
                                                                                                                      

Date: March 2016

Architecture-Driven Modernization: 
Knowledge Discovery Meta-Model (KDM)

Version 1.4

convenience document with changebars

OMG Document Number:     ptc/2016-02-03
Standard document URL:      http://www.omg.org/spec/KDM/1.4
Normative Machine Consumable Files:

                              http://www.omg.org/spec/KDM/20160201/kdm.cmof                                              
                   http://www.omg.org/spec/KDM/20160201/action.xsd 
                   http://www.omg.org/spec/KDM/20160201/build.xsd 
                   http://www.omg.org/spec/KDM/20160201/code.xsd 
                   http://www.omg.org/spec/KDM/20160201/conceptual.xsd 
                   http://www.omg.org/spec/KDM/20160201/core.xsd 
                   http://www.omg.org/spec/KDM/20160201/data.xsd 
                   http://www.omg.org/spec/KDM/20160201/event.xsd 
                   http://www.omg.org/spec/KDM/20160201/kdm.xsd 
                   http://www.omg.org/spec/KDM/20160201/platform.xsd 
                   http://www.omg.org/spec/KDM/20160201/source.xsd 
                   http://www.omg.org/spec/KDM/20160201/structure.xsd 
                   http://www.omg.org/spec/KDM/20160201/ui.xsd 

Non-normative Machine Consumable Files:
                   http://www.omg.org/spec/KDM/20160201/kdm.ecore
                   http://www.omg.org/spec/KDM/20160201/kdm.mdxml



Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS
Copyright © 2006, Flashline
Copyright © 2006, IBM
Copyright © 2006, KDM Analytics
Copyright © 2006, Klocwork, Inc.
Copyright © 2016, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions 
and notices set forth below. This document does not represent a commitment to implement any portion of this 
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid 
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the 
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed 
the copyright in the included material of any such copyright holder by reason of having used the specification set forth 
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this 
specification to create and distribute software and special purpose specifications that are based upon this specification, and 
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright 
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the 
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any 
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this 
specification. This limited permission automatically terminates without notice if you breach any of these terms or 
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control. 

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may 
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a 
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of 
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are 
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations 
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this 
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or 
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission 



                                                                                                                      

of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN 
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE 
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, 
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF 
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. 
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE 
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR 
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, 
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 
DAMAGES. 

The entire risk as to the quality and performance of software developed using this specification is borne by you. This 
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government  is subject to the restrictions set forth in subparagraph (c) (1) (ii) of 
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of 
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition 
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be 
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered 
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling 
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI 
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™, MOF™ , OMG Interface Definition Language (IDL)™ , and OMG 
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for 
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its 
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer 
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and 
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the 
specification. Software developed only partially matching the applicable compliance points may claim only that the 
software was based on this specification, but may not claim compliance or conformance with this specification. In the 
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this 
specification may claim compliance or conformance with the specification only if the software satisfactorily completes the 
testing suites.





OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this 
process we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they 
may find by completing the Issue Reporting Form listed on the main web page 
 http://www.omg.org, under Documents, Report a Bug/Issue  
(http://www.omg.org/report_issue.htm).





0.1  OMG’S ISSUE REPORTING PROCEDURE 1

1 Preface xv

2 Scope 1

3 Conformance 1
3.1  KDM Domains 2

3.2  Compliance Levels 3
3.2.1 Meaning and Types of Compliance 4

4 Normative References 6

5 Terms and Definitions 7

6 Symbols 9

7 Additional Information 9
7.1  Changes to Other OMG Specifications 9
7.2  How to Read this Specification 9

7.2.1 Diagram format 11

8 Specification Overview 13

9 KDM 17
9.1  Overview 17

9.2  Organization of the KDM Packages 18

Subpart I - Infrastructure Layer 21

10 Core Package 23
10.1  Overview 23

10.2  Organization of the Core Package 23

10.3  Elements Class Diagram 23
10.3.1 Element Class (abstract) 24
10.3.2 AnnotatableElement Class (abstract) 24
10.3.3 AnnotationElement Class (abstract) 25
10.3.4 ExtendableElement Class (abstract) 25
10.3.5 ExtensionElement Class (abstract) 25
10.3.6 ModelElement Class (abstract) 26

10.4  CoreEntities Class Diagram 26
10.4.1 KDMEntity Class (abstract) 27
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        i



10.5  CoreRelations Class Diagram 29
10.5.1 KDMRelationship Class (abstract) 29
10.5.2 KDMEntity (additional properties) 30

10.6  AggregatedRelations Class Diagram 31
10.6.1 AggregatedRelationship Class 32
10.6.2 KDMEntity (additional properties) 34
10.6.3 KDMRelationship (additional properties) 35

10.7  Datatypes Class Diagram 35
10.7.1 Boolean Type (datatype) 36
10.7.2 String Type (datatype) 36
10.7.3 Integer Type (datatype) 36

11 The Package named “kdm” 37
11.1  Overview 37
11.2  Organization of the KDM Framework 37

11.3  Framework Class Diagram 38
11.3.1 FrameworkElement Class (abstract) 38
11.3.2 KDMModel Class (abstract) 39
11.3.3 KDMEntity (additional properties) 41
11.3.4 Segment Class 41

11.4  Audit Class Diagram 42
11.4.1 Audit Class 43
11.4.2 ModelElement (additional properties) 44

11.5  Extensions Class Diagram 44
11.5.1 Stereotype Class 46
11.5.2 TagDefinition Class 48
11.5.3 ExtensionFamily Class 49
11.5.4 ExtendableElement (additional properties) 50

11.6  ExtendedValues Class Diagram 51
11.6.1 ExtendedValue Class (abstract) 51
11.6.2 TaggedValue Class 52
11.6.3 TaggedRef Class 53

11.7  Annotations Class Diagram 53
11.7.1 Attribute Class 54
11.7.2 Annotation Class 55
11.7.3 AnnotatableElement (additional properties) 56

12 Source Package 57
12.1  Overview 57

12.2  Organization of the Source Package 58

12.3  InventoryModel Class Diagram 59
ii                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.3.1 InventoryModel Class 60
12.3.2 AbstractInventoryElement Class (abstract) 60
12.3.3 AbstractInventoryRelationship Class (abstract) 61
12.3.4 InventoryItem Class (generic) 61
12.3.5 InventoryContainer Class (generic) 62
12.3.6 Directory Class 63
12.3.7 Project Class 63

12.4  InventoryInheritances Class Diagram 64
12.5  InventoryItems Class Diagram 65

12.5.1 SourceFile Class 65
12.5.2 Model Class 66
12.5.3 Document Class 67
12.5.4 ImageFile Class 67
12.5.5 AudioFile Class 67
12.5.6 DataFile Class 68
12.5.7 Service Class 68
12.5.8 ConfigFile Class 68
12.5.9 LinkableFile Class (generic) 69
12.5.10 ObjectFile Class 69
12.5.11 LibraryFile Class 70
12.5.12 ExecutableFile Class 70

12.6  Traceability Class Diagram 70
12.6.1 SourceRef Class 71
12.6.2 Track Class 72
12.6.3 KDMEntity (additional properties) 73

12.7  Regions Class Diagram 73
12.7.1 Region Class (abstract) 74
12.7.2 SourceRegion Class 75
12.7.3 BinaryRegion Class 75
12.7.4 ReferenceableRegion Class 76

12.8  InventoryRelations Class Diagram 76
12.8.1 DependsOn Class 77
12.8.2 TraceableTo Class 78

12.9  ExtendedInventoryElements Class Diagram 78
12.9.1 InventoryElement Class (generic) 79
12.9.2 InventoryRelationship Class (generic) 79

Subpart II - Program Elements Layer 81

13 Code Package 85
13.1  Overview 85
13.2  Organization of the Code Package 85

13.3  CodeModel Class Diagram 86
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        iii



13.3.1 CodeModel Class 87
13.3.2 AbstractCodeElement Class (abstract) 88
13.3.3 AbstractCodeRelationship Class (abstract) 88
13.3.4 CodeItem Class (abstract) 88
13.3.5 ComputationalObject Class (generic) 88
13.3.6 Datatype Class (generic) 89

13.4  CodeInheritances Class Diagram 89
13.5  Modules Class Diagram 90

13.5.1 Module Class (generic) 90
13.5.2 CompilationUnit Class 91
13.5.3 SharedUnit Class 92
13.5.4 LanguageUnit Class 92
13.5.5 CodeAssembly Class 93
13.5.6 Package Class 93

13.6  ControlElements Class Diagram 93
13.6.1 ControlElement Class (generic) 94
13.6.2 CallableUnit Class 95
13.6.3 CallableKind Data Type (enumeration) 95
13.6.4 MethodUnit Class 96
13.6.5 MethodKind data type (enumeration) 96
13.6.6 ExportKind data type (enumeration) 97

13.7  DataElements Class Diagram 98
13.7.1 DataElement Class (generic) 99
13.7.2 StorableUnit Class 100
13.7.3 StorableKind data type (enumeration) 100
13.7.4 ItemUnit Class 101
13.7.5 IndexUnit Class 101
13.7.6 MemberUnit Class 101
13.7.7 ParameterUnit Class 102

13.8  ValueElements Class Diagram 103
13.8.1 ValueElement Class (generic) 103
13.8.2 Value Class 104
13.8.3 ValueList Class 104

13.9  Datatypes Class Diagram 105

13.10  PrimitiveTypes Class Diagram 106
13.10.1 PrimitiveType Class (generic) 106
13.10.2 BooleanType Class 107
13.10.3 CharType Class 107
13.10.4 OrdinalType Class 107
13.10.5 DateType Class 108
13.10.6 TimeType Class 108
13.10.7 IntegerType Class 108
13.10.8 DecimalType Class 108
13.10.9 ScaledType Class 109
13.10.10 FloatType Class 109
iv                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



13.10.11 VoidType Class 109
13.10.12 StringType Class 109
13.10.13 BitType Class 110
13.10.14 BitstringType Class 110
13.10.15 OctetType Class 110
13.10.16 OctetstringType Class 111

13.11  EnumeratedTypes Class Diagram 111
13.11.1 EnumeratedType Class 111

13.12  CompositeTypes Class Diagram 112
13.12.1 CompositeType Class (generic) 112
13.12.2 ChoiceType Class 113
13.12.3 RecordType Class 113

13.13  DerivedTypes Class Diagram 115
13.13.1 DerivedType Class (generic) 115
13.13.2 ArrayType Class 116
13.13.3 PointerType Class 117
13.13.4 RangeType Class 117
13.13.5 BagType Class 118
13.13.6 SetType Class 118
13.13.7 SequenceType Class 119

13.14  Signature Class Diagram 119
13.14.1 Signature Class 119
13.14.2 ParameterKind (enumeration) 120

13.15  DefinedTypes Class Diagram 120
13.15.1 DefinedType Class (generic) 121
13.15.2 TypeUnit Class 121
13.15.3 SynonymUnit Class 122

13.16  ClassTypes Class Diagram 122
13.16.1 ClassUnit Class 122
13.16.2 InterfaceUnit Class 123

13.17  Templates Class Diagram 124
13.17.1 TemplateElement Class (generic) 124
13.17.2 TemplateUnit Class 125
13.17.3 TemplateParameter Class 125
13.17.4 TemplateType Class 126

13.18  TemplateRelations Class Diagram 126
13.18.1 InstanceOf Class 127
13.18.2 ParameterTo Class 127

13.19  InterfaceRelations Class Diagram 130
13.19.1 Implements Class 131
13.19.2 ImplementationOf Class 131

13.20  TypeRelations Class Diagram 134
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        v



13.20.1 HasType Class 135
13.20.2 HasValue Class 135

13.21  ClassRelations Class Diagram 140
13.21.1 Extends Class 140

13.22  PreprocessorDirectives Class Diagram 142
13.22.1 PreprocessorDirective Class (generic) 142
13.22.2 MacroUnit Class 144
13.22.3 MacroKind data type (enumeration) 144
13.22.4 MacroDirective Class 144
13.22.5 IncludeDirective Class 145
13.22.6 Conditional Directive Class 145

13.23  PreprocessorRelations Class Diagram 145
13.23.1 Expands Class 146
13.23.2 GeneratedFrom Class 147
13.23.3 Includes Class 148
13.23.4 VariantTo Class 150
13.23.5 Redefines Class 151

13.24  Comments Class Diagram 153
13.24.1 CommentUnit Class 153
13.24.2 AbstractCodeElement Class (additional properties) 154

13.25  Visibility Class Diagram 154
13.25.1 Namespace Class 154

13.26  VisibilityRelations Class Diagram 155
13.26.1 VisibleIn Class 155
13.26.2 Imports Class 157

13.27  ExtendedCodeElements Class Diagram 157
13.27.1 CodeElement Class (generic) 158
13.27.2 CodeRelationship Class (generic) 158

14 Action Package 161
14.1  Overview 161

14.2  Organization of the Action Package 161

14.3  ActionElements Class Diagram 161
14.3.1 ActionElement Class 162
14.3.2 AbstractActionRelationship Class (abstract) 163
14.3.3 BlockUnit Class 164
14.3.4 AbstractCodeElement (additional properties) 165

14.4  ActionInheritances Class Diagram 165

14.5  ActionFlow Class Diagram 165
14.5.1 ControlFlow Class (generic) 166
vi                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



14.5.2 EntryFlow Class 167
14.5.3 Flow Class 168
14.5.4 TrueFlow Class 168
14.5.5 FalseFlow Class 169
14.5.6 GuardedFlow Class 169

14.6  CallableRelations Class Diagram 170
14.6.1 Calls Class 171
14.6.2 Dispatches Class 172

14.7  DataRelations Class Diagram 173
14.7.1 Reads Class 174
14.7.2 Writes Class 174
14.7.3 Addresses Class 175
14.7.4 Creates Class 175

14.8  ExceptionBlocks Class Diagram 176
14.8.1 ExceptionUnit Class 176
14.8.2 TryUnit Class 177
14.8.3 CatchUnit Class 177
14.8.4 FinallyUnit Class 177

14.9  ExceptionFlow Class Diagram 180
14.9.1 ExitFlow Class 182
14.9.2 ExceptionFlow Class 182

14.10   ExceptionRelations Class Diagram 183
14.10.1 Throws Class 183

14.11   InterfaceRelations Class Diagram 184
14.11.1 CompliesTo Class 184

14.12   UsesRelations Class Diagram 185
14.12.1 UsesType Class 185

14.13   ExtendedActionElements Class Diagram 186
14.13.1 ActionRelationship Class (generic) 186

15 Micro KDM 189
Subpart III - Runtime Resources Layer 201

16 Platform Package 205
16.1  Overview 205

16.2  Organization of the Platform Package 206
16.3  PlatformModel Class Diagram 207

16.3.1 PlatformModel Class 207
16.3.2 AbstractPlatformElement Class (abstract) 208
16.3.3 AbstractPlatformRelationship Class (abstract) 208
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        vii



16.4  PlatformInheritances Class Diagram 209
16.5  PlatformResources Class Diagram 209

16.5.1 PlatformResource Class 210
16.5.2 NamingResource Class 211
16.5.3 MarshalledResource Class 211
16.5.4 MessagingResource Class 211
16.5.5 FileResource Class 212
16.5.6 ExecutionResource Class 212
16.5.7 LockResource Class 212
16.5.8 StreamResource Class 212
16.5.9 DataManager Class 213
16.5.10 PlatformEvent Class 213
16.5.11 PlatformAction Class 213
16.5.12 ExternalActor Class 214

16.6  PlatformRelations Class Diagram 214
16.6.1 BindsTo Class 214

16.7  ProvisioningRelations Class Diagram 215
16.7.1 Requires Class 215

16.8  PlatformActions Class Diagram 216
16.8.1 ManagesResource Class 216
16.8.2 ReadsResource Class 217
16.8.3 WritesResource Class 217
16.8.4 DefinedBy Class 218
16.8.5 ProducesPlatformEvent 218

16.9  Deployment Class Diagram 219
16.9.1 DeploymentElement Class (generic) 220
16.9.2 DeployedComponent Class 220
16.9.3 DeployedSoftwareSystem Class 220
16.9.4 Machine Class 221
16.9.5 DeployedResource Class 221

16.10   RuntimeResources Class Diagram 222
16.10.1 RuntimeResource (generic) 222
16.10.2 Process Class 223
16.10.3 Thread Class 223

16.11  RuntimeActions Class Diagram 223
16.11.1 Loads Class 224
16.11.2 Spawns Class 224

16.12  ExtendedPlatformElements Class Diagram 224
16.12.1 PlatformElement Class (generic) 225
16.12.2 PlatformRelationship Class (generic) 225

17 UI Package 227
17.1  Overview 227
viii                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



17.2  Organization of the UI Package 228
17.3  UIModel Class Diagram 228

17.3.1 UIModel Class 229
17.3.2 AbstractUIElement Class (abstract) 229
17.3.3 AbstractUIRelationship Class (abstract) 230

17.4  UIInheritances Class Diagram 230

17.5  UIResources Class Diagram 231
17.5.1 UIResource Class (generic) 231
17.5.2 UIDisplay Class (generic) 232
17.5.3 Screen Class 232
17.5.4 Report Class 232
17.5.5 UIField Class 232
17.5.6 UIEvent Class 233
17.5.7 UIAction Class 233

17.6  UIRelations Class Diagram 233
17.6.1 UIFlow Class 234
17.6.2 UILayout Class 234

17.7  UIActions Class Diagram 235
17.7.1 Displays Class 235
17.7.2 DisplaysImage Class 236
17.7.3 ManagesUI Class 236
17.7.4 ReadsUI Class 236
17.7.5 WritesUI Class 237
17.7.6 ProducesUIEvent Class 237

17.8  ExtendedUIElements Class Diagram 238
17.8.1 UIElement Class (generic) 238
17.8.2 UIRelationship Class (generic) 239

18 Event Package 241
18.1  Overview 241

18.2  Organization of the Event Package 242

18.3  EventModel Class Diagram 242
18.3.1 EventModel Class 243
18.3.2 AbstractEventElement Class (abstract) 243
18.3.3 AbstractEventRelationship Class (abstract) 244

18.4  EventInheritances Class Diagram 244

18.5  EventResources Class Diagram 244
18.5.1 EventResource Class (generic) 245
18.5.2 Event Class 245
18.5.3 State Class 246
18.5.4 InitialState Class 246
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        ix



18.5.5 Transition Class 246
18.5.6 OnEntry Class 246
18.5.7 OnExit Class 246
18.5.8 EventAction Class 247

18.6  EventRelations Class Diagram 247
18.6.1 NextState Class 247
18.6.2 ConsumesEvent Class 248

18.7  EventActions Class Diagram 248
18.7.1 ReadsState Class 249
18.7.2 ProducesEvent Class 250
18.7.3 HasState Class 250

18.8  ExtendedEventElements Class Diagram 250
18.8.1 EventElement Class (generic) 251
18.8.2 EventRelationship Class (generic) 251

19  Data Package 253
19.1  Overview 253
19.2  Organization of the Data Package 254

19.3  Data Model Class Diagram 254
19.3.1 DataModel Class 255
19.3.2 AbstractDataElement Class (abstract) 255
19.3.3 AbstractDataRelationship Class (abstract) 256

19.4  Data Inheritances Class Diagram 256
19.5  DataResources Class Diagram 257

19.5.1 DataResource Class (generic) 257
19.5.2 DataContainer Class (generic) 258
19.5.3 Catalog Class 258
19.5.4 RelationalSchema Class 258
19.5.5 DataEvent Class 259
19.5.6 DataAction Class 259

19.6  ColumnSet Class Diagram 260
19.6.1 ColumnSet (generic) 261
19.6.2 RelationalTable Class 261
19.6.3 RelationalView Class 264
19.6.4 DataSegment Class 264
19.6.5 RecordFile Class 266

19.7  KeyIndex Class Diagram 272
19.7.1 IndexElement Class (generic) 272
19.7.2 UniqueKey Class 273
19.7.3 ReferenceKey Class 273
19.7.4 Index Class 273

19.8  Key Relations Class Diagram 274
x                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



19.8.1 KeyRelationship Class 274

19.9  DataActions Class Diagram 275
19.9.1 ReadsColumnSet Class 275
19.9.2 WritesColumnSet Class 276
19.9.3 ManagesData Class 276
19.9.4 HasContent Class 277
19.9.5 ProducesDataEvent Class 277

19.10   StructuredData Class Diagram 283
19.10.1 XMLSchema 283
19.10.2 AbstractContentElement (abstract) 284

19.11   ContentElements Class Diagram 284
19.11.1 ContentItem (generic) 285
19.11.2 ComplexContentType 285
19.11.3 SimpleContentType 285
19.11.4 ContentRestriction 286
19.11.5 AllContent Class 288
19.11.6 SeqContent Class 288
19.11.7 ChoiceContent Class 289
19.11.8 GroupContent Class 289
19.11.9 MixedContent Class 289
19.11.10 ContentAttribute Class 289
19.11.11 ContentElement Class 289
19.11.12 ContentReference Class 290

19.12   ContentRelations Class Diagram 294
19.12.1 TypedBy Class 295
19.12.2 DatatypeOf Class 295
19.12.3 ReferenceTo Class 296
19.12.4 ExtensionTo Class 296
19.12.5 RestrictionOf Class 297

19.13   ExtenededDataElements Class Diagram 297
19.13.1 ExtendedDataElement Class 298
19.13.2 DataRelationship Class 298

Subpart IV - Abstractions Layer 301

20 Structure Package 303
20.1  Overview 303

20.2  Organization of the Structure Package 304
20.3  StructureModel Class Diagram 304

20.3.1 StructureModel Class 305
20.3.2 AbstractStructureElement Class (abstract) 305
20.3.3 AbstractStructureRelationship Class (abstract) 306
20.3.4 Subsystem Class 306
20.3.5 Layer Class 306
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        xi



20.3.6 Component Class 306
20.3.7 SoftwareSystem Class 307
20.3.8 ArchitectureView Class 307

20.4  StructureInheritances Class Diagram 307
20.5  ExtendedStructureElements Class Diagram 308

20.5.1 StructureElement Class (generic) 308
20.5.2 StructureRelationship Class (generic) 309

21 Conceptual Package 311
21.1  Overview 311

21.2  Organization of the Conceptual Package 312
21.3  ConceptualModel Class Diagram 313

21.3.1 ConceptualModel 314
21.3.2 AbstractConceptualElement (abstract) 314
21.3.3 AbstractConceptualRelationship Class (abstract) 315

21.4  ConceptualInheritances Class Diagram 315

21.5  ConceptualElements Class Diagram 315
21.5.1 ConceptualContainer Class 316
21.5.2 TermUnit 316
21.5.3 FactUnit 317
21.5.4 RuleUnit 317
21.5.5 ConceptualRole 317
21.5.6 BehaviorUnit Class 318
21.5.7 ScenarioUnit Class 318

21.6  ConceptualRelations Class Diagram 319
21.6.1 ConceptualFlow Class 319

21.7  ExtendedConceptualElements Class Diagram 327
21.7.1 ConceptualElement Class (generic) 327
21.7.2 ConceptualRelationship Class (generic) 328

22 Build Package 329
22.1  Overview 329
22.2  Organization of the Build Package 330

22.3  BuildModel Class Diagram 330
22.3.1 BuildModel Class 331
22.3.2 AbstractBuildElement Class (abstract) 331
22.3.3 AbstractBuildRelationship Class (abstract) 331
22.3.4 Supplier Class 331
22.3.5 Tool Class 331
22.3.6 SymbolicLink Class 332

22.4  BuildInheritances Class Diagram 332
xii                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



22.5  BuildResources Class Diagram 332
22.5.1 BuildResource Class 333
22.5.2 BuildComponent Class 334
22.5.3 BuildDescription Class 334
22.5.4 BuildLibrary Class 334
22.5.5 BuildProduct Class 334
22.5.6 BuildStep Class 335

22.6  BuildRelations Class Diagram 335
22.6.1 LinksTo Class 335
22.6.2 Consumes Class 336
22.6.3 Produces Class 336
22.6.4 SupportedBy Class 337
22.6.5 SuppliedBy Class 337
22.6.6 DescribedBy Class 338

22.7  ExtendedBuildElements Class Diagram 339
22.7.1 BuildElement Class (generic) 340
22.7.2 BuildRelationship Class (generic) 340

23 Annex A - Semantics of the Micro KDM  
Action Elements 343

23.1  Comparison Actions 343

23.2  Actions Related to the Primitive Numerical Datatypes 344

23.3  Actions Related to Bitwise Operations on Primitive Datatypes 345
23.4  Control Actions 347

23.5  Actions Related to Access to Datatypes 349

23.6  Actions Related to Type Conversions 352
23.7  Actions Related to StringType Operations 352

23.8  Actions Related to SetType Operations 353

23.9  Actions Related to SequenceType Operations 353
23.10  Actions Related to BagType Operations 354

23.11  Actions Related to Resources 355
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        xiii



xiv                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry 
standards consortium that produces and maintains computer industry specifications for interoperable, portable and 
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information 
Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to 
enterprise integration that covers multiple operating systems, programming languages, middleware and networking 
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling 
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel); 
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications
• Business Rules and Process Management Specifications

Language Mappings
• IDL/Language Mapping Specifications

• Other Language Mapping Specifications

Middleware Specifications
• CORBA/IIOP

• CORBA Component Model

• Data Distribution

• Specialized CORBA
Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4                                                                         xv



Modeling and Metadata Specifications
• UML

• MOF

• XMI

• CWM

• Profile specifications.

Modernization Specifications
• KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
• CORBAservices

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and 
may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as ISO 
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
http://www.omg.org/
Email: pubs@omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions
xvi                                                                        Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4   



Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to  
http://www.omg.org/report_issue.htm.
Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4                                                                         xvii



xviii                                                                        Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4   



1 Scope

This specification referred to as the Knowledge Discovery Meta-model (KDM), defines a meta-model for representing 
existing software, its elements, associations, and operational environments. This is the first in the series of specifications 
related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects 
that involve existing software systems by offering interoperability and exchange of data between tools produced by 
different vendors.

One common characteristic of various tools that address SwA and ADM challenge is that they analyze existing software 
artifacts (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Any 
tool that operates on existing software produces a portion of the knowledge about the system. Tool-specific knowledge 
may be limited in scope, restricted to a particular source language, and/or particular transformation, and/or operational 
environment. Often such tool-specific knowledge is not be exported in any explicit format. For example, such knowledge 
may be used internally by the tool: a compiler generates precise facts about a compilation unit only to discard it as soon 
as the object file is generated.  Even when access to tool-specific knowledge is provided, it implies commitment to a 
proprietary definition and may involve a proprietary physical format. All the above may hinder interoperability between 
different tools, integration of several pieces of knowledge about the same system and development of common content. 
The meta-model for Knowledge Discovery provides a common ontology and an interchange format that facilitates the 
exchange of data contained within individual tool models that represent existing software. The meta-model represents the 
physical and logical elements of software as well as their relations at various levels of abstraction. The primary purpose 
of this meta-model is to enable a common interchange format that allows interoperability between modernization and/or 
software assurance tools, services, and their respective intermediate representations. This meta-model also allows 
development of common vendor-neutral content (patterns, rules, metrics, etc.) for modernization and software assurance 
based on standard KDM meta-elements instead of proprietary intermediate representations of software and software 
systems.

2 Conformance

KDM is defined via the Meta-Object Facility (MOF). KDM determines the interchange format via the XML Metadata 
Interchange (XMI) by applying the standard MOF to XMI mapping to the KDM MOF model. The interchange format 
defined by KDM is called the KDM XMI schema. The KDM XMI schema is provided as the normative part of this 
specification. 

NOTE:KDM14-304

KDM elements are defined in several packages identified by the following XMI namespace URIs:

Table 2.1 XMI namespace URIs for KDM packages

KDM Package   Namespace URI   XSD Schema location

Core  http://www.omg.org/spec/KDM/20160201/core   core.xsd

kdm  http://www.omg.org/spec/KDM/20160201/kdm   kdm.xsd

Source  http://www.omg.org/spec/KDM/20160201/source   source.xsd

Code   http://www.omg.org/spec/KDM/20160201/code  code.xsd

Action  http://www.omg.org/spec/KDM/20160201/action   action.xsd
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        1



KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms, and 
programming languages. Not all of its capabilities are equally applicable to all platforms, applications, or programming 
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate 
cooperation between tool suppliers to integrate multiple facts about a complex enterprise application, as the complexity 
of modern enterprise applications involves multiple platform technologies and programming languages. In order to 
achieve interoperability and integration of information about different facets of an enterprise application from multiple 
analysis tools, this specification defines several compliance levels thereby increasing the likelihood that two or more 
compliant tools will support the same or compatible meta-model subsets. KDM follows the principle of separation of 
concerns to allow selection of only those parts of the meta-model that are of direct interest to a particular tool vendor. 
Separation of concerns in the design of KDM is embodied in the concept of KDM domains.

2.1 KDM Domains
Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to 
Figure 2.1). Each KDM domain defines an architectural viewpoint. The viewpoint language for the domain is defined by 
the corresponding KDM package that defines meta-model elements to represent particular facts of the system under study 
that are essential to the given domain. The meta-model elements defined by all KDM packages constitute the ontology for 
describing existing software systems. For example, the Code and Action package define the viewpoint language for the 
Code domain that represent individual code elements of the system under study, such as variables, procedures and 
statements. The Structure packages defines the viewpoint language for the Structure domain that represents architectural 
elements of  the same system, such as subsystems and components. The Conceptual package corresponds to the Business 
Rules domain and defines the viewpoint language to represent behavioral elements of the same system such as features or 
business rules. KDM formally defines traceability between facts, aggregation and derivation of facts across domains.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Inventory, 
Code, Build, Structure, Data, Business Rules, UI, Event, Platform, and micro KDM.

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the 
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be 
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it 
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge 
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and 
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy 

Platform  http://www.omg.org/spec/KDM/20160201/platform   platform.xsd

UI  http://www.omg.org/spec/KDM/20160201/ui   ui.xsd

Event  http://www.omg.org/spec/KDM/20160201/event   event.xsd

Data  http://www.omg.org/spec/KDM/20160201/data   data.xsd

Structure  http://www.omg.org/spec/KDM/20160201/structure   structure.xsd

Conceptual  http://www.omg.org/spec/KDM/20160201/conceptual  conceptual.xsd

Build  http://www.omg.org/spec/KDM/20160201/build   build.xsd

Table 2.1 XMI namespace URIs for KDM packages

KDM Package   Namespace URI   XSD Schema location
2                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless, 
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as 
explained below.

Figure 2.1 - Domains and levels of KDM compliance

2.2 Compliance Levels
In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance 
levels. There are three KDM compliance levels:

• Level 0 (L0) - This compliance level addresses the Inventory and Code domains and is determined by the following 
KDM packages: Core, kdm, Source, Code, and Action packages. It provides an entry-level of knowledge discovery 
capability. More importantly, it represents a common denominator that can serve as a basis for interoperability between 
different categories of KDM tools.  
To be L0 compliant, a tool shall completely support all meta-model elements within all packages for L0 level.

• Level 1 (L1) - This level addresses the remaining KDM domains and extends the capabilities provided by Level 0. 
Specifically, this level is determined by the following packages: Build, Structure, Data, Conceptual, UI, Event, 
Platform, as well as the set of constraints for the micro KDM domain defined in sub clause 14 “Micro KDM,” and 
Annex A “Semantics of the Micro KDM Action Elements.” These packages are grouped to form above-mentioned 
domains. More importantly, this level represents a layer where tools could be complimentary since their focus would 
be in different areas of concern. 
 
To be L1 compliant for a given KDM domain, a tool shall completely support all meta-model elements defined by the 
corresponding packages and satisfy all semantic constraints specified for the domain.

• Level 2 (L2) - This level is the union of L1 levels for all KDM domains. A tool compliant at the L2 level shall be 
compliant to each domain at L1.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        3



2.2.1 Meaning and Types of Compliance
Compliance to Level 1 (L1) for a certain KDM domain entails full realization of all KDM packages for the corresponding 
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level 
0 (L0)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is 
compliant at a Level 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of 
information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that 
KDM domain at L1 and complete set of concepts defined at L0.

For a given compliance level, a KDM implementation can provide:

• The capability to analyze physical artifacts of existing applications and export their representations based on the XMI 
schema corresponding to the given compliance level.

• The capability to import representations of existing software systems based on the XMI schema corresponding to the 
given compliance level and perform operations suggested by the corresponding packages.

Table 2.2 - Compliance Statements

Compliance Statement

Compliance Level Import-Analysis Import API Export

L0 Compliant tool shall:
- Import KDM models based on 
complete KDM XMI schema into 
existing tool.
- Implement  mapping between KDM 
and existing internal representation of 
the tool.
- Extend operations of existing tool to 
support meta-model elements of KDM 
framework.
- Extend operations of existing tool to 
support meta-model elements of Code 
and Action packages.
- Extend operations of existing tool to 
support  traceability to the physical 
artifacts of the application from Source 
package.

Compliant tool shall:
- Import KDM models based 
on complete KDM XMI 
schema.
- Support KDM API defined 
by the KDM Core package.
- Support KDM framework 
as defined in the  package 
named “kdm.”
- Support KDM API defined 
by the Code and Action 
packages.
- Support traceability to the 
physical artifacts of the 
application as defined in the 
Source package.

Compliant tool shall:
- Provide capability to analyze 
existing artifacts for specified 
programming language or 
multiple languages.
- Generate XMI documents 
corresponding to the KDM XMI 
schema.
- Support KDM framework as 
defined by the  package named 
“kdm.”
- Support Code and Action 
packages.
- Provide traceability back to 
the physical artifacts as 
defined by the Source 
package.

L1 STRUCTURE Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support meta-model elements of the 
Structure package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the Structure 
package.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
architecture components of 
existing application and 
generate KDM Structure model 
according to Structure 
package.
4                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



DATA Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support  meta-model elements of the 
Data package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the Data 
package.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
persistent data components of 
existing application for 
specified database system and 
generate KDM Data model 
according to Data package.

PLATFORM Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support meta-model elements of the 
Platform package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the Platform and 
Runtime packages.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
platform artifacts for specified 
platform and generate KDM 
Platform model according to 
Platform package.

BUILD Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support meta-model elements of the 
Build package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the Build 
package.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
build artifacts for specified 
build environment and 
generate KDM Build model 
according to Build package.

UI Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support  meta-model elements of the 
UI package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the UI package.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
user interface artifacts for 
specified user interface system 
and generate KDM UI model 
according to UI package.

EVENT Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support  meta-model elements of the 
Event package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the  Event 
package.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze  
artifacts related to event-driven 
runtime frameworks and state-
transition behavior and 
generate KDM Event model 
according to Event package.

BUSINESS Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support meta-model elements of the 
Conceptual package.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by the Conceptual 
package.

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
conceptual and behavior 
artifacts (e.g., domain 
concepts, business rules, 
scenarios) of existing 
application and generate KDM 
Conceptual model according to 
Conceptual package.

Table 2.2 - Compliance Statements
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        5



3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to or revisions of any of these publications do not apply. 

NOTE:KDM14-56

• ISO/IEC 19505-1:2012 “Information technology - Object Management Group Unified Modeling Language (OMG 
UML), Infrastructure” (OMG Unified Modeling Language (OMG UML), Infrastructure http:// www.omg.org/spec/
UML/2.4.1/Infrastructure) http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/)

• ISO/IEC 19508:2014, “Information technology - Object Management Group Meta Object Facility (MOF) Core” 
(OMG Meta Object Facility (MOF) Specification (Version 2.4.2) - http://www.omg.org/spec/MOF/2.4.2)

• ISO/IEC 19509:2014, “Information technology - Object Management Group XML Metadata Interchange (XMI)” 
(XML Metadata Interchange - http://www.omg.org/spec/XMI/2.4.2)

• ISO/IEC 11404:2007, "Information technology – General-Purpose Datatypes (GPD)"

• Semantics of Business Vocabularies and Business Rules (SBVR) version 1.2 - http://www.omg.org/spec/SBVR/1.2

MICRO KDM Compliant tool shall:
- Demonstrate L0 compliance for 
analysis.
- Extend operations of existing tool to 
support micro KDM actions as 
specified in Chapter 14 micro KDM 
and Annex A.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support micro KDM 
actions as specified in 
Chapter 14 micro KDM and 
Annex A. 

Compliant tool shall:
- Demonstrate L0 compliance 
for export.
- Provide capability to analyze 
artifacts of existing application  
to the level of detail specified in 
Chapter 14 and Annex A  
provide the mapping of 
semantics of the existing 
application as it is determined 
by the programming languages 
and the runtime platform into 
KDM micro actions and 
generate KDM models that 
represent the same meaning.

L2 Compliant tool shall:
- Demonstrate L0 import compliance 
for analysis.
- Demonstrate L1 import-analysis 
compliance for all KDM domains.

Compliant tool shall:
- Demonstrate L0 
compliance for import.
- Support KDM API as 
defined by all KDM 
packages.

Compliant tool shall:
- Demonstrate L0 export 
compliance.
- Demonstrate L1 export 
compliance for all KDM 
domains.

Table 2.2 - Compliance Statements
6                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



4 Terms and Definitions

This subclause contains only those terms which are used in a specialized way throughout the KDM specification. The 
majority of terms in KDM are used either according to their accepted dictionary definitions or according to commonly 
accepted definitions that may be found in ISO glossaries or other well-known collections of software engineering terms. 
Some combinations of common terms used in KDM, while not meriting glossary definition, are explained for clarity in 
the context where they are used. 

Abstraction: A view of an object that focuses on the information relevant to a particular purpose and ignores the 
remainder of the information. 

Aggregation: a derived relationship between two elements that are groups of other elements that represents all individual 
relationships between the grouped elements of the two groups.

Architecture-Driven Modernization (ADM): ADM is the process of understanding and evolving existing software 
assets of a system of interest. ADM focuses at collecting, sharing, utilizing, transforming, presenting, maintaining, and 
storing models of the architectural aspects of existing systems. ADM does not preclude source-to-source migrations 
(where appropriate), but encourages user organizations to consider modernization from an analysis and design 
perspective. In doing so, project teams ensure that obsolete concepts or designs are not propagated into modern languages 
and platforms. 

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the 
final product provides. 

Build process:  a process of transforming of project code base into usable applications. The end result of a software build 
is a collection of files that constitute a product in a distributable package. In this case, package can mean a standalone 
application, Web service, compact disc, hotfix, or bug fix. Each step of a build process is a transformation performed by 
software running on a general purpose computer. A simple software build may involve compiling a single source code file 
into an executable code. A complex software build may involve orchestrating hundreds of versions of thousands of files 
with millions of lines of source code such that a correct executable code results from the compilation. The implementation 
of a system also involves deploying the build onto the system nodes, and applying appropriate configuration settings.

Component: a functionally or logically distinct part of a system. A component may be hardware or software and may be 
subdivided into other components. Often a component is a physical, replaceable part of a system that packages 
implementation and provides the realization of a set of interfaces. Such component represents a physical piece of 
implementation of a system, including software code (source, binary or executable) or equivalents such as scripts or 
command files.

Container: a model element that owns one or more distinct elements through the special “owns” (“contains”) 
relationships between the container element and owned elements. “Containment” relationships form a special group of the 
corresponding owned elements. No element has more than one container.

Domain: An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners 
in that area.

Element:  one of the parts of a compound or complex whole. For example, a model element, a meta-model element.

Group: a number of model elements regarded as a unit formed by traceability relationships to a single distinct element. 
An element may be part of multiple groups, including a single group formed by the “containment” relationships between 
a container and its owned elements. An element is said to group together one or more elements, if these elements have 
traceability relationships to the element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        7



Hierarchy:  an arrangement of model elements according to traceability relationships, where an element that “owns” or 
“group” other elements is considered at a higher level than the owned (grouped) elements.  

Interface: (1) a shared boundary or connection between two dissimilar objects, devices or systems through which 
information is passed. The connection can be either physical or logical. (2) a named set of operations that characterize the 
behavior of an entity.

Item: that which can be individually described or considered. See also Component, Element, Unit, Module.

KDM Entity: a meta-model element (as well as the corresponding model elements) that represents a thing of significance 
of the system of interest, about which information needs to be known or held. A KDM entity is an abstraction of some 
element of the system of interest that has a distinct, separate existence objective or conceptual reality, a self-contained 
piece of data that can be referenced as a unit. As a model element each KDM entity is an instance of some specific meta-
model element and it usually the endpoint of distinct KDM relationships.

KDM instance: a collection of KDM model elements that represent one or more views of the system of interest.

KDM model: a meta-model element (as well as the corresponding model elements) that is a container for a KDM view

KDM Relationship: a meta-model element (as well as the corresponding model elements) that represents some semantic 
association between elements of the system of interest. All KDM relationships are binary. As a model element each KDM 
relationship is an instance of some specific meta-model element.

Meta-model: A special kind of model that specifies the abstract syntax of a modeling language. The typical role of a 
metamodel is to define the semantics for how model elements in a model get instantiated. A model typically contains 
model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel elements. 

Meta-model element: an element of a meta-model from which model elements are instantiated.

Model: A model represents a system of interest, from the perspective of a related set of concerns. The model is related to 
the system by an explicit or implicit isomorphism. Models are instances of MOF meta-models and therefore consist of 
model elements and links between them.

Model element: instance of a meta-model element

Module: (1) A program unit that is discrete and identifiable with respect to compiling, combining with other units, and 
loading; for example, the input to, or output from, an assembler, compiler, linkage editor, or executive routine. (2) A 
logically separable part of a program. 

Resource: any physical or virtual component of limited availability within a computer system available for a given 
purpose and managed by the runtime platform.

Runtime platform: the set of hardware and software components that implement the services utilized by the application 
software. A runtime system generally controls how several tasks are scheduled to run, and manages resources. Its 
provisions for the programmer typically form an Application Programming Interface- a set the well-documented ways of 
using the system. 

Segment:  A collection of data that corresponds to one or more coherent views of a system of interest that is stored or 
transferred as a unit. 

Software artifact: A software artifact is a tangible machine-readable document created during software development. 
Examples are requirement specification documents, design documents, source code and executables.
8                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Software asset: A software asset is a description of a partial solution (such as a component or design document) or 
knowledge (such as requirements database or test procedures) that engineers use to build or modify software products. A 
software asset is a set of one or more related artifacts that have been created or harvested for the purpose of applying that 
asset repeatedly in subsequent contexts. The asset consumer is an architect or a designer of any type of IT or business 
process solutions from solution business modeling, analysis (assets used are models) and design to application 
development (assets used are pieces of code).

Traceability: The degree to which a relationship can be established between two or more products of the development 
process, especially products having a predecessor-successor or master-subordinate relationship to one another; for 
example, the degree to which the requirements and design of a given software component match.

Unit : (1) a piece or an integrated assembly of parts serving to perform one particular function (2) A software element 
that is not subdivided into other elements. 

User interface: An interface that enables information to be passed between a human user and hardware or software 
components of a computer system.

View: A representation of a whole system from the perspective of a related set of concerns. 

Viewpoint: A specification of the conventions for constructing and using a view. A pattern or template from which to 
develop individual views by establishing the purposes and audience for a view and the techniques for its creation and 
analysis. 

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 Changes to Other OMG Specifications
There are no changes to other OMG specifications.

6.2 How to Read this Specification
The rest of this document contains the technical content of this specification. 

Chapter 7. Specification overview - Provides design rationale for the KDM specification

Chapter 8. KDM - Gives the overview of the packages of KDM

Subpart I - Infrastructure Layer

Chapter 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM 
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling 
services to other classes, and define fundamental constraints.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        9



Chapter 10. Package named “kdm” - Describes the key infrastructure elements that determine patterns for constructing 
KDM models and integrating them. This package defines several static elements that are shared by all KDM instances. 
This package determines the queries against KDM instances.

Chapter 11. Source package - Describes meta-model elements that provide traceability from KDM facts to the original 
representation of the physical artifact (for example, source code).

Subpart II - Program Elements Layer

Chapter 12. Code package - Describes meta-model elements that capture programming artifacts as provided by 
programming languages, such as data types, procedures, macros, prototypes, templates, etc. 

Chapter 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package 
defines detailed endpoints for most KDM relations. The key element related to behavior is a KDM action. Other packages 
depend on the Action package to use actions in further modeling aspects of existing applications such as features, 
scenarios, business rules, etc.

Chapter 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.

Subpart III - Runtime Resources Layer

Chapter 15. Platform package - Describes the meta-model elements that represent operating environments of existing 
software systems. Application code is not self-contained, as it depends not only on the selected programming language, 
but also on the selected Runtime platform. Platform elements determine the execution context for the application. 
Platform package provides meta-model elements to address the following:

• Resources that Runtime platforms provide to components

• Services that are provided by the platform to manage the life-cycle of each resource

• Control-flow between components as it is determined by the platform

• Error handling across application components

• Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the 
Runtime package further addresses the physical aspects of operating environments, such as deployment.

Chapter 16. UI package - Describes the meta-model elements that represent knowledge related to user interfaces, 
including their logical composition, sequence of operations, etc.

Chapter 17. Event package - Describes meta-model elements that represent basic elements related to behavior of 
applications in terms of states, transitions between states, events, messages and responses.

Chapter 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of 
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Subpart IV - Abstractions Layer

Chapter 19. Structure package - Describes the meta-model elements that represent the logical organization of the software 
system in terms of logical subsystems, architectural layers, components and packages.

Chapter 20. Conceptual package - Describes the meta-model elements that represent facts related to the business domain  
of the existing system and provide traceability to other KDM facts.
10                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Chapter 21. Build package - Describes the meta-model elements that represent the facts related to the build process of  the 
software system (including but not limited to the engineering transformations of the “source code” to “executables”).

6.2.1 Diagram format

NOTE:KDM14-289

UML class diagrams in this specification are used to mechanically produce the Meta-Object Facility (MOF) definition of 
KDM, and the corresponding KDM XMI schema. The following conventions are adopted for all class diagrams 
throughout this specification:

• An association with one end marked by a navigability arrow means that:

• the association is navigable in the direction of that end,

• the marked association end is owned by the classifier, and

• the opposite (unmarked) association end is owned by the association.

• An association with neither end marked by navigability arrows means that: 

• the association is navigable in both directions, 

• each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association). 

• additionally, properties “owner,” “group,” and “model” are automatically renamed to ownerProperty, 
groupProperty, and modelProperty respectively.

• Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the 
association ends to which they apply. Thus:

• the constraint {subsets endA} means that the association end to which this constraint is applied is a specialization 
of association end endA that is part of the association being specialized.

• a constraint {redefines endA} means that the association end to which this constraint is applied redefines the 
association end endA that is part of the association being specialized.

• Derived union is indicated by placing constraint {union} in the proximity of the association end to which it applies. 
The corresponding association endpoint is marked as derived and read only.

• If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached, 
modified such that the first letter is a lowercase letter. In addition, if the name of the class to which the end is attached 
starts has a meaningful prefix of uppercase letters, for example XMLxxxx, KDMxxx, UIxxxx, the entire uppercase 
prefix is modified to become lowercase. For example, the above words become xmlxxxx, kdmxxx, uixxxx. By 
convention, association ends that are owned by the association are also considered non-navigable and are often left 
unlabeled since, in general, there is no need to refer to them explicitly either in the text or in formal constraints - 
although there may be needed for other purposes, such as MOF language bindings that use the metamodel.

• unlabeled association ends attached to the class KDM Entity that correspond to KDM Relationships are 
additionally prefixed with “in” or “out” according to the direction of the relationship. The corresponding properties 
at the KDM Relationship class side are “to” and “from.” For example, association ends for the ActionElement 
class corresponding to the associations to ControlFlow class are named “inControlFlow” (the counterpart of the 
“to” endpoint from the ControlFlow side) and “outControlFlow” (the counterpart of the “from” endpoint from the 
ControlFlow side).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        11



• KDM specification explicitly defines several operations that correspond to navigable derived association ends where 
the corresponding association end is owned by the class. These operations constitute the high-level interface to KDM 
models. Such operations are redundant from the MOF perspective as they are already implied by the derived 
properties. A specialized, non-derived version of the corresponding property is provided through the mechanism of 
association specialization and redefinition. 

• Associations that are not explicitly named, are given names that are constructed according to the following production 
rule: 

“A_” <class-name1> “_” <association-end-name2>

 where <class-name1> is the name of the class that owns the first association end and <association-end-name2> 
 is the name of the second association end.

NOTE:KDM14-12

• Classes marked with a stereotype “<<enumeration>>” represent MOF enumerations

NOTE:KDM14-302

• Classes marked with a stereotype “<<dataType>> represent MOF DataType elements
12                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



7 Specification Overview

This specification defines a meta-model for representing information related to existing software, its elements,  
associations, and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and 
modernization tools, services, and their respective models. More specifically, (KDM) defines a common ontology and an 
interchange format that facilitates the exchange of data currently contained within individual tool models that represent 
existing software. The meta-model represents the physical and logical elements of software as well as their relationships 
at various levels of abstraction.

KDM groups facts about existing systems into several domains each of which corresponds to an ISO 42010 architectural 
viewpoint. Each KDM domain is represented by one or more KDM packages which formalize the viewpoint language for 
the domain. KDM focuses at the entities and their relationships that are essential for the given domain. A KDM 
representation of a given software system - a KDM instance - is a collection of facts about that system. These facts are 
organized into KDM models per each domain. KDM model corresponds to an ISO 42010 architectural view. KDM facts 
are further organized into meaningful groups called segments. A KDM segment may include one or more architectural 
views of the given system. KDM instances may be part of the complete architectural description of the system, as defined 
by ISO 42010, in which case additional  requirements of ISO 42010 shall be satisfied by the overall document. KDM 
instances are represented as XML documents conforming to the KDM XMI schema. 

Figure 7.1 - Layers, packages, and separation of concerns in KDM

KDM specification is organized into the following 4 layers:

• Infrastructure Layer

• Program Elements Layer

• Runtime Resource Layer
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        13



• Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to 
represent a certain independent facet of knowledge related to existing software systems. 

Logically, KDM consists of 9 models. Each KDM model is described by one or more KDM packages and corresponds to 
one KDM domain. Most KDM domains are defined by a single package, with the exception of the Code domain, which 
is split between the Code and the Action packages. 

The Infrastructure Layer consists of the following 3 packages: Core, “kdm”, and Source. Core package and the package 
named “kdm” do not describe separate KDM models. Instead these packages define common meta-model elements that 
constitute the infrastructure for other packages. The Source package defines the Inventory model, which enumerates the 
artifacts of the existing software system and defines the mechanism of traceability links between the KDM elements and 
their original representation in the “source code” of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code 
model that represents the implementation level assets of the existing software system, determined by the programming 
languages used in the developments of the existing software system. The Code package focuses on the named items from 
the “source code” and several basic structural relationships between them. The Action package focuses on behavior 
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM 
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software 
systems.

The Runtime Resources Layer consists of the following 4 packages: Platform, UI, Event, and Data. 

The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human 
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to 
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information: 
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code 
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files. 
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is 
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve 
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent 
level); the understanding of the application functionality and design (language-independent level); understanding of 
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications 
behavior (business level). 

The following are key design characteristics of KDM:

NOTE:KDM14-32

• KDM is a Meta-Object Facility (MOF) model.

• KDM defines an ontology for describing existing software systems. The ontology defined by KDM is related to the 
elements of existing software systems,  the relationships between these elements, as well as the elements of the 
operational environment of the software system. KDM ontology addresses both physical elements (for example, a 
procedure, a variable, a table), which are originally represented by language-specific artifacts of the software (for 
example source code), as well as logical elements (for example, user interface elements, concepts that are implemented 
by the software, architectural components of the software, such as layers, etc.).
14                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



• KDM defines a set of concepts that can be used, for example, as the foundation of a pattern language; and KDM 
defines a schema for representing facts about specific existing software systems

• KDM is designed in such a way that KDM facts can be represented as W3C Resource Description Framework (RDF) 
triples

• KDM can be extended to represent language-specific, application-specific, and implementation-specific entities and 
relationships.

• KDM models extensively use containment relationship: it is possible to group several entities into a typed container, 
that will further on represent the entire collection of grouped entities via aggregated relationships. KDM defines 
multiple hierarchies of entities via containers and groups.

• KDM provides model refactoring capabilities, for example, a KDM tool can support moving entities between 
containers and map changes in the model to changes in the code through traceability links.

• KDM is aligned with ISO/IEC 11404 General-Purpose Datatypes and OMG Semantics of Business Vocabularies and 
Business Rules (SBVR).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        15



16                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



8 KDM

8.1 Overview
KDM specifies a comprehensive set of common concepts required for understanding existing software systems in 
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of 
domain-specific, application-specific, or implementation-specific knowledge. 

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

Figure 8.1 - Structure of KDM Packages

The KDM specification contains 12 packages; each package is defined by one or more class diagrams.

The Core  package defines the basic meta-elements (entity, relationship, container hierarchies, etc.) and well-formedness 
rules of KDM models.

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging 
packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each  
package depends on the Core package. The nature of this dependency is that the meta-model elements defined by each 
package are subclasses of one of the meta-model elements defined in the Core package. Also, each package depends on 
the package with name “kdm.” Each KDM package above the package with name “kdm” in Figure 8.1 defines a KDM 
model, which corresponds to a certain facet of knowledge about an existing software system. The package with name 
“kdm” provides the infrastructure for all KDM models. The nature of the dependency on the package with name “kdm” is 
as follows. First, each package defines a subclass of the KDMModel class, defined in that package. Second, each package 
provides several concrete classes that are instantiated in each KDM instance as part of the infrastructure. Third, the 
package with name “kdm” defines several important mechanisms that are used by all KDM models: the annotation 
mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The corresponding 
meta-model elements can be instantiated by any KDM model.

Core

Data

Code Action

Structure

UI

BuildConceptual

Platform

Source

meta-model

Primitives, explicit, 
automatically extracted

Higher-level, implicit,  
experts, analysts

Event

kdmframework
Infrastructure
Layer

Program
Elements
Layer

Runtime
Resource
Layer

Abstractions
Layer

Core

Data

Code Action

Structure

UI

BuildConceptual

Platform

Source

meta-model

Primitives, explicit, 
automatically extracted

Higher-level, implicit,  
experts, analysts

Event

kdmframework
Infrastructure
Layer

Program
Elements
Layer

Runtime
Resource
Layer

Abstractions
Layer
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        17



The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive 
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original 
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge 
automatically, for example by implementing a bridge to an existing software development environment. Such bridge 
provides a mapping from the programming language (or languages) used for the development of the existing software 
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM 
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces 
of this knowledge are implicitly represented by the original source code of the software system and the corresponding 
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the 
programming language (or languages) used for the development of the existing software system, but by the corresponding 
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly 
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping 
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further 
analyzed and transformed by various KDM tools.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the 
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge 
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of 
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM instance is a single, integrated representation of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages
KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and 
relations. The KDM has the following organization:

• The Core package defines the basic abstractions of KDM.

• The  package with name “kdm” provides shared context for all KDM models.

• The Source package defines meta-model elements that represent the inventory of the physical artifacts of the existing 
software system and defines the key traceability mechanism of KDM - how KDM facts references back to their 
original representation in the artifacts of the software system (for example, source code).

• The Code package defines meta-model elements that represent the low-level building blocks of software, such as  
procedures, datatypes, classes,  variables, etc. (as determined by a programming language).

• Action package defines meta-model elements that represent statements as the end points of relations, and the majority 
of low-level KDM relations.

• Platform package defines meta-model elements that represent the run time resources used by the software system, as 
well as relationships determined by the run-time platform.

• UI package defines the meta-model elements that represent the user-interface aspects of the software system.

• Event package defines meta-model elements that represent event-driven aspects of the software system, such as events, 
states, state transitions, as well as relationships determined by the event-driven semantics of the run-time framework.

• Data package defines meta-model elements that represent persistent data aspects of the software system.
18                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



• Structure package defines meta-model elements that represent  architectural components of existing software systems, 
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same 
system.

• Conceptual package defines meta-model elements that represent the domain-specific elements of the software system.

• Build package defines meta-model elements that represent the artifacts related to the build process of the software 
system (including but not limited to the engineering transformations of the “source code” to “executables”).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        19



20                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Subpart I - Infrastructure Layer

NOTE:KDM14-30

KDM is a large specification, since it provides a vocabulary and an intermediate representation for several facets of 
knowledge about existing enterprise software systems. In order to manage the complexity of KDM, a small set of 
concepts was selected and systematically used throughout the entire specification. These concepts are defined in the so-
called Infrastructure Layer. It consists of the following 3 packages: 

• Core

• kdm

• Source

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package 
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the classes defined in the Core package. The two fundamental classes of the Core 
package are KDMEntity and KDMRelationship. An entity is a thing of significance, about which information needs to be 
known or held. A KDM entity is an abstraction of some element of an existing software system, that has a distinct, 
separate existence, a self-contained piece of data that can be referenced as a unit. Each KDM package defines several 
meta-model elements that represent specific entities for a particular KDM domain. 

A relationship represents an association, linkage, or connection between entities that describes their interaction, the 
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic 
association between elements of an existing software system. Each KDM package defines several meta-model elements 
that represent specific relationships for a particular KDM domain. Such relationships are called “explicit” relations. All 
KDM relationships are binary.

KDM defines several built-in relationships, most notably:

• containment

• grouping

These built-in relations allow defining some KDM entitites as  containers for other entities. There is a special container 
ownership (containment) relationship between a container and the entities that are directly owned by this container. Some 
KDM entities are groups of other KDM entities. There is a special group association (grouping) relationship between the 
group and the entities that are directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special 
relationships of containment and grouping and explicit relations.

Core package defines a high-level reflective interface to KDM models. Other KDM packages extend this interface by 
specific operations, corresponding to specific facets of knowledge about existing software systems.

The Core package is aligned with the OMG SBVR specification, as KDM provides an abstraction of software systems in 
the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between KDM 
entities). The largest part of the KDM specification is a definition of a language- and platform-independent vocabulary for 
describing software systems. SBVR statements and rules can be written using this vocabulary to formally describe 
properties of software systems as common standard-based content.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        21



The package named “kdm” defines several elements that together constitute the framework of each KDM instance. The 
framework determines the physical structure of a KDM representation. The elements of the framework are present in 
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM 
instance consists of one or more Segments, where each Segment may own several KDM models (KDM facts, views of a 
particular software system). Each KDM package defines some specific collection of meta-model elements, which 
addresses a certain specific facet of knowledge about existing software systems (a KDM domain, an architectural 
viewpoint). Individual KDM implementations may support one or more selected KDM domains, as defined in the KDM 
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about 
the existing software system and integrate them into a single coherent representation. Further, KDM design facilitates 
incremental implementations, where certain pieces of knowledge about the existing software are produced by analyzing 
more basic KDM facts. According to this approach certain KDM tools may perform a “KDM enrichment” process, a 
“KDM to KDM transformation,” where a tool analyzes the input KDM model and produces one or more additional 
Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system 
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their 
“original” language-dependent representation in the source code of the existing software system, for which the KDM 
views are created. This is an important part of the KDM Infrastructure, because other KDM packages use this mechanism 
to refer to the source code and the physical artifacts of the existing software system.
22                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



9 Core Package

NOTE:KDM14-58, KDM14-233

9.1 Overview
The Core package provides basic constructs for creating and describing meta-model classes in all specific KDM packages. 
Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and 
determine the high-level interface to KDM models.

9.2 Organization of the Core Package

NOTE:KDM14-58

The KDM specification uses packages to manage complexity and bring together logically interrelated classes. The Core 
package defines a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints 
implemented by all other KDM packages.

The Core package consists of the following five class diagrams:

• Elements

• CoreEntities

• CoreRelations

• AggregatedRelations 

• Datatypes 

The Core package depends on no other packages.

9.3 Elements Class Diagram

NOTE:KDM14-58, KDM14-233

The Elements class diagram describes the top level abstract classes that identify the main categories of elements in KDM. The 
classes and associations of the Elements class diagram are shown in Figure 9.1
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        23



Figure 9.1 - CoreEntities Class Diagram

9.3.1 Element Class (abstract)

NOTE:KDM14-58 (moved here)

An Element is an atomic constituent of a model. The Element class is the top meta-element in the KDM class hierarchy. 
Element is an abstract meta-model element.

Semantics

Element is the common parent from all meta-model elements of KDM.

9.3.2 AnnotatableElement Class (abstract)

NOTE:KDM14-58, KDM14-233

Some elements of KDM can be annotated with AnnotationElements. Annotations supply additional information to a 
particular KDM element. The particular annotations are represented as subclasses of AnnotationElement and are 
described in the package named “kdm”. The  AnnotatableElement is one of the abstract top meta-elements in the KDM 
class hierarchy. Its purpose is to represent KDM elements that can annotated and to distinguish them from the 
AnnotationElement. The key subclass of AnnotatableElement is ExtendableElement. 

Superclass

Element

Semantics

AnnotatableElement represents the subclasses of Element can own  annotations and user-defined attributes through 
mechanisms defined in the package name “kdm”.
24                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



9.3.3 AnnotationElement Class (abstract)

NOTE:KDM14-58, KDM14-233

AnnotationElement represents various annotations to AnnotatableElements. The  AnnotationElement class is one of the 
abstract top meta-elements in the KDM class hierarchy. Its purpose is to represent utility KDM elements that describe 
annotations to other KDM elements, and that themselves can not be annotated. The concrete subclasses to 
AnnotationElement are provided in the package named “kdm”.

Superclass

Element

Semantics

AnnotationElement represents various annotations that can be owned by AnnotatableElement. Concrete subclasses of 
AnnotationElement are defiend in the package named “kdm”.

9.3.4 ExtendableElement Class (abstract)

NOTE:KDM14-58, KDM14-233

Some KDM elements can be extended through the light-weight extension mechanism. Extensions introduce new 
“extended” meta-model classes that represent specialized subsets within the extent of their base KDM element. Extended 
elements can have new properties. Extensions are represented by the subclasses of the ExtensionElement class, and are 
described in the package named “kdm”. The  ExtendableElement is one of the abstract top meta-elements in the KDM 
class hierarchy.  Its purpose is to represent the KDM elements that can be extended and to distinguish them from the 
ExtensionElement. The key subclass of ExtendableElement is ModelElement.

Superclass

AnnotatableElement

Semantics

ExtendableElement describes the subclasses of Element can be extended through the light-weight extension mechanism 
defined in the package named “kdm”.

9.3.5 ExtensionElement Class (abstract)

NOTE:KDM14-58, KDM14-233

ExtensionElement represents various elements that provide the light-weight extension mechanism of KDM. 
ExtensionElement is one of the abstract top meta-elements in the KDM class hierarchy.  Its purpose is to represent the 
elements that are part of the light-weight extension mechanism and that themselves cannot be extended (but can be 
annotated using the AnnotationElement). The concrete subclasses of ExtensionElement are described in the package 
named “kdm”.

Superclass

AnnotatableElement
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        25



Semantics

ExtensionElement describes the subclasses of Element that are parts of the light-weight extension mechanism to KDM. 
Concrete subclasses of ExtensionElement are defiend in the package named “kdm”.

9.3.6 ModelElement Class (abstract)

NOTE:KDM14-58, KDM14-233 (moved to here)

A ModelElement is an element that represents some aspect of the existing system. The ModelElement is one of the 
abstract top meta-model elements in the KDM class hierarchy. The key subclasses of ModelElement are KDMEntity and 
KDMRelationship. Most of the meta-model elements in KDM are subclasses of either KDMEntity or KDMRelationship. 
Another important subclass of ModelElement is FrameworkElement defined in the package named “kdm”.

A ModelElement can be extended through the lightweight extension mechanism.

Superclass

ExtendableElement

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software 
system. The subclasses of Element that are not the subclasses of the ModelElement class are the auxiliary elements of the 
Infrastructure Layer.

Each subclass of the ModelElement meta-model element can be extended through the light-weight extension mechanism 
defined in the package named “kdm.”

9.4 CoreEntities Class Diagram

NOTE:KDM14-58

The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the 
CoreEntities class diagram are shown in Figure 9.2. 
26                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 9.2 - CoreEntities Class Diagram

9.4.1 KDMEntity Class (abstract)

NOTE:KDM14-235, KDM14-289

A KDMEntity is a named model element that represents an artifact of existing software systems.

In the meta-model, KDMEntity is a subclass of ModelElement. Each KDM package defines specific KDM entities that 
are direct or indirect subclasses of KDMEntity. A KDMEntity can be an atomic element, a container for some 
KDMEntities, and/or a group of some KDMEntities. Container and group introduce built-in relationships between entities 
and are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a 
KDMEntity with which other entities are associated. A KDMEntity can be owned by at most one container, and can be 
associated with zero or many groups.

Superclass

ModelElement

Attributes

Associations

name: String An identifier for the KDM entity.

/ owner:KDMEntity[0..1] KDM entity  that owns the current element. This property determines a high-level interface 
to KDM entities. This property is a derived union. Some KDM entities define a concrete set 
of owned elements that are subtypes of KDMEntity. In KDM this is represented by the 
CMOF “derived union” mechanism. Concrete properties subset the “union” properties of the 
parent classes, defined in the Core package. The owner of a KDM entity is defined as the 
container for which the given entity is an owned entity.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        27



Constraints

1. KDMEntity should not reference self as groupedElement.

Operations

Semantics

An entity is a thing of significance, about which information needs to be known or held. A KDM entity is an abstraction 
of some element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that 
can be referenced as a unit. Each KDM package defines several meta-model elements that represent specific entities for a 
particular KDM domain. Specific subclasses of KDMEntity constitute the noun terms of the vocabulary defined by KDM. 
Each KDM package defines a viewpoint language, consisting of noun terms represented as  subclasses of KDMEntity, and 
verb terms represented as subclasses of KDMRelationship.

