code: Storabl eUnit" name="recogni zedDate" type="id. 168"

ki nd="1ocal "/ >
<codeEl ement xm :id="id.129"

d. 123" xm :type="action: Reads" to="id. 117" from="id.122"/>
d. 124" xm :type="action:Calls" to="id.166" from="id.122"/>

d. 125" xm:type="action:Wites" to="id.113" from="id.122"/>

d. 126" xm :type="action: Flow' to="id.129" fronm"id.122"/>

xm :type="action: Acti onEl ement" nanme="c7" ki nd="Conpound">

<entryFl ow xm :id="id.129e" to="id. 130" frone"id.129"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

281

<codeEl erent xm :id="id.130" xm :type="action: ActionEl erent" nane="c7.1" kind="Call">
<codeEl ement xm :id="id.131" xm :type="code: Val ue" nanme="" ; dat eSi gned""/>
<codeEl ement xm :id="id.132" xm :type="code: StorableUnit" name="t5" kind="register"/>
<actionRel ation xm :id="id.133" xm:type="action: Addresses" to="id.103" frone"id. 130"/>
<actionRel ation xm :id="id. 134" xm :type="action:Calls" to="id.160" from="id.130"/>
<actionRel ation xm :id="id.135" xm:type="action: Wites" to="id.132" frone"id. 130"/>
<actionRelation xm:id="id.136" xm:type="action:Flow' to="id.137" from="id.130"/>
</ codeEl enment >
<codeEl ement xm :id="id.137" xm :type="action: ActionEl enent" nane="c7.2" ki nd="New'>
<actionRel ation xm :id="id.138" xm:type="action:Creates" to="id. 168" from="id.137"/>
<actionRel ation xm :id="id.139" xm:type="action: Wites" to="id.128" frone"id. 137"/>
<actionRel ati on xm :id="id. 140" xm :type="action: Fl ow'/>
</ codeEl enment >
<codeEl ement xm :id="id.141" xm :type="action: ActionEl ement" nane="c7.3" ki nd="MethodCall">
<actionRel ation xm :id="id.142" xm :type="action: Reads" to="id. 132" from="id.137"/>
<actionRel ation xm :id="id. 143" xm :type="action:Calls" to="id.169" from="id.141"/>
<actionRel ati on xm :id="id. 144" xm :type="action: Wites" to="id.128" fron¥"id. 141"/>
</ codeEl ement >
</ codeEl enment >
</ codeEl enment >
<codeEl erent xm :id="id.145" xm :type="code: Val ue"
nanme="" ; SELECT * FROM contracts c, products p WHERE | D=? AND c. product =p. | D" ;"
type="id. 178"/ >
<codeEl enent xm :id="id. 146" xm :type="code: Bl ockUnit" name="init" kind="Init">
<entryFl ow xm :id="id. 147" to="id. 148" fron¥"id. 146"/ >
<codeEl ement xm :id="id.148" xm :type="action: ActionEl erent" nane="i1" ki nd="Assign">
<actionRel ation xm :id="id.149" xm :type="action: Reads" to="id. 145" from="id. 148"/>
<actionRel ati on xm :id="id.150" xm:type="action:Wites" to="id.72" from="id.148"/>
</ codeEl enment >
</ codeEl enment >
</ codeEl enent >
</ nodel >
<model xm:id="id.151" xm :type="code: CodeMdel " nane="Java packages">
<codeEl enment xm :id="id. 152" xm :type="code: Package" nane="java.sql">
<codeEl enent xm :id="id. 153" xm :type="code: Cl assUnit" name="DriverManager">
<codeEl enent xm :id="id. 154" xm :type="code: Met hodUnit" name="get Connection" kind="abstract"/>
</ codeEl enment >
<codeEl erent xm :id="id.155" xm :type="code: C assUnit" nane="Connection">
<codeEl ement xm :id="id.156" xm :type="code: Met hodUnit" nane="prepareStatenent" kind="abstract"/>
</ codeEl enent >
<codeEl emrent xm :id="id.157" xm :type="code: C assUnit" nanme="ResultSet">
<codeEl ement xm :id="id.158" xm :type="code: Met hodUnit" nane="next" ki nd="abstract"/>
<codeEl ement xm :id="id.159" xm :type="code: Met hodUnit" nane="get Bi gDeci mal " ki nd="abstract"/>
<codeEl ement xm :id="id.160" xm :type="code: Met hodUnit" nane="get Date" ki nd="abstract"/>
</ codeEl enment >
<codeEl ement xm :id="id.161" xm :type="code: C assUnit" nanme="Statenment">
<codeEl ement xm :id="id.162" xm :type="code: Met hodUnit" nane="set Long" ki nd="abstract"/>
<codeEl ement xm :id="id.163" xm :type="code: Met hodUnit" name="executeQuery" kind="abstract"/>
</ codeEl enent >
</ codeEl enent >
<codeEl ement xm :id="id.164" xm :type="code: Package" nanme="Money">
<codeEl erent xm :id="id.165" xm :type="code: C assUnit" nane="Money">
<codeEl ement xm :id="id.166" xm :type="code: MethodUnit" nane="dol | ars" ki nd="abstract"/>
</ codeEl enent >
</ codeEl enment >

282 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeEl ement xm :id="id. 167" xm :type="code: Package" nane="M Date">
<codeEl ement xm :id="id. 168" xm :type="code: Cl assUnit" name="M Date">
<codeEl ement xm :id="id.169" xm :type="code: Met hodUnit" name="M Date" ki nd="abstract"/>
</ codeEl enent >
</ codeEl enent >
</ nodel >
<model xm:id="id.170" xm:type="code: CodeMddel " nane="Common Dat atypes">
<codeEl ement xm :id="id.171" xm :type="code: LanguageUnit" nanme="SQ. dat atypes">
<codeEl ement xm :id="id.172" xm :type="code: | ntegerType" name="sql int"/>
<codeEl ement xmi:id="id.173" xm :type="code: Stri ngType" nane="sqgl varchar"/>
<codeEl ement xmi:id="id.174" xm :type="code: Deci mal Type" nane="sql decinmal"/>
<codeEl ement xmi:id="id.175" xm :type="code: Dat eType" nane="sql date"/>
<codeEl ement xm :id="id.176" xm :type="code: Bool eanType"/>
</ codeEl enent >
<codeEl ement xm:id="id.177" xm :type="code: LanguageUnit" name="Java dat at ypes" >
<codeEl ement xmi:id="id.178" xm :type="code: StringType"/>
<codeEl ement xmi:id="id.179" xm :type="code:|nteger Type" nanme="java |ong"/>
<codeEl ement xmi:id="id.180" xm :type="code:|nteger Type" nanme="java byte"/>
</ codeEl enent >
</ nodel >
</ kdm Segnent >

18.10 StructuredData Class Diagram

The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram
shown in Figure 18.8 captures these classes and their relations.

o dai [0 P ST

EMLSchema Advs e i evtaniSheane
| i [R] .-

BT

N UL I AT
suss sls swmedbmmant]

Figure 18.8 - StructuredData Class Diagram

18.10.1 XMLSchema

The XMLSchema class represents the top level container for a KDM metamodel of an XML document.

Superclass

AbstractDataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 283

Associations

contentElement :AbstractContentElement[0..*]

Individual content elements owned by this schema.
Semantics

XMLSchema is a logical container for AbstractContentElements as well as some other DataResource elements (for
example, DataEvents).

18.10.2 AbstractContentElement (abstract)

elements.

The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the
content of XML schemas and documents as well as various structured data items that can be associated with other KDM

Superclass
AbstractDataElement

Semantics
AbstractContentElement represents common properties of content elements.

18.11 ContentElements Class Diagram

The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 18.9 captures these classes and their relations.

srrwtiss i bwmesai

L1 AL Eb TR |
[piz oaresdlaneri]
[e, T g— | Abwirarc i andratEampnd
% = L= (8 b e
U .-"- I. T iarar 0.1
tyubenin owrar) 01 -. | T
: | tyisi | GonwnTyses Conestitam
Compleadoniem Type - II o
E R R
] |I A L
-.-____.FJ‘ :""nl . \ .l-__.-" | 'q._. H“-\-.
—.'i P ™ ", MemerTypas | r Il "'.\,m e
WinadC nreent S0 . . II _l,.-"" | x
4 | [| R Combe niE e me et
| Garupdl arilinm Y
._.-'" [SmphComenType | pe | '\
: .I 5 veind : Sheg .l -
A | Y
|"l ll I| | |
| 1 | I Contemdtirbuie
f | —_— | Comentfaference
—
C hoke a Comtan | i
AN ot I| \
I' —— ContaniReswictizn
| shind : Shring
B oniem

T

Figure 18.9 - ContentElements Class Diagram
284

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.11.1 Contentltem (generic)

The Contentltem class is a generic meta-model element that represents named items and references of the XML schema:
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*] owned content elements
type:ComplexContentType[0..1] content type of the current Contentltem
Semantics

18.11.2 ComplexContentType

The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as
subclasses of ComplexContentType.

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*] Owned content elements

Semantics

18.11.3 SimpleContentType

The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

kind:String content kind of the current SimpleContentType

Associations

type:ComplexContentType[0..*] content type of the current Contentltem

Semantics

Simple types, such as string and decimal, are built in to XML Schema, while others are derived from the built-in’s. The kind of

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 285

SimpleContentType can be “list,” “union,” “enumeration,” etc.

18.11.4 ContentRestriction
The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

Attributes
kind :String type of the content restriction (XML)
value:String value of the constraint

Semantics

kind is an XSD restriction, such as minExclusive, minInclusive, maxExclusive, maxInclusive, totalDigits, fractionDigits,
length, minLength, maxLength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs,
maxOcecurs, required, fixed; or an XSD enumeration.

Example (XSD)

NOTE:KDM14-15, KDM14-308

<xsd: si npl eType nane="nyl nt eger" >
<xsd:restriction base="xsd:integer">
<xsd: m nl ncl usi ve val ue="10000"/ >
<xsd: maxl ncl usi ve val ue="99999"/ >
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="SKU'>
<xsd:restriction base="xsd:string">
<xsd: pattern val ue="\d{3}-[A-Z]{2}"/>
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nane="USSt at e" >
<xsd:restriction base="xsd:string">
<xsd: enuneration val ue="AK"/ >
<xsd: enuneration val ue="AL"/>
<xsd: enuneration val ue="AR'/ >
<l-- and soon ... -->
</xsd:restriction>
</ xsd: si npl eType>

<xsd: si nmpl eType nane="list Of Myl nt Type" >
<xsd:list itenflype="nylnteger"/>
</ xsd: si npl eType>

<xsd: si npl eType nane="USSt at eLi st">
<xsd:list itenflype="USState"/>

286 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</ xsd: si npl eType>

<xsd: si npl eType nanme="Si xUSSt at es" >
<xsd:restriction base="USSt at eLi st">
<xsd: |l ength val ue="6"/>
</ xsd:restriction>
</ xsd: si npl eType>

<xsd: si npl eType nanme="zi pUni on">
<xsd: uni on nenber Types="USState |istCO Myl nt Type"/>
</ xsd: si npl eType>

<?xm version="1.0" encodi ng="UTF- 8" ?>
<kdm Segrment xm ns: xmi ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: data="http://ww. ong. or g/ spec/ KDM 20160201/ dat a"
xm ns: kdme"htt p: // www. ong. or g/ spec/ KDM 20160201/ kdm' nanme="XM. Si npl e Content Exanple">
<nodel xmi:id="id.0" xm:type="data: Dat aMbdel ">
<dat aEl ement xm :id="id.1" xm:type="data: XM_.Schema" nane="Si npl eType exanpl es">
<contentEl ement xmi:id="id.2" xm:type="data:Sinpl eContent Type" name="M/I nteger">
<dat aRel ation xm :id="id.3" xm:type="data: RestrictionOf" to="id.27" from="id.2"/>
<content El ement xmi:id="id.4" xm:type="data: ContentRestriction"
ki nd="m nl ncl usi ve" val ue="10000"/>
<content El ement xmi:id="id.5" xm:type="data: ContentRestriction"
ki nd="nmaxI ncl usi ve" val ue="99999"/ >
</ cont ent El enent >
<contentEl ement xmi:id="id.6" xm:type="data:Sinpl eContent Type" nanme="SKU'>
<dataRel ation xm :id="id. 7" xm:type="data:RestrictionOf" to="id.29" from="id.2"/>
<content El ement xmi:id="id.8" xm:type="data: ContentRestriction"
ki nd="pattern" val ue=""\d{3}-[A-Z] {2} " ;" />
</ cont ent El enent >
<contentEl ement xmi:id="id.9" xm:type="data:Sinpl eContent Type" nanme="USSt ate">
<content El ement xmi:id="id.10" xm:type="data: ContentRestriction"
ki nd="enuner ati on" val ue="" ; AK" ;" />
<content El ement xm:id="id.11" xm:type="data: ContentRestriction"
ki nd="enuner ati on" val ue="" ; AL" ;" />
<content El ement xmi:id="id.12" xm:type="data: ContentRestriction"
ki nd="enumerati on" val ue="" ; AR" ;" />
</ cont ent El enent >
<content El enent xm :id="id.13" xm:type="data: Si npl eCont ent Type" nanme="li st Of Myl nt Type" >
<content El ement xm :id="id.14" xm :type="data:ListContent">
<dat aRel ation xm :id="id.15" xm :type="data: TypedBy" to="id.2" from="id.14"/>
</ cont ent El enent >
</ cont ent El enent >
<content El ement xmi:id="id.16" xm:type="data: Si npl eCont ent Type" nane="USSt at eLi st">
<content El ement xmi:id="id.17" xm:type="data:ListContent" nanme="">
<dat aRel ation xm :id="id.18" xm :type="data: TypedBy" to="id.9" from="id.17"/>
</ cont ent El ement >
</ cont ent El ement >
<content El ement xmi:id="id.19" xm:type="data: Si npl eCont ent Type" nane="Si xUSSt at es" >
<dat aRel ation xmi:id="id.20" xm:type="data: RestrictionOf" to="id.16" frons"id.19"/>
<content El ement xmi:id="id.21" xm:type="data: ContentRestriction" kind="Iength" value="6"/>
</ cont ent El enent >
<content El ement xmi:id="id.22" xm:type="data: Si npl eContent Type" nanme="zi pUni on">
<content El ement xmi:id="id.23" xn:type="data: Uni onContent">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<dat aRel ation xm :id="id.24" xm:type="data: TypedBy" to="id.9" from="id.23"/>
<dataRel ation xm :id="id.25" xm:type="data: TypedBy" to="id.13" from="id.23"/>
</ cont ent El ement >
</ cont ent El ement >
</ dat aEl enent >
<dat aEl ement xm :id="id.26" xm:type="data: XM_.Schema" nane="xsd">
<contentEl enent xm :id="id.27" xm:type="data: Si npl eCont ent Type" nanme="xsd: | nteger">
<dat aRel ation xm :id="id.28" xm:type="data: DatatypeO" to="id.41" frone"id.27"/>
</ cont ent El ement >
<content El enent xm :id="id.29" xm :type="data: Si npl eCont ent Type" nanme="xsd: String">
<dataRel ation xm :id="id.30" xm:type="data: DatatypeOr" to="id.42" from="id.29"/>
</ cont ent El ement >
<contentEl enent xm :id="id.31" xm:type="data: Si npl eCont ent Type" nanme="xsd: Deci mal ">
<dat aRel ation xm :id="id.32" xm:type="data: DatatypeO" to="id.43" frone"id.31"/>
</ cont ent El ement >
<contentEl enent xm :id="id.33" xm:type="data: Si npl eContent Type" nane="xsd: positivel nteger">
<dataRel ation xm :id="id.34" xm :type="data: DatatypeOr" to="id.41" from="id.33"/>
</ cont ent El ement >
<content El enent xm :id="id.35" xm:type="data: Si npl eContent Type" nane="xsd: date">
<dat aRel ation xm :id="id.36" xm:type="data: DatatypeO" to="id.44" fron¥"id.35"/>
</ cont ent El ement >
<content El enent xm :id="id.37" xm:type="data: Si npl eContent Type" name="xsd: any"/>
<content El enent xm :id="id.38" xm:type="data: Si npl eContent Type" nanme="xsd: NMTOKEN"/ >
</ dat aEl enent >
</ nodel >
<nmodel xm:id="id.39" xm:type="code: CodeModel ">
<codeEl ement xm :id="id.40" xm:type="code: LanguageUnit">
<codeEl enent xm :id="id.41" xm:type="code:|ntegerType" name="xsd integer"/>
<codeEl enent xm :id="id.42" xm:type="code: StringType" nanme="xsd string"/>
<codeEl enent xm :id="id.43" xm:type="code: Deci mal Type" name="xsd decinmal"/>
<codeEl ement xm :id="id.44" xm :type="code: Dat eType" nane="xsd date"/>
</ codeEl enent >
</ nodel >
</ kdm Segnent >

18.11.5 AllContent Class

An AllContent class is a meta-model element that represents complex types with the “all” order indicator.

Superclass

ComplexContentType

Semantics

18.11.6 SeqContent Class

The SeqContent class is a meta-model element that represents complex types with the “sequence” order indicator.

Superclass

ComplexContentType

288 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics
18.11.7 ChoiceContent Class
A ChoiceContent class is a meta-model element that represents complex types with the “choice” order indicator.

Superclass

XMLComplexType

Semantics

18.11.8 GroupContent Class

A GroupContent class is a meta-model element that represents complex types with the “group” group indicator.

Superclass

ComplexContentType

Semantics

18.11.9 MixedContent Class

A MixedContent class is a meta-model element that represents complex types with the “mixed” indicator.

Superclass

ComplexContentType
Semantics

18.11.10 ContentAttribute Class

A ContentAttribute class is a meta-model element that represents the XML “attribute” declaration mechanism of XML
Schemas.

Superclass

Contentltem
Semantics

18.11.11 ContentElement Class

A ContentElement class is a meta-model element that represents the XML “element” declaration mechanism of XML
Schemas.

