Date: September 2016

a __J.I:

| - —

== = E v-T F ==

=' y_—— - — v] -]

s — 5 B - e .

. & = I

- —_— = - ——i [- —

= = i a - B -
== s = —

OBJECT MANAGEMENT GROUP"

Architecture-Driven Modernization:
Knowledge Discovery Meta-Model (KDM)

Version 1.4 with change bars

OMG Document Number: formal/2016-09-02
Standard document URL: http://www.omg.org/spec/KDM/1.4

Normative Machine Consumable Files:
http://www.omg.org/spec/KDM/20160201/kdm.cmof
http://www.omg.org/spec/KDM/20160201/action.xsd
http://www.omg.org/spec/KDM/20160201/build.xsd
http://www.omg.org/spec/KDM/20160201/code.xsd
http://www.omg.org/spec/KDM/20160201/conceptual.xsd
http://www.omg.org/spec/KDM/20160201/core.xsd
http://www.omg.org/spec/KDM/20160201/data.xsd
http://www.omg.org/spec/KDM/20160201/event.xsd
http://www.omg.org/spec/KDM/20160201/kdm.xsd
http://www.omg.org/spec/KDM/20160201/platform.xsd
http://www.omg.org/spec/KDM/20160201/source.xsd
http://www.omg.org/spec/KDM/20160201/structure.xsd
http://www.omg.org/spec/KDM/20160201/ui.xsd

Non-normative Machine Consumable Files:
http://www.omg.org/spec/KDM/20160201/kdm.ecore
http://www.omg.org/spec/KDM/20160201/kdm.mdxml

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS

Copyright © 2006, Flashline

Copyright © 2006, IBM

Copyright © 2006, KDM Analytics

Copyright © 2006, Klocwork, Inc.

Copyright © 2016, Object Management Group

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companieslisted above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specificationsthat are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adoptersis directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regul ations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIESLISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entirerisk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Dataand Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of
the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.SA.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, FINANCIAL INSTRUMENT GLOBAL
IDENTIFIER®, |110P®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language®, UML®, UML Cube Logo®, VSIPL®,
and XMI® are registered trademarks of the Object Management Group, Inc.

For acomplete list of trademarks, see: http://www.omg.org/legal/tm_list.htm. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) isand shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other specia designations to indicate compliance with these materials.

Software devel oped under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software devel oped using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completesthe
testing suites.

OMG's ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the I ssue Reporting Form listed on
the main web page http://www.omg.org, under Documents, Report a Bug/l ssue.

Table of Contents

(=] = T TP XV
i Yol 0] o]I PPN 1
pZ O] o1 0] 41 4 F= 1 g (o = P 1
2.1 KDM DOMAINS ..tuuiiiiiiiiiie e e e eee et s e e e e e e e e e e e e e e e e eaaaesssaa s aaaeeaeeeeaaeeeeanesnnnes 2

2.2 COMPlIANCE LEVEIS ...ttt e e e e e e e e e e e aaaaaaens 3

2.2.1 Meaning and Types of COMPIIANCEcoooiiiiiiiiiii e 4

3 NOrMAative REFEIENCESoiiiii i e 6
4 Terms and DefiNitiONSccooiiiiiiiiii e e e e e 7
5 SYMDOIS . 9
6 Additional INfOrmMationcoouiiiiiii e 9
6.1 How to Read this SPecCificationccccooiiiiiiiiiiiiier e 9

6.1.1 DIagram fOMMALcoooiiiiiiei ettt e e e e e e et e e e e e e e e e e e e s e ennbb e e e aeaaaae s 11

SPECIfICAION OVEIVIEWuuiiiiiieiiiie et e et e e e e e e eaaeeeeees 13

G T D Y PP 17
S0 R O 1Y =T V1 P 17

8.2 Organization of the KDM PacCKagescccceeiiiiieiiiiiiiiiieeeciies e 18

Subpart | - INfrastruCtUre LAYlcoocvieieiiieeeeeiiiie ettt 21
O COrE PACKAQE ...iiieiiiiiiii ittt ettt ettt eaaaa 23
S TR R @ Y=Y V1 PSP 23

9.2 Organization of the Core Packageccccceeiviiiiiiiiiiiiceiee e, 23

9.3 Elements Class DIagramcoooeiiiiuiiiiiiiiiiaeee e e ee e e eeeeeeeernis e e e e e aeaeeeeees 23

9.3.1 Element Class (BDSLrACL)c.coiiiiiiiiiiiiiii et 24

9.3.2 AnnotatableElement Class (ADSIFACE)ccuvieviiiiiiiiie e 24

9.3.3 AnnotationElement Class (ADSIFrACE)cueeiiiiiiiiiiie e 24

9.3.4 ExtendableElement Class (aDSract) ..o 24

9.3.5 ExtensionElement Class (ADSIract)ccoviiiiiiiiiii e 25

9.3.6 ModelElement Class (ADSIIACE)coiiuiiiiiiiiiiiii e e 25

9.4 CoreEntities Class DIAgramuuuuuuiiiiiieaeeeeeee ittt e e e e e eeeeeeeeennees 25

9.4.1 KDMENtity Class (ADSLrACL)ueveiiiiiiiiiie ittt 26

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 i

9.5 CoreRelations Class DISgramceuuiiieeaiiiiiiiii i e e e e e e e 28

9.5.1 KDMRelationship Class (ADSIract)cuiveeeeiiiiiiiiiiieiieiieeee e e e e e 28

9.5.2 KDMERtity (additional PrOPErti€S)uuuueeeeriiieeeeeiiieiiiiiiieeee e e e e e e s e s s ssenrreeereeeeaeeeeesannnnes 29

9.6 AggregatedRelations Class Diagramccoooiiiiiiiiiiiiiiiiieiiee e 30
9.6.1 AggregatedRelationShip Classeeeeiieiieioiiiiiiiiie e e e e e e 31

9.6.2 KDMERtity (additional PrOPErti€S)uuueeeeirieieeeeeiiiiiiiieiieeeeeeee e e s e s s ssennreneeeeeeaeeeeeeannnne 33

9.6.3 KDMRelationship (additional Properti€S)cccoviiiiicciiiiiiiieieeee e er e e e e e e e 34

9.7 Datatypes Class DIAgramuuuuuioiioiiieeeeeeeieeeeeeeeiiiiias e e e e e e e e e e eeeeeeeeeeennanns 34
9.7.1 Boolean TYpe (AALALYPE)eeeeieiiiiiieie ittt ettt e e e st e e e e s sabaeeee e 35

9.7.2 StriNg TYPE (AALALYPE) ..eeeeiiiiiiie ettt et e e st e e e sabaeeeeeans 35

9.7.3 Integer TYPE (AAALYPE) ..coieeieiieiiitie ettt et e et e e e st e e e sabeeeeeeaaes 35

10 The Package named “KAmM”ccooriiiiiiiiiii e 37
L0.1 OVEIVIEW .ottt e ettt e e e e e e e e e e e e e e s s s s s s sttt ettt e e e e e aaeaaeeeaaeasssanaannnseenenees 37
10.2 Organization of the KDM Frameworkccccuiiiiiiiiiiiiiiiiieee e 37
10.3 Framework Class DIiagramuuuueiioiiiiieeeeeeeeeeeeeeiiiesaiins s s eseeeeeeeaeseeseennnnns 38
10.3.1 FrameworkElement Class (ADStract)cccccvoiiiiiiiiiiiiiieeeer e 39

10.3.2 KDMModel Class (ADSIrACL)uuuururiiiiiiiiiiiee e ee et e s e e e e e e e e e ae e e e e eeanenes 39

10.3.3 KDMEntity (additional Properti€s)ccceeeiieiiiie e a e e 41

O oY= T 0= A O = 1P 41

10.4 Audit Class DIAQIaAIMcoeiiiiiiiiiiaiiieie ittt e e e e e e e e e e e 42
O I N E o [A O = T PP 42

10.4.2 ModelElement (additional Properti€s)cc.uuueeeeieieeeiiiiiiiiieeer e e 43

10.5 Extensions Class DIagramcooooiiiiiiiiiiiiiiiiiiieie e e e 44
OB T S (= 1T o LT O = LSS 45

O T2 - To | B I=) {1 1 1o g - TSP a7

10.5.3 EXteNSIONFamMIly ClaSSccccuiiiiiiiiiiee s e e e s e e e e e e e s e eee s 49

10.5.4 ExtendableElement (additional Properties)cceeeeveiiiiiiiiiiieeiieeeee e 49

10.6 ExtendedValues Class DIiagramcccooooeeooreiiiiiiiiiiiiiiiiiiias e e e e e e e eeeeeeeeeeeens 50
10.6.1 ExtendedValue Class (DSIract)ceeoeiiiiiiiiiiiii e 51

10.6.2 TAQQUEAVAIUE ClASScuviiiieiiiiiiiee et et e e 51

10.6.3 TAGGEARET CIASS ...eeeiiiiiiiiiiiie ittt e et e e e 52

10.7 Annotations Class Diagramuuuuuiiiiiiiiieeeeeeeeeeeeeeess e e e e e e e e e aeeees 52
OB A 11 o U S O = 1RSSR 53

O A AN g o] - 1 o] o = T RSP 54

10.7.3 AnnotatableElement (additional Properties)ccccceeviiiieieeiniiiiee e 55

ST o 10 oT T o= Tl = T [PP 57
11,1 OVEIVIEW oiiiiiiiiiitietee et ettt e e e e e e e e e e e e e s s s s s e s bbbttt ettt e e et e e e aaeeaeeeaeeasasanannnssebeenees 57
11.2 Organization of the Source Packagecccccoiiiiiiiiiiiiiiiiiii e 58
11.3 InventoryModel Class Diagramcccooieeeieeeeeerieeeeeieeiiiiensaesseeeeeeeeseeeeseesnnnns 59

ii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

0 I 1 1Y/ 01 Y 1Y/ [T [I = 1 60

11.3.2 AbstractinventoryElement Class (abstract)ccocccveeeiiiiiiiiie e 60

11.3.3 AbstractinventoryRelationship Class (abstract)ccccccoeiiiiiiiiiiee e, 60

11.3.4 Inventoryltem Class (QENEIIC).......ceuvvueeeiiiiiiiiiiieie e e e e e e e e e ee et e e e et a e e e e e s 61

11.3.5 InventoryContainer Class (GENENIC)cccvvvieieeeieiiiiiiiiees s e e e e e e e e e e e e e e e e e e eeee e 62

R G I T =T o] Y O = T 62

0 A 0 =T T 63

11.4 Inventorylnheritances Class Diagramccccccceeeeiiiiiiiieiieineeeee 64
11.5 Inventoryltems Class Diagramecciiiiiiiiiieeeeiieee e e e e e e e e e 64
11.5.1 SOUICEFIIE ClASS ...ttt et e e e e e e e s bbb e e e e e e e e e e e aaans 64

11.5.2 MOEI CIASS ... ittt ettt ettt e et e e e e e e s e e et bbb beeeeeeaaaaeeeaaaannes 65

11.5.3 DOCUMENT CIASS ...iiiiiieititietiee e e e e e e ettt et e e e e e e s e s et bbb e et e e e e e e e e e e s aannnbbebeeeeaaaaeaeseaanns 66

11.5.4 IMAgEFIlE ClIaSS ...cooiiiiiiiiieeie ettt et e e e e e e e s et e e e e e e e aaeaeeeanes 66

11.5.5 AUAIOFIIE CIASS .iiiiiiiiiiiiett ettt e e e e bbbttt e e e e e e e e e s e b b bbeeeeeeaaaaeeaaans 66

11.5.6 DAtAFIlE CIASS ..ccoiiiiiiiiiiete ettt e e et e e e e e e s e bbb e e e e e e e e e e e e aae 66

L11.5.7 SEIVICE CIASS ..eeiiiiiiiiiiiiitttt ettt et e e e e e e e e b bbbttt e e e e e e e e e e s aanbbbbaseeaeeaaaaeannn 67

11.5.8 CONFIGFIIE ClASS ...ttt ettt e e e e e e st ae e e e e e e e e e e 67

11.5.9 LinkableFile Class (QENETIC)cooiiiiiiiiiiiieie ettt e e e e e e e e e 67
11.5.20 ODJECIFIlE ClASS ...ttt et e e e e e e e st e e e e e e aaaaeeeanns 68

11.5.27 LiDraryFile CIASSuuuueeiieeiaiiaa ittt e e ettt e et e e e e e e s e e bt bbb e e eeeaeaaaeeeaaannes 68

11.5.12 EXECULADIERIIE ClASSueiiiiiiiieeiiie ittt e e e e e e e 68

11.6 Traceability Class DIagramouuuuuuiiiiiiiiiieeeeee e eeee e e e e e e aeaaeeeeens 69
11.6.1 SOUICERET CIASS ..ottt ettt e e e e e e s e bbb e e e e e e e e e e e aaans 69

L11.6.2 TrACK CIASS .eeiiiiiieeiiiiii ittt ettt ettt e e e e e ekt b e et e e e e e e e s e s s anbnbbeeeeeeeeeesennes 71

11.6.3 KDMEntity (additional Properti€s)uuuuuuruumiiiiiiiiiiieiee e e e eeee e s 71

11.7 Regions Class DIagramcooivviiiiiiiiiiiiiiiiieee e e e e e ee e a s e e e e e aeaaaeeees 71
11.7.1 Region Class (ADSIIACE)uuuuiiiiiiiieie i e e e e s e e e e e e aeee e e 72

11.7.2 SOUICEREQION CIASS ..uuuvuiiiiiiiiiiieeee i et ieitte et e e e e e e e e s s st e e e e e e e e e s s s s s eanbreaeeereeaeeeeseannns 73

R Y g F= T Y = To T o g 4 = 1SR 74

11.7.4 ReferenceableRegion CIaSssSooeeueiiiiiiiiiiiiiiis e s 74

11.8 InventoryRelations Class Diagramcccoeoiieeeoeeiiiieiiieeiiiiirnnee e e e e e e 75
000 100 I I =T o T= T o £ @ T - T PR 75

11.8.2 TraceableTO CIASSuueiiiiiiiiiieiiiiiiiie ettt ettt ettt e sttt e e e sttt e e e snbt e e e e s snaaneee s 76

11.9 ExtendedinventoryElements Class Diagramccccovviiiiiiiiiiiiiiinneeee e 76
11.9.1 InventoryElement ClIass (QENEIIC)uieeiiiiriiiiiiiiiee ettt ettt 77

11.9.2 InventoryRelationship Class (QENETIC)uuvviiiiiiiiiieeiiiiee et 77
Subpart Il - Program EIements Layer..........ccoouuiiiiiiiiiiiiie e 79
D2 o To [l = Tod €= o [P 83
L12.0 OVEIVIEW ..ttt e et e e e e e et e e e e e e ee st e e e e e aaa e e e e eeataaeaeeaenns 83
12.2 Organization of the Code Packagecccceevviiiiiiiiiiiiiiieerieie e 83
12.3 CodeModel Class DIiagramouuuuuuuiiiiiiiiieeeeeeee et e e e e e e e aaeeeees 84

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 i

G 0 R @Yo [S11Y, oo [I O F= 17 85

12.3.2 AbstractCodeElement Class (abSIracCt)cccoveieieieeeiiiiieeeeeeeeeer e 86
12.3.3 AbstractCodeRelationship Class (abStract)cccceeiviviiiieeeeeicre e 86
12.3.4 Codeltem Class (ADSLraC)uuvuuuiiiiiiiiiii e e e e e e e e e e aeaans 86
12.3.5 ComputationalObject Class (ENEIIC) ...uuciiiiieie i e e e e e e e 86
12.3.6 Datatype ClasS (JENEIIC) ..evuuuuiriuuiiiiiiiiiie e e s e e e e e e e e et et ettt ee et r s e s e e eaaaeaaaeaaeeeraennes 87
12.4 Codelnheritances Class Diagramccccccuuuiiiiiiiiiiiieiieee e e 87
12.5 Modules Class DIagramcooevuiiiiiiiiiiieie e eeeeee e a e e e e e e e e e eeees 88
12.5.1 MOdUIE ClaSS (GENEIIC)eeietiiiiiieee ettt e et e e e e e e e e e e e e aaanbebeeeeeeas 88
12.5.2 CompilatioNUNIt CIASSccuuiiiiiiiiiiiie et e e e e e eeeeas 89
12.5.3 Shar€dUNIL CIASS ...ccoooiiii ittt e e e e e e e e e e e aaaaees 90
12.5.4 LanguageUNIt CIASSuueiiiiiiiiiiaiii ettt e e e e e e eeaaaeeas 90
12.5.5 CodeASSEMDBIY CIASS ..ottt e e e e e e eb b 20
12.5.6 PACKAGE CIASS ..eeeeiiiiiiaiiiiiiitttie ettt ettt e e e e e e e e e et bbb e e e e e e e e e e s e e aanbabaeaeaeeaens 91
12.6 ControlElements Class Diagramcccooeeeeieeeeieiieeeiieiiiiiissees e e e eeeeeeeeeeeeeennne 91
12.6.1 ControlElement Class (JENEIIC)ccivvviieeeieiiiiiiiees e e e e e e e e e e e e e 92
12.6.2 CallableUnit CIASSccciiiiiiiiiiii ettt e e e e e e e e rreeeaeaeeas 93
12.6.3 CallableKind Data Type (ENUMETAtION)ceeieieieieeeeeieieee e e e e e e e e e eee e 93
12.6.4 MethOAUNIL CIASS ..ociiiiiiiiiiiitt ettt e e e e e e e e eeeeeeeas 94
12.6.5 MethodKind data type (ENUMErAtiON)ceeiiieiiieee e e e e e e e 94
12.6.6 ExportKind data type (ENUMETAtiON)euiiiiiieieieeeeeeeeeee e e e e e e ae e 95
12.7 DataElements Class DIiagrameuuiiiiriieieeeeeeeieieeeeeiiiisnnnnes e e eesaeaeeeeeees 96
12.7.1 DataElement Class (JENETIC) ..uuuuuriiiiieeiieiieieiiiriie e e e ee e e s e s ss st ee e e e e e e e e e s anannnreaeeeeeees 97
12.7.2 SOrableUNIt CIASSoviiiiiiiiiiiiiiit ettt s s bbb e bt e e e e nees 98
12.7.3 StorableKind data type (ENUMETAtION)eviiiiieeeiiiiiiiiiiieeir e e e e e e e s e e eee s 98
12.7.4 REMUNIE ClASS .oiiiieeiiiie ittt ettt e sttt e e s st e e e s ebb e e e e e nbbe e e e e e aes 99
12.7.5 INAEXUNIE ClASS ...veiiiiiiiiiiiie ittt e s b e e e e ee e e e e neeas 99
12.7.6 MeMDBEIUNIL CIASS ..oiiiiiiiiiiiie ittt sttt e e s st e e e s e nbbe e e e e eeeee 99
12.7.7 ParameterUNIt CIASSoooiiiiiiiiiiiiee et e e e e e e e ee e 100
12.8 ValueElements Class Diagramccccooveeieeeeiiiiiiiiiiiiiiiinnnsee e e e e eeeeeeeeeeeennnens 101
12.8.1 ValueElement Class (QENEIIC) ..uuviiieeieeiiiiiciiiieiie et e e e e e e s se s er e e e e e e e e e s e e enrenaneeeeees 101
12.8.2 VAIUE ClASS ..eiieeiiiiiiiee ettt ettt ettt e e ettt e et e e e e st e e e e e st e e e e e ennaas 102
12.8.3 VAIUELISE ClASSuvveiieeiiiiiiee ettt ettt ettt e e e et e e e e 102
12.9 Datatypes Class DIagramuuuuuuiiiiiiiaieeeeeeeeeeeeeeeeeiiiies s e e e e e e eeeeeeeeeee 102
12.10 PrimitiveTypes Class DIiagramccccoeeeiiieeeieiiiiiiieeiiiiiiiiaseaseeeeeeeeeeseeeeeeenens 103
12.10.1 PrimitiveType Class (JENEIIC)cccviviieeeeeieiiiiiiiiees s e e e e e e e e e e e e e eee e eneaeaaeees 104
12.10.2 BOOIEANTYPE ClASScceeiieieieeeeee ettt e e e e e e e e e e e aaaaeaaees 104
D O O o = T I o 1= I O - TS 105
12.10.4 OrdiNAITYPE ClaSSccieeieieiiie e e et e et s e e e e e e e aeaaaaaaeaaees 105
12.10.5 DAtETYPE ClaSS ...cciiiiei et e e e e e e a e e e a e e e aaaaaes 105
12.10.6 TIMETYPE CIASS ...uuuiiiiiii it e e e et e e e s e s e e e aaeaas 106
12.10.7 INteQerTYPE ClASS ...cooeeeeeeeiiiiiitiiee et e e e e ettt e s s s e e e e e e e aaaaaaeeeeeeeaennees 106
12.10.8 DECIMAITYPE CIASS ...uiiiii i e e e a e e e e e e aaaeeees 106
12.10.9 SCAlEATYPE CIASS ...uciiiii i e e e ea e aeaeaaaaees 106
D O O o T Y i Y o= 1 = S 107

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.11

12.12

12.13

12.14

12.15

12.16

12.17

12.18

12.19

12.20

D 0 B Vo T I Y o= 1 = 107

D O I 1] o 1 I3 1= T O = L 107
12.10.13 BItTYPE ClASS ..vuuuuuiiiiiiiii e e ettt s s e e e e e e e e e e e e e e et e e e e e e e e teer e eas 108
12.10.14 BItSINGTYPE ClASS .. .coiiiieiieieeeeeeee s e as 108
D O S @ T (= i 1)V = O = 1 108
12.10.16 OCtetStriNGTYPE ClASS ...cccieiei e e e e e e e e e e e e e e e e s 108
EnumeratedTypes Class Diagramccoovvvveeiiiiiiiiiiiiinneeeeeeeeeeeeeeeeeeeennnens 109
2 I O I o [0 =Y = L =T Y o = - T PSR 109
CompositeTypes Class DIiagramceeeeciiiiieeeeeeeeeeeeeeiiiiiiinna e e e e eeeeeens 110
12.12.1 CompositeTYPE ClassS (QENEIIC) ..uuurrrirriiiiiiiieeeeeesies sttt ereree e e e e e sessnenerrerrereeaeees 110
12.12.2 ChOICETYPE ClASS ..iiciiciiiiiiieiiiiie e e e e e s e e e e e e e e e s s eeeae e e s s e snnnnnrenaneeeees 111
12.12.3 RECOTATYPE ClASSueiiiiiiieiiieie e e ettt e e e e e e s st e e e e e e e e s s s an e raneeeees 111
DerivedTypes Class Diagramcoiiiiiiiiiiiiie e e e 113
12.13.1 DerivedType Class (GENETIC)ovuveeieeiiiiiiie ettt et e e 113
12.13.2 ArrQYTYPE ClASS ..ooiiieeiiiieiiieee ettt st e s e e e e e 114
12.13.3 POINEITYPE ClASS . .ieiiiiiiiiiiiiee ettt et e e aneeas 115
12.13.4 RANGETYPE ClASS oottt e b e e e eaees 115
12.13.5 BAGTYPE CIASS ..eeieiiiiiiiieiiiitiie ettt ettt s ettt e ettt e e et e e e e anabe e e e s e nannes 116
12.13.6 SEITYPE ClIASS ..eeieiiiiiiiiiiei ittt ettt s bbb e e e st e e e et e e e e e nanees 116
12.13.7 SEQUENCETYPE ClIASS ..eiiiiiiiiiiie ittt ettt e e e 117
Signature Class Diagramccooiiiiiiiiiiieeiceees e e 117
12.14.7 SIGNALUIE CIASS ..uuuuttiiiiiiiiiiaae ettt ettt e e e e e e e e s e et bbb et eeaaaae e e e e e s e aabnbbebeeeeeaaaaaaaans 117
12.14.2 ParameterKind (ENUMETAtioN)ccouuiiiiiiiiieia et e e e e 118
DefinedTypes Class Diagramccooeeeeeiiiiiiiiiiiicie e e e e e eeeeeeeanaens 118
12.15.1 DefinedType ClasS (QENEIIC)ccoieueieiieiiiiiee ettt e e e aaee e 119
12.15.2 TYPEUNIL CIASS ...ttt e ettt e e ettt e e e e e e e e e s nnb et eaeeaaaaaeeens 120
12.15.3 SYNONYMUNIL CIASSeeiiiiiiiieiii ittt e e e e e e e e e 120
ClassTypes Class Diagramcoeeuvuiuiiiiiiiiieeeeeeeeee e aeeeee e 120
12.16.1 ClaSSUNIE CIASS ...uuiiiiiiiiiiiiiee e ettt ettt e e e e e e e e e e s eereeaaaaeeeas 121
12.16.2 INterfaCeUNIL CIASScoiiiiiieiiiiiite ettt a e e e e 121
Templates Class DIagramcooeevuuiiiiiiiiinieee e e e e e e 122
12.17.1 TemplateElement Class (QENENIC)c.uuuuuuriiiiiiieie e e e 122
12.17.2 TemplateUnNIt ClassSccoooiiiiiieieee e a e e e 123
12.17.3 TemplateParameter Classcccoiiiiiiiiiiiiices e 123
12.17.4 TemplateTyPe CIasSccooiiiiiiieieeeee e e e e e e as 124
TemplateRelations Class Diagramccccoiioiiieeeeiieeieeeieeiirn e e e 124
12.18.1 INStANCEOS CIASS ...ciiveiiiieiiiiiiie ettt ettt s s s bt e e s et e e e s e nnabe e e e s e eeees 125
12.18.2 PArameterTO ClasSuueiieiiiiiiiii ittt s e e e s e b e e e e snnees 125
InterfaceRelations Class Diagramccccooovviiiiiiiiiiiiiiiieeeeee e 128
12.19.1 IMPIEMENLS ClASS ..coiieiiiieiiitiee ettt e e e e 129
12.19.2 ImplementationOf ClIASSeviiiiiiiiiiei ittt 130
TypeRelations Class Diagramccccoviviiiiiiieiiiiiiiie e 133

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 \Y

D O I o P T I o= O = 1 133

12.20.2 HASVAIUE ClASS ...cciiiiriieeiiiiiiie ettt 134

12.21 ClassRelations Class Diagramcoccceuiiiiiiiiiiiiieieieee e 139
12.21.1 EXIENAS CIASS ..oeiiireiiiiiiieiiee ettt ettt e e ne e 139

12.22 PreprocessorDirectives Class Diagram ..., 141
12.22.1 PreprocessorDirective Class (QENETIC) ..uvvviiiieeeiieiiiiicciiiiieeer e e e e e e e s sesnreraeeee e 141

12.22.2 MACIOUNIL CIASSeiiiiiiieiriee ittt n e 143
12.22.3 MacroKind data type (ENUMEratioN)cccvevieeiieiiiiiiiiiiiiiieeee e e e e e e e e e s e e sssseeeeeeeeeeees 143
12.22.4 MaACrODIreCtIVE ClIASSciivreeiieieiiieieiiet ettt 144

12.22.5 INCIUAEDIFECHIVE CIASS ...iiiirieirieee ittt e 144

12.22.6 Conditional DIreCtIVE CIASScoviueiiriiieiiiie it 144

12.23 PreprocessorRelations Class Diagramcoooevuiiiiiiiiiiiinnneeeeeeeeeeeeeeeiiieene 145
12.23.1 EXPANAS CIASS ...eeiiiiiiiiiiiiie ittt ettt e et e et e e e e ee e e e aee 145

12.23.2 GeneratedFromM CIASSciiiiiiiieiiiiiiiciiiiiee et e e e e s e e e e e e e e e e e s e s s raeeeeees 146

D2 T [T [o [= SR O = 1P 148
12.23.4 VariantTo ClassSccooiiuiiiiiiiiiieie ettt e e e e e e e e e e e e e e e e e e e s e e s snnnnreeneees 149

12.23.5 REAEIINES ClASS ..iiiiiiiiiiiiiiiiiiie ettt e e e r e e e e e e e e e s e e snnnenaeeeeees 151

12.24 Comments Class DIiagramcccceoeiiiieieeeeeiiieeeeeeeese s e e e e e e e eeeeeeeenanens 152
12.24.1 COMMENTUNIL CIASSuvttiiiiiiiiiiiee ettt e e e e et e e e e e e e e e e e s e e nbaabrenees 153

12.24.2 AbstractCodeElement Class (additional properties)cccceeeeeeeeereiiniiiiciiiiiiieeeeenn. 154

12.25 Visibility Class DIiagramuuuuuuiiiiiiiiieeeeeeee et e e e e e e e e e e aeeees 154
12.25.1 NAMESPACE CIASS ...uuturiiiiiiiiiaiaaae ettt ettt et e e e e e e e e e e bbb b e e et e e e e e e e e e e aeaanbabberaeeeaaaas 154

12.26 VisibilityRelations Class Diagramccccccceeeeeeeieieeieeiiiiiiiesnne e e e e e eaeeeeaeeeen 155
12.26.1 ViISIDIEIN ClASSeeiiiiiiiiiie et 155

12.26.2 IMPOIS ClASS ...uuiiiiii i e e e e e et e e e s e e s e e e aeaaeees 157

12.27 ExtendedCodeElements Class Diagrameeeeeeeieiiiiiiiiieenneeannnnnienns 157
12.27.1 CodeElement Class (QENEIIC)cccvvviviiieiieiiiece e e e e 158

12.27.2 CodeRelationship Class (QENETIC)uuuvruuriiiiiiieiee et e e e e e 158

13 ACHON PACKAGE ... 161
R T B @ 117 V1= PR 161
13.2 Organization of the Action Packagecccccevvviiiiiiiiiiiiiiiie e 161
13.3 ActionElements Class Diagramcccccooeeiieeiiiiiiieiieiiiees e ee e e e e e e e eeeeeeeannens 161
13.3.1 ACtiONEIEMENE CIASS ...iiiiiiiiiieiiii ettt e e e e e e e e e e e e s e s s reeeeees 162

13.3.2 AbstractActionRelationship Class (abStract) ..o 163

13.3.3 BIOCKUNIL ClASS ..oiiieeiiiiiiiiiiiiieeie ettt e e e e e e e s et e e e e e e e e e s e e e nnennbreeeees 164

13.3.4 AbstractCodeElement (additional properties)cocooviiieeiniiieie e 165

13.4 Actionlnheritances Class Diagramcccccceeeiiiiiiiicieiiiciieceee e, 165
13.5 ACHIONFIOW Class DIAgramuuuuuuiiiiieeeeeeeeeeeeeeiieeiiiiiiaas e e e e e e e e eeeeeeeeeennen 165
13.5.1 CoNtrolFIOW Class (GENETIC) ...uvueeieeiiitiiieee ittt e e ettt ettt e e s e e e e e e s abreeeeesaaes 166

Vi

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

R o1 1 V] (0 A O = L 167

L1353 FIOW CIASS ..ciiiiiieiiiiit ettt ettt e e e e e e e e e e e e e e e e bbb e e e e e eaaae e s 168

13.5.4 TrUEFIOW CIASS ...ttt ettt ettt e e e e e e e e e bbb eee e e e e s 168

13.5.5 FAISEFIOW CIASS .. .oiiiiiiite ettt e e e e e e e e e e e e e e as 169

13.5.6 GUAIEAFIOW CIASSveiiiiiiiiieeiii ittt e e eea e e e e as 169

13.6 CallableRelations Class Diagrameeeeeiiiiiiiieeaeeeonnniinieeeeeeeeee 170
L13.6.1 CallS CIASS ..coeeiutiiiieeiiiit ettt s e e e s et e e e e bbb a e et a e e e anreas 171

13.6.2 DiISPALCNES CIASS ..uuvvriiiiiiiiiiieeeeisiie st e e e e e e e e et s s st e e e e e ae e e s e s anenn b rareaaaeeeaes 172

13.7 DataRelations Class Diagramcccccuuuviiiiiiiiiiiiiiie e 174
13.7. 1 REAAS ClASS ...ueeeeiiiiiiiiiiiie ettt ettt e st e e e et a e e et e e e s e nnanes 174

R T N 1 (=T O = 1 PR PR 175

13.7.3 AAAIESSES CIASS ...eeiiiiiiiiiiieiiiiiitt ettt ettt e e sttt e e s sttt e e e st e e s sanbbe e e e e snnbbeeeeeannees 175

13.7.4 CreatesS ClaSS ..oiiueiiiiiiiiiiiie ettt e ettt e et e e s e bt e e e e e nnbbe e e e e anees 175

13.8 ExceptionBlocks Class Diagramueeeioiiiiiieieieeieeeeeeeiiiiiiee e 176
13.8.1 EXCEPLONUNIL CIASSeviviiieiiiiiiiee ittt ettt e st e e e b e e e e eneees 177

13.8.2 TIYUNIL CIASS .uieeiieiieitiee ettt ettt s e e s e e e s e nbb e e e e e e 177

13.8.3 CatChUNIL CIaSS ...ooiiiiiiiiiiiiiiiie ettt e e e et e e e e e e e e s e e s nen e eeaeeaeeeeas 177

13.8.4 FINAIYUNIE CIASS ...eeiiiiiiiiiiiei ittt ettt e e e e 178

13.9 ExceptionFlow Class Diagramuuuuiiiiiiiiiiieeeeeeeeeeeeeeien e e e e 181
13.9.1 EXITFIOW CIASS ...ttt bbbttt et e e e e e e e et reeeaaaaeeas 182

13.9.2 EXCEPLONFIOW CIASSuitiiiiiiiiiiiieeei ettt ettt e e e e e e et reeeeaaaeeas 183

13.10 ExceptionRelations Class Diagramccccoeeeeeeeeiiirieeeiiiiiiee e eeeeeeee 183
13.20.12 TRIOWS CIASS .. oiiiiiiiiiiieiie it e ettt et e e e e ettt et e e e e e e e e e s e e annbabbraeeeaaaaaeeas 184

13.11 InterfaceRelations Class Diagramccccccoeiiiiieeeiiieiieeeeiiirne e e e e e e 184
13.11.1 ComMPHESTO ClaSS ...cciiiiiii i e e e e e e e e e e 185

13.12 UsesRelations Class DIagramcccccueeeerereiiiiieeeeaaeaeaase s 185
13.12.1 USESTYPE ClASS .evvruruuuuiiiiiiii et e e et e ettt s s e e e e e e e e e e e e e e teeeeeeeeeaeaneenrnnnnnnns 186

13.13 ExtendedActionElements Class Diagramcccccceeeriiiiiiiiiiiiiiiiiiieeeeee, 186
13.13.1 ActionRelationship Class (QENEIIC)vvieeeiiiiiiiiieeeee e e e e e e e e e 187

I YT {0 T N5] Y PP 189
Subpart Il - RUNtime RESOUICES LAYENuiiiiiiiiiiiie ettt 199
15 PIatform PaCKAQEccoeuuuiiiiiiiiiiie et 203
L15.1 OVEIVIEW ..ottt e et e e e e et e e e e e e e e e e e e e et e e e e e sssa e e eeeestaaaeaaeees 203
15.2 Organization of the Platform Packageccccccceeeiiiiiiiiiiiiiciceie e 204
15.3 PlatformModel Class DIiagramuuueeiumiiiinieeeeeee i e 205
15.3.1 PlatformMOdEl CIaSSuuveiiiiiiiiiiieee ittt er e e e e e e e s eeneeee s 205

15.3.2 AbstractPlatformElement Class (abStracCt)oooviiiiiiiiiiiiiiie e 206

15.3.3 AbstractPlatformRelationship Class (abStract) ... 206

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 Vii

15.4 Platforminheritances Class Diagramccccuuuvriiiiiiiiiiiiieieeee e 207

15.5 PlatformResources Class Diagramc.ccccceeiiiiiieeiiiiiiiiies e e eeeeeeeeeeeeeennns 207
15.5.1 PlatformMRESOUICE ClASSu.iiiiniiiiiieiie ettt e e e et e e e e s e e e s e e saaeeeeees 208

15.5.2 NamiNGRESOUICE CIASSuuuiiiiiiiiiiaiiiei it e e 208

15.5.3 MarshalledRESOUICE ClASSuuiiiiiiiiiiie ettt e e e e e e a e ees 209

15.5.4 MeSSagiNgRESOUICE ClASSuueiiiiiiiieiiiiiiiiiiie ettt e e ee e 209

15.5.5 FIIERESOUICE ClASS ...uiiieiiiiei et e e et e e e et e e e e e e eaa e aees 209

15.5.6 EXECULIONRESOUICE CIASSiiiviiiiiiiiiite et e e e e e e e e et e e et e e et e s eaaeeeees 209

15.5.7 LOCKRESOUITE CIASSccveiiiiei ittt e e e e et e e e e s e s st e s et e e saaessaanaeeees 209

15.5.8 StreamRESOUICE CIASSuuiiiiiiiieiitiie et e e et e e s e e e e e e st e e st e s esaa e e raaeeees 210

15.5.9 DataManager CIaSScccuuutiiiiiiiieiaaa ettt e e e e e e e et e et e e e e e e e e e s e e anbeeaeeeeeeas 210

15.5.10 PIatfOrMEVENT CIASScceeeiiiii ittt e et e e e e et e e et e e e e e e snaaaeaees 210

15.5.11 PIatfOrMACLON CIASS ...covuiiiiiiiei ettt et e e e e et e e et e e e e e s snaaaeaees 210

15.5.12 EXIEINAIACION CIASS ...oniiiiiiiiiiie ettt ettt e e e e e e e e st e e e bt e e eaaaaeees 211

15.6 PlatformRelations Class Diagramcccccceeieiiiiiieeiiiicisee e e e e e ee e eeeeeenens 211
15.6.1 BINASTO ClIASS ...civiiiiiiiiiiiii ettt e et e e e e e e e e s e e e e eaa e s st e e eaa e ssaaneesres 211

15.7 ProvisioningRelations Class Diagramccccccevviviivieiiiiiiiiinnneee e eeeeeeeeeeeee 212
L T 00 I U= [0 1T (=TSR = USSP 212

15.8 PlatformActions Class Diagramcccccoooiieeeeeiiiiiieiiiiiiiiininns e e e e e eeeeeeeeeees 213
15.8.1 ManageSRESOUICE CIASSuviiiiiiiiiieeeiiiiiiiitieieeeeree e e e s s s s s e e e aeaee e e s e s nnnensneeeeees 213

15.8.2 REAUSRESOUICE CIASS ..cevvuiiiiieeiii e ee i ee s e e e et e e e e s et s e e s e s eaae e e e s eebba e eaeseees 214

15.8.3 WIItESRESOUICE CIASS ...evvuniiiiieetiii e ieei e e e e et e e e ettt e e e e s et s e e s e e aaaa e e e e sesbasa e eaeeeees 214

15.8.4 DefiNedBY ClASSccooiiiiiiiiieiiiei et e 215

15.8.5 ProducesPIatfOrMEVENTcouuuiiiiiiiiiie et e e e e e e e s e e e e eeaaans 215

15.9 Deployment Class Diagramccooeuiiiiiieiiiiiiiii e e e e e e aens 216
15.9.1 DeploymentElement Class (JENETIC) ...ovuveiieeiiiiiiee ettt 216

15.9.2 DeployedCompPoNnENt ClASScoiiiiiiiiiieiiiiiie ettt e e e eee e aees 217

15.9.3 DeployedSoftwareSystem ClassScoooviiiiiiiiiiiiiie e 217

15.9.4 MACKINE ClASS ...cvniiiieiiieee et e et e et e et e e e e et e e st e e eateeeesaneeseras 218

15.9.5 DeployedRESOUICE CIASSciiuvviiieeiitiiiee ettt ettt e st e e e st e e e e s abnreeeesaaes 218

15.10 RuntimeResources Class Diagramcccccovvviviiiiiiiiiiiiiee e eeeeeeeeeeeeeaanens 218
15.10.1 RUNtIMERESOUICE (GENEIIC) ..eeeiiiiiiiieeeiiitit ettt ettt e e 219

15.00.2 PrOCESS ClASS ...ivuuiiiiiieeiee ettt ettt e et e e et e e st e e e et e e e e e e s et s e et eeeaaaeees 219

T O R T o] (== To [O F= 1T 219

15.11 RuntimeActions Class Diagramccccccceeeeeiiiiiiiceceiiissins e e e ee e 220
S 0 5 R o Y= T o O = T T 220
15.10.2 SPAWNS CIASS ..iiiiiiiiiiiitite ittt e ettt et e e e e e e e s e e et bbb b e et e e e e e e e e e e ae e e nbab e b aeeeaaaas 221

15.12 ExtendedPlatformElements Class Diagramcccceeeeieiiiiieeeeeeeeseeeeennnnnns 221
15.12.1 PlatformElement Class (QENEIIC) ..uuuuuuiiiiiiie i e eeeee et e e e e e e e e e e e aaaaeeaees 221
15.12.2 PlatformRelationship Class (QENENIC)uuuiiiiiiiiiiee e 222

(G L = T = T [PRSP 223
TR @ 17T V7T T 223

viii Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

16.2 Organization of the Ul Packagecccceeiiiiiiiiiiiiiiieeeeee 224

16.3 UIModel Class DIiagramccooviiiiieiiiiiiiiiiiieee e ee e e e e e eeeeeesssnsnnnnnn e e e e e e aaaaes 224
16.3.1 UIMOUEI CIASS .. ittt ettt e ettt et e e e e e e e e e s anb bbb eaeeeaaaaeeeas 225

16.3.2 AbstractUIElement Class (ADSLracCt)ccoiiiiiiiiiiiiieee e 225

16.3.3 AbstractUIRelationship Class (abSract)cooiiiiiiiiiiiiiieieieeee e 226

16.4 Ulinheritances Class Diagramuuuuuiiiiiiiiiieeeeeeeeeeeeeeenveininnne e e e e eaaeaes 226
16.5 UIResources Class Diagramoouvuviiiiiiiiiiiii e 227
16.5.1 UIRESOUICE ClaSS (JENEIIC) .eieiieieeiiiiiiititeieie et e e e e e e ettt et e e e e e e e s e s sbbeb e e eaaaaaeas 227

16.5.2 UIDisplay Class (QENEIIC) ..eeetiiiaiaaieiiiieiiitiiee et e et e e e e e e e e e eaab e aeeeaaaaaeas 228

16.5.3 SCIEEMN ClASS ..eeiiiiiiiiiiiii ittt ettt e e e e e e e e e bbbt et e e e e e e e e e e s e e nnbbbeaaeeeeeaas 228

16.5.4 REPOIE ClASS .. .iiiiiiiititiit ettt ettt e e ettt e e e e e e e e e e e e e a bbbt e eaeeeaaaaaaeas 228

16.5.5 UIFIEIA ClASSeeiueiitieiuiieitiietieeie e stee st sttt et et e be e st be e sbe e ssbe e saeeeneeesaeeanbeannnea 228

16.5.6 UIEVENT ClASS .. oottt ettt ettt et e e e e e e e e e s e et bbb beaeeaaaaaaeas 229

16.5.7 UIACLON CIASS ...ttt ettt e e e e e e e e e e e e e aeeeeaaaaeas 229

16.6 UIRelations Class Diagramcccccuuuiiiiiiiiiiiiiiieeeeee e e e e e e e s sssssseessnsneeeeeees 229
16.6.1 UIFIOW CIASS ...oeeiiiiiiiiiiitt ettt ettt e e e e e e bbbttt et e e e e e e e e e e s annebbabeeeeaaaaans 230

16.6.2 UILAYOUL CIASS .ciiiiiiiiiii ittt ettt e e e e e e et e e et e e e e e e e e e e nanbesaeeeeeeas 230

16.7 UIACHONS Class DIAgIamcoooieiiiiiiiiiiiiiiiiieieeeee e e e e e e e e e e e e e s s sssiiesbbbeee e 231
16.7.1 DiSPIAYS ClASS ...vvuuuuiiiiiieii ettt e 231

16.7.2 DisplaySImage ClaSsSccccciiiiiiiiiiei e e e e e e e e e et e e 232

AR YT g Vo =T U O F= 1 232

16.7.4 REAASUI CIASS ..ottt ettt ettt e et e e e e e e e s bbb e e reeaaeaeeeas 232

16.7.5 WIItESUI CIASS .. .coiiiiiiiiiiee ettt e e e e e e e e eeeeeeeeas 233

16.7.6 ProduCESUIEVENT ClaSS.......cuuiiiiiiiiiiiiiiitiee ettt a e e 233

16.8 ExtendedUIElements Class Diagramciiiiiieeeioinnnnnessiiiiiineeeeees 234
16.8.1 UIEIEMENt ClaSS (JENEIIC) .uvvriiiieieeeei ittt et e e e e e e s e s st aeeee e e ae e e s e s snnnnnrre e eereeeeeas 234

16.8.2 UIRelationship Class (ENEIIC)ccvvviviiiiiiiiiiicisis e e e e e e e s 234

17 EVENE PACKAGE ..uuiiiiiieiiiii ettt ettt e et e e e e e e e e e 237
A T O Y= 1 SRR 237
17.2 Organization of the Event Package ..., 238
17.3 EventModel Class DIiagramoouuuuuiiiiiiiiiieeeeeeeeeeeeeeeetr e e e e e e e eaa e 238
17.3.1 EVENIMOE] ClASS ...evveeiiiiiiiiieeiiis ittt e e e e e e e s e st eeeaaaaeeeeeas 239

17.3.2 AbstractEventElement Class (abSIract)ccooviiiiiiiiiiii e 239

17.3.3 AbstractEventRelationship Class (abstract)ccccoiiiiiiiiiiiii e, 239

17.4 Eventlnheritances Class Diagrameeeeeeeiiiiieeeeeeenieeeeeeisseinveeeeeeeees 240
17.5 EventResources Class Diagrameuiiiiiiiieieieiiieeeeeeiiiiii e 240
17.5.1 EVentResoUrce Class (QENETIC) .ocuiiiiieeieiiiiiieeie e et e e s eeeiiieeieeee e e e e e e e e s s senreeneeeeeaaeeeeeas 241

L17.5.2 EVENE CIASS .oiiieieiiiiiieiiitiee ettt e e e e e e e e s e ettt e e e e e e e e e e seannnbe it eaeeaeaeaeeean 241

L17.5.3 StALE ClASS .oiiiiiieeiiiiiiiiittie ettt ettt e e e e e e e e s s ettt e e e aa e e e e e e e a b araeaaes 241

17.5.4 INItIAlSTALE ClASS ...ociiiiiiiiieiiie ittt e e e e e s e e e e e e e e e e e aeeeeees 241

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 iX

17.5.5 TranSItioN ClaSScicuuiiiiiiiiie et e e e e et e s et e e e e et e s sab e e sabeeasaneseres 242

17.5.6 ONENLNY ClaSS ...oiiiiiei i e e e e e e e e e e e e e e et e r e e e e e e e eaaaaaaees 242

17.5.7 ONEXIt ClASS ..eeeeeeiiiiieeeii ittt ettt e e e e e e st e e e e e e e e e s e e s annnbeeneeas 242

17.5.8 EVENTACHON ClASS ...ooiiiiiiiiiiitteee ettt ettt e e e e e e e e e e s aennbbeneees 242

17.6 EventRelations Class Diagramccccooeeeiioeeiiiiiieiiieiiiiinnss e e e e e e eeeeeeeeenennnees 243
17.6.1 NEXISTALE CIASS ..vvviiieiiiiiiiiee ittt ettt e e e sttt e e e s st b e e e s snbaeeeeessnbaeeeeesane 243

17.6.2 CONSUMESEVENE CIASS ...eiiiiiiiiiiiieiiiiiiiee ettt te ettt ee ettt e et e e e s st ee e e s s sabeeeeeeaees 243

17.7 EventActions Class DIAgramiieiieieeeeeeeieeieeeeeiiiiinenseasseeeeeseseeeeeseeennes 244
17.7.1 REAASSIALE CIASS ..veiiiiiiiiiiiii ittt ettt e et e e st e e e e e sbb e e e e ennees 244

17.7.2 ProdUCESEVENT CIASSeeiiiiiiiiiieeiiiiiie ettt ettt e ettt ettt e e e s st e e e s s nbbeeeaesnees 245

17.7.3 HASSTALE ClASSuveeiiiiiiiiiii ettt ettt e e st e e e st e e e e s snbeeeeeeanes 245

17.8 ExtendedEventElements Class Diagramcooeveuiiiiiiiininnieeeeeeeeeeeeeeeeennns 246
17.8.1 EventElement Class (GENEIIC) ...eeiiiiiiiiiieeeiitiiee ettt ettt e et ee e e e 246

17.8.2 EventRelationship Class (GENEIIC)uuvviiiiiiiiieiee ittt 246

18 Data PaCKAQEccoveviiiiieiieiiie et 249
L18.1 OVEIVIEW ..oeeiiteiiiiie et et e e e e e e ettt s ee st e s e e s s e eeeeeeaaeeeeseeennnes 249
18.2 Organization of the Data Packageccccovviiiiiiiiiii, 250
18.3 Data Model Class DIaQrameeuuoiiiiiiieeeeeeeeeeeeeeeeeisiisssessseeeeeeeaeeeeeeenenen 250
18.3.1 DAtaMOAE] CIASS ...coiiieiieiii ittt ettt e e e e e e e e 251

18.3.2 AbstractDataElement Class (aDSIracCt)ceeeeeieiiii e 251

18.3.3 AbstractDataRelationship Class (abStract)ccccceeiiiiiiieeeececr e, 252

18.4 Data Inheritances Class Diagramccccccuuiiiiiiiiiiiiieieie e e e e ee e 252
18.5 DataResources Class Diagramccccoeeieeeeeeiiiiieiieiiiiiieseise e s e e e e e e e eeeeeeeeaennnns 252
18.5.1 DataResource Class (QENEIIC)ccuieeiii ittt e e ee e 253

18.5.2 DataContainer Class (QENEIIC) ...coeiiiiiuiiiiiiiieeeia e e ettt e e e e e eeee e 254

18.5.3 CatAlOg ClIASS ...eeeiiiiiiiieieiie ittt et e e e e e e e s s bbb e et e e e e e e e e e annb e neees 254

18.5.4 RelationalSchema Classoouuuiiiiiiiiiiiiii e eaaa e 254

18.5.5 DAtAEVENT CIASScciiiiii it eaaaaaaas 255

18.5.6 DAtaACHION CIASSccioiiiiiieiiee et aaaaaa e 255

18.6 ColumnSet Class DIagramuuuuiiiiiiieeeeeeeeeeeeeeieeeiirs s e e s e e e e e eeeeeeeeeeennnen 256
18.6.1 ColUMNSEL (JENETIC) ..coiieiiieeeeeeeie e e s e e e e e et a e s e e e e e aeaeeaeeeeeeenenes 256

18.6.2 RelationalTable Classccc.euiiiiiiiiie e 257

18.6.3 RelationalVIEW CIASSccccuiiiiiiiiiiiie e 259

18.6.4 DataSegmMeENt CIASScoeuvuiiiiiiiiiiiiiiiie i i e e e e e e e et et et ee et e ese s e e e e e e e aeaaeaeearaanrann 260

18.6.5 RECOIAFIIE CIASS ..eiiiiiieiiiiiiitite ettt e e e e e e e e e e s e eanbbenee s 262

18.7 Keylndex Class DIAgramuuuuuumuiiiiiaaeeeeeeeeereeeeeeasnsnnnseeeeeessseeereeeennne 266
18.7.1 IndexElement Class (QENEIIC) ..uuuuuruuriiiiieie e e e eeeeee ettt s e e e e e e e aeaaaaeeeeeeanes 267

S [oo [T=] SV 1 = TSP 267

18.7.3 ReferenCeKEY ClasSooovviiiiiiiiiiiiiii i e e e e e e e e e e e eeaaeeanes 268

L18.7.4 INAEX ClASS ...eeeeeiiiiiieeeeie ittt e e e e e e e e s bbbt e et e e e e e e e e e s e ennbbenee s 268

18.8 Key Relations Class Diagramccoeiieiieeeeeeiieieieeeiiiiiiassessseeeeeseeeeeeeeeeenens 269

X Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.8.1 KeyRelationShip CIaSSciiiiiii e e e s 269

18.9 DataActions Class DIiagramceevvuuiiuiiiiiiiieeeeeeeeeeeeeeeeeetriner e e e e e eeaeaaes 269
18.9.1 REadSCOIUMNSEL ClASS ...uiiiiiieeii i e e e e e s e e e e e s eaab e e s eees 270

18.9.2 WrItESCOIUMNSEL CIASS ..vuniiiiiiiiiie e ittt e et e e e e et e e e s e s st eeesesbaa e eaeeeees 271

18.9.3 MaNAgESDAta ClAaSSceeiiiiieieiiiiiiiiiiiie e e s er e e e e e e e s e rreae e 271

18.9.4 HASCONIENT CIASS ..vvuiiiiiiiiie i ieieeee e ettt e e e et e e e s et e e e e e s eab e e e s eeabaa e esesessaanseeaenes 272

18.9.5 ProduceSDataEVENL ClASScevuuiiiiiiiiiiiee et e e e e e e e e e s e e s seaba e eeeees 272

18.10 StructuredData Class Diagrameeeiiiiiiieieeeeeeieieeeeiiiiiniinn e e e e eeeeeeas 277
S0 O TR LY | IS Y] =Y 0 = 278

18.10.2 AbstractContentElement (ADSIract)covveeeiiiiiiiiiiiiree e 278

18.11 ContentElements Class Diagramccooeuuiiiieeiiiiiiieeeeeeiiiin e e eens 278
18.11.1 CONENLILEM (GENETIC) ..vverieiiutiieiee ittt e ettt e sttt e e ettt e e et e s e e e e e e nbbe e e e e aneees 279

18.11.2 COMPIEXCONTENTTYPE .eeiiieiiiiiiiiee ittt ettt ettt st e e s e e e e e e b e e e e anenes 279
18.11.3 SIMPIECONENITYPE ...eeieiieiiiiiie ettt e e e s e e e e snabr e e e e e naenes 280

18.11.4 CONENRESITICHION ...eeeeiiieeieie ettt e et e e e e et e e et e e ettt e e e st s e ssasesetaneesaneees 280

18.11.5 AICONTENT CIASSceeeeiiiieeeitt et e et et e e ettt e et e e e e e e e et e e esaasessasesatseenraeees 283

18.11.6 SEQCONIENT ClASS .. .eeviiiieiiiiiie ettt e s e e e e s anees 283

18.11.7 ChOICECONTENE CIASSiiveniiiieieiee et e e et e et e e et e e st e e e et e e eatsessasesetssessaeees 283
18.11.8 GroupPCONLENE CIASSeiiiiiiiiiiieiiiiiie ettt ettt e s e e e e e b e e e e annees 283

18.11.9 MIXEUCONIENT CIASS ..uuiiieiiiiitt et e et e e e et e e et e e et e e e et e e eat s essasesetaeesrneaes 283
18.11.10 CoNtENtATDULE ClASS ..oevniiitii ittt et e e e e e e e et e e ea e e esaaaees 283
18.11.11 CoNtENLEIEMENT CIASS ...uniiieiiieiee ittt e e e e e e e e e e e e et e e st e e e e eees 284
18.11.12 CoNteNtREEIENCE ClASS ...cvuiiiieiiiieeee e e e e e e e e s e e e e eaes 284

18.12 ContentRelations Class Diagramcccccciiiiiieeeiieiiiiieeieee e 288
18.12.1 TYPEABY ClASS . .iiiiiiiiiiiiiitie ettt e e ettt e e e e e e e e e s aabb b e e e e e aaaaaeeeas 289

18.12.2 DAtatyPeOF ClaSSueeiiiiiiiiiiiiae ettt ettt e e e e e e e e e e e e as 290
18.12.3 REFEIENCETO CIASS ..ouuriiiieiiit ettt e et e et e e et e e st e e e e bt s e sab e e saba s esaaseaes 290
18.12.4 EXIENSIONTO CIASS ...ceeuiiieieiiiee ettt e et e e et e et e e e e s e e et e s e sba s e s st e ssbasesaanaes 290

18.12.5 ReESINCHONOT ClASS ...ceviiiieiiiiee ettt e e et e e e e e et e e e st s e s st e e eaaeeesaaees 291

18.13 ExtendedDataElements Class Diagramcccccovvvvviiiiiiiiiiiiiiee e eeeeeeeen, 291
18.13.1 ExtendedDataEIemMENTt CIASSoiiiiiiiii ettt e et e e e naa s 292
18.13.2 DataRelationNShip ClAaSScceiiiiiiiiiiie e 292
Subpart IV - ADSIraCtion LAYErccovvuiiiiiieiieiiiiee e e e e e eeaans 295
19 SErUCIUIe PACKAQgEoovveiiiiiiiiice e e e 297
e TR @ 17T V7T T 297
19.2 Organization of the Structure Packageccccooooiiiiiiiiiiiii i 298
19.3 StructureModel Class DIiagramccccuuuerieiiiiiiiiieieee e 298
19.3.1 SrUCIUIEMOAE] CIASSieeiiiii e e e e e e e e e e e eaa e ees 299

19.3.2 AbstractStructureElement Class (abStract)ccccceeeeiiiiiiiiiiee e 299

19.3.3 AbstractStructureRelationship Class (abstract)ccccceeeeviiiiiiieiieiiiieiee, 300

19.3.4 SUDSYSIEM ClASS ...uuuiiiiiiii et e e e e e e e e e e e et e e e e e e e s 300

S T I = 1 = T 300

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 Xi

19.3.6 COMPONENT CIASS ...coiiiiiiiieeeiieiiiii e ri s s e e e e e e e e e e e e et e e e e e e et ae et s e s e e e e aeeaeaeaaeeeeenenes 300

19.3.7 SOftWAreSYSIEM CIASS ...oevviiiiiiiiiiiiiiiiiei s e e e e e e e e s e e e e e e e aeaaaaeaaaeeanes 301

19.3.8 ArChiteCtUreViEW CIaSSccciiiiiriiieiiiiiie et e e s e e e e s 301

19.4 Structurelnheritances Class Diagramccceeeeeiiiiiiiiiiiiieee e 301
19.5 ExtendedStructureElements Class Diagramccccveviiiiiiiiieeeeeeeeeeeeeee, 301
19.5.1 StructureElement Class (GENEIIC)cooiiiiieiiiiiieiee et ee e 302

19.5.2 StructureRelationship Class (QENETIC)uueiiiiiiaiiiaiiiiiiiiee et 302

20 Conceptual PACKAQEccouvuiiiiiiiiiiie e 305
20.1 OVEIVIEW ..iiiiiiei ittt et et e e e e e e e e e e e e et e e e e bbbt bbbt b bbb e et e eeeeeaeeaeaaeeeeeanans 305
20.2 Organization of the Conceptual Packageccccceeeeeiiiiiieeeeeeeeeeeeeeiie 306
20.3 ConceptualModel Class DIiagramcooooiiiiiiiiiiiiiiiiiiiiieeeeee e e e e e 307
b2 0 5 I @0 (o7 =T) 18 =111 o o =Y SRR 308

20.3.2 AbstractConceptualElement (@DStract)coooovviciiiiiiiiiiiee e 308

20.3.3 AbstractConceptualRelationship Class (abStract)ccccccceeiviiiiiiiiiiiiiree e, 309

20.4 Conceptuallnheritances Class Diagramceuueeeiiiiineenneeeeeeeeeeeeieieeeennnnns 309
20.5 ConceptualElements Class Diagramcccooociiviiiiimiiiiiieeeeee e e e e e e 309
20.5.1 ConceptualContaiNer CIASScccccuuriiiiiiiiieieeeeeesissterer e e e e e e e e e e e s s s s errereeaeeeesanan 310

20.5.2 TEIMUNIE ..ceiieeie ettt et ssn e e s nnr e e e e s nnne e e nnneena 311

20.5.3 FACLUNIE ...eeiiiiiiieee ettt ettt e e 311

20.5.4 RUIBUNIL ...eeiiiiiiiieiee sttt e sttt e e ebb et e e e s bbb e e e s sabbe e e e e s nnnteaens 311

20.5.5 CONCEPLUAIROIEeviiiiiiiiiiie et s e r e e e e e e s e s s ear e e e e aeeeeseeann 312

20.5.6 BENAVIOTUNIL ClASSvviiiiiieiiiiiciiee ettt 312

20.5.7 SCENAMOUNIL ClASSvviiiiiiii ittt 312

20.6 ConceptualRelations Class Diagramcccooiceiviiiiimiiiiiieeeeeee e e e e e e e 313
20.6.1 CoNCEPLUAIFIOW CIASS ..ieeveeeeiiiiiiciiiieee et e s e e e e e e s s et rr e e e e e e e eeaenan 313

20.7 ExtendedConceptualElements Class Diagramccccceeeeeeiiiiieiieeiiviiinnnnnns 320
20.7.1 ConceptualElement Class (QENEIIC)uviiiiiiiiiiieiiiiiieie et 320

20.7.2 ConceptualRelationship Class (GENETIC)ccivuvviiieiiiiiiiie et 321

P20 =1 1] Lo = T = T [323
P2 I A @ V=T V1 PO PPPPRPPRPRP 323
21.2 Organization of the Build Packageooooiiiiiiiiiiiiiiiiiieieeeeeeeee e 324
21.3 BuildModel Class DIagramcceeieeeeeeeeeeieieeieeiiiiiiiisss s e e s e e e e e e eeeeeeeeennnnnen 324
21.3.1 BUIIAMOUAEI CIASSevveeiieiiiiieei ettt 325

21.3.2 AbstractBuildElement Class (abstract)oooevviiiiiiiiiiiiii e 325

21.3.3 AbstractBuildRelationship Class (abstract)cccvceiiiiiiiiiee, 325

A B A ST o] o] 1= 4 F= 1= 325

21.3.5 TOOI CIASS ...ttt 325

A G T SIS} V1 o [o I | F= LU 326

21.4 Buildinheritances Class Diagramcccoovviiieiviiiiiiiiiinieee e e e eeeeeeeeeeeeennenennnes 326

Xii

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

21.5 BuildResources Class DIiagramcccccoeeieeeeeeeiiiieiieeiiiiiinneasseeeeeeeeaeeeeeeeenne 326

21.5.1 BUIIARESOUICE ClASSvviiiiiiiiiiiiee ittt ettt et e e s e e e e e 327

21.5.2 BUIldCOMPONENT CIASSuveeiiiiiiiiiiieeee i ecct e e e e e e e e s e s eee e e e e e e e e s e e s anennrreneees 328

21.5.3 BUIlADESCHIPLION CIASSveviiiieiiiiiiee e s s ece e et e e e e e s e s s ee e e e e e ae e e s e e s ennnnreeneees 328

P SR = TN 1 o | I o = YA O = 1 RSP 328

21.5.5 BUIIAPIOAUCE CIASS ...cceiiiiiiieeiiiiie ettt e bbe e e e e 328

21.5.6 BUIIASTEP ClASS ..eeiiiieiieiiiiiiiiiiiiiie e s s e e e e e e e e s s e st e e e e ae e e e e e s ennnnnsennnees 329

21.6 BuildRelations Class DIagramcccooieeiiieeeeiiieiiieeeiiiiiiinsess e e e e e eeeeeeeeeeeenne 329

21.6.1 LINKSTO ClASS eiiuveiieeiiitiiiee ettt ettt ettt ettt e e e sttt e e e s e snb e e e s e bt ae e e e e annbe e e e s ennnees 329

21.6.2 CONSUMES ClASS ..eiiiiiiiiiiiie ittt ettt e et e e st a e e s enbe e e e e e nnenes 330

21.6.3 ProduCES CIASSuiiiiiiiiiiiee ittt ettt e e sttt e e st e e s e st e e e e s sbbe e e e e annees 330

21.6.4 SUPPOIEABY CIASS ...ciieiieieeiiieieiii e et e e e e s e e s e ssr ettt e e e e e e ae e e s e s st aaeereeaaeeeseessnnnnrenneees 331

21.6.5 SUPPIIEABY CIASS ...ceeceiiiiiiiiiiiieiee et e e e e s e s e e e e e e e e s e s sn e eeeaae e e e e e s annnnrrnneees 331

P G G R =T Tor] o 1= To | = A - TSP 332

21.7 ExtendedBuildElements Class Diagramccoooeviiiiieiiiiiiiiii i 333

21.7.1 BUIldEIemeNt ClassS (JENETIC) ...oceviiiiiieeeiiiiie ettt ettt et 334

21.7.2 BuildRelationship Class (GENETIC)uvieeeiiiiiiieeiiiie ettt 334

Annex A - Semantics of the Micro KDM Action Elementsccccvvvvvninnnee. 337
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 Xiii

Xiv Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http: //www.omg.org/spec

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

. Business Rules and Process Management Specifications

Language Mappings
. IDL/Language Mapping Specifications
e Other Language Mapping Specifications

Middleware Specifications
. CORBA/IIOP
. CORBA Component Model
. Data Distribution
* Specialized CORBA

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4 XV

Modeling and Metadata Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications.

Modernization Specifications
. KDM

Platform Independent Model (PIM), Platform Specific Model (PSM), and Interface Specifications
. CORBAservices
. CORBAfacilities
. OMG Domain specifications
. OMG Embedded Intelligence specifications
. OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) All specifications are available in PostScript and PDF format and
may be obtained from the Specifications Catalog cited above. Certain OMG specifications are also available as | SO
standards. Please consult http://www.iso.org

OMG Contact Information

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
http: //www.omg.org/
Email: pubs@omg.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

XVvi Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4

Note — Termsthat appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to
http://issues.omg.org/issues/create-new-issue.

Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4 XVii

xviii Architecture-driven Modernization: Knowledge Discovery Meta-model, v1.4

1 Scope

This specification referred to as the Knowledge Discovery Meta-model (KDM) defines a meta-model for representing
existing software, its elements, associations, and operational environments. This is the first in the series of specifications
related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM facilitates projects
that involve existing software systems by offering interoperability and exchange of data between tools produced by
different vendors.

One common characteristic of various tools that address SwA and ADM challenge is that they analyze existing software
artifacts (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Any
tool that operates on existing software produces a portion of the knowledge about the software (a collection of facts).
Tool-specific knowledge may be limited in scope, restricted to a particular source language, and/or particular
transformation, and/or operational environment. Often such tool-specific knowledge is not be exported in any explicit
format. For example, such knowledge may be used internally by the tool: a compiler generates precise facts about a
compilation unit only to discard them as soon as the object file is generated. Even when access to tool-specific
knowledge is provided, it implies commitment to a proprietary definition and may involve a proprietary physical format.
All the above may hinder interoperability between different tools, integration of several pieces of knowledge about the
same system and development of common content. The meta-model for Knowledge Discovery provides a common
ontology and an interchange format that facilitates exchanges of data contained within individual tool models that
represent existing software. The meta-model represents the physical and logical elements of software as well as their
relations at various levels of abstraction. The primary purpose of this meta-model is to enable a common interchange
format that allows interoperability between modernization and/or software assurance tools, services, and their respective
intermediate representations. This meta-model aso allows development of common vendor-neutral content (patterns,
rules, metrics, etc.) for modernization and software assurance based on the standard KDM meta-elements instead of
proprietary intermediate representations of software and software systems.

2 Conformance

KDM is defined via the Meta-Object Facility (MOF). KDM determines the interchange format via the XML Metadata
Interchange (XMI) by applying the standard MOF to XMI mapping to the KDM MOF model. The interchange format
defined by KDM is called the KDM XMI schema. The KDM XMI schema is provided as the normative part of this
specification.

KDM elements are defined in several packages identified by the following XMI namespace URIs:

Table 2.1 XMI namespace URIs for KDM packages

KDM Package Namespace URI XSD Schema location
Core http://www.omg.org/spec/KDM/20160201/core core.xsd

kdm http://www.omg.org/spec/KDM/20160201/kdm kdm.xsd

Source http://www.omg.org/spec/KDM/20160201/source source.xsd

Code http://www.omg.org/spec/KDM/20160201/code code.xsd

Action http://www.omg.org/spec/KDM/20160201/action action.xsd

Platform http://www.omg.org/spec/KDM/20160201/platform platform.xsd

ul http://www.omg.org/spec/KDM/20160201/ui ui.xsd

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 1

Table 2.1 XMI namespace URIs for KDM packages

KDM Package Namespace URI XSD Schema location
Event http://www.omg.org/spec/KDM/20160201/event event.xsd

Data http://www.omg.org/spec/KDM/20160201/data data.xsd

Structure http://www.omg.org/spec/KDM/20160201/structure structure.xsd

Conceptual http://www.omg.org/spec/KDM/20160201/conceptual conceptual.xsd

Build http://www.omg.org/spec/KDM/20160201/build build.xsd

KDM is a meta-model with a broad scope that covers a large and diverse landscape of applications, platforms, and
programming languages. Not al of its capabilities are equally applicable to al platforms, applications, or programming
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers to integrate multiple facts about a complex enterprise application, as the complexity
of modern enterprise applications involves multiple platform technologies and programming languages. In order to
achieve interoperability and integration of information about different facets of an enterprise application from multiple
analysis tools, this specification defines several compliance levels thereby increasing the likelihood that two or more
compliant tools will support the same or compatible meta-model subsets. KDM follows the principle of separation of
concerns to allow selection of only those parts of the meta-model that are of direct interest to a particular tool vendor.
Separation of concerns in the design of KDM is embodied in the concept of KDM domains.

2.1 KDM Domains

Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). Each KDM domain defines an architectural viewpoint. The viewpoint language for the domain is defined by
the corresponding KDM package that defines meta-model elements to represent particular facts of the system under study
that are essential to the given domain. The meta-model elements defined by all KDM packages constitute the ontology for
describing existing software systems. For example, the Code and Action package define the viewpoint language for the
Code domain that represent individual code elements of the system under study, such as variables, procedures and
statements. The Structure packages defines the viewpoint language for the Structure domain that represents architectural
elements of the same system, such as subsystems and components. The Conceptual package corresponds to the Business
Rules domain and defines the viewpoint language to represent behavioral elements of the same system such as features or
business rules. KDM formally defines traceability between facts, aggregation and derivation of facts across domains.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Inventory,
Code, Build, Structure, Data, Business Rules, Ul, Event, Platform, and micro KDM.

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition serves to make KDM easier to learn and use, but not all
individual partitions within this structure represent separate compliance points. The latter strategy would lead to an excess
of compliance points and complicate interoperability. Nevertheless, the groupings provided by KDM domains and their
increments do serve to simplify the definition of KDM compliance as explained below.

2 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Levels of compliance

L2 = All EDM domains
Build Structure Data Business Rules UI Event Platform Analysis
, Micro
L1= Build| Structure | Data |Conceptual Ul | Event |Platfor KDM
Lo = Core + kdm + Source + Code + Acticn

Domain of compliance

Figure 2.1 - Domains and levels of KDM compliance

2.2 Compliance Levels

In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are three KDM compliance levels:

e Level 0(LO) - Thiscompliance level addresses the Inventory and Code domains and is determined by the following
KDM packages: Core, kdm, Source, Code, and Action packages. It provides an entry-level of knowledge discovery
capability. More importantly, it represents acommon denominator that can serve as abasisfor interoperability between
different categories of KDM tools.

To be LO compliant, atool shall completely support all meta-model elements within all packagesfor LO level.

e Level 1(L1) - Thislevel addressesthe remaining KDM domains and extends the capabilities provided by Level 0.
Specificaly, thislevel is determined by the following packages. Build, Structure, Data, Conceptual, Ul, Event,
Platform, aswell as the set of constraints for the micro KDM domain defined in sub clause 14 “Micro KDM,” and
Annex A “Semantics of the Micro KDM Action Elements.” These packages are grouped to form above-mentioned
domains. More importantly, this level represents alayer where tools could be complimentary since their focus would
bein different areas of concern.