/ group:KDMEntity[0..*] Set of KDM entities with which the current element has a group association. This property 
determines a high-level interface to KDM entities. This property is a derived union. Some 
KDM entities define a concrete set of grouped elements that are the subtypes of KDMEntity. 
In KDM this is represented by the CMOF “derived union” mechanism. Concrete properties 
subset the “union” properties of the parent classes, defined in the Core package. The group 
of a KDM entity is defined as the element for which the given entity is a grouped entity. 
Each KDM entity can be associated with multiple groups.

/ ownedElement[0..*] Set of KDM elements that are owned by the current element. This property determines a 
high-level interface to KDM entities. This property is a derived union. Some KDM entities 
define a concrete set of owned elements that are subtypes of KDMEntity. In KDM this is 
represented by the CMOF “derived union” mechanism. Concrete properties subset the 
“union” properties of the parent classes, defined in the Core package. 

/ groupedElement[0..*] Set of KDM elements that have a group association with the current element. This property 
determines a high-level interface to KDM entities. This property is a derived union. Some 
KDM entities define a concrete set of grouped elements that are the subtypes of KDMEntity. 
In KDM this is represented by the CMOF “derived union” mechanism. Concrete properties 
subset the “union” properties of the parent classes, defined in the Core package. 

getOwner(): KDMEntity[0..1] This operation returns the KDM entity that is the owner of the current KDM 
Entity. The owner entity is a KDM container. There can be at most one owner 
for each given entity. 

getOwnedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current 
KDM Entity. Only KDM containers can own other entities.

getGroup():KDMEntity[0..*] This operation returns the set of KDM Entities that have a group association 
to the current KDM Entity. The group entity is a KDM group. Unlike KDM 
containers, there may be many groups that have an association to a given 
entity.

getGroupedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are “grouped” by the 
current KDM entity. Only KDM groups can have group associations to other 
entities.
28                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Derived association ends owner, ownedElement, group, groupedElement are owned by the class. Explicit operations are 
defined for navigation as part of the high-level interface to KDM models. Individual KDM packages define subtypes of 
KDMEntity with specific subtypes of allowed owner, group, groupedElement and ownedElement in each package. 

9.5 CoreRelations Class Diagram

NOTE:KDM14-30, KDM14-289

The CoreRelations class diagram defines the key associations of KDM models, called “explicit relations” between KDM 
entities. The classes and associations of the CoreRelations class diagram are shown in Figure 9.3.

Figure 9.3 - CoreRelations Class Diagram

9.5.1 KDMRelationship Class (abstract)

NOTE:KDM14-30, KDM14-235, KDM14-289

A KDMRelationship is a model element that represents semantic association between two entities.

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM 
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are 
typed associations between some specific subclasses of KDMEntity.

Superclass

ModelElement
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        29



Associations

Operations

Semantics

KDMRelationship is an abstract meta-model element. Concrete relationships between KDM entities in KDM views are 
instances of concrete subclasses of KDMRelationship. Each instance of KDMRelationship has exactly one target and 
exactly one origin. Each concrete subclass of KDMRelationship defines the acceptable types of its endpoints. 

Each KDM package defines a viewpoint language, consisting of noun terms represented as  subclasses KDMEntity, and 
verb terms represented as  subclasses of KDMRelationship. Relations defined as subclasses of KDMRelationship are 
"explicit" and consitute the majority of the vocabulary defined by KDM. Explicit relations can be mapped to RDF triples. 
KDM also includes several "built-in" relations, such as "ownedElement" and "groupedElement" defined at the 
CoreEntities class diagram and several others. KDM "built-in" relations as well as attributes of KDMEntities can be also 
mapped to RDF triples. The key difference between explicit and built-in relations is how they are used in the Aggregated 
Relations mechanism. Only explicit relations can be aggregated. On the other hand, the Aggregated Relations mechanism 
uses “ownedElement” and “groupedElement” built-in relations to define aggregations. Other built-in relations cannot be 
aggregated and always remain as associations between the original endpoints. 

Derived association ends  to and from are owned by the class. They are redefined in individual KDM Models. Explicit 
operations getTo and getFrom are defined for navigation as part of the high-level  interface to KDM models. Individual 
KDM packages define specific subtypes of KDMRelationship where the endpoints are specific subtypes of KDMEntity in 
each package. 

9.5.2 KDMEntity (additional properties)

NOTE:KDM14-235, KDM14-289

/ to: KDMEntity[1] The target entity (also referred to as the to-endpoint of the relationship). This property determines 
a high-level interface to KDM relationships.  Every specific KDM relationship redefines the to-
endpoint to a particular subtype of KDMEntity. In KDM this is represented by the CMOF 
“subsets” mechanism. Concrete properties redefine the properties of the parent classes, defined in 
the Core package.

/ from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property 
determines a high-level interface to KDM relationships. Every specific KDM relationship 
redefines the from-endpoint to a particular subtype of KDMEntity. In KDM this is represented by 
the CMOF “subsets” mechanism. Concrete properties redefine the  properties of the parent 
classes, defined in the Core package.

getTo(): KDMEntity[1] This operation returns the KDM entity that is the to-endpoint (the target) of the current 
relationship. 

getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the 
current relationship.
30                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Operations

Constraints

1. The set of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the 
from-property is the given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the 
ownedRelation association is required to manage relationship elements. KDM relationships are owned by the entity, 
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association 
class with to- and from- properties.

Derived association ends  inbound, outbound are owned by the associations. Derived association end ownedRelation is 
owned by the class. Explicit operations are defined for navigation as part of the high-level interface to KDM models. 
Individual KDM packages define subtypes of KDMRelationship which determine allows inbound, outbound and 
ownedRelation for specific subtypes of KDMEntity in each package. 

9.6 AggregatedRelations Class Diagram

NOTE:KDM14-214, KDM14-235, KDM14-289

The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part 
of the high-level interface to KDM models, along with interfaces defined by KDMEntity and KDMRelationship classes. 

The lifecycle of Aggregated Relationships is managed by the operations of the KDMEntity class. AggregatedRelations are 
owned by a KDMEntity class that is the from-endpoint of the aggregated relation, similar to explicit KDM relations.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.4.

/ ownedRelation: KDMRelationship[0..*] Set of explicit KDM relationships that originate from the current entity.

/ inbound: KDMRelationship[0..*] Set of explicit KDM relationships that have the current entity as their 
target.

/ outbound:KDMRelationship[0..*] Set of explicit KDM relationships that originate from the current entity.

getInbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current 
KDMEntity is the to-endpoint of these relations.

getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current 
KDMEntity is the from-endpoint of these relationships.

getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current 
KDMEntity owns these relationships.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        31



Figure 9.4 - AggregatedRelations Class Diagram

9.6.1 AggregatedRelationship Class

NOTE:KDM14-30, KDM14-235, KDM14-289

The set of AggregatedRelationship elements for a given entity represents all explicit relationships between the entities 
that are transitively owned by the given entity as well as the entity itself. One AggregatedRelationship represents 
collection of individual KDMRelationship elements (and can can be referred to as their aggregate). The aggregation rules 
are defined in the semantics sections. AggregatedRelationship is a concrete class, because an AggregatedRelationship can 
be instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and exchanged too, if necessary). 
KDMEntity class defines operations for managing the lifecycle of owned AggregatedRelationships.

Superclass

ModelElement

Attributes

Associations

/ density:Integer The number of explicit relationships in the aggregated set. This property is derived.

relation:KDMRelationship[0..*] The set of explicit KDM relationships represented by the aggregated relationship.

to: KDMEntity[1] The aggregation to-endpoint of the relationships in the aggregated set. All 
relationships in the aggregated set should terminate at the entity that is the to-
endpoint or at some entity that is owned (or grrouped) directly or indirectly by the to-
endpoint.
32                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. To- and from-endpoints should be distinct.

2. The density should be greater than or equal to 1.

3. The density should be equal to the number of explicit relationships represented by the given aggregated 
relationship.

Semantics

AggregatedRelationhip is determined by how elements are owned by containers (or referenced by groups) in the 
following way: 

1. AggregatedRelationship between two entities (no owned elements) represents the set of explicit KDM relationships 
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity 
is the to-endpoint of the relationship). 

2. AggregatedRelationship between an entity and a container (or group) represents the set of all explicit KDM 
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned (or 
grouped) by the given container (directly or indirectly). 

3. AggregatedRelationship between a container (or group) and an entity represents the set of all explicit relationships 
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned (or grouped) by the 
given container (directly or indirectly).

4. AggregatedRelationship between two containers (and/or groups) represents the set of all explicit KDM relations 
such that the from-endpoint is an entity owned (or grouped) by the first container and the to-endpoint is an entity 
owned (or grouped) by the other container.

An explicit KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an 
implied density of 1. An AggregatedRelationship represents a set of explicit KDM relationships. It has density of greater 
or equal than 1 and no concrete type (as it may represent explicit KDM relationships of different types). An 
AggregatedRelationship cannot be constructed between two entities if there are no explicit KDM relationships between 
them (according to the definition above). 

The relationship “x in* C” means that x is in container C or in some sub-container of C, transitively. 

For relationship R, let R’ be the corresponding aggregated relationship.

Given containers C1 and C2 and the relationship R, let

P = {(x,y) : x in* C1 and y in* C2 and x R y}

That is, P is the set of pairs such that x is in* C1 and y is in* C2 and x R y.

Then

from:KDMEntity[1] The aggregation from-endpoint of the relationships in the aggregated set. All 
relationships in the aggregated set should originate from the entity that is the from-
endpoint or from some entity that is owned (or grouped) directly or indirectly by the 
from-endpoint.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        33



C1 R’ C2 iff |P| > 0

C1 and C2 are related by the aggregated relationship R’ if and only if there is at least one pair in the set P.

The density of C1 ‘' C2 is then simply |P|, the size of the set P.

Figure 9.5 - AggregatedRelationships illustrated

Figure 9.5 illustrates Containers and aggregated relationships. It uses the following notation. UML package symbols C1 
and C2 represent KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association 
indicates the direction of the relationship, when there are no arrows at either end of the association (as in Figure 9.5), this 
indicates two relationships, one in each direction. The numbers at the ends of associations, such as “+2,” represent the 
density of the corresponding KDM relationship. The KDM density has a different interpretation than UML multiplicity: 
since KDM represents an existing application, the exact relationships and their number is what the model captures. KDM 
model is not a model that represents constraints, like the ones used during the design phase, rather, this is a model that 
captures precise knowledge about the application. So, the KDM densities are exact.

Aggregated relationships are collections of more explicit relationships, which represent some basic facts, for example, 
“procedure x calls procedure y.” Such basic fact has density 1. An explicit code relationship represents some basic fact 
about the existing application. Now, when there are two or more such facts, for example “procedure x in module A calls 
procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an aggregated 
relationship between modules A and B with density 2 (2=1+1). In this case, the aggregated relationship represents the 
collection of the two explicit relationships between modules A and B as aggregation from- and to-endpoints.

Association ends to, from, owner and relation are owned by the class.

9.6.2 KDMEntity (additional properties)

NOTE:KDM14-214, KDM14-235, KDM14-289

Associations

aggregatedRelation:AggregatedRelationship[0..*] The set of aggregated relationships owned by this KDM entity.

/ inAggregated: AggregatedRelationship[0..*] The set of aggregated relations for which the current KDM 
entity is the aggregation to-endpoint.

/ outAggregated:AggregatedRelationship[0..*] The set of aggregated relations for which the current KDM 
entity is the aggregation from-endpoint.
34                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Operations

Constraints

1. AggregatedRelationship shall be owned by the KDMEntity that is the aggregation from-endpoint of the aggregated 
relationship

Semantics

Derived association ends inAggregated, outAggregated are owned by the class. Explicit operations are defined for 
navigation as part of the high-level interface to KDM models. Association end aggregatedRelation is owned by the class.

9.6.3 KDMRelationship (additional properties)

NOTE:KDM14-289

Associations

Semantics

Derived association end aggregate is owned by the class. No explicit operations for navigation are defined for this derived 
property. This derived property is the inverse of the relation property of AggregatedRelationship.

9.7 Datatypes Class Diagram

NOTE:KDM14-12, KDM14-302

The Datatypes class diagram describes several predefined data types for the Core package. Each class at the Datatypes 
class diagram is an instance of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.6.

createAggregation(otherEntity:KDMEntity) This operation creates an aggregated relationship such that the 
current entity is the aggregation from-endpoint of the aggregated 
relation and the “otherEntity” is the aggregation to-endpoint. The 
new aggregated relationship is owned by the current entity which 
becomes the from-endpoint of the aggregated relationship.

deleteAggregation 
(aggregatedRelation:AggregatedRelationship)

This operation deletes the given aggregated relationship.

getInAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which 
the aggregation to-endpoint is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which 
the aggregation from-endpoint is the current KDM Entity.

/ aggregate:AggregatedRelationship[0..*] The set of aggregated relationships that include this KDM 
relationship. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        35



Figure 9.6 - Datatypes Class Diagram

9.7.1 Boolean Type (datatype)
The meta-model uses predefined Boolean type to represent some KDM attributes, KDM operations, and their parameters.

9.7.2 String Type (datatype)
The meta-model uses predefined String type to represent some KDM attributes, KDM operations, and their parameters. 

9.7.3 Integer Type (datatype)
The meta-model uses predefined Integer type to represent some KDM attributes, KDM operations, and their parameters. 
36                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



10 The Package named “kdm”

10.1 Overview
The package named “kdm” defines the key infrastructure elements that determine patterns for constructing KDM views of 
existing software systems. KDM views (also referred to as KDM instances) are collections of the elements that are 
instances of the meta-model elements defined by the KDM specification, where each KDM element represents a certain 
element of the existing system. Although each KDM instance is a model of the corresponding existing software system, 
KDM instance is not a model that represents constraints, like the ones used during the design phase, rather, this is an 
intermediate representation that captures precise knowledge about the system.

Implementers of KDM tools are guided by a mapping from the elements of programming languages, runtime platforms, 
and other artifacts of existing software systems into KDM elements, using semantic description and implementer’s 
guidelines of this specification. The package named “kdm” describes several infrastructure elements that are present in 
each KDM instance. Together with the elements defined in the Core package these elements constitute the so-called KDM 
Framework. The remaining KDM packages provide meta-model elements that represent various elements of existing 
systems. 

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension 
meta-model pattern). KDM Framework is part of the Infrastructure Layer together with the elements defined in the Source 
package.

10.2 Organization of the KDM Framework
The package with name “kdm” is a collection of classes and associations that define the overall structure of KDM 
instances. From the infrastructure perspective, KDM instances are organized into segments and then further into specific 
models. There are 9 kinds of models. Each KDM model is described by one or more KDM packages and corresponds to 
one KDM domain. From the architectural perspective, each KDM package defines an architectural viewpoint. KDM 
model is the key mechanism to organize individual facts into architecture views. From the infrastructure perspective, a 
KDM model is a typed container for meta-model element instances (collection of facts organized into an architectural 
view). From the meta-model perspective, each KDM model is represented by a separate KDM package that defines a 
collection of the meta-model elements, which can be used to represent the facts about the given existing systems from a 
particular viewpoint. KDM framework defines a common superclass model element for all models - the KDMModel class. 
KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding to a particular 
model kind and to a particular instance of such element in a concrete representation of some existing system. Explicit 
disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when necessary. 

KDM model is the key unit of a KDM instance. KDM segment can own one or more models. A segment is a minimal unit 
of exchange in the KDM ecosystem. Segments can be nested.

The implementer shall provide an adequate partitioning of the KDM instance into multiple models and segments. On the 
other hand, the implementers of KDM import tools should not make any assumptions about the organization of KDM 
model elements into models or organization of models into segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the 
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model 
segment describe artifacts that involve a single programming language and a single platform.

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be 
integrated to provide a coherent holistic view.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        37



The package with name “kdm” consists of the following 5 class diagrams:

• Framework – defines the basic elements of the KDM framework.

• Audit – defines audit information for KDM model elements.

• Annotations - provides user-defined attributes and annotations to the modeling elements.

• Extensions - a class diagram that defines the overall organization of the light-weight extension mechanism of KDM.

• ExtendedValues - the tagged values used by the light-weight extension mechanism.

The package with name “kdm” depends only on the Core package.

10.3 Framework Class Diagram
The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a 
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM 
instances. 

The classes and association of the Framework diagram are shown in Figure 10.1. 

NOTE:KDM14-13, KDM14-134, KDM14-214

Figure 10.1 - Framework Class Diagram

10.3.1 FrameworkElement Class (abstract)

NOTE:KDM14-13, KDM14-134, KDM14-138, KDM14-289
38                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The FrameworkElement meta-model element is an abstract class that describes the common properties of all KDM 
Framework elements. FrameworkElement class is extended by Segment and KDMModel classes. These elements may  
own KDM light-weight extensions (extensionFamily property). The KDM extension mechanism is described further in 
this clause. 

Superclass

ModelElement

Attributes

Associations

Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. The 
implementer shall:

• arrange instances of the KDM model elements into models (constrained only by the definition of each model).

• arrange KDM models into one or more segments.

• provide names to KDM models and KDM segments.

10.3.2 KDMModel Class (abstract)

NOTE:KDM14-13, KDM14-135, KDM14-214, KDM14-289

A KDMModel is an abstract class that defines common properties of KDM model instances that are collections of facts 
about a given software system from the same architectural viewpoint of one of the KDM domains. KDM defines several 
concrete subclasses of the KDMModel class, each of which defines a particular kind of a KDM model. The architectural 
viewpoint is define by the corresponding KDM package. A KDM model instance is an architectural view of the given 
system.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’s assume 
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

• The meta-model elements for KDM model “foo” are described in a separate package, called “foo.”

• The package defines a concrete subclass of the KDMModel, called “FooModel.” 

• The package defines a common abstract parent for all KDM entities specific to this KDM model, called 
“AbstractFooElement.” This class extends the KDMEntity class from the Core package.

• The package defines a common abstract parent for all KDM relationship specific to this KDM model, called 
“AbstractFooRelationship.” This class extends KDMRelationship class from the Core package. 

name: String [0..*] The name of the framework element.

extensionFamily:ExtensionFamily [0..*] Extensions for the current model segment. This 
association end is owned by the class.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        39



• Class “FooModel” owns class “AbstractFooElement.” This association subsets the association between the 
KDMModel and KDMEntity defined at the Framework class diagram.

• Class “AbstractFooElement” owns zero or more AbstractFooRelationship elements.

• The package “foo” includes a “FooInheritances” class diagram, describing inheritances of “FooModel,” 
“AbstractFooElement,” and “AbstractFooRelationship” classes, as well as any other common properties related to the 
KDM Infrastructure, such as properties related to the Source package.

• The package “foo” includes “ExtendedFooElements” diagram that defines two generic meta-model elements 
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass

FrameworkElement 

Associations

Operations

Semantics

The implementer shall arrange instances of the KDM model elements into models (constrained only by the definition of 
each model) and to provide name attributes for each KDM model instance. A KDM model instance may be empty or may 
contain one or more instances of the elements allowed for this KDM model. A particular KDM instance may contain no 
KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments. 

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models 
in KDM Program Elements and Infrastructure layer. There should be no associations from the Program Elements and 
Infrastructure layer models to Resource and Abstractions layer models.

Derived association end ownedElement is owned by the class. Explicit operations are defined for navigation as part of the 
high-level interface to KDM models. Each KDM package defines specific subtypes of KDMModel and a collection of the 
corresponding subtypes of KDMEntity and KDMRelationship classes. Each subclass of KDMModel and related subtypes 
of KDMEntity and KDMRelationship define a viewpoint. Instances of these classes for a given software system constitue 
one or more KDM models (KDM views). 

Association end owner is owned by the association. This property is considered non-navigable in KDM.

/ ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM model defines 
specific subclasses of KDMEntity class.

getOwnedElement(): KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current 
KDM Model
40                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



10.3.3 KDMEntity (additional properties)

NOTE:KDM14-289

Associations

Operations

Semantics

Derived association end model is owned by class. Explicit operations are defined for navigation as part of the high-level 
interface to KDM models. Each KDM package defines specific subtypes of KDMModel and a collection of the 
corresponding subtypes of KDMEntity classes. The model property of such subclass of KDMEntity is an instance of a 
specific subtype of KDMModel from the same KDM package.

10.3.4 Segment Class

NOTE:KDM14-13, KDM14-289

The Segment element is a container for a meaningful set of facts about an existing software system. Each segment may 
include one or more KDM model instances and thus represents a collection of one or more architectural views for a given 
software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without owners is the 
top segment of the KDM model.

Superclass

FrameworkElement

Associations

Semantics

Association ends model and segment are owned by the class. Association end owner is owned by the association. This 
property is considered non-navigable in KDM.

/ model: KDMModel[0..1] Instance of KDM Model that owns this KDM entity.

getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM 
Entity. 

segment: Segment[0..*] Nested Segment elements owned by the current Segment.

model:KDMModel[0..*] The set of KDM models owned by the current segment. Each KDM model defines an 
architectural viewpoint. KDM model defines specific meta-model elements (entities and 
relationships specific to the viewpoint) that collectively define the viewpoint language.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        41



The implementer shall arrange KDM models into segments and to provide name attributes for each KDM segment 
instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may contain one 
or more KDM models of a given kind. 

In general, KDM does not constrain associations between instances across KDM models or across KDM segments. 

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program 
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple 
derivative models from the Program Elements and Infrastructure layer.

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models 
into KDM segments.

Example

NOTE:KDM14-15, KDM14-308

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"

xmlns:code="http://www.omg.org/spec/KDM/20160201/code"

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"

xmlns:source="http://www.omg.org/spec/KDM/20160201/source"  name="Framework Example">

  <audit xmi:id="id.0" description="Illustration of KDM Framework" author="KDM FTF" date="04-03-2007">

    <attribute xmi:id="id.1" tag="approved" value="yes"/>

  </audit>

  <segment xmi:id="id.2" name="foobar"/>

  <model xmi:id="id.3" xmi:type="code:CodeModel" name="foo">

    <annotation xmi:id="id.4" text="This is a sample instance of a Code model"/>

  </model>

  <model xmi:id="id.5" xmi:type="source:InventoryModel" name="bar">

    <annotation xmi:id="id.6" text="This is a sample of an Inventory model"/>

  </model>

</kdm:Segment>

10.4 Audit Class Diagram

NOTE:KDM14-58, KDM14-132, KDM14-13, KDM14-57, KDM14-241, KDM14-289

The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM 
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2. 
42                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 10.2 - Audit Class Diagram

10.4.1 Audit Class

NOTE:KDM14-58, KDM14-132, KDM14-13, KDM14-57, KDM14-241, KDM14-289

Audit class represents basic audit information associated with KDM model elements. The Audit element allows 
associating provenance, argument as well as other metadata with arbitrary KDM model elements.

Superclass

ExtendableElement

Attributes

Associations

Constraints

1. date should be represented in “dd-mm-yyyy” format

Semantics

The Audit element provides some extra “audit” information in the form of human readable text.

description:String Contains the description related to the Audit of the element (the Audit message).

author:String Contains the name of the person who has created the model element, or the name of the 
tool that was used to create the model element.

date:String Contains the date when the model element was created.

owner:ModelElement[1] The owner of the current Audit element
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        43



Each model element can have zero or more Audit instances associated with it. The collection of Audit elements is not 
ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,” 
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For 
example, “04-03-2007” corresponds to the “4th of March 2007.”

The content of the Audit element is provided by the implementer or the analyst.

KDM does not constrain the “description” attribute.

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element, 
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or 
segment.

Audit element can  own Annotation elements and Attribute elements. The Audit.description is the primary description and 
any associated annotations may be used as optional secondary descriptions.

Audit element can be extended with ExtensionElement using the light-weight extensibility mechanism.

Association end owner is owned by the class.

Example

See example in the “Segment Class” sub clause.

10.4.2 ModelElement (additional properties)

NOTE:KDM14-57, KDM14-289

Audit elements can be owned by any subclass of the ModelElement element, including segment or model.

Associations

Semantics

Association end audit is owned by the class.

10.5 Extensions Class Diagram

NOTE:KDM14-58, KDM14-243

The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight 
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “extended” meta-model elements to KDM. 
A “extended” meta-model element is a base meta-model element with extended meaning, and possibly with extended 
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or 
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of 

audit:Audit[0..*] The list of Audit element instances for the given instance of ModelElement, including Segment or 
Model.
44                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called 
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should 
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:

1. Define a stereotype (introduce the partial kind of a meta-model element):

• A stereotype definition includes the name of class of the allowed base elements. This class can be a particular 
concrete meta-model element, a generic element, or an abstract meta-model element.

2. Define tags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition 
includes the name of the extended attribute and the name of the type of the element (represented as a string). 
Values of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype 
defines its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework 
elements (KDM models and segments).

4. Use extended model elements in KDM instances by using the base meta-model element instance with one or more 
stereotypes:

• Concrete tag values can be added to the “extended” element if the stereotype defines tags.

• Each tag value is associated with the corresponding tag definition.

• The complete kind of the new element is defined as the union of all stereotypes added to the element.

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element. 
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a 
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the 
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of 
the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model 
defines two viewpoint-specific generic elements: a generic entity and a generic relationship for the given KDM model. 
They too can be used as extension points. 

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without 
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add 
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between 
tags or stereotypes. The implementer shall select the most specific extension points, by defining stereotypes in such a way 
that they use the base elements with the most specific semantic description (closer to the bottom of the KDM class 
hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        45



Figure 10.3 - Extensions Class Diagram

10.5.1 Stereotype Class

NOTE:KDM14-58, KDM14-243, KDM14-289

The stereotype concept provides a way of branding (classifying) certain elements so that they behave as if they were the 
instances of new extended meta-model constructs. These elements have the same structure (attributes, associations, 
operations) as similar non-stereotyped elements of the same kind. The stereotype may specify additional required tagged 
values that apply to these elements. In addition, a stereotype may be used to indicate a difference in meaning or usage 
between two elements with identical structure.

Stereotype is a named element. TaggedValues attached to a Stereotype apply to each ExtendableElement branded by that 
Stereotype.

A Stereotype specifies the name of the base element to which it can be added. 

Superclass

ExtensionElement

Attributes

Associations

name:String Specifies the name of the stereotype.

type:String Specifies the name of the base element to which the stereotype applies.

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values 
associated with the model elements that are branded with the given stereotype.
46                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. Tags associated with ExtendableElement should not clash with any meta attributes associated with this model 
element.

2. A model element should have at most one tagged value with a given tag name.

3. A stereotype should not extend itself.

4. A Stereotype can be added to ExtendableElement if its class is the same as the value of the type attribute of the 
Stereotype, or one of its subclasses.

5. The values of the type attribute of the TagDefinition are restricted to the names of the subclasses of 
ExtendableElement and the names of the core datatypes. Names of the core datatypes (“Boolean,” “String,” 
“Integer”) define attributes of the extended meta-model element. The corresponding values are represented as 
instances of the TaggedValue class. Names of the subclasses of ExtendableElement (for example, “KDMEntity,” or 
“Audit”) define associations of the extended meta-element and the corresponding values are represented as 
instances of the TaggedRef class.

Semantics

Stereotypes should not change the semantics of the base meta-model element.

A KDM model element with one or more stereotypes has the semantics of the base element with some additional 
semantic constraints. The complete kind of the new element is defined as the union of all stereotypes added to the 
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is 
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class, 
with the new attributes corresponding to the tag definitions.

Association ends tag and owner are owned by the class.

Example

NOTE:KDM14-15, KDM14-308

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"

xmlns:action=http://www.omg.org/spec/KDM/20160201/action" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code"

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Stereotype Example">

  <extensionFamily xmi:id="id.0" name="Example extensions">

    <stereotype xmi:id="id.1" name="Java method"/>

    <stereotype xmi:id="id.2" name="C++ method"/>

    <stereotype xmi:id="id.3" name="C++ procedure"/>

    <stereotype xmi:id="id.4" name="C++ friend">

      <tag xmi:id="id.5" tag="friend_of" type="ClassUnit"/>

    </stereotype>

    <stereotype xmi:id="id.6" name="IsFriendOf"/>

    <stereotype xmi:id="id.7" name="native call">

      <tag xmi:id="id.8" tag="implemented in" type="String"/>

    </stereotype>

  </extensionFamily>

  <model xmi:id="id.9" xmi:type="code:CodeModel" name="Example">

owner:ExtensionFamily[1] ExtensionFamily that owns the current stereotype
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        47



    <codeElement xmi:id="id.10" xmi:type="code:ClassUnit" name="myclass">

      <codeElement xmi:id="id.11" xmi:type="code:MethodUnit" stereotype="id.2" 

name="foo" type="id.12">

        <codeElement xmi:id="id.12" xmi:type="code:Signature" name="foo"/>

      </codeElement>

    </codeElement>

    <codeElement xmi:id="id.13" xmi:type="code:CallableUnit" stereotype="id.4 id.3" 

name="bar" type="id.16" kind="regular">

      <taggedValue xmi:id="id.14" xmi:type="kdm:TaggedRef" tag="id.5" reference="id.10"/>

      <codeRelation xmi:id="id.15" xmi:type="code:CodeRelationship" stereotype="id.6"

 to="id.10" from="id.13"/>

      <codeElement xmi:id="id.16" xmi:type="code:Signature" name="bar"/>

    </codeElement>

  </model>

  <model xmi:id="id.17" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.18" xmi:type="code:ClassUnit" stereotype="id.1">

      <codeElement xmi:id="id.19" xmi:type="code:MethodUnit" stereotype="id.1" 

name="foobar" type="id.23">

        <codeElement xmi:id="id.20" xmi:type="action:ActionElement" stereotype="id.7"

 name="a1">

          <actionRelation xmi:id="id.21" xmi:type="action:Calls" stereotype="id.7" 

to="id.13" from="id.20">

            <taggedValue xmi:id="id.22" xmi:type="kdm:TaggedValue" tag="id.8" value="C"/>

          </actionRelation>

        </codeElement>

        <codeElement xmi:id="id.23" xmi:type="code:Signature" name="foobar"/>

      </codeElement>

    </codeElement>

  </model>

</kdm:Segment>

10.5.2 TagDefinition Class

NOTE:KDM14-58, KDM14-243, KDM14-289

Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair (i.e., 
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the 
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations 
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a 
particular programming language, runtime platform, or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of 
extended information about existing software systems to only those tools that share a common understanding of the 
specific tagged value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name 
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass

ExtensionElement
48                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Attributes

Associations

Constraints

1. The “value” attribute of the TaggedValue should be valid according to the type specified in the corresponding 
TagDefinition. 

2. The target of the “ref” association of the TaggedRef should be of the type specified in the corresponding 
TagDefinition, or one of its subtypes.

3. If the type of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,” “StringType,” 
“IntegerType”), the corresponding value should be an instance of the TaggedValue class. 

4. If the type of the TaggedDefinition is a name of some other KDM element (for example, “KDMEntity,” or 
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics

ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element 
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of 
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags 
is outside of the KDM specification and should be communicated by implementers to the users of the extended models. 
Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions 
can still be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic 
KDM semantic rules are applied.

Association end owner is owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.5.3 ExtensionFamily Class

NOTE:KDM14-58, KDM14-134, KDM14-289

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a 
set of related stereotypes and their corresponding tag definitions.

tag:String Contains the name of the tagged value. This name determines the semantics that are 
applicable to the contents of the value attribute.

type:String Specifies the type of the value attribute.

owner:Stereotype[1] Stereotype that owns the current TagDefinition
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        49



Superclass

ExtensionElement

Attributes

Associations

Semantics

ExtensionFamily provides a named container for stereotype definitions. The implementer shall arrange stereotype 
definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in a separate 
segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into families.

Association ends stereotype and owner are owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.5.4 ExtendableElement (additional properties)

NOTE:KDM14-58, KDM14-289

Associations

Constraints

1. Each tagged value added to a ExtendableElement must conform to a certain tag definition owned by the stereotype 
of that ExtendableElement (the tag association of the TaggedValue should refer to a TaggedDefinition that is 
owned by a Stereotype of the ExtendableElement). A tagged value conforms to a tag definition when the value 
conforms to the type of the TagDefinition. Full validation of lightweight extensions can only be performed 
dynamically by a suitable KDM import tool, since the purpose and the semantics of an extension is not defined by 
the KDM standard.

2. Stereotype can be associated with a certain instance of a ExtendableElement if the type of the ExtendableElement 
is the same as the type property in the stereotype definition, or one of its subclasses.

name:String Provides the name of the extension family. 

stereotype:Stereotype[0..*] The set of stereotypes that are owned by the extension family.

owner:FrameworkElement[1] The FrameworkElement (Segment or KDMModel) that owns he current extension 
family

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

stereotype:Stereotype[0..*] the stereotype
50                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

Association ends taggedValue and stereotype are owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.6 ExtendedValues Class Diagram

NOTE:KDM14-58

ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension 
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of 
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional 
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes 
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value 
construct. 

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

Figure 10.4 - ExtendedValue Class Diagram

10.6.1 ExtendedValue Class (abstract)

NOTE:KDM14-58, KDM14-289

ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values: the TaggedValue 
and the TaggedRef. ExtendedValue class defines common properties for these classes.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        51



Superclass

ExtensionElement

Associations

Semantics

ExtendedValue is a additional attribute to an extended KDM meta-model element. ExtendedValue element represents the 
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The 
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stereotype 
element defines the “extended meta-model element that provides the context for the new attributes. ExtendedValue 
elemens that correspond to a Stereotype shall be instantiated every time a new extended meta-model element, defined by 
a Stereotype, is instantiated. This is an important difference between ExtendedValues and KDM attributes, which are not 
related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the 
allowed values. 

Each instance of ExtendedValue has an association to the corresponding TagDefinition. Association end tag is owned by 
the class.

10.6.2 TaggedValue Class

NOTE:KDM14-30, KDM14-58

A tagged value allows information to be attached to any model element in the form of a “tagged value” pair, (i.e., 
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the 
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations 
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a 
particular programming language, runtime platform, or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition.

Superclass

ExtendedValue

Attributes

Constraints

1. The value of the TaggedValue instance should conform to the type of the corresponding TagDefinition.

tag:TagDefinition[1] the reference to the tag definition of the corresponding stereotype

Value:String Contains the current value of the TaggedValue.
52                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

TaggedValue element represents simple atomic extended attributes. The type constraint of the value, defined in the 
corresponding TagDefinition can be the name of any KDM primitive datatype (for example, “StringType,” 
“BooleanType,” etc.).

Example

See example in the “Stereotype Class” sub clause.

10.6.3 TaggedRef Class

NOTE:KDM14-136, KDM14-289

A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model 
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is 
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of the 
subtypes of that type. 

Superclass 

ExtendedValue

Associations 

Constraints

1. The model element that is the target of the reference association must be of the type, specified by the type attribute 
of the tag definition that is the target of the tag association of the tagged ref element.

Semantics

TagRef represents complex extended attributes, which are associations to other KDM elements. TagDefinition can be a 
name of any KDM meta-model element (for example, “KDMEntity,” “AbstractCodeElement,” “ControlElement,” or 
“CallableUnit”). Association end reference is owned by the class.

Example

See example in the “Stereotype Class” sub clause.

10.7 Annotations Class Diagram

NOTE:KDM14-58, KDM14-132

The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to 
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag, 
value> to an individual element instance. This is complimentary to the light-weight extension mechanism, which provides 

reference:ModelElement[1] Designates the model element referred to by the extended value.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        53



a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended 
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances 
of the same meta-model element may own completely different user-defined attributes (and some may have none at all). 

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the 
elements of KDM instances. They may be used by implementer to add specific information to an individual element. 
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag 
definitions are first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5. 

Figure 10.5 - Annotations Class Diagram

10.7.1 Attribute Class

NOTE:KDM14-58, KDM14-132, KDM14-289

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e., 
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values, 
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define extended new 
model element, and tagged values specify additional attributes of these extended model elements). Tagged values are only 
associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model 
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual 
instances of model element. In particular, two different instances of the same model element may be annotated by 
different attributes. 

Superclass

AnnotationElement

Attributes

tag:Name Contains the name of the attribute. This name determines the semantics that are applicable to the 
contents of the value attribute.
54                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. Attribute cannot have further annotations or attributes

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It may be determined by the user or the 
implementer conventions. Tools may provide capability to add arbitrary attributes to the instances of the model to supply 
information needed for their operations beyond the basic semantics of KDM. Such information can support analysis of 
KDM models.

An attribute element is not related to a particular meta-model element. It does not define a extended attribute to an 
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute 
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of 
instances. Association end owner is owned by the class.

Example

See example in the “Segment Class” sub clause.

10.7.2 Annotation Class

NOTE:KDM14-58, KDM14-132, KDM14-289

Annotations allow textual descriptions to be attached to any instance of a model element.

Superclass

AnnotationElement

Attributes

Associations

Constraints

1. Annotation cannot have further annotations or attributes.

value:String Contains the current value of the attribute.

owner:Element[1] The AnnotatableElement that owns the current Attribute.

text:String Contains the text of the annotation to the target model element.

owner:Element[1] The AnnotatableElement that owns the current Annotation.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        55



Semantics

Annotation allows associating a human-readable text with an instance of any Element. Association end owner is owned 
by the class.

Example

See example in the “Segment Class” sub clause.

10.7.3 AnnotatableElement (additional properties)

NOTE:KDM14-58, KDM14-289

Associations

Semantics

No assumptions should be made regarding the order of attributes or annotations associated with a particular instance. 
Association ends attribute and annotation are owned by the class.

attribute:Attribute[0..*] The set of attributes owned by the given element.

annotation:Annotation[0..*] The set of annotations owned by the given element.
56                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



11 Source Package

11.1 Overview

NOTE:KDM14-131, KDM14-60

The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of existing 
systems, such as source files, images, configuration files, resource descriptions, etc. The Source package also represents 
traceability links between instances of KDM meta-elements and the corresponding regions of source code. It represents 
the link between the KDM instance and the artifacts of the existing system it represents.

The Source package offers several capabilities for linking instances of the KDM representation to the corresponding 
artifacts:

• Inlining the corresponding source code in the form of a “snippet” into KDM representation.

• Linking a KDM element to a region of the source code within some physical artifact of the system being modeled.

• Explicit relation between any KDM element (via the Track element) and another KDM element, including elements 
that represent an artifact in the InventoryModel

A given KDM representation can implement either of the approaches, all of them, or none. 

KDM Source packages uses URI reference to identify the location of an artifact. When a KDM element is linked to the 
source code within a particular physical artifact of the existing system (regardless of the existence of the corresponding 
snippet), KDM offers an additional two options:

• The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case 
the URI reference of the artifact is determined through the Inventory Model.

• The link can be made stand-alone and explicitly specify the URI reference of the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, this is 
indicated by the “language” attribute.

The Source package defines an architectural viewpoint for the Inventory domain. It is determined by the entire software 
development environment of the existing software system. 

• Concerns:

• What are the artifacts (software items) of the system?

• What is the general role of each artifact (for example, is it a source file, a binary file, an executable or a 
configuration description)?

• What is the organization of the artifacts (into directories and projects)?

• What are the dependencies between the artifacts?

• Viewpoint language:

Inventory views conform to KDM XMI schema. The viewpoint language for the Inventory architectural 
viewpoint is defined by the Source package. It includes an abstract entity AbstractInventoryElement, several 
generic entities, such as InventoryItem and InventoryContainer, as well as several concrete entities, such as 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        57



SourceFile, ObjectFile, ImageFile, Directory, etc. The viewpoint language for the Inventory architectural 
viewpoint also includes TraceableTo and DependsOn relationships, which are subclasses of 
AbstractInventoryRelationship.

• Analytic methods:

The Inventory architectural viewpoint supports the following main kinds of checking:

• What artifacts depend on the given artifact?

The Inventory viewpoint also supports check in combinations with other KDM architectural viewpoint to determine 
the original artifacts that correspond to a given KDM element.

• Construction methods:

• Inventory views that correspond to the KDM Inventory architectural viewpoint are usually constructed by 
directory scanning tools, which identify files and their types.

• Construction of an Inventory view is determined by the particular development and deployment environments of 
the existing software system.

• Construction of an Inventory view is determined by the semantics of the environment as well as the semantics of 
the corresponding artifacts, and is based on the mapping from the given environment to KDM.

• The mapping from a particular environment to KDM may produce additional information (system-specific, or 
environment-specific, or extractor tool-specific). This information can be attached to KDM elements using 
stereotypes, attributes or annotations.

As a general rule, in a given KDM instance, each instance of the inventory model represents a a set of resources, 
identifiable by URI references. A resource is any artifact that has identity, such as a file, an electronic document, an 
image, a service and a collection of other resources. Exceptions to this rule are:

• InventoryModel element, which is a part of the KDM instance infrastructure. This meta-model element is a container 
for the instances of other inventory meta-model elements.

• SourceRef and Region elements that represent traceability links between other instances of KDM meta-model 
elements and source code of an existing software system.

• Track element that together with the TraceableTo relation represents traceability links between instances of KDM 
entities, including links from KDMEntities to InventoryItem elements.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability 
mechanism between KDM entities, including  links between KDM entities and the elements of the InventoryModel, or 
KDM entities and the regions of the physical artifacts of the existing software system that they represent.

11.2 Organization of the Source Package

NOTE:KDM14-229

The Source package consists of the following 6 class diagrams:

• InventoryModel

• InventoryInheritances
58                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



• InventoryItems

• InventoryRelations

• SourceRef 

• ExtendedInventoryElements

The Source package depends on the following packages:

• Core

• kdm

11.3 InventoryModel Class Diagram

NOTE:KDM14-60, KDM14-229, KDM14-131

InventoryModel class diagram defines meta-model elements that represent the physical artifacts of the existing software 
system. This model corresponds to the inventory of the artifacts. The InventoryModel class diagram follows the uniform 
pattern for KDM model to extend the KDM Framework with specific meta-model elements. InventoryModel defines the 
following meta-model elements determined by the KDM model pattern:

• InventoryModel class

• AbstractInventoryElement class

• AbstractInventoryRelationship class

The InventoryModel class diagram defines meta-model elements to represent several important categories of artifacts 
according to their functional role in software systems. Software artifacts are local or network resources, identifiable by 
URI resources. These meta-model elements are subclasses of the common parent class InventoryItem. The Inventory 
model also provides a generic KDM container called InventoryContainer and two specific containers: Directory and 
Project. 

The classes and associations of the InventoryModel are shown in Figure 11.1.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        59



Figure 11.1 - InventoryModel Class Diagram

11.3.1  InventoryModel Class
The InventoryModel is a specific KDM model that owns collections of facts related to the physical artifacts of the 
existing software system. InventoryModel is a container for the instances of InventoryItems. InventoryModel corresponds 
to the inventory of the physical artifacts of the existing software system.

Superclass

KDMModel

Associations

Semantics

InventoryModel is a container for instances of inventory elements. The implementer shall arrange inventory elements into 
one or more inventory models. KDM import tools shall not make any assumptions about the organization of inventory 
items into inventory models.

11.3.2  AbstractInventoryElement Class (abstract)

NOTE:KDM14-60, KDM14-137, KDM14-58, KDM14-208, KDM14-247

The AbstractInventoryElement is the abstract parent class for all inventory entities. 

inventoryElement:AbstractInventoryElement[0..*] The set of inventory elements owned by the inventory model.
60                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Superclass

KDMEntity

Associations

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and 
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype 
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be 
used as an extension point for defining new extended inventory entities.

11.3.3  AbstractInventoryRelationship Class (abstract)

NOTE:KDM14-58

The AbstractInventoryRelationship is the abstract parent class for all inventory relationships. 

Superclass

KDMRelationship

Constraints

Semantics

From the meta-model perspective, this element is a common parent for all inventory relationships. This element is 
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in 
stereotype definitions. Inventory package provides a concrete class InventoryRelationship with under specified semantics, 
which can be used as an extension point for defining new extended inventory relationships.

11.3.4 InventoryItem Class (generic)

NOTE:KDM14-60, KDM14-131, KDM14-237, KDM14-249

InventoryItem is a generic meta-model element that represents any artifact of an existing software system. This class is 
further subclasses by several concrete meta-model elements with more precise semantics. However, InventoryItem can be 
used as an extended modeling element with a stereotype.

Superclass

AbstractInventoryElement

Attributes

inventoryRelation:AbstractInventoryRelationship[0..*] The set of inventory relations owned by the inventory 
element.

version:String Provides the ability to track version or revision numbers. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        61



Semantics

The implementer shall provide a mapping from concrete types of the physical artifacts involved in the engineering of an 
existing software system into concrete subclasses of the InventoryItem. The implementer shall map each artifact of the 
existing software system to some instance of KDM InventoryItem.

The format attribute describes the organization of the InventoryItem. For SourceFile the value of format attribute is 
assumed "text", and the structure is defined by the language attribute. Examples of format for various subclasses of 
InventoryItem are: "xml", "html", "json", "csv", "text", "ms word", "coff", "java class", "jpeg","mp3","css".

InventoryItems are identified by a URI reference. The semantics of the URI references in KDM is aligned with the W3C 
XML specification, and IETF RFC 3986. InventoryItem shall be identified by a relative URI reference that refers to a 
resource by describing the difference within a hierarchical namespace between the reference context and the target URI. 
The reference context for identification of InventoryItem is provided by the hierarchy of Directory elements and their 
“path” attributes. InventoryItem that is not owned by any Directory element shall be identified by a full URI reference. 
The full URI of an InventoryItem that is owned by one or more Directory element in resolved in the context the URIs of 
the directory hierarchy in the following way. For a given Directory item, the URI reference to an inventory item, owned 
by this Directory directly or indirectly, is a sequence of strings, the first element of which is the URI reference of the 
Directory, subsequent elements are the “path” attributes of the directory elements such that each directory element is 
owned by the previous directory element and that last directory element owns the inventory item. The last component of 
the full URI to the inventory item is the “path” attribute of the inventory item. The slash ("/") character shall be used to 
delimit components that are significant to the hierarchical interpretation of a URI  identifier. The “name” attributes of the 
directory elements  in the hierarchy as well as the “name” attribute of the inventory item itself are ignored in the process 
of URI resolution. Any Project containers involved in this hierarchical structure are ignored.

Only the “path” attributes contribute to the determination of the full URI reference. The “name” attribute does not 
contribute to the determination of the full URI reference. The “path” attribute conforms to the URI syntax, including 
escaping rules, query components, etc. The “name” attribute provides the name of the InventoryItem. In certain cases, the 
name may be the same string as the last component of the path. The implementer shall use the “path” attribute for 
identification of a resource, and shall provide appropriate “name” for the resource.

An optional MD5 hash signature can be computed for the content of the resource to provide ability to detect changes in 
the content of the resource. The 128-bit (16-byte) hash value produced by the MD5 message-digest algorithm is 
represented in text format as a string of exactly 32 characters [0-9a-fA-F] that correspond to the digits of the hexadecimal 
number.

11.3.5  InventoryContainer Class (generic)
The InventoryContainer meta-model element provides a container for instances of InventoryItem elements.

Superclass

AbstractInventoryElement

path:String URI reference of the resource.

format:String Optional description of the format of the InventoryItem

md5:String Optional MD5 hash signature of the resource using the MD5 message-digest algorithm
62                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. InventoryContainer should have at least one stereotype.

Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and 
individual inventory items). InventoryContainer instances represent tree-like hierarchical structures in which the leaf 
elements are individual InventoryItem instances. Each InventoryContainer represents the entity set of InventoryItems 
owned by that container directly or indirectly.

11.3.6  Directory Class

NOTE:KDM14-131, KDM14-249

The Directory class represents directories as containers that own inventory items. 

Superclass

InventoryContainer

Attributes

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in 
file systems. 

Directory elements are identified by a URI reference. The semantics of the URI references in KDM is aligned with the 
W3C XML specification, and IETF RFC 3986. Directory element that is not owned by any other directory element (a root 
directory element) shall be identified by a full URI reference. Hierarchical structure of directory elements determines the 
URI reference for each owned directory element in the following way. The URI reference of a given directory element, 
owned by some root directory element directly or indirectly, is a sequence of strings, the first element of which is the URI 
reference of the root directory, subsequent elements are the “path” attributes of the directory elements such that each 
directory element is owned by the previous directory element; the last component of the URI reference is the “path” 
attribute of the directory element. The slash ("/") character shall be used to delimit components that are significant to the 
hierarchical interpretation of a URI  identifier. The “name” attributes of the directory elements  in the hierarchy are 
ignored in the process of URI resolution. Any Project containers involved in this hierarchical structure are ignored.

The implementer shall determine the appropriate root directory elements.

11.3.7  Project Class

NOTE:KDM14-131

inventoryElement:AbstractInventoryElement[0..*] The set of inventory elements owned by the container.

path:String URI reference of the directory
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        63



The Project meta-model element represents an arbitrary logical container for inventory items. 

Superclass

InventoryContainer

Semantics

Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers. The Project 
element does not contribute to the hierarchical resolution of the relative URI references of InventoryItems

Example

NOTE:KDM14-15, KDM14-131, KDM14-249, KDM14-308

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 

xmlns:source="http://www.omg.org/spec/KDM/20160201/source" name="Inventory Example">

  <model xmi:id="id.0" xmi:type="source:InventoryModel">

    <inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c" 

path="file://localhost/myproject/abc/a.c">

      <inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.1"/>

    </inventoryElement>

    <inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c"

path="file://localhost/myproject/abc/b.c">

      <inventoryRelation xmi:id="id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>

    </inventoryElement>

    <inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"

path="http://reliablepartner.com/collaboration/mycompany/myproject/abc/ab.h"/>

    <inventoryElement xmi:id="id.6" xmi:type="source:Directory" name="shared"

path="file://localhost/myproject/shared">

<inventoryElement xmi:id="id.7" xmi:type="source:Directory" name="images"

path="images">

      <inventoryElement xmi:id="id.8" xmi:type="source:Image" name="img1" path="img1.jpg"/>

      <inventoryElement xmi:id="id.9" xmi:type="source:Image" name="img2.jpg" path="img2.jpg"/>

    </inventoryElement>

   </inventoryElement>

  <inventoryElement xmi:id="id.10" xmi:type="source:SourceFile" name="makefile"

path="file://localhost/myproject/build/makefile"/>

  <inventoryElement xmi:id="id.11" xmi:type="source:ExecutableFile" name="ab.exe"

path="file://localhost/myproject/deliverables/ab.exe">

  </model>

</kdm:Segment>

11.4 InventoryInheritances Class Diagram
InventoryInheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of 
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.
64                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 11.2 - InventoryInheritances Class Diagram

11.5 InventoryItems Class Diagram

NOTE:KDM14-229, KDM14-60, KDM14-131

InventoryItems class diagram is determined by the KDM model pattern. This diagram defines how the classes of the 
InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.3.

Figure 11.3 - InventoryItems Class Diagram

11.5.1  SourceFile Class

NOTE:KDM14-229, KDM14-60

The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of 
KDM whose purpose is to provide links between code elements and their physical implementations using the 
SourceRegion mechanism from the Source package. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        65



Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original 
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take 
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM 
specification explicitly defines semantics of source files.

Superclass

InventoryItem

Attributes

Semantics

The SourceFile element represents source files that determine the structure and the behavior of software systems. A 
source file usually has plain text format. The logical organization of a source file is usually determined by a certain 
language, such a a programming language, a data definition language, etc. KDM models outside of the Infrastructure 
layer provide viewpoint languages to describe the common elements of software systems and provide references to the 
corresponding source files.

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters, 
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The 
“end of line” character is not considered to be part of the line.

KDM tools may use the information from the artifacts of the existing software system, accessible through the 
SourceRegion mechanism. It is recognized that different charactersets and character encoding schemas are used around 
the world, and it may be desired for KDM processors to read code snippets from the files that use them. 

Specification of character encoding is aligned with the XML specification from W3C. Each artifact of an existing system 
may use a different encoding for its characters. The default encoding for SourceFile is “UTF-8.” Encodings other that 
UTF-8 should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding label. 
For example, “UTF-16,” “ISO-10646-UCS-2,” “ISO-8859-2,” “ISO-2022-JP,” “Shift_JIS,” and “EUC-JP,” etc. Encoding 
of the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information 
in the source file, through the mechanism of the SourceRegion. KDM tools shall at a minimum support UTF-8.

11.5.2  Model Class

NOTE:KDM14-60

Model element represents various model artifacts that are related to the software system.

Superclass

InventoryItem

language:String Indicates the language of the source file.

encoding:String An optional attribute that represents the encoding of the characters in the file.
66                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

Model element represents various model artifacts that are related to the software system. The format of a document can be 
plain text, structured text, such as xml, or one of the many binary formats. A Model element complements SourceFile, 
because it determine the structure and behavior of the software system in an indirect way, by determining the structure and 
behavior of the source files through the techniques known as model-based engineering. 

11.5.3  Document Class

NOTE:KDM14-60

Document element represents various textual documents that are related to the software system. 

Superclass

InventoryItem

Semantics

Document element represents various textual documents that are related to the software system. The format of a document 
can be plain text, formatted text, where style information is included, or one of the many binary formats, in which some 
portions must be interpreted as binary objects (encoded integers, real numbers, images, etc.). A Document is different from 
a SourceFile, because it does not determine the structure and behavior of the software system (but may describe it). 
Document element can be used to represent an arbitrary information item related to the system. Other model element can be 
linked to particular Document element using traceability links.

11.5.4  ImageFile Class

NOTE:KDM14-60

ImageFile element represents visual images, such as still graphical images, animated images or video. 

Superclass

InventoryItem

Semantics

ImageFile element represents visual images that combine shapes and color to inform, illustrate, entertain, or to guide viewers 
to particular information. ImageFile can be used to create a graphical interface for the user of a software system. ImageFile can 
be content of the software system, or part of the related documentation. Graphical images, animated images and video are 
elements of multimedia technology. A rich multimedia resource that combines video and audio shall be represented as an 
Instance of ImageFile. An ImageFile requires certain capability to render.

11.5.5  AudioFile Class

NOTE:KDM14-60

AudioFile element element represents resources related to audio content form. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        67



Superclass

InventoryItem

Semantics

AudioFile element represents resources related to audio content form, for example, digital recording or generation of sound 
waves such as voice, singing, instrumental music or sound effects. AudioFile can be used to create the user interface of a 
software system, or as part of its content. Audio is an element of multimedia technology. AudioFile requires certain capability 
to produce sound. 

11.5.6  DataFile Class

NOTE:KDM14-60

DataFile element represents variety of plain text or binary files that are used as input to some elements of a software 
system. 

Superclass

InventoryItem

Semantics

DataFile element represents variety of plain text or binary files that are used as input to some elements of a software system 
during the runtime phase. Data files may include csv files, Excel spreadsheets, database files, xml files, json files, etc. DataFile 
is often similar to a ConfigFile. KDM implementation shall select appropriate element based on its role in the system.

11.5.7  Service Class

NOTE:KDM14-60

Service element represents a network resource that exposes some operations. 

Superclass

InventoryItem

Semantics

Service element represents a network resource that exposes some operations, such as a Web service. For example, REST web 
services provide a uniform set of stateless operations to manipulate a certain resource. A service may be described in machine-
processable format, such as WSDL, and may be registered to facilitate service discovery. Usually a service uses a certain 
protocol to exchange data. In KDM models a Service resource can be a binding target for various platform resource elements.

11.5.8  ConfigFile Class

NOTE:KDM14-60

ConfigFile element represents various configuration files. 
68                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Superclass

InventoryItem

Semantics

ConfigFile element represents configuration files, such as property lists, initial settings for user applications, server processes, 
operating system settings, or even simple databases. Configuration files often use plain text format, "us-ascii" character set, 
and are line-oriented. Configuration files are usually used during compilation, linking or initialization phases of the lifecycle 
of a software system. ConfigFile that is used during the runtime phase is similar to DataFile. For example, a simple database 
can be also represented as a DataFile. KDM implementation shall select appropriate element based on its role in the system.

11.5.9  LinkableFile Class (generic)

NOTE:KDM14-60

LinkableFile element represents various forms of relocatable machine code that is usually not directly executable. 

Superclass

InventoryItem

Constraints

• 1. LinkableFile should have at least one Stereotype.

Semantics

A LinkableFile element represents various forms of relocatable machine code that is usually not directly executable. 
LinkableFile is a generic element, which introduces an extension point for the light-weight extension mechanism. Concrete 
subclasses of LinkableElement are ObjectFile and LibraryFile.

11.5.10  ObjectFile Class

NOTE:KDM14-60

ObjectFile element represents relocatable bytecode or machine code with additional metadata. 

Superclass

LinkableFile

Semantics

An object file is a file containing relocatable machine code that is usually not directly executable. Usually object files are used 
as input to the linker, which in turn typically generates an executable or library by combining parts of object files.

In addition object files may contain metadata used for linking or debugging, such as information to resolve symbolic cross-
references between different modules, relocation information, stack unwinding information, comments, program symbols, 
debugging or profiling information.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        69



11.5.11  LibraryFile Class

NOTE:KDM14-60

LibraryFile element represents libraries of machine code or bytecode.

Superclass

LinkableFile

Semantics

A library is a collection of reusable bytecode or machine code with a well-defined interface. A static library allows access to 
the code implemented by a library during the build of the invoking program. A shared or dynamic library can be accessed after 
the executable has been invoked to be executed, either as part of the process of starting the execution, or in the middle of 
execution.

Most compiled languages have a standard library and also allow create custom libraries. Most modern software systems 
provide libraries that implement the majority of system services. 

11.5.12  ExecutableFile Class

NOTE:KDM14-251

ExecutableFile element represents executable files (machine code or bytecode) for a particular platform.

Superclass

InventoryItem

Semantics

ExecutableFile element represents executable files (machine code or bytecode) for a particular platform. ExecutableFile 
element assumes some binary format. Scripts and other interpreted files with text format are usually represented by a 
SourceFile element.  Implementater shall select appropriate element based on its role in the system.

11.6 Traceability Class Diagram

NOTE:KDM14-69, KDM14-208

 Traceability class diagram defines a set of meta-model elements whose purpose is to provide traceability links between 
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class 
diagram shown in Figure 11.4 captures these classes and their relations.
70                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 11.4 - Traceability Class Diagram

11.6.1 SourceRef Class 

NOTE:KDM14-58, KDM14-208, KDM14-253

The SourceRef class represents a traceability link between a particular model element and the corresponding source code. 

Superclass

AnnotatableElement

Attributes

Associations

Constraints

1. Language indicator has to be provided using at least one of the following methods:

• As the attribute of the SourceRef element.

language: String (Optional attribute) - indicates the source language of the snippet attribute.

snippet:String (Optional attribute) - The source snippet for the given KDM element. The snippet may 
have some internal structure, for example XML tags corresponding to an abstract syntax 
tree of the code fragment. The interpretation of code snippets is outside the scope of the 
KDM.

region: Region[0..*] (Optional attribute) - A list of Region elements that provide further details related to the 
physical representation of the element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        71



• As the attribute of the SourceRegion element.

• As the attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.

2. If both the snippet and the language attributes of the SourceRef element are present, then the language attribute 
should describe the nature of the code snippet, in which case the nature of the source code region accessible 
through the SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not 
present, then the language attribute of the SourceRef element overrides the language attribute of the SourceRegion 
element, which in turn overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “source” 
representation as part of a physical artifact of the existing software system. KDM element that defines a traceability link to its 
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:

• Inlining the corresponding source code in the form of a “snippet” into KDM representation.

• Linking a KDM element to a region within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none. 

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless 
of the existence of the corresponding snippet), KDM offers further two options:

• The link can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case 
the URI reference of the artifact is determined through the Inventory Model.

• The link can be made stand-alone and explicitly specify the URI reference of the artifact as the “path” attribute of the 
Region element.

KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the 
primary one and other elements are considered secondary. Secondary traceability links may be used to represent 
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or 
target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language” 
attributes, so that KDM tools can select the appropriate representation to display. 

The implementer shall provide adequate traceability links.

11.6.2 Track Class

NOTE:KDM14-208

Track is part of the KDM's traceability mechanism. 

Superclass

AbstractInventoryElement

Attributes

description:String Description of the nature of the traceability link
72                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Semantics

The Track element is the origin of the TraceableTo relations between arbitrary KDM elements. Since the Track element 
and the TraceableTo relation are both defined as part of the InventoryModel, they can be added to any KDMEntity 
element in any KDMModel. The Track element can be extended so that additional attributes can be added.

11.6.3 KDMEntity (additional properties)

NOTE:KDM14-208

Associations

11.7 Regions Class Diagram

NOTE:KDM14-207, KDM14-255

The Regions class diagram defines a set of meta-model elements whose purpose is to provide detailed information 
regarding the regions within the physical artifacts of that system. This detailed references may accompany traceability 
links represented by the SourceRef element. The class diagram shown in Figure 11.5 captures these classes and their 
relations.

Figure 11.5 - Regions Class Diagram 

owner:KDMEntity[0..1] the logical origin element for the traceability link

source: SourceRef[0..*] Link to the physical artifact of the element. 

track:Track[0..*] origin of explicit traceability relations to other KDM entities
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        73



11.7.1 Region Class (abstract)

NOTE:KDM14-207

The Region element is an abstract element that identifies a single region within a resource that is considered to be the 
physical artifact of the corresponding KDM element. 

Superclass

AnnotatableElement

Attributes

Associations

Constraints

1. The location of the source file should be provided using at least one of the following methods:

• Path attribute of the Region element

• Path attribute of the referenced InventoryItem element of the Inventory model

Semantics

The Region element identifies a single region within some physical artifact of the corresponding KDM element. The 
concrete subclasses of the Region element provide the capability to precisely map model elements to a particular region 
of source that can be text, binary, or any other format.

The “format” attribute describes the organization of the artifact. The format attribute has the same semantic as the format 
attribute of InventoryItem. The exact nature of the artifacts is described either in the format attribute (from abstract 
Region class), or in the format attribute of the InventoryItem. The format attribute in Region takes precedence over the 
format attribute in InventoryItem. Individual SourceRef elements may own multiple Region elements that represent a 
situation where there are multiple disjoint regions that correspond to the given KDM element. These regions may have 
different format.

A KDM element can be linked to the corresponding particular physical artifact (regardless of the existence of the 
corresponding snippet) in the following two ways:

• The Region element can utilize the element of the KDM inventory model to identify the particular physical artifact, in 
which case the URI reference of the artifact is determined through the Inventory Model. Subclasses of Region may 
refer to specific subclass of InventoryItem.

• The Region element can be made stand-alone and explicitly specify the URI reference of the artifact as the “path” 
attribute of the Region element.

format:String (Optional attribute) - describes the organization of the physical artifact

path:String (Optional attribute) - full URI reference of the physical artifact that contains the given region 

file:InventoryItem[0..1] This association allows zero or more Region elements to be associated with a single 
InventoryItem element of the Inventory Model.
74                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The path attribute is the URI reference that should uniquely identify the physical artifact.

11.7.2 SourceRegion Class

NOTE:KDM14-207, KDM14-166, KDM14-257

The SourceRegion element identifies a single region within some InventoryItem that is the physical representation of the 
corresponding KDM element The SourceRegion element provides the capability to precisely map model elements to a 
particular region of source code in text format. The nature of the source code within the physical artifact is indicated by 
the language attribute of the SourceRegion element or the language attribute of the SourceFile element. The language 
attribute of the SourceRegion element overrides that of the SourceFile element if both are present. 

The source region is located within some physical artifact of the existing software system (a source file).

Superclass

Region

Attributes

Constraints

1. The file attribute of the SourceRegion element shall refer to an InventoryItem with text format

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters, 
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The 
“end of line” character is not considered to be part of the line.

11.7.3 BinaryRegion Class

NOTE:KDM14-207, KDM14-239

The BinaryRegion element identifies a single region within some InventoryItem that has binary format. 

Superclass

Region

startLine: Integer The line number of the first character of the source region.

startPosition:Integer Provides the position of the first character of the source region. 

endLine:Integer The line number of the last character of the source region.

endPosition:Integer The position of the last character of the source region.

language:String (Optional attribute) - The language indicator of the source code for the given source 
region.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        75



Attributes

Semantics

The BinaryRegion element identifies a single region within some InventoryItem that has binary format.  The exact nature 
of the format is described either in the format attribute (from abstract Region class), or in the format attribute of the 
InventoryItem. The format attribute in BinaryRegion takes precedence over the format attribute in InventoryItem.

Specification of a BinaryRegion assumes that the corresponding resource is a sequence of bytes, where each byte has 8-
bit size, representable as an octet. Addresses in a BinaryRegion are represented as non-negative integers. The address of 
the first byte in a binary resource is 0. For example, an address that may be displayed as a C-like string "0x00A0" is 
represented as an integer 160.

11.7.4 ReferenceableRegion Class

NOTE:KDM14-207

The ReferenceableRegion element identifies a single element within some InventoryItem using a custom reference.