Superclass

Contentltem

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 289

Semantics

18.11.12 ContentReference Class

A ContentReference class is a meta-model element that represents the XML “reference” declaration mechanism of XML
Schemas.

Superclass

Contentltem
Semantics

Example (XSD)

NOTE:KDM14-15, KDM14-308

<xsd: el ement name="1 et ter Body" >
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: el ement name="sal utation">
<xsd: conpl exType m xed="true">
<xsd: sequence>
<xsd: el ement name="name" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el ement >

<xsd: el ement name="quantity" type="xsd: posi tivel nteger"/>
<xsd: el ement name="product Name" type="xsd:string"/>
<xsd: el ement name="shi pDat e" type="xsd: date" m nCccurs="0"/>
<l-- etc. -->

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType name="USAddress" >
<xsd: sequence>

<xsd: el ement nane="nane" type="xsd: string"/>
<xsd: el ement nane="street" type="xsd:string"/>
<xsd: el ement name="city" type="xsd:string"/>
<xsd: el ement name="state" type="xsd:string"/>
<xsd: el enent nanme="zi p" type="xsd: deci mal "/ >

</ xsd: sequence>
<xsd:attribute nane="country" type="xsd: NMTOKEN' fi xed="US"/>
</ xsd: conpl exType>

<xsd: conmpl exType nanme="Itens">
<xsd: sequence>
<xsd: el ement name="item m nCccurs="0" maxCccurs="unbounded" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement name="product Name" type="xsd:string"/>
<xsd: el ement name="quantity">
<xsd: si npl eType>
<xsd:restriction base="xsd: positivelnteger">

290 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<xsd: maxExcl usi ve val ue="100"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: el enent >
<xsd: el ement name="USPrice" type="xsd: decinmal"/>
<xsd: el ement ref="conmrent" m nCccurs="0"/>
<xsd: el ement nane="shi pDate" type="xsd:date" m nCccurs="0"/>
</ xsd: sequence>
<xsd:attribute nanme="part Nunl type="SKU' use="required"/>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
</ xsd: conpl exType>

<xsd: el ement nane="international Price">
<xsd: conpl exType>
<xsd: conpl exCont ent >
<xsd:restriction base="xsd: anyType">
<xsd:attribute name="currency" type="xsd:string"/>
<xsd: attribute name="val ue" type="xsd: deci mal "/ >
</xsd:restriction>
</ xsd: conpl exCont ent >
</ xsd: conpl exType>
</ xsd: el enent >

<xsd: conpl exType nanme="PurchaseO der Type" >
<xsd: sequence>
<xsd: choi ce>
<xsd: group ref="shi pAndBi I | "/ >
<xsd: el ement nanme="si ngl eUSAddr ess" type="USAddress"/>
</ xsd: choi ce>
<xsd: el ement ref="coment" m nCccurs="0"/>
<xsd: el ement nane="itens" type="Itens"/>
</ xsd: sequence>
<xsd:attribute nane="orderDate" type="xsd:date"/>
</ xsd: conpl exType>

<xsd: group id="shi pAndBill">
<xsd: sequence>
<xsd: el ement nanme="shi pTo" type="USAddress"/>
<xsd: el ement name="bill To" type="USAddress"/>
</ xsd: sequence>
</ xsd: gr oup>

<?xm version="1.0" encodi ng="UTF- 8" ?>

<kdm Segnment xm ns: xm ="http://ww:. ong. or g/ spec/ XM /20110701"
xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"
xm ns: data="http://ww. ong. or g/ spec/ KDM 20160201/ dat a"
xm ns: kdme" ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdnt name="XM. Conpl ex Content Exanple">

<nmodel xm:id="id.0" xm:type="data: Dat aMobdel ">
<dat aEl ement xm :id="id.1" xm:type="data: XM_.Schema" nane="Conpl ex Content">
<contentEl ement xmi:id="id.2" xm:type="data: ContentEl enent" nane="|etterBody">
<dat aRel ation xm :id="id.3" xm:type="data: TypedBy" to="id.4" from="id.2"/>
<content El ement xmi:id="id.4" xm:type="data: M xedContent" nanme="nml">
<content El ement xmi:id="id.5" xm:type="data: SeqContent">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 291

<contentEl enent xm:id="id.6" xm:type="data: Content El ement" nane="sal utation">
<dataRel ation xm:id="id.7" xm:type="data: TypedBy" to="id.8" fronm"id.6"/>
<contentEl enent xm :id="id.8" xm:type="data: M xedContent">
<content El enent xm :id="id.9" xm:type="data: SeqContent">
<content El enent xm :id="id.10" xm :type="data: ContentEl enent" nanme="nane">
<dataRel ation xm :id="id.11" xm :type="data: TypedBy" to="id.88" from="id.10"/>
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
<content El enent xm :id="id.12" xm :type="data: Content El enent" name="quantity">
<dataRel ation xm :id="id.13" xm :type="data: TypedBy" to="id.92" from="id.12"/>
</ cont ent El ement >
<content El enent xm :id="id.14" xm:type="data: Content El enent" nane="product Nane" >
<dat aRel ation xm :id="id.15" xm :type="data: TypedBy" to="id.88" from="id.14"/>
</ cont ent El ement >
<content El enent xm :id="id.16" xm :type="data: ContentEl enent" nanme="shi pDate">
<dataRel ation xm :id="id.17" xm :type="data: TypedBy" to="id.94" from="id.16"/>
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
</ cont ent El ement >
<content El enent xm :id="id.18" xm :type="data: Conpl exCont ent Type" name="USAddress">
<content El enent xm :id="id.19" xm :type="data: SeqContent">
<content El enent xm :id="id.20" xm:type="data: ContentEl enent" nane="nane">
<dat aRel ation xm :id="id.21" xm:type="data: TypedBy" to="id.88" from="id.20"/>
</ cont ent El ement >
<content El enent xm :id="id.22" xm:type="data: ContentEl enent" name="street">
<dataRel ation xm :id="id.23" xm:type="data: TypedBy" to="id.88" from="id.22"/>
</ cont ent El ement >
<content El enent xm :id="id.24" xm:type="data: ContentEl enent" nane="city">
<dat aRel ation xm :id="id.25" xm:type="data: TypedBy" to="id.88" from="id.24"/>
</ cont ent El ement >
<content El enent xm :id="id.26" xm:type="data: ContentEl enent" nanme="state">
<dataRel ation xm :id="id.27" xm :type="data: TypedBy" to="id.88" from="id.26"/>
</ cont ent El ement >
<content El enent xm :id="id.28" xm:type="data: ContentEl erent" nane="zip">
<dat aRel ation xm :id="id.29" xm:type="data: TypedBy" to="id.88" from="id.28"/>
</ cont ent El ement >
</ cont ent El enent >
<content El enent xm :id="id.30" xm:type="data: ContentAttribute" name="country">
<dataRel ation xm :id="id.31" xm:type="data: TypedBy" to="id. 97" from="id.30"/>
<content El enent xm :id="id.32" xm:type="data: ContentRestriction"
ki nd="fi xed" val ue="" ; US" ;" />
</ cont ent El ement >
</ cont ent El enent >
<contentEl enent xm :id="id.33" xm:type="data: Conpl exCont ent Type" name="itens">
<content El enent xm :id="id. 34" xm:type="data: SeqContent">
<content El enent xm :id="id. 35" xm:type="data: ContentEl enent" nane="iteni>
<dat aRel ation xm :id="id.36" xm:type="data: TypedBy" to="id.39" from="id.35"/>
<content El enent xm :id="id.37" xm:type="data: ContentRestriction" kind="m nCccurs" val ue="0"/>
<content El enent xm :id="id.38" xm:type="data: ContentRestriction"
ki nd="nmaxCccurs" val ue="unbounded"/ >
<content El enent xm :id="id.39" xm:type="data: Conpl exCont ent Type" nane=
<content El enent xm :id="id.40" xm:type="data: SeqCont ent">

">

292 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<content El ement xm :id="id. 41" xm:type="data: Content El enent" name="product Namel">
<dat aRel ation xm :id="id. 42" xm :type="data: TypedBy" to="id. 88" from="id.41"/>
</ cont ent El enent >
<content El ement xm :id="id.43" xm:type="data: Content El ement" nanme="quantityl">
<dat aRel ation xm :id="id. 44" xm :type="data: TypedBy" to="id. 45" from="id.43"/>
<content El enent xm :id="id.45" xm:type="data: Si npl eCont ent Type" nanme="st1">
<dat aRel ation xm :id="id.46" xm:type="data: RestrictionOf" to="id.92" from="id.45"/>
<content El ement xm :id="id.47" xm:type="data: ContentRestriction"
ki nd="nmaxExcl usi ve" val ue="100"/>
</ cont ent El ement >
</ cont ent El ement >
<content El ement xm :id="id.48" xm:type="data: Content El ement" nanme="USPrice">
<dat aRel ation xm :id="id.49" xm :type="data: TypedBy" to="id.90" from="id.48"/>
</ cont ent El enent >
<content El ement xm :id="id.50" xm:type="data: Content Ref erence">
<dat aRel ation xm :id="id.51" xm:type="data: ReferenceTo" to="id.83" from="id.50"/>
<content El ement xm :id="id.52" xm:type="data: ContentRestriction"
ki nd="m nCccurs" val ue="0"/>
</ cont ent El enent >
<content El ement xm :id="id.53" xm:type="data: ContentEl enent" nane="shi pDatel">
<dat aRel ation xm :id="id.54" xm :type="data: TypedBy" to="id.94" from="id.53"/>
</ cont ent El ement >
</ cont ent El ement >
<content El ement xm :id="id.55" xm:type="data: ContentAttribute" name="partNuni >
<dat aRel ation xnmi:id="id.56" xm:type="data: TypedBy" fron¥"id.55"/>
<content El ement xm :id="id.57" xm:type="data: ContentRestriction"
ki nd="use" val ue="required"/>
</ cont ent El emrent >
</ cont ent El ement >
</ cont ent El emrent >
</ cont ent El enent >
</ cont ent El enent >
<content El ement xmi:id="id.58" xm:type="data: ContentEl enent" nanme="international price">
<content El enent xm :id="id.59" xm:type="data: Conpl exCont ent Type" nane="">
<dat aRel ation xm :id="id.60" xm:type="data: RestrictionOF" to="id.96" from="id.59"/>
<content El ement xmi:id="id.61" xm:type="data: ContentAttribute" name="currencyl">
<dat aRel ation xm :id="id.62" xm:type="data: TypedBy" to="id.88" fronr"id.61"/>
</ cont ent El enent >
<content El ement xmi:id="id.63" xm:type="data: ContentAttribute" name="val ue">
<dat aRel ation xm :id="id.64" xm :type="data: TypedBy" to="id.90" fronr"id.61"/>
</ cont ent El enent >
</ cont ent El enent >
</ cont ent El enent >
<content El ement xmi:id="id. 65" xm:type="data: Conpl exCont ent Type" nane="Pur chaseO der Type" >
<content El ement xmi:id="id. 66" xm:type="data: SeqContent">
<content El ement xmi:id="id. 67" xm:type="data: Choi ceContent">
<content El ement xmi:id="id. 68" xn:type="data: ContentReference">
<dat aRel ation xm :id="id.69" xm:type="data: ReferenceTo" to="id.79" from="id.68"/>
</ cont ent El enent >
<content El ement xmi:id="id.70" xm:type="data: ContentEl enent" nanme="singl eUSAddr ess" >
<dataRel ation xmi:id="id.71" xm:type="data: TypedBy" to="id. 18" fron¥"id.70"/>
</ cont ent El enent >
</ cont ent El enent >
<content El ement xmi:id="id.72" xm:type="data: Content Ref erence">
<dataRel ation xm :id="id.73" xm:type="data: Ref erenceTo" to="id.83" from"id.72"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 293

<content El enent xm :id="id.74" xm:type="data: ContentRestriction" kind="m nCccurs
</ cont ent El ement >
<content El enent xm :id="id.75" xm:type="data: ContentEl erent" nane="itens">
<dataRel ation xm :id="id.76" xm :type="data: TypedBy" to="id.33" from="id.75"/>
</ cont ent El ement >
</ cont ent El ement >
<contentEl enent xm :id="id.77" xm:type="data: Content Attribute" name="orderDate">
<dataRel ation xm :id="id.78" xm:type="data: TypedBy" to="id. 94" from="id.77"/>
</ cont ent El ement >
</ cont ent El ement >
<contentEl enent xm :id="id.79" xm:type="data: G oupContent" nane="shi pAndBill">
<content El enent xm :id="id.80" xm:type="data: SeqContent">
<content El enent xm :id="id.81" xm:type="data: ContentEl enent"/>
<content El enent xm :id="id.82" xm:type="data: ContentEl enent"/>
</ cont ent El ement >
</ cont ent El ement >
<content El enent xm :id="id.83" xm:type="data: ContentEl enent" name="coment">
<dataRel ation xm :id="id.84" xm :type="data: TypedBy" to="id.88" from="id.83"/>
</ cont ent El ement >
</ dat aEl enent >
<dat aEl ement xm :id="id.85" xm:type="data: XM_.Schema" nane="xsd">
<content El enent xm :id="id.86" xm:type="data: Si npl eContent Type" nanme="xsd: | nteger">
<dataRel ation xm :id="id.87" xm :type="data: DatatypeOr" to="id.100" fron¥"id. 86"/>
</ cont ent El ement >
<contentEl enent xm :id="id.88" xm:type="data: Si npl eContent Type" nanme="xsd: String">
<dat aRel ation xm :id="id.89" xm:type="data: DatatypeO" to="id.101" from="id.88"/>
</ cont ent El ement >
<content El enent xm :id="id.90" xm:type="data: Si npl eCont ent Type" nanme="xsd: Deci mal ">
<dataRel ation xm :id="id.91" xm :type="data: DatatypeOr" to="id.102" fron¥"id.90"/>
</ cont ent El ement >

val ue="0"/>

<content El enent xm :id="id. 92" xm:type="data: Si npl eContent Type" nanme="xsd: positivelnteger">

<dat aRel ation xm :id="id.93" xm :type="data: DatatypeOf" to="id.100" from="id.92"/>
</ cont ent El ement >
<content El enent xm :id="id.94" xm :type="data: Si npl eContent Type" nanme="xsd: date">
<dataRel ation xm :id="id.95" xm :type="data: DatatypeOr" to="id.103" fron¥"id.94"/>
</ cont ent El ement >
<contentEl enent xm :id="id. 96" xm:type="data: Si npl eContent Type" nanme="xsd: any"/>
<contentEl enent xm :id="id. 97" xm:type="data: Si npl eCont ent Type" nanme="xsd: NMTOKEN"/ >
</ dat aEl emrent >
</ nodel >
<model xm :id="id.98" xm :type="code: CodeModel ">
<codeEl ement xm :id="id.99" xm :type="code: LanguageUnit">
<codeEl ement xm :id="id.100" xm :type="code: | ntegerType" name="xsd integer"/>
<codeEl erent xm :id="id.101" xm :type="code: StringType" nane="xsd string"/>
<codeEl ement xm :id="id.102" xm :type="code: Deci mal Type" name="xsd deci nal "/>
<codeEl ement xm :id="id.103" xm :type="code: Dat eType" nane="xsd date"/>
</ codeEl enent >
</ nodel >
</ kdm Segnent >

18.12 ContentRelations Class Diagram

NOTE:KDM14-231

294 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The ContentRelations class diagram provides basic meta-model relationships that represent various structural properties
of the content. The class diagram shown in Figure 18.10 captures these classes and their relations.

A ek e AP TR iR D g
{=,
=
Datarty parOf Riustrici ol EximnsionTa TyesadEy RsifaremcaTo
7 0 e e bt o T o
p1e SR LT] Do el bl (el | 5sE RS Pl fil; | Bk E1E Sl fustanin mbsrd-
{msbagn ebournd: Snubrpein inscund] {petasm nhoorsl; nuzap{n cuiboand] N
£ re-Sil s) oars)
o |1 1 "
rriafinas i .
- Cortaniiis [/redelres iz
Blatabype b=
[[rosdelmgs 1] iregedres frony - Cremefind: fom
Hom |7 e #Hom |1 1 e |
L Al | = L
e e CompleaComentType
=kl
wiram {reciafinan o)
[A e A |

Figure 18.10 - ContentRelations Class Diagram

18.12.1 TypedBy Class

The TypedBy class represents the relationship between a Contentltem and a content type, that can be represented by a
ComplexContentType class or one of its subclasses.

Superclass

AbstractDataRelationship

Associations

from:Contentltem[1] the content element or attribute

to:ComplexContentType[1] the content type element
Constraints
1. The “from” endpoint should be a ContentElement or a ContentAttribute class.

Semantics

TypedBy relationship represents an association between a content element and its type when this type is user-defined.
This relationship is similar to HasType from CodeModel.

18.12.2 DatatypeOf Class

The DatatypeOf class represents the relationship between a CompelxContentType and a Datatype defined in some Code
model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 295

Superclass

AbstractDataRelationship

Associations

from:ComplexContentType[1] the content type
to:Datatype[1] the datatype element
Semantics

DatatypeOf relationship represents an association between a content type and primitive datatype.

18.12.3 ReferenceTo Class

The ReferenceTo class represents the relationship between a ContentReference and a ContentElement, ContentAttribute, or
ContentGroup definition.

Superclass

AbstractDataRelationship

Associations

from:Contentltem[1] the content reference

to:Contentltem[1] the content element or attribute or group

Constraints
1. The “from” endpoint should be a ContentReference.
2. The “to” endpoint should be a ContentElement, a ContentAttribute, or GroupContent.

Semantics

ReferenceTo relationship represents an association between a content reference and the corresponding definition.

18.12.4 ExtensionTo Class

The ExtensionTo class represents the relationship between two content types, where one type is an extension to another. The
semantics of deriving new types by extension is that as the result a new complex type or simple type is defined that contains all
the elements of the original type plus additional elements that are provided as the extension.

