ISO/IEC 19506:2012(E)
Date: April 2012

Information technology - Architecture-Driven
Modernization (ADM): Knowledge Discovery
Meta-Model (KDM)

formal/2012-05-08

This version has been formally published by 1SO as the 2012 edition standard: |SO/IEC 19506.






ISO/IEC 19506:2012(E)

Table of Contents

0T {11V 0] (o IR XV
LYoo 18 T (] o X XVi
S Yo 0 1 P 1
2 Conformance and COMPLIANCE .......coouuiiiiiiiiiii e 1
2.1 KDM DOMAINS ..ovuniiiiiieieiie ettt e e et e e e e e et e e e st e e e st e e staneeessa e eebanaeeenas 2

2.2 COMPlIANCE LEVEIS ...ttt s e e e e e e e e e e e aeeeeannnes 2

2.3 Meaning and Types of COMPlIANCE ......ccoooeiiiiiiiiiie e 3

S NOMMALIVE RETEIENCES ...ceiiiii e e 6
4 Terms and DefiNItIONS .....oiuiie e e 6
5 SYMDBOIS .. 8
6 Additional INFOrMAatION .......oveiiiie e e e 9
6.1 Changes to Other OMG SpecCifiCations ..........coooiiiiiiiiiiiiiiiiiiei e 9

6.2 How to Read this International Standard ..............cccccoeiiiiiiiiiiiin e, 9

T OVEIVIEW et ieeee ettt e e e e e e e e et e e e e et e e e e et e e eat e e e eaaneeeeaaanes 11
o 21 0 LY 15
8.1 OVEIVIEW ..ereiiiiie ettt et e e e et e e et e e e e et e e e eba e e eba e e s saaneaestnaeeesnnnaeees 15

8.2 Organization of the KDM PacCKages .........cccvvuiiiiiiiiiiiiiii e 16
Subpart | - INfrastruCture LAYr ........ooveeuiiiiieeee e 19
D COre PacCKage ....cooeeeeiiii e 21
.1 OVEIVIEW ..uiiiieiiii ettt e e e e e et e e e e e e e et e e e e e e eaaa e e e eeeesa e e eeesesaaaeeeeeaennanns 21

9.2 Organization of the Core Package .........ccooooviiiiiiiiiiiiii e 21

9.3 CoreEntities Class DIiagram .......cccooieeuiiiiiieiieiiiie et e e e e e eannes 21

9.3.1 Element Class (ADSIrACE) ......uuuiiiiiieeiiie e e e e e 22

9.3.2 ModelElement Class (ADSIracCt) .......c.covieeiiiiiriiiiie e 22

9.3.3 KDMERtity Class (ADSLraCL) .....ueeiivieeieiiiii e ee e e s aeee e e 23

9.4 CoreRelations Class DIagram ...........cooiieeeeeeeee et a e e e e eeeeeees 24

9.4.1 KDMRelationship Class (abStract) ........ccccvviiiieeeeiiiice e 24

9.4.2 KDMEntity (additional Properti€s) ......cccoecuvrrieiireeeeeeis et e e e e e e e e s ssenrenee e e e e e 25

© ISO/IEC 2012 - All rights reserved iii



ISO/IEC 19506:2012(E)

9.5 AggregatedRelations Class Diagram ...........ccccvveiiviiiiiiiiiiiise e eeeeeeeeeeeeeeennnnnens 26
9.5.1 AggregatedRelationShip ClassS........uuveiieiiiiiiiiiiieie e 26

9.5.2 KDMEntity (additional Properti€S) ........cceveiiecueerieiriieee s e sesesieeeeeee e e ae e e se s seannneeee s 29

9.6 Datatypes Class DIagram .......ccccoooiiiooiiiiiiiiiiiiiiiiir e ee e 29
9.6.1 Boolean TYpe (AAtatyPe) ......uvurrrreriieeeeieiiiicieiieee e e e e e e s e e s er e e e e e e e e sns e eeees 29

9.6.2 String TYPe (AtAtYPE) ...cceeieieieeieiie et e e e e e s e e e e e e e s e e e eee e 29

9.6.3 Integer TYPE (AAtAtYPE) ....cieeiceieeiieiie i e e e e ettt e e e e e s e e e e e e e e s e e s nnannrrreeees 30

10 The Package named “KAM” ........ccoouiiiiiiiriiii e 31
L1O.1 OVEIVIEBW .ttt e ettt e e e e e e e e e e e e e e e e e et eeesbess s b aa e e e e e e eeeeeaaeeeeees 31
10.2 Organization of the KDM Framework ............ccccooiviiiiiiiiiiiiiiiiisseee e e eeeeeeeeeeee 31
10.3 Framework Class Diagram ..........ccouuuuuuiiiiiiiiiiiieeeeeeeeeeeeeeeeeessnnnsn e e e e aeaaeeeeees 32
10.3.1 KDMFramework Class (aDStract) ........c..eeeiiiiiiiiiiiiiiiieeee e 33

10.3.2 KDMModel Class (ADSLraCt) ......cooiiiiiiiiiiiiiieeeee e 33

10.3.3 KDMEntity (additional propertieS) ........coccuueeeieieiiieiiaiiiiee e 34

10.3.4 SEOMENT CIASS ..ciiiiiiiiiiie ettt ettt e e e bbbt e e e e e e e e e e e nb b e s e e eeaaaeaas 34

10.4 Audit Class DIagQram .......cccoeeuiuuuuiiiiiisiasee e e e e e ee e e eeeeeeeearaaa e s e e e aeeaeaeeereessennnnes 35
10.4.1 AUAIE CIASS .eeiiiiiiiaieee ittt e e e e e e e et et et e e e e e e e e e s aanbeebaeeeaaaaeeaaaan 36

10.4.2 KDMFramework (additional properties) .......cceeeoeoiiiiiiiiiiiieeeee i 37

10.5 EXtensions Class Diagram ..........c.uuuruuiiiiiiiiieeeeeeeeeeeseeeesieessnnnnnaneeeeeaaaaesaeees 37
O T0 S (=1 =T Y o LT O - TR 38

10.5.2 TagDefiNItioN ClAaSsS .....ccccvvvriiiiiiiie e er e s e e e e s e e e s aeeeeaees 40

10.5.3 EXteNSIONFAMIlY ClaSS........uuuiiiiiiiieeieiiiieceeee e s e e e e e e e s s sranareee e s 41

10.5.4 ModelElement (additional PropertieS) .......ccueeeeeeeeiiiiiriiiiiiiree e eree e 42

10.6 ExtendedValues Class Diagram ...........ccooooiioiieeiiiiieiieiieiiiiiiinne e 43
10.6.1 ExtendedValue Class (abSract) ........cccuurriiriiieei e e e r e e e e 43

O T I To To [=To AV = 1 TSI O - T PR 44

O CTC T I To To [=To | = oY O - TR 44

10.7 Annotations Class DIAgIam ..........uuuueiiiiieeeeee et e e e e e e e eeeeeeeeaeees 45
10.7.1 AURMDULE CIASS ...veeeiieieiiiie st e e s 46

10.7.2 ANNOLALION CIASS ...cvviiiiiiiie ittt ettt nnree e 47

10.7.3 Element (additional Properti€S) ........cooeeeccuriiriiierie et e e 47

11 SOUICE PACKAQGE ...coeeeviiiieeieiii ettt e e e et e e e e et e e e e 49
L1.1 OVEIVIEBW ettt e ettt e e e e e e e e e e e e et e e e et et e e besbs b aan e e e e e e eeeeaaeeeeees 49
11.2 Organization of the Source Package ...........cccoiiiiiiiiiiiiiiiiiii e 50
11.3 InventoryModel Class DIiagram ..........ccceieeiieeeeeeeereeeeeeeieiiiiiinseeeeeeeeeseeesesesnnnns 51
11.3.2 INVENtOrYMOE] ClASS ......eeiiiiiiiiiieeie ettt e e e e e e e 51

11.3.2 AbstractinventoryElement Class (aDStract) ..........coooiiiiiiiiiiiiiiiiiiieeeeeeee e, 52

11.3.3 AbstractinventoryRelationship Class (abstract) .........ccocveeeieiiiiiiiiiiiiiiiiieeeeeen 52

11.3.4 Inventoryltem ClassS (QENETIC) ..cciiiiiiiiiiiiiieeie e ettt e e e e e eaa e 53

iv © ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

11.3.5 SOUICEFIIE CIASS ..ottt 53

0 B G [ 0 = To L= 4 o TR 54

11.3.7 Configuration ClIASS .......uuuuieiiieeieiiiiiiiiiiiei e et e e e s s s s e e e e e e e e e s s arreeeaeeeeaeean 54

11.3.8 ResourceDesCription ClassS ........ccccvvviiiiiiiieee e ee e e e e e e e e e 54

11.3.9 BIiNAryFile CIasS .....ccccueiiiiieiiiee et e e s s ee e e e e e e e s s e st ereeeeeeees 54

11.3.10 EXECULADIEFIIE CIASS ....ciiiiiiiiiii it 55

11.3.11 InventoryContainer Class (QENEIIC) ..uuuuirieeeeeiiiiiiiiiiieireeeeeesesssirenrreereeeeeeseesnnanns 55

11.3.12 DiIr€CtOrY ClASS ....icuvvevieiiiiiieeis e e isctiee e ee e e e e e e s s s ss et e e e aeeeesssssessnsreeneereaeeeeeaannnns 55

0 300 e B = 0= Tod 0 = 1SRRI 56

11.4 Inventorylnheritances Class Diagram .........ccccceeeeiiiiiiieeeeeiiicrsre e e e e 56
11.5 InventoryRelations Class Diagram ..........ccceeveiiieieeeeereeieeeieeesiissnn e e e e eeeaaes 57
11.5.1 DEPeNASON CIASS ....uuueiiiiiiiiiiaaaae ittt e ettt e e e e e e e e e e breeaeaaaeaaeas 57

11.6 SourceRef Class DIiagram ..........ooouuuiiiuiiiiiiiiiieeeeeeeeeeeeeeeeaeeern e e e e e e e eaeeeeees 58
11.6.1 SOUICERES CIASS ...ttt e e e e e e e e e e e e e as 58

11.6.2 SOUICEREION ClASS ...eutiiiiiiiiiaieaiaiiiit ettt e ettt et e e e e e et eeeeaaaeaeas 60

11.7 ExtendedInventoryElements Class Diagram ..........ccccccvvvvvviviiiiiiiiiiinniineeeeeeenn 61
11.7.1 InventoryElement Class (QENETIC) ..cvvcvrrriiiiiiieeeee i e iiieere e e e e e e e e ss s srnnrrereeeeee e 61

11.7.2 InventoryRelationship Class (QENEIIC) ....uuiriiiiieeeiiiiiiiiiteee e e e e 61

Subpart Il - Program Elements Layer ..........oveeeiiiiiiiii e 63
12 Code PacCKage .....ooooiiiiiiiii e 67
L12.1 OVEIVIBW ..ttt ettt e e e e e e e e e e e e e e e e et e et et s bebs e e e e e e e e eaeeaeaas 67
12.2 Organization of the Code Package ........ccccoeviiiiiiiiiiiiiiiceeeree e 67
12.3 CodeModel Class DIagram .........coeuueuuuuiiiiiiiaiae et eaeaeeeas 68
12.3.1 COAEMOAEI CIASS ....uuieeiiiiieiiieee ettt et e e e e e e e e bbb e e e eeaaaeaeas 69

12.3.2 AbstractCodeElement Class (ADSLract) ..., 69

12.3.3 AbstractCodeRelationship Class (abStract) ..........cccccvviiiiiiiiiiiiiiiiiiieeee e, 70

12.3.4 Codeltem Class (ADSIrACE) .....cooiiiiiiiiiiiiiiieee e 70

12.3.5 ComputationalObject Class (QENETIC) ......uieiiiiiiiaiiiiiee e e e 70

12.3.6 Datatype ClasS (QENEIIC) ...ceuiiiiiiaiiiiiiiiti ittt e e e e e e e e 71

12.4 Codelnheritances Class DIiagram ........cccccueuiiiiiiiiiiiieiiee e 71
12.5 Modules Class DIagram .........coeeiiiiiiiiimiiiiiaaaaae e e e e e e eeeeerrene e e e e e e e e 72
12.5.1 MOdule ClasS (QENEIIC) .uevvieieeeieiiiiiiiieeeee e e e e e e e ees st e e e e e e e e s s s et nberreeraaeeeeeannnans 72

12.5.2 CompilatioNUNIt CIASS ...vuviieiiiieieiiiiiiiiiiee et e e s e e e e e e e e e eeee e e e 73

12.5.3 SharedUNIt CIASS .....ccvviiieiiiiiiie et et 73

12.5.4 LanguagEUNIL ClASS .....uuuruiriiiiieeeeeiiieiiiitie et s e e e e e e s s trr e e e e e e e e e s e s snnnrreaeeeeeaeaes 74

12.5.5 COAEASSEMDBIY ClASS ...uvvviiiiiiieieiii it e e e s s e e e e e e e e e e e e e e eeeeeeas 74

12.5.6 PACKAQE ClASS ....ccccuuiiiiiiiieiie i ettt e e e e e s s e e e e e e e e s e r e e e e ae e e ean 74

12.6 ControlElements Class DIagram .............ocoooioieeeeeeeieeeeieeeieiiiiinee e a e 75
12.6.1 ControlElement Class (QENEIIC) ......uuuueiiiiiiaeaaeia ittt et e e eibeeee e e e e e e e e 75

12.6.2 CallableUNIt CIASS ......ueeiiiiiiiiaiaie ittt e e e e e e e eaeeaaeeaeas 76

12.6.3 CallableKind Data Type (ENUMErated) .........ocooeiiiiiiiiiiiiiiiieia e 77

© ISO/IEC 2012 - All rights reserved Y



ISO/IEC 19506:2012(E)

12.6.4 MEthOAUNIL CIASS ..vviiiiiiiiiiieiiiiiie ettt et e ettt e e et e e e e seaaeee e an 77
12.6.5 MethodKind data type (ENUMErAtioN) ..........ceviieeeeeiiiiiiiiiieire e er e e e 77
12.7 DataElements Class DIiagram .......ccccoooeeieeeeeiirieieieeieiiiiiissnsseeeeeeeeeaeeeeenesnnnn 79
12.7.1 DataElement Class (QENEIIC) ..civeeeiiiiieiiiiie e e e e e e e s essrete e e e e e e e s e rreerereee e e 80
12.7.2 StOrableUNit CIASS ....ccuuviiiiiiiiie ettt e e et e e e sbe e e e e annes 80
12.7.3 StorableKind data type (ENUMEration) ...........cveeeeeiiiiiiiiiiiirieeeeeeee e ssienrrerrereee e 81
12.7.4 ExportKind data type (ENUMEration) ......cccevveeiieeeeeiii i ee e e e s e e esrenreereree e e 81
12.7.5 REMUNIE CIASS ...uviiieiiiiiiee ettt et e e e et e e e e snbbreee e an 82
12.7.6 INAEXUNIL CIASS ....vviiieiiiiiiiieiiiieiee ettt ettt et e e e e st b e e e s snbbaeee e an 82
12.7.7 MeMDEIUNIE ClASS ..eeiiiiiiiiiie ittt et e e eaaeee e 82
12.7.8 ParameterUNIt CIASS .......coiiiiiiiiiieiiiiiee ettt e e e e 83
12.8 ValueElements Class Diagram .........cccoceoiiiiiiiiiieeiiiiiiiee e e et eaeaanns 83
12.8.1 ValueElement Class (QENEIIC) .uvviieeeeiiiciiieeie e e e e e e s e et r e e e e e e e snenraen e eree e e 84
12.8.2 VAIUE ClASS ..eeiieiiiiiiiie ittt ettt ettt ettt e e e sttt e e s e bt e e e e abeaeeeeanne 84
12.8.3 VAIUELISE ClIASS ....uviiiiiiiiiiiie ittt et e et e e et e e e s snnbe e e e e e 85
12.9 PrimitiveTypes Class DIagram ...........cciieeiiiiiiiiieeeieiiiiee e e e e eeanaaas 86
12.9.1 PrimitiveType Class (JENEIIC) ..ovveeeieiieiiiiieieeee e e e e s esesetteer e e e e e e s e e snnrnneeeeeneee e 86
12.9.2 BOOIEANTYPE ClASS ....eiiiiiiiiiieie ettt s e e e e e e s e e e ennaeee s 87
12.9.3 CharTYPE ClasS ...cccoiiiiiiiiiiii et e e e e s e e e e e e e e s e s rrenreneeeeaes 87
12.9.4 Ordin@ITYPE CIASS ....cccoiiieiiiiieee et e e e e e e e et reeeeeeeeeas 87
12.9.5 DAETYPE CIASS .oeeeeiiiiiiieiieie e et e e e e e sttt e et e e e e e e s s s r e e e ae e e e s s annranbrenreeeeeeaeas 87
12.9.6 TIMETYPE ClASS .oeieeiiiiiietieiie e et e e e e e sttt e et e e e e e et s st r e e aaee e s e s s nnnnrreananeeeaaes 88
12.9.7 INtegErTYPE ClASS ...cicceeiieiiiiiiee et e e s e e e e e e e e e s st rerreeeeeeees 88
12.9.8 DECIMAITYPE CIASS ...uuveriiieiiiieeeee i i it ee e e e et e s ar e e e e e e e e s s annnban e e e e eaeeeanean 88
12.9.9 SCAlEATYPE CIASS ..cciiiiiieiiieiiei e e e e s et e e e e e e s e s e e e e e e e e s e st rrerrereaeeeeas 89
2 IR O B o = Y o LT O = U 89
12.9.11 VOIATYPE CIASS ..cceeieiiieiiieie et e ettt ee et e e e e e et s e e e e e e e e e e e s st rranreeeeeeeeas 89
2 B 2 1] o 1Y o L= = TSR 89
R T G B =11 3/ o 1= I O = 1 PR 90
12.9.14 BItStriNGTYPE ClASS ..uuuueiiiiiiiiiiie e ie s ceteir et e e e e s r e e e e e e s es st ereeaaeeeeean 90
12.9.15 OCLEITYPE CIASS ...coiceeiiiieieiiie e ettt e e e e s e e e e e e e e e s s st reaeeaeeees 90
12.9.16 OCLEtStrINGTYPE CIASS ..uvvvriiiiiiiieeiiieiiiiier e e e e e e s ses st e e e e e e e e s e e s s sanre e aneeeaees 90
12.10 EnumeratedTypes Class Diagram ............ccieieiiiiiiiiiiiiieeeeiiis e e 91
12.10.1 ENUMEratedTyPe ClASS ....ueeiiiiiiaaiiiiiiiiieie ittt e e et eaa e 91
12.11 CompositeTypes Class Diagram ...........ccoouviiiiieieeieiiiiiiieseee e e e e e eeeeeeeeeenenannn 92
12.11.1 CompositeType Class (QENEIIC) ...cciiueueiiiiiiiieee ettt e e e e e e 92
12.11.2 ChOICETYPE ClASS ...ttt e e e as 93
12.11.3 RECOIATYPE ClASS ....utiiiiiiiiiiieee ettt e e e e e e 93
12.12 DerivedTypes Class Diagram .......cccccoeeeeieeieiirieeieieeeeiiiiiss s e e s e e eaeaeeaeeeees 95
12.12.1 DerivedType Class (QENETIC) ..eceeiiiiiiiiiiiiie ettt eaa e 95
12.12.2 ArrayTYPE CIASS ...ttt ettt e e e e e e e e e e eaaa e e as 96
12.12.3 POINLEITYPE ClIASS ...ttt e e e e e e e et aeeeaaeeas 96
12.12.4 RANGETYPE CIASS ....ueeiiiiiiiiiieae ettt e e e e e et e e e e e e e e an 97
12.12.5 BAQTYPE ClASS ...ceiiiiiiiitieie ettt ettt e e e e e e e e e et eeaeaae e e as 98
12.12.6 SELTYPE ClASS ..oiiiiiiiiiiitie ettt et e et e e e e e e e e e s b e be e e eeaaa e as 98

Vi © ISO/IEC 2012 - All rights reserved



12.13

12.14

12.15
12.16

12.17

12.18

12.19

12.20

12.21

12.22

12.23

12.24

ISO/IEC 19506:2012(E)