Superclass

Region

Attributes

Semantics

The ReferenceableRegion element identifies a single element within some InventoryItem. The exact nature of the format 
is described in the format attribute (from abstract Region class), or in the format attribute of the InventoryItem. The 
format attribute in ReferenceableRegion takes precedence over the format attribute in InventoryItem. The semantics of the 
reference is outside of the scope of KDM. The implementer shall provide appropriate reference.

11.8 InventoryRelations Class Diagram

NOTE:KDM14-69, KDM14-208, KDM14-231

InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes 
and associations for this diagram are shown in Figure 11.6.

startAddr: Integer The address of the first byte of the binary region.

endAddr:Integer The address of the last byte of the binary region. 

ref: String The reference to the element.
76                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 11.6 - InventoryRelations Class Diagram

11.8.1 DependsOn Class

NOTE:KDM14-69

DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which 
one inventory element requires another inventory element during one or more steps of the engineering process. 

Superclass

AbstractInventoryRelationship

Associations

Constraints

1. An inventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. The implementer may capture certain aspects knowledge of the engineering 
process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of the 
Infrastructure Layer, which is available to all KDM implementations at various compliance levels. KDM Build package 
that constitutes a separate L1.Build compliance point, defines additional meta-model elements that represent the facts 
involved in the build process of the software system (including but not limited to the engineering transformations of the 
“source code” to “executables”).

When the origin of the DependsOn relationship is an Inventory container, this means that all elements owned by this 
container (directly or indirectly) depend on the target of the relationship.

from:AbstractInventoryElement[1] the base inventory item

to:AbstractInventoryElement[1] another inventory item on which the base item depends
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        77



When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base 
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

11.8.2 TraceableTo Class

NOTE:KDM14-69, KDM14-208

TraceableTo class is a meta-model element that represents an optional relationship between any KDMEntity and an 
InventoryItem. This relationship represents situations where the KDMEntity is traceable to the inventory element during 
one or more steps of the engineering process. For example, a Module element in the CodeModel can be traceable to a 
certain SourceFile.

Superclass

AbstractInventoryRelationship

Associations

Constraints

1. A KDMEntity should not be traceable to itself.

Semantics

The TraceableTo relationship is optional. The implementer may capture certain aspects of the knowledge extraction 
process or engineering process in the form of “TraceableTo” relations to inventory items. “TraceableTo” relationship is 
part of the Infrastructure Layer, which is available to all KDM implementations at various compliance levels. 
"TraceableTo" relation is related to the SourceRef mechanism that is also provided by the InventoryModel. However, in 
contrast to the SourceRef mechanism, the "TraceableTo" relation is an explicit relation between any KDMEntity (through 
the owned Track element) and some other KDMEntity, including an InventoryItem.

KDM Build package that constitutes a separate L1.Build compliance point, defines additional meta-model elements that 
represent the facts involved in the build process of the software system, including but not limited to the engineering 
transformations of the “source code” to “executables”. 

11.9 ExtendedInventoryElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedInventoryElements class diagram defines two viewpoint-specific generic elements for the inventory model 
as determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and 
associations of the ExtendedInventoryElements diagram are shown in Figure 11.7. 

from:Track[1] The Track element that is owned by some KDMEntity

to:KDMEntity[1] another KDMEntity to which the owner of the Track element is traceable to
78                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 11.7 - ExtendedInventoryElements Class Diagram

11.9.1  InventoryElement Class (generic)

NOTE:KDM14-58

The InventoryElement class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractInventoryElement

Constraints

1. InventoryElement should have at least one stereotype.

Semantics

An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model entity type of the inventory model. This is one of the KDM extension points that can integrate additional 
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.9.2  InventoryRelationship Class (generic)

NOTE:KDM14-58

The InventoryRelationship class is a generic meta-model element that can be used to define new extended inventory 
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractInventoryRelationship
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        79



Associations

Constraints

1. InventoryRelationship should have at least one stereotype.

Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a 
new extended meta-model relationship type of the inventory model. This is one of the KDM extension points that can 
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard 
KDM representation.

from:AbstractInventoryElement[1] the inventory element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship
80                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Subpart II - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming languages. 

Packages of the Program Elements Layer define an architecture viewpoint for the Code domain.

• Concerns:

• What are the computational elements of the system?

• What are the modules of the system?

• What is the low-level organization of the computational elements?

• What are the datatypes used by the computational elements?

• What are the units of behavior of the system?

• What are the low-level relationships between the code elements, in particular what are the control-flow and data-
flow relationships ?

• What are the important non-computational elements?

• How are computational elements and modules related to the physical artifacts of the system?

• Viewpoint language: 

Code views conform to KDM XMI schema. The viewpoint language for the Code architectural viewpoint is 
defined by the Code and Action packages. It includes several abstract entities, such as AbstractCodeElement and 
CodeItem, several generic entities, such as Datatype, ComputationalObject and Module, as well as several 
concrete entities, such as StorableUnit, CallableUnit, CompilationUnit, and ActionElement. The viewpoint 
language for the Code architectural viewpoint also includes several relationships, which are subclasses of 
AbstractCodeRelationship and AbstractActionRelationship.

• Analytic methods:

The Code architectural viewpoint supports the following main kinds of checking:

• Composition (for example, what code elements are owned by a CompilationUnit, SharedUnit, or a 
CodeAssembly; what action elements are owned by a CallableUnit)?

• Data flow (for example, what action elements read from a given StorableUnit; what action elements write to a 
given StorableUnit; what action elements create dynamic instances of a given Datatype; what action elements 
address a particular StorableUnit; what data element are being read as actual parameters in a call)?

• Control flow (for example, what CallableUnit is used in a call; what action element is executed after the given 
action element; what action elements are executed before the given action element; what data element is used to 
dispatch control flow from a given action element; what action element is executed after the given element under 
what conditions; what is the exceptional flow of control; what action elements are executed as entry points to a 
given module or a CallableUnit)?

• Datatypes (for example, what is the datatype of the given storable unit; what is the base datatype of the given 
pointer type; what is the base datatype of the given element of the record type; what is the signature of the given 
CallableUnit)?
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        81



Other kinds of checking are related to the interfaces, templates, and pre-processor. All relationships defined in the Code 
model are non-transitive. Additional computations are required to derive, for example, all action elements that can be 
executed after the given action element, or all CallableUnits that a given action element can dispatch control to.

The KDM mechanism of aggregated relationship is used to derive relationships between KDM elements that own or 
reference various Code elements (usually, Module and CodeAssembly) based on the low-level relationship between 
individual Code elements.

• Construction methods:

• Code views that correspond to the KDM Code architectural viewpoint are usually constructed by parser-like 
tools that take artifacts of the system as the input and produce one or mode Code views as output.

• Construction of the Code view is determined by the syntax and semantics of the programming language of the 
corresponding artifact, and is based on the mapping from the given programming language to KDM; such 
mapping is specific only to the programming language and not to a specific software system.

• The mapping from a particular programming language to KDM may produce additional information (system-
specific, or programming language-specific, or extractor tool-specific). This information can be attached to 
KDM elements using stereotypes, attributes, or annotations.

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:

• Code

• Action

Code package defines CodeItems (named elements determined by the programming language, the so-called “symbols,” 
“definitions,” etc.) and structural relations between them. CodeItems are further categorized into ComputationalObject, 
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which 
detemine the control- and data- flows between code items. 

Description of the Code package is further subdivided into the following parts:

• Code Elements representing Modules

• Code Elements representing Computational Objects

• Code Elements representing Datatypes

• Code Elements representing Preprocessor Directives

• Miscellaneous Code Elements

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM 
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record 
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an 
association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex user-
defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym type). 
KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model 
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements 
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM 
also provides several powerful generic extensible elements that can be further used with stereotypes to represent 
uncommon situations.
82                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes 
can be owned by the data element that uses it. 

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):

• suffix “Element”  - usually designates a generic meta-model element.

• suffix “Type” - designates a meta-model element representing some datatype.

• suffix “Unit” - designates a concrete meta-model element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        83



84                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12 Code Package

General Information

12.1 Overview
The Code package defines a set of meta-model elements whose purpose is to represent implementation level program 
elements and their associations. It is determined by one or more programming languages used in the design of the given 
existing software system. Code package includes meta-model elements, which represent common program elements 
supported by various programming languages, such as data types, data items, classes, procedures, macros, prototypes, and 
templates.

As a general rule, in a given KDM instance, each instance of the code meta-model element represents some programming 
language construct, determined by the programming language of the existing software system. Each instance of a code 
meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software 
system. Exceptions to this rule are:

• instances of the CodeModel meta-model element that are parts of the KDM infrastructure. This meta-model element is 
a container for other code element instances.

• instances of code element that explicitly represent certain abstractions provided by a programming language, such as 
primitive datatypes and predefined datatypes.

12.2 Organization of the Code Package

NOTE:KDM14-225

The Code package consists of the following 25 class diagrams:

1. CodeModel

2. CodeInheritances

3. Modules

4. ControlElements

5. DataElements

6. Values

7. Datatypes

8. PrimitiveTypes

9. EnumeratedTypes

10.CompositeTypes

11.DerivedTypes

12.Signature
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        85



13.DefinedTypes

14.ClassTypes

15.Templates

16.TemplateRelations

17.ClassRelations

18.TypeRelations

19.InterfaceRelations

20.PreprocessorDirectives

21.PreprocessorRelations

22.Comment

23.Visibility

24.VisibilityRelations

25.ExtendedCodeElements

The Code package depends on the following packages:

• Source
• Core
• kdm

12.3 CodeModel Class Diagram

NOTE:KDM14-81

The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with 
specific meta-model elements related to implementation-level program elements and their associations. 

The CodeModel diagram defines the following classes determined by the KDM model pattern:

• CodeModel – a class representing a model for CodeElement.
• AbstractCodeElement – a class representing an abstract parent class for all KDM entities that can be used to model 

code.
• AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to 

represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program 
elements:

• CodeItem
• ComputationalObject
• Datatype
86                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



• Module
• PreprocessorDirective

The class diagram shown in Figure 12.1 captures these classes and their relations. Classes Module and 
PreprocessorDirective are defined in separate sections.

Figure 12.1 - CodeModel Class Diagram 

12.3.1  CodeModel Class
The CodeModel is the specific KDM model that owns collections of facts about the existing software system such that 
these facts correspond to the Code domain. CodeModel is the only model of the Program Elements Layer of KDM. 
CodeModel follows the uniform pattern for KDM models. 

Superclass

KDMModel

Associations

Semantics

CodeModel is a container for code elements. The implementer shall arrange code elements into one or more code models. 
KDM import tools should not make any assumptions about the organization of code elements into code models.

codeElement:AbstractCodeElement[0..*] {ordered} The set of the top-level elements that are defined in this code model. 
The CodeModel element is the owner of such CodeElement. This 
property subsets the ownedElement property of KDMModel 
derived union.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        87



12.3.2  AbstractCodeElement Class (abstract)

NOTE:KDM14-74, KDM14-81, KDM14-208

The AbstractCodeElement is an abstract class representing any generic determined by a programming language. The key 
subclasses of AbstractCodeElement are CodeItem and ActionElement.

Superclass

KDMEntity

Associations

Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the 
Code model.

12.3.3  AbstractCodeRelationship Class (abstract)
The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language. 

Superclass

 KDMRelationship 

Semantics 

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Code 
model.

12.3.4  CodeItem Class (abstract)
CodeItem class represents the named elements determined by the programming language (the so-called “symbols,” 
“definitions,” etc.). There are AbstractCodeElements that are not CodeItems, for example ActionElements that are defined 
in the Action package. 

Superclass

AbstractCodeElement 

Semantics

CodeItem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.

12.3.5  ComputationalObject Class (generic)

NOTE:KDM14-58

codeRelation:CodeRelation[0..*] The set of code relations owned by this code element.
88                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



ComputationalObject class represents the named elements determined by the programming language, which describe 
certain computational objects at the runtime, for example, procedures, and variables. 

Superclass

CodeItem

Constraints

1. Instance of the ComputationalObject element should have at least one stereotype.

Semantics

ComputationalObject is a generic element with under specified semantics that can be used as an extension point to define 
new extended meta-model elements that represent specific named control elements or data elements that do not fit into 
semantic categories of the concrete subclasses of ComputationalObject.

12.3.6  Datatype Class (generic)

NOTE:KDM14-58, KDM14-81

Datatype class represents the named elements determined by the programming language that describes datatypes. The key 
subclasses of Datatype are: PrimitiveType, EnumeratedType, CompositeType, DerivedType, Signature, DefinedType, 
ClassUnit, InterfaceUnit, TemplateElement.

Superclass

CodeItem

Constraints

1.Instance of the Datatype element should have at least one stereotype.

Semantics

Datatype is a generic element with under-specified semantics that can be used as an extension point to define new 
extended meta-model elements that represent specific named datatypes that do not fit into semantic categories of the 
concrete subclasses of Datatype.

12.4 CodeInheritances Class Diagram

NOTE:KDM14-208

The CodeInheritances class diagram defines how classes of the Code package inherit from the Core package. The class 
diagram shown in Figure 12.2 captures these relations.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        89



Figure 12.2 - CodeInheritances Class Diagram

Code Elements Representing Modules 

12.5 Modules Class Diagram
The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages, 
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these 
classes and their associations.

Figure 12.3 - Modules Class Diagram

12.5.1  Module Class (generic)

NOTE:KDM14-23

The Module class is a generic KDM modeling element that represents an entire software module or a component, as 
determined by the programming language and the software development environment. A module is a discrete and 
identifiable program unit that contains other program elements and may be used as a logical component of the software 
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and 
the implementation. In the context of representing existing software systems, modules provide the context for establishing 
90                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



the associations between the programming language elements that are owned by them, especially when the same logical 
component of a software product line is compiled multiple times with different compilation options and linked into 
multiple executables. Instances of the Module class represent the logical containers for program elements determined by 
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of 
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex 
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the 
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.

Superclass

CodeItem

Associations

Constraints

1. Module class and its subclasses should not own SourceRef elements.

2. Code Model cannot directly own any code elements other than the subclasses of the Module class.

3. Every code element should be owned by some instance of the Module class or its subclasses.

4. Instance of the Module element should have at least one stereotype.

5. No other code element should own Module elements and its subclasses.

6. If Module directly owns ActionElement, then the Module shall own EntryFlow to the logically first ActionElement

Semantics

Module is a logical container for program elements. Subclasses of Module element define semantically distinct flavors of 
Module, representing common categories of containers.

The implementer shall select an appropriate subclass of the Module element.

12.5.2  CompilationUnit Class

NOTE:KDM14-23. KDM14-26, KDM14-249

The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A 
compilation unit is a logical part of the existing software system that is sufficiently complete to be processed by the 
corresponding software development environment. Compilation unit is usually related to some artifact of the existing 
software system, for example, a physical source file. Compilation units are supported by the selected programming 
languages of the existing software system and as determined by the corresponding engineering process. 

Superclass

Module

codeElement:AbstractCodeElement[0..*] {ordered} The list of owned CodeElement
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        91



Constraints

1. When CompilationUnit owns one or more initialization BlockUnit, the CompilationUnit shall own EntryFlow 
relation to the logically first initialization block

Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a 
SourceFile in the InventoryModel. Implementer shall determine appropriate name of the CompilationUnit. This name may 
or may not be the same as the name of the corresponding SourceFile, if one is available. On the other hand, the “path” of 
SourceFile element of the InventoryModel shall include all "extensions", etc. The path attribute shall uniquely identify the 
SourceFile in the filesystem, described by the InventoryModel. 

CompilationUnit may own initialization blocks. The EntryFlow relation shall refer to the logically first initialization 
block. Semantics of initialization blocks is described in section “BlockUnit Class”

Example

See example in section “HasValue Class”

12.5.3  SharedUnit Class
The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected 
programming languages of the existing software system and as determined by the engineering process. 

Superclass

Module

Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the 
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.

12.5.4  LanguageUnit Class
The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements 
determined by a particular programming language.

Superclass

Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is a logical container that owns definitions of primitive and predefined datatypes for a particular language, 
as well as other common elements for a particular programming language. LanguageUnit may or may not correspond to a 
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. The 
implementer shall add such files to the InventoryModel. Primitive datatypes usually do not have any corresponding files, 
in this situation the LanguageUnit does not have a counterpart in the InventoryModel.
92                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.5.5  CodeAssembly Class

NOTE:KDM14-23

The CodeAssembly represents a logical container for the program elements that were built together (for example, 
compiled and linked into an executable, so that all variant selection during the compilation and static linking was resolved 
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. A source file may 
produce a different logical model when, for example, compiled and linked for a different hardware platform, or for a 
different operating system. The CodeAssembly represents a collection of entities that have been analyzed together. A 
different variant of the conceptual family of software systems (even involving same compilation units) may need to be 
cloned into a separate CodeAssembly.

Superclass

Module

Semantics

CodeAssembly is a logical container that provides the context for entities and relationships for a collection of program 
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain 
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

The EntryFlow relation shall refer to the logically first initialization block, which is usually the "master" initialization 
block that refers to initialization of owned CompilationUnit in correct order and then refer to the entry point of the 
CodeAssembly, for  example, "main". Semantics of initialization blocks is described in section “BlockUnit Class”.

Example

See example in section “HasValue Class”.

12.5.6  Package Class
The Package class is a subtype for Module that logical collections of program elements, as directly supported by some 
programming languages, such as Java.

Superclass

Module

Semantics

A Package is a logical container for program elements as well as Modules. Packages can be nested.

Code Elements Representing Computational Objects

12.6 ControlElements Class Diagram

NOTE:KDM14-64, KDM14-306

The ControlElements class diagram defines basic meta-model elements to represent callable computational objects, such 
as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        93



Figure 12.4 - ControlElements Class Diagram

12.6.1  ControlElement Class (generic)

NOTE:KDM14-192, KDM14-58

The ControlElement class is a common superclass that defines attributes for callable code elements. In the meta-model it 
has the role of an endpoint for some KDM relations.

Superclass

ComputationalObject

Attributes and Associations

Operations

Constraints

1. ControlElement should have at least one stereotype.

type:Datatype[0..1] Optional association to the datatype of this control element

codeElement:AbstractCodeElement[0..*] {ordered} Represents owned code elements, such as local definitions and 
actions.

getSignature():Signature[0..1] Signature of the current ControlElement

getReturnType():Datatype[0..1] Return Datatype of the current ControlElement.
94                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



2. ControlElement should own a Signature.

3. The Signature retrned by the getSignature operation isthe Signature owned by the ControlElement

4. 4. The DataType returned by the getReturnType operation is the Datatype of theParameterUnit owned by the 
Signature of the current ControlElement, where the ParameterKind of the ParameterUnit is "return"

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new 
extended meta-model elements that represent specific named control constructs that do not fit into semantic categories of 
the concrete subclasses of ControlElement.

ControlElement represents named items of the software system that describe certain behavior that can be performed by 
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units 
and high-level programming languages.

ControlElement owns other program elements, which can include nested ControlElements.

12.6.2  CallableUnit Class

NOTE:KDM14-64

The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

ControlElement

Attributes

Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. This is a 
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational 
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return 
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the 
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the 
invocation stack.

A CallableUnit represents global or local procedures and functions.

12.6.3  CallableKind Data Type (enumeration)
CallableKind enumerated data type specifies some common properties of the CallableUnit.

kind:CallableKind indicator of the kind of the callable unit

isStatic:Boolean indicates that the element is declared as “static” (is visible only 
in the owner CompilationUnit)
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        95



Literal values

12.6.4  MethodUnit Class

NOTE:KDM14-64, KDM14-66

The MethodUnit represents member functions owned by a ClassUnit.

Superclass

ControlElement

Attributes

Semantics

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and 
destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of 
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well 
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly 
(by reference).

12.6.5  MethodKind data type (enumeration)

NOTE:KDM14-64

regular specifies a regular definition of a procedure or function

external specifies an external procedure (a prototype, definition is elsewhere)

operator specifies a definition of an operator

stored specifies a stored procedure in DataModel

unknown properties are unknown

kind:MethodKind indicator of the kind of the method represented by this element

export: ExportKind represents the visibility of the method (public, private, protected)

isFinal:Boolean indicates that the method may not be redefined in a subtype

isStatic:Boolean indicates that the method characterizes the ClassUnit (true) or individual 
instances (false)

isVirtual:Boolean indicates that the method is declared as virtual

isAbstract:Boolean indicates that the method is declared as abstract or is the part of an interface
96                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model 
element.

Literal Values

12.6.6  ExportKind data type (enumeration)

NOTE:KDM14-64, KDM14-221

ExportKind enumeration data type defines several common properties of a MemberUnit, MethodUnit or entire ClassUnit 
related to their visibility and other properties.

Literal values

Example (C language)

NOTE:KDM14-15, KDM14-308

int main(int argc, char* argv[]) {
printf("Hello, World\n");

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 
xmlns:source="http://www.omg.org/spec/KDM/20160201/source"  

name="HelloWorld Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel" name="HelloWorld">
    <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="hello.c">
      <codeElement xmi:id="id.2" xmi:type="code:CallableUnit" 

name="main" type="id.5" kind="regular">
        <source xmi:id="id.3" language="C" snippet="int main(int argc, char* argv[]) {}"/>
        <entryFlow xmi:id="id.4" to="id.12" from="id.2"/>
        <codeElement xmi:id="id.5" xmi:type="code:Signature" name="main">
          <source xmi:id="id.6" snippet="int main(int argc, char * argv[]);"/>
          <parameterUnit xmi:id="id.7" name="argc" type="id.25" pos="1"/>
          <parameterUnit xmi:id="id.8" name="argv" type="id.9" pos="2">

method The MethodUnit represents a regular member function.

constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

unknown The kind of the MethodUnit is none of the above.

public specifies a public member, method or class

private specifies private member, method or class

protected specifies a protected member, method or class

unknown properties are unknown
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        97



            <codeElement xmi:id="id.9" xmi:type="code:ArrayType">
              <itemUnit xmi:id="id.10" type="id.19"/>
            </codeElement>
          </parameterUnit>
          <parameterUnit xmi:id="id.11" type="id.25" kind="return"/>
        </codeElement>
        <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="a1" kind="Call">
          <source xmi:id="id.13" language="C" snippet="printf(&quot;Hello, World!\n&quot;);"/>
          <codeElement xmi:id="id.14" xmi:type="code:Value" 

name="&quot;Hello, World!\n&quot;" type="id.19"/>
          <actionRelation xmi:id="id.15" xmi:type="action:Reads" to="id.14" from="id.12"/>
          <actionRelation xmi:id="id.16" xmi:type="action:Calls" to="id.20" from="id.12"/>
          <actionRelation xmi:id="id.17" xmi:type="action:CompliesTo" 

to="id.20" from="id.12"/>
        </codeElement>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.18" xmi:type="code:LanguageUnit">"
      <codeElement xmi:id="id.19" xmi:type="code:StringType" name="char *"/>
      <codeElement xmi:id="id.20" xmi:type="code:CallableUnit" name="printf" type="id.21">
        <codeElement xmi:id="id.21" xmi:type="code:Signature" name="printf">
          <parameterUnit xmi:id="id.22" name="" type="id.25" kind="return" pos="0"/>
          <parameterUnit xmi:id="id.23" name="format" type="id.19" pos="1"/>
          <parameterUnit xmi:id="id.24" name="arguments" kind="variadic" pos="2"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.25" xmi:type="code:IntegerType" name="int"/>
    </codeElement>
  </model>
  <model xmi:id="id.26" xmi:type="source:InventoryModel" name="HelloWorld">
    <inventoryElement xmi:id="id.27" xmi:type="source:SourceFile" 

name="hello.c" language="C"/>
  </model>
</kdm:Segment>

12.7 DataElements Class Diagram

NOTE:KDM14-64, KDM14-306

The DataElements class diagram defines meta-model constructs to represent the named data items of existing software 
systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5 
shows these classes and their associations.
98                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 12.5 - DataElement Class Diagram 

12.7.1  DataElement Class (generic)
The DataElement class is a generic modeling element that defines the common properties of several concrete classes that 
represent the named data items of existing software systems (for example, global and local variables, record files, and 
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete 
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is 
more specific than CodeElement.

Superclass

ComputationalObject

Attributes

ext:String Optional extension representing the original representation of the data element.

size: Integer Specifies the optional constraint on the number of elements any value of the storable element may 
contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        99



Associations

Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a 
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an 
existing software system, that do not fit into more precise semantics of the subclasses of DataElement. 

Constraints

1. DataElement class should have at least one Stereotype.

12.7.2  StorableUnit Class

NOTE:KDM14-64

StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software 
system.

Superclass

DataElement

Attribute

Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the 
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a 
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.

12.7.3  StorableKind data type (enumeration)
StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle, 
visibility, and memory type.

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype of the current 
DataElement.

type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.

kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see 
StorableKind enumeration datatype).

isStatic:Boolean indicates that the element is declared as “static” (visible only in the owner 
CompilationUnit)
100                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Literal values

12.7.4  ItemUnit Class
ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of 
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM 
data relations that describe access to complex datatypes.

Superclass

DataElement

Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective, 
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit, 
but also by the identity of the owner element.

12.7.5  IndexUnit Class

NOTE:KDM14-182

 IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. Instances 
of IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass

DataElement

Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element. When an IndexUnit is omitted, it is 
assumed to be a data element of IntegerType.

12.7.6  MemberUnit Class

NOTE:KDM14-64

MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of 
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an 
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain 

global specifies a global variable

local specifies a local variable

external specifies an external variable (a prototype)

register specifies a temporary variable

unknown properties are unknown
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        101



existing computational object, while the computational object corresponding to a MemberUnit is usually determined by 
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines 
some additional attributes.

Superclass

DataElement

Attributes

Constraints

1. MemberUnit can be owned only by a ClassUnit.

Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family 
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of 
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.7  ParameterUnit Class

NOTE:KDM14-64

ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a 
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class 
are endpoints of KDM data relations that describe access to formal parameters.

Superclass

DataElement

Attributes

Constraints

1. Return parameter of a signature does not have a pos attribute.

2. Return ParameterUnit is a signature should have a kind=”return.”

export:ExportKind Represents the visibility of the member (public, private, protected).

isFinal:Boolean indicates that the member may not be redefined in a subtype

isStatic:Boolean indicates that the member characterizes the ClassUnit (true) or individual 
class instances (false)

kind:ParameterKind optional attribute defining the parameter passing convention for the attribute

isFinal:Boolean indicates that the parameter may not be written to (may not be the endpoint of 
a Writes relationship)

pos:Integer position of the attribute in the signature
102                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



3. There can be at most one ParameterUnit within a certain Signature with a return kind.

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the 
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are 
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the 
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of 
programming languages that allow named parameters (binding of actual parameters by name rather than by a position), 
the producer of the KDM model is responsible for computing correct positions of the named parameters and determining 
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is 
described in section  “Signature Class Diagram”.

12.8 ValueElements Class Diagram
ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of 
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

Figure 12.6 - ValueElements Class Diagram 

12.8.1  ValueElement Class (generic)
ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software 
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is 
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class. 

Superclass

DataElement
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        103



Constraints

1. ValueElement and its subclasses should not have owned code elements.

2. ValueElement and its subclasses cannot be used as the target of relations Writes and Addresses.

3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype. 

ValueElement class and its subclasses correspond to ISO/IEC 11404 literals and values. The datatype of the value is 
represented by the type property (defined for its superclass DataElement class).

12.8.2  Value Class
Value class is a meta-model element that represents values used in the artifacts of existing software systems.

Superclass

ValueElement

Semantics

Value class corresponds to ISO/IEC 11404 literals of primitive types, such as boolean-literal, state-literal, enumerated-
literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal, void-literal, 
pointer-literal, bitstring-literal, string-literal. 

The name attribute of the ValueClass represents the name or a string representation of the value.

12.8.3  ValueList Class
The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass

ValueElement

Associations

Semantics

A ValueList is a data element associated with a single value of some non-primitive datatype. The value of the complex 
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to ISO/IEC 11404 values for aggregated datatypes such as choice-value, record-value, set-value, 
sequence-value, bag-value, array-value, table-value.

valueElement:ValueElement[0..*] component values
104                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Code Elements Representing Datatypes

12.9 Datatypes Class Diagram

NOTE:KDM14-225

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM 
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record 
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an 
association “type” to its datatype. KDM distinguishes: 

• primitive datatypes (for example, Integer, Boolean),

• complex user-defined datatypes (for example, array, pointer, sequence), and 

• named datatypes (for example, a class, a synonym type). 

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model 
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements 
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM 
also provides several powerful generic extensible elements that can be further used with stereotypes to represent 
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes 
can be owned by the data element that uses it. 

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are 
provided further in the text of the specification.

The Datatypes class diagrams provides an overview of meta-elements that represent datatypes common to various 
programming languages. The key subclasses of Datatype are illustrated at Figure 12.7. Individual classes are defined in 
the subsequent sections.

Figure 12.7 - Datatypes Class Diagram 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        105



12.10 PrimitiveTypes Class Diagram

NOTE:KDM14-21

The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various 
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.8.

Figure 12.8 - PrimitiveTypes Class Diagram 

12.10.1  PrimitiveType Class (generic)

NOTE:KDM14-58

The PrimitiveType is a generic meta-model element that represents primitive data types determined by various 
programming languages. 

Superclass

Datatype

Constraints

1. PrimitiveType should have at least one stereotype.

Semantics
106                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



PrimitiveType element has under specified semantics. It can be used as an extension point to define new extended meta-model 
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of 
PrimitiveType class.

12.10.2  BooleanType Class
The BooleanType is a meta-model element that represents Boolean data types common to various programming 
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass

PrimitiveType

Semantics

The KDM BooleanType class corresponds to ISO/IEC 11404 Boolean datatype.

12.10.3  CharType Class

NOTE:KDM14-21

The CharType is a meta-model element that represents character data types common to various programming languages. 
Character is a family of datatypes whose value spaces are character-sets.

Superclass

PrimitiveType

Attributes

Semantics

The KDM CharType class corresponds to ISO/IEC 11404 Character datatype.

Attribute charset identifies a character set for the CharType. Semantics of charset is aligned with "repertoir-identifier" in 
ISO 11404. If this attribute is omitted, the default character set is ISO-8859-1. For the list of valid character set 
identifiers, refer to ISO 11404, Appendix A, or IANA character sets, RFC 2978.

12.10.4  OrdinalType Class
The OrdinalType class is a meta-model element that represents ordinal datatypes available in some programming 
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer). 
Ordinal is the infinite enumerated type. 

Superclass

PrimitiveType

Semantics

The KDM OrdinalType class corresponds to ISO/IEC 11404 Ordinal datatype.

charset:String ISO identification of the characterset
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        107



12.10.5  DateType Class
The DateType is a meta-model element that represents built-in data types related to dates.

Superclass

PrimitiveType

Semantics

12.10.6  TimeType Class
The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes 
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions 
thereof. 

Superclass

PrimitiveType

Semantics

The KDM TimeType class corresponds to ISO/IEC 11404 Time datatype. The interpretation of the details of the Time 
datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the 
KDM representation of an existing system to systematically identify the detailed information regarding the details of the 
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.10.7  IntegerType Class
The IntegerType is a meta-model element that represents integer data type common to various programming languages. 
Integer is the mathematical datatype comprising exact integer values. 

Superclass

PrimitiveType

Semantics

The KDM IntegerType class corresponds to ISO/IEC 11404 Integer datatype.

12.10.8  DecimalType Class
The DecimalType is a meta-model element that represents decimal data types common to various programming 
languages. 

Superclass

PrimitiveType

Semantics

The KDM DecimalType class corresponds to ISO/IEC 11404 Integer datatype.
108                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.10.9  ScaledType Class
The ScaledType is a meta-model element that represents fixed point data types common to various programming 
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual 
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass

PrimitiveType

Semantics

The KDM ScaledType class corresponds to ISO/IEC 11404 Scaled datatype.

12.10.10  FloatType Class
The FloatType is a meta-model element that represents float data types common to various programming languages. Float 
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real 
numbers.”

Superclass

PrimitiveType

Semantics

The KDM FloatType class corresponds to ISO/IEC 11404 Real datatype.

12.10.11  VoidType Class
The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages. 
Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no 
information is a given instance.

Superclass

PrimitiveType

Semantics

The KDM VoidType class corresponds to ISO/IEC 11404 Void datatype.

12.10.12  StringType Class

NOTE:KDM14-21

The StringType is a meta-model element that represents string data type common to various programming languages. 
String is a datatype representing strings of characters from standard character-sets.

Superclass

PrimitiveType
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        109



Attributes

Semantics

The KDM StringType class corresponds to ISO/IEC 11404 defined datatype Character string. 

Attribute charset identifies a character set for the StringType. Semantics of charset is aligned with "repertoir-identifier" in 
ISO 11404. If this attribute is omitted, the default character set is ISO-8859-1. For the list of valid character set 
identifiers, refer to ISO 11404, Appendix A, or IANA character sets, RFC 2978.

12.10.13  BitType Class
The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is 
the datatype representing the binary digits “0” and “1.” 

Superclass

PrimitiveType

Semantics

The KDM BitType class corresponds to ISO/IEC 11404 defined datatype Bit.

12.10.14  BitstringType Class
The BitstringType class is a meta-model element that represents bit string datatypes available in some programming 
languages. Bitstring is the datatype of variable-length strings of binary digits. 

Superclass

PrimitiveType

Semantics

The KDM BitstringType class corresponds to ISO/IEC 11404 defined datatype Bit string.

12.10.15  OctetType Class
The OctetType class is a meta-model element that represents octet datatypes available in some programming languages. 
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings. 

Superclass

PrimitiveType

Semantics

The KDM OctetType class corresponds to ISO/IEC 11404 defined datatype Octet.

charset:String ISO identification of the characterset
110                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.10.16  OctetstringType Class
The OctetstringType class is a meta-model element that represents octet string datatypes available in some programming 
languages. Octet string is a variable-length encoding using 8-bit codes. 

Superclass

PrimitiveType

Semantics

The KDM OctetstringType class corresponds to ISO/IEC 11404 defined datatype Octet string.

12.11 EnumeratedTypes Class Diagram
The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to 
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.9.

Figure 12.9 - EnumeratedTypes Class Diagram 

12.11.1  EnumeratedType Class

NOTE:KDM14-72

The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType 
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number 
of distinguished values.

Superclass

Datatype

Associations

Constraints

1. Each ValueElement owned by an EnumeratedType shall have its type property set to this EnumeratedType.

value:Value[0..*] {ordered} The list of enumerated literals defined for the given EnumeratedType.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        111



Semantics

EnumeratedType corresponds to ISO/IEC 11404 Enumerated and State families of datatypes. Enumerated datatype is a 
family of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State is a 
family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not make 
distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the 
EnumeratedType. 

Some programming languages, for example Java, allow enumerated type with methods and other elements. Such 
datatypes are represented as ClassUnit, containing the corresponding Value element.

12.12 CompositeTypes Class Diagram
The CompositeTypes class diagram defines meta-model elements that represent common composite datatypes provided by 
various programming languages (for example, records, structures, and unions). Composite datatypes is a broad category 
of user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple 
component datatypes.

The classes and associations of the CompositeTypes diagram are shown in Figure 12.10.

Figure 12.10 - CompositeTypes Class Diagram 

12.12.1  CompositeType Class (generic)

NOTE:KDM14-225

The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records, 
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines 
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM 
container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class. 
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype. 
CompositeType class is a more specific meta-model element than Datatype.

Superclass

Datatype
112                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. CompositeType class should be used with a stereotype.

Semantics

CompositeType class corresponds to ISO/IEC 11404 generated datatypes each of whose values is made up of values of 
component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve a field list 
in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents the 
name of the field-type. The datatype of the field-type is represented by the type attribute of the ItemUnit.

CompositeType class is an extended meta-model element, that can be used to represent generated datatypes of an existing 
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that ItemUnit.

12.12.2  ChoiceType Class
The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing 
software systems, each of whose values is a single value from any of a set of alternative datatypes. An example of a 
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM 
representation, each alternative datatype is represented as an ItemUnit.

Superclass

CompositeType

Semantics

The ChoiceType corresponds to ISO/IEC 11404 choice generated datatype. KDM representation does not explicitly 
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is 
represented by the type attribute of the ItemUnit owned by the ChoiceType.

12.12.3  RecordType Class
The RecordType class is a meta-model element that represents record datatypes: user-defined datatypes in existing 
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each 
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,” 
which is represented by the Name attribute of the ItemUnit owned by the RecordType. Examples of record datatypes 
include a structure in C, a record in Cobol.

Superclass

CompositeType

itemUnit:ItemUnit[0..*] {ordered} The list of named items that represent components of the composite datatype; for 
example representing the individual fields of a record.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        113



Semantics

The RecordType corresponds to ISO/IEC 11404 record aggregate datatype. The Name attribute of each ItemUnit owned 
by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of the 
ItemUnit owned by the ChoiceType.

Example (Cobol)

NOTE:KDM14-15, KDM14-308

01 StudentDetails.
   02 StudentId        PIC 9(7). 
   02 StudentName. 
      03 FirstName     PIC X(10).
      03 MiddleInitial PIC X. 
      03 Surname       PIC X(15).
   02 DateOfBirth.
      03 DayOfBirth    PIC 99.
      03 MonthOfBirth  PIC 99.
      03 YearOfBirth   PIC 9(4).
   02 CourseCode       PIC X(4).

MOVE "Doyle" To Surname

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Record Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
      <codeElement xmi:id="id.2" xmi:type="code:StorableUnit" 

name="StudentDetails" type="id.3">
        <codeElement xmi:id="id.3" xmi:type="code:RecordType" name="StudentDetails">
          <itemUnit xmi:id="id.4" name="StudentID" type="id.23" ext="PIC 9(7)"/>
          <itemUnit xmi:id="id.5" name="StudentName" type="id.6">
            <codeElement xmi:id="id.6" xmi:type="code:RecordType" name="StudentName">
              <itemUnit xmi:id="id.7" name="FirstName" type="id.24" ext="PIC X(10)" size="10"/>
              <itemUnit xmi:id="id.8" name="MiddleName" type="id.24" ext="PIC X" size="1"/>
              <itemUnit xmi:id="id.9" name="Surname" type="id.24" ext="PIC X(15)" size="15"/>
            </codeElement>
          </itemUnit>
          <itemUnit xmi:id="id.10" name="DateOfBirth">
            <codeElement xmi:id="id.11" xmi:type="code:RecordType" name="DateOfBirth">
              <itemUnit xmi:id="id.12" name="DayOfBirth" type="id.23" ext="PIC 99" size="2"/>
              <itemUnit xmi:id="id.13" name="MonthOfBirth" type="id.23" ext="PIC 99" size="2"/>
              <itemUnit xmi:id="id.14" name="YearOfBirth" type="id.23" ext="PIC 9(4)" 

size="4"/>
            </codeElement>
          </itemUnit>
          <itemUnit xmi:id="id.15" name="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.16" xmi:type="action:BlockUnit">
        <codeElement xmi:id="id.17" xmi:type="action:ActionElement">
          <codeElement xmi:id="id.18" xmi:type="code:Value" 

name="&quot;Doyle&quot;" type="id.24"/>
          <actionRelation xmi:id="id.19" xmi:type="action:Addresses" to="id.2" from="id.17"/>
          <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.18" from="id.17"/>
          <actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.9" from="id.17"/>
        </codeElement>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.22" xmi:type="code:LanguageUnit" name="Cobol common definitions">
      <codeElement xmi:id="id.23" xmi:type="code:DecimalType"/>
      <codeElement xmi:id="id.24" xmi:type="code:StringType"/>
    </codeElement>
  </model>
</kdm:Segment>
114                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.13 DerivedTypes Class Diagram

NOTE:KDM14-128, KDM14-182

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various 
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad 
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a 
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes 
diagram are shown in Figure 12.11.

Figure 12.11 - DerivedTypes Class Diagram 

12.13.1  DerivedType Class (generic)

NOTE:KDM14-225

DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics. 
DerivedType class is a KDM container. KDM models of existing software systems usually use the concrete subclasses of 
DerivedType class. DerivedType class itself is a concrete class and can be used as an extended meta-model element, with 
a stereotype. DerivedType class is a more specific meta-model element than Datatype.

Superclass

Datatype
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        115



Associations

Constraints

1. DerivedType class should be used with a stereotype.

Semantics

DerivedType class corresponds to several ISO/IEC 11404 aggregated datatypes, whose values are made up of values of a 
single component datatype. DerivedType class is an extended meta-model element, that can be used to represent 
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise 
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the 
element-type is represented by the type attribute of the ItemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.

12.13.2  ArrayType Class

NOTE:KDM14-182, KDM14-129

The ArrayType is a meta-model element that represents array datatypes. 

Superclass

DerivedType

Attributes

Associations

Constraints

1. Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.

Semantics

ArrayType corresponds to ISO/IEC 11404 array datatype. The name attribute of the ItemUnit can be omitted if the 
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned 
by the ArrayType. The IndexItem represents the index of the array. The name attribute of the IndexUnit can be omitted. 
When an IndexItem is omitted, it is assumed to be a data element of IntegerType

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in 
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the 
next (internal) dimension and so on. 

itemUnit:ItemUnit[1] The ItemUnit that represents the base class of the derived type.

size:Integer the size of the array (the maximum number of elements)

indexUnit:IndexUnit[0..1] the optional index of the array
116                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.13.3  PointerType Class

NOTE:KDM14-166

The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference 
to values of another datatype, designated the element datatype.

Superclass

DerivedType

Semantics

PointerType corresponds to ISO/IEC 11404 pointer generated datatype. A pointer generates a datatype, each of whose 
values constitutes a means of reference to values of another datatype, designated as the element datatype. THe values of 
a pointer datatype are atomic. From ISO perspective the pointer datatype is not an aggregated datatype, which leads to 
some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned by the PointerType can 
be omitted. The datatype of the element-type is represented by the type attribute of the ItemUnit owned by the 
PointerType. 

Example (C)

NOTE:KDM14-15, KDM14-308

struct tlist {
    struct  tlist * next;
    int value;
} * phead, * pcurrent;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:action=""http://www.omg.org/spec/KDM/20160201/action" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="LinkedList Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="action:BlockUnit">
      <codeElement xmi:id="id.2" xmi:type="code:StorableUnit" 

name="phead" type="id.3" kind="unknown">
        <codeElement xmi:id="id.3" xmi:type="code:PointerType">
          <itemUnit xmi:id="id.4" type="id.5">
            <codeElement xmi:id="id.5" xmi:type="code:RecordType" name="tlist">
              <itemUnit xmi:id="id.6" name="next" type="id.3"/>
              <itemUnit xmi:id="id.7" name="value" type="id.8">
                <codeElement xmi:id="id.8" xmi:type="code:IntegerType" name="int"/>
              </itemUnit>
            </codeElement>
          </itemUnit>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.9" xmi:type="code:StorableUnit" 

name="pcurrent" type="id.3" kind="unknown"/>
    </codeElement>
  </model>
</kdm:Segment>

12.13.4  RangeType Class

NOTE:KDM14-128
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        117



RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper 
and/or lower bounds on the value space. 

Superclass

DerivedType

Associations

Constraints

1. At least one boundary value element should be present.

2. The type property of a boundary Value element owned by a RangeType shall be the same as the type property of 
the owned ItemUnit of this RangeType instance

Semantics

RangeType corresponds to ISO/IEC 11404 range subtype. From ISO perspective the range subtype is not an aggregated 
datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned 
by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of the ItemUnit 
owned by the RangeType. 

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.

12.13.5  BagType Class
BagType class is a meta-model element that represents bag types in existing software systems: the user-defined datatypes, 
whose values are collections of instances of values from the element datatype. Bag types allow multiple instances of the 
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass

DerivedType

Semantics

BagType corresponds to ISO/IEC 11404 bag aggregated datatype. The Name attribute of the ItemUnit owned by the 
BagType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by 
the BagType. 

12.13.6  SetType Class
SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose 
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the 
mathematical set.

Superclass

DerivedType

lower: Value[0..1] the optional lower boundary of the range

upper: Value[0..1] the optional upper boundary of the range
118                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

SetType corresponds to ISO/IEC 11404 set aggregated datatype. The Name attribute of the ItemUnit owned by the 
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by 
the SetType.

12.13.7  SequenceType Class
SequenceType class is a meta-model element that represents sequence types in existing software systems: the user-defined 
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the 
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass

DerivedType

Semantics

SequenceType corresponds to ISO/IEC 11404 sequence aggregated datatype. The Name attribute of the ItemUnit owned 
by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit 
owned by the SequenceType.

12.14 Signature Class Diagram

NOTE:KDM14-306

The Signature class diagram defines meta-model elements, which represent the signature concept common to various 
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.12.

Figure 12.12 - Signature Class Diagram 

12.14.1  Signature Class
The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various 
programming languages. 

Superclass

Datatype
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        119



Associations

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of 
datatypes, corresponding to the procedure-type of ISO/IEC 11404 standard. Second, it corresponds to a specific data 
element as part of a computational object represented by a ControlElement. In this second sense, the Signature element 
corresponds to the mechanism of formal and actual parameters. 

12.14.2  ParameterKind (enumeration)
ParameterKind datatype defines the kind of parameter passing conventions.

Literals

Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only 
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this 
means that the Signature does not define a return value.

12.15 DefinedTypes Class Diagram

NOTE:KDM14-80, KDM14-225

DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by a type 
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.13.

parameterUnit:ParameterUnit[0..*] the list of parameters of the current Signature

byValue parameter is passed by value

byName parameter is passed by name

byReference parameter is passed by reference

variadic parameter is variadic

return parameter being returned

throws parameter represents an exception thrown by the procedure

exception parameter to a catch block

catchall special parameter to a catch block

unknown parameter passing convention is unknown
120                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 12.13 - DefinedTypes Class Diagram 

12.15.1  DefinedType Class (generic)

NOTE:KDM14-225

The DefinedType is generic class that defines the common properties of several concrete classes that represent type 
declarations in existing software systems. KDM models of existing software systems usually use the concrete subclasses 
of DefinedType class. DefinedType class itself is a concrete class and can be used as an extended meta-model element, 
with a stereotype.

Superclass

Datatype

Associations

Constraints

1. DefinedType class shall be used with at least one stereotype

Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined 
datatype.

12.15.2  TypeUnit Class
The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define 
the value-space of a new datatype, which is distinct from any other datatype. 

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype. 

type:Datatype[1] The datatype of the DefinedType that describes the values of the 
corresponding datatype.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        121



Superclass

DefinedType

Semantics

TypeUnit corresponds to ISO/IEC 11404 New datatype declaration and New generator declarations.

12.15.3  SynonymUnit Class
The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the 
type name to be a synonym for another datatype.

Superclass

DefinedType

Semantics

SynonymUnit corresponds to ISO/IEC 11404 Renaming declarations.

12.16 ClassTypes Class Diagram

NOTE:KDM14-64, KDM14-139, KDM14-221, KDM14-306

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by 
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.14.

Figure 12.14 - ClassTypes Class Diagram 

12.16.1  ClassUnit Class

NOTE:KDM14-64, KDM14-72, KDM14-139, KDM14-221
122                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype 
is a named datatype that represents a class: an ordered collection of named elements, each of which can be another 
CodeItem, such as a MemberUnit or a MethodUnit.

Superclass

Datatype

Attributes

Associations

Semantics

ClassUnit is a named container for an ordered collection of named elements, each of which can be another CodeItem, 
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested 
ClassUnits), internal datatype definitions, etc. 

A class that has a finite set of named literals like a Java enum can be represented as a ClassUnit containing Value 
elements. These Value elements shall have the name corresponding to name of the literal and they shall all have the type 
property set to the containing ClassUnit. Simple Java enum with just a set of literals can still be represented as an 
EnumeratedType instance. 

From the runtime perspective, ClassUnit represents a family of computational objects, called class instances. 
MemberUnits and MethodUnits of a certain ClassUnit are identified both by the name of the member or method, as well 
as by a direct or indirect identification of the corresponding class instance.

12.16.2  InterfaceUnit Class
The InterfaceUnit is a meta-model element that represents the interface concept common to various programming 
languages. 

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns a list of 
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an 
InterfaceUnit may be targets of Calls relations.

Superclass

Datatype

isAbstract:Boolean the indicator of an abstract class

isFinal:Boolean indicates that the ClassUnit may not have subtypes (may not be the 
to-endpoint of Extends relationship)

exportKind:ExportKind represents the visibility of the method (public, private, protected)

codeElement:AbstractCodeElement[0..*]{ordered
} 

the list of class members and methods
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        123



Associations

Semantics

InterfaceUnit is a logical container for code items. InterfaceUnit corresponds to a compile time description of the 
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as 
ControlElements, which in the representation of an existing software may be the targets of certain relationships, since the 
binding between the interface and the actual computational objects may occur at runtime.

12.17 Templates Class Diagram

NOTE:KDM14-81, KDM14-139, KDM14-223

The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of 
template and their relationships. Figure 12.15 shows these classes and their associations.

Figure 12.15 - Templates Class Diagram 

12.17.1  TemplateElement Class (generic)

NOTE:KDM14-81, KDM14-223

The TemplateElement is a generic meta-model element that represents various code elements related to templates, their 
parameters and instantiations. 

Superclass

Datatype

codeElement:CodeItem[0..*] {ordered} The list of TypeElements that corresponds with the target Interface.
124                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. TemplateElement class shall be used with at least one stereotype

Semantics

This class is extended by several concrete meta-model elements that represent several common template elements. KDM 
representations of existing systems are expected to use concrete subclasses of TemplateElement, however this class itself is 
a concrete meta-model element and can be used as an extended element with an appropriate stereotype to represent other 
types of template elements not covered by the standard subclasses. Semantics of template elements in KDM is described 
later in this sub clause.

12.17.2  TemplateUnit Class

NOTE:KDM14-81, KDM14-223, KDM14-139

The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming 
languages; for example, Ada generics, Java generics, C++ templates. 

Superclass

TemplateElement

Associations

Constraints

1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.

Semantics

The TemplateUnit class corresponds to a type declaration with formal type parameters from the ISO/IEC 11404. TemplateUnit 
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned 
by the TemplateUnit. 

12.17.3  TemplateParameter Class

NOTE:KDM14-81, KDM14-145, KDM14-223

TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model, 
TemplateParameter is a subclass of TemplateElement.

Superclass

TemplateElement

codeElement:AbstractCodeElement[0..*] template formal parameters and the base datatype or computational object
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        125



Semantics

TemplateParameter represents a formal parameter of a type declaration with formal parameters (corresponding to ISO/IEC 
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal 
parameters is positional.

12.17.4  TemplateType Class

NOTE:KDM14-81, KDM14-223

TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType 
class owns the actual parameters to the datatype reference, represented by “ParameterTo” relationships. The 
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced 
parameterized datatype. TemplateType has the role of a Datatype.

Superclass

TemplateElement

Constraints

1. TemplateType class should be the origin only to template relations “InstanceOf” and “ParameterTo.”

Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal 
type parameters from the ISO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit, 
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter 
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented 
by the “InstanceOf” relationship. 

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type 
parameters is positional.

12.18 TemplateRelations Class Diagram

NOTE:KDM14-231

The TemplateRelations class diagram defines KDM relationships that are related to the concept of an template. Figure 
12.16 shows these classes and their associations.
126                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 12.16 - TemplateRelations Class Diagram

12.18.1  InstanceOf Class
The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for 
example, a ClassUnit) and a TemplateUnit. In the meta-model InstanceOf is a subclass of AbstractCodeRelationship.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The to- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized 
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.18.2  ParameterTo Class
The ParameterTo is a meta-model element that represents an actual type parameter in the context of a reference to a 
parameterized entity. ParameterTo is “parametrization” relation between an AbstractCodeElement (for example, a 
TemplateType or an ActionElement) and a CodeItem. 

Superclass

AbstractCodeRelationship

from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of a template.

to:TemplateUnit[1] The TemplateUnit that is being instantiated.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        127



Associations

Constraints

1. ParameterTo relationship should be owned only by TemplateType or ActionElement.

2. The to- and from- endpoints of the relationship should be different.

Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement 
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement 
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Example (Java)

NOTE:KDM14-15, KDM14-308

class foo  {
static <T> void fromArrayToCollection(T[] a, Collection<T> c) { 
   for (T o : a) { 

   c.add(o);
   }

   }
void demo() {

String[] sa = new String[100];
Collection<String> cs = new ArrayList<String>();
fromArrayToCollection(sa, cs);// T inferred to be String
}

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Template Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="foo">
      <codeElement xmi:id="id.2" xmi:type="code:TemplateUnit" 

name="fromArrayToCollection&lt;T>">
        <codeElement xmi:id="id.3" xmi:type="code:TemplateParameter" name="T"/>
        <codeElement xmi:id="id.4" xmi:type="code:MethodUnit" 

name="fromArrayToCollection" type="id.6">
          <entryFlow xmi:id="id.5" to="id.14" from="id.4"/>
          <codeElement xmi:id="id.6" xmi:type="code:Signature">
            <parameterUnit xmi:id="id.7" name="a">
              <codeElement xmi:id="id.8" xmi:type="code:ArrayType">
                <itemUnit xmi:id="id.9" type="id.3"/>
              </codeElement>
            </parameterUnit>
            <parameterUnit xmi:id="id.10" name="c" type="id.11">
              <codeElement xmi:id="id.11" xmi:type="code:TemplateType" 

name="Collection&lt;T1>">
                <codeRelation xmi:id="id.12" xmi:type="code:ParameterTo" 

to="id.3" from="id.11"/>
               <codeRelation xmi:id="id.13" xmi:type="code:InstanceOf" 

to="id.75" from="id.11"/>
              </codeElement>
            </parameterUnit>
          </codeElement>
          <codeElement xmi:id="id.14" xmi:type="action:ActionElement" 

name="a1" kind="Compound">

from:AbstractCodeElement[1] the reference to the parameterized entity (the context of the actual type parameter)

to:CodeItem[1] actual parameter to template instantiation
128                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



            <codeElement xmi:id="id.15" xmi:type="action:ActionElement" 
name="a1.1" kind="Call">

              <actionRelation xmi:id="id.16" xmi:type="action:Addresses" 
to="id.7" from="id.15"/>

              <actionRelation xmi:id="id.17" xmi:type="action:Calls" to="id.81" from="id.15"/>
              <actionRelation xmi:id="id.18" xmi:type="action:Flow" to="id.19" from="id.15"/>
            </codeElement>
            <codeElement xmi:id="id.19" xmi:type="action:ActionElement" 

name="a1.2" kind="Call">
              <codeElement xmi:id="id.20" xmi:type="code:StorableUnit" 

name="t1" type="id.88" kind="register"/>
              <actionRelation xmi:id="id.21" xmi:type="action:Addresses" 

to="id.40" from="id.19"/>
              <actionRelation xmi:id="id.22" xmi:type="action:Calls" to="id.83" from="id.19"/>
              <actionRelation xmi:id="id.23" xmi:type="action:Writes" to="id.20" from="id.29"/>
              <actionRelation xmi:id="id.24" xmi:type="action:Flow" to="id.25" from="id.19"/>
            </codeElement>
            <codeElement xmi:id="id.25" xmi:type="action:ActionElement" 

name="1.3" kind="Condition">
              <actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.20" from="id.25"/>
              <actionRelation xmi:id="id.27" xmi:type="action:TrueFlow" 

to="id.29" from="id.25"/>
              <actionRelation xmi:id="id.28" xmi:type="action:FalseFlow" 

to="id.39" from="id.25"/>
            </codeElement>
            <codeElement xmi:id="id.29" xmi:type="action:ActionElement" 

name="a1.4" kind="Call">
              <actionRelation xmi:id="id.30" xmi:type="action:Addresses" 

to="id.40" from="id.29"/>
              <actionRelation xmi:id="id.31" xmi:type="action:Calls" to="id.82" from="id.29"/>
              <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.44" from="id.29"/>
              <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.29"/>
            </codeElement>
            <codeElement xmi:id="id.34" xmi:type="action:ActionElement" 

name="a1.5" kind="Call">
              <actionRelation xmi:id="id.35" xmi:type="action:Addresses" 

to="id.10" from="id.34"/>
              <actionRelation xmi:id="id.36" xmi:type="action:Reads" to="id.44" from="id.34"/>
              <actionRelation xmi:id="id.37" xmi:type="action:Calls" to="id.84" from="id.34"/>
              <actionRelation xmi:id="id.38" xmi:type="action:Flow" to="id.19" from="id.34"/>
            </codeElement>
            <codeElement xmi:id="id.39" xmi:type="action:ActionElement" name="1.6" kind="Nop"/>
            <codeElement xmi:id="id.40" xmi:type="code:StorableUnit" 

name="iter" type="id.41" kind="register">
              <codeElement xmi:id="id.41" xmi:type="code:TemplateType" name="Iterator&lt;T1>">
                <codeRelation xmi:id="id.42" xmi:type="code:InstanceOf" 

to="id.78" from="id.41"/>
                <codeRelation xmi:id="id.43" xmi:type="code:ParameterTo" 

to="id.3" from="id.41"/>
              </codeElement>
            </codeElement>
            <codeElement xmi:id="id.44" xmi:type="code:StorableUnit" 

name="o" type="id.3" kind="local"/>
            <actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.15" from="id.14"/>
          </codeElement>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.46" xmi:type="code:MethodUnit" name="demo" type="id.47">
        <codeElement xmi:id="id.47" xmi:type="code:Signature"/>
        <codeElement xmi:id="id.48" xmi:type="code:StorableUnit" 

name="sa" type="id.49" kind="local">
          <codeElement xmi:id="id.49" xmi:type="code:ArrayType" name="ar2">
            <itemUnit xmi:id="id.50" type="id.89"/>
          </codeElement>
        </codeElement>
        <codeElement xmi:id="id.51" xmi:type="action:ActionElement" name="demo.1" kind="New">
          <codeElement xmi:id="id.52" xmi:type="code:Value" name="100" type="id.90"/>
          <actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.52" from="id.51"/>
          <actionRelation xmi:id="id.54" xmi:type="action:Creates" to="id.49" from="id.51"/>
          <actionRelation xmi:id="id.55" xmi:type="action:Writes" to="id.48" from="id.51"/>
          <actionRelation xmi:id="id.56" xmi:type="action:Flow"/>
        </codeElement>
        <codeElement xmi:id="id.57" xmi:type="code:StorableUnit" 

name="cs" type="id.58" kind="local">
          <codeElement xmi:id="id.58" xmi:type="code:TemplateType" 

name="Collection&lt;String>">
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        129



            <codeRelation xmi:id="id.59" xmi:type="code:ParameterTo" to="id.89" from="id.58"/>
            <codeRelation xmi:id="id.60" xmi:type="code:InstanceOf" to="id.75" from="id.58"/>
          </codeElement>
        </codeElement>
        <codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="demo.2" kind="New">
          <codeElement xmi:id="id.62" xmi:type="code:TemplateType" 

name="ArrayList&lt;String>">
            <codeRelation xmi:id="id.63" xmi:type="code:ParameterTo" to="id.89" from="id.62"/>
            <codeRelation xmi:id="id.64" xmi:type="code:InstanceOf" to="id.85" from="id.62"/>
          </codeElement>
          <actionRelation xmi:id="id.65" xmi:type="action:Creates" to="id.62" from="id.51"/>
          <actionRelation xmi:id="id.66" xmi:type="action:Writes" to="id.57" from="id.61"/>
          <actionRelation xmi:id="id.67" xmi:type="action:Flow"/>
        </codeElement>
        <codeElement xmi:id="id.68" xmi:type="action:ActionElement" name="demo.3" kind="Call">
          <codeRelation xmi:id="id.69" xmi:type="code:InstanceOf" to="id.2" from="id.68"/>
          <codeRelation xmi:id="id.70" xmi:type="code:ParameterTo" to="id.89" from="id.68"/>
          <actionRelation xmi:id="id.71" xmi:type="action:Reads" to="id.48" from="id.68"/>
          <actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.57" from="id.68"/>
          <actionRelation xmi:id="id.73" xmi:type="action:Calls" to="id.4" from="id.68"/>
        </codeElement>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.74" xmi:type="code:LanguageUnit" name="Common Java datatypes">
      <codeElement xmi:id="id.75" xmi:type="code:TemplateUnit" name="Collection&lt;T>">
        <codeElement xmi:id="id.76" xmi:type="code:TemplateParameter" name="T"/>
        <codeElement xmi:id="id.77" xmi:type="code:ClassUnit" name="Collection"/>
      </codeElement>
      <codeElement xmi:id="id.78" xmi:type="code:TemplateUnit" name="Iterator&lt;T>">
        <codeElement xmi:id="id.79" xmi:type="code:TemplateParameter" name="T"/>
        <codeElement xmi:id="id.80" xmi:type="code:ClassUnit" name="Iterator">
          <codeElement xmi:id="id.81" xmi:type="code:MethodUnit" 

name="iterator" kind="constructor"/>
          <codeElement xmi:id="id.82" xmi:type="code:MethodUnit" name="next"/>
          <codeElement xmi:id="id.83" xmi:type="code:MethodUnit" name="hasNext"/>
          <codeElement xmi:id="id.84" xmi:type="code:MethodUnit" name="add"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.85" xmi:type="code:TemplateUnit" name="ArrayList&lt;T>">
        <codeElement xmi:id="id.86" xmi:type="code:TemplateParameter" name="T"/>
        <codeElement xmi:id="id.87" xmi:type="code:ClassUnit" name="ArrayList"/>
      </codeElement>
      <codeElement xmi:id="id.88" xmi:type="code:BooleanType" name="Boolean"/>
      <codeElement xmi:id="id.89" xmi:type="code:StringType" name="String"/>
      <codeElement xmi:id="id.90" xmi:type="code:IntegerType" name="Integer"/>
    </codeElement>
  </model>
</kdm:Segment>

12.19 InterfaceRelations Class Diagram

NOTE:KDM14-231

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the 
corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in 
Figure 12.17.
130                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 12.17 - InterfaceRelations Class Diagram

12.19.1  Implements Class
The Implements is a meta-model element that represents “implementation” association between a CodeItem (for example, 
a ClassUnit) and an InterfaceUnit. “Implements” relationship is similar to “Extends.” For example, Java “implements” 
construct can be represented by KDM “Implements” relationship.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The from- and to- endpoints should be different.

Semantics

See next sub clause

12.19.2  ImplementationOf Class
The ImplementationOf is a meta-model element that represents “implementation” association between a CodeItem; for 
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit. 
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object, 
common to various programming languages. While the “Implements” relationship is between entire containers (the target 
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

• Particular MethodUnit of a ClassUnit that “Implements” an InterfaceUnit, is an “ImplementationOf” a particular 

from:CodeItem[1] The CodeItem that implements a certain InterfaceUnit.

to:CodeItem[1] The InterfaceUnit that is being implemented by CodeItem.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        131



MethodUnit, owned by that InterfaceUnit.

• A CallableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration 
(the prototype) of that CallableUnit. 

• A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external 
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. It is obligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target is a 
ControlElement or the origin is a DataElement and the target is a DataElement.

2. The kind attribute of the CodeItem at the origin of the ImplementationOf relationship should not be equal to 
“external.”

3. The kind attribute of the CodeItem at the target of the ImplementationOf relationship should be equal to “external” 
or “abstract.”

4. The from- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a ComputationalObject (ControlElement or DataElement) with kind 
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a ControlElement, 
Signature represents the procedure type, but not the declaration entity itself. 

If both the definition and the declaration of some computational object “foo” are available:

• The definition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

• For a certain action element that uses “foo,” the target of the KDM callable or data relations will be the definition of 
“foo.”

• The action element that uses “foo” may be the origin of a “CompliesTo” action relationship (defined at the 
InterfaceRelations class diagram of the Action package) to the declaration of “foo”.

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about 
the existing software system:

• For a certain action element that uses “bar”, the target of the KDM callable or data relations will be the declaration of 
“bar”.