To be L1 compliant for agiven KDM domain, atool shall completely support all meta-model elements defined by the
corresponding packages and satisfy all semantic constraints specified for the domain.

e Level 2(L2) - Thislevel istheunion of L1 levelsfor all KDM domains. A tool compliant at the L2 level shall be
compliant to each domain at L 1.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 3

2.2.1 Meaning and Types of Compliance

Complianceto Level 1 (L1) for acertain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at a Level 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of

information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that

KDM domain at L1 and complete set of concepts defined at LO.

For a given compliance level, a KDM implementation can provide:

» The capability to analyze physical artifacts of existing applications and export their representations based on the XM
schema corresponding to the given compliance level.

» The capability to import representations of existing software systems based on the XMI schema corresponding to the
given compliance level and perform operations suggested by the corresponding packages.

Table 2.2 - Compliance Statements

Compliance Statement
Compliance Level Import-Analysis Import API Export
LO Compliant tool shall: Compliant tool shall: Compliant tool shall:

« Import KDM models based on e Import KDM models « Provide capability to analyze
complete KDM XMI schema into based on complete KDM existing artifacts for specified
existing tool. XMI schema. programming language or

)) multiple languages.

* Implement mapping between KDM * Support KDM API defined
and existing internal representation by the KDM Core « Generate XMI documents
of the tool. package. corresponding to the KDM

. . XMI schema.

« Extend operations of existing tool to ¢ Support KDM framework
support meta-model elements of as defined in the package | ¢ Support KDM framework as
KDM framework. named “kdm.” defined by the package

. .) named “kdm.”

« Extend operations of existing tool to * Support KDM API defined
support meta-model elements of by the Code and Action « Support Code and Action
Code and Action packages. packages. packages.

« Extend operations of existing tool to * Support traceability to the | ¢ Provide traceability back to
support traceability to the physical physical artifacts of the the physical artifacts as
artifacts of the application from application as defined in defined by the Source
Source package. the Source package. package.

L1 STRUCTURE Compliant tool shall: Compliant tool shall: Compliant tool shall:

« Demonstrate LO compliance for * Demonstrate LO « Demonstrate LO compliance
analysis. compliance for import. for export.

« Extend operations of existing tool to * Support KDM API as « Provide capability to analyze
support meta-model elements of the defined by the Structure architecture components of
Structure package. package. existing application and

generate KDM Structure
model according to Structure
package.

4 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table 2.2 - Compliance Statements

DATA Compliant tool shall: Compliant tool shall: Compliant tool shall:
« Demonstrate LO compliance for « Demonstrate LO » Demonstrate LO compliance
analysis. compliance for import. for export.
« Extend operations of existing tool to « Support KDM API as * Provide capability to analyze
support meta-model elements of the defined by the Data persistent data components
Data package. package. of existing application for
specified database system
and generate KDM Data
model according to Data
package.
PLATFORM Compliant tool shall: Compliant tool shall: Compliant tool shall:
« Demonstrate LO compliance for « Demonstrate LO » Demonstrate LO compliance
analysis. compliance for import. for export.
« Extend operations of existing tool to « Support KDM API as * Provide capability to analyze
support meta-model elements of the defined by the Platform platform artifacts for
Platform package. and Runtime packages. specified platform and
generate KDM Platform
model according to Platform
package.
BUILD Compliant tool shall: Compliant tool shall: Compliant tool shall:
« Demonstrate LO compliance for « Demonstrate LO » Demonstrate LO compliance
analysis. compliance for import. for export.
« Extend operations of existing tool to « Support KDM API as » Provide capability to analyze
support meta-model elements of the defined by the Build build artifacts for specified
Build package. package. build environment and
generate KDM Build model
according to Build package.
Ul Compliant tool shall: Compliant tool shall: Compliant tool shall:
« Demonstrate LO compliance for « Demonstrate LO * Demonstrate LO compliance
analysis. compliance for import. for export.
« Extend operations of existing tool to « Support KDM API as * Provide capability to analyze
support meta-model elements of the defined by the Ul user interface artifacts for
Ul package. package. specified user interface
system and generate KDM
Ul model according to Ul
package.
EVENT Compliant tool shall: Compliant tool shall: Compliant tool shall:
« Demonstrate LO compliance for « Demonstrate LO » Demonstrate LO compliance
analysis. compliance for import. for export.
« Extend operations of existing tool to « Support KDM API as Provide capability to analyze
support meta-model elements of the defined by the Event artifacts related to event-
Event package. package. driven runtime frameworks
and state-transition behavior
and generate KDM Event
model according to Event
package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table 2.2 - Compliance Statements

* Demonstrate LO compliance for
analysis.

« Extend operations of existing tool to
support micro KDM actions as
specified in Chapter 14 micro KDM
and Annex A.

* Demonstrate LO
compliance for import.

* Support micro KDM
actions as specified in
Chapter 14 micro KDM
and Annex A.

BUSINESS Compliant tool shall: Compliant tool shall: Compliant tool shall:
» Demonstrate LO compliance for » Demonstrate LO « Demonstrate LO compliance
analysis. compliance for import. for export.
« Extend operations of existing tool to * Support KDM API as « Provide capability to analyze
support meta-model elements of the defined by the Conceptual conceptual and behavior
Conceptual package. package. artifacts (e.g., domain
concepts, business rules,
scenarios) of existing
application and generate
KDM Conceptual model
according to Conceptual
package.
MICRO KDM Compliant tool shall: Compliant tool shall: Compliant tool shall:

« Demonstrate LO compliance
for export.

Provide capability to analyze
artifacts of existing
application to the level of
detail specified in Chapter 14
and Annex A provide the
mapping of semantics of the
existing application as it is
determined by the
programming languages and
the runtime platform into
KDM micro actions and
generate KDM models that
represent the same
meaning.

L2

Compliant tool shall:

« Demonstrate LO import compliance
for analysis.

« Demonstrate L1 import-analysis
compliance for all KDM domains.

Compliant tool shall:

» Demonstrate LO
compliance for import.

* Support KDM API as
defined by all KDM
packages.

Compliant tool shall:

« Demonstrate LO export
compliance.

« Demonstrate L1 export
compliance for all KDM
domains.

3

Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
specification. For dated references, subsequent amendments to or revisions of any of these publications do not apply.

ISO/IEC 19505-1:2012 “Information technology - Object Management Group Unified Modeling Language (OMG
UML), Infrastructure” (OMG Unified Modeling Language (OMG UML), Infrastructure http:// www.omg.org/spec/
UML/2.4.1/Infrastructure) http://www.omg.org/spec/UML/2.4.1/Infrastructure/PDF/)

I SO/IEC 19508:2014, “ Information technology - Object Management Group Meta Object Facility (MOF) Core”
(OMG Meta Object Facility (MOF) Specification (Version 2.4.2) - http://lwww.omg.org/spec/MOF/2.4.2)

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

e |SO/EC 19509:2014, “Information technology - Object Management Group XML Metadata Interchange (XM1)”
(XML Metadata I nterchange - http://www.omg.org/spec/XM1/2.4.2)

« ISO/IEC 11404:2007, "Information technology — General-Purpose Datatypes (GPD)"

e Semantics of Business Vocabularies and Business Rules (SBVR) version 1.2 - http://www.omg.org/spec/SBVR/1.2

4 Terms and Definitions

This sub clause contains only those terms which are used in a specialized way throughout the KDM specification. The
majority of termsin KDM are used either according to their accepted dictionary definitions or according to commonly
accepted definitions that may be found in 1SO glossaries or other well-known collections of software engineering terms.
Some combinations of common terms used in KDM, while not meriting glossary definition, are explained for clarity in
the context where they are used.

Abstraction: A view of an object that focuses on the information relevant to a particular purpose and ignores the
remainder of the information.

Aggregation: a derived relationship between two elements that are groups of other elements that represents all individual
relationships between the grouped elements of the two groups.

Architecture-Driven Modernization (ADM): ADM s the process of understanding and evolving existing software
assets of a system of interest. ADM focuses at collecting, sharing, utilizing, transforming, presenting, maintaining, and
storing models of the architectural aspects of existing systems. ADM does not preclude source-to-source migrations
(where appropriate), but encourages user organizations to consider modernization from an analysis and design
perspective. In doing so, project teams ensure that obsolete concepts or designs are not propagated into modern languages
and platforms.

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the
final product provides.

Build process: aprocess of transforming of project code base into usable applications. The end result of a software build
is a collection of files that constitute a product in a distributable package. In this case, package can mean a standalone
application, Web service, compact disc, hotfix, or bug fix. Each step of a build process is a transformation performed by
software running on a general purpose computer. A simple software build may involve compiling a single source code file
into an executable code. A complex software build may involve orchestrating hundreds of versions of thousands of files
with millions of lines of source code such that a correct executable code results from the compilation. The implementation
of a system also involves deploying the build onto the system nodes, and applying appropriate configuration settings.

Component: afunctionally or logically distinct part of a system. A component may be hardware or software and may be
subdivided into other components. Often a component is a physical, replaceable part of a system that packages
implementation and provides the realization of a set of interfaces. Such component represents a physical piece of
implementation of a system, including software code (source, binary or executable) or equivalents such as scripts or
command files.

Container: a model element that owns one or more distinct elements through the special “owns’ (“contains’)
rel ationships between the container element and owned elements. “ Containment” relationships form a special group of the
corresponding owned elements. No element has more than one container.

Domain: An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners
in that area.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 7

Element: one of the parts of a compound or complex whole. For example, a model element, a meta-model element.

Group: anumber of model elements regarded as a unit formed by traceability relationships to a single distinct element.
An element may be part of multiple groups, including a single group formed by the “containment” relationships between
a container and its owned elements. An element is said to group together one or more elements, if these elements have
traceability relationships to the element.

Hierarchy: an arrangement of model elements according to traceability relationships, where an element that “owns’ or
“group” other elements is considered at a higher level than the owned (grouped) elements.

Interface: (1) a shared boundary or connection between two dissimilar objects, devices or systems through which
information is passed. The connection can be either physical or logical. (2) a named set of operations that characterize the
behavior of an entity.

Item: that which can be individually described or considered. See also Component, Element, Unit, Module.

KDM Entity: a meta-model element (as well as the corresponding model elements) that represents a thing of significance
of the system of interest, about which information needs to be known or held. A KDM entity is an abstraction of some
element of the system of interest that has a distinct, separate existence objective or conceptual reality, a self-contained
piece of datathat can be referenced as a unit. As a model element each KDM entity is an instance of some specific meta-
model element and it usually the endpoint of distinct KDM relationships.

KDM instance: a collection of KDM model elements that represent one or more views of the system of interest.
KDM model: a meta-model element (as well as the corresponding model elements) that is a container for a KDM view

KDM Relationship: a meta-model element (as well as the corresponding model elements) that represents some semantic
association between elements of the system of interest. All KDM relationships are binary. As a model element each KDM
relationship is an instance of some specific meta-model element.

Meta-model: A specia kind of model that specifies the abstract syntax of a modeling language. The typical role of a
metamodel is to define the semantics for how model elements in a model get instantiated. A model typically contains
model elements. These are created by instantiating model elements from a metamodel, i.e., metamodel elements.

Meta-model element: an element of a meta-model from which model elements are instantiated.

Model: A model represents a system of interest, from the perspective of arelated set of concerns. The model is related to
the system by an explicit or implicit isomorphism. Models are instances of MOF meta-models and therefore consist of
model elements and links between them.

Model element: instance of a meta-model element

Module: (1) A program unit that is discrete and identifiable with respect to compiling, combining with other units, and
loading; for example, the input to, or output from, an assembler, compiler, linkage editor, or executive routine. (2) A
logically separable part of a program.

Resour ce: any physical or virtual component of limited availability within a computer system available for a given
purpose and managed by the runtime platform.

Runtime platform: the set of hardware and software components that implement the services utilized by the application
software. A runtime system generally controls how several tasks are scheduled to run, and manages resources. Its
provisions for the programmer typically form an Application Programming Interface- a set the well-documented ways of
using the system.

8 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Segment: A collection of data that corresponds to one or more coherent views of a system of interest that is stored or
transferred as a unit.

Software artifact: A software artifact is a tangible machine-readable document created during software development.
Examples are requirement specification documents, design documents, source code and executables.

Software asset: A software asset is a description of a partial solution (such as a component or design document) or
knowledge (such as requirements database or test procedures) that engineers use to build or modify software products. A
software asset is a set of one or more related artifacts that have been created or harvested for the purpose of applying that
asset repeatedly in subsequent contexts. The asset consumer is an architect or a designer of any type of IT or business
process solutions from solution business modeling, analysis (assets used are models) and design to application
development (assets used are pieces of code).

Traceability: The degree to which a relationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software component match.

Unit : (1) a piece or an integrated assembly of parts serving to perform one particular function (2) A software element
that is not subdivided into other elements.

User interface: An interface that enables information to be passed between a human user and hardware or software
components of a computer system.

View: A representation of a whole system from the perspective of arelated set of concerns.

Viewpoint: A specification of the conventions for constructing and using a view. A pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the techniques for its creation and
analysis.

5 Symbols

There are no symbols defined in this specification.

6 Additional Information

6.1 How to Read this Specification

The rest of this document contains the technical content of this specification.

Chapter 7. Specification overview - Provides design rationale for the KDM specification
Chapter 8. KDM - Gives the overview of the packages of KDM

Subpart | - Infrastructure Layer

Chapter 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling
services to other classes, and define fundamental constraints.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 9

Chapter 10. Package named “kdm” - Describes the key infrastructure elements that determine patterns for constructing
KDM maodels and integrating them. This package defines several static elements that are shared by all KDM instances.
This package determines the queries against KDM instances.

Chapter 11. Source package - Describes meta-model elements that provide traceability from KDM facts to the original
representation of the physical artifact (for example, source code).

Subpart Il - Program Elements Layer

Chapter 12. Code package - Describes meta-model elements that capture programming artifacts as provided by
programming languages, such as data types, procedures, macros, prototypes, templates, etc.

Chapter 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package
defines detailed endpoints for most KDM relations. The key element related to behavior isa KDM action. Other packages
depend on the Action package to use actions in further modeling aspects of existing applications such as features,
scenarios, business rules, etc.

Chapter 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.
Subpart 111 - Runtime Resources L ayer

Chapter 15. Platform package - Describes the meta-model elements that represent operating environments of existing
software systems. Application code is not self-contained, as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Platform package provides meta-model elements to address the following:

» Resources that Runtime platforms provide to components

» Servicesthat are provided by the platform to manage the life-cycle of each resource
« Control-flow between components asit is determined by the platform

« Error handling across application components

 Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the
Runtime package further addresses the physical aspects of operating environments, such as deployment.

Chapter 16. Ul package - Describes the meta-model elements that represent knowledge related to user interfaces,
including their logical composition, sequence of operations, etc.

Chapter 17. Event package - Describes meta-model elements that represent basic elements related to behavior of
applications in terms of states, transitions between states, events, messages and responses.

Chapter 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Subpart IV - Abstractions Layer

Chapter 19. Structure package - Describes the meta-model elements that represent the logical organization of the software
system in terms of logical subsystems, architectural layers, components and packages.

Chapter 20. Conceptual package - Describes the meta-model elements that represent facts related to the business domain
of the existing system and provide traceability to other KDM facts.

10 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Chapter 21. Build package - Describes the meta-model elements that represent the facts related to the build process of the
software system (including but not limited to the engineering transformations of the “source code’ to “executables”).

6.1.1 Diagram format

UML class diagrams in this specification are used to mechanically produce the Meta-Object Facility (MOF) definition of
KDM, and the corresponding KDM XMI schema. The following conventions are adopted for all class diagrams
throughout this specification:

¢ An association with one end marked by a navigability arrow means that:
« the association is navigable in the direction of that end,
 the marked association end is owned by the classifier, and
« the opposite (unmarked) association end is owned by the association.
« An association with neither end marked by navigability arrows means that:
« the association is navigable in both directions,

 each association end is owned by the classifier at the opposite end (i.e., neither end is owned by the association),

 additionally, properties “owner,” “group,” and “model” are automatically renamed to ownerProperty,
groupProperty, and model Property respectively.

« Association specialization and redefinition are indicated by appropriate constraints situated in the proximity of the
association ends to which they apply. Thus:

« the constraint { subsets endA} means that the association end to which this constraint is applied is a specialization
of association end endA that is part of the association being specialized.

« acongtraint { redefines endA} means that the association end to which this constraint is applied redefines the
association end endA that is part of the association being specialized.

« Derived unionisindicated by placing constraint { union} in the proximity of the association end to which it applies.
The corresponding association endpoint is marked as derived and read only.

« If an association end is unlabeled, the default name for that end is the name of the class to which the end is attached,
modified such that the first letter is alowercase letter. In addition, if the name of the classto which the end is attached
starts has a meaningful prefix of uppercase letters, for example XMLxxxx, KDMxxx, UlIxxxx, the entire uppercase
prefix is modified to become lowercase. For example, the above words become xmlxxxx, kdmxxx, uixxxx. By
convention, association ends that are owned by the association are also considered non-navigable and are often left
unlabeled since, in general, thereis no need to refer to them explicitly either in the text or in formal constraints -
athough there may be needed for other purposes, such as M OF language bindings that use the metamodel.

« unlabeled association ends attached to the class KDM Entity that correspond to KDM Relationships are
additionally prefixed with “in” or “out” according to the direction of the relationship. The corresponding properties
at the KDM Relationship class side are “to” and “from.” For example, association ends for the ActionElement
class corresponding to the associations to Control Flow class are named “inControlFlow” (the counterpart of the
“to” endpoint from the ControlFlow side) and “outControlFlow” (the counterpart of the “from” endpoint from the
ControlFlow side).

« KDM specification explicitly defines several operations that correspond to navigable derived association ends where
the corresponding association end is owned by the class. These operations constitute the high-level interfaceto KDM
models. Such operations are redundant from the MOF perspective as they are already implied by the derived

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 11

12

properties. A specialized, non-derived version of the corresponding property is provided through the mechanism of
association specialization and redefinition.

Associations that are not explicitly named, are given names that are constructed according to the following production
rule:

“A_" <class-namel>*“ " <association-end-name2>

where <class-namel> is the name of the class that owns the first association end and <association-end-name2>
is the name of the second association end.

Classes marked with a stereotype “ <<enumeration>>" represent MOF enumerations.

Classes marked with a stereotype “ <<dataType>>" represent MOF DataType elements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

7 Specification Overview

This specification defines a meta-model for representing information related to existing software, its elements,
associations, and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and
modernization tools, services, and their respective models. More specifically, (KDM) defines a common ontology and an
interchange format that facilitates the exchange of data currently contained within individual tool models that represent
existing software. The meta-model represents the physical and logical elements of software as well as their relationships
at various levels of abstraction.

KDM groups facts about existing systems into several domains each of which corresponds to an 1SO 42010 architectural
viewpoint. Each KDM domain is represented by one or more KDM packages which formalize the viewpoint language for
the domain. KDM focuses at the entities and their relationships that are essential for the given domain. A KDM
representation of a given software system - a KDM instance - is a collection of facts about that system. These facts are
organized into KDM models per each domain. KDM model corresponds to an 1SO 42010 architectural view. KDM facts
are further organized into meaningful groups called segments. A KDM segment may include one or more architectural
views of the given system. KDM instances may be part of the complete architectural description of the system, as defined
by 1SO 42010, in which case additional requirements of SO 42010 shall be satisfied by the overall document. KDM
instances are represented as XML documents conforming to the KDM XMI schema.

Infrastructure fayer

Abstractions fayer S E

Program Elements layer

Structure

Resource layer

Figure 7.1 - Layers, packages, and separation of concerns in KDM

KDM specification is organized into the following 4 layers:
e Infrastructure Layer

e Program Elements Layer

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 13

¢ Runtime Resource Layer
e Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to
represent a certain independent facet of knowledge related to existing software systems.

Logically, KDM consists of 9 models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. Most KDM domains are defined by a single package, with the exception of the Code domain, which
is split between the Code and the Action packages.

The Infrastructure Layer consists of the following 3 packages: Core, “kdm,” and Source. Core package and the package
named “kdm” do not describe separate architectural viewpoints. Instead these packages define common meta-model
elements that constitute the infrastructure for other packages. The Source package defines the Inventory model, which
enumerates the artifacts of the existing software system and defines the mechanism of traceability links between the KDM
elements and their original representation in the “source code” of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code
model that represents the implementation level assets of the existing software system, determined by the programming
languages used in the developments of the existing software system. The Code package focuses on the named items from
the “source code” and several basic structural relationships between them. The Action package focuses on behavior
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software
systems.

The Runtime Resources Layer consists of the following 4 packages: Platform, Ul, Event, and Data.
The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information:
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files.
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:
« KDM isaMeta-Object Facility (MOF) model.

» KDM defines an ontology for describing existing software systems. The ontology defined by KDM is related to the
elements of existing software systems, the relationships between these elements, as well as the elements of the
operationa environment of the software system. KDM ontology addresses both physical elements (for example, a
procedure, avariable, atable), which are originaly represented by language-specific artifacts of the software (for
example source code), aswell aslogical elements (for example, user interface el ements, concepts that areimplemented
by the software, architectural components of the software, such as layers, etc.).

14 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

KDM defines a set of concepts that can be used, for example, as the foundation of a pattern language; and KDM
defines a schemafor representing facts about specific existing software systems.

KDM isdesigned in such away that KDM facts can be represented as W3C Resource Description Framework (RDF)
triples.

KDM can be extended to represent language-specific, application-specific, and implementation-specific entities and
relationships.

KDM models extensively use containment relationship: it is possible to group several entitiesinto atyped container,
that will further on represent the entire collection of grouped entities via aggregated relationships. KDM defines
multiple hierarchies of entities via containers and groups.

KDM provides model refactoring capabilities, for example, a KDM tool can support moving entities between
containers and map changes in the model to changes in the code through traceahility links.

KDM isaligned with |SO/IEC 11404 General-Purpose Datatypes and OMG Semantics of Business Vocabularies and
Business Rules (SBVR).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 15

16

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

8 KDM

8.1 Overview

KDM specifies a comprehensive set of common concepts required for understanding existing software systems in
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of

domain-specific, application-specific, or implementation-specific knowledge.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

. R . Abstractions
b aaye ™" | Conceptud | Build Structure e
Runtime
R
Daa | Event | Ul | Plaform g
. Program
Primitives, efplicit, Code Action I_Ha;'gms
automeati cally; extracted
Source
Infragtructure
frzr%ork kdm Lay
”‘a{m‘d Core

Figure 8.1 - Structure of KDM Packages

The KDM specification contains 12 packages,; each package is defined by one or more class diagrams.

The Core package defines the basic meta-elements (entity, relationship, container hierarchies, etc.) and well-formedness

rules of KDM models.

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging

packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each
package depends on the Core package. The nature of this dependency is that the meta-model elements defined by each
package are subclasses of one of the meta-model elements defined in the Core package. Also, each package depends on
the package with hame “kdm.” Each KDM package above the package with name “kdm” in Figure 8.1 defines a KDM
model, which corresponds to a certain facet of knowledge about an existing software system. The package with name

“kdm” provides the infrastructure for all KDM models. The nature of the dependency on the package with name “kdm” is
as follows. First, each package defines a subclass of the KDMModel class, defined in that package. Second, each package

provides several concrete classes that are instantiated in each KDM instance as part of the infrastructure. Third, the
package with name “kdm” defines several important mechanisms that are used by all KDM models: the annotation
mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The corresponding
meta-model elements can be instantiated by any KDM model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge
automatically, for example by implementing a bridge to an existing software development environment. Such bridge
provides a mapping from the programming language (or languages) used for the development of the existing software
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces
of this knowledge are implicitly represented by the original source code of the software system and the corresponding
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the
programming language (or languages) used for the development of the existing software system, but by the corresponding
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further
analyzed and transformed by various KDM tools.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM instance is a single, integrated representation of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages

KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and
relations. The KDM has the following organization:

» The Core package defines the basic abstractions of KDM.
« The package with name “kdm” provides shared context for all KDM models.

* The Source package defines meta-model elements that represent the inventory of the physical artifacts of the existing
software system and defines the key traceability mechanism of KDM - how KDM facts references back to their
original representation in the artifacts of the software system (for example, source code).

» The Code package defines meta-model elements that represent the low-level building blocks of software, such as
procedures, datatypes, classes, variables, etc. (as determined by a programming language).

» Action package defines meta-model elements that represent statements as the end points of relations, and the majority
of low-level KDM relations.

« Platform package defines meta-model elements that represent the run time resources used by the software system, as
well as rel ationships determined by the run-time platform.

« Ul package defines the meta-model elements that represent the user-interface aspects of the software system.

« Event package defines meta-model elementsthat represent event-driven aspects of the software system, such as events,
states, state transitions, as well as relationships determined by the event-driven semantics of the run-time framework.

» Data package defines meta-model elements that represent persistent data aspects of the software system.

18 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

e Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same
system.

» Conceptual package defines meta-model elements that represent the domain-specific elements of the software system.

« Build package defines meta-model elements that represent the artifacts related to the build process of the software
system (including but not limited to the engineering transformations of the “source code” to “ executables’).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 19

20

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart | - Infrastructure Layer

KDM is alarge specification, since it provides a vocabulary and an intermediate representation for several facets of
knowledge about existing enterprise software systems. In order to manage the complexity of KDM, a small set of
concepts was selected and systematically used throughout the entire specification. These concepts are defined in the so-
called Infrastructure Layer. It consists of the following 3 packages:

e Core
e kdm
e Source

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the classes defined in the Core package. The two fundamental classes of the Core
package are KDMEntity and KDMRelationship. An entity is athing of significance, about which information needs to be
known or held. A KDM entity is an abstraction of some element of an existing software system, that has a distinct,
separate existence, a self-contained piece of data that can be referenced as a unit. Each KDM package defines several
meta-model elements that represent specific entities for a particular KDM domain.

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several meta-model elements
that represent specific relationships for a particular KDM domain. Such relationships are called “explicit” relations. All
KDM relationships are binary.

KDM defines several built-in relationships, most notably:

* containment

e grouping

These built-in relations alow defining some KDM entitites as containers for other entities. There is a special container
owner ship (containment) relationship between a container and the entities that are directly owned by this container. Some
KDM entities are groups of other KDM entities. There is a special group association (grouping) relationship between the
group and the entities that are directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special
relationships of containment and grouping and explicit relations.

Core package defines a high-level reflective interface to KDM models. Other KDM packages extend this interface by
specific operations, corresponding to specific facets of knowledge about existing software systems.

The Core package is aligned with the OMG SBVR specification, as KDM provides an abstraction of software systemsin
the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between KDM
entities). The largest part of the KDM specification is a definition of alanguage- and platform-independent vocabulary for
describing software systems. SBVR statements and rules can be written using this vocabulary to formally describe
properties of software systems as common standard-based content.

The package named “kdm” defines several elements that together constitute the framework of each KDM instance. The
framework determines the physical structure of a KDM representation. The elements of the framework are present in
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 21

instance consists of one or more Segments, where each Segment may own several KDM models (KDM facts, views of a
particular software system). Each KDM package defines some specific collection of meta-model element, which
addresses a certain specific facet of knowledge about existing software systems (a KDM domain, an architectural
viewpoint). Individual KDM implementations may support one or more selected KDM domains, as defined in the KDM
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about
the existing software system and integrate them into a single coherent representation. Further, KDM design facilitates
incremental implementations, where certain pieces of knowledge about the existing software are produced by analyzing
more basic KDM facts. According to this approach certain KDM tools may perform a “KDM enrichment” process, a
“KDM to KDM transformation,” where a tool analyzes the input KDM model and produces one or more additional
Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their
“original” language-dependent representation in the source code of the existing software system, for which the KDM
views are created. Thisis an important part of the KDM Infrastructure, because other KDM packages use this mechanism
to refer to the source code and the physical artifacts of the existing software system.

22 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

9 Core Package

9.1 Overview

The Core package provides basic constructs for creating and describing meta-model classesin all specific KDM packages.
Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and
determine the high-level interface to KDM models.

9.2 Organization of the Core Package

The KDM specification uses packages to manage complexity and bring together logically interrelated classes. The Core
package defines a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints
implemented by all other KDM packages.

The Core package consists of the following five class diagrams:
* Elements
» CoreEntities
» CoreRelations
e AggregatedRelations
 Datatypes
The Core package depends on no other packages.

9.3 Elements Class Diagram

The Elements class diagram describes the top level abstract classes that identify the main categories of elementsin KDM. The
classes and associations of the Elements class diagram are shown in Figure 9.1.

Element
Fas
AnnotationElement AnnotatableElement
pa 7%
S ExtendableElement
T
ModelElement

Figure 9.1 - Elements Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 23

9.3.1 Element Class (abstract)

An Element is an atomic constituent of a model. The Element class is the top meta-element in the KDM class hierarchy.
Element is an abstract meta-model element.

Semantics

Element is the common parent from all meta-model elements of KDM.

9.3.2 AnnotatableElement Class (abstract)

Some elements of KDM can be annotated with AnnotationElements. Annotations supply additional information to a
particular KDM element. The particular annotations are represented as subclasses of AnnotationElement and are
described in the package named “kdm.” The AnnotatableElement is one of the abstract top meta-elements in the KDM
class hierarchy. Its purpose is to represent KDM elements that can be annotated and to distinguish them from the
AnnotationElement. The key subclass of AnnotatableElement is ExtendableElement.

Superclass

Element

Semantics

AnnotatableElement represents the subclasses of Element that can own annotations and user-defined attributes through
mechanisms defined in the package named “kdm.”

9.3.3 AnnotationElement Class (abstract)

AnnotationElement represents various annotations to AnnotatableElements. The AnnotationElement class is one of the
abstract top meta-elements in the KDM class hierarchy. Its purpose is to represent utility KDM elements that describe
annotations to other KDM elements, and that themselves can not be annotated. The concrete subclasses to
AnnotationElement are provided in the package named “kdm.”

Superclass

Element

Semantics

AnnotationElement represents various annotations that can be owned by AnnotatableElement. Concrete subclasses of
AnnotationElement are defined in the package named “kdm.”

9.3.4 ExtendableElement Class (abstract)

Some KDM elements can be extended through the light-weight extension mechanism. Extensions introduce new
“extended” meta-model classes that represent specialized subsets within the extent of their base KDM element. Extended
elements can have new properties. Extensions are represented by the subclasses of the ExtensionElement class, and are
described in the package named “kdm.” The ExtendableElement is one of the abstract top meta-elements in the KDM
class hierarchy. Its purpose is to represent the KDM elements that can be extended and to distinguish them from the
ExtensionElement. The key subclass of ExtendableElement is Model Element.

Superclass

AnnotatableElement

24 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

ExtendableElement describes the subclasses of Element can be extended through the light-weight extension mechanism
defined in the package named “kdm.”

9.3.5 ExtensionElement Class (abstract)

ExtensionElement represents various elements that provide the light-weight extension mechanism of KDM.
ExtensionElement is one of the abstract top meta-elements in the KDM class hierarchy. Its purpose is to represent the
elements that are part of the light-weight extension mechanism and that themselves cannot be extended (but can be
annotated using the AnnotationElement). The concrete subclasses of ExtensionElement are described in the package
named “kdm.”

Superclass
AnnotatableElement

Semantics

ExtensionElement describes the subclasses of Element that are parts of the light-weight extension mechanism to KDM.
Concrete subclasses of ExtensionElement are defiend in the package named “kdm.”

9.3.6 ModelElement Class (abstract)

A ModelElement is an element that represents some aspect of the existing system. The ModelElement is one of the
abstract top meta-model elements in the KDM class hierarchy. The key subclasses of Model Element are KDMEntity and
KDMRelationship. Most of the meta-model elementsin KDM are subclasses of either KDMEntity or KDMRelationship.
Another important subclass of ModelElement is FrameworkElement defined in the package named “kdm.”

A ModelElement can be extended through the lightweight extension mechanism.
Superclass

Extendabl eElement

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software
system. The subclasses of Element that are not the subclasses of the ModelElement class are the auxiliary elements of the
Infrastructure Layer.

Each subclass of the Model Element meta-model element can be extended through the light-weight extension mechanism
defined in the package named “kdm.”

9.4 CoreEntities Class Diagram

The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the
CoreEntities class diagram are shown in Figure 9.2.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 25

ModelElement

+/owner
{union}

KDMEntity

+/group
{union}

0.1

+name : String

0.*

+/ownedElement
{union}

+/groupedElement
{union}

Figure 9.2 - CoreEntities Class Diagram

9.4.1 KDMEntity Class (abstract)

A KDMEntity is a named model element that represents an artifact of existing software systems.

In the meta-model, KDMERntity is a subclass of ModelElement. Each KDM package defines specific KDM entities that
are direct or indirect subclasses of KDMEntity. A KDMEntity can be an atomic element, a container for some
KDMEntities, and/or a group of some KDMEntities. Container and group introduce built-in relationships between entities
and are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a
KDMEntity with which other entities are associated. A KDMEntity can be owned by at most one container, and can be
associated with zero or many groups.

Superclass

Model Element

Attributes

name: String

Associations

/ owner:KDMEntity[0..1]

26

Anidentifier for the KDM entity.

KDM entity that ownsthe current element. This property determinesahigh-level interface to
KDM entities. This property is aderived union. Some KDM entities define a concrete set of
owned elements that are subtypes of KDMEntity. In KDM thisis represented by the CMOF
“derived union” mechanism. Concrete properties subset the “union” properties of the parent
classes, defined in the Core package. The owner of aKDM entity is defined as the container
for which the given entity is an owned entity.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

/ group:KDMEntity[0..*]

/ ownedElement[0..*]

/ groupedElement[0..*]

Constraints

Set of KDM entities with which the current element has a group association. This property
determines a high-level interface to KDM entities. This property is aderived union. Some
KDM entities define a concrete set of grouped elementsthat are the subtypes of KDMEntity.
In KDM thisis represented by the CMOF “derived union” mechanism. Concrete properties
subset the “union” properties of the parent classes, defined in the Core package. The group
of aKDM entity is defined as the element for which the given entity is a grouped entity.
Each KDM entity can be associated with multiple groups.

Set of KDM elements that are owned by the current element. This property determines a
high-level interface to KDM entities. This property is a derived union. Some KDM entities
define a concrete set of owned elements that are subtypes of KDMEntity. In KDM thisis
represented by the CM OF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package.

Set of KDM elements that have a group association with the current element. This property
determines a high-level interface to KDM entities. This property is a derived union. Some
KDM entities define a concrete set of grouped elementsthat are the subtypes of KDMEntity.
In KDM thisis represented by the CMOF “derived union” mechanism. Concrete properties
subset the “union” properties of the parent classes, defined in the Core package.

1. KDMEntity should not reference self as groupedElement.

Operations

getOwner(): KDMEntity[0..1]

This operation returns the KDM entity that is the owner of the current KDM
Entity. The owner entity isaKDM container. There can be at most one owner
for each given entity.

getOwnedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current

getGroup():KDMEntity[0..*]

KDM Entity. Only KDM containers can own other entities.

This operation returns the set of KDM Entities that have a group association
to the current KDM Entity. The group entity isaKDM group. Unlike KDM
containers, there may be many groups that have an association to agiven
entity.

getGroupedElement():KDMEntity[O..*] This operation returns the set of KDM entities that are “ grouped” by the

Semantics

current KDM entity. Only KDM groups can have group associations to other
entities.

An entity is athing of significance, about which information needs to be known or held. A KDM entity is an abstraction

of some element of an existing

software system, that has a distinct, separate existence, a self-contained piece of data that

can be referenced as a unit. Each KDM package defines several meta-model elements that represent specific entities for a
particular KDM domain. Specific subclasses of KDMEntity constitute the noun terms of the vocabulary defined by KDM.
Each KDM package defines a viewpoint language, consisting of noun terms represented as subclasses of KDMEntity, and

verb terms represented as subcl

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

asses of KDMRelationship.

27

Derived association ends owner, ownedElement, group and groupedElement are owned by the class. Explicit operations
are defined for navigation as part of the high-level interface to KDM models. Individual KDM packages define subtypes
of KDMEntity with specific subtypes of allowed owner, group, groupedElement and ownedEIment in each package.

9.5 CoreRelations Class Diagram

The CoreRelations class diagram defines the key associations of KDM models, called “explicit relations’” between KDM
entities. The classes and associations of the CoreRelations class diagram are shown in Figure 9.3.

ModelElement

+/ownedRelation

|

{union}
KDMRelations hijp
0..*
0..* 0..*
+/outbound +/inbound
{union} {union}
+/from 1 1 *o
. KDMEntity

Figure 9.3 - CoreRelations Class Diagram

9.5.1 KDMREelationship Class (abstract)

A KDMRelationship is a model element that represents semantic association between two entities.

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are
typed associations between some specific subclasses of KDMEntity.

Superclass

M odel Element

28

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

/ to: KDMEntity[1] Thetarget entity (also referred to as the to-endpoint of the relationship). This property determines
ahigh-level interface to KDM relationships. Every specific KDM relationship redefines the to-
endpoint to a particular subtype of KDMEntity. In KDM thisis represented by the CMOF
“subsets’ mechanism. Concrete properties redefine the properties of the parent classes, defined in
the Core package.

/ from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property
determines a high-level interface to KDM relationships. Every specific KDM relationship
redefines the from-endpoint to a particular subtype of KDMEntity. In KDM thisis represented by
the CMOF “subsets’ mechanism. Concrete properties redefine the properties of the parent
classes, defined in the Core package.

Operations
getTo(): KDMEntity[1] This operation returnsthe KDM entity that is the to-endpoint (the target) of the current
relationship.
getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the
current relationship.
Semantics

KDMRelationship is an abstract meta-model element. Concrete relationships between KDM entities in KDM views are
instances of concrete subclasses of KDMRelationship. Each instance of KDMRelationship has exactly one target and
exactly one origin. Each concrete subclass of KDMRelationship defines the acceptable types of its endpoints.

Each KDM package defines a viewpoint language, consisting of noun terms represented as subclasses of KDMEntity, and
verb terms represented as subclasses of KDMRelationship. Relations defined as subclasses of KDMRelationship are
“explicit” and consitute the majority of the vocabulary defined by KDM. Explicit relations can be mapped to RDF triples.
KDM also includes several “built-in” relations, such as “ownedElement” and “groupedElement” defined at the
CoreEntities class diagram and several others. KDM “built-in” relations as well as attributes of KDMEntities can be also
mapped to RDF triples. The key difference between explicit and built-in relations is how they are used in the Aggregated
Relations mechanism. Only explicit relations can be aggregated. On the other hand, the Aggregated Relations mechanism
uses “ownedElement” and “groupedElement” built-in relations to define aggregations. Other built-in relations cannot be
aggregated and always remain as associations between the original endpoints.

Derived association ends to and from are owned by the class. They are redefined in individual KDM packages. Explicit
operations getTo and getFrom are defined for navigation as part of the high-level interface to KDM models. Individual
KDM packages define specific subtypes of KDM Relationship where the endpoints are specific subtypes of KDMEntity in
each package.

9.5.2 KDMEntity (additional properties)

Associations

/ ownedRelation: KDMRelationship[0..*] Set of explicit KDM relationships that originate from the current entity.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 29

/ inbound: KDMRelationship[0..*] Set of explicit KDM relationships that have the current entity astheir

target.
/ outbound:KDMRelationship[0..*] Set of explicit KDM relationships that originate from the current entity.
Operations
getinbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the to-endpoint of these relations.
getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the from-endpoint of these relationships.
getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current

KDMEntity owns these relationships.

Constraints

1. The set of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the
from-property is the given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the
ownedRelation association is required to manage relationship elements. KDM relationships are owned by the entity,
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association
class with to- and from- properties.

Derived association ends inbound and outbound are owned by the associations. Derived association end ownedRelation is
owned by the class. Explicit operations are defined for navigation as part of the high-level interface to KDM models.
Individual KDM packages define subtypes of KDMRelationship which determine allowed inbound, outbound, and
ownedRelation for specific subtypes of KDMEntity in each package.

9.6 AggregatedRelations Class Diagram

The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part
of the high-level interface to KDM models, along with interfaces defined by KDMEntity and KDM Relationship.

The lifecycle of Aggregated Relationshipsis managed by the operations of the KDMEntity class. AggregatedRelations are
owned by a KDMEntity class that is the from-endpoint of the aggregated relation, similar to explicit KDM relations.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.4.

30 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ModelElement

RelationSet
AggregatedRelationship +/aggregate +relation| KDMRelationship
+aggregatedRelation -
+/density : Integer "
0.* 0..
0. 0. 0.
+/inAggregated *loutAggregated
Destination
AggregaredRelations Origlin
+to (1 +rom | 1
KDMEntity
+owner
0.1

Figure 9.4 - AggregatedRelations Class Diagram

9.6.1 AggregatedRelationship Class

The set of AggregatedRelationship elements for a given entity represents all explicit relationships between the entities
that are transitively owned by the given entity as well as the entity itself. One AggregatedRelationship represents
collection of individual KDM Relationship elements (and can be referred to as their aggregate). The aggregation rules are
defined in the semantics section. AggregatedRelationship is a concrete class, because an AggregatedRelationship can be
instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and exchanged too, if necessary).
KDMEntity class includes operations for managing the lifecycle of owned AggregatedRelationship elements.

Superclass

M odel Element

Attributes

/ density:Integer The number of explicit relationships in the aggregated set. This property is derived.

Associations

relation:KDMRelationship|[0..*] The set of explicit KDM relationships represented by the aggregated relationship.

to: KDMEntity[1] The aggregation to-endpoint of the relationships in the aggregated set. All
relationships in the aggregated set should terminate at the entity that is the to-
endpoint or at some entity that is owned (or grouped) directly or indirectly by the to-
endpoint.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 31

from:KDMEntity[1] The aggregation from-endpoint of the relationships in the aggregated set. All
relationships in the aggregated set should originate from the entity that is the from-
endpoint or from some entity that is owned (or grouped) directly or indirectly by the
from-endpoint.

Constraints
1. To- and from-endpoints should be distinct.
2. The density should be greater than or equal to 1.

3. The density should be equal to the number of explicit relationships represented by the given aggregated
relationship.

Semantics

AggregatedRelationhip is determined by how elements are owned by containers (or referenced by groups) in the
following way:

1. AggregatedRelationship between two entities (no owned elements) represents the set of explicit KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity
is the to-endpoint of the relationship).

2. AggregatedRelationship between an entity and a container (or group) represents the set of all explicit KDM
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned (or
grouped) by the given container (directly or indirectly).

3. AggregatedRelationship between a container (or group) and an entity represents the set of all explicit relationships
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned (or grouped) by the
given container (directly or indirectly).

4. AggregatedRel ationship between two containers (and/or groups) represents the set of all explicit KDM relations
such that the from-endpoint is an entity owned (or grouped) by the first container and the to-endpoint is an entity
owned (or grouped) by the other container.

An explicit KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an
implied density of 1. An AggregatedRelationship represents a set of explicit KDM relationships. It has density of greater
or equal than 1 and no concrete type (as it may represent explicit KDM relationships of different types). An
AggregatedRel ationship cannot be constructed between two entities if there are no explicit KDM relationships between
them (according to the definition above).

The relationship “x in* C” means that x isin container C or in some sub-container of C, transitively.
For relationship R, let R’ be the corresponding aggregated relationship.

Given containers C1 and C2 and the relationship R, let

P={(xy) : xin* Clandy in* C2 and x Ry}

That is, P isthe set of pairs such that x isin* Clandy isin* C2and X R y.

Then

32 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ClR C2iff |P|>0
C1 and C2 are related by the aggregated relationship R’ if and only if there is at least one pair in the set P.

The density of C1 ‘' C2 is then simply |P|, the size of the set P.

CEE—

1=

Figure 9.5 - AggregatedRelationships illustrated

Figure 9.5 illustrates Containers and aggregated relationships. It uses the following notation. UML package symbols C1
and C2 represent KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association
indicates the direction of the relationship, when there are no arrows at either end of the association (asin Figure 9.5), this
indicates two relationships, one in each direction. The numbers at the ends of associations, such as “+2,” represent the
density of the corresponding KDM relationship. The KDM density has a different interpretation than UML multiplicity:
since KDM represents an existing application, the exact relationships and their number is what the model captures. KDM
model is not a model that represents constraints, like the ones used during the design phase, rather, this is a model that
captures precise knowledge about the application. So, the KDM densities are exact.

Aggregated relationships are collections of more explicit relationships, which represent some basic facts, for example,
“procedure x calls procedure y.” Such basic fact has density 1. An explicit code relationship represents some basic fact
about the existing application. Now, when there are two or more such facts, for example “procedure x in module A calls
procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an aggregated
relationship between modules A and B with density 2 (2=1+1). In this case, the aggregated relationship represents the
collection of the two explicit relationships between modules A and B as aggregation from- and to-endpoints.

Association ends to, from, owner, and relation are owned by the class.

9.6.2 KDMENtity (additional properties)

Associations

aggregatedRelation:AggregatedRelationship[0..*] The set of aggregated relationships owned by thisKDM entity.

/ inAggregated: AggregatedRelationship[0..*] The set of aggregated relations for which the current KDM entity is
the aggregation to-endpoint.

/ outAggregated:AggregatedRelationship[0..*] The set of aggregated relations for which the current KDM entity is
the aggregation from-endpoint.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 33

Operations

createAggregation(otherEntity: KDMEntity) This operation creates an aggregated relationship such that the
current entity is the aggregation from-endpoint of the aggregated
relation and the “otherEntity” is the aggregation to-endpoint. The
new aggregated relationship is owned by the current entity which
becomes the from-endpoint of the aggregated relationship.

deleteAggregation This operation deletes the given aggregated relationship.
(aggregatedRelation:AggregatedRelationship)

getinAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the aggregation to-endpoint is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..] This operation returns the set of AggregatedRelationship for which
the aggregation from-endpoint is the current KDM Entity.

Constraints

1. AggregatedRel ationship shall be owned by the KDMEntity that is the aggregation from-endpoint of the aggregated
relationship.

Semantics

Derived association ends inAggregated, outAggregated are owned by the class. Explicit operations are defined for
navigation as part of the high-level interface to KDM models. Association end aggregatedRelation is owned by the class.

9.6.3 KDMRelationship (additional properties)

Associations

| aggregate:AggregatedRelationship[0..*] The set of aggregated rel ationships that include this KDM
relationship.

Semantics

Derived association end aggregate is owned by the class. No explicit operations for navigation are defined for this derived
property. This derived property is the inverse of the relation property of AggregatedRelationship.
9.7 Datatypes Class Diagram

The Datatypes class diagram describes several predefined data types for the Core package. Each class at the Datatypes
class diagram is an instance of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.6.

«dataType» «dataType» «dataType»
String Boolean Integer

Figure 9.6 - Datatypes Class Diagram

34 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

9.7.1 Boolean Type (datatype)

The meta-model uses the predefined Boolean type to represent some KDM attributes, KDM operations, and their
parameters.

9.7.2 String Type (datatype)

The meta-model uses the predefined String type to represent some KDM attributes, KDM operations, and their
parameters.

9.7.3 Integer Type (datatype)

The meta-model uses the predefined Integer type to represent some KDM attributes, KDM operations, and their
parameters.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

35

36

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10 The Package named “kdm”

10.1 Overview

The package named “kdm” defines the key infrastructure elements that determine patterns for constructing KDM views of
existing software systems. KDM views (also referred to as KDM instances) are collections of the elements that are
instances of the meta-model elements defined by the KDM specification, where each KDM element represents a certain
element of the existing system. Although each KDM instance is a model of the corresponding existing software system,
KDM instance is not a model that represents constraints, like the ones used during the design phase, rather, thisis an
intermediate representation that captures precise knowledge about the system.

Implementers of KDM tools are guided by a mapping from the elements of programming languages, runtime platforms,
and other artifacts of existing software systems into KDM elements, using semantic description and implementer’s
guidelines of this specification. The package named “kdm” describes several infrastructure elements that are present in
each KDM instance. Together with the elements defined in the Core package these elements constitute the so-called KDM
Framework. The remaining KDM packages provide meta-model elements that represent various elements of existing
systems.

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension
meta-model pattern). KDM Framework is part of the Infrastructure Layer together with the elements defined in the Source
package.

10.2 Organization of the KDM Framework

The package with name “kdm” is a collection of classes and associations that define the overall structure of KDM
instances. From the infrastructure perspective, KDM instances are organized into segments and then further into specific
models. There are 9 kinds of models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. From the architectural perspective, each KDM package defines an architectural viewpoint. KDM
model is the key mechanism to organize individual facts into architecture views. From the infrastructure perspective, a
KDM model is a typed container for meta-model element instances (collection of facts organized into an architectural
view). From the meta-model perspective, each KDM model is represented by a separate KDM package that defines a
collection of the meta-model elements, which can be used to represent the facts about the given existing systems from a
particular viewpoint. KDM framework defines a common superclass model element for all models - the KDMModel class.
KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding to a particular
model kind and to a particular instance of such element in a concrete representation of some existing system. Explicit
disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when necessary.

KDM model isthe key unit of a KDM instance. KDM segment can own one or more models. A segment isaminimal unit
of exchange in the KDM ecosystem. Segments can be nested.

The implementer shall provide an adequate partitioning of the KDM instance into multiple models and segments. On the
other hand, the implementers of KDM import tools should not make any assumptions about the organization of KDM
model elements into models or organization of models into segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model
segment describe artifacts that involve a single programming language and a single platform.

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be
integrated to provide a coherent holistic view.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 37

The package with name “kdm” consists of the following 5 class diagrams:
* Framework — defines the basic elements of the KDM framework.
e Audit — defines audit information for KDM model elements.
« Annotations - provides user-defined attributes and annotations to the modeling elements.
« Extensions- aclass diagram that defines the overall organization of the light-weight extension mechanism of KDM.
» ExtendedValues - the tagged values used by the light-weight extension mechanism.

The package with name “kdm” depends only on the Core package.

10.3 Framework Class Diagram

The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM
instances.

The classes and association of the Framework diagram are shown in Figure 10.1.

ModelElernent
(core)
FrameworkElement
+name : String +owner Extensions
1
o* +extensionFamily
ExtensionFamily
+name : String
+owner
1
Segment +mode KDMMode/
+segment
0.*
0..*
Models
0.1 +/model [0..1 {union}
+owner
Segments +/ow_nedEIement 0..*
{union} KDMEntity

(core)

Figure 10.1 - Framework Class Diagram

38 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10.3.1 FrameworkElement Class (abstract)

The FrameworkElement meta-model element is an abstract class that describes the common properties of all KDM
Framework elements. FrameworkElement class is extended by Segment and KDMModel classes. These elements may
own KDM light-weight extensions (extensionFamily property). The KDM extension mechanism is described further in
this clause.

Superclass

M odel Element

Attributes

name: String [0..*] The name of the framework e ement.

Associations

extensionFamily:ExtensionFamily [0..*] Extensions for the current model segment. This association end is owned
by the class.
Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. The
implementer shall:

e Arrangeinstances of the KDM model elementsinto models (constrained only by the definition of each model).
¢ Arrange KDM modelsinto one or more segments.

¢ Provide namesto KDM models and KDM segments.

10.3.2 KDMModel Class (abstract)

A KDMModel is an abstract class that defines common properties of KDM model instances that are collections of facts
about a given software system from the same architectural viewpoint of one of the KDM domains. KDM defines several
concrete subclasses of the KDMModel class, each of which defines a particular kind of a KDM model. The architectural
viewpoint is define by the corresponding KDM package. A KDM model instance is an architectural view of the given
system.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’'s assume
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

¢ Themeta-model elementsfor KDM model “foo” are described in a separate package, called “foo.”
« The package defines a concrete subclass of the KDMModel, called “FooModel.”

« The package defines a common abstract parent for all KDM entities specific to this KDM model, called
“ AbstractFooElement.” This class extends the KDMEntity class from the Core package.

¢ The package defines a common abstract parent for all KDM relationship specific to this KDM model, called
“ AbstractFooRel ationship.” This class extends KDM Relationship class from the Core package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 39

¢ Class“FooModel” owns class “ AbstractFooElement.” This association subsets the association between the
KDMModel and KDMEntity defined at the Framework class diagram.

e Class*“AbstractFooElement” owns zero or more AbstractFooRel ationship elements.

« The package “foo” includes a“Fool nheritances’ class diagram, describing inheritances of “FooModel,”
“ AbstractFooElement,” and “ AbstractFooRelationship” classes, aswell as any other common properties related to the
KDM Infrastructure, such as properties related to the Source package.

* The package “foo” includes “ ExtendedFooElements” diagram that defines two generic meta-model elements
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass

FrameworkElement

Associations

/ ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM model defines
specific subclasses of KDMEntity class.

Operations
getOwnedElement(): KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current
KDM Modd.
Semantics

The implementer shall arrange instances of the KDM model elements into models (constrained only by the definition of
each model) and to provide name attributes for each KDM model instance. A KDM model instance may be empty or may
contain one or more instances of the elements allowed for this KDM model. A particular KDM instance may contain no
KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models
in KDM Program Elements and Infrastructure layer. There shall be no associations from the Program Elements and
Infrastructure layer models to Resource and Abstractions layer models.

Derived association end ownedElement is owned by the class. Explicit operations are defined for navigation as part of the
high-level interface to KDM models. Each KDM package defines specific subtypes of KDMModel and a collection of the
corresponding subtypes of KDMEntity and KDM Relationship classes. Each subclass of KDMModel and related subtypes
of KDMEntity and KDMRelationship define a viewpoint. Instances of these classes for a given software system constitue
one or more KDM models, (KDM views).

Association end owner is owned by the class. This property is considered non-navigable in KDM.

40 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10.3.3 KDMEntity (additional properties)

Associations

/ model: KDMModel[0..1] Instance of KDM Model that owns this KDM entity.
Operations
getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM
Entity.
Semantics

Derived association end model is owned by class. Explicit operations are defined for navigation as part of the high-level
interface to KDM models. Each KDM package defines specific subtypes of KDMMaodel and a collection of the
corresponding subtypes of KDMEntity classes. The model property of such subclass of KDMEntity is an instance of a
specific subtype of KDMModel from the same KDM package.

10.3.4 Segment Class

The Segment element is a container for a meaningful set of facts about an existing software system. Each segment may
include one or more KDM model instances and thus represents a collection of one or more architectural views for a given
software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without owners is the
top segment of the KDM model.

Superclass

FrameworkElement

Associations

segment: Segment[0..*] Nested Segment elements owned by the current Segment.

model:KDMModel[0..*] The set of KDM models owned by the current segment. Each KDM model defines an
architectural viewpoint. KDM model defines specific meta-model elements (entities and
rel ationships specific to the viewpoint) that collectively define the viewpoint language.

Semantics

Association ends model and segment are owned by the class. Association end owner is owned by the association. This
property is considered non-navigable in KDM.

The implementer shall arrange KDM models into segments and to provide name attributes for each KDM segment
instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may contain one
or more KDM models of a given kind.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple
derivative models from the Program Elements and Infrastructure layer.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 41

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models
into KDM segments.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:source="http://www.omg.org/spec/KDM/20160201/source" name="Framework Example">
<audit xmi:id="id.0" description="Illustration of KDM Framework" author="KDM FTF" date="04-03-2007">
<attribute xmi:id="id.l1" tag="approved" value="yes"/>
</audit>
<segment xmi:id="id.2" name="foobar"/>
<model xmi:id="id.3" xmi:type="code:CodeModel" name="foo">
<annotation xmi:id="1id.4" text="This is a sample instance of a Code model"/>
</model>
<model xmi:id="id.5" xmi:type="source:InventoryModel" name="bar">
<annotation xmi:id="id.6é" text="This is a sample of an Inventory model"/>
</model>
</kdm: Segment >

10.4 Audit Class Diagram

The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2.

ExtendableElement
(core)
AN
ModelElement
(core)
+owner |1
Audit
+description : String
Audits +audit | +author : String

+date : Stri
0~ ring

Figure 10.2 - Audit Class Diagram

10.4.1 Audit Class

Audit class represents basic audit information associated with KDM model elements. The Audit element allows
associating provenance, argument as well as other metadata with arbitrary KDM model elements.

42 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

Extendabl eElement

Attributes
description:String Contains the description related to the Audit of the element (the Audit message).
author:String Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.
date:String Contains the date when the model element was created.

Associations

owner:ModelElement[1] The owner of the current Audit element.

Constraints
1. date should be represented in “dd-mm-yyyy” format.
Semantics
The Audit element provides some extra “audit” information in the form of human readable text.

Each model element can have zero or more Audit instances associated with it. The collection of Audit elements is not
ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,”
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For
example, “04-03-2007" corresponds to the “4th of March 2007.”

The content of the Audit element is provided by the implementer or the analyst.
KDM does not constrain the “description” attribute.

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element,
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or
segment.

Audit element can own Annotation elements and Attribute elements. The Audit.description is the primary description and
any associated annotations may be used as optional secondary descriptions.

Audit element can be extended with ExtensionElement using the light-weight extensibility mechanism.
Association end owner is owned by the class.

Example

See example in the “ Segment Class’ sub clause.

10.4.2 ModelElement (additional properties)

Audit elements can be owned by any subclass of the Model Element element, including segment or model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 43

Associations

audit:Audit[0..*] Thelist of Audit element instances for the given instance of Model Element, including Segment or
Model.

Semantics

Association end audit is owned by the class.

10.5 Extensions Class Diagram

The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “extended” meta-model elementsto KDM.
An “extended” meta-model element is a base meta-model element with extended meaning, and possibly with extended
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of
KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:
1. Define a stereotype (introduce the partial kind of a meta-model element):

* A stereotype definition includes the name of class of the allowed base elements. This class can be a particular
concrete meta-model element, a generic element, or an abstract meta-model element.

2. Define tags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition
includes the name of the extended attribute and the name of the type of the element (represented as a string).
Values of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype
defines its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework
elements (KDM models and segments).

4. Use extended model elements in KDM instances by using the base meta-model element instance with one or more
stereotypes:

* Concrete tag values can be added to the “extended” element if the stereotype defines tags.
» Eachtag valueis associated with the corresponding tag definition.
e The complete kind of the new element is defined as the union of all stereotypes added to the element.

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element.
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of

44 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model
defines two viewpoint-specific generic elements: a generic entity and a generic relationship for the given KDM model.
They too can be used as extension points.

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between
tags or stereotypes. The implementer shall select the most specific extension points, by defining stereotypes in such a way
that they use the base elements with the most specific semantic description (closer to the bottom of the KDM class
hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.

ExtensionElement
> (core) <
ExtensionFamily
+name : String
+owner |1
Bloreotyps TagDefinition
+stereotype |+name : String +owner +ag i
% - Strin | +tag : String
0..* Y 9 1 Tags 0. +type : String
Stereotypes /

+stereotype [0..*

Extension
0.*
ExtendableElement ExtendedValue
+taggedValue
(core)] o

ExtendedValues

Figure 10.3 - Extensions Class Diagram

10.5.1 Stereotype Class

The stereotype concept provides a way of branding (classifying) certain elements so that they behave as if they were the
instances of new extended meta-model constructs. These elements have the same structure (attributes, associations,
operations) as similar non-stereotyped elements of the same kind. The stereotype may specify additional required tagged
values that apply to these elements. In addition, a stereotype may be used to indicate a difference in meaning or usage
between two elements with identical structure.

Stereotype is a named element. TaggedVal ues attached to a Stereotype apply to each ExtendableElement branded by that
Stereotype.

A Stereotype specifies the name of the base element to which it can be added.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 45

Superclass

ExtensionElement

Attributes
name:String Specifies the name of the stereotype.
type:String Specifies the name of the base element to which the stereotype applies.

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

owner:ExtensionFamily[1] ExtensionFamily that owns the current stereotype.

Constraints

1. Tags associated with ExtendableElement should not clash with any meta attributes associated with this model
element.

2. A model element should have at most one tagged value with a given tag name.
3. A stereotype should not extend itself.

4. A Stereotype can be added to ExtendableElement if its class is the same as the value of the type attribute of the
Stereotype, or one of its subclasses.

5. The values of the type attribute of the TagDefinition are restricted to the names of the subclasses of
ExtendableElement and the names of the core datatypes. Names of the core datatypes (“Boolean,” “ String,”
“Integer”) define attributes of the extended meta-model element. The corresponding values are represented as
instances of the TaggedValue class. Names of the subclasses of ExtendableElement (for example, “KDMEntity,” or
“Audit”) define associations of the extended meta-element and the corresponding values are represented as
instances of the TaggedRef class.

Semantics
Stereotypes should not change the semantics of the base meta-model element.

A KDM model element with one or more stereotypes has the semantics of the base element with some additional
semantic constraints. The complete kind of the new element is defined as the union of al stereotypes added to the
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class,
with the new attributes corresponding to the tag definitions.

Association ends tag and owner are owned by the class.

Example

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action=http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Stereotype Example">

46 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<extensionFamily xmi:id="id.0" name="Example extensions"s>
<stereotype xmi:id="id.1" name="Java method"/>
<stereotype xmi:id="id.2" name="C++ method"/>
<stereotype xmi:id="id.3" name="C++ procedure"/>
<stereotype xmi:id="id.4" name="C++ friend">
<tag xmi:id="1d.5" tag="friend of" type="ClassUnit"/>
</stereotype>
<stereotype xmi:id="id.6" name="IsFriendOf"/>
<stereotype xmi:id="id.7" name="native call"s>
<tag xmi:id="id.8" tag="implemented in" type="String"/>
</stereotype>
</extensionFamily>
<model xmi:id="id.9" xmi:type="code:CodeModel" name="Example">
<codeElement xmi:id="id.10" xmi:type="code:ClassUnit" name="myclass">
<codeElement xmi:id="1id.11" xmi:type="code:MethodUnit" stereotype="id.2"
name="foo" type="id.1l2">
<codeElement xmi:id="id.12" xmi:type="code:Signature" name="foo"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.13" xmi:type="code:CallableUnit" stereotype="id.4 id.3"
name="bar" type="id.16" kind="regular">
<taggedvValue xmi:id="id.14" xmi:type="kdm:TaggedRef" tag="id.5" reference="id.10"/>
<codeRelation xmi:id="id.15" xmi:type="code:CodeRelationship" stereotype="id.ée"
to="id.10" from="id.13"/>
<codeElement xmi:id="1id.16" xmi:type="code:Signature" name="bar"/>
</codeElement >
</model>
<model xmi:id="id.17" xmi:type="code:CodeModel">
<codeElement xmi:id="id.18" xmi:type="code:ClassUnit" stereotype="id.1">
<codeElement xmi:id="1id.19" xmi:type="code:MethodUnit" stereotype="id.1l"
name="foobar" type="id.23">
<codeElement xmi:id="1d.20" xmi:type="action:ActionElement" stereotype="1id.7"
name="al">
<actionRelation xmi:id="1id.21" xmi:type="action:Calls" stereotype="id.7"
to="1id.13" from="id.20">
<taggedvValue xmi:id="id.22" xmi:type="kdm:TaggedvValue" tag="1id.8" value="C"/>
</actionRelation>
</codeElement >
<codeElement xmi:id="id.23" xmi:type="code:Signature" name="foobar"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

10.5.2 TagDefinition Class

Lightweight extensions allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 47

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
extended information about existing software systems to only those tools that share a common understanding of the
specific tagged value names.

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass

ExtensionElement

Attributes
tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.
type:String Specifies the type of the value attribute.

Associations

owner:Stereotype[1] Stereotype that owns the current TagDefinition.

Constraints

1. The “value” attribute of the TaggedValue should be valid according to the type specified in the corresponding
TagDefinition.

2. The target of the “ref” association of the TaggedRef should be of the type specified in the corresponding
TagDefinition, or one of its subtypes.

3. If the type of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,” “ StringType,”
“IntegerType”), the corresponding value should be an instance of the TaggedValue class.

4. If the type of the TaggedDefinition is a name of some other KDM element (for example, “KDMEntity,” or
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics

ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags
is outside of the KDM specification and should be communicated by implementers to the users of the extended models.
Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions
can still be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic
KDM semantic rules are applied.

Association end owner is owned by the class.

48 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Example

See example in the “ Stereotype Class’ sub clause.

10.5.3 ExtensionFamily Class

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and their corresponding tag definitions.

Superclass

ExtensionElement

Attributes

name:String Provides the name of the extension family.

Associations

stereotype: Stereotype[0..*] The set of stereotypes that are owned by the extension family.
owner:FrameworkElement[1] The FrameworkElement (Segment or KDMModel) that ownsthe current extension
family.
Semantics

ExtensionFamily provides a named container for stereotype definitions. The implementer shall arrange stereotype
definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in a separate
segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into families.

Association ends stereotype and owner are owned by the class.
Example

See example in the “ Stereotype Class” sub clause.

10.5.4 ExtendableElement (additional properties)

Associations

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

stereotype:Stereotype[0..*] the stereotype

Constraints

1. Each tagged value added to an ExtendableElement must conform to a certain tag definition owned by the
stereotype of that ExtendableElement (the tag association of the TaggedValue should refer to a TaggedDefinition
that is owned by a Stereotype of the ExtendableElement). A tagged value conforms to a tag definition when the

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 49

value conforms to the type of the TagDefinition. Full validation of lightweight extensions can only be performed
dynamically by a suitable KDM import tool, since the purpose and the semantics of an extension is not defined by
the KDM standard.

2. Stereotype can be associated with a certain instance of an ExtendableElement if the type of the ExtendableElement
is the same as the type property in the stereotype definition, or one of its subclasses.

Semantics
Association ends taggedValue and stereotype are owned by the class.

Example

See example in the “ Stereotype Class’ sub clause.

10.6 ExtendedValues Class Diagram

ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value
construct.

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

ExtensionElement
(core)
ExtendedValue +tag TagDefinition
TaggedValueDefinition +tag : String
+type : String
T 1_° 1
TaggedValue TaggedRef
+value : String
0..*
Reference
1| +reference
ExtendableElerment
(core)

Figure 10.4 - ExtendedValue Class Diagram

50 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10.6.1 ExtendedValue Class (abstract)

ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values. the TaggedValue
and the TaggedRef. ExtendedValue class defines common properties for these classes.

Superclass

ExtensionElement

Associations

tag:TagDefinition[1] The reference to the tag definition of the corresponding stereotype.

Semantics

ExtendedValue is an additional attribute to an extended KDM meta-model element. ExtendedValue element represents the
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stereotype
element defines the “extended meta-model element that provides the context for the new attributes. ExtendedValue
elements that correspond to a Stereotype shall be instantiated every time a new extended meta-model element, defined by
a Stereotype, is instantiated. This is an important difference between ExtendedValues and KDM attributes, which are not
related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the
allowed values.

Each instance of ExtendedValue has an association to the corresponding TagDefinition. Association end tag is owned by
the class.

10.6.2 TaggedValue Class

A tagged value allows information to be attached to any model element in the form of a “tagged value’ pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Each TaggedVaue must conform to the corresponding TagDefinition.

Superclass

ExtendedVaue

Attributes

Value:String Contains the current value of the TaggedValue.

Constraints

1. The value of the TaggedValue instance should conform to the type of the corresponding TagDefinition.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 51

Semantics

TaggedValue element represents simple atomic extended attributes. The type constraint of the value, defined in the
corresponding TagDefinition can be the name of any KDM primitive datatype (for example, “ StringType,”
“BooleanType,” etc.).

Example

See example in the “ Stereotype Class’ sub clause.

10.6.3 TaggedRef Class

A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of the
subtypes of that type.

Superclass

ExtendedValue

Associations

reference:Model Element[1] Designates the model element referred to by the extended value.

Constraints

1. The model element that is the target of the reference association must be of the type, specified by the type attribute
of the tag definition that is the target of the tag association of the tagged ref element.

Semantics

TagRef represents complex extended attributes, which are associations to other KDM elements. TagDefinition can be a
name of any KDM meta-model element (for example, “KDMEntity,” “ AbstractCodeElement,” “Control Element,” or
“CallableUnit”). Association end reference is owned by the class.

Example

See example in the “ Stereotype Class’ sub clause.

10.7 Annotations Class Diagram

The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag,
value> to an individual element instance. Thisis complimentary to the light-weight extension mechanism, which provides
a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances
of the same meta-model element may own completely different user-defined attributes (and some may have none at al).

52 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of KDM instances. They may be used by implementer to add specific information to an individual element.
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag
definitions are first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5.

AnnotationElement
(core)

AnnotatableElement
+owner | 1 +owner | 1
Attribute Annotation
+tag : String +attribute +annotation | +text : String
+value : String 0..*

ElementAttribute 0..*
ElementAnnotation

Figure 10.5 - Annotations Class Diagram

10.7.1 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value” pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define extended new
model element, and tagged values specify additional attributes of these extended model elements). Tagged values are only
associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

Superclass

AnnotationElement

Attributes
tag:Name Contains the name of the attribute. This name determines the semanticsthat are applicableto the
contents of the value attribute.
value:String Contains the current value of the attribute.

Associations

owner:Element[1] The AnnotatableElement that owns the current Attribute.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 53

Constraints
1. Attribute cannot have further annotations or attributes.

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It may be determined by the user or the
implementer conventions. Tools may provide capability to add arbitrary attributes to the instances of the model to supply
information needed for their operations beyond the basic semantics of KDM. Such information can support analysis of
KDM models.

An attribute element is not related to a particular meta-model element. It does not define an extended attribute to an
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of
instances. Association end owner is owned by the class.

Example

See example in the “Segment Class’ sub clause.

10.7.2 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element.

Superclass

AnnotationElement

Attributes

text:String Contains the text of the annotation to the target model element.

Associations

owner:Element[1] The AnnotatableElement that owns the current Annotation.

Constraints
1. Annotation cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element. Association end owner is owned
by the class.

Example

See example in the “Segment Class’ sub clause.

54 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

10.7.3 AnnotatableElement (additional properties)

Associations

attribute:Attribute[0..*] The set of attributes owned by the given element.
annotation:Annotation[0..*] The set of annotations owned by the given element.
Semantics

No assumptions should be made regarding the order of attributes or annotations associated with a particular instance.
Association ends attribute and annotation are owned by the class.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

55

56

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

11 Source Package

11.1 Overview

The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of existing
systems, such as source files, images, configuration files, resource descriptions, etc. The Source package also represents
traceability links between instances of KDM meta-elements and the corresponding regions of source code. It represents
the link between the KDM instance and the artifacts of the existing system it represents.

The Source package offers several capabilities for linking instances of the KDM representation to the corresponding
artifacts:

« Inlining the corresponding source code in the form of a“snippet” into KDM representation.
« LinkingaKDM element to aregion of the source code within some physical artifact of the system being modeled.

< Explicit relation between any KDM element (viathe Track element) and another KDM element, including elements
that represent an artifact in the InventoryModel.

A given KDM representation can implement either of the approaches, all of them, or none.

KDM Source packages uses URI reference to identify the location of an artifact. When a KDM element is linked to the
source code within a particular physical artifact of the existing system (regardless of the existence of the corresponding
snippet), KDM offers an additional two options:

* Thelink can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the URI reference of the artifact is determined through the Inventory Model.

< Thelink can be made stand-alone and explicitly specify the URI reference of the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, thisis
indicated by the “language” attribute.