12.12.7 SEQUENCETYPE ClASS ..uvveviiiiieeeeie it e e e e e e e e e e e e e st raeeae e e as 99
Signature Class DIiagram ..........cooviiiiieiiiiiiiiiisiee e e e e e ee e eeeaeaes 99
12.13.1 SIgNAUIE ClASS ...cccevveiiiieiiieee e e e e et re e e e e e e s e e s s ar e e e e e e e e s s e nnnn e e e e aeaeeeeeas 99
12.13.2 ParameterKind Enumeration Datatype ..........cccccviriiriieeeeisiicciiiiieee e e e 100
DefinedTypes Class DIiagram ... eeeeeeieeees 100
12.14.1 DefinedType Class (AbSIract) ......cccccvvviiiiiiieec e 101
12.14.2 TYPEUNIL CIASS ...oiieiiiiiiiiiit e e e ettt e e e s s s e e e e e e s e s s s eeaeeaeeaeeeenas 101
e B SV T )Y 4 L0 1 A = TSR 102
ClassTypes Class DIagram .........uuuuuuueiiiiiiieeee et e e 102
(O = 11 U T A = T 102
12.16.1 INterfac@UNIL CIASS ......eeiiiiiiiiiie ittt e e e e e s sabeeeeeaees 103
Templates Class DIagram .........couuuuuuiiiiiiiieeeiee e e e 103
12.17.1 TeMPIALEUNIL CIASS ..vvuiriiiiiieeei e iiciieeeer et e e s e e er e e e e e e e 104
12.17.2 TemplateParameter CIassS ........ccccuuireriiieeeeeiiii e e e e e s s sinreereee e e e e e e e 104
12.17.3 TEMPIALETYPE CIASS ..evveiieiieeeiei ittt e e e s e s e e e e e s e e s s s e e e e e e e e 105
TemplateRelations Class Diagram ...........ooooviiiiiiiiiiiiiiiinnee e 105
12.18.1 INStANCEOT CIASS ..oiiuveiiiieiiiiiie ettt et e e e st e e s sbbeeeeenne 106
12.18.2 PArameterTO ClASS .....ceiiiiiiiiieieiiiiiee sttt et e e e e s eeesnee 106
InterfaceRelations Class Diagram ............cooeviiiiiiiiiiiinniee e 110
12.19.2 IMPIEMENLS CIASS ...eveeeiiiiiieeii ittt e e e e e e e bbb e e e e e e e e e e e e aanes 111
12.19.2 ImplementationOf CIASS .......cooiiiiiiiiiiiieie e 112
TypeRelations Class Diagram .........ccccceeoiiiieieeieiieieceeeeers e e e e e e ee e 115
12.20.1 HASTYPE ClASS ....iiiiiiiiiiieie ettt ettt e e e e e e s et e e aeeeaeaaae e s 116
12.20.2 HASVAIUE CIASS ....uiiiiiiiiiiiiae ettt ettt e e e e et e e e e e e e e e ens 116
ClassRelations Class Diagram ............cceeiiiiiieeeeeeeeeeeeeeeeevies s e e e e e aea e 121
12.21.1 EXTENAS ClASS ..ottt ettt et e e e e e e st e e eeaaaaaeeaas 121
Preprocessor Class DIiagram ...........ceveuuuiiiiiiiiiiiieeseeeeeeeeeee e 123
12.22.1 PreprocessorDirective Class (QENENIC) .....cceevviivcevieiiieieeee e ceerciiieee e e e e e e 123
12.22.2 MACTOUNIL CIASS .oeiiiuviiiiieiiiiiiee ettt ettt e ettt e e s st e e e e snbeeeeeenne 125
12.22.3 MacroKind data type (ENUMETAtioN) ........ccevveeireiiiieiiiiieeir e e e e e e ss s eereeeaee e 125
12.22.4 MACIODIrECHVE CIASS ...eiiiiiiiiieieiiiiiiie s iiiie e ettt ettt e e e st e e s snbeeeeeaee 125
12.22.5 INCIUAEDITECHIVE CIASS ......eviiieiiiiiiiee ittt 126
12.22.6 Conditional DIr€CHIVE CIASS ......coicuriiieiiiiiiiiee ittt sraeeee e 126
PreprocessorRelations Class Diagram ........ccccoovveeeeeiiiiiiieeeeeiiiiiienene e 126
2 B0 R b o T T Lo [ - TSP 127
12.23.2 GeneratedFrom CIasS ........uuieiiiiiiiee it 128
12.23.3 INCIUAES ClASS ...eiiieiiiiiieei ittt et e e e e s snb e eeeenee 130
12.23.4 VAriANITO CIASS ..eeiiiiiiiieiiiiiiee ettt et e e e st e e e s snnbb e e s e snbaeeeesnnes 131
12.23.5 REAEfINES ClASS ...coiiiiiiiei ittt et ee e nee 133
Comments Class DIagram ........couuuuuuuiiiiiiaiere e e 135

© ISO/IEC 2012 - All rights reserved Vii



ISO/IEC 19506:2012(E)

12.24.1 CoMMENTUNIL CIASS ....veviiiieeiiiiie et 135

12.24.2 AbstractCodeElement Class (additional properties) ........ccccccceeveeviiiiccvnvvnnnnnn. 136

12.25 Visibility Class DIAgram ...........cceeeeiieeeeeeeeeeeieeeeeeiiiesessss s e e e e eeaeaseeeseeeesnnnnnn 136
12.25.1 NamMESPACE ClASS .....uuuiiiiiiiiiieeei it ee e s s e e e e e e e e s eeeeeee s 136

12.26 VisibilityRelations Class Diagram ...........coouviiiiiiiiiiiiiiiiiiaee e e eee e e eeeeeeeeieeens 137
12.26.1 ViSIDIEIN CIASS ..eiiiveiiiieie ittt 137

12.26.2 IMPOIS CIASS ..evieeeeiiieiciiiiieit et e e et e e ss et e e e e e s e et e e e e e aeeesessnnrenaneeeeaaees 138

12.27 ExtendedCodeElements Class Diagram .............cooeuuviiiiiiiiiiinninneeneeeeeeeeeeee 139
12.27.1 CodeElement Class (QENEIIC) .uvveeeeiiiiieciieiieiee e e e e e e e e e e e s e aeee e 140

12.27.2 CodeRelationship Class (QENETIC) .....covvcvviiiiiieiiee e e e 140

IR I Ao 1[0 = T = Vo [ 141
13,1 OVEIVIEBW ..ttt ettt e e e e e e e e e e e e e e et e e eetetbbe b e e e e e e e e e aaeaeeeeeens 141
13.2 Organization of the Action Package ..........cccceeiiiiiiiiiiiiiiiiie e 141
13.3 ActionElements Class Diagram ..........ccoeeeeeiiiiiiieeeiiiiiisies e e e e e e e e eeeeeeeeeannnnn 141
13.3.1 ACIONEIEMENT ClASS ...ttt a e e 142

13.3.2 AbstractActionRelationship Class (abStract) ...........ccccuviiiiiiiiiiiiniiiiiieeeeeeeenn 143

13.3.3 BIOCKURNIL CIASS ...coeieiiiiiiiiiitee ettt ettt e e e e et eeaaaeeas 143

13.3.4 AbstractCodeElement (additional properties) .......cccoooiiiiieiiieeeenieriiiieeeenn. 144

13.4 Actioninheritances Class Diagram ..........cccccceeviieiiieeiiiiiiiisses e e e e e e e e eeeeee 144
13.5 AcCtionFIOW Class Diagram ...........eeuuuiiiiiiiiieeeeeeeeeeeeeeeivesnees s e e e e e e e aeeaaeeeens 145
13.5.1 ControlFIOW Class (QENEIIC) ..cccciiiiiiiiiiiiiiiiee it e ettt e e e e e 145

13.5.2 ENIYFIOW CIASS .oiiiiiiiiiiieiie ettt e e e e e e e e aeeeeaaae s 146

L13.5.3 FIOW CIASS ..eeieiiiieeeiiee ettt e e e e e bbbttt e e e e e e e e e e e bbb e e aeeaaaas 147

13.5.4 TrUEFIOW CIASS ciiiiiiiiiiitte ettt ettt e e e e e e e e e bnnbeeee e 147

13.5.5 FAISEFIOW CIASS ...ciiiiiitte ettt e e e e e 148

13.5.6 GUArdedFIOW CIASS .......uviiiiiiiiieiiaae ittt e e e e e e 148

13.6 CallableRelations Class Diagram ...........cccoovviiivieiiiiiiiiiiiieseeeeeeeeeeeeeseeeesnnnnnn 149
13.6.1 CallS ClASS ..eeiiiiiiiiiiiiitit ittt ettt e e e bbb e e e e e e e e e e e be bbb e e e eaaae s 150

13.6.2 DiISPatChes Class ....ccooiiiiiiiiiiiii et e e 151

13.7 DataRelations Class Diagram .......cccccooieiieeeeiieiiieieeieeiiiinsss s e e e e e e e eaaeeaaeeeens 152
13.7.1 REAAS ClASS ..o uveieiieieitei ettt ettt nnne e s 153

13.7.2 WIES CIASS ..iiiveie ettt ettt sre e e nnee s 154

13.7.3 AAAreSSES ClASS ...vviiiieieiiieeie ettt 154

13.7.4 Creates ClasS .....cociiiiiiiie et 154

13.8 ExceptionBlocks Class Diagram ........cccoooeieieiiiiiiiiiieiiiiiiiiin e 155
13.8.1 EXCeptionUNIt ClASS .......ccccvriiiiiiiieeie e i r e e e e e s r e e e e e e e e s e s e aneee e 155

13.8.2 TIYUNIE CIASS wevviiiieeeeiiii ittt e e ettt e e e e s e e s et e e e e e e e e e s e ensnnnnnnnneees 156

13.8.3 CatChUNIL ClASS ....iveiiieie e 156

13.8.4 FINAllYyUNIt ClaSS ....cccoiiiiiiiiiiiie it e e e e et e e e e e e e s e e e e e e e e e s e s nnrnnraene e 157

13.9 ExceptionFlow Class Diagram .......cccooooiiooieiiiiiiieeieeeiiiiiiiss e 159

viii © ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

13.9.1 EXItFIOW CIASS ...eciuiriiiiiieitiei ettt 160

13.9.2 EXCEPLIONFIOW CIASS ...vuviviiiiiieieeeiiii sttt e e et r e e e s e e s s nae e e e e e e e 161

13.10 ExceptionRelations Class Diagram ..........cccccceeeiiieiieeeeiiiiiiinsin e e e eeeeee 161
13.10.1 TRIOWS CIASS ....urreiiieieiriiiesiie ettt e r e nn e e 162

13.11 InterfaceRelations Class Diagram .........ccccoiiiiiiiiiiiiiiiiiiii e 162
13.11.1 COMPHESTO ClASS ..vveveiiiieeeeiiiiiiiiiiiie et e e e e e e s e s e e e e e e e e s s ereaaaeeeeeeannes 163

13.12 UsesRelations Class DIiagram .............ccoooiiiieee oo 164
13.12.1 USESTYPE ClASS ...ueeeiiiiiiiiiiiee ettt ettt e e e eaaaaa e e 164

13.13 ExtendedActionElements Class Diagram ............cooovviiiiiiviiiiiiinineeeeeeeeeee 164
13.13.1 ActionRelationship Class (QENEIIC) ...eeeiiiiiiaiiiiiiiiieiiee et 165

14 MICIO KDIM oottt e e e e ee e 167
L4 1 OVEIVIEW .oeieiiiiiitiiee e ettt ettt e e e et e e e e e e e e e e e e e ansnnn e e e e e eans 167
Subpart Il - Runtime Resources Layer........cccccooiviiivieiiiieeeeeieee e 173
15 Platform PacKage ..........ooiiiiiiiiiii e 177
L15.1 OVEIVIEBW ..ottt ettt ettt e ettt ettt ettt e e e e e e e e e e e e e e e e eeee e 177
15.2 Organization of the Platform Package ..........ccccccovviiiiiiiiiiiiiiieceee e 178
15.3 PlatformModel Class Diagram ............ccceiiiieeiieeeeeiieeieeeesieiinsns e e e e e eeeaeeeens 179
15.3.1 PlatformMOdel CIASS .....ceiiiiiiiieieiiiiiiee ettt e eeeanes 179

15.3.2 AbstractPlatformElement Class (abstract) ..., 180

15.3.3 AbstractPlatformRelationship Class (abstract) ...........ceeeveeiiiiiiiiiiiiiiiiiiieeeeeeee, 180

15.4 Platforminheritances Class Diagram ..........ccccccevviiviviieiiiiiiiirenn e e e e e e 181
15.5 PlatformResources Class Diagram .........cccceeeiiiiiiiiiiiiiiiiiiien e 181
15.5.1 RESOUICETYPE CIASS ..etttiiiiiiiaaiiaiiiiiie ettt e e e ettt e e e e s e e s eeaeeaaaaaeeaeas 182

15.5.2 NamMiNQGRESOUICE CIASS ...ciiiiiiiiiiiiiititieiet ettt e e e e aae e e e e e e e 183

15.5.3 MarshalledRESOUICE ClaSS ........ccvviieiiiiiieei ittt 183

15.5.4 MessagingRESOUICE CIASS ....coiiiiiiiiiiiiiiie ettt eea e e e e 183

15.5.5 FIlERESOUICE CIASS ....veiiiiiiiiiiee ittt ettt e st e e srne e e e e 184

15.5.6 EXECUtIONRESOUICE CIASS .....oviiiiiiiiiiieeiiiiiee ettt e e 184

15.5.7 LOCKRESOUICE ClASS .....veiiiiiiiiiee ettt e s e e e 184

15.5.8 StreamRESOUICE CIASS .....uuviiiiiiiiiiie ettt e 184

15.5.9 DataManager ClaSS ........ccieiiiaaiiiiiiiiiei ittt e e e e e e e e e 184

15.5.10 PIatfOrMEVENT CIASS ....eeieiiiiiieieiiiiiee ettt e s e s ee e 185

15.5.11 PlatfOrmMACHON ClASS ....ccciiiiiiieiiiiiiieee sttt e s ee e 185

15.5.12 EXIErNAIACION ClASS ....vveieiiiiiiieieiiiiee ettt ee e 185

15.6 PlatformRelations Class Diagram ........ccccooveeieieeiiiiiiiieeeiiiiinsen e e e e e e eeaes 186
15.6.1 BIiNASTO CIASS ...vveeiiiiiiiieeeiiiiiee ettt sttt et et e e et e e e s sbbbe e e e s e snreeeeeane 186

15.7 ProvisioningRelations Class Diagram ..........ccccccovvvevivieiiiiiiiiiiinine e ee e e eeeeaeeee 186
15.7.1 REQUIIES ClASS ....ueuiiiiiiiiiiieeee ettt ettt e e e e e e e et b e e e e e e e e e e e e aanes 187

© ISO/IEC 2012 - All rights reserved iX



ISO/IEC 19506:2012(E)

15.7.2 PlatformACtions Class DIAgram .........eeieeeeeiiiiiiiieiieieeeeeeeissssinsieeereseeeeeessnssnnssssseenees 187

15.7.3 ManageSRESOUICE CIASS ....uuuiiiiiiieeieiiiiiiiiiiieee e e e e e ee e ssraee e e e e e e e e e s e s nnrnarneee e 188

15.7.4 ReadSRESOUICE ClASS ....coiiiiiiiiiiiiiiiiiie ettt 189

15.7.5 WIItESRESOUICE CIASS ...vvviiiiiiiiiiie ittt ee sttt ettt st e s snneeee s 189

15.7.6 DEfiN@ABY CIASS ...eeeeiiiieiiiieiiiie et e e sttt e et e e e er e e e e e e e e e e e s s s e aneeee s 189

15.7.7 Deployment Class DIagram .........ueeeieeieeeeisiiisiiiieieeeeeseeeess s sssianieeerereeeaeesssnnnsnsneneeees 190

15.7.8 DeployedComponent ClaSsS ........cccooiiceiiiiiieiiiee e s e cisiiiereer e e e e e e s e snsvrnrneeeeeae s 191

15.7.9 DeployedSoftwareSystem CIass ........ccovcciiriiiiieiie e 192

15.7.10 MACKHINE CIASS ...uvviiieiiiiiiie ettt sttt et et e e s s e e e snnnaee s 192

15.7.11 DeployedRESOUICE CIASS ..uvviiiiiieeeeeiiciiiiieiiiee e e e e e e se s s e e e e e e e e s e s nrenaneee e 193

15.7.12 RuntimeResources Class Diagram..........ccccuuriiiirieeeeesiiiiieeieeeeeeeesssssssneenneeeeaeeees 193
15.7.13 RUNIMERESOUICE (JENEIIC) ..eiiiiieeeeiiiiiiietiieee e e e e e ettt e e e e e e e e aeeeaeas 194

15.7.24 ProCeSS ClasS ..ciiiiiiiiiiiitie ittt ettt e e e e e e e e e e e e 194

15.7.15 TRIEAA ClASS ..coeieiiiiiiiiet ettt ettt e e e e e e et n e eea s 194

15.7.16 RuntimeACtions Class DIAQIam ........coouiiiiuuiiiiiiiieee et e e e e eeeeaae s 194
15.7.07 LOAAS CIASS .eiiiieiiiiiiiiittte ettt ettt e e e e ettt e e e e e e e e e s e e bbb e e e e eaaaeeas 195

15.7.18 SPAWNS ClASS ..coiiiiiiiiiiitie ettt ettt e e e e e 196

15.7.19 ExtendedPlatformElements Class Diagram ..........cccoooiiiiiiiieieeeeee e 196
15.7.20 PlatformElement Class (QENEIIC) .....cccouuiiiiiiiieaaeee ittt 197

15.7.21 PlatformRelationship Class (QENEIIC) ....cuuuuriiiiiieeiieiiieiee e 197

U = (o = Vo [ 199
G B @ 1Y 7= V1= 199
16.2 Organization of the Ul Package .........cccoceiiiiiiiiieiceiceie e 200
16.3 UIModel Class DIAgram ..........uueueeiaiineaeeeeeeee e eee ettt e e e e e e e e e e eeeeeeees 200
16.3. 1 UIMOUEI CIASS ....uveeiiieiiiiiiie ettt ettt ettt e e et eesnnnaee s 201

16.3.2 AbstractUIElement Class (abStract) .......cccccveeeeeiiiiciiie e 201

16.3.3 AbstractUIRelationship Class (abStract) .......cccccccovveviiiviiiiiiieiee e 202

16.4 Ulinheritances Class DIagram ... e e eeeeeseienens 202
16.5 UIResources Class DIagram ......cccoooiooooooiiiiiiiiiiiiiiiiiiiisess e e e e e e e e eeeeeeeeesannens 203
16.5.1 UIRESOUICE ClassS (ENEIIC) ..vvveeeeiiiiiiieniiiiieieeeeeeeessitereeeeeeeeeeesessnnnnnnnnneeeeaaeeens 204

16.5.2 UIDisplay Class (QENEIIC) ...uuuuurreiiieeeeeiiiiiiiiiiiereeteeeseessstnteeereeeeaeeeesesnnssnnnneeeees 204

16.5.3 SCIEEN CIASS ...oeiviiiiieitiiee ettt ettt ettt e e s sttt e e s sttt e e e sttt e e e s abbeeeeeanbeneeee e 204

G TRTR B = L= o T A1 =T R 205

16.5.5 UIFIEIA CIASS ....couveeieieiiiiii ettt sttt et a e e s b a e nnnnaeee s 205

16.5.6 UIEVENT CIASS ....uveviiiiiiiiieie ittt stiet ettt e sttt e et e et a e e sbne e e e e snnnaeee s 205

16.5.7 UIACLON CIASS ..ouveieiieiiiiet ettt stee ettt ettt ee e sb bt e e e s st e e e s snnneeee s 205

16.6 UIRelations Class DIiagram ...........coooiioieoeeiiieieeeeeeeieiiiiiis s e e e e e e e eeeeees 206
16.6. 1 UIFIOW CIASS ..oiiiiviiiieiiiiiiee ettt ettt e e sbbbe e e e e sabr e e e e snnnaee s 206