• The action element that uses “bar” may be the origin of a “CompliesTo” action relationship (defined at the 
InterfaceRelations class diagram of the Action package) to the declaration of “bar”. 

from:CodeItem[1]  CodeItem that implements a certain “declaration.”

to:CodeItem[1]  “declaration” that is being implemented by the CodeItem.
132                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation units in 
complex ways, the existing software system may have multiple declarations for the same computational object, or even 
different computational objects with the same name but different properties that are used in different contexts. In this 
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the 
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action 
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if 
different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):

NOTE:KDM14-15, KDM14-147, KDM14-308

package flip;
public interface iFlip {

public int flip(int i);
}

package flip;
public class foo implements iFlip {

public foo(){}
public flip(int i) {

return i * -1;
}

}

package flip;
public class FlipClient {

public static void main(String[] args) {
foo f= new foo();
iFlip g=(iFlip) f;
f.flip(100);

}
}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Interface Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:Package" name="flip">
      <codeElement xmi:id="id.2" xmi:type="code:ClassUnit" name="foo">
        <codeRelation xmi:id="id.3" xmi:type="code:Implements" to="id.21" from="id.2"/>
        <codeElement xmi:id="id.4" xmi:type="code:MethodUnit" name="flip" type="id.23">
          <codeRelation xmi:id="id.5" xmi:type="code:ImplementationOf" 

to="id.22" from="id.4"/>
          <entryFlow xmi:id="id.6" to="id.10" from="id.4"/>
          <codeElement xmi:id="id.7" xmi:type="code:Signature" name="flip">
            <parameterUnit xmi:id="id.8" name="i" type="id.53"/>
            <parameterUnit xmi:id="id.9" type="id.53" kind="return"/>
          </codeElement>
          <codeElement xmi:id="id.10" xmi:type="action:ActionElement" 

name="d1" kind="Multiply">
            <codeElement xmi:id="id.11" xmi:type="code:Value" name="-1" type="id.53"/>
            <codeElement xmi:id="id.12" xmi:type="code:StorableUnit" 

name="t5" type="id.53" kind="register"/>
            <actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.8" from="id.10"/>
            <actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.11" from="id.10"/>
            <actionRelation xmi:id="id.15" xmi:type="action:Writes" to="id.12" from="id.10"/>
            <actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.17" from="id.10"/>
          </codeElement>
          <codeElement xmi:id="id.17" xmi:type="action:ActionElement" name="d2" kind="Return">
            <actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.12" from="id.17"/>
          </codeElement>
        </codeElement>
        <codeElement xmi:id="id.19" xmi:type="code:MethodUnit" 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        133



name="foo" type="id.20" kind="constructor">
          <codeElement xmi:id="id.20" xmi:type="code:Signature" name="foo"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.21" xmi:type="code:InterfaceUnit" name="IFlip">
        <codeElement xmi:id="id.22" xmi:type="code:MethodUnit" 

name="flip" type="id.23" kind="abstract"/>
        <codeElement xmi:id="id.23" xmi:type="code:Signature" name="flip">
          <parameterUnit xmi:id="id.24" name="i" type="id.53" pos="1"/>
          <parameterUnit xmi:id="id.25" type="id.53" kind="return" pos="0"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.26" xmi:type="code:ClassUnit" name="Flipclient">
        <codeElement xmi:id="id.27" xmi:type="code:MethodUnit" name="main" type="id.29">
          <entryFlow xmi:id="id.28" to="id.35" from="id.27"/>
          <codeElement xmi:id="id.29" xmi:type="code:Signature" name="main">
            <parameterUnit xmi:id="id.30" name="args" type="id.31" pos="1">
              <codeElement xmi:id="id.31" xmi:type="code:ArrayType">
                <itemUnit xmi:id="id.32" name="args[]" type="id.54"/>
              </codeElement>
            </parameterUnit>
          </codeElement>
          <codeElement xmi:id="id.33" xmi:type="code:StorableUnit" 

name="f" type="id.2" kind="local"/>
          <codeElement xmi:id="id.34" xmi:type="code:StorableUnit" 

name="g" type="id.21" kind="local"/>
          <codeElement xmi:id="id.35" xmi:type="action:ActionElement" name="a1" kind="New">
            <actionRelation xmi:id="id.36" xmi:type="action:Creates" to="id.2" from="id.35"/>
            <actionRelation xmi:id="id.37" xmi:type="action:Writes" to="id.33" from="id.35"/>
            <actionRelation xmi:id="id.38" xmi:type="action:Flow" to="id.39" from="id.35"/>
          </codeElement>
          <codeElement xmi:id="id.39" xmi:type="action:ActionElement" 

name="a2" kind="MethodCall">
            <actionRelation xmi:id="id.40" xmi:type="action:CompliesTo" 

to="id.20" from="id.39"/>
            <actionRelation xmi:id="id.41" xmi:type="action:Addresses" 

to="id.33" from="id.39"/>
            <actionRelation xmi:id="id.42" xmi:type="action:Calls" to="id.19" from="id.39"/>
            <actionRelation xmi:id="id.43" xmi:type="action:Flow" to="id.44" from="id.39"/>
          </codeElement>
          <codeElement xmi:id="id.44" xmi:type="action:ActionElement" 

name="a3" kind="DynCast">
            <actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.33" from="id.44"/>
            <actionRelation xmi:id="id.46" xmi:type="action:UsesType" to="id.21" from="id.44"/>
            <actionRelation xmi:id="id.47" xmi:type="action:Writes" to="id.34" from="id.44"/>
            <actionRelation xmi:id="id.48" xmi:type="action:Flow" to="id.49" from="id.44"/>
          </codeElement>
          <codeElement xmi:id="id.49" xmi:type="action:ActionElement" 

name="a4" kind="VirtualCall">
            <actionRelation xmi:id="id.50" xmi:type="action:CompliesTo" 

to="id.23" from="id.49"/>
            <actionRelation xmi:id="id.51" xmi:type="action:Addresses" 

to="id.34" from="id.49"/>
            <actionRelation xmi:id="id.52" xmi:type="action:Calls" to="id.22" from="id.49"/>
          </codeElement>
        </codeElement>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.53" xmi:type="code:IntegerType" name="int"/>
    <codeElement xmi:id="id.54" xmi:type="code:StringType" name="String"/>
  </model>
</kdm:Segment>

12.20 TypeRelations Class Diagram

NOTE:KDM14-231

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes 
and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.18.
134                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 12.18 - TypeRelations Class Diagram 

12.20.1  HasType Class
The HasType is a specific meta-model element that represents semantic relation between a data element and the 
corresponding type element.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The from- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that 
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates this information if the 
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a 
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in 
AggregatedRelationships.

12.20.2  HasValue Class

NOTE:KDM14-23, KDM14-259

from:CodeItem[1] the source data element

to:Datatype[1] the target datatype element
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        135



The HasValue is a specific meta-model element that represents semantic relation between a data element and its 
initialization element, which can be a data element or an action element for complex initializations that involve 
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action 
elements in the initialization code. 

Superclass

AbstractCodeRelationship

Associations

Constraints

1. If the target of the HasValue is an ActionElement, then this ActionElement should have an outgoing Writes or 
Addresses relationship to the CodeItem that is the source of the HasValue relationship.

Semantics

HasValue relationship as an optional way to represent initialization. The target of the HasValue relationship can be a Value for 
simple initializations that involve constants, or  Data Element for simple initializations that involve another data element, or an 
ActionElement that writes to the source element for complex initializations involving expressions. 

In micro KDM initialization is represented by explicit initialization actions with appropriate control flow. Initialization actions 
should be owned by special initialization block units. Control flow semantics of initializations (especially for initializations of 
global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represent 
control flow. It provides a convenient way to associate a data element with its value. 

Semantics of initialization blocks is described in section “BlockUnit Class”.

Example (C++)

NOTE:KDM14-15, KDM14-24, KDM14-25, KDM14-308

/*----d.h---*/
class D {
private: int num;
public:
D(int x) { this->num=x; printf("Hello, this is %d\n", x); }
work() { printf("This is %d working\n", this->num);
};
/*---a.cpp---*/
#include "d.h"
int g1=0;
D d1(1);

/*---b.cpp--*/
#include "d.h"
extern D d1;
D d2(2);
main() {
   int l2=0;
   D * d3=new D(3);
   d1.work();
   d2.work();
   d3->work();
}

from:CodeItem[1] the source data element

to:AbstractCodeElement[1] the target AbstractCodeElement (datatype or action element)
136                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="ClassD Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
      <entryFlow xmi:id="id.120" to="id.94" from="id.1"/>
      <codeElement xmi:id="id.2" xmi:type="code:CompilationUnit" name="a.cpp">

 <entryFlow xmi:id="id.121" to="id.10" from="id.2"/>
        <codeElement xmi:id="id.3" xmi:type="code:IncludeDirective" name="imp1">
          <codeRelation xmi:id="id.4" xmi:type="code:Includes" to="id.22" from="id.3"/>
        </codeElement>
        <codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="g1" type="id.105">
          <codeRelation xmi:id="id.6" xmi:type="code:HasValue" to="id.20" from="id.5"/>
        </codeElement>
        <codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="d1" type="id.23">
          <codeRelation xmi:id="id.8" xmi:type="code:HasType" to="id.23" from="id.7"/>
          <codeRelation xmi:id="id.9" xmi:type="code:ImplementationOf" 

to="id.47" from="id.7"/>
   <codeRelation xmi:id="id.124" xmi:type="code:HasValue" to="id.16" from="id.7"/>

        </codeElement>
        <codeElement xmi:id="id.10" xmi:type="action:BlockUnit" name="bi1" kind="Init">
          <entryFlow xmi:id="id.11" to="id.12" from="id.10"/>
          <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="i1" kind="Assign">
            <actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.20" from="id.12"/>
            <actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.5" from="id.12"/>
            <actionRelation xmi:id="id.15" xmi:type="action:Flow" to="id.16" from="id.12"/>
          </codeElement>
          <codeElement xmi:id="id.16" xmi:type="action:ActionElement" name="i2" kind="Calls">
            <actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.21" from="id.16"/>
            <actionRelation xmi:id="id.18" xmi:type="action:Calls" to="id.25" from="id.16"/>
            <actionRelation xmi:id="id.19" xmi:type="action:Writes" to="id.7" from="id.16"/>
          </codeElement>
          <codeElement xmi:id="id.20" xmi:type="code:Value" name="0"/>
          <codeElement xmi:id="id.21" xmi:type="code:Value" name="1"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.22" xmi:type="code:SharedUnit" name="d.h">
        <codeElement xmi:id="id.23" xmi:type="code:ClassUnit" name="D" >
          <codeElement xmi:id="id.24" xmi:type="code:MemberUnit" 

name="num" type="id.105" export="private"/>
          <codeElement xmi:id="id.25" xmi:type="code:MethodUnit" name="D"

methodKind="constructor" type="id.36">
            <entryFlow xmi:id="id.26" to="id.28" from="id.25"/>
            <codeElement xmi:id="id.27" xmi:type="code:Value" 

name="&quot;Hello, this is %d\n&quot;" type="id.111"/>
            <codeElement xmi:id="id.28" xmi:type="action:ActionElement" 

name="a4_1" kind="This">
              <actionRelation xmi:id="id.30" xmi:type="action:Writes" 

to="id.113" from="id.28"/>
              <actionRelation xmi:id="id.31" xmi:type="action:Flow" to="id.114" from="id.28"/>

<codeElement xmi:id="id.113" xmi:type="code:StorableUnit" 
name="r1" kind="register" type="id.55">

              </codeElement>
    </codeElement>
    <codeElement xmi:id="id.114" xmi:type="action:ActionElement" name="a4_2" 

kind="MemberReplace">
<actionRelation xmi:id="id.115" xmi:type="action:Addresses" 

to="id.113" from="id.114"/>
<actionRelation xmi:id="id.116" xmi:type="action:Reads" 

to="id.37" from="id.114"/>
<actionRelation xmi:id="id.117" xmi:type="action:Writes" 

to="id.24" from="id.114"/>
<actionRelation xmi:id="id.118" xmi:type="action:Flow" 

to="id.32" from="id.114"/>
     </codeElement>

            <codeElement xmi:id="id.32" xmi:type="action:ActionElement" name="a5" kind="Call">
              <actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.27" from="id.32"/>
              <actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.37" from="id.32"/>
              <actionRelation xmi:id="id.35" xmi:type="action:Calls" to="id.106" from="id.32"/>
            </codeElement>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        137



            <codeElement xmi:id="id.36" xmi:type="code:Signature" name="D">
              <parameterUnit xmi:id="id.37" name="x" pos="1"/>
            </codeElement>
          </codeElement>
          <codeElement xmi:id="id.38" xmi:type="code:MethodUnit" name="work"

methodKind="method" type="id.126">
            <codeElement xmi:id="id.39" xmi:type="code:Value" 

name="&quot;This is %d working\n&quot;"/>
   <codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="a6_1" kind="This">

<actionRelation xmi:id="id.41" xmi:type="action:Writes" 
to="id.119" from="id.40"/>

<actionRelation xmi:id="id.42" xmi:type="action:Flows" 
to="id.120" from="id.40"/>

<codeElement xmi:id="id.119" xmi:type="code:StorableUnit"
 name="r2" kind="register" type="id.55">

       </codeElement>
   </codeElement>
   <codeElement xmi:id="id.120" xmi:type="action:ActionElement" name="a6_2"

 kind="MemberSelect">
<actionRelation xmi:id="id.121" xmi:type="action:Addresses" 

to="id.119" from="id.120"/>
<actionRelation xmi:id="id.122" xmi:type="action:Reads" 

to="id.39" from="id.120"/>
<actionRelation xmi:id="id.123" xmi:type="action:Writes" 

to="id.125" from="id.120"/>
<actionRelation xmi:id="id.124" xmi:type="action:Flows" 

to="id.40" from="id.120"/>
<codeElement xmi:id="id.125" xmi:type="code:StorableUnit"

 name="r3" kind="register" type="id.105">
       </codeElement>
    </codeElement>

           <codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="a6" kind="Call">
              <actionRelation xmi:id="id.41" xmi:type="action:Reads" to="id.39" from="id.40"/>
              <actionRelation xmi:id="id.42" xmi:type="action:Reads" to="id.125" from="id.40"/>
              <actionRelation xmi:id="id.43" xmi:type="action:Calls" to="id.106" from="id.40"/>
            </codeElement>

    <codeElement xmi:id="id.126" xmi:type="code:Signature" name="work">
            </codeElement>

          </codeElement>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.44" xmi:type="code:CompilationUnit" name="b.cpp">
        <entryFlow xmi:id="id.122" to="id.87" from="id.44"/>
        <codeElement xmi:id="id.45" xmi:type="code:IncludeDirective" name="imp2">
          <codeRelation xmi:id="id.46" xmi:type="code:Includes" to="id.22" from="id.45"/>
        </codeElement>
        <codeElement xmi:id="id.47" xmi:type="code:StorableUnit" 

name="d1" kind="external"/>
        <codeElement xmi:id="id.48" xmi:type="code:CallableUnit" name="main" type="id.127">
          <entryFlow xmi:id="id.49" to="id.70" from="id.48"/>

   <codeElement xmi:id="id.127" xmi:type="code:Signature" name="main">
            </codeElement>
          <codeElement xmi:id="id.50" xmi:type="code:StorableUnit" name="l2" type="id.105">
            <codeRelation xmi:id="id.51" xmi:type="code:HasValue" to="id.20" from="id.50"/>
          </codeElement>
          <codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="d2">
            <codeRelation xmi:id="id.53" xmi:type="code:HasType" to="id.23" from="id.52"/>

     <codeRelation xmi:id="id.125" xmi:type="code:HasValue" to="id.89" from="id.52"/>
          </codeElement>
          <codeElement xmi:id="id.54" xmi:type="code:StorableUnit" name="d3" type="id.55">

     <codeRelation xmi:id="id.126" xmi:type="code:HasValue" to="id.79" from="id.54"/>
            <codeElement xmi:id="id.55" xmi:type="code:PointerType">
              <itemUnit xmi:id="id.56" type="id.23">
                <codeRelation xmi:id="id.57" xmi:type="code:HasType" to="id.23" from="id.56"/>
              </itemUnit>
            </codeElement>
          </codeElement>
          <codeElement xmi:id="id.58" xmi:type="action:ActionElement" name="a1" kind="Call">
            <actionRelation xmi:id="id.59" xmi:type="action:Calls" to="id.38" from="id.58"/>
            <actionRelation xmi:id="id.60" xmi:type="action:Addresses" to="id.7" from="id.58"/>
            <actionRelation xmi:id="id.61" xmi:type="action:CompliesTo" 

to="id.47" from="id.58"/>
            <actionRelation xmi:id="id.62" xmi:type="action:Flow" to="id.63" from="id.58"/>
          </codeElement>
          <codeElement xmi:id="id.63" xmi:type="action:ActionElement" name="a2" kind="Call">
138                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



            <actionRelation xmi:id="id.64" xmi:type="action:Calls" to="id.38" from="id.63"/>
            <actionRelation xmi:id="id.65" xmi:type="action:Addresses" 

to="id.52" from="id.63"/>
            <actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.67" from="id.63"/>
          </codeElement>
          <codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="a3" kind="Call">
            <actionRelation xmi:id="id.68" xmi:type="action:Calls" to="id.38" from="id.67"/>
            <actionRelation xmi:id="id.69" xmi:type="action:Addresses" 

to="id.56" from="id.67"/>
          </codeElement>
          <codeElement xmi:id="id.70" xmi:type="action:BlockUnit" name="bi2" kind="Init">
            <codeElement xmi:id="id.71" xmi:type="action:ActionElement" 

name="i3" kind="Assign">
              <actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.20" from="id.71"/>
              <actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.50" from="id.71"/>
              <actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.71"/>
            </codeElement>
            <codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="i4" kind="New">
              <actionRelation xmi:id="id.76" xmi:type="action:Creates" 

to="id.23" from="id.75"/>
              <actionRelation xmi:id="id.77" xmi:type="action:Writes" to="id.54" from="id.75"/>
              <actionRelation xmi:id="id.78" xmi:type="action:Flow" to="id.79" from="id.75"/>
            </codeElement>
            <codeElement xmi:id="id.79" xmi:type="action:ActionElement" 

name="i5" kind="MethodCall">
              <actionRelation xmi:id="id.80" xmi:type="action:Reads" to="id.85" from="id.79"/>
              <actionRelation xmi:id="id.81" xmi:type="action:Addresses" 

to="id.54" from="id.79"/>
              <actionRelation xmi:id="id.82" xmi:type="action:Calls" to="id.25" from="id.79"/>
              <actionRelation xmi:id="id.83" xmi:type="action:Writes" to="id.56" from="id.79"/>
              <actionRelation xmi:id="id.84" xmi:type="action:Flow" to="id.58" from="id.79"/>
            </codeElement>
            <codeElement xmi:id="id.85" xmi:type="code:Value" name="3"/>

<entryFlow xmi:id="id.86" to="id.71" from="id.70"/>
          </codeElement>
        </codeElement>
        <codeElement xmi:id="id.87" xmi:type="action:BlockUnit" name="bi3" kind="Init">
          <entryFlow xmi:id="id.88" to="id.89" from="id.87"/>
          <codeElement xmi:id="id.89" xmi:type="action:ActionElement" name="i6" kind="Call">
            <actionRelation xmi:id="id.90" xmi:type="action:Reads" to="id.93" from="id.89"/>
            <actionRelation xmi:id="id.91" xmi:type="action:Calls" to="id.25" from="id.89"/>
            <actionRelation xmi:id="id.92" xmi:type="action:Writes" to="id.52" from="id.89"/>
          </codeElement>
          <codeElement xmi:id="id.93" xmi:type="code:Value" name="2" type="id.105"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.94" xmi:type="action:BlockUnit" name="master" kind="Init">

<entryFlow xmi:id="id.95" to="id.96" from="id.94"/>
<codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="i7" kind="Init">
   <entryFlow xmi:id="id.97" to="id.10" from="id.96"/>
   <actionRelation xmi:id="id.98" xmi:type="action:Calls" to="id.2" from="id.96"/>
   <actionRelation xmi:id="id.99" xmi:type="action:Calls" to="id.44" from="id.96"/>
   <actionRelation xmi:id="id.100" xmi:type="action:Calls" to="id.48" from="id.96"/>
</codeElement>

      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.104" xmi:type="code:LanguageUnit">
      <codeElement xmi:id="id.105" xmi:type="code:IntegerType" name="int"/>
      <codeElement xmi:id="id.106" xmi:type="code:CallableUnit" name="printf" type="id.107">
        <codeElement xmi:id="id.107" xmi:type="code:Signature" name="printf">
          <parameterUnit xmi:id="id.108" type="id.105" kind="return" pos="0"/>
          <parameterUnit xmi:id="id.109" name="format" type="id.111" pos="1"/>
          <parameterUnit xmi:id="id.110" name="arguments" type="id.112" 

kind="variadic" pos="2"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.111" xmi:type="code:StringType" name="char *"/>
      <codeElement xmi:id="id.112" xmi:type="code:VoidType"/>
    </codeElement>
  </model>
</kdm:Segment>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        139



12.21 ClassRelations Class Diagram

NOTE:KDM14-231

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes. 
The classes and associations of the ClassRelations diagram are shown in Figure 12.19.

Figure 12.19 - ClassRelations Class Diagram 

12.21.1  Extends Class
The Extends is a specific meta-model element that represents semantic relation between two classes, where one class 
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented 
languages. 

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The from- and to- endpoints should be different.

Semantics

Extends relationship represents the associations between two datatypes in which the first datatype (called the “child” class) 
“subclasses” the second datatype (called the “parent” class) by inheriting the semantics and owned elements of the parent 
class.

from:Datatype[1] the child Class 

to:Datatype[1] the parent Class 
140                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Code Elements representing Preprocessor Directives
A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It 
is different than let’s say an HTML/Javascript program or programs with embedded assembler routines where there is 
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled 
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing, 
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex). 

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation 
perspective the SQL statement itself is very much what we want to capture along with the various data elements and 
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that 
generates some low-level code that will translate into a call to some library. By capturing this as generated code and 
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its 
execution realm. And our relationship between the “SQL language” elements to the “native” code elements that are 
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a 
couple of SourceRef would be very limiting indeed.

Preprocessor directive is a language/dialect on its own and it should be handled and treated as a first class citizen in 
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabled 
L0 KDM tool can seamlessly ignore the embedded language and work only with the primary language. The implementer 
shall either: 

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some 
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.

3. Represent both the embedded and the generated primary code and relations between the two. 

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language 
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:

• originally coded in the primary language
• included from another file by a preprocessor
• generated by a preprocessor as an expansion of an embedded language directive
• selected by satisfying appropriate conditions by the preprocessor

KDM provides the following modeling elements for representing preprocessor directives:

• PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete 
preprocessor directives. 

• MacroUnit -representation of macro definitions.
• MacroDirective - representation of an embedded language construct as distinguishable from the primary language 

construct. This is also known as a Macro Call.
• IncludeDirective - representation of an include directive of a preprocessor.
• ConditionalDirective - representation of a pre-processor conditional branch.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        141



12.22 PreprocessorDirectives Class Diagram
The PreprocessorDirectives class diagram defines the meta-model elements to represent embedded language constructs 
and to support common modeling situations resulting from the use of a language preprocessor (for example, preprocessor 
defined as part of the C language, or the preprocessing capabilities of Cobol).

The class diagram in Figure 12.20 shows these classes and their associations.

Figure 12.20 - PreprocessorDirectives Class Diagram

12.22.1  PreprocessorDirective Class (generic)
PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some 
programming languages (for example, the C language preprocessor capabilities). This class is extended by several 
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM 
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class 
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to 
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor 
directives in KDM is described later in this sub clause.

Superclass

AbstractCodeElement

Associations

codeElement:AbstractCodeElement[0..*] This optional code element represents the content of the preprocessor 
directive.
142                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. PreprocessorDirective should have a stereotype.

Semantics

From the KDM perspective, each preprocessor directive (an embedded language statement) is a container for code 
elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich 
representation of the embedded language directives. The implementer may provide additional information using 
stereotypes. The macro declaration is just code written for example in the “Cpreprocessor” language and can be 
represented using standard KDM constructs, such as CodeElements, Action, Flow etc., if needed or light-weight extension 
elements, like Stereotypes and ExtendedValues. In many situations, the right implementation choice is to leave the 
directive as an empty container with a name, and likely, a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for 
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as 
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate 
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level 
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically 
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more 
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this 
sub clause only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a 
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It 
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file 
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also 
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor 
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. The 
implementer may either clone the included code elements or to reuse them and keep a single copy in the SharedUnit. The 
recommended  approach is to clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

• Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not 
contain any pre-processor directives, and relationships expand and alternative; information about the embedded 
language cannot be recovered from the KDM representation.

• Ignore the generated primary code, provide a high-fidelity representation to the embedded construct; the embedded 
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded 
into the primary code may not be recovered from the KDM instance (but in general, the embedded construct provides 
a better choice, since it is the construct introduced by the developer).

• Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the 
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of 
KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and 
Alternative); there is a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

• Represent both the embedded constructs and the primary code, provide the high fidelity representation to the 
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the 
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        143



code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the 
entire BlockUnit to the corresponding embedded construct.

12.22.2  MacroUnit Class
MacroUnit class represents macro definitions common to several programming languages. Although KDM allows 
semantic-rich contents of MacroUnit (as it is a subclass of a ControlElement), usually it is sufficient to represent a macro 
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the 
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic 
information about the macro definition. 

Superclass

PreprocessorDirective

Attributes

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usually in the form of a 
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the 
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the 
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string 
manipulation. However, the optional owned code element may be used to represent these. 

The implementer shall select a particular strategy to represent macro units.

12.22.3  MacroKind data type (enumeration)
MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

12.22.4  MacroDirective Class
MacroDirective class represents the so-called “macro call”, the occurrence of a macro name (possible with parameters) in 
the primary code, such that the preprocessor recognizes it and “expands” by substituting the macro directive construct 
with its “definition”. A block of “generated” code elements that represent the primary code resulting from macro 
expansion may be associated with the MacroDirective. 

kind:MacroKind additional semantic properties of the macro definition

regular Macro definition has a body and may have parameters.

option Macro definition without a body and parameters, only a name.

undefined This value represents an undefined macro as the target for some relations in the 
representation of default branches of conditional compilation and variants.

external external compilation option

unknown unknown class of a macro definition
144                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Superclass

PreprocessorDirective

Semantics

MacroDirective represents the so-called “macrocall”, or an occurrence of a macro name (possibly with the actual 
parameters), which is substituted by the body of the macro definition in which the occurrences of the formal parameters 
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the 
origin of the action relationships to the actual parameters to the MacroDirective.

12.22.5  IncludeDirective Class
IncludeDirective class represents the so-called include directive, common to several programming languages and their 
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include 
directive is usually related to a SharedUnit (for example, a copybook in Cobol, or a header file in C). A block of 
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the 
include directive. Semantics of the IncludeDirective class is described later in this sub clause in more detail.

Superclass

PreprocessorDirective

Semantics

IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a 
stand-alone CompilationUnit.

12.22.6  Conditional Directive Class
ConditionalDirective class represents the so-called “variant” of a software system, resulting from the use of conditional 
compilation capabilities, common to several programming languages and their preprocessors (for example the #if … 
#endif and #ifdef … #endif directives of the preprocessor of the C language). ConditionalDirective represents a single 
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of 
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of 
the ConditionalDirective class is described later in this sub clause in more detail.

Superclass

PreprocessorDirective

Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the 
selected variant. The block of “generated” code identifies the corresponding conditional directive.

12.23 PreprocessorRelations Class Diagram

NOTE:KDM14-231
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        145



The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language 
constructs and pre-processor directives, common to several programming languages. 

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.21.

Figure 12.21 - PreprocessorRelations Class Diagram

12.23.1  Expands Class
Expands class represents the relationship between a MacroUnit to another MacroUnit or from a MacroDirective to a 
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit 
or MacroDirective.

Superclass

AbstractCodeRelationship

Associations

Semantics

The implementer shall identify and represent associations between MacroUnits, as well as a MacroDirective and the 
corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor support 
for the implementer guidelines.

to:MacroUnit[1] the target MacroUnit

from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.
146                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.23.2  GeneratedFrom Class
GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the 
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular, 
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class, 
the resulting code may represent one of the following:

• “generated” code that corresponds to a certain MacroDirective.

• “included” code that corresponds to a certain IncludeDirective.

• “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “generated” code and target the corresponding 
PreprocessorDirective. 

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the GeneratedFrom relationship should be a BlockUnit.

Semantics

See the general description of the preprocessor directives for the implementer’s guidelines.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

#define GT(A,B) ((A) > (B))
#define GMAX(A,B)  g=( GT(A,B) ? (A) : (B))
GMAX(p+q, r+s );

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Macro Directive Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
      <codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="GMAX">
        <source language="Cpreprocessor" 

snippet="#define GMAX(A,B) g=( GT(A,B) ? (A) : (B) )"/>
        <codeRelation xmi:id="id.3" xmi:type="code:Expands" to="id.4" from="id.2"/>
      </codeElement>
      <codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="GT">
        <source language="Cpreprocessor" snippet="#define GT(A,B) ((A) > (B))"/>
      </codeElement>

to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor 
directive that was involved in producing the code.

from:AbstractCodeElement[1] The BlockUnit that owns the “generated” code.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        147



      <codeElement xmi:id="id.5" xmi:type="action:BlockUnit">
        <codeElement xmi:id="id.6" xmi:type="code:StorableUnit" name="p" type="id.49"/>
        <codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="q" type="id.49"/>
        <codeElement xmi:id="id.8" xmi:type="code:StorableUnit" name="r" type="id.49"/>
        <codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="s" type="id.49"/>
        <codeElement xmi:id="id.10" xmi:type="code:StorableUnit" name="g" type="id.49"/>
        <codeElement xmi:id="id.11" xmi:type="code:MacroDirective" name="m1">
          <source xmi:id="id.12" language="Cpreprocessor" snippet="GMAX(p+q,r+s);"/>
          <codeRelation xmi:id="id.13" xmi:type="code:Expands" to="id.2" from="id.11"/>
        </codeElement>
        <codeElement xmi:id="id.14" xmi:type="action:BlockUnit" name="bm1">
          <codeRelation xmi:id="id.15" xmi:type="code:GeneratedFrom" to="id.11" from="id.14"/>
          <codeElement xmi:id="id.16" xmi:type="action:ActionElement">
            <source xmi:id="id.17" language="C" 

snippet="g=( ((p+q) > (r+s)) ? (p+q) : (r+s) );"/>
            <codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="a1" kind="Add">
              <actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.6" from="id.18"/>
              <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.10" from="id.18"/>
              <actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.47" from="id.18"/>
              <actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.23" from="id.18"/>
            </codeElement>
            <codeElement xmi:id="id.23" xmi:type="action:ActionElement" name="a2" kind="Add">
              <actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.8" from="id.23"/>
              <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.9" from="id.23"/>
              <actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.48" from="id.23"/>
              <actionRelation xmi:id="id.27" xmi:type="action:Flow" from="id.23"/>
            </codeElement>
            <codeElement xmi:id="id.28" xmi:type="action:ActionElement" 

name="a3" kind="GreaterThan">
              <codeElement xmi:id="id.29" xmi:type="code:StorableUnit" 

name="c" type="id.50" kind="register"/>
              <actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.47" from="id.28"/>
              <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.48" from="id.28"/>
              <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.29" from="id.28"/>
              <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
            </codeElement>
            <codeElement xmi:id="id.34" xmi:type="action:ActionElement" 

name="a3.1" kind="Condition">
              <actionRelation xmi:id="id.35" xmi:type="action:Reads" 

to="id.29" from="id.34"/>
              <actionRelation xmi:id="id.36" xmi:type="action:TrueFlow" 

to="id.38" from="id.28"/>
              <actionRelation xmi:id="id.37" xmi:type="action:FalseFlow" 

to="id.42" from="id.34"/>
            </codeElement>
            <codeElement xmi:id="id.38" xmi:type="action:ActionElement" 

name="a4" kind="Assign">
              <actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.47" from="id.38"/>
              <actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.10" from="id.38"/>
              <actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.46" from="id.38"/>
            </codeElement>
            <codeElement xmi:id="id.42" xmi:type="action:ActionElement" 

name="a5" kind="Assign">
              <actionRelation xmi:id="id.43" xmi:type="action:Reads" to="id.48" from="id.42"/>
              <actionRelation xmi:id="id.44" xmi:type="action:Writes" to="id.7" from="id.42"/>
              <actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.46" from="id.42"/>
            </codeElement>
            <codeElement xmi:id="id.46" xmi:type="action:ActionElement" name="a6" kind="Nop"/>
            <codeElement xmi:id="id.47" xmi:type="code:StorableUnit" 

name="t1" type="id.49" kind="register"/>
            <codeElement xmi:id="id.48" xmi:type="code:StorableUnit" 

name="t2" type="id.49" kind="register"/>
          </codeElement>
        </codeElement>
        <codeElement xmi:id="id.49" xmi:type="code:IntegerType" name="int"/>
        <codeElement xmi:id="id.50" xmi:type="code:BooleanType" name="boolean"/>
      </codeElement>
    </codeElement>
  </model>
</kdm:Segment>

12.23.3  Includes Class
Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being 
148                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



included.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the Includes relationship should be an IncludeDirective.

Semantics

The implementer shall identify and represent include relationships according to the semantics of the particular 
preprocessor.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

/*---a.h---*/
... c1 ...
...c2... 
/*---a.c---*/
#include "a.h"
...c1...

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code=""http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Include Directive Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <extensionFamily xmi:id="id.1" >
      <stereotype xmi:id="id.2" name="sample"/>
    </extensionFamily>
    <codeElement xmi:id="id.3" xmi:type="code:SharedUnit" name="a.h">
      <codeElement xmi:id="id.4" xmi:type="code:CodeElement" stereotype="id.2" name="c1">
        <source xmi:id="id.5" language="C"/>
      </codeElement>
      <codeElement xmi:id="id.6" xmi:type="code:CodeElement" stereotype="id.2" name="c2">
        <source xmi:id="id.7" language="C"/>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.8" xmi:type="code:CompilationUnit" name="a.c">
      <codeElement xmi:id="id.9" xmi:type="code:IncludeDirective">
        <source language="Cpreprocessor" snippet="#include &quot;a.h&quot;"/>
        <codeRelation xmi:id="id.10" xmi:type="code:Includes" to="id.3" from="id.9"/>
      </codeElement>
      <codeElement xmi:id="id.11" xmi:type="action:BlockUnit" name="b1">
        <codeRelation xmi:id="id.12" xmi:type="code:GeneratedFrom" to="id.9" from="id.11"/>
        <codeElement xmi:id="id.13" xmi:type="code:CodeElement" 

stereotype="id.2" name="c1_clone">
          <source xmi:id="id.14" language="C"/>
        </codeElement>
        <codeElement xmi:id="id.15" xmi:type="code:CodeElement" 

stereotype="id.2" name="c2_clone">
          <source xmi:id="id.16" language="C"/>

from:AbstractCodeElement[1] the code elements being included (usually a SharedUnit) 

from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        149



        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.17" xmi:type="action:BlockUnit" name="b2">
        <codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="a1">
          <actionRelation xmi:id="id.19" xmi:type="action:ActionRelationship" 

to="id.13" from="id.18"/>
        </codeElement>
      </codeElement>
    </codeElement>
  </model>
</kdm:Segment>

12.23.4  VariantTo Class
VariantTo class represents the relationship between variants of a software product line with conditional compilation. This 
relationship connects the ConditionalDirective to each alternative branch of the conditional compilation directive. KDM 
representation is expected to identify a single “default” variant, to which additional variants are alternatives. There is no 
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship 
GeneratedFrom connecting it to the corresponding ConditionalDirective. The “default” variant is expected to have a 
VariantTo relationship to every alternative branch.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the VariantTo relationship should be a ConditionalDirective.

2. The target of the VariantTo relationship should be a ConditionalDirective.

Semantics

The implementer shall identify and represent the variants and associations between the “generated” code and the 
corresponding conditional directive according to the semantics of the preprocessor. See the general description of the 
preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

#define UNIX 1
#if UNIX | DEBUG
g=1;
#endif

Ifdef UNIX
g=1
#else
g=2
#endif

to:PreprocessorDirective[1] ConditionalDirective class that represents an alternative variant of the 
conditional.

from:PreprocessorDirective[1] A ConditionalDirective class that represents the default variant of the 
conditional.
150                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Variants Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:MacroUnit" name="UNIX">
      <source language="Cproprocessor" snippet="#define UNIX 1"/>
    </codeElement>
    <codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="DEBUG" kind="external"/>
    <codeElement xmi:id="id.3" xmi:type="code:StorableUnit" name="g" type="id.4">
      <codeElement xmi:id="id.4" xmi:type="code:IntegerType"/>
    </codeElement>
    <codeElement xmi:id="id.5" xmi:type="code:ConditionalDirective" name="c1">
      <source language="Cpreprocessor" snippet="#if UNIX | DEBUG"/>
      <codeRelation xmi:id="id.6" xmi:type="code:Expands" to="id.1" from="id.5"/>
      <codeRelation xmi:id="id.7" xmi:type="code:Expands" to="id.2" from="id.5"/>
    </codeElement>
    <codeElement xmi:id="id.8" xmi:type="action:BlockUnit" name="b1">
      <codeRelation xmi:id="id.9" xmi:type="code:GeneratedFrom" to="id.5" from="id.8"/>
      <codeElement xmi:id="id.10" xmi:type="action:ActionElement" name="a1" kind="Assign">
        <source xmi:id="id.11" language="C" snippet="g=123"/>
        <codeElement xmi:id="id.12" xmi:type="code:Value" name="123" type="id.4"/>
        <actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.12" from="id.10"/>
        <actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.3" from="id.10"/>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.15" xmi:type="code:ConditionalDirective" name="c2">
      <source language="Cpreprocessor" snippet="#ifdef UNIX"/>
      <codeRelation xmi:id="id.16" xmi:type="code:Expands" to="id.1" from="id.15"/>
      <codeRelation xmi:id="id.17" xmi:type="code:VariantTo" to="id.25" from="id.15"/>
    </codeElement>
    <codeElement xmi:id="id.18" xmi:type="action:BlockUnit" name="b2">
      <codeRelation xmi:id="id.19" xmi:type="code:GeneratedFrom" to="id.15" from="id.18"/>
      <codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="a2" kind="Assign">
        <source xmi:id="id.21" language="C" snippet="g=123"/>
        <codeElement xmi:id="id.22" xmi:type="code:Value" name="1" type="id.4"/>
        <actionRelation xmi:id="id.23" xmi:type="action:Reads" to="id.22" from="id.20"/>
        <actionRelation xmi:id="id.24" xmi:type="action:Writes" to="id.3" from="id.20"/>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.25" xmi:type="code:ConditionalDirective" name="c3">
      <source language="Cpreprocessor" snippet="#else"/>
      <codeRelation xmi:id="id.26" xmi:type="code:Expands" to="id.1" from="id.25"/>
    </codeElement>
    <codeElement xmi:id="id.27" xmi:type="action:BlockUnit" name="b3">
      <codeRelation xmi:id="id.28" xmi:type="code:GeneratedFrom" to="id.25" from="id.27"/>
      <codeElement xmi:id="id.29" xmi:type="action:ActionElement" name="a3" kind="Assign">
        <source xmi:id="id.30" language="C" snippet="g=123"/>
        <codeElement xmi:id="id.31" xmi:type="code:Value" name="2" type="id.4"/>
        <actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.31" from="id.29"/>
        <actionRelation xmi:id="id.33" xmi:type="action:Writes" to="id.3" from="id.29"/>
      </codeElement>
    </codeElement>
  </model>
</kdm:Segment>

12.23.5  Redefines Class
Redefines class represents the relationship between a MacroUnit and another MacroUnit (usually with the same name) where 
the origin MacroUnit is a redefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the 
redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are 
expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current” 
definition at the given point.

Superclass

AbstractCodeRelationship
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        151



Associations 

Constraints

1. The origin of the Redefines relationship should be a MacroUnit.

Semantics 

The implementer shall identify and represent redefinitions of macro units according to the semantics of the particular 
preprocessor.

Example (C preprocessor)

NOTE:KDM14-15, KDM14-308

#define A 1
#define A 2
#undef A
#pragma once

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 
 xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 
name="Preprocessor Directives example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <extensionFamily xmi:id="id.1" >
      <stereotype xmi:id="id.2" name="directive">
        <tag xmi:id="id.3" tag="directive_type" type="String"/>
      </stereotype>
    </extensionFamily>
    <codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="A">
      <source language="Cpreprocessor" snippet="#define A 1"/>
    </codeElement>
    <codeElement xmi:id="id.5" xmi:type="code:MacroUnit" name="DEBUG" kind="option">
      <source language="Cpreprocessor" snippet="#define DEBUG"/>
    </codeElement>
    <codeElement xmi:id="id.6" xmi:type="code:MacroUnit" name="A">
      <source language="Cpreprocessor" snippet="#define A 2"/>
      <codeRelation xmi:id="id.7" xmi:type="code:Redefines" to="id.4" from="id.6"/>
    </codeElement>
    <codeElement xmi:id="id.8" xmi:type="code:MacroUnit" name="A" kind="undefined">
      <source language="Cpreprocessor" snippet="#undef A"/>
      <codeRelation xmi:id="id.9" xmi:type="code:Redefines" to="id.6" from="id.8"/>
    </codeElement>
    <codeElement xmi:id="id.10" xmi:type="code:PreprocessorDirective" 

stereotype="id.2" name="d1">
      <taggedValue xmi:id="id.11" xmi:type="kdm:TaggedValue" tag="id.3" value="pragma once"/>
      <source language="Cpreprocessor" snippet="#pragma once"/>
    </codeElement>
  </model>
</kdm:Segment>

Miscellaneous Code Elements

to:MacroUnit[1] the old MacroUnit

from:PreprocessorDirective[1] the new MacroUnit
152                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



12.24 Comments Class Diagram
The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the 
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the 
Comments diagram are shown in Figure 12.22.

Figure 12.22 - Comments Class Diagram

12.24.1  CommentUnit Class

NOTE:KDM14-29

The CommentUnit is a meta-model element that represents comments in existing systems (including any special 
comments). CommentUnit element can be used to introduce comments during transformation of the existing system 
(including special comments).

Superclass

ModelElement

Attributes

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. The 
implementer shall make an adequate decision on how to associate line comments with the surrounding elements in the 
source code. 

CommentUnit is a special element as it is a subclass of ModelElement, and not of KDMEntity. In addition to owned 
CodeElement, each AbstractCodeElement can own zero or more ordered CommentUnit. The order of CommentUnit is 
independent on the order of owned CodeElement. CommentUnit does not have SourceRef. The only connection of 
CommentUnit to the  SourceFile is through the owner code element.  

KDM implementation shall decide how to associate CommentUnit with the corresponding code element. At a minimum, 
CommentUnit shall be owned by the corresponding Module, but typically they are owned by some CodeItem that are 
owned by the Module. Thus, each code element  can have one or more SourceRef as well as associated comments. 
CommentUnit may be derived from sources other than the original SourceFile.

text:String the representation of the comment
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        153



CommentUnit is similar to Annotation element, however since CommentUnit is a subclass of ModelElement, it shall 
represent the text related to the system under investigation, and opposed to an Annotation, which shall represent text 
added during analysis.

Example

See example in section “VisibleIn Class”.

12.24.2  AbstractCodeElement Class (additional properties)

Associations

Semantics

12.25 Visibility Class Diagram
The Visibility class diagram defines meta-model elements that represent visibility of code elements in their corresponding 
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.23.

Figure 12.23 - Visibility Class Diagram

12.25.1  Namespace Class
The Namespace is a specific meta-model element that represents the target of the VisibleIn or Imports visibility 
relationships. 

Superclass

CodeItem

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement
154                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. Namespace element should not belong to own group.

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses. 
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

An anonymous namespace can represent a group of code elements that are the target of an Imports relationship.

12.26 VisibilityRelations Class Diagram

NOTE:KDM14-231

The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their 
corresponding containers. The classes and associations of the VisibilityRelations diagram are shown in Figure 12.24.

Figure 12.24 - VisibilityRelations Class Diagram

12.26.1  VisibleIn Class
The VisibleIn is a specific meta-model element that represents semantic relation between two code items, where one 
provides the restricted visibility context for another code item. 

Superclass

AbstractCodeRelationship

groupedCode:CodeItem[0..*] A KDM group of code elements that belong to the namespace. The actual 
owners of these elements are the corresponding modules, not the namespace, 
since namespaces can, in general cross cut the module boundaries.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        155



Associations

Semantics

VisibleIn optional relationship represents an association between a code item and one of the containers that corresponds to the 
visibility scope of the first item. This relationship is optional, since all other KDM relationships are determined by the 
semantics of the target language, including the visibility rules.

Example

NOTE:KDM14-15, KDM14-178, KDM14-308
File a.cpp
namespace ab {
/* comment #1 to foo */
// comment #2 to foo
foo()
{ ; //comment to action element a1 }
}
File b.cpp
namespace ab {
// Comment to record type bar
struct bar
{ int // Comment to integer type

foobar ; // Comment to item unit foobar }
}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"  

name="Visibility and Comment Example">
  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
      <codeElement xmi:id="id.2" xmi:type="code:NamespaceUnit" 

name="ab" groupedCode="id.4 id.9 id.13"/>
      <codeElement xmi:id="id.3" xmi:type="code:CompilationUnit" name="a">
        <codeElement xmi:id="id.4" xmi:type="code:CallableUnit" 

name="foo" type="id.8" kind="regular">
          <comment text="Comment #1 to foo"/>
          <comment text="Comment #2 to foo"/>
          <codeRelation xmi:id="id.5" xmi:type="code:VisibleIn" to="id.2" from="id.4"/>
          <codeElement xmi:id="id.6" xmi:type="action:ActionElement" kind="Nop" name="a1">
            <comment xmi:id="id.7" text="Comment to action element a1"/>
          </codeElement>
          <codeElement xmi:id="id.8" xmi:type="code:Signature" name="foo"/>
        </codeElement>
        <codeElement xmi:id="id.9" xmi:type="code:IntegerType" name="int">
          <comment xmi:id="id.10" text="Comment to integer type"/>
          <codeRelation xmi:id="id.11" xmi:type="code:VisibleIn" to="id.2"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.12" xmi:type="code:CompilationUnit" name="b">
        <codeElement xmi:id="id.13" xmi:type="code:RecordType" name="bar">
          <comment xmi:id="id.14" text="Comment to record type bar"/>
          <codeRelation xmi:id="id.15" xmi:type="code:VisibleIn" to="id.2" from="id.13"/>
          <itemUnit xmi:id="id.16" name="foobar" type="id.9">
            <comment xmi:id="id.17" text="Comment to item unit foobar"/>
            <codeRelation xmi:id="id.18" xmi:type="code:VisibleIn" to="id.13" from="id.16"/>
          </itemUnit>
        </codeElement>
      </codeElement>
    </codeElement>
  </model>

from:CodeItem[1] The CodeItem visibility of which is specified.

to:CodeItem[1] The CodeItem that provides the visibility context.
156                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



</kdm:Segment>

12.26.2  Imports Class
The Imports meta-model element represents an association between two CodeItems where one CodeItem “imports” 
definitions from another. The “import” relationship is common to several programming languages (for example, the 
import statement in Java). In this relationship the origin CodeItem (usually, a CompilationUnit or a subclass of Module) 
resolves the visibility of certain names that are defined (owned) by the target CodeItem (usually, another CompilationUnit 
or some other subclass of Module, but possibly a NamespaceUnit from another CodeItem, or even an individual code 
element). The Imports class simply represents the “import” relationships between CodeItem, for example, for tracking 
dependencies between packages. KDM representations themselves do not require additional import statements in order to 
have relationships between CodeItem, or even between different models.

Superclass

AbstractCodeRelationship

Associations

Constraints

1. The origin of the Imports relationship should be a subclass of Module.

Semantics

The implementer shall identify and represent import directives and their targets according to the semantics of the 
programming language of the existing software system.

12.27 ExtendedCodeElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedCodeElements class diagram defines two viewpoint-specific generic elements for the code model as 
determined by the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.25.

from:CodeItem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.

to:CodeItem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        157



Figure 12.25 - ExtendedCodeElements Class Diagram

12.27.1  CodeElement Class (generic)

NOTE:KDM14-58

The CodeElement is a generic meta-model element that can be used to define new extended meta-model elements through 
the KDM light-weight extension mechanism.

Superclass

CodeItem

Constraints

1. CodeElement should have at least one stereotype.

Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended 
meta-model entity type of the code model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.27.2  CodeRelationship Class (generic)

NOTE:KDM14-58

The CodeRelationship is a generic meta-model element that can be used to define new extended meta-model elements 
through the KDM light-weight extension mechanism. 

Superclass

AbstractCodeRelationship

Associations

from:CodeItem[1] the CodeItem 
158                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. CodeRelationship should have at least one stereotype.

Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model relationship type of the code model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

to:KDMEntity[1] the KDMEntity 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        159



160                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



13 Action Package

13.1 Overview
The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior 
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as 
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule, 
in a given KDM instance, each instance of an action element represents some programming language construct, 
determined by the programming language of the existing software system. Each instance of an action meta-model element 
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually 
represents one or more statements, and an action relationship usually represents a usage of a name in a statement. 

13.2 Organization of the Action Package
The Action package consists of the following 11 class diagrams:

• ActionElements

• ActionFlow

• ActionInheritances

• CallableRelations

• DataRelations

• ExceptionBlocks

• ExceptionFlow

• ExceptionRelations

• InterfaceRelations

• UsesRelations

• ExtendedActionElements

The Action package depends on the following packages:

• Core

• kdm

• Source

13.3 ActionElements Class Diagram

NOTE:KDM14-63, KDM14-190

In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with 
specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform 
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        161



model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action 
package defines most of the relationship types to the Code model. Together, Action, and Code packages constitute the 
Program Elements Layer of KDM. 

The ActionElements diagram defines the following classes determined by the KDM model pattern:

• ActionElement – main class of the Action package.

• AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to 
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations. 

Figure 13.1 - ActionElements Class Diagram 

13.3.1  ActionElement Class

NOTE:KDM14-30, KDM14-190, KDM14-23

The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for a large number of 
explicit KDM relations that describe control and data flow between various code elements. ActionElement can be linked 
to the original representation through the SourceRef element from the Source package. 

Superclass

AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.
162                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements. 

2. Compound ActionElement shall have an EntryFlow to the logically first owned ActionElement

Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even 
a part of a programming language statement. The implementer shall select the granularity of the action elements. As a 
minimum, each ControlElement should own at least one ActionElement so that it can be the endpoint of all 
ActionRelationships originating from the corresponding ControlElement. Static analysis grade KDM implementations 
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action 
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex 
A. For non-micro KDM implementation, the value of the kind is not normative.

The implementer shall map programming language statements and other descriptions of behavior into KDM 
ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action 
represents an entire set of leaf actions owned directly or indirectly.

ActionRelation owned by ActionElement are ordered. This is used, for example, to match actual and formal parameters, 
and to represent access to composite and derived datatypes.

13.3.2  AbstractActionRelationship Class (abstract) 
The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an 
ActionElement.

Superclass

KDMRelationship

Semantics

Usually, an action relationship corresponds to some usage of a name in a programming language statement. Action 
relationships originate from ActionElements as opposed to code relationships that originate from code elements. 
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

actionRelation:ActionRelationship[0..*]
{ordered}

Ordered action relationships originating from the given action element.

codeElement: AbstractCodeElement[0..*] Ordered owned code elements (for example, nested action elements, or 
nested BlockUnits, or nested definitions of datatypes and computational 
objects).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        163



13.3.3  BlockUnit Class

NOTE:KDM14-23, KDM14-22, KDM14-259

The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements. 
BlockUnit can also represent initialization blocks of individual ControlElement, ClassUnit, CompilationUnit and 
CodeAssembly. These BlockUnit own ActionElement related to initialization of global, static and local variables and 
creation of static objects.

Superclass

ActionElement

Associations

Constraints

1. BlockUnit shall have an EntryFlow relation to the logically first ActionElement

Semantics

A BlockUnit is a logical container for action elements. BlockUnit is similar to a composite ActionElement that can also 
contain nested ActionElement and data elements. BlockUnit represents nested ActionElement which are found in the 
given software system, while a generic compound ActionElement is an internal mechanism to manage complex 
ActionElement collections, in particular, those related to micro-KDM.

BlockUnit is used as a container for various ActionElement that are involved in the initialization of global, static and 
local variables in various CompilationUnit of a CodeAssembly. Such BlockUnit are called "initialization blocks". In 
micro KDM, an initialization block shall have a kind="Init". Semantics of the initialization blocks describes 
representation of control and data flow between initialization blocks using EntryFlow, Flow and Calls relations.

Semantics of initialization blocks: 

1) Each CompilationUnit shall have an EntryFlow relation to the first initialization block for the CompilationUnit, if one 
is required.

2) Each initialization block shall have Flow relation to next initialization block within the same CompilationUnit, if 
required. 

3) KDM implementation shall provide correct initialization order between multiple initialization blocks within each 
CompilationUnit.

4) Code Assembly shall have an EntryFlow relation to the initialization block, called the "master" initialization block, if 
one is required. 

5) KDM implementation shall provide correct initialization order between initialization blocks of separate modules. This 
order is typically undefined in the programming language and depends on the linker and the order in which modules are 
built. 

6) KDM implementation shall determine appropriate owner for the initialization blocks. 

codeElement:AbstractCodeElement[0..*] owned code elements including nested BlockUnits
164                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



7) KDM implementation shall provide appropriate chaining of initialization blocks across separate CompilationUnits 
within a CodeAssembly through the "master" initialization block in the CodeAssembly. The "master" initialization block 
owned by CodeAssembly owns an ActionElement with a sequence of Calls relations to each CompilationUnit that has an 
initialization block, in appropriate order. The last Calls relation is to the entry point of the CodeAssembly, for example, 
"main". Further, the initialization ActionElement owned by initialization blocks can be targets of HasValue relations from 
the corresponding DataElements.

Example

See example in section “HasValue Class”.

13.3.4  AbstractCodeElement (additional properties)

Associations

Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple 
EntryFlow elements represent nondeterministic control flow.

13.4 ActionInheritances Class Diagram
The ActionInheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action 
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2 
captures these classes and their associations. 

Figure 13.2 - ActionInheritances Class Diagram

13.5 ActionFlow Class Diagram

NOTE:KDM14-231

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements. 
The class diagram shown in Figure 13.3 captures these classes and their relations. 

entryFlow:EntryFlow[0..*] EntryFlow relationships that associate the given abstract code element and some 
action elements owned by it, which are designated as the entry actions.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        165



Figure 13.3 - ActionFlow Class Diagram

13.5.1  ControlFlow Class (generic)

NOTE:KDM14-58

The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is 
further subclassed with more specific modeling elements. ControlFlow class could be used to represent programming 
constructs that are not covered by any of the specific subclasses as an extension point.

Superclass

AbstractActionRelationship

Associations

Constraints

1. ControlFlow class should always be used with a stereotype.

from:ActionElement[1] the origin of the control flow

to:ActionElement[1] The target of control flow, when represented by the next action element in 
the trace determined by the control flow.
166                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base 
element for new extended meta-model elements, representing specific control flow relationships not covered by the 
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the 
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

The implementer shall map control flow mechanisms of the given programming language into ControlFlow meta-
elements. The implementer shall adequately represent the control flows of the existing system by a set of action elements 
and ControlFlow relationships between them.

13.5.2  EntryFlow Class

NOTE:KDM14-23

The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow 
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to 
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or 
action, from CompilationUnit to initialization block, from a callable unit to the initialization block, from a class to the 
initialization block, from BlockUnit to the logically first internal action or from a compound action to the logically first 
internal action.  

Superclass

AbstractActionRelationship

Associations

Constraints

1. Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a 
corresponding EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

2. The “to” attribute of an EntryFlow element should be an ActionElement that is owned by the 
AbstractCodeElement that is the “from” attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner 
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic 
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind "Init."

2. Initialization code can belong to a ControlElement, CompilationUnit, or CodeAssembly.

from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that 
represents its behavior.

to:ActionElement[1] The action element that is selected when the owner element is called.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        167



3. The EntryFlow relationship is used in a uniform way for describing entry points to other KDM code elements. It 
should be used for any type of special flows, e.g., entry to a CodeAssembly to initialization Block or action, from 
Module to initialization block, from callable unit to initialization block, from class to initialization block, or from 
compound action to the first internal action. 

4. The CodeAssembly shall include the "master" initialization block that owns an ActionElement with action 
kind="Init" and a sequence of Calls relaitons to the inidividual CompilationUnits in appropriate order, followed by 
another Calls relation to to the logical entry point of the CodeAssembly, for example "main". The initialization 
blocks of individual CompilationUnit referred to by the "master" block do not need to have the Flow relationship 
at their last action element. The control flow is returned to "master" initialization block. 

Additional semantics of initialization blocks is described in sections “BlockUnit Class” and  “HasValue Class”.

Example

See example in section “HasValue Class”.

13.5.3  Flow Class
The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the  
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to 
the “from” attribute of the Flow.

Superclass

ControlFlow

Constraints

1. If there is one or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same 
action element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from” attribute, they 
represent an unspecified flow of control.

13.5.4  TrueFlow Class
The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that

• the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

• the ActionElement that corresponds to the “to” attribute of the TrueFlow is a successor of the ActionElement that 
corresponds to the “from” attribute of the TrueFlow when the value of the condition is true.

Superclass

ControlFlow

Constraints

1. If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow elements that 
have the same ActionElement as the “from” attribute (but there can be FalseFlow).
168                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they 
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal, 
when condition is not satisfied.

13.5.5  FalseFlow Class
The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such 
that

• the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and 

• the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that 
corresponds to the “from” attribute of the FalseFlow when the value of other conditions is not satisfied. 

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements. 
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedFlow.

Superclass

ControlFlow

Constraints

1. If there exists a FalseFlow element, there should be either:

• a corresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same 
ActionElement as the “from” attribute, or 

• one or more GuardedFlow elements that have the same ActionElement as the “from” attribute, and 

• there are no other relationship elements that are subclasses of FlowRelationship that have the same 
ActionElement as the “from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they 
represent an unspecified flow of control.

13.5.6  GuardedFlow Class
The GuardedFlow class is a modeling element that represents control flow relationship between two or more 
ActionElements such that:

• the ActionElement that corresponds to the “from” attribute of the GuardedFlow represents the selection statement (for 
example, a “switch” statement); and 

• the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that 
determines a branch of control flow; and 

• the branch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedFlow 
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the 
guarded condition in the context of the selection statement is satisfied. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        169



FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch 
of control flow, for example, to represent the default branch of a switch statement.

Superclass

ControlFlow

Constraints

1. If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of 
FlowRelationship that have the same ActionElement as the “from” attribute, with exception of one or more 
GuardedFlow elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that corresponds to the “to” attribute of the GuardedFlow has 
kind=”Guard.” It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram

NOTE:KDM14-23, KDM14-231

The CallableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate 
ActionElement to ControlElement and represent control flows of the existing software system. 

The CallableRelations diagram describes the following types:

• Calls - is a modeling element that represents a call-type relationship between an ActionElement and a CallableElement 
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the 
CallableElement represents the element being called.

• Dispatches - is a modeling element that represents a call-type of relationship between an ActionElement and a data 
item, in which the ActionElement represents some form of a call, and the data item represents a pointer to a procedure 
type.
170                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The class diagram shown in Figure 13.4 captures these classes and their relations.

Figure 13.4 - CallableRelations Class Diagram

13.6.1  Calls Class

NOTE:KDM14-23, KDM14-147

Calls is a modeling element that represents a call-type relationship between an ActionElement and a CodeItem, which can 
be a ControlElement or one of its subclasses, or an entire CompilationUnit. The ActionElement represents some form of 
a call statement, and the CodeItem represents the element being called. In the meta-model the Calls element is a subclass 
of ActionRelationship.

Superclass

AbstractActionRelationship

Associations

Semantics

Calls relationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent a call to a 
procedure, a static method, a non-static method of a particular object instance, a virtual method, or an interface element. Calls 
relationship also represents the control flow between initialization blocks.

Calls relation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.

Precise semantics of a call can be represented by the “kind” element of the owner ActionElement, according to the guidelines 
provided in the “micro KDM” compliance point.

from:ActionElement[1] the action element from which the call relation originates

to:CodeItem[1] the target CodeItem
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        171



When a method call by pointer or reference, a virtual method or an interface element are called, the name of the method is 
known, and KDM uses relation Calls which is to an explicitly defined ControlElement and a "VirtualCall" micro action kind. 
When a procedural call by pointer is made, the name of the target procedure is not known, and KDM uses relation Dispatches, 
which is to a DataElement and a micro action kind "PtrCall". In each case the exact target of the call is not known statically.

Example

See examples in sections “CallableUnit Class”, “HasValue Class”, “Dispatches Class” and Chapter 14 “Micro KDM”.

13.6.2  Dispatches Class

NOTE:KDM14-147

Dispatches is a modeling element that represents a by pointer relationship between an ActionElement and a data item. The 
ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass

AbstractActionRelationship

Associations

Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be 
required to determine the real targets of the Dispatches call.

When a method call by pointer or reference, a virtual method or an interface element are called, the name of the method 
is known, and KDM uses relation Calls which is to an explicitly defined ControlElement and a "VirtualCall" micro action 
kind. When a procedural call by pointer is made, the name of the target procedure is not known, and KDM uses relation 
Dispatches, which is to a DataElement and a micro action kind "PtrCall". In each case the exact target of the call is not 
known statically.

Example (C)

NOTE:KDM14-15, KDM14-19, KDM14-308

typedef int(*fp)(int i );
int foo(int i){}
int bar( int i) {}
void foobar() {

fp pf;
pf=foo;
pf=bar;
*pf(1);

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Dispatch Example">

from:ActionElement[1] The action element from which the call relation originates.

to:DataElement[1] The data element that represents the pointer to a procedure type.
172                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="Dispatch.c">
      <codeElement xmi:id="id.2" xmi:type="code:CallableUnit" 

name="foo" type="id.4" kind="regular">
        <codeRelation xmi:id="id.3" xmi:type="code:HasType" to="id.14" from="id.2"/>
        <codeElement xmi:id="id.4" xmi:type="code:Signature" name="foo">
          <parameterUnit xmi:id="id.5" name="a" type="id.13"/>
          <parameterUnit xmi:id="id.6" type="id.13" kind="return"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.7" xmi:type="code:CallableUnit" 

name="bar" type="id.9" kind="regular">
        <codeRelation xmi:id="id.8" xmi:type="code:HasType" to="id.14" from="id.7"/>
        <codeElement xmi:id="id.9" xmi:type="code:Signature" name="bar">
          <parameterUnit xmi:id="id.10" name="a" type="id.13"/>
          <parameterUnit xmi:id="id.11" type="id.13" kind="return"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.13" xmi:type="code:IntegerType" name="int"/>
      <codeElement xmi:id="id.14" xmi:type="code:TypeUnit" name="fp" type="id.34">

<codeElement xmi:id="id.34" xmi:type="code:PointerType" name="pf" >
<codeElement xmi:id="id.35" xmi:type="code:ItemUnit" name="ipf" type="id.15">

        <codeElement xmi:id="id.15" xmi:type="code:Signature" name="f">
          <parameterUnit xmi:id="id.16" name="a" type="id.13"/>
          <parameterUnit xmi:id="id.17" type="id.13" kind="return"/>

</codeElement>
</codeElement>

        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.18" xmi:type="code:CallableUnit" name="foobar" type="id.33">
        <entryFlow xmi:id="id.19" to="id.20" from="id.18"/>
 <codeElement xmi:id="id.12" xmi:type="code:StorableUnit" name="pf"

 kind="local" type="id.14"/>
       <codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="a1" kind="Ptr">
          <actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.2" from="id.20"/>
          <actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.12" from="id.20"/>
          <actionRelation xmi:id="id.23" xmi:type="action:Flow" to="id.24" from="id.20"/>
        </codeElement>
        <codeElement xmi:id="id.24" xmi:type="action:ActionElement" name="a2" kind="Ptr">
          <actionRelation xmi:id="id.25" xmi:type="action:Addresses" to="id.2" from="id.24"/>
          <actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.12" from="id.24"/>
          <actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.24"/>
        </codeElement>
        <codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="a3" kind="PtrCall">
          <codeElement xmi:id="id.29" xmi:type="code:Value" name="1" type="id.13"/>
          <actionRelation xmi:id="id.30" xmi:type="action:Addresses" to="id.12" from="id.28"/>
          <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.29" from="id.28"/>
          <actionRelation xmi:id="id.32" xmi:type="action:Dispatches" 

to="id.12" from="id.28"/>
        </codeElement>
        <codeElement xmi:id="id.33" xmi:type="code:Signature" name="foobar"/>
      </codeElement>
    </codeElement>
  </model>
</kdm:Segment>

13.7 DataRelations Class Diagram

NOTE:KDM14-231

The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between 
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a   
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at 
Figure 13.5.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        173



Figure 13.5 - DataRelations Class Diagram

13.7.1  Reads Class
The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the 
DataElement).

Superclass

AbstractActionRelationship

Associations

Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain 
data element to the corresponding data element according to the semantics of the programming language of the existing 
software system.

13.7.2  Writes Class
The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

from:ActionElement[1] The action element that owns the Reads relationship.

to:DataElement[1] The DataElement that is the source of the flow of data.
174                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Superclass

AbstractActionRelationship

Associations

Semantics

Writes relationship represents an association between an action element, which implements a flow of data to a certain 
data element to the corresponding data element according to the semantics of the programming language of the existing 
software system.

13.7.3  Addresses Class
Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied 
to the elements of the data structure, or where an address of a data element is taken.

Superclass

AbstractActionRelationship

Associations

Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data 
element to the corresponding data element according to the semantics of the programming language of the existing 
software system.

13.7.4  Creates Class
The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a 
new instance of the Datatype.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Writes relationship.

to:DataElement[1] The DataElement that is the sink of the flow of data.

from:ActionElement[1] The action element that owns the Addresses relationship.

to:ComputationalObject[1] The Computational object that is being accessed.

from:ActionElement[1] The action element that owns the Creates relationship.

to:Datatype[1] The DataElement that is instantiated by the ActionElement. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        175



Semantics

Creates relationship represents an association between an action element that creates a new instance of a certain data 
element to the corresponding datatype according to the semantics of the programming language of the existing software 
system.

13.8 ExceptionBlocks Class Diagram
The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling 
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to 
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the 
optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when 
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to 
have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special 
ParameterKind value kind=”exception” to represent parameter passing via exception mechanism or kind=”catchall” to 
represent the catch all construct in C++.