The Source package defines an architectural viewpoint for the Inventory domain. It is determined by the entire software
development environment of the existing software system.

e Concerns,
¢ What are the artifacts (software items) of the system?

* What isthe genera role of each artifact (for example, isit asourcefile, abinary file, an executable, or a
configuration description)?

¢ What isthe organization of the artifacts (into directories and projects)?
e What are the dependencies between the artifacts?
* Viewpoint language:

Inventory views conform to KDM XMI schema. The viewpoint language for the Inventory architectural
viewpoint is defined by the Source package. It includes an abstract entity AbstractinventoryElement, several
generic entities, such as Inventoryltem and InventoryContainer, as well as several concrete entities, such as
SourceFile, ObjectFile, ImageFile, Directory, etc. The viewpoint language for the Inventory architectural
viewpoint also includes TraceableTo and DependsOn relationships, which are subclasses of
AbstractInventoryRel ationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 57

¢ Analytic methods:
The Inventory architectural viewpoint supports the following main kinds of checking:
e What artifacts depend on the given artifact?

The Inventory viewpoint also supports check in combinations with other KDM architectural viewpoint to determine
the origina artifacts that correspond to a given KDM element.

« Construction methods:

* Inventory viewsthat correspond to the KDM Inventory architectural viewpoint are usually constructed by
directory scanning tools, which identify files and their types.

e Construction of an Inventory view is determined by the particular development and deployment environments of
the existing software system.

e Construction of an Inventory view is determined by the semantics of the environment as well as the semantics of
the corresponding artifacts, and is based on the mapping from the given environment to KDM.

e The mapping from a particular environment to KDM may produce additional information (system-specific, or
environment-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using
stereotypes, attributes, or annotations.

As ageneral rule, in agiven KDM instance, each instance of the inventory model represents a set of resources,
identifiable by URI references. A resource is any artifact that has identity, such as afile, an electronic document, an
image, a service, and a collection of other resources. Exceptions to this rule are;

« InventoryModel element, which isa part of the KDM instance infrastructure. This meta-model element is a container
for the instances of other inventory meta-model elements.

» SourceRef and Region elements that represent traceability links between other instances of KDM meta-model
elements and source code of an existing software system.

» Track element that together with the TraceableTo relation represents traceability links between instances of KDM
entities, including links from KDMEntities to Inventoryltem elements.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability
mechanism between KDM entities, including links between KDM entities and the elements of the InventoryModel, or
KDM entities and the regions of the physical artifacts of the existing software system that they represent.

11.2 Organization of the Source Package
The Source package consists of the following 6 class diagrams:

e InventoryModel

« Inventorylnheritances

¢ Inventoryltems

* InventoryRelations

o SourceRef

» ExtendedinventoryElements

58 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The Source package depends on the following packages:
* Core

e kdm

11.3 InventoryModel Class Diagram

InventoryModel class diagram defines meta-model elements that represent the physical artifacts of the existing software
system. This model corresponds to the inventory of the artifacts. The InventoryModel class diagram follows the uniform
pattern for KDM model to extend the KDM Framework with specific meta-model elements. InventoryModel defines the
following meta-model elements determined by the KDM model pattern:

¢ InventoryMode class
e AbstractinventoryElement class
e AbstractinventoryRelationship class

The InventoryModel class diagram defines meta-model elements to represent several important categories of artifacts
according to their functional role in software systems. Software artifacts are local or network resources, identifiable by
URI resources. These meta-model elements are subclasses of the common parent class Inventoryltem. The Inventory
model also provides a generic KDM container called InventoryContainer and two specific containers: Directory and
Project.

The classes and associations of the InventoryModel are shown in Figure 11.1.

InventoryModel +model AbstractinventoryRelationship
0..1
{subsets modél} +inventoryRelation 0.*
{subsets ownedRelation}
+inventoryElement 0..*
{subsets ownedElement}
AbstractinventoryElement 1
o @
0.~
+inventoryElement
{subsets ownedElement}
InventoryContainer
AN AN
+owner [0..1
Inventoryltem

+version : String {subsets owner}

+path : String Directory

+format : String -

+md5 : String +path : String

Project

Figure 11.1 - InventoryModel Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 59

11.3.1 InventoryModel Class

The InventoryModel is a specific KDM model that owns collections of facts related to the physical artifacts of the
existing software system. InventoryModel is a container for the instances of Inventoryltems. InventoryModel corresponds
to the inventory of the physical artifacts of the existing software system.

Superclass

KDMModel

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the inventory model.

Semantics

InventoryModel is a container for instances of inventory elements. The implementer shall arrange inventory elements into
one or more inventory models. KDM import tools shall not make any assumptions about the organization of inventory
items into inventory models.

11.3.2 AbstractinventoryElement Class (abstract)

The AbstractlnventoryElement is the abstract parent class for all inventory entities.

Superclass

K DM Entity

Associations

inventoryRelation:AbstractinventoryRelationship[0..*] ~ The set of inventory relations owned by the inventory element.

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be
used as an extension point for defining new extended inventory entities.

11.3.3 AbstractinventoryRelationship Class (abstract)
The AbstractlnventoryRelationship is the abstract parent class for all inventory relationships.

Superclass

KDMRelationship

Constraints

60 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

From the meta-model perspective, this element is a common parent for all inventory relationships. This element is
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in
stereotype definitions. Inventory package provides a concrete class I nventoryRel ationship with under specified semantics,
which can be used as an extension point for defining new extended inventory relationships.

11.3.4 Inventoryltem Class (generic)

Inventoryltem is a generic meta-model element that represents any artifact of an existing software system. This class is
further subclasses by several concrete meta-model elements with more precise semantics. However, Inventoryltem can be
used as an extended modeling element with a stereotype.

Superclass

AbstractlnventoryElement

Attributes

version:String Provides the ability to track version or revision numbers.

path:String URI reference of the resource.

format:String Optional description of the format of the Inventoryltem.

md5:String Optional MD5 hash signature of the resource using the MD5 message-digest algorithm.
Semantics

The implementer shall provide a mapping from concrete types of the physical artifacts involved in the engineering of an
existing software system into concrete subclasses of the Inventoryltem. The implementer shall map each artifact of the
existing software system to some instance of KDM Inventoryltem.

The format attribute describes the organization of the Inventoryltem. For SourceFile the value of format attribute is
assumed “text,” and the structure is defined by the language attribute. Examples of format for various subclasses of
Inventoryltem are: “xml,” “html,” “json,” “csv,” “text,” “msword,” “coff,” “java class,” “jpeg,” “mp3,” “css.”

Inventoryltems are identified by a URI reference. The semantics of the URI references in KDM is aligned with the W3C
XML specification, and IETF RFC 3986. Inventoryltem shall be identified by arelative URI reference that refers to a
resource by describing the difference within a hierarchical namespace between the reference context and the target URI.
The reference context for identification of Inventoryltem is provided by the hierarchy of Directory elements and their
“path” attributes. Inventoryltem that is not owned by any Directory element shall be identified by a full URI reference.
The full URI of an Inventoryltem that is owned by one or more Directory element in resolved in the context the URIs of
the directory hierarchy in the following way. For a given Directory item, the URI reference to an inventory item, owned
by this Directory directly or indirectly, is a sequence of strings, the first element of which is the URI reference of the
Directory, subsequent elements are the “path” attributes of the directory elements such that each directory element is
owned by the previous directory element and that last directory element owns the inventory item. The last component of
the full URI to the inventory item is the “path” attribute of the inventory item. The slash ("/") character shall be used to
delimit components that are significant to the hierarchical interpretation of a URI identifier. The “name” attributes of the
directory elements in the hierarchy as well as the “name” attribute of the inventory item itself are ignored in the process
of URI resolution. Any Project containers involved in this hierarchical structure are ignored.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 61

Only the “path” attributes contribute to the determination of the full URI reference. The “name” attribute does not
contribute to the determination of the full URI reference. The “path” attribute conforms to the URI syntax, including
escaping rules, query components, etc. The “name” attribute provides the name of the Inventoryltem. In certain cases, the
name may be the same string as the last component of the path. The implementer shall use the “path” attribute for
identification of a resource, and shall provide appropriate “name” for the resource.

An optional MD5 hash signature can be computed for the content of the resource to provide ability to detect changesin
the content of the resource. The 128-bit (16-byte) hash value produced by the MD5 message-digest algorithm is
represented in text format as a string of exactly 32 characters [0-9a-fA-F] that correspond to the digits of the hexadecimal
number.

11.3.5 InventoryContainer Class (generic)

The InventoryContainer meta-model element provides a container for instances of Inventoryltem elements.

Superclass

AbstractinventoryElement

Associations

inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the container.

Constraints
1. InventoryContainer should have at least one stereotype.
Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and
individual inventory items). InventoryContainer instances represent tree-like hierarchical structures in which the |eaf
elements are individual Inventoryltem instances. Each InventoryContainer represents the entity set of Inventoryltems
owned by that container directly or indirectly.

11.3.6 Directory Class
The Directory class represents directories as containers that own inventory items.

Superclass

InventoryContainer
Attributes
path:String URI reference of the directory.

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in
file systems.

62 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Directory elements are identified by a URI reference. The semantics of the URI references in KDM is aligned with the
W3C XML specification, and IETF RFC 3986. Directory element that is not owned by any other directory element (aroot
directory element) shall be identified by a full URI reference. Hierarchical structure of directory elements determines the
URI reference for each owned directory element in the following way. The URI reference of a given directory element,
owned by some root directory element directly or indirectly, is a sequence of strings, the first element of which isthe URI
reference of the root directory, subsequent elements are the “path” attributes of the directory elements such that each
directory element is owned by the previous directory element; the last component of the URI reference is the “path”
attribute of the directory element. The slash ("/") character shall be used to delimit components that are significant to the
hierarchical interpretation of a URI identifier. The “name” attributes of the directory elements in the hierarchy are
ignored in the process of URI resolution. Any Project containers involved in this hierarchical structure are ignored.

The implementer shall determine the appropriate root directory elements.

11.3.7 Project Class

The Project meta-model element represents an arbitrary logical container for inventory items.

Superclass

InventoryContainer

Semantics

Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers. The Project
element does not contribute to the hierarchical resolution of the relative URI references of Inventoryltems.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:source="http://www.omg.org/spec/KDM/20160201/source" name="Inventory Example">
<model xmi:id="id.0" =xmi:type="source:InventoryModel">
<inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c"
path="file://localhost/myproject/abc/a.c">
<inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.1"/>
</inventoryElement >
<inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c"
path="file://localhost/myproject/abc/b.c">
<inventoryRelation xmi:id="id.4" =xmi:type="source:DependsOn" to="id.5" from="id.3"/>
</inventoryElement>
<inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"
path="http://reliablepartner.com/collaboration/mycompany/myproject/abc/ab.h"/>
<inventoryElement xmi:id="id.6" xmi:type="source:Directory" name="shared"
path="file://localhost/myproject/shared">
<inventoryElement xmi:id="id.7" xmi:type="source:Directory" name="images"
path="images">
<inventoryElement xmi:id="id.8" xmi:type="source:Image" name="imgl" path="imgl.jpg"/>
<inventoryElement xmi:id="1id.9" xmi:type="source:Image" name="img2.jpg" path="img2.jpg"/>
</inventoryElement>
</inventoryElement >
<inventoryElement xmi:id="id.10" xmi:type="source:SourceFile" name="makefile"
path="file://localhost/myproject/build/makefile"/>
<inventoryElement xmi:id="id.11" xmi:type="source:ExecutableFile" name="ab.exe"
path="file://localhost/myproject/deliverables/ab.exe">
</model>
</kdm: Segment >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 63

| 114

Inventorylnheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.

Inventorylnheritances Class Diagram

KDNMMode/ KDMEntity KDMRelations hip
(kdrm) (core) (core)
InventoryModel AbstractinventoryElerment AbstractinventoryRelationship

Figure 11.2 - Inventorylnheritances Class Diagram

11.5 Inventoryltems Class Diagram

Inventoryltems class diagram is determined by the KDM model pattern. This diagram defines how the classes of the
InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.3.

Inventoryltem
+version : String <t
+path : String
> +format : String G
+md5 : String
AN AN A
SourceFile
+language : String
+encoding : String
DataFile Service ConfigFile
LinkableFile ExecutableFile
Model Document
AudioFile/ | | ImageFile ObjectFile LibraryFile

Figure 11.3 - Inventoryltems Class Diagram

11.5.1 SourceFile Class

The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of
KDM whose purpose is to provide links between code elements and their physical implementations using the
SourceRegion mechanism from the Source package.

64 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM
specification explicitly defines semantics of source files.

Superclass

Inventoryltem

Attributes

language:String Indicates the language of the sourcefile.

encoding:String An optional attribute that represents the encoding of the charactersin thefile.

Semantics

The SourceFile element represents source files that determine the structure and the behavior of software systems. A
source file usually has plain text format. The logical organization of a source file is usually determined by a certain
language, such a programming language, a data definition language, etc. KDM models outside of the Infrastructure layer
provide viewpoint languages to describe the common elements of software systems and provide references to the
corresponding source files.

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

KDM tools may use the information from the artifacts of the existing software system, accessible through the
SourceRegion mechanism. It is recognized that different charactersets and character encoding schemas are used around
the world, and it may be desired for KDM processors to read code snippets from the files that use them.

Specification of character encoding is aligned with the XML specification from W3C. Each artifact of an existing system
may use a different encoding for its characters. The default encoding for SourceFile is “UTF-8." Encodings other than
UTF-8 should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding |abel.
For example, “UTF-16," “1S0O-10646-UCS-2,” “1S0O-8859-2," “1S0O-2022-JR,” “Shift_JIS,” and “EUC-JP” etc. Encoding
of the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information
in the source file, through the mechanism of the SourceRegion. KDM tools shall at a minimum support UTF-8.

11.5.2 Model Class

Model element represents various model artifacts that are related to the software system.
Superclass

Inventoryltem

Semantics

Model element represents various model artifacts that are related to the software system. The format of a document can be
plain text, structured text, such as xml, or one of the many binary formats. A Model element complements SourceFile,
because it determine the structure and behavior of the software system in an indirect way, by determining the structure and
behavior of the source files through the techniques known as model-based engineering.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 65

11.5.3 Document Class

Document element represents various textual documents that are related to the software system.

Superclass

Inventoryltem

Semantics

Document element represents various textual documents that are related to the software system. The format of a document
can be plain text, formatted text, where style information is included, or one of the many binary formats, in which some
portions must be interpreted as binary objects (encoded integers, real numbers, images, etc.). A Document is different from
a SourceFile, because it does not determine the structure and behavior of the software system (but may describe it).
Document element can be used to represent an arbitrary information item related to the system. Other model element can be
linked to particular Document element using traceability links.

11.5.4 ImageFile Class

ImageFile element represents visual images, such as still graphical images, animated images, or video.
Superclass

Inventoryltem

Semantics

ImageFile element represents visual images that combine shapes and color to inform, illustrate, entertain, or to guide viewers
to particular information. Imagefile can be used to create agraphical interface for the user of a software system. ImageFile can
be content of the software system, or part of the related documentation. Graphical images, animated images, and video are
elements of multimedia technology. A rich multimedia resource that combines video and audio shall be represented as an
Instance of ImageFile. An ImageFile requires certain capability to render.

11.5.5 AudioFile Class

AudioFile element represents resources related to audio content form.
Superclass

Inventoryltem

Semantics

AudioFile element represents resources related to audio content form, for example, digital recording or generation of sound
waves such as voice, singing, instrumental music, or sound effects. AudioFile can be used to create the user interface of a
software system, or as part of its content. Audio is an element of multimediatechnology. AudioFile requires certain capability
to produce sound.

11.5.6 DataFile Class

DataFile element represents variety of plain text or binary files that are used as input to some elements of a software
system.

66 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass
Inventoryltem

Semantics

DataFile element represents variety of plain text or binary filesthat are used as input to some elements of a software system
during the runtime phase. Datafiles may include csv files, Excel spreadsheets, databasefiles, xml files, json files, etc. DataFile
is often similar to a ConfigFile. KDM implementation shall select appropriate element based on itsrole in the system.

11.5.7 Service Class

Service element represents a network resource that exposes some operations.

Superclass
Inventoryltem

Semantics

Service element represents a network resource that exposes some operations, such as a Web service. For example, REST web
services provide a uniform set of stateless operations to manipulate a certain resource. A service may be described in machine-
processable format, such as WSDL, and may be registered to facilitate service discovery. Usually a service uses a certain

protocol to exchange data. In KDM models a Service resource can be a binding target for various platform resource elements.

11.5.8 ConfigFile Class

ConfigFile element represents various configuration files.
Superclass

Inventoryltem

Semantics

ConfigFile element represents configuration files, such as property lists, initial settings for user applications, server processes,
operating system settings, or even simple databases. Configuration files often use plain text format, “us-ascii” character set,
and are line-oriented. Configuration files are usually used during compilation, linking, or initialization phases of the lifecycle
of asoftware system. ConfigFile that is used during the runtime phase is similar to DataFile. For example, asimple database
can be also represented as a DataFile. KDM implementation shall select appropriate element based on itsrolein the system.

11.5.9 LinkableFile Class (generic)
LinkableFile element represents various forms of relocatable machine code that is usually not directly executable.

Superclass

Inventoryltem

Constraints

1. LinkableFile should have at least one Stereotype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 67

Semantics

A LinkableFile element represents various forms of relocatable machine code that is usually not directly executable.
LinkableFile is a generic element, which introduces an extension point for the light-weight extension mechanism. Concrete
subclasses of LinkableElement are ObjectFile and LibraryFile.

11.5.10 ObjectFile Class

ObjectFile element represents relocatable bytecode or machine code with additional metadata.

Superclass

LinkableFile

Semantics

An object fileis afile containing relocatable machine code that is usually not directly executable. Usually object files are used
asinput to the linker, which in turn typically generates an executable or library by combining parts of object files.

In addition object files may contain metadata used for linking or debugging, such as information to resolve symbolic cross-
references between different modules, relocation information, stack unwinding information, comments, program symbols,
debugging, or profiling information.

11.5.11 LibraryFile Class

LibraryFile element represents libraries of machine code or bytecode.

Superclass

LinkableFile

Semantics

A library isacollection of reusable bytecode or machine code with awell-defined interface. A static library allows access to
the code implemented by alibrary during the build of theinvoking program. A shared or dynamic library can be accessed after
the executable has been invoked to be executed, either as part of the process of starting the execution, or in the middle of
execution.

Most compiled languages have a standard library and also allow create custom libraries. Most modern software systems
provide libraries that implement the majority of system services.

11.5.12 ExecutableFile Class

ExecutableFile element represents executable files (machine code or bytecode) for a particular platform.
Superclass

Inventoryltem

Semantics

ExecutableFile element represents executable files (machine code or bytecode) for a particular platform. ExecutableFile
element assumes some binary format. Scripts and other interpreted files with text format are usually represented by a
SourceFile element. Implementater shall select appropriate element based on itsrole in the system.

68 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

11.6 Traceability Class Diagram

Traceability class diagram defines a set of meta-model elements whose purpose is to provide traceability links between
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class
diagram shown in Figure 11.4 captures these classes and their relations.

AnnotatableElement AbstractinventoryElement
(core)
KDMEntity
(core)
SourceRef Track
+owner e

+language : String +source 0..1 0..1 +track +description : String
+snippet : String " -

0.. Source Track 0..

1
SourceRegipns

+region |0..* {ordered}

Region

+format : String
+path : String

Figure 11.4 - Traceability Class Diagram

11.6.1 SourceRef Class

The SourceRef class represents a traceability link between a particular model element and the corresponding source code.

Superclass

AnnotatableElement

Attributes
language: String (Optional attribute) - indicates the source language of the snippet attribute.
snippet:String (Optional attribute) - The source snippet for the given KDM element. The snippet may

have someinternal structure, for example XML tags corresponding to an abstract syntax
tree of the code fragment. The interpretation of code snippetsis outside the scope of the
KDM.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 69

| Associations

region: Region[0..*] (Optional attribute) - A list of Region elements that provide further details related to the
physical representation of the element.
| Constraints
1. Language indicator has to be provided using at least one of the following methods:
* Asthe attribute of the SourceRef element.
« Asthe attribute of the SourceRegion element.
 Asthe attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.

2. If both the snippet and the language attributes of the SourceRef element are present, then the language attribute
should describe the nature of the code snippet, in which case the nature of the source code region accessible
through the SourceRegion may be different from the nature of the code snippet. If the snippet attribute is not
present, then the language attribute of the SourceRef element overrides the language attribute of the SourceRegion
element, which in turn overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “source”
representation as part of aphysical artifact of the existing software system. KDM element that defines a traceability link to its
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:
« Inlining the corresponding source code in the form of a*“snippet” into KDM representation.
| » LinkingaKDM element to aregion within some physical artifact of the system being modeled.
A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

* Thelink can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the URI reference of the artifact is determined through the Inventory Model.

« Thelink can be made stand-alone and explicitly specify the URI reference of the artifact asthe “path” attribute of the
Region element.

KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the
primary one and other elements are considered secondary. Secondary traceability links may be used to represent
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or
target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language”
attributes, so that KDM tools can select the appropriate representation to display.

The implementer shall provide adequate traceability links.

70 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

11.6.2 Track Class

Track is part of the KDM's traceability mechanism.

Superclass

AbstractInventoryElement

Attributes

description:String Description of the nature of the traceability link.

Associations

owner:KDMEntity[0..1] Thelogical origin element for the traceability link.

Semantics

The Track element is the origin of the TraceableTo relations between arbitrary KDM elements. Since the Track element
and the TraceableTo relation are both defined as part of the InventoryModel, they can be added to any KDMEntity
element in any KDMModel. The Track element can be extended so that additional attributes can be added.

11.6.3 KDMEntity (additional properties)

Associations

source: SourceRef[0..*] Link to the physical artifact of the element.

track:Track[0..*] Origin of explicit traceability relations to other KDM entities.

11.7 Regions Class Diagram

The Regions class diagram defines a set of meta-model elements whose purpose is to provide detailed information
regarding the regions within the physical artifacts of that system. These detailed references may accompany traceability
links represented by the SourceRef element. The class diagram shown in Figure 11.5 captures these classes and their
relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 71

Inventoryltem

AnnotatableElement
(core)
T Artifact +file
Region - oA
o +format : String | N
q—

SourceRegion

+startLine : Integer
+startPosition : Integer
+endLine : Integer
+endPosition : Integer
+language : String

+path : String

T

BinaryRegion

ReferenceableRegion

+startAddr : Integer
+endAddr : Integer

Figure 11.5 - Regions Class Diagram

11.7.1 Region Class (abstract)

The Region element is an abstract element that identifies a single region within a resource that is considered to be the

+ref : String

physical artifact of the corresponding KDM element.

Superclass

AnnotatableElement

Attributes

format:String

path:String

Associations

file:Inventoryltem[0..1]

Constraints

1. The location of the source file should be provided using at least one of the following methods:

(Optional attribute) - describes the organization of the physical artifact.

(Optional attribute) - full URI reference of the physical artifact that contains the given

region.

This association allows zero or more Region elements to be associated with asingle
Inventoryltem element of the Inventory Model.

« Path attribute of the Region element.

+version : String
+path : String
+format : String
+md>5 : String

« Path attribute of the referenced Inventoryltem element of the Inventory model.

72

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

The Region element identifies a single region within some physical artifact of the corresponding KDM element. The
concrete subclasses of the Region element provide the capability to precisely map model elements to a particular region
of source that can be text, binary, or any other format.

The “format” attribute describes the organization of the artifact. The format attribute has the same semantic as the format
attribute of Inventoryltem. The exact nature of the artifacts is described either in the format attribute (from abstract
Region class), or in the format attribute of the Inventoryltem. The format attribute in Region takes precedence over the
format attribute in Inventoryltem. Individual SourceRef elements may own multiple Region elements that represent a
situation where there are multiple disjoint regions that correspond to the given KDM element. These regions may have
different format.

A KDM element can be linked to the corresponding particular physical artifact (regardless of the existence of the
corresponding snippet) in the following two ways:

« The Region element can utilize the element of the KDM inventory model to identify the particular physical artifact, in
which case the URI reference of the artifact is determined through the Inventory Model. Subclasses of Region may
refer to specific subclass of Inventoryltem.

* The Region element can be made stand-alone and explicitly specify the URI reference of the artifact as the “ path”
attribute of the Region element.

The path attribute is the URI reference that should uniquely identify the physical artifact.

11.7.2 SourceRegion Class

The SourceRegion element identifies a single region within some Inventoryltem that is the physical representation of the
corresponding KDM element The SourceRegion element provides the capability to precisely map model elements to a
particular region of source code in text format. The nature of the source code within the physical artifact is indicated by
the language attribute of the SourceRegion element or the language attribute of the SourceFile element. The language
attribute of the SourceRegion element overrides that of the SourceFile element if both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass
Region
Attributes
startLine: Integer The line number of the first character of the source region.
startPosition:Integer Provides the position of the first character of the source region.
endLine:Integer The line number of the last character of the source region.
endPosition:Integer The position of the last character of the source region.
language:String (Optiond attribute) - The language indicator of the source code for the given source

region.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 73

Constraints

1. The file attribute of the SourceRegion element shall refer to an Inventoryltem with text format.

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

11.7.3 BinaryRegion Class

The BinaryRegion element identifies a single region within some Inventoryltem that has binary format.
Superclass

Region

Attributes

startAddr: Integer The address of the first byte of the binary region.

endAddr:Integer The address of the last byte of the binary region.

Semantics

The BinaryRegion element identifies a single region within some Inventoryltem that has binary format. The exact nature
of the format is described either in the format attribute (from abstract Region class), or in the format attribute of the
Inventoryltem. The format attribute in BinaryRegion takes precedence over the format attribute in Inventoryltem.

Specification of a BinaryRegion assumes that the corresponding resource is a sequence of bytes, where each byte has 8-
bit size, representable as an octet. Addresses in a BinaryRegion are represented as non-negative integers. The address of
the first byte in a binary resource is 0. For example, an address that may be displayed as a C-like string "0x00AQ" is
represented as an integer 160.

11.7.4 ReferenceableRegion Class

The ReferenceableRegion element identifies a single element within some Inventoryltem using a custom reference.
Superclass

Region

Attributes

ref: String The reference to the element.

Semantics

The ReferenceableRegion element identifies a single element within some Inventoryltem. The exact nature of the format
is described in the format attribute (from abstract Region class), or in the format attribute of the Inventoryltem. The
format attribute in ReferenceableRegion takes precedence over the format attribute in Inventoryltem. The semantics of the
reference is outside of the scope of KDM. The implementer shall provide appropriate reference.

74 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

11.8 InventoryRelations Class Diagram

InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes
and associations for this diagram are shown in Figure 11.6.

AbstractinventoryRelationship

DependsOn TraceableTo
0.* 0.* 0.* 0.*
{subsets outbound} {subsets inbound} {sybsets outbound} {subsets inbound}
1 ! —— 1
1 AbstractinventoryElement Track KDMEntity
+description : String (core)
+from +to +from
{redefines to} +o
{redefines from} {redefines from} {redefines to}

Figure 11.6 - InventoryRelations Class Diagram

11.8.1 DependsOn Class

DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which
one inventory element requires another inventory element during one or more steps of the engineering process.

Superclass

AbstractInventoryRelationship

Associations

from:AbstractinventoryElement[1] The base inventory item.

to:AbstractinventoryElement[1] Another inventory item on which the base item depends.

Constraints

1. An inventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. The implementer may capture certain aspects knowledge of the engineering
process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of the
Infrastructure Layer, which is available to all KDM implementations at various compliance levels. KDM Build package
that constitutes a separate L 1.Build compliance point, defines additional meta-model elements that represent the facts
involved in the build process of the software system (including but not limited to the engineering transformations of the
“source code” to “executables”).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 75

When the origin of the DependsOn relationship is an Inventory container, this means that all elements owned by this
container (directly or indirectly) depend on the target of the relationship.

When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

11.8.2 TraceableTo Class

TraceableTo class is a meta-model element that represents an optional relationship between any KDMEntity and an
Inventoryltem. This relationship represents situations where the KDMEntity is traceable to the inventory element during
one or more steps of the engineering process. For example, a Module element in the CodeModel can be traceable to a
certain SourceFile.

Superclass

AbstractlnventoryRel ationship

Associations

from:Track[1] The Track element that is owned by some KDMEntity.

to:KDMEntity[1] Another KDMEntity to which the owner of the Track element is traceable to.

Constraints

1. A KDMEntity should not be traceable to itself.

Semantics

The TraceableTo relationship is optional. The implementer may capture certain aspects of the knowledge extraction
process or engineering process in the form of “TraceableTo” relations to inventory items. “TraceableTo” relationship is
part of the Infrastructure Layer, which is available to all KDM implementations at various compliance levels.
“TraceableTo” relation is related to the SourceRef mechanism that is also provided by the InventoryModel. However, in
contrast to the SourceRef mechanism, the “ TraceableTo” relation is an explicit relation between any KDMEntity (through
the owned Track element) and some other KDMEntity, including an Inventoryltem.

KDM Build package that constitutes a separate L1.Build compliance point, defines additional meta-model elements that
represent the facts involved in the build process of the software system, including but not limited to the engineering
transformations of the “source code” to “executables.”

11.9 ExtendedInventoryElements Class Diagram

The ExtendedlnventoryElements class diagram defines two viewpoint-specific generic elements for the inventory model
as determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and
associations of the ExtendedInventoryElements diagram are shown in Figure 11.7.

76 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AbstractinventoryRelationship

+rom +o
{redefines from} {redefines to}

AbstractinventoryElement InventoryRelationship KDMEntity
(core)

1 0.. 0.* 1

{subsets outbound} {subsets inbound}

InventoryElement

Figure 11.7 - ExtendedInventoryElements Class Diagram

11.9.1 InventoryElement Class (generic)

The InventoryElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractInventoryElement

Constraints
1. InventoryElement should have at least one stereotype.

Semantics

An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the inventory model. Thisis one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.9.2 InventoryRelationship Class (generic)

The InventoryRelationship class is a generic meta-model element that can be used to define new extended inventory
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractInventoryRelationship

Associations

from:AbstractinventoryElement[1] The inventory element origin endpoint of the relationship.

to:KDMEntity[1] The target of the relationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 77

Constraints
1. InventoryRelationship should have at least one stereotype.
Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the inventory model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

78 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart Il - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming |anguages.

Packages of the Program Elements Layer define an architecture viewpoint for the Code domain.

« Concerns.

What are the computational elements of the system?

What are the modules of the system?

What is the low-level organization of the computational elements?
What are the datatypes used by the computational elements?
What are the units of behavior of the system?

What are the low-level relationships between the code elements, in particular what are the control-flow and data-
flow relationships?

What are the important non-computational elements?

How are computational elements and modules related to the physical artifacts of the system?

« Viewpoint language:

Code views conform to KDM XMI schema. The viewpoint language for the Code architectural viewpoint is
defined by the Code and Action packages. It includes several abstract entities such as AbstractCodeElement and
Codeltem; several generic entities such as Datatype, Computational Object, and Module; as well as several
concrete entities such as StorableUnit, CallableUnit, CompilationUnit, and ActionElement. The viewpoint
language for the Code architectural viewpoint also includes several relationships, which are subclasses of
AbstractCodeRelationship and AbstractA ctionRelationship.

¢ Analytic methods:

The Code architectural viewpoint supports the following main kinds of checking:

L]

Composition (for example, what code elements are owned by a CompilationUnit, SharedUnit, or a
CodeAssembly; what action elements are owned by a CallableUnit)?

Data flow (for example, what action elements read from a given StorableUnit; what action elements writeto a
given StorableUnit; what action elements create dynamic instances of a given Datatype; what action elements
address a particular StorableUnit; what data element are being read as actual parametersin acall)?

Control flow (for example, what CallableUnit isused in a call; what action element is executed after the given
action element; what action elements are executed before the given action element; what data element is used to
dispatch control flow from a given action element; what action element is executed after the given el ement under
what conditions; what isthe exceptional flow of control; what action elements are executed as entry pointsto a
given module or a CallableUnit)?

Datatypes (for example, what is the datatype of the given storable unit; what is the base datatype of the given
pointer type; what is the base datatype of the given element of the record type; what is the signature of the given
CallableUnit)?

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 79

Other kinds of checking are related to the interfaces, templates, and pre-processor. All relationships defined in the Code
model are non-transitive. Additional computations are required to derive, for example, all action elements that can be
executed after the given action element, or all CallableUnits that a given action element can dispatch control to.

The KDM mechanism of aggregated relationship is used to derive relationships between KDM elements that own or
reference various Code elements (usually, Module and CodeAssembly) based on the low-level relationship between
individual Code elements.

« Construction methods:

¢ Code viewsthat correspond to the KDM Code architectural viewpoint are usually constructed by parser-like
tools that take artifacts of the system as the input and produce one or mode Code views as output.

« Construction of the Code view is determined by the syntax and semantics of the programming language of the
corresponding artifact, and is based on the mapping from the given programming language to KDM; such
mapping is specific only to the programming language and not to a specific software system.

e The mapping from a particular programming language to KDM may produce additional information (system-
specific, or programming language-specific, or extractor tool-specific). Thisinformation can be attached to
KDM elements using stereotypes, attributes, or annotations.

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:

* Code
« Action

Code package defines Codeltems (named elements determined by the programming language, the so-called “symbols,”
“definitions,” etc.) and structural relations between them. Codeltems are further categorized into Computational Object,
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which
detemine the control- and data- flows between code items.

Description of the Code package is further subdivided into the following parts:

» Code Elements representing Modules

» Code Elements representing Computational Objects
¢ Code Elements representing Datatypes

« Code Elements representing Preprocessor Directives
* Miscellaneous Code Elements

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements’ (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex user-
defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym type).
KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

80 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):
e suffix “Element” - usually designates a generic meta-model element.
o suffix “Type’ - designates a meta-model element representing some datatype.

o suffix “Unit” - designates a concrete meta-model element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 81

82

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12 Code Package

General Information

12.1 Overview

The Code package defines a set of meta-model elements whose purpose is to represent implementation level program
elements and their associations. These facts are determined by one or more programming languages used in the design of
the given existing software system. Code package includes meta-model elements, which represent common program
elements supported by various programming languages, such as data types, data items, classes, procedures, macros,
prototypes, and templates.

Asageneral rule, in agiven KDM instance, each instance of the code meta-model element represents some programming
language construct, determined by the programming language of the existing software system. Each instance of a code
meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software
system. Exceptions to this rule are:

 instances of the CodeModel meta-model element that are parts of the KDM infrastructure. These meta-model elements
are containers for other code element instances.

 instances of code element that explicitly represent certain abstractions provided by a programming language, such as
primitive datatypes.
12.2 Organization of the Code Package
The Code package consists of the following 25 class diagrams:
1. CodeModel
Codelnheritances
Modules

Control Elements

2.

3.

4,

5. DataElements
6. Values

7. Datatypes

8. PrimitiveTypes

9. EnumeratedTypes
10.CompositeTypes
11.DerivedTypes
12.Signature

13.DefinedTypes

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 83

14.ClassTypes

15.Templates

16.TemplateRelations

17.ClassRelations

18.TypeRelations

19.InterfaceRelations

20.PreprocessorDirectives

21.PreprocessorRelations

22.Comment

23.Visibility

24 VisibilityRelations

25.ExtendedCodeEl ements

The Code package depends on the following packages:

Source
Core
kdm

12.3 CodeModel Class Diagram

The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to implementation-level program elements and their associations.

The CodeModel diagram defines the following classes determined by the KDM model pattern:

CodeModel — a class representing amodel for CodeElement.

AbstractCodeElement — a class representing an abstract parent class for all KDM entities that can be used to model
code.

AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program
elements:

84

Codeltem
Computational Object
Datatype

Module
PreprocessorDirective

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The class diagram shown in Figure 12.1 captures these classes and their relations. Classes Module and
PreprocessorDirective are defined in separate sections.

CodeModel +model
0.1 AbstractCodeRelationshi
{subsets model} RUECICodeReatonsiip
0.* +codeRelation
{subsets ownedRelation}

+codeElement

{subsets ownedElement} [0..”

AbstractCodeElement
1
Codeltemn
/v T
Datatype ComputationalObject Module

Figure 12.1 - CodeModel Class Diagram

12.3.1 CodeModel Class

The CodeModel is the specific KDM model that owns collections of facts about the existing software system such that
these facts correspond to the Code domain. CodeModel is the only model of the Program Elements Layer of KDM.
CodeModel follows the uniform pattern for KDM models.

Superclass
KDMM odel
Associations
codeElement:AbstractCodeElement[0..*] {ordered} The set of thetop-level elementsthat are defined in this code model.
The CodeModel element is the owner of such CodeElement. This

property subsets the ownedElement property of KDMModel
derived union.

Semantics

CodeModel is a container for code elements. The implementer shall arrange code elements into one or more code models.
KDM import tools should not make any assumptions about the organization of code elements into code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 85

12.3.2 AbstractCodeElement Class (abstract)

The AbstractCodeElement is an abstract class representing any generic determined by a programming language. The key
subclasses of AbstractCodeElement are Codeltem and ActionElement.

Superclass

K DMEntity

Associations

codeRelation:CodeRelation[0..*] The set of code relations owned by this code element.

Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned elements of some KDM containers in the
Code model.

12.3.3 AbstractCodeRelationship Class (abstract)

The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language.
Superclass

KDMRelationship

Semantics

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDM Relationship in the Code
model.

12.3.4 Codeltem Class (abstract)

Codeltem class represents the named elements determined by the programming language (the so-called “symboals,”
“definitions,” etc.). There are AbstractCodeElements that are not Codeltems, for example ActionElements that are defined
in the Action package.

Superclass

AbstractCodeElement
Semantics

Codeltem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.

12.3.5 ComputationalObject Class (generic)

Computational Object class represents the named elements determined by the programming language, which describe
certain computational objects at the runtime, for example, procedures, and variables.

Superclass

Codeltem

86 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. Instance of the Computational Object element should have at least one stereotype.

Semantics

Computational Object is a generic element with under specified semantics that can be used as an extension point to define
new extended meta-model elements that represent specific named control elements or data elements that do not fit into
semantic categories of the concrete subclasses of Computational Object.

12.3.6 Datatype Class (generic)

Datatype class represents the named elements determined by the programming language that describes datatypes. The key
subclasses of Datatype are: PrimitiveType, EnumeratedType, CompositeType, DerivedType, Signature, DefinedType,
ClassUnit, InterfaceUnit, TemplateElement.

Superclass

Codeltem
Constraints
1.Instance of the Datatype element should have at least one stereotype.

Semantics

Datatype is a generic element with under-specified semantics that can be used as an extension point to define new
extended meta-model elements that represent specific named datatypes that do not fit into semantic categories of the
concrete subclasses of Datatype.

12.4 Codelnheritances Class Diagram

The Codel nheritances class diagram defines how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.2 captures these relations.

KDMMode/ KDMEntity KDMRelationship
(kdm) (core) (core)
CodeModel AbstractCodeFE/lement AbstractCodeRelationship

Figure 12.2 - Codelnheritances Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 87

Code Elements Representing Modules

12.5 Modules Class Diagram

The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages,
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these
classes and their associations.

Codeltem

+owner

T {subsets owner}

Module +codeElement
0.1 0.*

AbstractCodeElement

LanguageUnit {subsets ownedElement, ordered}

CompilationUnit

Package

T CodeAssembly
SharedUnit

Figure 12.3 - Modules Class Diagram

12.5.1 Module Class (generic)

The Module class is a generic KDM modeling element that represents an entire software module or a component, as
determined by the programming language and the software development environment. A module is a discrete and
identifiable program unit that contains other program elements and may be used as a logical component of the software
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and
the implementation. In the context of representing existing software systems, modules provide the context for establishing
the associations between the programming language elements that are owned by them, especially when the same logical
component of a software product line is compiled multiple times with different compilation options and linked into
multiple executables. Instances of the Module class represent the logical containers for program elements determined by
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.

Superclass

Codeltem

88 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

codeElement:AbstractCodeElement[0..*] {ordered} Thelist of owned CodeElement.

Constraints
1. Module class and its subclasses should not own SourceRef elements.
2. Code Model cannot directly own any code elements other than the subclasses of the Module class.
3. Every code element should be owned by some instance of the Module class or its subclasses.
4. Instance of the Module element should have at least one stereotype.
5. No other code element should own Module elements and its subclasses.

6. If Module directly owns ActionElement, then the Module shall own EntryFlow to the logically first
ActionElement.

Semantics

Module is alogical container for program elements. Subclasses of Module element define semantically distinct flavors of
Module, representing common categories of containers.

The implementer shall select an appropriate subclass of the Module element.

12.5.2 CompilationUnit Class

The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A
compilation unit is alogical part of the existing software system that is sufficiently complete to be processed by the
corresponding software development environment. Compilation unit is usually related to some artifact of the existing
software system, for example, a physical source file. Compilation units are supported by the selected programming
languages of the existing software system and as determined by the corresponding engineering process.

Superclass

Module

Constraints

1. When CompilationUnit owns one or more initialization BlockUnit, the CompilationUnit shall own EntryFlow
relation to the logically first initialization block.

Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a
SourceFile in the InventoryModel. Implementer shall determine appropriate name of the CompilationUnit. This name may
or may not be the same as the name of the corresponding SourceFile, if one is available. On the other hand, the “path” of
SourceFile element of the InventoryModel shall include all “extensions,” etc. The path attribute shall uniquely identify
the SourceFile in the filesystem, described by the InventoryModel.

CompilationUnit may own initialization blocks. The EntryFlow relation shall refer to the logically first initialization
block. Semantics of initialization blocks is described in Section 13.3.3, “BlockUnit Class.”

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 89

Example

See example in Section 12.20.2, “HasValue Class.”

12.5.3 SharedUnit Class

The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected
programming languages of the existing software system and as determined by the engineering process.

Superclass

Module

Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.
12.5.4 LanguageUnit Class

The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements
determined by a particular programming language.
Superclass

Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is alogical container that owns definitions of primitive and predefined datatypes for a particular language,
as well as other common elements for a particular programming language. LanguageUnit may or may not correspond to a
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. The
implementer shall add such files to the InventoryModel. Primitive datatypes usually do not have any corresponding files,
in this situation the LanguageUnit does not have a counterpart in the InventoryModel.

12.5.5 CodeAssembly Class

The CodeAssembly represents a logical container for the program elements that were built together (for example,
compiled and linked into an executable, so that all variant selection during the compilation and static linking was resolved
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. A source file may
produce a different logical model when, for example, compiled and linked for a different hardware platform, or for a
different operating system. The CodeAssembly represents a collection of entities that have been analyzed together. A
different variant of the conceptual family of software systems (even involving same compilation units) may need to be
cloned into a separate CodeAssembly.

Superclass

Module

90 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

CodeAssembly is alogical container that provides the context for entities and relationships for a collection of program
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

The EntryFlow relation shall refer to the logically first initialization block, which is usually the “master” initialization
block that refers to initialization of owned CompilationUnit in correct order and then refer to the entry point of the
CodeAssembly, for example, “main.” Semantics of initialization blocks is described in Section 13.3.3, “BlockUnit
Class.”

Example

See example in Section 12.20.2, “HasValue Class.”

12.5.6 Package Class

The Package class is a subtype for Module that logical collections of program elements, as directly supported by some
programming languages, such as Java.

Superclass

Module

Semantics

A Package is alogical container for program elements as well as Modules. Packages can be nested.

Code Elements Representing Computational Objects
12.6 ControlElements Class Diagram

The Control Elements class diagram defines basic meta-model elements to represent callable computational objects, such
as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 91

ComputationalObject Datatype
ControlElement
0 AbstractCodeElerment
+owner

CallableUnit

+kind : CallableKind
+is Static : Boolean

{subsets owner}

+codeElement

{subsets ownedElement, ordered}

MethodUnit

+kind : MethodKind
+export : ExportKind
+isFinal : Boolean

Figure 12.4 - ControlElements Class Diagram

12.6.1 ControlElement Class (generic)

The ControlElement class is a common superclass that defines attributes for callable code elements. In the meta-model it

has the role of an endpoint for some KDM relations.

Superclass

Computational Object

Attributes and Associations

«enumeration» +!sS_tatic - Boolean «enumerati_on» «enumerat_ion»
CallableKind +isVirtual : Boolean MethodKind ExportKind
+isAbstract : Boolean .
external method public
fegular constructor private
& gerator destructor protected
s’?ored operator unknown
unknown
unknown

type:Datatype[0..1] Optional association to the datatype of this control element.

codeElement:AbstractCodeElement[0..*] {ordered} Represents owned code elements, such as local definitions and

actions.

Operations

getSignature():Signature[0..1] Signature of the current Control Element.

getReturnType():Datatype[0..1] Return Datatype of the current Control Element.

92 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints
1. ControlElement should have at least one stereotype.
2. ControlElement should own a Signature.
3. The Signature retrned by the getSignature operation isthe Signature owned by the Control Element.

4. The DataType returned by the getReturnType operation is the Datatype of theParameterUnit owned by the
Signature of the current Control Element, where the ParameterKind of the ParameterUnit is “return.”

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new
extended meta-model elements that represent specific named control constructs that do not fit into semantic categories of
the concrete subclasses of Control Element.

Control Element represents named items of the software system that describe certain behavior that can be performed by
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units
and high-level programming languages.

ControlElement owns other program elements, which can include nested Control Elements.
12.6.2 CallableUnit Class
The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

Control Element

Attributes
kind:CallableKind Indicator of the kind of the callable unit.
isStatic:Boolean Indicates that the element is declared as “static” (is visible only in the owner
CompilationUnit).
Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. Thisis a
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the
invocation stack.

A CallableUnit represents global or local procedures and functions.

12.6.3 CallableKind Data Type (enumeration)

CallableKind enumerated data type specifies some common properties of the CallableUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 93

Literal values

regular
external
operator
stored

unknown

Specifies aregular definition of a procedure or function.

Specifies an external procedure (a prototype, definition is elsewhere).
Specifies adefinition of an operator.

Specifies a stored procedure in DataModel.

Properties are unknown.

12.6.4 MethodUnit Class

The MethodUnit represents member functions owned by a ClassUnit.

Superclass

Control Element

Attributes

kind:MethodKind
export: ExportKind
isFinal:Boolean

isStatic:Boolean

isVirtual:Boolean

isAbstract:Boolean

Semantics

Indicator of the kind of the method represented by this element.
Represents the visibility of the method (public, private, protected).
Indicates that the method may not be redefined in a subtype.

Indicates that the method characterizes the ClassUnit (true) or individual
instances (false).

Indicates that the method is declared as virtual.

Indicates that the method is declared as abstract or is the part of an interface.

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and

destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly

(by reference).

12.6.5 MethodKind data type (enumeration)

MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model

element.

94

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Literal Values

method The MethodUnit represents a regular member function.
constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

unknown The kind of the MethodUnit is none of the above.

12.6.6 ExportKind data type (enumeration)

ExportKind enumeration data type defines several common properties of a MemberUnit, MethodUnit, or entire ClassUnit

related to their visibility and other properties.

Literal values

public Specifies a public member, method, or class.
private Specifies private member, method, or class.
protected Specifies a protected member, method, or class.
unknown Properties are unknown.

Example (C language)

int main(int argc, char* argv[]) ({
printf ("Hello, World\n");

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:source="http://www.omg.org/spec/KDM/20160201/source"
name="HelloWorld Example">
<model xmi:id="id.0" xmi:type="code:CodeModel" name="HelloWorld">
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="hello.c">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit"
name="main" type="id.5" kind="regular"s>
<source xmi:id="id.3" language="C" snippet="int main(int argc, char* argv[]) {}"/>
<entryFlow xmi:id="id.4" to="id.12" from="id.2"/>
<codeElement xmi:id="1d.5" xmi:type="code:Signature" name="main">
<source xmi:id="id.6" snippet="int main(int argc, char * argvl[]);"/>
<parameterUnit xmi:id="id.7" name="argc" type="id.25" pos="1"/>
<parameterUnit xmi:id="id.8" name="argv" type="id.9" pos="2">
<codeElement xmi:id="id.9" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.10" type="id.19"/>
</codeElement >
</parameterUnit>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

95

<parameterUnit xmi:id="id.11" type="id.25" kind="return"/>

</codeElement>
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="al" kind="Call">
<source xmi:id="id.13" language="C" snippet="printf ("Hello, World!\n");"/>

<codeElement xmi:id="id.14" xmi:type="code:Value"
name="" ;Hello, World!\n&guot;" type="id.19"/>
<actionRelation xmi:id="id.15" xmi:type="action:Reads" to="id.14" from="id.12"/>
<actionRelation xmi:id="id.16" xmi:type="action:Calls" to="id.20" from="id.12"/>
<actionRelation xmi:id="1d.17" xmi:type="action:CompliesTo"
to="id.20" from="id.12"/>
</codeElement >
</codeElement>
</codeElement >
<codeElement xmi:id="1id.18" xmi:type="code:LanguageUnit">"
<codeElement xmi:id="id.19" xmi:type="code:StringType" name="char *"/>
<codeElement xmi:id="id.20" xmi:type="code:CallableUnit" name="printf" type="id.21">
<codeElement xmi:id="1id.21" xmi:type="code:Signature" name="printf"s
<parameterUnit xmi:id="1d.22" name="" type="1id.25" kind="return" pos="0"/>
<parameterUnit xmi:id="1id.23" name="format" type="id.19" pos="1"/>
<parameterUnit xmi:id="id.24" name="arguments" kind="variadic" pos="2"/>
</codeElement>
</codeElement >
<codeElement xmi:id="id.25" xmi:type="code:IntegerType" name="int"/>
</codeElement>
</model>
<model xmi:id="1d.26" xmi:type="source:InventoryModel" name="HelloWorld"s>
<inventoryElement xmi:id="id.27" xmi:type="source:SourceFile"
name="hello.c" language="C"/>
</model>
</kdm: Segment >

12.7 DataElements Class Diagram

The DataElements class diagram defines meta-model constructs to represent the named data items of existing software
systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5
shows these classes and their associations.

96 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ComputationalObject

Type
0.* +type |1
DataElement 0.1 Datatype
+ext : String +owner
st {subsets owner} 0-
+codeElement
{subsets ownedElement}

StorableUnit

+kind : StorableKind
+isStatic : Boolean

ItemUnit

IndexUnit

S

MemberUnit

+export : ExportKind
+isFinal : Boolean
+is Static : Boolean

ParameterUnit

+kind : ParameterKind
+pos : Integer
+isFinal : Boolean

«enumeration» «enumeration»
StorableKind ExportKind
global public
local private
external protected
register unknown
unknown

Figure 12.5 - DataElement Class Diagram

12.7.1 DataElement Class (generic)

The DataElement class is a generic modeling element that defines the common properties of several concrete classes that
represent the named data items of existing software systems (for example, global and local variables, record files, and
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is
more specific than CodeElement.

Superclass
Computational Object
Attributes
ext:String Optional extension representing the original representation of the data element.
size: Integer Specifies the optional constraint on the number of elements any value of the storable element may

contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 97

Associations

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype of the current
DataElement.
type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.
Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an
existing software system, that do not fit into more precise semantics of the subclasses of DataElement.

Constraints

1. DataElement class should have at |east one Stereotype.

12.7.2 StorableUnit Class

StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software
system.

Superclass
DataElement
Attribute
kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see
StorableKind enumeration datatype).
isStatic:Boolean Indicates that the element is declared as “static” (visible only in the owner
CompilationUnit).
Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.

12.7.3 StorableKind data type (enumeration)

StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle,
visibility, and memory type.

98 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Literal values

global Specifiesaglobal variable.

local Specifiesalocal variable.

external Specifies an external variable (a prototype).
register Specifies atemporary variable.

unknown Properties are unknown.

12.7.4 ltemUnit Class

ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM
data relations that describe access to complex datatypes.

Superclass

DataElement

Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective,
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit,
but also by the identity of the owner element.

12.7.5 IndexUnit Class

IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. I nstances of
IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass
DataElement
Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element. When an IndexUnit is omitted, it is
assumed to be a data element of IntegerType.

12.7.6 MemberUnit Class

MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain
existing computational object, while the computational object corresponding to a MemberUnit is usually determined by
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines
some additional attributes.

Superclass

DataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 99

Attributes

export:ExportKind Represents the visibility of the member (public, private, protected).

isFinal:Boolean Indicates that the member may not be redefined in a subtype.

isStatic:Boolean Indicates that the member characterizes the ClassUnit (true) or individual class instances
(false).

Constraints

1. MemberUnit can be owned only by a ClassUnit.

Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.7 ParameterUnit Class

ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class
are endpoints of KDM data relations that describe access to formal parameters.

Superclass
DataElement
Attributes
kind:ParameterKind Optional attribute defining the parameter passing convention for the attribute.
isFinal:Boolean Indicates that the parameter may not be written to (may not be the endpoint of a Writes
relationship).
pos:Integer Position of the attribute in the signature.

Constraints
1. Return parameter of a signature does not have a pos attribute.
2. Return ParameterUnit is a signature should have a kind="return.”

3. There can be at most one ParameterUnit within a certain Signature with a return kind.

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of
programming languages that allow named parameters (binding of actual parameters by name rather than by a position),

100 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

the producer of the KDM model is responsible for computing correct positions of the named parameters and determining
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is
described in Section 12.14, “Signature Class Diagram.”

12.8 ValueElements Class Diagram

ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

DataElement

+ext : String
+size : Integer

+valueElement

{subsets ownedElement, ordered}

ValueElement

I

Value ValuelList

0.1

+owner

{subsets owner}

Figure 12.6 - ValueElements Class Diagram

12.8.1 ValueElement Class (generic)

ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class.

Superclass

DataElement

Constraints
1. ValueElement and its subclasses should not have owned code elements.
2. ValueElement and its subclasses cannot be used as the target of relations Writes and Addresses.
3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 101

ValueElement class and its subclasses correspond to ISO/IEC 11404 literals and values. The datatype of the value is
represented by the type property (defined for its superclass DataElement class).

12.8.2 Value Class

Value class is a meta-model element that represents values used in the artifacts of existing software systems.
Superclass

ValueElement

Semantics

Value class corresponds to | SO/IEC 11404 literals of primitive types, such as boolean-literal, state-literal, enumerated-
literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal, void-literal,
pointer-literal, bitstring-literal, string-literal.

The name attribute of the ValueClass represents the name or a string representation of the value.

12.8.3 ValueList Class

The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass

ValueElement

Associations

valueElement:ValueElement[0..*] component values

Semantics

A Valuelist is a data element associated with a single value of some non-primitive datatype. The value of the complex
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to 1SO/IEC 11404 values for aggregated datatypes such as choice-value, record-value, set-value,
sequence-value, bag-value, array-value, table-value.

Code Elements Representing Datatypes

12.9 Datatypes Class Diagram

Data representation of KDM is aligned with 1SO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements’ (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes:

« primitive datatypes (for example, Integer, Boolean),

102 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

« complex user-defined datatypes (for example, array, pointer, sequence), and
« named datatypes (for example, a class, a synonym type).

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data element that uses it.

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are
provided further in the text of the specification.

The Datatypes class diagrams provides an overview of meta-elements that represent datatypes common to various
programming languages. The key subclasses of Datatype are illustrated at Figure 12.7. Individual classes are defined in
the subsequent sections.

Datatype
N <t
D
S e —
T | | T T
PrimitiveType EnumeratedType CompositeType DerivedType DefinedType
Signature
ClassUnit InterfaceUnit
+isAbstract : Boolean

+isFinal : Boolean TemplateElement
+exportKind : ExportKind

Figure 12.7 - Datatypes Class Diagram

12.10 PrimitiveTypes Class Diagram

The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.8.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 103

Datatype

BitType
VoidType /
\'b PrimitiveType
A

BitstringType

BooleanType

OctetType

OrdinalType

OctetstringType

CharType

+charset : String

IntegerType ScaledType FloatType

TimeType

StringType
+charset : String

DecimalType

DateType

Figure 12.8 - PrimitiveTypes Class Diagram

12.10.1 PrimitiveType Class (generic)

The PrimitiveType is a generic meta-model element that represents primitive data types determined by various
programming languages.

Superclass

Datatype

Constraints
1. PrimitiveType should have at least one stereotype.
Semantics

PrimitiveType element has under specified semantics. It can be used as an extension point to define new extended meta-model
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of
PrimitiveType class.

12.10.2 BooleanType Class

The BooleanType is a meta-model element that represents Boolean data types common to various programming
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass

PrimitiveType

104 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

The KDM BooleanType class corresponds to 1SO/IEC 11404 Boolean datatype.

12.10.3 CharType Class

The CharType is a meta-model element that represents character data types common to various programming languages.
Character is a family of datatypes whose value spaces are character-sets.

Superclass
PrimitiveType

Attributes

charset:String SO identification of the characterset.

Semantics
The KDM CharType class corresponds to 1SO/IEC 11404 Character datatype.

Attribute charset identifies a character set for the CharType. Semantics of charset is aligned with “repertoir-identifier” in
1SO 11404. If this attribute is omitted, the default character set is 1SO-8859-1. For the list of valid character set
identifiers, refer to 1SO 11404, Appendix A, or IANA character sets, RFC 2978.

12.10.4 OrdinalType Class

The Ordinal Type class is a meta-model element that represents ordinal datatypes available in some programming
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype I nteger).
Ordinal is the infinite enumerated type.

Superclass

PrimitiveType

Semantics

The KDM Ordinal Type class corresponds to |SO/IEC 11404 Ordinal datatype.

12.10.5 DateType Class

The DateType is a meta-model element that represents built-in data types related to dates.
Superclass

PrimitiveType

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 105

12.10.6 TimeType Class

The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions
thereof.

Superclass
PrimitiveType
Semantics

The KDM TimeType class corresponds to | SO/IEC 11404 Time datatype. The interpretation of the details of the Time
datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the
KDM representation of an existing system to systematically identify the detailed information regarding the details of the
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.10.7 IntegerType Class

The IntegerType is a meta-model element that represents integer data type common to various programming languages.
Integer is the mathematical datatype comprising exact integer values.

Superclass
PrimitiveType
Semantics

The KDM IntegerType class corresponds to 1SO/IEC 11404 Integer datatype.

12.10.8 DecimalType Class

The Decimal Type is a meta-model element that represents decimal data types common to various programming
languages.

Superclass
PrimitiveType
Semantics

The KDM Decimal Type class corresponds to | SO/IEC 11404 Integer datatype.

12.10.9 ScaledType Class

The ScaledType is a meta-model element that represents fixed point data types common to various programming
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having a fixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass

PrimitiveType

106 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

The KDM ScaledType class corresponds to 1SO/IEC 11404 Scaled datatype.

12.10.10 FloatType Class

The FloatType is a meta-model element that represents float data types common to various programming languages. Float
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real
numbers.”

Superclass
PrimitiveType
Semantics

The KDM FoatType class corresponds to |SO/IEC 11404 Real datatype.

12.10.11 VoidType Class

The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages.
Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no
information is a given instance.

Superclass
PrimitiveType
Semantics

The KDM VoidType class corresponds to |SO/IEC 11404 Void datatype.

12.10.12 StringType Class

The StringType is a meta-model element that represents string data type common to various programming languages.
String is a datatype representing strings of characters from standard character-sets.

Superclass
PrimitiveType

Attributes

charset:String ISO identification of the characterset.

Semantics
The KDM StringType class corresponds to |SO/IEC 11404 defined datatype Character string.

Attribute charset identifies a character set for the StringType. Semantics of charset is aligned with “repertoir-identifier” in
I1SO 11404. If this attribute is omitted, the default character set is 1SO-8859-1. For the list of valid character set
identifiers, refer to 1SO 11404, Appendix A, or IANA character sets, RFC 2978.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 107

12.10.13 BitType Class

The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is
the datatype representing the binary digits “0” and “1.”

Superclass
PrimitiveType
Semantics

The KDM BitType class corresponds to |SO/IEC 11404 defined datatype Bit.

12.10.14 BitstringType Class

The BitstringType class is a meta-model element that represents bit string datatypes available in some programming
languages. Bitstring is the datatype of variable-length strings of binary digits.

Superclass
PrimitiveType
Semantics

The KDM BitstringType class corresponds to | SO/IEC 11404 defined datatype Bit string.

12.10.15 OctetType Class

The OctetType class is a meta-model element that represents octet datatypes available in some programming languages.
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings.

Superclass
PrimitiveType
Semantics

The KDM OctetType class corresponds to | SO/IEC 11404 defined datatype Octet.

12.10.16 OctetstringType Class

The OctetstringType class is a meta-model element that represents octet string datatypes available in some programming
languages. Octet string is a variable-length encoding using 8-bit codes.

Superclass
PrimitiveType
Semantics

The KDM OctetstringType class corresponds to | SO/IEC 11404 defined datatype Octet string.

108 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.11 EnumeratedTypes Class Diagram

The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.9.

Datatype

|

EnumeratedType Value

+value

+
owner {subsets ownedElement, ordered}

{subsets owner}

Figure 12.9 - EnumeratedTypes Class Diagram

12.11.1 EnumeratedType Class

The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number
of distinguished values.

Superclass

Datatype

Associations

value:Value[0..*] {ordered} Thelist of enumerated literals defined for the given EnumeratedType.

Constraints

1. Each ValueElement owned by an EnumeratedType shall have its type property set to this EnumeratedType.

Semantics

EnumeratedType corresponds to | SO/IEC 11404 Enumerated and State families of datatypes. Enumerated datatype is a
family of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State is a
family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not make
distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the
EnumeratedType.

Some programming languages, for example Java, allow enumerated type with methods and other elements. Such
datatypes are represented as ClassUnit, containing the corresponding Value element.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 109

12.12 CompositeTypes Class Diagram

The CompositeTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages (for example, records, structures, and unions). Composite datatypes is a broad category
of user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple
component datatypes.

The classes and associations of the CompositeTypes diagram are shown in Figure 12.10.

Datatype
CompositeType 0.1 0. ItemUnit
+owner
{subsets owner} +itemUnit
{subsets ownedElement, ordered}
RecordType ChoiceType

Figure 12.10 - CompositeTypes Class Diagram

12.12.1 CompositeType Class (generic)

The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records,
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM
container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class.
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype.
CompositeType class is a more specific meta-model element than Datatype.

Superclass

Datatype

Associations

itemUnit:ltemUnit[0..*] {ordered} Thelist of named itemsthat represent components of the composite datatype; for
example, representing the individual fields of arecord.

Constraints

1. CompositeType class should be used with a stereotype.

110 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

CompositeType class corresponds to |SO/IEC 11404 generated datatypes each of whose values is made up of values of
component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve afield list
in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents the
name of the field-type. The datatype of the field-type is represented by the type attribute of the ItemUnit.

CompositeType class is an extended meta-model element that can be used to represent generated datatypes of an existing
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that [temUnit.

12.12.2 ChoiceType Class

The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing
software systems, each of whose values is a single value from any of a set of aternative datatypes. An example of a
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM
representation, each alternative datatype is represented as an ItemUnit.

Superclass

CompositeType
Semantics

The ChoiceType corresponds to 1SO/IEC 11404 choice generated datatype. KDM representation does not explicitly
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is
represented by the type attribute of the ltemUnit owned by the ChoiceType.

12.12.3 RecordType Class

The RecordType class is a meta-model element that represents record datatypes. user-defined datatypes in existing
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,”
which is represented by the Name attribute of the ItemUnit owned by the RecordType. Examples of record datatypes
include a structure in C, arecord in Cobol.

Superclass
CompositeType
Semantics

The RecordType corresponds to |SO/IEC 11404 record aggregate datatype. The Name attribute of each ItemUnit owned
by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of the
ItemUnit owned by the ChoiceType.

Example (Cobol)

01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.
03 FirstName PIC X(10).

03 MiddleInitial PIC X.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 111

03 Surname PIC X(15).
02 DateOfBirth.

03 DayOfBirth PIC 99.

03 MonthOfBirth PIC 99.

03 YearOfBirth PIC 9(4).
02 CourseCode PIC X(4).

MOVE "Doyle" To Surname

<?xml version="1.0" encoding="UTF-8"7?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Record Example'>
<model xmi:id="id.0" xmi:type="code:CodeModel" >
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
<codeElement xmi:id="id.2" xmi:type="code:StorableUnit"
name="StudentDetails" type="1id.3">
<codeElement xmi:id="1id.3" xmi:type="code:RecordType" name="StudentDetails">
<itemUnit xmi:id="id.4" name="StudentID" type="id.23" ext="PIC 9(7)"/>
<itemUnit xmi:id="1id.5" name="StudentName" type="id.6">
<codeElement xmi:id="1id.6" xmi:type="code:RecordType" name="StudentName">
<itemUnit xmi:id="id.7" name="FirstName" type="id.24" ext="PIC X(10)" size="10"/>
<itemUnit xmi:id="id.8" name="MiddleName" type="1id.24" ext="PIC X" size="1"/>
<itemUnit xmi:id="id.9" name="Surname" type="id.24" ext="PIC X(15)" size="15"/>
</codeElement>
</itemUnit>
<itemUnit xmi:id="1id.10" name="DateOfBirth"s>
<codeElement xmi:id="id.11" xmi:type="code:RecordType" name="DateOfBirth"s>
<itemUnit xmi:id="id.12" name="DayOfBirth" type="id.23" ext="PIC 99" size="2"/>
<itemUnit xmi:id="id.13" name="MonthOfBirth" type="id.23" ext="PIC 99" size="2"/>
<itemUnit xmi:id="id.14" name="YearOfBirth" type="id.23" ext="PIC 9(4)"
size="4"/>
</codeElement >
</itemUnit>
<itemUnit xmi:id="id.15" name="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.16" xmi:type="action:BlockUnit">
<codeElement xmi:id="1id.17" xmi:type="action:ActionElement">
<codeElement xmi:id="1id.18" xmi:type="code:Value"
name="" ;Doyle" ;" type="id.24"/>
<actionRelation xmi:id="id.19" xmi:type="action:Addresses" to="id.2" from="id.17"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.18" from="id.17"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.9" from="id.17"/>
</codeElement >
</codeElement>
</codeElement >
<codeElement xmi:id="1id.22" xmi:type="code:LanguageUnit" name="Cobol common definitions">
<codeElement xmi:id="id.23" xmi:type="code:DecimalType"/>
<codeElement xmi:id="1id.24" xmi:type="code:StringType"/>
</codeElement >
</model>
</kdm: Segment >

112 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.13 DerivedTypes Class Diagram

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes
diagram are shown in Figure 12.11.

Datatype

|

DerivedType

+itemUnit +owner

1 0..1
{subsets owner}

ItemUnit

SequenceType

{subsets ownedElement} +size : Integer

SetType

+size : Integer

ArrayType PointerType RangeType

+size : Integer BagType
y

+size : Integer

+owner 0.1
{subsets owner}

+owner +owner

0..1 0..1
{subsets owner} {subsets owner}

0..1 +indexUnit

IndexUnit [rsypsets ownedElement}

+lower 0.1 0.1

+upper

{subsets ownedElement} Value {subsets ownedElement}

Figure 12.11 - DerivedTypes Class Diagram

12.13.1 DerivedType Class (generic)

DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics.
DerivedType class is a KDM container. KDM models of existing software systems usually use the concrete subclasses of
DerivedType class. DerivedType class itself is a concrete class and can be used as an extended meta-model element, with
a stereotype. DerivedType class is a more specific meta-model element than Datatype.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 113

Associations

itemUnit:ltemUnit[1] The ItemUnit that represents the base class of the derived type.

Constraints

1. DerivedType class should be used with a stereotype.

Semantics

DerivedType class corresponds to several 1SO/IEC 11404 aggregated datatypes, whose values are made up of values of a
single component datatype. DerivedType class is an extended meta-model element, that can be used to represent
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the
element-type is represented by the type attribute of the ItemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.

12.13.2 ArrayType Class

The ArrayType is a meta-model element that represents array datatypes.
Superclass

DerivedType

Attributes

size:Integer The size of the array (the maximum number of elements).

Associations

indexUnit:IndexUnit[0..1] The optional index of the array.

Constraints

1. Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.

Semantics

ArrayType corresponds to I1SO/IEC 11404 array datatype. The name attribute of the ItemUnit can be omitted if the
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned
by the ArrayType. The IndexItem represents the index of the array. The name attribute of the IndexUnit can be omitted.
When an IndexItem is omitted, it is assumed to be a data element of IntegerType.

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the
next (internal) dimension and so on.

114 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.13.3 PointerType Class

The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference

to values of another datatype, designated the element datatype.

Superclass

DerivedType

Semantics

PointerType corresponds to 1SO/IEC 11404 pointer generated datatype. A pointer generates a datatype, each of whose
values constitutes a means of reference to values of another datatype, designated as the element datatype. The values of a

pointer datatype are atomic. From 1SO perspective the pointer datatype is not an aggregated datatype, which leads to

some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned by the PointerType can

be omitted. The datatype of the element-type is represented by the type attribute of the ItemUnit owned by the

PointerType.

Example (C)

struct tlist {
struct tlist * next;
int value;

} * phead, * pcurrent;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:action=""http://www.omg.org/spec/KDM/20160201/action"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="LinkedList Example">
<model xmi:id="id.O0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="action:BlockUnit">
<codeElement xmi:id="id.2" xmi:type="code:StorableUnit"
name="phead" type="id.3" kind="unknown"s>
<codeElement xmi:id="1d.3" xmi:type="code:PointerType">
<itemUnit xmi:id="id.4" type="id.5">

<codeElement xmi:id="id.5" xmi:type="code:RecordType" name="tlist">

<itemUnit xmi:id="id.6" name="next" type="id.3"/>
<itemUnit xmi:id="id.7" name="value" type="id.8">

<codeElement xmi:id="id.8" xmi:type="code:IntegerType" name="int"/>

</itemUnit>
</codeElement>
</itemUnit>
</codeElement >
</codeElement>
<codeElement xmi:id="id.9" xmi:type="code:StorableUnit"
name="pcurrent" type="id.3" kind="unknown"/>
</codeElement>
</model>
</kdm: Segment >

12.13.4 RangeType Class

RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper

and/or lower bounds on the value space.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

115

Superclass

DerivedType

Associations

lower: Value[0..1] The optional lower boundary of the range.

upper: Value[0..1] The optional upper boundary of the range.

Constraints
1. At least one boundary value element should be present.

2. The type property of a boundary Value element owned by a RangeType shall be the same as the type property of
the owned ItemUnit of this RangeType instance.

Semantics

RangeType corresponds to 1SO/IEC 11404 range subtype. From ISO perspective the range subtype is not an aggregated
datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned
by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of the ItemUnit
owned by the RangeType.

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.

12.13.5 BagType Class

BagType class is a meta-model element that represents bag types in existing software systems:. the user-defined datatypes,
whose values are collections of instances of values from the element datatype. Bag types allow multiple instances of the
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass

DerivedType

Semantics

BagType corresponds to | SO/IEC 11404 bag aggregated datatype. The Name attribute of the ItemUnit owned by the
BagType can be omitted. The datatype of the element type is represented by the type attribute of the IltemUnit owned by
the BagType.

12.13.6 SetType Class

SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the
mathematical set.

Superclass

DerivedType

116 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

SetType corresponds to |SO/IEC 11404 set aggregated datatype. The Name attribute of the IltemUnit owned by the
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the SetType.