16.6.2 UILAYOUL CIASS ..eeeieiiiciiiiiieieii e e e e e e e e s sttt e et e e e e e e s s st e e e e e e e e e e s s s annnbanrneeeeeaeeas 207

16.7 UIACLIONS Class DIiagram .......ccooooiiiiiiiiieiiiiiiie e e e e et eaeeeaeanns 207
16.7.1 DiISPIAYS CIASS ..eeiiiiieiiiiiiiitie ittt ettt e e e e et e e e e e e e e e e e e e eeaeas 208

16.7.2 DisplaysImMage Class ..........uuuiiiiiiiiiiaiiiee et 208

16.7.3 MANAGESUI CIaSS ...cooiiiiiiiiiiiiie ettt e e e e e e ee e 208

16.7.4 REAASUI CIASS oiiiiiiiiiititi ettt bttt e e e e e e e e e abb b aaeeeaaaaeeas 209

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

16.7.5 WHEESUI CIASS ...eiiiiiiiiiiieiiiiiie ettt ettt ibee e e e e e e e s nnbe e e e e e 209

16.8 ExtendedUIElements Class Diagram ..........ccccceevviiriieieeviiiiiiiiinne e e e eeeeeeees 210
16.9 UIElement Class (QENEIIC) ...ccciiviiieiieieiiiiiie e e e e e e e e e e e e et a e e e e e e e aeeees 210
16.9.1 UIRelationship Class (QENEIIC) ....cooiiiueiiiiiiee ettt e e 210

17 EVENE PACKAGE ...t 213
L17.1 OVEIVIEW ..eiiiiiiiiiiiieeie ettt ettt et e et ettt ettt et e e e e e e e e e e e e e e e eanneaanebbebeeeee 213
17.2 Organization of the Event Package .........ccccocoeiiiiiiiiiii e 214
17.3 EventModel Class DIagram ............uuueeiiiiiinieeieeeeeeeee et eeaee e 214
17.3.1 EVENIMOAE] CIASS ....iveiiiieiiiiiee ettt e st e e e snbaeeeeenne 215

17.3.2 AbstractEventElement Class (abStract) ........cccccovvviiiieiieiee e 215

17.3.3 AbstractEventRelationship Class (abstract) ...........ccccvvvveeeeeei e, 216

17.4 EventResources Class DIagram ...........uuueoiiiiiiieieeeeeeeeeeeeeeeieeiiin e 216
17.4.1 EventResource Class (gENENIC) ..cuuvuiiiiiiiieeeeiiiiiiiie e e e e e e e e e se st e e e e e e e e e e e e 217

L17. 4.2 EVENE CIASS .oiiiiiieie ettt ettt ettt ettt e et e e st e e s e snbaeeeeenne 217

17.4.3 STALE ClIASS .oiiiiitiiie ettt ettt nres 218

17.4.4 INMAISTALE ClASS ..oeiiiiiiiiiiei ittt et e e et eeeeane 218

17.4.5 TranSItioN ClASS ......coouuiiiiiiiiiiei ettt et e et e e e e sbe e e e aae 218

A G @ o] = 11 Y2 O = TSRS 218

17.4.7 ONEXIt CIASS .iviiiiiiiiiiiee ettt e st e e s s e e e e s e snbaeeeeenne 219

17.4.8 EVENLACHON ClASS ....ciiiiiiiiiiiiiie ettt et e et e e s e eeeees 219

17.5 EventRelations Class DIiagram ............ccoiiiieaieeieiieieeeeieeiiiiiisnn e eee e 219
17.5.1 NEXISTAE ClASS ....iueiiiiiiiiiiieee ettt a e s e aee e e e e e e e as 220

17.6 ConSUMESEVENT CIASS .....ccoiiiiiiiiiiiiei e 220
17.7 EventActions Class DIiagram ..........coeuuiuuiiiiiiiiiiineeee e e e eeeeeeeeenneeinne e 220
17.7.1 ReadSState ClassS .....c.uueeiiiiiiiieiiiiiiiee sttt e st e e ane 221

17.7.2 ProduCESEVENL ClASS ....cooiiiiiiiiiiiiiiiie ettt ee e 222

17.7.3 HASSLAIE ClASS ...eeiiiiiiiiiieiiiiiie ettt ettt ettt ettt e e e st e e s sbb e e e e anbeeeeeeanes 222

17.8 ExtendedEventElements Class Diagram ..........ccccovviiiiiiiiiiiiiiiiineee e 222
17.8.1 EventElement Class (QENEIIC) ..ccooiiiiuiiiiiiiee ettt e e e e e 223

17.8.2 EventRelationship Class (gENEIIC) ........uueiiiiiiiiiiiiiiiiiiie e 223

18 Data PaCKaQE .......ccoeviiiiiiieiiieice et 225
L18.1 OVEIVIEW ..iiiiiiiiiiiiieeie ettt e e e e e e e e e e e s s ettt ettt e et e e e e e e e e e e e e e e s annasnnnnabbbbeeeee 225
18.2 Organization of the Data Package ...........ccceeeeiiiiiiiiiiiiiiii e 226
18.3 Data Model Class DIagram .........c.uuuvueiiiiiiiieeieeeeeeeeee e e e e e e e eaaaens 226
18.3.1 DAtaMOTEl CIASS ..cocoiuviiiieeiiiiiie ettt e s e e sbre e e aae 227

18.3.2 AbstractDataElement Class (abStract) ......ccccccceviiciiiiiiiriiie e, 228

18.3.3 AbstractDataRelationship Class (abstract) ..........ccccccvivveireeei e, 228

18.4 Data Inheritances Class DIiagram ........cccccooooioiiiiiiiiiiiiiiiiiiii e 228

© ISO/IEC 2012 - All rights reserved Xi



ISO/IEC 19506:2012(E)

18.5 DataResources Class Diagram .........ccceeeeeeiiiiiiieeiiiiiiissiaseeeeeeeeeeeeeaeeeesnnnnen 229
18.5.1 DataResource Class (QENEIIC) ...uvceeeiiiieieiiieiieie e et e e e ie s st r e e e e e e e s e reeaneee e 230
18.5.2 DataContainer Class (JENEIIC) ....uceeeeiiieiciiiiieei e et ee e ee e s e e e e e e e e s s aeeeees 230
18.5.3 Catalog ClASS ....evveieeiiiiiiiiiiiiiiei e e s e e e e e e s s s e e e e e e e s e aaen 231
18.5.4 RelationalSchema CIassS .......uiiiiiiiiiiiiiceiee e 231
18.5.5 DAtaEVENT ClaSS ....ccoiiiiiiiiiiiiiiccee e e e e e e e e e e s 232
18.5.6 DAtaACHON ClASS ....ccoi it e e e e e e e e e s e s e ar e e e 232
18.6 ColumnSet Class Diagram .........ccoouuiiiiiiiiiiiiiie e e e e e e eeaans 233
18.6.1 ColUMNSEL (GENEIIC) oiiiiiiiiitieie et e e e e e e e ettt e e e e e e r e e e e e e e s e anrenanreeees 233
18.6.2 RelationalTable Class ... 234
18.6.3 RelationalVIEW CIasS ....cccvveiiiiiiiie et e e e e e e anee e 237
18.6.4 DataSegmeENt ClIASS ......cccvvviiiiiiiieee e s iie st e e e e e e e s s s s e e e e e e e e s s e e raeee e 237
18.6.5 RECOIAFIIE CIASS ..eiieiiiieiiiiieiiiie ettt s e e e r e e e e e e e e s e s nnrnnraree e 239
18.7 Keylndex Class DIAgIam ..........uuuuuuuuiiiiieeeeeeeeeeeeeeeeeeaiiiriiaisnas e e e e e e e e aeeeeeeeeens 244
18.7.1 IndexElement Class (QENETIC) ..vuuvieeeeiiiiiciieiieee et e e e ee e e e e e e e e e e s e anee e 244
18.7.2 UNIQUEKEY CIASS ...ccceiiiiiiieiie ettt e e et aeee e e e e e e s e s e s aaaeeeaeeeees 245
18.7.3 ReferenCeKEY ClasS .....ccciuuiiiiiiiieee et r e e e s aeeeeeas 245
SR 1 o o QO = TR 245
18.8 Key Relations Class Diagram .........cccoooeiiiiiiiiiiiieeiiiis e e e e e e eaeaans 246
18.8.1 KeyRelationShip ClasS .........uuiiiiiiiiiiiiiiiiie et 246
18.9 DataActions Class DIagram ........ccceeiieiiieeieiieieieieeiieeses s e e e e e e e e eeeaeeeeannnnens 247
18.9.1 ReadSCOolUMNSEL CIASS .....ccovviiiiiieiiiiiiiiiii st e e e e e 247
18.9.2 WriteSCoOlIUMNSEL CIAaSS .....covviiiiiiieiiiiiiciii e s 248
18.9.3 ManagesData ClaSS .....ccccuuuuiiiiiiiieae ettt e e 248
18.9.4 HAasSCoNtENt CIASS .......ccoiiiiiiiiiii e e e e e e e e e e e e e e e e ae e ee e aaaaes 249
18.10 StructuredData Class Diagram ............ccccviiiieieeiiiiiiiiiess e e e e eeeeeeeeeeeenannnnn 254
18.10.1 XIMLSCNEMA ..o s e e e e ae e 255
18.10.2 AbstractContentElement (abStract) .............eeeviiiiiiiiiiiiiiiiiie e 255
18.11 ContentElements Class Diagram ..........cccccevviiiiiieeiiiiiiiiise e e e e e e e e eeeeees 255
S O R O o1 =Y g {1 (=T (01T 1= o) PSP 256
18.11.2 ComMPIEXCONIENITYPE ..vvvreiiieeeeeeiisiiiiitieir e e e e e e e e e s s s errre e e e e e e e s s e s ennnrnrnereeeeeeees 257
18.11.3 SIMPIECONIENTTYPE ..ot e e e e e e e e e e e s e renrereeees 257
18.11.4 CoNteNtRESIICHION ... e e e e e s e e eeees 257
18.11.5 AlICONENE CIASS ..eeeeeiieiiiieiiiee et e e e e et e e e e e e e e e e s e e e e e e e e s e e snnnnnneneeees 260
S G TS Y=o [0 0] g1 (T | A = 1SS 260
S0 O A O g o (o =T o 1 =1 | A - TS 260
18.11.8 GroupContent ClASS ......c.uuuiiiiiiiieeeee i e e e e s e r e e e e e e e e renreeeee s 261
18.11.9 MiXedCoNteNt ClASS .....cevvviiiiiiiieeeeeeiie s e e e e e e s ss s r e e e e e e e s s renaeeeees 261
18.11.10 ContentALHDULE ClASS ......uvvviiiieeieiiii i e e 261
18.11.11 ContentEIEMENE CIASS ...uvviiiiiiiieeie it s s e e e e e s e raeae e 261
18.11.12 ContentREfEreNCE CIASS ...ivviieiiii it e e a e e e 261
18.12 ContentRelations Class Diagram ...........couuiiiieiieiiiiiiiieeerciiiie e ee e eeeenns 266
18.12.1 TYPEABY CIASS ..oeeeeiiiie ittt e et e e e e e e st e e e e e e e e s e e s snnnnnraneeees 267
18.12.2 DatatypeOf ClASS .......uuiiiiiiiiiieeee i e e e 268

Xii © ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

18.12.3 ReferenCeTO CIASS ......ccciuiiiiieiiiiiiieiie ettt 268

18.12.4 EXIENSIONTO ClASS ....vvviiriiieiirieiiteii et 268

18.12.5 ReStrCONOF ClIASS ....oeiiiriiieiiiiiiiiic it 269

18.13 ExtendedDataElements Class Diagram ............cccccevvevvveeeeiiiiiiniiiiineee e e e 269
18.13.1 ExtendedDataEIement CIASS .........ccocvierieieiiieeiiie e 270

18.13.2 DataRelationShip CIaSS .....uuiiiieiiiiiiiiiiiie e r e e e e 270

Subpart IV - ADStractioNS LAYl ......coeevviiiiiiieeeeeiiii et 273
19 StruCtUre PACKAQE .....ovuiiiiiiiiiii ettt 275
LO.1 OVEIVIEBW .ttt ettt ettt ettt e e e e e e e e e e e e e e e b e e ee e 275
19.2 Organization of the Structure Package ...........cccccceeiiiiiiiiieiiiiiiiiiic e 276
19.3 StructureModel Class DIagram ...........eooiiiiieeeie et 276
19.3.1 StrUCtUrEMOUAE] CIASS .....eoeiiiiiieieiieiiee et 277

19.3.2 AbstractStructureElement Class (abStract) ..........ooociiiieiiiiiiiiiiiieeeeeeeen 277

19.3.3 AbstractStructureRelationship Class (abstract) ..........cccccceeiieiiiiiiiiiiiiiieeeeen, 278

19.3.4 SUDSYSLEM ClASS .....eiiiiiiiiiiiiee ettt a e bbb aae e e e e e e e 278

19.3.5 LAYEE ClASS ..oiiieiiie ittt ettt ettt e e e e e e e e e e e e e e e aas 278

19.3.6 COMPONENT CIASS ...uuutiitiiitieiaa ettt e et e e e e et eeee e e e e e e e s e sannbe e aeeaaaaaeeaaas 278

19.3.7 SOftWAreSYSEM ClASS ....eeiiiiiiiiiiiiiiie e ee e e e e e e 279

19.3.8 ArchiteCtUreVieW CIASS .....c.vuiiiiiiiiiiee ittt e s e e nanes 279

19.4 Structurelnheritances Class Diagram .........cccccceeeiiiiieeeeeieiiieie e eeeeae 279
19.5 ExtendedStructureElements Class Diagram .............cooevviiiiviiiiiiiniinneeeeeeeeee 280
19.5.1 StructureElement Class (QENEIIC) ....cccvvviriiiiiiee e e e e ae e 280

19.5.2 StructureRelationship Class (QENENIC) .....uuviiiieeiiiiiiiiiier e e e 280

20 Conceptual PACKage.........cceuuuiiiiieieiiiie e 283
20.1 OVEIVIEW ...ttt et e e e e e et e e e ettt e e ettt e e e e e e aeaaaeaaaeananaaans 283
20.2 Organization of the Conceptual Package ..........cccccviiiiiiiiiiiiiiinineeeeeeeeeeee, 285
20.3 ConceptualModel Class Diagram ..........cccoovviiiiieiiiiiiiiiiiiese e e eeeeeeeeeeeeennnenen 285
20.3.1 ConCePLUBIMOUEI ..ot 286

20.3.2 AbstractConceptualElement (abStract) ..., 287

20.3.3 AbstractConceptualRelationship Class (abstract) ...........ccoccceiiiieiiiiiiiiiiiieeee. 288

20.4 Conceptuallnheritances Class Diagram .............ccevvvuviiiiiiinnieeeeeeeeeeeeeeeesninnens 288
20.5 ConceptualElements Class Diagram ..........cccovvevvviiiiiiiiiiiinieeeeeeeeeeeeeeeeeesieeens 288
20.5.1 ConceptualContaiNer CIASS ....ccciiiiiiiiiiiiiiiie it e e e e 289

20.5.2 TEIMUNIL ..eeeiie ittt et e e sb e e e e snbe e e e e snnnneee s 290

20.5.3 FACIUNIL ...ttt e e e e e e e e e e e e s b e e e e e aeas 290

20.5.4 RUIBURNIE ettt ettt e e e e e e e e e eb e aee e 290

20.5.5 CONCEPLUAIROIE ...coeiiiiiee e 291

20.5.6 BEhaViorUNIt CIASS .......uvuiieeiiiiiiieiiiiiee ettt ettt 291

20.5.7 SCENANOUNIL CIASS .....uvvvieeeeiiiieie ittt e s r e e e s e e e e 291

© ISO/IEC 2012 - All rights reserved Xiii



ISO/IEC 19506:2012(E)

Xiv

20.6 ConceptualRelations Class Diagram .............euuveeiiiiiiiiieeeeeeeeeeeeeeeeeeessnnnnnnnnans 292

20.6.1 ConCeptUAIFIOW CIASS .....ccccveiieiieieeee e e e e e e e e e e s reanae s 292

20.7 ExtendedConceptualElements Class Diagram .........ccccoeveeeeeiiiniiieeeiieininnnnn. 299

20.7.1 ConceptualElement Class (QENENIC) ..eccvevieceeriiieiieeeeeeeseseeeeieeree e e e e e e e e ennanaeeees 300

20.7.2 ConceptualRelationship Class (QENENIC) .....uuuurierieeeieiiiciiiiere e e eeeee s 300

21 BUIld PACKAQge .....oovvviiiieiiiiiie e 303
21,1 OVEIVIEW eeiiiiiei e e ettt e et e e e e e e e e e ettt ettt ittt e s e e e e e e e e e e eeeeeeeeseennnnnnnns 303

21.2 Organization of the Build Package ..........ccccovvvvviiiiiiiiiiiiiiie e 303

21.3 BuildModel Class Diagram ........cccoeeeeeeeeeiiieieeeeeiiiiisssss s e e e e e e e e e eeeaeeeeeanenennnans 304

21.4 BUIlAMOAEl CIaSS ....ccoiiiiiiiiiiiiiiiiiee e e e e eeeeeeaaaes 304

21.4.1 AbstractBuildElement Class (abstract) .........cccccvvveeeeeiiiiiiiceeeee e 305

21.4.2 AbstractBuildRelationship Class (abStract) .......ccccccccvvviiviiiiiiiriieeee e, 305

I ST o] o] = 0 = LS 305

P N o o] [ 1 - T TP 305

21.4.5 SYMDBOICLINK CIASS ...ccieiiieiciiieieie et e e s r e e e e e e e e s nnanerae e 306

21.5 BuildInheritances Class Diagram ...........cooiiiiiiiiiiiiiiiiiiiiieae e e e eeeeeeeeeeeieeens 306

21.6 BuildResources Class Diagram ...........ccooiiiiiiiiiiiiiiiiiiiianenae e e e eeeeeeeeeeeeenennens 306

21.6.1 BUIIARESOUICE CIASS ...coiiuvviiiiiiiiiiiie ettt e sitee e e sttt e e st e st e e st e e s e enneeas 307

21.6.2 BUIldCOMPONENL CIASS ......cccevieiiiiiiiei et e e e e s e r e e e e e e e e s enaearneee e 308

21.6.3 BUIldDESCHIPION ClaSS .....ccoiceiieiieiiiiei et e e s s e e e e e e e e e s nnrennaeee e 308

21.6.4 BUIIASIEP ClASS ..revviiiieiieiiiiiiieiieie e e e e s e s e e e e e e e e s e s e rneeee s 308

21.7 BuildRelations Class Diagram ..........cooooeiiiiiiiiiiiiiiiiiiiie e e e e eeeeeeaienens 308

21.7. 1 LINKSTO CIASS ..eeiiiiiiiiiee ittt ettt et et e s et e e s enaabe e e e e e nreas 309

21.7.2 CONSUMES CIASS ...uveiiieiiiiiiiie ittt ettt et e e e sttt e st e e s et e e s anbbbeee s e anneeas 310

21.7.3 ProdUCES ClASS ...ciiveeiiiiiiiiiie ettt ettt e st e e e e et e s ennba e e e e e nneeas 310

21.7.4 SUPPOEABY ClasS ......cooiceieiieiiiei e e e s e e e e e e s e e anee e e 311

A A TS T o] o] =T YA O = 1SS 311

21.7.6 DESCIDEABY CIASS .....ccooiieiiiiieieit e ee e ee et et e e e e e e s s s e e e e e e e e e e s s nnnenneaeees 312

21.8 ExtendedBuildElements Class Diagram ............c.uuevuuiiiiiiinieineeeeeeeeeeeeeeeiiiinens 313

21.8.1 BuildElIement Class (QENEIIC) ....uuueriiiiaaiiiiiiiiiiieete et ee e 313

21.8.2 BuildRelationship Class (QENEIIC) ..c.oiieiiiiiiiiiiieeieee e 314

Annex A - Semantics of the Micro KDM Action Elements .........ccccccoeeevvennnnn. 315
Annex B - Legal INnformation ..............coovviiiiiniiiiiiic e 327
Annex C - ACKNOWIEAGEMENTS........cuuuiiieeieiiiie e e eeeaana 331

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Foreword

SO (the International Organization for Standardization) is a worldwide federation of national standards bodies (1SO
member bodies). The work of preparing International Standards is normally carried out through 1SO technical
committees. Each member body interested in a subject for which atechnical committee has been established has the right
to be represented on that committee. International organizations, governmental and non-governmental, in liaison with
IS0, also take part in the work. 1SO collaborates closely with the International Electrotechnical Commission (IEC) on all
matters of electrotechnical standardization.