Superclass

AbstractDataRelationship

Associations

from:ComplexContentType[1] the new (extended) content type

to:ComplexContentType[1] the base content type

296 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

Semantics

ExtensionTo relationship represents an association between a content type and its base type.

18.12.5 RestrictionOf Class

The RestrictionOf class represents the relationship between two content types, where one type is a restriction to another. The
semantics of deriving new types by restriction is that as the result a new complex type or simple type is defined that contains

all the elements and constraints of the original type plus additional constraints that are provided as the restriction.

Superclass

AbstractDataRelationship

Associations

from:ComplexContentType[1] the new (restricted) content type
to:ComplexContentType[1] the base content type
Semantics

RestrictionOf relationship represents an association between a content type and its base type.

18.13 ExtenededDataElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedDataElements class diagram defines two viewpoint-specific generic elements for the data model as
determined by the KDM model pattern: a generic data entity and a generic data relationship..

The classes and associations of the ExtendedDataElements diagram are shown in Figure 18.11.

e

ik
by froey 1 leeE s

KOMEiny |

AbsdracifeinEamens DoatamPal wkeis g
o)

[wabaafs ouftewsrad [wabuafs nbowrel}

Extende-dDaiaElemant

Figure 18.11 - ExtendedDataElements Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

297

18.13.1 ExtendedDataElement Class

NOTE:KDM14-58

The ExtendedDataElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractDataElement
Constraints
1. ExtendedDataElement should have at least one stereotype.

Semantics

A data entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended
meta-model entity type of the data model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

18.13.2 DataRelationship Class

NOTE:KDM14-58

The DataRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractDataRelationship

Associations

from:AbstractDataElement[1] the data element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints

1. DataRelationship should have at least one stereotype.

Semantics

A data relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship types of the data model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

298 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

299

300 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart IV - Abstractions Layer

Abstraction Layer defines a set of meta-model elements that represent domain-specific and application-specific
abstractions, as well as artifacts related to the build process of the exsting software system. The meta-model elements of
the Abstractions Layer provide various containers and groups to other meta-model elements.

Abstractions Layer defines the following 3 KDM Models:
e Structure
e Conceptual

e Build

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 301

302 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

19 Structure Package

19.1 Overview

Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same

system.

The Structure package defines an architecture viewpoint for the Structure domain. The architectural views based on the

viewpoint defined by the Structure model represent how the structural elements of the software system are related to the
modules defined in the Code views that correspond to the Code architectural viewpoint defined by the Code model. The
architectural viewpoint is defined as follows.

e Concerns:

What are the structural elements of the system, and what is the organization of these elements?
What software elements compose the system?
How the structural elements of the system are related to the computational elements?

What are the connections of these elements based on the relationships between the corresponding computational
elements?

What are the interfaces of the structural elements of the system?

« Viewpoint language:

Structure views conform to KDM XMI schema. The viewpoint language for the Structure architectural viewpoint
is defined by the Structure package. It includes abstract entity AbstractStructureElement, and several concrete
entities, such as Subsystem, Layer, Component, SoftwareSystem, ArchitectureView. The viewpoint language for
the Structure architectural viewpoint also includes an abstract relationship AbstractStructureRelationship.

¢ Analytic methods:

The Structure architectural viewpoint supports the following main kinds of checking:

Attachment (are components properly connected?)

Coupling and cohesion (the number of internal relationship within a component compared to the number of
relationships to other components).

Efferent and afferent relationship (uses of a component by other components and usages of other component by
the given component).

Interfaces (what is the required and provided interface of the given component).

Structure Views are used in combination with Code views, Data views, Platform views, Ul views and Inventory
views. Specifically, Structure views corresponding to this architectural viewpoint represent how the structural
elements of the software system are related to the modules defined in the Code views that correspond to the Code
architectural viewpoint, defined by the Code package.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 303

¢ Construction methods:

e Structure views that correspond to the KDM Structure architectural viewpoint are usually constructed by
analyzing architecture models of the given system. The Structure extractor tool uses the knowledge of the
architecture models to produce one or mode Structure views as output.

e Asan alternative, structure views can be produced manually using the input from the architect of the system and
architecture documentation.

e Construction of the Structure view is determined by the architectural description of the system.

e Construction of the Structure views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). This information can be attached to KDM
elements using stereotypes, attributes or annotations.

The organization of the system may be presented as a single Structure view or a set of multiple Structure view showing
layers, components, subsystems, or packages. The reach of this representation extends from a uniform architecture to
entire family of module-sharing subsystems.

The Structure model owns a collection of StructuralElement instances.

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete,
non-overlapping parts. An undifferentiated architecture is represented by a single Package.

StructuralGroup recursively gathers StructuralElements to represent various architectural divisions. The Software System
subclass provides a gathering point for all the system’s packages directly or indirectly through other Structure elements.
The packages may be further grouped into Subsystems, Layers, and Components, or Architecture Views.

19.2 Organization of the Structure Package

The Structure package defines a collection of meta-model elements whose purpose is to represent architectural
organization of the existing software system.

The Structure package consists of the following 3 class diagrams:
e StructureModel
 Structurelnheritances
» ExtendedStructureElements
The Structure package depends on the following packages:
« Core

e kdm

19.3 StructureModel Class Diagram

NOTE:KDM14-214

The StructureModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to high-level structural elements and their associations. The class diagram shown in
Figure 19.1 captures these classes and their relations.

304 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Soruciure Madel

B
-

AbgiraciSirveiura Selnionsiup

|niire pin meniel

+ —_—
Sy Eerag T "

|suEsplf =wredbaranl]

| Sk B i Tad ElTes A1)
1
AbafreciSrucior el imrant

L}

ruiucheesalomahe | 5 "
Cupbaat rameci el e

-

gl

rrcprrenialen

T .-__!I = |-.-;‘\h ""H.___

| Bk S AT

Sukmyatem Companent Layer SoftwareSysiem

K]

[il oS i I W Tl

-

~

L= s T]

KOMEmTy

e

Figure 19.1 - StructureModel Class Diagram

19.3.1 StructureModel Class

The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all

of the system’s StructuralElements.

Superclass

KDMModel

Associations

structureElement: AbstractStructureElement[0..*]

Semantics

Structure elements owned by the model.

19.3.2 AbstractStructureElement Class (abstract)

NOTE:KDM14-214

The AbstractStructureElement represents an architectural part, related to the organization of the existing software system

into modules.

Superclass

KDMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

305

Associations

structureElement:AbstractStructureElement[0..*] Structure elements owned by the model.
structureRelationship:AbstractStructureRelationship[0..*] ~ Structure relations that originate from this structure element

implementation:KDMEntity[0..*] group association to KDMEntity that are represented by the
current StructureElement

Semantics
19.3.3 AbstractStructureRelationship Class (abstract)
The AbstractStructureRelationship class.

Superclass

KDMRelationship

Semantics

19.3.4 Subsystem Class

NOTE:KDM14-77

The Subsystem collects the architectural parts of a software subsystem. The parts may be any other StructuralElement.

Superclass

AbstractStructureElement

Semantics

19.3.5 Layer Class

NOTE:KDM14-77

The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any
other StructuralElement.

Superclass

AbstractStructureElement

Semantics

19.3.6 Component Class

NOTE:KDM14-77

306 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural
component.

Superclass

AbstractStructureElement

Semantics

19.3.7 SoftwareSystem Class

NOTE:KDM14-77

The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.

Superclass

AbstractStructureElement

Semantics

19.3.8 ArchitectureView Class

NOTE:KDM14-77

The ArchitectureView class represents an arbitrary architectural view, as defined by ISO 42010. Within a KDM instance
an ArchitectureView element may be used in a Structure model either stand-alone or in combination with other elements
defined by the Structure package. The KDM ArchitectureView own a collection of KDM entities that corresponds to a
particular architectural view of the software system. To conform to the 1SO 42010 requirements for architectural
description, the creator of the KDM instance should further document the corresponding architectural viewpoint by using
a stereotype to the ArchitectureView element, attributes, or annotations).

Superclass

AbstractStructureElement

Semantics

19.4 Structurelnheritances Class Diagram

The Structurelnheritances class diagram shown in Figure 19.2 depicts how the meta-model elements defined in the
Structure package are related to the meta-model elements defined in the Core package. Each of the Structure Package
classes within this diagram inherits certain properties from KDM classes defined within the Core Package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 307

MR ADRERT AR e s s
{cferi Sonrm| s,
Siruc T Made] A A ¢ TE G Ted EN RN Ak e PEINAA Feor T 5 S

Figure 19.2 - Structurelnheritances Class Diagram

19.5 ExtendedStructureElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedStructureElements class diagram defines two viewpoint-specific generic elements for the structure model as
determined by the KDM model pattern: a generic structure entity and a generic structure relationship.

The classes and associations of the ExtendedStructureElements diagram are shown in Figure 19.3.

AT b8 TS L B R R A
sbrar iz
roeiail Wi 1708 o okl
A dog frave AR s farpElampns | S1r e bor i Rl borts b MRS
- 5 - Jine!
i
{usbasm radwsrd. fuubmain inboarsd]

S pareERmam

Figure 19.3 - ExtendedStructureElements Class Diagram

19.5.1 StructureElement Class (generic)

NOTE:KDM14-58

The StructureElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureElement

308 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints
1. StructureElement should have at least one stereotype.
Semantics

A structure entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the structure model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

19.5.2 StructureRelationship Class (generic)

NOTE:KDM14-58

The StructureRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureRelationship

Associations

from:AbstractStructureElement[1] the structure element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. StructureRelationship should have at least one stereotype.
Semantics

A structure relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the structure model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 309

310 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20 Conceptual Package

20.1 Overview

NOTE:KDM14-31

The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model
during the analysis phase of knowledge discovery from existing code.

The Conceptual package defines an architectural viewpoint for the Business Rules domain.

e Concerns:

What are the domain terms implemented by the system?
What are the behavior elements of the system?
What are the business rules implemented by the system?

What are the scenarios supported by the system?

* Viewpoint language:

Conceptual views conform to KDM XMI schema. The viewpoint language for the Conceptual architectural
viewpoint is defined by the Conceptual package. It includes abstract entity AbstractConceptualElement, and
several concrete entities, such as TermUnit, FactUnit, RuleUnit, Scenario, BehaviorUnit. The viewpoint language
for the Conceptual architectural viewpoint also includes ConceptualFlow relationship, which is a subclass of an
abstract relationship AbstractConceptualRelationship.

¢ Analytic methods

The Conceptual architectural viewpoint supports the following main kinds of checking:

Conceptual relationships (what are the relationships between conceptual entities, based on their implementation
by the Code and Data entities?)

Scenario flow (what are the control flow relationship between the two scenarios based on the flow between
action elements referenced by each scenario).

BehaviorUnit coupling (what are the control flow and data flow relationships between two behavior units based
on the action elements referenced by each behavior unit).

Business Rule analysis (what is the logic of the business rule based on the action elements referenced by the
business rule).

Conceptual Views are used in combination with Code views, Data views, Platform views, Ul views and
Inventory views.

« Construction methods:

Conceptual views can be produced manually using the input from the information analysis and the architect of
the system and architecture documentation.

Construction of the Conceptual view is determined by the domain model and the architectural description of the
system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 311

e Construction of the Conceptual views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). This information can be attached to KDM
elements using stereotypes, attributes or annotations.

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently,
it provides “concept” classes - TermUnit, FactUnit, RuleUnit and ConceptualRole facilitating representation of the
elements from external ontologies and SBVR vocabularies as parts of uniform KDM fact models.

These meta-model elements support the process of mining higher level (conceptual) information from lower-level KDM
models and capturing it as additional KDM entities and relationship, thus allowing further analysis of an enriched model.

The ConceptualModel also provides “behavior” types - BehaviorUnit and ScenarioUnit that support mapping to various
external models including but not limited to activities/flow chart and swim lane diagrams, and use case scenarios. The
following explains the difference between these “behavior” types:

« BehaviorUnit represents a behavior graph with several paths through the application logic and associated conditions.
The “implementation” of this graph is provided by the ActionElements connected with Flow relations, from the
Program Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction
of ActionElements since it provides a modeling element for representing a collection of ActionElements that is
meaningful from the application domain perspective, and further manipulate with this representation as a first class
citizen of the ConceptualModel of KDM.

« ScenarioUnit represents a path (or multiple related paths) through the behavior graph. For example, ScenarioUnit
corresponds to a trace through the systems, or a “use case.” ScenarioUnit can own an entire collection of
BehaviorUnits, connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph
in the implementation of the software system. The conditions responsible for navigation between alternative paths
within the graph can be represented as RuleUnits.

< RuleUnit represents a condition, a group of conditions, or a constraint. RuleUnit is a representation for some
meaningful navigation conditions within behavior graphs represented by several BehaviorUnits.

20.2 Organization of the Conceptual Package

The Conceptual package defines meta-model elements that represent high-level, high-value application-specific
“conceptual” elements of existing software systems and their traceability to other KDM facts.

The Conceptual Package consists of the following 5 class diagrams:

« ConceptualModel

e Conceptuallnheritances

« ConceptualElements

¢ ConceptualRelations

e ExtendedConceptualElements

The Conceptual package depends on the following packages:

Core
kdm

312 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20.3 ConceptualModel Class Diagram

The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They
provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships
between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge
discovery from existing code. The ConceptualModel diagram defines meta-model elements to represent application-
specific “concept” types, “fact” types, and “rules.” An example of a “concept” is a “customer,” or a “savings account.”
An example of a “fact” is a “customer opens a new savings account.” An example of a “rule” is “if the initial amount of
money in a saving account is greater than $1000.00, then offer a higher interest account.” Even in a well-designed system
an application-domain specific concept, like “customer” is rarely mapped one-to-one to a single programming language
construct that can be directly discovered in the source code of the existing system. Instead, such “concept” is
implemented by multiple programming language constructs, often spanning multiple source files, programming
languages, and technologies. These KDM meta-model objects and relationships between them provide the foundation for
mining business rules and other high-value application-specific knowledge from existing code.

ConceptualModel follows the regular KDM pattern of extending the common Infrastructure framework by defining a
specific KDM model class, an abstract superclass of all modeling elements in the ConceptualModel - the
AbstractConceptualElement class. ConceptualModel provides another abstract superclass for all relationships, specific to
this model - AbstractConceptualRelationship class. All meta-model elements of the ConceptualModel extend the
AbstractConceptualElement class and implement the “model” and “ownedRelation” properties. Each entity of the
ConceptualModel can own relationships, specific to this model. According to this pattern, each entity should own
relationships that originate from this entity (i.e., the value of the “from” property should be equal to the id of the owner
of the relationship). This framework provides several extension points for the KDM light-weight extension mechanism. In
particular, in accordance to the general KDM pattern, the ConceptualModel framework includes a generic extensible
modeling element ConceptualElement, and a generic ConceptualRelationship class.

The class diagram shown in Figure 20.4 captures these classes and their relations.

Cancepiua Mol P
-
mii pin edel: [A g frare i one ey e T e drian s ian
rooraehaalieia ke |30
|nubzamin cwresd Astraon
o e pl el et
W A, = Y |
AbsdracicosceplnindEeeraee ™ KOME Ry
N wwgorarimtion | corns
L N
e submsin group
suEanly wree|
L= o |
R
il P len L.
iz oonE kmam
|actan

Figure 20.4 - ConceptualModel Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 313

20.3.1 ConceptualModel

The ConceptualModel class is a specific KDM model that owns collections of facts about conceptual elements
implemented by a given existing software system.

Superclass

KDMModel

Associations

conceptualElement:AbstractConceptualElement[0..*] Identifies the root “concept” elements of the hierarchy of the
conceptual elements contained in the model. The
ConceptualModel can contain zero or more such trees.

Semantics

20.3.2 AbstractConceptualElement (abstract)

NOTE:KDM14-208

AbstractConceptualElement class is the top superclass for the ConceptualModel. It defines several common properties for
all further meta-model elements in the Conceptual Package. In particular, it defines the fundamental “implementation”
property - a KDM grouping mechanism to link conceptual elements to the implementation elements. The
“implementation” property represents the set of elements in lower-level KDM model that represents implementation-
specific high-fidelity knowledge of the software system. The “implementation” property realizes the mapping between the
implementation of a certain concept to the KDM entity representing this concept - some concrete subclass of the
AbstractConceptualElement. The set of KDM entities available through the “implementation” property becomes the
“extent” of the application-specific concept being represented by the conceptual element. The conceptual element itself
becomes the “handle” for the otherwise intangible and abstract high-value application domain specific concept.

It is expected that building conceptual models in general, and especially, determining the appropriate “implementation
set,” is a difficult value-added knowledge discovery process that may involve domain experts and application experts.
KDM framework provides the intermediate representation for capturing the knowledge generated by this process.

Superclass

KDMEntity

Associations

conceptualRelation:AbstractConceptualRelation[0..*] For each concrete instance of AbstractConceptualElement this
property represents the set of conceptual relationships that
originate from this element.

implementation:KDMEntity[0..*] For each concrete instance of AbstractConceptualElement this
property represents the set of KDM entities that realize the
high-level concept in the low-level artifacts of the existing
system.

314 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

abstraction:ActionElement|[0..*] This element represents action elements that are owned by the
conceptual element and that represent semantic associations for
the conceptual element.

Constraints

1. For each conceptual element, the value of the from property of each conceptual relationship, owned by this
element, should be equal to the identity of this element (the “relationship encapsulation” pattern).

20.3.3 AbstractConceptualRelationship Class (abstract)

The AbstractConceptualRelationship class is determined by the KDM model pattern. It provides a common superclass for
specific KDM relationships, defined in the Conceptual package.

Semantics

20.4 Conceptuallnheritances Class Diagram

NOTE:KDM14-208

The Conceptuallnheritance class diagram defines how the conceptual meta-model elements fit into the KDM
Infrastructure. The Conceptuallnheritances class diagram is shown in Figure 20.5.