12.13.7 SequenceType Class

SeguenceType class is a meta-model element that represents sequence types in existing software systems: the user-defined
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass
DerivedType
Semantics

SequenceType corresponds to 1SO/IEC 11404 sequence aggregated datatype. The Name attribute of the ItemUnit owned
by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit
owned by the SequenceType.

12.14 Signature Class Diagram

The Signature class diagram defines meta-model elements, which represent the signature concept common to various
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.12.

Datatype
«enumeration»
ParameterKind
0.1 ParameterUnit byValue
Signature +parameterUnit | +kind : ParameterKind byhlame
+ / byReference
0.+ pos : Integer variadic
" | +isFinal : Boolean
+owner return
throws
{subsets owner} exception
{subsets ownedElement, ordered} catchall
unknown

Figure 12.12 - Signature Class Diagram

12.14.1 Signature Class

The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various
programming languages.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 117

Associations

parameterUnit:ParameterUnit[0..*] Thelist of parameters of the current Signature.

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of
datatypes, corresponding to the procedure-type of 1SO/IEC 11404 standard. Second, it corresponds to a specific data
element as part of a computational object represented by a ControlElement. In this second sense, the Signature element
corresponds to the mechanism of formal and actual parameters.

12.14.2 ParameterKind (enumeration)

ParameterKind datatype defines the kind of parameter passing conventions.

Literals
byValue parameter is passed by value
byName parameter is passed by name
byReference parameter is passed by reference
variadic parameter isvariadic
return parameter being returned
throws parameter represents an exception thrown by the procedure
exception parameter to a catch block
catchall special parameter to a catch block
unknown parameter passing convention is unknown
Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this
means that the Signature does not define a return value.

12.15 DefinedTypes Class Diagram

DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by a type
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.13.

118 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

+codeElement

+ype Datatype {subsets ownedElement}
1 0.*
BasgType
+owner
DefinedType {subsets owner}
0.* 0..1
TypeUnit SynonymType

Figure 12.13 - DefinedTypes Class Diagram

12.15.1 DefinedType Class (generic)

The DefinedType is generic class that defines the common properties of several concrete classes that represent type
declarations in existing software systems. KDM models of existing software systems usually use the concrete subclasses
of DefinedType class. DefinedType class itself is a concrete class and can be used as an extended meta-model element,
with a stereotype.

Superclass

Datatype

Associations

codeElement:Datatype|0..*] Anonymous datatypes used in the definition of the datatype.

type:Datatype[1] The datatype of the DefinedType that describes the values of the
corresponding datatype.

Constraints
1. DefinedType class shall be used with at least one stereotype.

Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined
datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 119

12.15.2 TypeUnit Class

The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define
the value-space of a new datatype, which is distinct from any other datatype.

Superclass

DefinedType

Semantics

TypeUnit corresponds to |SO/IEC 11404 New datatype declaration and New generator declarations.

12.15.3 SynonymuUnit Class

The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the
type name to be a synonym for another datatype.

Superclass

DefinedType

Semantics

SynonymUnit corresponds to 1SO/IEC 11404 Renaming declarations.

12.16 ClassTypes Class Diagram

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.14.

Datatype
ClassUnit Z
InterfaceUnit
+isAbstract : Boolean
+isFinal : Boolean
«enumeration» +exportKind : ExportKind
ExportKind +owner |0..1
public +owner | 0.1 {subsets owner}
private B
protected {subsets owner}
unknown
+bodeElement AbstractCodeFlement +codeElément
0.* 0.*
{subsets ownedElement, ordered} {subsets ownedElement, ordered}

Figure 12.14 - ClassTypes Class Diagram

120 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.16.1 ClassUnit Class

The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype
is a named datatype that represents a class: an ordered collection of named elements, each of which can be another
Codeltem, such as a MemberUnit or a MethodUnit.

Superclass
Datatype
Attributes
isAbstract:Boolean Theindicator of an abstract class.
isFinal:Boolean Indicates that the ClassUnit may not have subtypes (may not be the to-endpoint of
Extends relationship).
exportKind:ExportKind Represents the visibility of the method (public, private, protected).

Associations

codeElement:AbstractCodeElement[0..*]{ordered} Thelist of class members and methods.

Semantics

ClassUnit is a named container for an ordered collection of hamed elements, each of which can be another Codeltem,
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested
ClassUnits), internal datatype definitions, etc.

A class that has a finite set of named literals like a Java enum can be represented as a ClassUnit containing Value
elements. These Value elements shall have the name corresponding to name of the literal and they shall all have the type
property set to the containing ClassUnit. Simple Java enum with just a set of literals can still be represented as an
EnumeratedType instance.

From the runtime perspective, ClassUnit represents a family of computational objects, called class instances.
MemberUnits and MethodUnits of a certain ClassUnit are identified both by the name of the member or method, as well
as by adirect or indirect identification of the corresponding class instance.

12.16.2 InterfaceUnit Class

The InterfaceUnit is a meta-model element that represents the interface concept common to various programming
languages.

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns alist of
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an
InterfaceUnit may be targets of Calls relations.

Superclass

Datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 121

Associations

codeElement:Codeltem[0..*] {ordered} Thelist of TypeElements that corresponds with the target Interface.

Semantics

InterfaceUnit is alogical container for code items. InterfaceUnit corresponds to a compile time description of the
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as
Control Elements, which in the representation of an existing software may be the targets of certain relationships, since the
binding between the interface and the actual computational objects may occur at runtime.

12.17 Templates Class Diagram

The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. Figure 12.15 shows these classes and their associations.

Datatype

I

TemplateElement

N

TemplateParameter TemplateUnit

+owner |0..1
{subsets owner}

TemplateType

+codeElement 0.*
{subsets ownedElement, ordered

AbstractCodeElement

Figure 12.15 - Templates Class Diagram

12.17.1 TemplateElement Class (generic)

The TemplateElement is a generic meta-model element that represents various code elements related to templates, their
parameters and instantiations.

Superclass

Datatype

122 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints
1. TemplateElement class shall be used with at least one stereotype.

Semantics

This class is extended by several concrete meta-model elements that represent several common template elements. KDM
representations of existing systems are expected to use concrete subclasses of TemplateElement, however this classitself is
a concrete meta-model element and can be used as an extended element with an appropriate stereotype to represent other
types of template elements not covered by the standard subclasses. Semantics of template elementsin KDM is described
later in this sub clause.

12.17.2 TemplateUnit Class

The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming
languages; for example, Ada generics, Java generics, C++ templates.

Superclass
TemplateElement

Associations

codeElement:AbstractCodeElement[0..*] Template formal parameters and the base datatype or computational
object.
Constraints
1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.
Semantics

The TemplateUnit class corresponds to atype declaration with formal type parameters from the |SO/IEC 11404. TemplateUnit
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned
by the TemplateUnit.

12.17.3 TemplateParameter Class

TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model,
TemplateParameter is a subclass of TemplateElement.

Superclass
TemplateElement

Semantics

TemplateParameter represents a formal parameter of atype declaration with formal parameters (corresponding to | SO/IEC
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal
parameters is positional.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 123

12.17.4 TemplateType Class

TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType
class owns the actual parameters to the datatype reference, represented by “ParameterTo” relationships. The
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced
parameterized datatype. TemplateType has the role of a Datatype.

Superclass

TemplateElement
Constraints

1. TemplateType class should be the origin only to template relations “InstanceOf” and “ParameterTo.”
Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal
type parameters from the | SO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit,
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented
by the “InstanceOf” relationship.

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type
parameters is positional.
12.18 TemplateRelations Class Diagram

The TemplateRelations class diagram defines KDM relationships that are related to the concept of a template. Figure
12.16 shows these classes and their associations.

AbstractCodeRelationship

—D q—
{subsets inbound} {subsets outbound} {subsets outbound} {subsets inbound}
ParameterTo InstanceOf
0..* 0..* 0.*
0..*
+o
*to +rom +from
defi t redefines to
{redefines to} 1 {redefines from} {redefines from} {1)
1
Codeltern AbstractCodeElement TemplateUnit

Figure 12.16 - TemplateRelations Class Diagram

124 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.18.1 InstanceOf Class

The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for
example, a ClassUnit) and a TemplateUnit. In the meta-model 1nstanceOf is a subclass of AbstractCodeRelationship.

Superclass

AbstractCodeRel ationship

Associations

from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of atemplate.

to:TemplateUnit[1] The TemplateUnit that is being instantiated.

Constraints

1. The to- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.18.2 ParameterTo Class

The ParameterTo is a meta-model element that represents an actual type parameter in the context of areference to a
parameterized entity. ParameterTo is “parametrization” relation between an AbstractCodeElement (for example, a
TemplateType or an ActionElement) and a Codeltem.

Superclass

AbstractCodeRelationship

Associations

from:AbstractCodeElement[1] The reference to the parameterized entity (the context of the actual type parameter).

to:Codeltem[1] Actual parameter to template instantiation.

Constraints
1. ParameterTo relationship should be owned only by TemplateType or ActionElement.
2. The to- and from- endpoints of the relationship should be different.

Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 125

Example (Java)

class foo
static <T> void fromArrayToCollection (T[] a, Collection<T> c) {
for (T o : a) {
c.add (o) ;
}
}

void demo () {
String[] sa = new String[100];
Collection<String> cs = new ArrayList<Strings>();
fromArrayToCollection(sa, cs);// T inferred to be String

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Template Example">
<model xmi:id="id.0" xmi:type="code:CodeModel" >
<codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="foo">
<codeElement xmi:id="id.2" xmi:type="code:TemplateUnit"
name="fromArrayToCollection<T>">
<codeElement xmi:id="id.3" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1id.4" xmi:type="code:MethodUnit"
name="fromArrayToCollection" type="id.é6">
<entryFlow xmi:id="1id.5" to="id.14" from="id.4"/>
<codeElement xmi:id="id.é" xmi:type="code:Signature">
<parameterUnit xmi:id="id.7" name="a">
<codeElement xmi:id="1d.8" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.9" type="id.3"/>
</codeElement>
</parameterUnit>
<parameterUnit xmi:id="id.10" name="c" type="id.11">
<codeElement xmi:id="id.11" xmi:type="code:TemplateType"
name="Collection<Tl>">
<codeRelation xmi:id="1id.12" xmi:type="code:ParameterTo"
to="id.3" from="id.11"/>
<codeRelation xmi:id="id.13" xmi:type="code:InstanceOf"
to="id.75" from="id.11"/>
</codeElement>
</parameterUnit>
</codeElement >
<codeElement xmi:id="id.14" xmi:type="action:ActionElement"
name="al" kind="Compound">
<codeElement xmi:id="1d.15" xmi:type="action:ActionElement"
name="al.1l" kind="Call">
<actionRelation xmi:id="id.16" xmi:type="action:Addresses"
to="id.7" from="id.15"/>
<actionRelation xmi:id="id.17" xmi:type="action:Calls" to="id.81" from="id.15"/>
<actionRelation xmi:id="id.18" xmi:type="action:Flow" to="id.19" from="id.15"/>
</codeElement >
<codeElement xmi:id="1d.19" xmi:type="action:ActionElement"
name="al.2" kind="Call">
<codeElement xmi:id="1d.20" xmi:type="code:StorableUnit"
name="tl" type="id.88" kind="register"/>
<actionRelation xmi:id="1id.21" xmi:type="action:Addresses"
to="id.40" from="id.19"/>
<actionRelation xmi:id="id.22" xmi:type="action:Calls" to="id.83" from="id.19"/>

126 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xmi:id="id.23" xmi:type="action:Writes" to="1id.20" from="id.29"/>
<actionRelation xmi:id="id.24" xmi:type="action:Flow" to="id.25" from="id.19"/>
</codeElement>
<codeElement xmi:id="1d.25" xmi:type="action:ActionElement"
name="1.3" kind="Condition">
<actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.20" from="id.25"/>
<actionRelation xmi:id="1id.27" xmi:type="action:TrueFlow"
to="1id.29" from="id.25"/>
<actionRelation xmi:id="id.28" xmi:type="action:FalseFlow"
to="1d.39" from="id.25"/>
</codeElement>
<codeElement xmi:id="1id.29" xmi:type="action:ActionElement"
name="al.4" kind="Call">
<actionRelation xmi:id="1d.30" xmi:type="action:Addresses"
to="1id.40" from="id.29"/>
<actionRelation xmi:id="id.31" xmi:type="action:Calls" to="id.82" from="id.29"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.44" from="id.29"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.29"/>
</codeElement >
<codeElement xmi:id="1id.34" xmi:type="action:ActionElement"
name="al.5" kind="Call">
<actionRelation xmi:id="1id.35" xmi:type="action:Addresses"
to="id.10" from="id.34"/>
<actionRelation xmi:id="id.36" xmi:type="action:Reads" to="id.44" from="id.34"/>
<actionRelation xmi:id="id.37" xmi:type="action:Calls" to="id.84" from="id.34"/>
<actionRelation xmi:id="id.38" xmi:type="action:Flow" to="1d.19" from="id.34"/>
</codeElement>
<codeElement xmi:id="1d.39" xmi:type="action:ActionElement" name="1.6" kind="Nop"/>
<codeElement xmi:id="1d.40" xmi:type="code:StorableUnit"
name="iter" type="id.41" kind="register">
<codeElement xmi:id="id.41" xmi:type="code:TemplateType" name="Iterator<T1l>">
<codeRelation xmi:id="1id.42" xmi:type="code:InstanceOf"
to="id.78" from="id.41"/>
<codeRelation xmi:id="1id.43" xmi:type="code:ParameterTo"
to="id.3" from="id.41"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.44" xmi:type="code:StorableUnit"
name="o" type="id.3" kind="local"/>
<actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.15" from="id.14"/>
</codeElement >
</codeElement>

</codeElement>
<codeElement xmi:id="1d.46" xmi:type="code:MethodUnit" name="demo" type="id.47">

<codeElement xmi:id="id.47" xmi:type="code:Signature"/>
<codeElement xmi:id="id.48" xmi:type="code:StorableUnit"
name="sa" type="1id.49" kind="local">
<codeElement xmi:id="1d.49" xmi:type="code:ArrayType" name="ar2">
<itemUnit xmi:id="1id.50" type="1id.89"/>
</codeElement >
</codeElements>
<codeElement xmi:id="id.51" xmi:type="action:ActionElement" name="demo.l" kind="New">
<codeElement xmi:id="id.52" xmi:type="code:Value" name="100" type="id.90"/>
<actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.52" from="id.51"/>
<actionRelation xmi:id="id.54" xmi:type="action:Creates" to="id.49" from="id.51"/>
<actionRelation xmi:id="id.55" xmi:type="action:Writes" to="1id.48" from="id.51"/>
<actionRelation xmi:id="id.56" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="1d.57" xmi:type="code:StorableUnit"
name="cs" type="id.58" kind="local">
<codeElement xmi:id="id.58" xmi:type="code:TemplateType"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

127

name="Collection<String>">
<codeRelation xmi:id="id.59" xmi:type="code:ParameterTo" to="id.89" from="id.58"/>
<codeRelation xmi:id="1id.60" xmi:type="code:InstanceOf" to="id.75" from="id.58"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.61" xmi:type="action:ActionElement" name="demo.2" kind="New">
<codeElement xmi:id="id.62" xmi:type="code:TemplateType"
name="ArrayList<String>">
<codeRelation xmi:id="1id.63" xmi:type="code:ParameterTo" to="id.89" from="id.é62"/>
<codeRelation xmi:id="1id.64" xmi:type="code:InstanceOf" to="id.85" from="id.62"/>
</codeElement>
<actionRelation xmi:id="id.65" xmi:type="action:Creates" to="id.62" from="id.51"/>
<actionRelation xmi:id="id.66" xmi:type="action:Writes" to="id.57" from="id.61"/>
<actionRelation xmi:id="id.67" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="1id.68" xmi:type="action:ActionElement" name="demo.3" kind="Call">
<codeRelation xmi:id="1id.69" xmi:type="code:InstanceOf" to="id.2" from="id.68"/>
<codeRelation xmi:id="1id.70" xmi:type="code:ParameterTo" to="id.89" from="id.é68"/>
<actionRelation xmi:id="id.71" xmi:type="action:Reads" to="id.48" from="id.68"/>
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.57" from="id.é68"/>
<actionRelation xmi:id="id.73" xmi:type="action:Calls" to="id.4" from="id.é68"/>
</codeElement>
</codeElement >
</codeElement>
<codeElement xmi:id="id.74" xmi:type="code:LanguageUnit" name="Common Java datatypes">
<codeElement xmi:id="1id.75" xmi:type="code:TemplateUnit" name="Collection<T>">
<codeElement xmi:id="id.76" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="id.77" xmi:type="code:ClassUnit" name="Collection"/>
</codeElement >
<codeElement xmi:id="id.78" xmi:type="code:TemplateUnit" name="Iterator<T>">
<codeElement xmi:id="id.79" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1d.80" xmi:type="code:ClassUnit" name="Iterator"s
<codeElement xmi:id="id.81" xmi:type="code:MethodUnit"
name="iterator" kind="constructor"/>
<codeElement xmi:id="id.82" xmi:type="code:MethodUnit" name="next"/>
<codeElement xmi:id="id.83" xmi:type="code:MethodUnit" name="hasNext"/>
<codeElement xmi:id="id.84" xmi:type="code:MethodUnit" name="add"/>
</codeElement >
</codeElement>
<codeElement xmi:id="1id.85" xmi:type="code:TemplateUnit" name="ArrayListé<T>">
<codeElement xmi:id="id.86" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="id.87" xmi:type="code:ClassUnit" name="ArrayList"/>
</codeElement>
<codeElement xmi:id="id.88" xmi:type="code:BooleanType" name="Boolean"/>
<codeElement xmi:id="id.89" xmi:type="code:StringType" name="String"/>
<codeElement xmi:id="1d.90" xmi:type="code:IntegerType" name="Integer"/>
</codeElement >
</model>
</kdm: Segment >

12.19 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations’ by the
corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in
Figure 12.17.

128 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AbstractCodeRelationshjp

Implements ImplementationOf
0..* 0.* 0.* 0.”
{subsets inbound})) bsets inbound
{subsets outbound} {subsets outbound} foubsets inpound)
+from +from
{redefines from} {redefines from}
1 1 +o
+to fi
{redefines to} Codeltem {redefines to}

Figure 12.17 - InterfaceRelations Class Diagram

12.19.1 Implements Class

The Implements is a meta-model element that represents “implementation” association between a Codeltem (for example,
a ClassUnit) and an InterfaceUnit. “Implements’ relationship is similar to “Extends.” For example, Java “implements”
construct can be represented by KDM “Implements’ relationship.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] The Codeltem that implements a certain InterfaceUnit.

to:Codeltem[1] The InterfaceUnit that is being implemented by Codeltem.

Constraints

1. The from- and to- endpoints should be different.

Semantics

See next sub clause.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 129

12.19.2 ImplementationOf Class

The ImplementationOf is a meta-model element that represents “implementation” association between a Codeltem; for
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit.
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object,
common to various programming languages. While the “Implements’ relationship is between entire containers (the target
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

e Particular MethodUnit of a ClassUnit that “Implements’ an InterfaceUnit, is an “ImplementationOf” a particular
MethodUnit, owned by that InterfaceUnit.

« A CdlableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration
(the prototype) of that CallableUnit.

* A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] Codeltem that implements a certain “ declaration.”

to:Codeltem[1] “declaration” that is being implemented by the Codeltem.

Constraints

1. It is obligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target is a
ControlElement or the origin is a DataElement and the target is a DataElement.

2. The kind attribute of the Codeltem at the origin of the ImplementationOf relationship should not be equal to
“external.”

3. The kind attribute of the Codeltem at the target of the ImplementationOf relationship should be equal to “external”
or “abstract.”

4. The from- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a Computational Object (Control Element or DataElement) with kind
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a Control Element,
Signature represents the procedure type, but not the declaration entity itself.

If both the definition and the declaration of some computational object “foo” are available:
« Thedefinition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

» For acertain action element that uses “foo,” the target of the KDM callable or data relations will be the definition of
“foo.”

« Theaction element that uses “foo” may be the origin of a“CompliesTo” action relationship (defined at the
InterfaceRel ations class diagram of the Action package) to the declaration of “foo.”

130 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about
the existing software system:

e For acertain action element that uses “bar,” the target of the KDM callable or data relations will be the declaration of
“bar.”

« Theaction element that uses “bar” may be the origin of a“CompliesTo” action relationship (defined at the
InterfaceRel ations class diagram of the Action package) to the declaration of “bar.”

Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation unitsin
complex ways, the existing software system may have multiple declarations for the same computational object, or even
different computational objects with the same name but different properties that are used in different contexts. In this
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if
different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):

package flip;

public interface iFlip {
public int flip(int 1i);

}

package flip;
public class foo implements iFlip {
public foo () {}
public flip(int i) {
return i * -1;
}

}

package flip;
public class FlipClient ({
public static void main(Stringl[] args) {
foo f= new foo();
iFlip g=(iFlip) f£;
£.£1ip(100) ;

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Interface Example'">
<model xmi:id="id.O0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:Package" name="flip">
<codeElement xmi:id="id.2" xmi:type="code:ClassUnit" name="foo">
<codeRelation xmi:id="1id.3" xmi:type="code:Implements" to="id.21" from="id.2"/>
<codeElement xmi:id="1id.4" xmi:type="code:MethodUnit" name="flip" type="1id.23">
<codeRelation xmi:id="id.5" xmi:type="code:ImplementationOf"
to="id.22" from="id.4"/>
<entryFlow xmi:id="id.6" to="id.10" from="id.4"/>
<codeElement xmi:id="id.7" xmi:type="code:Signature" name="flip">
<parameterUnit xmi:id="id.8" name="i" type="id.53"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 131

<parameterUnit xmi:id="id.9" type="id.53" kind="return"/>
</codeElement>
<codeElement xmi:id="1id.10" xmi:type="action:ActionElement"
name="dl" kind="Multiply"s>
<codeElement xmi:id="id.11" xmi:type="code:Value" name="-1" type="id.53"/>
<codeElement xmi:id="id.12" xmi:type="code:StorableUnit"
name="t5" type="id.53" kind="register"/>
<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.8" from="id.10"/>
<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.11" from="id.10"/>
<actionRelation xmi:id="id.15" xmi:type="action:Writes" to="id.12" from="id.10"/>
<actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.17" from="id.10"/>
</codeElement>
<codeElement xmi:id="id.17" xmi:type="action:ActionElement" name="d2" kind="Return"s>
<actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.12" from="id.17"/>
</codeElement>
</codeElement >
<codeElement xmi:id="1d.19" xmi:type="code:MethodUnit"
name="foo" type="1id.20" kind="constructor"s>
<codeElement xmi:id="id.20" xmi:type="code:Signature" name="foo"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.21" xmi:type="code:InterfaceUnit" name="IFlip">
<codeElement xmi:id="1d.22" xmi:type="code:MethodUnit"
name="flip" type="id.23" kind="abstract"/>
<codeElement xmi:id="id.23" xmi:type="code:Signature" name="flip">
<parameterUnit xmi:id="1d.24" name="i" type="id.53" pos="1"/>
<parameterUnit xmi:id="1id.25" type="id.53" kind="return" pos="0"/>
</codeElement >
</codeElement >
<codeElement xmi:id="id.26" xmi:type="code:ClassUnit" name="Flipclient">
<codeElement xmi:id="id.27" xmi:type="code:MethodUnit" name="main" type="id.29">
<entryFlow xmi:id="id.28" to="id.35" from="id.27"/>
<codeElement xmi:id="1d.29" xmi:type="code:Signature" name="main">
<parameterUnit xmi:id="1d.30" name="args" type="id.31" pos="1">
<codeElement xmi:id="1d.31" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.32" name="args[]" type="id.54"/>
</codeElement >
</parameterUnits>
</codeElement>
<codeElement xmi:id="id.33" xmi:type="code:StorableUnit"
name="f" type="id.2" kind="local"/>
<codeElement xmi:id="id.34" xmi:type="code:StorableUnit"
name="g" type="id.21" kind="local"/>
<codeElement xmi:id="1d.35" xmi:type="action:ActionElement" name="al" kind="New">
<actionRelation xmi:id="id.36" xmi:type="action:Creates" to="id.2" from="id.35"/>
<actionRelation xmi:id="id.37" xmi:type="action:Writes" to="id.33" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Flow" to="id.39" from="id.35"/>
</codeElement>
<codeElement xmi:id="id.39" xmi:type="action:ActionElement"
name="a2" kind="MethodCall">
<actionRelation xmi:id="1d.40" xmi:type="action:CompliesTo"
to="id.20" from="id.39"/>
<actionRelation xmi:id="1d.41" xmi:type="action:Addresses"
to="id.33" from="id.39"/>
<actionRelation xmi:id="id.42" xmi:type="action:Calls" to="id.19" from="id.39"/>
<actionRelation xmi:id="id.43" xmi:type="action:Flow" to="id.44" from="id.39"/>
</codeElement>
<codeElement xmi:id="id.44" xmi:type="action:ActionElement"
name="a3" kind="DynCast">
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.33" from="id.44"/>
<actionRelation xmi:id="id.46" xmi:type="action:UsesType" to="id.21" from="id.44"/>

132 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xmi:id="id.47" xmi:type="action:Writes" to="id.34" from="id.44"/>
<actionRelation xmi:id="id.48" xmi:type="action:Flow" to="1id.49" from="id.44"/>
</codeElement>
<codeElement xmi:id="1d.49" xmi:type="action:ActionElement"
name="a4" kind="VirtualCall">
<actionRelation xmi:id="1d.50" xmi:type="action:CompliesTo"
to="id.23" from="id.49"/>
<actionRelation xmi:id="1d.51" xmi:type="action:Addresses"
to="1id.34" from="id.49"/>
<actionRelation xmi:id="id.52" xmi:type="action:Calls" to="id.22" from="1id.49"/>
</codeElement >
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.53" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="1id.54" xmi:type="code:StringType" name="String"/>
</model>
</kdm: Segment >

12.20 TypeRelations Class Diagram

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes

and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.18.

AbstractCodeRelations hip

{subsets inbound} HasValue {subsets outbound} HasType {subsets inbound}

0.* 0.* 0.* 0.”

{subsets outbound}

+to
+to +from |
redefines to
{redefines to} +fr.om {redefines from} { }
1 {redefines from} 1 1
Datatype

AbstractCodeElement Codeltem

Figure 12.18 - TypeRelations Class Diagram

12.20.1 HasType Class

The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element.

Superclass

AbstractCodeRel ationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

133

Associations

from:Codeltem[1] The source data element.

to:Datatype[1] The target datatype element.

Constraints

1. The from- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates thisinformation if the
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in
AggregatedRel ationships.

12.20.2 HasValue Class

The HasValue is a specific meta-model element that represents semantic relation between a data element and its
initialization element, which can be a data element or an action element for complex initializations that involve
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action
elements in the initialization code.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] The source data element.

to:AbstractCodeElement[1] The target AbstractCodeElement (datatype or action element).

Constraints

1. If the target of the HasValue is an ActionElement, then this ActionElement should have an outgoing Writes or
Addresses relationship to the Codeltem that is the source of the HasValue relationship.

Semantics

HasValue relationship is an optional way to represent initialization. The target of the HasV alue relationship can be aValue for
simpleinitializations that involve constants, or Data Element for simpleinitializationsthat involve another data element, or an
ActionElement that writes to the source element for complex initializations involving expressions.

In micro KDM initialization is represented by explicit initialization actions with appropriate control flow. Initialization actions
should be owned by special initialization block units. Control flow semantics of initializations (especially for initializations of
global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represent
control flow. It provides a convenient way to associate a data element with its value.

Semantics of initialization blocks is described in section “BlockUnit Class”.

134 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Example (C++)

/*----d.h---%/
class D {
private: int num;
public:

D(int x) { this-snum=x; printf ("Hello, this is %d\n", x); }
work () { printf ("This is %d working\n", this->num);

Vi
/*---a.cpp---*/
#include "d.h"
int gl1=0;

D di(1);

/*---b.cpp--*/
#include "d.h"
extern D di;

D d2(2);

main() {
int 12=0;
D * d3=new D(3);
dl.work () ;
d2.work () ;
d3->work () ;

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.

omg.org/spec/XMI/20110701"

xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"

name="ClassD Example">

<model xmi:id="id.0" xmi:type="code:CodeModel" >

<codeElement xmi:id="id.1" xmi:

type="code:CodeAssembly">

<entryFlow xmi:id="1id.120" to="id.94" from="id.1"/>
<codeElement xmi:id="id.2" xmi:type="code:CompilationUnit" name="a.cpp">

<entryFlow xmi:id="1d.121" to="id.10" from="id.2"/>
xmi:type="code:IncludeDirective" name="impl">

<codeElement xmi:id="id.3"

<codeRelation xmi:id="id.

</codeElement >
<codeElement xmi:id="id.5"

<codeRelation xmi:id="id.

</codeElement >
<codeElement xmi:id="id.7"

<codeRelation xmi:id="id.
<codeRelation xmi:id="id.

4" xmi:type="code:Includes" to="id.22"

xmi:type="code:StorableUnit" name="gl"
6" xmi:type="code:HasValue" to="id.20"

xmi:type="code:StorableUnit" name="d1l"

from="id.3"/>

type="1id.105">
from="id.5"/>

type="id.23">

8" xmi:type="code:HasType" to="id.23" from="id.7"/>

9" xmi:type="code:ImplementationOf"

to="id.47" from="id.7"/>
<codeRelation xmi:id="1id.124" xmi:type="code:HasValue" to="id.16" from="id.7"/>

</codeElement>

<codeElement xmi:id="id.10" xmi:type="action:BlockUnit" name="bil" kind="Init"s>
<entryFlow xmi:id="id.11" to="id.12" from="id.10"/>

<codeElement xmi:id="1id.12" xmi:type="action:ActionElement" name="il" kind="Assign">

<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.20" from="id.1l2"/>
<actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.5" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Flow" to="id.16" from="id.12"/>

</codeElement >

<codeElement xmi:id="id.16" xmi:type="action:ActionElement" name="1i2" kind="Calls">

<actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.21" from="id.16"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

135

<actionRelation xmi:id="id.18" xmi:type="action:Calls" to="id.25" from="id.16"/>
<actionRelation xmi:id="id.19" xmi:type="action:Writes" to="id.7" from="id.16"/>
</codeElement>
<codeElement xmi:id="id.20" xmi:type="code:Value" name="0"/>
<codeElement xmi:id="id.21" xmi:type="code:Value" name="1"/>
</codeElement>
</codeElement >
<codeElement xmi:id="1id.22" xmi:type="code:SharedUnit" name="d.h">
<codeElement xmi:id="id.23" xmi:type="code:ClassUnit" name="D" >
<codeElement xmi:id="id.24" xmi:type="code:MemberUnit"
name="num" type="1id.105" export="private"/>
<codeElement xmi:id="id.25" xmi:type="code:MethodUnit" name="D"
methodKind="constructor" type="id.36">
<entryFlow xmi:id="id.26" to="id.28" from="id.25"/>
<codeElement xmi:id="1id.27" xmi:type="code:Value"
name="" ;Hello, this is %d\n"" type="id.111"/>
<codeElement xmi:id="1d.28" xmi:type="action:ActionElement"
name="a4_ 1" kind="This">
<actionRelation xmi:id="1id.30" xmi:type="action:Writes"
to="1id.113" from="id.28"/>
<actionRelation xmi:id="id.31" xmi:type="action:Flow" to="id.114" from="id.28"/>
<codeElement xmi:id="1d.113" xmi:type="code:StorableUnit"
name="rl" kind="register" type="id.55">
</codeElement>
</codeElement >
<codeElement xmi:id="id.114" xmi:type="action:ActionElement" name="a4 2"
kind="MemberReplace">
<actionRelation xmi:id="1id.115" xmi:type="action:Addresses"
to="1d.113" from="id.114"/>
<actionRelation xmi:id="id.116" xmi:type="action:Reads"
to="1d.37" from="id.114"/>
<actionRelation xmi:id="1d.117" xmi:type="action:Writes"
to="id.24" from="id.114"/>
<actionRelation xmi:id="id.118" xmi:type="action:Flow"
to="id.32" from="id.114"/>
</codeElement>
<codeElement xmi:id="id.32" xmi:type="action:ActionElement" name="a5" kind="Call">
<actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.27" from="id.32"/>
<actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.37" from="id.32"/>
<actionRelation xmi:id="id.35" xmi:type="action:Calls" to="id.106" from="id.32"/>
</codeElement >
<codeElement xmi:id="1id.36" xmi:type="code:Signature" name="D">
<parameterUnit xmi:id="id.37" name="x" pos="1"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.38" xmi:type="code:MethodUnit" name="work"
methodKind="method" type="1id.126">
<codeElement xmi:id="1d.39" xmi:type="code:Value"
name="" ; This is %d working\n""/>
<codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="a6_ 1" kind="This">
<actionRelation xmi:id="id.41" xmi:type="action:Writes"
to="1d.119" from="id.40"/>
<actionRelation xmi:id="1d.42" xmi:type="action:Flows"
to="1d.120" from="id.40"/>
<codeElement xmi:id="1d.119" xmi:type="code:StorableUnit"
name="r2" kind="register" type="id.55">
</codeElement>
</codeElement >
<codeElement xmi:id="id.120" xmi:type="action:ActionElement" name="a6_2"
kind="MemberSelect">
<actionRelation xmi:id="1id.121" xmi:type="action:Addresses"

136 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

to="1d.119" from="id.120"/>
<actionRelation xmi:id="1id.122" xmi:type="action:Reads"
to="1d.39" from="id.120"/>
<actionRelation xmi:id="1id.123" xmi:type="action:Writes"
to="1d.125" from="id.120"/>
<actionRelation xmi:id="1d.124" xmi:type="action:Flows"
to="1id.40" from="id.120"/>
<codeElement xmi:id="1d.125" xmi:type="code:StorableUnit"
name="r3" kind="register" type="id.105">
</codeElement >
</codeElement>
<codeElement xmi:id="1d.40" xmi:type="action:ActionElement" name="a6" kind="Call">
<actionRelation xmi:id="id.41" xmi:type="action:Reads" to="id.39" from="id.40"/>
<actionRelation xmi:id="id.42" xmi:type="action:Reads" to="id.125" from="id.40"/>
<actionRelation xmi:id="id.43" xmi:type="action:Calls" to="id.106" from="id.40"/>
</codeElement >
<codeElement xmi:id="id.126" xmi:type="code:Signature" name="work'"s>
</codeElement>

</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.44" xmi:type="code:CompilationUnit" name="b.cpp">
<entryFlow xmi:id="1id.122" to="id.87" from="id.44"/>
<codeElement xmi:id="1d.45" xmi:type="code:IncludeDirective" name="imp2">
<codeRelation xmi:id="1id.46" xmi:type="code:Includes" to="id.22" from="id.45"/>
</codeElement>
<codeElement xmi:id="id.47" xmi:type="code:StorableUnit"
name="d1l" kind="external"/>
<codeElement xmi:id="1d.48" xmi:type="code:CallableUnit" name="main" type="1id.127">
<entryFlow xmi:id="1d.49" to="id.70" from="id.48"/>
<codeElement xmi:id="1id.127" xmi:type="code:Signature" name="main">
</codeElement>
<codeElement xmi:id="1id.50" xmi:type="code:StorableUnit" name="12" type="id.105">
<codeRelation xmi:id="id.51" xmi:type="code:HasValue" to="id.20" from="id.50"/>
</codeElement>
<codeElement xmi:id="id.52" xmi:type="code:StorableUnit" name="d2">
<codeRelation xmi:id="1id.53" xmi:type="code:HasType" to="id.23" from="id.52"/>
<codeRelation xmi:id="1id.125" xmi:type="code:HasValue" to="id.89" from="id.52"/>
</codeElement>
<codeElement xmi:id="1d.54" xmi:type="code:StorableUnit" name="d3" type="id.55">
<codeRelation xmi:id="1id.126" xmi:type="code:HasValue" to="id.79" from="id.54"/>
<codeElement xmi:id="id.55" xmi:type="code:PointerType">
<itemUnit xmi:id="id.56" type="1id.23">
<codeRelation xmi:id="1id.57" xmi:type="code:HasType" to="id.23" from="id.56"/>
</itemUnit>
</codeElement >
</codeElement>
<codeElement xmi:id="id.58" xmi:type="action:ActionElement" name="al" kind="Call">
<actionRelation xmi:id="id.59" xmi:type="action:Calls" to="id.38" from="id.58"/>
<actionRelation xmi:id="id.60" xmi:type="action:Addresses" to="id.7" from="id.58"/>
<actionRelation xmi:id="id.61" xmi:type="action:CompliesTo"
to="1d.47" from="id.58"/>
<actionRelation xmi:id="id.62" xmi:type="action:Flow" to="id.é3" from="id.58"/>
</codeElement>
<codeElement xmi:id="1id.63" xmi:type="action:ActionElement" name="a2" kind="Call">
<actionRelation xmi:id="id.64" xmi:type="action:Calls" to="id.38" from="id.63"/>
<actionRelation xmi:id="id.65" xmi:type="action:Addresses"
to="1id.52" from="id.63"/>
<actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.é67" from="id.é3"/>
</codeElement>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 137

<codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="a3" kind="Call"s>
<actionRelation xmi:id="id.68" xmi:type="action:Calls" to="id.38" from="id.67"/>
<actionRelation xmi:id="1d.69" xmi:type="action:Addresses"
to="1d.56" from="id.67"/>
</codeElement>
<codeElement xmi:id="id.70" xmi:type="action:BlockUnit" name="bi2" kind="Init"s>
<codeElement xmi:id="1id.71" xmi:type="action:ActionElement"
name="1i3" kind="Assign">
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.20" from="id.71"/>
<actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.50" from="id.71"/>
<actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.71"/>
</codeElement>
<codeElement xmi:id="1id.75" xmi:type="action:ActionElement" name="14" kind="New">
<actionRelation xmi:id="1d.76" xmi:type="action:Creates"
to="id.23" from="id.75"/>
<actionRelation xmi:id="id.77" xmi:type="action:Writes" to="id.54" from="id.75"/>
<actionRelation xmi:id="id.78" xmi:type="action:Flow" to="id.79" from="id.75"/>
</codeElement>
<codeElement xmi:id="1id.79" xmi:type="action:ActionElement"
name="1i5" kind="MethodCall">
<actionRelation xmi:id="id.80" xmi:type="action:Reads" to="id.85" from="id.79"/>
<actionRelation xmi:id="id.81" xmi:type="action:Addresses"
to="1id.54" from="id.79"/>
<actionRelation xmi:id="id.82" xmi:type="action:Calls" to="id.25" from="id.79"/>
<actionRelation xmi:id="id.83" xmi:type="action:Writes" to="id.56" from="id.79"/>
<actionRelation xmi:id="id.84" xmi:type="action:Flow" to="id.58" from="id.79"/>
</codeElement>
<codeElement xmi:id="id.85" xmi:type="code:Value" name="3"/>
<entryFlow xmi:id="id.86" to="id.71" from="id.70"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.87" xmi:type="action:BlockUnit" name="bi3" kind="Init">
<entryFlow xmi:id="1id.88" to="id.89" from="id.87"/>
<codeElement xmi:id="1id.89" xmi:type="action:ActionElement" name="i6" kind="Call">
<actionRelation xmi:id="id.90" xmi:type="action:Reads" to="id.93" from="id.89"/>
<actionRelation xmi:id="id.91" xmi:type="action:Calls" to="id.25" from="id.89"/>
<actionRelation xmi:id="id.92" xmi:type="action:Writes" to="id.52" from="id.89"/>
</codeElement >
<codeElement xmi:id="id.93" xmi:type="code:Value" name="2" type="id.105"/>
</codeElement>
</codeElement >
<codeElement xmi:id="id.94" xmi:type="action:BlockUnit" name="master" kind="Init"s>
<entryFlow xmi:id="1id.95" to="id.96" from="id.94"/>
<codeElement xmi:id="1id.96" xmi:type="action:ActionElement" name="17" kind="Init">
<entryFlow xmi:id="1d.97" to="id.10" from="id.96"/>
<actionRelation xmi:id="id.98" xmi:type="action:Calls" to="id.2" from="id.96"/>
<actionRelation xmi:id="1id.99" xmi:type="action:Calls" to="id.44" from="id.96"/>
<actionRelation xmi:id="id.100" xmi:type="action:Calls" to="id.48" from="id.96"/>
</codeElement>
</codeElement >
</codeElement>
<codeElement xmi:id="id.104" xmi:type="code:LanguageUnit">
<codeElement xmi:id="id.105" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="1d.106" xmi:type="code:CallableUnit" name="printf" type="id.107">
<codeElement xmi:id="id.107" xmi:type="code:Signature" name="printf"s>
<parameterUnit xmi:id="1d.108" type="id.105" kind="return" pos="0"/>
<parameterUnit xmi:id="1d.109" name="format" type="id.111" pos="1"/>
<parameterUnit xmi:id="1d.110" name="arguments" type="id.112"
kind="variadic" pos="2"/>
</codeElement >
</codeElement>

138 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeElement xmi:id="1id.111" xmi:type="code:StringType" name="char *"/>
<codeElement xmi:id="1id.112" xmi:type="code:VoidType"/>
</codeElement>
</model>
</kdm: Segment >

12.21 ClassRelations Class Diagram

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes.
The classes and associations of the ClassRelations diagram are shown in Figure 12.19.

AbstractCodeRelationship

{subsets outbound} Extends {subsets inbound}
0.* 0..*
+to
+from
{redefines from} {redefines to}
Datatype

Figure 12.19 - ClassRelations Class Diagram

12.21.1 Extends Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented
languages.

Superclass

AbstractCodeRelationship

Associations

from:Datatype[1] the child Class

to:Datatype[1] the parent Class

Constraints

1. The from- and to- endpoints should be different.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 139

Semantics

Extends relationship represents the associations between two datatypes in which the first datatype (called the “ child” class)
“subclasses’ the second datatype (called the “parent” class) by inheriting the semantics and owned elements of the parent
class.

Code Elements representing Preprocessor Directives

A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It
is different than let’s say an HTML/Javascript program or programs with embedded assembler routines where there is
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing,
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex).

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation
perspective the SQL statement itself is very much what we want to capture along with the various data elements and
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that
generates some low-level code that will tranglate into a call to some library. By capturing this as generated code and
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its
execution realm. And our relationship between the “SQL language” elements to the “native” code elements that are
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a
couple of SourceRef would be very limiting indeed.

Preprocessor directive is alanguage/dialect on its own and it should be handled and treated as a first class citizen in
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabl ed
LO KDM tool can seamlessly ignore the embedded |anguage and work only with the primary language. The implementer
shall either:

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.
3. Represent both the embedded and the generated primary code and relations between the two.

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:

 originally coded in the primary language

* included from another file by a preprocessor

» generated by a preprocessor as an expansion of an embedded language directive
» selected by satisfying appropriate conditions by the preprocessor

KDM provides the following modeling elements for representing preprocessor directives:

» PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete
preprocessor directives.
« MacroUnit -representation of macro definitions.

« MacroDirective - representation of an embedded language construct as distinguishable from the primary language
construct. Thisis aso known asaMacro Call.

140 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

¢ IncludeDirective - representation of an include directive of a preprocessor.
< ConditionalDirective - representation of a pre-processor conditional branch.

12.22 PreprocessorDirectives Class Diagram

The PreprocessorDirectives class diagram defines the meta-model elements to represent embedded language constructs
and to support common modeling situations resulting from the use of alanguage preprocessor (for example, preprocessor
defined as part of the C language, or the preprocessing capabilities of Cobol).

The class diagram in Figure 12.20 shows these classes and their associations.

+codeElement
AbstractCodeElerment {subsets ownedElement}
T 0..*
PreprocessorDirective
0.1

+owner
{subsets owner}

ConditionalDirective

MacroUnit
+kind : MacroKind

IncludeDirective

«enumeration»

MacroKind MacroDirective

regular
option
undefined
external
unknown

Figure 12.20 - PreprocessorDirectives Class Diagram

12.22.1 PreprocessorDirective Class (generic)

PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some
programming languages (for example, the C language preprocessor capabilities). This class is extended by several
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor
directives in KDM is described later in this sub clause.

Superclass

AbstractCodeElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 141

Associations

codeElement:AbstractCodeElement[0..*] This optiona code element represents the content of the preprocessor
directive.

Constraints

1. PreprocessorDirective should have a stereotype.

Semantics

From the KDM perspective, each preprocessor directive (an embedded language statement) is a container for code
elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich
representation of the embedded language directives. The implementer may provide additional information using
stereotypes. The macro declaration is just code written for example in the “Cpreprocessor” language and can be
represented using standard KDM constructs, such as CodeElements, Action, Flow etc., if needed or light-weight extension
elements, like Stereotypes and ExtendedValues. In many situations, the right implementation choice is to leave the
directive as an empty container with a name, and likely, a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this
sub clause only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. The
implementer may either clone the included code elements or to reuse them and keep a single copy in the SharedUnit. The
recommended approach is to clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

 Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not
contain any pre-processor directives, and relationships expand and alternative; information about the embedded
language cannot be recovered from the KDM representation.

 Ignore the generated primary code, provide a high-fidelity representation to the embedded construct; the embedded
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded
into the primary code may not be recovered from the KDM instance (but in general, the embedded construct provides
abetter choice, sinceit isthe construct introduced by the developer).

» Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of

142 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and
Alternative); there is a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

* Represent both the embedded constructs and the primary code, provide the high fidelity representation to the
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated
code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the
entire BlockUnit to the corresponding embedded construct.

12.22.2 MacroUnit Class

MacroUnit class represents macro definitions common to several programming languages. Although KDM allows
semantic-rich contents of MacroUnit (asit is a subclass of a ControlElement), usually it is sufficient to represent a macro
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic
information about the macro definition.

Superclass

PreprocessorDirective

Attributes

kind:MacroKind Additional semantic properties of the macro definition.

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usually in the form of a
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string
manipulation. However, the optional owned code element may be used to represent these.

The implementer shall select a particular strategy to represent macro units.
12.22.3 MacroKind data type (enumeration)
MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

regular Macro definition has a body and may have parameters.

option Macro definition without a body and parameters, only a name.

undefined This value represents an undefined macro as the target for some relationsin the
representation of default branches of conditional compilation and variants.

external external compilation option

unknown unknown class of a macro definition

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 143

12.22.4 MacroDirective Class

MacroDirective class represents the so-called “macro call,” the occurrence of a macro name (possible with parameters) in
the primary code, such that the preprocessor recognizes it and “expands’ by substituting the macro directive construct
with its “definition.” A block of “generated” code elements that represent the primary code resulting from macro
expansion may be associated with the MacroDirective.

Superclass

PreprocessorDirective

Semantics

MacroDirective represents the so-called “macrocall,” or an occurrence of a macro name (possibly with the actual
parameters), which is substituted by the body of the macro definition in which the occurrences of the formal parameters
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the
origin of the action relationships to the actual parameters to the MacroDirective.

12.22.5 IncludeDirective Class

IncludeDirective class represents the so-called include directive, common to several programming languages and their
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include
directive is usually related to a SharedUnit (for example, a copybook in Cobol, or a header file in C). A block of
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the
include directive. Semantics of the IncludeDirective class is described later in this sub clause in more detail.

Superclass

PreprocessorDirective

Semantics
IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a
stand-alone CompilationUnit.

12.22.6 Conditional Directive Class

Conditional Directive class represents the so-called “variant” of a software system, resulting from the use of conditional
compilation capabilities, common to several programming languages and their preprocessors (for example the #if ...
#endif and #ifdef ... #endif directives of the preprocessor of the C language). Conditional Directive represents a single
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of
the Conditional Directive class is described later in this sub clause in more detail.

Superclass
PreprocessorDirective
Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the
selected variant. The block of “generated” code identifies the corresponding conditional directive.

144 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.23 PreprocessorRelations Class Diagram

The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language
constructs and pre-processor directives, common to several programming languages.

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.21.

AbstractCodeRelationship

Expands)
{subsets outbound} {subsets inbound}
VariantTo {subsets outbound}0--* 0. {subsets inbound} Redefines
0..* 0.*
0.*
0..*
{subsets inbound} +rom {rede:i:)es to} {subsets outbound}
{redefines from} +fron +to
{redefines from {redefines to}
+o 1 1 1 1
{redefines to} PreprocessorDirective
1 +from
{redefines from}
Includes | {subsets outbound} 1 +o]:1
" +from {redefines to} - GeneratedFrom
0.. {redefines from} (subsets inb O“d}
0.* subsets inboun
{subsets inbound} #o +from 0..*
{redefines to} TRV I 7 {redefines from} {subsets outbound}
stractCodeElemen

1 1

Figure 12.21 - PreprocessorRelations Class Diagram

12.23.1 Expands Class

Expands class represents the rel ationship between a MacroUnit to another MacroUnit or from a MacroDirectiveto a
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit

or MacroDirective.

Superclass

AbstractCodeRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 145

Associations

to:MacroUnit[1] The target MacroUnit.
from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.
Semantics

The implementer shall identify and represent associations between MacroUnits, as well as a MacroDirective and the
corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor support
for the implementer guidelines.

12.23.2 GeneratedFrom Class

GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular,
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class,
the resulting code may represent one of the following:

» “generated” code that correspondsto a certain MacroDirective.
« “included” code that corresponds to a certain IncludeDirective.
« “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “ generated” code and target the corresponding
PreprocessorDirective.

Superclass

AbstractCodeRel ationship

Associations

to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor
directive that was involved in producing the code.

from:AbstractCodeElement([1] The BlockUnit that owns the “ generated” code.

Constraints

1. The origin of the GeneratedFrom relationship should be a BlockUnit.

Semantics

See the general description of the preprocessor directives for the implementer’ s guidelines.

Example (C preprocessor)

#define GT(A,B) ((A)
#define GMAX(A,B) g=
GMAX (p+g, T+Ss);

<?xml version="1.0" encoding="UTF-8"?>

146 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Macro Directive Example">
<model xmi:id="id.O0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit"s>

<codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="GMAX">
<source language="Cpreprocessor"
snippet="#define GMAX(A,B) g=(GT(A,B) ? (A) : (B))"/>
<codeRelation xmi:id="id.3" xmi:type="code:Expands" to="id.4" from="id.2"/>
</codeElement>
<codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="GT">
<source language="Cpreprocessor" snippet="#define GT(A,B) ((A) > (B))"/>
</codeElement>
<codeElement xmi:id="id.5" xmi:type="action:BlockUnit">
<codeElement xmi:id="id.6" xmi:type="code:StorableUnit" name="p" type="id.49"/>
<codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="g" type="id.49"/>
<codeElement xmi:id="id.8" xmi:type="code:StorableUnit" name="r" type="id.49"/>
<codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="s" type="id.49"/>
<codeElement xmi:id="id.10" xmi:type="code:StorableUnit" name="g" type="id.49"/>
<codeElement xmi:id="id.11" xmi:type="code:MacroDirective" name="ml">
<gource xmi:id="1id.12" language="Cpreprocessor" snippet="GMAX (p+q,r+s);"/>
<codeRelation xmi:id="1id.13" xmi:type="code:Expands" to="id.2" from="id.11"/>
</codeElement>
<codeElement xmi:id="1d.14" xmi:type="action:BlockUnit" name="bml">
<codeRelation xmi:id="1id.15" xmi:type="code:GeneratedFrom" to="id.11" from="id.14"/>
<codeElement xmi:id="id.16" xmi:type="action:ActionElement">
<source xmi:id="id.17" language="C"
snippet="g=(((p+q) > (r+s)) ? (p+q) : (r+s));"/>
<codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="al" kind="Add">
<actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.6" from="id.18"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.10" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="1id.47" from="1id.18"/>
<actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.23" from="id.18"/>
</codeElement>
<codeElement xmi:id="id.23" xmi:type="action:ActionElement" name="a2" kind="Add">
<actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.8" from="id.23"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.9" from="id.23"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="1d.48" from="id.23"/>
<actionRelation xmi:id="id.27" xmi:type="action:Flow" from="id.23"/>
</codeElement>
<codeElement xmi:id="1id.28" xmi:type="action:ActionElement"
name="a3" kind="GreaterThan">
<codeElement xmi:id="1d.29" xmi:type="code:StorableUnit"
name="¢" type="id.50" kind="register"/>
<actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.47" from="id.28"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.48" from="id.28"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="1id.29" from="1id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
</codeElement>
<codeElement xmi:id="id.34" xmi:type="action:ActionElement"
name="a3.1" kind="Condition">
<actionRelation xmi:id="1id.35" xmi:type="action:Reads"
to="1id.29" from="id.34"/>
<actionRelation xmi:id="1d.36" xmi:type="action:TrueFlow"
to="id.38" from="id.28"/>
<actionRelation xmi:id="1id.37" xmi:type="action:FalseFlow"
to="id.42" from="id.34"/>
</codeElement>
<codeElement xmi:id="id.38" xmi:type="action:ActionElement"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

147

name="a4" kind="Assign">
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.47" from="id.38"/>
<actionRelation xmi:id="1id.40" xmi:type="action:Writes" to="id.10" from="id.38"/>
<actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.46" from="id.38"/>
</codeElement>
<codeElement xmi:id="id.42" xmi:type="action:ActionElement"
name="a5" kind="Assign">
<actionRelation xmi:id="id.43" xmi:type="action:Reads" to="id.48" from="id.42"/>
<actionRelation xmi:id="id.44" xmi:type="action:Writes" to="id.7" from="id.42"/>
<actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.46" from="id.42"/>
</codeElement>
<codeElement xmi:id="id.46" xmi:type="action:ActionElement" name="a6" kind="Nop"/>
<codeElement xmi:id="id.47" xmi:type="code:StorableUnit"
name="tl" type="id.49" kind="register"/>
<codeElement xmi:id="1d.48" xmi:type="code:StorableUnit"
name="t2" type="1id.49" kind="register"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.49" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.50" xmi:type="code:BooleanType" name="boolean"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.23.3 Includes Class

Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being
included.

Superclass

AbstractCodeRel ationship

Associations

from:AbstractCodeElement[1] The code elements being included (usually a SharedUnit).

from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.

Constraints

1. The origin of the Includes relationship should be an IncludeDirective.

Semantics

The implementer shall identify and represent include relationships according to the semantics of the particular
preprocessor.

Example (C preprocessor)

/*---a.h---%/

. cl
...C2. ..
/*---a.c---%/
#include "a.h"
.cl...

148 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code=""http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Include Directive Example'">
<model xmi:id="id.O0" xmi:type="code:CodeModel">
<extensionFamily xmi:id="id.1" >
<stereotype xmi:id="id.2" name="sample"/>
</extensionFamily>
<codeElement xmi:id="id.3" xmi:type="code:SharedUnit" name="a.h">
<codeElement xmi:id="id.4" xmi:type="code:CodeElement" stereotype="id.2" name="cl">
<source xmi:id="id.5" language="C"/>
</codeElement>
<codeElement xmi:id="id.é" xmi:type="code:CodeElement" stereotype="id.2" name="c2">
<source xmi:id="id.7" language="C"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="code:CompilationUnit" name="a.c">
<codeElement xmi:id="id.9" xmi:type="code:IncludeDirective">
<source language="Cpreprocessor" snippet="#include "a.h""/>
<codeRelation xmi:id="1id.10" xmi:type="code:Includes" to="id.3" from="1id.9"/>
</codeElement>
<codeElement xmi:id="1id.11" xmi:type="action:BlockUnit" name="bl">
<codeRelation xmi:id="id.12" xmi:type="code:GeneratedFrom" to="id.9" from="id.1l1"/>
<codeElement xmi:id="id.13" xmi:type="code:CodeElement"
stereotype="1id.2" name="cl clone">
<source xmi:id="id.14" language="C"/>
</codeElement>
<codeElement xmi:id="1d.15" xmi:type="code:CodeElement"
stereotype="id.2" name="c2_ clone">
<source xmi:id="id.16" language="C"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.17" xmi:type="action:BlockUnit" name="b2">
<codeElement xmi:id="1d.18" xmi:type="action:ActionElement" name="al">
<actionRelation xmi:id="1d.19" xmi:type="action:ActionRelationship"
to="id.13" from="id.18"/>
</codeElement >
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.23.4 VariantTo Class

VariantTo class represents the relationship between variants of a software product line with conditional compilation. This
relationship connects the Conditional Directive to each alternative branch of the conditional compilation directive. KDM
representation is expected to identify asingle “default” variant, to which additional variants are alternatives. Thereisno
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship
GeneratedFrom connecting it to the corresponding Conditional Directive. The “ default” variant is expected to have a
VariantTo relationship to every aternative branch.

Superclass

AbstractCodeRel ationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 149

Associations

to:PreprocessorDirective[1] Conditional Directive class that represents an aternative variant of the
conditional.

from:PreprocessorDirective[1] A Conditional Directive class that represents the default variant of the
conditional.

Constraints
1. The origin of the VariantTo relationship should be a Conditional Directive.

2. The target of the VariantTo relationship should be a Conditional Directive.

Semantics

The implementer shall identify and represent the variants and associations between the “generated” code and the
corresponding conditional directive according to the semantics of the preprocessor. See the general description of the
preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

#define UNIX 1
#if UNIX | DEBUG
g=1;

#endif

Ifdef UNIX
g=1

#else

g=2

#endif

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Variants Example">
<model xmi:id="id.O0" xmi:type="code:CodeModel" >
<codeElement xmi:id="id.1" xmi:type="code:MacroUnit" name="UNIX">
<source language="Cproprocessor" snippet="#define UNIX 1"/>
</codeElement>
<codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="DEBUG" kind="external"/>
<codeElement xmi:id="1id.3" xmi:type="code:StorableUnit" name="g" type="id.4">
<codeElement xmi:id="id.4" xmi:type="code:IntegerType"/>
</codeElement >
<codeElement xmi:id="1d.5" xmi:type="code:ConditionalDirective" name="cl">
<source language="Cpreprocessor" snippet="#if UNIX | DEBUG"/>
<codeRelation xmi:id="1id.6" xmi:type="code:Expands" to="id.1" from="id.5"/>
<codeRelation xmi:id="id.7" xmi:type="code:Expands" to="id.2" from="id.5"/>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="action:BlockUnit" name="bl">
<codeRelation xmi:id="id.9" xmi:type="code:GeneratedFrom" to="id.5" from="id.8"/>
<codeElement xmi:id="1d.10" xmi:type="action:ActionElement" name="al" kind="Assign">
<source xmi:id="id.11" language="C" snippet="g=123"/>

150 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeElement xmi:id="id.12" xmi:type="code:Value" name="123" type="id.4"/>
<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.12" from="id.10"/>
<actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.3" from="id.10"/>
</codeElement>
</codeElement >
<codeElement xmi:id="id.15" xmi:type="code:ConditionalDirective" name="c2">
<source language="Cpreprocessor" snippet="#ifdef UNIX"/>
<codeRelation xmi:id="id.16" xmi:type="code:Expands" to="id.1l" from="id.15"/>
<codeRelation xmi:id="id.17" xmi:type="code:VariantTo" to="id.25" from="id.1l5"/>
</codeElement>
<codeElement xmi:id="id.18" xmi:type="action:BlockUnit" name="b2">
<codeRelation xmi:id="1id.19" xmi:type="code:GeneratedFrom" to="id.15" from="id.18"/>
<codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="a2" kind="Assign">
<gsource xmi:id="id.21" language="C" snippet="g=123"/>
<codeElement xmi:id="id.22" xmi:type="code:Value" name="1" type="id.4"/>
<actionRelation xmi:id="id.23" xmi:type="action:Reads" to="id.22" from="id.20"/>
<actionRelation xmi:id="id.24" xmi:type="action:Writes" to="id.3" from="id.20"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.25" xmi:type="code:ConditionalDirective" name="c3">
<source language="Cpreprocessor" snippet="#else"/>
<codeRelation xmi:id="1id.26" xmi:type="code:Expands" to="id.l" from="id.25"/>
</codeElement >
<codeElement xmi:id="id.27" xmi:type="action:BlockUnit" name="b3">
<codeRelation xmi:id="1id.28" xmi:type="code:GeneratedFrom" to="id.25" from="id.27"/>
<codeElement xmi:id="1d.29" xmi:type="action:ActionElement" name="a3" kind="Assign">
<source xmi:id="1id.30" language="C" snippet="g=123"/>
<codeElement xmi:id="id.31" xmi:type="code:Value" name="2" type="id.4"/>
<actionRelation xmi:id="1id.32" xmi:type="action:Reads" to="id.31" from="id.29"/>
<actionRelation xmi:id="id.33" xmi:type="action:Writes" to="id.3" from="id.29"/>
</codeElement>
</codeElement >
</model>
</kdm: Segment >

12.23.5 Redefines Class

Redefines class represents the relationship between a MacroUnit and another MacroUnit (usually with the same name) where
the origin MacroUnit is aredefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the
redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are
expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current”
definition at the given point.

Superclass

AbstractCodeRel ationship

Associations

to:MacroUnit[1] the old MacroUnit

from:PreprocessorDirective[1] the new MacroUnit

Constraints

1. The origin of the Redefines relationship should be a MacroUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 151

Semantics

The implementer shall identify and represent redefinitions of macro units according to the semantics of the particular
preprocessor.

Example (C preprocessor)

#define A 1
#define A 2
#undef A
#pragma once

<?xml version:"l.O" encoding="UTF-8"?>
<kdm: Se%{ ns ché)l e= n%:lt=];>" f f ww/ /c%w oOJ_£n c//S }&)eMC/ 2}%\4 115 02200111/] 70(%e "
xmlns:kdm:"http://www.omg.org/spec/KDM/20lGOZOl/kdm"
name="Preprocessor Directives example">
<model xmi:id="1id.0" xmi:type="code:CodeModel" >
<extensionFamily xmi:id="id.1" >
<stereotype xmi:id="id.2" name="directive">
<tag xmi:id="1id.3" tag="directive type" type="String"/>
</stereotype>
</extensionFamily>
<codeElement xmi:id="id.4" xmi:type="code:MacroUnit" name="A">
<source language="Cpreprocessor" snippet="#define A 1"/>
</codeElement >
<codeElement xmi:id="1d.5" xmi:type="code:MacroUnit" name="DEBUG" kind="option"s>
<source language="Cpreprocessor" snippet="#define DEBUG"/>
</codeElement >
<codeElement xmi:id="id.é" xmi:type="code:MacroUnit" name="A">
<source language="Cpreprocessor" snippet="#define A 2"/>
<codeRelation xmi:id="id.7" xmi:type="code:Redefines" to="id.4" from="id.6"/>
</codeElement >
<codeElement xmi:id="1id.8" xmi:type="code:MacroUnit" name="A" kind="undefined">
<source language="Cpreprocessor" snippet="#undef A"/>
<codeRelation xmi:id="id.9" xmi:type="code:Redefines" to="id.6" from="id.8"/>
</codeElement>
<codeElement xmi:id="id.10" xmi:type="code:PreprocessorDirective"
stereotype="1d.2" name="d1l">
<taggedvValue xmi:id="id.11" xmi:type="kdm:TaggedValue" tag="id.3" value="pragma once"/>
<source language="Cpreprocessor" snippet="#pragma once"/>
</codeElement >
</model>
</kdm: Segment >

Miscellaneous Code Elements

12.24 Comments Class Diagram

The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the
Comments diagram are shown in Figure 12.22.

152 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

ModelElement
(core)

+comment
{subsets ownedElement, ordered}

CommentUnit

AbstractCodeE/lement +owner Comments
1 0.*
{subsets owner}

+text : String

Figure 12.22 - Comments Class Diagram

12.24.1 CommentUnit Class

The CommentUnit is a meta-model element that represents comments in existing systems (including any special
comments). CommentUnit element can be used to introduce comments during transformation of the existing system
(including special comments).

Superclass

M odel Element

Attributes

text:String The representation of the comment.

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. The
implementer shall make an adequate decision on how to associate line comments with the surrounding elements in the
source code.

CommentUnit is a special element as it is a subclass of ModelElement, and not of KDMEntity. In addition to owned
CodeElement, each AbstractCodeElement can own zero or more ordered CommentUnit. The order of CommentUnit is
independent on the order of owned CodeElement. CommentUnit does not have SourceRef. The only connection of
CommentUnit to the SourceFile is through the owner code element.

KDM implementation shall decide how to associate CommentUnit with the corresponding code element. At a minimum,
CommentUnit shall be owned by the corresponding Module, but typically they are owned by some Codeltem that are
owned by the Module. Thus, each code element can have one or more SourceRef as well as associated comments.
CommentUnit may be derived from sources other than the original SourceFile.

CommentUnit is similar to Annotation element, however since CommentUnit is a subclass of ModelElement, it shall
represent the text related to the system under investigation, and opposed to an Annotation, which shall represent text
added during analysis.

Example

See example in Section 12.26.1, “Visibleln Class.”

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 153

12.24.2 AbstractCodeElement Class (additional properties)

Associations

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement.

Semantics

12.25 Visibility Class Diagram

The Visibility class diagram defines meta-model elements that represent visibility of code elementsin their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.23.

+groupedCode
{subsets groupedElement} Codeltem
0.*
N
0.*
NamespaceUnit
+group

{subsets group}
Figure 12.23 - Visibility Class Diagram

12.25.1 Namespace Class

The Namespace is a specific meta-model element that represents the target of the Visibleln or Imports visibility
relationships.

Superclass

Codeltem

Associations

groupedCode:Codeltem[0..*] A KDM group of code elements that belong to the namespace. The actual
owners of these elements are the corresponding modul es, not the namespace,
since namespaces can, in general cross cut the module boundaries.

Constraints

1. Namespace element should not belong to own group.

154 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses.
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

An anonymous namespace can represent a group of code elements that are the target of an Imports relationship.

12.26 VisibilityRelations Class Diagram

The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their
corresponding containers. The classes and associations of the VisibilityRelations diagram are shown in Figure 12.24.

AbstractCodeRelationship

+from +from
redefines from redefines from
defi fi defi fi
Visibleln Codeltern Imports
0..* 1 1 0.*

5= {subsets outbound} 7 T {subsets outbound} o

. o .

{subsets inbound} *to {redefines to} {subsets inbound}

{redefines to}

Figure 12.24 - VisibilityRelations Class Diagram

12.26.1 Visibleln Class

The Visibleln is a specific meta-model element that represents semantic relation between two code items, where one
provides the restricted visibility context for another code item.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] The Codeltem visibility of which is specified.
to:Codeltem[1] The Codeltem that provides the visibility context.
Semantics

Visibleln optional relationship represents an association between a code item and one of the containers that correspondsto the
visibility scope of thefirst item. Thisrelationship is optional, since al other KDM relationships are determined by the
semantics of the target language, including the visibility rules.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 155

Example

File a.cpp

namespace ab {

/* comment #1 to foo */
// comment #2 to foo

foo()

{ ; //comment to action element al }
}

File b.cpp

namespace ab {
// Comment to record type bar
struct bar
{ int // Comment to integer type
foobar ; // Comment to item unit foobar }
}
<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
name="Visibility and Comment Example"s>
<model xmi:id="1id.0" xmi:type="code:CodeModel" >
<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="id.2" xmi:type="code:NamespaceUnit"
name="ab" groupedCode="id.4 id.9 id.13"/>
<codeElement xmi:id="id.3" xmi:type="code:CompilationUnit" name="a">
<codeElement xmi:id="id.4" xmi:type="code:CallableUnit"
name="foo" type="1id.8" kind="regular">
<comment text="Comment #1 to foo"/>
<comment text="Comment #2 to foo"/>
<codeRelation xmi:id="id.5" xmi:type="code:VisibleIn" to="id.2" from="id.4"/>
<codeElement xmi:id="id.é" xmi:type="action:ActionElement" kind="Nop" name="al">
<comment xmi:id="id.7" text="Comment to action element al"/>
</codeElement >
<codeElement xmi:id="id.8" xmi:type="code:Signature" name="foo"/>
</codeElement>
<codeElement xmi:id="1d.9" xmi:type="code:IntegerType" name="int">
<comment xmi:id="id.l10" text="Comment to integer type"/>
<codeRelation xmi:id="id.11" xmi:type="code:VisibleIn" to="id.2"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.12" xmi:type="code:CompilationUnit" name="b">
<codeElement xmi:id="1d.13" xmi:type="code:RecordType" name="bar">
<comment xmi:id="id.14" text="Comment to record type bar"/>
<codeRelation xmi:id="1id.15" xmi:type="code:VisibleIn" to="id.2" from="id.13"/>
<itemUnit xmi:id="1d.16" name="foobar" type="id.9">
<comment xmi:id="id.17" text="Comment to item unit foobar"/>

<codeRelation xmi:id="1id.18" xmi:type="code:VisibleIn" to="id.13" from="id.16"/>

</itemUnit>
</codeElement>
</codeElement>
</codeElement >
</model>
</kdm: Segment >

156 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

12.26.2 Imports Class

The Imports meta-model element represents an association between two Codeltems where one Codeltem “imports”
definitions from another. The “import” relationship is common to several programming languages (for example, the
import statement in Java). In this relationship the origin Codeltem (usually, a CompilationUnit or a subclass of Module)
resolves the visibility of certain names that are defined (owned) by the target Codeltem (usually, another CompilationUnit
or some other subclass of Module, but possibly a NamespaceUnit from another Codeltem, or even an individual code
element). The Imports class simply represents the “import” relationships between Codeltem, for example, for tracking
dependencies between packages. KDM representations themselves do not require additional import statements in order to
have relationships between Codeltem, or even between different models.

Superclass

AbstractCodeRel ationship

Associations

from:Codeltem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.

to:Codeltem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.

Constraints
1. The origin of the Imports relationship should be a subclass of Module.

Semantics

The implementer shall identify and represent import directives and their targets according to the semantics of the
programming language of the existing software system.

12.27 ExtendedCodeElements Class Diagram

The ExtendedCodeElements class diagram defines two viewpoint-specific generic elements for the code model as
determined by the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.25.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 157

AbstractCodeRelationship

+from T +to
) {redefines to B
Codeltern | {redefines from} CodeRelationship KDMEntity
1 0.* o~ p (core)
{subsets outbound} {subsets inbound}

CodeElement

Figure 12.25 - ExtendedCodeElements Class Diagram

12.27.1 CodeElement Class (generic)

The CodeElement is a generic meta-model element that can be used to define new extended meta-model elements through
the KDM light-weight extension mechanism.

Superclass

Codeltem

Constraints
1. CodeElement should have at least one stereotype.
Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended
meta-model entity type of the code model. Thisis one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.27.2 CodeRelationship Class (generic)

The CodeRelationship is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractCodeRelationship

Associations

from:Codeltem[1] the Codeltem

to:KDMEntity[1] the KDMEntity

158 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints
1. CodeRelationship should have at least one stereotype.
Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the code model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 159

160 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

13 Action Package

13.1 Overview

The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule,
in a given KDM instance, each instance of an action element represents some programming language construct,
determined by the programming language of the existing software system. Each instance of an action meta-model element
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually
represents one or more statements, and an action relationship usually represents a usage of a name in a statement.

13.2 Organization of the Action Package
The Action package consists of the following 11 class diagrams:
» ActionElements
» ActionFlow
* Actionlnheritances
» CadllableRelations
» DataRelations
« ExceptionBlocks
* ExceptionFlow
e ExceptionRelations
* InterfaceRelations
* UsesRelations
» ExtendedActionElements
The Action package depends on the following packages:
* Core
e kdm

e Source

13.3 ActionElements Class Diagram

In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with
specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 161

model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action
package defines most of the relationship types to the Code model. Together, Action, and Code packages constitute the
Program Elements Layer of KDM.