International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.

The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the
technical committees are circulated to the member bodies for voting. Publication as an International Standard requires
approval by at least 75 % of the member bodies casting a vote.

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. 1SO
shall not be held responsible for identifying any or all such patent rights.

ISO/IEC 19500-1 was prepared by Technical Committee ISO/IEC JTCL, Information technology, in collaboration with the
Object Management Group (OMG), following the submission and processing as a Publicly Available Specification (PAS)
of the OMG Common Object Request Broker Architecture (CORBA) specification Part 1 Version 3.1 CORBA Interfaces.

ISO/IEC 19506 is related to:

 ITU-T Recommendation X.902 (1995) | ISO/IEC 10746-2:1995, Information Technology - Open Distributed
Processing - Reference Model: Foundations

 ITU-T Recommendation X.903 (1995) | ISO/IEC 10746-3:1995, Information Technology - Open Distributed
Processing - Reference Model: Architecture

 ITU-T Recommendation X.920 (1997) | ISO/IEC 14750:1997, Information Technology - Open Distributed
Processing - Interface Definition Language

ISO/IEC 19506 consists of the following, under the general title Information technology - Open distributed processing -
Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model (KDM).

Apart from this Foreword, the text of this International Standard is identical with that for the OMG specification for
Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model (KDM), v1.3.

© ISO/IEC 2012 - All rights reserved XV



ISO/IEC 19506:2012(E)

Introduction

The rapid growth of distributed processing has led to a need for a coordinating framework for this standardization and
ITU-T Recommendations X.901-904 | ISO/IEC 10746, the Reference Model of Open Distributed Processing (RM-ODP)
provides such a framework. It defines an architecture within which support of distribution, interoperability and portability
can be integrated.

RM-ODP Part 2 (1SO/IEC 10746-2) defines the foundational concepts and modeling framework for describing distributed
systems. The scopes and objectives of the RM-ODP Part 2 and the UML, while related, are not the same and, in a number
of cases, the RM-ODP Part 2 and the UML specification use the same term for concepts which are related but not
identical (e.g., interface). Nevertheless, a specification using the Part 2 modeling concepts can be expressed using UML
with appropriate extensions (using stereotypes, tags, and constraints).

RM-ODP Part 3 (ISO/IEC 10746-3) specifies a generic architecture of open distributed systems, expressed using the
foundational concepts and framework defined in Part 2. Given the relation between UML as a modeling language and Part
3 of the RM-ODP standard, it is easy to show that UML is suitable as a notation for the individual viewpoint
specifications defined by the RM-ODP.

This International Standard for Architecture-Driven Modernization (ADM): Knowledge Discovery Meta-Model (KDM) is
a standard for the technology specification of an ODP system. It defines a technology to provide the infrastructure
required to support functional distribution of an ODP system, specifying functions required to manage physical
distribution, communications, processing and storage, and the roles of different technology objects in supporting those
functions.

XVi © ISO/IEC 2012 - All rights reserved



INTERNATIONAL STANDARD ISO/IEC 19506:2012(E)

Information technology - Object Management Group
Architecture-Driven Modernization (ADM):
Knowledge Discovery Meta-Model (KDM)

1 Scope

This International Standard defines a meta-model for representing existing software assets, their associations, and
operational environments, referred to as the Knowledge Discovery Meta-model (KDM). This is the first in the series of
specifications related to Software Assurance (SwA) and Architecture-Driven Modernization (ADM) activities. KDM
facilitates projects that involve existing software systems by insuring interoperability and exchange of data between tools
provided by different vendors.

One common characteristic of various tools that address SwA and ADM challenge is that they analyze existing software
assets (for example, source code modules, database descriptions, build scripts, etc.) to obtain explicit knowledge. Each
tool produces a portion of the knowledge about existing software assets. Such tool-specific knowledge may be implicit
(“hard-coded” in the tool), restricted to a particular source language, and/or particular transformation, and/or operational
environment. All the above may hinder interoperability between different tools. The meta-model for Knowledge
Discovery provides a common repository structure that facilitates the exchange of data contained within individual tool
models that represent existing software assets. The meta-model represents the physical and logical assets at various levels
of abstraction. The primary purpose of this meta-model is to provide a common interchange format that will allow
interoperability between existing modernization and software assurance tools, services, and their respective intermediate
representations.

2 Conformance and Compliance

KDM is a meta-model with a very broad scope that covers a large and diverse set of applications, platforms, and
programming languages. Not all of its capabilities are equally applicable to all platforms, applications, or programming
languages. The primary goal of KDM is to provide the capability to exchange models between tools and thus facilitate
cooperation between tool suppliers by allowing integration information about a complex enterprise application from
multiple sources, as the complexity of modern enterprise applications involves multiple platform technologies and
programming languages. In order to achieve interoperability and especially the integration of information about different
facets of an enterprise application from multiple analysis toals, this International Standard defines several compliance
levels thereby increasing the likelihood that two or more compliant tools will support the same or compatible meta-model
subsets. This suggests that the meta-model should be structured modularly, following the principle of separation of
concerns, with the ability to select only those parts of the meta-model that are of direct interest to a particular tool vendor.
Consequently, the definition of compliance for KDM requires a balance to be drawn between modularity and ease of
interchange. Separation of concerns in the design of KDM is embodied in the concept of KDM domains.

© ISO/IEC 2012 - Al rights reserved 1



ISO/IEC 19506:2012(E)

2.1 KDM Domains

Separate facts of knowledge discovery in enterprise application in KDM are grouped into several KDM domains (refer to
Figure 2.1). Each KDM domain consists of a single KDM package that defines meta-model elements to represent
particular aspects of the system under study. KDM domains correspond to the well-known concept of architecture views.
For example, the Structure domain enables users to discover architectural elements of source code from the system under
study, while the Business Rules domain provides users with behavioral elements of the same system such as features or
process rules.

The following domains of knowledge have been identified as the foundation for defining compliance in KDM: Build,
Structure, Data, Business Rules, Ul, Event, Platform, and micro KDM.

From the user’s perspective, this partitioning of KDM means that they need only to be concerned with those parts of the
KDM that they consider necessary for their activities. If those needs change over time, further KDM domains can be
added to the user’s repertoire as required. Hence, a KDM user does not have to know the full meta-model to use it
effectively. In addition, most KDM domains are partitioned into multiple increments, each adding more knowledge
capabilities to the previous ones. This fine-grained decomposition of KDM serves to make the KDM easier to learn and
use, but the individual segments within this structure do not represent separate compliance points. The latter strategy
would lead to an excess of compliance points and result to the interoperability problems described above. Nevertheless,
the groupings provided by KDM domains and their increments do serve to simplify the definition of KDM compliance as
explained below.

Levels of compliance

L2 = All EDM domainy
Build Structure  Data  Business Rules Ul Event Platform Analysis
domain domain  domain domain domain domain domain domain
) Micro
L1= Build | structure | Data |Conceptual UI | Event |Platfor kDM
Lo = Core + kdm + Source + Code + Action

Domain of compliance

Figure 2.1- Domains and levels of KDM compliance

2.2 Compliance Levels

In addition, the total set of KDM packages is further partitioned into layers of increasing capability called compliance
levels. There are two KDM compliance levels:

2 © ISO/IEC 2012 - Al rights reserved



2.3

ISO/IEC 19506:2012(E)

Level 0 (LO) - Thiscompliance level contains the following KDM packages: Core, kdm, Source, Code, and Action
packages. It provides an entry-level of knowledge discovery capability. More importantly, it represents a common
denominator that can serve as a basis for interoperability between different categories of KDM tools.

To be LO compliant, atool must completely support all model elements within all packages for LO level.

Level 1(L1) - Thislevel addresses KDM domains and extends the capabilities provided by Level 0. Specificaly, it
adds the following packages: Build, Structure, Data, Conceptual, Ul, Event, Platform, aswell as the set of constraints
for the micro KDM domain defined in sub clause 14 “Micro KDM,” and Annex A “ Semantics of the Micro KDM
Action Elements.” These packages are grouped to form above-mentioned domains. More importantly, thislevel
represents alayer where tools could be complimentary since their focus would be in different areas of concern. This
would be an additional reason why LO interoperability (which at thislevel would be viewed as information sharing
between tools) is mandated. In this case interoperability at this level would be viewed as correlation between tools to
complete knowledge puzzle that end user might need to perform a particular task.

To be L1 compliant for agiven KDM domain, atool must completely support all model elements defined by the
package for that domain and satisfy all semantic constraints specified for that domain.

Level 2(L2) - Thislevel istheunion of L1 levelsfor all KDM domains.

Meaning and Types of Compliance

Compliance to Level 1 (L1) for acertain KDM domain entails full realization of all KDM packages for the corresponding
KDM Domain. This also implies full realization of all KDM packages in all the levels below that level (in this case Level
0 (L0)). It is not meaningful to claim compliance to Level 1 without also being compliant with the Level 0. A tool that is
compliant at aLevel 1 must be able (at least) to import models from tools that are compliant to Level 0 without loss of
information. So, “full realization” for a KDM domain means supporting the complete set of concepts defined for that
KDM domain at L1 and complete set of concepts defined at LO.

For a given compliance level, a KDM implementation can provide:

© ISO/IEC 2012 - All rights reserved

The capability to analyze physical artifacts of existing applications and export their representations based on the XMl
schema corresponding to the given compliance level.

The capability to import representations of existing software systems based on the XMI schema corresponding to the
given compliance level and perform operations suggested by the corresponding packages.



ISO/IEC 19506:2012(E)

Table 2.1- Compliance Statements

Compliance Statement

Import-Analysis

Import API

Export

Import KDM models based on
complete KDM XMI schemainto
existing tool;

support specified mapping between
KDM and existing model in the toal;
extend operations of existing tool to
support meta-model elements of
KDM framework;

extend operations of existing tool to
support meta-model elements of Code
and Action packages;

extend operations of existing tool to
traceability to the physical artifacts of
the application from Source package.

Import KDM model s based
on complete KDM XMl
schema;

support KDM API defined
by the KDM Core package;
support KDM framework
as defined in the Kdm
package; support KDM API
defined by the Code and
Action packages; support
traceability to the physical
artifacts of the application
as defined in the Source
package.

Provide capability to analyze
artifacts of an application for
specified programming
language or multiple
languages,

Generate XMI documents
corresponding to the KDM
XMI schemg;

Support KDM framework as
defined by the Kdm package;
Support Code and Action
packages;

Providetraceability back tothe
physical artifactsasdefined by
the Source package.

L0 compliance for anaysis;extend
operations of existing tool to support
meta-model elements of the Structure
package.

L0 compliance for import;
Support KDM API as
defined by the Structure
package.

L0 compliance for

export; Provide capability to
analyze architecture
components of existing
application and generate KDM
Structure model according to
Structure package.

LO compliance for analysis;

extend operations of existing tool to
support meta-model elements of the
Data package.

L0 compliance for import;
Support KDM API as
defined by the Data
package.

L0 compliance for export;
Provide capability to analyze
persistent data components of
existing application for
specified database system and
generate KDM Data model
according to Data package.

LO compliance for analysis;

extend operations of existing tool to
support meta-model elements of the
Platform package.

L0 compliance for import;
Support KDM API as
defined by the Platform and
Runtime packages.

L0 compliance for export;
Provide capability to analyze
platform artifactsfor specified
platform and generate KDM
Platform model according to
Platform package.

L0 compliance for anaysis;

extend operations of existing tool to
support meta-model elements of the
Build package.

L0 compliance for import;
Support KDM API as
defined by the Build
package.

L0 compliance for export;
Provide capability to analyze
build artifacts for specified
build environment and
generate KDM Build model
according to Build package.

Compliance Level
LO
L1 STRUCTURE
DATA
PLATFORM
BUILD
4

© ISO/IEC 2012 - All rights reserved




Table 2.1- Compliance Statements

ISO/IEC 19506:2012(E)

ul

LO compliance for analysis;

extend operations of existing tool to
support meta-model elements of the
Ul package.

L0 compliance for import;
Support KDM API as

defined by the Ul package.

L0 compliance for export;
Provide capability to analyze
user interface artifacts for
specified user interface system
and generate KDM Ul model
according to Ul package.

EVENT

LO compliance for analysis;

extend operations of existing tool to
support meta-model elements of the
Event package.

L0 compliance for import;
Support KDM API as
defined by the Event
package.

LO compliance for export;
Provide capability to analyze
artifacts related to event-
driven runtime frameworks
and state-trasition behavior
and

generate KDM Event model
according to Event package.

BUSINESS

LO compliance for analysis;

extend operations of existing tool to
support meta-model elements of the
Conceptual package.

L0 compliance for import;
Support KDM API as
defined by the Conceptual
package.

LO compliance for export;
Provide capability to analyze
conceptua and behavior
artifacts (e.g., domain
concepts, businessrules,
scenarios) of existing
application and generate KDM
Conceptual model according
to Conceptual package.

MICRO KDM

L0 compliance for analysis; extend
operations of existing tool to support
micro KDM actionsasspecifiedinsub
clause 14 micro KDM and Annex A.

L0 compliance for import;
Support micro KDM
actions as specified in sub
clause 14 micro KDM and
Annex A.

L0 compliance for export;
Provide capability to analyze
artifactsof existingapplication
to thelevel of detail specified
in sub clause 14 and Annex A
provide the mapping of
semantics of the existing
application asit is determined
by the programming languages
and the runtime platform into
KDM micro actions and
generate KDM models that
represent the same meaning

L2

LO import compliance for anayss;
L1 import-analysis compliance for all
KDM domains.

L0 compliance for import;
Support KDM API as
defined by al KDM
packages.

L0 export compliance;
L1 export compliance for all
KDM domains.

© ISO/IEC 2012 - All rights reserved




ISO/IEC 19506:2012(E)

3 Normative References

The following normative documents contain provisions, which, through reference in this text, constitute provisions of this
International Standard. For dated references, subsequent amendments to or revisions of any of these publications do not

apply.
« OMG UML Infrastructure Specification, v2.3, formal/2010-05-03
+ OMG Meta-Object Facility (MOF) Specification, v2.0, formal/2006-01-01
« OMG MOF XML Metadata Interchange (XMI) Specification, v2.1, formal/2005-09-01
»  OMG Semantics of Business Vocabularies and Business Rules (SBVR) Specification, v1.0, formal/2008-01-02
» ISO/IEC 11404:2007 Information technology -- General Purpose Datatypes (GPD)

4 Terms and Definitions

This subclause contains only those terms which are used in a specialized way throughout the KDM specification. The
majority of termsin KDM are used either according to their accepted dictionary definitions or according to commonly
accepted definitions that may be found in 1SO glossaries or other well-known collections of software engineering terms.
Some combinations of common terms used in KDM, while not meriting glossary definition, are explained for clarity in
the context where they are used.

Abstraction: A view of an object that focuses on the information relevant to a particular purpose and ignores the
remainder of the information.

Aggregation: a derived relationship between two elements that are groups of other elements that represents all individual
relationships between the grouped elements of the two groups.

Architecture-Driven Modernization (ADM): ADM is the process of understanding and evolving existing software
assets of a system of interest. ADM focuses at collecting, sharing, utilizing, transforming, presenting, maintaining and
storing models of the architectural aspects of existing systems. ADM does not preclude source-to-source migrations
(where appropriate), but encourages user organizations to consider modernization from an analysis and design
perspective. In doing so, project teams ensure that obsolete concepts or designs are not propagated into modern languages
and platforms.

Build: An operational version of a system or component that incorporates a specified subset of the capabilities that the
final product provides.

Build process: a process of transforming of project code base into usable applications. The end result of a software build
is a collection of files that constitute a product in a distributable package. In this case, package can mean a standalone
application, Web service, compact disc, hotfix, or bug fix. Each step of a build process is a transformation performed by
software running on a general purpose computer. A simple software build may involve compiling a single source code file
into an executable code. A complex software build may involve orchestrating hundreds of versions of thousands of files
with millions of lines of source code such that a correct executable code results from the compilation. The implementation
of a system also involves deploying the build onto the system nodes, and applying appropriate configuration settings.

6 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Component: afunctionaly or logically distinct part of a system. A component may be hardware or software and may be
subdivided into other components. Often a component is a physical, replaceable part of a system that packages
implementation and provides the realization of a set of interfaces. Such component represents a physical piece of
implementation of a system, including software code (source, binary or executable) or equivalents such as scripts or
command files.

Container: a model element that owns one or more distinct elements through the special “owns’ (“contains’)
relationships between the container element and owned elements. “Containment” relationships form a special group of the
corresponding owned elements. No element has more than one container.

Domain: An area of knowledge or activity characterized by a set of concepts and terminology understood by practitioners
in that area.

Element: one of the parts of a compound or complex whole. For example, a model element, a meta-model element.

Group: a number of model elements regarded as a unit formed by traceability relationships to a single distinct element.
An element may be part of multiple groups, including a single group formed by the “containment” relationships between
a container and its owned elements. An element is said to group together one or more elements, if these elements have
traceability relationships to the element.

Hierarchy: an arrangement of model elements according to traceability relationships, where an element that “owns” or
“group” other elements is considered at a higher level than the owned (grouped) elements.

Interface: (1) a shared boundary or connection between two dissimilar objects, devices or systems through which
information is passed. The connection can be either physical or logical. (2) a named set of operations that characterize the
behavior of an entity

Item: that which can be individually described or considered. See also Component, Element, Unit, Module.

KDM Entity: ameta-model element (as well as the corresponding model elements) that represents a thing of significance
of the system of interest, about which information needs to be known or held. A KDM entity is an abstraction of some
element of the system of interest that has a distinct, separate existence objective or conceptual reality, a self-contained
piece of data that can be referenced as a unit. As a model element each KDM entity is an instance of some specific
metamodel element and it is usually the endpoint of distinct KDM relationships.

KDM instance: a collection of KDM model elements that represent one or more views of the system of interest.
KDM model: a meta-model element (as well as the corresponding model elements) that is a container for a KDM view.

KDM Relationship: a meta-model element (as well as the corresponding model elements) that represents some semantic
association between elements of the system of interest. All KDM relationships are binary. As a model element each KDM
relationship is an instance of some specific meta-model element.

Meta-model: a special kind of model that specifies the abstract syntax of a modeling language. The typical role of a
metamodel is to define the semantics for how model elements in a model get instantiated. A model typically contains
model elements. These are created by instantiating model elements from a metamodel (i.e., metamodel elements).

M eta-model element: an element of a meta-model from which model elements are instantiated.

M odel: a model represents a system of interest, from the perspective of arelated set of concerns. The model is related to
the system by an explicit or implicit isomorphism. Models are instances of MOF meta-models and therefore consist of
model elements and links between them.

© ISO/IEC 2012 - All rights reserved 7



ISO/IEC 19506:2012(E)

Model element: instance of a meta-model element.

Module: (1) A program unit that is discrete and identifiable with respect to compiling, combining with other units, and
loading; for example, the input to, or output from, an assembler, compiler, linkage editor, or executive routine. (2) A
logically separable part of a program.

Resource: any physical or virtual component of limited availability within a computer system available for a given
purpose and managed by the runtime platform.

Runtime platform: the set of hardware and software components that implement the services utilized by the application
software. A runtime system generally controls how several tasks are scheduled to run, and manages resources. Its
provisions for the programmer typically form an Application Programming Interface- a set the well-documented ways of
using the system.

Segment: A collection of data that corresponds to one or more coherent views of a system of interest that is stored or
transferred as a unit.

Software artifact: A software artifact is a tangible machine-readable document created during software development.
Examples are requirement specification documents, design documents, source code and executables.