AL oo AW AR i o A |
! 3l] o)

ConceptuaModal AbsiracnCone spiaiEismant A I G TR SR T AN

Figure 20.5 - Conceptuallnheritances Class Diagram

20.5 ConceptualElements Class Diagram

NOTE:KDM14-73

ConceptualElements class diagram defines specific KDM modeling elements for representing domain-specific concepts as
they are implemented by existing software systems. These elements are concrete subclasses of the AbstractConceptualElement
class.

The classes and association of the ConceptualElements class diagram are shown at Figure 20.6.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 315

o, i | IE wvraiey

S0 Btk TR Al & a Ty e i bnrra

T =
{sulri by e BT el | "
,
I'- ..\..'h
I Concaplusifni
¥ l'. I
- Concepiua i enla it Termbini
K]
S urk B e] . =
rd
y .,
y, | . -
.-"'- " T,
rd 1 ., I]
A [Factune ., EE———— |
-'.- \H.
e
Rulelivit S i i iol it

Figure 20.6 - ConceptualElements Class Diagram

20.5.1 ConceptualContainer Class

The ConceptualContainer class is a generic meta-model element that represents a container for conceptual entities. Several
other concrete conceptual elements are subclasses of ConceptualContainer, so that they can also own other conceptual
elements. The purpose of the ConceptualContainer meta-model element is to facilitate hierarchical organization and grouping
of “concepts” within Conceptual Model. ConceptualContainer also can be used as an extended modeling element with a
stereotype.

Superclass

AbstractConceptualElement

Associations

conceptualElement; AbstractConceptual Element[0..*] elements that are owned by this container

Constraints

1. ConceptualUnit should not own ConceptualRole elements.

20.5.2 TermUnit

The TermUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or
PlatformResource layer. From the knowledge discovery perspective, such collection may include program elements
involved in the implementation of a certain application domain concept. A TermUnit then provides a representation of

316 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

such concept inside the KDM model, which can be used for further analysis and later exported into a business rule
modeling tool in the process known as application business rules mining. The TermUnit class is aligned with SBVR term
or name concepts. Semantically, a TermUnit represents some “noun concept.”

Superclass

AbstractConceptualElement

Semantics

20.5.3 FactUnit

The FactUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
behavior of the software system (for example, a formula for calculating an allowance can be considered as a fact) or some
property of the software system meaningful in the application domain. FactUnit may be also associated with an arbitrary
collection of the KDM entities. A FactUnit then provides a representation of such property inside the KDM model which
can be used for further analysis and later exported into a business rule modeling tool in the process known as application
business rules mining. The FactUnit class is aligned with SBVR fact type concept. Semantically, a FactUnit represents a
“verb concept,” or an “objectified verb concept,” that can be later used as a noun.

Superclass

ConceptualContainer

Semantics

20.5.4 RuleUnit

The RuleUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
condition or constraint in the software system (for example, a condition under which an allowance can be increased, or a
statement that a certain property should always be satisfied). RuleUnit also may be associated with an arbitrary collection
of the KDM entities (these often involve action elements that represent conditions). A RuleUnit then provides a
representation of such condition or constraint inside the KDM model that can be used for further analysis and later
exported into a business rule modeling tool in the process known as application business rules mining. The RuleUnit class
is aligned with SBVR rule concept. Semantically, a RuleUnit uses some base “verb concept” (usually represented as a fact
type) and adds to it obligation, necessity, qualifications, quantifications, conditions, etc.

Superclass

ConceptualContainer

Semantics

20.5.5 ConceptualRole

NOTE:KDM14-73, KDM14-143

The ConceptualRole class represents a role played by a participant in a conceptual association, such as a FactUnit or a

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 317

RuleUnit. ConceptualRole elements are owned by some container, a subclass of ConceptualUnit. The ConceptualRole element
provides a placeholder for capturing the name of this role as the “name” attribute of the class. Additional annotations or
stereotypes can be provided by using the KDM light-weight extension mechanism.

Superclass

AbstractConceptualUnit

Associations

conceptualElement: AbstractConceptualElement[1] represents the participant in the association for the given role

Semantics

Multiple ConceptualRole elements can be associated with the same AbstractConceptualElement

20.5.6 BehaviorUnit Class

The BehaviorUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or Platform
Resource layer. From the knowledge discovery perspective, such collection may represent some behavior meaningful in
the application domain (or simply interesting for the analysis, understanding, and modernization of the software system).
A BehaviorUnit then provides a representation of such behavior inside the KDM model that can be used for further
analysis. In particular, larger slices of the program logic can be represented as collections of BehaviorUnit elements
linked by ConceptualFlow relationships.

The BehaviorUnit class represents a behavior graph with several paths through the application logic. The
“implementation” of this graph is provided by the ActionElements connected with Flow relations, from the Program
Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” of
ActionElements since it provides a modeling element for representing a collection of ActionElements that is meaningful
from the application domain perspective, and further manipulate with this representation as a first class citizen of the
ConceptualModel of KDM.

Superclass

ConceptualContainer

20.5.7 ScenarioUnit Class

ScenarioUnit represents a path (or multiple related paths) through the behavior graph of the application logic. For
example, ScenarioUnit corresponds to a trace through the systems, or a “use case.” The “implementation” of this graph is
provided by the ActionElements connected with Flow relations, from the Program Elements KDM layer. Semantically, the
difference between a BehaviorUnit and a ScenarioUnit is that a BehaviorUnit is an abstraction of behavior, while
ScenarioUnit is an abstraction of a trace. For example, an interesting formula, or an algorithm can be represented as a
BehaviorUnit rather than a ScenarioUnit. On the other hand, an interesting data flow path through the application can be
represented as a ScenarioUnit rather than a BehaviorUnit. ScenarioUnit can own an entire collection of BehaviorUnits,
connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph in the
implementation of the software system. The conditions responsible for navigation between alternative paths within the
graph can be represented as RuleUnits.

Superclass

ConceptualContainer

318 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20.6 ConceptualRelations Class Diagram

NOTE:KDM14-34, KDM14-231

ConceptualRelations class diagram defines specific conceptual relationship called ConceptualFlow. The classes and
associations involved in the ConceptualRelations class diagram are shown in Figure 20.7.

A sk Dy e G T L N e K A e

auEanin inbourd:
TS T] ‘{

C et it Lk o

LRl B TR = EE
{

P TYET

Figure 20.7 - ConceptualRelations Class Diagram

20.6.1 ConceptualFlow Class

The ConceptualFlow class is a KDM relationship defined for the conceptual model. It represents the fact that one
behavior may be continued into some other behavior. When multiple ConceptualFlow relations exist for a given
conceptual element (according to the KDM relationship encapsulation pattern, these relationships should be owned by the
conceptual element and the “from” property of the relationship should be equal to the identity of the element), this means
that the behavior represented by that conceptual element may be continued by either of these flows nondeterministically.
The follow-up behavior is designated by the conceptual element represented by the “to” property of the ConceptualFlow
relationship. When the “to” endpoint of the ConceptualFlow relationship designates a container, this means that any
behavior from that container can be the continuation of the initial behavior. When the “from” endpoint of the
ConceptualFlow relationship is a container, this means that any behavior element owned by that container can be used as
the initial behavior. This relationship provides an abstraction for the Flow relations in the Program Elements layer.
ConceptualFlow relation provides a modeling element for representing behavior slices of the application logic that are
meaningful from the application domain perspective, and further manipulate with this representation as a first class citizen
of the ConceptualModel of KDM.

Superclass

AbstractConceptualRelationship

Associations

from: AbstractConceptualElement[1] represents the initial behavior

to:AbstractConceptualElement[1] represents a potential follow-up behavior

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 319

Example

NOTE:KDM14-15, KDM14-308

Form Definition
Program Transacti onsApproval File Name: MWD319. Hf m

010
011
012
013
014
015

Fieldl — Customer ID

Field2 — Custoner First Nane
Fiel d3 — Customer Last Nane
Field4 (list) — Account Nunber
Field5 (list) — Account Type
Field6 (list) — Account Bal ance

Program
Program Transacti onsApproval File Nanme: MWD245. HLa

Program begi n

100
101
102
103
104
105
106
107
108
109
110
111
112
113

150
151
152
153
154
155
156
200
201
202
203
204

240

320

/1 Definitions of variables mapable to the form fields
Define Cust_I D(Char 20)

Define Cust_FName (Char 25)

Define Cust_LName (Char 35)

Define Acc_Numb(Char 12)[10]

Define Acc_Type(Char 2)[10]

Define Acc_Bal ance(Currency)[10]

/1 Definition of other variables
Define Bal (Currency)

Define |nd(lnteger)

Def i ne Adj ust edBal (Currency)

Def i ne ApproveTrans(Bool ean)
Define All owance(Currency)

/1 Popul ating variables entered in the form

Fieldl ->
Field2 ->
Fiel d3 ->
Fi el d4[1]
Fi el d5[1]
Fi el d6[1]

Cust _I D

Cust _FNanme

Cust _LNanme

-> Acc_Nunb[0]

-> Acc_Type[0]

-> Acc_Bal ance[0]

/'l Processing

Al l owance = $100.00 // The allowance shall be calculated for each custoner
Ind =1

Bal = Acc_Bal ance[lnd - 1]

Adj ustedBal = Bal + Allowance

I f (Adj ust edBal > $1000. 00)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

241
242

Then ApproveTrans = True
El se ApproveTrans = Fal se

Program end

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segnment xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"

xm ns: action="http://ww. ong. or g/ spec/ KDM 20160201/ acti on"

xm ns: code="http://ww. ong. or g/ spec/ KDM 20160201/ code"

xm ns: conceptual ="http://ww. ong. or g/ spec/ KDM 20160201/ concept ual "
xm ns: kdme"ht t p: / / www. ong. or g/ spec/ KDM 20160201/ kdnt'

xm ns: source="http://ww. ong. or g/ spec/ KDM 20160201/ sour ce"

xm ns: ui ="http://ww. ong. or g/ spec/ KDM 20160201/ ui " nane="Conceptual Exanpl e">
<model xm:id="id.0" xm:type="code: CodeMddel ">

<codeEl ement xm:id="id.1" xm:type="code: CodeAssenbl y">

<codeEl ement xmi:id="id.2" xm:type="code: StorableUnit" nane="Cust_ID"
type="id. 127" ext="Char 20" size="20">
<commrent xm:id="id.3" text="// Definitions of variables mapable to the
</ codeEl enent >
<codeEl ement xnmi:id="id.4" xm:type="code: StorableUnit" nanme="Cust_FName"
type="id. 127" ext="Char 25" size="25"/>
<codeEl ement xmi:id="id.5" xm:type="code: StorableUnit" nanme="Cust_LName"
type="id. 127" ext="Char 35" size="35"/>
<codeEl ement xni:id="id.6" xm:type="code: StorableUnit" name="Acc_Nunb"
type="id. 7" ext="" size="1">
<codeEl ement xm:id="id.7" xm:type="code: ArrayType" size="10">
<itemUnit xm:id="id.8" name="Acc_Nunb[]" type="id.127" ext="Char 12"
</ codeEl ement >
</ codeEl enent >
<codeEl ement xmi:id="id.9" xm:type="code: StorableUnit" name="Acc_Type"
type="id. 10" ext="" size="1">
<codeEl ement xm :id="id.10" xm :type="code: ArrayType" size="10">
<itemUnit xm:id="id.11l" nane="Acc_Type[]" type="id. 127" ext="Char 2"
</ codeEl ement >
</ codeEl enent >
<codeEl ement xmi:id="id.12" xm:type="code: Storabl eUnit" nane="Acc_Bal ance"
type="id. 13" ext="" size="1">
<codeEl ement xm :id="id.13" xm:type="code: ArrayType" size="10">

form fields"/>

size="12"/>

size="2"/>

<itemUnit xm:id="id.14" nane="Acc_Bal ance[]" type="id. 128" ext="Currency" size="2"/>

</ codeEl enent >
</ codeEl ement >
<codeEl enent xm:id="id.15" xm:type="code: StorableUnit" nane="Bal"
type="id. 128" ext="" size="1" kind="I|ocal">
<commrent xm:id="id.16" text="// Definition of other variables"/>
</ codeEl ement >
<codeEl enent xm:id="id.17" xm:type="code: StorableUnit" nane="I|nd"

type="id. 129" ext="" size="1" kind="I|ocal"/>
<codeEl ement xm:id="id.18" xmni:type="code: StorableUnit" nanme="AdjustedBal"
type="id. 128" ext="" size="1" kind="I|ocal"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

322

<codeEl enent
type="id. 130"
<codeEl enent
type="id. 128"
<codeEl enent

<source xm:id="id.22"
xm :id="id.23"
xm :id="id.24"

<coment
<codeEl erment
type="id. 127"
<actionRel ation xm
<actionRel ation xm
<actionRel ation xm

</ codeEl enent >
<codeEl enent

<source xm:id="id.29"
xm :id="id.30"

<codeEl erment
type="id. 127"
<actionRel ation xm
<actionRel ation xm
<actionRel ation xm

</ codeEl enent >
<codeEl enent

<source xm:id="id.35"
xm :id="id.36"

<codeEl erment
type="id. 127"
<actionRel ation xm
<actionRel ation xm
<actionRel ation xm
</ codeEl enent >
<codeEl enent

<source xm:id="id.41"
xm :id="id. 42"
xm :id="id. 43"

<codeEl enent
<codeEl enent
type="id. 127"

xm :id="id. 19"

xm :id="id. 20"

xm :id="id.21"
| anguage="H a"

text="//
xm : type="code: Storabl eUnit"

xm :id="id.28"
| anguage="H a"
xm : type="code: Storabl eUni t"

xm :id="id.34"
| anguage="H a"
xm : type="code: Storabl eUnit"

xm :id="id.40"
| anguage="H a"
xm : type="code: Val ue"
xm : type="code: Storabl eUnit"

ext="" sijize="1"
xm : type="code: St orabl eUni t"
ext="" size="1"
xm :type="action: Acti onEl ement"
sni ppet="Fieldl -> Cust_ID"/>

Popul ating variables entered in the forn/>
name="Fi el d1"

xm :type="code: St orabl eUni t"

ki nd="1ocal "

ki nd="1ocal "

ki nd="regi ster"/>

ki nd="regi ster"/>

/>

/>

xm :type="action: Acti onEl ement"
sni ppet="Fi el d2 -> Cust_FNane"/>
name="Fi el d2"

name="Appr ovedTr ans"

nanme="Al | owance"

name="i 1" ki nd="Assi gn">

cid="id.25" xm:type="action: Reads" to="id.24" from="id.21"/>
cid="id.26" xm:type="action:Wites" to="id.2" from="id.21"/>
cid="id.27" xm:type="action:Flow' to="id.28" frone"id.21"/>

name="i 2" ki nd="Assi gn">

cid="id.31" xm:type="action: Reads" to="id.30" from="id.28"/>
cid="id.32" xm:type="action:Wites" to="id.4" from="id.28"/>
;id="id.33" xm:type="action:Flow' to="id.34" frone"id.28"/>

ki nd="regi ster"/>

xm :type="action: Acti onEl ement"
sni ppet="Fi el d3 -> Cust_LName"/>
name="Fi el d3"

name="i 3" ki nd="Assign">

cid="id.37" xm:type="action: Reads" to="id.36" from="id.34"/>
cid="id.38" xm:type="action:Wites" to="id.5" from="id.34"/>
cid="id.39" xm:type="action:Flow' to="id.40" frone"id.34"/>

sni ppet ="

ki nd="regi ster"/>

xm :type="action: Acti onEl ement"

Fi el d5[1]
name="0"

name="i 4" ki nd="ArrayRepl ace">

-> Acc_Type[O0]"/>

type="id.129"/>

name="Fi el d4"

<actionRelation xm:id="id.44" xm:type="action: Reads" to="id.42" fron¥"id.40"/>
<actionRelation xm:id="id.45" xm:type="action: Addresses" to="id.9" frone"id.40"/>
<actionRelation xm:id="id.46" xm:type="action:Reads" to="id.43" fron¥"id.40"/>
<actionRelation xm:id="id.47" xm:type="action:Wites" to="id.8" fronr"id.40"/>
<actionRelation xm:id="id.48" xm:type="action:Flow' to="id.49" from="id.40"/>

</ codeEl enent >

<codeEl enent

xm :id="id.49" xm:type="action:ActionEl ement" name="i5" kind="ArrayRepl ace">

<source xm:id="id.50"

<codeEl enent
<codeEl enent

| anguage="H a" sni ppet="Fi el d4[1]
xm :id="id.51" xm:type="code: Val ue"
xm :id="id.52" xm:type="code: StorableUnit"

-> Acc_Nunb[0]"/>
type="id. 129"/ >
name="Fi el d5"

name="0"

type="id. 127"

ki nd="regi ster"/>

<actionRelation xm:id="id.53" xm:type="action:Reads" to="id.51" from="id.49"/>
<actionRelation xm:id="id.54" xm:type="action: Addresses" to="id.6" from="id.49"/>
<actionRelation xm:id="id.55" xm:type="action:Reads" to="id.52" from="id.49"/>
<actionRelation xm:id="id.56" xm:type="action:Wites" to="id.11" frone"id.49"/>
<actionRelation xm:id="id.57" xm:type="action:Flow' to="id.58" fron="id.49"/>