The ActionElements diagram defines the following classes determined by the KDM model pattern:
» ActionElement —main class of the Action package.

» AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations.

AbstractActionRelationship

+actionRelation | 0..*
{subsets ownedRelation, ordered}

ActionElement 1

+kind : String

e

+owner

BlockUnit {subsets owner}

+codeElement
{subsets ownedElement, ordered}

0.*

AbstractCodeElement
(code)

Figure 13.1 - ActionElements Class Diagram

13.3.1 ActionElement Class

The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for a large number of
explicit KDM relations that describe control and data flow between various code elements. ActionElement can be linked
to the original representation through the SourceRef element from the Source package.

Superclass

AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.

162 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

actionRelation:ActionRelationship[0..*] Ordered action relationships originating from the given action element.

{ordered}

codeElement: AbstractCodeElement[0..*] Ordered owned code elements (for example, nested action elements, or
nested BlockUnits, or nested definitions of datatypes and computational
objects).

Constraints
1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements.

2. Compound ActionElement shall have an EntryFlow to the logically first owned ActionElement.

Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even
a part of a programming language statement. The implementer shall select the granularity of the action elements. As a
minimum, each Control Element should own at least one ActionElement so that it can be the endpoint of all
ActionRelationships originating from the corresponding ControlElement. Static analysis grade KDM implementations
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex
A. For non-micro KDM implementation, the value of the kind is not normative.

The implementer shall map programming language statements and other descriptions of behavior into KDM
ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action
represents an entire set of leaf actions owned directly or indirectly.

ActionRelation owned by ActionElement are ordered. This is used, for example, to match actual and formal parameters,
and to represent access to composite and derived datatypes.

13.3.2 AbstractActionRelationship Class (abstract)

The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an
ActionElement.

Superclass
KDMREelationship

Semantics

Usually, an action relationship corresponds to some usage of a hame in a programming language statement. Action
relationships originate from ActionElements as opposed to code relationships that originate from code elements.
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 163

13.3.3 BlockUnit Class

The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements.
BlockUnit can also represent initialization blocks of individual ControlElement, ClassUnit, CompilationUnit, and
CodeAssembly. These BlockUnit own ActionElement related to initialization of global, static, and local variables and
creation of static objects.

Superclass

ActionElement

Associations

codeElement:AbstractCodeElement[0..*] owned code elements including nested BlockUnits

Constraints

1. BlockUnit shall have an EntryFlow relation to the logically first ActionElement.

Semantics

A BlockUnit is alogical container for action elements. BlockUnit is similar to a composite ActionElement that can also
contain nested ActionElement and data elements. BlockUnit represents nested ActionElement which are found in the
given software system, while a generic compound ActionElement is an internal mechanism to manage complex
ActionElement collections, in particular, those related to micro-KDM.

BlockUnit is used as a container for various ActionElement that are involved in the initialization of global, static, and
local variables in various CompilationUnit of a CodeAssembly. Such BlockUnit are called “initialization blocks.” In
micro KDM, an initialization block shall have a kind="Init.” Semantics of the initialization blocks describes
representation of control and data flow between initialization blocks using EntryFlow, Flow, and Calls relations.

Semantics of initialization blocks:

1. Each CompilationUnit shall have an EntryFlow relation to the first initialization block for the CompilationUnit, if
one is required.

2. Each initialization block shall have Flow relation to next initialization block within the same CompilationUnit, if
required.

3. KDM implementation shall provide correct initialization order between multiple initialization blocks within each
CompilationUnit.

4. Code Assembly shall have an EntryFlow relation to the initialization block, called the “master” initialization block,
if oneis required.

5. KDM implementation shall provide correct initialization order between initialization blocks of separate modules.
This order is typically undefined in the programming language and depends on the linker and the order in which
modules are built.

6. KDM implementation shall determine appropriate owner for the initialization blocks.

7. KDM implementation shall provide appropriate chaining of initialization blocks across separate CompilationUnits
within a CodeAssembly through the “master” initialization block in the CodeAssembly. The “master” initialization
block owned by CodeAssembly owns an ActionElement with a sequence of Calls relations to each

164 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

CompilationUnit that has an initialization block, in appropriate order. The last Calls relation is to the entry point of
the CodeAssembly, for example, “main.” Further, the initialization ActionElement owned by initialization blocks
can be targets of HasValue relations from the corresponding DataElements.

Example
See example in Section 12.20.2, “HasValue Class.”
13.3.4 AbstractCodeElement (additional properties)

Associations

entryFlow:EntryFlow][0..*] EntryFlow relationships that associate the given abstract code element and some
action elements owned by it, which are designated as the entry actions.
Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple
EntryFlow elements represent nondeterministic control flow.

13.4 Actioninheritances Class Diagram

The Actionlnheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2
captures these classes and their associations.

AbstractCodeElerment KDMRelationship
(code) (core)
ActionElement AbstractActionRelationship
+kind : String

Figure 13.2 - ActionInheritances Class Diagram

13.5 ActionFlow Class Diagram

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements.
The class diagram shown in Figure 13.3 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 165

AbstractActionRelationship

{subsets inbound} *o

{redefines to}
1 +to
0.* +entryFlow
; {redefines to} {subsets ownedRelation}
ControlFlow ..l-\ctlonFIement EntryFlow
+kind : String
1 0.* 0.*
0..* {subsets inbound} 0
1 {subsets outbound}
= ubsets outbound} +from
ow {redefines from}
+from
{redefines from}
AbstractCodeElement
TrueFlow FalseFlow
(code) 0..1

GuardedFlow

Figure 13.3 - ActionFlow Class Diagram

13.5.1 ControlFlow Class (generic)

The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is
further subclassed with more specific modeling elements. Control Flow class could be used to represent programming
constructs that are not covered by any of the specific subclasses as an extension point.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the control flow

to:ActionElement[1] The target of control flow, when represented by the next action element in
the trace determined by the control flow.

Constraints

1. ControlFlow class should always be used with a stereotype.

166 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base
element for new extended meta-model elements, representing specific control flow relationships not covered by the
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

The implementer shall map control flow mechanisms of the given programming language into Control Flow meta-
elements. The implementer shall adequately represent the control flows of the existing system by a set of action elements
and Control Flow relationships between them.

13.5.2 EntryFlow Class

The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or
action, from CompilationUnit to initialization block, from a callable unit to the initialization block, from a class to the
initialization block, from BlockUnit to the logically first internal action or from a compound action to the logically first
internal action.

Superclass

AbstractActionRelationship

Associations

from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that
represents its behavior.

to:ActionElement[1] The action element that is selected when the owner element is called.

Constraints

1. Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a
corresponding EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

2. The “to” attribute of an EntryFlow element should be an ActionElement that is owned by the
AbstractCodeElement that is the “from” attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind “Init.”

2. Initialization code can belong to a ControlElement, CompilationUnit, or CodeAssembly.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 167

3. The EntryFlow relationship is used in a uniform way for describing entry points to other KDM code elements. It
should be used for any type of special flows, e.g., entry to a CodeAssembly to initialization Block or action, from
Module to initialization block, from callable unit to initialization block, from class to initialization block, or from
compound action to the first internal action.

4. The CodeAssembly shall include the “master” initialization block that owns an ActionElement with action
kind="1nit" and a sequence of Calls relaitonsto the inidividual CompilationUnits in appropriate order, followed by
another Calls relation to to the logical entry point of the CodeAssembly, for example “main.” The initialization
blocks of individual CompilationUnit referred to by the “master” block do not need to have the Flow relationship
at their last action element. The control flow is returned to “master” initialization block.

Additional semantics of initialization blocks is described in sections “BlockUnit Class” and “HasValue Class’.

Example

See example in section “HasValue Class’.

13.5.3 Flow Class

The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to
the “from” attribute of the Flow.

Superclass

Control Flow

Constraints

1. If there is one or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same
action element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from™ attribute, they
represent an unspecified flow of control.

13.5.4 TrueFlow Class
The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that
 the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

« the ActionElement that correspondsto the “to” attribute of the TrueFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the TrueF ow when the value of the condition istrue.

Superclass
ControlFlow
Constraints

1. If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow elements that
have the same ActionElement as the “from” attribute (but there can be FalseFlow).

168 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal,
when condition is not satisfied.

13.5.5 FalseFlow Class

The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such
that

« the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and

« the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the FalseFlow when the value of other conditionsis not satisfied.

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements.
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedF ow.

Superclass

Control Flow

Constraints
1. If there exists a FalseFlow element, there should be either:

e acorresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same
ActionElement as the “from” attribute, or

+ oneor more GuardedFlow el ements that have the same ActionElement as the “from™ attribute, and

e there are no other relationship elements that are subclasses of FlowRelationship that have the same
ActionElement as the “from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of contral.

13.5.6 GuardedFlow Class

The GuardedFlow class is a modeling element that represents control flow relationship between two or more
ActionElements such that:

« the ActionElement that correspondsto the “from” attribute of the GuardedFlow represents the selection statement (for
example, a“switch” statement); and

« the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that
determines a branch of control flow; and

« thebranch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedFlow
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the
guarded condition in the context of the selection statement is satisfied.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 169

FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch
of control flow, for example, to represent the default branch of a switch statement.

Superclass

Control Flow

Constraints

1. If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of
FlowRelationship that have the same ActionElement as the “from” attribute, with exception of one or more
GuardedFlow elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that correspondsto the “to” attribute of the GuardedFlow has
kind="Guard.” It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram

The CallableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate
ActionElement to Control Element and represent control flows of the existing software system.

The CallableRelations diagram describes the following types:

» Calls- isamodeling element that represents a call-type rel ationship between an ActionElement and a CallableElement
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the
CallableElement represents the element being called.

« Dispatches - isamodeling element that represents a call-type of relationship between an ActionElement and a data
item, in which the ActionElement represents some form of a call, and the data item represents a pointer to a procedure

type.

The class diagram shown in Figure 13.4 captures these classes and their relations.

170 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AbstractActionRelationship

[

Dispatches
p {subsets outbound} {subsets outbound} Calls
0.* o
0.* N o
{subsets inbound} h {subsets inbound}
+to +o
{redefines to} |4 1 {redefines to}
DataElement Codeltem
(code) (code)
+from +from
1 1 {redefines from}

{redefines from}
ActionElement

+kind : String

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class

Callsis amodeling element that represents a call-type relationship between an ActionElement and a Codeltem, which can
be a ControlElement or one of its subclasses, or an entire CompilationUnit. The ActionElement represents some form of
a call statement, and the Codeltem represents the element being called. In the meta-model the Calls element is a subclass
of ActionRelationship.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element from which the call relation originates.
to:Codeltem[1] the target Codeltem
Semantics

Callsrelationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent acall to a
procedure, a static method, a non-static method of a particular object instance, avirtual method, or an interface element. Calls
relationship also represents the control flow between initialization blocks.

Callsrelation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 171

Precise semantics of a call can be represented by the “kind” element of the owner ActionElement, according to the guidelines
provided in the “micro KDM” compliance point.

When amethod call by pointer or reference, a virtual method or an interface element are called, the name of the method is
known, and KDM uses relation Calls which isto an explicitly defined ControlElement and a*“VirtualCall” micro action kind.
When a procedural call by pointer is made, the name of the target procedure is not known, and KDM uses relation Dispatches,
which isto a DataElement and amicro action kind “PtrCall.” In each case the exact target of the call is not known statically.

Example

See examplesin sections “ CallableUnit Class’, “HasVaue Class’, “Dispatches Class’ and Chapter 14 “Micro KDM”.

13.6.2 Dispatches Class

Dispatches is a modeling element that represents a by pointer relationship between an ActionElement and a dataitem. The
ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass

AbstractA ctionRelationship

Associations

from:ActionElement[1] The action element from which the call relation originates.
to:DataElement[1] The data element that represents the pointer to a procedure type.
Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be
required to determine the real targets of the Dispatches call.

When a method call by pointer or reference, a virtual method or an interface element are called, the name of the method
is known, and KDM uses relation Calls which is to an explicitly defined ControlElement and a“VirtualCall” micro action
kind. When a procedural call by pointer is made, the name of the target procedure is not known, and KDM uses relation
Dispatches, which is to a DataElement and a micro action kind “PtrCall.” In each case the exact target of the call is not
known statically.

Example (C)

typedef int (*fp) (int 1);
int foo(int i){}
int bar(int i) {}
void foobar () {
fp pf;
pf=foo;
pf=bar;
*pf (1) ;

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Dispatch Example">
<model xmi:id="id.0" xmi:type="code:CodeModel" >

172 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="Dispatch.c">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit"
name="foo" type="id.4" kind="regular">
<codeRelation xmi:id="1id.3" xmi:type="code:HasType" to="id.14" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="code:Signature" name="foo">
<parameterUnit xmi:id="id.5" name="a" type="id.13"/>
<parameterUnit xmi:id="id.6" type="id.13" kind="return"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.7" xmi:type="code:CallableUnit"
name="bar" type="id.9" kind="regular"s>
<codeRelation xmi:id="1id.8" xmi:type="code:HasType" to="id.14" from="id.7"/>
<codeElement xmi:id="id.9" xmi:type="code:Signature" name="bar">
<parameterUnit xmi:id="id.10" name="a" type="id.13"/>
<parameterUnit xmi:id="id.11" type="id.13" kind="return"/>
</codeElement>
</codeElement >
<codeElement xmi:id="id.13" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.14" xmi:type="code:TypeUnit" name="fp" type="id.34">
<codeElement xmi:id="id.34" xmi:type="code:PointerType" name="pf" >
<codeElement xmi:id="id.35" xmi:type="code:ItemUnit" name="ipf" type="id.1l5">
<codeElement xmi:id="id.15" xmi:type="code:Signature" name="f">
<parameterUnit xmi:id="id.16" name="a" type="id.13"/>
<parameterUnit xmi:id="id.17" type="id.13" kind="return"/>
</codeElement >
</codeElement >
</codeElement>
</codeElement>
<codeElement xmi:id="1d.18" xmi:type="code:CallableUnit" name="foobar" type="1id.33">
<entryFlow xmi:id="1id.19" to="id.20" from="id.18"/>
<codeElement xmi:id="1id.12" xmi:type="code:StorableUnit" name="pf"
kind="local" type="id.14"/>
<codeElement xmi:id="1d.20" xmi:type="action:ActionElement" name="al" kind="Ptr">
<actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.2" from="id.20"/>
<actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.12" from="id.20"/>
<actionRelation xmi:id="id.23" xmi:type="action:Flow" to="id.24" from="id.20"/>
</codeElement>
<codeElement xmi:id="1id.24" xmi:type="action:ActionElement" name="a2" kind="Ptr">
<actionRelation xmi:id="id.25" xmi:type="action:Addresses" to="id.2" from="id.24"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.12" from="id.24"/>
<actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.24"/>
</codeElement>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="a3" kind="PtrCall"s>
<codeElement xmi:id="1d.29" xmi:type="code:Value" name="1" type="id.13"/>

<actionRelation xmi:id="id.30" xmi:type="action:Addresses" to="id.12" from="id.28"/>

<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.29" from="id.28"/>
<actionRelation xmi:id="1d.32" xmi:type="action:Dispatches"
to="id.12" from="id.28"/>
</codeElement>
<codeElement xmi:id="id.33" xmi:type="code:Signature" name="foobar"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

173

13.7 DataRelations Class Diagram

The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at

Figure 13.5.

AbstractActionRelationship

>
_D q—

) DataElement)
+to +to
{redefines to} (code) {redefines to}
1 1
0.» {subsets inbound} 0.
{subsets inbound} z
Addresses Reads Writes Creates
0..* 0..* 0..* 0..* 0..* 0..*
{subsets outbound} +from {subsets outbound} {subsets inbound}
{subsets fnbound}))
{redefines from} {redefines from}
X {subsets outbolind}
{subsets outbound} p ActionElement ;
+from
+o +to
{redefines to} +fr(:m 1 tfrom {redefines to}
1
. {redefines from} !
ComputationalObject {redefines from} Datatype
(code) (code)

Figure 13.5 - DataRelations Class Diagram

13.7.1 Reads Class

The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the
DataElement).

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Reads relationship.

to:DataElement[1] The DataElement that is the source of the flow of data.

174 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.2 Writes Class
The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that owns the Writes relationship.
to:DataElement[1] The DataElement that is the sink of the flow of data.
Semantics

Writes relationship represents an association between an action element, which implements a flow of datato a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.3 Addresses Class

Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied
to the elements of the data structure, or where an address of a data element is taken.

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that owns the Addresses relationship.
to:ComputationalObject[1] The Computational object that is being accessed.
Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data
element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.4 Creates Class

The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a
new instance of the Datatype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 175

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1]

to:Datatype[1]

Semantics

The action element that owns the Creates relationship.

The DataElement that is instantiated by the ActionElement.

Creates relationship represents an association between an action element that creates a new instance of a certain data
element to the corresponding datatype according to the semantics of the programming language of the existing software

system.

13.8 ExceptionBlocks Class Diagram

The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the
optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to
have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special
ParameterKind value kind="exception” to represent parameter passing via exception mechanism or kind="catchall” to
represent the catch all construct in C++.

BlockUnit

i

ExceptionUnit

TryUnit

FinallyUnit

CatchUnit

Figure 13.6 - ExceptionBlocks Class Diagram

176

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

13.8.1 ExceptionUnit Class

ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which
can own both ActionElement (for example, statements in the catch-block) as well as Codeltem (for example, parameters
to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass

BlockUnit

Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2 TryUnit Class

TryUnit class is a meta-model element that represents try-blocks common to several programming languages. TryUnit is
a container for action elements and associated definitions of Codeltems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass
ExceptionUnit

Semantics

TryUnit represents a try-block.

13.8.3 CatchUnit Class

CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object
passed to the catch-block by the exception-handling mechanism.

Superclass
ExceptionUnit
Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow
relationship that originates from some TryUnit.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 177

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow
relationship.

13.8.4 FinallyUnit Class

FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is
associated with the code responding TryUnit through an ExitFlow relation.

Superclass

ExceptionUnit

Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow
relationship that originates from some TryUnit.

2. TryUnit should not be associated with more than one FinallyBlock.

Semantics

FinallyBlock represents a finally-block associated with a certain try-block.

Example (Java)

class A {
void foo() {

try {
bar () ;
}

catch (Exception e) {
println ("Something went wrong") ;
}

finally {
println ("Good bye") ;
}

}

void bar() throws MoreDescriptiveException {

try {
this.arr[20] = 20;
println(arr) ;
}

catch (IndexOutOfBoundsException e) {
println("Oops") ;
throw new "went too far"
}

finally {
println(arr); }

}

int[] arr = new int[10]
class MoreDescriptiveException extends Exception {
public MoreDescriptiveException (String msg) {
super (msg) ;

}

178 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Exceptions Example">
<model xmi:id="id.O0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="A">
<codeElement xmi:id="id.2" xmi:type="code:MethodUnit" name="foo"
methodKind="method" type="id.71">
<entryFlow xmi:id="1id.3" to="id.4" from="id.2"/>
<codeElement xmi:id="id.71" xmi:type="code:Signature">
</codeElement >
<codeElement xmi:id="id.4" xmi:type="action:TryUnit" name="t1l">
<entryFlow xmi:id="1d.91" to="id.5" from="id.4"/>
<codeElement xmi:id="id.5" xmi:type="action:ActionElement" name="al" kind="Call"s>
<actionRelation xmi:id="id.é6" xmi:type="action:Calls" to="id.23" from="id.5"/>
</codeElement>
<actionRelation xmi:id="id.7" xmi:type="action:Flow" to="id.5" from="id.4"/>
<actionRelation xmi:id="id.8" xmi:type="action:ExceptionFlow"
to="id.10" from="id.4"/>
<actionRelation xmi:id="id.9" xmi:type="action:ExitFlow" to="id.17" from="id.4"/>
</codeElement>
<codeElement xmi:id="1d.10" xmi:type="action:CatchUnit" name="cl">
<entryFlow xmi:id="id.92" to="id.12" from="id.10"/>
<codeElement xmi:id="1id.11" xmi:type="code:ParameterUnit" name="e" type="1id.67"/>
<codeElement xmi:id="1d.12" xmi:type="action:ActionElement" name="a2" kind="Call">
<codeElement xmi:id="id.13" xmi:type="code:Value"
name="" ; Something went wrong"" type="1id.69"/>
<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.13" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Calls" to="id.66" from="id.12"/>
</codeElement>
<actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.12" from="id.10"/>
</codeElement>
<codeElement xmi:id="id.17" xmi:type="action:FinallyUnit" name="£f1">
<entryFlow xmi:id="1d.93" to="id.18" from="id.17"/>
<codeElement xmi:id="1d.18" xmi:type="action:ActionElement" name="a3" kind="Call">
<codeElement xmi:id="id.19" xmi:type="code:Value"
name="" ; Good bye"" type="id.69"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.19" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.66" from="id.18"/>
</codeElement >
<actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.18" from="id.17"/>
</codeElement>
</codeElement >
<codeElement xmi:id="id.23" xmi:type="code:MethodUnit" name="bar"
methodKind="method" type="id.57">
<entryFlow xmi:id="id.24" to="id.25" from="id.23"/>
<codeElement xmi:id="1id.25" xmi:type="action:TryUnit" name="t2">
<entryFlow xmi:id="1id.94" to="id.26" from="id.25"/>
<codeElement xmi:id="1d.26" xmi:type="action:ActionElement"
name="a4" kind="ArrayReplace">
<source xmi:id="id.27" language="Java" snippet="arr[20]=20"/>
<codeElement xmi:id="id.28" xmi:type="code:Value" name="20" type="id.70"/>
<actionRelation xmi:id="1id.29" xmi:type="action:Addresses"
to="1d.59" from="id.26"/>
<actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.28" from="id.26"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.28" from="id.26"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="1id.61" from="1id.26"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.26"/>
</codeElement >
<codeElement xmi:id="id.34" xmi:type="action:ActionElement" name="a5" kind="Call">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 179

<actionRelation xmi:id="id.35" xmi:type="action:Reads" to="id.59" from="id.34"/>
<actionRelation xmi:id="id.36" xmi:type="action:Calls" to="id.66" from="id.42"/>
</codeElement>
<actionRelation xmi:id="id.37" xmi:type="action:Flow" to="id.26" from="id.25"/>
<actionRelation xmi:id="1d.38" xmi:type="action:ExceptionFlow"
to="id.40" from="id.25"/>
<actionRelation xmi:id="id.39" xmi:type="action:ExitFlow" to="id.52" from="id.25"/>
</codeElement>
<codeElement xmi:id="1d.40" xmi:type="action:CatchUnit" name="c2">
<entryFlow xmi:id="1id.95" to="id.42" from="id.40"/>
<codeElement xmi:id="id.41" xmi:type="code:ParameterUnit" name="e" type="id.68"/>
<codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="a6" kind="Call">
<codeElement xmi:id="id.43" xmi:type="code:Value"
name="" ;Oops" ;" type="id.69"/>
<actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.43" from="id.47"/>
<actionRelation xmi:id="id.45" xmi:type="action:Calls" to="id.66" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.72" from="id.42"/>
</codeElement>
<codeElement xmi:id="id.72" xmi:type="action:ActionElement" name="a8" kind="New">
<codeElement xmi:id="id.73" xmi:type="code:StorableUnit"
type="1d.69" kind="local"/>
<actionRelation xmi:id="id.74" xmi:type="action:Creates"
to="1id.48" from="id.72"/>
<actionRelation xmi:id="id:75" xmi:type="action:Flow" to="id.76" from="id.72"/>
</codeElement>
<codeElement xmi:id="id.76" xmi:type="action:ActionElement" name="a8"
kind="MethodCall">
<codeElement xmi:id="id.48" xmi:type="code:Value"
name=""Went too far"" type="id.69"/>
<actionRelation xmi:id="id.77" xmi:type="action:Addresses"
to="id.73" from="id.76"/>
<actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.48" from="id.76"/>
<actionRelation xmi:id="id.79" xmi:type="action:Calls" to="id.73" from="id.76"/>
<actionRelation xmi:id="id:80" xmi:type="action:Flow" to="id.47" from="id.72"/>
</codeElement >
<codeElement xmi:id="id.47" xmi:type="action:ActionElement" name="a7" kind="Throw"s>
<codeElement xmi:id="id.48" xmi:type="code:Value"
name="" ;Went too far"" type="id.69"/>
<actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.48" from="id.47"/>
<actionRelation xmi:id="id.50" xmi:type="action:Throws" to="id.73" from="id.47"/>
</codeElement >
<actionRelation xmi:id="id.51" xmi:type="action:Flow" to="id.42" from="id.40"/>
</codeElement>
<codeElement xmi:id="1d.52" xmi:type="action:FinallyUnit" name="f2">
<entryFlow xmi:id="1id.96" to="id.53" from="id.52"/>
<codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a8" kind="Call">
<actionRelation xmi:id="id.54" xmi:type="action:Reads" to="id.59" from="id.53"/>
<actionRelation xmi:id="id.55" xmi:type="action:Calls" to="id.66" from="id.42"/>
</codeElement>
<actionRelation xmi:id="id.56" xmi:type="action:Flow" to="id.53" from="id.52"/>
</codeElement>
<codeElement xmi:id="id.57" xmi:type="code:Signature">
<parameterUnit xmi:id="id.58" type="id.63" kind="throws"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.59" xmi:type="code:MemberUnit"
name="arr" type="1id.60" size="10">
<codeElement xmi:id="id.60" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.é1" type="id.70"/>
<indexUnit xmi:id="id.62" type="id.70"/>
</codeElement>

180 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</codeElement>
</codeElement >
<codeElement xmi:id="id.63" xmi:type="code:ClassUnit"
name="MoreDescriptiveException" isAbstract="true">
<codeRelation xmi:id="id.64" xmi:type="code:Extends" to="id.67" from="id.63"/>
<codeElement xmi:id="id.81" xmi:type="code:MethodUnit"
name="MoreDescriptiveException" methodKind="constructor" type="86" >
<entryFlow xmi:id="1d.82" to="id.83" from="id.81"/>
<codeElement xmi:id="1id.83" xmi:type="action:ActionElement"
name="a9" kind="MethodCall">
<actionRelation xmi:id="1d.84" xmi:type="action:Reads"
to="1id.87" from="id.83"/>
<actionRelation xmi:id="1id.85" xmi:type="action:Calls"
to="id.88" from="id.83"/>
</codeElement >
<codeElement xmi:id="1id.86" xmi:type="code:Signature">
<parameterUnit xmi:id="1id.87" type="1id.69" name="msg" kind="byValue"/>
</codeElement >
</codeElement >
</codeElement >
</model>
<model xmi:id="id.65" xmi:type="code:CodeModel" name="Java common definitions"s>
<codeElement xmi:id="id.66" xmi:type="code:CallableUnit" name="println"/>
<codeElement xmi:id="id.67" xmi:type="code:ClassUnit" name="Exception"/>
<codeElement xmi:id="1d.88" xmi:type="code:MethodUnit™"
name="Exception" methodKind="constructor" type="id.89" >
<codeElement xmi:id="1id.89" xmi:type="code:Signature">
<parameterUnit xmi:id="1d.90" type="1id.69" name="msg" kind="byValue"/>
</codeElement >
</codeElement >
</codeElement>
<codeElement xmi:id="id.68" xmi:type="code:ClassUnit"
name="ArrayIndexOutOfBoundsException" isAbstract="false"/>
<codeElement xmi:id="id.69" xmi:type="code:StringType"/>
<codeElement xmi:id="id.70" xmi:type="code:IntegerType"/>
</model>
</kdm: Segment >

13.9 ExceptionFlow Class Diagram

ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions.

There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw,
to another ActionElement that represents the catcher of the exception. The ExceptionFlow target could be a local
CatchUnit that will handle the exception or a point back to the TryUnit or simply another ActionElement.

Exception flow elements are gptional for LO KDM models. KDM export tools at LO compliance level may lack the full
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be
further analyzed by a different tool to add more information about the flow of control determined by the exception
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 181

exceptions, tools normally should be able to capture the origin points by analyzing the various methods invoked and
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go along way
in supporting complex analysis.

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if thereis afinaly clause, afinaly flow would go from the TryUnit to the FinallyUnit to cover the finalization. The
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “ The exception
handling mechanism is a non local control structure based on stack unwinding that can be seen as an alternative return
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.

AbstractActionRelationship

ExitFlow | {subsets outbound} {subsets outbound) | ExceptionFlow
0.* 0..*
0.* 0.*
{subsetts inbound} +from +from {subsets inbound}
{redefines from} 1 {redefines from}

ActionElement

+kind : String

1

1
+to +to
{redefines to}

{redefines to}
Figure 13.7 - ExceptionFlow Class Diagram

13.9.1 ExitFlow Class

ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example,
ExitFlow can be used to relate a try-block with the corresponding finally-block.

182 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] ActionElement (for example, atry-block) for which the “on-exit” behavior
was specified.
to:ActionElement[1] ActionElement (usually, afinally-block) that represents the behavior that is

invoked upon successful exit of the origin block (“on exit”).

Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

13.9.2 ExceptionFlow Class

The ExceptionFlow relationship represents an exception flow of control between an ActionElement that produces an
exception, such as a TryUnit, and the ActionElement that handles the exception, such as the corresponding CatchUnit.

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The origin of the exception flow.
to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.
Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the
existing software system.

13.10 ExceptionRelations Class Diagram

The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships
associated with exception handling mechanism common to various programming languages.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 183

AbstractActionRelationship

+o
+rom

{redefines from} {redefines to}
ActionElement Throws DataElement

+kind : String (code)

1 0.* 0.” 1

{subsets outbound} {subsets inbound}

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1 Throws Class

The Throws class is a meta-model element that represents throw-statements supported by several programming languages.
These are the user-defined throws for exception, as opposed to the so-called normal system exceptions and runtime
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their
throw entity, using the Throws relationship.

See sections ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling
mechanism.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The ActionElement that throws the exception.
to:DataElement[1] The exception data element being thrown.
Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data
element that is associated with that exception. The implementer shall identify and represent these associations according
to the semantics of the programming language of the existing software system.

13.11 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations’ by the
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

184 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AbstractActionRelationship

+rom
{redefines from} +to
redefines to
ActionElement CompliesTo { Codeltem
+kind : String ! 0. 0. 1 (code)
{subsets outbound} {subsets inbound}

Figure 13.9 - InterfaceRelations Class Diagram

13.11.1 CompliesTo Class

The CompliesTo is a meta-model element that represents an association between an action element that “uses’ some
computational object, and the “declaration” of that computational object.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The origin of the relationship; action element that “uses” some computational
object.
to:Codeltem[1] The “declaration” of that computational object.

Constraints

1. The kind attribute of the Codeltem at the target of the CompliesTo relationship should be equal to “external” or
“abstract.”

2. The action element that is the origin of the “CompliesTo” relationship should own a callable or data action
relationship to some computational object and the target of CompliesTo relationship should be one of the
declarations of that computational object.

Semantics

See section InterfaceRel ations of the Code package chapter.

13.12 UsesRelations Class Diagram

The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their
relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 185

AbstractActionRelations hip

+from
{redefines from} +to
ActionElement UsesType {redefines to} | patatype
+kind : String 1 0..* 0 1 (code)
{subsets outbound} {subsets inbound}

Figure 13.10 - UsesRelations Class Diagram
13.12.1 UsesType Class
The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

Superclass

AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that performs a type cast or a type conversion.
to:Datatype[1] The datatype involved in a type operation.
Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind”
attribute of the action element. See the “micro KDM” chapter.

13.13 ExtendedActionElements Class Diagram

The ExtendedA ctionElements class diagram defines an additional viewpoint-specific generic element for the code model
as determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedA ctionElements diagram are shown in Figure 13.11.

186 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AbstractActionRelationship

+from +o
ActionElement A z A
(redefines from) ActionRelationship {redefines to}
+kind : String
1 0.* 0..* 1
{subsets outbound} {subsets inbound}

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1 ActionRelationship Class (generic)

KDMEntity
(core)

The ActionRelationship is a generic meta-model element that can be used to define new extended meta-model elements

through the KDM light-weight extension mechanism.

Superclass

AbstractActionRelationship

Associations

from:ActionElement[1] The origin action element

to:KDMEntity[1] The target KDM entity

Constraints
1. ActionRelationship should have at least one stereotype.

Semantics

An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship types of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM

representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

187

188 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

14 Micro KDM

This clause describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM
compliance point (“micro KDM").

Let's use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing
software system. The term “macro action” should not be confused with the preprocessor directives common to certain
programming languages.

A KDM “macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which
links it to the artifacts of the existing software system. KDM L0 compliance point does not specify the semantics of a
KDM “macro action” leaving it up to implementers to design the mapping from the programming languages involved in
the artifacts of the existing software systems and KDM.

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with
predefined semantics.

According to the “micro KDM"” approach, the original “macro action” is treated as a container that owns certain “micro
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM
constrains the patterns of how to map the statements of the existing system as determined by the programming language
into KDM. Thisis similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft.NET.

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for
control and data flow analysis. Micro KDM is arather high-level IR. Micro KDM actions are aligned with the ISO 11404
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for
representing program elements.

Separation into a “macro action” and “micro actions’ allows:

e Theflexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example
to asourcefile or to an AST, providing a meaningful source ref (amacro action can still represent one or more
statementsin the original existing system), and

e provides precise representation of the original “macro action” through a mapping to micro actions with predefined
semantics.

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control
and data flow analysis.

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned
ActionRel ationships represent the parameters to the action element.

Each micro KDM action has the following 5 parts (Action Kind, Outputs, Inputs, Control, and Extras):

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 189

« Action Kind - is nature of the operation performed by the micro action. Thisis represented asa“kind” attribute to the
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the
“Cdl” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case
sensitive stringsin Annex A.

* Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

 Inputs - ordered incoming Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for amicro action.

« Control - owned outgoing control flow relationships for the action.

» Extras- owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind. For
example, these can be interface compliance relation “ CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model shall be a micro KDM action, where the operation performed by the
action is designated by the value of the action kind, specified in the list of the micro actionsin Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and
runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM
model is determined by the semantics of the micro actions.

Semantics

Semantics of KDM micro actions is defined in Annex A: “Semantics of the Micro KDM Action Elements.”

Example

z=1+f (x,y) ;
*d[x+3]1=1;
dly+3]=&z;
y=*d [x+3];

function foo does not comply to micro KDM semantic constraints;
function bar complies to micro KDM

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="Micro KDM Example">
<model xmi:id="id.O0" =xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit" name="foo" kind="regular"s>
<entryFlow xmi:id="id.3" to="id.4" from="id.2"/>
<codeElement xmi:id="1id.4" xmi:type="action:ActionElement" name="f1" kind="unknown"s>
<source xmi:id="id.5" language="C" snippet="z=1+f(x,y)"/>
<actionRelation xmi:id="id.é" xmi:type="action:Calls" to="id.107" from="id.4"/>
<actionRelation xmi:id="id.7" xmi:type="action:Reads" to="id.97" from="id.4"/>
<actionRelation xmi:id="id.8" xmi:type="action:Reads" to="1d.98" from="id.4"/>
<actionRelation xmi:id="id.9" xmi:type="action:Writes" to="id.99" from="id.4"/>
<actionRelation xmi:id="id.10" xmi:type="action:Reads" to="id.105" from="id.4"/>
<actionRelation xmi:id="id.11" xmi:type="action:Flow" to="id.12" from="id.4"/>
</codeElement>
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="f2" kind="unknown"s>
<source xmi:id="1id.13" language="C" snippet="*d[x+3]=1;d[y+3]=&z;y=*d[x+3];"/>

190 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

:1d=
:id=
:id=
:id=
:id=
:id=
:1d=
:id=
:id=
:1d=
:id=
:id=

<actionRelation =xmi

<actionRelation xmi
<actionRelation =xmi
<actionRelation

<actionRelation

xmi
xmi
<actionRelation =xmi
<actionRelation

<actionRelation

xmi
xmi
<actionRelation =xmi
<actionRelation

<actionRelation

xmi
xmi
<actionRelation =xmi
</codeElement >
</codeElement >
<codeElement xmi:id="id.26"

<entryFlow xmi:id="id.27"

<codeElement xmi:id="id.28"

<source xmi:id="id.29"

"id.1l4" xmi:type="action:Reads" to="id.97" from="id.12"/>
"id.15" xmi:type="action:Addresses" to="id.100" from="id.12"/>
"id.1l6" xmi:type="action:Reads" to="id.106" from="id.12"/>
"id.17" xmi:type="action:Reads" to="id.105" from="id.12"/>
"id.18" xmi:type="action:Addresses" to="id.100" from="id.12"/>
"id.19" xmi:type="action:Reads" to="id.98" from="id.12"/>
"id.20" xmi:type="action:Reads" to="id.106" from="id.12"/>
"id.21" xmi:type="action:Addresses" to="id.99" from="id.12"/>
"id.22" xmi:type="action:Writes" to="id.98" from="id.4"/>
"id.23" xmi:type="action:Addresses" to="id.100" from="id.l12"/>
"id.24" xmi:type="action:Reads" to="id.97" from="id.12"/>
"id.25" xmi:type="action:Reads" to="id.106" from="id.12"/>

xmi:type="code:CallableUnit"

to="id.28" from="id.26"/>

language="C"

xmi:type="action:ActionElement"
snippet="z=1+f (x,y)"/>

name="bar" kind="regular"s>

name="bl" kind="compound">

<codeElement xmi:id="1id.30" xmi:type="code:StorableUnit" name="t1l"
type="1id.112" kind="register"/>

<codeElement xmi:id="id.31" xmi:type="action:ActionElement" name="bl.1l" kind="Call">
<actionRelation xmi:id="id.32" xmi:type="action:Calls" to="id.107" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.97" from="id.28"/>
<actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.98" from="id.28"/>
<actionRelation xmi:id="id.35" xmi:type="action:Writes" to="id.30" from="id.31"/>
<actionRelation xmi:id="id.36" xmi:type="action:Flow" to="id.37" from="id.31"/>

</codeElement>

<codeElement xmi:id="id

<actionRelation xmi:id="id.39"
<actionRelation xmi:id="id.40"

</codeElement>
<actionRelation xmi:id=
</codeElement >

<codeElement xmi:id="id.42"

<source xmi:id="id.43"

<entryFlow xmi:id="id.9e"
<codeElement xmi:id="id.

type="1id.103"

<codeElement xmi:id="id.

type="1id.103"

<codeElement xmi:id="id.

type="id.112"

<codeElement xmi:id="id.

type="1id.103"

<codeElement xmi:id="id.

type="1id.112"

<codeElement xmi:id="id.

type="id.103"

<codeElement xmi:id="1id.50" xmi:type="action:ActionElement"
<actionRelation xmi:id="id.51" =xmi:type="action
<actionRelation xmi:id="id.52" xmi:type="action
<actionRelation xmi:id="1d.53" xmi:type="action
<actionRelation xmi:id="id.54" =xmi:type="action

</codeElement>

<codeElement xmi:id="id.55" xmi:type="action:ActionElement"
<actionRelation xmi:id="id.56" =xmi:type="action:
<actionRelation xmi:id="id.57" =xmi:type="action:
<actionRelation xmi:id="1d.58" xmi:type="action:
<actionRelation xmi:id="1d.59" =xmi:type="action:
<actionRelation xmi:id="id.60" =xmi:type="action:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

37"
xmi:type="action
xmi:type="action
xmi:type="action

"id.41"

language="C"

xmi:type="action:ActionElement"
<actionRelation xmi:id="id.38"

xmi:type="action:Flow"

xmi:type="action:ActionElement"

name="bl.2" kind="Add">

:Reads" to="id.105" from="id.37"/>

:Reads" to="id.30" from="id.37"/>

:Writes" to="id.99" from="id.37"/>
to="id.31" from="id.28"/>

name="b2" kind="compound">

snippet="+*d[x+3]=1;d[y+3]=&z;y=*d [x+3];"/>

to="1id.50" from="id.42"/>
44" xmi:type="code:StorableUnit" name="t2"
kind="register"/>
45" xmi:type="code:StorableUnit" name="t3"
kind="register"/>
46" xmi:type="code:StorableUnit" name="t4"
kind="register"/>
47" xmi:type="code:StorableUnit" name="t5"
kind="register"/>
48" xmi:type="code:StorableUnit" name="té6"
kind="register"/>
49" xmi:type="code:StorableUnit" name="t7"

kind="register"/>

name="b2.1" kind="Add">

:Reads" to="id.97" from="id.50"/>
:Reads" to="id.106" from="id.50"/>
:Writes" to="id.44" from="id.50"/>
:Flow" to="id.55" from="id.50"/>

name="b2.2" kind="ArraySelect">

Addresses" to="1d.100" from="id.55"/>
Reads" to="id.102" from="id.55"/>
Reads" to="id.44" from="id.55"/>
Writes" to="id.45" from="id.55"/>
Flow" to="id.61" from="id.55"/>

191

</codeElement >
<codeElement xmi:id="id.e1"

<actionRelation xmi:id="id.62" =xmi:type="action

<actionRelation xmi:id="id.63" xmi:type="action
<actionRelation xmi:id="1d.64" xmi:type="action
<actionRelation xmi:id="id.e65" xmi:type="action

</codeElement >
<codeElement xmi:id="id.e6"

<actionRelation xmi:id="id.é67" xmi:type="action

<actionRelation xmi:id="id.68" xmi:type="action
<actionRelation xmi:id="1d.69" xmi:type="action
<actionRelation xmi:id="id.70" =xmi:type="action

</codeElement >

<codeElement xmi:id="id.71"
<actionRelation xmi:id="id.72"
<actionRelation xmi:id="id.73"
<actionRelation xmi:id="id.74"

</codeElement>

xmi:type="action
xmi:type="action
xmi:type="action

xmi:type="action:ActionElement"

xmi:type="action:ActionElement"

xmi:type="action:ActionElement"

name="b2.3" kind="PtrReplace">

:Addresses" to="id.45" from="id.61"/>
:Reads" to="id.105" from="id.61"/>
:Writes" to="id.104" from="id.e61"/>
:Flow" to="id.66" from="id.61"/>

name="b2.4" kind="Add">

:Reads" to="1d.98" from="id.12"/>

:Reads" to="id.106" from="id.12"/>
:Writes" to="id.46" from="id.66"/>
:Flow" to="id.71" from="id.66"/>

name="b2.5" kind="Ptr">

:Addresses" to="id.99" from="id.12"/>
:Writes" to="id.47" from="id.71"/>
:Flow" to="id.75" from="id.71"/>

<codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="b2.6" kind="ArrayReplace">

<actionRelation xmi:id="id.76" xmi:type="action:

<actionRelation xmi:id="id.77" =xmi:type="action:

<actionRelation xmi:id="id.78" xmi:type="action:

<actionRelation xmi:id="1d.79" xmi:type="action:

<actionRelation xmi:id="1d.80" xmi:type="action:
</codeElement>

<codeElement xmi:id="id.81"

<actionRelation xmi:id="id.82" xmi:type="action

<actionRelation xmi:id="id.83" xmi:type="action
<actionRelation xmi:id="1d.84" xmi:type="action
<actionRelation xmi:id="id.85" =xmi:type="action

</codeElement >
<codeElement xmi:id="id.86"

<actionRelation xmi:id="1d.87" xmi:type="action:

<actionRelation xmi:id="id.88" xmi:type="action:

<actionRelation xmi:id="1d.89" xmi:type="action:

<actionRelation xmi:id="1d.90" xmi:type="action:

<actionRelation xmi:id="id.91" xmi:type="action:
</codeElement>

<codeElement xmi:id="id.92"
<actionRelation xmi:id="id.93"
<actionRelation xmi:id="1id.94"

xmi:type="action
xmi:type="action

xmi:type="action:ActionElement"

xmi:type="action:ActionElement"

xmi:type="action:ActionElement"

Addresses" to="id.100" from="id.12"/>
Reads" to="id.46" from="id.75"/>
Reads" to="id.47" from="id.75"/>
Writes" to="id.102" from="id.75"/>
Flow" to="id.81" from="id.75"/>

name="b2.7" kind="Add">

:Reads" to="1d.97" from="id.12"/>
:Reads" to="id.106" from="id.12"/>
:Writes" to="id.48" from="id.81"/>
:Flow" to="id.86" from="id.81"/>

name="b2.8" kind="ArraySelect">

Addresses" to="id.100" from="id.12"/>
Reads" to="id.48" from="id.86"/>
Reads" to="1id.102" from="id.86"/>
Writes" to="id.49" from="id.86"/>
Flow" to="id.92" from="id.86"/>

name="b2.9" kind="PtrSelect">
to="1id.49" from="id.92"/>
from="1id.92"/>

:Addresses"
:Reads" to="id.104"

<actionRelation xmi:id="id.95" xmi:type="action:Writes" to="id.98" from="id.92"/>
</codeElement>

</codeElement>
</codeElement>
<codeElement xmi:id="1id.97" xmi:type="code:StorableUnit" name="x" type="id.112"/>
<codeElement xmi:id="id.98" xmi:type="code:StorableUnit" name="y" type="id.112"/>
<codeElement xmi:id="1id.99" xmi:type="code:StorableUnit" name="z" type="id.112"/>
<codeElement xmi:id="id.100" xmi:type="code:StorableUnit" name="d" type="id.101">

<codeElement xmi:id="1d.101" xmi:type="code:ArrayType" name="">

<itemUnit xmi:id="id.102" name="d[]"

<codeElement xmi:id="id.103"

<itemUnit xmi:id="id.104"
</codeElement>

name="*d[]"

type="1id.103">
xmi:type="code:PointerType" >
type="1id.112"/>

</itemUnit>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.105" xmi:type="code:Value" name="1" type="id.112"/>
<codeElement xmi:id="id.106" xmi:type="code:Value" name="3" type="id.112"/>

<codeElement xmi:id="id.107"
<codeElement xmi:id="1id.108"

192

xmi:type="code:CallableUnit"

name="£f" type="id.108">

xmi:type="code:Signature">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<parameterUnit xmi:id="1d.109" name="a" type="id.112" pos="1"/>
<parameterUnit xmi:id="1d.110" name="b" type="id.112" pos="2"/>
<parameterUnit xmi:id="id.111" type="id.112" kind="return"/>
</codeElement>
</codeElement >
</codeElement >
<codeElement xmi:id="id.112" =xmi:type="code:IntegerType" name="int"/>
</model>
</kdm: Segment >

Example (C)

int 1i;

int sum=0;
for(i=0;1<10;i++) {sum+=i;}

KDM outline illustrating only the essential elements related to micro KDM:
IntegerType name="int" id="int"
Value name="0" id="0" type="int"
Value name="10" 1id="10" type="int"
StorableUnit name="i" type="int" kind="global"
StorableUnit name="sum" type="int" kind="global"
HasValue 0
ActionElement id="al" kind="compound"
ActionElement id="a2" kind="Assign"
Reads "O"
Writes "i"
Flows "a3"
ActionElement id="a3" kind="LessThan"
Reads "i"
Reads "10"
TrueFlow "a4"
FalseFlow "a4"
ActionElement id="a4" kind="Add"
Reads "sum"
Reads "i"
Writes "sum"
Flows "ab"
ActionElement id="a5" kind="Incr"
Addresses "in"
Flows "a3"
ActionElement id="aé6" kind="Nop"

Example (C++)

int sum=0;
for(int 1=0;1i<10;i++) {sum+=1i;}

KDM outline illustrating only the essential elements related to micro KDM:
IntegerType name="int" id="int"
Value name="0" id="0" type="int"
Value name="10" id="10" type="int"
StorableUnit name="sum" type="int" kind="global"
HasValue "0"
ActionElement id="al" kind="compound"
StorableUnit name="i" type="int" kind="local"
VisibleIn "al"
ActionElement id="a2" kind="Assign"
Reads "O"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 193

Writes "i"
Flows "a3"
ActionElement id="a3" kind="LessThan"
Reads "i"
Reads "10"
TrueFlow "a4"
FalseFlow "a4"
ActionElement id="a4" kind="Add"
Reads "sum"
Reads "i"
Writes "sum"
Flows "ab"
ActionElement id="a5" kind="Incr"
Addresses "in"
Flows "a3"
ActionElement id="aé6" kind="Nop"

Example (C++)

Consider the following C++ fragment:

struct foo
int x;
float y;
int bar(return x+2; }
}i
struct foo var;
struct foo* pvar;

Below there are several C++ statements in the context of the above fragment and the outline of the corresponding KDM,
illustrating only the essential elements related to micro KDM:

varx = 5; ActionElement id="al" kind="MemberReplace"
Addresses "var"
Reads "5"

Writes "x"

(&var)->y = 14.3; ActionElement id="al" kind="Ptr"

Addresses "var"
Writes "ri1n"
Flows "a2"

ActionElement id="a2" kind="PtrSelect"
Addresses '"rl"
Writes "xr2"
Flows "a3"

ActionElement id="a3" kind="MemberReplace"
Addresses "r2"
Reads "14.3"
Writes "y"

pvar->y = 22_4; ActionElement id="al" kind="PtrSelect"
Addresses '"pvar"
Writes "ri1n"
Flows "a2"
ActionElement id="a2" kind="MemberReplace"
Addresses "rl"
Reads "22.4"
Writes "y"

194 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

(*pvaj)(::G; ActionElement id="al" kind="PtrSelect"
Addresses '"pvar"
Writes "ri1"
Flows "a2"
ActionElement id="a2" kind="MemberReplace"
Addresses "rl"
Reads "6"
Writes "x"

var.bar(1); ActionElement id="al" kind="MethodCall"

Addresses "var"

Reads "1"
Calls "bar"
pva:>ba“]) ActionElement id="al" kind="PtrSelect"

Addresses '"pvar"
Writes "rl"
Flows "a2"
ActionElement id="a2" kind="VirtualCall"
Addresses "rl"
Reads "1"

Calls "bar"

(&var)->bar(1); ActionElement id="al" kind="Ptr"

Addresses "var"

Writes "r1"

Flows "a2"

ActionElement id="a2" kind="VirtualCall"

Addresses "rl"

Reads "1"

Calls "bar"

Example (C++)

Consider the following C++ fragment:

interface foo {
int bar (int);
}i
class foobar implements foo
int x;
float vy;
int bar(int x){ return x+2;}
}i
foo x=new foobar() ;
x.bar (1) ;

Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

IntegerType id="int"
FloatType id="float"
InterfaceUnit id="foo"
MethodUnit name="bar" id="foo bar" isAbstract="true" methodKind="method" type="bar signature"
Signature id="bar_signature"
ParameterUnit id="pl" type="int" kind="ByName"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 195

ParameterUnit id="p2" type="int" kind="return"
ClassUnit name="foobar" id="foobar"
Implements "foo"
MemberUnit id="x" type="int"
MemberUnit id="y" type="float"
MethodUnit name="foobar" id="foobar constr" methodKind="constructor"
MethodUnit name="bar" id="foobar bar" methodKind="method" type="foobar bar signature"
ImplementationOf "foo_ bar"
Signature id="foobar_bar signature"
ParameterUnit 1id="p3" name="x" type="int" kind="ByName"
ParameterUnit id="p4" type="int" kind="return"
StorableUnit id="var_x" name="x" type="foo"
ActionElement id="al" kind="New"
Addresses "var_x"
Creates "foobar"
Flow "a2"
ActionElement id="a2" kind="MethodCall"
Addresses "var_x"
Calls "foobar_ constr"
Flow "a3"
ActionElement id="a3" kind="VirtualCall"
Addresses "var_x"
Reads "1™
Calls "foo_bar"

Example (C++)

class foo ({

int x;

float y;

static int getName(return "foo"; }
}i

foo::getname () ;
Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:

ActionElement id="al" kind="Call"
Calls "getName"

Example (C++)

Consider the following C fragment:

int bar(int x) {return x+ 2; }
typedef int (*pbar) (int);
pbar foo=bar;

(*pbar) (1) ;

Outline of the corresponding KDM, illustrating only the essential elements related to micro KDM:
ActionElement id="al" kind="PtrCall"
Addresses '"pbar"

Reads "1"
Dispatches "pbar"

Example (C++)
int 1i;

int *pi=&i;
int & ri=i;

196 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

DataElement “pi” and “ri” shall be represented by the same KDM, so “ext” attribute could be used to distinguish between

them. The two DataElement can be also distinguished by their initialization.

KDM fragment outlining the essential micro actions:

IntegerType id="int" name="int"
PointerType id="tpi" name="pint"

ItemUnit id="itpi" type="int" ext="int* tpi"
PointerType id="tri" name="rint"

ItemUnit id="itri" type="int" ext="int& tri"
StorableUnit id="i" name="i" type="int" ext="int 1i"
StorableUnit id="pi" name="pi" type="pint"

HasType "tpi"

HasValue "al"

StorableUnit id="ri" name="ri" type="rint"

HasType "tri"

HasValue "i"

BlockUnit id="bi" kind="Init"
EntryFlow "al"
ActionElement id="al" kind="Ptr"
Addresses "i"
Writes "pi"

Below there are several C++ statements in the context of the above fragment and the outline of the corresponding KDM,

illustrating only the essential elements related to micro KDM:

i=1; ActionElement id="al" kind="Assign"
Reads "1"
Writes "i"

(*pi)=1,; ActionElement id="al" kind="PtrReplace"
Addresses "pi"
Reads "1™

Writes "itpi"

H:Z; ActionElement id="al" kind="PtrReplace"
Addresses "ri"
Reads "2"

Writes "itri"

Example (C++)

References in C++ methods are handled through “byReference” ParameterKind as follows:

void square(int x, int& result)
{ result = x * x; }

KDM fragment outlining the essential micro actions:

IntegerType id="int" name="int"
CallableUnit id="cul" name="square" type="sl"
Signature id="s1"
ParameterUnit id="pl" name="x" type="int" kind="byValue"
ParameterUnit id="p2" name="result" type="int" kind="byReference"
EntryFlow "al"
ActionElement id="al" kind="Multiply"
Reads "pl"
Reads "pl"
Writes "p2"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

197

| Note, that there is no ParameterUnit with kind="return” and no ActionElement with kind="Return”

198 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart Il - Runtime Resources Layer

This sub part describes common patterns for representing the operating environment of existing software systems. The
following are the common properties of the Runtime Resources Layer packages Data, Ul, Platform, and Event:

They provide modeling elements to represent “resources’ (something managed by the runtime platform).
They provide abstract “resource actions’ to manage these resources.

These actions are implemented by the program elements as one or more API calls to some external platform-specific
packages.

Thereis abinding involved between the actions and the resources.

Resource may involve some“inverted” control in the form of callbacks and event handlers, allowing applicationsto be
programmed in event-driven style.

The content of the information flow involving the resource is associated with some data organi zation.

Resource often has a certain state, and tracking the changes of the state over time may be an important concern in
understanding the logic of the existing system.

Since Runtime Resources Layer packages capture high-value knowledge about the existing system and its operating
environment, which may involve advance analysis and some manual expertise KDM is designed in such a way that the
Runtime Resources Layer analysis can use KDM models from the Program Elements Layer as input and produce Runtime
Resources Layer models as output. There should be no references from lower KDM layers to higher layers; therefore, new
Runtime Resources Layer models can be built on top of existing Program Element layer models.

Packages of the Runtime Resources Layer package systematically uses the following KDM patterns:;

Each Runtime Resources Layer package defines entities and containers to represent specific “resources.” Each
package may define additional elementsto represent additional concerns. For example, the Data package involves less
resource definitions, and focuses on the representation of various data organization capabilities. The Event package
provides the meta-model elements for representing state, state transitions caused by events. States, transitions, and
events can be considered as runtime platform resources. The Ul package provides the meta-model elements for
representing user interfaces. User interfaces can also be considered runtime platform resources. The Platform package
deals with conventional runtime platform resources, such as inter-process communication, the use of registries,
management of data, etc.

Each Runtime Resources Layer package defines specific structural relations between “resources.” For example, the
Platform package defines relationship BindsTo, which represents alogical association between two resources.

Each Runtime Resources Layer package defines specific resource actions to represent manipulation of resource
through API calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base
abstract class for the corresponding package. This classis named AbstractX X X Element, where “XXX" isthe name of
the package. So, the resource action is not a subclass of ActionElement, and this promotes modularity between KDM
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or
more ActionElements through property called “abstraction.” Each resource action a so has the property called
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original
API calls as they were represented in the Program Elements layer input model. The “ abstraction” property uses KDM
container mechanism to add the behavior counterparts to the API calls that represent the true logic of the resource
operation, including the flow of data.and control. The “abstracted” ActionElements are owned directly by the
corresponding resource action, and are not part of any Code model.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 199

« The nature of the resource-specific operation performed by a particular resource action is represented by the “kind”
attribute of the resource actions. The resource action owns resource action relations through the “abstraction” action
container. It isthe owned “abstracted” action that is the direct owner of the resource action relationship.

« “abstraction” action container property isin fact systematically added to all elements of Runtime Resources Layer
packages. Thisway each resource can use the meta-model elements defined in the Program Elements layer to specify
behavior specific to that resource.

« The"abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided
by runtime platforms. This pattern can be separately referred to as the KDM Event pattern. Each Runtime Resources
Layer package defines its own meta-model element for representing events. For example, the Ul package defines the
class UlEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements.
Callsrelation originating from such an abstracted action element represents the “ callback” mechanism, provided by
several runtime platforms.

Runtime Resources Layer packages are independent, however they can offer additional capabilities when more than one
is implemented. In order not to enforce any particular order in which these packages should be implemented, KDM
involves the following approach: resource action relationships are subclasses of the AbstractActionRelationship class
from the Action Package. In the full KDM implementation that uses all packages, all resource actions are available for
any ActionElement. Code models should not use the extended relationships. The extended resource action relationships
can only be used by the actions in “abstraction” action containers in Runtime Resources Layer models. A notable example
of this mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an
element of an event model with any resource. Another example is the “HasContent” relation defined in the Data package,
which allows associating an element of a data model with any resource.

» The"abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource
actions’ and between resources to provide abstractions of the flow between “resource actions.”

« The Runtime Resources Layer patterns are aligned with the micro KDM, which allow precise modeling of behavior
related to resources as the foundation for holistic high-fidelity analysis of existing software systems. It can be achieved
by associating sets of precise micro KDM actions with “abstraction” action containers.

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform
independence.

200 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Binding time

« Generation time binding

» Language & platform design binding

e Versioning time

¢ Compiletime binding, including

* macro expansion
» Templates

* Product line variants defined by conditional compilation

¢ Link time binding
e Deployment time binding

¢ Initialization time binding

¢ Runtime
Binding Time What isbeing bound Result
Generation time Syntax, variant, pattern, mapping, etc. | Generated code
Language & platform design Syntax, entities and relations, Source code

including platform resource types

Versioning Module sourcefiles Module version

Compile time Intra-modul e relations (def-use) Module
-- Macro Syntax, macro to expanded code Expanded macro (source code)
-- Template Template parameters Template instance

-- Product line variant defined by
conditional compilation and

Conditional compilation, macro,
includes, symbolic links.

Component Variant

includes
(static) Link time Intra-component relations within Deployed Component
deployable component
Deployment time Resource names to resources (using Deployed System
platform-specific configuration files)
Initialization time Component implementation to System

component interface; major processes
and threads; dynamic linking,
dynamic load (using platform-specific
configuration files).

Run time

User input, object factory, virtual
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 201

202 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15

Platform Package

15.1 Overview

Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments
of existing software systems. Application code is not self-contained as it is determined not only by the selected
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

Runtime platform consists of many diverse elements (platform resources).
Platform provides resources to deployment components.

Platform provides services that are related to resources.

Application code invokes services to manage the life-cycle of aresource.

Control flow between application components is often determined by the platform.
Platform provides error handling across application components.

Platform provides integration of application components.

Examples of Platform Resources include UNIX OS File System, UNIX OS process management system, Windows 2000,
0S/390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo,
CORBA, HTTPR, TCP/IP, Eclipse, EJB, IMS, Database middleware, Servlets.

Platform package defines an architectural viewpoint for the Platform domain.

L]

Concerns:

e What are the resources used by the software system?

¢ What elements of the run-time platform are used by the software system?

« What behavior is associated with the resources of the run-time platform?

e What control flows areinitiated by the events in the resources?

e What control flows areinitiated by the run-time environment?

¢ What are the bindings to the run-time environment?

¢ What are the deployment configurations of the software system?

¢ What are the dynamic/concurrent threads of activity within the software system?
Viewpoint language:

Platform views conform to KDM XMI schema. The viewpoint language for the Platform architectural viewpoint
is defined by the Platform package. It includes an abstract entity AbstractPlatformElement; several generic
entities, such as PlatformResource, RuntimeResource; as well as several concrete entities, such as
PlatformAction, PlatformEvent, External Actor, MarshalledResource, NamingResource, etc. The viewpoint
language for the Platform architectural viewpoint also includes several relationships, which are subclasses of
AbstractPlatformRel ationship.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 203

Analytic methods:

The Platform architectural viewpoint supports the following main kinds of checking:

Data flow (for example, what action elements read from a given resource; what action elements write to agiven
resource; what action elements manage a given resource; including indirect data flow using a
MarshalledResource or a M essagingResource where a particular resource is used to perform a data flow between
the “send” action element and the “receive” action element).

Control flow (for example, what action elements are triggered by eventsin a given resource; what action
elements operate on a given resource).

Identify of resource instances based on resource handles in various modules.

Platform Views are used in combination with Code views and Inventory views.

Construction methods:

Platform views that correspond to the KDM Platform architectural viewpoint are usually constructed by
analyzing Code views for the given system as well as the platform-specific configuration artifacts. The platform
extractor tool uses the knowledge of the API and semantics for the given run-time platform to produce one or
more Platform views as output.

As an dternative, for some languages like Cabol, in which the elements of the run-time platform are explicitly
defined by the language, the platform views are produced by the parser-like tools which take artifacts of the
system as the input and produce one or more Platform views as output (together with the corresponding Code
Views).

Congtruction of the Platform view is determined by the semantics of the run-time platform, and it based on the
mapping from the given run-time platform to KDM; such mapping is specific only to the run-time platform and
not to a specific software system.

The mapping from a particular run-time platform to KDM may produce additional information (system-specific,
or platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using
stereotypes, attributes, or annotations.

15.2 Organization of the Platform Package

The Platform package consists of the following 10 class diagrams:

204

PlatformM odel
Platformlnheritances

PlatformResources
PlatformRelations
PlatformActions

ProvisioningRelations

Deployment
RuntimeResources

RuntimeActions
ExtendedPlatformElements

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The Platform package depends on the following packages:

* Core

e kdm

« Code
e Action

15.3 PlatformModel Class Diagram

The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM
model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

PlatformModel
+model
0..1 AbstractPlatformRelationshijp
{subsets model}
0..*
+relation

{subsets ownedRelation}
+platformElement

{subsets ownedElement}

0..*
AbstractPlatforrmElement AbstractCodeEioment
1 +implementation (code)
0..* 0.*
+owner 0..1 +group
{subsets owner} {subsets group}

{subsets groupedElement}

{subsets ownedElement, ordered}
+abstraction | 0..*

ActionElement
(action)

Figure 15.1 - PlatformModel Class Diagram

15.3.1 PlatformModel Class

PlatformModel is a specific KDM model that owns collections of facts about the existing software system such that these
facts correspond to the Platform domain. PlatformModel provides a container for platform elements.

Superclass

KDMModel

Associations

platformElement:PlatformElement[0..*] owned platform elements

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 205

Semantics

PlatformModel is alogical container for platform elements. The implementer shall arrange platform elements into one or
more platform models.

15.3.2 AbstractPlatformElement Class (abstract)

The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of
software systems. The key subclasses of AbstractPlatformElement are PlatformResource, PlatformAction,
DeploymentResource, and RuntimeResource.

Superclass

KDMEntity

Associations

platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.
abstraction:ActionElement|[0..*] owned “abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to the AbstractCodeElement element that are
represented by the current PlatformElement from some CodeModel.

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of Computational Object or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel.

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the
PlatformElement.

15.3.3 AbstractPlatformRelationship Class (abstract)

The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform
entities.

Superclass
KDMRelationship

Semantics

An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

206 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15.4 Platforminheritances Class Diagram

The Platformlnheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.
The classes and associations of the Platformlinheritances diagram are shown in Figure 15.2.

KDMMode/ KDMEntity KDMRe/lationship
(kdrm) (core) (core)
PlatformModel AbstractPlatformElement AbstractPlatformRelationship

Figure 15.2 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and
associations of the PlatformResources diagram are shown in Figure 15.3.

+platformElement

{subsets ownedElement} AbstractPlatformElement
0.*
\\ +owner
+owner PlatformAction {subsets owner}
{subsets owner} | pjatformResource +kind - String
0.1 0..1
MarshalledResouyzé Extormalxctor
, D\ataManage\\
| |
NamingResource i \\
LockResourc*e StreamResource +platformElement
MessagingResour,c/e \\ {subsets ownedElement}
PlatformEvent
+kind : String 0.*
ExecutionResource FileResource ;

Figure 15.3 - PlatformResources Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 207

15.5.1 PlatformResource Class

The PlatformResource is a meta-model element that represents a platform resource. The purpose of a platform is to
simplify application development by closing the gap between the application domain and the facilities that are available
to application progranmers. The latter are referred to as platform resources. Examples of resource types include UNIX
File, UNIX 10 Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX
semaphore, UNIX shared memory segment, OS/390 VSAM file, IDBC connection, HTTP session, HTTP request, UNIX
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource.

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system.
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource
may be associated with logical packages for a particular programming language.

Superclass
AbstractPlatformElement

Associations

platformElement:AbstractPlatformElement[0..*] The set of platform elements that are owned by the given
PlatformResource.

Semantics
PlatformResource may represent an individual runtime resource instance or a container for several such instances.

Theimplementer shall identify runtime resources used by the existing software system according to the semantics of the
platform used by the existing system, resource configuration files, and other appropriate sources of information.

Specific subclasses of PlatformResource define specific categories of resources available to implementers. Other types of
resources can be represented by a generic instance of PlatformResource meta-model element with a stereotype.

15.5.2 NamingResource Class

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

208 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15.5.3 MarshalledResource Class

MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource
is a subclass of PlatformResource.

Superclass

PlatformResource
Semantics

15.5.4 MessagingResource Class

M essagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

Superclass
PlatformResource
Semantics

15.5.5 FileResource Class

FileResource represents platform resources that provide any non-database related storage. In the meta-model the
FileResource class is a subclass of PlatformResource.

Superclass

PlatformResource

Semantics

15.5.6 ExecutionResource Class

ExecutionResource represents dynamic Runtime elements (e.g., process or thread).

Superclass

PlatformResource

Semantics

15.5.7 LockResource Class

L ockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass

PlatformResource

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 209

15.5.8 StreamResource Class

StreamResource represents a simple input/output resource, for example UNIX-like stream.

Superclass

PlatformResource
Semantics

15.5.9 DataManager Class

DataManager represents a database management system. DataManager is associated with particular data elements that
represent the data description of the data managed by the data manager.

Superclass

PlatformResource
Semantics

15.5.10 PlatformEvent Class

The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass

PlatformResource

Attributes

kind:String Represents the nature of the action performed by this Event.

Semantics

15.5.11 PlatformAction Class

PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the
action represented by a particular element is designated by its “kind” attribute.

Superclass

AbstractPlatf ormElement

Attributes

kind:String Represents the nature of the action performed by this element.

210 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

platformElement:PlatformEvent[0..*] The set of platform events that are owned by the given PlatformAction.

15.5.12 ExternalActor Class

External Actor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model ExternalActor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass

PlatformAction

Semantics

15.6 PlatformRelations Class Diagram

The PlatformRel ations class diagram defines associations between PlatformResources. The classes and associations of the
PlatformRel ations diagram are shown in Figure 15.4.

AbstractPlatformRelations hip

+rom
+to

{redefines from} {redefines to}
PlatformResource BindsTo
1 0..* 0..* 1

KDMEntity
(core)

{subsets outbound} {subsets inbound}

Figure 15.4 - PlatformRelations Class Diagram
15.6.1 BindsTo Class
BindsTo defines a semantic association between a PlatformResource and its binding target.

Superclass

PlatformRel ationship

Associations

from:PlatformResource[1] The PlatformResource that is the source of the relationship (the from-endpoint).

to:KDMEntity[1] The KDMEntity to which the current Resource is bound (the to-endpoint).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 211

Semantics

Binding relation indicates that the binding target is involved in the operation of the Resource. The binding target can be an
Inventoryltem, or another ResourceType.

15.7 ProvisioningRelations Class Diagram

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.5.

AbstractPlatformRelationship

+rom
+to

{redefines from})
oployadComponent Raairee {redefines to} | 4pstractPlatformElement
1 0..* 0..* 1
{subsets outbound} {subsets inbound}

Figure 15.5 - ProvisioningRelations Class Diagram

15.7.1 Requires Class

Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass

PlatformRelationship

Associations

from:DeployedComponent[1] The DeployedComponent that is the source of the relationship (the from-
endpoint).
to:AbstractPlatformElement[1] The AbstractPlatformElement that is the target of the relationship (the to-
endpoint).
Semantics

212 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15.8 PlatformActions Class Diagram

The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.6.

AbstractActionRelationship

N
> K
DefinedBy ManagesResource WritesResource ReadsResource ProducesPlatformEvent
0.r 0.* 0.5 o 0.* 0.r 0.” 0.” 0.” o.r
{subsetd outbound} {subsets outbound} {subseth outbound} |{subsets inbound} {sdbsets inboynd} {subsetg outbound} |{subsets inbound}
{subsgts inbound} {subgets inbound} {sulsets outbound}
+to +o +Ho {redefines to}
; ; redefines to|
1 {redefines to}) {retilleflnes to} {redefines to} o |1
Codeltem o
(code) {redefines to} | platformResource s i
+kind : String
+rom +from
{redefines from} | 1 {redefines from}
Actnonl?lement +rom
(action) {redefines from}
1 1
+from
1 +from

{redefines from} .
{redefines from}

Figure 15.6 - PlatformActions Class Diagram

15.8.1 ManagesResource Class

ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the
“kind” attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 213

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:PlatformResource[1] The resource being accessed.

Constraints

1. This relationship should not be used in Code models.

15.8.2 ReadsResource Class

ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:PlatformResource[1] The resource being accessed.

Constraints

1. This relationship should not be used in Code models.

15.8.3 WritesResource Class

WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:PlatformResource[1] The resource being accessed.

214 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. This relationship should not be used in Code models.

15.8.4 DefinedBy Class

DefinedBYy is a meta-model element that represents association between a platform resource and the logical package that
describes the interface to this resource. The Codeltem at the to-endpoint of this KDM relationship is usually an interface
or a package.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:Codeltem[1] The Codeltem describing the resource.

Constraints

1. This relationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. The implementer shall correctly associate the platform resource with the
corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical description
of the package usually refers to some external implementation, as platform resources are usually described by some third-
party packages, provided as part of the runtime platform of the application. Individual API calls corresponding to the
given resource should have the CompliesTo relations to the individual API descriptions the definition represented by the
Codeltem at the to-endpoint of the DefinedBYy relationship.

15.8.5 ProducesPlatformEvent

ProducesPlatformEvent class follows the pattern of a “resource action relationship.” This relation represents various
situations where an ActionElement produces a PlatformEvent. The action is usually an “abstracted” action owned by
some platform resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:PlatformEvent[1] The PlatformEvent being produced.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 215

Constraints

1. This relationship should not be used in Code models.

Semantics

This relation represents various situations where an ActionElement produces a PlatformEvent.