Softwar e asset: A software asset is a description of a partial solution (such as a component or design document) or
knowledge (such as requirements database or test procedures) that engineers use to build or modify software products. A
software asset is a set of one or more related artifacts that have been created or harvested for the purpose of applying that
asset repeatedly in subsequent contexts. The asset consumer is an architect or a designer of any type of IT or business
process solutions from solution business modeling, analysis (assets used are models) and design to application
development (assets used are pieces of code).

Traceability: The degree to which arelationship can be established between two or more products of the development
process, especially products having a predecessor-successor or master-subordinate relationship to one another; for
example, the degree to which the requirements and design of a given software component match.

Unit: (1) a piece or complex of apparatus serving to perform one particular function (2) A software element that is not
subdivided into other elements.

User interface: An interface that enables information to be passed between a human user and hardware or software
components of a computer system.

View: A representation of a whole system from the perspective of arelated set of concerns.

Viewpoint: A specification of the conventions for constructing and using a view. A pattern or template from which to
develop individual views by establishing the purposes and audience for a view and the techniques for its creation and
analysis.

5 Symbols

There are no symbols defined.

8 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

6 Additional Information

6.1 Changes to Other OMG Specifications

There are no changes to other OMG specifications.

6.2 How to Read this International Standard

The rest of this International Standard contains the technical content of KDM.
Clause 7. Specification overview - Provides design rationale for KDM.
Clause 8. KDM - Gives the overview of the packages of KDM.

Part | - The KDM Infrastructure Layer

Clause 9. Core package - Describes foundation constructs for creating and describing meta-model classes in other KDM
packages. Classes and associations of the Core package determine the structure of KDM models, provide meta-modeling
services to other classes, and define fundamental constraints.

Clause 10. KDM package - Describes the key infrastructure elements that determine patterns for constructing KDM
models and integrating them. This package defines several static elements that are shared by all KDM models. This
package determines the queries against KDM models.

Clause 11. Source package - This package describes meta-model elements for specifying the linkage between the KDM
model artifacts and their physical implementations in the artifacts of existing software. Elements of the Source package
allow viewing the source code, corresponding to KDM model elements.

Part Il - The Program Elements Layer

Clause 12. Code package - Describes meta-model elements that capture programming artifacts as provided by
programming languages, such as data types, procedures, macros, prototypes, templates, etc.

Clause 13. Action package - Describes the meta-model elements related to the behavior of applications. Action package
defines detailed endpoints for most KDM relations. The key element related to behavior isa KDM action. Other packages
depend on the Action package to use actions in further modeling aspects of existing applications such as features,
scenarios, business rules, etc.

Clause 14. Micro KDM - Describes the guidelines and constraints for semantically precise KDM representations.
Part I11 - The Runtime Resources L ayer

Clause 15. Platform package - Describes the meta-model elements for representing operating environments of existing
software systems. Application code is not self-contained, as it depends not only on the selected programming language,
but also on the selected Runtime platform. Platform elements determine the execution context for the application.
Platform package provides meta-model elements to address the following:

* Resources that Runtime platforms provide to components
* Services that are provided by the platform to manage the life-cycle of each resource

« Control-flow between components as it is determined by the platform

© ISO/IEC 2012 - All rights reserved 9



ISO/IEC 19506:2012(E)

« Error handling across application components
« Integration of application components

The Platform package focuses on the logical aspects of the operating environments of existing applications, while the
Runtime package further addresses the physical aspects of operating environments, such as deployment.

Clause 16. Ul package - Describes the meta-model elements to represent knowledge related to user interfaces, including
their logical composition, sequence of operations, etc.

Clause 17. Event package - Describes meta-model elements that represent basic elements related to behavior of
applications in terms of events, messages and responses.

Clause 18. Data package - Describes the Data domain of KDM, aiming primarily at databases and other ways of
organizing persistent data in enterprise applications independent of a particular technology, vendor and platform.

Part IV - Abstractions Layer

Clause 19. Structure package - Describes the meta-model elements for representing the logical organization of the
software system in terms of logical subsystems, architectural layers, components and packages.

Clause 20. Conceptual package - Describes the meta-model elements for representing business domain knowledge about
existing applications in the context of other KDM views.

Clause 21. Build package - Describes the meta-model elements for representing the artifacts involved in building the
software system (the engineering view of the software system).

10 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

7 Overview

This International Standard defines a meta-model for representing information related to existing software, its elements,
associations, and operational environments (referred to as the Knowledge Discovery Meta-model (KDM)).

The KDM provides a common interchange format that allows interoperability between existing software analysis and
modernization tools, services, and their respective models. More specifically, (KDM) defines a common ontology and an
interchange format that facilitates the exchange of data currently contained within individual tool models that represent
existing software. The meta-model represents the physical and logical elements of software as well as their relationships
at various levels of abstraction.

KDM groups facts about existing systems into several domains each of which corresponds to an 1SO 42010 architectural
viewpoint. Each KDM domain is represented by one or more KDM packages, which formalize the viewpoint language for
the domain. KDM focuses at the entities and their relationships that are essential for the given domain. A KDM
representation of a given software system - a KDM instance - is a collection of facts about that system. These facts are
organized into KDM models per each domain. KDM model corresponds to an 1SO 42010 architectural view. KDM facts
are further organized into meaningful groups called segments. A KDM segment may include one or more architectural
views of the given system. KDM instances may be part of the complete architectural description of the system, as defined
by 1SO 42010, in which case additional requirements of SO 42010 shall be satisfied by the overall document. KDM
instances are represented as XML documents conforming to the KDM XMI schema.

Infrastructure layer

Figure 7.1- Layers, packages, and separation of concerns in KDM

KDM is organized into the following 4 layers:
 Infrastructure Layer

» Program Elements Layer

© ISO/IEC 2012 - All rights reserved 11



ISO/IEC 19506:2012(E)

» Runtime Resource Layer
» Abstractions Layer

Each layer is further organized into packages. Each package defines a set of meta-model elements whose purpose is to
represent a certain independent facet of knowledge related to existing software systems.

Logically, KDM consists of 9 models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. Most KDM domains are defined by a single package, with the exception of the Code domain, which
is split between the Code and the Action packages.

The Infrastructure Layer consists of the following 3 packages: Core, “kdm”, and Source. Core package and the package
named “kdm” do not describe separate KDM models. Instead these packages define common meta-model elements that
constitute the infrastructure for other packages. The Source package defines the Inventory model, which enumerates the
artifacts of the existing software system and defines the mechanism of traceability links between the KDM elements and
their original representation in the “source code’ of the existing software system.

The Program Elements Layer consists of the Code and Action packages. These packages collectively define the Code
model that represents the implementation level assets of the existing software system, determined by the programming
languages used in the developments of the existing software system. The Code package focuses on the named items from
the “source code” and several basic structural relationships between them. The Action package focuses on behavior
descriptions and control- and data-flow relationships determined by them. The Action package is extended by other KDM
packages to describe higher-level behavior abstractions that are key elements of knowledge about existing software
systems.

The Runtime Resources Layer consists of the following 4 packages: Platform, Ul, Event, and Data.
The Abstractions Layer consists of the following 3 packages: Structure, Conceptual, and Build.

Each of these knowledge facets contains large amounts of information, impossible to be processed at once by human
beings. To overcome such a roadblock, each dimension supports the capability to aggregate (summarize) information to
different levels of abstraction. This requires KDM to be scalable. In addition, KDM represents both kinds of information:
primary and aggregate information. Primary information is assumed to be automatically extracted from the source code
and other artifacts, including (but not restricted to) formal models, build scripts, configuration files, data definition files.
Some (or even all) primary information can be provided manually by analysts and experts. Aggregate information is
obtained from primary information.

Knowledge Discovery exists at progressively deeper levels of understanding, reflecting varying levels required to achieve
different objectives. These were seen as the lexical or syntactic understanding of the program code (language-dependent
level); the understanding of the application functionality and design (language-independent level); understanding of
application packaging and the corresponding dependencies (architecture level); and an understanding of the applications
behavior (business level).

The following are key design characteristics of KDM:
+ KDM isaMeta-Object Facility (MOF) model.
« KDM isan Entiry-Relationship model.

»  KDM can be extended to represent language-specific, application-specific, and implementation-specific entities and
relationships.

12 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

»  KDM models are composable (it is possible to group several entities into atyped container, that will further on
represent the entire collection of grouped entities via aggregated relationships). KDM defines multiple hierarchies of
entities via containers and groups.

- KDM provides model refactoring capabilities. For example, a KDM tool can support moving entities between
containers and map changes in the model to changes in the code through traceahility links.

+ KDM isadigned with ISO/IEC 11404 General-Purpose Datatypes and OMG Semantics of Business Vocabularies and
Business Rules (SBVR).

»  KDM defines an ontology for describing existing software systems. The ontology defined by KDM is related to the
elements of existing software systems, the relationships between these elements, as well as the elements of the
operational environment of the software system. KDM ontology addresses both physical elements (for example, a
procedure, avariable, atable), which are originally represented by language-specific artifacts of the software (for
example source code), aswell aslogical elements (for example, user interface elements, concepts that are implemented
by the software, architectural components of the software, such as layers, etc.).

© ISO/IEC 2012 - All rights reserved 13



ISO/IEC 19506:2012(E)

14

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

8 KDM

8.1 Overview

KDM specifies a comprehensive set of common concepts required for understanding existing software systems in
preparation for software assurance and modernization and provides infrastructure to support specialized definitions of
domain-specific, application-specific, or implementation-specific knowledge.

The structure of KDM is defined by combining dimensions and levels of Knowledge Discovery (refer to Figure 8.1).

' N . Abstracti
High e, implct Conceptual | Build Structure } o
Runtime
Data | Event | Ui Platform ot
. Program
Primitives, eXplicit, COde ACtlon anzms
automatica ) extracted
Source
Infragtructure
fra{rnk kdm Lay
M{modd Core

Figure 8.1 - Structure of KDM Packages

The KDM specification contains 12 packages; each package is defined by one or more class diagrams.

The Core package defines the basic meta-elements (entity, relationship, container hierarchies, etc.) and well-formedness
rules of KDM models.

Figure 8.1 illustrates the layers of the KDM specification and shows dependencies between KDM packages by arranging
packages into a stack. Each package depends on one or more packages at the lower layers of the stack. In particular, each
package depends on the Core package. The nature of this dependency is that the meta-model elements defined by each
package are subclasses of one of the meta-model elements defined in the Core package. Also, each package depends on
the package with name “kdm.” Each KDM package above the package with name “kdm” in Figure 8.1 defines a KDM
model, which corresponds to a certain facet of knowledge about an existing software system. The package with name
“kdm” provides the infrastructure for all KDM models.

The nature of the dependency on the package with name “kdm” is as follows:
» First, each package defines a subclass of the KDMModel class, defined in that package.

» Second, each package provides several concrete classes that are instantiated in each KDM instance as part of the
infrastructure.

© ISO/IEC 2012 - All rights reserved 15



ISO/IEC 19506:2012(E)

» Third, the package with name “kdm” defines several important mechanisms that are used by all KDM models:. the
annotation mechanism, the mechanism of user-defined attributes, and the light-weight extension mechanism. The
corresponding meta-model elements can be instantiated by any KDM model.

The Source package and the Code package of the Program Elements Layer represent the most fundamental, primitive
knowledge about existing software systems. Most pieces of this knowledge are explicitly represented by the original
source code of the existing software system. It is expected that KDM implementations extract this kind of knowledge
automatically, for example by implementing a bridge to an existing software development environment. Such bridge
provides a mapping from the programming language (or languages) used for the development of the existing software
system, to a language-independent KDM representation, that can be further analyzed and transformed by various KDM
tools.

Packages of the Runtime Resource Layer represent higher-level knowledge about existing software systems. Most pieces
of this knowledge are implicitly represented by the original source code of the software system and the corresponding
configuration and resource descriptions. This kind of knowledge is determined not by the syntax and semantics of the
programming language (or languages) used for the development of the existing software system, but by the corresponding
runtime platform. Incremental analysis of the primitive KDM representation may be required to extract and explicitly
represent some of these pieces of knowledge. KDM implementations of the corresponding packages define a mapping
from the platform-specific artifacts to a language- and platform-independent KDM representation, that can be further
analyzed and transformed by various KDM tools.

Packages of the Abstractions Layer represent even higher-level abstractions about existing software, such as domain-
specific knowledge, business rules, implemented by the existing software system, architectural knowledge about the
existing software system, etc. This knowledge is implicit, and often there is no formal representation of such knowledge
anywhere in the artifacts of the existing software system (and often, even in the documentation). Extracting this kind of
knowledge and part of the integrated KDM representation usually involves input from experts and analysts.

KDM instance is a single, integrated representation of different facets of knowledge about the software system.

8.2 Organization of the KDM Packages

KDM defines a collection of meta-model elements whose purpose is to represent existing software artifacts as entities and
relations. The KDM has the following organization:

» The Core package defines the basic abstractions of KDM.
» The package with name “kdm” provides shared context for all KDM models.

» The Source package defines meta-model elements that represent the inventory of the physical artifacts of the existing
software system and defines the key traceability mechanism of KDM - how KDM facts references back to their
original representation in the artifacts of the software system (for example, source code).

» The Code package defines meta-model elements that represent the low-level building blocks of software, such as
procedures, datatypes, classes, variables, etc. (as determined by a programming language).

» Action package defines meta-model elements that represent statements as the end points of relations, and the majority
of low-level KDM relations.

» Platform package defines meta-model elements that represent the run time resources used by the software system, as
well as relationships determined by the run-time platform.

Ul package defines the meta-model elements that represent the user-interface aspects of the software system.

16 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

» Event package defines meta-model elements that represent event-driven aspects of the software system, such as events,
states, state transitions, as well as relationships determined by the event-driven semantics of the run-time framework.

- Data package defines meta-model elements that represent persistent data aspects of the software system.

» Structure package defines meta-model elementsthat represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same
system.

» Conceptual package defines meta-model elements that represent the domain-specific elements of the software system.

 Build package defines meta-model elements that represent the artifacts related to the build process of the software
system (including but not limited to the engineering transformations of the “source code” to “executables’).

© ISO/IEC 2012 - All rights reserved 17



ISO/IEC 19506:2012(E)

18

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Subpart | - Infrastructure Layer

KDM is alarge specification, since it provides an intermediate representation for several facets of knowledge about
existing enterprise software systems. In order to manage the complexity of KDM, a small set of concepts was selected and
systematically used throughout the entire specification. These concepts are defined in the so-called Infrastructure Layer. It
consists of the following 3 packages:

« Core
« kdm
» Source

The Core package defines the fundamental meta-model element types and the corresponding constraints. Core package
provides a set of types that determine each individual KDM meta-model element through subclassing. Each KDM meta-
model element is a subclass of one of the classes defined in the Core package. From the meta-model perspective KDM is
an entity-relationship representation. So, the two fundamental classes of the Core package are KDMEntity and
KDMRelationship. An entity is a thing of significance, about which information needs to be known or held. A KDM
entity is an abstraction of some element of an existing software system, that has a distinct, separate existence, a self-
contained piece of data that can be referenced as a unit. Each KDM package defines several meta-model elements that
represent specific entities for a particular KDM domain.

A relationship represents an association, linkage, or connection between entities that describes their interaction, the
dependence of one upon the other, or their mutual interdependence. A KDM relationship represents some semantic
association between elements of an existing software system. Each KDM package defines several meta-model elements
that represent specific relationships for a particular KDM domain. All KDM relationships are binary.

KDM defines two special relationships:

« containment

e grouping

Some KDM entities are containers for other entities. There is a special container ownership (containment) relationship
between a container and the entities that are directly owned by this container. Some KDM entities are groups of other
KDM entities. There is a specia group association (grouping) relationship between the group and the entities that are
directly “grouped into” this group.

Core package defines an analysis mechanism, the so-called Aggregated Relations mechanism that brings together special
relationships of containment and grouping and regular relationships of the entity-relationship model.

Core package defines a reflective APl to KDM representation. Other KDM packages extend this API by specific
operations, corresponding to specific facets of knowledge about existing software systems.

The Core package is aligned with the OMG SBVR specification, as it provides an abstraction of existing software systems
in the form of terms (various KDM entities) and facts (various attributes of KDM entities, and relationships between
KDM entities). Indeed, most of the KDM specification is a definition of a language- and platform-independent ontology
of existing software systems. This alignment is important since KDM can be viewed as a standard vocabulary related to
descriptions of existing software systems. SBVR rules can be written using this vocabulary to formally describe further
properties of existing software systems.

© ISO/IEC 2012 - All rights reserved 19



ISO/IEC 19506:2012(E)

The package with name “kdm” defines several elements that together constitute the framework of each KDM instance.
The framework determines the physical structure of a KDM representation. The elements of the framework are present in
every instance of KDM that represents a particular existing software system. From the framework perspective, each KDM
representation consists of one or more Segments, where each Segment owns several KDM models. Each KDM package
defines some specific type of KDM model, which addresses a certain specific facet of knowledge about existing software
systems. Individual KDM implementations may support one or more selected KDM models, as defined in the KDM
compliance section. KDM tools may use multiple KDM implementations to represent different facets of knowledge about
the existing software system and integrate them into a single coherent representation. Further, KDM designs facilitate
incremental implementations, where certain pieces of knowledge about the existing software is collected by analyzing
more lower level KDM representations. According to this approach certain KDM tools may perform a “KDM
enrichment” process, a“KDM to KDM transformation,” where atool analyzes the input KDM model and produces one or
more additional Segments and Models, explicitly representing certain derived pieces of knowledge about the system.

The Source package defines the so called Inventory model, which represents the physical artifacts of an existing system
as KDM entities as well as the mechanism of traceability links that provide associations between KDM elements and their
“original” language-dependent representation in the source code of the existing software system, for which the KDM
views are created. Thisis an important part of the KDM Infrastructure, because other KDM packages use this mechanism
to refer to the source code and the physical artifacts of the existing software system.

20 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

9 Core Package

9.1 Overview

The Core package provides basic constructs for creating and describing meta-model classesin all specific KDM packages.
Classes of the Core package determine the structure of KDM models, define fundamental modeling constraints, and
determine the reflective APl to KDM instances.

9.2 Organization of the Core Package

The KDM specification uses packages to control complexity and bring together logically interrelated classes. The Core
package defines a set of meta-model elements that have the purpose of defining the fundamental patterns and constraints
implemented by all other KDM packages.

The Core package consists of the following four class diagrams:
-« CoreEntities
» CoreRelations
» AggregatedRelations
« Datatypes

The Core package depends on no other packages.

9.3 CoreEntities Class Diagram

The CoreEntity class diagram defines key abstractions shared by all KDM models. The classes and associations of the
CoreEntities class diagram are shown in Figure 9.1.

© ISO/IEC 2012 - All rights reserved 21



ISO/IEC 19506:2012(E)

Element

7

ModelElem ent

+lowner +/group
{union} X .
KD M Entity {union}
“name : String

0..1 0.

o 0..*

+/groupedElement

+/ownedElement {union}

{union}

Figure 9.1- CoreEntities Class Diagram
9.3.1 Element Class (abstract)

An Element is an atomic constituent of a model. In the meta-model, an Element is the top meta-element in the KDM class
hierarchy. Element is an abstract meta-model element.

Semantics

Element isthe common parent from all meta-model elements of KDM. Most subclasses of Element can own annotations and
user-defined attributes through mechanisms defined in the kdm package.

9.3.2 ModelElement Class (abstract)

A ModelElement is an element that represents some aspect of the existing system.

In the meta-model, a Model Element is the base for all meta-elements of KDM. All other meta-elements are either direct
or indirect subclasses of ModelElement. Model Element is an abstract meta-model element.

A ModelElement can be extended through the lightweight extension mechanism.

Superclass

Element

Semantics

The ModelElement is a common class for all meta-model elements that represent some element of the existing software
system. The subclasses of Element that are not the subclasses of the Model Element class are the auxiliary elements of the
Infrastructure Layer.

Each subclass of the Model Element meta-model element can be extended through the light-weight extension mechanism
defined in the package named “kdm.”

22 © ISO/IEC 2012 - Al rights reserved



9.3.3 KDMEntity Clas

ISO/IEC 19506:2012(E)

s (abstract)

A KDMEntity is a named model element that represents an artifact of existing software systems.