</ codeEl enent >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeEl ement xmi:id="id.58" xm:type="action:ActionEl ement" nane="i6" kind="ArrayRepl ace">
<source xm :id="id.59" |anguage="H a" snippet="Field6[1] -> Acc_Balance[0]"/>
<codeEl ement xm :id="id.60" xm:type="code: Value" nanme="0" type="id.129"/>
<codeEl ement xm :id="id.61" xm:type="code: StorableUnit" name="Fiel d6"
type="id. 127" kind="register"/>
<actionRelation xm:id="id. 62" xm :type="action: Reads" to="id.60" fronr"id.58"/>
<actionRelation xm:id="id.63" xm:type="action: Addresses" to="id.12" fron¥"id.58"/>
<actionRelation xm:id="id. 64" xm:type="action: Reads" to="id.61" fronr"id.58"/>
<actionRelation xm :id="id.65" xm:type="action:Wites" to="id.14" from="id.58"/>
<actionRelation xm :id="id. 66" xm:type="action:Flow to="id.67" frone"id.21"/>
</ codeEl enent >
<codeEl ement xmi:id="id.67" xm:type="action:ActionElement" name="pl" kind="Assign">
<source xmi:id="id.68" |anguage="H a" snippet="Allowance = $100.00 "/>
<comrent xmi:id="id.69" text="// Processing"/>
<coment xm:id="id.70" text="// The allowance shall be calculated for each custonmer"/>
<codeEl ement xm :id="id.71" xm:type="code: Val ue" nanme="100.00" type="id.128"/>
<actionRelation xm:id="id.72" xm:type="action: Reads" to="id.71" fronr"id.67"/>
<actionRelation xm:id="id.73" xm:type="action:Wites" to="id.20" from="id.67"/>
<actionRelation xm:id="id.74" xm:type="action:Flow to="id.75" frone"id.67"/>
</ codeEl enent >
<codeEl ement xmi:id="id.75" xm:type="action:ActionElement" name="p2" kind="Assign">
<source xm:id="id.76" |anguage="H a" snippet="Ind =1"/>
<codeEl ement xm:id="id.77" xm:type="code: Val ue" nanme="1" type="id.129"/>
<actionRelation xm:id="id.78" xm:type="action:Reads" to="id.77" fronr"id.75"/>
<actionRelation xm:id="id.79" xm:type="action:Wites" to="id.17" from="id.75"/>
<actionRelation xm :id="id.80" xm:type="action:Flow to="id.49" fron¥"id.75"/>
</ codeEl enent >
<codeEl ement xmi:id="id.81" xm:type="action:ActionElenment" name="p3" kind="Conpound">
<source xm :id="id.82" |anguage="H a" snippet="Bal = Acc_Bal ance[lnd - 1]"/>
<codeEl ement xm :id="id.83" xm:type="code: Val ue" nanme="1" type="id.129"/>
<codeEl ement xm :id="id.84" xm:type="code: StorableUnit" name="t1"
type="id. 129" ext="" kind="register"/>
<codeEl ement xm :id="id.85" xm:type="action:ActionEl ement" nane="p3.1" kind="Subtract">
<actionRelation xm:id="id.86" xm:type="action:Reads" to="id.17" fron¥"id.81"/>
<actionRelation xm:id="id.87" xm:type="action:Reads" to="id.83" fronr"id.81"/>
<actionRelation xm:id="id.88" xm:type="action:Wites" to="id.84" from="id.81"/>
<actionRelation xm:id="id.89" xm:type="action:Flow to="id.90" from="id.85"/>
</ codeEl ement >
<codeEl ement xm :id="id.90" xm:type="action:ActionEl ement" nane="p3.2" kind="ArraySelect">
<actionRelation xm:id="id.91" xm :type="action: Addresses" to="id.14" fron¥"id.90"/>
<actionRelation xm:id="id.92" xm:type="action: Reads" to="id.84" fronr"id.81"/>
<actionRelation xm:id="id.93" xm:type="action:Wites" to="id.15" from="id.81"/>
</ codeEl ement >
<actionRelation xm:id="id.94" xm:type="action:Flow' to="id.85" from="id.81"/>
<actionRelation xm:id="id.95" xm:type="action:Flow to="id.96" from="id.81"/>
</ codeEl enent >
<codeEl enment xm:id="id.96" xmni:type="action: ActionEl ement" nanme="p4" Kkind="Assign">
<source xm:id="id.97" |anguage="H a" snippet="AdjustedBal = Bal + Allowance"/>
<actionRelation xm:id="id.98" xm:type="action: Reads" to="id.15" from="id.96"/>
<actionRelation xm:id="id.99" xm:type="action: Reads" to="id.20" from="id.96"/>
<actionRelation xm:id="id.100" xm:type="action:Wites" to="id.18" from="id.96"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 323

<actionRelation xm:id="id.101" xm:type="action:Flow' to="id.49" fronr"id.96"/>
</ codeEl ement >
<codeEl ement xm :id="id.102" xm:type="action:ActionEl enent" nanme="p5" kind="Assign">
<source xm:id="id.103" |anguage="H a" snippet="1f(AdjustedBal > $1000.00)"/>
<codeEl ement xm:id="id.104" xm:type="code: StorableUnit" name="t2"
type="id. 130" kind="register"/>
<codeEl ement xm :id="id.105" xm:type="action: Acti onEl enent" name="p5.1" kind="G eater Than">
<codeEl ement xm :id="id.106" xm :type="code: Val ue" name="1000.00" type="id.128"/>
<actionRel ation xm:id="id.107" xm:type="action: Reads" to="id.18" fron¥"id.105"/>
<actionRelation xm:id="id.108" xm:type="action: Reads" to="id.106" from="id.105"/>
<actionRelation xm:id="id.109" xm:type="action:Wites" to="id.104" from="id.105"/>
<actionRelation xm:id="id.110" xm:type="action:Flow' to="id.111" fron¥"id.105"/>
</ codeEl enment >
<codeEl ement xm:id="id.111" xm:type="action: Acti onEl enent" name="p5.2" kind="G eater Than">
<actionRelation xm:id="id.112" xm:type="action: Reads" to="id.104" from="id.111"/>
<actionRelation xm:id="id.113" xm:type="action: TrueFl ow' to="id.115" from="id.111"/>
<actionRel ation xm:id="id.114" xm:type="action: Fal seFl ow' to="id.120" from="id.111"/>
</ codeEl ement >
<codeEl ement xm:id="id. 115" xm:type="action: Acti onEl enent" name="p6" ki nd="Assign">
<source xm:id="id.116" |anguage="H a" sni ppet="Then ApproveTrans = True"/>
<codeEl ement xm :id="id.117" xm :type="code: Val ue" name="true" type="id.130"/>
<actionRelation xm:id="id.118" xm:type="action: Reads" to="id.117" from="id. 115"/>
<actionRelation xm:id="id.119" xm:type="action:Wites" to="id.19" from="id.115"/>
</ codeEl enment >
<codeEl ement xm:id="id.120" xm:type="action: Acti onEl enent" name="p7" kind="Assign">
<source xm:id="id.121" |anguage="H a" sni ppet="El se ApproveTrans = Fal se"/>
<codeEl ement xm:id="id.122" xm :type="code: Val ue" nanme="fal se" type="id.130"/>
<actionRelation xm:id="id.123" xm:type="action: Reads" to="id.122" from="id.120"/>
<actionRelation xm:id="id.124" xm:type="action:Wites" to="id.19" from="id.120"/>
</ codeEl ement >
<actionRelation xm:id="id.125" xm :type="action:Flow' to="id.105" from="id.102"/>
</ codeEl ement >
</ codeEl enent >
<codeEl ement xmi:id="id.126" xm :type="code: LanguageUnit">
<codeEl ement xm :id="id.127" xm:type="code: StringType"/>
<codeEl ement xm :id="id. 128" xm :type="code: Deci mal Type" name="Currency"/>
<codeEl ement xm :id="id. 129" xm :type="code: | ntegerType"/>
<codeEl ement xm :id="id. 130" xm :type="code: Bool eanType"/>
</ codeEl enent >
</ nodel >
<model xm:id="id.131" xm:type="source:|nventoryhodel">
<i nventoryEl ement xm :id="id.132" xm:type="source: Directory" path="SOURCES\ HLanguage" >
<inventoryEl enment xm :id="id.133" xm :type="source: SourceFile" name="mD245. H a"
pat h="mD245. H a"/ >
<i nventoryEl ement xm :id="id.134" xm :type="source: SourceFile" name="mD319. Hf ni'
pat h="mm0D319. Hf m'/ >
</i nvent oryEl ement >
<inventoryEl ement xm:id="id. 135" xm:type="source:Directory" path="SOURCES\H ib"/>
</ nodel >
<nodel xm:id="id.136" xm:type="ui: U Mdel">
<Ul El enent xm :id="id. 137" xm:type="ui: Screen" nanme="Custoner |nformation">

324 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<Ul El enent xm :id="id.138" xm:type="ui:U Field" nane="Customer |D">
<abstraction xm:id="id.139" nane="f1l">
<actionRelation xm:id="id.140" xm :type="action:Wites" to="id.24" from="id.139"/>
</ abstraction>
</ Ul El ement >
<Ul El enent xm :id="id. 141" xm:type="ui: U Field" nane="Custonmer First Name">
<abstraction xm:id="id. 142" nane="f2">
<actionRelation xm:id="id.143" xm:type="action:Wites" to="id.30" from="id.142"/>
</ abstraction>
</ Ul El ement >
<Ul El enent xm :id="id. 144" xm:type="ui:U Field" nane="Customer Last Nanme">
<abstraction xm:id="id. 145" nane="f3">
<actionRelation xm:id="id.146" xm:type="action:Wites" to="id.36" from="id.145"/>
</ abstraction>
</ Ul El ement >
<Ul El enent xm :id="id. 147" xm :type="ui: U Field" nane="Account Number">
<abstraction xm:id="id. 148" nane="f4">
<actionRelation xm:id="id.149" xm :type="action:Wites" to="id.43" from="id.148"/>
</ abstraction>
</ Ul El ement >
<Ul El enent xm :id="id.150" xm:type="ui:U Field" nane="Account Type">
<abstraction xm:id="id. 151" nane="f5">
<actionRelation xm:id="id.152" xm:type="action:Wites" to="id.52" from="id.151"/>
</ abstraction>
</ Ul El ement >
<Ul El enent xm :id="id.153" xm:type="ui:U Field" nane="Account Bal ance">
<abstraction xm:id="id. 154" nane="f6">
<actionRelation xm:id="id.155" xm:type="action:Wites" to="id.61" from="id.154"/>
</ abstraction>
</ Ul El ement >
</ Ul El enent >
</ nodel >
<model xm:id="id.156" xm :type="conceptual: Conceptual Model" nane="Custoner |nfornmation">
<conceptual El enent xm :id="id. 157" xm :type="conceptual: TernUnit" name="Account Bal ance"
implementation="id.15 id.12 id.17 id.153"/>
<conceptual El enent xm :id="id.158" xm :type="conceptual: TernUnit" nanme="MaxAdj ustedBal ance"
i mpl ement ati on="id. 106"/ >
<conceptual El enent xm :id="id.159" xm :type="conceptual: TernUnit" nanme="AllowanceAnount"
i mpl ementation="id.71"/>
<conceptual El enent xm :id="id.160" xm :type="conceptual: TernUnit" nanme="All owance"
i mpl ement ati on="id. 20"/ >
<conceptual El enent xm :id="id.161" xm :type="conceptual: TernUnit" nanme="Adj ustedBal ance"
i npl enment ati on="id. 18"/ >
<conceptual El ement xmi :id="id.162" xm :type="conceptual: Termnit" nane="Account Bal anceFi el d"
i npl erent ati on="id. 153"/ >
<conceptual El ement xmi :id="id.163" xm :type="conceptual:FactUnit"
name=" Adj ust edBal anceUnder Thr eshol d" i npl ement ati on="id. 105" >
<conceptual Rel ati on xm :id="id. 164" xm :type="conceptual: Conceptual Fl ow'
to="id. 178" fron¥"id.163"/>
<conceptual Rel ati on xm :id="id. 165" xm:type="conceptual: Conceptual Fl ow'
to="id. 183" fronr"id.163"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

325

<conceptual El enent xm :id="id.166" xm:type="conceptual: Conceptual Rol e" nane="Adjusted Bal ance"
concept ual El erent ="i d. 161"/ >
<conceptual El enent xm :id="id. 167" xm:type="conceptual: Conceptual Rol e" nane="Threshol d"
concept ual El erent ="i d. 158"/ >
</ concept ual El enent >
<conceptual El enent xm :id="id.168" xm:type="conceptual:FactUnit" nane="AccountBal anceCal cul ati on"
impl ementation="id.58 id.75 id.81">
<conceptual Rel ation xm:id="id. 169" xm :type="conceptual : Concept ual Fl ow
to="id.172" fronr"id.168"/>
<conceptual El enent xm :id="id.170" xm:type="conceptual: Conceptual Rol e" nane="Boundary el enent"
concept ual El ement ="i d. 162"/ >
<conceptual El enent xm :id="id.171" xm:type="conceptual : Conceptual Rol e" nane="Account"
concept ual El ement ="i d. 157"/ >
</ concept ual El enent >
<concept ual El enent xm:id="id.172" xm :type="conceptual:FactUnit"
nane="Adj ust edBal anceCal cul ati on" inplenmentation="id.67 id.96">
<conceptual Rel ation xm:id="id.173" xm :type="conceptual : Concept ual Fl ow
to="id. 163" fronr"id.172"/>
<conceptual El enent xm :id="id.174" xm:type="conceptual : Conceptual Rol e" nane="Account Bal ance"
concept ual El erent ="i d. 168"/ >
<conceptual El enent xm :id="id.175" xm:type="conceptual: Conceptual Rol e" nane="All owance Anpunt"
concept ual El ement ="i d. 159"/ >
</ concept ual El enent >
<concept ual El enent xm:id="id.176" xm :type="conceptual:FactUnit" name="Transacti onApproved"
i mpl ementation="id.19"/>
<concept ual El enent xm:id="id.177" xm :type="conceptual: FactUnit" name="Transacti onNot Approved"
i mpl ementation="id.19"/>
<concept ual El enent xm :id="id.178" xm :type="conceptual:RuleUnit" name="ApproveTransaction"
i mpl ementation="id.105 id. 111 id.115">
<source xm:id="id.179" |anguage="SBVR'
sni ppet="Transaction is approved if adjusted balance is under the threshold"/>
<conceptual Rel ation xm:id="id. 180" xm :type="conceptual : Concept ual Fl ow
to="id.176" fronr"id.178"/>
<conceptual El enent xm :id="id. 181" xm:type="conceptual: Conceptual Rol e" nane="Condition"
concept ual El ement ="i d. 163"/ >
<conceptual El enent xm :id="id. 182" xm :type="conceptual : Conceptual Rol e" nanme="Consequence"
concept ual El ement ="i d. 176"/ >
</ concept ual El enent >
<conceptual El enent xm :id="id.183" xm:type="conceptual:RuleUnit" nane="TransactionFail edApproval"
i mpl ementation="id.105 id.111 id.120">
<conceptual Rel ation xm:id="id. 184" xm :type="conceptual : Concept ual Fl ow
to="id. 177" fronr"id.183"/>
<conceptual El ement xm :id="id. 185" xm:type="conceptual: Conceptual Rol e" name="NOT condition"
conceptual El enent ="i d. 163"/ >
<conceptual El emrent xm :id="id. 186" xm :type="conceptual: Conceptual Rol e" name="consequence"
conceptual El enent ="i d. 177"/ >
</ concept ual El enent >
<conceptual El ement xmi:id="id.187" xm :type="conceptual:ScenarioUnit">
<conceptual El emrent xmi :id="id.188" xm:type="conceptual:BehaviorUnit" name="Cal cul ate Bal ance"
inmplementation="id.58 id.75 id.81">
<conceptual Rel ati on xm :id="id. 189" xm:type="conceptual: Conceptual Fl ow

326 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

to="id. 190" fronr"id.188"/>
</ concept ual El enent >
<concept ual El enent xm :id="id.190" xm :type="conceptual : Behavi orUnit"
name="Cal cul ate Adjusted Bal ance" inplenentation="id.67 id.96">
<conceptual Rel ation xm:id="id.191" xm :type="conceptual : Concept ual Fl ow"
to="id. 192" fronr"id. 190"/ >
</ concept ual El enent >
<conceptual El enent xm :id="id. 192" xm :type="conceptual : Behavi orUnit" nanme="Approve Transaction"
i mpl ementation="id.102 id.115 id.120"/>
</ concept ual El enent >
<conceptual El enent xm :id="id.193" xm :type="conceptual : BehaviorUnit" name="Input"
implementation="id.21 id.28 id.34 id.40 id.49 id.58">
<conceptual Rel ati on xm :id="id.194" xm :type="conceptual: Conceptual Fl ow'
to="id. 195" fronr"id.193"/>
</ concept ual El enent >
<conceptual El enent xm :id="id.195" xm :type="conceptual: Behavi orUnit" name="Processing"
i npl ementation="id.67 id.75 id.81 id.85 id.90 id.96 id.102 id.105 id.111 id.115 id.120"/>
</ nodel >
</ kdm Segnent >

20.7 ExtendedConceptualElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedConceptualElements class diagram defines two viewpoint-specific generic elements for the conceptual
model as determined by the KDM model pattern: a generic conceptual entity and a generic conceptual relationship.

The classes and associations of the ExtendedConceptualElements diagram are shown in Figure 20.8.

o i e I e R T s A 0 A RS i
T "
1inde res, e | e b
A
AARiras i ans aphori e Lot ipPua | L) ko hop i
1 . YOG
= 1
=]
Jubupin ceizcand] |nibu pin mbramd]

C orec @ Ll El i resi st

Figure 20.8 - ExtendedConceptualElements Class Diagram

20.7.1 ConceptualElement Class (generic)

NOTE:KDM14-58

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 327

The ConceptualElement is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualElement

Constraints
1. ConceptualElement should have at least one stereotype
Semantics

A conceptual entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the conceptual model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

20.7.2 ConceptualRelationship Class (generic)

NOTE:KDM14-58

The ConceptualRelationship is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualRelationship

Associations

from:AbstractConceptualElement[1] the conceptual element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

Constraints
1. ConceptualRelationship should have at least one stereotype.
Semantics

A conceptual relationship with underspecified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the conceptual model. This is one of the KDM extension points that can

integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

328 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

21 Build Package

21.1 Overview

| NOTE:KDM14-70

The Build package defines meta-model elements that represent the facts involved in the build process of the given
software system (including but not limited to the engineering transformations of the “source code” to “executables™). The
Build package also includes the meta-model elements to represent the artifacts that are generated by the build process.