Figure 13.6 - ExceptionBlocks Class Diagram

13.8.1  ExceptionUnit Class
ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for 
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which 
can own both ActionElement (for example, statements in the catch-block) as well as CodeItem (for example, parameters 
to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are 
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used 
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass

BlockUnit
176                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2  TryUnit Class
TryUnit class is a meta-model element that represents try-blocks common to several programming languages. TryUnit is 
a container for action elements and associated definitions of CodeItems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support 
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and 
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass

ExceptionUnit

Semantics

TryUnit represents a try-block.

13.8.3  CatchUnit Class
CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular 
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object 
passed to the catch-block by the exception-handling mechanism.

Superclass

ExceptionUnit

Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow 
relationship that originates from some TryUnit. 

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow 
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow 
relationship.

13.8.4  FinallyUnit Class
FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is 
associated with the code responding TryUnit through an ExitFlow relation. 

Superclass

ExceptionUnit
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        177



Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow 
relationship that originates from some TryUnit. 

2. TryUnit should not be associated with more than one FinallyBlock.

Semantics

FinallyBlock represents a finally-block associated with a certain try-block.

Example (Java)

NOTE:KDM14-15, KDM14-16, KDM14-183, KDM14-308
class A {

void foo() {
try {

bar();
}

catch(Exception e) {
 println("Something went wrong"); 
}

finally { 
println("Good bye"); 
}

}
void bar() throws MoreDescriptiveException {

try { 
this.arr[20] = 20; 
println(arr); 
}

catch (IndexOutOfBoundsException e) {
println("Oops"); 
throw new "went too far" 
}

finally { 
println(arr); }

}
int[] arr = new int[10]

}
class MoreDescriptiveException extends Exception {

public MoreDescriptiveException(String msg){ 
super(msg); 
}

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 
xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Exceptions Example">

  <model xmi:id="id.0" xmi:type="code:CodeModel">
    <codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="A">
      <codeElement xmi:id="id.2" xmi:type="code:MethodUnit" name="foo"

methodKind="method" type="id.71">
        <entryFlow xmi:id="id.3" to="id.4" from="id.2"/>

<codeElement xmi:id="id.71" xmi:type="code:Signature">
</codeElement>

        <codeElement xmi:id="id.4" xmi:type="action:TryUnit" name="t1">
   <entryFlow xmi:id="id.91" to="id.5" from="id.4"/>

          <codeElement xmi:id="id.5" xmi:type="action:ActionElement" name="a1" kind="Call">
            <actionRelation xmi:id="id.6" xmi:type="action:Calls" to="id.23" from="id.5"/>
          </codeElement>
          <actionRelation xmi:id="id.7" xmi:type="action:Flow" to="id.5" from="id.4"/>
          <actionRelation xmi:id="id.8" xmi:type="action:ExceptionFlow" 

to="id.10" from="id.4"/>
          <actionRelation xmi:id="id.9" xmi:type="action:ExitFlow" to="id.17" from="id.4"/>
        </codeElement>
        <codeElement xmi:id="id.10" xmi:type="action:CatchUnit" name="c1">

   <entryFlow xmi:id="id.92" to="id.12" from="id.10"/>
178                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



          <codeElement xmi:id="id.11" xmi:type="code:ParameterUnit" name="e" type="id.67"/>
          <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="a2" kind="Call">
            <codeElement xmi:id="id.13" xmi:type="code:Value" 

name="&quot;Something went wrong&quot;" type="id.69"/>
            <actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.13" from="id.12"/>
            <actionRelation xmi:id="id.15" xmi:type="action:Calls" to="id.66" from="id.12"/>
          </codeElement>
          <actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.12" from="id.10"/>
        </codeElement>
        <codeElement xmi:id="id.17" xmi:type="action:FinallyUnit" name="f1">

   <entryFlow xmi:id="id.93" to="id.18" from="id.17"/>
          <codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="a3" kind="Call">
            <codeElement xmi:id="id.19" xmi:type="code:Value" 

name="&quot;Good bye&quot;" type="id.69"/>
            <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.19" from="id.18"/>
            <actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.66" from="id.18"/>
          </codeElement>
          <actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.18" from="id.17"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.23" xmi:type="code:MethodUnit" name="bar" 

methodKind="method" type="id.57">
        <entryFlow xmi:id="id.24" to="id.25" from="id.23"/>
        <codeElement xmi:id="id.25" xmi:type="action:TryUnit" name="t2">

   <entryFlow xmi:id="id.94" to="id.26" from="id.25"/>
          <codeElement xmi:id="id.26" xmi:type="action:ActionElement" 

name="a4" kind="ArrayReplace">
            <source xmi:id="id.27" language="Java" snippet="arr[20]=20"/>
            <codeElement xmi:id="id.28" xmi:type="code:Value" name="20" type="id.70"/>
            <actionRelation xmi:id="id.29" xmi:type="action:Addresses" 

to="id.59" from="id.26"/>
            <actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.28" from="id.26"/>
            <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.28" from="id.26"/>
            <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.61" from="id.26"/>
            <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.26"/>
          </codeElement>
          <codeElement xmi:id="id.34" xmi:type="action:ActionElement" name="a5" kind="Call">
            <actionRelation xmi:id="id.35" xmi:type="action:Reads" to="id.59" from="id.34"/>
            <actionRelation xmi:id="id.36" xmi:type="action:Calls" to="id.66" from="id.42"/>
          </codeElement>
          <actionRelation xmi:id="id.37" xmi:type="action:Flow" to="id.26" from="id.25"/>
          <actionRelation xmi:id="id.38" xmi:type="action:ExceptionFlow" 

to="id.40" from="id.25"/>
          <actionRelation xmi:id="id.39" xmi:type="action:ExitFlow" to="id.52" from="id.25"/>
        </codeElement>
        <codeElement xmi:id="id.40" xmi:type="action:CatchUnit" name="c2">

   <entryFlow xmi:id="id.95" to="id.42" from="id.40"/>
          <codeElement xmi:id="id.41" xmi:type="code:ParameterUnit" name="e" type="id.68"/>
          <codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="a6" kind="Call">
            <codeElement xmi:id="id.43" xmi:type="code:Value" 

name="&quot;Oops&quot;" type="id.69"/>
            <actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.43" from="id.47"/>
            <actionRelation xmi:id="id.45" xmi:type="action:Calls" to="id.66" from="id.42"/>
            <actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.72" from="id.42"/>
          </codeElement>

  <codeElement xmi:id="id.72" xmi:type="action:ActionElement" name="a8" kind="New">
<codeElement xmi:id="id.73" xmi:type="code:StorableUnit" 

type="id.69" kind="local"/>
<actionRelation xmi:id="id.74" xmi:type="action:Creates" 

to="id.48" from="id.72"/>
<actionRelation xmi:id="id:75" xmi:type="action:Flow" to="id.76" from="id.72"/>

   </codeElement>
   <codeElement xmi:id="id.76" xmi:type="action:ActionElement" name="a8" 

kind="MethodCall">
<codeElement xmi:id="id.48" xmi:type="code:Value" 

name=""Went too far"" type="id.69"/>
<actionRelation xmi:id="id.77" xmi:type="action:Addresses" 

to="id.73" from="id.76"/>
<actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.48" from="id.76"/>
<actionRelation xmi:id="id.79" xmi:type="action:Calls" to="id.73" from="id.76"/>
<actionRelation xmi:id="id:80" xmi:type="action:Flow" to="id.47" from="id.72"/>

   </codeElement>
          <codeElement xmi:id="id.47" xmi:type="action:ActionElement" name="a7" kind="Throw">
            <codeElement xmi:id="id.48" xmi:type="code:Value" 

name="&quot;Went too far&quot;" type="id.69"/>
            <actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.48" from="id.47"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        179



            <actionRelation xmi:id="id.50" xmi:type="action:Throws" to="id.73" from="id.47"/>
          </codeElement>
          <actionRelation xmi:id="id.51" xmi:type="action:Flow" to="id.42" from="id.40"/>
        </codeElement>
        <codeElement xmi:id="id.52" xmi:type="action:FinallyUnit" name="f2">

   <entryFlow xmi:id="id.96" to="id.53" from="id.52"/>
          <codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a8" kind="Call">
            <actionRelation xmi:id="id.54" xmi:type="action:Reads" to="id.59" from="id.53"/>
            <actionRelation xmi:id="id.55" xmi:type="action:Calls" to="id.66" from="id.42"/>
          </codeElement>
          <actionRelation xmi:id="id.56" xmi:type="action:Flow" to="id.53" from="id.52"/>
        </codeElement>
        <codeElement xmi:id="id.57" xmi:type="code:Signature">
          <parameterUnit xmi:id="id.58" type="id.63" kind="throws"/>
        </codeElement>
      </codeElement>
      <codeElement xmi:id="id.59" xmi:type="code:MemberUnit" 

name="arr" type="id.60" size="10">
        <codeElement xmi:id="id.60" xmi:type="code:ArrayType">
          <itemUnit xmi:id="id.61" type="id.70"/>
          <indexUnit xmi:id="id.62" type="id.70"/>
        </codeElement>
      </codeElement>
    </codeElement>
    <codeElement xmi:id="id.63" xmi:type="code:ClassUnit" 

name="MoreDescriptiveException" isAbstract="true">
      <codeRelation xmi:id="id.64" xmi:type="code:Extends" to="id.67" from="id.63"/>

<codeElement xmi:id="id.81" xmi:type="code:MethodUnit" 
name="MoreDescriptiveException" methodKind="constructor" type="86" >

<entryFlow xmi:id="id.82" to="id.83" from="id.81"/>
<codeElement xmi:id="id.83" xmi:type="action:ActionElement" 

name="a9" kind="MethodCall">
<actionRelation xmi:id="id.84" xmi:type="action:Reads" 

to="id.87" from="id.83"/>
<actionRelation xmi:id="id.85" xmi:type="action:Calls" 

to="id.88" from="id.83"/>
</codeElement>
<codeElement xmi:id="id.86" xmi:type="code:Signature">

<parameterUnit xmi:id="id.87" type="id.69" name="msg" kind="byValue"/>
</codeElement>

</codeElement>
    </codeElement>
  </model>
  <model xmi:id="id.65" xmi:type="code:CodeModel" name="Java common definitions">
    <codeElement xmi:id="id.66" xmi:type="code:CallableUnit" name="println"/>
    <codeElement xmi:id="id.67" xmi:type="code:ClassUnit" name="Exception"/>

<codeElement xmi:id="id.88" xmi:type="code:MethodUnit" 
name="Exception" methodKind="constructor" type="id.89" >
<codeElement xmi:id="id.89" xmi:type="code:Signature">

<parameterUnit xmi:id="id.90" type="id.69" name="msg" kind="byValue"/>
</codeElement>

</codeElement>
    </codeElement>
    <codeElement xmi:id="id.68" xmi:type="code:ClassUnit" 

name="ArrayIndexOutOfBoundsException" isAbstract="false"/>
    <codeElement xmi:id="id.69" xmi:type="code:StringType"/>
    <codeElement xmi:id="id.70" xmi:type="code:IntegerType"/>
  </model>
</kdm:Segment>

13.9 ExceptionFlow Class Diagram

NOTE:KDM14-61, KDM14-231

ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception 
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts 
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions. 
180                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw 
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the 
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw, 
to another ActionElement that represents the catcher of the exception. The ExceptionFlow target could be a local  
CatchUnit that will handle the exception or a point back to the TryUnit or simply another ActionElement.

Exception flow elements are optional for L0 KDM models. KDM export tools at L0 compliance level may lack the full 
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be 
further analyzed by a different tool to add more information about the flow of control determined by the exception 
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for 
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined 
exceptions, tools should normally be able to capture the origin points by analyzing the various methods invoked and 
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list 
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine 
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go a long way 
in supporting complex analysis. 

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate 
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be 
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if there is a finally clause, a finally flow would go from the TryUnit to the FinallyUnit to cover the finalization. The 
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since 
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the 
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind 
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call 
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow 
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow 
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception 
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “The exception 
handling mechanism is a non local control structure based on stack unwinding that can be seen as an alternative return 
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        181



Figure 13.7 - ExceptionFlow Class Diagram

13.9.1  ExitFlow Class
ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the 
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example, 
ExitFlow can be used to relate a try-block with the corresponding finally-block.

Superclass

AbstractActionRelationship

Associations

Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the 
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

13.9.2  ExceptionFlow Class

NOTE:KDM14-61

from:ActionElement[1] ActionElement (for example, a try-block) for which the “on-exit” behavior 
was specified.

to:ActionElement[1] ActionElement (usually, a finally-block) that represents the behavior that is 
invoked upon successful exit of the origin block (“on exit”).
182                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The ExceptionFlow  relationship represents an exception flow of control between an ActionElement that produces an 
exception, such as a TryUnit, and the ActionElement that handles the exception, such as the corresponding CatchUnit. 

Superclass

AbstractActionRelationship

Associations

Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain 
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the 
existing software system.

13.10  ExceptionRelations Class Diagram

NOTE:KDM14-231

The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships 
associated with exception handling mechanism common to various programming languages. 

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1  Throws Class
The Throws class is a meta-model element that represents throw-statements supported by several programming languages. 
These are the user-defined throws for exception, as opposed to the so-called normal system exceptions and runtime 
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their 
throw entity, using the Throws relationship.

See sections ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling 
mechanism.

from:ActionElement[1] the origin of the exception flow

to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        183



Superclass

AbstractActionRelationship

Associations

Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data 
element that is associated with that exception. The implementer shall identify and represent these associations according 
to the semantics of the programming language of the existing software system.

13.11  InterfaceRelations Class Diagram

NOTE:KDM14-231

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations” by the 
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

Figure 13.9 - InterfaceRelations Class Diagram

13.11.1  CompliesTo Class
The CompliesTo is a meta-model element that represents an association between an action element that “uses” some 
computational object, and the “declaration” of that computational object. 

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The ActionElement that throws the exception.

to:DataElement[1] the exception data element being thrown

from:ActionElement[1] The origin of the relationship; action element that “uses” some computational 
object.

to:CodeItem[1] the “declaration” of that computational object
184                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. The kind attribute of the CodeItem at the target of the CompliesTo relationship should be equal to “external” or 
“abstract.”

2. The action element that is the origin of the “CompliesTo” relationship should own a callable or data action 
relationship to some computational object and the target of CompliesTo relationship should be one of the 
declarations of that computational object.

Semantics

See section InterfaceRelations of the Code package chapter.

13.12  UsesRelations Class Diagram

NOTE:KDM14-231

The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and 
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their 
relations.

Figure 13.10 - UsesRelations Class Diagram

13.12.1  UsesType Class
The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that performs a type cast or a type conversion.

to:Datatype[1] The datatype involved in a type operation.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        185



Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion 
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind” 
attribute of the action element. See the “micro KDM” chapter.

13.13  ExtendedActionElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedActionElements class diagram defines an additional viewpoint-specific generic element for the code model 
as determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedActionElements diagram are shown in Figure 13.11.

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1  ActionRelationship Class (generic)

NOTE:KDM14-58

The ActionRelationship is a generic meta-model element that can be used to define new extended meta-model elements 
through the KDM light-weight extension mechanism. 

Superclass

AbstractActionRelationship

Associations

Constraints

1. ActionRelationship should have at least one stereotype.

Semantics

from:ActionElement[1] the origin action element

to:KDMEntity[1] the target KDM entity
186                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model relationship types of the code model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        187



188                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



14 Micro KDM

This clause describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM 
compliance point (“micro KDM”).

Let’s use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a 
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing 
software system. The term “macro action” should not be confused with the preprocessor directives common to certain 
programming languages. 

A KDM “macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which 
links it to the artifacts of the existing software system. KDM L0 compliance point does not specify the semantics of a 
KDM “macro action” leaving it up to implementers to design the mapping from the programming languages involved in 
the artifacts of the existing software systems and KDM. 

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing 
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to 
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It 
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with 
predefined semantics. 

According to the “micro KDM” approach, the original “macro action” is treated as a container that owns certain “micro 
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM 
constrains the patterns of how to map the statements of the existing system as determined by the programming language 
into KDM. This is similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft.NET. 

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for 
control and data flow analysis. Micro KDM is a rather high-level IR. Micro KDM actions are aligned with the ISO 11404 
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for 
representing program elements.

Separation into a “macro action” and “micro actions” allows:

• The flexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example 
to a source file or to an AST, providing a meaningful source ref (a macro action can still represent one or more 
statements in the original existing system), and 

• provides precise representation of the original “macro action” through a mapping to micro actions with predefined 
semantics. 

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns 
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The 
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control 
and data flow analysis.

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships 
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the 
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM 
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned 
ActionRelationships represent the parameters to the action element.

Each micro KDM action has the following 5 parts (Action Kind, Outputs, Inputs, Control, and Extras):
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        189



• Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the 
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the 
“Call” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case 
sensitive strings in Annex A.

• Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro 
action. This part is optional.

• Inputs - Ordered incoming Reads and/or Addresses relationships that are owned by the action element, the order of the 
relationships represent the order of the arguments for a micro action.

• Control - owned outgoing control flow relationships for the action. 

• Extras - owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind. For 
example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model shall be a micro KDM action, where the operation performed by the 
action is designated by the value of the action kind, specified in the list of the micro actions in Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and 
runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM 
model is determined by the semantics of the micro actions.

Semantics

Semantics of KDM micro actions is defined in Annex A: “Semantics of the Micro KDM Action Elements.”

Example

NOTE:KDM14-15, KDM14-76, KDM14-308

z=1+f(x,y);
*d[x+3]=1;
d[y+3]=&z;
y=*d[x+3];

function foo does not comply to micro KDM semantic constraints;
function bar complies to micro KDM

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Micro KDM Example">

  <model xmi:id="id.0" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">

      <codeElement xmi:id="id.2" xmi:type="code:CallableUnit" name="foo" kind="regular">

        <entryFlow xmi:id="id.3" to="id.4" from="id.2"/>

        <codeElement xmi:id="id.4" xmi:type="action:ActionElement" name="f1" kind="unknown">

          <source xmi:id="id.5" language="C" snippet="z=1+f(x,y)"/>

          <actionRelation xmi:id="id.6" xmi:type="action:Calls" to="id.107" from="id.4"/>

          <actionRelation xmi:id="id.7" xmi:type="action:Reads" to="id.97" from="id.4"/>
190                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



          <actionRelation xmi:id="id.8" xmi:type="action:Reads" to="id.98" from="id.4"/>

          <actionRelation xmi:id="id.9" xmi:type="action:Writes" to="id.99" from="id.4"/>

          <actionRelation xmi:id="id.10" xmi:type="action:Reads" to="id.105" from="id.4"/>

          <actionRelation xmi:id="id.11" xmi:type="action:Flow" to="id.12" from="id.4"/>

        </codeElement>

        <codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="f2" kind="unknown">

          <source xmi:id="id.13" language="C" snippet="*d[x+3]=1;d[y+3]=&amp;z;y=*d[x+3];"/>

          <actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.97" from="id.12"/>

          <actionRelation xmi:id="id.15" xmi:type="action:Addresses" to="id.100" from="id.12"/>

          <actionRelation xmi:id="id.16" xmi:type="action:Reads" to="id.106" from="id.12"/>

          <actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.105" from="id.12"/>

          <actionRelation xmi:id="id.18" xmi:type="action:Addresses" to="id.100" from="id.12"/>

          <actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.98" from="id.12"/>

          <actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.106" from="id.12"/>

          <actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.99" from="id.12"/>

          <actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.98" from="id.4"/>

          <actionRelation xmi:id="id.23" xmi:type="action:Addresses" to="id.100" from="id.12"/>

          <actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.97" from="id.12"/>

          <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.106" from="id.12"/>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.26" xmi:type="code:CallableUnit" name="bar" kind="regular">

        <entryFlow xmi:id="id.27" to="id.28" from="id.26"/>

        <codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="b1" kind="compound">

          <source xmi:id="id.29" language="C" snippet="z=1+f(x,y)"/>

          <codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t1" 

type="id.112" kind="register"/>

          <codeElement xmi:id="id.31" xmi:type="action:ActionElement" name="b1.1" kind="Call">

            <actionRelation xmi:id="id.32" xmi:type="action:Calls" to="id.107" from="id.28"/>

            <actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.97" from="id.28"/>

            <actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.98" from="id.28"/>

            <actionRelation xmi:id="id.35" xmi:type="action:Writes" to="id.30" from="id.31"/>

            <actionRelation xmi:id="id.36" xmi:type="action:Flow" to="id.37" from="id.31"/>

          </codeElement>

          <codeElement xmi:id="id.37" xmi:type="action:ActionElement" name="b1.2" kind="Add">

            <actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.105" from="id.37"/>

            <actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.30" from="id.37"/>

            <actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.99" from="id.37"/>

          </codeElement>

          <actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.31" from="id.28"/>

        </codeElement>

        <codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="b2" kind="compound">

          <source xmi:id="id.43" language="C" snippet="*d[x+3]=1;d[y+3]=&amp;z;y=*d[x+3];"/>

          <entryFlow xmi:id="id.96" to="id.50" from="id.42"/>

          <codeElement xmi:id="id.44" xmi:type="code:StorableUnit" name="t2" 

type="id.103" kind="register"/>

          <codeElement xmi:id="id.45" xmi:type="code:StorableUnit" name="t3" 

type="id.103" kind="register"/>

          <codeElement xmi:id="id.46" xmi:type="code:StorableUnit" name="t4" 

type="id.112" kind="register"/>

          <codeElement xmi:id="id.47" xmi:type="code:StorableUnit" name="t5" 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        191



type="id.103" kind="register"/>

          <codeElement xmi:id="id.48" xmi:type="code:StorableUnit" name="t6" 

type="id.112" kind="register"/>

          <codeElement xmi:id="id.49" xmi:type="code:StorableUnit" name="t7" 

type="id.103" kind="register"/>

          <codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="b2.1" kind="Add">

            <actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.97" from="id.50"/>

            <actionRelation xmi:id="id.52" xmi:type="action:Reads" to="id.106" from="id.50"/>

            <actionRelation xmi:id="id.53" xmi:type="action:Writes" to="id.44" from="id.50"/>

            <actionRelation xmi:id="id.54" xmi:type="action:Flow" to="id.55" from="id.50"/>

          </codeElement>

          <codeElement xmi:id="id.55" xmi:type="action:ActionElement" name="b2.2" kind="ArraySelect">

            <actionRelation xmi:id="id.56" xmi:type="action:Addresses" to="id.100" from="id.55"/>

            <actionRelation xmi:id="id.57" xmi:type="action:Reads" to="id.102" from="id.55"/>

            <actionRelation xmi:id="id.58" xmi:type="action:Reads" to="id.44" from="id.55"/>

            <actionRelation xmi:id="id.59" xmi:type="action:Writes" to="id.45" from="id.55"/>

            <actionRelation xmi:id="id.60" xmi:type="action:Flow" to="id.61" from="id.55"/>

          </codeElement>

          <codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="b2.3" kind="PtrReplace">

            <actionRelation xmi:id="id.62" xmi:type="action:Addresses" to="id.45" from="id.61"/>

            <actionRelation xmi:id="id.63" xmi:type="action:Reads" to="id.105" from="id.61"/>

            <actionRelation xmi:id="id.64" xmi:type="action:Writes" to="id.104" from="id.61"/>

            <actionRelation xmi:id="id.65" xmi:type="action:Flow" to="id.66" from="id.61"/>

          </codeElement>

          <codeElement xmi:id="id.66" xmi:type="action:ActionElement" name="b2.4" kind="Add">

            <actionRelation xmi:id="id.67" xmi:type="action:Reads" to="id.98" from="id.12"/>

            <actionRelation xmi:id="id.68" xmi:type="action:Reads" to="id.106" from="id.12"/>

            <actionRelation xmi:id="id.69" xmi:type="action:Writes" to="id.46" from="id.66"/>

            <actionRelation xmi:id="id.70" xmi:type="action:Flow" to="id.71" from="id.66"/>

          </codeElement>

          <codeElement xmi:id="id.71" xmi:type="action:ActionElement" name="b2.5" kind="Ptr">

            <actionRelation xmi:id="id.72" xmi:type="action:Addresses" to="id.99" from="id.12"/>

            <actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.47" from="id.71"/>

            <actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.71"/>

          </codeElement>

          <codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="b2.6" kind="ArrayReplace">

            <actionRelation xmi:id="id.76" xmi:type="action:Addresses" to="id.100" from="id.12"/>

            <actionRelation xmi:id="id.77" xmi:type="action:Reads" to="id.46" from="id.75"/>

            <actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.47" from="id.75"/>

            <actionRelation xmi:id="id.79" xmi:type="action:Writes" to="id.102" from="id.75"/>

            <actionRelation xmi:id="id.80" xmi:type="action:Flow" to="id.81" from="id.75"/>

          </codeElement>

          <codeElement xmi:id="id.81" xmi:type="action:ActionElement" name="b2.7" kind="Add">

            <actionRelation xmi:id="id.82" xmi:type="action:Reads" to="id.97" from="id.12"/>

            <actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.106" from="id.12"/>

            <actionRelation xmi:id="id.84" xmi:type="action:Writes" to="id.48" from="id.81"/>

            <actionRelation xmi:id="id.85" xmi:type="action:Flow" to="id.86" from="id.81"/>

          </codeElement>

          <codeElement xmi:id="id.86" xmi:type="action:ActionElement" name="b2.8" kind="ArraySelect">

            <actionRelation xmi:id="id.87" xmi:type="action:Addresses" to="id.100" from="id.12"/>

            <actionRelation xmi:id="id.88" xmi:type="action:Reads" to="id.48" from="id.86"/>
192                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



            <actionRelation xmi:id="id.89" xmi:type="action:Reads" to="id.102" from="id.86"/>

            <actionRelation xmi:id="id.90" xmi:type="action:Writes" to="id.49" from="id.86"/>

            <actionRelation xmi:id="id.91" xmi:type="action:Flow" to="id.92" from="id.86"/>

          </codeElement>

          <codeElement xmi:id="id.92" xmi:type="action:ActionElement" name="b2.9" kind="PtrSelect">

            <actionRelation xmi:id="id.93" xmi:type="action:Addresses" to="id.49" from="id.92"/>

            <actionRelation xmi:id="id.94" xmi:type="action:Reads" to="id.104" from="id.92"/>

            <actionRelation xmi:id="id.95" xmi:type="action:Writes" to="id.98" from="id.92"/>

          </codeElement>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.97" xmi:type="code:StorableUnit" name="x" type="id.112"/>

      <codeElement xmi:id="id.98" xmi:type="code:StorableUnit" name="y" type="id.112"/>

      <codeElement xmi:id="id.99" xmi:type="code:StorableUnit" name="z" type="id.112"/>

      <codeElement xmi:id="id.100" xmi:type="code:StorableUnit" name="d" type="id.101">

        <codeElement xmi:id="id.101" xmi:type="code:ArrayType" name="">

          <itemUnit xmi:id="id.102" name="d[]" type="id.103">

            <codeElement xmi:id="id.103" xmi:type="code:PointerType">

              <itemUnit xmi:id="id.104" name="*d[]" type="id.112"/>

            </codeElement>

          </itemUnit>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.105" xmi:type="code:Value" name="1" type="id.112"/>

      <codeElement xmi:id="id.106" xmi:type="code:Value" name="3" type="id.112"/>

      <codeElement xmi:id="id.107" xmi:type="code:CallableUnit" name="f" type="id.108">

        <codeElement xmi:id="id.108" xmi:type="code:Signature">

          <parameterUnit xmi:id="id.109" name="a" type="id.112" pos="1"/>

          <parameterUnit xmi:id="id.110" name="b" type="id.112" pos="2"/>

          <parameterUnit xmi:id="id.111" type="id.112" kind="return"/>

        </codeElement>

      </codeElement>

    </codeElement>

    <codeElement xmi:id="id.112" xmi:type="code:IntegerType" name="int"/>

  </model>

</kdm:Segment>

Example (C)

NOTE:KDM14-28

int i;

int sum=0;

for(i=0;i<10;i++) {sum+=i;}

KDM outline illustrating only the essential elements related to micro KDM:

IntegerType name="int" id="int"

Value name="0" id="0" type="int"
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        193



Value name="10" id="10" type="int"

StorableUnit name="i" type="int" kind="global"

StorableUnit name="sum" type="int" kind="global"

HasValue 0

ActionElement id="a1" kind="compound"

ActionElement id="a2" kind="Assign"

Reads "0"

Writes "i"

Flows "a3"

ActionElement id="a3" kind="LessThan"

Reads "i"

Reads "10"

TrueFlow "a4"

FalseFlow "a4"

ActionElement id="a4" kind="Add"

Reads "sum"

Reads "i"

Writes "sum"

Flows "a5"

ActionElement id="a5" kind="Incr"

Addresses "i"

Flows "a3"

ActionElement id="a6" kind="Nop"

Example (C++)

NOTE:KDM14-28

int sum=0;

for(int i=0;i<10;i++) {sum+=i;}

KDM outline illustrating only the essential elements related to micro KDM:

IntegerType name="int" id="int"

Value name="0" id="0" type="int"

Value name="10" id="10" type="int"

StorableUnit name="sum" type="int" kind="global"

HasValue "0"

ActionElement id="a1" kind="compound"

StorableUnit name="i" type="int" kind="local"

VisibleIn "a1"
194                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



ActionElement id="a2" kind="Assign"

Reads "0"

Writes "i"

Flows "a3"

ActionElement id="a3" kind="LessThan"

Reads "i"

Reads "10"

TrueFlow "a4"

FalseFlow "a4"

ActionElement id="a4" kind="Add"

Reads "sum"

Reads "i"

Writes "sum"

Flows "a5"

ActionElement id="a5" kind="Incr"

Addresses "i"

Flows "a3"

ActionElement id="a6" kind="Nop"

Example (C++)

NOTE:KDM14-18

Consider the following C++ fragment:

struct foo { 

int x; 

float y; 

int bar( return x+2; }

};

struct foo var;

struct foo* pvar;

Below there are several C++ statements in the context of the above fragment and the outline of the corresponding KDM, 
illustrating only the essential elements related to micro KDM:

var.x = 5; ActionElement id="a1" kind="MemberReplace"

   Addresses "var"

   Reads "5"

   Writes "x"
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        195



(&var)->y = 14.3; ActionElement id="a1" kind="Ptr"

Addresses "var"

Writes "r1"

Flows "a2"

ActionElement id="a2" kind="PtrSelect"

Addresses "r1"

Writes "r2"

Flows "a3"

ActionElement id="a3" kind="MemberReplace"

Addresses "r2"

Reads "14.3"

Writes "y"

pvar->y = 22.4; ActionElement id="a1" kind="PtrSelect"

Addresses "pvar"

Writes "r1"

Flows "a2"

ActionElement id="a2" kind="MemberReplace"

Addresses "r1"

Reads "22.4"

Writes "y"

(*pvar).x = 6; ActionElement id="a1" kind="PtrSelect"

Addresses "pvar"

Writes "r1"

Flows "a2"

ActionElement id="a2" kind="MemberReplace"

Addresses "r1"

Reads "6"

Writes "x"

var.bar(1); ActionElement id="a1" kind="MethodCall"

Addresses "var"

Reads "1"

Calls "bar"
196                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Example (C++)

NOTE:KDM14-18, KDM14-261

Consider the following C++ fragment:

interface foo { 

int bar(int); 

};

class foobar implements foo {

int x; 

float y;

int bar(int x){ return x+2;}

};

foo x=new foobar();

x.bar(1);

Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

IntegerType id="int"

FloatType id="float"

InterfaceUnit id="foo"

MethodUnit name="bar" id="foo_bar" isAbstract="true" methodKind="method" type="bar_signature"

Signature id="bar_signature"

ParameterUnit id="p1" type="int" kind="ByName"

pvar->bar(1) ActionElement id="a1" kind="PtrSelect"

Addresses "pvar"

Writes "r1"

Flows "a2"

ActionElement id="a2" kind="VirtualCall"

Addresses "r1"

Reads "1"

Calls "bar"

(&var)->bar(1); ActionElement id="a1" kind="Ptr"

Addresses "var"

Writes "r1"

Flows "a2"

ActionElement id="a2" kind="VirtualCall"

Addresses "r1"

Reads "1"

Calls "bar"
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        197



ParameterUnit id="p2" type="int" kind="return"

ClassUnit name="foobar" id="foobar"

Implements "foo"

MemberUnit id="x" type="int"

MemberUnit id="y" type="float"

MethodUnit name="foobar" id="foobar_constr" methodKind="constructor"

MethodUnit name="bar" id="foobar_bar" methodKind="method" type="foobar_bar_signature"

ImplementationOf "foo_bar"

Signature id="foobar_bar_signature"

ParameterUnit id="p3" name="x" type="int" kind="ByName"

ParameterUnit id="p4" type="int" kind="return"

StorableUnit id="var_x" name="x" type="foo"

ActionElement id="a1" kind="New"

Addresses "var_x"

Creates "foobar"

Flow "a2"

ActionElement id="a2" kind="MethodCall"

Addresses "var_x"

Calls "foobar_constr"

Flow "a3"

ActionElement id="a3" kind="VirtualCall"

Addresses "var_x"

Reads "1"

Calls "foo_bar"

Example (C++)

NOTE:KDM14-18

class foo { 

int x; 

float y; 

static int getName( return "foo"; }

};

foo::getname();

Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

ActionElement id="a1" kind="Call"

Calls "getName"
198                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Example (C++)

NOTE:KDM14-18

Consider the following C fragment:

int bar(int x) {return x+ 2; }

typedef int (*pbar) (int);

pbar foo=bar;

(*pbar)(1);

Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

ActionElement id="a1" kind="PtrCall"

Addresses "pbar"

Reads "1"

Dispatches "pbar"

Example (C++)

NOTE:KDM14-166

int i;

int *pi=&i;

int & ri=i;

DataElement “pi” and “ri” shall be represented by the same KDM, so "ext" attribute could be used to distinguish between 
them. The two DataElement can be also distinguished by their initialization.

KDM fragment outlining the essential micro actions:

IntegerType id="int" name="int"

PointerType id="tpi" name="pint"

ItemUnit id="itpi" type="int" ext="int* tpi"

PointerType id="tri" name="rint"

ItemUnit id="itri" type="int" ext="int& tri"

StorableUnit id="i" name="i" type="int" ext="int i"

StorableUnit id="pi" name="pi" type="pint"

HasType "tpi"

HasValue "a1"

StorableUnit id="ri" name="ri" type="rint"

HasType "tri"

HasValue "i"

BlockUnit id="bi" kind="Init"

EntryFlow "a1"

ActionElement id="a1" kind="Ptr"

Addresses "i"
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        199



Writes "pi"

Below there are several C++ statements in the context of the above fragment and the outline of the corresponding KDM, 
illustrating only the essential elements related to micro KDM:

Example (C++)

NOTE:KDM14-166

References in C++ methods are handled through "byReference" ParameterKind as follows:

void square(int x, int& result)

{ result = x * x; }

KDM fragment outlining the essential micro actions:

IntegerType id="int" name="int"

CallableUnit id="cu1" name="square" type="s1"

Signature id="s1"

ParameterUnit id="p1" name="x" type="int" kind="byValue"

ParameterUnit id="p2" name="result" type="int" kind="byReference"

EntryFlow "a1"

ActionElement id="a1" kind="Multiply"

Reads "p1"

Reads "p1"

Writes "p2"

Note, that there is no ParameterUnit with kind="return", and no ActionElement with kind="Return"

i=1; ActionElement id="a1" kind="Assign"

Reads "1"

Writes "i"

(*pi)=1; ActionElement id="a1" kind="PtrReplace"

Addresses "pi"

Reads "1"

Writes "itpi"

ri=2; ActionElement id="a1" kind="PtrReplace"

Addresses "ri"

Reads "2"

Writes "itri"
200                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Subpart III - Runtime Resources Layer

This sub part describes common patterns for representing the operating environment of existing software systems. The 
following are the common properties of the Runtime Resources Layer packages Data, UI, Platform, and Event:

• They provide modeling elements to represent “resources” (something managed by the runtime platform).
• They provide abstract “resource actions” to manage these resources.
• These actions are implemented by the program elements as one or more API calls to some external platform-specific 

packages.
• There is a binding involved between the actions and the resources.
• Resource may involve some “inverted” control in the form of callbacks and event handlers, allowing applications to be 

programmed in event-driven style.
• The content of the information flow involving the resource is associated with some data organization.
• Resource often has a certain state, and tracking the changes of the state over time may be an important concern in 

understanding the logic of the existing system.

Since Runtime Resources Layer packages capture high-value knowledge about the existing system and its operating 
environment, which may involve advance analysis and some manual expertise KDM is designed in such a way that the 
Runtime Resources Layer analysis can use KDM models from the Program Elements Layer as input and produce Runtime 
Resources Layer models as output. There should be no references from lower KDM layers to higher layers; therefore, new 
Runtime Resources Layer models can be built on top of existing Program Element layer models. 

Packages of the Runtime Resources Layer package systematically uses the following KDM patterns:

• Each Runtime Resources Layer package defines entities and containers to represent specific “resources.” Each 
package may define additional elements to represent additional concerns. For example, the Data package involves less 
resource definitions, and focuses on the representation of various data organization capabilities. The Event package 
provides the meta-model elements for representing state, state transitions caused by events. States, transitions, and 
events can be considered as runtime platform resources. The UI package provides the meta-model elements for 
representing user interfaces. User interfaces can also be considered runtime platform resources. The Platform package 
deals with conventional runtime platform resources, such as inter-process communication, the use of registries, 
management of data, etc.

• Each Runtime Resources Layer package defines specific structural relations between “resources.” For example, the 
Platform package defines relationship BindsTo, which represents a logical association between two resources.

• Each Runtime Resources Layer package defines specific resource actions to represent manipulation of resource 
through API calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base 
abstract class for the corresponding package. This class is named AbstractXXXElement, where “XXX” is the name of 
the package. So, the resource action is not a subclass of ActionElement, and this promotes modularity between KDM 
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or 
more ActionElements through property called “abstraction.” Each resource action also has the property called 
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more 
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original 
API calls as they were represented in the Program Elements layer input model. The “abstraction” property uses KDM 
container mechanism to add the behavior counterparts to the API calls that represent the true logic of the resource 
operation, including the flow of data and control. The “abstracted” ActionElements are owned directly by the 
corresponding resource action, and are not part of any Code model. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        201



• The nature of the resource-specific operation performed by a particular resource action is represented by the “kind” 
attribute of the resource actions. The resource action owns resource action relations through the “abstraction” action 
container. It is the owned “abstracted” action that is the direct owner of the resource action relationship.

• “abstraction” action container property is in fact systematically added to all elements of Runtime Resources Layer 
packages. This way each resource can use the meta-model elements defined in the Program Elements layer to specify 
behavior specific to that resource.

• The “abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided 
by runtime platforms. This pattern can be separately referred to as the KDM Event pattern. Each Runtime Resources 
Layer package defines its own meta-model element for representing events. For example, the UI package defines the 
class UIEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements. 
Calls relation originating from such an abstracted action element represents the “callback” mechanism, provided by 
several runtime platforms.

Runtime Resources Layer packages are independent, however they can offer additional capabilities when more than one 
is implemented. In order not to enforce any particular order in which these packages should be implemented, KDM 
involves the following approach: resource action relationships are subclasses of the AbstractActionRelationship class 
from the Action Package. In the full KDM implementation that uses all packages, all resource actions are available for 
any ActionElement. Code models should not use the extended relationships. The extended resource action relationships 
can only be used by the actions in “abstraction” action containers in Runtime Resources Layer models. A notable example 
of this mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an 
element of an event model with any resource. Another example is the “HasContent” relation defined in the Data package, 
which allows associating an element of a data model with any resource.

• The “abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource 
actions” and between resources to provide abstractions of the flow between “resource actions.”

• The Runtime Resources Layer patterns are aligned with the micro KDM, which allow precise modeling of behavior 
related to resources as the foundation for holistic high-fidelity analysis of existing software systems. It can be achieved 
by associating sets of precise micro KDM actions with “abstraction” action containers. 

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that 
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads. 
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically 
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical 
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear 
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often 
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also 
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as 
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in 
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable 
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform 
independence.
202                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Binding time

• Generation time binding

• Language & platform design binding

• Versioning time

• Compile time binding, including
• macro expansion
• Templates
• Product line variants defined by conditional compilation

• Link time binding

• Deployment time binding

• Initialization time binding

• Run time

Binding Time What is being bound Result

Generation time Syntax, variant, pattern, mapping, etc. Generated code

Language & platform design Syntax, entities and relations, 
including platform resource types

Source code

Versioning Module source files Module version

Compile time Intra-module relations (def-use) Module

   --    Macro Syntax, macro to expanded code Expanded macro (source code)

   --    Template Template parameters Template instance

   --    Product line variant defined by 
          conditional compilation and 
           includes

Conditional compilation, macro, 
includes, symbolic links.

Component Variant

(static) Link time Intra-component relations within 
deployable component

Deployed Component

Deployment time Resource names to resources (using 
platform-specific configuration files)

Deployed System

Initialization time Component implementation to 
component interface; major processes 
and threads; dynamic linking, 
dynamic load (using platform-specific 
configuration files).

System

Run time User input, object factory, virtual 
function, function pointer, reflection, 
instances of processes, instances of 
objects, instances of data, etc. 

Particular Execution Path
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        203



204                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



15 Platform Package

15.1 Overview

NOTE:KDM14-60

Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments 
of existing software systems. Application code is not self-contained as it is determined not only by the selected 
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context 
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

• Runtime platform consists of many diverse elements (platform resources).

• Platform provides resources to deployment components.

• Platform provides services that are related to resources.

• Application code invokes services to manage the life-cycle of a resource.

• Control flow between application components is often determined by the platform.

• Platform provides error handling across application components.

• Platform provides integration of application components.

Examples of Platform Resources include UNIX OS File System, UNIX OS process management system, Windows 2000, 
OS/390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo, 
CORBA, HTTP, TCP/IP, Eclipse, EJB, JMS, Database middleware, Servlets.

Platform package defines an architectural viewpoint for the Platform domain.

• Concerns:

• What are the resources used by the software system?

• What elements of the run-time platform are used by the software system?

• What behavior is associated with the resources of the run-time platform?

• What control flows are initiated by the events in the resources?

• What control flows are initiated by the run-time environment?

• What are the bindings to the run-time environment?

• What are the deployment configurations of the software system?

• What are the dynamic/concurrent threads of activity within the software system?

• Viewpoint language:

Platform views conform to KDM XMI schema. The viewpoint language for the Platform architectural viewpoint 
is defined by the Platform package. It includes an abstract entity AbstractPlatformElement, several generic 
entities, such as PlatformResource, RuntimeResource, as well as several concrete entities, such as 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        205



PlatformAction, PlatformEvent, ExternalActor, MarshalledResource, NamingResource, etc. The viewpoint 
language for the Platform architectural viewpoint also includes several relationships, which are subclasses of 
AbstractPlatformRelationship.

• Analytic methods:

The Platform architectural viewpoint supports the following main kinds of checking:

• Data flow (for example, what action elements read from a given resource; what action elements write to a given 
resource; what action elements manage a given resource; including indirect data flow using a 
MarshalledResource or a MessagingResource where a particular resource is used to perform a data flow between 
the “send” action element and the “receive” action element).

• Control flow (for example, what action elements are triggered by events in a given resource; what action 
elements operate on a given resource).

• Identify of resource instances based on resource handles in various modules.

Platform Views are used in combination with Code views and Inventory views.

• Construction methods:

• Platform views that correspond to the KDM Platform architectural viewpoint are usually constructed by 
analyzing Code views for the given system as well as the platform-specific configuration artifacts. The platform 
extractor tool uses the knowledge of the API and semantics for the given run-time platform to produce one or 
mode Platform views as output.

• As an alternative, for some languages like Cobol, in which the elements of the run-time platform are explicitly 
defined by the language, the platform views are produced by the parser-like tools which take artifacts of the 
system as the input and produce one or mode Platform views as output (together with the corresponding Code 
views).

• Construction of the Platform  view is determined by the semantics of the run-time platform, and it based on the 
mapping from the given run-time platform to KDM; such mapping is specific only to the run-time platform and 
not to a specific software system.

• The mapping from a particular run-time platform to KDM may produce additional information (system-specific, 
or platform-specific, or extractor tool-specific). This information can be attached to KDM elements using 
stereotypes, attributes, or annotations.

15.2 Organization of the Platform Package
The Platform package consists of the following 10 class diagrams:

• PlatformModel
• PlatformInheritances
• PlatformResources
• PlatformRelations
• PlatformActions
• ProvisioningRelations
• Deployment
• RuntimeResources
206                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



• RuntimeActions
• ExtendedPlatformElements

The Platform package depends on the following packages:

• Core
• kdm
• Code
• Action

15.3 PlatformModel Class Diagram
The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM 
model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

Figure 15.1 - PlatformModel Class Diagram

15.3.1  PlatformModel Class
PlatformModel is a specific KDM model that owns collections of facts about the existing software system such that these 
facts correspond to the Platform domain. PlatformModel provides a container for platform elements.

Superclass

KDMModel

Associations

platformElement:PlatformElement[0..*] owned platform elements
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        207



Semantics

PlatformModel is a logical container for platform elements. The implementer shall arrange platform elements into one or 
more platform models.

15.3.2  AbstractPlatformElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of 
software systems. The key subclasses of AbstractPlatformElement are PlatformResource, PlatformAction, 
DeploymentResource, and RuntimeResource.

Superclass

KDMEntity

Associations

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.

2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel.

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that 
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding 
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the 
PlatformElement.

15.3.3  AbstractPlatformRelationship Class (abstract)
The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform 
entities. 

Superclass

KDMRelationship

Semantics

An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.

abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to the AbstractCodeElement element that are 
represented by the current PlatformElement from some CodeModel.
208                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



15.4 PlatformInheritances Class Diagram

NOTE:KDM14-208

The PlatformInheritances class diagram represents inheritances of the meta-modeling elements of the Platform package. 
The classes and associations of the PlatformInheritances diagram are shown in Figure 15.1.

Figure 15.1 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram

NOTE:KDM14-60

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and 
associations of the PlatformResources diagram are shown in Figure 15.2.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        209



Figure 15.2 - PlatformResources Class Diagram

15.5.1  PlatformResource Class

NOTE:KDM14-60

The PlatformResource is a meta-model element that represents a platform resource. The purpose of a platform is to 
simplify application development by closing the gap between the application domain and the facilities that are available 
to application programmers. The latter are referred to as platform resources. Examples of resource types include UNIX 
File, UNIX IO Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX 
semaphore, UNIX shared memory segment, OS/390 VSAM file, JDBC connection, HTTP session, HTTP request, UNIX 
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by 
application programmers from parts that are provided by the platform. The underlying implementation details may be 
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform 
Resource denotes the semantics of the resource. 

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are 
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system. 
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource 
may be associated with logical packages for a particular programming language.

Superclass

AbstractPlatformElement
210                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Semantics

PlatformResource may represent an individual runtime resource instance or a container for several such instances. 

The implementer shall identify runtime resources used by the existing software system according to the semantics of the 
platform used by the existing system, resource configuration files, and other appropriate sources of information.

Specific subclasses of PlatformResource define specific categories of resources available to implementers. Other types of 
resources can be represented by a generic instance of PlatformResource meta-model element with a stereotype.

15.5.2  NamingResource Class

NOTE:KDM14-60

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

15.5.3  MarshalledResource Class

NOTE:KDM14-60

MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous 
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource 
is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

15.5.4  MessagingResource Class

NOTE:KDM14-60

MessagingResource represents platform resources that provide intercomponent communication via asynchronous 
messages (e.g., IBM MQSeries messages). 

platformElement:AbstractPlatformElement[0..*] The set of platform elements that are owned by the given 
PlatformResource.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        211



Superclass

PlatformResource

Semantics

15.5.5  FileResource Class

NOTE:KDM14-60

FileResource represents platform resources that provide any non-database related storage. In the meta-model the 
FileResource class is a subclass of PlatformResource.  

Superclass

PlatformResource

Semantics

15.5.6  ExecutionResource Class

NOTE:KDM14-60

ExecutionResource represents dynamic Runtime elements (e.g., process or thread). 

Superclass

PlatformResource

Semantics

15.5.7  LockResource Class

NOTE:KDM14-60

LockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass

PlatformResource

Semantics

15.5.8  StreamResource Class

NOTE:KDM14-60

StreamResource represents a simple input/output resource, for example UNIX-like stream.
212                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Superclass

PlatformResource

Semantics

15.5.9  DataManager Class

NOTE:KDM14-60

DataManager represents a database management system. DataManager is associated with particular data elements that 
represent the data description of the data managed by the data manager. 

Superclass

PlatformResource

Semantics

15.5.10  PlatformEvent Class
The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime 
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

PlatformResource

Attributes

Semantics

15.5.11  PlatformAction Class
PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the 
action represented by a particular element is designated by its “kind” attribute. 

Superclass

AbstractPlatformElement

Attributes

kind:String Represents the nature of the action performed by this Event.

kind:String Represents the nature of the action performed by this element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        213



Associations

15.5.12  ExternalActor Class
ExternalActor is a meta-model element that represents entities outside of the boundary of the software system being 
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model ExternalActor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass

PlatformAction

Semantics

15.6 PlatformRelations Class Diagram

NOTE:KDM14-60, KDM14-231

The PlatformRelations class diagram defines associations between PlatformResources. The classes and associations of the 
PlatformRelations diagram are shown in Figure 15.3.

 

Figure 15.3 - PlatformRelations Class Diagram

15.6.1  BindsTo Class

NOTE:KDM14-60

BindsTo defines a semantic association between a PlatformResource and its binding target.

Superclass

PlatformRelationship

platformElement:PlatformEvent[0..*] The set of platform events that are owned by the given PlatformAction.
214                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Semantics

Binding relation indicates that the binding target is involved in the operation of the Resource. The binding target can be an 
InventoryItem, or another ResourceType.

15.7 ProvisioningRelations Class Diagram

NOTE:KDM14-231

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the 
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.4.

Figure 15.4 - ProvisioningRelations Class Diagram

15.7.1  Requires Class
Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass

PlatformRelationship

Associations

from:PlatformResource[1] The PlatformResource that is the source of the relationship (the from-endpoint).

to:KDMEntity[1] The KDMEntity to which the current Resource is bound (the to-endpoint).

from:DeployedComponent[1] The DeployedComponent that is the source of the relationship (the from-
endpoint). 

to:AbstractPlatformElement[1] The AbstractPlatformElement that is the target of the relationship (the to-
endpoint).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        215



Semantics

15.8 PlatformActions Class Diagram

NOTE:KDM14-60, KDM14-188, KDM14-231

The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of 
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.5.

Figure 15.5 - PlatformActions Class Diagram

15.8.1  ManagesResource Class

NOTE:KDM14-60

ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to 
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is 
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the 
“kind” attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship
216                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. This relationship should not be used in Code models.

15.8.2  ReadsResource Class

NOTE:KDM14-60

ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to 
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads 
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the 
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models

15.8.3  WritesResource Class

NOTE:KDM14-60

WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to 
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes 
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the 
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformResource[1] the resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformResource[1] the resource being accessed
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        217



Associations

Constraints

1. This relationship should not be used in Code models.

15.8.4  DefinedBy Class
DefinedBy is a meta-model element that represents association between a platform resource and the logical package that 
describes the interface to this resource. The CodeItem at the to-endpoint of this KDM relationship is usually an interface 
or a package.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. The implementer shall correctly associate the platform resource with the 
corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical description 
of the package usually refers to some external implementation, as platform resources are usually described by some third-
party packages, provided as part of the runtime platform of the application. Individual API calls corresponding to the 
given resource, should have the CompliesTo relations to the individual API descriptions the definition represented by the 
CodeItem at the to-endpoint of the DefinedBy relationship.

15.8.5  ProducesPlatformEvent

NOTE:KDM14-188

ProducesPlatformEvent class follows the pattern of a "resource action relationship". This relation represents various 
situations where an ActionElement produces a PlatformEvent. The action is usually an "abstracted" action owned by some 
platform resource.

Superclass

Action::AbstractActionRelationship

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformResource[1] the resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:CodeItem[1] the CodeItem describing the resource
218                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. 1. This relationship should not be used in Code models.

Semantics

This relation represents various situation where an ActionElement produces a PlatformEvent.

15.9 Deployment Class Diagram

NOTE:KDM14-60, KDM14-81, KDM14-227

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In 
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped 
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.6. 

Figure 15.6 - Deployment Class Diagram

from:ActionElement[1] “abstracted” action owned by some resource

to:PlatformEvent[1] the PlatformEvent being produced
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        219



15.9.1  DeploymentElement Class (generic)

NOTE:KDM14-60, KDM14-81, KDM14-227

The DeploymentElement is a generic class is a common meta-model element for various classes related to deployment of 
computational objects and related platform resources across multiple nodes. The DeploymentElement class itself is a 
concrete class that can be used as an extended code element, with a certain stereotype. As an extended element 
DeploymentElement is more specific than AbstractPlatformElement. 

Superclass

AbstractPlatformElement

Constraints

1. DeploymentElement class shall be used with at least one stereotype.

Semantics

Concrete subclasses of DeplayedElement are described in subsequent clauses.

15.9.2  DeployedComponent Class

NOTE:KDM14-60, KDM14-81, KDM14-227

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform resources 
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an 
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL 
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form. 

Superclass

DeploymentElement

Associations

Semantics

15.9.3  DeployedSoftwareSystem Class

NOTE:KDM14-81, KDM14-227

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or 
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem. 
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical 
components of the logical SoftwareSystem. Each SoftwareSystem involves one or more Components. Some components 
can be involved in more than one SoftwareSystem (allowing description of the so-called Software Product Lines). Each 

groupedCode:Module[0..*] The code components that are deployed to the target DeployedComponent (KDM 
grouping association).
220                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Component involves one or more model Modules. Again, each Module can be involved in more than one Component. 
Component is a unit of deployment. Each logical component can be deployed multiple times, each time represented by a 
unique DeploymentComponent element. DeployedSoftwareSystem is a counterpart of the corresponding logical 
SoftwareSystem.

Superclass

DeploymentElement

Associations

Semantics

15.9.4  Machine Class

NOTE:KDM14-81, KDM14-227

The Machine is a meta-model element that represents the hardware node which hosts deployed components. 

Superclass

DeploymentElement

Associations

Semantics

15.9.5  DeployedResource Class

NOTE:KDM14-60, KDM14-81, KDM14-227

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed 
in a particular deployment configuration. DeployedResource is associated with a set of PlatformResource elements. 
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated 
with multiple DeployedResources.

Superclass

DeploymentElement

groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target 
system. The physical components correspond to the logical 
components of the system.

deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.

deployedResource:DeployedResource[0..*] The set of DeployedResource elements deployed to this node.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        221



Associations

Semantics

15.10  RuntimeResources Class Diagram

NOTE:KDM14-60

The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some 
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example, 
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in 
many cases relations between the dynamically created instances of processes and threads are an essential part of the 
knowledge of existing systems. Another example of dynamic structures involves deployed components that are loaded 
dynamically. 

The classes and associations of the RuntimeResources diagram are shown in Figure 15.7.

Figure 15.7 - RuntimeResources Class Diagram

15.10.1  RuntimeResource (generic)

NOTE:KDM14-60

The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for 
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource 
is used as the endpoint of certain relationships.

Superclass

PlatformResource

platformElement:PlatformResource[0..*] The set of PlatformResource elements that are deployed into the target 
DeployedResource. 
222                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

15.10.2  Process Class
The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Semantics

15.10.3  Thread Class
The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes). 

Superclass

RuntimeResource

Semantics

15.11 RuntimeActions Class Diagram

NOTE:KDM14-231

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints 
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.8. 

Figure 15.8 - RuntimeActions Class Diagram
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        223



15.11.1  Loads Class
The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action 
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

AbstractPlatformRelationship

Associations

Semantics

15.11.2  Spawns Class
The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation” 
relationship between a SpawningService action endpoint and the RunnableInterface (Process or Thread). 

Superclass

AbstractPlatformRelationship

Associations

Semantics

15.12 ExtendedPlatformElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedPlatformElements class diagram defines two viewpoint-specific generic elements for the code model as 
determined by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.9. 

from:ActionElement[1] “abstracted” action element owned by some resource

to:DeploymentComponent[1] The component that is being loaded.

from:ActionElement[1] “abstracted” action element owned by some resource

to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being spawned.
224                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 15.9 - ExtendedPlatformElements Class Diagram

15.12.1  PlatformElement Class (generic)

NOTE:KDM14-58

The PlatformElement class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism. 

Superclass

AbstractPlatformElement

Constraints

1. PlatformElement should have at least one stereotype

Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model entity types of the platform model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

15.12.2  PlatformRelationship Class (generic)

NOTE:KDM14-58

The PlatformRelationship class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformRelationship
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        225



Associations

Constraints

1. PlatformRelationship should have at least one stereotype

Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a 
new extended meta-model relationship type of the platform model. This is one of the KDM extension points that can 
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard 
KDM representation.

from:AbstractPlatformElement[1] the platform element endpoint

to:KDMEntity[1] the target of the relationship
226                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



16 UI Package

16.1 Overview
The UI package defines a set of meta-model elements whose purpose is to represent facets of information related to user 
interfaces, including their composition, their sequence of operations, and their relationships to the existing software 
systems.

The UI package defines an architectural viewpoint for the UI domain.

• Concerns:

• What are the distinct elements of the user interface of the systems?

• What is the organization of the user interface?

• How user interface uses artifacts of the system (for example, images)?

• What data flows originate from the user interface?

• What data flows output to the user interface?

• What control flows are initiated by the user interface?

• Viewpoint language:

UI views conform to KDM XMI schema. The viewpoint language for the UI architectural viewpoint is defined 
by the UI package. It includes an abstract entity AbstractUIElement, several generic entities, such as UIResource, 
UIDisplay, as well as several concrete entities, such as Screen, Report, UIField, UIAction, UIEvent, etc. The 
viewpoint language for the UI architectural viewpoint also includes several relationships, which are subclasses of 
AbstractUIRelationship.

• Analytic methods:

The UI architectural viewpoint supports the following main kinds of checking:

• Data flow (for example, what action elements read from a given UI element; what action elements write to a 
given UI element; what action elements manage a given UI element).

• Control flow (for example, what action elements are triggered by events in a given UI element; what action 
elements operate on a given UI element).

• Workflow (what UI elements will be displayed after the given one; what UI elements are displayed before the 
given one).

UI Views are used in combination with Code views and Inventory views.

• Construction methods:

• UI views that correspond to the KDM UI architectural viewpoint are usually constructed by analyzing Code 
views for the given system as well as the UI-specific configuration artifacts. The UI extractor tool uses the 
knowledge of the API and semantics for the given run-time platform to produce one or mode UI views as output.

• As an alternative, for some languages like Cobol, in which the elements of the UI are explicitly defined by the 
language, the UI views are produced by the parser-like tools which take artifacts of the system as the input and 
produce one or mode UI views as output (together with the corresponding Code views).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        227



• Construction of the UI  view is determined by the semantics of the UI platform, and it based on the mapping 
from the given UI platform to KDM; such mapping is specific only to the UI platform and not to a specific 
software system.

• The mapping from a particular UI platform to KDM may produce additional information (system-specific, or 
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using 
stereotypes, attributes or annotations.

16.2 Organization of the UI Package
The UI package consists of the following 6 class diagrams:

• UIModel
• UIInheritances
• UIResources
• UIRelations
• UIActions
• ExtendedUIElements

The UI package depends on the following packages:

• Action
• Code
• kdm
• Source
• Core

16.3 UIModel Class Diagram
The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific 
meta-model elements related to static representations of the principal components of a user interface. The class diagram 
shown in Figure 16.1 captures these classes and their relations.
228                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 16.1 - UIModel Class Diagram

16.3.1  UIModel Class
The UIModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass

KDMModel

Associations

Semantics

UIModel provides a container for various user-interface elements. The implementer shall arrange user-interface elements 
into one or more UIModel containers.

16.3.2  AbstractUIElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractUIElement is the abstract superclass for various concrete user interface elements. As such, it is the class that 
represents both compound and elementary items in a model of a system’s user interface. The key subclasses of 
AbstractUIElement are UIResource and UIAction.

Superclass

KDMEntity

UIElement:UIElement[0..*] user interface elements owned by the given UIModel
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        229



Associations

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.

2. Implementation AbstractCodeElement should be subclasses of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

The implementer shall map specific user interface element types determined by the particular user-interface system of the 
existing software system, into concrete subclasses of the AbstractUIElement. The implementer shall map each user 
interface element into some instance of the AbstractUIElement. Implementation elements are one or more 
ComputationalObjects or ActionElements from some CodeModel that are represented by the current UI element. 
“Abstraction” actions may be used to represent precise semantics of the UI Element.

16.3.3  AbstractUIRelationship Class (abstract)
The AbstractUIRelationship is the abstract superclass for various user interface relationships. 

Superclass

KDMRelationship

Semantics

The implementer shall map specific user interface association types determined by the particular user-interface system of 
the existing software system, into concrete subclasses of the AbstractUIRelationship. The implementer shall map each 
user interface association into some instance of the AbstactUIRelationship.

16.4 UIInheritances Class Diagram

NOTE:KDM14-208

The UIInheritances class diagram defines how classes of the UI package are related to the meta-model elements defined 
in the Core package. The classes and associations that make up the UIInheritances class diagram are shown in Figure 
16.2.

UIRelation:AbstractUIRelationship[0..*] UI relationships originating from the given UI element

abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to AbstractCodeElement from some CodeModel that 
are represented by the current UI element.
230                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 16.2 - UIInheritances Class Diagram

16.5 UIResources Class Diagram
The UIResource class diagram defines several specific KDM containers that own collections of user interface elements. 
The class diagram shown in Figure 16.3 captures these classes and their relations.

Figure 16.3 - UIResources Class Diagram

16.5.1  UIResource Class (generic)
The UIResource is the superclass for several user interface elements that can be containers for other user interface 
elements. For example, it represents a compound unit of display. This is a generic element.

Superclass

AbstractUIElement

Associations

UIElement:UIElement[0..*] UI elements owned by this UIResource
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        231



Constraints

1. UIResource should have at least one stereotype.

Semantics

UIResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2  UIDisplay Class (generic)
The UIDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UIResource

Constraints

1. UIDisplay should have at least one stereotype.

Semantics

UIDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3  Screen Class
The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and 
capture information. The screen may be composed of multiple instances of AbstractUIElement and its subclasses.

Superclass

UIDisplay

Semantics

16.5.4  Report Class
The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be 
composed of multiple instances of AbstractUIElement and its subclasses.

Superclass
UIDisplay

Semantics

16.5.5  UIField Class
The UIField is a unit of display, such as a control on a form, a text field on a character-mode terminal, or a field printed 
on a report. 

Superclass
UIResource
232                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

16.5.6  UIEvent Class
The UIEvent class is a meta-model element representing various events and callbacks associated with user interfaces. 
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
UIResource

Attributes

16.5.7  UIAction Class
UIAction class follows the pattern of a “resource action” class, specific to the UI package. The nature of the action 
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUIElement

Attributes

Associations

Semantics

16.6 UIRelations Class Diagram

NOTE:KDM14-231

The UIRelations class diagram provides basic meta-model constructs to define the binding between elements of a display 
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

kind:String represents the nature of the action performed by this Event

kind:String represents the nature of the action performed by this element

UIElement:UIEvent[0..*] UI events owned by this UIAction
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        233



Figure 16.4 - UIRelations Class Diagram

16.6.1  UIFlow Class
The UIFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of 
Display to another.

Superclass

AbstractUIRelationship

Associations

Semantics

16.6.2  UILayout Class
The UILayout relationship class captures an association between two instances of Display – one that defines the content 
for a portion of a user interface, and one that defines its layout.

Superclass

AbstractUIRelationship

Associations

from:AbstractUIElement[1]

to:AbstractUIElement[1]

from:UIResource[1] the origin UI Resource

to:UIResource[1] the target UI Resource
234                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

16.7 UIActions Class Diagram

NOTE:KDM14-189, KDM14-231

The UIActions class diagram defines several KDM relations for the UI package. It provides basic meta-model constructs 
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may 
generate. 

The class diagram shown in Figure 16.5 captures these classes and their relations.

Figure 16.5 - UIActions Class Diagram

16.7.1  Displays Class
The Displays relationship class represents the relationship between an instance of CallableInterface and the instance of 
UIElement that is presented on the interface as a result of the execution of the CallableInterface. 

Superclass

AbstractUIRelationship

Associations

from:ActionElement[1] the ActionElement that displays a certain UI resource

to:UIResource[1] the target UI resource
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        235



Semantics

16.7.2  DisplaysImage Class
The DisplaysImage captures the relationship between an image file – an instance of Image – and its presentation on a user 
interface – an instance of DisplayUnit.

Superclass

AbstractUIRelationship

Associations

Semantics

16.7.3  ManagesUI Class
ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user 
interface resources that are not related to the flow of data to and from the resource. ManagesUI relationship is similar to 
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind” 
attribute of the UIAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

16.7.4  ReadsUI Class
ReadsUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user 
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship 
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UIAction 
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

from:ActionElement[1] The ActionElement that displays a certain Image.

to:Image[1] the target Image element

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed
236                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. This relationship should not be used in Code models.