15.9 Deployment Class Diagram

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.7.

AbstractPlatformElement

i

DeployedResource

0.*

A

+owner
{subsets owner}

+platformElement
{subsets ownedElement}

PlatformResource

> DeploymentElement
) T
DeployedSoftwareSystem Machine
0..1 0.1
0.* +group +owner " +owner
; {subsets group} {subsets owner} {subsets owner}
+groupedComponent
0.* {subsets groupedElement}
DeployedComponent
0.* 0.*
0..*
+group +deployedComponent +deployedResource
{subsets group} {subsets ownedElement} {subsets ownedElement}
0.* +groupedCode
{subsets groupedElement}
Module
(code)

Figure 15.7 - Deployment Class Diagram

15.9.1 DeploymentElement Class (generic)

The DeploymentElement is a generic class is a common meta-model element for various classes related to deployment of
computational objects and related platform resources across multiple nodes. The DeploymentElement class itself isa
concrete class that can be used as an extended code element, with a certain stereotype. As an extended element
DeploymentElement is more specific than AbstractPlatformElement.

216

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

AbstractPlatformElement

Constraints
1. DeploymentElement class shall be used with at least one stereotype.

Semantics

Concrete subclasses of DeplayedElement are described in subsequent clauses.

15.9.2 DeployedComponent Class

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform resources
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

Superclass

DeploymentElement

Associations

groupedCode:Module[0..*] The code components that are deployed to the target DeployedComponent (KDM
grouping association).

Semantics

15.9.3 DeployedSoftwareSystem Class

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. Each SoftwareSystem involves one or more Components. Some components
can be involved in more than one SoftwareSystem (allowing description of the so-called Software Product Lines). Each
Component involves one or more model Modules. Again, each Module can be involved in more than one Component.
Component is a unit of deployment. Each logical component can be deployed multiple times, each time represented by a
unique DeploymentComponent element. DeployedSoftwareSystem is a counterpart of the corresponding logical
SoftwareSystem.

Superclass

DeploymentElement

Associations

groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 217

Semantics
15.9.4 Machine Class
The Machine is a meta-model element that represents the hardware node which hosts deployed components.

Superclass

DeploymentElement

Associations

deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.
deployedResource:DeployedResource[0..*] The set of DeployedResource elements deployed to this node.
Semantics

15.9.5 DeployedResource Class

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of PlatformResource elements.
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated
with multiple DeployedResources.

Superclass

DeploymentElement

Associations

platformElement:PlatformResource[0..*] The set of PlatformResource elements that are deployed into the target
DeployedResource.

Semantics

15.10 RuntimeResources Class Diagram

The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example,
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in
many cases relations between the dynamically created instances of processes and threads are an essential part of the
knowledge of existing systems. Another example of dynamic structures involves deployed components that are loaded
dynamically.

The classes and associations of the RuntimeResources diagram are shown in Figure 15.8.

218 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

PlatformResource

T

RuntimeResource

Thread Process

Figure 15.8 - RuntimeResources Class Diagram

15.10.1 RuntimeResource (generic)

The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource

is used as the endpoint of certain relationships.

Superclass

PlatformResource

Semantics

15.10.2 Process Class

The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Semantics

15.10.3 Thread Class

The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

Superclass

RuntimeResource

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

219

15.11 RuntimeActions Class Diagram

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.9.

AbstractPlatformRelationship

{subsets outbound} | {subsets inbound}

+from Loads DeployedComponent

{redefines from} . 0.. 0.~ 1

ActionElement +o

(action) {redefines to}
+to
{redefines to}
1

+from Spawns RuntimeResource

{redefines from}

0.* 0..* 1

{subsets outbound} {subsets inbound}

Figure 15.9 - RuntimeActions Class Diagram

15.11.1 Loads Class

The Loads class is a meta-model element that represents “dynamic loading relationship” between a L oadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass

AbstractPlatformRel ationship

Associations

from:ActionElement[1] “abstracted” action element owned by some resource.
to:DeploymentComponent[1] The component that is being loaded.
Semantics

220 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

15.11.2 Spawns Class

The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation”
relationship between a SpawningService action endpoint and the Runnabl el nterface (Process or Thread).

Superclass

AbstractPlatformRelationship

Associations

from:ActionElement[1] “abstracted” action element owned by some resource
to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being spawned.
Semantics

15.12 ExtendedPlatformElements Class Diagram

The ExtendedPlatformElements class diagram defines two viewpoint-specific generic elements for the code model as
determined by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.10.

AbstractPlatformRelationship

+rom +Ho

{redefines from} {redefines to} KDMEntity
PlatformRelationship (core)

0..” 1

AbstractPlatformElement

1 0.*

{subsets outbound} {subsets inbound}

PlatformElement

Figure 15.10 - ExtendedPlatformElements Class Diagram

15.12.1 PlatformElement Class (generic)

The PlatformElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 221

Superclass

AbstractPlatformElement

Constraints
1. PlatformElement should have at least one stereotype.
Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity types of the platform model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

15.12.2 PlatformRelationship Class (generic)

The PlatformRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractPlatformRel ationship

Associations

from:AbstractPlatformElement[1] The platform element endpoint.

to:KDMEntity[1] The target of the relationship.

Constraints
1. PlatformRelationship should have at |east one stereotype.
Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the platform model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

222 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

16 Ul Package

16.1 Overview

The Ul package defines a set of meta-model elements whose purpose is to represent facets of information related to user
interfaces, including their composition, their sequence of operations, and their relationships to the existing software

systems.

The Ul package defines an architectural viewpoint for the Ul domain.

e Concerns

What are the distinct elements of the user interface of the systems?
What is the organization of the user interface?

How user interface uses artifacts of the system (for example, images)?
What data flows originate from the user interface?

What data flows output to the user interface?

What control flows are initiated by the user interface?

« Viewpoint language:

Ul views conform to KDM XMI schema. The viewpoint language for the Ul architectural viewpoint is defined
by the Ul package. It includes an abstract entity AbstractUlElement; several generic entities, such as UIResource,
UlDisplay; as well as several concrete entities, such as Screen, Report, UIField, UlAction, UIEvent, etc. The
viewpoint language for the Ul architectural viewpoint also includes several relationships, which are subclasses of
AbstractUIRelationship.

¢ Analytic methods:

The Ul architectural viewpoint supports the following main kinds of checking:

Data flow (for example, what action elements read from a given Ul element; what action elements writeto a
given Ul element; what action elements manage a given Ul element).

Control flow (for example, what action elements are triggered by eventsin a given Ul element; what action
elements operate on a given Ul element).

Workflow (what Ul elements will be displayed after the given one; what Ul elements are displayed before the
given one).

Ul Views are used in combination with Code views and Inventory views.

¢ Construction methods:

Ul views that correspond to the KDM Ul architectural viewpoint are usually constructed by analyzing Code
views for the given system as well as the Ul-specific configuration artifacts. The Ul extractor tool uses the
knowledge of the API and semantics for the given run-time platform to produce one or mode Ul views as output.

As an dternative, for some languages like Cobol, in which the elements of the Ul are explicitly defined by the
language, the Ul views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode Ul views as output (together with the corresponding Code views).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 223

e Construction of the Ul view is determined by the semantics of the Ul platform, and is based on the mapping from
the given Ul platform to KDM; such mapping is specific only to the Ul platform and not to a specific software
system.

* The mapping from aparticular Ul platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). This information can be attached to KDM elements using
stereotypes, attributes, or annotations.

16.2 Organization of the Ul Package
The Ul package consists of the following 6 class diagrams:

e UlModd

* UllInheritances

¢ UlResources

« UlRelations

* UlActions

» ExtendedUIElements

The Ul package depends on the following packages:

« Action
* Code

e kdm

» Source
« Core

16.3 UIModel Class Diagram

The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to static representations of the principal components of a user interface. The class diagram
shown in Figure 16.1 captures these classes and their relations.

224 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

UlModel

+model AbstractUIRelations hip
0.1
{subsets model}

0..*
+UIRelation

{subsets ownedRelation}

+UlElement
{subsets ownedElement} |0.."
AbstractUlIElement AbstractCodeElement
1 +implementation (code)
0..* 0.*
+group
{subsets group}

+owner (0..1

{subsets owner} {subsets groupedElement}

{subsets ownedElement, ordered}

+abstraction | 0..*

ActionElement
(action)

Figure 16.1 - UIModel Class Diagram
16.3.1 UIModel Class
The UIModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass

KDMM o odel

Associations

UlElement:UIElement[0..*] User interface elements owned by the given UIModel.

Semantics

UlModel provides a container for various user-interface elements. The implementer shall arrange user-interface elements
into one or more UIModel containers.

16.3.2 AbstractUIElement Class (abstract)

The AbstractUl Element is the abstract superclass for various concrete user interface elements. As such, it is the class that
represents both compound and elementary items in a model of a system’s user interface. The key subclasses of
AbstractUIElement are UIResource and UlAction.

Superclass

K DMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 225

Associations

UlRelation:AbstractUIRelationship[0..*] Ul relationships originating from the given Ul element.
abstraction:ActionElement[0..*] owned “ abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to AbstractCodeElement from some CodeModel that
are represented by the current Ul element.

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclasses of Computational Object or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

The implementer shall map specific user interface element types determined by the particular user-interface system of the
existing software system, into concrete subclasses of the AbstractUlElement. The implementer shall map each user
interface element into some instance of the AbstractUlElement. Implementation elements are one or more
Computational Objects or ActionElements from some CodeModel that are represented by the current Ul element.
“Abstraction” actions may be used to represent precise semantics of the Ul Element.

16.3.3 AbstractUIRelationship Class (abstract)

The AbstractUlRelationship is the abstract superclass for various user interface relationships.
Superclass

KDMRelationship

Semantics

The implementer shall map specific user interface association types determined by the particular user-interface system of
the existing software system, into concrete subclasses of the AbstractUIRelationship. The implementer shall map each
user interface association into some instance of the AbstactUIRelationship.

16.4 Ullnheritances Class Diagram

The UllInheritances class diagram defines how classes of the Ul package are related to the meta-model elements defined
in the Core package. The classes and associations that make up the UllInheritances class diagram are shown in Figure
16.2.

226 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

KDMMode/ KDMEntity KDMRelationship
(kamy) (core) (core)
UlModel AbstractUlElement AbstractUlRelationship

Figure 16.2 - Ulinheritances Class Diagram

16.5 UIResources Class Diagram

The UlResource class diagram defines several specific KDM containers that own collections of user interface elements.
The class diagram shown in Figure 16.3 captures these classes and their relations.

+UIElement
{subsets ownedElement} AbstractUlElement
0..*
: +owner
0.1 UIResource UlAction {subsets owner}
+kind : String
+owner 0.1
{subsets owner}
UlDisplay
UlField
UIEvent
+kind : Strin
2 0..*
+UlElement
{subsets ownedElement}
Screen Report

Figure 16.3 - UIResources Class Diagram

16.5.1 UlIResource Class (generic)

The UIResource is the superclass for several user interface elements that can be containers for other user interface
elements. For example, it represents a compound unit of display. This is a generic element.

Superclass

AbstractUl Element

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 227

Associations

UIElement:UIElement[0..*] Ul elements owned by this UIResource.

Constraints
1. UIResource should have at least one stereotype.
Semantics

UIResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2 UlDisplay Class (generic)

The UlDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UlIResource

Constraints
1. UIDisplay should have at least one stereotype.
Semantics

UlDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3 Screen Class

The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of AbstractUIElement and its subclasses.

Superclass

UlIDisplay
Semantics

16.5.4 Report Class

The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of AbstractUlIElement and its subclasses.

Superclass
UlIDisplay

Semantics

16.5.5 UlField Class

The UlField is a unit of display, such as a control on aform, atext field on a character-mode terminal, or a field printed
on areport.

228 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass
UlResource

Semantics

16.5.6 UlEvent Class

The UlEvent class is a meta-model element representing various events and callbacks associated with user interfaces.
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
UlResource

Attributes

kind:String Represents the nature of the action performed by this Event.

16.5.7 UlAction Class

UlAction class follows the pattern of a “resource action” class, specific to the Ul package. The nature of the action
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUl Element

Attributes

kind:String Represents the nature of the action performed by this element.

Associations

UIElement:UIEvent[0..*] Ul events owned by this UIAction.

Semantics

16.6 UlRelations Class Diagram

The UIRelations class diagram provides basic meta-model constructs to define the binding between elements of a display
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 229

AbstractUIRelations hip

UlLayout UIFlow

0..*
{subsets inbound}

0..* 0..* 0.*
{subsets outbound} {subsets inhound}

{sulfsets outbound}

1 IResGures 1 1 AbstractUIElement 1
+from +o +from +o
{redefines from} {redefines to} {redefines to}

{redefines from}
Figure 16.4 - UIRelations Class Diagram

16.6.1 UlFlow Class

The UIFlow relationship class captures the behavior of the user interface as the sequential flow from one instance of
Display to another.

Superclass

AbstractUIRelationship

Associations

from:AbstractUIElement[1]

to:AbstractUIElement[1]

Semantics

16.6.2 UlLayout Class

The UlLayout relationship class captures an association between two instances of Display — one that defines the content
for a portion of a user interface, and one that defines its layout.

Superclass

AbstractUIRelationship

Associations

from:UIResource[1] the origin Ul Resource

to:UIResource[1] the target Ul Resource

230 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

16.7 UlActions Class Diagram

The UlActions class diagram defines several KDM relations for the Ul package. It provides basic meta-model constructs
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may

generate.

The class diagram shown in Figure 16.5 captures these classes and their relations.

AbstractUIRelationship

(redeﬁ%oes to}

AbstractActionRelationship
(action)

ANVAN

"
(redefiltwoes to

AN

UIResource
{subsets inbound} 1
AT T 0. Ho 1 1 o
isplaysimage isplays defines t
= 2 i {redefines to} {redefines to} {subsets inbound}
0.*
L W * ManagesUI ReadsUI WritesUI ProducesUIEvent
{subse}s inbound} {subsets outbound} 0. 0.

{subsets inbound}
{subsets outbound} 0. {subsets inbound} 0. 0. 0.* 0.*

{redefines to} {subsets outbound} {subsetd outbound} {subsets outbound} {subsets inbound}
"oy +rom {subsets outbound} 4, |1 {redefines to}
ImageFile +rom {redefines from} UIEvent

(source)) 1 7 7
{redefines from} +rom +kind : String
ActionElement {redefines from}
1 (action) 1 +from
1 {redefines from}
+Hrom 1 +rom

{redefines from}

Figure 16.5 - UlActions Class Diagram

16.7.1 Displays Class

{redefines from}

The Displays relationship class represents the relationship between an instance of Callablelnterface and the instance of
UlElement that is presented on the interface as a result of the execution of the Callablelnterface.

Superclass

AbstractUIRelationship

Associations

from:ActionElement[1]

to:UIResource[1]

The ActionElement that displays a certain Ul resource.

the target Ul resource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

231

Semantics

16.7.2 Displaysimage Class

The Displayslmage captures the relationship between an image file — an instance of Image — and its presentation on a user
interface — an instance of DisplayUnit.

Superclass

AbstractUIRelationship

Associations

from:ActionElement[1] The ActionElement that displays a certain Image.
to:Image[1] the target Image element
Semantics

16.7.3 ManagesUl Class

ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources that are not related to the flow of datato and from the resource. ManagesUI relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the UlAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:UIResource[1] The user interface resource being accessed.

Constraints

1. This relationship should not be used in Code models.

16.7.4 ReadsUI Class

ReadsUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

232 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:UIResource[1] The user interface resource being accessed.

Constraints

1. This relationship should not be used in Code models.

16.7.5 WritesUI Class

WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:UIResource[1] The user interface resource being accessed.

Constraints

1. This relationship should not be used in Code models.

16.7.6 ProducesUIEvent Class

ProducesUIEvent class follows the pattern of a “resource action relationship.” This relation represents various situations
where an ActionElement produces a UIEvent. The action is usually an “abstracted” action owned by some Ul resource.

Superclass

Action::AbstractActionRelationship

Associations

from: ActionElement[1] “abstracted” action owned by some resource.

to:UIEvent[1] The Ul Event being produced.

Constraints

1. This relationship should not be used in Code models.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 233

Semantics

This relation represents various situations where an ActionElement produces a UIEvent.

16.8 ExtendedUIElements Class Diagram

The ExtendedUI Elements class diagram defines two viewpoint-specific generic elements for the Ul model as determined
by the KDM model pattern: a generic Ul entity and a generic Ul relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

AbstractUIRelations hijp

+from +o
redefines from} = = {redefines to} -
AbstractUIElement UlRelationship KDMEntity
" (core)
1 0.* 0.. 1
T {subsets outbound} {subsets inbound}
UlElement

Figure 16.6 - ExtendedUIElements Class Diagram

16.8.1 UlElement Class (generic)

The UlElement class is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractUl Element

Constraints
1. UlElement should have at least one stereotype.
Semantics

A Ul entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended
meta-model entity type of the Ul model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

16.8.2 UlRelationship Class (generic)

The UlRelationship relationship is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

234 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

AbstractUIRelationship

Associations

from:AbstractUIElement[1] the origin Ul element

to:KDMEntity[1] the target KDM entity

Constraints
1. UIRelationship should have at least one stereotype.
Semantics

A Ul relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the Ul model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 235

236 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17 Event Package

17.1 Overview

The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of
applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions,
and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based
runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

The Event package defines an architectural viewpoint for the Event domain.

e Concerns

* What are the distinct states involved in the behavior of the software system?
» What are the events that cause transitions between states?
« What action elements are executed in a given state?

* Viewpoint language:

Event views conform to KDM XMI schema. The viewpoint language for the Event architectural viewpoint is
defined by the Event package. It includes an abstract entity AbstractEventElement; generic entities, such as
EventResource, UIDisplay; as well as several concrete entities, such as State, Transition, Event, EventAction, etc.
The viewpoint language for the Ul architectural viewpoint also includes several relationships, which are
subclasses of AbstractEventRelationship.

¢ Analytic methods:
The Event architectural viewpoint supports the following main kinds of checking:
« Reachability (for example, what states are reachable from the given state).

e Control flow (for example, what action elements are triggered by a given state transition; what action elements
will be executed for agiven traversal of the state transition graph).

« Dataflow (what data sequences correspond to a given traversal of the state transition graph).

Event views are used in combination with Code views, Data views, Platform views, and Inventory views.

e Construction methods:

« Event viewsthat correspond to the KDM Event architectural viewpoint are usually constructed by analyzing
Code views for the given system as well as the configuration artefacts specific to the event-driven framework.
The Event extractor tool usesthe knowledge of the API and semantics of the event-driven framework to produce
one or mode Event views as output.

e Construction of the Event view is determined by the semantics of the event-driven framework, and it based on
the mapping from the given event-driven framework to KDM; such mapping is specific only to the event-driven
framework and not to a specific software system.

e Themapping from a particular event-driven framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements
using stereotypes, attributes, or annotations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 237

17.2 Organization of the Event Package

The Event package consists of the following 6 class diagrams:

* EventModel

» Eventinheritances

* EventResources

» EventRelations

» EventActions

» ExtendedEventElements

The Event package depends on the following packages:

* Core

e kdm

e Source
* Code

e Action

17.3 EventModel Class Diagram

The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific

meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

EventModel
+model

0..1
{subsets model}

+eventElement
{subsets ownedElement} 0.

AbstractEventRelations hip

+eventRelation [0..*
{subsets ownedRelation}

+owner (0..1

{subsets owner}
+abstraction

{subsets ownedElement, ordered}

0.*

ActionElement
(action)

Figure 17.1 - EventModel Class Diagram

238

AbstractEventElement - . AbstractCodeFE/lement
+gﬂoup +implementation
(code)
0.* 0.*
{subsets group}

{subsets groupedElement}

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17.3.1 EventModel Class

The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass

KDMM odel

Associations

eventElement:AbstractEventElement[0..*] Event elements owned by the given event model.

Semantics

EventModel is a container for instances of event elements. The implementer shall arrange event elements into one or
more event models.

17.3.2 AbstractEventElement Class (abstract)

The AbstractEventElement is an abstract superclass for various event elements. The key subclasses of
AbstractEventElement are EventResource and EventAction.

Superclass

K DMEntity

Associations

eventRelation:AbstractEventRelationship[0..*] Event relations owned by the give element.
abstraction:ActionElement[0..%] owned “abstracted” action elements
implementation:AbstractCodeElement|[0..*] Group association to AbstractCodeElement elements from some

CodeModel that are represented by the current EventElement.

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeModel.
2. Implementation AbstractCodeElement should be subclass of Computational Object or ActionElement.
3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more Computati onal Objects or ActionElements that are represented by
the current EventElement. “ Abstraction” actions can be used to represent precise semantics of the EventElement.

17.3.3 AbstractEventRelationship Class (abstract)

The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model
element for representing various relations involving states and events.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 239

Superclass

KDMRelationship

Semantics

17.4 Eventinheritances Class Diagram

The Eventlnheritances class diagram defines how classes of the Event package are related to the meta-model elements
defined in the Core package. The classes and associations that make up the Eventlnheritances diagram are shown in
Figure 17.2.

KDMMode/ KDMEntity KDMRelations hip
(kam) (core) (core)
EventModel AbstractEventElement AbstractEventRelationship

Figure 17.2 - Eventinheritances Class Diagram

17.5 EventResources Class Diagram

The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures
these classes and their relations.

AbstractEventElement

\ —

+owner EventResource +kind : String
0..1

+eventElement

0.*
{subsets ownedElement}

+owner
0..1
{subsets owner}

{subsets owner}

State Transition

Event
+eventElement

+kind : String
0.*
{subsets ownedElement}

InitialState OnEntry OnExit

Figure 17.3 - EventResourcesClass Diagram

240 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17.5.1 EventResource Class (generic)

The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

AbstractEventElement

Associations

eventElement:AbstractEventElement[0..*] Event elements owned by this EventResource.

Semantics
17.5.2 Event Class
The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass

EventResource

Attributes

kind:String Represents the nature of this Event.

Semantics

17.5.3 State Class

The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm,
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass

EventResource

17.5.4 InitialState Class

The Initial State class is a subclass of the State class. It represents a default initial state.

Superclass

State

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 241

17.5.5 Transition Class

The Transition class represents a transition that is performed when a certain event is consumed is a certain state.
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by
using the “ ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually,
thisis a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action
element can be used.

Superclass

EventResource

17.5.6 OnEntry Class

The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been entered.

Superclass

Transition

17.5.7 OnExit Class

The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been exited.

Superclass

Transition

17.5.8 EventAction Class

EventAction class follows the pattern of a“resource action” class, specific to the event package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractEventElement

Attributes

kind:String Represents the nature of the action performed by this element.

Associations

eventElement:Event|[0..*] The set of Event elements that is owned by the current EventAction element.

242 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

17.6 EventRelations Class Diagram

EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

AbstractEventRelationship

{subsets inbound} {subsets inbound}

State +o 0.* NextState ConsumesEvent et

*

+to |+kind : String

1 1
0.* 0..*
{subsets outbound} {sulgsets outboundy} {redefines to}

{redefines to}

+rom

+from| Transition
1
{redefines from}

{redefines from}

Figure 17.4 - EventRelations Class Diagram

17.6.1 NextState Class

The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based
frameworks this information can be derived from the initialization of framework specific data structures. When there
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action
containers associated with various elements involved.

Superclass

AbstractEventRelationship

Associations

to:Transition[1] the transition

from:State[1] the state

17.6.2 ConsumesEvent Class

The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event.
For example, in statically configured state-machine based frameworks this information can be derived from the
initialization of framework specific data structures.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 243

Superclass

AbstractEventRelationship

Associations

from:Transition[1] the transition

to:Event[1] the event

17.7 EventActions Class Diagram

The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

AbstractActionRelationship
(action)
K
ReadsState ProducesEvent HasState
0.* 0.*
0.7 0. 0.* 0.” {subsets ¢utbound} .
bsets inb d
{subsets inbound} {subsets outbound} {subsets inbound} {stibsets outbound} {subsets inbound}
+to
+o +to A
{redefines to} |4 {redefines to} 1 {redefines to}
State Event AbstractEventElement
+kind : String
{redefines from}
+from |1
ActionElement
+from (action) +from
1 1
{redefines from} {redefines from}

Figure 17.5 - EventActions Class Diagram

17.7.1 ReadsState Class

ReadsState class follows the pattern of a*“resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that
owns this relationship through the “ abstracted” action container property.

Superclass

Action::AbstractActionRelationship

244 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ActionElement([1] “abstracted” action owned by some resource.

to:EventResource[1] The event resource being accessed.

Constraints:
1. This relationship should not be used in Code models.

2. The to endpoaint of the relationship should be State of one of its subclasses.

17.7.2 ProducesEvent Class

ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
EventAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement([1] “abstracted” action owned by some resource.

to:EventResource[1] The event resource being produced.

Constraints
1. This relationship should not be used in Code models.

2. The “to” endpoint of the relationship should be Event.

17.7.3 HasState Class

HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of
an event model with any resource.

Superclass

Action::AbstractActionRel ationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:EventResource[1] The event resource being accessed.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 245

Constraints

1. This relationship should not be used in Code models.

17.8 ExtendedEventElements Class Diagram

The ExtendedEventElements class diagram defines two viewpoint-specific generic elements for the event model as
determined by the KDM model pattern: a generic event entity and a generic event relationship. The classes and
associations of the ExtendedEventElements diagram are shown in Figure 17.6.

AbstractEventRelations hip

+o

+rom {redefines to}
{redefines from}
AbstractEventElement EventRelationship KDMEntity
* - (core)
1 0.. 0.. 1
{subsets outbound} {subsets inbound}

EventElement

Figure 17.6 - ExtendedEventElements Class Diagram

17.8.1 EventElement Class (generic)

The EventElement class is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractEventElement

Constraints
1. EventElement should have at least one stereotype.
Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

17.8.2 EventRelationship Class (generic)

The EventRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

246 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

AbstractEventRelationship

Associations

from:AbstractEventElement[1] the event element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. EventRelationship should have at least one stereotype.
Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 247

248 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18

Data Package

18.1 Overview

The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the
existing software system. Facts in the Data domain are usually determined by a Data Description Language (for example,
SQL) but may in some cases be determined by the code elements. KDM Data model uses the foundation provided by the
Code package related to the representations of simple datatypes. KDM Data model represents complex data repositories,
such as record files, relational databases, structured data stream, XML schemas, and documents.

The KDM Data package defines an architectural viewpoint for the Data domain.

e« Concerns

What is the organization of persistent datain the software systems?
What are the information model supported by the software system?
What action elements read persistent data?

What action elements write persistent data?

What control flows are determined by the events corresponding to persistent data?

« Viewpoint language:

Data views conform to KDM XMI schema. The viewpoint language for the Data architectural viewpoint is
defined by the Data package. It includes abstract entities AbstractDataElement, AbstractContentElement; generic
entities DataResource, DataContainer, Contentltem; as well as several concrete entities, such as Catalog,
Relational Schema, DataEvent, DataAction, ColumnSet, RecordFile, XML Schema, etc. The viewpoint language
for the Data architectural viewpoint also includes several relationships, which are subclasses of
AbstractDataRel ationship.

¢ Analytic methods:

The Data architectural viewpoint supports the following main kinds of checking:

L]

Data aggregation (the set of dataitems accessible from the given ColumnSet by adding data items through
foreign key relationships to other tables).

Data Views are used in combination with Code views and Inventory views.

¢ Construction methods:

Data views that correspond to the KDM Data architectural viewpoint are usually constructed by analyzing Data
Definition Language artifacts for the given data management platform. The Data extractor tool usesthe
knowledge of the data management platform to produce one or more Data views as output.

Asan dternative, for some languages like Coboal, in which some elements of the Data are explicitly defined by
the language, the Data views are produced by the parser-like tools which take artifacts of the system as the input
and produce one or more Data views as output (together with the corresponding Code views).

Congtruction of the Data view is determined by the semantics of the data management platform, and it based on
the mapping from the given data management platform to KDM; such mapping is specific only to the data
management platform and not to a specific software system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 249

« The mapping from aparticular data management platform to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). This information can be attached to KDM elements
using stereotypes, attributes or annotations.

18.2 Organization of the Data Package

The Data package consists of the following 11 class diagrams:

» DataModel

» Datalnheritance
» RelationalData

e ColumnSet

e StructuredData

« ContentElements
» ContentRelations
* Keylndex

* KeyRelations

» DataActions

+ ExtendedDataElements

The Data Package depends on the following packages:

* Core

e kdm

e Source
* Code

« Action

18.3 Data Model Class Diagram

The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the

DataModel class diagram.

250

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

DataModel AbstractDataRelationship

+model

0..1
{subsets model} 0..*

+dataRelation
{supsets ownedRelation}

+dataElement

{subsets ownedElement} [0..*
AbstractDataElement

+owner |0..1

i {subsets owner}
+abstraction

{subsets ownedElement, ordered} 0.*

ActionElement
(action)

Figure 18.1 - Data Model

18.3.1 DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass
KDMModel

Associations

dataElement :DataElement[0..*] data elements owned by the given DataM odel

Semantics

Data model is alogical container for the instances of data elements. The implementer shall arrange the instances of the
data elements into one or more DataModels.

18.3.2 AbstractDataElement Class (abstract)

The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data
element within a system. For example, a Customer_Number is one type of data element that might be found within a
system. Data model defines several specific subclasses of AbstractDataElement, corresponding to common subcategories
of data elements. The key subclasses of AbstractDataElement are DataResource, DataAction, XML Schema and
AbstractContentElement.

Superclass

K DMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 251

Associations

abstraction: ActionElement[1] The “abstracted” actions that are owned by the current element.
dataRelation:DataRelation[0..*] Data relationships that originate from this data element.
Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API
callsin the code model. Abstracted actions own action relations to elements of code model, as well as some data relations.

Abstracted actions are ordered. The first action is the entry point.

18.3.3 AbstractDataRelationship Class (abstract)

An AbstractDataRel ationship class is an abstract superclass of the meta-model elements that represent associations
between data elements.

Superclass

KDMRelationship

Semantics

AbstractDataRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data
model.

18.4 Data Inheritances Class Diagram

The Datal nheritances Diagram in Figure 18.2 shows how the meta-model elements defined in the Data package are
related to the meta-model elements defined in the Core package. Each of the Data Package classes within this diagram
inherits certain properties from KDM classes defined within the Core Package.

KDMMode/ KDMEntity KDMRelations hip
(kam) (core) (core)
DataModel AbstractDataFElement AbstractDataRelationship

Figure 18.2 - Datalnheritances Diagram

18.5 DataResources Class Diagram

The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM
framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

252 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

The DataResources diagram defines the framework for various data models. This framework follows the common pattern
of the Runtime Resource Layer. Data model defines a generic DataResource meta-model element that represents various
resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources.
Data model includes AbstractDataContent element which is a direct subclass of AbstractDataElement, and not a subclass
of DataResource. Subclasses of AbstractContentElement are owned by XML Schema element.

AbstractDataFElement
+dataElement
{subsets ownedElement}
DataResource
0..*
+owner
DataAction | ., owner} DataEvent
+kind : Strin. +kind : Stri ©
9 01 o n ring DataContainer +owner
0..1
+group [0..*
fsubses ?0 l}) +dataElement {subsets owner}
u group, {subsets ownedElement}
Catalog RelationalSchema

+implementation

{subsets groupedElement}
0..* +owner 0..1

{subsets owner}

ActionElement o.*
(action) = +codeElement
Codeltem {subsets ownedElement}
(code)

Figure 18.3 - RelationalData Class Diagram

18.5.1 DataResource Class (generic)

The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent
and |ndexElement.

Superclass

AbstractDataElement

Constraints

1. DataResource should have at least one stereotype.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 253

Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that
is associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base
element of a new extended meta-model entity type of the data model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2 DataContainer Class (generic)
The DataContainer class is a generic meta-model element that represents various database containers.

Superclass

DataResource

Associations

dataElement :DataResourcel[0..*] Owned data resources

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that
isalogical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the
base element of a new extended meta-model entity type of the data model. This is one of the KDM extension points that
can integrate additional |anguage-specific, application-specific, or implementer-specific pieces of knowledge into the
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3 Catalog Class
The Catalog class is the top level container that represents a relational or a hierarchical database.

Superclass

DataContainer

Semantics

18.5.4 RelationalSchema Class

The Relational Schema class is a relational database schema.

Superclass

DataContainer

Associations

codeElement:Codeltem[0..*] Stored procedures owned by this schema.

254 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example,
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data
actions.” Abstracted actions represent an additional data manipulation statement, which is being implemented through
embedded data manipulation constructs (and the corresponding “generated” API calls).

In the situation of the data manipulation and data description scripts that are executed directly by the relational database
engine, KDM allows more tight integration of the corresponding Codeltem with the Data Model.

18.5.5 DataEvent Class

The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of
stored procedures, the so-called triggers. KDM models database events as “first class citizens’ of the KDM
representation.

Superclass

DataResource

Attributes

kind :String Semantic description of the data event.

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on atable or view.
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataElement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure,
which is represented as a CallableUnit, owned by a certain Relational Schema. Trigger is associated with a data event
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a
certain DataContainer.

18.5.6 DataAction Class

DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass

AbstractDataElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 255

Attributes

kind:String Represents the nature of the action performed by this element.

Associations

implementation:ActionElement|[0..*] Group association to ActionElement represented by the current DataAction.
dataElement:DataEvent[0..*] Event elements owned by the current DataAction.
Semantics

DataAction represents a logical action performed by the runtime platform of the existing software system.

18.6 ColumnSet Class Diagram

The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases,
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4
captures these classes and their relations.

DataContainer

ColumnSet +owner ltemUnit
o o (code)
A4 {subsets owner}
+itemUnit
{subsets ownedElement, ordered}
DataSegment
RecordFile
RelationalView RelationalTable

Figure 18.4 - ColumnSet Class Diagram

18.6.1 ColumnSet (generic)

The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields).
Columns are modeled as ItemUnits.

256 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

DataContainer

Associations

itemUnit :ItemUnit[0..%] Individual columns owned by this ColumnSet are represented as data el ements.

Semantics

ColumnSet corresponds to an ISO/IEC 11404 Table datatype, whose values are collections of values in the product space of
one or more field datatypes, such that each value in the product space represents an association among the values of the fields.
Although the field datatypes may be infinite, any given value of a table datatype contains a finite number of associations.

KDM defines several concrete subclasses of ColumnSet to represent several common data organizations, such asrelational
Tables and Views, Record files and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.

18.6.2 RelationalTable Class

A Relational Table is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass

ColumnSet

Semantics

Tables are entities that contain all the data in relational databases. Each table represents a type of data that is meaningful
to its users. A table definition is a collection of columns. In tables, datais organized in a row-and-column format similar
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example,
atable that contains employee data for a company can contain a row for each employee and columns representing
employee information such as employee number, name, address, job title, and home telephone number.

Tables in arelational database have the following main components:

« Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having
columnsfor ID, color, and weight.

* Rows. Each row represents an individual occurrence of the object modeled by the table. For example, the parts table
would have one row for each part carried by the company.

The PlatformResource that corresponds to Relational Table is DataM anager.

Example (T-SQL)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)
CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date,

PRIMARY KEY (contract, recognizedOn))

CREATE PROCEDURE INSERT RECOGNITION

(IN contractID int, IN amount decimal, IN recognizedOn date, OUT result int)
LANGUAGE SQL

BEGIN

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 257

INSERT INTO revenueRecognitions VALUES(contractID, amount, recognizedOn) ;
SET result = 1;
END

CREATE TRIGGER reminderl

ON Contracts.revenueRecognitions
AFTER INSERT, UPDATE

AS RAISERROR ('Notify Sales', 16, 10)
GO

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:data="http://www.omg.org/spec/KDM/20160201/data"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:platform="http://www.omg.org/spec/KDM/20160201/platform" name="Schema Example">
<model xmi:id="id.O0" xmi:type="data:DataModel" name="Contracts">
<dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts">
<dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">
<dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>
<itemUnit xmi:id="id.4" name="ID" type="id.57"/>
<itemUnit xmi:id="id.5" name="name" type="id.58"/>
<itemUnit xmi:id="id.6" name="type" type="id.58"/>
</dataElement>
<dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">
<dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>
<dataElement xmi:id="id.9" xmi:type="data:ReferenceKey" implementation="id.12">
<dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>
</dataElement>
<itemUnit xmi:id="id.11" name="ID" type="1id.57"/>
<itemUnit xmi:id="1id.12" name="product" type="id.57"/>
<itemUnit xmi:id="id.13" name="revenue" type="id.59"/>
<itemUnit xmi:id="id.14" name="dateSigned" type="id.é60"/>
</dataElement>
<dataElement xmi:id="id.15" xmi:type="data:RelationalTable" name="revenueRecognitions"x>
<dataElement xmi:id="1id.16" xmi:type="data:UniqueKey" implementation="id.25 id.27"/>
<dataElement xmi:id="1d.17" xmi:type="data:ReferenceKey" implementation="id.25">
<dataRelation xmi:id="1id.18" xmi:type="data:KeyRelation" to="id.8" from="id.17"/>
</dataElement>
<dataElement xmi:id="1d.19" xmi:type="data:DataEvent" name="el" kind="Insert">
<abstraction xmi:id="id.20" name="el.1l" kind="Call">
<actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.47" from="1id.20"/>
</abstractions>
</dataElement>
<dataElement xmi:id="id.22" xmi:type="data:DataEvent" name="e2" kind="Update">
<abstraction xmi:id="id.23" name="e2.1" kind="Call">
<actionRelation xmi:id="id.24" xmi:type="action:Calls" to="id.47" from="id.23"/>
</abstractions>
</dataElement>
<itemUnit xmi:id="id.25" name="contract" type="id.57"/>
<itemUnit xmi:id="id.26" name="amount" type="id.59"/>
<itemUnit xmi:id="1id.27" name="recognizedOn" type="id.60"/>
</dataElement>
<codeElement xmi:id="id.28" xmi:type="code:CallableUnit" name="INSERT RECOGNITIONS" kind="regular"s>
<entryFlow xmi:id="id.29" to="id.35" from="id.28"/>
<codeElement xmi:id="1id.30" xmi:type="code:Signature">
<parameterUnit xmi:id="1d.31" name="contractID" type="id.57" pos="1"/>
<parameterUnit xmi:id="id.32" name="amount" type="id.59" pos="2"/>
<parameterUnit xmi:id="1id.33" name="recognizedOn" type="id.60" pos="3"/>
<parameterUnit xmi:id="id.34" name="result" type="id.57" kind="byReference" pos="4"/>

258 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</codeElement>
<codeElement xmi:id="1d.35" xmi:type="action:ActionElement" name="al" kind="Insert">
<source xmi:id="id.36" language="SQL"
snippet="INSERT INTO revenueRecognitions VALUES(contractID, amount, recognizedOn);"/>
<actionRelation xmi:id="1id.37" xmi:type="action:Reads" to="id.31" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.32" from="id.35"/>
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.33" from="id.35"/>
<actionRelation xmi:id="id.40" xmi:type="data:WritesColumnSet" to="id.15" from="id.35"/>
<actionRelation xmi:id="id.41" xmi:type="data:ProducesDataEvent" to="id.19" from="id.35"/>
</codeElement>
<codeElement xmi:id="1d.42" xmi:type="action:ActionElement" name="a2" kind="Assign">
<source xmi:id="id.43" language="SQL" snippet="SET result = 1;"/>
<codeElement xmi:id="1id.44" xmi:type="code:Value" name="1"/>
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.44" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Writes" to="id.34" from="id.42"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.47" xmi:type="code:CallableUnit" name="reminderl"s>
<entryFlow xmi:id="1d.48" to="id.49" from="id.47"/>
<codeElement xmi:id="1d.49" xmi:type="action:ActionElement" name="a3" kind="Throw">
<codeElement xmi:id="1id.50" xmi:type="code:ValueList" name="error">
<valueElement xmi:id="1id.51" xmi:type="code:Value"
name="" ;Notify sales!"" type="id.58"/>
<valueElement xmi:id="1id.52" xmi:type="code:Value" name="16" type="id.57"/>
<valueElement xmi:id="1id.53" xmi:type="code:Value" name="10" type="id.57"/>
</codeElement >
<actionRelation xmi:id="id.54" xmi:type="action:Throws" to="id.50" from="id.49"/>
</codeElement>
</codeElement >
</dataElement>
</model>
<model xmi:id="id.55" xmi:type="code:CodeModel">
<codeElement xmi:id="id.56" xmi:type="code:LanguageUnit" name="SQL datatypes">
<codeElement xmi:id="id.57" xmi:type="code:IntegerType" name="sgl int"/>
<codeElement xmi:id="id.58" xmi:type="code:StringType" name="sqgl varchar"/>
<codeElement xmi:id="id.59" xmi:type="code:DecimalType" name="sgl decimal"/>
<codeElement xmi:id="id.60" xmi:type="code:DateType" name="sqgl date"/>
<codeElement xmi:id="id.61" xmi:type="code:BooleanType"/>
</codeElement>
</model>
<model xmi:id="id.62" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.63" xmi:type="platform:ExternalActor"s>
<abstraction xmi:id="id.64" >
<actionRelation xmi:id="id.65" xmi:type="data:ProducesDataEvent" to="id.19" from="id.64"/>
</abstractions>
</platformElement >
</model >
</kdm: Segment >

18.6.3 RelationalView Class

A RelationalView class is a specific subclass of the ColumnSet class that represents Views of relational databases. A view
is avirtual table whose contents are defined by a query. Like areal table, a view consists of a set of named columns and
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of
data come from tables referenced in the query defining the view and are produced dynamically when the view is
referenced.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 259

A view acts as a filter on the underlying tables referenced in the view. The query that defines the view can be from one
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly
structured data from different servers, each of which stores data for a different region of your organization.

Superclass

ColumnSet

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few
restrictions on modifying data through them.

In KDM, a Relational View owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the
View can store the corresponding SELECT statement.

18.6.4 DataSegment Class
A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS.

Superclass

ColumnSet

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real
world.

A database segment defines the fields for a set of segment instances similar to the way a relational table defines columns
for aset of rowsin atable. In this way, segments relate to relational tables, and fields in a segment relate to columnsin a
relational table.

Example (IMS):

DLR_PCB1 PCB TYPE=DB, DBDNAME=DEALERDB, PROCOPT=GO, KEYLEN=42
SENSEG NAME=DEALER, PARENT=0

SENSEG NAME=MODEL, PARENT=DEALER

SENSEG NAME=ORDER, PARENT=MODEL

SENSEG NAME=SALES, PARENT=MODEL

SENSEG NAME=STOCK, PARENT=MODEL

PSBGEN PSBNAME=DLR_ PSB,MAXQ=200, LANG=JAVA

END

DBD NAME=DEALERDB, ACCESS= (HDAM, OSAM) , RMNAME= (DFSHDC40.1.10)
SEGM NAME=DEALER, PARENT=0,BYTES=94,

FIELD NAME= (DLRNO, SEQ,U) ,BYTES=4, START=1, TYPE=C

FIELD NAME=DLRNAME, BYTES=30, START=5, TYPE=C

SEGM NAME=MODEL, PARENT=DEALER, BYTES=43

FIELD NAME= (MODTYPE, SEQ,U) ,BYTES=2, START=1, TYPE=C

260 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

FIELD NAME=MAKE,BYTES=10,START=3, TYPE=C

FIELD NAME=MODEL,BYTES=10,START=13, TYPE=C

FIELD NAME=YEAR,BYTES=4,START=23, TYPE=C

FIELD NAME=MSRP,BYTES=5,START=27, TYPE=P

SEGM NAME=ORDER, PARENT=MODEL, BYTES=127

FIELD NAME= (ORDNBR, SEQ,U) ,BYTES=6,START=1, TYPE=C
FIELD NAME=LASTNME, BYTES=25,START=50, TYPE=C
FIELD NAME=FIRSTNME, BYTES=25, START=75, TYPE=C
SEGM NAME=SALES, PARENT=MODEL, BYTES=113

FIELD NAME= (SALDATE, SEQ,U) ,BYTES=8, START=1, TYPE=C
FIELD NAME=LASTNME, BYTES=25, START=9, TYPE=C

FIELD NAME=FIRSTNME, BYTES=25, START=34, TYPE=C
FIELD NAME=STKVIN,BYTES=20,START=94, TYPE=C

SEGM NAME=STOCK, PARENT=MODEL, BYTES=62

FIELD NAME= (STKVIN, SEQ,U) ,BYTES=20,START=1, TYPE=C
FIELD NAME=COLOR,BYTES=10,START=37, TYPE=C

FIELD NAME=PRICE,BYTES=5,START=47, TYPE=C

FIELD NAME=LOT,BYTES=10,START=52, TYPE=C

DBDGEN

FINISH

END

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:data="http://www.omg.org/spec/KDM/20160201/data"

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="IMS Example">

<model xmi:id="id.0" xmi:type="data:DataModel">

<dataElement xmi:id="id.1" xmi:type="data:Catalog" name="DEALERDB">
<dataElement xmi:id="id.2" xmi:type="data:DataSegment" name="Dealer"s
<dataElement xmi:id="id.3" xmi:type="data:DataSegment" name="Model">
<dataElement xmi:id="1id.4" xmi:type="data:DataSegment" name="Order">
<dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.é6"/>

<itemUnit xmi:id="id.6" name="ORDNBR" type="id.30" size="2"/>

<itemUnit xmi:
<itemUnit =xmi:

</dataElement>

id="id.7"
id="id.8"

name="LASTNME" type="1id.30" size="25"/>
name="FIRSTNME" type="id.30" size="25"/>

<dataElement xmi:id="1id.9" xmi:type="data:DataSegment" name="Sales">
<dataElement xmi:id="id.10" xmi:type="data:UniqueKey" implementation="id.11"/>

<itemUnit xmi:id="id.11"
<itemUnit xmi:id="id.12"
<itemUnit xmi:id="id.13"
<itemUnit xmi:id="id.14"

</dataElement>

name="SALDATE" type="1id.30" size="8"/>
name="LASTNME" type="1id.30" size="25"/>
name="FIRSTNME" type="id.30" size="25"/>
name="STKVIN" type="id.30" size="20"/>

<dataElement xmi:id="id.15" xmi:type="data:DataSegment" name="Stock">
<dataElement xmi:id="1id.16" xmi:type="data:UniqueKey" implementation="id.17"/>

<itemUnit xmi:id="id.17"
<itemUnit xmi:id="id.18"
<itemUnit xmi:id="id.19"
<itemUnit xmi:id="id.20"

</dataElement>

name="STKVIN" type="id.30" size="20"/>
name="COLOR" type="id.30" size="10"/>
name="PRICE" type="id.30" size="5"/>
name="LOT" type="id.30" size="10"/>

<dataElement xmi:id="1id.21" xmi:type="data:UniqueKey" implementation="id.22"/>

<itemUnit xmi:id="id.22"
<itemUnit xmi:id="id.23"
<itemUnit xmi:id="id.24"
<itemUnit xmi:id="id.25"

</dataElement>

name="MODTYPE" type="1id.30" size="2"/>
name="MAKE" size="10"/>

name="YEAR" size="4"/>

name="MSRP" type="id.31" size="5"/>

<dataElement xmi:id="1id.26" xmi:type="data:UniqueKey" implementation="id.27"/>
<itemUnit xmi:id="1id.27" name="DRLNO" type="id.30" size="4"/>
<itemUnit xmi:id="id.28" name="DLRNAME" size="30"/>

</dataElement>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

261

</dataElement>
</model>
<model xmi:id="1id.29" xmi:type="code:CodeModel" name="Common IMS datatypes">
<codeElement xmi:id="id.30" xmi:type="code:StringType" name="IMS type c"/>
<codeElement xmi:id="id.31" xmi:type="code:DecimalType" name="IMS type packeddecimal"/>
</model>
</kdm: Segment >

18.6.5 RecordFile Class

The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or
sequential.

Superclass

ColumnSet

Semantics

In a non-relational database system, arecord is an entry in afile, consisting of individual elements of information, which
together provide full details about an aspect of the information needed by the system. Individual elements are held in
fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for
example, date of birth, department code, or full names will be found in a number of fields. A fileis a set of records, where
each record is a sequence of fields. A sequential file is a computer file storage format in which one record follows
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (Cobol)

The following example illustrates the representation of RecordFile. This example isincomplete as it focuses on the
DataModel, and well as combined representation involving the CodeMaodel, DataModel, PlatformModel, and EventModel.
Example uses ItemUnits owned by RecordFile as variables. ExceptionFlow elements are added through the DataModel.

FILE-CONTROL.

SELECT SEQUENTIAL-FILE ASSIGN TO 'A:\SEQ.DAT'
ORGANIZATION IS LINE SEQUENTIAL.

SELECT INDEXED-FILE
ASSIGN TO 'A:\INDMAST.DAT'
ORGANIZATION IS INDEXED
ASSESS IS SEQUENTIAL
RECORD KEY IS IND-SOC-SEC-NUM
FILE STATUS IS INDEXED-STATUS-BYTES.

FILE SECTION.
FD SEQUENTIAL FILE
RECORD CONTAINS 39 CHARACTERS
DATA RECORD IS SEQUENTIAL-RECORD.
01 SEQUENTIAL-RECORD.
05 SEQ-SOC-SEC-NUM PIC X(9).
05 SEQ-REST-OF-RECORDPIC X(30).

FD INDEXED-FILE
RECORD CONTAINS 39 CHARACTERS
DATA RECORD IS INDEXED-RECORD.
01 INDEXED-RECORD.
05 IND-SOC-SEC-NUM PIC X (9).
05 IND-REST-OF-RECORDPIC X(30).

262 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

PROCEDURE DIVISION.
0010-UPDATE-MASTER-FILE.
OPEN INPUT SEQUENTIAL-FILE
OUTPUT INDEXED-FILE.

PERFORM UNTIL END-OF-FILE-SWITCH = 'YES'
READ SEQUENTIAL-FILE
AT END
MOVE 'YES' TO END-OF-FILE-SWITCH
NOT AT END

MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEC-NUM
MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD
WRITE INDEXED-RECORD
INVALID KEY PERFORM 0020-EXPLAIN-WRITE-ERROR
END-WRITE
END-READ
END-PERFORM.
CLOSE SEQUENTIAL-FILE
INDEXED-FILE.

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code=""http://www.omg.org/spec/KDM/20160201/code"
xmlns:data="http://www.omg.org/spec/KDM/20160201/data"
xmlns:event="http://www.omg.org/spec/KDM/20160201/event"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:platform="http://www.omg.org/spec/KDM/20160201/platform" name="RecordFile example">
<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:RecordFile" name="SEQUENTIAL-FILE">
<itemUnit xmi:id="id.2" name="SEQ-SOC-SEC-NUM" type="id.1l15" ext="PIC X(9)" size="9"/>
<itemUnit xmi:id="id.3" name="SEQ-REST-OF-RECORD" type="id.1l15" ext="PIC X(30)" size="30"/>
</dataElement>
<dataElement xmi:id="id.4" xmi:type="data:RecordFile" name="INDEXED-FILE">
<dataElement xmi:id="1id.5" xmi:type="data:UniqueKey" implementation="id.7"/>
<dataElement xmi:id="id.6" xmi:type="data:Index" implementation="id.7"/>
<itemUnit xmi:id="id.7" name="IND-SOC-SEC-NUM" type="id.1l15" ext="PIC X(9)" size="9"/>
<itemUnit xmi:id="id.8" name="IND-REST-OF-RECORD" type="id.1l15" ext="PIC X(30)" size="30"/>
</dataElement>
<dataElement xmi:id="id.9" xmi:type="data:DataAction" name="dal" kind="open" implementation="id.44">
<abstraction xmi:id="1d.10" name="dal" kind="DataAction">
<actionRelation xmi:id="id.11" xmi:type="data:ManagesData" to="id.l1" from="id.10"/>
</abstractions>
</dataElement>
<dataElement xmi:id="id.13" xmi:type="data:DataAction" name="da2" kind="open" implementation="id.44">
<abstraction xmi:id="id.14" name="da2" kind="DataAction">
<actionRelation xmi:id="id.16" xmi:type="data:ManagesData" to="id.4" from="id.14"/>
</abstraction>
</dataElement>
<dataElement xmi:id="id.17" xmi:type="data:DataAction" name="da3" kind="read" implementation="id.47">
<abstraction xmi:id="1d.18" name="da3" kind="DataAction">
<actionRelation xmi:id="id.19" xmi:type="data:ReadsColumnSet" to="id.1" from="id.18"/>
<actionRelation xmi:id="1id.20" xmi:type="action:Writes" to="id.2" from="1id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.3" from="id.18"/>
<actionRelation xmi:id="id.22" xmi:type="platform:ReadsResource" to="id.75" from="id.18"/>
<actionRelation xmi:id="id.22a" xmi:type="platform:ProducesDataEvent" to="id.23" from="id.18"/>
<actionRelation xmi:id="id.22b" xmi:type="platform:ProducesDataEvent" to="id.26" from="id.18"/>
</abstractions>
<dataElement xmi:id="id.23" name="EOF" kind="exception">
<abstraction xmi:id="id.24" name="ael">
<actionRelation xmi:id="id.25" xmi:type="action:ExceptionFlow" to="id.50" from="id.24"/>
</abstraction>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 263

</dataElement>
<dataElement xmi:id="1id.26" name="NOT EOF" kind="exception"s>
<abstraction xmi:id="id.27" name="nael">
<actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.53" from="id.27"/>
</abstraction>
</dataElement>
</dataElement>
<dataElement xmi:id="1d.29" xmi:type="data:DataAction" name="da4" kind="write"
implementation="id.59">
<abstraction xmi:id="1d.30" name="da4" kind="DataAction">
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.7" from="id.30"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.8" from="id.30"/>
<actionRelation xmi:id="id.33" xmi:type="data:WritesColumnSet" to="id.4" from="id.30"/>
<actionRelation xmi:id="id.34" xmi:type="platform:WritesResource" to="id.79" from="id.30"/>
<actionRelation xmi:id="id.34a" xmi:type="platform:ProducesDataEvent" to="id.35" from="id.30"/>
</abstractions>
<dataElement xmi:id="1d.35" name="INVALID KEY" kind="exception"s>
<abstraction xmi:id="id.36" name="ik1l">
<actionRelation xmi:id="id.37" xmi:type="action:ExceptionFlow" to="id.62" from="id.36"/>
</abstraction>
</dataElement>
</dataElement>
<dataElement xmi:id="1d.38" xmi:type="data:DataAction" name="da5" kind="close"
implementation="id.68">
<abstraction xmi:id="1id.39" name="da5" kind="PlatformAction">
<actionRelation xmi:id="id.39a" xmi:type="platform:ManagesResource" to="id.75" from="id.39"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1d.40" xmi:type="data:DataAction" name="daé" kind="close"
implementation="id.68">
<abstraction xmi:id="1d.41" name="da5" kind="PlatformAction"/>
<actionRelation xmi:id="id.4la" xmi:type="platform:ManagesResource" to="id.79" from="id.39"/>
</abstractions>
</dataElement>
</model>
<model xmi:id="id.42" xmi:type="code:CodeModel">
<codeElement xmi:id="id.43" xmi:type="code:CodeAssembly">
<entryFlow xmi:id="id.43e" to="1id.44" from="id.43"/>
<codeElement xmi:id="id.116" xmi:type="code:StorableUnit"
name="END-OF-FILE-SWITCH" kind="global" type="id.115"/>
<codeElement xmi:id="id.117" xmi:type="code:Value" name="'YES'" type="id.115"/>
<codeElement xmi:id="1id.44" xmi:type="action:ActionElement" name="a0" kind="PlatformAction"s>
<source xmi:id="id.45" language="Cobol"
snippet="OPEN INPUT SEQUENTIAL-FILE OUTPUT INDEXED-FILE."/>
<actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.64" from="id.44"/>

</codeElement >
<codeElement xmi:id="1id.64" xmi:type="action:ActionElement" name="a7" kind="Equals">
<source xmi:id="id.65" language="Cobol" snippet="UNTIL END-OF-FILE-SWITCH = 'YES'"/>

<actionRelation xmi:id="id.66a" xmi:type="action:Reads" to="id.116" from="id.64"/>
<actionRelation xmi:id="id.66b" xmi:type="action:Reads" to="id.117" from="id.é64"/>
<actionRelation xmi:id="id.66" xmi:type="action:FalseFlow" to="id.47" from="id.64"/>
<actionRelation xmi:id="id.67" xmi:type="action:TrueFlow" to="id.68" from="id.64"/>
</codeElement >
<codeElement xmi:id="1id.47" xmi:type="action:ActionElement" name="al" kind="PlatformAction"s>
<source xmi:id="id.48" language="Cobol" snippet="READ SEQUENTIAL-FILE"/>
<actionRelation xmi:id="id.49" xmi:type="action:Flow" to="id.53" from="id.47"/>
</codeElement>
<codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="a2" >
<source xmi:id="id.51" language="Cobol" snippet="MOVE 'YES' TO END-OF-FILE-SWITCH"/>
<actionRelation xmi:id="id.52r" xmi:type="action:Reads" to="id.117" from="id.50"/>
<actionRelation xmi:id="id.52w" xmi:type="action:Writes" to="id.116" from="id.50"/>

264 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<actionRelation xmi:id="id.52" xmi:type="action:Flow" to="id.64" from="id.50"/>
</codeElement>
<codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a3" kind="Assign">
<source xmi:id="id.54" language="Cobol" snippet="MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEQ-NUM"/>
<actionRelation xmi:id="id.55r" xmi:type="action:Reads" to="id.2" from="id.53"/>
<actionRelation xmi:id="id.55w" xmi:type="action:Writes" to="id.7" from="id.53"/>
<actionRelation xmi:id="id.55" xmi:type="action:Flow" to="id.56" from="id.53"/>
</codeElement>
<codeElement xmi:id="id.56" xmi:type="action:ActionElement" name="a4" kind="Assign">
<source xmi:id="1id.57" language="Cobol" snippet="MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD"/>
<actionRelation xmi:id="id.58r" xmi:type="action:Reads" to="id.3" from="id.56"/>
<actionRelation xmi:id="id.58w" xmi:type="action:Writes" to="id.8" from="id.56"/>
<actionRelation xmi:id="id.58" xmi:type="action:Flow" to="id.59" from="id.56"/>
</codeElement>
<codeElement xmi:id="id.59" xmi:type="action:ActionElement" name="a5" kind="PlatformAction"s
<source xmi:id="id.60" language="Cobol" snippet="WRITE INDEXED-RECORD"/>
<actionRelation xmi:id="id.61" xmi:type="action:Flow" to="id.64" from="id.59"/>
</codeElement>
<codeElement xmi:id="1id.62" xmi:type="action:ActionElement" name="aé6" kind="Calls">
<source xmi:id="id.é63" language="Cobol" snippet="PERFORM 0020-EXPLAIN-WRITE-ERROR"/>
<actionRelation xmi:id="id.631" xmi:type="action:Flow" to="id.68" from="id.é62"/>
</codeElement>
<codeElement xmi:id="1d.68" xmi:type="action:ActionElement" name="a8" kind="PlatformAction"s>
<source xmi:id="1id.69" language="Cobol" snippet="Close SEQUENTIAL-FILE INDEXED-FILE."/>
</codeElement>
</codeElement >
</model>
<model xmi:id="id.70" xmi:type="platform:PlatformModel">
<platformElement xmi:id="1id.71" xmi:type="platform:DeployedSoftwareSystem" groupedComponent="1id.73"/>
<platformElement xmi:id="id.72" xmi:type="platform:Machine">
<deployedComponent xmi:id="id.73" groupedCode="1id.43"/>
<deployedResource xmi:id="id.74" >
<platformElement xmi:id="id.75" xmi:type="platform:StreamResource">
<abstraction xmi:id="id.76" name="ral" kind="DataAction"s>
<actionRelation xmi:id="id.77" xmi:type="data:HasContent" to="id.l1" from="id.76"/>
<actionRelation xmi:id="id.78" xmi:type="event:HasState" to="id.90" from="id.76"/>
</abstractions>
</platformElement >
<platformElement xmi:id="id.79" xmi:type="platform:FileResource">
<abstraction xmi:id="1id.80" name="ra2" kind="DataAction"s>
<actionRelation xmi:id="id.81" xmi:type="data:HasContent" to="id.4" from="1id.80"/>
</abstractions>
</platformElement >
</deployedResource>
</platformElement >
<platformElement xmi:id="id.82" xmi:type="platform:PlatformAction" name="pal" kind="open"
implementation="id.44">
<abstraction xmi:id="1id.83" name="pal" kind="PlatformAction">
<actionRelation xmi:id="id.84" xmi:type="platform:ManagesResource" to="id.75" from="id.83"/>
<actionRelation xmi:id="id.84e" xmi:type="event:ProducesEvent" to="id.110" from="id.83"/>
</abstractions>
</platformElement >
<platformElement xmi:id="id.85" xmi:type="platform:PlatformAction" name="pa2" kind="open"
implementation="id.44">
<abstraction xmi:id="1id.86" name="pa2" kind="PlatformAction">
<actionRelation xmi:id="id.87" xmi:type="platform:ManagesResource" to="id.79" from="id.86"/>
</abstractions>
</platformElement >
<platformElement xmi:id="id.118" xmi:type="platform:PlatformAction" name="pa3" kind="read"
implementation="id.47">
<abstraction xmi:id="1id.119" name="pa3" kind="EventAction"s>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 265

<actionRelation xmi:id="id.120" xmi:type="event:ProducesEvent" to="id.111" from="id.119"/>
</abstraction>
</platformElement>
<platformElement xmi:id="id.121" xmi:type="platform:PlatformAction" name="pa4" kind="close"
implementation="id.47">
<abstraction xmi:id="1id.122" name="pa4" kind="EventAction"s>
<actionRelation xmi:id="id.123" xmi:type="event:ProducesEvent" to="id.112" from="id.122"/>
</abstraction>
</platformElement>
</model>
<model xmi:id="1d.88" xmi:type="event:EventModel">
<eventElement xmi:id="id.89" xmi:type="event:EventResource" name="sequential-file">
<eventElement xmi:id="1id.90" xmi:type="event:State" name="closed">
<eventElement xmi:id="1id.91" xmi:type="event:Transition" name="trl"s>
<eventRelation xmi:id="1d.92" xmi:type="event:ConsumesEvent" to="id.110" from="id.91"/>
<eventRelation xmi:id="1d.93" xmi:type="event:NextState" to="id.103" from="id.91"/>
<eventRelation xmi:id="1d.94" xmi:type="event:NextState" to="id.95" from="id.91"/>
</eventElement >
</eventElement>
<eventElement xmi:id="1id.95" xmi:type="event:State" name="opened.not at end">
<eventElement xmi:id="id.96" xmi:type="event:Transition" name="tr2">
<eventRelation xmi:id="1id.97" xmi:type="event:ConsumesEvent" to="id.111" from="1id.96"/>
<eventRelation xmi:id="1d.98" xmi:type="event:NextState" to="id.103" from="id.96"/>
<eventRelation xmi:id="1d.99" xmi:type="event:NextState" to="id.95" from="id.96"/>
</eventElement>
<eventElement xmi:id="1d.100" xmi:type="event:Transition" name="tr3">
<eventRelation xmi:id="1d.101" xmi:type="event:ConsumesEvent" to="id.112" from="id.100"/>
<eventRelation xmi:id="1d.102" xmi:type="event:NextState" to="id.90" from="id.100"/>
</eventElement >
</eventElement >
<eventElement xmi:id="1d.103" xmi:type="event:State" name="opened.at end">
<eventElement xmi:id="1d.104" xmi:type="event:Transition" name="tr4">
<eventRelation xmi:id="1d.105" xmi:type="event:ConsumesEvent" to="id.112" from="id.104"/>
<eventRelation xmi:id="1d.106" xmi:type="event:NextState" to="id.90" from="id.104"/>
</eventElement >
<eventElement xmi:id="id.107" xmi:type="event:Transition" name="tr5">
<eventRelation xmi:id="id.108" xmi:type="event:ConsumesEvent" to="id.111" from="1id.107"/>
<eventRelation xmi:id="1d.109" xmi:type="event:NextState" to="1d.103" from="id.107"/>
</eventElement >
</eventElement>
<eventElement xmi:id="1id.110" xmi:type="event:Event" name="open" kind="open"/>
<eventElement xmi:id="1id.111" xmi:type="event:Event" name="read"/>
<eventElement xmi:id="1id.112" xmi:type="event:Event" name="close"/>
</eventElement >
</model>
<model xmi:id="id.113" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.114" xmi:type="code:LanguageUnit"s>
<codeElement xmi:id="id.115" xmi:type="code:StringType" name="X"/>
</codeElement>
</model >
</kdm: Segment >

18.7 Keylndex Class Diagram

The Keylndex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

266 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

DataResource

T

IndexElement [+group ItemUnit
0..* 0.+
{subsets group}
/ +implementation
midox {subsets groupedElement}
ReferenceKey

UniqueKey

Figure 18.5 - KeyIndex Class Diagram

18.7.1 IndexElement Class (generic)

IndexElement class is a generic meta-model element that defines the common properties of the index items and key items
of persistent data stores. IndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the
IndexElement.

Superclass

DataResource

Associations

implementation : ltemUnit[1] The set of ItemUnits that constitute the index.

Constraints:

1. Index owned by a data element should group elements that are owned by that data element.
2. IndexElement should have a stereotype.
Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.

18.7.2 UniqueKey Class

A UniqueKey is a meta-model element that represents primary keys in relational database tables, segments of hierarchical
databases, or indexed files. UniqueKey is a group of columns.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 267

Superclass

IndexElement

Constraints
1. UnigueKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to acertain table or relational database or certain fieldsin an indexed file. A primary
key is one or more columns whose values uniquely identify every row in atable or every record in an indexed file. Normally
an index always exists on the primary key.

18.7.3 ReferenceKey Class

A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a
group of columns.

Superclass

IndexElement
Constraints
1. ReferenceKey owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key isthe primary key of one data structure that is placed into arelated data structure to represent arelationship
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey isa
group of one or more columnsin arelational database table or segment of a hierarchical database or an indexed file that
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or
with itself.

18.7.4 Index Class
An Index class is a meta-model element that represents an index to arelational or hierarchical database or an indexed file.

Superclass
IndexElement
Constraints
1. Index owned by a data element should group ItemUnit elements that are owned by that data element.
Semantics

Index is a mechanism to locate and access data within a database. An index may quote one or more columns and be a
means of enforcing uniqueness on their values.

268 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.8 Key Relations Class Diagram

Figure 18.6 depicts the key relations within the Data Package. A Key is away to access data without reading through an
entire data structure sequentially.

AbstractDataRelations hip

ReferenceKey [+from KeyRelation +to UniqueKey
1 0..* 0..* 1
{redefines from} {subsets inbound} {redefines to}

{subsets outbound}

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceKey in one data container, with a UniqueKey in another container, which
means that there is one and only one key value for that data.

18.8.1 KeyRelationship Class

A KeyRelationship is a meta-model element that represents an association between a ReferenceKey with the
corresponding UniqueKey.

Superclass
AbstractDataRel ationship

Associations

from : ReferenceKey[1] Foreign key is a certain table, segment, or file.
to: UniqueKey[1] Primary key is a certain table, segment, or key.
Semantics

ReferenceK ey is a group of one or more columnsin arelational database table or segment of a hierarchical database or an
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table,
segment, or file, or with itself.

18.9 DataActions Class Diagram

DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 269

runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one
or more code models through the “implementation” association. Each data action may own one or more “ abstracted”
actions, which are used to model detailed resource related semantics.

AbstractActionRelationship
(action) K
P
WritesColumnSet ReadsColumnSet ProducesDataEvent ManagesData HasContent
SLo..* N (S O 0.* 0.* Jo 0.* 0 ondd
{subsets outbound} (subsets inézzn 15 inbound) {subsets outbound} {subsats inbound} {subsets odtbound} {$ubsets inbound} {supsets Ir{]sjtl:ges outbound
{subsets outbound}
+o {redefines to} {redefines to} {redefines to
+o 1 1 {redefines to} +o |1 +Ho 1 +o |1
{redefines to}
ColumnSet DataEvent AbstractDataElement
+kind : String
Fedefines from} {redefines from}
+from | 1
+rom| ActionElement +rom {redefines from}
1 (action)
+rom +rom
1 1
{redefines from} {redefines from}

Figure 18.7 - DataActions Class Diagram

18.9.1 ReadsColumnSet Class

ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:ColumnSet[1] The data resource being accessed.

Constraints

1. This relationship should not be used in Code models.

270 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.

18.9.2 WritesColumnSet Class

WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to

data resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the DataAction
that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:ColumnSet[1] The data resource being accessed.

Constraints
1. This relationship should not be used in Code models.

Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.

18.9.3 ManagesData Class

Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to data
resources where there is no flow of data to or from the resource. ManagesData relationship is similar to Addresses
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass

Action::AbstractActionRelationship

Associations
from:ActionElement[1] “abstracted” action owned by some resource.
to:AbstractDataElement[1] The data resource being accessed.

Constraints

1. This relationship should not be used in Code models.

Semantics

Manages represents a certain change of state to a certain AbstractDataElement.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 271

18.9.4 HasContent Class

HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an
element of a data model with any resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:AbstractDataElement[1] The data resource being accessed.

Constraints

1. This relationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

18.9.5 ProducesDataEvent Class

PoducesDataEvent class follows the pattern of a“resource action relationship.” This relation represents various situations
where an ActionElement produces a DataEvent. The action is usually an “abstracted” action owned by some data
resource.

Superclass

Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource.

to:DataEvent[1] The data event being produced.
Constraints
1. This relationship should not be used in Code models.

Semantics

This relationship represents various situations where an ActionElement produces a DataEvent.

Example

See examples in Section 18.6.2, “Relational Table Class’ and Section 18.6.5, “RecordFile Class.”