The Build package defines an architectural viewpoint for the Build domain.
» Concerns:
e What are the inputs to the build process?
e What artifacts are generated during the build process?
e What tools are used to perform build steps?
e What is the workflow of the build process?
e Who are the suppliers of the source artifacts?
* Viewpoint language

Build views conform to KDM XMI schema. The viewpoint language for the Build architectural viewpoint is
defined by the Build package. It includes abstract entity AbstractBuildElement, a generic entity BuildResource as
well as several concrete entities, such as BuildComponent, BuildStep, BuildProduct, BuildDescription,

| BuildLibrary. The viewpoint language for the Build architectural viewpoint also includes several build
relationships, which is a subclass of an abstract relationship AbstractBuildRelationship.

¢ Analytic methods
e Supply chain analysis (what are the artifacts that depend on a given supplier)?
Build Views are used in combination with Inventory views.

¢ Construction methods:

e Build views that correspond to the KDM Build architectural viewpoint are usually constructed by analyzing
build scripts and build configuration files for the given system. This inputs are specific to the build automation
framework. The Build extractor tool uses the knowledge of the semantics of the build automation framework to
produce one or mode Build views as output.

e Construction of the Build view is determined by the semantics of the build automation framework, and it based
on the mapping from the given build automation framework to KDM; such mapping is specific only to the build
automation framework and not to a specific software system.

e The mapping from a particular build automation framework to KDM may produce additional information
(system-specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM
elements using stereotypes, attributes or annotations.

| Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 329

21.2 Organization of the Build Package

The Build package defines meta-model elements that represent entities and relationships related to the build process of an
existing software system.

The Build package consists of the following class diagrams:

e BuildModel

« BuildInheritances

* BuildResources

* BuildRelations

« ExtendedBuildRelations

The Build package depends on the following packages:

e Core
e kdm
e Source

21.3 BuildModel Class Diagram

NOTE:KDM14-81

The BuildModel class diagram provides basic meta-model elements that represent entities and relationships related to the
build process of an existing software system. The class diagram shown in Figure 21.1 captures these classes and their
relations. Class BuildResource is defined in a separate section.

Bulddodel

0.t Adgarac B s deocn s in

sussnts medel:

* bl Ml ndaSon |0
T b, e eie bion)
HEuIER T
{subrkgls owresltaTasl] | -

Al s AV R e -

BulldR esource “‘\ -

™,

Soppher SymbaicLink e

Figure 21.1 - BuildModel Class Diagram

330 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

21.3.1 BuildModel Class

The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

Superclass

KDMModel

Associations

buildElement:AbstractBuildElement[0..*] The set of build elements owned by the model.

Semantics
21.3.2 AbstractBuildElement Class (abstract)
The AbstractBuildElement is the abstract base class from which all other build model elements are extended.

Superclass

KDMEntity

Associations

buildRelationship:AbstractBuildRelationship[0..*] the set of build relations

Semantics
21.3.3 AbstractBuildRelationship Class (abstract)
The AbstractBuildRelationship is the abstract base class.

Superclass

KDMRelationship

Semantics

21.3.4 Supplier Class

The Supplier class models producers of the 31 party software components as they contribute to the build process.

Superclass

AbstractBuildElement

Semantics

21.3.5 Tool Class

The Tool class represents software tools as they are used in the build process.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

331

Superclass

AbstractBuildElement

Semantics

21.3.6 SymbolicLink Class

The SymbolicLink is used to represent symbolic links.

Superclass

AbstractBuildElement

Semantics

21.4 BuildInheritances Class Diagram

The BuildInheritances class diagram shown in Figure 21.2 depicts how various build classes extend other KDM classes.
Each of the classes shown in this diagram inherits properties from classes found in the Core package.

SO e A ORER Dy BN e b D Sp
R o .
B LibriM o] Al i DR o Al Abgirac RusoRalrsens o

Figure 21.2 - BuildInheritances Class Diagram

21.5 BuildResources Class Diagram

NOTE:KDM14-70, KDM14-208

The BuildResources class diagram provides basic meta-model constructs to model various common build resource and
their relations to the code model. The class diagram shown in Figure 21.3 captures these classes and their relations.

332 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

stupE@ren
!

ADS B IRNENERR 0T |+ oo g i

Tnbpin cwrasi P mani] 1< SRR GO EE R el
{aubrsnls group]
| s B T
HFATEE BuikiResgurce | FOSP ﬂ]‘“_ ity
K] 1] mmiranislon IO
e 3) " o] o
B L .-__.- i II \"‘x ! g nin e S G O R
ulidL B mry [
A /! | ™,
| Iy g II A
A .
]
Bl omp I [Busdstep “x
| B uldProsdici
!
.I
Bl il 5 ripnion

Figure 21.3 - BuildResources Class Diagram

21.5.1 BuildResource Class

NOTE:KDM14-70, KDM14-208

BuildResource class is a generic meta-model element that represents a container for build elements. It provides a common
superclass for the build elements that can own other build elements. BuildResource is also a group for other KDM
entities. Usually, a Build resource such as a BuildLibrary, a BuildProduct, or a BuildComponent will group together some
Inventory elements. Certain BuildResource can also group other build elements.

Superclass

AbstractBuildElement

Associations

buildElement:AbstractBuildElement[0..*] owned build element
groupedBuild:AbstractBuildElement[0..*] grouped build elements (KDM group mechanism)
implementation:KDMEntity[0..*] group association to KDMEntity that are represented by the current

BuildResource element

Constraints
1. BuildResource should either own elements or group elements, but not both.
2. “Implementation” group should not include other Build elements.

3. Build element should not be included in its own groupedBuild group.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 333

Semantics

21.5.2 BuildComponent Class

NOTE:KDM14-70

The BuildComponent class represents an arbitrary collection of Inventoryltems (or other KDM entities). Usually a
BinaryComponent defines SourceFlles as inputs to BuildSteps or any other anonymous collections of resources as they
are used as inputs of outputs of a build process.

Superclass

BuildResource

Semantics

21.5.3 BuildDescription Class

NOTE:KDM14-70

The BuildDescription class represents objects such as make files or ant scripts, which describe the build process itself.

Superclass

BuildResource

Semantics

21.5.4 BuildLibrary Class

NOTE:KDM14-70

The BuildLibrary class represents a named collection of Inventoryltems (usually BinaryFiles, or SourceFiles) which is
used as an intermediate product of a build process.

Superclass

BuildResource

Semantics

21.5.5 BuildProduct Class

NOTE:KDM14-70

The BuildProduct class represents a named collection of Inventoryltems that is the output of a build process (usually
BinaryFile or ExecutableFile). For example, binary files that correspond to deployable components, executable files.

Superclass

BuildResource

334 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

21.5.6 BuildStep Class

BuildStep class is the key meta-model element of the Build model. It represents a unit of transformation performed by the
build process, during which certain input resources are processed and certain output resources are produced. BuildStep
element is the origin of several build relationships. For example, a Build step “consumes” certain input resources,
“produces” certain output resources, “is defined” by a certain build description, and may be “supported” by a certain tool.

Superclass

BuildResource

Semantics

21.6 BuildRelations Class Diagram

NOTE:KDM14-231

The BuildRelations class diagram defines the various build related relationships. The class diagram shown in Figure 21.4
captures these classes and their relations.

I - T ST T
O
;
f;
Links T SuppledBy Consumes Produces DesoribedBy SupparedBy
n" e . o G . G 5 o, 5 2 .
sl Mileraiad; - - :
- :;I‘ 5 il (b, of rhand) [sumse]s. Inbound) subrsE(s ingound) 3 bt indaund)
i uinah oufhosrd: {suiriels ooboud]
el sl N almaith (epafal: el (ufInraial:
|5k B8 o itadnd] o L v e =
|iipbalEs W) |resiebnes i fredelees, iz] Jieketiressy W
vz |1 oo |1 =i .1
Suppler [resielees] BuibdDie 8¢ ription Tusnd
T T] ; Ho |1 = | ¥ T
HY AT
I A arac iR usnEEmans
o
1 I-
[reielees. o) | eadirses baj
vrom |1 1 ohom (redefrscd oo
Symbolic Link eham [BulkiStep T fradelmes, o)
1 jromdE e o)
.
|imdabngs e 1 «om

Figure 21.4 - BuildRelations Class Diagram

21.6.1 LinksTo Class

The LinksTo class models the relationship between two linked build resources.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 335

Superclass

AbstractBuildRelationship

Associations

from:SymbolicLink[1]
to:AbstractBuildElement[1]
Semantics

Associations

from:AbstractBuildElement[1]

to:AbstractBuildElement[1]
Semantics

21.6.2 Consumes Class

Consumes class defines association between a certain BuildStep element and certain build elements, called the input build
elements. These elements provide the input to the transformation, performed by the build step. For example, the set of
source files is an input to the compilation step.

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:AbstractBuildElement[1] the input build elements for the given step
Semantics

The implementer shall capture the input build elements for a certain build step in the form of “Consumes” relation.

When the target of the “Consumes” relationship owns other build elements, this means that the build step (the origin of
the relationship) depends on all elements owned by the container (directly or indirectly).

When the origin of the “Consumes” relationship is a container that owns one or more build steps (directly or indirectly),
this means that all build steps consume the elements designated as the target of the “Consumes” relationship.

21.6.3 Produces Class

Produces class defines association between a certain BuildStep element and certain build elements, called the output build
elements. These elements are produced as the result of the transformation, performed by the build step. For example, the
set of object files can be produced as the result of the compilation step.

336 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:AbstractBuildElement[1] the output build elements for the given step
Semantics

The implementer shall capture the output build elements for a certain build step in the form of “Produces” relation.

When the target of the “Produces” relationship owns other build elements, this means that the build step (the origin of the
relationship) produces all elements owned by the container (directly or indirectly).

When the origin of the “Produces” relationship is a container that owns one or more build steps (directly or indirectly),
this means that the elements designated as the target of the “Produces” relationship are produced in collaboration of all
build steps, and no particular build step is the sole producer.

21.6.4 SupportedBy Class

SupportedBy class defines association between a certain BuildStep element and certain Tool element. The Tool element is
required to perform the build step. For example, a particular version of a complier is required to perform the compilation
step.

Superclass
AbstractBuildRelationship

Associations

from:BuildStep[1] the build step

to:Tool[1] The Tool element that represents the tool performing the transformations represented
by the given step.

Semantics

The implementer shall capture the required Tool elements for a certain build step in the form of “SupportedBy” relation.

21.6.5 SuppliedBy Class

SuppliedBy class defines association between certain build elements and their points of origin, represented by Supplier
element. For example, certain parts of the runtime platform can originate from a software vendor, some libraries can
originate from open source.

Superclass

AbstractBuildRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 337

Associations

from:AbstractBuildElement[1] the build element
to:Supplier[1] The Supplier element that represents the origin of the build element.
Semantics

The implementer shall capture the origin of build elements in the form of “SuppliedBy” relation.

When the origin of the “SuppliedBy” relationship is a container that owns one or more build elements (directly or
indirectly), this means that all elements designated as the source of the “SuppliedBy” relationship are supplied by a
particular Supplier element.

21.6.6 DescribedBy Class

DescribedBy class defines association between certain build step and a certain BuildDescription element. These elements
are produced as the result of the transformation, performed by the build step. For example, the set of object files can be
produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:BuildDescription[1] The BuildDescription element that describes the transformation represented by the
build step.
Semantics

The implementer shall capture the description of a certain build step in the form of “DescribedBy” relation to some
BuildDescription element.

Example

NOTE:KDM14-15, KDM14-308

<?xm version="1.0" encodi ng="UTF-8"?>
<kdm Segment xm ns: xm ="http://ww. ong. or g/ spec/ XM /20110701"
xm ns: bui | d="http://ww. ong. or g/ spec/ KDM 20160201/ bui | d"
xm ns: kdme"htt p: / / www. ong. or g/ spec/ KDM 20160201/ kdnt
xm ns: source="http://ww. ong. or g/ spec/ KDM 20160201/ sour ce" name="Bui | d Exanpl e">
<nodel xm:id="id.0" xm:type="source:|nventoryhdel">
<i nventoryEl enent xm:id="id.1" xm:type="source: SourceFile" name="a.c">
<i nventoryRel ation xm :id="id.2" xm:type="source: DependsOn" to="id.5" from="id.1"/>
</invent or yEl ement >
<i nventoryEl enent xm:id="id.3" xm:type="source: SourceFile" name="b.c">
<i nventoryRel ation xm :id="id.4" xm:type="source: DependsOn" to="id.5" from="id.3"/>

338 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</invent or yEl ement >
<i nventoryEl enent xm:id="id.5" xm:type="source: SourceFile" name="ab.h"/>
<i nventoryEl enent xm:id="id.6" xm:type="source:Directory">
<i nventoryEl enent xm:id="id.7" xm:type="source:|nmge"/>
<i nvent oryEl enent xm:id="id.8" xm:type="source:|nage"/>
</invent or yEl ement >
<i nventoryEl enent xm:id="id.9" xm:type="source: SourceFile" name="makefile"/>
<i nventoryEl enent xm:id="id.10" xm:type="source: Executabl eFil e" nane="ab. exe"/>
</ model >
<nodel xm:id="id.11" xm :type="buil d: Bui | dvbdel ">
<bui | dEl enent xm :id="id.12" xm:type="buil d: Bui | dConponent "
nane="sources" inplenmentation="id.1id.5 id.3"/>
<bui | dEl enent xm :id="id.13" xm:type="build: Buil dProduct"
nane="ab product"” i nplenmentation="id.10"/>
<bui | dEl enent xmi :id="id.14" xm :type="buil d: Buil dSt ep">
<bui |l dRel ation xm :id="id.15" xm :type="buil d: Descri bedBy" to="id.28" from="id.14"/>
<bui |l dRel ation xm :id="id.16" xm :type="buil d: SupportedBy" to="id.30" from="id.14"/>
<bui | dEl enent xmi:id="id.17" xm:type="buil d: Buil dStep" name="conpil e">
<bui | dRel ation xm :id="id. 18" xm :type="buil d: Consumes" to="id.12" from="id.17"/>
<bui | dRel ation xm :id="id.19" xm :type="buil d: Produces" to="id.25" from="id.17"/>
<bui | dRel ation xm :id="id.20" xm :type="buil d: SupportedBy" to="id.26" from="id.17"/>
</ bui | dEl ement >
<bui | dEl enent xm :id="id.21" xm:type="build: Buil dStep" name="1ink">
<bui | dRel ation xm :id="id.22" xm:type="buil d: Consumes" to="id.25" from="id.21"/>
<bui | dRel ation xm :id="id.23" xm:type="build: Produces" to="id.13" from="id.21"/>
<bui | dRel ation xm :id="id.24" xm :type="buil d: SupportedBy" to="id.26" from="id.21"/>
</ bui | dEl ement >
<bui | dEl enent xmi :id="id.25" xm:type="buil d: Bui | dConponent"” nane="object files"/>
<bui | dEl enent xm :id="id.26" xm:type="build: Tool" nane="C conpiler">
<bui | dRel ation xm :id="id.27" xm :type="buil d: SuppliedBy" to="id.32" from="id.26"/>
</ bui | dEl emrent >
</ bui | dEl emrent >
<bui | dEl enent xm :id="id.28" xm:type="build:Buil dDescription" inplenentation="id.9">
<source xm:id="id.29" |anguage="shell" snippet="cc $(SOURCE) -0 ab.exe"/>
</ bui | dEl emrent >
<bui | dEl enent xmi :id="id.30" xm:type="build: Tool" nane="nake">
<bui |l dRel ation xm :id="id.31" xm :type="buil d: SuppliedBy" to="id.32" from="id.30"/>
</ bui | dEl ement >
<bui | dEl enent xm :id="id.32" xm:type="build: Supplier"” nane="Tools' R Us corp"/>
</ nodel >
</ kdm Segment >

21.7 ExtendedBuildElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedBuildElements class diagram defines two viewpoint-specific generic elements for the build model as
determined by the KDM model pattern: a generic build entity and a generic build relationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 339

The classes and associations of the ExtendedBuildElements diagram are shown in Figure 21.5.

o e D 0 iR i o i

HET aj
visdeired Fors| redileed 15|
e o W RN ey HuyildR elatiorship KE iy

— K 1 Pl

oLy ITd] L e]

Bt bR i et

Figure 21.5 - ExtendedBuildElements Class Diagram

21.7.1 BuildElement Class (generic)

NOTE:KDM14-58

The BuildElement is a generic meta-model element that can be used to define new extended meta-model elements through
the KDM light-weight extension mechanism.

Superclass

AbstractBuildElement

Constraints
1. BuildElement should have at least one stereotype.
Semantics

A build entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the build model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

21.7.2 BuildRelationship Class (generic)

NOTE:KDM14-58

The BuildRelationship is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractBuildRelationship

340 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:AbstractBuildElement[1] the build element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

Constraints
1. BuildRelationship should have at least one stereotype.
Semantics

A build relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the build model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 341

342 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Annex A - Semantics of the Micro KDM
Action Elements

(normative)

This normative annex defines the semantics of micro KDM action elements. This annex assumes understanding of the
KDM Datatypes. Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras).

« Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the
micro action. The action kind may designate certain outgoing relationship as part of the Control. For example, the
“call” micro action designated the Calls outgoing relationship as part of Control.

< Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

« Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for a micro action.

« Control part - owned outgoing control flow relationships for the action.

« Extras part - owned relationships other than Reads, Writes and not designated as part of Control by the action Kind.
For example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

A.1 Comparison Actions

Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for Boolean
Not, which has a single Reads relationship).

Outputs: Optional writes to a DataElement of a Boolean type (no Writes corresponds to an expression statement,
where the result of the operation is ignored; otherwise, the result should be stored into a DataElement,
which can be permanent. For example, a StorableUnit with a kind other than “register,” a MemberUnit, an
ItemUnit, or a ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: Optional single flow - unconditional transfer of control to the next micro action (for example, as part of
complex expressions; no Flow corresponds to a terminal action).

Table A.1 - Comparison Actions

Micro action Semantics

Equals Polymorphic “equals” for two values of the same datatype, see ISO Equals operation for the
corresponding datatype.