16.7.5  WritesUI Class
WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user 
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship 
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UIAction 
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

16.7.6  ProducesUIEvent Class

NOTE:KDM14-189

ProducesUIEvent class follows the pattern of a "resource action relationship". This relation represents various situations 
where an ActionElement produces a UIEvent. The action is usually an "abstracted" action owned by some UI resource.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[1] the user interface resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:UIEvent[1] the UI Event being produces
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        237



Semantics

This relation represents various situation where an ActionElement produces a UIEvent.

16.8 ExtendedUIElements Class Diagram

NOTE:KDM14-58

The ExtendedUIElements class diagram defines two viewpoint-specific generic elements for the UI model as determined 
by the KDM model pattern: a generic UI entity and a generic UI relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

Figure 16.6 - ExtendedUIElements Class Diagram

16.8.1  UIElement Class (generic)

NOTE:KDM14-58

The UIElement class is a generic meta-model element that can be used to define new extended meta-model elements 
through the KDM light-weight extension mechanism.

Superclass

AbstractUIElement

Constraints

1. UIElement should have at least one stereotype.

Semantics

A UI entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended 
meta-model entity type of the UI model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.
238                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



16.8.2  UIRelationship Class (generic)

NOTE:KDM14-58

The UIRelationship relationship is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractUIRelationship

Associations

Constraints

1. UIRelationship should have at least one stereotype.

Semantics

A UI relationship with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model relationship type of the UI model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

from:AbstractUIElement[1] the origin UI element

to:KDMEntity[1] the target KDM entity
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        239



240                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



17 Event Package

17.1 Overview
The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of 
applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions, 
and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based 
runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can 
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

The Event packages defines an architectural viewpoint for the Event domain.

• Concerns

• What are the distinct states involved in the behavior of the software system?

• What are the events that cause transitions between states?

• What action elements are executed in a given state?

• Viewpoint language:

Event views conform to KDM XMI schema. The viewpoint language for the Event architectural viewpoint is 
defined by the Event package. It includes an abstract entity AbstractEventElement, generic entity EventResource, 
UIDisplay, as well as several concrete entities, such as State, Transition, Event, EventAction, etc. The viewpoint 
language for the UI architectural viewpoint also includes several relationships, which are subclasses of 
AbstractEventRelationship.

• Analytic methods:

The Event architectural viewpoint supports the following main kinds of checking:

• Reachability (for example, what states are reachable from the given state).

• Control flow (for example, what action elements are triggered by a given state transition; what action elements 
will be executed for a given traversal of the state transition graph).

• Data flow (what data sequences correspond to a given traversal of the state transition graph).

Event Views are used in combination with Code views, Data views, Platform views, and Inventory views.

• Construction methods:

• Event views that correspond to the KDM Event architectural viewpoint are usually constructed by analyzing 
Code views for the given system as well as the configuration artefacts specific to the event-driven framework. 
The Event extractor tool uses the knowledge of the API and semantics of  the event-driven framework to produce 
one or mode Event views as output.

• Construction of the Event  view is determined by the semantics of the event-driven framework, and it based on 
the mapping from the given event-driven framework to KDM; such mapping is specific only to the event-driven 
framework and not to a specific software system.

• The mapping from a particular event-driven framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements 
using stereotypes, attributes, or annotations.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        241



17.2 Organization of the Event Package
The Event package consists of the following 6 class diagrams:

• EventModel
• EventInheritances
• EventResources
• EventRelations
• EventActions
• ExtendedEventElements

The Event package depends on the following packages:

• Core
• kdm
• Source
• Code
• Action

17.3 EventModel Class Diagram
The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific 
meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

Figure 17.1 - EventModel Class Diagram
242                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



17.3.1  EventModel Class
The EventModel is a specific KDM model that represents entities and relations describing events and responses to events 
in an enterprise application.

Superclass

KDMModel

Associations

Semantics

EventModel is a container for instances of event elements. The implementer shall arrange event elements into one or 
more event models. 

17.3.2  AbstractEventElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractEventElement is an abstract superclass for various event elements. The key subclasses of 
AbstractEventElement are EventResource and EventAction.

Superclass

KDMEntity

Associations

Constraints

1. Implementation AbstractCodeElement should be owned by some CodeModel.

2. Implementation AbstractCodeElement should be subclass of ComputationalObject or ActionElement.

3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more ComputationalObjects or ActionElements that are represented by 
the current EventElement. “Abstraction” actions can be used to represent precise semantics of the EventElement.

eventElement:AbstractEventElement[0..*] event elements owned by the given event model

eventRelation:AbstractEventRelationship[0..*] event relations owned by the give element

abstraction:ActionElement[0..*] owned “abstracted” action elements

implementation:AbstractCodeElement[0..*] group association to AbstractCodeElement elements from some 
CodeModel that are represented by the current EventElement
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        243



17.3.3  AbstractEventRelationship Class (abstract)
The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model 
element for representing various relations involving states and events.

Superclass

KDMRelationship

Semantics

17.4 EventInheritances Class Diagram

NOTE:KDM14-208

The EventInheritances class diagram defines how classes of the Event package are related to the meta-model elements 
defined in the Core package. The classes and associations that make up the EventInheritances diagram are shown in 
Figure 17.2. 

Figure 17.2 - EventInheritances Class Diagram

17.5 EventResources Class Diagram
The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures 
these classes and their relations.
244                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 17.3 - EventResourcesClass Diagram

17.5.1  EventResource Class (generic)
The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

AbstractEventElement

Associations

Semantics

17.5.2  Event Class
The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

EventResource

Attributes

Semantics

eventElement:AbstractEventElement[0..*] Event elements owned by this EventResource

kind:String represents the nature of this Event
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        245



17.5.3  State Class
The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by 
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm, 
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step 
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation 
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for 
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass

EventResource

17.5.4  InitialState Class
The InitialState class is a subclass of the State class. It represents a default initial state. 

Superclass

State

17.5.5  Transition Class
The Transition class represents a transition that is performed when a certain event is consumed is a certain state. 
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by 
using the “ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does 
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the 
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually, 
this is a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action 
element can be used.

Superclass

EventResource

17.5.6  OnEntry Class
The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a 
certain state has been entered. 

Superclass

Transition

17.5.7  OnExit Class
The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a 
certain state has been exited.

Superclass

Transition
246                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



17.5.8  EventAction Class
EventAction class follows the pattern of a “resource action” class, specific to the event package. The nature of the action 
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind 
are provided in Part 3: Resource Layer actions.

Superclass

AbstractEventElement

Attributes

Associations

17.6 EventRelations Class Diagram

NOTE:KDM14-231

EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

Figure 17.4 - EventRelations Class Diagram

17.6.1  NextState Class
The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition 
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based 
frameworks this information can be derived from the initialization of framework specific data structures. When there 
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the 
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action 
containers associated with various elements involved.

kind:String represents the nature of the action performed by this element

eventElement:Event[0..*] The set of Event elements that is owned by the current EventAction element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        247



Superclass

AbstractEventRelationship

Associations

17.6.2  ConsumesEvent Class
The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event. 
For example, in statically configured state-machine based frameworks this information can be derived from the 
initialization of framework specific data structures.

Superclass

AbstractEventRelationship

Associations

17.7 EventActions Class Diagram

NOTE:KDM14-231

The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event 
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

to:Transition[1] the transition

from:State[1] the state

from:Transition[1] the transition

to:Event[1] the event 
248                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 17.5 - EventActions Class Diagram

17.7.1  ReadsState Class
ReadsState class follows the pattern of a “resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for 
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from 
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that 
owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints:

1. This relationship should not be used in Code models.

2. The to endpoint of the relationship should be State of one of its subclasses.

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        249



17.7.2  ProducesEvent Class
ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the 
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes 
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the 
EventAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

2. The “to” endpoint of the relationship should be Event.

17.7.3  HasState Class
HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not 
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide 
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of 
an event model with any resource. 

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

17.8 ExtendedEventElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedEventElements class diagram defines two viewpoint-specific generic elements for the event model as 
determined by the KDM model pattern: a generic event entity and a generic event relationship. The classes and 
associations of the ExtendedEventElements diagram are shown in Figure 17.6. 

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being produced

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed
250                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 17.6 - ExtendedEventElements Class Diagram

17.8.1  EventElement Class (generic)

NOTE:KDM14-58

The EventElement class is a generic meta-model element that can be used to define new extended meta-model elements 
through the KDM light-weight extension mechanism.

Superclass

AbstractEventElement

Constraints

1. EventElement should have at least one stereotype.

Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model entity type of the event model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

17.8.2  EventRelationship Class (generic)

NOTE:KDM14-58

The EventRelationship class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        251



Superclass

AbstractEventRelationship

Associations

Constraints

1. EventRelationship should have at least one stereotype.

Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model relationship type of the event model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

from:AbstractEventElement[1] the event element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship
252                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



18  Data Package

18.1 Overview
The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the 
existing software system. Facts in the Data domain are usually determined by a Data Description Language (for example, 
SQL) but may in some cases be determined by the code elements. KDM Data model uses the foundation provided by the 
Code package related to the representations of simple datatypes. KDM Data model represents complex data repositories, 
such as record files, relational databases, structured data stream, XML schemas and documents.

The KDM Data package defines an architectural viewpoint for the Data domain.

• Concerns

• What is the organization of persistent data in the software systems?

• What are the information model supported by the software system?

• What action elements read persistent data?

• What action elements write persistent data?

• What control flows are determined by the events corresponding to persistent data?

• Viewpoint language

Data views conform to KDM XMI schema. The viewpoint language for the Data architectural viewpoint is 
defined by the Data package. It includes abstract entities AbstractDataElement, AbstractContentElement, generic 
entities DataResource, DataContainer, ContentItem, as well as several concrete entities, such as Catalog, 
RelationalSchema, DataEvent, DataAction, ColumnSet, RecordFile,XMLSchema, etc. The viewpoint language 
for the Data architectural viewpoint also includes several relationships, which are subclasses of 
AbstractDataRelationship.

• Analytic methods:

The Data architectural viewpoint supports the following main kinds of checking:

• Data aggregation (the set of data items accessible from the given ColumnSet by adding data items through 
foreign key relationships to other tables).

Data Views are used in combination with Code views and Inventory views.

• Construction methods:

• Data views that correspond to the KDM Data architectural viewpoint are usually constructed by analyzing Data 
Definition Language artifacts for the given data management platform. The Data extractor tool uses the 
knowledge of the data management platform to produce one or mode Data views as output.

• As an alternative, for some languages like Cobol, in which some elements of the Data are explicitly defined by 
the language, the Data views are produced by the parser-like tools which take artifacts of the system as the input 
and produce one or mode Data views as output (together with the corresponding Code views).

• Construction of the Data  view is determined by the semantics of the data management platform, and it based on 
the mapping from the given data management platform to KDM; such mapping is specific only to the data 
management platform and not to a specific software system.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        253



• The mapping from a particular data management platform to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements 
using stereotypes, attributes or annotations.

18.2 Organization of the Data Package
The Data package consists of the following 11 class diagrams:

• Data Model
• Data Inheritance 
• RelationalData
• ColumnSet
• StructuredData
• ContentElements
• ContentRelations
• KeyIndex 
• KeyRelations
• DataActions
• ExtendedDataElements

The Data Package depends on the following packages:

• Core
• kdm
• Source
• Code
• Action

18.3 Data Model Class Diagram
The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model 
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the 
DataModel class diagram. 
254                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 18.1 - Data Model

18.3.1  DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing 
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass

KDMModel

Associations

Semantics

Data model is a logical container for the instances of data elements. The implementer shall arrange the instances of the 
data elements into one or more DataModels.

18.3.2  AbstractDataElement Class (abstract)

NOTE:KDM14-81, KDM14-208

The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data 
element within a system. For example, a Customer_Number is one type of data element that might be found within a 
system. Data model defines several specific subclasses of AbstractDataElement, corresponding to common subcategories 
of data elements. The key subclasses of AbstractDataElement are DataResource, DataAction, XMLSchema and 
AbstractContentElement.

dataElement :DataElement[0..*] data elements owned by the given DataModel
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        255



Superclass

KDMEntity

Associations

Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API 
calls in the code model. Abstracted actions own action relations to elements of code model, as well as some data relations.

Abstracted actions are ordered. The first action is the entry point.

18.3.3  AbstractDataRelationship Class (abstract)

An AbstractDataRelationship class is an abstract superclass of the meta-model elements that represent associations 
between data elements.

Superclass

KDMRelationship

Semantics

AbstractDataRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data 
model.

18.4 Data Inheritances Class Diagram

NOTE:KDM14-208

The DataInheritances Diagram in Figure 18.2 shows how the meta-model elements defined in the Data package are 
related to the meta-model elements defined in the Core package. Each of the Data Package classes within this diagram 
inherits certain properties from KDM classes defined within the Core Package. 

Figure 18.2 - DataInheritances Diagram

abstraction: ActionElement[1] the “abstracted” actions that are owned by the current element

dataRelation:DataRelation[0..*] data relationships that originate from this data element
256                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



18.5 DataResources Class Diagram
The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM 
framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

The DataResources diagram defines the framework for various data models. This framework follows the common pattern 
of the Runtme Resource Layer. Data model defines a generic DataResource meta-model element that represents various 
resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic 
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML 
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources. 
Data model includes AbstractDataContent element which is a direct subclass of AbstractDataElement, and not a subclass 
of DataResource. Subclasses of AbstractContentElement are owned by XMLSchema element.

Figure 18.3 - RelationalData Class Diagram

18.5.1  DataResource Class (generic)

NOTE:KDM14-58

The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent 
and IndexElement.

Superclass

AbstractDataElement

Constraints

1. DataResource should have at least one stereotype
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        257



Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that 
is associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base 
element of a new extended meta-model entity type of the data model. This is one of the KDM extension points that can 
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard 
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2  DataContainer Class (generic)

NOTE:KDM14-58

The DataContainer class is a generic meta-model element that represents various database containers.

Superclass

DataResource

Associations

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that 
is a logical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the 
base element of a new extended meta-model entity type of the data model. This is one of the KDM extension points that 
can integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the 
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3  Catalog Class 

NOTE:KDM14-58

The Catalog class is the top level container that represents a relational or a hierarchical database.

Superclass

DataContainer

Semantics

18.5.4  RelationalSchema Class 
The RelationalSchema class is a relational database schema.

Superclass

DataContainer

dataElement :DataResource[0..*] owned data resources
258                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation 
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example, 
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data 
actions.” Abstracted actions represent an additional data manipulation statement, which is being implemented through 
embedded data manipulation constructs (and the corresponding “generated” API calls). 

In the situation of the data manipulation and data description scripts that are executed directly by the relational database 
engine, KDM allows more tight integration of the corresponding CodeItem with the Data Model.

18.5.5  DataEvent Class 
The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of 
stored procedures, the so-called triggers. KDM models database events as “first class citizens” of the KDM 
representation.

Superclass

DataResource

Attributes

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations 
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some 
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM 
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically 
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a 
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on a table or view. 
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily 
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like 
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataElement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure, 
which is represented as a CallableUnit, owned by a certain RelationalSchema. Trigger is associated with a data event 
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a 
certain DataContainer.

18.5.6  DataAction Class

NOTE:KDM14-58

codeElement:CodeItem[0..*] Stored procedures owned by this schema.

kind :String semantic description of the data event
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        259



DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action 
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind 
are provided in Part 3: Resource Layer actions.

Superclass

AbstractDataElement

Attributes

Associations

Semantics

DataAction represents a logical action performed by the runtime platform of the existing software system.

18.6 ColumnSet Class Diagram
The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases, 
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4 
captures these classes and their relations.

Figure 18.4 - ColumnSet Class Diagram

kind:String represents the nature of the action performed by this element

implementation:ActionElement[0..*] group association to ActionElement represented by the current DataAction

dataElement:DataEvent[0..*] event elements owned by the current DataAction
260                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



18.6.1  ColumnSet (generic)
The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields). 
Columns are modeled as ItemUnits.

Superclass

DataContainer

Associations

Semantics

ColumnSet corresponds to an ISO/IEC 11404 Table datatype, whose values are collections of values in the product space of 
one or more field datatypes, such that each value in the product space represents an association among the values of the fields. 
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associations. 

KDM defines several concrete subclasses of ColumnSet to represent several common data organizations, such as relational 
Tables and Views, Record files and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.

18.6.2  RelationalTable Class
A RelationalTable is a specific subclass of ColumnSet class that represents tables of relational databases. 

Superclass

ColumnSet

Semantics

Tables are entities that contain all the data in relational databases. Each table represents a type of data that is meaningful 
to its users. A table definition is a collection of columns. In tables, data is organized in a row-and-column format similar 
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example, 
a table that contains employee data for a company can contain a row for each employee and columns representing 
employee information such as employee number, name, address, job title, and home telephone number.

Tables in a relational database have the following main components:

• Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having 
columns for ID, color, and weight.

• Rows. Each row represents an individual occurrence of the object modeled by the table. For example, the parts table 
would have one row for each part carried by the company. 

The PlatformResource that corresponds to RelationalTable is DataManager.

Example (T-SQL)

NOTE:KDM14-15, KDM14-308

itemUnit :ItemUnit[0..*] Individual columns owned by this ColumnSet are represented as data elements.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        261



CREATE TABLE products (ID int primary key, name varchar, type varchar)

CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date, 

   PRIMARY KEY(contract, recognizedOn))

CREATE PROCEDURE INSERT_RECOGNITION

(IN contractID int, IN amount decimal, IN recognizedOn date, OUT result int)

LANGUAGE SQL

BEGIN

INSERT INTO revenueRecognitions VALUES( contractID, amount, recognizedOn);

SET result = 1;

END

CREATE TRIGGER reminder1

ON Contracts.revenueRecognitions

AFTER INSERT, UPDATE 

AS RAISERROR ('Notify Sales', 16, 10)

GO

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:data="http://www.omg.org/spec/KDM/20160201/data" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 

xmlns:platform="http://www.omg.org/spec/KDM/20160201/platform" name="Schema Example">

  <model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">

    <dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts">

      <dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">

        <dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>

        <itemUnit xmi:id="id.4" name="ID" type="id.57"/>

        <itemUnit xmi:id="id.5" name="name" type="id.58"/>

        <itemUnit xmi:id="id.6" name="type" type="id.58"/>

      </dataElement>

      <dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">

        <dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>

        <dataElement xmi:id="id.9" xmi:type="data:ReferenceKey" implementation="id.12">

          <dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>

        </dataElement>

        <itemUnit xmi:id="id.11" name="ID" type="id.57"/>

        <itemUnit xmi:id="id.12" name="product" type="id.57"/>

        <itemUnit xmi:id="id.13" name="revenue" type="id.59"/>

        <itemUnit xmi:id="id.14" name="dateSigned" type="id.60"/>

      </dataElement>

      <dataElement xmi:id="id.15" xmi:type="data:RelationalTable" name="revenueRecognitions">

        <dataElement xmi:id="id.16" xmi:type="data:UniqueKey" implementation="id.25 id.27"/>

        <dataElement xmi:id="id.17" xmi:type="data:ReferenceKey" implementation="id.25">

          <dataRelation xmi:id="id.18" xmi:type="data:KeyRelation" to="id.8" from="id.17"/>

        </dataElement>

        <dataElement xmi:id="id.19" xmi:type="data:DataEvent" name="e1" kind="Insert">

          <abstraction xmi:id="id.20" name="e1.1" kind="Call">

            <actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.47" from="id.20"/>

          </abstraction>

        </dataElement>

        <dataElement xmi:id="id.22" xmi:type="data:DataEvent" name="e2" kind="Update">
262                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



          <abstraction xmi:id="id.23" name="e2.1" kind="Call">

            <actionRelation xmi:id="id.24" xmi:type="action:Calls" to="id.47" from="id.23"/>

          </abstraction>

        </dataElement>

        <itemUnit xmi:id="id.25" name="contract" type="id.57"/>

        <itemUnit xmi:id="id.26" name="amount" type="id.59"/>

        <itemUnit xmi:id="id.27" name="recognizedOn" type="id.60"/>

      </dataElement>

      <codeElement xmi:id="id.28" xmi:type="code:CallableUnit" name="INSERT_RECOGNITIONS" kind="regular">

        <entryFlow xmi:id="id.29" to="id.35" from="id.28"/>

        <codeElement xmi:id="id.30" xmi:type="code:Signature">

          <parameterUnit xmi:id="id.31" name="contractID" type="id.57" pos="1"/>

          <parameterUnit xmi:id="id.32" name="amount" type="id.59" pos="2"/>

          <parameterUnit xmi:id="id.33" name="recognizedOn" type="id.60" pos="3"/>

          <parameterUnit xmi:id="id.34" name="result" type="id.57" kind="byReference" pos="4"/>

        </codeElement>

        <codeElement xmi:id="id.35" xmi:type="action:ActionElement" name="a1" kind="Insert">

          <source xmi:id="id.36" language="SQL" 

snippet="INSERT INTO revenueRecognitions VALUES( contractID, amount, recognizedOn);"/>

          <actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.31" from="id.35"/>

          <actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.32" from="id.35"/>

          <actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.33" from="id.35"/>

          <actionRelation xmi:id="id.40" xmi:type="data:WritesColumnSet" to="id.15" from="id.35"/>

          <actionRelation xmi:id="id.41" xmi:type="data:ProducesDataEvent" to="id.19" from="id.35"/>

        </codeElement>

        <codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="a2" kind="Assign">

          <source xmi:id="id.43" language="SQL" snippet="SET result = 1;"/>

          <codeElement xmi:id="id.44" xmi:type="code:Value" name="1"/>

          <actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.44" from="id.42"/>

          <actionRelation xmi:id="id.46" xmi:type="action:Writes" to="id.34" from="id.42"/>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.47" xmi:type="code:CallableUnit" name="reminder1">

        <entryFlow xmi:id="id.48" to="id.49" from="id.47"/>

        <codeElement xmi:id="id.49" xmi:type="action:ActionElement" name="a3" kind="Throw">

          <codeElement xmi:id="id.50" xmi:type="code:ValueList" name="error">

            <valueElement xmi:id="id.51" xmi:type="code:Value" 

name="&quot;Notify sales!&quot;" type="id.58"/>

            <valueElement xmi:id="id.52" xmi:type="code:Value" name="16" type="id.57"/>

            <valueElement xmi:id="id.53" xmi:type="code:Value" name="10" type="id.57"/>

          </codeElement>

          <actionRelation xmi:id="id.54" xmi:type="action:Throws" to="id.50" from="id.49"/>

        </codeElement>

      </codeElement>

    </dataElement>

  </model>

  <model xmi:id="id.55" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.56" xmi:type="code:LanguageUnit" name="SQL datatypes">

      <codeElement xmi:id="id.57" xmi:type="code:IntegerType" name="sql int"/>

      <codeElement xmi:id="id.58" xmi:type="code:StringType" name="sql varchar"/>

      <codeElement xmi:id="id.59" xmi:type="code:DecimalType" name="sql decimal"/>

      <codeElement xmi:id="id.60" xmi:type="code:DateType" name="sql date"/>

      <codeElement xmi:id="id.61" xmi:type="code:BooleanType"/>

    </codeElement>

  </model>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        263



  <model xmi:id="id.62" xmi:type="platform:PlatformModel">

    <platformElement xmi:id="id.63" xmi:type="platform:ExternalActor">

      <abstraction xmi:id="id.64" >

        <actionRelation xmi:id="id.65" xmi:type="data:ProducesDataEvent" to="id.19" from="id.64"/>

      </abstraction>

    </platformElement>

  </model>

</kdm:Segment>

18.6.3  RelationalView Class
A RelationalView class is a specific subclass of the ColumnSet class that represents Views of relational databases. A view 
is a virtual table whose contents are defined by a query. Like a real table, a view consists of a set of named columns and 
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of 
data come from tables referenced in the query defining the view and are produced dynamically when the view is 
referenced.

A view acts as a filter on the underlying tables referenced in the view. The query that defines the view can be from one 
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views 
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly 
structured data from different servers, each of which stores data for a different region of your organization.

Superclass

ColumnSet

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the 
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT 
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in 
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few 
restrictions on modifying data through them.

In KDM, a RelationalView owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the 
View can store the corresponding SELECT statement.

18.6.4  DataSegment Class
A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS. 

Superclass

ColumnSet

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such 
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database 
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real 
world. 
264                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



A database segment defines the fields for a set of segment instances similar to the way a relational table defines columns 
for a set of rows in a table. In this way, segments relate to relational tables, and fields in a segment relate to columns in a 
relational table. 

Example (IMS):

NOTE:KDM14-15, KDM14-308

DLR_PCB1 PCB TYPE=DB,DBDNAME=DEALERDB,PROCOPT=GO,KEYLEN=42 

SENSEG NAME=DEALER,PARENT=0 

SENSEG NAME=MODEL,PARENT=DEALER 

SENSEG NAME=ORDER,PARENT=MODEL 

SENSEG NAME=SALES,PARENT=MODEL 

SENSEG NAME=STOCK,PARENT=MODEL 

PSBGEN PSBNAME=DLR_PSB,MAXQ=200,LANG=JAVA 

END

DBD NAME=DEALERDB,ACCESS=(HDAM,OSAM),RMNAME=(DFSHDC40.1.10) 

SEGM NAME=DEALER,PARENT=0,BYTES=94, 

FIELD NAME=(DLRNO,SEQ,U),BYTES=4,START=1,TYPE=C 

FIELD NAME=DLRNAME,BYTES=30,START=5,TYPE=C 

SEGM NAME=MODEL,PARENT=DEALER,BYTES=43 

FIELD NAME=(MODTYPE,SEQ,U),BYTES=2,START=1,TYPE=C 

FIELD NAME=MAKE,BYTES=10,START=3,TYPE=C 

FIELD NAME=MODEL,BYTES=10,START=13,TYPE=C 

FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C 

FIELD NAME=MSRP,BYTES=5,START=27,TYPE=P 

SEGM NAME=ORDER,PARENT=MODEL,BYTES=127 

FIELD NAME=(ORDNBR,SEQ,U),BYTES=6,START=1,TYPE=C 

FIELD NAME=LASTNME,BYTES=25,START=50,TYPE=C 

FIELD NAME=FIRSTNME,BYTES=25,START=75,TYPE=C 

SEGM NAME=SALES,PARENT=MODEL,BYTES=113 

FIELD NAME=(SALDATE,SEQ,U),BYTES=8,START=1,TYPE=C 

FIELD NAME=LASTNME,BYTES=25,START=9,TYPE=C 

FIELD NAME=FIRSTNME,BYTES=25,START=34,TYPE=C 

FIELD NAME=STKVIN,BYTES=20,START=94,TYPE=C 

SEGM NAME=STOCK,PARENT=MODEL,BYTES=62 

FIELD NAME=(STKVIN,SEQ,U),BYTES=20,START=1,TYPE=C 

FIELD NAME=COLOR,BYTES=10,START=37,TYPE=C 

FIELD NAME=PRICE,BYTES=5,START=47,TYPE=C 

FIELD NAME=LOT,BYTES=10,START=52,TYPE=C 

DBDGEN 

FINISH 

END

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:data="http://www.omg.org/spec/KDM/20160201/data" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="IMS Example">

  <model xmi:id="id.0" xmi:type="data:DataModel">

    <dataElement xmi:id="id.1" xmi:type="data:Catalog" name="DEALERDB">

      <dataElement xmi:id="id.2" xmi:type="data:DataSegment" name="Dealer">

        <dataElement xmi:id="id.3" xmi:type="data:DataSegment" name="Model">

          <dataElement xmi:id="id.4" xmi:type="data:DataSegment" name="Order">
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        265



            <dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.6"/>

            <itemUnit xmi:id="id.6" name="ORDNBR" type="id.30" size="2"/>

            <itemUnit xmi:id="id.7" name="LASTNME" type="id.30" size="25"/>

            <itemUnit xmi:id="id.8" name="FIRSTNME" type="id.30" size="25"/>

          </dataElement>

          <dataElement xmi:id="id.9" xmi:type="data:DataSegment" name="Sales">

            <dataElement xmi:id="id.10" xmi:type="data:UniqueKey" implementation="id.11"/>

            <itemUnit xmi:id="id.11" name="SALDATE" type="id.30" size="8"/>

            <itemUnit xmi:id="id.12" name="LASTNME" type="id.30" size="25"/>

            <itemUnit xmi:id="id.13" name="FIRSTNME" type="id.30" size="25"/>

            <itemUnit xmi:id="id.14" name="STKVIN" type="id.30" size="20"/>

          </dataElement>

          <dataElement xmi:id="id.15" xmi:type="data:DataSegment" name="Stock">

            <dataElement xmi:id="id.16" xmi:type="data:UniqueKey" implementation="id.17"/>

            <itemUnit xmi:id="id.17" name="STKVIN" type="id.30" size="20"/>

            <itemUnit xmi:id="id.18" name="COLOR" type="id.30" size="10"/>

            <itemUnit xmi:id="id.19" name="PRICE" type="id.30" size="5"/>

            <itemUnit xmi:id="id.20" name="LOT" type="id.30" size="10"/>

          </dataElement>

          <dataElement xmi:id="id.21" xmi:type="data:UniqueKey" implementation="id.22"/>

          <itemUnit xmi:id="id.22" name="MODTYPE" type="id.30" size="2"/>

          <itemUnit xmi:id="id.23" name="MAKE" size="10"/>

          <itemUnit xmi:id="id.24" name="YEAR" size="4"/>

          <itemUnit xmi:id="id.25" name="MSRP" type="id.31" size="5"/>

        </dataElement>

        <dataElement xmi:id="id.26" xmi:type="data:UniqueKey" implementation="id.27"/>

        <itemUnit xmi:id="id.27" name="DRLNO" type="id.30" size="4"/>

        <itemUnit xmi:id="id.28" name="DLRNAME" size="30"/>

      </dataElement>

    </dataElement>

  </model>

  <model xmi:id="id.29" xmi:type="code:CodeModel" name="Common IMS datatypes">

    <codeElement xmi:id="id.30" xmi:type="code:StringType" name="IMS type c"/>

    <codeElement xmi:id="id.31" xmi:type="code:DecimalType" name="IMS type packeddecimal"/>

  </model>

</kdm:Segment>

18.6.5  RecordFile Class
The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or 
sequential.

Superclass

ColumnSet

Semantics

In a non-relational database system, a record is an entry in a file, consisting of individual elements of information, which 
together provide full details about an aspect of the information needed by the system. Individual elements are held in 
fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for 
example, date of birth, department code, or full names will be found in a number of fields. A file is a set of records, where 
266                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



each record is a sequence of fields. A sequential file is a computer file storage format in which one record follows 
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more 
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (Cobol)

NOTE:KDM14-15, KDM14-33, KDM14-61, KDM14-308

The following example illustrates the representation of RecordFile. This example is incomplete as it focuses on the 
DataModel, and well as combined representation involving the CodeModel, DataModel, PlatformModel, and EventModel. 
Example uses ItemUnits owned by RecordFile as variables. ExceptionFlow elements are added through the DataModel.

FILE-CONTROL.

   SELECT SEQUENTIAL-FILE ASSIGN TO 'A:\SEQ.DAT'

      ORGANIZATION IS LINE SEQUENTIAL.

   SELECT INDEXED-FILE

      ASSIGN TO 'A:\INDMAST.DAT'

      ORGANIZATION IS INDEXED

      ASSESS IS SEQUENTIAL

      RECORD KEY IS IND-SOC-SEC-NUM

      FILE STATUS IS INDEXED-STATUS-BYTES.

      

FILE SECTION.

FD SEQUENTIAL FILE

   RECORD CONTAINS 39 CHARACTERS

   DATA RECORD IS SEQUENTIAL-RECORD.

01 SEQUENTIAL-RECORD.

05 SEQ-SOC-SEC-NUM PIC X(9).

05 SEQ-REST-OF-RECORDPIC X(30).

FD INDEXED-FILE

RECORD CONTAINS 39 CHARACTERS

DATA RECORD IS INDEXED-RECORD.

01  INDEXED-RECORD.

05 IND-SOC-SEC-NUM  PIC X(9).

05 IND-REST-OF-RECORDPIC X(30).

PROCEDURE DIVISION.

0010-UPDATE-MASTER-FILE.

OPEN INPUT SEQUENTIAL-FILE

OUTPUT INDEXED-FILE.

PERFORM UNTIL END-OF-FILE-SWITCH = 'YES'

READ SEQUENTIAL-FILE

AT END

MOVE 'YES' TO END-OF-FILE-SWITCH

NOT AT END

MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEC-NUM

MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD

WRITE INDEXED-RECORD

INVALID KEY PERFORM 0020-EXPLAIN-WRITE-ERROR

END-WRITE

END-READ

END-PERFORM.

CLOSE SEQUENTIAL-FILE
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        267



INDEXED-FILE.

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 

xmlns:code=""http://www.omg.org/spec/KDM/20160201/code" 

xmlns:data="http://www.omg.org/spec/KDM/20160201/data" 

xmlns:event="http://www.omg.org/spec/KDM/20160201/event" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 

xmlns:platform="http://www.omg.org/spec/KDM/20160201/platform" name="RecordFile example">

  <model xmi:id="id.0" xmi:type="data:DataModel">

    <dataElement xmi:id="id.1" xmi:type="data:RecordFile" name="SEQUENTIAL-FILE">

      <itemUnit xmi:id="id.2" name="SEQ-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>

      <itemUnit xmi:id="id.3" name="SEQ-REST-OF-RECORD" type="id.115" ext="PIC X(30)" size="30"/>

    </dataElement>

    <dataElement xmi:id="id.4" xmi:type="data:RecordFile" name="INDEXED-FILE">

      <dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.7"/>

      <dataElement xmi:id="id.6" xmi:type="data:Index" implementation="id.7"/>

      <itemUnit xmi:id="id.7" name="IND-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>

      <itemUnit xmi:id="id.8" name="IND-REST-OF-RECORD" type="id.115" ext="PIC X(30)" size="30"/>

    </dataElement>

    <dataElement xmi:id="id.9" xmi:type="data:DataAction" name="da1" kind="open" implementation="id.44">

      <abstraction xmi:id="id.10" name="da1" kind="DataAction">

        <actionRelation xmi:id="id.11" xmi:type="data:ManagesData" to="id.1" from="id.10"/>

      </abstraction>

    </dataElement>

    <dataElement xmi:id="id.13" xmi:type="data:DataAction" name="da2" kind="open" implementation="id.44">

      <abstraction xmi:id="id.14" name="da2" kind="DataAction">

        <actionRelation xmi:id="id.16" xmi:type="data:ManagesData" to="id.4" from="id.14"/>

      </abstraction>

    </dataElement>

    <dataElement xmi:id="id.17" xmi:type="data:DataAction" name="da3" kind="read" implementation="id.47">

      <abstraction xmi:id="id.18" name="da3" kind="DataAction">

        <actionRelation xmi:id="id.19" xmi:type="data:ReadsColumnSet" to="id.1" from="id.18"/>

        <actionRelation xmi:id="id.20" xmi:type="action:Writes" to="id.2" from="id.18"/>

        <actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.3" from="id.18"/>

        <actionRelation xmi:id="id.22" xmi:type="platform:ReadsResource" to="id.75" from="id.18"/>

        <actionRelation xmi:id="id.22a" xmi:type="platform:ProducesDataEvent" to="id.23" from="id.18"/>

        <actionRelation xmi:id="id.22b" xmi:type="platform:ProducesDataEvent" to="id.26" from="id.18"/>

      </abstraction>

      <dataElement xmi:id="id.23" name="EOF" kind="exception">

        <abstraction xmi:id="id.24" name="ae1">

          <actionRelation xmi:id="id.25" xmi:type="action:ExceptionFlow" to="id.50" from="id.24"/>

        </abstraction>

      </dataElement>

      <dataElement xmi:id="id.26" name="NOT EOF" kind="exception">

        <abstraction xmi:id="id.27" name="nae1">

          <actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.53" from="id.27"/>

        </abstraction>

      </dataElement>

    </dataElement>

    <dataElement xmi:id="id.29" xmi:type="data:DataAction" name="da4" kind="write"

 implementation="id.59">

      <abstraction xmi:id="id.30" name="da4" kind="DataAction">

        <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.7" from="id.30"/>
268                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



        <actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.8" from="id.30"/>

        <actionRelation xmi:id="id.33" xmi:type="data:WritesColumnSet" to="id.4" from="id.30"/>

        <actionRelation xmi:id="id.34" xmi:type="platform:WritesResource" to="id.79" from="id.30"/>

        <actionRelation xmi:id="id.34a" xmi:type="platform:ProducesDataEvent" to="id.35" from="id.30"/>

      </abstraction>

      <dataElement xmi:id="id.35" name="INVALID KEY" kind="exception">

        <abstraction xmi:id="id.36" name="ik1">

          <actionRelation xmi:id="id.37" xmi:type="action:ExceptionFlow" to="id.62" from="id.36"/>

        </abstraction>

      </dataElement>

    </dataElement>

    <dataElement xmi:id="id.38" xmi:type="data:DataAction" name="da5" kind="close"

implementation="id.68">

      <abstraction xmi:id="id.39" name="da5" kind="PlatformAction">

        <actionRelation xmi:id="id.39a" xmi:type="platform:ManagesResource" to="id.75" from="id.39"/>

        </abstraction>

    </dataElement>

    <dataElement xmi:id="id.40" xmi:type="data:DataAction" name="da6" kind="close"

implementation="id.68">

       <abstraction xmi:id="id.41" name="da5" kind="PlatformAction"/>

           <actionRelation xmi:id="id.41a" xmi:type="platform:ManagesResource" to="id.79" from="id.39"/>

       </abstraction>

    </dataElement>

  </model>

  <model xmi:id="id.42" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.43" xmi:type="code:CodeAssembly">

        <entryFlow xmi:id="id.43e" to="id.44" from="id.43"/>

<codeElement xmi:id="id.116" xmi:type="code:StorableUnit"

name="END-OF-FILE-SWITCH" kind="global" type="id.115"/>

<codeElement xmi:id="id.117" xmi:type="code:Value" name="'YES'" type="id.115"/>

      <codeElement xmi:id="id.44" xmi:type="action:ActionElement" name="a0" kind="PlatformAction">

        <source xmi:id="id.45" language="Cobol" 

snippet="OPEN INPUT SEQUENTIAL-FILE OUTPUT INDEXED-FILE."/>

        <actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.64" from="id.44"/>

      </codeElement>

      <codeElement xmi:id="id.64" xmi:type="action:ActionElement" name="a7" kind="Equals">

        <source xmi:id="id.65" language="Cobol" snippet="UNTIL END-OF-FILE-SWITCH = 'YES'"/>

        <actionRelation xmi:id="id.66a" xmi:type="action:Reads" to="id.116" from="id.64"/>

        <actionRelation xmi:id="id.66b" xmi:type="action:Reads" to="id.117" from="id.64"/>

        <actionRelation xmi:id="id.66" xmi:type="action:FalseFlow" to="id.47" from="id.64"/>

        <actionRelation xmi:id="id.67" xmi:type="action:TrueFlow" to="id.68" from="id.64"/>

      </codeElement>

      <codeElement xmi:id="id.47" xmi:type="action:ActionElement" name="a1" kind="PlatformAction">

        <source xmi:id="id.48" language="Cobol" snippet="READ SEQUENTIAL-FILE"/>

        <actionRelation xmi:id="id.49" xmi:type="action:Flow" to="id.53" from="id.47"/>

      </codeElement>

      <codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="a2" >

        <source xmi:id="id.51" language="Cobol" snippet="MOVE 'YES' TO END-OF-FILE-SWITCH"/>

        <actionRelation xmi:id="id.52r" xmi:type="action:Reads" to="id.117" from="id.50"/>

        <actionRelation xmi:id="id.52w" xmi:type="action:Writes" to="id.116" from="id.50"/>

        <actionRelation xmi:id="id.52" xmi:type="action:Flow" to="id.64" from="id.50"/>

      </codeElement>

      <codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a3" kind="Assign">

        <source xmi:id="id.54" language="Cobol" snippet="MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEQ-NUM"/>

 <actionRelation xmi:id="id.55r" xmi:type="action:Reads" to="id.2" from="id.53"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        269



<actionRelation xmi:id="id.55w" xmi:type="action:Writes" to="id.7" from="id.53"/>

       <actionRelation xmi:id="id.55" xmi:type="action:Flow" to="id.56" from="id.53"/>

      </codeElement>

      <codeElement xmi:id="id.56" xmi:type="action:ActionElement" name="a4" kind="Assign">

        <source xmi:id="id.57" language="Cobol" snippet="MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD"/>

<actionRelation xmi:id="id.58r" xmi:type="action:Reads" to="id.3" from="id.56"/>

<actionRelation xmi:id="id.58w" xmi:type="action:Writes" to="id.8" from="id.56"/>       

<actionRelation xmi:id="id.58" xmi:type="action:Flow" to="id.59" from="id.56"/>

      </codeElement>

      <codeElement xmi:id="id.59" xmi:type="action:ActionElement" name="a5" kind="PlatformAction">

        <source xmi:id="id.60" language="Cobol" snippet="WRITE INDEXED-RECORD"/>

        <actionRelation xmi:id="id.61" xmi:type="action:Flow" to="id.64" from="id.59"/>

      </codeElement>

      <codeElement xmi:id="id.62" xmi:type="action:ActionElement" name="a6" kind="Calls">

        <source xmi:id="id.63" language="Cobol" snippet="PERFORM 0020-EXPLAIN-WRITE-ERROR"/>

        <actionRelation xmi:id="id.631" xmi:type="action:Flow" to="id.68" from="id.62"/>

      </codeElement>

      <codeElement xmi:id="id.68" xmi:type="action:ActionElement" name="a8" kind="PlatformAction">

        <source xmi:id="id.69" language="Cobol" snippet="Close SEQUENTIAL-FILE INDEXED-FILE."/>

      </codeElement>

    </codeElement>

  </model>

  <model xmi:id="id.70" xmi:type="platform:PlatformModel">

    <platformElement xmi:id="id.71" xmi:type="platform:DeployedSoftwareSystem" groupedComponent="id.73"/>

    <platformElement xmi:id="id.72" xmi:type="platform:Machine">

      <deployedComponent xmi:id="id.73" groupedCode="id.43"/>

      <deployedResource xmi:id="id.74" >

        <platformElement xmi:id="id.75" xmi:type="platform:StreamResource">

          <abstraction xmi:id="id.76" name="ra1" kind="DataAction">

            <actionRelation xmi:id="id.77" xmi:type="data:HasContent" to="id.1" from="id.76"/>

            <actionRelation xmi:id="id.78" xmi:type="event:HasState" to="id.90" from="id.76"/>

          </abstraction>

        </platformElement>

        <platformElement xmi:id="id.79" xmi:type="platform:FileResource">

          <abstraction xmi:id="id.80" name="ra2" kind="DataAction">

            <actionRelation xmi:id="id.81" xmi:type="data:HasContent" to="id.4" from="id.80"/>

          </abstraction>

        </platformElement>

      </deployedResource>

    </platformElement>

    <platformElement xmi:id="id.82" xmi:type="platform:PlatformAction" name="pa1" kind="open"

implementation="id.44">

      <abstraction xmi:id="id.83" name="pa1" kind="PlatformAction">

        <actionRelation xmi:id="id.84" xmi:type="platform:ManagesResource" to="id.75" from="id.83"/>

        <actionRelation xmi:id="id.84e" xmi:type="event:ProducesEvent" to="id.110" from="id.83"/>

      </abstraction>

    </platformElement>

    <platformElement xmi:id="id.85" xmi:type="platform:PlatformAction" name="pa2" kind="open"

implementation="id.44">

      <abstraction xmi:id="id.86" name="pa2" kind="PlatformAction">

        <actionRelation xmi:id="id.87" xmi:type="platform:ManagesResource" to="id.79" from="id.86"/>

      </abstraction>

    </platformElement>

    <platformElement xmi:id="id.118" xmi:type="platform:PlatformAction" name="pa3" kind="read"

implementation="id.47">
270                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



      <abstraction xmi:id="id.119" name="pa3" kind="EventAction">

        <actionRelation xmi:id="id.120" xmi:type="event:ProducesEvent" to="id.111" from="id.119"/>

      </abstraction>

    </platformElement>

    <platformElement xmi:id="id.121" xmi:type="platform:PlatformAction" name="pa4" kind="close"

implementation="id.47">

      <abstraction xmi:id="id.122" name="pa4" kind="EventAction">

        <actionRelation xmi:id="id.123" xmi:type="event:ProducesEvent" to="id.112" from="id.122"/>

      </abstraction>

    </platformElement>

  </model>

  <model xmi:id="id.88" xmi:type="event:EventModel">

    <eventElement xmi:id="id.89" xmi:type="event:EventResource" name="sequential-file">

      <eventElement xmi:id="id.90" xmi:type="event:State" name="closed">

        <eventElement xmi:id="id.91" xmi:type="event:Transition" name="tr1">

          <eventRelation xmi:id="id.92" xmi:type="event:ConsumesEvent" to="id.110" from="id.91"/>

          <eventRelation xmi:id="id.93" xmi:type="event:NextState" to="id.103" from="id.91"/>

          <eventRelation xmi:id="id.94" xmi:type="event:NextState" to="id.95" from="id.91"/>

        </eventElement>

      </eventElement>

      <eventElement xmi:id="id.95" xmi:type="event:State" name="opened.not at end">

        <eventElement xmi:id="id.96" xmi:type="event:Transition" name="tr2">

          <eventRelation xmi:id="id.97" xmi:type="event:ConsumesEvent" to="id.111" from="id.96"/>

          <eventRelation xmi:id="id.98" xmi:type="event:NextState" to="id.103" from="id.96"/>

          <eventRelation xmi:id="id.99" xmi:type="event:NextState" to="id.95" from="id.96"/>

        </eventElement>

        <eventElement xmi:id="id.100" xmi:type="event:Transition" name="tr3">

          <eventRelation xmi:id="id.101" xmi:type="event:ConsumesEvent" to="id.112" from="id.100"/>

          <eventRelation xmi:id="id.102" xmi:type="event:NextState" to="id.90" from="id.100"/>

        </eventElement>

      </eventElement>

      <eventElement xmi:id="id.103" xmi:type="event:State" name="opened.at end">

        <eventElement xmi:id="id.104" xmi:type="event:Transition" name="tr4">

          <eventRelation xmi:id="id.105" xmi:type="event:ConsumesEvent" to="id.112" from="id.104"/>

          <eventRelation xmi:id="id.106" xmi:type="event:NextState" to="id.90" from="id.104"/>

        </eventElement>

        <eventElement xmi:id="id.107" xmi:type="event:Transition" name="tr5">

          <eventRelation xmi:id="id.108" xmi:type="event:ConsumesEvent" to="id.111" from="id.107"/>

          <eventRelation xmi:id="id.109" xmi:type="event:NextState" to="id.103" from="id.107"/>

        </eventElement>

      </eventElement>

      <eventElement xmi:id="id.110" xmi:type="event:Event" name="open" kind="open"/>

      <eventElement xmi:id="id.111" xmi:type="event:Event" name="read"/>

      <eventElement xmi:id="id.112" xmi:type="event:Event" name="close"/>

    </eventElement>

  </model>

  <model xmi:id="id.113" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.114" xmi:type="code:LanguageUnit">

      <codeElement xmi:id="id.115" xmi:type="code:StringType" name="X"/>

    </codeElement>

  </model>

</kdm:Segment>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        271



18.7 KeyIndex Class Diagram
The KeyIndex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

Figure 18.5 - KeyIndex Class Diagram

18.7.1  IndexElement Class (generic)
IndexElement class is a generic meta-model element that defines the common properties of the index items and key items 
of persistent data stores. IndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes 
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element 
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the 
IndexElement.

Superclass

DataResource

Associations

 Constraints:

1. Index owned by a data element should group elements that are owned by that data element.

2. IndexElement should have a stereotype.

Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.

implementation : ItemUnit[1] the set of ItemUnits that constitute the index
272                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



18.7.2  UniqueKey Class
A UniqueKey is a meta-model element that represents primary keys in relational database tables, segments of hierarchical 
databases, or indexed files. UniqueKey is a group of columns.

Superclass

IndexElement

Constraints

1. UniqueKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to a certain table or relational database or certain fields in an indexed file. A primary 
key is one or more columns whose values uniquely identify every row in a table or every record in an indexed file. Normally 
an index always exists on the primary key.

18.7.3  ReferenceKey Class
A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a 
group of columns.

Superclass

IndexElement

Constraints

1. ReferenceKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key is the primary key of one data structure that is placed into a related data structure to represent a relationship 
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey is a 
group of one or more columns in a relational database table or segment of a hierarchical database or an indexed file that 
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or 
with itself.

18.7.4  Index Class
An Index class is a meta-model element that represents an index to a relational or hierarchical database or an indexed file.

Superclass

IndexElement

Constraints

1. Index owned by a data element should group ItemUnit elements that are owned by that data element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        273



Semantics

Index is a mechanism to locate and access data within a database. An index may quote one or more columns and be a 
means of enforcing uniqueness on their values.

18.8 Key Relations Class Diagram

NOTE:KDM14-231

Figure 18.6 depicts the key relations within the Data Package. A Key is a way to access data without reading through an 
entire data structure sequentially. 

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceKey in one data container, with a UniqueKey in another container, which 
means that there is one and only one key value for that data. 

18.8.1  KeyRelationship Class
A KeyRelationship is a meta-model element that represents an association between a ReferenceKey with the 
corresponding UniqueKey. 

Superclass

AbstractDataRelationship

Associations

Semantics

ReferenceKey is a group of one or more columns in a relational database table or segment of a hierarchical database or an 
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table, 
segment, or file, or with itself.

from : ReferenceKey[1] Foreign key is a certain table, segment, or file.

to: UniqueKey[1] Primary key is a certain table, segment, or key.
274                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



18.9 DataActions Class Diagram

NOTE:KDM14-187, KDM14-231

DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations 
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7 
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource 
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the 
runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one 
or more code models through the “implementation” association. Each data action may own one or more “abstracted” 
actions, which are used to model detailed resource related semantics.

Figure 18.7 - DataActions Class Diagram

18.9.1  ReadsColumnSet Class
ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to 
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads 
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the 
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        275



Constraints

1. This relationship should not be used in Code models.

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.

18.9.2  WritesColumnSet Class

NOTE:KDM14-187

WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to 
data resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes relationship 
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the DataAction 
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.

18.9.3  ManagesData Class

NOTE:KDM14-187

Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to data 
resources where there is no flow of data to or from the resource. ManagesData relationship is similar to Addresses 
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the 
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

to:ColumnSet[1] the data resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed
276                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. This relationship should not be used in Code models.

Semantics

Manages represents a certain change of state to a certain AbstractDataElement.

18.9.4  HasContent Class
HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does 
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to 
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an 
element of a data model with any resource. 

Superclass

Action::AbstractActionRelationship

Associations

Constraints

1. This relationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the 
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

18.9.5  ProducesDataEvent Class

NOTE:KDM14-187

PoducesDataEvent class follows the pattern of a "resource action relationship". This relation represents various situation 
where an ActionElement produces a DataEvent. The action is usually an "abstracted" action owned by some data 
resource. 

Superclass

Action::AbstractActionRelationship

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

from:ActionElement[1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        277



Associations

Constraints

1. This relationship should not be used in Code models.

Semantics

This relationship represents various situations where an ActionElement produces a DataEvent.

Example

See examples in Section 18.6.2, “RelationalTable Class” and Section 18.6.5, “RecordFile Class”.

Example (Java, embedded SQL, JDBC) 

NOTE:KDM14-15, KDM14-308

CREATE TABLE products (ID int primary key, name varchar, type varchar)

CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

final String findContractStatement=

  "SELECT * FROM contracts c, products p" +

  "WHERE ID = ? AND c.product = p.ID ";

public void calculateRecognitions( long contractID ) {

Connection db=DriverManager.getConnection("jdbc:odbc:foobar","sunny","");

PreparedStatement stmt=db.prepareStatement(findContractStatement);

stmt.setLong(1,contractID);

ResultSet contracts=stmt.executeQuery();

contracts.next();

Money totalRevenue=Money.dollars(contracts.getBigDecimal("revenue"));

MfDate recognitionDate=new MfDate(contracts.getDate("dateSigned"));

}

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:data="http://www.omg.org/spec/KDM/20160201/data" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 

xmlns:platform="http://www.omg.org/spec/KDM/20160201/platform" name="Data Example">

  <model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">

    <dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts">

      <dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">

        <dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>

        <itemUnit xmi:id="id.4" name="ID" type="id.172"/>

        <itemUnit xmi:id="id.5" name="name" type="id.173"/>

from:ActionElement[1] “abstracted” action owned by some resource

to:DataEvent[1] the data event being produced
278                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



        <itemUnit xmi:id="id.6" name="type" type="id.173"/>

      </dataElement>

      <dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">

        <dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>

        <dataElement xmi:id="id.9" xmi:type="data:ReferenceKey" implementation="id.12">

          <dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>

        </dataElement>

        <itemUnit xmi:id="id.11" name="ID" type="id.172"/>

        <itemUnit xmi:id="id.12" name="product" type="id.172"/>

        <itemUnit xmi:id="id.13" name="revenue" type="id.174"/>

        <itemUnit xmi:id="id.14" name="dateSigned" type="id.175"/>

      </dataElement>

    </dataElement>

    <dataElement xmi:id="id.15" xmi:type="data:DataAction" name="d1" kind="Connect"

 implementation="id.79">

      <abstraction xmi:id="id.16" name="da1" kind="PlatformAction">

          <actionRelation xmi:id="id.20" xmi:type="platform:ManagesResource" to="id.67"/>

      </abstraction>

    </dataElement>

    <dataElement xmi:id="id.21" xmi:type="data:DataAction" name="d2" kind="Select" 

implementation="id.90 id.96 id.104">

      <source xmi:id="id.22" language="sql" 

snippet="&quot;select * from contracts c, products p where ID = ? and c.product=p.ID  &quot;"/>

      <abstraction xmi:id="id.23" name="w1" kind="Equals">

        <codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="t1" type="id.176" kind="register"/>

        <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.11" from="id.23"/>

        <actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.77" from="id.23"/>

        <actionRelation xmi:id="id.27" xmi:type="action:Writes" to="id.24" from="id.23"/>

        <actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.29"/>

      </abstraction>

      <abstraction xmi:id="id.29" name="w2" kind="Equals">

        <codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t2" type="id.176" kind="register"/>

        <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.12" from="id.29"/>

        <actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.4" from="id.29"/>

        <actionRelation xmi:id="id.33" xmi:type="action:Writes" from="id.29"/>

        <actionRelation xmi:id="id.34" xmi:type="action:Flow" to="id.35" from="id.29"/>

      </abstraction>

      <abstraction xmi:id="id.35" name="w3" kind="And">

        <codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="t3" type="id.176" kind="register"/>

        <actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.24" from="id.35"/>

        <actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.30"/>

        <actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.35"/>

      </abstraction>

      <abstraction xmi:id="id.40" name="w4" kind="Condition">

        <actionRelation xmi:id="id.41" xmi:type="action:TrueFlow" to="id.42" from="id.40"/>

      </abstraction>

      <abstraction xmi:id="id.42" name="s1" kind="DataAction">

        <actionRelation xmi:id="id.43" xmi:type="data:ReadsColumnSet" to="id.7" from="id.42"/>

        <actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.11" from="id.42"/>

        <actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.12" from="id.42"/>

        <actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.13" from="id.42"/>

        <actionRelation xmi:id="id.47" xmi:type="action:Reads" to="id.14" from="id.42"/>

        <actionRelation xmi:id="id.48" xmi:type="data:ReadsColumnSet" to="id.2" from="id.42"/>

        <actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.4" from="id.42"/>

        <actionRelation xmi:id="id.50" xmi:type="action:Reads" to="id.5" from="id.42"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        279



        <actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.6" from="id.42"/>

        <actionRelation xmi:id="id.52" xmi:type="action:Writes" to="id.103" from="id.42"/>

        <actionRelation xmi:id="id.53" xmi:type="platform:ReadsResource" to="id.67" from="id.42"/>

      </abstraction>

    </dataElement>

    <dataElement xmi:id="id.54" xmi:type="data:DataAction" name="d3" kind="Retrieve"

 implementation="id.115">

      <abstraction xmi:id="id.55" name="da2" kind="DataAction">

        <actionRelation xmi:id="id.56" xmi:type="action:Reads" to="id.13" from="id.55"/>

        <actionRelation xmi:id="id.57" xmi:type="action:Addresses" to="id.103" from="id.55"/>

        <actionRelation xmi:id="id.58" xmi:type="action:Writes" to="id.117" from="id.55"/>

      </abstraction>

    </dataElement>

    <dataElement xmi:id="id.59" xmi:type="data:DataAction" name="d4" kind="Retrieve"

 implementation="id.130">

      <abstraction xmi:id="id.60" name="da3" kind="DataAction">

        <actionRelation xmi:id="id.61" xmi:type="action:Reads" to="id.14" from="id.60"/>

        <actionRelation xmi:id="id.62" xmi:type="action:Addresses" to="id.103" from="id.60"/>

        <actionRelation xmi:id="id.63" xmi:type="action:Writes" to="id.132" from="id.60"/>

      </abstraction>

    </dataElement>

  </model>

  <model xmi:id="id.64" xmi:type="platform:PlatformModel">

    <platformElement xmi:id="id.65" xmi:type="platform:Machine">

      <resource xmi:id="id.66" >

        <resource xmi:id="id.67" xmi:type="platform:DataManager" name="foobar">

          <abstraction xmi:id="id.68" name="dm1">

            <actionRelation xmi:id="id.69" xmi:type="data:HasContent" to="id.1"/>

          </abstraction>

        </resource>

      </resource>

    </platformElement>

  </model>

  <model xmi:id="id.70" xmi:type="code:CodeModel" name="Application">

   <codeElement xmi:id="id.70a" xmi:type="code:CodeAssembly" name="DataExample">

     <entryFlow xmi:id="id.70e" to="id.146" from="id.70a"/>

     <codeElement xmi:id="id.71" xmi:type="code:ClassUnit" name="DataExample">

      <codeElement xmi:id="id.72" xmi:type="code:MemberUnit" name="findContractStatement" 

isFinal="true" isStatic="true">

        <codeRelation xmi:id="id.73" xmi:type="code:HasValue" to="id.145" from="id.72"/>

      </codeElement>

      <codeElement xmi:id="id.74" xmi:type="code:MethodUnit" name="calculateRecognitions" type="id.76">

        <entryFlow xmi:id="id.75" to="id.79" from="id.74"/>

        <codeElement xmi:id="id.76" xmi:type="code:Signature">

          <parameterUnit xmi:id="id.77" name="contractNumber" type="id.179"/>

        </codeElement>

        <codeElement xmi:id="id.78" xmi:type="code:StorableUnit" name="db" type="id.155" kind="local"/>

        <codeElement xmi:id="id.79" xmi:type="action:ActionElement" name="c1" kind="Call">

          <codeElement xmi:id="id.80" xmi:type="code:Value" name="&quot;jdbc:odbc:foobar&quot;"/>

          <codeElement xmi:id="id.81" xmi:type="code:Value" name="&quot;sunny&quot;" type="id.178"/>

          <codeElement xmi:id="id.82" xmi:type="code:Value" name="&quot;&quot;" type="id.178"/>

          <actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.80" from="id.79"/>

          <actionRelation xmi:id="id.84" xmi:type="action:Reads" to="id.81" from="id.79"/>

          <actionRelation xmi:id="id.85" xmi:type="action:Reads" to="id.82" from="id.79"/>

          <actionRelation xmi:id="id.86" xmi:type="action:Calls" to="id.154" from="id.79"/>
280                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



          <actionRelation xmi:id="id.87" xmi:type="action:Writes" to="id.78" from="id.79"/>

          <actionRelation xmi:id="id.88" xmi:type="action:Flow" to="id.90" from="id.79"/>

        </codeElement>

        <codeElement xmi:id="id.89" xmi:type="code:StorableUnit" name="stmt" type="id.161" kind="local"/>

        <codeElement xmi:id="id.90" xmi:type="action:ActionElement" name="c2" kind="MethodCall">

          <actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.78" from="id.90"/>

          <actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.72" from="id.90"/>

          <actionRelation xmi:id="id.93" xmi:type="action:Calls" to="id.156" from="id.90"/>

          <actionRelation xmi:id="id.94" xmi:type="action:Writes" to="id.89" from="id.90"/>

          <actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.90"/>

        </codeElement>

        <codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="c3" kind="MethodCall">

          <codeElement xmi:id="id.97" xmi:type="code:Value" name="1"/>

          <actionRelation xmi:id="id.98" xmi:type="action:Addresses" to="id.89" from="id.96"/>

          <actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.97" from="id.96"/>

          <actionRelation xmi:id="id.100" xmi:type="action:Reads" to="id.77" from="id.96"/>

          <actionRelation xmi:id="id.101" xmi:type="action:Calls" to="id.162" from="id.96"/>

          <actionRelation xmi:id="id.102" xmi:type="action:Flow" to="id.104" from="id.96"/>

        </codeElement>

        <codeElement xmi:id="id.103" xmi:type="code:StorableUnit" name="contracts" type="id.157"

 kind="local"/>

        <codeElement xmi:id="id.104" xmi:type="action:ActionElement" name="c4" kind="MethodCall">

          <actionRelation xmi:id="id.105" xmi:type="action:Addresses" to="id.89" from="id.104"/>

          <actionRelation xmi:id="id.106" xmi:type="action:Calls" to="id.163" from="id.104"/>

          <actionRelation xmi:id="id.107" xmi:type="action:Writes" to="id.103" from="id.104"/>

          <actionRelation xmi:id="id.108" xmi:type="action:Flow" to="id.109" from="id.104"/>

        </codeElement>

        <codeElement xmi:id="id.109" xmi:type="action:ActionElement" name="c5" kind="MethodCall">

          <actionRelation xmi:id="id.110" xmi:type="action:Addresses" to="id.103" from="id.109"/>

          <actionRelation xmi:id="id.111" xmi:type="action:Calls" to="id.158" from="id.109"/>

          <actionRelation xmi:id="id.112" xmi:type="action:Flow" to="id.114" from="id.109"/>

        </codeElement>

        <codeElement xmi:id="id.113" xmi:type="code:StorableUnit" name="totalRevenue" type="id.165"

 kind="local"/>

        <codeElement xmi:id="id.114" xmi:type="action:ActionElement" name="c6" kind="Compound">

          <entryFlow xmi:id="id.114e" to="id.115" from="id.114"/>

          <codeElement xmi:id="id.115" xmi:type="action:ActionElement" name="c6.1" kind="Call">

            <codeElement xmi:id="id.116" xmi:type="code:Value" name="&quot;revenue&quot;"/>

            <codeElement xmi:id="id.117" xmi:type="code:StorableUnit" name="t4" kind="register"/>

            <actionRelation xmi:id="id.118" xmi:type="action:Addresses" to="id.103" from="id.115"/>

            <actionRelation xmi:id="id.119" xmi:type="action:Calls" to="id.159" from="id.115"/>

            <actionRelation xmi:id="id.120" xmi:type="action:Writes" to="id.117" from="id.115"/>

            <actionRelation xmi:id="id.121" xmi:type="action:Flow" to="id.122" from="id.115"/>

          </codeElement>

          <codeElement xmi:id="id.122" xmi:type="action:ActionElement" name="c6.2" kind="Call">

            <actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.117" from="id.122"/>

            <actionRelation xmi:id="id.124" xmi:type="action:Calls" to="id.166" from="id.122"/>

            <actionRelation xmi:id="id.125" xmi:type="action:Writes" to="id.113" from="id.122"/>

            <actionRelation xmi:id="id.126" xmi:type="action:Flow" to="id.129" from="id.122"/>

          </codeElement>

        </codeElement>

        <codeElement xmi:id="id.128" xmi:type="code:StorableUnit" name="recognizedDate" type="id.168"

 kind="local"/>

        <codeElement xmi:id="id.129" xmi:type="action:ActionElement" name="c7" kind="Compound">

          <entryFlow xmi:id="id.129e" to="id.130" from="id.129"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        281



         <codeElement xmi:id="id.130" xmi:type="action:ActionElement" name="c7.1" kind="Call">

            <codeElement xmi:id="id.131" xmi:type="code:Value" name="&quot;dateSigned&quot;"/>

            <codeElement xmi:id="id.132" xmi:type="code:StorableUnit" name="t5" kind="register"/>

            <actionRelation xmi:id="id.133" xmi:type="action:Addresses" to="id.103" from="id.130"/>

            <actionRelation xmi:id="id.134" xmi:type="action:Calls" to="id.160" from="id.130"/>

            <actionRelation xmi:id="id.135" xmi:type="action:Writes" to="id.132" from="id.130"/>

            <actionRelation xmi:id="id.136" xmi:type="action:Flow" to="id.137" from="id.130"/>

          </codeElement>

          <codeElement xmi:id="id.137" xmi:type="action:ActionElement" name="c7.2" kind="New">

            <actionRelation xmi:id="id.138" xmi:type="action:Creates" to="id.168" from="id.137"/>

            <actionRelation xmi:id="id.139" xmi:type="action:Writes" to="id.128" from="id.137"/>

            <actionRelation xmi:id="id.140" xmi:type="action:Flow"/>

          </codeElement>

          <codeElement xmi:id="id.141" xmi:type="action:ActionElement" name="c7.3" kind="MethodCall">

            <actionRelation xmi:id="id.142" xmi:type="action:Reads" to="id.132" from="id.137"/>

            <actionRelation xmi:id="id.143" xmi:type="action:Calls" to="id.169" from="id.141"/>

            <actionRelation xmi:id="id.144" xmi:type="action:Writes" to="id.128" from="id.141"/>

          </codeElement>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.145" xmi:type="code:Value"

 name="&quot;SELECT * FROM contracts c, products p WHERE ID=? AND c.product=p.ID&quot;"

 type="id.178"/>

      <codeElement xmi:id="id.146" xmi:type="code:BlockUnit" name="init" kind="Init">

        <entryFlow xmi:id="id.147" to="id.148" from="id.146"/>

        <codeElement xmi:id="id.148" xmi:type="action:ActionElement" name="i1" kind="Assign">

          <actionRelation xmi:id="id.149" xmi:type="action:Reads" to="id.145" from="id.148"/>

          <actionRelation xmi:id="id.150" xmi:type="action:Writes" to="id.72" from="id.148"/>

        </codeElement>

      </codeElement>

    </codeElement>

  </model>

  <model xmi:id="id.151" xmi:type="code:CodeModel" name="Java packages">

    <codeElement xmi:id="id.152" xmi:type="code:Package" name="java.sql">

      <codeElement xmi:id="id.153" xmi:type="code:ClassUnit" name="DriverManager">

        <codeElement xmi:id="id.154" xmi:type="code:MethodUnit" name="getConnection" kind="abstract"/>

      </codeElement>

      <codeElement xmi:id="id.155" xmi:type="code:ClassUnit" name="Connection">

        <codeElement xmi:id="id.156" xmi:type="code:MethodUnit" name="prepareStatement" kind="abstract"/>

      </codeElement>

      <codeElement xmi:id="id.157" xmi:type="code:ClassUnit" name="ResultSet">

        <codeElement xmi:id="id.158" xmi:type="code:MethodUnit" name="next" kind="abstract"/>

        <codeElement xmi:id="id.159" xmi:type="code:MethodUnit" name="getBigDecimal" kind="abstract"/>

        <codeElement xmi:id="id.160" xmi:type="code:MethodUnit" name="getDate" kind="abstract"/>

      </codeElement>

      <codeElement xmi:id="id.161" xmi:type="code:ClassUnit" name="Statement">

        <codeElement xmi:id="id.162" xmi:type="code:MethodUnit" name="setLong" kind="abstract"/>

        <codeElement xmi:id="id.163" xmi:type="code:MethodUnit" name="executeQuery" kind="abstract"/>

      </codeElement>

    </codeElement>

    <codeElement xmi:id="id.164" xmi:type="code:Package" name="Money">

      <codeElement xmi:id="id.165" xmi:type="code:ClassUnit" name="Money">

        <codeElement xmi:id="id.166" xmi:type="code:MethodUnit" name="dollars" kind="abstract"/>

      </codeElement>

    </codeElement>
282                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



    <codeElement xmi:id="id.167" xmi:type="code:Package" name="MfDate">

      <codeElement xmi:id="id.168" xmi:type="code:ClassUnit" name="MfDate">

        <codeElement xmi:id="id.169" xmi:type="code:MethodUnit" name="MfDate" kind="abstract"/>

      </codeElement>

    </codeElement>

  </model>

  <model xmi:id="id.170" xmi:type="code:CodeModel" name="Common Datatypes">

    <codeElement xmi:id="id.171" xmi:type="code:LanguageUnit" name="SQL datatypes">

      <codeElement xmi:id="id.172" xmi:type="code:IntegerType" name="sql int"/>

      <codeElement xmi:id="id.173" xmi:type="code:StringType" name="sql varchar"/>

      <codeElement xmi:id="id.174" xmi:type="code:DecimalType" name="sql decimal"/>

      <codeElement xmi:id="id.175" xmi:type="code:DateType" name="sql date"/>

      <codeElement xmi:id="id.176" xmi:type="code:BooleanType"/>

    </codeElement>

    <codeElement xmi:id="id.177" xmi:type="code:LanguageUnit" name="Java datatypes">

      <codeElement xmi:id="id.178" xmi:type="code:StringType"/>

      <codeElement xmi:id="id.179" xmi:type="code:IntegerType" name="java long"/>

      <codeElement xmi:id="id.180" xmi:type="code:IntegerType" name="java byte"/>

    </codeElement>

  </model>

</kdm:Segment>

18.10  StructuredData Class Diagram
The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by 
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram 
shown in Figure 18.8 captures these classes and their relations.