In the meta-model, KDMERntity is a subclass of Model Element. Each KDM package defines specific KDM entities that
are direct or indirect subclasses of KDMEntity. A KDMEntity can be either an atomic element, a container for some
KDMEntities, or agroup of some KDMEntities. Container and group introduce implicit relationships between entities and
are used to represent hierarchies of entities. A container is a KDMEntity that owns other entities. A group is a KDMEntity
with which other entities are associated. A KDMEntity can be owned by at most one container, and can be associated with

Zero or many groups.

Superclass
Model Element

Attributes

name: String

Associations

owner:KDMEntity[0..1]

group:KDMEntity[0..*]

Constraints
1. KDMEntity should not

Operations

getOwner(): KDMEntity[0..1]

Anidentifier for the KDM entity.

KDM entity that owns the current element. This property determines a meta-level interface
to KDM entities. This property is aderived union. Some KDM entities define a concrete set
of owned elementsthat are subtypesof KDMEntity. InKDM thisisrepresented by the CMOF
“derived union” mechanism. Concrete properties subset the “union” properties of the parent
classes, defined in the Core package. The owner of aKDM entity is defined as the container
for which the given entity is an owned entity.

Set of KDM entities with which the current element is associated. This property determines
ameta-level interfaceto KDM entities. This property isaderived union. Some KDM entities
define a concrete set of grouped el ements that are the subtypes of KDMEntity. In KDM this
is represented by the CMOF “derived union” mechanism. Concrete properties subset the
“union” properties of the parent classes, defined in the Core package. The group of aKDM
entity isdefined as the group for which the given entity isagrouped entity. Each KDM entity
can be associated with multiple groups.

reference self as groupedElement.

This operation returns the KDM entity that is the owner of the current KDM
Entity. The owner entity isaKDM container. There can be at most one owner
for each given entity.

getOwnedElement():KDMEntity[0..*] This operation returns the set of KDM entities that are owned by the current

© ISO/IEC 2012 - All rights reserved

KDM Entity. Only KDM containers can own other entities.

23



ISO/IEC 19506:2012(E)

getGroup():KDMEntity[0..*] This operation returnsthe set of KDM Entitiesthat have agroup association to
the current KDM Entity. The group entity isaKDM group. Unlike KDM
containers, there may be many groups that have an association to agiven
entity.

getGroupedElement():KDMEntity[O..*] This operation returns the set of KDM entities that are “grouped” by the
current KDM entity. Only KDM groups can have group associations to other
entities.

Semantics

An entity is athing of significance, about which information needs to be known or held. A KDM entity is an abstraction
of some element of an existing software system, that has a distinct, separate existence, a self-contained piece of data that
can be referenced as a unit. Each KDM package defines several meta-model element that represent specific entities for a
particular KDM domain.

9.4 CoreRelations Class Diagram

The Core class diagram defines key meta-model associations of KDM models. The classes and associations of the
CoreRelations class diagram are shown in Figure 9.2.

ModelElement

+/ownedRelation

{union} KDMRelationship

0..*

0..
+/outbound
{union}

Y o.x N\ Hinbound
" {union}

1 1

+
+from to

KDMEntity

Figure 9.2 - CoreRelations Class Diagram

9.4.1 KDMREelationship Class (abstract)

A KDMRelationship is a model element that represents semantic association between two entities.

In the meta-model, KDMRelationship is a subclass of ModelElement. Each KDM package defines some specific KDM
relations that are either direct or indirect subclasses of KDMRelationship. Specific subclasses of KDMRelationship are
typed associations between some specific subclasses of KDMEntity.

24 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
M odel Element

Associations

to: KDMEntity[1] Thetarget entity (also referred to as the to-endpoint of the relationship). This property determines
ameta-level interface to KDM relationships. Every specific KDM relationship redefines the to-
endpoint to aparticular subtype of KDMEntity. InKDM thisisrepresented by the CM OF “ subsets”
mechanism. Concrete properties redefine the properties of the parent classes, defined in the Core
package.

from:KDMEntity[1] The origin entity (also referred to as the from-endpoint of the relationship). This property
determines a meta-level interface to KDM relationships. Every specific KDM relationship
redefines the from-endpoint to a particular subtype of KDMEntity. In KDM thisis represented by
the CMOF “ subsets’ mechanism. Concrete properties redefine the properties of the parent classes,
defined in the Core package.

Operations

getTo(): KDMEntity[1] This operation returns the KDM entity that is the to-endpoint (the target) of the current
relationship.

getFrom():KDMEntity[1] This operation returns the KDM entity that is the from-endpoint (the origin) of the current
relationship.

Semantics

KDMRelationship meta-model element is an abstract element. The concrete KDM relationships between KDM entities in
KDM views are instances of concrete subclasses of KDMRelationship. Each instance of KDMRelationship has exactly
one target and exactly one origin. Each concrete subclass of KDMRelationship defines the acceptable types of its
endpoints.

9.4.2 KDMEntity (additional properties)

Associations

ownedRelation: KDMRelationship[0..*] Primitive KDM relationships that originate from the current entity.
Operations
getinbound(): KDMRelationship[0..*] This operation returns the set of relationships such that the current

KDMEntity is the to-endpoint of these relations.

getOutbound():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity is the from-endpoint of these relationships.

© ISO/IEC 2012 - All rights reserved 25



ISO/IEC 19506:2012(E)

getOwnedRelation():KDMRelationship[0..*] This operation returns the set of relationships such that the current
KDMEntity owns these relationships.

Constraints

1. Theset of ownedRelations for a given KDMEntity should be the same as the set of KDMRelations for which the
from property isthe given KDMEntity.

Semantics

This property defines the so called “encapsulated relationship” pattern. From the infrastructure perspective, the
ownedRelation association is required to manage relationship elements. KDM relationships are owned by the entity,
which is the origin of the relationship. From the meta-model perspective, each relationship is a self-contained association
class with to- and from- properties.

9.5 AggregatedRelations Class Diagram

The AggregatedRelations class diagram defines the key analysis mechanism of KDM. AggregatedRelationships are part
of the “meta-level” interface to KDM models, along with interfaces defined by KDMEntity and KDMRelationship.

Overal management and lifecycle of the Aggregated Relationships is determined by the operations of the KDMEntity
class.

The classes and associations of the AggregatedRelations class diagram are shown in Figure 9.3.

ModelElement

RelationSet
+aggregate
AggregatedRelationship +relation
<*density : Integer

KDM Relationship

0..* 0..*

KD M E ntity

Figure 9.3 - AggregatedRelations Class Diagram
9.5.1 AggregatedRelationship Class

The set of AggregatedRelationship elements for a given entity represents all primitive relationships between the entities
that are transitively owned by the given entity as well as the entity itself. This is a concrete class, because an
AggregatedRelationship can be instantiated, and exchanged. AggregatedRelations are meant to be built on demand (and
exchanged too, if necessary). The lifecycle of the Aggregated Relationships can be explicitly managed by the operations
of the KDMEntity class.

26 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
M odel Element

Attributes

density:Integer The number of primitive relationships in the aggregated set.

Associations

relation:KDMRelationship[0..*] The set of primitive KDM relationships represented by the aggregated relationship.

to: KDMEntity[1] The target container of the relationshipsin the aggregated set. All relationshipsin the

aggregated set should terminate at the target container or at some entity that is
contained directly or indirectly in the target container.

from:KDMEntity[1] The source container of the relationshipsin the aggregated set. All relationshipsinthe

aggregated set should originate from the source container or from some entity that is
contained directly or indirectly in the source container.

Constraints

1. To- and from-endpoints should be distinct.
2. The density should be greater than or equal to 1.
3. Thedensity should be the same as the number of primitive relationships represented by the given aggregated
relationship.
Semantics

AggregatedRelationhips is determined by how atomic elements are owned by containers (or referenced by groups) in the
following way:

1

AggregatedRel ationship between two entities (no owned elements) represents the set of regular KDM relationships
between these two entities (such that the first entity is the from-endpoint of the relationship, and the second entity is
the to-endpoint of the relationship).

AggregatedRel ationship between an entity and a container (or group) represents the set of all regular KDM
relationships such that the given entity is the from-endpoint and the to-endpoint is any entity that is owned by the
given container (directly or indirectly).

AggregatedRel ationship between a container (or group) and an entity represents the set of all regular relationships
such that the to-endpoint is the given entity and the from-endpoint is any entity that is owned by the given container
(directly or indirectly).

AggregatedRel ationship between two containers represents the set of all regular KDM relations such that the from-
endpoint is an entity owned by thefirst container and the to-endpoint is an entity owned by the other container.

© ISO/IEC 2012 - All rights reserved 27



ISO/IEC 19506:2012(E)

A regular KDM relationship is represented by a subtype of KDMRelationship class. It has a concrete type, and an implied
density of 1. An AggregatedRelationship represents a set of regular KDM relationships. It has density of greater or equal
than 1 and no concrete type (as it may represent regular KDM relationships of different types). An
AggregatedRelationship cannot be constructed between two entities if there are no regular KDM relationships between
them (according to the definition above).

The relationship “x in* C” means that x is in container C or in some sub-container of C, transitively.

For relationship R, let R’ be the corresponding aggregated relationship.

Given containers C1 and C2 and the relationship R, let

P={(xy):xin* Clandy in* C2 and X Ry}

That is, P is the set of pairs such that x isin* Clandy isin* C2and x Ry.

Then

Cl1R C2iff |P|>0

C1 and C2 are related by the aggregated relationship R’ if and only if there is at least one pair in the set P.
The density of C1 ‘' C2 is then simply |P|, the size of the set P.

R

|22

Figure 9.4 - AggregatedRelationships illustrated

Figure 9.4 illustrates Containers and aggregated relationships. It uses the following notation. UML package symbols C1
and C2 represent KDM Containers, UML associations represent KDMRelations. An arrow at the end of an association
indicates the direction of the relationship, when there are no arrows at either end of the association (as in the Figure 9.4),
this indicates two relationships, one in each direction. The numbers at the ends of associations, such as “+2", represent the
density of the corresponding KDM relationship. The KDM density has a different interpretation than UML multiplicity:
since KDM represents an existing application, the exact relationships and their number is what the model captures. KDM
model is not a model that represents constraints, like the ones used during the design phase, rather, this is a model that
captures precise knowledge about the application. So, the KDM densities are exact.

Aggregated relationships are collections of more primitive relationships, which at the end are some basic code facts, for
example “procedure x calls procedure y.” Such basic fact has density 1. A primitive code relationship represents some
basic fact about the existing application. Now, when there are two or more such facts, for example “procedure x in

28 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

module A calls procedure y in module B” and “procedure z in module A calls procedure y in module B,” there is an
aggregated relationship between modules A and B with density 2 (2=1+1). In this case, the aggregated relationship
represents the collection of the two primitive relationships between modules A and B.

9.5.2 KDMEntity (additional properties)

Operations
createAggregation(otherEntity:KDMEntity) Thisoperation creates an aggregated rel ationship such that the current
entity isthe from-endpoint of the aggregated relation and the
“otherEntity” isthe to-endpoint. The new aggregated relationship is
owned by the model to which ownsthe current entity (either directly
or indirectly through container ownership).
deleteAggregation This operation deletes the given aggregated relationship.

(aggregatedRelation:AggregatedRelationship)

getinAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the target is the current KDM Entity.

getOutAggregated():AggregatedRelationship[0..*] This operation returns the set of AggregatedRelationship for which
the origin isthe current KDM Entity.

9.6 Datatypes Class Diagram

The Datatypes class diagram collects together utility data types for the Core package. Each class at the Datatypes class
diagram is a subclass of MOF DataType class. The classes of the Datatypes class diagram are shown in Figure 9.5.

<<datatype>>
<<datatype>> Boolean
String

<<datatype>>
Integer

Figure 9.5 - Datatypes Class Diagram

9.6.1 Boolean Type (datatype)

The meta-model uses the Boolean type to represent some KDM attributes, KDM operations, and their parameters.
9.6.2 String Type (datatype)

The meta-model uses the String type to represent some KDM attributes, KDM operations, and their parameters.

© ISO/IEC 2012 - All rights reserved 29



ISO/IEC 19506:2012(E)

9.6.3 Integer Type (datatype)

The meta-model uses the Integer type to represent some KDM attributes, KDM operations, and their parameters.

30 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

10 The Package Named “kdm”

10.1 Overview

The package named “kdm” defines the key infrastructure elements that determine patterns for constructing KDM views of
existing software systems. KDM views (also referred to as KDM instances) are collections of the elements that are
instances of the meta-model elements defined by the KDM specification, where each KDM element represents a certain
element of the existing system. Although in the technical sense, KDM instance is a model of the corresponding existing
software system, KDM instance is not a model that represents constraints, like the ones used during the design phase,
rather, this is an intermediate representation that captures precise knowledge about the system.

Implementers of KDM tools are guided by a mapping from the elements of programming languages, runtime platforms,
and other artifacts of existing software systems into KDM elements, using semantic description and implementer's
guidelines of this International Standard. The package named “kdm” describes several infrastructure elements that are
present in each KDM instance. Together with the elements defined in the Core package these elements constitute the so-
called KDM Framework. The remaining KDM packages provide meta-model elements that represent various elements of
existing systems.

Each KDM package follows a uniform meta-model pattern for extending the KDM framework (the Framework Extension
meta-model pattern). KDM Framework is part of the Infrastructure Layer together with the elements defined in the Source
package.

10.2 Organization of the KDM Framework

The package with name “kdm” is a collection of classes and associations that define the overall structure of KDM
instances. From the infrastructure perspective, KDM instances are organized into segments and then further into specific
models. There are 9 kinds of models. Each KDM model is described by one or more KDM packages and corresponds to
one KDM domain. From the architectural perspective, each KDM package defines an architectural viewpoint. KDM
model is the key mechanism to organize individual facts into architecture views. From the infrastructure perspective, a
KDM model is atyped container for meta-model element instances (collection of facts organized into an architectural
view). From the meta-model perspective, each KDM model is represented by a separate KDM package that defines a
collection of the meta-model elements, which can be used to represent the facts about the given existing systems from a
particular viewpoint. KDM framework defines a common superclass model element for all models - the KDMModel class.
KDM specification uses the term “KDM model” to refer both to a meta-model element corresponding to a particular
model kind and to a particular instance of such element in a concrete representation of some existing system. Explicit
disambiguation (KDM model meta-model element vs. KDM model instance) will be provided when necessary.

KDM model isthe key unit of a KDM instance. KDM segment can own one or more models. A segment isaminimal unit
of exchange in the KDM ecosystem. Segments can be nested.

The implementer shall provide an adequate partitioning of the KDM instance into multiple models and segments. On the
other hand, the implementers of KDM import tools should not make any assumptions about the organization of KDM
model elements into models or organization of models into segments.

A segment is a coherent collection of one or more related models that represents a self-contained perspective on the
artifacts of the existing system. It is expected that a complete segment is extracted as a unit. It is expected that each model
segment describe artifacts that involve a single programming language and a single platform.

© ISO/IEC 2012 - All rights reserved 31



ISO/IEC 19506:2012(E)

An enterprise application may involve multiple segments that are exported by separate extractor tools, and may need to be
integrated to provide a coherent holistic view.

The package with name “kdm” consists of the following 5 class diagrams:

Framework — defines the basic elements of the KDM framework.

Audit — defines audit information for KDM model elements.

Annotations - provides user-defined attributes and annotations to the modeling elements.

Extensions - a class diagram that defines the overall organization of the light-weight extension mechanism of KDM.

ExtendedValues - the tagged values used by the light-weight extension mechanism.

The package with name “kdm” depends only on the Core package.

10.3 Framework Class Diagram

The Framework class diagram defines the meta-model elements that constitute the so-called KDM Framework: a
collection of KDM models organized into nested segments. These meta-model elements determine the structure of KDM
instances. The classes and association of the Framework diagram are shown in Figure 10.1.

ModelElement

. (from core)
Extensions
1 i / KDM Entity
(from core)
KDM Framework

+exF§sionFamily
0.*

ExtensionFamily

<name : String

<name : String

+/ownedEle ment

{union}

0.*
+/model
+owner 0.1 funion}
+model
+segment Segment KDM Model
0..* 1 0.*
Segmelnts 0.1 Models
+owner
+/model

Aggregatg¢dRelations

0..*
+/aggregatedRelation

AggregatedRelationship
(from core)

<density : Integer

Figure 10.1 - Framework Class Diagram

32

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

10.3.1 KDMFramework Class (abstract)

The KDMFramework meta-model element is an abstract class that describes the common properties of all KDM
Framework elements. KDMFramework class is extended by Segment and KDMModel classes. These elements are
contains for KDM light-weight extensions (extension property). The KDM extension mechanism is described further in
this clause.

Superclass
Model Element

Attributes
name: String [0..*] The name of the framework element.
Associations

extension: ExtensionFamily [0..*] Extensions for the current model segment.

Semantics

Concrete instances of the KDM Framework meta-model elements define the organization of the KDM instance. The
implementer shall:

« arrange instances of the KDM model elements into models (constrained only by the definition of each model)
» arrange KDM modelsinto one or more segments

» provide namesto KDM models and KDM segments

10.3.2 KDMModel Class (abstract)

A KDMModel is an abstract class that defines common properties of KDM model instances which are collections of facts
about a given software system from the same architectural viewpoint of one of the KDM domains. KDM defines several
concrete subclasses of the KDMModel class, each of which defines a particular kind of a KDM model. The architectural
viewpoint is define by the corresponding KDM package. A KDM model instance is an architectural view of the given
system.

From the meta-model perspective, KDMModel extends the Element class. Each concrete KDM model follows the so-
called Framework Extension meta-model pattern. This pattern involves the following naming conventions. Let’'s assume
that “foo” is the name of the KDM model. The following rules describe the Framework Extension meta-model pattern:

» The meta-model elementsfor KDM model “foo” are described in a separate package, called “foo.”
» The package defines a concrete subclass of the KDMModel, called “FooModel.”

» The package defines a common abstract parent for all KDM entities specific to this KDM model, called
“ AbstractFooElement.” This class extends the KDMEntity class from the Core package.

» The package defines a common abstract parent for all KDM relationship specific to this KDM model, called
“ AbstractFooRel ationship.” This class extends KDMRel ationship class from the Core package.

© ISO/IEC 2012 - All rights reserved 33



ISO/IEC 19506:2012(E)

» Class“FooModel” owns class “ AbstractFooElement.” This association subsets the association between the
KDMModel and KDMEntity defined at the Framework class diagram.

» Class"“AbstractFooElement” owns zero or more AbstractFooRel ationship elements.

» The package “foo” includes a “Fool nheritances’ class diagram, describing inheritances of “FooModel,”
“ AbstractFooElement,” and “ AbstractFooRelationship” classes, aswell as any other common properties related to the
KDM Infrastructure, such as properties related to the Source package.

» The package “foo” includes “ ExtendedFooElements’ diagram that defines two generic meta-model elements
“FooElement” and “FooRelationship.” These meta-model elements are extension points to package “foo.”

Superclass
KDMFramework

Associations

ownedElement: KDMEntity[0..*] Instances of KDM entities owned by the model. Each KDM
model defines specific subclasses of KDMEntity class.
aggregatedRelation:AggregatedRelationship[0..*] Instances of KDM aggregated relations owned by the model.
Semantics

The implementer shall arrange instances of the KDM model elements into models (constrained only by the definition of
each model) and to provide name attributes for each KDM model instance. A KDM model instance may be empty or may
contain one or more instances of the elements allowed for this KDM model. A particular KDM instance may contain no
KDM models of a given kind, or several such models.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

Usually, KDM models corresponding to the KDM Resource Layer and Abstractions Layer have associations to the models
in KDM Program Elements and Infrastructure layer. There should be no associations from the Program Elements and
Infrastructure layer models to Resource and Abstractions layer models.

10.3.3 KDMEntity (additional properties)

Operations

getModel(): KDMModel[0..1] This operation returns the KDM model that owns the current KDM
Entity.

10.3.4 Segment Class

The Segment element is a container for a meaningful set of facts about an existing software system. Each segment may
include one or more KDM model instances and thus represents a collection of one or more architectural views for a given
software system. Segment is a unit of exchange between the tools of the KDM ecosystem. Segment without owners is the
top segment of the KDM model.