NotEqual Polymorphic “not equal” for two values of the same datatype: not (A==B).

LessThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype; see ISO

InOrder operation for the corresponding datatype.

LessThan Polymorphic “less than” for two values of the same ordered datatype: A<=B and not A==B.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 343

Table A.1 - Comparison Actions

Micro action Semantics

GreaterThan Polymorphic “greater than or equal” for two values of the same ordered datatype: not A<=B.

GreaterThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype: not A<=B or
A==B.

Not Boolean NOT, see ISO Boolean NOT operation.

And Boolean AND, see ISO Boolean AND operation

Or Boolean OR, see ISO Boolean OR operation

Xor Boolean XOR: (A and not B) or (not A and B)

A.2 Actions Related to the Primitive Numerical Datatypes

NOTE:KDM14-71, KDM14-78

Inputs: Two ordered Reads relationships to DataElements representing values of the same datatype (except for
Negate and Successor, which have a single Reads relationship; and Incr, Decr, which have a single
Addresses relationship).

Outputs: Optional single writes to a DataElement of a type corresponding to the definition of the operation (can be
temporary register or a variable; no Writes corresponds to an expression statement, where the result of the
operation is ignored).

Control: Optional single flow - unconditional transfer of control to the next micro action.

Table A.2 - Numerical actions

Micro action Semantics

Add Polymorphic add operation for two values of the same numeric datatype, see 1ISO Add
operation for the corresponding datatype.

Multiply Polymorphic multiply operation for two values of the same numeric datatype; see 1SO Add
operation for the corresponding datatype.

Negate Polymorphic unary negate operation for a single value of some numeric datatype; see 1SO
Negate operation for the corresponding datatype. Requires a single Reads relationship

Subtract Polymorphic subtract operation for two values of the same numeric datatype; A+ neg B.

Divide Polymorphic divide operation for two values of the same numeric datatype.

Remainder Polymorphic remainder operation for two values of the same IntegerType datatype.

344 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table A.2 - Numerical actions

Micro action Semantics

Successor Single Reads; Successor for ordinal or enumerated types, see ISO Successor operation.

Incr Variable post increment operation; Single Addresses relationship represents the DataElement
whose value is incremented.

Decr Variable post decrement operation; Single Addresses relationship represents the DataElement
whose value is decremented.

A.3 Actions Related to Bitwise Operations on Primitive Datatypes

NOTE:KDM14-78

Inputs:

Outputs:

Control:

Table A.3 - Bitwise actions

Two Reads relationships to DataElements representing values of the same datatype (except for BitNot,
which has a single Reads relationship).

Optional single Flow - unconditional transfer of control.

Optional single Writes to a DataElement of the same type as the first StorableElement (can be a temporary
register or a variable).

Micro action Semantics Inputs

BitAnd Bitwise AND on two integers or Two Reads relationships to DataElements
bitstrings or octetstrings representing values of the same datatype

BitOr Bitwise OR on two integers or bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype

BitNot Bitwise NOT on integer or bitstring or Single Reads relationships to DataElement
octetstring

BitXor Bitwise XOR on two integers or bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

345

Table A.3 - Bitwise actions

Micro action Semantics Inputs
LeftShift Avrithmetic bitwise shift left on integer or | First Reads relationship to a DataElement
bitstring or octetsting representing an integer, bitstring, or octetstring.

Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

RightShift Arithmetic bitwise shift right on integer First Reads relationship to a DataElement

or bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

BitRightShift Logical bitwise shift right on integer or First Reads relationship to a DataElement
bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

346 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A.4 Control Actions

NOTE:KDM14-67, KDM14-166, KDM14-18, KDM14-79, KDM14-167, KDM14-78

Table A.4 - Control actions

Micro action | Description Inputs Outputs Control
Assign Assignment Single Reads relationship to a | Writes relationship Optional single flow to the
(copy) DataElement representing the | represents the next micro action
value DataElement (except
for a ValueElement)
to which the value of
the input
DataElement is
assigned

Condition Condition Single Reads relationship toa | none TrueFlow & FalseFlow -
DataElement representing the conditional transfer of
Boolean value control

Call Static call Zero or more Reads Optional Writes to Calls relationship to the
relationships to DataElements, | the DataElement that | ControlElement represents
that represent input actual represents the return | the flow of control to the
parameters; ordered; value ControlElement and the
Value of each actual parameter return back; Subsequently
is assigned to the an optional single flow to
corresponding formal the next micro action is
parameter of the performed.
ControlElement.

Correspondence is established
according to the Pos attribute
of the formal parameter in the
signature of the
ControlElement. A sequence
of values is assigned to the
variable argument.

MethodCall Method call Invokes relationship to the Same as Call Calls relationship to the
DataElement that represents MethodUnit represents the
the instance; flow of control to the
Zero or more Reads Method and the return
relationships to DataElements, back; Subsequently an
that represent input actual optional single flow to the
parameters; ordered. next micro action is

performed.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

347

Micro action | Description Inputs Outputs Control
PtrCall Indirect call by Addresses relationship to the Same as Call This represents a dynamic
pointer or DataElement that represents call to one of the possible
reference, where | the pointer; targets of the pointer
the identify of the | Zero or more Reads (corresponding to the
ControlElement | relationships to DataElements, current value of the
is not known that represent input actual pointer). Dispatches
parameters; ordered. relation to the DataElement
represents the pointer. The
Signature of the possible
targets is represented as the
type attribute of the
DataElement; subsequently
an optional single flow to
the next micro action is
performed
VirtualCall Virtual method Addresses relationship to the | Same as Call Calls relationship to the
call, method call | DataElement that represents MethodUnit represents the
by pointer or the instance; superclass of the method
reference oracall | Zero or more Reads that will be determined
to an interface relationships to DataElements, dynamically. This
element that represent input actual represents the flow of
parameters; ordered. control to the Method and
the return back;
Subsequently an optional
single flow to the next
micro action is performed.
Return return Single Reads represents the none Control is returned back to
DataElement that contains the one of the ControlElements
return value that has performed the call.
Nop dummy none none Optional single flow to the
next micro action
Goto Unconditional none none Single flow to the next
transfer of micro action
control
Label represents a none none Single flow to the next
label; the name of micro action
the action is the
label
348 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Micro action | Description Inputs Outputs Control
Throw Raising none none Throws relationship to the
exception DataElement that
represents the "exception
object”. Optional
ExceptionFlow relationship
to a CatchUnit that
processes the exception
Switch Branching based | Single Reads to the none One or more GuardedFlow
on the value of a | DataElement that represents relations to a second micro
StorableElement | the selector value action with a single Reads
relationship that represents
the guard value. A single
FalseFlow represents the
default branch. This
construct represents
selection of a single branch
for which the value of the
selector is equal to the
value of the guard or the
default branch
Guard Represents start Single Reads relation to a none Single flow unconditional
of the branch of a | DataElement representing the control flow to the first
complex guard value action of the branch
condition
Compound Compound action | none none Single Flow - the entry flow
to the first internal action
element
Init BlockUnit that none none EntryFlow unconditional
contains control flow to the first
initialization internal action
action elements

A.5 Actions Related to Access to Datatypes

NOTE:KDM14-166, KDM14-118, KDM14-67

Inputs: see table
Outputs: see table.
Control:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

optional single Flow to the next micro action (no Flow means a terminal action element).

349

Table A.5 - Access actions

particular field of a
RecordType

DataElement (of a RecordType); Single
Reads to a DataElement representing the
new value.

Micro action Description Inputs Outputs
FieldSelect Access to a particular Single Addresses relationship to a Optional Writes relationship
ItemUnit of a RecordType | DataElement (of a RecordType); Single represents the DataElement
Reads relationship to an ItemUnit (except for a ValueElement)
representing the field being accessed. to which the value of the
field is assigned.
FieldReplace Modification of a Single Addresses relationship to a Writes relationship to an

ItemUnit representing the
field being modified.

ChoiceSelect

Access to a particular
ItemUnit of a ChoiceType

Single Addresses relationship to a
DataElement (of a ChoiceType); Single
Reads relationship to an ItemUnit

representing the field type being accessed.

Optional Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
field is assigned.

ChoiceReplace

Modification of a
particular field of a
ChoiceType

Single Addresses relationship to a
DataElement (of a ChoiceType); Single
Reads to a DataElement representing the
new value.

Writes relationship to an
ItemUnit representing the
field being modified.

Obtaining a pointer or

Single Addresses relationship to a

Optional Writes relationship

Ptr
reference to a ComputationalObject. to the DataElement that will
ComputationalObject hold the new value.

This Obtaining pointer to the none Writes to a DataElement

gp

current instance of the
object

PtrSelect Indirect access to a value | Single Addresses relationship to a Optional Writes relationship
by pointer or reference DataElement (of a PointerType); Single to the ItemUnit of that

Reads relationship to an ItemUnit of that
PointerType representing the ItemUnit
being accessed.

PointerType

‘ PtrReplace

Indirect modification of a
value by pointer or
reference

Single Addresses relationship to a
DataElement (of an PointerType); Single
Reads to a DataElement representing the
new value.

Writes relationship to the
ItemUnit of that PointerType

ArraySelect

Access to a particular
ItemUnit of an ArrayType

Single Addresses relationship to a
DataElement (of an ArrayType); Reads
relationship to an ItemUnit representing
the ItemUnit being accessed; Last Reads
represents the Index.

Optional Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
ItemUnit is assigned

| 350

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table A.5 - Access actions

Micro action

Description

Inputs

Outputs

ArrayReplace

Modification of a
particular ItemUnit of an
ArrayType

Single Addresses relationship to a
DataElement (of an ArrayType); Reads
that represents the Index; Last Reads to a
DataElement representing the new value.

Writes relationship to an
ItemUnit representing the
ItemUnit being modified,;

MemberSelect

Access to a particular
MemberUnit of a
ClassType

Single Addresses relationship to the
DataElement that represents the
instance.Single Reads relationship to an
MemberUnit representing the member
being accessed.

Optional Writes relationship
represents the DataElement
(except for a ValueElement)
to which the value of the
field is assigned

MemberReplace

Modification of a
particular member of a
ClassType

Single Addresses relationship to a
DataElement (of a ClassType) that
represents the instance of the object being
accessed.Single Reads to a DataElement
representing the new value.

Writes relationship to an
MemberUnit representing
the member being modified.

dynamic instance of an
ArrayType datatype

New Creation of a new Creates relationship to the Datatype being | Writes relationship
dynamic instance of a created. represents the DataElement
datatype; this has to be (except for a ValueElement)
done separately if to which the reference to the
required; this micro action new dynamic element is
does not invoke the assigned.
constructor of the new
object; this has to be done
separately

NewArray Creation of a new Creates relationship to the Datatype being | Writes relationship

created; Reads relation to the
DataElement that represents the length of
the new array.

represents the DataElement
(except for a ValueElement)
to which the reference to the
new dynamic element is
assigned.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

351

A.6 Actions Related to Type Conversions

Inputs: see table
Outputs: see table.
Control:

Table A.6 - Type conversion actions

optional single Flow to the next micro action (no Flow means a terminal action element).

Micro action | Description Inputs Outputs

Sizeof Determines the length of a Reads represents the DataElement Optional writes to a
DataElement (based on the or DataElement
datatype) or the length of a UsesType to the Datatype
Datatype

Instanceof Performs dynamic type check | Reads represents the DataElement; Optional Writes to a
if the data element is of a UsesType relation represents the datatype. | DataElement of a Boolean
certain datatype type;

DynCast Performs a dynamic cast of a | Reads represents the DataElement; Optional Writes to a
DataElement to a certain UsesType relation represents the datatype. | DataElement
Datatype

TypeCast Performs a static type Reads represents the DataElement; Optional writes to a
conversion of a DataElement | UsesType relation represents the datatype. | DataElement
to a certain Datatype

A.7 Actions Related to StringType Operations

Inputs:
Outputs:

Control:

see table.

optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation is ignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.7 - StringType actions

Micro action Description Inputs
ISEmpty True is the string x is empty First Reads represents x;
Head Produces the value of the first element in the string x First Reads represents x;
Tail Produces sequence that results from deleting the first element in the | First Reads represents X;
string x
Empty Produces and empty string UsesType to the required type
Append Produces the sequence that is formed by adding a single value y to First Reads represents x;
the end of the string x Second represents y
352 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Note:"==" operation on I1SO strings is defined as full comparison, this does not work in Java, which has shallow
comparison of object references.

A.8 Actions Related to SetType Operations

Inputs: see table.

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation is ignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (ho Flow means a terminal action element).

Table A.8 - SetType actions

Micro action Description Inputs

Isin True is the value x is a member of the set y, else First Reads represents x; Second represents y
false

Subset True if every member of x is a member of y First Reads represents x; Second represents y

Difference Produces the set that consists of the values that are | First Reads represents x; Second represents y
inxand notiny

Union Produces the set that consists of the values that are | First Reads represents x; Second represents y
eitherinxoriny

Intersection Produces the set that consists of the values that are | First Reads represents x; Second represents y
bothinxandiny

Select Produces a value of the base type that is in the set X | First Reads represents Xx;

ISEmpty True is the set x is empty First Reads represents X;

Empty Produces and empty set UsesType to the required type

A.9 Actions Related to SequenceType Operations

Inputs: see table.

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation is ignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 353

Table A.9 - SequenceType actions

Micro action Description Inputs

ISEmpty True is the sequence X is empty. First Reads represents x;

Head Produces the value of the first element in the sequence x. First Reads represents x;

Tail Produces sequence that results from deleting the first element | First Reads represents X;
in the sequence x.

Empty Produces an empty sequence. UsesType to the required type

Append Produces the sequence that is formed by adding a single value y | First Reads represents x; Second
to the end of the sequence x. represents y

A.10 Actions Related to BagType Operations

Inputs: see table.

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation is ignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.10 - BagType actions

Micro action Description Inputs

ISEmpty True is the bag x is empty First Reads represents X;

Select Produces a value of the base type that is in the bag x First Reads represents X;

Delete Produces the bag that is formed by deleting one instance | First Reads represents x; Second
of value y from the bag x if any represents y

Empty Produces and empty bag UsesType to the required type

Insert Produces the bag that is formed by adding one instance of | First Reads represents x; Second
value y from the bag x represents y

Serialize Produces the sequence in which each element is repeated | First Reads represents x;
as many time as it occurs in the bag x

354 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A.11 Actions Related to Resources

NOTE:KDM14-205

Resource micro-actions represent specific statements that are determined by some programming languages and which
manipulate resources provided by the operating environment. Such statements are alternative to using system calls. Kinds in
Table A.11 represent such statements as micro KDM ActionElements. Precise semantics of representing the operating
environment is described in Part 3 Runtime Resource Layer. In particular, a combination of resource actions, resource
relationships and resource events can be used, where the resource micro-action is part of a Code Model, while other elements
can be added in various models of the Resource Layer (Platform, Data, Event or Ul).

Inputs:

Outputs:

Control:
Extras:

Zero or more Reads relationships to DataElements; represent input data which is sent to the resource;
ordered.

Zero or more Writes relationships to DataElements; represents output data which is received from the
resource.

optional single Flow to the next micro action (ho Flow means a terminal action element).

optional resource-specific relationships.

Table A.11 - Resource actions

Micro action Description
Code ActionElement represents a assembly instruction or a segment
Platform ActionElement represents a statement that manipulates a Platform Resource
Data ActionElement represents a statement that manipulates a Data Resource
Event ActionElement represents a statement that manipulates an Event Resource
ul ActionElement represents a statement that manipulates a Ul Resource
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 355

356 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

	OMG’S ISSUE REPORTING PROCEDURE
	Preface
	1 Scope
	2 Conformance
	2.1 KDM Domains
	2.2 Compliance Levels
	2.2.1 Meaning and Types of Compliance

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Other OMG Specifications
	6.2 How to Read this Specification
	6.2.1 Diagram format

	7 Specification Overview
	8 KDM
	8.1 Overview
	8.2 Organization of the KDM Packages

	Subpart I - Infrastructure Layer
	9 Core Package
	9.1 Overview
	9.2 Organization of the Core Package
	9.3 Elements Class Diagram
	9.3.1 Element Class (abstract)
	9.3.2 AnnotatableElement Class (abstract)
	9.3.3 AnnotationElement Class (abstract)
	9.3.4 ExtendableElement Class (abstract)
	9.3.5 ExtensionElement Class (abstract)
	9.3.6 ModelElement Class (abstract)

	9.4 CoreEntities Class Diagram
	9.4.1 KDMEntity Class (abstract)

	9.5 CoreRelations Class Diagram
	9.5.1 KDMRelationship Class (abstract)
	9.5.2 KDMEntity (additional properties)

	9.6 AggregatedRelations Class Diagram
	9.6.1 AggregatedRelationship Class
	9.6.2 KDMEntity (additional properties)
	9.6.3 KDMRelationship (additional properties)

	9.7 Datatypes Class Diagram
	9.7.1 Boolean Type (datatype)
	9.7.2 String Type (datatype)
	9.7.3 Integer Type (datatype)

	10 The Package named “kdm”
	10.1 Overview
	10.2 Organization of the KDM Framework
	10.3 Framework Class Diagram
	10.3.1 FrameworkElement Class (abstract)
	10.3.2 KDMModel Class (abstract)
	10.3.3 KDMEntity (additional properties)
	10.3.4 Segment Class

	10.4 Audit Class Diagram
	10.4.1 Audit Class
	10.4.2 ModelElement (additional properties)

	10.5 Extensions Class Diagram
	10.5.1 Stereotype Class
	10.5.2 TagDefinition Class
	10.5.3 ExtensionFamily Class
	10.5.4 ExtendableElement (additional properties)

	10.6 ExtendedValues Class Diagram
	10.6.1 ExtendedValue Class (abstract)
	10.6.2 TaggedValue Class
	10.6.3 TaggedRef Class

	10.7 Annotations Class Diagram
	10.7.1 Attribute Class
	10.7.2 Annotation Class
	10.7.3 AnnotatableElement (additional properties)