272 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Example (Java, embedded SQL, JDBC)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

final String findContractStatement=
"SELECT * FROM contracts c, products p" +
"WHERE ID = ? AND c.product = p.ID ";

public void calculateRecognitions(long contractID)
Connection db=DriverManager.getConnection ("jdbc:odbc:foobar", "sunny","") ;
PreparedStatement stmt=db.prepareStatement (findContractStatement) ;
stmt.setLong (1, contractID) ;
ResultSet contracts=stmt.executeQuery() ;
contracts.next () ;
Money totalRevenue=Money.dollars (contracts.getBigDecimal ("revenue")) ;
MfDate recognitionDate=new MfDate (contracts.getDate ("dateSigned")) ;

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:data="http://www.omg.org/spec/KDM/20160201/data"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:platform="http://www.omg.org/spec/KDM/20160201/platform" name="Data Example">
<model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">
<dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts">
<dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products"s>
<dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>
<itemUnit xmi:id="id.4" name="ID" type="id.172"/>
<itemUnit xmi:id="id.5" name="name" type="1id.173"/>
<itemUnit xmi:id="id.6é" name="type" type="id.173"/>
</dataElement>
<dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts">
<dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>
<dataElement xmi:id="1id.9" xmi:type="data:ReferenceKey" implementation="id.12">
<dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="1id.9"/>
</dataElement>
<itemUnit xmi:id="id.11" name="ID" type="id.1l72"/>
<itemUnit xmi:id="id.12" name="product" type="id.172"/>
<itemUnit xmi:id="1id.13" name="revenue" type="id.174"/>
<itemUnit xmi:id="id.14" name="dateSigned" type="id.175"/>
</dataElement>
</dataElement>
<dataElement xmi:id="id.15" xmi:type="data:DataAction" name="dl" kind="Connect"
implementation="id.79">
<abstraction xmi:id="id.16" name="dal" kind="PlatformAction">
<actionRelation xmi:id="id.20" xmi:type="platform:ManagesResource" to="id.67"/>
</abstractions>
</dataElement>
<dataElement xmi:id="id.21" xmi:type="data:DataAction" name="d2" kind="Select"
implementation="id.90 id.96 id.104">
<gource xmi:id="id.22" language="sqgl"
snippet=""select * from contracts c, products p where ID = ? and c.product=p.ID ""/>
<abstraction xmi:id="id.23" name="wl" kind="Equals">
<codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="t1l" type="id.176" kind="register"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.11" from="id.23"/>
<actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.77" from="id.23"/>
<actionRelation xmi:id="id.27" xmi:type="action:Writes" to="id.24" from="id.23"/>
<actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.29"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 273

</abstraction>
<abstraction xmi:id="1d.29" name="w2" kind="Equals">
<codeElement xmi:id="1id.30" xmi:type="code:StorableUnit" name="t2" type="id.176" kind="register"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.12" from="id.29"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.4" from="id.29"/>
<actionRelation xmi:id="id.33" xmi:type="action:Writes" from="id.29"/>
<actionRelation xmi:id="id.34" xmi:type="action:Flow" to="id.35" from="id.29"/>
</abstraction>
<abstraction xmi:id="1id.35" name="w3" kind="And">
<codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="t3" type="1id.176" kind="register"/>
<actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.24" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.30"/>
<actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.35"/>
</abstraction>
<abstraction xmi:id="1d.40" name="w4" kind="Condition">
<actionRelation xmi:id="id.41" xmi:type="action:TrueFlow" to="id.42" from="1id.40"/>
</abstraction>
<abstraction xmi:id="1id.42" name="sl1" kind="DataAction"s>
<actionRelation xmi:id="id.43" xmi:type="data:ReadsColumnSet" to="id.7" from="id.42"/>
<actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.11" from="id.42"/>
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.12" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.13" from="id.42"/>
<actionRelation xmi:id="id.47" xmi:type="action:Reads" to="id.14" from="id.42"/>
<actionRelation xmi:id="id.48" xmi:type="data:ReadsColumnSet" to="id.2" from="id.42"/>
<actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.4" from="id.42"/>
<actionRelation xmi:id="id.50" xmi:type="action:Reads" to="id.5" from="id.42"/>
<actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.é" from="id.42"/>
<actionRelation xmi:id="id.52" xmi:type="action:Writes" to="1id.103" from="id.42"/>
<actionRelation xmi:id="id.53" xmi:type="platform:ReadsResource" to="id.67" from="id.42"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1d.54" xmi:type="data:DataAction" name="d3" kind="Retrieve"
implementation="id.115">
<abstraction xmi:id="id.55" name="da2" kind="DataAction">
<actionRelation xmi:id="id.56" xmi:type="action:Reads" to="id.13" from="id.55"/>
<actionRelation xmi:id="id.57" xmi:type="action:Addresses" to="id.103" from="id.55"/>
<actionRelation xmi:id="id.58" xmi:type="action:Writes" to="id.117" from="id.55"/>
</abstractions>
</dataElement>
<dataElement xmi:id="id.59" xmi:type="data:DataAction" name="d4" kind="Retrieve"
implementation="id.130">
<abstraction xmi:id="id.60" name="da3" kind="DataAction"s>
<actionRelation xmi:id="id.61" xmi:type="action:Reads" to="id.14" from="id.60"/>
<actionRelation xmi:id="id.62" xmi:type="action:Addresses" to="id.103" from="id.60"/>
<actionRelation xmi:id="id.63" xmi:type="action:Writes" to="id.132" from="id.60"/>
</abstraction>
</dataElement>
</model>
<model xmi:id="id.64" xmi:type="platform:PlatformModel">
<platformElement xmi:id="1id.65" xmi:type="platform:Machine">
<resource xmi:id="id.e6" >
<resource xmi:id="id.67" xmi:type="platform:DataManager" name="foobar">
<abstraction xmi:id="1d.68" name="dml">
<actionRelation xmi:id="id.69" xmi:type="data:HasContent" to="id.1"/>
</abstraction>
</resource>
</resource>
</platformElement >
</model >
<model xmi:id="id.70" xmi:type="code:CodeModel" name="Application">
<codeElement xmi:id="id.70a" xmi:type="code:CodeAssembly" name="DataExample">

274 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<entryFlow xmi:id="id.

70e" to="id.146" from="id.70a"/>

<codeElement xmi:id="1id.71" xmi:type="code:ClassUnit" name="DataExample">

<codeElement xmi:id="

id.72" xmi:type="code:MemberUnit" name="findContractStatement"

isFinal="true" isStatic="true">
<codeRelation xmi:id="1id.73" xmi:type="code:HasValue" to="id.145" from="id.72"/>

</codeElement>
<codeElement xmi:id="
<entryFlow xmi:id="

id.74" xmi:type="code:MethodUnit" name="calculateRecognitions" type="id.76">
id.75" to="id.79" from="id.74"/>

<codeElement xmi:id="id.76" xmi:type="code:Signature"s>
<parameterUnit xmi:id="id.77" name="contractNumber" type="1id.179"/>

</codeElement>

<codeElement xmi:id="id.78" xmi:type="code:StorableUnit" name="db" type="id.155" kind="local"/>
<codeElement xmi:id="id.79" xmi:type="action:ActionElement" name="cl" kind="Call">

<codeElement xmi:
<codeElement xmi:
<codeElement xmi:

id="1d.80" xmi:type="code:Value" name=""jdbc:odbc:foobar""/>
id="1d.81" xmi:type="code:Value" name="&gquot;sunny"" type="id.178"/>
id="1id.82" xmi:type="code:Value" name=""&guot;" type="id.178"/>

<actionRelation xmi:id="id.83" xmi:type="action:Reads" to="id.80" from="id.79"/>
<actionRelation xmi:id="id.84" xmi:type="action:Reads" to="id.81" from="id.79"/>
<actionRelation xmi:id="id.85" xmi:type="action:Reads" to="id.82" from="id.79"/>
<actionRelation xmi:id="id.86" xmi:type="action:Calls" to="id.154" from="id.79"/>
<actionRelation xmi:id="id.87" xmi:type="action:Writes" to="id.78" from="id.79"/>
<actionRelation xmi:id="id.88" xmi:type="action:Flow" to="id.90" from="id.79"/>

</codeElement >

<codeElement xmi:id="id.89" xmi:type="code:StorableUnit" name="stmt" type="id.161" kind="local"/>

<codeElement xmi:id="1d.90" xmi:type="action:ActionElement" name="c2" kind="MethodCall">
<actionRelation xmi:id="1id.91" xmi:type="action:Addresses" to="id.78" from="id.90"/>
<actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.72" from="id.90"/>
<actionRelation xmi:id="id.93" xmi:type="action:Calls" to="id.156" from="id.90"/>
<actionRelation xmi:id="id.94" xmi:type="action:Writes" to="1d.89" from="id.90"/>
<actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.90"/>

</codeElement >

<codeElement xmi:id="1d.96" xmi:type="action:ActionElement" name="c3" kind="MethodCall">

<codeElement xmi:

id="id.97" xmi:type="code:Value" name="1"/>

<actionRelation xmi:id="id.98" xmi:type="action:Addresses" to="id.89" from="id.96"/>
<actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.97" from="id.96"/>
<actionRelation xmi:id="id.100" xmi:type="action:Reads" to="id.77" from="id.96"/>
<actionRelation xmi:id="id.101" xmi:type="action:Calls" to="id.162" from="id.96"/>
<actionRelation xmi:id="id.102" xmi:type="action:Flow" to="id.104" from="id.96"/>

</codeElement>

<codeElement xmi:id="id.103" xmi:type="code:StorableUnit" name="contracts" type="id.157"
kind="1local"/>
<codeElement xmi:id="1d.104" xmi:type="action:ActionElement" name="c4" kind="MethodCall">
<actionRelation xmi:id="id.105" xmi:type="action:Addresses" to="1id.89" from="id.104"/>
<actionRelation xmi:id="id.106" xmi:type="action:Calls" to="1d.163" from="id.104"/>
<actionRelation xmi:id="id.107" xmi:type="action:Writes" to="1d.103" from="id.104"/>
<actionRelation xmi:id="id.108" xmi:type="action:Flow" to="id.109" from="id.104"/>

</codeElement >

<codeElement xmi:id="1d.109" xmi:type="action:ActionElement" name="c5" kind="MethodCall">
<actionRelation xmi:id="id.110" xmi:type="action:Addresses" to="1d.103" from="id.109"/>
<actionRelation xmi:id="id.111" xmi:type="action:Calls" to="1id.158" from="id.109"/>
<actionRelation xmi:id="id.112" xmi:type="action:Flow" to="id.114" from="id.109"/>

</codeElement >

<codeElement xmi:id="1d.113" xmi:type="code:StorableUnit" name="totalRevenue" type="id.165"
kind="1local"/>
<codeElement xmi:id="id.114" xmi:type="action:ActionElement" name="c6" kind="Compound">
<entryFlow xmi:id="id.l1l4e" to="id.115" from="id.114"/>

<codeElement xmi:

id="1d.115" xmi:type="action:ActionElement" name="c6.1" kind="Call">

<codeElement xmi:id="id.116" xmi:type="code:Value" name="&guot;revenue""/>
<codeElement xmi:id="id.117" xmi:type="code:StorableUnit" name="t4" kind="register"/>
<actionRelation xmi:id="id.118" xmi:type="action:Addresses" to="1d.103" from="id.115"/>
<actionRelation xmi:id="id.119" xmi:type="action:Calls" to="1id.159" from="id.115"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 275

<actionRelation xmi:id="id.120" xmi:type="action:Writes" to="id.117" from="id.115"/>
<actionRelation xmi:id="id.121" xmi:type="action:Flow" to="id.122" from="id.115"/>
</codeElement>
<codeElement xmi:id="id.122" xmi:type="action:ActionElement" name="c6.2" kind="Call">
<actionRelation xmi:id="id.123" xmi:type="action:Reads" to="1d.117" from="id.122"/>
<actionRelation xmi:id="id.124" xmi:type="action:Calls" to="id.166" from="id.122"/>
<actionRelation xmi:id="id.125" xmi:type="action:Writes" to="1d.113" from="id.122"/>
<actionRelation xmi:id="id.126" xmi:type="action:Flow" to="1id.129" from="id.122"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.128" xmi:type="code:StorableUnit" name="recognizedDate" type="id.168"
kind="local"/>
<codeElement xmi:id="id.129" xmi:type="action:ActionElement" name="c7" kind="Compound">
<entryFlow xmi:id="id.129e" to="id.130" from="id.129"/>
<codeElement xmi:id="1d.130" xmi:type="action:ActionElement" name="c7.1" kind="Call">
<codeElement xmi:id="id.131" xmi:type="code:Value" name=""dateSigned""/>
<codeElement xmi:id="id.132" xmi:type="code:StorableUnit" name="t5" kind="register"/>
<actionRelation xmi:id="id.133" xmi:type="action:Addresses" to="1d.103" from="id.130"/>
<actionRelation xmi:id="id.134" xmi:type="action:Calls" to="id.160" from="id.130"/>
<actionRelation xmi:id="id.135" xmi:type="action:Writes" to="id.132" from="id.130"/>
<actionRelation xmi:id="id.136" xmi:type="action:Flow" to="id.137" from="id.130"/>
</codeElement>
<codeElement xmi:id="1d.137" xmi:type="action:ActionElement" name="c7.2" kind="New">
<actionRelation xmi:id="id.138" xmi:type="action:Creates" to="id.168" from="id.137"/>
<actionRelation xmi:id="id.139" xmi:type="action:Writes" to="1id.128" from="id.137"/>
<actionRelation xmi:id="id.140" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="id.141" xmi:type="action:ActionElement" name="c7.3" kind="MethodCall"s>
<actionRelation xmi:id="id.142" xmi:type="action:Reads" to="1id.132" from="id.137"/>
<actionRelation xmi:id="id.143" xmi:type="action:Calls" to="id.169" from="id.141"/>
<actionRelation xmi:id="id.144" xmi:type="action:Writes" to="1d.128" from="id.141"/>
</codeElement >
</codeElement>
</codeElement>
<codeElement xmi:id="1d.145" xmi:type="code:Value"
name="" ; SELECT * FROM contracts c, products p WHERE ID=? AND c.product=p.ID&guot;"
type="1d.178"/>
<codeElement xmi:id="1id.146" xmi:type="code:BlockUnit" name="init" kind="Init">
<entryFlow xmi:id="1id.147" to="id.148" from="id.146"/>
<codeElement xmi:id="id.148" xmi:type="action:ActionElement" name="il" kind="Assign">
<actionRelation xmi:id="id.149" xmi:type="action:Reads" to="1d.145" from="id.148"/>
<actionRelation xmi:id="id.150" xmi:type="action:Writes" to="id.72" from="id.148"/>
</codeElement>
</codeElement >
</codeElement>
</model>
<model xmi:id="1d.151" xmi:type="code:CodeModel" name="Java packages">
<codeElement xmi:id="id.152" xmi:type="code:Package" name="java.sqgl">
<codeElement xmi:id="id.153" xmi:type="code:ClassUnit" name="DriverManager">
<codeElement xmi:id="id.154" xmi:type="code:MethodUnit" name="getConnection" kind="abstract"/>
</codeElement>
<codeElement xmi:id="id.155" xmi:type="code:ClassUnit" name="Connection">

<codeElement xmi:id="id.156" xmi:type="code:MethodUnit" name="prepareStatement" kind="abstract"/>

</codeElement>
<codeElement xmi:id="id.157" xmi:type="code:ClassUnit" name="ResultSet">
<codeElement xmi:id="id.158" xmi:type="code:MethodUnit" name="next" kind="abstract"/>
<codeElement xmi:id="id.159" xmi:type="code:MethodUnit" name="getBigDecimal" kind="abstract"/>
<codeElement xmi:id="id.160" xmi:type="code:MethodUnit" name="getDate" kind="abstract"/>
</codeElement >
<codeElement xmi:id="1id.161" xmi:type="code:ClassUnit" name="Statement"s>
<codeElement xmi:id="id.162" xmi:type="code:MethodUnit" name="setLong" kind="abstract"/>

276 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeElement xmi:id="id.163" xmi:type="code:MethodUnit" name="executeQuery" kind="abstract"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.164" xmi:type="code:Package" name="Money">
<codeElement xmi:id="1d.165" xmi:type="code:ClassUnit" name="Money">
<codeElement xmi:id="id.166" xmi:type="code:MethodUnit" name="dollars" kind="abstract"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.167" xmi:type="code:Package" name="MfDate">
<codeElement xmi:id="id.168" xmi:type="code:ClassUnit" name="MfDate">
<codeElement xmi:id="id.169" xmi:type="code:MethodUnit" name="MfDate" kind="abstract"/>
</codeElement>
</codeElement>
</model>
<model xmi:id="id.170" xmi:type="code:CodeModel" name="Common Datatypes">
<codeElement xmi:id="id.171" xmi:type="code:LanguageUnit" name="SQL datatypes">
<codeElement xmi:id="1d.172" xmi:type="code:IntegerType" name="sqgl int"/>
<codeElement xmi:id="id.173" xmi:type="code:StringType" name="sgl varchar"/>
<codeElement xmi:id="1d.174" xmi:type="code:DecimalType" name="sgl decimal"/>
<codeElement xmi:id="id.175" xmi:type="code:DateType" name="sgl date"/>
<codeElement xmi:id="id.176" xmi:type="code:BooleanType"/>
</codeElement>
<codeElement xmi:id="1id.177" xmi:type="code:LanguageUnit" name="Java datatypes">
<codeElement xmi:id="id.178" xmi:type="code:StringType"/>
<codeElement xmi:id="1d.179" xmi:type="code:IntegerType" name="java long"/>
<codeElement xmi:id="1d.180" xmi:type="code:IntegerType" name="java byte"/>
</codeElement>
</model>
</kdm: Segment >

18.10 StructuredData Class Diagram

The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram
shown in Figure 18.8 captures these classes and their relations.

AbstractDataElement
q—
—
XMLSchema AbstractContentElement
0.1 0.*
rowner +contentElement

{subsets owner} {subsets ownedElement}

Figure 18.8 - StructuredData Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

277

18.10.1 XMLSchema

The XML Schema class represents the top level container for a KDM metamodel of an XML document.

Superclass

AbstractDataElement

Associations

contentElement :AbstractContentElement[0..*] Individual content elements owned by this schema.

Semantics

XMLSchemais alogical container for AbstractContentElements as well as some other DataResource elements (for
example, DataEvents).

18.10.2 AbstractContentElement (abstract)

The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the
content of XML schemas and documents as well as various structured data items that can be associated with other KDM
elements.

Superclass

AbstractDataElement

Semantics

AbstractContentElement represents common properties of content elements.

18.11 ContentElements Class Diagram

The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 18.9 captures these classes and their relations.

278 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

+contentElement

+contentElement {subsets ownedElement}
{subsets ownedElement, ordered} AbstractContentElement

0.* 0.*

{subsets owner}
+owner (0..1
+owner
(SUbSetS owner} 0.1 \

0.1 +ype ContentType Contentltem

ComplexContentType +type 0.*

0.1

/ MemberTypes

MixedContent

0.*
SimpleContentType
+kind : String

ContentElement

GroupContent

ContentAttribute

ContentReference

ChoiceContent

AllContent

ContentRestriction
+kind : String
SeqContent +value : String

Figure 18.9 - ContentElements Class Diagram

18.11.1 Contentltem (generic)

The Contentltem class is a generic meta-model element that represents named items and references of the XML schema:
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*] owned content el ements
type:ComplexContentType[0..1] content type of the current Contentltem
Semantics

18.11.2 ComplexContentType

The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as
subclasses of ComplexContentType.

Superclass

AbstractContentElement

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 279

Associations

contentElement :AbstractContentElement[0..*] owned content elements

Semantics
18.11.3 SimpleContentType
The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

kind:String content kind of the current SimpleContentType

Associations

type:ComplexContentType[0..*] content type of the current Contentltem

Semantics

Simple types, such as string and decimal, are built in to XML Schema, while others are derived from the built-in’s. The
kind of SimpleContentType can be “list,” “union,” “enumeration,” etc.

18.11.4 ContentRestriction

The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

Attributes
kind :String Type of the content restriction (XML)
value:String Value of the constraint

Semantics

kind isan XSD restriction, such as minExclusive, minlnclusive, maxExclusive, maxInclusive, total Digits, fractionDigits,
length, minLength, maxLength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs,
maxQOccurs, required, fixed; or an XSD enumeration.

Example (XSD)

<xsd:simpleType name="myInteger"s>
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>

280 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<xsd:maxInclusive value="99999"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AK"/>
<xsd:enumeration value="AL"/>
<xsd:enumeration value="AR"/>
<!-- and soon ... -->
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="1istOfMyIntType">
<xs8d:1list itemType="myInteger"/>
</xsd:simpleType>

<xsd:simpleType name="USStateList">
<xs8d:list itemType="USState"/>
</xsd:simpleType>

<xsd:simpleType name="SixUSStates">
<xsd:restriction base="USStateList">
<xsd:length value="6"/>
</xsd:restrictions>
</xsd:simpleType>

<xsd:simpleType name="zipUnion">
<xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:data="http://www.omg.org/spec/KDM/20160201/data"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="XML Simple Content Example">
<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="SimpleType examples">
<contentElement xmi:id="id.2" xmi:type="data:SimpleContentType" name="MyInteger"s
<dataRelation xmi:id="id.3" xmi:type="data:RestrictionOf" to="id.27" from="id.2"/>
<contentElement xmi:id="id.4" xmi:type="data:ContentRestriction"
kind="minInclusive" value="10000"/>
<contentElement xmi:id="id.5" xmi:type="data:ContentRestriction"
kind="maxInclusive" value="99999"/>
</contentElements>
<contentElement xmi:id="id.6é" xmi:type="data:SimpleContentType" name="SKU">
<dataRelation xmi:id="id.7" xmi:type="data:RestrictionOf" to="id.29" from="id.2"/>
<contentElement xmi:id="id.8" xmi:type="data:ContentRestriction"
kind="pattern" value=""\d{3}-[A-Z]{2}""/>
</contentElement>
<contentElement xmi:id="id.9" xmi:type="data:SimpleContentType" name="USState">
<contentElement xmi:id="id.10" xmi:type="data:ContentRestriction"
kind="enumeration" value="" ;AK""/>
<contentElement xmi:id="id.11" xmi:type="data:ContentRestriction"
kind="enumeration" value=""AL""/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 281

<contentElement xmi:id="id.12" xmi:type="data:ContentRestriction"
kind="enumeration" value=""AR&guot;"/>
</contentElement>
<contentElement xmi:id="1id.13" xmi:type="data:SimpleContentType" name="1listOfMyIntType">
<contentElement xmi:id="1d.14" xmi:type="data:ListContent">
<dataRelation xmi:id="1id.15" xmi:type="data:TypedBy" to="id.2" from="id.14"/>
</contentElement >
</contentElement>
<contentElement xmi:id="id.16" xmi:type="data:SimpleContentType" name="USStateList">
<contentElement xmi:id="id.17" xmi:type="data:ListContent" name="">
<dataRelation xmi:id="id.18" xmi:type="data:TypedBy" to="id.9" from="id.l17"/>
</contentElement>
</contentElement >
<contentElement xmi:id="1d.19" xmi:type="data:SimpleContentType" name="SixUSStates">
<dataRelation xmi:id="1id.20" xmi:type="data:RestrictionOf" to="id.16" from="id.19"/>
<contentElement xmi:id="id.21" xmi:type="data:ContentRestriction" kind="length" value="6"/>
</contentElement>
<contentElement xmi:id="id.22" xmi:type="data:SimpleContentType" name="zipUnion">
<contentElement xmi:id="id.23" xmi:type="data:UnionContent">
<dataRelation xmi:id="id.24" xmi:type="data:TypedBy" to="id.9" from="id.23"/>
<dataRelation xmi:id="1id.25" xmi:type="data:TypedBy" to="id.13" from="id.23"/>
</contentElement >
</contentElement>
</dataElement>
<dataElement xmi:id="id.26" xmi:type="data:XMLSchema" name="xsd">
<contentElement xmi:id="1d.27" xmi:type="data:SimpleContentType" name="xsd:Integer">
<dataRelation xmi:id="1id.28" xmi:type="data:DatatypeOf" to="id.41" from="id.27"/>
</contentElement >
<contentElement xmi:id="1d.29" xmi:type="data:SimpleContentType" name="xsd:String">
<dataRelation xmi:id="1id.30" xmi:type="data:DatatypeOf" to="id.42" from="id.29"/>
</contentElement >
<contentElement xmi:id="1d.31" xmi:type="data:SimpleContentType" name="xsd:Decimal">
<dataRelation xmi:id="1id.32" xmi:type="data:DatatypeOf" to="id.43" from="id.31"/>
</contentElement >
<contentElement xmi:id="1d.33" xmi:type="data:SimpleContentType" name="xsd:positiveInteger">
<dataRelation xmi:id="1id.34" xmi:type="data:DatatypeOf" to="id.41" from="id.33"/>
</contentElement >
<contentElement xmi:id="1d.35" xmi:type="data:SimpleContentType" name="xsd:date">
<dataRelation xmi:id="1id.36" xmi:type="data:DatatypeOf" to="id.44" from="id.35"/>
</contentElement >
<contentElement xmi:id="id.37" xmi:type="data:SimpleContentType" name="xsd:any"/>
<contentElement xmi:id="id.38" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>
</dataElement>
</model >
<model xmi:id="1id.39" xmi:type="code:CodeModel">
<codeElement xmi:id="id.40" xmi:type="code:LanguageUnit">
<codeElement xmi:id="id.41" xmi:type="code:IntegerType" name="xsd integer"/>
<codeElement xmi:id="id.42" xmi:type="code:StringType" name="xsd string"/>
<codeElement xmi:id="id.43" xmi:type="code:DecimalType" name="xsd decimal"/>
<codeElement xmi:id="id.44" xmi:type="code:DateType" name="xsd date"/>
</codeElement>
</model>
</kdm: Segment >

282 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

18.11.5 AllContent Class

An AllContent class is a meta-model element that represents complex types with the “all” order indicator.

Superclass

ComplexContentType

Semantics

18.11.6 SeqgContent Class

The SegContent class is a meta-model element that represents complex types with the “sequence” order indicator.

Superclass

ComplexContentType

Semantics

18.11.7 ChoiceContent Class

A ChoiceContent class is a meta-model element that represents complex types with the “choice” order indicator.

Superclass

XMLComplexType

Semantics

18.11.8 GroupContent Class

A GroupContent class is a meta-model element that represents complex types with the “group” group indicator.

Superclass

ComplexContentType

Semantics

18.11.9 MixedContent Class

A MixedContent class is a meta-model element that represents complex types with the “mixed” indicator.

Superclass

ComplexContentType
Semantics

18.11.10 ContentAttribute Class

A ContentAttribute class is a meta-model element that represents the XML “attribute” declaration mechanism of XML
Schemas.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 283

Superclass

Contentltem

Semantics

18.11.11 ContentElement Class

A ContentElement class is a meta-model element that represents the XML “element” declaration mechanism of XML
Schemas.

Superclass

Contentltem

Semantics

18.11.12 ContentReference Class

A ContentReference class is a meta-model element that represents the XML “reference” declaration mechanism of XML
Schemas.

Superclass

Contentltem
Semantics

Example (XSD)

<xsd:element name="letterBody">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="salutation"s>
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="quantity" type="xsd:positivelnteger"/>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
<!-- etc. -->

</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="USAddress" >
<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

284 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity"s>
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger"s>
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="internationalPrice">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:attribute name="currency" type="xsd:string"/>
<xsd:attribute name="value" type="xsd:decimal"/>
</xsd:restrictions>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="PurchaseOrderType'">
<xsd:sequence>
<xsd:choice>
<xsd:group ref="gshipAndBill"/>
<xsd:element name="singleUSAddress" type="USAddress"/>
</xsd:choice>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:group id="shipAndBill"s>
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
</xsd:sequence>
</xsd:group>

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:data="http://www.omg.org/spec/KDM/20160201/data"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm" name="XML Complex Content
<model xmi:id="id.O0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="Complex Content"s>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Example">

285

<contentElement xmi:id="id.2" xmi:type="data:ContentElement" name="letterBody">
<dataRelation xmi:id="id.3" xmi:type="data:TypedBy" to="id.4" from="id.2"/>
<contentElement xmi:id="id.4" xmi:type="data:MixedContent" name="ml">

<contentElement xmi:id="id.5" xmi:type="data:SegContent">

<contentElement xmi:id="id.é" xmi:type="data:ContentElement" name="salutation"s>
<dataRelation xmi:id="id.7" xmi:type="data:TypedBy" to="id.8" from="id.é6"/>

<contentElement xmi:id="id.8" xmi:type="data:MixedContent">
<contentElement xmi:id="id.9" xmi:type="data:SegContent">

<contentElement xmi:id="1d.10" xmi:type="data:ContentElement" name="name">

<dataRelation xmi:id="id.11" xmi:type="data:TypedBy" to="id.88" from="id.10"/>

</contentElement>
</contentElement>
</contentElement>
</contentElement>
<contentElement xmi:id="1id.12" xmi:type="data:ContentElement"

<dataRelation xmi:id="1id.13" xmi:type="data:TypedBy" to="id.

</contentElement>
<contentElement xmi:id="1id.14" xmi:type="data:ContentElement"

<dataRelation xmi:id="1id.15" xmi:type="data:TypedBy" to="id.

</contentElement>
<contentElement xmi:id="id.16" xmi:type="data:ContentElement"

<dataRelation xmi:id="1id.17" xmi:type="data:TypedBy" to="id.

</contentElement>
</contentElement>
</contentElement>
</contentElement>

name="quantity">
92" from="id.12"/>

name="productName" >
88" from="id.14"/>

name="shipDate">
94" from="id.16"/>

<contentElement xmi:id="1id.18" xmi:type="data:ComplexContentType" name="USAddress">

<contentElement xmi:id="id.19" xmi:type="data:SegContent">

<contentElement xmi:id="1d.20" xmi:type="data:ContentElement" name="name">
<dataRelation xmi:id="1id.21" xmi:type="data:TypedBy" to="id.88" from="id.20"/>

</contentElement>

<contentElement xmi:id="1d.22" xmi:type="data:ContentElement" name="street">
<dataRelation xmi:id="1id.23" xmi:type="data:TypedBy" to="id.88" from="id.22"/>

</contentElement>

<contentElement xmi:id="1d.24" xmi:type="data:ContentElement" name="city">
<dataRelation xmi:id="1id.25" xmi:type="data:TypedBy" to="id.88" from="id.24"/>

</contentElement>

<contentElement xmi:id="1d.26" xmi:type="data:ContentElement" name="state">
<dataRelation xmi:id="1id.27" xmi:type="data:TypedBy" to="id.88" from="id.26"/>

</contentElement>

<contentElement xmi:id="1d.28" xmi:type="data:ContentElement" name="zip">
<dataRelation xmi:id="1id.29" xmi:type="data:TypedBy" to="id.88" from="id.28"/>

</contentElement>
</contentElement>

<contentElement xmi:id="1d.30" xmi:type="data:ContentAttribute" name="country"s>

<dataRelation xmi:id="id.31" xmi:type="data:TypedBy" to="id.97"

from="id.30"/>

<contentElement xmi:id="1d.32" xmi:type="data:ContentRestriction"

kind="fixed" value=""US""/>
</contentElement>
</contentElement>

<contentElement xmi:id="1id.33" xmi:type="data:ComplexContentType" name="items">

<contentElement xmi:id="id.34" xmi:type="data:SegContent">

<contentElement xmi:id="1d.35" xmi:type="data:ContentElement" name="item">
<dataRelation xmi:id="1id.36" xmi:type="data:TypedBy" to="id.39" from="id.35"/>

<contentElement xmi:id="1id.37" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>

<contentElement xmi:id="1d.38" xmi:type="data:ContentRestriction"

kind="maxOccurs" value="unbounded"/>

<contentElement xmi:id="1id.39" xmi:type="data:ComplexContentType" name="1i">

<contentElement xmi:id="1d.40" xmi:type="data:SegContent">

<contentElement xmi:id="id.41" xmi:type="data:ContentElement" name="productNamel">
<dataRelation xmi:id="1id.42" xmi:type="data:TypedBy" to="id.88" from="id.41"/>

286 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</contentElement >

<contentElement xmi:id="id.43" xmi:type="data:ContentElement" name="quantityl"s>
<dataRelation xmi:id="1id.44" xmi:type="data:TypedBy" to="id.45" from="id.43"/>
<contentElement xmi:id="1id.45" xmi:type="data:SimpleContentType" name="stl">

<dataRelation xmi:id="1id.46" xmi:type="data:RestrictionOf" to="id.92" from="id.45"/>

<contentElement xmi:id="1id.47" xmi:type="data:ContentRestriction"
kind="maxExclusive" value="100"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1id.48" xmi:type="data:ContentElement" name="USPrice">
<dataRelation xmi:id="1id.49" xmi:type="data:TypedBy" to="id.90" from="id.48"/>
</contentElement>
<contentElement xmi:id="id.50" xmi:type="data:ContentReference">

<dataRelation xmi:id="id.51" xmi:type="data:ReferenceTo" to="id.83" from="id.50"/>

<contentElement xmi:id="id.52" xmi:type="data:ContentRestriction"
kind="minOccurs" value="0"/>
</contentElement>
<contentElement xmi:id="id.53" xmi:type="data:ContentElement" name="shipDatel">
<dataRelation xmi:id="1id.54" xmi:type="data:TypedBy" to="id.94" from="id.53"/>
</contentElement>
</contentElement>
<contentElement xmi:id="id.55" xmi:type="data:ContentAttribute" name="partNum">
<dataRelation xmi:id="1id.56" xmi:type="data:TypedBy" from="id.55"/>
<contentElement xmi:id="id.57" xmi:type="data:ContentRestriction"
kind="use" value="required"/>
</contentElement>
</contentElement>
</contentElement>
</contentElement>
</contentElements>
<contentElement xmi:id="1id.58" xmi:type="data:ContentElement" name="international price">
<contentElement xmi:id="1d.59" xmi:type="data:ComplexContentType" name="">
<dataRelation xmi:id="1d.60" xmi:type="data:RestrictionOf" to="id.96" from="id.59"/>
<contentElement xmi:id="id.61" xmi:type="data:ContentAttribute" name="currencyl"s>
<dataRelation xmi:id="id.62" xmi:type="data:TypedBy" to="id.88" from="id.61"/>
</contentElement>
<contentElement xmi:id="1id.63" xmi:type="data:ContentAttribute" name="value">
<dataRelation xmi:id="id.64" xmi:type="data:TypedBy" to="id.90" from="id.é61"/>
</contentElement>
</contentElement >
</contentElement>
<contentElement xmi:id="id.65" xmi:type="data:ComplexContentType" name="PurchaseOrderType">
<contentElement xmi:id="id.66" xmi:type="data:SegContent">
<contentElement xmi:id="1d.67" xmi:type="data:ChoiceContent">
<contentElement xmi:id="id.68" xmi:type="data:ContentReference">
<dataRelation xmi:id="1id.69" xmi:type="data:ReferenceTo" to="id.79" from="id.é8"/>
</contentElement>
<contentElement xmi:id="id.70" xmi:type="data:ContentElement" name="singleUSAddress">
<dataRelation xmi:id="id.71" xmi:type="data:TypedBy" to="id.18" from="id.70"/>
</contentElement>
</contentElement>
<contentElement xmi:id="id.72" xmi:type="data:ContentReference">
<dataRelation xmi:id="id.73" xmi:type="data:ReferenceTo" to="id.83" from="id.72"/>

<contentElement xmi:id="1id.74" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>

</contentElement>
<contentElement xmi:id="1id.75" xmi:type="data:ContentElement" name="items">
<dataRelation xmi:id="id.76" xmi:type="data:TypedBy" to="id.33" from="id.75"/>
</contentElement>
</contentElement>
<contentElement xmi:id="id.77" xmi:type="data:ContentAttribute" name="orderDate">
<dataRelation xmi:id="1id.78" xmi:type="data:TypedBy" to="id.94" from="id.77"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

</contentElement>
</contentElement>

<contentElement xmi:id="id.79" xmi:type="data:GroupContent" name="shipAndBill">

<contentElement xmi:id="id.80" xmi:type="data:SegContent">
xmi:id="id.81" xmi:type="data:ContentElement"/>
xmi:id="1d.82" xmi:type="data:ContentElement"/>

<contentElement
<contentElement
</contentElement>
</contentElement>
<contentElement xmi
<dataRelation xmi
</contentElement>
</dataElement>

<dataElement xmi:id="id.85" xmi:type="data:XMLSchema" name="xsd">

<contentElement xmi:
<dataRelation xmi
</contentElement>
<contentElement xmi
<dataRelation xmi
</contentElement>
<contentElement xmi
<dataRelation xmi
</contentElement>
<contentElement xmi
<dataRelation xmi
</contentElement>
<contentElement xmi
<dataRelation xmi
</contentElement>
<contentElement xmi
<contentElement xmi
</dataElement>
</model>

id="id.86" xmi:type="data:

:1d="1id.87" xmi:type="data:
:1d="1d.88" xmi:type="data:
:1d="1d.89" xmi:type="data:
:1d="1d.90" xmi:type="data:
:1d="1id.91" xmi:type="data:
:1d="1id.92" xmi:type="data:
:1d="1d.93" xmi:type="data:
:1d="1d.94" xmi:type="data:
:1d="1id.95" xmi:type="data:
:1d="1id.96" xmi:type="data:
:1d="1id.97" xmi:type="data:

<model xmi:id="1id.98" xmi:type="code:CodeModel">

SimpleContentType"
DatatypeOf"

SimpleContentType"
DatatypeOf"

SimpleContentType"
DatatypeOf"

SimpleContentType"
DatatypeOf"

SimpleContentType"
DatatypeOf"

SimpleContentType"
SimpleContentType"

to="1id.

to="1id.

to="1id.

to="1id.

to="1id.

:1d="1d.83" xmi:type="data:ContentElement" name="comment"x>
:id="1d.84" xmi:type="data:TypedBy" to="1id.88" from="1id.83"/>

name="xsd:Integer">
100" from="id.86"/>

name="xsd:String">
101" from="id.88"/>

name="xsd:Decimal" >
102" from="id.90"/>

name="xsd:positiveInteger">
100" from="id.92"/>

name="xsd:date">
103" from="id.94"/>

name="xsd:any"/>
name="xsd:NMTOKEN" />

<codeElement xmi:id="1id.99" xmi:type="code:LanguageUnit">

<codeElement xmi:id="1d.100" xmi:type="code:IntegerType" name="xsd integer"/>
<codeElement xmi:id="id.101" xmi:type="code:StringType" name="xsd string"/>
<codeElement xmi:id="1d.102" xmi:type="code:DecimalType" name="xsd decimal"/>
<codeElement xmi:id="id.103" xmi:type="code:DateType" name="xsd date"/>
</codeElement>
</model>

</kdm: Segment >

18.12 ContentRelations Class Diagram

The ContentRelations class diagram provides basic meta-model relationships that represent various structural properties
of the content. The class diagram shown in Figure 18.10 captures these classes and their relations.

288 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

AbstractDataRelationship

N Kt
A
DatatypeOf RestrictionOf ExtensionTo TypedBy ReferenceTo
0.* 0.* 0.* 0.* 0.* 0.* 0.* |0.* 0.* 0.*
{subpets inbound} {subsats outbolind} {subsets outbqund} {subsets inbound} {subsets outbgund} {subsets inbound}
{subsats outbound} {subgets inbound} [subsets inbound} subsefs outbol dé .
u{}e efines from}
+from |1
{redef|nes to} ! Ho)
+o [1 1 Contentitem ~ [{redefines to}
Datatype +rom
(code) {redefings to} {redefings fron} +o {redefines from}
Hrom (1 +o |1 +rom (1 1 .
) {redefines to}
{redefines from}
1 ComplexContentType 1
+o

+rom {redefines to}
{redefines from}

Figure 18.10 - ContentRelations Class Diagram

18.12.1 TypedBy Class

The TypedBY class represents the relationship between a Contentltem and a content type, that can be represented by a
ComplexContentType class or one of its subclasses.

Superclass

AbstractDataRel ationship

Associations

from:Contentltem[1] the content element or attribute

to:ComplexContentType[1] the content type element
Constraints
1. The “from” endpoint should be a ContentElement or a ContentAttribute class.

Semantics

TypedBYy relationship represents an association between a content element and its type when this type is user-defined.
This relationship is similar to HasType from CodeM odel.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 289

18.12.2 DatatypeOf Class

The DatatypeOf class represents the rel ationship between a ComplexContentType and a Datatype defined in some Code
model.

Superclass

AbstractDataRel ationship

Associations

from:ComplexContentType[1] the content type
to:Datatype[1] the datatype element
Semantics

DatatypeOf relationship represents an association between a content type and primitive datatype.

18.12.3 ReferenceTo Class

The ReferenceTo class represents the rel ationship between a ContentReference and a ContentElement, ContentAttribute, or
ContentGroup definition.

Superclass

AbstractDataRel ationship

Associations

from:Contentltem[1] the content reference

to:Contentltem[1] the content element or attribute or group

Constraints
1. The “from” endpoint should be a ContentReference.
2. The “to” endpoint should be a ContentElement, a ContentAttribute, or GroupContent.

Semantics

ReferenceTo relationship represents an association between a content reference and the corresponding definition.

18.12.4 ExtensionTo Class

The ExtensionTo class represents the relationship between two content types, where one type is an extension to another. The
semantics of deriving new types by extension isthat asthe result a new complex type or simple typeis defined that contains all
the elements of the original type plus additional elementsthat are provided as the extension.

Superclass

AbstractDataRel ationship

290 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:ComplexContentType[1] the new (extended) content type

to:ComplexContentType[1] the base content type

Constraints
Semantics

ExtensionTo relationship represents an association between a content type and its base type.

18.12.5 RestrictionOf Class

The RestrictionOf class represents the relationship between two content types, where one typeis arestriction to another. The
semantics of deriving new types by restriction isthat as the result a new complex type or simple typeis defined that contains
al the elements and constraints of the original type plus additional constraints that are provided as the restriction.

Superclass

AbstractDataRel ationship

Associations

from:ComplexContentType[1] the new (restricted) content type
to:ComplexContentType[1] the base content type
Semantics

RestrictionOf relationship represents an association between a content type and its base type.

18.13 ExtendedDataElements Class Diagram

The ExtendedDataElements class diagram defines two viewpoint-specific generic elements for the data model as
determined by the KDM model pattern: a generic data entity and a generic data relationship.

The classes and associations of the ExtendedDataElements diagram are shown in Figure 18.11.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 201

AbstractDataRelationship

+rom +o
{redefines from} {redefines to
AbstractDataFlement DataRelationship KDMEntity
(core)
1 0.* 0..* 1
AN
{subsets outbound} {subsets inbound}

ExtendedDataElement

Figure 18.11 - ExtendedDataElements Class Diagram

18.13.1 ExtendedDataElement Class

The ExtendedDataElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractDataElement
Constraints

1. ExtendedDataElement should have at least one stereotype.

Semantics

A data entity with under specified semantics. It is a concrete class that can be used as the base element of a new extended
meta-model entity type of the data model. Thisis one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

18.13.2 DataRelationship Class

The DataRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractDataRel ationship

Associations

from:AbstractDataElement[1] the data element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

292 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. DataRelationship should have at least one stereotype.

Semantics

A data relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship types of the data model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 293

294 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Subpart IV - Abstractions Layer

Abstraction Layer defines a set of meta-model elements that represent domain-specific and application-specific
abstractions, as well as artifacts related to the build process of the exsting software system. The meta-model elements of
the Abstractions Layer provide various containers and groups to other meta-model elements.

Abstractions Layer defines the following 3 KDM Models:
* Structure
e Conceptua
» Build

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 295

296 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

19 Structure Package

19.1 Overview

Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same

system.

The Structure package defines an architecture viewpoint for the Structure domain. The architectural views based on the
viewpoint defined by the Structure model represent how the structural elements of the software system are related to the
modules defined in the Code views that correspond to the Code architectural viewpoint defined by the Code model. The
architectural viewpoint is defined as follows.

e Concerns

What are the structural elements of the system, and what is the organization of these elements?
What software elements compose the system?
How the structural elements of the system are related to the computational elements?

What are the connections of these elements based on the rel ati onships between the corresponding computational
elements?

What are the interfaces of the structural elements of the system?

* Viewpoint language:

Structure views conform to KDM XMI schema. The viewpoint language for the Structure architectural viewpoint
is defined by the Structure package. It includes abstract entity AbstractStructureElement, and several concrete
entities, such as Subsystem, Layer, Component, SoftwareSystem, ArchitectureView. The viewpoint language for
the Structure architectural viewpoint also includes an abstract relationship AbstractStructureRelationship.

e Analytic methods:

The Structure architectural viewpoint supports the following main kinds of checking:

Attachment (are components properly connected)?

Coupling and cohesion (the number of interna relationship within a component compared to the number of
relationships to other components).

Efferent and afferent relationship (uses of a component by other components and usages of other component by
the given component).

Interfaces (what is the required and provided interface of the given component).

Structure Views are used in combination with Code views, Data views, Platform views, Ul views and Inventory
views. Specifically, Structure views corresponding to this architectural viewpoint represent how the structural
elements of the software system are related to the modules defined in the Code views that correspond to the Code
architectural viewpoint, defined by the Code package.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 297

¢ Construction methods:

e Structure views that correspond to the KDM Structure architectural viewpoint are usually constructed by
analyzing architecture models of the given system. The Structure extractor tool uses the knowledge of the
architecture models to produce one or more Structure views as output.

e Asandternative, structure views can be produced manually using the input from the architect of the system and
architecture documentation.

« Construction of the Structure view is determined by the architectural description of the system.

« Construction of the Structure views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). Thisinformation can be attached to KDM
elements using stereotypes, attributes, or annotations.

The organization of the system may be presented as a single Structure view or a set of multiple Structure view showing
layers, components, subsystems, or packages. The reach of this representation extends from a uniform architecture to
entire family of module-sharing subsystems.

The Structure model owns a collection of Structural Element instances.

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete,
non-overlapping parts. An undifferentiated architecture is represented by a single Package.

Structural Group recursively gathers Structural Elements to represent various architectural divisions. The Software System
subclass provides a gathering point for all the system’s packages directly or indirectly through other Structure elements.
The packages may be further grouped into Subsystems, Layers, and Components, or Architecture Views.

19.2 Organization of the Structure Package

The Structure package defines a collection of meta-model elements whose purpose is to represent architectural
organization of the existing software system.

The Structure package consists of the following 3 class diagrams:
* StructureModel
* Structurel nheritances
» ExtendedStructureElements
The Structure package depends on the following packages:
* Core

e kdm

19.3 StructureModel Class Diagram

The StructureModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to high-level structural elements and their associations. The class diagram shown in
Figure 19.1 captures these classes and their relations.

298 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

StructureModel

+model

0..1
{subsets model}

+structureElement

+structurg

{subsets ownedElement}

+owner

0.*

{subset

0.*

Element
5 ownedElement}

AbstractStructureRelationship

+structureRelationship | 0..*
{subsets ownedRelation}

AbstractStructureElement

+grloup +implementation

{subsets owner}

0.1

0..* 0.*

Subsystem

Component

Layer

Figure 19.1 - StructureModel Class Diagram

19.3.1 StructureModel Class

{subsets group} {subsets groupedElement}

KDMEntity
(core)

SoftwareSystem ArchitectureView

The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all
of the system’s Structural Elements.

Superclass

KDMModel

Associations

structureElement: AbstractStructureElement[0..*]

Semantics

structure elements owned by the model

19.3.2 AbstractStructureElement Class (abstract)

The AbstractStructureElement represents an architectural part, related to the organization of the existing software system

into modules.

Superclass

K DMEntity

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

299

Associations

structureElement:AbstractStructureElement[0..*] structure elements owned by the model
structureRelationship:AbstractStructureRelationship[0..*] structure relations that originate from this structure element

implementation:KDMEntity[0..*] Group association to KDMEntity that are represented by the
current StructureElement.

Semantics
19.3.3 AbstractStructureRelationship Class (abstract)
The AbstractStructureRel ationship class.

Superclass

KDMRelationship

Semantics

19.3.4 Subsystem Class

The Subsystem collects the architectural parts of a software subsystem. The parts may be any other Structural Element.

Superclass

AbstractStructureElement
Semantics

19.3.5 Layer Class

The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any
other Structural Element.

Superclass

AbstractStructureElement
Semantics

19.3.6 Component Class

The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural
component.

Superclass

AbstractStructureElement

Semantics

300 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

19.3.7 SoftwareSystem Class
The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.

Superclass

AbstractStructureElement

Semantics

19.3.8 ArchitectureView Class

The ArchitectureView class represents an arbitrary architectural view, as defined by 1SO 42010. Within a KDM instance
an ArchitectureView element may be used in a Structure model either stand-alone or in combination with other elements
defined by the Structure package. The KDM ArchitectureView own a collection of KDM entities that corresponds to a
particular architectural view of the software system. To conform to the ISO 42010 requirements for architectural
description, the creator of the KDM instance should further document the corresponding architectural viewpoint by using
a stereotype to the ArchitectureView element, attributes, or annotations.

Superclass

AbstractStructureElement

Semantics

19.4 Structurelnheritances Class Diagram

The Structurel nheritances class diagram shown in Figure 19.2 depicts how the meta-model elements defined in the
Structure package are related to the meta-model elements defined in the Core package. Each of the Structure Package
classes within this diagram inherits certain properties from KDM classes defined within the Core Package.

KDMMode/ KDMEntity KDMRelations hip
(kdm) (core) (core)
StructureModel AbstractStructureElement AbstractStructureRelationship

Figure 19.2 - Structurelnheritances Class Diagram

19.5 ExtendedStructureElements Class Diagram

The ExtendedStructureElements class diagram defines two viewpoint-specific generic elements for the structure model as
determined by the KDM model pattern: a generic structure entity and a generic structure relationship.

The classes and associations of the ExtendedStructureElements diagram are shown in Figure 19.3.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 301

AbstractStructureRelationship

+rom +o
{redefines from} {redefines to}
AbstractStructureElement StructureRelationship KDMEntity
7 o 0.~] (core)
{subsets outbound} {subsets inbound}

StructureElement

Figure 19.3 - ExtendedStructureElements Class Diagram

19.5.1 StructureElement Class (generic)

The StructureElement class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureElement

Constraints
1. StructureElement should have at |least one stereotype.
Semantics

A structure entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the structure model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

19.5.2 StructureRelationship Class (generic)

The StructureRelationship class is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureRel ationship

Associations

from:AbstractStructureElement[1] the structure element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

302 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints
1. StructureRelationship should have at least one stereotype.

Semantics

A structure relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the structure model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 303

304 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20 Conceptual Package

20.1 Overview

The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model
during the analysis phase of knowledge discovery from existing code.

The Conceptual package defines an architectural viewpoint for the Business Rules domain.

« Concerns.

What are the domain terms implemented by the system?
What are the behavior elements of the system?
What are the business rules implemented by the system?

What are the scenarios supported by the system?

* Viewpoint language:

Conceptual views conform to KDM XMI schema. The viewpoint language for the Conceptual architectural
viewpoint is defined by the Conceptual package. It includes abstract entity AbstractConceptual Element, and
several concrete entities, such as TermUnit, FactUnit, RuleUnit, Scenario, BehaviorUnit. The viewpoint language
for the Conceptual architectural viewpoint also includes ConceptualFlow relationship, which is a subclass of an
abstract relationship AbstractConceptual Relationship.

¢ Analytic methods:

The Conceptual architectural viewpoint supports the following main kinds of checking:

Conceptual relationships (what are the relationshi ps between conceptual entities, based on their implementation
by the Code and Data entities?)

Scenario flow (what are the control flow relationship between the two scenarios based on the flow between
action elements referenced by each scenario).

BehaviorUnit coupling (what are the control flow and data flow relationships between two behavior units based
on the action elements referenced by each behavior unit).

Business Rule analysis (what is the logic of the business rule based on the action elements referenced by the
businessrule).

Conceptual Views are used in combination with Code views, Data views, Platform views, Ul views, and
Inventory views.

¢ Construction methods:

Conceptua views can be produced manually using the input from the information analysis and the architect of
the system and architecture documentation.

Construction of the Conceptual view is determined by the domain model and the architectural description of the
system.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 305

* Construction of the Conceptual views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). Thisinformation can be attached to KDM
elements using stereotypes, attributes, or annotations.

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently,
it provides “concept” classes - TermUnit, FactUnit, RuleUnit, and Conceptual Role facilitating representation of the
elements from external ontologies and SBVR vocabularies as parts of uniform KDM fact models.

These meta-model elements support the process of mining higher level (conceptual) information from lower-level KDM
models and capturing it as additional KDM entities and relationship, thus allowing further analysis of an enriched model.

The ConceptualModel also provides “behavior” types - BehaviorUnit and ScenarioUnit that support mapping to various
external models including but not limited to activities/flow chart and swim lane diagrams, and use case scenarios. The
following explains the difference between these “behavior” types:

« BehaviorUnit represents a behavior graph with several paths through the application logic and associated conditions.
The “implementation” of this graph is provided by the ActionElements connected with Flow relations, from the
Program Elements KDM layer. The graph can be as small as asingle ActionElement. BehaviorUnit is an “ abstraction”
of ActionElements since it provides a modeling element for representing a collection of ActionElementsthat is
meaningful from the application domain perspective, and further manipulate with this representation as afirst class
citizen of the ConceptualModel of KDM.

« ScenarioUnit represents a path (or multiple related paths) through the behavior graph. For example, ScenarioUnit
corresponds to atrace through the systems, or a*“use case.” ScenarioUnit can own an entire collection of
BehaviorUnits, connected with Conceptual Flow elements and can thus represent a lice of the original behavior graph
in the implementation of the software system. The conditions responsible for navigation between alternative paths
within the graph can be represented as RuleUnits.

* RuleUnit represents a condition, a group of conditions, or a constraint. RuleUnit is a representation for some
meaningful navigation conditions within behavior graphs represented by several BehaviorUnits.

20.2 Organization of the Conceptual Package

The Conceptua package defines meta-model elements that represent high-level, high-value application-specific
“conceptual” elements of existing software systems and their traceability to other KDM facts.

The Conceptual Package consists of the following 5 class diagrams:

« ConceptuaModel

« Conceptual Inheritances

« Conceptual Elements

» Conceptua Relations

» ExtendedConceptual Elements

The Conceptual package depends on the following packages:

Core
kdm

306 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20.3 ConceptualModel Class Diagram

The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They
provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships
between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge
discovery from existing code. The ConceptualModel diagram defines meta-model elements to represent application-
specific “concept” types, “fact” types, and “rules.” An example of a “concept” is a“customer,” or a “savings account.”
An example of a“fact” is a “customer opens a hew savings account.” An example of a“rule” is“if the initial amount of
money in a saving account is greater than $1000.00, then offer a higher interest account.” Even in a well-designed system
an application-domain specific concept, like “customer” is rarely mapped one-to-one to a single programming language
construct that can be directly discovered in the source code of the existing system. Instead, such “concept” is
implemented by multiple programming language constructs, often spanning multiple source files, programming
languages, and technologies. These KDM meta-model objects and relationships between them provide the foundation for
mining business rules and other high-value application-specific knowledge from existing code.

ConceptualModel follows the regular KDM pattern of extending the common Infrastructure framework by defining a
specific KDM model class, an abstract superclass of all modeling elements in the ConceptualModel - the
AbstractConceptual Element class. ConceptualModel provides another abstract superclass for all relationships, specific to
this model - AbstractConceptual Relationship class. All meta-model elements of the ConceptualModel extend the
AbstractConceptual Element class and implement the “model” and “ownedRelation” properties. Each entity of the
ConceptualModel can own relationships, specific to this model. According to this pattern, each entity should own
relationships that originate from this entity (i.e., the value of the “from” property should be equal to the id of the owner
of the relationship). This framework provides several extension points for the KDM light-weight extension mechanism. In
particular, in accordance to the general KDM pattern, the ConceptualModel framework includes a generic extensible
modeling element Conceptual Element, and a generic Conceptual Relationship class.

The class diagram shown in Figure 20.1 captures these classes and their relations.

ConceptualModel +model

0..1
{subsets rodel} AbstractConceptualRelations hip

+conceptualRelation | 0..*

{subsets ownedRelation}

+conceptualElement
{subsets ownedElement}

0..*
AbstractConceptualElement 1 KDMEntity
+group +implementation (core)
0.* 0.*
+rowner 0.1 {subsets group}

{subsets owner}
{subsets groupedElement}

{subsets ownedElement}
+abstraction | 0..*

ActionElement
(action)

Figure 20.1 - ConceptualModel Class Diagram

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 307

20.3.1 ConceptualModel

The ConceptualModel class is a specific KDM model that owns collections of facts about conceptual elements
implemented by a given existing software system.

Superclass

KDMM odel

Associations

conceptualElement:AbstractConceptualElement[0..*] Identifies the root “ concept” elements of the hierarchy of the
conceptual elements contained in the model. The
ConceptualModel can contain zero or more such trees.

Semantics

20.3.2 AbstractConceptualElement (abstract)

AbstractConceptual Element class is the top superclass for the ConceptualModel. It defines several common properties for
al further meta-model elements in the Conceptual Package. In particular, it defines the fundamental “implementation”
property - a KDM grouping mechanism to link conceptual elements to the implementation elements. The
“implementation” property represents the set of elements in lower-level KDM model that represents implementation-
specific high-fidelity knowledge of the software system. The “implementation” property realizes the mapping between the
implementation of a certain concept to the KDM entity representing this concept - some concrete subclass of the
AbstractConceptual Element. The set of KDM entities available through the “implementation” property becomes the
“extent” of the application-specific concept being represented by the conceptual element. The conceptual element itself
becomes the “handle” for the otherwise intangible and abstract high-value application domain specific concept.

It is expected that building conceptual models in general, and especially, determining the appropriate “implementation
set,” is a difficult value-added knowledge discovery process that may involve domain experts and application experts.
KDM framework provides the intermediate representation for capturing the knowledge generated by this process.

Superclass

K DM Entity

Associations

conceptualRelation:AbstractConceptualRelation[0..*] For each concrete instance of AbstractConceptual Element this
property represents the set of conceptual relationships that
originate from this element.

implementation:KDMEntity[0..*] For each concrete instance of AbstractConceptual Element this
property represents the set of KDM entities that realize the
high-level concept in the low-level artifacts of the existing
system.

abstraction:ActionElement[0..*] This element represents action elements that are owned by the
conceptual element and that represent semantic associations for
the conceptual element.

308 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints

1. For each conceptual element, the value of the from property of each conceptual relationship, owned by this
element, should be equal to the identity of this element (the “relationship encapsulation” pattern).

20.3.3 AbstractConceptualRelationship Class (abstract)

The AbstractConceptual Relationship class is determined by the KDM model pattern. It provides a common superclass for
specific KDM relationships, defined in the Conceptual package.

Semantics

20.4 Conceptuallnheritances Class Diagram

The Conceptual I nheritance class diagram defines how the conceptual meta-model elements fit into the KDM
Infrastructure. The ConceptualInheritances class diagram is shown in Figure 20.2.

KDMMode/ KDMEntity KDMRelationship
(kdm) (core) (core)
ConceptualModel AbstractConceptualElement AbstractConceptualRelationship

Figure 20.2 - Conceptuallnheritances Class Diagram

20.5 ConceptualElements Class Diagram

Conceptual Elements class diagram defines specific KDM modeling elements for representing domain-specific concepts as
they areimplemented by existing software systems. These elements are concrete subclasses of the AbstractConceptual Element
class.

The classes and association of the Conceptual Elements class diagram are shown at Figure 20.3.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 309

+conceptualElement AbstractConceptualElement *eonceptualElement

0.. ’
{subsets ownedElement} Rqgle
0.*
ConceptualRole
: TermUnit
+owner ConceptualContainer

0.1
{subsets owner}

FactUnit BehaviorUnit

RuleUnit ScenarioUnit

Figure 20.3 - ConceptualElements Class Diagram

20.5.1 ConceptualContainer Class

The Conceptual Container classis a generic meta-model element that represents a container for conceptual entities. Several
other concrete conceptual elements are subclasses of Conceptual Container, so that they can also own other conceptual
elements. The purpose of the Conceptual Container meta-model element isto facilitate hierarchical organization and grouping
of “concepts” within Conceptual Model. Conceptual Container also can be used as an extended modeling element with a
stereotype.

Superclass

AbstractConceptual Element

Associations

conceptual Element: AbstractConceptual Element[0..*] Elements that are owned by this container.

Constraints

1. ConceptualUnit should not own Conceptual Role elements.

310 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20.5.2 TermUnit

The TermUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or
PlatformResource layer. From the knowledge discovery perspective, such collection may include program elements
involved in the implementation of a certain application domain concept. A TermUnit then provides a representation of
such concept inside the KDM model, which can be used for further analysis and later exported into a business rule
modeling tool in the process known as application business rules mining. The TermUnit class is aligned with SBVR term
or name concepts. Semantically, a TermUnit represents some “noun concept.”

Superclass

AbstractConceptual Element

Semantics

20.5.3 FactUnit

The FactUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
behavior of the software system (for example, aformulafor caculating an allowance can be considered as a fact) or some
property of the software system meaningful in the application domain. FactUnit may be also associated with an arbitrary
collection of the KDM entities. A FactUnit then provides a representation of such property inside the KDM model which
can be used for further analysis and later exported into a business rule modeling tool in the process known as application
business rules mining. The FactUnit class is aligned with SBVR fact type concept. Semantically, a FactUnit represents a
“verb concept,” or an “objectified verb concept,” that can be later used as a noun.

Superclass

Conceptual Container

Semantics

20.5.4 RuleUnit

The RuleUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
condition or constraint in the software system (for example, a condition under which an allowance can be increased, or a
statement that a certain property should always be satisfied). RuleUnit also may be associated with an arbitrary collection
of the KDM entities (these often involve action elements that represent conditions). A RuleUnit then provides a
representation of such condition or constraint inside the KDM model that can be used for further analysis and |ater
exported into a business rule modeling tool in the process known as application business rules mining. The RuleUnit class
is aligned with SBVR rule concept. Semantically, a RuleUnit uses some base “verb concept” (usually represented as a fact
type) and adds to it obligation, necessity, qualifications, quantifications, conditions, etc.

Superclass

Conceptual Container

Semantics

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 311

20.5.5 ConceptualRole

The Conceptual Rol e class represents a role played by a participant in a conceptual association, such as a FactUnit or a
RuleUnit. Conceptual Rol e elements are owned by some container, a subclass of Conceptua Unit. The Conceptual Role element
provides a placeholder for capturing the name of thisrole as the “name” attribute of the class. Additional annotations or
stereotypes can be provided by using the KDM light-weight extension mechanism.

Superclass

AbstractConceptual Unit

Associations

conceptual Element: A bstractConceptual Element[1] Represents the participant in the association for the given
role.

Semantics

Multiple Conceptual Role elements can be associated with the same AbstractConceptual Element.

20.5.6 BehaviorUnit Class

The BehaviorUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or Platform
Resource layer. From the knowledge discovery perspective, such collection may represent some behavior meaningful in
the application domain (or simply interesting for the analysis, understanding, and modernization of the software system).
A BehaviorUnit then provides a representation of such behavior inside the KDM model that can be used for further
analysis. In particular, larger slices of the program logic can be represented as collections of BehaviorUnit elements
linked by Conceptual Flow relationships.

The BehaviorUnit class represents a behavior graph with several paths through the application logic. The
“implementation” of this graph is provided by the ActionElements connected with Flow relations, from the Program
Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” of
ActionElements since it provides a modeling element for representing a collection of ActionElements that is meaningful
from the application domain perspective, and further manipulate with this representation as a first class citizen of the
ConceptualModel of KDM.

Superclass

Conceptual Container

20.5.7 ScenarioUnit Class

ScenarioUnit represents a path (or multiple related paths) through the behavior graph of the application logic. For
example, ScenarioUnit corresponds to a trace through the systems, or a “use case.” The “implementation” of thisgraph is
provided by the ActionElements connected with Flow relations, from the Program Elements KDM layer. Semantically, the
difference between a BehaviorUnit and a ScenarioUnit is that a BehaviorUnit is an abstraction of behavior, while
ScenarioUnit is an abstraction of atrace. For example, an interesting formula, or an algorithm can be represented as a
BehaviorUnit rather than a ScenarioUnit. On the other hand, an interesting data flow path through the application can be
represented as a ScenarioUnit rather than a BehaviorUnit. ScenarioUnit can own an entire collection of BehaviorUnits,
connected with Conceptual Flow elements and can thus represent a slice of the original behavior graph in the
implementation of the software system. The conditions responsible for navigation between alternative paths within the
graph can be represented as RuleUnits.

312 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Superclass

Conceptual Container

20.6 ConceptualRelations Class Diagram

Conceptual Relations class diagram defines specific conceptual relationship called Conceptual Flow. The classes and
associations involved in the Conceptual Relations class diagram are shown in Figure 20.4.

AbstractConceptualRelationship

{subsets outbound} T {subsets inbound}
ConceptualFlow

0..* 0..*

+rom AbstractConceptualElement +o

1 1
{redefines from} {redefines to}

Figure 20.4 - ConceptualRelations Class Diagram

20.6.1 ConceptualFlow Class

The Conceptual Flow class is a KDM relationship defined for the conceptual model. It represents the fact that one
behavior may be continued into some other behavior. When multiple Conceptual Flow relations exist for a given
conceptual element (according to the KDM relationship encapsulation pattern, these relationships should be owned by the
conceptual element and the “from” property of the relationship should be equal to the identity of the element), this means
that the behavior represented by that conceptual element may be continued by either of these flows nondeterministically.
The follow-up behavior is designated by the conceptual element represented by the “to” property of the Conceptual Flow
relationship. When the “to” endpoint of the Conceptual Flow relationship designates a container, this means that any
behavior from that container can be the continuation of the initial behavior. When the “from” endpoint of the
Conceptual Flow relationship is a container, this means that any behavior element owned by that container can be used as
the initial behavior. This relationship provides an abstraction for the Flow relations in the Program Elements layer.
Conceptual Flow relation provides a modeling element for representing behavior slices of the application logic that are
meaningful from the application domain perspective, and further manipul ate with this representation as afirst class citizen
of the ConceptualModel of KDM.

Superclass

AbstractConceptual Relationship

Associations

from: AbstractConceptualElement[1] represents the initial behavior

to:AbstractConceptualElement[1] represents a potential follow-up behavior

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 313

Example

Form Definition
Program TransactionsApproval File Name: MM0319.Hfm

010 Fieldl - Customer ID
011 Field2 - Customer First Name
012 Field3 - Customer Last Name

013 Field4 (list) - Account Number
014 Field5 (list) - Account Type
015 Fieldeée (list) - Account Balance

Program
Program TransactionsApproval File Name: MMO0245.HLa

Program begin

100 // Definitions of variables mapable to the form fields
101 Define Cust_ID(Char 20)

102 Define Cust FName (Char 25)

103 Define Cust_ LName (Char 35)

104 Define Acc_Numb (Char 12) [10]

105 Define Acc_Type(Char 2) [10]

106 Define Acc_Balance (Currency) [10]
107

108 // Definition of other variables
109 Define Bal (Currency)

110 Define Ind(Integer)

111 Define AdjustedBal (Currency)

112 Define ApproveTrans (Boolean)

113 Define Allowance (Currency)

150 // Populating variables entered in the form
151 Fieldl -> Cust_ID

152 Field2 -> Cust_FName

153 Field3 -> Cust_LName

154 Field4[1] -> Acc_Numb[0]

155 Field5[1] -> Acc_Type[O0]

156 Field6[1] -> Acc_Balance[0]

200 // Processing

201 Allowance = $100.00 // The allowance shall be calculated for each customer
202 Ind =1

203 Bal = Acc_Balance[Ind - 1]

204 AdjustedBal = Bal + Allowance

240 If(AdjustedBal > $1000.00)
241 Then ApproveTrans = True
242 Else ApproveTrans = False

Program end

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:action="http://www.omg.org/spec/KDM/20160201/action"
xmlns:code="http://www.omg.org/spec/KDM/20160201/code"
xmlns:conceptual="http://www.omg.org/spec/KDM/20160201/conceptual"

314 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"

xmlns:source="http://www.omg.org/spec/KDM/20160201/source"

xmlns:ui="http://www.omg.org/spec/KDM/20160201/ui" name="Conceptual Example">

<model xmi:id="id.O0" =xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">

<codeElement xmi:id="id.2" xmi:type="code:StorableUnit" name="Cust_ ID"

type="1id.127" ext="Char 20" size="20">
<comment xmi:id="id.3" text="// Definitions of variables mapable to the form fields"/>

</codeElement>

<codeElement xmi:id="id.4" =xmi:type="code:StorableUnit" name="Cust_ FName"
type="1id.127" ext="Char 25" size="25"/>

<codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="Cust_LName"
type="1id.127" ext="Char 35" size="35"/>

<codeElement xmi:id="id.é" xmi:type="code:StorableUnit" name="Acc_ Numb"

type="1id.7" ext="" gize="1">
<codeElement xmi:id="id.7" xmi:type="code:ArrayType" size="10">
<itemUnit xmi:id="id.8" name="Acc Numb[]" type="1id.127" ext="Char 12" size="12"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="Acc_ Type"
type="1d.10" ext="" size="1">
<codeElement xmi:id="id.10" =xmi:type="code:ArrayType" size="10">
<itemUnit xmi:id="id.11" name="Acc_Type[]" type="id.127" ext="Char 2" size="2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.12" =xmi:type="code:StorableUnit" name="Acc_Balance"
type="1d.13" ext="" size="1">
<codeElement xmi:id="id.13" =xmi:type="code:ArrayType" size="10">
<itemUnit xmi:id="id.14" name="Acc_Balance[]" type="1id.128" ext="Currency" size="2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.15" xmi:type="code:StorableUnit" name="Bal"
type="1d.128" ext="" size="1" kind="local">
<comment xmi:id="id.16" text="// Definition of other variables"/>
</codeElement >
<codeElement xmi:id="id.17" xmi:type="code:StorableUnit" name="Ind"
type="1id.129" ext="" gize="1" kind="local"/>
<codeElement xmi:id="id.18" xmi:type="code:StorableUnit" name="AdjustedBal"
type="1id.128" ext="" sgize="1" kind="local"/>
<codeElement xmi:id="id.19" =xmi:type="code:StorableUnit" name="ApprovedTrans"
type="1id.130" ext="" size="1" kind="local"/>
<codeElement xmi:id="id.20" xmi:type="code:StorableUnit" name="Allowance"
type="1id.128" ext="" gize="1" kind="local"/>

<codeElement xmi:id="id.21" xmi:type="action:ActionElement" name="il" kind="Assign"s>
<source xmi:id="id.22" language="Hla" snippet="Fieldl -> Cust ID"/>
<comment xmi:id="id.23" text="// Populating variables entered in the form"/>
<codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="Fieldl"
type="1id.127" kind="register"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.24" from="id.21"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.2" from="id.21"/>
<actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.21"/>
</codeElement>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement" name="i2" kind="Assign"s>
<source xmi:id="id.29" language="Hla" snippet="Field2 -> Cust_ FName"/>
<codeElement xmi:id="id.30" =xmi:type="code:StorableUnit" name="Field2"
type="1id.127" kind="register"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.30" from="id.28"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.4" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
</codeElement >
<codeElement xmi:id="id.34" xmi:type="action:ActionElement" name="i3" kind="Assign">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 315

316

<source xmi:id="1id.35"
<codeElement xmi:id="id.36"
type="1id.127"
<actionRelation xmi:id="id.
<actionRelation xmi:id="id.
<actionRelation xmi:id="id.
</codeElement >
<codeElement xmi:id="id.40"
<source xmi:id="id.41"
<codeElement xmi:id="id.42"
<codeElement xmi:id="1id.43"
type="1id.127"

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.
</codeElement>

<codeElement xmi:id="id.49"
<source xmi:id="id.50"
<codeElement xmi:id="id.51"
<codeElement xmi:id="id.52"
type="id.127"

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.
</codeElement >

<codeElement xmi:id="id.58"
<source xmi:id="1id.59"
<codeElement xmi:id="id.e0"
<codeElement xmi:id="id.e1"
type="1id.127"

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.
</codeElement >

<codeElement xmi:id="id.e67"
<source xmi:id="id.e8"
<comment xmi:id="id.69"
<comment xmi:id="id.70"
<codeElement xmi:id="id.71"
<actionRelation xmi:id="id.
<actionRelation xmi:id="id.
<actionRelation xmi:id="id.