34 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
KDMFramework

Associations

segment: Segment[0..*] Nested Segment elements owned by the current Segment.

model[0..*]:KDMModel The set of KDM models owned by the current segment. Each KDM model defines an
architectural viewpoint. KDM model defines specific meta-model elements (entities and
relationships specific to the viewpoint) that collectively define the viewpoint language.

Semantics

The implementer shall arrange KDM models into segments and to provide name attributes for each KDM segment
instance. A KDM segment instance may be empty or may not contain KDM models of a given kind or may contain one
or more KDM models of a given kind.

In general, KDM does not constrain associations between instances across KDM models or across KDM segments.

KDM meta-model patterns make it possible to arrange KDM instances in such a way that the models in KDM Program
Elements and Infrastructure layers are placed in a separate KDM segment, which becomes a reusable asset for multiple
derivative models from the Program Elements and Infrastructure layer.

The implementers of KDM import tools should not make any assumptions regarding the organization of the KDM models
into KDM segments.

Example
<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="Framework Example">
<audit xmi:id="1id.0" description="Illustration of KDM Framework" author="KDM FTF" date="04-03-2007">
<attribute xmi:id="id.1" tag="approved" value="yes"/>
</audit>
<segment xmi:id="id.2" name="foobar"/>
<model xmi:id="1d.3" xmi:type="code:CodeModel" name="foo">
<annotation xmi:id="id.4" text="This is a sample instance of a Code model"/>
</model>
<model xmi:id="id.5" xmi:type="source:InventoryModel" name="bar"s>
<annotation xmi:id="id.6" text="This is a sample of an Inventory model"/>
</model>
</kdm: Segment >

10.4 Audit Class Diagram

The Audit class diagram defines meta-model elements to represent some extra “audit” information related to the KDM
framework elements (models and segments).

The classes and associations of the Audit class diagram are shown in Figure 10.2.

© ISO/IEC 2012 - All rights reserved 35



ISO/IEC 19506:2012(E)

Element
(from core)

KDMFramework

1
Audits 0.
Audit

+audit “description : String
:author : String
=date : String

Figure 10.2 - Audit Class Diagram
10.4.1 Audit Class

Audit class represents basic audit information associated with KDM models.

Superclass
Element
Attributes
description:String Contains the description of the Framework element.
author:String Contains the name of the person who has created the model element, or the name of the
tool that was used to create the model element.
date:String Contains the date when the model element was created.

Constraints

1. date should be represented in “dd-mm-yyyy” format

Semantics

The Audit element provides some extra “audit” information in the form of human readable text.

Each Framework element can have zero or more Audit instances associated with it. The collection of Audit elementsis
not ordered however the data property can be used to establish the temporal ordering. The Date format is “dd-mm-yyyy,”
where “dd” is the date, the “mm” is the number of the month, with leading zero, if needed, and “yyyy” is the year. For
example, “04-03-2007" corresponds to the “4th of March 2007.”

The content of the Audit element is provided by the implementer or the analyst.
KDM does not constrain the “description” attribute.

The implementers of KDM import tools should not make any assumptions regarding the content of the Audit element,
other than the “human-readable text.” It is expected that at least one Audit element is related to the origin of the model or
segment.

36 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Audit element can own Annotation elements and Attribute elements. The Audit.description is the primary description and
any associated annotations may be used as optional secondary descriptions.

Example

See example in the KDMFramework sub clause.

10.4.2 KDMFramework (additional properties)
Audit elements can be owned by any subclass of the KDMFramework element, including segment or model.

Associations

audit:Audit[0..*] Thelist of Audit element instances for the given instance of KDMFramework (segment or model).

10.5 Extensions Class Diagram

The Extensions class diagram defines the meta-model elements that constitute the basis of the KDM light-weight
extensions mechanism. Some additional meta-model elements are defined by the ExtendedValues class diagram.

The KDM light-weight extension mechanism is a standard way of adding new “virtual” meta-model elementsto KDM. A
“virtual” meta-model element is a base meta-model element with extended meaning, and possibly with extended
attributes. The base meta-model element can be a “regular” element (a concrete class, not marked as “generic”), or
“generic” (concrete class with under specified semantics, marked as “generic”). This mechanism is defined as part of
KDM. The light-weight extensions mechanism allows introducing new “extended” meta-model element kinds (called
stereotypes). The exact meaning and the intention of the “extended” meta-model elements is outside of KDM and should
be communicated by implementers to the users of the extended representations.

The light-weight extension mechanism provides the following capabilities:

1. Define astereotype (introduce the partial kind of a meta-model element):

* A stereotype definition includes the name of class of the allowed base elements. This class can be a particular
concrete meta-model element, a generic element or an abstract meta-model element.

2. Definetags associated with a stereotype. Tags are additional attributes to the extended elements. Tag definition
includes the name of the extended attribute and the name of the type of the element (represented as a string). Values
of extended attributes can take the form of a string, or reference to some modeling element. Each stereotype defines
its own set of tags. Tag definitions are owned by the corresponding stereotype definition.

3. Organize stereotype definitions into stereotype families. Stereotype families are owned by KDM Framework
elements (KDM models and segments).

4. Use extended model elementsin KDM instances by using the base meta-model element instance with one or more
stereotypes:

« Concrete tag values can be added to the “virtual” element if the stereotype defines tags.
 Each tag value is associated with the corresponding tag definition.
» The complete kind of the new element is defined as the union of al stereotypes added to the element.

© ISO/IEC 2012 - All rights reserved 37



ISO/IEC 19506:2012(E)

When added to a KDM model element, a stereotype provides additional semantic details to the base meta-model element.
Stereotypes should not change the semantics of the base element.

KDM supports the light-weight extension mechanism through a Generic Element meta-model pattern. KDM defines a
relatively large number of concrete meta-model elements with under specified semantic. In KDM these elements are the
common superclasses for classes with specific semantics. However, generic elements can be used as extension points of
the light-weight extension mechanism by using them in KDM instances with a stereotype. In addition, each KDM model
defines two “wildcard” generic elements: a generic entity and a generic relationship for the given KDM model. They too
can be used as extension points.

Pure KDM instances should use only concrete meta-model elements that have semantics specified in KDM, without
stereotypes. KDM instances that use stereotypes are called extended KDM instances. Extended KDM instances can add
stereotypes to concrete meta-model elements.

KDM light-weight extension mechanism does not support multiplicity of tags, constraints on tags, relationships between
tags or stereotypes. The implementer shall select the most specific extension points, by defining stereotypes in such a way
that they use the base elements with the most specific semantic description (closer to the bottom of the KDM class
hierarchy).

The classes and associations of the Extensions diagram are shown in Figure 10.3.

Element

(from core)
\ E xtensionFamily

=name : String

Stereotypes

Stereotype .
— <name :String 0.
TagD efinition +te191/0 Stype @ String +stereotype
<tag : String 1
Stype : String | 0..* Tags =
+ste\reotype
E xtension
0..*
ModelElement
+taggedValue 1 (from core)
ExtendedValue
0..* ExtendedValues

Figure 10.3 - Extensions Class Diagram
10.5.1 Stereotype Class

The stereotype concept provides a way of branding (classifying) model elements so that they behave as if they were the
instances of new virtual meta-model constructs. These model elements have the same structure (attributes, associations,

operations) as similar non-stereotyped model elements of the same kind. The stereotype may specify additional required
tagged values that apply to model elements. In addition, a stereotype may be used to indicate a difference in meaning or
usage between two model elements with identical structure.

In the meta-model the Stereotype is a subclass of Element. Stereotype is a named model element. TaggedValues attached
to a Stereotype apply to all Model Elements branded by that Stereotype.

38 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

A Stereotype specifies the name of the base class to which it can be added.

Superclass
Element
Attributes
name:String Specifies the name of the stereotype.
type:String Specifies the name of the model element to which the stereotype applies.

Associations

tag:TagDefinition[0..*] Stereotype owns the set of tag definitions that determine the additional tagged values
associated with the model elements that are branded with the given stereotype.

Constraints
1. Tagsassociated with model element should not clash with any meta attributes associated with this model element.

2. A mode element should have at most one tagged value with a given tag name.

3. A stereotype should not extend itself.

4. A Stereotype can be added to Model Element if its classis the same as the baseClass, or one of its subclasses.
5

The values of the Type attribute of the TagDefinition are restricted to the names of the KDM meta-elements. Names
of the core datatypes (“Boolean,” “String,” “Integer”) define attributes of the extended meta-model element. The
corresponding values are represented as instances of the TaggedVal ue class. Names of other KDM meta-elements (for
example, “KDMEntity,” or “Audit”) define associations of the extended meta-element and the corresponding values
are represented as instances of the TaggedRef class.

Semantics

Stereotypes should not change the semantics of the base meta-model element.

A KDM model element with one or more stereotypes has the semantics of the base element with some additional
semantic constraints. The complete kind of the new element is defined as the union of all stereotypes added to the
element. Extended values are the attributes of the extended element. A KDM element with one or more stereotypes is
equivalent to a situation in which KDM has been extended by adding a new meta-model class that extends the base class,
with the new attributes corresponding to the tag definitions.

Example

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Stereotype Example">

<extensionFamily xmi:id="id.0" name="Example extensions">
<stereotype xmi:id="id.1" name="Java method"/>

© ISO/IEC 2012 - All rights reserved 39



ISO/IEC 19506:2012(E)

<stereotype xmi:id="id.2" name="C++ method"/>
<stereotype xmi:id="id.3" name="C++ procedure"/>
<stereotype xmi:id="1d.4" name="C++ friend">
<tag xmi:id="id.5" tag="friend of" type="ClassUnit"/>
</stereotype>
<stereotype xmi:id="id.6" name="IsFriendOf"/>
<stereotype xmi:id="1id.7" name="native call">
<tag xmi:id="1id.8" tag="implemented in" type="String"/>
</stereotype>
</extensionFamily>
<model xmi:id="id.9" xmi:type="code:CodeModel" name="Example">
<codeElement xmi:id="id.10" xmi:type="code:ClassUnit" name="myclass">
<codeElement xmi:id="1id.11" xmi:type="code:MethodUnit" stereotype="id.2"
name="foo" type="id.12">
<codeElement xmi:id="id.12" xmi:type="code:Signature" name="foo"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.13" xmi:type="code:CallableUnit" stereotype="id.4 id.3"
name="bar" type="id.16" kind="regular"s>
<taggedvalue xmi:id="id.14" xmi:type="kdm:TaggedRef" tag="id.5" reference="id.10"/>
<codeRelation xmi:id="1id.15" xmi:type="code:CodeRelationship" stereotype="id.é6"
to="id.10" from="id.13"/>
<codeElement xmi:id="1id.16" xmi:type="code:Signature" name="bar"/>
</codeElement>
</model>
<model xmi:id="id.17" xmi:type="code:CodeModel">
<codeElement xmi:id="1id.18" xmi:type="code:ClassUnit" stereotype="id.1l">
<codeElement xmi:id="id.19" xmi:type="code:MethodUnit" stereotype="id.1"
name="foobar" type="id.23">
<codeElement xmi:id="id.20" xmi:type="action:ActionElement" stereotype="id.7"
name="al">
<actionRelation xmi:id="1d.21" xmi:type="action:Calls" stereotype="id.7"
to="1d.13" from="id.20">
<taggedvValue xmi:id="1id.22" xmi:type="kdm:TaggedvValue" tag="id.8" value="C"/>
</actionRelation>
</codeElement>
<codeElement xmi:id="1id.23" xmi:type="code:Signature" name="foobar"/>
</codeElement>
</codeElement>
</model>
</kdm:Segment >

10.5.2 TagDefinition Class

Lightweight extensions allows information to be attached to any model element in the form of a“tagged value” pair (i.e.,
name=value). The interpretation of tagged value semantics is outside the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Even though TaggedValues is a simple and straightforward extension technique, their use restricts semantic interchange of
extended information about existing software systems to only those tools that share a common understanding of the
specific tagged value names.

40 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Each Stereotype owns the optional set of TagDefinitions. Each TagDefinition provides the name of the tag and the name
of the KDM type of the corresponding value.

In the meta-model, TagDefinition is a subclass of Element.

Superclass
Element
Attributes
tag:String Contains the name of the tagged value. This name determines the semantics that are
applicable to the contents of the value attribute.
type:String Specifies the type of the value attribute.

Constraints
1. The"value” attribute of the TaggedValue should be valid according to the type specified in the corresponding
TagDefinition.

2. Thetarget of the “ref” association of the TaggedRef should be of the type specified in the corresponding
TagDefinition, or one of its subtypes.

3. If thetype of the TaggedDefinition is one of the primitive datatypes (for example, “BooleanType,” “ StringType,”
“Integer Type”), the corresponding value should be an instance of the TaggedValue class.

4. If thetype of the TaggedDefinition is a name of some other KDM meta-element (for example, “KDMEntity,” or
“Audit”), the corresponding value should be an instance of the TaggedRef class.

Semantics
ExtendedValues provide the values of the extended attributes and associations of the extended meta-model element
defined by one or more stereotypes.

Names of the tags, defined by each stereotype constitute an isolated namespace that does not interfere with the names of
other stereotypes or the names of the attributes of the base type. The meaning and the intention of the stereotypes and tags
is outside of the KDM specification and should be communicated by implementers to the users of the extended models.
Extensions should not change the semantics of the base KDM meta-model elements, so that the model with extensions
can gtill be interpreted as an approximation of the full extended meaning when extensions are ignored and only the basic
KDM semantic rules are applied.

Example
See example in the Stereotype class section.

10.5.3 ExtensionFamily Class

ExtensionFamily provides a mechanism for managing lightweight extensions. ExtensionFamily acts as a container for a
set of related stereotypes and their corresponding tag definitions.

© ISO/IEC 2012 - All rights reserved 41



ISO/IEC 19506:2012(E)

Superclass
Element

Attributes
name:String Provides the name of the extension family.
Associations
stereotype:Stereotype[0..*] The set of stereotypes that are owned by the extension family.

Semantics

ExtensionFamily provides a named container for stereotype definitions. The implementer shall arrange stereotype
definitions into meaningful families. Some stereotype definitions may be made available as reusable assets in a separate
segment. KDM analysis tools should not make any assumptions regarding the organization of stereotypes into families.

Example

See example in the Stereotype class section.

10.5.4 ModelElement (additional properties)

Associations

taggedValue:TaggedValue[0..*] The set of tagged values determined by the stereotype.

stereotype:Stereotype|[0..*] the stereotype

Constraints

1. Eachtagged value added to a Model Element must conform to a certain tag definition owned by the stereotype of that
M odel Element (the tag association of the TaggedValue should refer to a TaggedDefinition that is owned by a
Stereotype of the Model Element). A tagged value conformsto atag definition when the val ue conforms to the type of
the TagDefinition. Conformance of lightweight extensions can only be validated dynamically by a suitable KDM
import tool, since lightweight extensions are not defined by the KDM standard.

2. Stereotype can be associated with a certain instance of a ModelElement if the type of the ModelElement is the same
as the type property in the stereotype definition, or one of its subclasses.

Example

See example in the Stereotype class section.

42 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

10.6 ExtendedValues Class Diagram

ExtendedValues class diagram defines additional meta-model constructs as part of the KDM light-weight extension
mechanism. These constructs represent extended values that can be added to extended KDM model elements. The key of
the light-weight extension mechanism is a meta-model construct called stereotype. Stereotypes provide additional
meaning to KDM meta-model constructs. While the meaning of a stereotype is not defined within the KDM, stereotypes
allow differentiation within existing KDM metamodel elements and allow adding attributes to them with extended value
construct.

The classes and associations involved in the definition of extended values are shown at Figure 10.4.

Element
(from core)
TaggedValueDefinition —
TagDefinition
ExtendedValue +tag [tag : String
0. 1 |Stype : String
TaggedValue TaggedRef
<value : String
0..*

Reference

+reference 1

ModelElement
(from core)

Figure 10.4 - ExtendedValue Class Diagram
10.6.1 ExtendedValue Class (abstract)

ExtendedValue class is an abstract superclass for the two concrete classes that represent tagged values: the TaggedValue
and the TaggedRef. ExtendedValue class defines common properties for these classes.

Superclass

Element

Associations

tag [1]:TagDefinition the reference to the tag definition of the corresponding stereotype

Semantics

ExtendedValue is a “virtual” attribute to an extended KDM meta-model element. ExtendedValue element represents the
value of the attribute. KDM defines two concrete subclasses of ExtendedValue: TaggedValue and TaggedRef. The
definition of the attribute is provided by the TagDefinition element owned by a Stereotype element. The Stereotype

© ISO/IEC 2012 - All rights reserved 43



ISO/IEC 19506:2012(E)

element defines the “virtual” meta-model element that provides the context for the new attributes. “Virtual” attributes are
instantiated every time a new “virtual” metamodel element, defined by a Stereotype is instantiated. This is an important
difference between ExtendedValues and KDM attributes, which are not related to any particular meta-model element.

The TagDefinition element defines constraint on the possible values of the ExtendedValue by specifying the type of the
alowed values.

Each instance of ExtendedValue has an association to the corresponding TagDefinition.
10.6.2 TaggedValue Class

A tagged value allows information to be attached to any model element in the form of a “tagged value’ pair, (i.e.,
name=value). The interpretation of tagged value semantics is outside of the scope of KDM. It must be determined by the
user or tool conventions. It is expected that tools will define tags to supply information needed for their operations
beyond the basic semantics of KDM. Such information could include specific entities, relationships, and attributes for a
particular programming language, runtime platform, or engineering environment.

Each TaggedValue must conform to the corresponding TagDefinition. In the meta-model, TaggedValue is a subclass of
Element.

Superclass
ExtendedValue

Attributes
Value:String Contains the current value of the TaggedValue.

Constraints
1. Thevalue of the TaggedValue instance should conform to the type of the corresponding TagDefinition.

Semantics

TaggedValue element represents simple atomic “virtual” attributes. The type constraint of the value, defined in the
corresponding TagDefinition can be the name of any KDM primitive type (for example, “StringType,” “BooleanType,”
etc.).

Example

See example in the Stereotype class section.

10.6.3 TaggedRef Class

A TaggedRef allows information to be attached to any model element in the form of a reference to another exiting model
element. Each TaggedRef must conform to the corresponding TagDefinition: the actual type of the model element that is
the target of the TaggedRef must be the same as the type specified in the corresponding TagDefinition, or one of its
subtypes. In the meta-model, TaggedRef is a subclass of ExtendedValue.

44 © ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Superclass
ExtendedValue

Associations
ref:ModelElement[1] Designates the model element referred to by the extended value.

Constraints

1. Themodel element that isthe target of the ref association must be of the type, specified by the type attribute of the tag
definition that is the target of the tag association of the tagged ref element.

Semantics

TagRef represents complex “virtual” attributes, which are associations to other KDM elements. TagDefinition can be a
name of any KDM meta-model element (for example, “KDMEntity,” “ AbstractCodeElement,” “ ControlElement,” or
“CallableUnit”).

Example

See example in the Stereotype class clause.

10.7 Annotations Class Diagram

The Annotation class diagram defines meta-model elements that allow ad hoc user-defined attributes and annotations to
instances of KDM elements. The mechanism of ad hoc user-defined attributes provides a capability to add pairs <tag,
value> to an individual element instance. Thisis complimentary to the light-weight extension mechanism, which provides
a new meta-model element, each instance of which has <tag, value> pair specified by the definition of the extended
element. An ad hoc user-defined attribute is owned to an individual element instance. This means that different instances
of the same meta-model element may own completely different user-defined attributes (and some may have none at all).

An Annotation is an ad hoc note owned by an individual element instance. Annotations and attributes are applied to the
elements of KDM instances. They may be used by implementer to add specific information to an individual element.
They may also be used by an analyst, annotating a given KDM instance. On the other hand, stereotypes and tag
definitions as first defined as extensions to the KDM (meta-model) and then systematically used by the implementer.

The classes and associations that make up the Annotations diagram are shown in Figure 10.5.