	11 Source Package
	11.1 Overview
	11.2 Organization of the Source Package
	11.3 InventoryModel Class Diagram
	11.3.1 InventoryModel Class
	11.3.2 AbstractInventoryElement Class (abstract)
	11.3.3 AbstractInventoryRelationship Class (abstract)
	11.3.4 InventoryItem Class (generic)
	11.3.5 InventoryContainer Class (generic)
	11.3.6 Directory Class
	11.3.7 Project Class

	11.4 InventoryInheritances Class Diagram
	11.5 InventoryItems Class Diagram
	11.5.1 SourceFile Class
	11.5.2 Model Class
	11.5.3 Document Class
	11.5.4 ImageFile Class
	11.5.5 AudioFile Class
	11.5.6 DataFile Class
	11.5.7 Service Class
	11.5.8 ConfigFile Class
	11.5.9 LinkableFile Class (generic)
	11.5.10 ObjectFile Class
	11.5.11 LibraryFile Class
	11.5.12 ExecutableFile Class

	11.6 Traceability Class Diagram
	11.6.1 SourceRef Class
	11.6.2 Track Class
	11.6.3 KDMEntity (additional properties)

	11.7 Regions Class Diagram
	11.7.1 Region Class (abstract)
	11.7.2 SourceRegion Class
	11.7.3 BinaryRegion Class
	11.7.4 ReferenceableRegion Class

	11.8 InventoryRelations Class Diagram
	11.8.1 DependsOn Class
	11.8.2 TraceableTo Class

	11.9 ExtendedInventoryElements Class Diagram
	11.9.1 InventoryElement Class (generic)
	11.9.2 InventoryRelationship Class (generic)

	Subpart II - Program Elements Layer
	12 Code Package
	12.1 Overview
	12.2 Organization of the Code Package
	12.3 CodeModel Class Diagram
	12.3.1 CodeModel Class
	12.3.2 AbstractCodeElement Class (abstract)
	12.3.3 AbstractCodeRelationship Class (abstract)
	12.3.4 CodeItem Class (abstract)
	12.3.5 ComputationalObject Class (generic)
	12.3.6 Datatype Class (generic)

	12.4 CodeInheritances Class Diagram
	12.5 Modules Class Diagram
	12.5.1 Module Class (generic)
	12.5.2 CompilationUnit Class
	12.5.3 SharedUnit Class
	12.5.4 LanguageUnit Class
	12.5.5 CodeAssembly Class
	12.5.6 Package Class

	12.6 ControlElements Class Diagram
	12.6.1 ControlElement Class (generic)
	12.6.2 CallableUnit Class
	12.6.3 CallableKind Data Type (enumeration)
	12.6.4 MethodUnit Class
	12.6.5 MethodKind data type (enumeration)
	12.6.6 ExportKind data type (enumeration)

	12.7 DataElements Class Diagram
	12.7.1 DataElement Class (generic)
	12.7.2 StorableUnit Class
	12.7.3 StorableKind data type (enumeration)
	12.7.4 ItemUnit Class
	12.7.5 IndexUnit Class
	12.7.6 MemberUnit Class
	12.7.7 ParameterUnit Class

	12.8 ValueElements Class Diagram
	12.8.1 ValueElement Class (generic)
	12.8.2 Value Class
	12.8.3 ValueList Class

	12.9 Datatypes Class Diagram
	12.10 PrimitiveTypes Class Diagram
	12.10.1 PrimitiveType Class (generic)
	12.10.2 BooleanType Class
	12.10.3 CharType Class
	12.10.4 OrdinalType Class
	12.10.5 DateType Class
	12.10.6 TimeType Class
	12.10.7 IntegerType Class
	12.10.8 DecimalType Class
	12.10.9 ScaledType Class
	12.10.10 FloatType Class
	12.10.11 VoidType Class
	12.10.12 StringType Class
	12.10.13 BitType Class
	12.10.14 BitstringType Class
	12.10.15 OctetType Class
	12.10.16 OctetstringType Class

	12.11 EnumeratedTypes Class Diagram
	12.11.1 EnumeratedType Class

	12.12 CompositeTypes Class Diagram
	12.12.1 CompositeType Class (generic)
	12.12.2 ChoiceType Class
	12.12.3 RecordType Class

	12.13 DerivedTypes Class Diagram
	12.13.1 DerivedType Class (generic)
	12.13.2 ArrayType Class
	12.13.3 PointerType Class
	12.13.4 RangeType Class
	12.13.5 BagType Class
	12.13.6 SetType Class
	12.13.7 SequenceType Class

	12.14 Signature Class Diagram
	12.14.1 Signature Class
	12.14.2 ParameterKind (enumeration)

	12.15 DefinedTypes Class Diagram
	12.15.1 DefinedType Class (generic)
	12.15.2 TypeUnit Class
	12.15.3 SynonymUnit Class

	12.16 ClassTypes Class Diagram
	12.16.1 ClassUnit Class
	12.16.2 InterfaceUnit Class

	12.17 Templates Class Diagram
	12.17.1 TemplateElement Class (generic)
	12.17.2 TemplateUnit Class
	12.17.3 TemplateParameter Class
	12.17.4 TemplateType Class

	12.18 TemplateRelations Class Diagram
	12.18.1 InstanceOf Class
	12.18.2 ParameterTo Class

	12.19 InterfaceRelations Class Diagram
	12.19.1 Implements Class
	12.19.2 ImplementationOf Class

	12.20 TypeRelations Class Diagram
	12.20.1 HasType Class
	12.20.2 HasValue Class

	12.21 ClassRelations Class Diagram
	12.21.1 Extends Class

	12.22 PreprocessorDirectives Class Diagram
	12.22.1 PreprocessorDirective Class (generic)
	12.22.2 MacroUnit Class
	12.22.3 MacroKind data type (enumeration)
	12.22.4 MacroDirective Class
	12.22.5 IncludeDirective Class
	12.22.6 Conditional Directive Class

	12.23 PreprocessorRelations Class Diagram
	12.23.1 Expands Class
	12.23.2 GeneratedFrom Class
	12.23.3 Includes Class
	12.23.4 VariantTo Class
	12.23.5 Redefines Class

	12.24 Comments Class Diagram
	12.24.1 CommentUnit Class
	12.24.2 AbstractCodeElement Class (additional properties)

	12.25 Visibility Class Diagram
	12.25.1 Namespace Class

	12.26 VisibilityRelations Class Diagram
	12.26.1 VisibleIn Class
	12.26.2 Imports Class

	12.27 ExtendedCodeElements Class Diagram
	12.27.1 CodeElement Class (generic)
	12.27.2 CodeRelationship Class (generic)

	13 Action Package
	13.1 Overview
	13.2 Organization of the Action Package
	13.3 ActionElements Class Diagram
	13.3.1 ActionElement Class
	13.3.2 AbstractActionRelationship Class (abstract)
	13.3.3 BlockUnit Class
	13.3.4 AbstractCodeElement (additional properties)

	13.4 ActionInheritances Class Diagram
	13.5 ActionFlow Class Diagram
	13.5.1 ControlFlow Class (generic)
	13.5.2 EntryFlow Class
	13.5.3 Flow Class
	13.5.4 TrueFlow Class
	13.5.5 FalseFlow Class
	13.5.6 GuardedFlow Class

	13.6 CallableRelations Class Diagram
	13.6.1 Calls Class
	13.6.2 Dispatches Class

	13.7 DataRelations Class Diagram
	13.7.1 Reads Class
	13.7.2 Writes Class
	13.7.3 Addresses Class
	13.7.4 Creates Class

	13.8 ExceptionBlocks Class Diagram
	13.8.1 ExceptionUnit Class
	13.8.2 TryUnit Class
	13.8.3 CatchUnit Class
	13.8.4 FinallyUnit Class

	13.9 ExceptionFlow Class Diagram
	13.9.1 ExitFlow Class
	13.9.2 ExceptionFlow Class

	13.10 ExceptionRelations Class Diagram
	13.10.1 Throws Class

	13.11 InterfaceRelations Class Diagram
	13.11.1 CompliesTo Class

	13.12 UsesRelations Class Diagram
	13.12.1 UsesType Class

	13.13 ExtendedActionElements Class Diagram
	13.13.1 ActionRelationship Class (generic)

	14 Micro KDM
	Subpart III - Runtime Resources Layer
	15 Platform Package
	15.1 Overview
	15.2 Organization of the Platform Package
	15.3 PlatformModel Class Diagram
	15.3.1 PlatformModel Class
	15.3.2 AbstractPlatformElement Class (abstract)
	15.3.3 AbstractPlatformRelationship Class (abstract)

	15.4 PlatformInheritances Class Diagram
	15.5 PlatformResources Class Diagram
	15.5.1 PlatformResource Class
	15.5.2 NamingResource Class
	15.5.3 MarshalledResource Class
	15.5.4 MessagingResource Class
	15.5.5 FileResource Class
	15.5.6 ExecutionResource Class
	15.5.7 LockResource Class
	15.5.8 StreamResource Class
	15.5.9 DataManager Class
	15.5.10 PlatformEvent Class
	15.5.11 PlatformAction Class
	15.5.12 ExternalActor Class

	15.6 PlatformRelations Class Diagram
	15.6.1 BindsTo Class

	15.7 ProvisioningRelations Class Diagram
	15.7.1 Requires Class

	15.8 PlatformActions Class Diagram
	15.8.1 ManagesResource Class
	15.8.2 ReadsResource Class
	15.8.3 WritesResource Class
	15.8.4 DefinedBy Class
	15.8.5 ProducesPlatformEvent

	15.9 Deployment Class Diagram
	15.9.1 DeploymentElement Class (generic)
	15.9.2 DeployedComponent Class
	15.9.3 DeployedSoftwareSystem Class
	15.9.4 Machine Class
	15.9.5 DeployedResource Class

	15.10 RuntimeResources Class Diagram
	15.10.1 RuntimeResource (generic)
	15.10.2 Process Class
	15.10.3 Thread Class

	15.11 RuntimeActions Class Diagram
	15.11.1 Loads Class
	15.11.2 Spawns Class

	15.12 ExtendedPlatformElements Class Diagram
	15.12.1 PlatformElement Class (generic)
	15.12.2 PlatformRelationship Class (generic)

	16 UI Package
	16.1 Overview
	16.2 Organization of the UI Package
	16.3 UIModel Class Diagram
	16.3.1 UIModel Class
	16.3.2 AbstractUIElement Class (abstract)
	16.3.3 AbstractUIRelationship Class (abstract)

	16.4 UIInheritances Class Diagram
	16.5 UIResources Class Diagram
	16.5.1 UIResource Class (generic)
	16.5.2 UIDisplay Class (generic)
	16.5.3 Screen Class
	16.5.4 Report Class
	16.5.5 UIField Class
	16.5.6 UIEvent Class
	16.5.7 UIAction Class

	16.6 UIRelations Class Diagram
	16.6.1 UIFlow Class
	16.6.2 UILayout Class

	16.7 UIActions Class Diagram
	16.7.1 Displays Class
	16.7.2 DisplaysImage Class
	16.7.3 ManagesUI Class
	16.7.4 ReadsUI Class
	16.7.5 WritesUI Class
	16.7.6 ProducesUIEvent Class

	16.8 ExtendedUIElements Class Diagram
	16.8.1 UIElement Class (generic)
	16.8.2 UIRelationship Class (generic)

	17 Event Package
	17.1 Overview
	17.2 Organization of the Event Package
	17.3 EventModel Class Diagram
	17.3.1 EventModel Class
	17.3.2 AbstractEventElement Class (abstract)
	17.3.3 AbstractEventRelationship Class (abstract)

	17.4 EventInheritances Class Diagram
	17.5 EventResources Class Diagram
	17.5.1 EventResource Class (generic)
	17.5.2 Event Class
	17.5.3 State Class
	17.5.4 InitialState Class
	17.5.5 Transition Class
	17.5.6 OnEntry Class
	17.5.7 OnExit Class
	17.5.8 EventAction Class

	17.6 EventRelations Class Diagram
	17.6.1 NextState Class
	17.6.2 ConsumesEvent Class

	17.7 EventActions Class Diagram
	17.7.1 ReadsState Class
	17.7.2 ProducesEvent Class
	17.7.3 HasState Class

	17.8 ExtendedEventElements Class Diagram
	17.8.1 EventElement Class (generic)
	17.8.2 EventRelationship Class (generic)

	18 Data Package
	18.1 Overview
	18.2 Organization of the Data Package
	18.3 Data Model Class Diagram
	18.3.1 DataModel Class
	18.3.2 AbstractDataElement Class (abstract)
	18.3.3 AbstractDataRelationship Class (abstract)

	18.4 Data Inheritances Class Diagram
	18.5 DataResources Class Diagram
	18.5.1 DataResource Class (generic)
	18.5.2 DataContainer Class (generic)
	18.5.3 Catalog Class
	18.5.4 RelationalSchema Class
	18.5.5 DataEvent Class
	18.5.6 DataAction Class

	18.6 ColumnSet Class Diagram
	18.6.1 ColumnSet (generic)
	18.6.2 RelationalTable Class
	18.6.3 RelationalView Class
	18.6.4 DataSegment Class
	18.6.5 RecordFile Class

	18.7 KeyIndex Class Diagram
	18.7.1 IndexElement Class (generic)
	18.7.2 UniqueKey Class
	18.7.3 ReferenceKey Class
	18.7.4 Index Class

	18.8 Key Relations Class Diagram
	18.8.1 KeyRelationship Class

	18.9 DataActions Class Diagram
	18.9.1 ReadsColumnSet Class
	18.9.2 WritesColumnSet Class
	18.9.3 ManagesData Class
	18.9.4 HasContent Class
	18.9.5 ProducesDataEvent Class

	18.10 StructuredData Class Diagram
	18.10.1 XMLSchema
	18.10.2 AbstractContentElement (abstract)

	18.11 ContentElements Class Diagram
	18.11.1 ContentItem (generic)
	18.11.2 ComplexContentType
	18.11.3 SimpleContentType
	18.11.4 ContentRestriction
	18.11.5 AllContent Class
	18.11.6 SeqContent Class
	18.11.7 ChoiceContent Class
	18.11.8 GroupContent Class
	18.11.9 MixedContent Class
	18.11.10 ContentAttribute Class
	18.11.11 ContentElement Class
	18.11.12 ContentReference Class

	18.12 ContentRelations Class Diagram
	18.12.1 TypedBy Class
	18.12.2 DatatypeOf Class
	18.12.3 ReferenceTo Class
	18.12.4 ExtensionTo Class
	18.12.5 RestrictionOf Class

	18.13 ExtenededDataElements Class Diagram
	18.13.1 ExtendedDataElement Class
	18.13.2 DataRelationship Class

	Subpart IV - Abstractions Layer
	19 Structure Package
	19.1 Overview
	19.2 Organization of the Structure Package
	19.3 StructureModel Class Diagram
	19.3.1 StructureModel Class
	19.3.2 AbstractStructureElement Class (abstract)
	19.3.3 AbstractStructureRelationship Class (abstract)
	19.3.4 Subsystem Class
	19.3.5 Layer Class
	19.3.6 Component Class
	19.3.7 SoftwareSystem Class
	19.3.8 ArchitectureView Class

	19.4 StructureInheritances Class Diagram
	19.5 ExtendedStructureElements Class Diagram
	19.5.1 StructureElement Class (generic)
	19.5.2 StructureRelationship Class (generic)

	20 Conceptual Package
	20.1 Overview
	20.2 Organization of the Conceptual Package
	20.3 ConceptualModel Class Diagram
	20.3.1 ConceptualModel
	20.3.2 AbstractConceptualElement (abstract)
	20.3.3 AbstractConceptualRelationship Class (abstract)

	20.4 ConceptualInheritances Class Diagram
	20.5 ConceptualElements Class Diagram
	20.5.1 ConceptualContainer Class
	20.5.2 TermUnit
	20.5.3 FactUnit
	20.5.4 RuleUnit
	20.5.5 ConceptualRole
	20.5.6 BehaviorUnit Class
	20.5.7 ScenarioUnit Class

	20.6 ConceptualRelations Class Diagram
	20.6.1 ConceptualFlow Class

	20.7 ExtendedConceptualElements Class Diagram
	20.7.1 ConceptualElement Class (generic)
	20.7.2 ConceptualRelationship Class (generic)

	21 Build Package
	21.1 Overview
	21.2 Organization of the Build Package
	21.3 BuildModel Class Diagram
	21.3.1 BuildModel Class
	21.3.2 AbstractBuildElement Class (abstract)
	21.3.3 AbstractBuildRelationship Class (abstract)
	21.3.4 Supplier Class
	21.3.5 Tool Class
	21.3.6 SymbolicLink Class

	21.4 BuildInheritances Class Diagram
	21.5 BuildResources Class Diagram
	21.5.1 BuildResource Class
	21.5.2 BuildComponent Class
	21.5.3 BuildDescription Class
	21.5.4 BuildLibrary Class
	21.5.5 BuildProduct Class
	21.5.6 BuildStep Class

	21.6 BuildRelations Class Diagram
	21.6.1 LinksTo Class
	21.6.2 Consumes Class
	21.6.3 Produces Class
	21.6.4 SupportedBy Class
	21.6.5 SuppliedBy Class
	21.6.6 DescribedBy Class

	21.7 ExtendedBuildElements Class Diagram
	21.7.1 BuildElement Class (generic)
	21.7.2 BuildRelationship Class (generic)

	Annex A - Semantics of the Micro KDM Action Elements
	A.1 Comparison Actions
	A.2 Actions Related to the Primitive Numerical Datatypes
	A.3 Actions Related to Bitwise Operations on Primitive Datatypes
	A.4 Control Actions
	A.5 Actions Related to Access to Datatypes
	A.6 Actions Related to Type Conversions
	A.7 Actions Related to StringType Operations
	A.8 Actions Related to SetType Operations
	A.9 Actions Related to SequenceType Operations
	A.10 Actions Related to BagType Operations
	A.11 Actions Related to Resources