</codeElement >

<codeElement xmi:id="id.75"
<source xmi:id="id.76"
<codeElement xmi:id="id.77"

language="Hla"

language="Hla"

snippet="Field3 ->
xmi:type="code:StorableUnit"

kind="register"/>

37" xmi:type="action:Reads" to="id.36"
38" xmi:type="action:Writes"
39" xmi:type="action:Flow" to

xmi:type="action:ActionElement"
language="Hla"

snippet="Field5[1]
xmi:type="code:Value" name="
xmi:type="code:StorableUnit"

kind="register"/>

Cust_LName"/>
name="Field3"

from="id.34"/>
from="1id.34"/>
from="id.34"/>

to="id.5"

="id.40"
name="i4" kind="ArrayReplace">
-> Acc_Typel[0]"/>

0" type="id.129"/>

name="Field4"

44" xmi:type="action:Reads" to="id.42" from="id.40"/>
45" xmi:type="action:Addresses" to="id.9" from="id.40"/>
46" xmi:type="action:Reads" to="id.43" from="id.40"/>
47" xmi:type="action:Writes" to="id.8" from="id.40"/>
48" xmi:type="action:Flow" to="id.49" from="id.40"/>

xmi:type="action:ActionElement"
language="Hla"

snippet="Field4 [1]
xmi:type="code:Value" name="
xmi:type="code:StorableUnit"

kind="register"/>

snippet="Field6 [1]
xmi:type="code:Value" name="
xmi:type="code:StorableUnit"

kind="register"/>

text="// Processing"/>
text="// The allowance shall be calculated for each customer"/>

xmi:type="code:Value" name="

72" xmi:type="action:Reads" to="id.71"
73" xmi:type="action:Writes"
74" xmi:type="action:Flow" to

xmi:type="action:ActionElement"
language="Hla"

snippet="Ind =1"/>
xmi:type="code:Value" name="

<actionRelation xmi:id="id.78"
<actionRelation xmi:id="id.79"
<actionRelation xmi:id="id.s8o0"
</codeElement >
<codeElement xmi:id="id.81"
<source xmi:id="id.s82"

xmi:type="action:Reads" to="1id.77"

xmi:type="action:Writes"
xmi:type="action:Flow" to

xmi:type="action:ActionElement"

name="1i5" kind="ArrayReplace">
-> Acc_Numb[0]"/>
0" type="id.129"/>
name="Field5"

53" xmi:type="action:Reads" to="id.51" from="id.49"/>

54" xmi:type="action:Addresses" to="id.é" from="id.49"/>

55" xmi:type="action:Reads" to="id.52" from="id.49"/>

56" xmi:type="action:Writes" to="id.1l1l" from="id.49"/>

57" xmi:type="action:Flow" to="id.58" from="1id.49"/>
xmi:type="action:ActionElement" name="i6" kind="ArrayReplace">

-> Acc_Balance[0]"/>
0" type="id.129"/>
name="Fielde"

62" xmi:type="action:Reads" to="id.60" from="id.58"/>
63" xmi:type="action:Addresses" to="id.12" from="id.58"/>
64" xmi:type="action:Reads" to="id.61" from="id.58"/>
65" xmi:type="action:Writes" to="id.14" from="id.58"/>
66" xmi:type="action:Flow" to="id.67" from="id.21"/>
xmi:type="action:ActionElement" name="pl" kind="Assign">
language="Hla" snippet="Allowance = $100.00 "/>

100.00" type="id.128"/>
from="id.67"/>
from="id.67"/>

from="id.67"/>

to="id.20"
="id.75"
name="p2" kind="Assign">

1" type="id.129"/>
from="1id.75"/>

to="id.17" from="id.75"/>
="id.49" from="id.75"/>
name="p3" kind="Compound"s>

language="Hla" snippet="Bal = Acc_Balance[Ind - 1]"/>

<codeElement xmi:id="1id.83"
<codeElement xmi:id="id.84"

xmi:type="code:Value" name="
xmi:type="code:StorableUnit"

1" type="id.129"/>
name="t1"

type="1id.129"

ext="" kind="register"/>

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<codeElement xmi:id="id.85" =xmi:type="action:ActionElement" name="p3.1" kind="Subtract"s
<actionRelation xmi:id="id.86" xmi:type="action:Reads" to="id.l17" from="id.81"/>
<actionRelation xmi:id="id.87" xmi:type="action:Reads" to="id.83" from="id.81"/>
<actionRelation xmi:id="id.88" xmi:type="action:Writes" to="id.84" from="id.81"/>
<actionRelation xmi:id="id.89" xmi:type="action:Flow" to="id.90" from="id.85"/>

</codeElement>

<codeElement xmi:id="id.90" =xmi:type="action:ActionElement" name="p3.2" kind="ArraySelect">
<actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.14" from="1id.90"/>
<actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.84" from="id.81"/>
<actionRelation xmi:id="1id.93" xmi:type="action:Writes" to="id.15" from="id.81"/>

</codeElement >

<actionRelation xmi:id="id.94" xmi:type="action:Flow" to="id.85" from="id.81"/>

<actionRelation xmi:id="1d.95" xmi:type="action:Flow" to="id.96" from="id.81"/>

</codeElement >
<codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="p4" kind="Assign"s>

<source xmi:id="id.97" language="Hla" snippet="AdjustedBal = Bal + Allowance"/>
<actionRelation xmi:id="id.98" xmi:type="action:Reads" to="id.15" from="id.96"/>
<actionRelation xmi:id="1d.99" xmi:type="action:Reads" to="id.20" from="id.96"/>
<actionRelation xmi:id="1d.100" xmi:type="action:Writes" to="1d.18" from="id.96"/>
<actionRelation xmi:id="id.101" xmi:type="action:Flow" to="id.49" from="id.96"/>

</codeElement>
<codeElement xmi:id="1d.102" xmi:type="action:ActionElement" name="p5" kind="Assign">

<source xmi:id="id.103" language="Hla" snippet="If (AdjustedBal > $1000.00)"/>
<codeElement xmi:id="id.104" =xmi:type="code:StorableUnit" name="t2"
type="1id.130" kind="register"/>

<codeElement xmi:id="id.105" xmi:type="action:ActionElement" name="p5.1" kind="GreaterThan"s>
<codeElement xmi:id="1d.106" xmi:type="code:Value" name="1000.00" type="id.128"/>
<actionRelation xmi:id="id.107" =xmi:type="action:Reads" to="id.18" from="id.105"/>
<actionRelation xmi:id="id.108" xmi:type="action:Reads" to="id.106" from="id.105"/>
<actionRelation xmi:id="id.109" =xmi:type="action:Writes" to="id.104" from="id.105"/>
<actionRelation xmi:id="1d.110" xmi:type="action:Flow" to="id.111" from="id.105"/>

</codeElement >

<codeElement xmi:id="id.111" xmi:type="action:ActionElement" name="p5.2" kind="GreaterThan">
<actionRelation xmi:id="id.112" xmi:type="action:Reads" to="id.104" from="id.111"/>
<actionRelation xmi:id="id.113" xmi:type="action:TrueFlow" to="id.115" from="id.111"/>
<actionRelation xmi:id="id.114" xmi:type="action:FalseFlow" to="id.120" from="id.111"/>

</codeElement >

<codeElement xmi:id="id.115" xmi:type="action:ActionElement" name="pé6" kind="Assign">

<source xmi:id="id.116" language="Hla" snippet="Then ApproveTrans = True"/>
<codeElement xmi:id="1d.117" xmi:type="code:Value" name="true" type="id.130"/>

<actionRelation xmi:id="id.118" xmi:type="action:Reads" to="id.117" from="id.115"/>
<actionRelation xmi:id="id.119" =xmi:type="action:Writes" to="id.19" from="id.115"/>

</codeElement >

<codeElement xmi:id="id.120" xmi:type="action:ActionElement" name="p7" kind="Assign">

<source xmi:id="id.121" language="Hla" snippet="Else ApproveTrans = False"/>
<codeElement xmi:id="1id.122" xmi:type="code:Value" name="false" type="id.130"/>

<actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.122" from="id.120"/>
<actionRelation xmi:id="id.124" xmi:type="action:Writes" to="id.19" from="id.120"/>

</codeElement >

<actionRelation xmi:id="id.125" xmi:type="action:Flow" to="id.105" from="id.102"/>

</codeElement>
</codeElement >
<codeElement xmi:id="1id.126" xmi:type="code:LanguageUnit">
<codeElement xmi:id="1id.127" xmi:type="code:StringType"/>
<codeElement xmi:id="id.128" xmi:type="code:DecimalType" name="Currency"/>
<codeElement xmi:id="id.129" xmi:type="code:IntegerType"/>
<codeElement xmi:id="1id.130" xmi:type="code:BooleanType"/>
</codeElement >
</model>
<model xmi:id="id.131" xmi:type="source:InventoryModel">

<inventoryElement xmi:id="1id.132" xmi:type="source:Directory" path="SOURCES\HLanguage">

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

317

<inventoryElement xmi:id="1id.133" xmi:type="source:SourceFile" name="mm0245.Hla"
path="mm0245.Hla"/>
<inventoryElement xmi:id="id.134" =xmi:type="source:SourceFile" name="mm0319.Hfm"
path="mm0319.Hfm"/>
</inventoryElement>
<inventoryElement xmi:id="1id.135" xmi:type="source:Directory" path="SOURCES\Hlib"/>
</model>
<model xmi:id="1d.136" xmi:type="ui:UIModel">
<UIElement xmi:id="1d.137" xmi:type="ui:Screen" name="Customer Information"s>
<UIElement xmi:id="1d.138" xmi:type="ui:UIField" name="Customer ID">
<abstraction xmi:id="1d.139" name="f1">
<actionRelation xmi:id="id.140" xmi:type="action:Writes" to="id.24" from="id.139"/>
</abstractions>
</UIElement>
<UIElement xmi:id="1d.141" xmi:type="ui:UIField" name="Customer First Name">
<abstraction xmi:id="1id.142" name="f2">
<actionRelation xmi:id="id.143" xmi:type="action:Writes" to="1d.30" from="id.142"/>
</abstractions>
</UIElement>
<UIElement xmi:id="1d.144" xmi:type="ui:UIField" name="Customer Last Name">
<abstraction xmi:id="id.145" name="£f3">
<actionRelation xmi:id="id.146" xmi:type="action:Writes" to="id.36" from="id.145"/>
</abstraction>
</UIElement>
<UIElement xmi:id="1d.147" xmi:type="ui:UIField" name="Account Number"s>
<abstraction xmi:id="1d.148" name="f4">
<actionRelation xmi:id="id.149" xmi:type="action:Writes" to="id.43" from="id.148"/>
</abstractions>
</UIElement>
<UIElement xmi:id="1d.150" xmi:type="ui:UIField" name="Account Type">
<abstraction xmi:id="id.151" name="f5">
<actionRelation xmi:id="id.152" xmi:type="action:Writes" to="id.52" from="id.151"/>
</abstractions>
</UIElement>
<UIElement xmi:id="1d.153" xmi:type="ui:UIField" name="Account Balance">
<abstraction xmi:id="id.154" name="f6">
<actionRelation xmi:id="id.155" xmi:type="action:Writes" to="id.é61" from="id.154"/>
</abstraction>
</UIElement>
</UlElement>
</model>
<model xmi:id="id.156" xmi:type="conceptual:ConceptualModel" name="Customer Information"s>
<conceptualElement xmi:id="id.157" xmi:type="conceptual:TermUnit" name="AccountBalance"
implementation="id.15 id.12 id.17 id.153"/>
<conceptualElement xmi:id="id.158" xmi:type="conceptual:TermUnit" name="MaxAdjustedBalance"
implementation="1id.106"/>
<conceptualElement xmi:id="id.159" xmi:type="conceptual:TermUnit" name="AllowanceAmount"
implementation="id.71"/>
<conceptualElement xmi:id="id.160" xmi:type="conceptual:TermUnit" name="Allowance"
implementation="id.20"/>
<conceptualElement xmi:id="id.161" =xmi:type="conceptual:TermUnit" name="AdjustedBalance"
implementation="1id.18"/>
<conceptualElement xmi:id="id.162" xmi:type="conceptual:TermUnit" name="AccountBalanceField"
implementation="id.153"/>
<conceptualElement xmi:id="id.163" xmi:type="conceptual:FactUnit"
name="AdjustedBalanceUnderThreshold" implementation="1d.105">
<conceptualRelation xmi:id="1d.164" xmi:type="conceptual:ConceptualFlow"
to="id.178" from="id.163"/>
<conceptualRelation xmi:id="1d.165" xmi:type="conceptual:ConceptualFlow"
to="id.183" from="id.163"/>
<conceptualElement xmi:id="id.166" =xmi:type="conceptual:ConceptualRole" name="Adjusted Balance"

318 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

conceptualElement="1id.161"/>
<conceptualElement xmi:id="id.167" xmi:type="conceptual:ConceptualRole" name="Threshold"
conceptualElement="1d.158"/>
</conceptualElement>
<conceptualElement xmi:id="id.168" xmi:type="conceptual:FactUnit" name="AccountBalanceCalculation"
implementation="id.58 id.75 id.81">
<conceptualRelation xmi:id="1d.169" xmi:type="conceptual:ConceptualFlow"
to="id.172" from="id.168"/>
<conceptualElement xmi:id="id.170" =xmi:type="conceptual:ConceptualRole" name="Boundary element"
conceptualElement="1id.162"/>
<conceptualElement xmi:id="id.171" xmi:type="conceptual:ConceptualRole" name="Account"
conceptualElement="1d.157"/>
</conceptualElement>
<conceptualElement xmi:id="id.172" xmi:type="conceptual:FactUnit"
name="AdjustedBalanceCalculation" implementation="id.67 id.96">
<conceptualRelation xmi:id="1id.173" xmi:type="conceptual:ConceptualFlow"
to="id.163" from="id.172"/>
<conceptualElement xmi:id="id.174" =xmi:type="conceptual:ConceptualRole" name="Account Balance"
conceptualElement="1d.168"/>
<conceptualElement xmi:id="id.175" xmi:type="conceptual:ConceptualRole" name="Allowance Amount"
conceptualElement="1d.159"/>
</conceptualElement>
<conceptualElement xmi:id="id.176" xmi:type="conceptual:FactUnit" name="TransactionApproved"
implementation="id.19"/>
<conceptualElement xmi:id="id.177" =xmi:type="conceptual:FactUnit" name="TransactionNotApproved"
implementation="id.19"/>
<conceptualElement xmi:id="id.178" =xmi:type="conceptual:RuleUnit" name="ApproveTransaction"
implementation="id.105 id.111 id.115">
<source xmi:id="id.179" language="SBVR"
snippet="Transaction is approved if adjusted balance is under the threshold"/»>
<conceptualRelation xmi:id="1d.180" xmi:type="conceptual:ConceptualFlow"
to="id.176" from="id.178"/>
<conceptualElement xmi:id="id.181" =xmi:type="conceptual:ConceptualRole" name="Condition"
conceptualElement="1d.163"/>
<conceptualElement xmi:id="id.182" xmi:type="conceptual:ConceptualRole" name="Consequence"
conceptualElement="1id.176"/>
</conceptualElement>
<conceptualElement xmi:id="id.183" xmi:type="conceptual:RuleUnit" name="TransactionFailedApproval"
implementation="id.105 id.111 id.120">
<conceptualRelation xmi:id="1id.184" xmi:type="conceptual:ConceptualFlow"
to="id.177" from="id.183"/>
<conceptualElement xmi:id="id.185" xmi:type="conceptual:ConceptualRole" name="NOT condition"
conceptualElement="1d.163"/>
<conceptualElement xmi:id="id.186" xmi:type="conceptual:ConceptualRole" name="consequence"
conceptualElement="1d.177"/>
</conceptualElement>
<conceptualElement xmi:id="id.187" xmi:type="conceptual:ScenarioUnit">
<conceptualElement xmi:id="id.188" xmi:type="conceptual:BehaviorUnit" name="Calculate Balance"
implementation="id.58 id.75 1d.81">
<conceptualRelation xmi:id="1d.189" xmi:type="conceptual:ConceptualFlow"
to="1d.190" from="id.188"/>
</conceptualElement>
<conceptualElement xmi:id="id.190" xmi:type="conceptual:BehaviorUnit"
name="Calculate Adjusted Balance" implementation="id.67 id.96">
<conceptualRelation xmi:id="id.191" xmi:type="conceptual:ConceptualFlow"
to="id.192" from="id.190"/>
</conceptualElement>
<conceptualElement xmi:id="id.192" xmi:type="conceptual:BehaviorUnit" name="Approve Transaction"
implementation="id.102 id.115 id.120"/>
</conceptualElement>
<conceptualElement xmi:id="id.193" xmi:type="conceptual:BehaviorUnit" name="Input"

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 319

implementation="id.21 id.28 i1d.34 1id.40 id.49 id.58">
<conceptualRelation xmi:id="1d.194" xmi:type="conceptual:ConceptualFlow"
to="id.195" from="1d.193"/>
</conceptualElement >
<conceptualElement xmi:id="id.195" xmi:type="conceptual:BehaviorUnit" name="Processing"
implementation="id.67 id.75 id.81 id.85 id.90 id.96 id.102 id.105 id.111 id.115 id.120"/>
</model>
</kdm: Segment >

20.7 ExtendedConceptualElements Class Diagram

The ExtendedConceptual Elements class diagram defines two viewpoint-specific generic elements for the conceptual
model as determined by the KDM model pattern: a generic conceptual entity and a generic conceptual relationship.

The classes and associations of the ExtendedConceptual Elements diagram are shown in Figure 20.5.

AbstractConceptualRelations hip

+rom +to
{redefines from} {redefines to
AbstractConceptualElement ConceptualRelationship KDMEntity
: 0" (core)
. 0.+ 1
T {subsets outbound} {subsets inbound}

ConceptualElement

Figure 20.5 - ExtendedConceptualElements Class Diagram

20.7.1 ConceptualElement Class (generic)

The Conceptual Element is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractConceptual Element

Constraints
1. Conceptual Element should have at least one stereotype.
Semantics

A conceptual entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the conceptual model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

320 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

20.7.2 ConceptualRelationship Class (generic)

The Conceptual Relationship is a generic meta-model element that can be used to define new extended meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractConceptual Rel ationship

Associations

from:AbstractConceptualElement[1] the conceptual element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

Constraints
1. Conceptual Relationship should have at least one stereotype.
Semantics

A conceptual relationship with underspecified semantics. It is a concrete class that can be used as the base element of a
new extended meta-model relationship type of the conceptual model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 321

322 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

21 Build Package

21.1 Overview

The Build package defines meta-model elements that represent the facts involved in the build process of the given
software system (including but not limited to the engineering transformations of the “source code” to “executables’). The
Build package also includes the meta-model elements to represent the artifacts that are generated by the build process.

The Build package defines an architectural viewpoint for the Build domain.

e« Concerns.

L]

L]

What are the inputs to the build process?

What artifacts are generated during the build process?
What tools are used to perform build steps?

What is the workflow of the build process?

Who are the suppliers of the source artifacts?

« Viewpoint language

Build views conform to KDM XMI schema. The viewpoint language for the Build architectural viewpoint is
defined by the Build package. It includes abstract entity AbstractBuildElement, a generic entity BuildResource as
well as several concrete entities, such as BuildComponent, BuildStep, BuildProduct, BuildDescription,
BuildLibrary. The viewpoint language for the Build architectural viewpoint also includes several build
relationships, which is a subclass of an abstract relationship AbstractBuildRelationship.

e Analytic methods

L]

Supply chain analysis (what are the artifacts that depend on a given supplier)?

Build Views are used in combination with Inventory views.

* Construction methods:

Build views that correspond to the KDM Build architectural viewpoint are usually constructed by analyzing
build scripts and build configuration files for the given system. Thisinputs are specific to the build automation
framework. The Build extractor tool uses the knowledge of the semantics of the build automation framework to
produce one or more Build views as output.

Construction of the Build view is determined by the semantics of the build automation framework, and is based
on the mapping from the given build automation framework to KDM; such mapping is specific only to the build
automation framework and not to a specific software system.

The mapping from a particular build automation framework to KDM may produce additional information
(system-specific, or platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM
elements using stereotypes, attributes, or annotations.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 323

21.2 Organization of the Build Package

The Build package defines meta-model elements that represent entities and relationships related to the build process of an
existing software system.

The Build package consists of the following class diagrams:

e BuildModel

« Buildinheritances

» BuildResources

» BuildRelations

» ExtendedBuildRelations

The Build package depends on the following packages:

e Core
¢ kdm
e Source

21.3 BuildModel Class Diagram

The BuildModel class diagram provides basic meta-model elements that represent entities and relationships related to the
build process of an existing software system. The class diagram shown in Figure 21.1 captures these classes and their
relations. Class BuildResource is defined in a separate section.

BuildModel
+model

0.1 AbstractBuildRelations hip
{subsets model}

+buildRelation | 0..*
{subsets ownedRelation}
+buildElement

{subsets ownedElement} [*

AbstractBuildElement

1
BuildResource \\

Supplier SymbolicLink Tool

Figure 21.1 - BuildModel Class Diagram

324 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

21.3.1 BuildModel Class

The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

Superclass

KDMM o odel

Associations

buildElement:AbstractBuildElement[0..*] The set of build elements owned by the moddl.

Semantics
21.3.2 AbstractBuildElement Class (abstract)
The AbstractBuildElement is the abstract base class from which all other build model elements are extended.

Superclass

K DMEntity

Associations

buildRelationship:AbstractBuildRelationship[0..*] the set of build relations

Semantics
21.3.3 AbstractBuildRelationship Class (abstract)
The AbstractBuildRelationship is the abstract base class.

Superclass

KDMREelationship

Semantics

21.3.4 Supplier Class

The Supplier class models producers of the 3rd party software components as they contribute to the build process.

Superclass

AbstractBuildElement

Semantics

21.3.5 Tool Class

The Tool class represents software tools as they are used in the build process.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

325

Superclass

AbstractBuildElement

Semantics

21.3.6 SymbolicLink Class

The SymbolicLink is used to represent symbolic links.

Superclass

AbstractBuildElement

Semantics

21.4 Buildinheritances Class Diagram

The Buildlnheritances class diagram shown in Figure 21.2 depicts how various build classes extend other KDM classes.
Each of the classes shown in this diagram inherits properties from classes found in the Core package.

KDMMode/ KDMEntity KDMRelationshijp
(kam) (core) (core)
BuildModel AbstractBuildElement AbstractBuildRelationship

Figure 21.2 - BuildInheritances Class Diagram

21.5 BuildResources Class Diagram

The BuildResources class diagram provides basic meta-model constructs to model various common build resource and
their relations to the code model. The class diagram shown in Figure 21.3 captures these classes and their relations.

326 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

+buildElement | AbstractBuildElement

+groupedBuild

0.*

0.*

{slibsets ownedElement}

{subsets owner}

{subsets groupedElement}

{subsets group}

+owner BuildResource |*9roup
0..1 0.” +implementation
0. +group 0..*
{subsets group} {subsets groupedElement}
BuildLibrary
BuildComponent BuildStep

BuildProduct

BuildDescription

+text : String

Figure 21.3 - BuildResources Class Diagram

21.5.1 BuildResource Class

KDMEntity
(core)

BuildResource class is a generic meta-model element that represents a container for build elements. It provides a common

superclass for the build elements that can own other build elements. BuildResource is also a group for other KDM

entities. Usually, a Build resource such as a BuildLibrary, a BuildProduct, or a BuildComponent will group together some
Inventory elements. Certain BuildResource can also group other build elements.

Superclass

AbstractBuildElement

Associations

buildElement:AbstractBuildElement[0..*]
groupedBuild:AbstractBuildElement[0..*]

implementation:KDMEntity[0..*]

Constraints

owned build element

grouped build elements (KDM group mechanism)

Group association to KDMEntity that are represented by the current
BuildResource element.

1. BuildResource should either own elements or group elements, but not both.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

327

2. “Implementation” group should not include other Build elements.

3. Build element should not be included in its own groupedBuild group.
Semantics

21.5.2 BuildComponent Class

The BuildComponent class represents an arbitrary collection of Inventoryltems (or other KDM entities). Usually a
BinaryComponent defines SourceFlles as inputs to BuildSteps or any other anonymous collections of resources as they
are used as inputs of outputs of a build process.

Superclass

BuildResource

Semantics

21.5.3 BuildDescription Class

The BuildDescription class represents objects such as make files or ant scripts, which describe the build process itself.

Superclass

BuildResource
Semantics

21.5.4 BuildLibrary Class

The BuildLibrary class represents a named collection of Inventoryltems (usually BinaryFiles, or SourceFiles) which is
used as an intermediate product of a build process.

Superclass

BuildResource
Semantics

21.5.5 BuildProduct Class

The BuildProduct class represents a named collection of Inventoryltems that is the output of a build process (usually
BinaryFile or ExecutableFile). For example, binary files that correspond to deployable components, executable files.

Superclass

BuildResource

Semantics

328 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

21.5.6 BuildStep Class

BuildStep class is the key meta-model element of the Build model. It represents a unit of transformation performed by the
build process, during which certain input resources are processed and certain output resources are produced. BuildStep

element is the origin of several build relationships. For example, a Build step “consumes’ certain input resources,

“produces’ certain output resources, “is defined” by a certain build description, and may be “supported” by a certain tool.

Superclass

BuildResource

Semantics

21.6 BuildRelations Class Diagram

The BuildRelations class diagram defines the various build related relationships. The class diagram shown in Figure 21.4

captures these classes and their relations.

Y AbstractBuildRelations hip

LinksTo SuppliedBy Consumes Produces DescribedBy SupportedBy
0.* |0.* 0.* 0.* 0.* 0.* 0.* 0.* 0.* 0.* 0.* 0.*
{dubsetd inbou(:;)bsem inbound} {subsets opitbound} {subse}s inbound} {subse}s inbound} {subsetsg inbound}
{pubsets outbound} {sybsets inbound} {subgets outbound} {subse}s outbound} {subset$ outbound}
{subsets|outboynd} i
{redefines to} {redefines th} {redefines to} {redefines tp}
+o |1 +o |1 +o |1
Supplier {redefines to} BuildDescription Tool
{redefines from} +o |1 +o |1 +ext : String
+rom 5
; AbstractBuildElement
+o
1 .
{redefines from} {redefines to}
+rom 1 1 +rom {redefineg from}
SymbolicLink +from| BuildStep +rom {redefines from}
1 1 {redefines from}
{redefines from} 1 +from
Figure 21.4 - BuildRelations Class Diagram
21.6.1 LinksTo Class
The LinksTo class models the relationship between two linked build resources.
Superclass
AbstractBuildRelationship
Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 329

Associations

from:SymbolicLink[1]
to:AbstractBuildElement[1]
Semantics

Associations

from:AbstractBuildElement[1]

to:AbstractBuildElement[1]
Semantics

21.6.2 Consumes Class

Consumes class defines association between a certain BuildStep element and certain build elements, called the input build
elements. These elements provide the input to the transformation, performed by the build step. For example, the set of
source files is an input to the compilation step.

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:AbstractBuildElement[1] the input build elements for the given step
Semantics

The implementer shall capture the input build elements for a certain build step in the form of “Consumes” relation.

When the target of the “Consumes” relationship owns other build elements, this means that the build step (the origin of
the relationship) depends on all elements owned by the container (directly or indirectly).

When the origin of the “Consumes’ relationship is a container that owns one or more build steps (directly or indirectly),
this means that all build steps consume the elements designated as the target of the “Consumes” relationship.

21.6.3 Produces Class

Produces class defines association between a certain BuildStep element and certain build elements, called the output build
elements. These elements are produced as the result of the transformation, performed by the build step. For example, the
set of object files can be produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

330 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Associations

from:BuildStep[1] the build step
to:AbstractBuildElement[1] the output build elements for the given step
Semantics

The implementer shall capture the output build elements for a certain build step in the form of “Produces’ relation.

When the target of the “Produces” relationship owns other build elements, this means that the build step (the origin of the
relationship) produces all elements owned by the container (directly or indirectly).

When the origin of the “Produces’ relationship is a container that owns one or more build steps (directly or indirectly),
this means that the elements designated as the target of the “Produces’ relationship are produced in collaboration of all
build steps, and no particular build step is the sole producer.

21.6.4 SupportedBy Class

SupportedBYy class defines association between a certain BuildStep element and certain Tool element. The Tool element is
required to perform the build step. For example, a particular version of a complier is required to perform the compilation
step.

Superclass
AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:Tool[1] The Tool element that represents the tool performing the transformations represented
by the given step.
Semantics

The implementer shall capture the required Tool elements for a certain build step in the form of “SupportedBy” relation.

21.6.5 SuppliedBy Class

SuppliedBy class defines association between certain build elements and their points of origin, represented by Supplier
element. For example, certain parts of the runtime platform can originate from a software vendor, some libraries can
originate from open source.

Superclass

AbstractBuildRelationship

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 331

Associations

from:AbstractBuildElement[1] the build element
to:Supplier[1] The Supplier element that represents the origin of the build element.
Semantics

The implementer shall capture the origin of build elements in the form of “SuppliedBy” relation.

When the origin of the “ SuppliedBy” relationship is a container that owns one or more build elements (directly or
indirectly), this means that all elements designated as the source of the “SuppliedBy” relationship are supplied by a
particular Supplier element.

21.6.6 DescribedBy Class

DescribedBY class defines association between certain build step and a certain BuildDescription element. These elements
are produced as the result of the transformation, performed by the build step. For example, the set of object files can be
produced as the result of the compilation step.

Superclass

AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:BuildDescription[1] The BuildDescription element that describes the transformation represented by the
build step.
Semantics

The implementer shall capture the description of a certain build step in the form of “DescribedBy” relation to some
BuildDescription element.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmlns:xmi="http://www.omg.org/spec/XMI/20110701"
xmlns:build="http://www.omg.org/spec/KDM/20160201/build"
xmlns:kdm="http://www.omg.org/spec/KDM/20160201/kdm"
xmlns:source="http://www.omg.org/spec/KDM/20160201/source" name="Build Example">
<model xmi:id="1id.0" xmi:type="source:InventoryModel">
<inventoryElement xmi:id="id.1l" xmi:type="source:SourceFile" name="a.c">
<inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.l1"/>
</inventoryElement>
<inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c">
<inventoryRelation xmi:id="id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>
</inventoryElement>
<inventoryElement xmi:id="1d.5" xmi:type="source:SourceFile" name="ab.h"/>
<inventoryElement xmi:id="id.é" xmi:type="source:Directory">
<inventoryElement xmi:id="id.7" xmi:type="source:Image"/>
<inventoryElement xmi:id="1id.8" xmi:type="source:Image"/>
</inventoryElement>

332 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

<inventoryElement xmi:id="1id.9" xmi:type="source:SourceFile" name="makefile"/>
<inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>
</model>
<model xmi:id="id.11" xmi:type="build:BuildModel"s>
<buildElement xmi:id="id.12" xmi:type="build:BuildComponent"
name="sources" implementation="id.1l id.5 id.3"/>
<buildElement xmi:id="1id.13" xmi:type="build:BuildProduct"
name="ab product" implementation="id.10"/>
<buildElement xmi:id="id.14" xmi:type="build:BuildStep">
<buildRelation xmi:id="id.15" xmi:type="build:DescribedBy" to="id.28" from="id.14"/>
<buildRelation xmi:id="id.16" xmi:type="build:SupportedBy" to="id.30" from="id.14"/>
<buildElement xmi:id="id.17" xmi:type="build:BuildStep" name="compile">
<buildRelation xmi:id="id.18" xmi:type="build:Consumes" to="id.12" from="1id.17"/>
<buildRelation xmi:id="1id.19" xmi:type="build:Produces" to="id.25" from="id.l17"/>
<buildRelation xmi:id="1d.20" xmi:type="build:SupportedBy" to="id.26" from="id.17"/>
</buildElement >
<buildElement xmi:id="id.21" xmi:type="build:BuildStep" name="1link">
<buildRelation xmi:id="1id.22" xmi:type="build:Consumes" to="id.25" from="id.21"/>
<buildRelation xmi:id="1id.23" xmi:type="build:Produces" to="id.13" from="id.21"/>
<buildRelation xmi:id="id.24" xmi:type="build:SupportedBy" to="id.26" from="id.21"/>
</buildElement>
<buildElement xmi:id="id.25" xmi:type="build:BuildComponent" name="object files"/>
<buildElement xmi:id="1id.26" xmi:type="build:Tool" name="C compiler"s>
<buildRelation xmi:id="1id.27" xmi:type="build:SuppliedBy" to="id.32" from="id.26"/>
</buildElement >
</buildElement >
<buildElement xmi:id="id.28" xmi:type="build:BuildDescription" implementation="id.9">
<source xmi:id="1id.29" language="shell" snippet="cc $(SOURCE) -o ab.exe"/>
</buildElement >
<buildElement xmi:id="id.30" xmi:type="build:Tool" name="make">
<buildRelation xmi:id="id.31" xmi:type="build:SuppliedBy" to="id.32" from="id.30"/>
</buildElement >
<buildElement xmi:id="id.32" xmi:type="build:Supplier" name="Tools'R'Us corp"/>
</model>
</kdm: Segment >

21.7 ExtendedBuildElements Class Diagram

The ExtendedBuildElements class diagram defines two viewpoint-specific generic elements for the build model as
determined by the KDM model pattern: a generic build entity and a generic build relationship.

The classes and associations of the ExtendedBuildElements diagram are shown in Figure 21.5.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 333

AbstractBuildRelationship

+from +to
{redefines from} {redefines to}
AbstractBuildElerment BuildRelationship KDMEntity
. o 0. . (core)
T {subsets outbound} {subsets inbound}

BuildElement

Figure 21.5 - ExtendedBuildElements Class Diagram

21.7.1 BuildElement Class (generic)

The BuildElement is a generic meta-model element that can be used to define new extended meta-model elements through
the KDM light-weight extension mechanism.

Superclass

AbstractBuildElement

Constraints
1. BuildElement should have at least one stereotype.
Semantics

A build entity with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model entity type of the build model. Thisis one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

21.7.2 BuildRelationship Class (generic)

The BuildRelationship is a generic meta-model element that can be used to define new extended meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractBuildRelationship

Associations

from:AbstractBuildElement[1] the build element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

334 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Constraints
1. BuildRelationship should have at least one stereotype.
Semantics

A build relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
extended meta-model relationship type of the build model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 335

336 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Annex A - Semantics of the Micro KDM
Action Elements

(normative)

This normative annex defines the semantics of micro KDM action elements. This annex assumes understanding of the
KDM Datatypes. Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras).

« Action Kind - is nature of the operation performed by the micro action. Thisis represented asa“kind” attribute to the
micro action. The action kind may designate certain outgoing relationship as part of the Control. For example, the
“call” micro action designated the Calls outgoing relationship as part of Control.

< Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. Thispart is optional.

« Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for amicro action.

« Control part - owned outgoing control flow relationships for the action.

e Extras part - owned relationships other than Reads, Writes and not designated as part of Control by the action Kind.
For example, these can be interface compliance relation “ CompliesTo” or any extended action relationships.

A.1 Comparison Actions

Inputs:

Outputs:

Control :

Two Reads relationships to DataElements representing values of the same datatype (except for Boolean
Not, which has a single Reads relationship).

Optional writesto a DataElement of a Boolean type (no Writes corresponds to an expression statement,
where the result of the operation isignored; otherwise, the result should be stored into a DataElement,
which can be permanent. For example, a StorableUnit with akind other than “register,” a MemberUnit, an
ItemUnit, or a ParameterUnit; or temporary, a StorableUnit with a “register” kind).

Optional single flow - unconditional transfer of control to the next micro action (for example, as part of
complex expressions; no Flow corresponds to aterminal action).

Table A.1 - Comparison Actions

Micro action Semantics

Equals Polymorphic “equals’ for two values of the same datatype, see | SO Equals operation for the
corresponding datatype.

NotEqual Polymorphic “not equal” for two values of the same datatype: not (A==B).

LessThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype; see |SO
InOrder operation for the corresponding datatype.

LessThan Polymorphic “less than” for two values of the same ordered datatype: A<=B and not A==B.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 337

Table A.1 - Comparison Actions

Micro action Semantics

GreaterThan Polymorphic “greater than or equal” for two values of the same ordered datatype: not A<=B.

GreaterThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype: not A<=B or
A==B.

Not Boolean NOT, see SO Boolean NOT operation.

And Boolean AND, see | SO Boolean AND operation

Or Boolean OR, see |SO Boolean OR operation

Xor Boolean XOR: (A and not B) or (not A and B)

A.2 Actions Related to the Primitive Numerical Datatypes

Inputs:

Outputs:

Control:

Two ordered Reads relationships to DataElements representing values of the same datatype (except for
Negate and Successor, which have a single Reads relationship; and Incr, Decr, which have asingle
Addresses relationship).

Optional single writes to a DataElement of atype corresponding to the definition of the operation (can be
temporary register or avariable; no Writes corresponds to an expression statement, where the result of the
operation isignored).

Optional single flow - unconditional transfer of control to the next micro action.

Table A.2 - Numerical actions

Micro action Semantics

Add Polymorphic add operation for two values of the same numeric datatype, see SO Add
operation for the corresponding datatype.

Multiply Polymorphic multiply operation for two values of the same numeric datatype; see 1ISO Add
operation for the corresponding datatype.

Negate Polymorphic unary negate operation for a single value of some numeric datatype; see SO
Negate operation for the corresponding datatype. Requires a single Reads relationship

Subtract Polymorphic subtract operation for two values of the same numeric datatype; A+ neg B.

Divide Polymorphic divide operation for two values of the same numeric datatype.

Remainder Polymorphic remainder operation for two values of the same Integer Type datatype.

338 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table A.2 - Numerical actions

Micro action Semantics
Successor Single Reads; Successor for ordinal or enumerated types, see 1SO Successor operation.
Incr Variable post increment operation; Single Addresses relationship represents the DataElement

whose value is incremented.

Decr Variable post decrement operation; Single Addresses relationship represents the DataElement
whose value is decremented.

A.3 Actions Related to Bitwise Operations on Primitive Datatypes

Inputs: Two Reads rel ationships to DataElements representing values of the same datatype (except for BitNot,
which has a single Reads relationship).
Outputs: Optional single Writes to a DataElement of the same type asthe first StorableElement (can be atemporary

register or avariable).
Control: Optional single Flow - unconditional transfer of control.

Table A.3 - Bitwise actions

Micro action Semantics Inputs

BitAnd Bitwise AND on two integers or Two Reads relationships to DataElements
bitstrings or octetstrings representing values of the same datatype

BitOr Bitwise OR on two integers or bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype

BitNot Bitwise NOT on integer or bitstring or Single Reads relationships to DataElement
octetstring

BitXor Bitwise XOR on two integersor bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 339

Table A.3 - Bitwise actions

Micro action Semantics Inputs
L eftShift Arithmetic bitwise shift left on integer or | First Reads relationship to a DataElement
bitstring or octetsting representing an integer, bitstring, or octetstring.

Second Reads relationship to an integer or ordina
representing the number of bits to shift.

RightShift Arithmetic bitwise shift right on integer First Reads relationship to a DataElement

or hitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

BitRightShift Logical bitwise shift right on integer or First Reads relationship to a DataElement
bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

340 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A.4 Control Actions

Table A.4 - Control actions

Micro action | Description Inputs Outputs Control
Assign Assignment Single Readsrelationshiptoa | Writes relationship Optional single flow to the
(copy) DataElement representing the | represents the next micro action
value DataElement (except
for a ValueElement)
to which the value of
the input
DataElement is
assigned

Condition Condition Single Readsrelationshiptoa | none TrueFlow & FalseFlow -
DataElement representing the conditional transfer of
Boolean value control

Call Static call Zero or more Reads Optional Writesto Callsrelationship to the
relationshipsto DataElements, | the DataElement that | Control Element represents
that represent input actual represents thereturn | the flow of control to the
parameters; ordered; value ControlElement and the
Val ue of each actual parameter return back; Subsequently
is assigned to the an optional single flow to
corresponding formal the next micro action is
parameter of the performed.

Control Element.
Correspondence is established
according to the Pos attribute
of the formal parameter in the
signature of the
ControlElement. A sequence
of valuesis assigned to the
variable argument.

MethodCall Method call Invokes relationship to the Same as Call Callsrelationship to the
DataElement that represents M ethodUnit represents the
the instance; flow of control to the
Zero or more Reads Method and the return
relationshipsto DataElements, back; Subsequently an
that represent input actual optional single flow to the
parameters; ordered. next micro actionis

performed.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

341

Micro action | Description Inputs Outputs Control
PtrCall Indirect call by Addressesrelationshiptothe | Sameas Call This represents a dynamic
pointer or DataElement that represents call to one of the possible
reference, where | the pointer; targets of the pointer
theidentify of the | Zero or more Reads (corresponding to the
ControlElement | relationshipsto DataElements, current value of the
isnot known that represent input actual pointer). Dispatches
parameters; ordered. relation to the DataElement
represents the pointer. The
Signature of the possible
targetsisrepresented as the
type attribute of the
DataElement; subsequently
an optional single flow to
the next micro actionis
performed
Virtual Call Virtual method Addressesrelationshiptothe | Sameas Call Callsrelationship to the
call, method call | DataElement that represents MethodUnit represents the
by pointer or the instance; superclass of the method
referenceoracall | Zero or more Reads that will be determined
to an interface relationshipsto DataElements, dynamically. This
element that represent input actual represents the flow of
parameters; ordered. control to the Method and
the return back;
Subsequently an optional
single flow to the next
micro action is performed.
Return return Single Reads represents the none Control is returned back to
DataElement that contains the one of the Control Elements
return value that has performed the call.
Nop dummy none none Optional single flow to the
next micro action
Goto Unconditional none none Single flow to the next
transfer of micro action
control
Label represents a none none Single flow to the next
label; the name of micro action
the action isthe
label
342 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Micro action | Description Inputs Outputs Control
Throw Raising none none Throws relationship to the
exception DataElement that
represents the "exception
object". Optional
ExceptionFlow relationship
to a CatchUnit that
processes the exception
Switch Branching based | Single Readsto the none One or more GuardedFlow
onthevalueof a | DataElement that represents relations to a second micro
StorableElement | the selector value action with asingle Reads
relationship that represents
the guard value. A single
FalseFlow represents the
default branch. This
construct represents
selection of asingle branch
for which the value of the
selector is equal to the
value of the guard or the
default branch
Guard Represents start Single Readsrelation to a none Single flow unconditional
of thebranch of a | DataElement representing the control flow to thefirst
complex guard value action of the branch
condition
Compound Compound action | none none SingleFlow - theentry flow
to thefirst interna action
element
Init BlockUnit that none none EntryFow unconditional
contains control flow to thefirst
initialization internal action
action elements

A.5 Actions Related to Access to Datatypes

Inputs: see table
Outputs. seetable.
Control:

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

optional single Flow to the next micro action (no Flow means a terminal action element).

343

Table A.5 - Access actions

Micro action Description Inputs Outputs

FieldSelect Access to a particular Single Addresses relationship to a Optional Writes relationship
ItemUnit of a RecordType | DataElement (of a RecordType); Single represents the DataElement

Reads relationship to an ItemUnit (except for a ValueElement)
representing the field being accessed. to which the value of the
field is assigned.

FieldReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular field of a DataElement (of a RecordType); Single ItemUnit representing the
RecordType Reads to a DataElement representing the | field being modified.

new value.

ChoiceSelect Access to a particular Single Addresses relationship to a Optional Writes relationship

ItemUnit of a ChoiceType | DataElement (of a ChoiceType); Single represents the DataElement
Reads relationship to an ItemUnit (except for a ValueElement)
representing the field type being accessed. | to which the value of the

field is assigned.

ChoiceReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular field of a DataElement (of a ChoiceType); Single ItemUnit representing the
ChoiceType Reads to a DataElement representing the | field being modified.

new value.

ptr Obtaining a pointer or Single Addresses relationship to a Optional Writes relationship
referenceto a Computational Object. to the DataElement that will
Computational Object hold the new value.

This Obtaining pointer to the none Writes to a DataElement
current instance of the
object

PtrSelect Indirect accessto avalue | Single Addressesrelationship to a Optional Writes relationship
by pointer or reference DataElement (of a PointerType); Single to the ItemUnit of that

Reads relationship to an ItemUnit of that | PointerType
Pointer Type representing the ItemUnit
being accessed.

PtrReplace Indirect modification of a | Single Addressesrelationship to a Writes relationship to the
value by pointer or DataElement (of an PointerType); Single | ItemUnit of that PointerType
reference Reads to a DataElement representing the

new value.
ArraySelect Access to a particular Single Addresses relationship to a Optional Writes relationship
ItemUnit of an ArrayType | DataElement (of an ArrayType); Reads | representsthe DataElement
relationship to an ItemUnit representing (except for a ValueElement)
the ItemUnit being accessed; Last Reads | to which the value of the
represents the Index. ItemUnit is assigned
344 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Table A.5 - Access actions

Micro action Description Inputs Outputs
ArrayReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular ItemUnit of an | DataElement (of an ArrayType); Reads ItemUnit representing the
ArrayType that represents the Index; Last Readstoa | ItemUnit being modified;
DataElement representing the new value.
MemberSelect Access to a particular Single Addresses relationship to the Optional Writes relationship
MemberUnit of a DataElement that represents the represents the DataElement
ClassType instance.Single Reads relationship to an (except for a ValueElement)
MemberUnit representing the member to which the value of the
being accessed. field isassigned
MemberReplace | Modification of a Single Addresses relationship to a Writes relationship to an
particular member of a DataElement (of a ClassType) that MemberUnit representing
ClassType represents the instance of the object being | the member being modified.
accessed.Single Reads to a DataElement
representing the new value.
New Creation of anew Createsrelationship to the Datatype being | Writes relationship
dynamic instance of a created. represents the DataElement
datatype; this hasto be (except for a ValueElement)
done separately if to which the reference to the
required; thismicro action new dynamic element is
does not invoke the assigned.
constructor of the new
object; this hasto be done
separately
NewArray Creation of a new Createsrelationship to the Datatype being | Writes relationship
dynamic instance of an created; Reads relation to the represents the DataElement
ArrayType datatype DataElement that represents the length of | (except for a ValueElement)
the new array. to which the reference to the
new dynamic element is
assigned.

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

345

A.6 Actions Related to Type Conversions

Inputs: see table
Outputs: seetable.
Control:

Table A.6 - Type conversion actions

optional single Flow to the next micro action (no Flow means a terminal action element).

conversion of a DataElement
to acertain Datatype

UsesType relation represents the datatype.

Micro action | Description Inputs Outputs

Sizeof Determines the length of a Reads represents the DataElement Optiona writesto a
DataElement (based on the or DataElement
datatype) or the length of a UsesType to the Datatype
Datatype

I nstanceof Performsdynamictypecheck | Reads representsthe DataElement; Optional Writesto a
if the dataelement is of a UsesType relation represents the datatype. | DataElement of a Boolean
certain datatype type;

DynCast Performs a dynamic cast of a | Reads represents the DataElement; Optiona Writesto a
DataElement to a certain UsesType relation represents the datatype. | DataElement
Datatype

TypeCast Performs a static type Reads represents the DataElement; Optional writesto a

DataElement

A.7 Actions Related to StringType Operations

Inputs:
Outputs:

Control:

see table.

optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation isignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a“register” kind).

optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.7 - StringType actions

Micro action Description Inputs
|SEmpty Trueisthe string x is empty First Reads represents x;
Head Produces the value of the first element in the string x First Reads represents x;
Tail Produces sequence that results from deleting the first element in the | First Reads represents x;
string X
Empty Produces and empty string UsesType to the required type
Append Produces the sequence that is formed by adding a single valuey to First Reads represents x;
the end of the string x Second represents y
346 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

Note:"==" operation on 1SO strings is defined as full comparison, this does not work in Java, which has shallow
comparison of object references.

A.8 Actions Related to SetType Operations

Inputs: seetable.

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation isignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a“register” kind).

Control: optional single Flow to the next micro action (no Flow means aterminal action element).

Table A.8 - SetType actions

Micro action Description I nputs

Isln Trueisthe value x isamember of the set y, else First Reads represents x; Second represents y
false

Subset Trueif every member of x isamember of y First Reads represents x; Second represents y

Difference Produces the set that consists of the valuesthat are | First Reads represents x; Second represents y
inxandnotiny

Union Produces the set that consists of the valuesthat are | First Reads represents x; Second represents y
eitherinxoriny

Intersection Produces the set that consists of the valuesthat are | First Reads represents x; Second represents y
bothinxandiny

Select Produces avalue of the base type thatisinthe set x | First Reads represents x;

I|sEmpty Trueisthe set x is empty First Reads represents x;

Empty Produces and empty set UsesType to the required type

A.9 Actions Related to SequenceType Operations

Inputs: seetable.

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation isignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a“register” kind).

Control: optional single Flow to the next micro action (no Flow means aterminal action element).

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 347

Table A.9 - SequenceType actions

Micro action Description Inputs

|SEmpty Trueisthe sequence X is empty. First Reads represents x;

Head Produces the value of the first element in the sequence x. First Reads represents x;

Talil Produces sequence that results from deleting the first element | First Reads represents x;
in the sequence x.

Empty Produces an empty sequence. UsesType to the required type

Append Produces the sequence that isformed by adding asinglevaluey | First Reads represents x; Second
to the end of the sequence x. representsy

A.10 Actions Related to BagType Operations

Inputs: seetable.

Outputs: optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation is ignored; otherwise, the result should be stored into a DataElement, which can be
permanent, for example a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a“register” kind).

Control: optional single Flow to the next micro action (no Flow means aterminal action element).

Table A.10 - BagType actions

Micro action Description Inputs

|SEmpty Trueisthe bag x is empty First Reads represents x;

Select Produces a value of the base type that isin the bag x First Reads represents x;

Delete Produces the bag that is formed by deleting oneinstance | First Reads represents x; Second
of valuey from the bag x if any representsy

Empty Produces and empty bag UsesType to the required type

Insert Produces the bag that isformed by adding oneinstance of | First Reads represents x; Second
value y from the bag x representsy

Seridize Produces the sequence in which each element isrepeated | First Reads represents x;
as many time asit occursin the bag x

348 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

A.11 Actions Related to Resources

Resource micro-actions represent specific statements that are determined by some programming languages and which

mani pul ate resources provided by the operating environment. Such statements are alternative to using system calls. Kindsin
Table A.11 represent such statements as micro KDM ActionElements. Precise semantics of representing the operating
environment is described in Part 3 Runtime Resource Layer. In particular, a combination of resource actions, resource
relationships and resource events can be used, where the resource micro-action is part of a Code Model, while other elements
can be added in various models of the Resource Layer (Platform, Data, Event or Ul).

Inputs: Zero or more Reads relationships to DataElements; represent input data which is sent to the resource;
ordered.

Outputs: Zero or more Writes relationships to DataElements; represents output data which is received from the
resource.

Control: optional single Flow to the next micro action (no Flow means aterminal action element).

Extras: optional resource-specific relationships.

Table A.11 - Resource actions

Micro action Description

Code ActionElement represents a assembly instruction or a segment

Platform ActionElement represents a statement that manipulates a Platform Resource
Data ActionElement represents a statement that manipulates a Data Resource
Event ActionElement represents a statement that manipulates an Event Resource
ul ActionElement represents a statement that manipulates a Ul Resource

Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4 349

350 Architecture-driven Modernization (ADM): Knowledge Discovery Meta-model (KDM), v1.4

	1 Scope
	2 Conformance
	2.1 KDM Domains
	2.2 Compliance Levels
	2.2.1 Meaning and Types of Compliance

	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 How to Read this Specification
	6.1.1 Diagram format

	7 Specification Overview
	8 KDM
	8.1 Overview
	8.2 Organization of the KDM Packages

	9 Core Package
	9.1 Overview
	9.2 Organization of the Core Package
	9.3 Elements Class Diagram
	9.3.1 Element Class (abstract)
	9.3.2 AnnotatableElement Class (abstract)
	9.3.3 AnnotationElement Class (abstract)
	9.3.4 ExtendableElement Class (abstract)
	9.3.5 ExtensionElement Class (abstract)
	9.3.6 ModelElement Class (abstract)

	9.4 CoreEntities Class Diagram
	9.4.1 KDMEntity Class (abstract)

	9.5 CoreRelations Class Diagram
	9.5.1 KDMRelationship Class (abstract)
	9.5.2 KDMEntity (additional properties)

	9.6 AggregatedRelations Class Diagram
	9.6.1 AggregatedRelationship Class
	9.6.2 KDMEntity (additional properties)
	9.6.3 KDMRelationship (additional properties)

	9.7 Datatypes Class Diagram
	9.7.1 Boolean Type (datatype)
	9.7.2 String Type (datatype)
	9.7.3 Integer Type (datatype)

	10 The Package named “kdm”
	10.1 Overview
	10.2 Organization of the KDM Framework
	10.3 Framework Class Diagram
	10.3.1 FrameworkElement Class (abstract)
	10.3.2 KDMModel Class (abstract)
	10.3.3 KDMEntity (additional properties)
	10.3.4 Segment Class

	10.4 Audit Class Diagram
	10.4.1 Audit Class
	10.4.2 ModelElement (additional properties)

	10.5 Extensions Class Diagram
	10.5.1 Stereotype Class
	10.5.2 TagDefinition Class
	10.5.3 ExtensionFamily Class
	10.5.4 ExtendableElement (additional properties)

	10.6 ExtendedValues Class Diagram
	10.6.1 ExtendedValue Class (abstract)
	10.6.2 TaggedValue Class
	10.6.3 TaggedRef Class

	10.7 Annotations Class Diagram
	10.7.1 Attribute Class
	10.7.2 Annotation Class
	10.7.3 AnnotatableElement (additional properties)

	11 Source Package
	11.1 Overview
	11.2 Organization of the Source Package
	11.3 InventoryModel Class Diagram
	11.3.1 InventoryModel Class
	11.3.2 AbstractInventoryElement Class (abstract)
	11.3.3 AbstractInventoryRelationship Class (abstract)
	11.3.4 InventoryItem Class (generic)
	11.3.5 InventoryContainer Class (generic)
	11.3.6 Directory Class
	11.3.7 Project Class

	11.4 InventoryInheritances Class Diagram
	11.5 InventoryItems Class Diagram
	11.5.1 SourceFile Class
	11.5.2 Model Class
	11.5.3 Document Class
	11.5.4 ImageFile Class
	11.5.5 AudioFile Class
	11.5.6 DataFile Class
	11.5.7 Service Class
	11.5.8 ConfigFile Class
	11.5.9 LinkableFile Class (generic)
	11.5.10 ObjectFile Class
	11.5.11 LibraryFile Class
	11.5.12 ExecutableFile Class

	11.6 Traceability Class Diagram
	11.6.1 SourceRef Class
	11.6.2 Track Class
	11.6.3 KDMEntity (additional properties)

	11.7 Regions Class Diagram
	11.7.1 Region Class (abstract)
	11.7.2 SourceRegion Class
	11.7.3 BinaryRegion Class
	11.7.4 ReferenceableRegion Class

	11.8 InventoryRelations Class Diagram
	11.8.1 DependsOn Class
	11.8.2 TraceableTo Class

	11.9 ExtendedInventoryElements Class Diagram
	11.9.1 InventoryElement Class (generic)
	11.9.2 InventoryRelationship Class (generic)

	12 Code Package
	12.1 Overview
	12.2 Organization of the Code Package
	12.3 CodeModel Class Diagram
	12.3.1 CodeModel Class
	12.3.2 AbstractCodeElement Class (abstract)
	12.3.3 AbstractCodeRelationship Class (abstract)
	12.3.4 CodeItem Class (abstract)
	12.3.5 ComputationalObject Class (generic)
	12.3.6 Datatype Class (generic)

	12.4 CodeInheritances Class Diagram
	12.5 Modules Class Diagram
	12.5.1 Module Class (generic)
	12.5.2 CompilationUnit Class
	12.5.3 SharedUnit Class
	12.5.4 LanguageUnit Class
	12.5.5 CodeAssembly Class
	12.5.6 Package Class

	12.6 ControlElements Class Diagram
	12.6.1 ControlElement Class (generic)
	12.6.2 CallableUnit Class
	12.6.3 CallableKind Data Type (enumeration)
	12.6.4 MethodUnit Class
	12.6.5 MethodKind data type (enumeration)
	12.6.6 ExportKind data type (enumeration)
	12.7 DataElements Class Diagram
	12.7.1 DataElement Class (generic)
	12.7.2 StorableUnit Class
	12.7.3 StorableKind data type (enumeration)
	12.7.4 ItemUnit Class
	12.7.5 IndexUnit Class
	12.7.6 MemberUnit Class
	12.7.7 ParameterUnit Class
	12.8 ValueElements Class Diagram
	12.8.1 ValueElement Class (generic)
	12.8.2 Value Class
	12.8.3 ValueList Class

	12.9 Datatypes Class Diagram
	12.10 PrimitiveTypes Class Diagram
	12.10.1 PrimitiveType Class (generic)
	12.10.2 BooleanType Class
	12.10.3 CharType Class
	12.10.4 OrdinalType Class
	12.10.5 DateType Class
	12.10.6 TimeType Class
	12.10.7 IntegerType Class
	12.10.8 DecimalType Class
	12.10.9 ScaledType Class
	12.10.10 FloatType Class
	12.10.11 VoidType Class
	12.10.12 StringType Class
	12.10.13 BitType Class
	12.10.14 BitstringType Class
	12.10.15 OctetType Class
	12.10.16 OctetstringType Class

	12.11 EnumeratedTypes Class Diagram
	12.11.1 EnumeratedType Class

	12.12 CompositeTypes Class Diagram
	12.12.1 CompositeType Class (generic)
	12.12.2 ChoiceType Class
	12.12.3 RecordType Class

	12.13 DerivedTypes Class Diagram
	12.13.1 DerivedType Class (generic)
	12.13.2 ArrayType Class
	12.13.3 PointerType Class
	12.13.4 RangeType Class
	12.13.5 BagType Class
	12.13.6 SetType Class
	12.13.7 SequenceType Class

	12.14 Signature Class Diagram
	12.14.1 Signature Class
	12.14.2 ParameterKind (enumeration)

	12.15 DefinedTypes Class Diagram
	12.15.1 DefinedType Class (generic)
	12.15.2 TypeUnit Class
	12.15.3 SynonymUnit Class

	12.16 ClassTypes Class Diagram
	12.16.1 ClassUnit Class
	12.16.2 InterfaceUnit Class

	12.17 Templates Class Diagram
	12.17.1 TemplateElement Class (generic)
	12.17.2 TemplateUnit Class
	12.17.3 TemplateParameter Class
	12.17.4 TemplateType Class

	12.18 TemplateRelations Class Diagram
	12.18.1 InstanceOf Class
	12.18.2 ParameterTo Class

	12.19 InterfaceRelations Class Diagram
	12.19.1 Implements Class
	12.19.2 ImplementationOf Class

	12.20 TypeRelations Class Diagram
	12.20.1 HasType Class
	12.20.2 HasValue Class

	12.21 ClassRelations Class Diagram
	12.21.1 Extends Class

	12.22 PreprocessorDirectives Class Diagram
	12.22.1 PreprocessorDirective Class (generic)
	12.22.2 MacroUnit Class
	12.22.3 MacroKind data type (enumeration)
	12.22.4 MacroDirective Class
	12.22.5 IncludeDirective Class
	12.22.6 Conditional Directive Class

	12.23 PreprocessorRelations Class Diagram
	12.23.1 Expands Class
	12.23.2 GeneratedFrom Class
	12.23.3 Includes Class
	12.23.4 VariantTo Class
	12.23.5 Redefines Class

	12.24 Comments Class Diagram
	12.24.1 CommentUnit Class
	12.24.2 AbstractCodeElement Class (additional properties)

	12.25 Visibility Class Diagram
	12.25.1 Namespace Class

	12.26 VisibilityRelations Class Diagram
	12.26.1 VisibleIn Class
	12.26.2 Imports Class

	12.27 ExtendedCodeElements Class Diagram
	12.27.1 CodeElement Class (generic)
	12.27.2 CodeRelationship Class (generic)

	13 Action Package
	13.1 Overview
	13.2 Organization of the Action Package
	13.3 ActionElements Class Diagram
	13.3.1 ActionElement Class
	13.3.2 AbstractActionRelationship Class (abstract)
	13.3.3 BlockUnit Class
	13.3.4 AbstractCodeElement (additional properties)

	13.4 ActionInheritances Class Diagram
	13.5 ActionFlow Class Diagram
	13.5.1 ControlFlow Class (generic)
	13.5.2 EntryFlow Class
	13.5.3 Flow Class
	13.5.4 TrueFlow Class
	13.5.5 FalseFlow Class
	13.5.6 GuardedFlow Class

	13.6 CallableRelations Class Diagram
	13.6.1 Calls Class
	13.6.2 Dispatches Class

	13.7 DataRelations Class Diagram
	13.7.1 Reads Class
	13.7.2 Writes Class
	13.7.3 Addresses Class
	13.7.4 Creates Class

	13.8 ExceptionBlocks Class Diagram
	13.8.1 ExceptionUnit Class
	13.8.2 TryUnit Class
	13.8.3 CatchUnit Class
	13.8.4 FinallyUnit Class

	13.9 ExceptionFlow Class Diagram
	13.9.1 ExitFlow Class
	13.9.2 ExceptionFlow Class

	13.10 ExceptionRelations Class Diagram
	13.10.1 Throws Class

	13.11 InterfaceRelations Class Diagram
	13.11.1 CompliesTo Class

	13.12 UsesRelations Class Diagram
	13.12.1 UsesType Class

	13.13 ExtendedActionElements Class Diagram
	13.13.1 ActionRelationship Class (generic)

	14 Micro KDM
	15 Platform Package
	15.1 Overview
	15.2 Organization of the Platform Package
	15.3 PlatformModel Class Diagram
	15.3.1 PlatformModel Class
	15.3.2 AbstractPlatformElement Class (abstract)
	15.3.3 AbstractPlatformRelationship Class (abstract)

	15.4 PlatformInheritances Class Diagram
	15.5 PlatformResources Class Diagram
	15.5.1 PlatformResource Class
	15.5.2 NamingResource Class
	15.5.3 MarshalledResource Class
	15.5.4 MessagingResource Class
	15.5.5 FileResource Class
	15.5.6 ExecutionResource Class
	15.5.7 LockResource Class
	15.5.8 StreamResource Class
	15.5.9 DataManager Class
	15.5.10 PlatformEvent Class
	15.5.11 PlatformAction Class
	15.5.12 ExternalActor Class

	15.6 PlatformRelations Class Diagram
	15.6.1 BindsTo Class

	15.7 ProvisioningRelations Class Diagram
	15.7.1 Requires Class

	15.8 PlatformActions Class Diagram
	15.8.1 ManagesResource Class
	15.8.2 ReadsResource Class
	15.8.3 WritesResource Class
	15.8.4 DefinedBy Class
	15.8.5 ProducesPlatformEvent

	15.9 Deployment Class Diagram
	15.9.1 DeploymentElement Class (generic)
	15.9.2 DeployedComponent Class
	15.9.3 DeployedSoftwareSystem Class
	15.9.4 Machine Class
	15.9.5 DeployedResource Class

	15.10 RuntimeResources Class Diagram
	15.10.1 RuntimeResource (generic)
	15.10.2 Process Class
	15.10.3 Thread Class

	15.11 RuntimeActions Class Diagram
	15.11.1 Loads Class
	15.11.2 Spawns Class

	15.12 ExtendedPlatformElements Class Diagram
	15.12.1 PlatformElement Class (generic)
	15.12.2 PlatformRelationship Class (generic)

	16 UI Package
	16.1 Overview
	16.2 Organization of the UI Package
	16.3 UIModel Class Diagram
	16.3.1 UIModel Class
	16.3.2 AbstractUIElement Class (abstract)
	16.3.3 AbstractUIRelationship Class (abstract)

	16.4 UIInheritances Class Diagram
	16.5 UIResources Class Diagram
	16.5.1 UIResource Class (generic)
	16.5.2 UIDisplay Class (generic)
	16.5.3 Screen Class
	16.5.4 Report Class
	16.5.5 UIField Class
	16.5.6 UIEvent Class
	16.5.7 UIAction Class

	16.6 UIRelations Class Diagram
	16.6.1 UIFlow Class
	16.6.2 UILayout Class

	16.7 UIActions Class Diagram
	16.7.1 Displays Class
	16.7.2 DisplaysImage Class
	16.7.3 ManagesUI Class
	16.7.4 ReadsUI Class
	16.7.5 WritesUI Class
	16.7.6 ProducesUIEvent Class

	16.8 ExtendedUIElements Class Diagram
	16.8.1 UIElement Class (generic)
	16.8.2 UIRelationship Class (generic)

	17 Event Package
	17.1 Overview
	17.2 Organization of the Event Package
	17.3 EventModel Class Diagram
	17.3.1 EventModel Class
	17.3.2 AbstractEventElement Class (abstract)
	17.3.3 AbstractEventRelationship Class (abstract)

	17.4 EventInheritances Class Diagram
	17.5 EventResources Class Diagram
	17.5.1 EventResource Class (generic)
	17.5.2 Event Class
	17.5.3 State Class
	17.5.4 InitialState Class
	17.5.5 Transition Class
	17.5.6 OnEntry Class
	17.5.7 OnExit Class
	17.5.8 EventAction Class

	17.6 EventRelations Class Diagram
	17.6.1 NextState Class
	17.6.2 ConsumesEvent Class

	17.7 EventActions Class Diagram
	17.7.1 ReadsState Class
	17.7.2 ProducesEvent Class
	17.7.3 HasState Class

	17.8 ExtendedEventElements Class Diagram
	17.8.1 EventElement Class (generic)
	17.8.2 EventRelationship Class (generic)

	18 Data Package
	18.1 Overview
	18.2 Organization of the Data Package
	18.3 Data Model Class Diagram
	18.3.1 DataModel Class
	18.3.2 AbstractDataElement Class (abstract)
	18.3.3 AbstractDataRelationship Class (abstract)

	18.4 Data Inheritances Class Diagram
	18.5 DataResources Class Diagram
	18.5.1 DataResource Class (generic)
	18.5.2 DataContainer Class (generic)
	18.5.3 Catalog Class
	18.5.4 RelationalSchema Class
	18.5.5 DataEvent Class
	18.5.6 DataAction Class

	18.6 ColumnSet Class Diagram
	18.6.1 ColumnSet (generic)
	18.6.2 RelationalTable Class
	18.6.3 RelationalView Class
	18.6.4 DataSegment Class
	18.6.5 RecordFile Class

	18.7 KeyIndex Class Diagram
	18.7.1 IndexElement Class (generic)
	18.7.2 UniqueKey Class
	18.7.3 ReferenceKey Class
	18.7.4 Index Class

	18.8 Key Relations Class Diagram
	18.8.1 KeyRelationship Class

	18.9 DataActions Class Diagram
	18.9.1 ReadsColumnSet Class
	18.9.2 WritesColumnSet Class
	18.9.3 ManagesData Class
	18.9.4 HasContent Class
	18.9.5 ProducesDataEvent Class

	18.10 StructuredData Class Diagram
	18.10.1 XMLSchema
	18.10.2 AbstractContentElement (abstract)

	18.11 ContentElements Class Diagram
	18.11.1 ContentItem (generic)
	18.11.2 ComplexContentType
	18.11.3 SimpleContentType
	18.11.4 ContentRestriction
	18.11.5 AllContent Class
	18.11.6 SeqContent Class
	18.11.7 ChoiceContent Class
	18.11.8 GroupContent Class
	18.11.9 MixedContent Class
	18.11.10 ContentAttribute Class
	18.11.11 ContentElement Class
	18.11.12 ContentReference Class

	18.12 ContentRelations Class Diagram
	18.12.1 TypedBy Class
	18.12.2 DatatypeOf Class
	18.12.3 ReferenceTo Class
	18.12.4 ExtensionTo Class
	18.12.5 RestrictionOf Class

	18.13 ExtendedDataElements Class Diagram
	18.13.1 ExtendedDataElement Class
	18.13.2 DataRelationship Class

	19 Structure Package
	19.1 Overview
	19.2 Organization of the Structure Package
	19.3 StructureModel Class Diagram
	19.3.1 StructureModel Class
	19.3.2 AbstractStructureElement Class (abstract)
	19.3.3 AbstractStructureRelationship Class (abstract)
	19.3.4 Subsystem Class
	19.3.5 Layer Class
	19.3.6 Component Class
	19.3.7 SoftwareSystem Class
	19.3.8 ArchitectureView Class

	19.4 StructureInheritances Class Diagram
	19.5 ExtendedStructureElements Class Diagram
	19.5.1 StructureElement Class (generic)
	19.5.2 StructureRelationship Class (generic)

	20 Conceptual Package
	20.1 Overview
	20.2 Organization of the Conceptual Package
	20.3 ConceptualModel Class Diagram
	20.3.1 ConceptualModel
	20.3.2 AbstractConceptualElement (abstract)
	20.3.3 AbstractConceptualRelationship Class (abstract)

	20.4 ConceptualInheritances Class Diagram
	20.5 ConceptualElements Class Diagram
	20.5.1 ConceptualContainer Class
	20.5.2 TermUnit
	20.5.3 FactUnit
	20.5.4 RuleUnit
	20.5.5 ConceptualRole
	20.5.6 BehaviorUnit Class
	20.5.7 ScenarioUnit Class

	20.6 ConceptualRelations Class Diagram
	20.6.1 ConceptualFlow Class

	20.7 ExtendedConceptualElements Class Diagram
	20.7.1 ConceptualElement Class (generic)
	20.7.2 ConceptualRelationship Class (generic)

	21 Build Package
	21.1 Overview
	21.2 Organization of the Build Package
	21.3 BuildModel Class Diagram
	21.3.1 BuildModel Class
	21.3.2 AbstractBuildElement Class (abstract)
	21.3.3 AbstractBuildRelationship Class (abstract)
	21.3.4 Supplier Class
	21.3.5 Tool Class
	21.3.6 SymbolicLink Class

	21.4 BuildInheritances Class Diagram
	21.5 BuildResources Class Diagram
	21.5.1 BuildResource Class
	21.5.2 BuildComponent Class
	21.5.3 BuildDescription Class
	21.5.4 BuildLibrary Class
	21.5.5 BuildProduct Class
	21.5.6 BuildStep Class

	21.6 BuildRelations Class Diagram
	21.6.1 LinksTo Class
	21.6.2 Consumes Class
	21.6.3 Produces Class
	21.6.4 SupportedBy Class
	21.6.5 SuppliedBy Class
	21.6.6 DescribedBy Class

	21.7 ExtendedBuildElements Class Diagram
	21.7.1 BuildElement Class (generic)
	21.7.2 BuildRelationship Class (generic)

	Annex A - Semantics of the Micro KDM Action Elements
	A.1 Comparison Actions
	A.2 Actions Related to the Primitive Numerical Datatypes
	A.3 Actions Related to Bitwise Operations on Primitive Datatypes
	A.4 Control Actions
	A.5 Actions Related to Access to Datatypes
	A.6 Actions Related to Type Conversions
	A.7 Actions Related to StringType Operations
	A.8 Actions Related to SetType Operations
	A.9 Actions Related to SequenceType Operations
	A.10 Actions Related to BagType Operations
	A.11 Actions Related to Resources