Figure 18.8 - StructuredData Class Diagram

18.10.1  XMLSchema
The XMLSchema class represents the top level container for a KDM metamodel of an XML document.

Superclass

AbstractDataElement
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        283



Associations

Semantics

XMLSchema is a logical container for AbstractContentElements as well as some other DataResource elements (for 
example, DataEvents).

18.10.2  AbstractContentElement (abstract)
The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the 
content of XML schemas and documents as well as various structured data items that can be associated with other KDM 
elements.

Superclass

AbstractDataElement

Semantics

AbstractContentElement represents common properties of content elements.

18.11  ContentElements Class Diagram
The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram 
shown in Figure 18.9 captures these classes and their relations.

Figure 18.9 - ContentElements Class Diagram

contentElement :AbstractContentElement[0..*] Individual content elements owned by this schema. 
284                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



18.11.1  ContentItem (generic)
The ContentItem class is a generic meta-model element that represents named items and references of the XML schema: 
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations

Semantics

18.11.2  ComplexContentType
The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as 
subclasses of ComplexContentType.

Superclass

AbstractContentElement

Associations

Semantics

18.11.3  SimpleContentType
The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

Associations

Semantics

Simple types, such as string and decimal, are built in to XML Schema, while others are derived from the built-in’s. The kind of 

contentElement :AbstractContentElement[0..*] owned content elements

type:ComplexContentType[0..1] content type of the current ContentItem

contentElement :AbstractContentElement[0..*] Owned content elements

kind:String content kind of the current SimpleContentType

type:ComplexContentType[0..*] content type of the current ContentItem
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        285



SimpleContentType can be “list,” “union,” “enumeration,” etc.

18.11.4  ContentRestriction
The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

Attributes

Semantics

kind is an XSD restriction, such as minExclusive, minInclusive, maxExclusive, maxInclusive, totalDigits, fractionDigits, 
length, minLength, maxLength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs, 
maxOccurs, required, fixed; or an XSD enumeration.

Example (XSD)

NOTE:KDM14-15, KDM14-308

<xsd:simpleType name="myInteger">

  <xsd:restriction base="xsd:integer">

    <xsd:minInclusive value="10000"/>

    <xsd:maxInclusive value="99999"/>

  </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="SKU">

  <xsd:restriction base="xsd:string">

    <xsd:pattern value="\d{3}-[A-Z]{2}"/>

  </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="USState">

  <xsd:restriction base="xsd:string">

    <xsd:enumeration value="AK"/>

    <xsd:enumeration value="AL"/>

    <xsd:enumeration value="AR"/>

    <!-- and so on ... -->

  </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="listOfMyIntType">

  <xsd:list itemType="myInteger"/>

</xsd:simpleType>

<xsd:simpleType name="USStateList">

  <xsd:list itemType="USState"/>

kind :String type of the content restriction (XML)

value:String value of the constraint
286                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



</xsd:simpleType>

<xsd:simpleType name="SixUSStates">

  <xsd:restriction base="USStateList">

    <xsd:length value="6"/>

  </xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name="zipUnion">

  <xsd:union memberTypes="USState listOfMyIntType"/>

</xsd:simpleType>

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:data="http://www.omg.org/spec/KDM/20160201/data" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="XML Simple Content Example">

  <model xmi:id="id.0" xmi:type="data:DataModel">

    <dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="SimpleType examples">

      <contentElement xmi:id="id.2" xmi:type="data:SimpleContentType" name="MyInteger">

        <dataRelation xmi:id="id.3" xmi:type="data:RestrictionOf" to="id.27" from="id.2"/>

        <contentElement xmi:id="id.4" xmi:type="data:ContentRestriction" 

kind="minInclusive" value="10000"/>

        <contentElement xmi:id="id.5" xmi:type="data:ContentRestriction" 

kind="maxInclusive" value="99999"/>

      </contentElement>

      <contentElement xmi:id="id.6" xmi:type="data:SimpleContentType" name="SKU">

        <dataRelation xmi:id="id.7" xmi:type="data:RestrictionOf" to="id.29" from="id.2"/>

        <contentElement xmi:id="id.8" xmi:type="data:ContentRestriction" 

kind="pattern" value="&quot;\d{3}-[A-Z]{2}&quot;"/>

      </contentElement>

      <contentElement xmi:id="id.9" xmi:type="data:SimpleContentType" name="USState">

        <contentElement xmi:id="id.10" xmi:type="data:ContentRestriction" 

kind="enumeration" value="&quot;AK&quot;"/>

        <contentElement xmi:id="id.11" xmi:type="data:ContentRestriction" 

kind="enumeration" value="&quot;AL&quot;"/>

        <contentElement xmi:id="id.12" xmi:type="data:ContentRestriction" 

kind="enumeration" value="&quot;AR&quot;"/>

      </contentElement>

      <contentElement xmi:id="id.13" xmi:type="data:SimpleContentType" name="listOfMyIntType">

        <contentElement xmi:id="id.14" xmi:type="data:ListContent">

          <dataRelation xmi:id="id.15" xmi:type="data:TypedBy" to="id.2" from="id.14"/>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.16" xmi:type="data:SimpleContentType" name="USStateList">

        <contentElement xmi:id="id.17" xmi:type="data:ListContent" name="">

          <dataRelation xmi:id="id.18" xmi:type="data:TypedBy" to="id.9" from="id.17"/>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.19" xmi:type="data:SimpleContentType" name="SixUSStates">

        <dataRelation xmi:id="id.20" xmi:type="data:RestrictionOf" to="id.16" from="id.19"/>

        <contentElement xmi:id="id.21" xmi:type="data:ContentRestriction" kind="length" value="6"/>

      </contentElement>

      <contentElement xmi:id="id.22" xmi:type="data:SimpleContentType" name="zipUnion">

        <contentElement xmi:id="id.23" xmi:type="data:UnionContent">
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        287



          <dataRelation xmi:id="id.24" xmi:type="data:TypedBy" to="id.9" from="id.23"/>

          <dataRelation xmi:id="id.25" xmi:type="data:TypedBy" to="id.13" from="id.23"/>

        </contentElement>

      </contentElement>

    </dataElement>

    <dataElement xmi:id="id.26" xmi:type="data:XMLSchema" name="xsd">

      <contentElement xmi:id="id.27" xmi:type="data:SimpleContentType" name="xsd:Integer">

        <dataRelation xmi:id="id.28" xmi:type="data:DatatypeOf" to="id.41" from="id.27"/>

      </contentElement>

      <contentElement xmi:id="id.29" xmi:type="data:SimpleContentType" name="xsd:String">

        <dataRelation xmi:id="id.30" xmi:type="data:DatatypeOf" to="id.42" from="id.29"/>

      </contentElement>

      <contentElement xmi:id="id.31" xmi:type="data:SimpleContentType" name="xsd:Decimal">

        <dataRelation xmi:id="id.32" xmi:type="data:DatatypeOf" to="id.43" from="id.31"/>

      </contentElement>

      <contentElement xmi:id="id.33" xmi:type="data:SimpleContentType" name="xsd:positiveInteger">

        <dataRelation xmi:id="id.34" xmi:type="data:DatatypeOf" to="id.41" from="id.33"/>

      </contentElement>

      <contentElement xmi:id="id.35" xmi:type="data:SimpleContentType" name="xsd:date">

        <dataRelation xmi:id="id.36" xmi:type="data:DatatypeOf" to="id.44" from="id.35"/>

      </contentElement>

      <contentElement xmi:id="id.37" xmi:type="data:SimpleContentType" name="xsd:any"/>

      <contentElement xmi:id="id.38" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>

    </dataElement>

  </model>

  <model xmi:id="id.39" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.40" xmi:type="code:LanguageUnit">

      <codeElement xmi:id="id.41" xmi:type="code:IntegerType" name="xsd integer"/>

      <codeElement xmi:id="id.42" xmi:type="code:StringType" name="xsd string"/>

      <codeElement xmi:id="id.43" xmi:type="code:DecimalType" name="xsd decimal"/>

      <codeElement xmi:id="id.44" xmi:type="code:DateType" name="xsd date"/>

    </codeElement>

  </model>

</kdm:Segment>

18.11.5  AllContent Class
An AllContent class is a meta-model element that represents complex types with the “all” order indicator.

Superclass

ComplexContentType

Semantics

18.11.6  SeqContent Class
The SeqContent class is a meta-model element that represents complex types with the “sequence” order indicator.

Superclass

ComplexContentType
288                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

18.11.7  ChoiceContent Class
A ChoiceContent class is a meta-model element that represents complex types with the “choice” order indicator.

Superclass

XMLComplexType

Semantics

18.11.8  GroupContent Class
A GroupContent class is a meta-model element that represents complex types with the “group” group indicator.

Superclass

ComplexContentType

Semantics

18.11.9  MixedContent Class
A MixedContent class is a meta-model element that represents complex types with the “mixed” indicator.

Superclass

ComplexContentType

Semantics

18.11.10  ContentAttribute Class
A ContentAttribute class is a meta-model element that represents the XML “attribute” declaration mechanism of XML 
Schemas.

Superclass

ContentItem

Semantics

18.11.11  ContentElement Class
A ContentElement class is a meta-model element that represents the XML “element” declaration mechanism of XML 
Schemas.

Superclass

ContentItem
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        289



Semantics

18.11.12  ContentReference Class
A ContentReference class is a meta-model element that represents the XML “reference” declaration mechanism of XML 
Schemas.

Superclass

ContentItem

Semantics

Example (XSD)

NOTE:KDM14-15, KDM14-308

<xsd:element name="letterBody">

  <xsd:complexType mixed="true">

    <xsd:sequence>

      <xsd:element name="salutation">

        <xsd:complexType mixed="true">

          <xsd:sequence>

            <xsd:element name="name" type="xsd:string"/>

          </xsd:sequence>

        </xsd:complexType>

      </xsd:element>

      <xsd:element name="quantity"    type="xsd:positiveInteger"/>

      <xsd:element name="productName" type="xsd:string"/>

      <xsd:element name="shipDate"    type="xsd:date" minOccurs="0"/>

      <!-- etc. -->

    </xsd:sequence>

  </xsd:complexType>

</xsd:element>

<xsd:complexType name="USAddress" >

  <xsd:sequence>

    <xsd:element name="name"   type="xsd:string"/>

    <xsd:element name="street" type="xsd:string"/>

    <xsd:element name="city"   type="xsd:string"/>

    <xsd:element name="state"  type="xsd:string"/>

    <xsd:element name="zip"    type="xsd:decimal"/>

  </xsd:sequence>

  <xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>

</xsd:complexType>

<xsd:complexType name="Items">

  <xsd:sequence>

    <xsd:element name="item" minOccurs="0" maxOccurs="unbounded">

      <xsd:complexType>

        <xsd:sequence>

          <xsd:element name="productName" type="xsd:string"/>

          <xsd:element name="quantity">

            <xsd:simpleType>

              <xsd:restriction base="xsd:positiveInteger">
290                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



                <xsd:maxExclusive value="100"/>

              </xsd:restriction>

            </xsd:simpleType>

          </xsd:element>

          <xsd:element name="USPrice"  type="xsd:decimal"/>

          <xsd:element ref="comment"   minOccurs="0"/>

          <xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>

        </xsd:sequence>

        <xsd:attribute name="partNum" type="SKU" use="required"/>

      </xsd:complexType>

    </xsd:element>

  </xsd:sequence>

</xsd:complexType>

<xsd:element name="internationalPrice">

  <xsd:complexType>

    <xsd:complexContent>

      <xsd:restriction base="xsd:anyType">

        <xsd:attribute name="currency" type="xsd:string"/>

        <xsd:attribute name="value"    type="xsd:decimal"/>

      </xsd:restriction>

    </xsd:complexContent>

  </xsd:complexType>

</xsd:element>

<xsd:complexType name="PurchaseOrderType">

  <xsd:sequence>

    <xsd:choice>

      <xsd:group   ref="shipAndBill"/>

      <xsd:element name="singleUSAddress" type="USAddress"/>

    </xsd:choice>

    <xsd:element ref="comment" minOccurs="0"/>

    <xsd:element name="items"  type="Items"/>

  </xsd:sequence>

  <xsd:attribute name="orderDate" type="xsd:date"/>

</xsd:complexType>

<xsd:group id="shipAndBill">

  <xsd:sequence>

    <xsd:element name="shipTo" type="USAddress"/>

    <xsd:element name="billTo" type="USAddress"/>

  </xsd:sequence>

</xsd:group>

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:data="http://www.omg.org/spec/KDM/20160201/data" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="XML Complex Content Example">

  <model xmi:id="id.0" xmi:type="data:DataModel">

    <dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="Complex Content">

      <contentElement xmi:id="id.2" xmi:type="data:ContentElement" name="letterBody">

        <dataRelation xmi:id="id.3" xmi:type="data:TypedBy" to="id.4" from="id.2"/>

        <contentElement xmi:id="id.4" xmi:type="data:MixedContent" name="m1">

          <contentElement xmi:id="id.5" xmi:type="data:SeqContent">
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        291



            <contentElement xmi:id="id.6" xmi:type="data:ContentElement" name="salutation">

              <dataRelation xmi:id="id.7" xmi:type="data:TypedBy" to="id.8" from="id.6"/>

              <contentElement xmi:id="id.8" xmi:type="data:MixedContent">

                <contentElement xmi:id="id.9" xmi:type="data:SeqContent">

                  <contentElement xmi:id="id.10" xmi:type="data:ContentElement" name="name">

                    <dataRelation xmi:id="id.11" xmi:type="data:TypedBy" to="id.88" from="id.10"/>

                  </contentElement>

                </contentElement>

              </contentElement>

            </contentElement>

            <contentElement xmi:id="id.12" xmi:type="data:ContentElement" name="quantity">

              <dataRelation xmi:id="id.13" xmi:type="data:TypedBy" to="id.92" from="id.12"/>

            </contentElement>

            <contentElement xmi:id="id.14" xmi:type="data:ContentElement" name="productName">

              <dataRelation xmi:id="id.15" xmi:type="data:TypedBy" to="id.88" from="id.14"/>

            </contentElement>

            <contentElement xmi:id="id.16" xmi:type="data:ContentElement" name="shipDate">

              <dataRelation xmi:id="id.17" xmi:type="data:TypedBy" to="id.94" from="id.16"/>

            </contentElement>

          </contentElement>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.18" xmi:type="data:ComplexContentType" name="USAddress">

        <contentElement xmi:id="id.19" xmi:type="data:SeqContent">

          <contentElement xmi:id="id.20" xmi:type="data:ContentElement" name="name">

            <dataRelation xmi:id="id.21" xmi:type="data:TypedBy" to="id.88" from="id.20"/>

          </contentElement>

          <contentElement xmi:id="id.22" xmi:type="data:ContentElement" name="street">

            <dataRelation xmi:id="id.23" xmi:type="data:TypedBy" to="id.88" from="id.22"/>

          </contentElement>

          <contentElement xmi:id="id.24" xmi:type="data:ContentElement" name="city">

            <dataRelation xmi:id="id.25" xmi:type="data:TypedBy" to="id.88" from="id.24"/>

          </contentElement>

          <contentElement xmi:id="id.26" xmi:type="data:ContentElement" name="state">

            <dataRelation xmi:id="id.27" xmi:type="data:TypedBy" to="id.88" from="id.26"/>

          </contentElement>

          <contentElement xmi:id="id.28" xmi:type="data:ContentElement" name="zip">

            <dataRelation xmi:id="id.29" xmi:type="data:TypedBy" to="id.88" from="id.28"/>

          </contentElement>

        </contentElement>

        <contentElement xmi:id="id.30" xmi:type="data:ContentAttribute" name="country">

          <dataRelation xmi:id="id.31" xmi:type="data:TypedBy" to="id.97" from="id.30"/>

          <contentElement xmi:id="id.32" xmi:type="data:ContentRestriction" 

kind="fixed" value="&quot;US&quot;"/>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.33" xmi:type="data:ComplexContentType" name="items">

        <contentElement xmi:id="id.34" xmi:type="data:SeqContent">

          <contentElement xmi:id="id.35" xmi:type="data:ContentElement" name="item">

            <dataRelation xmi:id="id.36" xmi:type="data:TypedBy" to="id.39" from="id.35"/>

            <contentElement xmi:id="id.37" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>

            <contentElement xmi:id="id.38" xmi:type="data:ContentRestriction" 

kind="maxOccurs" value="unbounded"/>

            <contentElement xmi:id="id.39" xmi:type="data:ComplexContentType" name="i">

              <contentElement xmi:id="id.40" xmi:type="data:SeqContent">
292                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



                <contentElement xmi:id="id.41" xmi:type="data:ContentElement" name="productName1">

                  <dataRelation xmi:id="id.42" xmi:type="data:TypedBy" to="id.88" from="id.41"/>

                </contentElement>

                <contentElement xmi:id="id.43" xmi:type="data:ContentElement" name="quantity1">

                  <dataRelation xmi:id="id.44" xmi:type="data:TypedBy" to="id.45" from="id.43"/>

                  <contentElement xmi:id="id.45" xmi:type="data:SimpleContentType" name="st1">

                    <dataRelation xmi:id="id.46" xmi:type="data:RestrictionOf" to="id.92" from="id.45"/>

                    <contentElement xmi:id="id.47" xmi:type="data:ContentRestriction" 

kind="maxExclusive" value="100"/>

                  </contentElement>

                </contentElement>

                <contentElement xmi:id="id.48" xmi:type="data:ContentElement" name="USPrice">

                  <dataRelation xmi:id="id.49" xmi:type="data:TypedBy" to="id.90" from="id.48"/>

                </contentElement>

                <contentElement xmi:id="id.50" xmi:type="data:ContentReference">

                  <dataRelation xmi:id="id.51" xmi:type="data:ReferenceTo" to="id.83" from="id.50"/>

                  <contentElement xmi:id="id.52" xmi:type="data:ContentRestriction" 

kind="minOccurs" value="0"/>

                </contentElement>

                <contentElement xmi:id="id.53" xmi:type="data:ContentElement" name="shipDate1">

                  <dataRelation xmi:id="id.54" xmi:type="data:TypedBy" to="id.94" from="id.53"/>

                </contentElement>

              </contentElement>

              <contentElement xmi:id="id.55" xmi:type="data:ContentAttribute" name="partNum">

                <dataRelation xmi:id="id.56" xmi:type="data:TypedBy" from="id.55"/>

                <contentElement xmi:id="id.57" xmi:type="data:ContentRestriction" 

kind="use" value="required"/>

              </contentElement>

            </contentElement>

          </contentElement>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.58" xmi:type="data:ContentElement" name="international price">

        <contentElement xmi:id="id.59" xmi:type="data:ComplexContentType" name="">

          <dataRelation xmi:id="id.60" xmi:type="data:RestrictionOf" to="id.96" from="id.59"/>

          <contentElement xmi:id="id.61" xmi:type="data:ContentAttribute" name="currency1">

            <dataRelation xmi:id="id.62" xmi:type="data:TypedBy" to="id.88" from="id.61"/>

          </contentElement>

          <contentElement xmi:id="id.63" xmi:type="data:ContentAttribute" name="value">

            <dataRelation xmi:id="id.64" xmi:type="data:TypedBy" to="id.90" from="id.61"/>

          </contentElement>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.65" xmi:type="data:ComplexContentType" name="PurchaseOrderType">

        <contentElement xmi:id="id.66" xmi:type="data:SeqContent">

          <contentElement xmi:id="id.67" xmi:type="data:ChoiceContent">

            <contentElement xmi:id="id.68" xmi:type="data:ContentReference">

              <dataRelation xmi:id="id.69" xmi:type="data:ReferenceTo" to="id.79" from="id.68"/>

            </contentElement>

            <contentElement xmi:id="id.70" xmi:type="data:ContentElement" name="singleUSAddress">

              <dataRelation xmi:id="id.71" xmi:type="data:TypedBy" to="id.18" from="id.70"/>

            </contentElement>

          </contentElement>

          <contentElement xmi:id="id.72" xmi:type="data:ContentReference">

            <dataRelation xmi:id="id.73" xmi:type="data:ReferenceTo" to="id.83" from="id.72"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        293



            <contentElement xmi:id="id.74" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>

          </contentElement>

          <contentElement xmi:id="id.75" xmi:type="data:ContentElement" name="items">

            <dataRelation xmi:id="id.76" xmi:type="data:TypedBy" to="id.33" from="id.75"/>

          </contentElement>

        </contentElement>

        <contentElement xmi:id="id.77" xmi:type="data:ContentAttribute" name="orderDate">

          <dataRelation xmi:id="id.78" xmi:type="data:TypedBy" to="id.94" from="id.77"/>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.79" xmi:type="data:GroupContent" name="shipAndBill">

        <contentElement xmi:id="id.80" xmi:type="data:SeqContent">

          <contentElement xmi:id="id.81" xmi:type="data:ContentElement"/>

          <contentElement xmi:id="id.82" xmi:type="data:ContentElement"/>

        </contentElement>

      </contentElement>

      <contentElement xmi:id="id.83" xmi:type="data:ContentElement" name="comment">

        <dataRelation xmi:id="id.84" xmi:type="data:TypedBy" to="id.88" from="id.83"/>

      </contentElement>

    </dataElement>

    <dataElement xmi:id="id.85" xmi:type="data:XMLSchema" name="xsd">

      <contentElement xmi:id="id.86" xmi:type="data:SimpleContentType" name="xsd:Integer">

        <dataRelation xmi:id="id.87" xmi:type="data:DatatypeOf" to="id.100" from="id.86"/>

      </contentElement>

      <contentElement xmi:id="id.88" xmi:type="data:SimpleContentType" name="xsd:String">

        <dataRelation xmi:id="id.89" xmi:type="data:DatatypeOf" to="id.101" from="id.88"/>

      </contentElement>

      <contentElement xmi:id="id.90" xmi:type="data:SimpleContentType" name="xsd:Decimal">

        <dataRelation xmi:id="id.91" xmi:type="data:DatatypeOf" to="id.102" from="id.90"/>

      </contentElement>

      <contentElement xmi:id="id.92" xmi:type="data:SimpleContentType" name="xsd:positiveInteger">

        <dataRelation xmi:id="id.93" xmi:type="data:DatatypeOf" to="id.100" from="id.92"/>

      </contentElement>

      <contentElement xmi:id="id.94" xmi:type="data:SimpleContentType" name="xsd:date">

        <dataRelation xmi:id="id.95" xmi:type="data:DatatypeOf" to="id.103" from="id.94"/>

      </contentElement>

      <contentElement xmi:id="id.96" xmi:type="data:SimpleContentType" name="xsd:any"/>

      <contentElement xmi:id="id.97" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>

    </dataElement>

  </model>

  <model xmi:id="id.98" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.99" xmi:type="code:LanguageUnit">

      <codeElement xmi:id="id.100" xmi:type="code:IntegerType" name="xsd integer"/>

      <codeElement xmi:id="id.101" xmi:type="code:StringType" name="xsd string"/>

      <codeElement xmi:id="id.102" xmi:type="code:DecimalType" name="xsd decimal"/>

      <codeElement xmi:id="id.103" xmi:type="code:DateType" name="xsd date"/>

    </codeElement>

  </model>

</kdm:Segment>

18.12  ContentRelations Class Diagram

NOTE:KDM14-231
294                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The ContentRelations class diagram provides basic meta-model relationships that represent various structural properties 
of the content. The class diagram shown in Figure 18.10 captures these classes and their relations.

Figure 18.10 - ContentRelations Class Diagram

18.12.1  TypedBy Class
The TypedBy class represents the relationship between a ContentItem and a content type, that can be represented by a 
ComplexContentType class or one of its subclasses.

Superclass

AbstractDataRelationship

Associations

Constraints

1. The “from” endpoint should be a ContentElement or a ContentAttribute class.

Semantics

TypedBy relationship represents an association between a content element and its type when this type is user-defined. 
This relationship is similar to HasType from CodeModel.

18.12.2  DatatypeOf Class
The DatatypeOf class represents the relationship between a CompelxContentType and a Datatype defined in some Code 
model.

from:ContentItem[1] the content element or attribute

to:ComplexContentType[1] the content type element 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        295



Superclass

AbstractDataRelationship

Associations

Semantics

DatatypeOf relationship represents an association between a content type and primitive datatype.

18.12.3  ReferenceTo Class
The ReferenceTo class represents the relationship between a ContentReference and a ContentElement, ContentAttribute, or 
ContentGroup definition.

Superclass

AbstractDataRelationship

Associations

Constraints

1. The “from” endpoint should be a ContentReference. 

2. The “to” endpoint should be a ContentElement, a ContentAttribute, or GroupContent.

Semantics

ReferenceTo relationship represents an association between a content reference and the corresponding definition.

18.12.4  ExtensionTo Class
The ExtensionTo class represents the relationship between two content types, where one type is an extension to another. The 
semantics of deriving new types by extension is that as the result a new complex type or simple type is defined that contains all 
the elements of the original type plus additional elements that are provided as the extension. 

Superclass

AbstractDataRelationship

Associations

from:ComplexContentType[1] the content type

to:Datatype[1] the datatype element 

from:ContentItem[1] the content reference

to:ContentItem[1] the content element or attribute or group

from:ComplexContentType[1] the new (extended) content type

to:ComplexContentType[1] the base content type
296                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

Semantics

ExtensionTo relationship represents an association between a content type and its base type.

18.12.5  RestrictionOf Class
The RestrictionOf class represents the relationship between two content types, where one type is a restriction to another. The 
semantics of deriving new types by restriction is that as the result a new complex type or simple type is defined that contains 
all the elements and constraints of the original type plus additional constraints that are provided as the restriction. 

Superclass

AbstractDataRelationship

Associations

Semantics

RestrictionOf relationship represents an association between a content type and its base type.

18.13  ExtenededDataElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedDataElements class diagram defines two viewpoint-specific generic elements for the data model as 
determined by the KDM model pattern: a generic data entity and a generic data relationship..

The classes and associations of the ExtendedDataElements diagram are shown in Figure 18.11. 

Figure 18.11 - ExtendedDataElements Class Diagram

from:ComplexContentType[1] the new (restricted) content type

to:ComplexContentType[1] the base content type
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        297



18.13.1  ExtendedDataElement Class

NOTE:KDM14-58

The ExtendedDataElement class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractDataElement

Constraints

1. ExtendedDataElement should have at least one stereotype.

Semantics

A data entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended 
meta-model entity type of the data model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

18.13.2  DataRelationship Class

NOTE:KDM14-58

The DataRelationship class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism. 

Superclass

AbstractDataRelationship

Associations

Constraints

1. DataRelationship should have at least one stereotype.

Semantics

A data relationship with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model relationship types of the data model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

from:AbstractDataElement[1] the data element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship
298                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        299



300                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Subpart IV - Abstractions Layer

Abstraction Layer defines a set of meta-model elements that represent domain-specific and application-specific 
abstractions, as well as artifacts related to the build process of the exsting software system. The meta-model elements of 
the Abstractions Layer provide various containers and groups to other meta-model elements.

Abstractions Layer defines the following 3 KDM Models:

• Structure

• Conceptual

• Build
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        301



302                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



19 Structure Package

19.1 Overview
Structure package defines meta-model elements that represent architectural components of existing software systems, 
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same 
system.

The Structure package defines an architecture viewpoint for the Structure domain. The architectural views based on the 
viewpoint defined by the Structure model represent how the structural elements of the software system are related to the 
modules defined in the Code views that correspond to the Code architectural viewpoint defined by the Code model. The 
architectural viewpoint is defined as follows.

• Concerns:

• What are the structural elements of the system, and what is the organization of these elements?

• What software elements compose the system?

• How the structural elements of the system are related to the computational elements?

• What are the connections of these elements based on the relationships between the corresponding computational 
elements?

• What are the interfaces of the structural elements of the system?

• Viewpoint language:

Structure views conform to KDM XMI schema. The viewpoint language for the Structure architectural viewpoint 
is defined by the Structure package. It includes abstract entity AbstractStructureElement, and several concrete 
entities, such as Subsystem, Layer, Component, SoftwareSystem, ArchitectureView. The viewpoint language for 
the Structure architectural viewpoint also includes an abstract relationship AbstractStructureRelationship.  

• Analytic methods:

The Structure architectural viewpoint supports the following main kinds of checking:

• Attachment (are components properly connected?)

• Coupling and cohesion (the number of internal relationship within a component compared to the number of 
relationships to other components).

• Efferent and afferent relationship (uses of a component by other components and usages of other component by 
the given component).

• Interfaces (what is the required and provided interface of the given component).

Structure Views are used in combination with Code views, Data views, Platform views, UI views and Inventory 
views. Specifically, Structure views corresponding to this architectural viewpoint represent how the structural 
elements of the software system are related to the modules defined in the Code views that correspond to the Code 
architectural viewpoint, defined by the Code package. 
 
 

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        303



• Construction methods:

• Structure views that correspond to the KDM Structure architectural viewpoint are usually constructed by 
analyzing architecture models of the given system. The Structure extractor tool uses the knowledge of the 
architecture models to produce one or mode Structure views as output.

• As an alternative, structure views can be produced manually using the input from the architect of the system and 
architecture documentation.

• Construction of the Structure  view is determined by the architectural description of the system.

• Construction of the Structure views corresponding to a particular architectural description  may involve 
additional information (system-specific or architecture-specific). This information can be attached to KDM 
elements using stereotypes, attributes or annotations.

The organization of the system may be presented as a single Structure view or a set of multiple Structure view showing 
layers, components, subsystems, or packages. The reach of this representation extends from a uniform architecture to 
entire family of module-sharing subsystems.

The Structure model owns a collection of StructuralElement instances. 

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete, 
non-overlapping parts. An undifferentiated architecture is represented by a single Package. 

StructuralGroup recursively gathers StructuralElements to represent various architectural divisions. The Software System 
subclass provides a gathering point for all the system’s packages directly or indirectly through other Structure elements. 
The packages may be further grouped into Subsystems, Layers, and Components, or Architecture Views. 

19.2 Organization of the Structure Package
The Structure package defines a collection of meta-model elements whose purpose is to represent architectural 
organization of the existing software system.

The Structure package consists of the following 3 class diagrams:

• StructureModel

• StructureInheritances

• ExtendedStructureElements

The Structure package depends on the following packages:

• Core

• kdm

19.3 StructureModel Class Diagram

NOTE:KDM14-214

The StructureModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with 
specific meta-model elements related to high-level structural elements and their associations. The class diagram shown in 
Figure 19.1 captures these classes and their relations.
304                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 19.1 - StructureModel Class Diagram

19.3.1  StructureModel Class
The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all 
of the system’s StructuralElements.

Superclass

KDMModel

Associations

Semantics

19.3.2  AbstractStructureElement Class (abstract)

NOTE:KDM14-214

The AbstractStructureElement represents an architectural part, related to the organization of the existing software system 
into modules.

Superclass

KDMEntity

structureElement:AbstractStructureElement[0..*] Structure elements owned by the model.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        305



Associations

Semantics

19.3.3  AbstractStructureRelationship Class (abstract)
The AbstractStructureRelationship class.

Superclass

KDMRelationship

Semantics

19.3.4  Subsystem Class

NOTE:KDM14-77

The Subsystem collects the architectural parts of a software subsystem. The parts may be any other StructuralElement. 

Superclass

AbstractStructureElement

Semantics

19.3.5  Layer Class

NOTE:KDM14-77

The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any 
other StructuralElement.

Superclass

AbstractStructureElement

Semantics

19.3.6  Component Class

NOTE:KDM14-77

structureElement:AbstractStructureElement[0..*] Structure elements owned by the model.

structureRelationship:AbstractStructureRelationship[0..*] Structure relations that originate from this structure element

implementation:KDMEntity[0..*] group association to KDMEntity that are represented by the 
current StructureElement
306                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural 
component.

Superclass

AbstractStructureElement

Semantics

19.3.7  SoftwareSystem Class

NOTE:KDM14-77

The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.

Superclass

AbstractStructureElement

Semantics

19.3.8  ArchitectureView Class

NOTE:KDM14-77

The ArchitectureView class represents an arbitrary architectural view, as defined by ISO 42010. Within a KDM instance 
an ArchitectureView element may be used in a Structure model either stand-alone or in combination with other elements 
defined by the Structure package. The KDM ArchitectureView own a collection of KDM entities that corresponds to a 
particular architectural view of the software system. To conform to the ISO 42010 requirements for architectural 
description, the creator of the KDM instance should further document the corresponding architectural viewpoint by using 
a stereotype to the ArchitectureView element, attributes, or annotations).

Superclass

AbstractStructureElement

Semantics

19.4 StructureInheritances Class Diagram
The StructureInheritances class diagram shown in Figure 19.2 depicts how the meta-model elements defined in the 
Structure package are related to the meta-model elements defined in the Core package. Each of the Structure Package 
classes within this diagram inherits certain properties from KDM classes defined within the  Core Package.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        307



Figure 19.2 - StructureInheritances Class Diagram

19.5 ExtendedStructureElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedStructureElements class diagram defines two viewpoint-specific generic elements for the structure model as 
determined by the KDM model pattern: a generic structure entity and a generic structure relationship.

The classes and associations of the ExtendedStructureElements diagram are shown in Figure 19.3. 

Figure 19.3 - ExtendedStructureElements Class Diagram

19.5.1  StructureElement Class (generic)

NOTE:KDM14-58

The StructureElement class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureElement
308                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. StructureElement should have at least one stereotype.

Semantics

A structure entity with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model entity type of the structure model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

19.5.2  StructureRelationship Class (generic)

NOTE:KDM14-58

The StructureRelationship class is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureRelationship

Associations

Constraints

1. StructureRelationship should have at least one stereotype.

Semantics

A structure relationship with under specified semantics. It is a concrete class that can be used as the base element of a 
new extended meta-model relationship type of the structure model. This is one of the KDM extension points that can 
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard 
KDM representation.

from:AbstractStructureElement[1] the structure element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        309



310                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



20 Conceptual Package

20.1 Overview

NOTE:KDM14-31

The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model 
during the analysis phase of knowledge discovery from existing code. 

The Conceptual package defines an architectural viewpoint for the Business Rules domain.

• Concerns:

• What are the domain terms implemented by the system?

• What are the behavior elements of the system?

• What are the business rules implemented by the system?

• What are the scenarios supported by the system?

• Viewpoint language:

Conceptual views conform to KDM XMI schema. The viewpoint language for the Conceptual architectural 
viewpoint is defined by the Conceptual package. It includes abstract entity AbstractConceptualElement, and 
several concrete entities, such as TermUnit, FactUnit, RuleUnit, Scenario, BehaviorUnit. The viewpoint language 
for the Conceptual architectural viewpoint also includes ConceptualFlow relationship, which is a subclass of an 
abstract relationship AbstractConceptualRelationship.

• Analytic methods

The Conceptual architectural viewpoint supports the following main kinds of checking:

• Conceptual relationships (what are the relationships between conceptual entities, based on their implementation 
by the Code and Data entities?)

• Scenario flow  (what are the control flow relationship between the two scenarios based on the flow between 
action elements referenced by each scenario).

• BehaviorUnit coupling (what are the control flow and data flow relationships between two behavior units based 
on the action elements referenced by each behavior unit).

• Business Rule analysis (what is the logic of the business rule based on the action elements referenced by the 
business rule).

Conceptual Views are used in combination with Code views, Data views, Platform views, UI views and 
Inventory views.

• Construction methods:

• Conceptual views can be produced manually using the input from the information analysis and the architect of 
the system and architecture documentation.

• Construction of the Conceptual  view is determined by the domain model and the  architectural description of the 
system. 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        311



 

• Construction of the Conceptual views corresponding to a particular architectural description  may involve 
additional information (system-specific or architecture-specific). This information can be attached to KDM 
elements using stereotypes, attributes or annotations.

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently, 
it provides “concept” classes - TermUnit, FactUnit, RuleUnit and ConceptualRole facilitating representation of the 
elements from external ontologies and SBVR vocabularies as parts of uniform KDM fact models. 

These meta-model elements support the process of mining higher level (conceptual) information from lower-level KDM 
models and capturing it as additional KDM entities and relationship, thus allowing further analysis of an enriched model. 

The ConceptualModel also provides “behavior” types - BehaviorUnit and ScenarioUnit that support mapping to various 
external models including but not limited to activities/flow chart and swim lane diagrams, and use case scenarios. The 
following explains the difference between these “behavior” types: 

• BehaviorUnit represents a behavior graph with several paths through the application logic and associated conditions. 
The “implementation” of this graph is provided by the ActionElements connected with Flow relations, from the 
Program Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” 
of ActionElements since it provides a modeling element for representing a collection of ActionElements that is 
meaningful from the application domain perspective, and further manipulate with this representation as a first class 
citizen of the ConceptualModel of KDM. 

• ScenarioUnit represents a path (or multiple related paths) through the behavior graph. For example, ScenarioUnit 
corresponds to a trace through the systems, or a “use case.” ScenarioUnit can own an entire collection of 
BehaviorUnits, connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph 
in the implementation of the software system. The conditions responsible for navigation between alternative paths 
within the graph can be represented as RuleUnits. 

• RuleUnit represents a condition, a group of conditions, or a constraint. RuleUnit is a representation for some 
meaningful navigation conditions within behavior graphs represented by several BehaviorUnits.

20.2 Organization of the Conceptual Package
The Conceptual package defines meta-model elements that represent high-level, high-value application-specific 
“conceptual” elements of existing software systems and their traceability to other KDM facts. 

The Conceptual Package consists of the following 5 class diagrams:

• ConceptualModel
• ConceptualInheritances
• ConceptualElements
• ConceptualRelations
• ExtendedConceptualElements

The Conceptual package depends on the following packages:

Core
kdm
312                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



20.3 ConceptualModel Class Diagram
The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They 
provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships 
between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge 
discovery from existing code. The ConceptualModel diagram defines meta-model elements to represent application-
specific “concept” types, “fact” types, and “rules.” An example of a “concept” is a “customer,” or a “savings account.” 
An example of a “fact” is a “customer opens a new savings account.” An example of a “rule” is “if the initial amount of 
money in a saving account is greater than $1000.00, then offer a higher interest account.” Even in a well-designed system 
an application-domain specific concept, like “customer” is rarely mapped one-to-one to a single programming language 
construct that can be directly discovered in the source code of the existing system. Instead, such “concept” is 
implemented by multiple programming language constructs, often spanning multiple source files, programming 
languages, and technologies. These KDM meta-model objects and relationships between them provide the foundation for 
mining business rules and other high-value application-specific knowledge from existing code.

ConceptualModel follows the regular KDM pattern of extending the common Infrastructure framework by defining a 
specific KDM model class, an abstract superclass of all modeling elements in the ConceptualModel - the 
AbstractConceptualElement class. ConceptualModel provides another abstract superclass for all relationships, specific to 
this model - AbstractConceptualRelationship class. All meta-model elements of the ConceptualModel extend the 
AbstractConceptualElement class and implement the “model” and “ownedRelation” properties. Each entity of the 
ConceptualModel can own relationships, specific to this model. According to this pattern, each entity should own 
relationships that originate from this entity (i.e., the value of the “from” property should be equal to the id of the owner 
of the relationship). This framework provides several extension points for the KDM light-weight extension mechanism. In 
particular, in accordance to the general KDM pattern, the ConceptualModel framework includes a generic extensible 
modeling element ConceptualElement, and a generic ConceptualRelationship class. 

The class diagram shown in Figure 20.4 captures these classes and their relations.

Figure 20.4 - ConceptualModel Class Diagram
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        313



20.3.1  ConceptualModel
The ConceptualModel class is a specific KDM model that owns collections of facts about conceptual elements 
implemented by a given existing software system. 

Superclass

KDMModel

Associations

Semantics

20.3.2  AbstractConceptualElement (abstract)

NOTE:KDM14-208

AbstractConceptualElement class is the top superclass for the ConceptualModel. It defines several common properties for 
all further meta-model elements in the Conceptual Package. In particular, it defines the fundamental “implementation” 
property - a KDM grouping mechanism to link conceptual elements to the implementation elements. The 
“implementation” property represents the set of elements in lower-level KDM model that represents implementation-
specific high-fidelity knowledge of the software system. The “implementation” property realizes the mapping between the 
implementation of a certain concept to the KDM entity representing this concept - some concrete subclass of the 
AbstractConceptualElement. The set of KDM entities available through the “implementation” property becomes the 
“extent” of the application-specific concept being represented by the conceptual element. The conceptual element itself 
becomes the “handle” for the otherwise intangible and abstract high-value application domain specific concept. 

It is expected that building conceptual models in general, and especially, determining the appropriate “implementation 
set,” is a difficult value-added knowledge discovery process that may involve domain experts and application experts. 
KDM framework provides the intermediate representation for capturing the knowledge generated by this process. 

Superclass

KDMEntity

Associations

conceptualElement:AbstractConceptualElement[0..*] Identifies the root “concept” elements of the hierarchy of the 
conceptual elements contained in the model. The 
ConceptualModel can contain zero or more such trees.

conceptualRelation:AbstractConceptualRelation[0..*] For each concrete instance of AbstractConceptualElement this 
property represents the set of conceptual relationships that 
originate from this element.

implementation:KDMEntity[0..*] For each concrete instance of AbstractConceptualElement this 
property represents the set of KDM entities that realize the 
high-level concept in the low-level artifacts of the existing 
system.
314                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Constraints

1. For each conceptual element, the value of the from property of each conceptual relationship, owned by this 
element, should be equal to the identity of this element (the “relationship encapsulation” pattern).

20.3.3  AbstractConceptualRelationship Class (abstract)
The AbstractConceptualRelationship class is determined by the KDM model pattern. It provides a common superclass for 
specific KDM relationships, defined in the Conceptual package.

Semantics

20.4 ConceptualInheritances Class Diagram

NOTE:KDM14-208

The ConceptualInheritance class diagram defines how the conceptual meta-model elements fit into the KDM 
Infrastructure. The ConceptualInheritances class diagram is shown in Figure 20.5.

Figure 20.5 - ConceptualInheritances Class Diagram

20.5 ConceptualElements Class Diagram

NOTE:KDM14-73

ConceptualElements class diagram defines specific KDM modeling elements for representing domain-specific concepts as 
they are implemented by existing software systems. These elements are concrete subclasses of the AbstractConceptualElement 
class.

The classes and association of the ConceptualElements class diagram are shown at Figure 20.6.

abstraction:ActionElement[0..*] This element represents action elements that are owned by the 
conceptual element and that represent semantic associations for 
the conceptual element.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        315



Figure 20.6 - ConceptualElements Class Diagram

20.5.1  ConceptualContainer Class
The ConceptualContainer class is a generic meta-model element that represents a container for conceptual entities. Several 
other concrete conceptual elements are subclasses of ConceptualContainer, so that they can also own other conceptual 
elements. The purpose of the ConceptualContainer meta-model element is to facilitate hierarchical organization and grouping 
of “concepts” within Conceptual Model. ConceptualContainer also can be used as an extended modeling element with a 
stereotype.

Superclass

AbstractConceptualElement

Associations

Constraints

1. ConceptualUnit should not own ConceptualRole elements.

20.5.2  TermUnit
The TermUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or 
PlatformResource layer. From the knowledge discovery perspective, such collection may include program elements 
involved in the implementation of a certain application domain concept. A TermUnit then provides a representation of 

conceptualElement:AbstractConceptualElement[0..*] elements that are owned by this container
316                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



such concept inside the KDM model, which can be used for further analysis and later exported into a business rule 
modeling tool in the process known as application business rules mining. The TermUnit class is aligned with SBVR term 
or name concepts. Semantically, a TermUnit represents some “noun concept.”

Superclass

AbstractConceptualElement

Semantics

20.5.3  FactUnit
The FactUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This 
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some 
behavior of the software system (for example, a formula for calculating an allowance can be considered as a fact) or some 
property of the software system meaningful in the application domain. FactUnit may be also associated with an arbitrary 
collection of the KDM entities. A FactUnit then provides a representation of such property inside the KDM model which 
can be used for further analysis and later exported into a business rule modeling tool in the process known as application 
business rules mining. The FactUnit class is aligned with SBVR fact type concept. Semantically, a FactUnit represents a 
“verb concept,” or an “objectified verb concept,” that can be later used as a noun.

Superclass

ConceptualContainer

Semantics

20.5.4  RuleUnit
The RuleUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This 
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some 
condition or constraint in the software system (for example, a condition under which an allowance can be increased, or a 
statement that a certain property should always be satisfied). RuleUnit also may be associated with an arbitrary collection 
of the KDM entities (these often involve action elements that represent conditions). A RuleUnit then provides a 
representation of such condition or constraint inside the KDM model that can be used for further analysis and later 
exported into a business rule modeling tool in the process known as application business rules mining. The RuleUnit class 
is aligned with SBVR rule concept. Semantically, a RuleUnit uses some base “verb concept” (usually represented as a fact 
type) and adds to it obligation, necessity, qualifications, quantifications, conditions, etc.

Superclass

ConceptualContainer

Semantics

20.5.5  ConceptualRole

NOTE:KDM14-73, KDM14-143

The ConceptualRole class represents a role played by a participant in a conceptual association, such as a FactUnit or a 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        317



RuleUnit. ConceptualRole elements are owned by some container, a subclass of ConceptualUnit. The ConceptualRole element 
provides a placeholder for capturing the name of this role as the “name” attribute of the class. Additional annotations or 
stereotypes can be provided by using the KDM light-weight extension mechanism.

Superclass

AbstractConceptualUnit

Associations

Semantics

Multiple ConceptualRole elements can be associated with the same AbstractConceptualElement

20.5.6  BehaviorUnit Class
The BehaviorUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or Platform 
Resource layer. From the knowledge discovery perspective, such collection may represent some behavior meaningful in 
the application domain (or simply interesting for the analysis, understanding, and modernization of the software system). 
A BehaviorUnit then provides a representation of such behavior inside the KDM model that can be used for further 
analysis. In particular, larger slices of the program logic can be represented as collections of BehaviorUnit elements 
linked by ConceptualFlow relationships. 

The BehaviorUnit class represents a behavior graph with several paths through the application logic. The 
“implementation” of this graph is provided by the ActionElements connected with Flow relations, from the Program 
Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” of  
ActionElements since it provides a modeling element for representing a collection of ActionElements that is meaningful 
from the application domain perspective, and further manipulate with this representation as a first class citizen of the 
ConceptualModel of KDM. 

Superclass

ConceptualContainer

20.5.7  ScenarioUnit Class
ScenarioUnit represents a path (or multiple related paths) through the behavior graph of the application logic. For 
example, ScenarioUnit corresponds to a trace through the systems, or a “use case.” The “implementation” of this graph is 
provided by the ActionElements connected with Flow relations, from the Program Elements KDM layer. Semantically, the 
difference between a BehaviorUnit and a ScenarioUnit is that a BehaviorUnit is an abstraction of behavior, while 
ScenarioUnit is an abstraction of a trace. For example, an interesting formula, or an algorithm can be represented as a 
BehaviorUnit rather than a ScenarioUnit. On the other hand, an interesting data flow path through the application can be 
represented as a ScenarioUnit rather than a BehaviorUnit. ScenarioUnit can own an entire collection of BehaviorUnits, 
connected with ConceptualFlow elements and can thus represent a slice of the original behavior graph in the 
implementation of the software system. The conditions responsible for navigation between alternative paths within the 
graph can be represented as RuleUnits. 

Superclass

ConceptualContainer

conceptualElement:AbstractConceptualElement[1]  represents the participant in the association for the given role
318                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



20.6 ConceptualRelations Class Diagram

NOTE:KDM14-34, KDM14-231

ConceptualRelations class diagram defines specific conceptual relationship called ConceptualFlow. The classes and 
associations involved in the ConceptualRelations class diagram are shown in Figure 20.7.

Figure 20.7 - ConceptualRelations Class Diagram

20.6.1  ConceptualFlow Class
The ConceptualFlow class is a KDM relationship defined for the conceptual model. It represents the fact that one 
behavior may be continued into some other behavior. When multiple ConceptualFlow relations exist for a given 
conceptual element (according to the KDM relationship encapsulation pattern, these relationships should be owned by the 
conceptual element and the “from” property of the relationship should be equal to the identity of the element), this means 
that the behavior represented by that conceptual element may be continued by either of these flows nondeterministically. 
The follow-up behavior is designated by the conceptual element represented by the “to” property of the ConceptualFlow 
relationship. When the “to” endpoint of the ConceptualFlow relationship designates a container, this means that any 
behavior from that container can be the continuation of the initial behavior. When the “from” endpoint of the 
ConceptualFlow relationship is a container, this means that any behavior element owned by that container can be used as 
the initial behavior. This relationship provides an abstraction for the Flow relations in the Program Elements layer. 
ConceptualFlow relation provides a modeling element for representing behavior slices of the application logic that are 
meaningful from the application domain perspective, and further manipulate with this representation as a first class citizen 
of the ConceptualModel of KDM. 

Superclass

AbstractConceptualRelationship

Associations

from: AbstractConceptualElement[1] represents the initial behavior

to:AbstractConceptualElement[1] represents a potential follow-up behavior
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        319



Example

NOTE:KDM14-15, KDM14-308

Form Definition

Program TransactionsApproval  File Name: MM0319.Hfm

…

010 Field1 – Customer ID

011 Field2 – Customer First Name

012 Field3 – Customer Last Name

013 Field4 (list) – Account Number

014 Field5 (list) – Account Type

015 Field6 (list) – Account Balance

…

Program

Program TransactionsApproval  File Name: MM0245.HLa

Program begin

…..

100 // Definitions of variables mapable to the form fields

101 Define Cust_ID(Char 20)

102 Define Cust_FName (Char 25)

103 Define Cust_LName (Char 35)

104 Define Acc_Numb(Char 12)[10]

105 Define Acc_Type(Char 2)[10]

106 Define Acc_Balance(Currency)[10]

107

108 // Definition of other variables

109 Define Bal(Currency)

110 Define Ind(Integer)

111 Define AdjustedBal(Currency)

112 Define ApproveTrans(Boolean)

113 Define Allowance(Currency)

…..

150 // Populating variables entered in the form

151 Field1 -> Cust_ID

152 Field2 -> Cust_FName

153 Field3 -> Cust_LName

154 Field4[1] -> Acc_Numb[0]

155 Field5[1] -> Acc_Type[0]

156 Field6[1] -> Acc_Balance[0]

…

200 // Processing

201 Allowance = $100.00  // The allowance shall be calculated for each customer

202 Ind =1

203 Bal = Acc_Balance[Ind – 1]

204 AdjustedBal = Bal + Allowance

…

240 If(AdjustedBal > $1000.00) 
320                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



241 Then ApproveTrans = True

242 Else ApproveTrans = False

…

Program end

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:action="http://www.omg.org/spec/KDM/20160201/action" 

xmlns:code="http://www.omg.org/spec/KDM/20160201/code" 

xmlns:conceptual="http://www.omg.org/spec/KDM/20160201/conceptual" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 

xmlns:source="http://www.omg.org/spec/KDM/20160201/source" 

xmlns:ui="http://www.omg.org/spec/KDM/20160201/ui" name="Conceptual Example">

  <model xmi:id="id.0" xmi:type="code:CodeModel">

    <codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">

      <codeElement xmi:id="id.2" xmi:type="code:StorableUnit" name="Cust_ID" 

type="id.127" ext="Char 20" size="20">

        <comment xmi:id="id.3" text="// Definitions of variables mapable to the form fields"/>

      </codeElement>

      <codeElement xmi:id="id.4" xmi:type="code:StorableUnit" name="Cust_FName" 

type="id.127" ext="Char 25" size="25"/>

      <codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="Cust_LName" 

type="id.127" ext="Char 35" size="35"/>

      <codeElement xmi:id="id.6" xmi:type="code:StorableUnit" name="Acc_Numb" 

type="id.7" ext="" size="1">

        <codeElement xmi:id="id.7" xmi:type="code:ArrayType" size="10">

          <itemUnit xmi:id="id.8" name="Acc_Numb[]" type="id.127" ext="Char 12" size="12"/>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="Acc_Type" 

type="id.10" ext="" size="1">

        <codeElement xmi:id="id.10" xmi:type="code:ArrayType" size="10">

          <itemUnit xmi:id="id.11" name="Acc_Type[]" type="id.127" ext="Char 2" size="2"/>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.12" xmi:type="code:StorableUnit" name="Acc_Balance" 

type="id.13" ext="" size="1">

        <codeElement xmi:id="id.13" xmi:type="code:ArrayType" size="10">

          <itemUnit xmi:id="id.14" name="Acc_Balance[]" type="id.128" ext="Currency" size="2"/>

        </codeElement>

      </codeElement>

      <codeElement xmi:id="id.15" xmi:type="code:StorableUnit" name="Bal" 

type="id.128" ext="" size="1" kind="local">

        <comment xmi:id="id.16" text="// Definition of other variables"/>

      </codeElement>

      <codeElement xmi:id="id.17" xmi:type="code:StorableUnit" name="Ind" 

type="id.129" ext="" size="1" kind="local"/>

      <codeElement xmi:id="id.18" xmi:type="code:StorableUnit" name="AdjustedBal" 

type="id.128" ext="" size="1" kind="local"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        321



      <codeElement xmi:id="id.19" xmi:type="code:StorableUnit" name="ApprovedTrans" 

type="id.130" ext="" size="1" kind="local"/>

      <codeElement xmi:id="id.20" xmi:type="code:StorableUnit" name="Allowance" 

type="id.128" ext="" size="1" kind="local"/>

      <codeElement xmi:id="id.21" xmi:type="action:ActionElement" name="i1" kind="Assign">

        <source xmi:id="id.22" language="Hla" snippet="Field1 -> Cust_ID"/>

        <comment xmi:id="id.23" text="// Populating variables entered in the form"/>

        <codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="Field1" 

type="id.127" kind="register"/>

        <actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.24" from="id.21"/>

        <actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.2" from="id.21"/>

        <actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.21"/>

      </codeElement>

      <codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="i2" kind="Assign">

        <source xmi:id="id.29" language="Hla" snippet="Field2 -> Cust_FName"/>

        <codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="Field2" 

type="id.127" kind="register"/>

        <actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.30" from="id.28"/>

        <actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.4" from="id.28"/>

        <actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>

      </codeElement>

      <codeElement xmi:id="id.34" xmi:type="action:ActionElement" name="i3" kind="Assign">

        <source xmi:id="id.35" language="Hla" snippet="Field3 -> Cust_LName"/>

        <codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="Field3" 

type="id.127" kind="register"/>

        <actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.36" from="id.34"/>

        <actionRelation xmi:id="id.38" xmi:type="action:Writes" to="id.5" from="id.34"/>

        <actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.34"/>

      </codeElement>

      <codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="i4" kind="ArrayReplace">

        <source xmi:id="id.41" language="Hla" snippet="Field5[1] -> Acc_Type[0]"/>

        <codeElement xmi:id="id.42" xmi:type="code:Value" name="0" type="id.129"/>

        <codeElement xmi:id="id.43" xmi:type="code:StorableUnit" name="Field4" 

type="id.127" kind="register"/>

        <actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.42" from="id.40"/>

        <actionRelation xmi:id="id.45" xmi:type="action:Addresses" to="id.9" from="id.40"/>

        <actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.43" from="id.40"/>

        <actionRelation xmi:id="id.47" xmi:type="action:Writes" to="id.8" from="id.40"/>

        <actionRelation xmi:id="id.48" xmi:type="action:Flow" to="id.49" from="id.40"/>

      </codeElement>

      <codeElement xmi:id="id.49" xmi:type="action:ActionElement" name="i5" kind="ArrayReplace">

        <source xmi:id="id.50" language="Hla" snippet="Field4[1] -> Acc_Numb[0]"/>

        <codeElement xmi:id="id.51" xmi:type="code:Value" name="0" type="id.129"/>

        <codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="Field5" 

type="id.127" kind="register"/>

        <actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.51" from="id.49"/>

        <actionRelation xmi:id="id.54" xmi:type="action:Addresses" to="id.6" from="id.49"/>

        <actionRelation xmi:id="id.55" xmi:type="action:Reads" to="id.52" from="id.49"/>

        <actionRelation xmi:id="id.56" xmi:type="action:Writes" to="id.11" from="id.49"/>

        <actionRelation xmi:id="id.57" xmi:type="action:Flow" to="id.58" from="id.49"/>

      </codeElement>
322                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



      <codeElement xmi:id="id.58" xmi:type="action:ActionElement" name="i6" kind="ArrayReplace">

        <source xmi:id="id.59" language="Hla" snippet="Field6[1] -> Acc_Balance[0]"/>

        <codeElement xmi:id="id.60" xmi:type="code:Value" name="0" type="id.129"/>

        <codeElement xmi:id="id.61" xmi:type="code:StorableUnit" name="Field6" 

type="id.127" kind="register"/>

        <actionRelation xmi:id="id.62" xmi:type="action:Reads" to="id.60" from="id.58"/>

        <actionRelation xmi:id="id.63" xmi:type="action:Addresses" to="id.12" from="id.58"/>

        <actionRelation xmi:id="id.64" xmi:type="action:Reads" to="id.61" from="id.58"/>

        <actionRelation xmi:id="id.65" xmi:type="action:Writes" to="id.14" from="id.58"/>

        <actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.67" from="id.21"/>

      </codeElement>

      <codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="p1" kind="Assign">

        <source xmi:id="id.68" language="Hla" snippet="Allowance = $100.00  "/>

        <comment xmi:id="id.69" text="// Processing"/>

        <comment xmi:id="id.70" text="// The allowance shall be calculated for each customer"/>

        <codeElement xmi:id="id.71" xmi:type="code:Value" name="100.00" type="id.128"/>

        <actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.71" from="id.67"/>

        <actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.20" from="id.67"/>

        <actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.67"/>

      </codeElement>

      <codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="p2" kind="Assign">

        <source xmi:id="id.76" language="Hla" snippet="Ind =1"/>

        <codeElement xmi:id="id.77" xmi:type="code:Value" name="1" type="id.129"/>

        <actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.77" from="id.75"/>

        <actionRelation xmi:id="id.79" xmi:type="action:Writes" to="id.17" from="id.75"/>

        <actionRelation xmi:id="id.80" xmi:type="action:Flow" to="id.49" from="id.75"/>

      </codeElement>

      <codeElement xmi:id="id.81" xmi:type="action:ActionElement" name="p3" kind="Compound">

        <source xmi:id="id.82" language="Hla" snippet="Bal = Acc_Balance[Ind – 1]"/>

        <codeElement xmi:id="id.83" xmi:type="code:Value" name="1" type="id.129"/>

        <codeElement xmi:id="id.84" xmi:type="code:StorableUnit" name="t1" 

type="id.129" ext="" kind="register"/>

        <codeElement xmi:id="id.85" xmi:type="action:ActionElement" name="p3.1" kind="Subtract">

          <actionRelation xmi:id="id.86" xmi:type="action:Reads" to="id.17" from="id.81"/>

          <actionRelation xmi:id="id.87" xmi:type="action:Reads" to="id.83" from="id.81"/>

          <actionRelation xmi:id="id.88" xmi:type="action:Writes" to="id.84" from="id.81"/>

          <actionRelation xmi:id="id.89" xmi:type="action:Flow" to="id.90" from="id.85"/>

        </codeElement>

        <codeElement xmi:id="id.90" xmi:type="action:ActionElement" name="p3.2" kind="ArraySelect">

          <actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.14" from="id.90"/>

          <actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.84" from="id.81"/>

          <actionRelation xmi:id="id.93" xmi:type="action:Writes" to="id.15" from="id.81"/>

        </codeElement>

        <actionRelation xmi:id="id.94" xmi:type="action:Flow" to="id.85" from="id.81"/>

        <actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.81"/>

      </codeElement>

      <codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="p4" kind="Assign">

        <source xmi:id="id.97" language="Hla" snippet="AdjustedBal = Bal + Allowance"/>

        <actionRelation xmi:id="id.98" xmi:type="action:Reads" to="id.15" from="id.96"/>

        <actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.20" from="id.96"/>

        <actionRelation xmi:id="id.100" xmi:type="action:Writes" to="id.18" from="id.96"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        323



        <actionRelation xmi:id="id.101" xmi:type="action:Flow" to="id.49" from="id.96"/>

      </codeElement>

      <codeElement xmi:id="id.102" xmi:type="action:ActionElement" name="p5" kind="Assign">

        <source xmi:id="id.103" language="Hla" snippet="If(AdjustedBal > $1000.00)"/>

        <codeElement xmi:id="id.104" xmi:type="code:StorableUnit" name="t2" 

type="id.130" kind="register"/>

        <codeElement xmi:id="id.105" xmi:type="action:ActionElement" name="p5.1" kind="GreaterThan">

          <codeElement xmi:id="id.106" xmi:type="code:Value" name="1000.00" type="id.128"/>

          <actionRelation xmi:id="id.107" xmi:type="action:Reads" to="id.18" from="id.105"/>

          <actionRelation xmi:id="id.108" xmi:type="action:Reads" to="id.106" from="id.105"/>

          <actionRelation xmi:id="id.109" xmi:type="action:Writes" to="id.104" from="id.105"/>

          <actionRelation xmi:id="id.110" xmi:type="action:Flow" to="id.111" from="id.105"/>

        </codeElement>

        <codeElement xmi:id="id.111" xmi:type="action:ActionElement" name="p5.2" kind="GreaterThan">

          <actionRelation xmi:id="id.112" xmi:type="action:Reads" to="id.104" from="id.111"/>

          <actionRelation xmi:id="id.113" xmi:type="action:TrueFlow" to="id.115" from="id.111"/>

          <actionRelation xmi:id="id.114" xmi:type="action:FalseFlow" to="id.120" from="id.111"/>

        </codeElement>

        <codeElement xmi:id="id.115" xmi:type="action:ActionElement" name="p6" kind="Assign">

          <source xmi:id="id.116" language="Hla" snippet="Then ApproveTrans = True"/>

          <codeElement xmi:id="id.117" xmi:type="code:Value" name="true" type="id.130"/>

          <actionRelation xmi:id="id.118" xmi:type="action:Reads" to="id.117" from="id.115"/>

          <actionRelation xmi:id="id.119" xmi:type="action:Writes" to="id.19" from="id.115"/>

        </codeElement>

        <codeElement xmi:id="id.120" xmi:type="action:ActionElement" name="p7" kind="Assign">

          <source xmi:id="id.121" language="Hla" snippet="Else ApproveTrans = False"/>

          <codeElement xmi:id="id.122" xmi:type="code:Value" name="false" type="id.130"/>

          <actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.122" from="id.120"/>

          <actionRelation xmi:id="id.124" xmi:type="action:Writes" to="id.19" from="id.120"/>

        </codeElement>

        <actionRelation xmi:id="id.125" xmi:type="action:Flow" to="id.105" from="id.102"/>

      </codeElement>

    </codeElement>

    <codeElement xmi:id="id.126" xmi:type="code:LanguageUnit">

      <codeElement xmi:id="id.127" xmi:type="code:StringType"/>

      <codeElement xmi:id="id.128" xmi:type="code:DecimalType" name="Currency"/>

      <codeElement xmi:id="id.129" xmi:type="code:IntegerType"/>

      <codeElement xmi:id="id.130" xmi:type="code:BooleanType"/>

    </codeElement>

  </model>

  <model xmi:id="id.131" xmi:type="source:InventoryModel">

    <inventoryElement xmi:id="id.132" xmi:type="source:Directory" path="SOURCES\HLanguage">

      <inventoryElement xmi:id="id.133" xmi:type="source:SourceFile" name="mm0245.Hla"

 path="mm0245.Hla"/>

      <inventoryElement xmi:id="id.134" xmi:type="source:SourceFile" name="mm0319.Hfm"

path="mm0319.Hfm"/>

    </inventoryElement>

    <inventoryElement xmi:id="id.135" xmi:type="source:Directory" path="SOURCES\Hlib"/>

  </model>

  <model xmi:id="id.136" xmi:type="ui:UIModel">

    <UIElement xmi:id="id.137" xmi:type="ui:Screen" name="Customer Information">
324                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



      <UIElement xmi:id="id.138" xmi:type="ui:UIField" name="Customer ID">

        <abstraction xmi:id="id.139" name="f1">

          <actionRelation xmi:id="id.140" xmi:type="action:Writes" to="id.24" from="id.139"/>

        </abstraction>

      </UIElement>

      <UIElement xmi:id="id.141" xmi:type="ui:UIField" name="Customer First Name">

        <abstraction xmi:id="id.142" name="f2">

          <actionRelation xmi:id="id.143" xmi:type="action:Writes" to="id.30" from="id.142"/>

        </abstraction>

      </UIElement>

      <UIElement xmi:id="id.144" xmi:type="ui:UIField" name="Customer Last Name">

        <abstraction xmi:id="id.145" name="f3">

          <actionRelation xmi:id="id.146" xmi:type="action:Writes" to="id.36" from="id.145"/>

        </abstraction>

      </UIElement>

      <UIElement xmi:id="id.147" xmi:type="ui:UIField" name="Account Number">

        <abstraction xmi:id="id.148" name="f4">

          <actionRelation xmi:id="id.149" xmi:type="action:Writes" to="id.43" from="id.148"/>

        </abstraction>

      </UIElement>

      <UIElement xmi:id="id.150" xmi:type="ui:UIField" name="Account Type">

        <abstraction xmi:id="id.151" name="f5">

          <actionRelation xmi:id="id.152" xmi:type="action:Writes" to="id.52" from="id.151"/>

        </abstraction>

      </UIElement>

      <UIElement xmi:id="id.153" xmi:type="ui:UIField" name="Account Balance">

        <abstraction xmi:id="id.154" name="f6">

          <actionRelation xmi:id="id.155" xmi:type="action:Writes" to="id.61" from="id.154"/>

        </abstraction>

      </UIElement>

    </UIElement>

  </model>

  <model xmi:id="id.156" xmi:type="conceptual:ConceptualModel" name="Customer Information">

    <conceptualElement xmi:id="id.157" xmi:type="conceptual:TermUnit" name="AccountBalance"

 implementation="id.15 id.12 id.17 id.153"/>

    <conceptualElement xmi:id="id.158" xmi:type="conceptual:TermUnit" name="MaxAdjustedBalance"

 implementation="id.106"/>

    <conceptualElement xmi:id="id.159" xmi:type="conceptual:TermUnit" name="AllowanceAmount"

 implementation="id.71"/>

    <conceptualElement xmi:id="id.160" xmi:type="conceptual:TermUnit" name="Allowance"

 implementation="id.20"/>

    <conceptualElement xmi:id="id.161" xmi:type="conceptual:TermUnit" name="AdjustedBalance"

 implementation="id.18"/>

    <conceptualElement xmi:id="id.162" xmi:type="conceptual:TermUnit" name="AccountBalanceField"

 implementation="id.153"/>

    <conceptualElement xmi:id="id.163" xmi:type="conceptual:FactUnit"

 name="AdjustedBalanceUnderThreshold" implementation="id.105">

      <conceptualRelation xmi:id="id.164" xmi:type="conceptual:ConceptualFlow" 

to="id.178" from="id.163"/>

      <conceptualRelation xmi:id="id.165" xmi:type="conceptual:ConceptualFlow" 

to="id.183" from="id.163"/>
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        325



      <conceptualElement xmi:id="id.166" xmi:type="conceptual:ConceptualRole" name="Adjusted Balance"

 conceptualElement="id.161"/>

      <conceptualElement xmi:id="id.167" xmi:type="conceptual:ConceptualRole" name="Threshold"

 conceptualElement="id.158"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.168" xmi:type="conceptual:FactUnit" name="AccountBalanceCalculation"

 implementation="id.58 id.75 id.81">

      <conceptualRelation xmi:id="id.169" xmi:type="conceptual:ConceptualFlow" 

to="id.172" from="id.168"/>

      <conceptualElement xmi:id="id.170" xmi:type="conceptual:ConceptualRole" name="Boundary element"

 conceptualElement="id.162"/>

      <conceptualElement xmi:id="id.171" xmi:type="conceptual:ConceptualRole" name="Account"

 conceptualElement="id.157"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.172" xmi:type="conceptual:FactUnit"

 name="AdjustedBalanceCalculation" implementation="id.67 id.96">

      <conceptualRelation xmi:id="id.173" xmi:type="conceptual:ConceptualFlow" 

to="id.163" from="id.172"/>

      <conceptualElement xmi:id="id.174" xmi:type="conceptual:ConceptualRole" name="Account Balance"

 conceptualElement="id.168"/>

      <conceptualElement xmi:id="id.175" xmi:type="conceptual:ConceptualRole" name="Allowance Amount"

 conceptualElement="id.159"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.176" xmi:type="conceptual:FactUnit" name="TransactionApproved"

 implementation="id.19"/>

    <conceptualElement xmi:id="id.177" xmi:type="conceptual:FactUnit" name="TransactionNotApproved"

 implementation="id.19"/>

    <conceptualElement xmi:id="id.178" xmi:type="conceptual:RuleUnit" name="ApproveTransaction"

 implementation="id.105 id.111 id.115">

      <source xmi:id="id.179" language="SBVR" 

snippet="Transaction is approved if adjusted balance is under the threshold"/>

      <conceptualRelation xmi:id="id.180" xmi:type="conceptual:ConceptualFlow" 

to="id.176" from="id.178"/>

      <conceptualElement xmi:id="id.181" xmi:type="conceptual:ConceptualRole" name="Condition"

 conceptualElement="id.163"/>

      <conceptualElement xmi:id="id.182" xmi:type="conceptual:ConceptualRole" name="Consequence"

 conceptualElement="id.176"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.183" xmi:type="conceptual:RuleUnit" name="TransactionFailedApproval"

 implementation="id.105 id.111 id.120">

      <conceptualRelation xmi:id="id.184" xmi:type="conceptual:ConceptualFlow" 

to="id.177" from="id.183"/>

      <conceptualElement xmi:id="id.185" xmi:type="conceptual:ConceptualRole" name="NOT condition"

 conceptualElement="id.163"/>

      <conceptualElement xmi:id="id.186" xmi:type="conceptual:ConceptualRole" name="consequence"

 conceptualElement="id.177"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.187" xmi:type="conceptual:ScenarioUnit">

      <conceptualElement xmi:id="id.188" xmi:type="conceptual:BehaviorUnit" name="Calculate Balance"

 implementation="id.58 id.75 id.81">

        <conceptualRelation xmi:id="id.189" xmi:type="conceptual:ConceptualFlow" 
326                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



to="id.190" from="id.188"/>

      </conceptualElement>

      <conceptualElement xmi:id="id.190" xmi:type="conceptual:BehaviorUnit" 

name="Calculate Adjusted Balance" implementation="id.67 id.96">

        <conceptualRelation xmi:id="id.191" xmi:type="conceptual:ConceptualFlow" 

to="id.192" from="id.190"/>

      </conceptualElement>

      <conceptualElement xmi:id="id.192" xmi:type="conceptual:BehaviorUnit" name="Approve Transaction"

 implementation="id.102 id.115 id.120"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.193" xmi:type="conceptual:BehaviorUnit" name="Input"

 implementation="id.21 id.28 id.34 id.40 id.49 id.58">

      <conceptualRelation xmi:id="id.194" xmi:type="conceptual:ConceptualFlow" 

to="id.195" from="id.193"/>

    </conceptualElement>

    <conceptualElement xmi:id="id.195" xmi:type="conceptual:BehaviorUnit" name="Processing"

implementation="id.67 id.75 id.81 id.85 id.90 id.96 id.102 id.105 id.111 id.115 id.120"/>

  </model>

</kdm:Segment>

20.7 ExtendedConceptualElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedConceptualElements class diagram defines two viewpoint-specific generic elements for the conceptual 
model as determined by the KDM model pattern: a generic conceptual entity and a generic conceptual relationship.

The classes and associations of the ExtendedConceptualElements diagram are shown in Figure 20.8.

Figure 20.8 - ExtendedConceptualElements Class Diagram

20.7.1  ConceptualElement Class (generic)

NOTE:KDM14-58
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        327



The ConceptualElement is a generic meta-model element that can be used to define new extended meta-model elements 
through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualElement

Constraints

1. ConceptualElement should have at least one stereotype

Semantics

A conceptual entity with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model entity type of the conceptual model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

20.7.2  ConceptualRelationship Class (generic)

NOTE:KDM14-58

The ConceptualRelationship is a generic meta-model element that can be used to define new extended meta-model 
elements through the KDM light-weight extension mechanism.

Superclass

AbstractConceptualRelationship

Associations

Constraints

1. ConceptualRelationship should have at least one stereotype.

Semantics

A conceptual relationship with underspecified semantics. It is a concrete class that can be used as the base element of a 
new extended meta-model relationship type of the conceptual model. This is one of the KDM extension points that can 
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard 
KDM representation.

from:AbstractConceptualElement[1] the conceptual element origin of the relationship 

to:KDMEntity[1] the KDMEntity target of the relationship 
328                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



21 Build Package

21.1 Overview

NOTE:KDM14-70

The Build package defines meta-model elements that represent the facts involved in the build process of the given 
software system (including but not limited to the engineering transformations of the “source code” to “executables”). The 
Build package also includes the meta-model elements to represent the artifacts that are generated by the build process.

The Build package defines an architectural viewpoint for the Build domain.

• Concerns:

• What are the inputs to the build process?

• What artifacts are generated during the build process?

• What tools are used to perform build steps?

• What is the workflow of the build process?

• Who are the suppliers of the source artifacts?

• Viewpoint language

Build views conform to KDM XMI schema. The viewpoint language for the Build architectural viewpoint is 
defined by the Build package. It includes abstract entity AbstractBuildElement, a generic entity BuildResource as 
well as several concrete entities, such as BuildComponent, BuildStep, BuildProduct, BuildDescription, 
BuildLibrary. The viewpoint language for the Build architectural viewpoint also includes several build 
relationships, which is a subclass of an abstract relationship AbstractBuildRelationship.

• Analytic methods

• Supply chain analysis (what are the artifacts that depend on a given supplier)?

Build Views are used in combination with Inventory views.

• Construction methods:

• Build views that correspond to the KDM Build architectural viewpoint are usually constructed by analyzing 
build scripts and build configuration files for the given system. This inputs are  specific to the build automation 
framework. The Build extractor tool uses the knowledge of the semantics of  the build automation framework to 
produce one or mode Build views as output.

• Construction of the Build  view is determined by the semantics of the build automation framework, and it based 
on the mapping from the given build automation framework to KDM; such mapping is specific only to the build 
automation framework and not to a specific software system.

• The mapping from a particular build automation framework to KDM may produce additional information 
(system-specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM 
elements using stereotypes, attributes or annotations.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        329



21.2 Organization of the Build Package
The Build package defines meta-model elements that represent entities and relationships related to the build process of an 
existing software system.

The Build package consists of the following class diagrams:

• BuildModel
• BuildInheritances
• BuildResources
• BuildRelations
• ExtendedBuildRelations

The Build package depends on the following packages:

• Core
• kdm
• Source

21.3 BuildModel Class Diagram

NOTE:KDM14-81

The BuildModel class diagram provides basic meta-model elements that represent entities and relationships related to the 
build process of an existing software system. The class diagram shown in Figure 21.1 captures these classes and their 
relations. Class BuildResource is defined in a separate section.

Figure 21.1 - BuildModel Class Diagram
330                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



21.3.1  BuildModel Class
The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

Superclass

KDMModel

Associations

Semantics

21.3.2  AbstractBuildElement Class (abstract)
The AbstractBuildElement is the abstract base class from which all other build model elements are extended. 

Superclass

KDMEntity

Associations

Semantics

21.3.3  AbstractBuildRelationship Class (abstract)
The AbstractBuildRelationship is the abstract base class. 

Superclass

KDMRelationship

Semantics

21.3.4  Supplier Class
The Supplier class models producers of the 3rd party software components as they contribute to the build process. 

Superclass

AbstractBuildElement

Semantics

21.3.5  Tool Class
The Tool class represents software tools as they are used in the build process. 

buildElement:AbstractBuildElement[0..*] The set of build elements owned by the model.

buildRelationship:AbstractBuildRelationship[0..*] the set of build relations
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        331



Superclass

AbstractBuildElement

Semantics

21.3.6  SymbolicLink Class
The SymbolicLink is used to represent symbolic links. 

Superclass

AbstractBuildElement

Semantics

21.4 BuildInheritances Class Diagram
The BuildInheritances class diagram shown in Figure 21.2 depicts how various build classes extend other KDM classes. 
Each of the classes shown in this diagram inherits properties from classes found in the Core package. 

Figure 21.2 - BuildInheritances Class Diagram

21.5 BuildResources Class Diagram

NOTE:KDM14-70, KDM14-208

The BuildResources class diagram provides basic meta-model constructs to model various common build resource and 
their relations to the code model. The class diagram shown in Figure 21.3 captures these classes and their relations.
332                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Figure 21.3 - BuildResources Class Diagram

21.5.1  BuildResource Class

NOTE:KDM14-70, KDM14-208

BuildResource class is a generic meta-model element that represents a container for build elements. It provides a common 
superclass for the build elements that can own other build elements. BuildResource is also a group for other KDM 
entities. Usually, a Build resource such as a BuildLibrary, a BuildProduct, or a BuildComponent will group together some 
Inventory elements. Certain BuildResource can also group other build elements.

Superclass

AbstractBuildElement

Associations

Constraints

1. BuildResource should either own elements or group elements, but not both.

2. “Implementation” group should not include other Build elements.

3. Build element should not be included in its own groupedBuild group.

buildElement:AbstractBuildElement[0..*] owned build element

groupedBuild:AbstractBuildElement[0..*] grouped build elements (KDM group mechanism)

implementation:KDMEntity[0..*] group association to KDMEntity that are represented by the current 
BuildResource element
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        333



Semantics

21.5.2  BuildComponent Class

NOTE:KDM14-70

The BuildComponent class represents an arbitrary collection of InventoryItems (or other KDM entities). Usually a 
BinaryComponent defines SourceFlles as inputs to BuildSteps or any other anonymous collections of resources as they 
are used as inputs of outputs of a build process.  

Superclass

BuildResource

Semantics

21.5.3  BuildDescription Class

NOTE:KDM14-70

The BuildDescription class represents objects such as make files or ant scripts, which describe the build process itself. 

Superclass

BuildResource

Semantics

21.5.4  BuildLibrary Class

NOTE:KDM14-70

The  BuildLibrary class represents a named collection of InventoryItems (usually BinaryFiles, or SourceFiles) which is 
used as an intermediate product of a build process.

Superclass

BuildResource

Semantics

21.5.5  BuildProduct Class

NOTE:KDM14-70

The  BuildProduct class represents a named collection of InventoryItems that is the output of a build process (usually 
BinaryFile or ExecutableFile). For example, binary files that correspond to deployable components, executable files.

Superclass

BuildResource
334                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Semantics

21.5.6  BuildStep Class
BuildStep class is the key meta-model element of the Build model. It represents a unit of transformation performed by the 
build process, during which certain input resources are processed and certain output resources are produced. BuildStep 
element is the origin of several build relationships. For example, a Build step “consumes” certain input resources, 
“produces” certain output resources, “is defined” by a certain build description, and may be “supported” by a certain tool.

Superclass

BuildResource

Semantics

21.6 BuildRelations Class Diagram

NOTE:KDM14-231

The BuildRelations class diagram defines the various build related relationships. The class diagram shown in Figure 21.4 
captures these classes and their relations.

Figure 21.4 - BuildRelations Class Diagram

21.6.1  LinksTo Class
The LinksTo class models the relationship between two linked build resources.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        335



Superclass

AbstractBuildRelationship

Associations

Semantics

Associations

Semantics

21.6.2  Consumes Class
Consumes class defines association between a certain BuildStep element and certain build elements, called the input build 
elements. These elements provide the input to the transformation, performed by the build step. For example, the set of 
source files is an input to the compilation step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the input build elements for a certain build step in the form of “Consumes” relation. 

When the target of the “Consumes” relationship owns other build elements, this means that the build step (the origin of 
the relationship) depends on all elements owned by the container (directly or indirectly).

When the origin of the “Consumes” relationship is a container that owns one or more build steps (directly or indirectly), 
this means that all build steps consume the elements designated as the target of the “Consumes” relationship.

21.6.3  Produces Class
Produces class defines association between a certain BuildStep element and certain build elements, called the output build 
elements. These elements are produced as the result of the transformation, performed by the build step. For example, the 
set of object files can be produced as the result of the compilation step.

from:SymbolicLink[1]

to:AbstractBuildElement[1]

from:AbstractBuildElement[1]

to:AbstractBuildElement[1]

from:BuildStep[1] the build step

to:AbstractBuildElement[1] the input build elements for the given step
336                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the output build elements for a certain build step in the form of “Produces” relation. 

When the target of the “Produces” relationship owns other build elements, this means that the build step (the origin of the 
relationship) produces all elements owned by the container (directly or indirectly).

When the origin of the “Produces” relationship is a container that owns one or more build steps (directly or indirectly), 
this means that the elements designated as the target of the “Produces” relationship are produced in collaboration of all 
build steps, and no particular build step is the sole producer. 

21.6.4  SupportedBy Class
SupportedBy class defines association between a certain BuildStep element and certain Tool element. The Tool element is 
required to perform the build step. For example, a particular version of a complier is required to perform the compilation 
step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the required Tool elements for a certain build step in the form of “SupportedBy” relation. 

21.6.5  SuppliedBy Class
SuppliedBy class defines association between certain build elements and their points of origin, represented by Supplier 
element. For example, certain parts of the runtime platform can originate from a software vendor, some libraries can 
originate from open source.

Superclass

AbstractBuildRelationship

from:BuildStep[1] the build step

to:AbstractBuildElement[1] the output build elements for the given step

from:BuildStep[1] the build step

to:Tool[1] The Tool element that represents the tool performing the transformations represented 
by the given step.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        337



Associations

Semantics

The implementer shall capture the origin of build elements in the form of “SuppliedBy” relation. 

When the origin of the “SuppliedBy” relationship is a container that owns one or more build elements (directly or 
indirectly), this means that all elements designated as the source of the “SuppliedBy” relationship are supplied by a 
particular Supplier element. 

21.6.6  DescribedBy Class
DescribedBy class defines association between certain build step and a certain BuildDescription element. These elements 
are produced as the result of the transformation, performed by the build step. For example, the set of object files can be 
produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations

Semantics

The implementer shall capture the description of a certain build step in the form of “DescribedBy” relation to some 
BuildDescription element. 

Example

NOTE:KDM14-15, KDM14-308

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701" 

xmlns:build="http://www.omg.org/spec/KDM/20160201/build" 

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" 

xmlns:source="http://www.omg.org/spec/KDM/20160201/source" name="Build Example">

  <model xmi:id="id.0" xmi:type="source:InventoryModel">

    <inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c">

      <inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.1"/>

    </inventoryElement>

    <inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c">

      <inventoryRelation xmi:id="id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>

from:AbstractBuildElement[1] the build element

to:Supplier[1] The Supplier element that represents the origin of the build element.

from:BuildStep[1] the build step

to:BuildDescription[1] The BuildDescription element that describes the transformation represented by the 
build step.
338                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



    </inventoryElement>

    <inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"/>

    <inventoryElement xmi:id="id.6" xmi:type="source:Directory">

      <inventoryElement xmi:id="id.7" xmi:type="source:Image"/>

      <inventoryElement xmi:id="id.8" xmi:type="source:Image"/>

    </inventoryElement>

    <inventoryElement xmi:id="id.9" xmi:type="source:SourceFile" name="makefile"/>

    <inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>

  </model>

  <model xmi:id="id.11" xmi:type="build:BuildModel">

    <buildElement xmi:id="id.12" xmi:type="build:BuildComponent" 

name="sources" implementation="id.1 id.5 id.3"/>

    <buildElement xmi:id="id.13" xmi:type="build:BuildProduct" 

name="ab product" implementation="id.10"/>

    <buildElement xmi:id="id.14" xmi:type="build:BuildStep">

      <buildRelation xmi:id="id.15" xmi:type="build:DescribedBy" to="id.28" from="id.14"/>

      <buildRelation xmi:id="id.16" xmi:type="build:SupportedBy" to="id.30" from="id.14"/>

      <buildElement xmi:id="id.17" xmi:type="build:BuildStep" name="compile">

        <buildRelation xmi:id="id.18" xmi:type="build:Consumes" to="id.12" from="id.17"/>

        <buildRelation xmi:id="id.19" xmi:type="build:Produces" to="id.25" from="id.17"/>

        <buildRelation xmi:id="id.20" xmi:type="build:SupportedBy" to="id.26" from="id.17"/>

      </buildElement>

      <buildElement xmi:id="id.21" xmi:type="build:BuildStep" name="link">

        <buildRelation xmi:id="id.22" xmi:type="build:Consumes" to="id.25" from="id.21"/>

        <buildRelation xmi:id="id.23" xmi:type="build:Produces" to="id.13" from="id.21"/>

        <buildRelation xmi:id="id.24" xmi:type="build:SupportedBy" to="id.26" from="id.21"/>

      </buildElement>

      <buildElement xmi:id="id.25" xmi:type="build:BuildComponent" name="object files"/>

      <buildElement xmi:id="id.26" xmi:type="build:Tool" name="C compiler">

        <buildRelation xmi:id="id.27" xmi:type="build:SuppliedBy" to="id.32" from="id.26"/>

      </buildElement>

    </buildElement>

    <buildElement xmi:id="id.28" xmi:type="build:BuildDescription" implementation="id.9">

      <source xmi:id="id.29" language="shell" snippet="cc $(SOURCE) -o ab.exe"/>

    </buildElement>

    <buildElement xmi:id="id.30" xmi:type="build:Tool" name="make">

      <buildRelation xmi:id="id.31" xmi:type="build:SuppliedBy" to="id.32" from="id.30"/>

    </buildElement>

    <buildElement xmi:id="id.32" xmi:type="build:Supplier" name="Tools'R'Us corp"/>

  </model>

</kdm:Segment>

21.7 ExtendedBuildElements Class Diagram

NOTE:KDM14-58, KDM14-231

The ExtendedBuildElements class diagram defines two viewpoint-specific generic elements for the build model as 
determined by the KDM model pattern: a generic build entity and a generic build relationship.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        339



The classes and associations of the ExtendedBuildElements diagram are shown in Figure 21.5.

Figure 21.5 - ExtendedBuildElements Class Diagram

21.7.1  BuildElement Class (generic)

NOTE:KDM14-58

The BuildElement is a generic meta-model element that can be used to define new extended meta-model elements through 
the KDM light-weight extension mechanism.

Superclass

AbstractBuildElement

Constraints

1. BuildElement should have at least one stereotype.

Semantics

A build entity with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model entity type of the build model. This is one of the KDM extension points that can integrate additional 
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

21.7.2  BuildRelationship Class (generic)

NOTE:KDM14-58

The BuildRelationship is a generic meta-model element that can be used to define new extended meta-model elements 
through the KDM light-weight extension mechanism.

Superclass

AbstractBuildRelationship
340                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Associations

Constraints

1. BuildRelationship should have at least one stereotype.

Semantics

A build relationship with under specified semantics. It is a concrete class that can be used as the base element of a new 
extended meta-model relationship type of the build model. This is one of the KDM extension points that can integrate 
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM 
representation.

from:AbstractBuildElement[1] the build element origin of the relationship 

to:KDMEntity[1] the KDMEntity target of the relationship 
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        341



342                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Annex A - Semantics of the Micro KDM 
Action Elements

(normative)

This normative annex defines the semantics of micro KDM action elements. This annex assumes understanding of the 
KDM Datatypes. Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras).

• Action Kind - is nature of the operation performed by the micro action. This is represented as a “kind” attribute to the 
micro action. The action kind may designate certain outgoing relationship as part of the Control. For example, the 
“call” micro action designated the Calls outgoing relationship as part of Control.

• Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro 
action. This part is optional.

• Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the 
relationships represent the order of the arguments for a micro action.

• Control part - owned outgoing control flow relationships for the action. 

• Extras part - owned relationships other than Reads, Writes and not designated as part of Control by the action Kind. 
For example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

A.1 Comparison Actions

Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for Boolean 
Not, which has a single Reads relationship). 

Outputs: Optional writes to a DataElement of a Boolean type (no Writes corresponds to an expression statement, 
where the result of the operation is ignored; otherwise, the result should be stored into a DataElement, 
which can be permanent. For example, a StorableUnit with a kind other than “register,” a MemberUnit, an 
ItemUnit, or a ParameterUnit; or temporary, a StorableUnit with a “register” kind). 

Control: Optional single flow - unconditional transfer of control to the next micro action (for example, as part of 
complex expressions; no Flow corresponds to a terminal action). 

Table A.1 - Comparison Actions

Micro action Semantics

Equals Polymorphic “equals” for two values of the same datatype, see ISO Equals operation for the 
corresponding datatype. 

NotEqual Polymorphic “not equal” for two values of the same datatype: not (A==B).

LessThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype; see ISO 
InOrder operation for the corresponding datatype.

LessThan Polymorphic “less than” for two values of the same ordered datatype: A<=B and not A==B.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        343



A.2 Actions Related to the Primitive Numerical Datatypes

NOTE:KDM14-71, KDM14-78

GreaterThan Polymorphic “greater than or equal” for two values of the same ordered datatype: not A<=B.

GreaterThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype: not A<=B or 
A==B.

Not Boolean NOT, see ISO Boolean NOT operation.

And Boolean AND, see ISO Boolean AND operation

Or Boolean OR, see ISO Boolean OR operation

Xor Boolean XOR: ( A and not B ) or (not A and B)

Inputs: Two ordered Reads relationships to DataElements representing values of the same datatype (except for 
Negate and Successor, which have a single Reads relationship; and Incr, Decr, which have a single 
Addresses relationship). 

Outputs: Optional single writes to a DataElement of a type corresponding to the definition of the operation (can be 
temporary register or a variable; no Writes corresponds to an expression statement, where the result of the 
operation is ignored). 

Control: Optional single flow - unconditional transfer of control to the next micro action. 

Table A.2 - Numerical actions

Micro action Semantics

Add Polymorphic add operation for two values of the same numeric datatype, see ISO Add 
operation for the corresponding datatype.

Multiply Polymorphic multiply operation for two values of the same numeric datatype; see ISO Add 
operation for the corresponding datatype.

Negate Polymorphic unary negate operation for a single value of some numeric datatype; see ISO 
Negate operation for the corresponding datatype. Requires a single Reads relationship

Subtract Polymorphic subtract operation for two values of the same numeric datatype; A+ neg B.

Divide Polymorphic divide operation for two values of the same numeric datatype.

Remainder Polymorphic remainder operation for two values of the same IntegerType datatype.

Table A.1 - Comparison Actions

Micro action Semantics
344                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



A.3 Actions Related to Bitwise Operations on Primitive Datatypes

NOTE:KDM14-78

Successor Single Reads; Successor for ordinal or enumerated types, see ISO Successor operation.

Incr Variable post increment operation; Single Addresses relationship represents the DataElement 
whose value is incremented.

Decr Variable post decrement operation; Single Addresses relationship represents the DataElement 
whose value is decremented.

Inputs: Two Reads relationships to DataElements representing values of the same datatype (except for BitNot, 
which has a single Reads relationship). 

Outputs: Optional single Writes to a DataElement of the same type as the first StorableElement (can be a temporary 
register or a variable).

Control: Optional single Flow - unconditional transfer of control. 

Table A.3 - Bitwise actions

Micro action Semantics Inputs

BitAnd Bitwise AND on two integers or 
bitstrings or octetstrings

Two Reads relationships to DataElements 
representing values of the same datatype

BitOr Bitwise OR on two integers or bitstrings 
or octetstrings

Two Reads relationships to DataElements 
representing values of the same datatype

BitNot Bitwise NOT on integer or bitstring or 
octetstring

Single Reads relationships to DataElement

BitXor Bitwise XOR on two integers or bitstrings 
or octetstrings

Two Reads relationships to DataElements 
representing values of the same datatype

Table A.2 - Numerical actions

Micro action Semantics
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        345



LeftShift Arithmetic bitwise shift left on integer or 
bitstring or octetsting

First Reads relationship to a DataElement 
representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal 
representing the number of bits to shift.

RightShift Arithmetic bitwise shift right on integer 
or bitstring or octetstring

First Reads relationship to a DataElement 
representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal 
representing the number of bits to shift.

BitRightShift Logical bitwise shift right on integer or 
bitstring or octetstring

First Reads relationship to a DataElement 
representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal 
representing the number of bits to shift.

Table A.3 - Bitwise actions

Micro action Semantics Inputs
346                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



A.4 Control Actions

NOTE:KDM14-67, KDM14-166, KDM14-18, KDM14-79, KDM14-167, KDM14-78

Table A.4 - Control actions

Micro action Description Inputs Outputs Control

Assign Assignment 
(copy)

Single Reads relationship to a 
DataElement representing the 
value

Writes relationship 
represents the 
DataElement (except 
for a ValueElement) 
to which the value of 
the input 
DataElement is 
assigned

Optional single flow to the 
next micro action

Condition Condition Single Reads relationship to a 
DataElement representing the 
Boolean value

none TrueFlow & FalseFlow - 
conditional transfer of 
control

Call Static call Zero or more Reads 
relationships to DataElements, 
that represent input actual 
parameters; ordered;
Value of each actual parameter 
is assigned to the 
corresponding formal 
parameter of the 
ControlElement. 
Correspondence is established 
according to the Pos attribute 
of the formal parameter in the 
signature of the 
ControlElement. A sequence 
of values is assigned to the 
variable argument. 

Optional Writes to 
the DataElement that 
represents the return 
value

Calls relationship to the 
ControlElement represents 
the flow of control to the 
ControlElement and the 
return back; Subsequently 
an optional single flow to 
the next micro action is 
performed.

MethodCall Method call Invokes relationship to the 
DataElement that represents 
the instance; 
Zero or more Reads 
relationships to DataElements, 
that represent input actual 
parameters; ordered.

Same as Call Calls relationship to the 
MethodUnit represents the 
flow of control to the 
Method and the return 
back; Subsequently an 
optional single flow to the 
next micro action is 
performed.
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        347



Micro action Description Inputs Outputs Control

PtrCall Indirect call by 
pointer or 
reference, where 
the identify of the 
ControlElement 
is not known

Addresses relationship to the 
DataElement that represents 
the pointer;
 Zero or more Reads 
relationships to DataElements, 
that represent input actual 
parameters; ordered.

Same as Call This represents a dynamic 
call to one of the possible 
targets of the pointer 
(corresponding to the 
current value of the 
pointer). Dispatches 
relation to the DataElement 
represents the pointer. The 
Signature of the possible 
targets is represented as the 
type attribute of the 
DataElement; subsequently 
an optional single flow to 
the next micro action is 
performed

VirtualCall Virtual method 
call, method call 
by pointer or 
reference or a call 
to an interface 
element

Addresses relationship to the 
DataElement that represents 
the instance;
Zero or more Reads 
relationships to DataElements, 
that represent input actual 
parameters; ordered.

Same as Call Calls relationship to the 
MethodUnit represents the 
superclass of the method 
that will be determined 
dynamically. This 
represents the flow of 
control to the Method and 
the return back; 
Subsequently an optional 
single flow to the next 
micro action is performed.

Return return Single Reads represents the 
DataElement that contains the 
return value

none Control is returned back to 
one of the ControlElements 
that has performed the call.

Nop dummy none none Optional single flow to the 
next micro action

Goto Unconditional 
transfer of 
control

none none Single flow to the next 
micro action

Label represents a 
label; the name of 
the action is the 
label

none none Single flow to the next
micro action
348                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



A.5 Actions Related to Access to Datatypes

NOTE:KDM14-166, KDM14-118, KDM14-67

Inputs: see table

Outputs: see table.

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Throw Raising 
exception

none none Throws relationship to the 
DataElement that 
represents the "exception 
object". Optional 
ExceptionFlow relationship 
to a CatchUnit that 
processes the exception

Switch Branching based 
on the value of a 
StorableElement

Single Reads to the 
DataElement that represents 
the selector value

none One or more GuardedFlow 
relations to a second micro 
action with a single Reads 
relationship that represents 
the guard value. A single 
FalseFlow represents the 
default branch. This 
construct represents 
selection of a single branch 
for which the value of the 
selector is equal to the 
value of the guard or the 
default branch

Guard Represents start 
of the branch of a 
complex 
condition

Single Reads relation to a 
DataElement representing the 
guard value

none Single flow unconditional 
control flow to the first  
action of the branch

Compound Compound action none none Single Flow - the entry flow 
to the first internal action 
element

Init BlockUnit that 
contains 
initialization 
action elements

none none EntryFlow unconditional 
control flow to the first 
internal action

Micro action Description Inputs Outputs Control
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        349



Table A.5 - Access actions

Micro action Description Inputs Outputs

FieldSelect Access to a particular 
ItemUnit of a RecordType

Single Addresses relationship to a 
DataElement (of a RecordType); Single 
Reads relationship to an ItemUnit 
representing the field being accessed.

Optional Writes relationship 
represents the DataElement 
(except for a ValueElement) 
to which the value of the 
field is assigned.

FieldReplace Modification of a 
particular field of a 
RecordType

Single Addresses relationship to a 
DataElement (of a RecordType); Single 
Reads to a DataElement representing the 
new value.

Writes relationship to an 
ItemUnit representing the 
field being modified.

ChoiceSelect Access to a particular 
ItemUnit of a ChoiceType

Single Addresses relationship to a 
DataElement (of a ChoiceType); Single 
Reads relationship to an ItemUnit 
representing the field type being accessed.

Optional Writes relationship 
represents the DataElement 
(except for a ValueElement) 
to which the value of the 
field is assigned.

ChoiceReplace Modification of a 
particular field of a 
ChoiceType

Single Addresses relationship to a 
DataElement (of a ChoiceType); Single 
Reads to a DataElement representing the 
new value.

Writes relationship to an 
ItemUnit representing the 
field being modified.

Ptr Obtaining a pointer or 
reference to a 
ComputationalObject

Single Addresses relationship to a 
ComputationalObject.

Optional Writes relationship 
to the DataElement that will 
hold the new value.

This Obtaining pointer to the 
current instance of the 
object

none Writes to a DataElement

PtrSelect Indirect access to a value 
by pointer or reference

Single Addresses relationship to a 
DataElement (of a PointerType); Single 
Reads relationship to an ItemUnit of that 
PointerType representing the ItemUnit 
being accessed.

Optional Writes relationship 
to the ItemUnit of that 
PointerType

PtrReplace Indirect modification of a 
value by pointer or 
reference

Single Addresses relationship to a 
DataElement (of an PointerType); Single 
Reads to a DataElement representing the 
new value.

Writes relationship to the 
ItemUnit of that PointerType

ArraySelect Access to a particular 
ItemUnit of an ArrayType

Single Addresses relationship to a 
DataElement (of an ArrayType);  Reads 
relationship to an ItemUnit representing 
the ItemUnit being accessed; Last Reads 
represents the Index.

Optional Writes relationship 
represents the DataElement 
(except for a ValueElement) 
to which the value of the 
ItemUnit is assigned
350                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



ArrayReplace Modification of a 
particular ItemUnit of an 
ArrayType

Single Addresses relationship to a 
DataElement (of an ArrayType); Reads 
that represents the Index; Last Reads to a 
DataElement representing the new value.

Writes relationship to an 
ItemUnit representing the 
ItemUnit being modified;

MemberSelect Access to a particular 
MemberUnit of a 
ClassType

Single Addresses relationship to the 
DataElement that represents the 
instance.Single Reads relationship to an 
MemberUnit representing the member 
being accessed.

Optional Writes relationship 
represents the DataElement 
(except for a ValueElement) 
to which the value of the 
field is assigned

MemberReplace Modification of a 
particular member of a 
ClassType

Single Addresses relationship to a 
DataElement (of a ClassType) that 
represents the instance of the object being 
accessed.Single Reads to a DataElement 
representing the new value.

Writes relationship to an 
MemberUnit representing 
the member being modified.

New Creation of a new 
dynamic instance of a 
datatype; this has to be 
done separately if 
required; this micro action 
does not invoke the 
constructor of the new 
object; this has to be done 
separately

Creates relationship to the Datatype being 
created.

Writes relationship 
represents the DataElement 
(except for a ValueElement) 
to which the reference to the 
new dynamic element is 
assigned.

NewArray Creation of a new 
dynamic instance of an 
ArrayType datatype

Creates relationship to the Datatype being 
created; Reads relation to the 
DataElement that represents the length of 
the new array.

Writes relationship 
represents the DataElement 
(except for a ValueElement) 
to which the reference to the 
new dynamic element is 
assigned.

Table A.5 - Access actions

Micro action Description Inputs Outputs
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        351



A.6 Actions Related to Type Conversions
Inputs: see table

Outputs: see table.

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

A.7 Actions Related to StringType Operations

Table A.6 - Type conversion actions

Micro action Description Inputs Outputs

Sizeof Determines the length of a 
DataElement (based on the 
datatype) or the length of a 
Datatype

Reads represents the DataElement
or
UsesType to the Datatype

Optional writes to a 
DataElement

Instanceof Performs dynamic type check 
if the data element is of a 
certain datatype

Reads represents the DataElement; 
UsesType relation represents the datatype.

Optional Writes to a 
DataElement of a Boolean 
type;

DynCast Performs a dynamic cast of a 
DataElement to a certain 
Datatype

Reads represents the DataElement; 
UsesType relation represents the datatype.

Optional Writes to a 
DataElement

TypeCast Performs a static type 
conversion of a DataElement 
to a certain Datatype

Reads represents the DataElement; 
UsesType relation represents the datatype.

Optional writes to a 
DataElement

Inputs: see table.
Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of 

the operation is ignored; otherwise, the result should be stored into a DataElement, which can be 
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a 
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.7 - StringType actions

Micro action Description Inputs

IsEmpty True is the string x is empty First Reads represents x;

Head Produces the value of the first element in the string x First Reads represents x;

Tail Produces sequence that results from deleting the first element in the 
string x

First Reads represents x;

Empty Produces and empty string UsesType to the required type

Append Produces the sequence that is formed by adding a single value y to 
the end of the string x

First Reads represents x; 
Second represents y
352                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



Note:"==" operation on ISO strings is defined as full comparison, this does not work in Java, which has shallow 
comparison of object references.

A.8 Actions Related to SetType Operations

A.9 Actions Related to SequenceType Operations

Inputs: see table.
Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of 

the operation is ignored; otherwise, the result should be stored into a DataElement, which can be 
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a 
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.8 - SetType actions

Micro action Description Inputs

IsIn True is the value x is a member of the set y, else 
false

First Reads represents x; Second represents y

Subset True if every member of x is a member of y First Reads represents x; Second represents y

Difference Produces the set that consists of the values that are 
in x and not in y

First Reads represents x; Second represents y

Union Produces the set that consists of the values that are 
either in x or in y

First Reads represents x; Second represents y

Intersection Produces the set that consists of the values that are 
both in x and in y

First Reads represents x; Second represents y

Select Produces a value of the base type that is in the set x First Reads represents x; 

IsEmpty True is the set x is empty First Reads represents x; 

Empty Produces and empty set UsesType to the required type

Inputs: see table.
Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of 

the operation is ignored; otherwise, the result should be stored into a DataElement, which can be 
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a 
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        353



A.10 Actions Related to BagType Operations

Table A.9  - SequenceType actions

Micro action Description Inputs

IsEmpty True is the sequence x is empty. First Reads represents x;

Head Produces the value of the first element in the sequence x. First Reads represents x;

Tail Produces sequence that results from deleting the first element 
in the sequence x.

First Reads represents x;

Empty Produces an empty sequence. UsesType to the required type

Append Produces the sequence that is formed by adding a single value y 
to the end of the sequence x.

First Reads represents x; Second 
represents y

Inputs: see table.
Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of 

the operation is ignored; otherwise, the result should be stored into a DataElement, which can be 
permanent, for example a StorableUnit with a kind other than “register,” a MemberUnit, an ItemUnit or a 
ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.10 - BagType actions

Micro action Description Inputs

IsEmpty True is the bag x is empty First Reads represents x;

Select Produces a value of the base type that is in the bag x First Reads represents x;

Delete Produces the bag that is formed by deleting one instance 
of value y from the bag x if any

First Reads represents x; Second 
represents y

Empty Produces and empty bag UsesType to the required type

Insert Produces the bag that is formed by adding one instance of 
value y from the bag x

First Reads represents x; Second 
represents y

Serialize Produces the sequence in which each element is repeated 
as many time as it occurs in the bag x 

First Reads represents x;
354                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4



A.11 Actions Related to Resources

NOTE:KDM14-205

Resource micro-actions represent specific statements that are determined by some programming languages and which 
manipulate resources provided by the operating environment. Such statements are alternative to using system calls. Kinds in 
Table A.11 represent such statements as micro KDM ActionElements. Precise semantics of representing the operating 
environment is described in Part 3 Runtime Resource Layer. In particular, a combination of resource actions, resource 
relationships and resource events can be used, where the resource micro-action is part of a Code Model, while other elements 
can be added in various models of the Resource Layer (Platform, Data, Event or UI).

Inputs: Zero or more Reads relationships to DataElements; represent input data which is sent to the resource; 
ordered.

Outputs: Zero or more Writes relationships to DataElements; represents output data which is received from the 
resource.

Control: optional single Flow to the next micro action (no Flow means a terminal action element).
Extras: optional resource-specific relationships.

Table A.11 - Resource actions

Micro action Description

Code ActionElement represents a assembly instruction or a segment

Platform ActionElement represents a statement that manipulates a Platform Resource

Data ActionElement represents a statement that manipulates a Data Resource

Event ActionElement represents a statement that manipulates an Event Resource

UI ActionElement represents a statement that manipulates a UI Resource
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4        355



356                 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4


	OMG’S ISSUE REPORTING PROCEDURE
	Preface
	1 Scope
	2 Conformance
	2.1 KDM Domains
	2.2 Compliance Levels
	2.2.1 Meaning and Types of Compliance


	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Other OMG Specifications
	6.2 How to Read this Specification
	6.2.1 Diagram format


	7 Specification Overview
	8 KDM
	8.1 Overview
	8.2 Organization of the KDM Packages

	Subpart I - Infrastructure Layer
	9 Core Package
	9.1 Overview
	9.2 Organization of the Core Package
	9.3 Elements Class Diagram
	9.3.1 Element Class (abstract)
	9.3.2 AnnotatableElement Class (abstract)
	9.3.3 AnnotationElement Class (abstract)
	9.3.4 ExtendableElement Class (abstract)
	9.3.5 ExtensionElement Class (abstract)
	9.3.6 ModelElement Class (abstract)

	9.4 CoreEntities Class Diagram
	9.4.1 KDMEntity Class (abstract)

	9.5 CoreRelations Class Diagram
	9.5.1 KDMRelationship Class (abstract)
	9.5.2 KDMEntity (additional properties)

	9.6 AggregatedRelations Class Diagram
	9.6.1 AggregatedRelationship Class
	9.6.2 KDMEntity (additional properties)
	9.6.3 KDMRelationship (additional properties)

	9.7 Datatypes Class Diagram
	9.7.1 Boolean Type (datatype)
	9.7.2 String Type (datatype)
	9.7.3 Integer Type (datatype)


	10 The Package named “kdm”
	10.1 Overview
	10.2 Organization of the KDM Framework
	10.3 Framework Class Diagram
	10.3.1 FrameworkElement Class (abstract)
	10.3.2 KDMModel Class (abstract)
	10.3.3 KDMEntity (additional properties)
	10.3.4 Segment Class

	10.4 Audit Class Diagram
	10.4.1 Audit Class
	10.4.2 ModelElement (additional properties)

	10.5 Extensions Class Diagram
	10.5.1 Stereotype Class
	10.5.2 TagDefinition Class
	10.5.3 ExtensionFamily Class
	10.5.4 ExtendableElement (additional properties)

	10.6 ExtendedValues Class Diagram
	10.6.1 ExtendedValue Class (abstract)
	10.6.2 TaggedValue Class
	10.6.3 TaggedRef Class

	10.7 Annotations Class Diagram
	10.7.1 Attribute Class
	10.7.2 Annotation Class
	10.7.3 AnnotatableElement (additional properties)


	11 Source Package
	11.1 Overview
	11.2 Organization of the Source Package
	11.3 InventoryModel Class Diagram
	11.3.1 InventoryModel Class
	11.3.2 AbstractInventoryElement Class (abstract)
	11.3.3 AbstractInventoryRelationship Class (abstract)
	11.3.4 InventoryItem Class (generic)
	11.3.5 InventoryContainer Class (generic)
	11.3.6 Directory Class
	11.3.7 Project Class

	11.4 InventoryInheritances Class Diagram
	11.5 InventoryItems Class Diagram
	11.5.1 SourceFile Class
	11.5.2 Model Class
	11.5.3 Document Class
	11.5.4 ImageFile Class
	11.5.5 AudioFile Class
	11.5.6 DataFile Class
	11.5.7 Service Class
	11.5.8 ConfigFile Class
	11.5.9 LinkableFile Class (generic)
	11.5.10 ObjectFile Class
	11.5.11 LibraryFile Class
	11.5.12 ExecutableFile Class

	11.6 Traceability Class Diagram
	11.6.1 SourceRef Class
	11.6.2 Track Class
	11.6.3 KDMEntity (additional properties)

	11.7 Regions Class Diagram
	11.7.1 Region Class (abstract)
	11.7.2 SourceRegion Class
	11.7.3 BinaryRegion Class
	11.7.4 ReferenceableRegion Class

	11.8 InventoryRelations Class Diagram
	11.8.1 DependsOn Class
	11.8.2 TraceableTo Class

	11.9 ExtendedInventoryElements Class Diagram
	11.9.1 InventoryElement Class (generic)
	11.9.2 InventoryRelationship Class (generic)


	Subpart II - Program Elements Layer
	12 Code Package
	12.1 Overview
	12.2 Organization of the Code Package
	12.3 CodeModel Class Diagram
	12.3.1 CodeModel Class
	12.3.2 AbstractCodeElement Class (abstract)
	12.3.3 AbstractCodeRelationship Class (abstract)
	12.3.4 CodeItem Class (abstract)
	12.3.5 ComputationalObject Class (generic)
	12.3.6 Datatype Class (generic)

	12.4 CodeInheritances Class Diagram
	12.5 Modules Class Diagram
	12.5.1 Module Class (generic)
	12.5.2 CompilationUnit Class
	12.5.3 SharedUnit Class
	12.5.4 LanguageUnit Class
	12.5.5 CodeAssembly Class
	12.5.6 Package Class

	12.6 ControlElements Class Diagram
	12.6.1 ControlElement Class (generic)
	12.6.2 CallableUnit Class
	12.6.3 CallableKind Data Type (enumeration)
	12.6.4 MethodUnit Class
	12.6.5 MethodKind data type (enumeration)
	12.6.6 ExportKind data type (enumeration)

	12.7 DataElements Class Diagram
	12.7.1 DataElement Class (generic)
	12.7.2 StorableUnit Class
	12.7.3 StorableKind data type (enumeration)
	12.7.4 ItemUnit Class
	12.7.5 IndexUnit Class
	12.7.6 MemberUnit Class
	12.7.7 ParameterUnit Class

	12.8 ValueElements Class Diagram
	12.8.1 ValueElement Class (generic)
	12.8.2 Value Class
	12.8.3 ValueList Class

	12.9 Datatypes Class Diagram
	12.10 PrimitiveTypes Class Diagram
	12.10.1 PrimitiveType Class (generic)
	12.10.2 BooleanType Class
	12.10.3 CharType Class
	12.10.4 OrdinalType Class
	12.10.5 DateType Class
	12.10.6 TimeType Class
	12.10.7 IntegerType Class
	12.10.8 DecimalType Class
	12.10.9 ScaledType Class
	12.10.10 FloatType Class
	12.10.11 VoidType Class
	12.10.12 StringType Class
	12.10.13 BitType Class
	12.10.14 BitstringType Class
	12.10.15 OctetType Class
	12.10.16 OctetstringType Class

	12.11 EnumeratedTypes Class Diagram
	12.11.1 EnumeratedType Class

	12.12 CompositeTypes Class Diagram
	12.12.1 CompositeType Class (generic)
	12.12.2 ChoiceType Class
	12.12.3 RecordType Class

	12.13 DerivedTypes Class Diagram
	12.13.1 DerivedType Class (generic)
	12.13.2 ArrayType Class
	12.13.3 PointerType Class
	12.13.4 RangeType Class
	12.13.5 BagType Class
	12.13.6 SetType Class
	12.13.7 SequenceType Class

	12.14 Signature Class Diagram
	12.14.1 Signature Class
	12.14.2 ParameterKind (enumeration)

	12.15 DefinedTypes Class Diagram
	12.15.1 DefinedType Class (generic)
	12.15.2 TypeUnit Class
	12.15.3 SynonymUnit Class

	12.16 ClassTypes Class Diagram
	12.16.1 ClassUnit Class
	12.16.2 InterfaceUnit Class

	12.17 Templates Class Diagram
	12.17.1 TemplateElement Class (generic)
	12.17.2 TemplateUnit Class
	12.17.3 TemplateParameter Class
	12.17.4 TemplateType Class

	12.18 TemplateRelations Class Diagram
	12.18.1 InstanceOf Class
	12.18.2 ParameterTo Class

	12.19 InterfaceRelations Class Diagram
	12.19.1 Implements Class
	12.19.2 ImplementationOf Class

	12.20 TypeRelations Class Diagram
	12.20.1 HasType Class
	12.20.2 HasValue Class

	12.21 ClassRelations Class Diagram
	12.21.1 Extends Class

	12.22 PreprocessorDirectives Class Diagram
	12.22.1 PreprocessorDirective Class (generic)
	12.22.2 MacroUnit Class
	12.22.3 MacroKind data type (enumeration)
	12.22.4 MacroDirective Class
	12.22.5 IncludeDirective Class
	12.22.6 Conditional Directive Class

	12.23 PreprocessorRelations Class Diagram
	12.23.1 Expands Class
	12.23.2 GeneratedFrom Class
	12.23.3 Includes Class
	12.23.4 VariantTo Class
	12.23.5 Redefines Class

	12.24 Comments Class Diagram
	12.24.1 CommentUnit Class
	12.24.2 AbstractCodeElement Class (additional properties)

	12.25 Visibility Class Diagram
	12.25.1 Namespace Class

	12.26 VisibilityRelations Class Diagram
	12.26.1 VisibleIn Class
	12.26.2 Imports Class

	12.27 ExtendedCodeElements Class Diagram
	12.27.1 CodeElement Class (generic)
	12.27.2 CodeRelationship Class (generic)


	13 Action Package
	13.1 Overview
	13.2 Organization of the Action Package
	13.3 ActionElements Class Diagram
	13.3.1 ActionElement Class
	13.3.2 AbstractActionRelationship Class (abstract)
	13.3.3 BlockUnit Class
	13.3.4 AbstractCodeElement (additional properties)

	13.4 ActionInheritances Class Diagram
	13.5 ActionFlow Class Diagram
	13.5.1 ControlFlow Class (generic)
	13.5.2 EntryFlow Class
	13.5.3 Flow Class
	13.5.4 TrueFlow Class
	13.5.5 FalseFlow Class
	13.5.6 GuardedFlow Class

	13.6 CallableRelations Class Diagram
	13.6.1 Calls Class
	13.6.2 Dispatches Class

	13.7 DataRelations Class Diagram
	13.7.1 Reads Class
	13.7.2 Writes Class
	13.7.3 Addresses Class
	13.7.4 Creates Class

	13.8 ExceptionBlocks Class Diagram
	13.8.1 ExceptionUnit Class
	13.8.2 TryUnit Class
	13.8.3 CatchUnit Class
	13.8.4 FinallyUnit Class

	13.9 ExceptionFlow Class Diagram
	13.9.1 ExitFlow Class
	13.9.2 ExceptionFlow Class

	13.10 ExceptionRelations Class Diagram
	13.10.1 Throws Class

	13.11 InterfaceRelations Class Diagram
	13.11.1 CompliesTo Class

	13.12 UsesRelations Class Diagram
	13.12.1 UsesType Class

	13.13 ExtendedActionElements Class Diagram
	13.13.1 ActionRelationship Class (generic)


	14 Micro KDM
	Subpart III - Runtime Resources Layer
	15 Platform Package
	15.1 Overview
	15.2 Organization of the Platform Package
	15.3 PlatformModel Class Diagram
	15.3.1 PlatformModel Class
	15.3.2 AbstractPlatformElement Class (abstract)
	15.3.3 AbstractPlatformRelationship Class (abstract)

	15.4 PlatformInheritances Class Diagram
	15.5 PlatformResources Class Diagram
	15.5.1 PlatformResource Class
	15.5.2 NamingResource Class
	15.5.3 MarshalledResource Class
	15.5.4 MessagingResource Class
	15.5.5 FileResource Class
	15.5.6 ExecutionResource Class
	15.5.7 LockResource Class
	15.5.8 StreamResource Class
	15.5.9 DataManager Class
	15.5.10 PlatformEvent Class
	15.5.11 PlatformAction Class
	15.5.12 ExternalActor Class

	15.6 PlatformRelations Class Diagram
	15.6.1 BindsTo Class

	15.7 ProvisioningRelations Class Diagram
	15.7.1 Requires Class

	15.8 PlatformActions Class Diagram
	15.8.1 ManagesResource Class
	15.8.2 ReadsResource Class
	15.8.3 WritesResource Class
	15.8.4 DefinedBy Class
	15.8.5 ProducesPlatformEvent

	15.9 Deployment Class Diagram
	15.9.1 DeploymentElement Class (generic)
	15.9.2 DeployedComponent Class
	15.9.3 DeployedSoftwareSystem Class
	15.9.4 Machine Class
	15.9.5 DeployedResource Class

	15.10 RuntimeResources Class Diagram
	15.10.1 RuntimeResource (generic)
	15.10.2 Process Class
	15.10.3 Thread Class

	15.11 RuntimeActions Class Diagram
	15.11.1 Loads Class
	15.11.2 Spawns Class

	15.12 ExtendedPlatformElements Class Diagram
	15.12.1 PlatformElement Class (generic)
	15.12.2 PlatformRelationship Class (generic)


	16 UI Package
	16.1 Overview
	16.2 Organization of the UI Package
	16.3 UIModel Class Diagram
	16.3.1 UIModel Class
	16.3.2 AbstractUIElement Class (abstract)
	16.3.3 AbstractUIRelationship Class (abstract)

	16.4 UIInheritances Class Diagram
	16.5 UIResources Class Diagram
	16.5.1 UIResource Class (generic)
	16.5.2 UIDisplay Class (generic)
	16.5.3 Screen Class
	16.5.4 Report Class
	16.5.5 UIField Class
	16.5.6 UIEvent Class
	16.5.7 UIAction Class

	16.6 UIRelations Class Diagram
	16.6.1 UIFlow Class
	16.6.2 UILayout Class

	16.7 UIActions Class Diagram
	16.7.1 Displays Class
	16.7.2 DisplaysImage Class
	16.7.3 ManagesUI Class
	16.7.4 ReadsUI Class
	16.7.5 WritesUI Class
	16.7.6 ProducesUIEvent Class

	16.8 ExtendedUIElements Class Diagram
	16.8.1 UIElement Class (generic)
	16.8.2 UIRelationship Class (generic)


	17 Event Package
	17.1 Overview
	17.2 Organization of the Event Package
	17.3 EventModel Class Diagram
	17.3.1 EventModel Class
	17.3.2 AbstractEventElement Class (abstract)
	17.3.3 AbstractEventRelationship Class (abstract)

	17.4 EventInheritances Class Diagram
	17.5 EventResources Class Diagram
	17.5.1 EventResource Class (generic)
	17.5.2 Event Class
	17.5.3 State Class
	17.5.4 InitialState Class
	17.5.5 Transition Class
	17.5.6 OnEntry Class
	17.5.7 OnExit Class
	17.5.8 EventAction Class

	17.6 EventRelations Class Diagram
	17.6.1 NextState Class
	17.6.2 ConsumesEvent Class

	17.7 EventActions Class Diagram
	17.7.1 ReadsState Class
	17.7.2 ProducesEvent Class
	17.7.3 HasState Class

	17.8 ExtendedEventElements Class Diagram
	17.8.1 EventElement Class (generic)
	17.8.2 EventRelationship Class (generic)


	18 Data Package
	18.1 Overview
	18.2 Organization of the Data Package
	18.3 Data Model Class Diagram
	18.3.1 DataModel Class
	18.3.2 AbstractDataElement Class (abstract)
	18.3.3 AbstractDataRelationship Class (abstract)

	18.4 Data Inheritances Class Diagram
	18.5 DataResources Class Diagram
	18.5.1 DataResource Class (generic)
	18.5.2 DataContainer Class (generic)
	18.5.3 Catalog Class
	18.5.4 RelationalSchema Class
	18.5.5 DataEvent Class
	18.5.6 DataAction Class

	18.6 ColumnSet Class Diagram
	18.6.1 ColumnSet (generic)
	18.6.2 RelationalTable Class
	18.6.3 RelationalView Class
	18.6.4 DataSegment Class
	18.6.5 RecordFile Class

	18.7 KeyIndex Class Diagram
	18.7.1 IndexElement Class (generic)
	18.7.2 UniqueKey Class
	18.7.3 ReferenceKey Class
	18.7.4 Index Class

	18.8 Key Relations Class Diagram
	18.8.1 KeyRelationship Class

	18.9 DataActions Class Diagram
	18.9.1 ReadsColumnSet Class
	18.9.2 WritesColumnSet Class
	18.9.3 ManagesData Class
	18.9.4 HasContent Class
	18.9.5 ProducesDataEvent Class

	18.10 StructuredData Class Diagram
	18.10.1 XMLSchema
	18.10.2 AbstractContentElement (abstract)

	18.11 ContentElements Class Diagram
	18.11.1 ContentItem (generic)
	18.11.2 ComplexContentType
	18.11.3 SimpleContentType
	18.11.4 ContentRestriction
	18.11.5 AllContent Class
	18.11.6 SeqContent Class
	18.11.7 ChoiceContent Class
	18.11.8 GroupContent Class
	18.11.9 MixedContent Class
	18.11.10 ContentAttribute Class
	18.11.11 ContentElement Class
	18.11.12 ContentReference Class

	18.12 ContentRelations Class Diagram
	18.12.1 TypedBy Class
	18.12.2 DatatypeOf Class
	18.12.3 ReferenceTo Class
	18.12.4 ExtensionTo Class
	18.12.5 RestrictionOf Class

	18.13 ExtenededDataElements Class Diagram
	18.13.1 ExtendedDataElement Class
	18.13.2 DataRelationship Class


	Subpart IV - Abstractions Layer
	19 Structure Package
	19.1 Overview
	19.2 Organization of the Structure Package
	19.3 StructureModel Class Diagram
	19.3.1 StructureModel Class
	19.3.2 AbstractStructureElement Class (abstract)
	19.3.3 AbstractStructureRelationship Class (abstract)
	19.3.4 Subsystem Class
	19.3.5 Layer Class
	19.3.6 Component Class
	19.3.7 SoftwareSystem Class
	19.3.8 ArchitectureView Class

	19.4 StructureInheritances Class Diagram
	19.5 ExtendedStructureElements Class Diagram
	19.5.1 StructureElement Class (generic)
	19.5.2 StructureRelationship Class (generic)


	20 Conceptual Package
	20.1 Overview
	20.2 Organization of the Conceptual Package
	20.3 ConceptualModel Class Diagram
	20.3.1 ConceptualModel
	20.3.2 AbstractConceptualElement (abstract)
	20.3.3 AbstractConceptualRelationship Class (abstract)

	20.4 ConceptualInheritances Class Diagram
	20.5 ConceptualElements Class Diagram
	20.5.1 ConceptualContainer Class
	20.5.2 TermUnit
	20.5.3 FactUnit
	20.5.4 RuleUnit
	20.5.5 ConceptualRole
	20.5.6 BehaviorUnit Class
	20.5.7 ScenarioUnit Class

	20.6 ConceptualRelations Class Diagram
	20.6.1 ConceptualFlow Class

	20.7 ExtendedConceptualElements Class Diagram
	20.7.1 ConceptualElement Class (generic)
	20.7.2 ConceptualRelationship Class (generic)


	21 Build Package
	21.1 Overview
	21.2 Organization of the Build Package
	21.3 BuildModel Class Diagram
	21.3.1 BuildModel Class
	21.3.2 AbstractBuildElement Class (abstract)
	21.3.3 AbstractBuildRelationship Class (abstract)
	21.3.4 Supplier Class
	21.3.5 Tool Class
	21.3.6 SymbolicLink Class

	21.4 BuildInheritances Class Diagram
	21.5 BuildResources Class Diagram
	21.5.1 BuildResource Class
	21.5.2 BuildComponent Class
	21.5.3 BuildDescription Class
	21.5.4 BuildLibrary Class
	21.5.5 BuildProduct Class
	21.5.6 BuildStep Class

	21.6 BuildRelations Class Diagram
	21.6.1 LinksTo Class
	21.6.2 Consumes Class
	21.6.3 Produces Class
	21.6.4 SupportedBy Class
	21.6.5 SuppliedBy Class
	21.6.6 DescribedBy Class

	21.7 ExtendedBuildElements Class Diagram
	21.7.1 BuildElement Class (generic)
	21.7.2 BuildRelationship Class (generic)


	Annex A - Semantics of the Micro KDM Action Elements
	A.1 Comparison Actions
	A.2 Actions Related to the Primitive Numerical Datatypes
	A.3 Actions Related to Bitwise Operations on Primitive Datatypes
	A.4 Control Actions
	A.5 Actions Related to Access to Datatypes
	A.6 Actions Related to Type Conversions
	A.7 Actions Related to StringType Operations
	A.8 Actions Related to SetType Operations
	A.9 Actions Related to SequenceType Operations
	A.10 Actions Related to BagType Operations
	A.11 Actions Related to Resources