© ISO/IEC 2012 - All rights reserved 45



ISO/IEC 19506:2012(E)

Element
(from core)

Annotation
wtext : String

Attribute
wtag : String
<value : String

0.* 0.
+annotation

ElemeéntAnnotation

+owner
1 | Element

+owner
(from core)

Figure 10.5 - Annotations Class Diagram
10.7.1 Attribute Class

An attribute allows information to be attached to any model element in the form of a “tagged value’ pair (i.e.,
name=value). Attribute add information to the instances of model elements, as opposed to stereotypes and tagged values,
which apply to meta-model elements. Tagged value is part of the extension mechanism (stereotypes define virtual new
model element, and tagged values specify additional attributes of these virtual model elements). Tagged values are only
associated with model elements branded by a stereotype, and the set of tagged values for a particular instance of a model
element is determined by its stereotype. On the other hand, arbitrary attributes may be associated with individual
instances of model element. In particular, two different instances of the same model element may be annotated by
different attributes.

In the meta-model, TaggedValue is a subclass of Element.

Superclass
Element
Attributes
tag:Name Contains the name of the attribute. This name determines the semanticsthat are applicable to the
contents of the value attribute.
value:String Contains the current value of the attribute.

Constraints
1. Attribute cannot have further annotations or attributes.

46 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

The interpretation of attribute semantics is outside the scope of KDM. It may be determined by the user or the
implementer conventions. Tools may provide capability to add arbitrary attributes to the instances of the model to supply
information needed for their operations beyond the basic semantics of KDM. Such information can support analysis of
KDM models by analysis, etc.

An attribute element is not related to a particular meta-model element. It does not define a “virtual” attribute to an
extended meta-model element, that is instantiated with every instantiation of the new element. Instead, an attribute
element can be added to any KDM element. It defines a property of a particular instance, not a property of a class of
instances.

Example
See example in the KDMFramework clause.

10.7.2 Annotation Class

Annotations allow textual descriptions to be attached to any instance of a model element. The meta-model Annotation
class is a subclass of Element.

Superclass

Element

Attributes
text:String Contains the text of the annotation to the target model element.

Constraints

1. Annotation cannot have further annotations or attributes.

Semantics

Annotation allows associating a human-readable text with an instance of any Element.

Example

See example in the KDMFramework clause.
10.7.3 Element (additional properties)

Associations

attribute:Attribute[0..*] The set of attributes owned by the given element.

annotation:Annotation[0..*] The set of annotations owned by the given element.

© ISO/IEC 2012 - All rights reserved 47



ISO/IEC 19506:2012(E)

Semantics
No assumptions should be made regarding the order of attributes or annotati ons associated with a particular instance.

48 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

11 Source Package

11.1 Overview

The Source package defines a set of meta-model elements whose purpose is to represent the physical artifacts of the
existing system, such as source files, images, configuration files, resource descriptions, etc. The Source package also
represents traceability links between instances of KDM meta-elements and the regions of source code, which is
represented by these meta-model elements. It represents the link between the KDM instance and the artifacts of the

existing system it represents.

The Source package offers two capabilities for linking instances of the KDM representation to the corresponding artifacts:
« Inlining the corresponding source code in the form of a“snippet” into KDM representation.
» Linking aKDM element to aregion of the source code within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers an additional two options:

» Thelink can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.

» Thelink can be made stand-alone and explicitly specify the path to the artifact.

The nature of the “source code” represented by a particular KDM element is unspecified within KDM. In KDM, thisis
indicated by the “language” attribute.

The Source package defines an architectural viewpoint for the Inventory domain. It is determined by the entire software
development environment of the existing software system.
« Concerns:
* What are the artifacts (software items) of the system?

* What isthe general role of each artifact (for example, isit a sourcefile, abinary file, an executable or a
configuration description)?

* What is the organization of the aritifacts (into directories and projects)?
« What are the dependencies between the artifacts?

« Viewpoint language:

Inventory views conform to KDM XMI schema. The viewpoint language for the Inventory architectural
viewpoint is defined by the Source package. It includes an abstract entity AbstractlnventoryElement, severa
generic entities, such as Inventoryltem and InventoryContainer, as well as several concrete entities, such as
SourceFile, BinaryFile, Image, Directory, etc. The viewpoint language for the Inventory architectural viewpoint
also includes DependsOn relationship, which are subclasses of AbstractlnventoryRelationship.

« Analytic methods:

The Inventory architectural viewpoint supports the following main kinds of checking:

» What artifacts depend on the given artifact?

© ISO/IEC 2012 - All rights reserved 49



ISO/IEC 19506:2012(E)

The Inventory viewpoint al so supports check in combinations with other KDM architectural viewpoint to determine
the original artifacts that correspond to a given KDM element.

« Construction methods:

* Inventory views that correspond to the KDM Inventory architectural viewpoint are usually constructed by
directory scanning tools, which identify files and their types.

« Congtruction of an Inventory view is determined by the particular development and deployment environments of
the existing software system.

« Congtruction of an Inventory view is determined by the semantics of the environment as well as the semantics of
the corresponding artifacts, and is based on the mapping from the given environment to KDM.

« The mapping from a particular environment to KDM may produce additional information (system-specific, or
environment-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using
stereotypes, attributes, or annotations.

As agenera rule, in a given KDM instance, each instance of the inventory model represents afile, or a set of files.
Exceptions to this rule are:

» InventoryModel element, which is a part of the KDM instance infrastructure. This meta-model element is a container
the instances of other inventory meta-model elements.

» SourceRef and SourceRegion meta-elements that represent traceability links between other instances of KDM meta-
model elements and source code of the existing software system.

Inventory meta-model elements are part of the KDM instance infrastructure because they determine the traceability
mechanism between other KDM elements and the regions of the physical artifacts of the existing software system that
they represent.

11.2 Organization of the Source Package

The Source package consists of the following 5 class diagrams:
« InventoryModel
» Inventorylnheritances
» InventoryRelations
»  SourceRef
» ExtendedinventoryElements
The Source package depends on the following packages:
+ Core

e kdm

50 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

11.3 InventoryModel Class Diagram

InventoryModel class diagram defines meta-model elements that represent the physical artifacts of the existing software
system. This model corresponds to the inventory of the artifacts. The InventoryModel class diagram follows the uniform
pattern for KDM model to extend the KDM Framework with specific meta-model elements. InventoryModel defines the
following meta-model elements determined by the KDM model pattern:

» InventoryModel class
» AbstractinventoryElement class
» AbstractinventoryRelationship class

In addition, the InventoryModel class diagram defines a concrete KDM entity for each artifact, such a SourceFile, an
Image, a ResourceDescription, a Configuration description, a BinaryFile, and an ExecutableFile. These meta-model
elements are subclasses of the common parent class Inventoryltem. The Inventory model also provides a generic KDM
container called InventoryContainer and two specific containers: Directory and Project.

The classes and associations of the InventoryModel are shown at Figure 11.1.

+inventoryRelation
{subsets ownedRelation}

InventoryModel AbstractinventoryRelationship

+model

{subsets model}
0..1 0..*
0.* 1 .
+inventoryElement +inventoryElement

AbstractinventoryElement {subsets ownedElement}

{subsets ownedElement}

0..*

+owner
0.1 {subsets owner}
Inventoryltem —
Wersion : String InventoryC ontainer
<path : String
- Directory -
olasnogtj;(;il':g?ring PN £ S T

gencoding : String

ExecutableFile

BinaryFile

Image

Configuration

ResourceDescription

Figure 11.1 - InventoryModel Class Diagram
11.3.1 InventoryModel Class
The InventoryModel is a specific KDM model that owns collections of facts related to the physical artifacts of the

existing software system. InventoryModel is a container for the instances of Inventoryltems. InventoryModel corresponds
to the inventory of the physical artifacts of the existing software system.

© ISO/IEC 2012 - All rights reserved 51



ISO/IEC 19506:2012(E)

Superclass
KDMModel

Associations
inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the inventory modedl.

Semantics

InventoryModel is a container for instances of inventory elements. The implementer shall arrange inventory elements into
one or more inventory models. KDM import tools shall not make any assumptions about the organization of inventory
items into inventory models.

11.3.2 AbstractinventoryElement Class (abstract)
The AbstractlnventoryElement is the abstract parent class for al inventory entities.

Superclass
KDMEntity

Associations
inventoryRelationship:AbstractinventoryRelationship[0..] ~ The set of inventory relations owned by theinventory element.

Semantics

From the meta-model perspective, this element is a common parent for all inventory entities. This element is abstract and
cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in stereotype
definitions. Inventory package provides a concrete class InventoryElement with under specified semantics, which can be
used as an extension point for defining new “virtual” inventory entities.

11.3.3 AbstractinventoryRelationship Class (abstract)
The AbstractinventoryRelationship is the abstract parent class for all inventory relationships.

Superclass
KDMRelationship

Constraints

Semantics

From the meta-model perspective, this element is a common parent for al inventory relationships. This element is
abstract and cannot occur in KDM instances. The name of the meta-model element can be used as the type constraint in
stereotype definitions. Inventory package provides a concrete class InventoryRelationship with under specified semantics,
which can be used as an extension point for defining new “virtual” inventory relationships.

52 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

11.3.4 Inventoryltem Class (generic)

Inventoryltem is a generic meta-model element that represents any artifact of an existing software system. This classis
further subclasses by several concrete meta-model elements with more precise semantics. However, Inventoryltem can be
used as an extended modeling element with a stereotype.

Superclass
AbstractlnventoryElement

Attributes
version:String Provides the ability to track version or revision numbers
path:String Location of the build resource

Semantics

The implementer shall provide a mapping from concrete types of the physical artifacts involved in the engineering of the
existing software system into concrete subclasses of the Inventoryltem. The implementer shall map each artifact of the
existing software system to some instance of KDM Inventoryltem.

11.3.5 SourceFile Class

The SourceFile class represents source files. This meta-model element is the key part of the traceability mechanism of
KDM whose purpose is to provide links between code elements and their physical implementations using the
SourceRegion mechanism from the Source package.

Instances of the SourceRegion meta-model element refer to certain regions of source files to identify the original
representation corresponding to a certain KDM element. In order to achieve interoperability between KDM tools that take
advantage of the traceability links between the KDM elements and the regions of existing software system artifacts, KDM
specification explicitly defines semantics of source files.

Superclass

Inventoryltem

Attributes

language:String Indicates the language of the source file.

encoding:String An optional attribute that represents the encoding of the charactersin thefile.
Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

© ISO/IEC 2012 - All rights reserved 53



ISO/IEC 19506:2012(E)

KDM tools may use the information from the artifacts of the existing software system, accessible through the
SourceRegion mechanism. It is recognized that different encodings are used around the world, and it may be desired for

KDM processors to read code snippets from the files that use them.

Specification of encoding is aligned with the XML specification from W3C. Each artifact of an existing system may use
a different encoding for its characters. The default encoding for SourceFile is “UTF-8.” Encodings other that UTF-8
should be explicitly specified in the optional encoding attribute of the SourceFile using a standard encoding label. For
example, “UTF-16," “1S0O-10646-UCS-2,” “1S0O-8859-2," “1S0O-2022-JR,” “Shift_JIS,” and “EUC-JP" etc. Encoding of
the characters in the SourceFile should be taken into account by KDM consumer tools that make use of the information
in the source file, through the mechanism of the SourceRegion.KDM tools shall at a minimum support UTF-8.

11.3.6 Image Class
Image element is used to represent image files.

Superclass

Inventoryltem

Semantics

11.3.7 Configuration Class
Configuration element is used to represent various configuration files.

Superclass

Inventoryltem

Semantics

11.3.8 ResourceDescription Class

ResourceDescription element is used to represent resource description files.

Superclass

Inventoryltem

Semantics

11.3.9 BinaryFile Class
BinaryFile element is used to represent binary files.

Superclass

Inventoryltem

54

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Semantics

11.3.10 ExecutableFile Class
ExecutableFile element is used to represent executable files for a particular platform.

Superclass

Inventoryltem

Semantics

11.3.11 InventoryContainer Class (generic)
The InventoryContainer meta-model element provides a container for instances of Inventoryltem elements.

Superclass
Abstractl nventoryElement

Associations
inventoryElement:AbstractinventoryElement[0..*] The set of inventory elements owned by the container.

Constraints

1. InventoryContainer should have at |east one stereotype.

Semantics

Concrete instances of the InventoryContainer element own other inventory elements (both inventory containers and
individual inventory items). InventoryContainer instances represent tree-like container structures in which the leaf
elements are individual Inventoryltem instances. Each InventoryContainer represents the entity set of Inventoryltems
owned by that container directly or indirectly.

11.3.12 Directory Class
The Directory class represents directories as containers that own inventory items.

Superclass
InventoryContainer

Attributes

path:String Location of the directory

© ISO/IEC 2012 - All rights reserved 55



ISO/IEC 19506:2012(E)

Semantics

Directory items represent physical containers for the artifacts of the existing software systems, for example directories in
file systems.

In addition to the general semantics of the InventoryContainer, Directory ownership structure determines the full “path”
for each individua inventory item in the following way. For a given Directory item, the full “path” to an inventory item,
owned by this Directory directly or indirectly, is a sequence of strings, the first element of which is the “path” attribute of
the Directory, and subsequent elements are name attributes of the directory items such that each directory item is owned
by the previous directory item and that last directory item owns the inventory item. Any Project containers, involved in
this ownership structure are ignored.

11.3.13 Project Class
The Project meta-model element represents an arbitrary logical container for inventory items.

Superclass

InventoryContainer

Semantics

Project is an arbitrary container for Inventory items. It can be used in combination with Directory containers.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="Inventory Example">
<model xmi:id="1id.0" xmi:type="source:InventoryModel">
<inventoryElement xmi:id="1id.1" xmi:type="source:SourceFile" name="a.c">
<inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.l1"/>
</inventoryElement >
<inventoryElement xmi:id="id.3" xmi:type="source:SourceFile" name="b.c">
<inventoryRelation xmi:id="1id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>
</inventoryElement >
<inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"/>
<inventoryElement xmi:id="id.é" xmi:type="source:Directory">
<inventoryElement xmi:id="id.7" xmi:type="source:Image"/>
<inventoryElement xmi:id="id.8" xmi:type="source:Image"/>
</inventoryElement >
<inventoryElement xmi:id="id.9" xmi:type="source:SourceFile" name="makefile"/>
<inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>
</model>
</kdm: Segment >

11.4 Inventorylnheritances Class Diagram

Inventorylnheritances class diagram is determined by the KDM model pattern. This diagram defines how the classes of
the InventoryModel extend the KDM Framework. The classes and associations for this diagram are shown at Figure 11.2.

56 © ISO/IEC 2012 - Al rights reserved



KDM Model
(from kdm)

K D M E ntity

(from core)

T

ISO/IEC 19506:2012(E)

KDM R elationship

(from core)

1

i

AbstractinventoryElement AbstractinventoryR elationship

InventoryModel

Figure 11.2 - Inventorylnheritances Class Diagram

11.5 InventoryRelations Class Diagram

InventoryRelations class diagram defines an optional relationship “DependsOn” between inventory elements. The classes
and associations for this diagram are shown in Figure 11.3.

AbstractinventoryRelationship

DependsOn

+from_| AbstractinventoryElement

+to

1

1

{redefines from} {redefines to}

Figure 11.3 - InventoryRelations Class

11.5.1 DependsOn Class

Diagram

DependsOn class is a meta-model element that represents an optional relationship between two inventory items, in which

one inventory element requires another inventory element during one or more steps of the engineering process.

Associations

from:AbstractinventoryElement[1]

to:AbstractinventoryElement[1]

© ISO/IEC 2012 - All rights reserved

the base inventory item

another inventory item on which the base item depends

57



ISO/IEC 19506:2012(E)

Constraints

1. Aninventory item should not depend on itself.

Semantics

The DependsOn relationship is optional. The implementer may capture certain aspects knowledge of the engineering
process in the form of “DependsOn” relations between inventory items. “DependsOn” relationship is part of the
Infrastructure Layer, which is available to all KDM implementations at various compliance levels. KDM Build package
that constitutes a separate L 1.Build compliance point, defines additional meta-model elements that represent the facts
involved in the build process of the software system (including but not limited to the engineering transformations of the
“source code” to “executables’).

When the origin of the DependsOn relationship is an Inventory container, this means that all elements owned by this

container (directly or indirectly) depend on the target of the relationship.

When the target of the “DependsOn” relationship is an Inventory container, this means that the one or more base
inventory elements (the origin of the relationship) depends on all elements owned by the container (directly or indirectly).

11.6 SourceRef Class Diagram

The SourceRef class diagram defines a set of meta-model elements whose purpose is to provide traceability links between
the elements of the KDM model of the existing software system and the physical artifacts of that system. The class

diagram shown in Figure 11.4 captures these classes and their relations.

Element
(from core)

Source Ref

SourceRegion

<language : String
<snippet : String

+region

1

<startLine : Integer
<startPosition : Integer
<endLine : Integer
«<endPosition : Integer
<language : String
<path : String

SourceRegions
0.* {ordered}

0..*

+file
Artifact

SourceFile

0.1

<language : String
<encoding : String

Figure 11.4 - SourceRef Class Diagram

11.6.1 SourceRef Class

The SourceRef class represents a traceability link between a particular model element and the corresponding source code.

58

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Superclass
Element
Attributes
language: String Optional attribute. Indicates the source language of the snippet attribute.
snippet:String Optional attribute. The source snippet for the given KDM element. The snippet may have

someinternal structure, for example XML tags corresponding to an abstract syntax tree of
the code fragment. The interpretation of code snippetsis outside the scope of the KDM.

Constraints
1. Languageindicator hasto be provided using at least one of the following methods:

« Asthe attribute of the SourceRef element.
« Asthe attribute of the SourceRegion element.
« Asthe attribute of the SourceFile element (part of the Inventory Model), accessible via the SourceRegion element.
2. If both the snippet and the language attributes of the SourceRef element are present, then the language attribute
should describe the nature of the code snippet, in which case the nature of the source code region accessible through
the SourceRegion may be different from the nature of the code snippet. If the snippet attributeis not present, then the

language attribute of the SourceRef element overrides the language attribute of the SourceRegion element, which in
turn overrides the one at the SourceFile element.

Semantics

SourceRef meta-model element represents a traceability link between an instance of a KDM element to its original “ source”
representation as part of a physical artifact of the existing software system. KDM element that defines atraceability link to its
original representation owns one or more SourceRef elements.

The Source package offers two capabilities for linking instances in KDM representation to their corresponding artifacts:

« Inlining the corresponding source code in the form of a“snippet” into KDM representation.
» Linking aKDM element to aregion of the source code within some physical artifact of the system being modeled.

A given KDM representation can implement either of the approaches, both of them, or none.

When a KDM element is linked to the source code within a particular physical artifact of the existing system (regardless
of the existence of the corresponding snippet), KDM offers further two options:

» Thelink can utilize the element of the KDM inventory model to identify the particular physical artifact, in which case
the path to the artifact is determined through the Inventory Model.
» Thelink can be made stand-alone and explicitly specify the path to the artifact.
KDM element can define more than one SourceRef traceability link. The first SourceRef element is considered as the
primary one and other elements are considered secondary. Secondary traceability links may be used to represent
alternative views of the code, links to other artifacts, such as design and documentation, represent generated code, or

target code during the software modernization process. Usually, secondary SourceRef elements have distinct “language”
attributes, so that KDM tools can select the appropriate representation to display.

The implementer shall provide adequate traceability links.

© ISO/IEC 2012 - All rights reserved 59



ISO/IEC 19506:2012(E)

11.6.2 SourceRegion Class

The SourceRegion class provides a pointer to a single region of source. The SourceRegion element provides the capability
to precisely map model elements to a particular region of source that is not necessarily text. The nature of the source code
within the physical artifact is indicated by the language attribute of the SourceRegion element or the language attribute of
the SourceFile element. The language attribute of the SourceRegion element overrides that of the SourceFile element if
both are present.

The source region is located within some physical artifact of the existing software system (a source file).

Superclass
Element
Attributes
startLine: Integer The line number of the first character of the source region.
startPosition:Integer Provides the position of the first character of the source region.
endLine:Integer The line number of the last character of the source region.
endPosition:Integer The position of the last character of the source region.
language:String Optional attribute. The language indicator of the source code for the given source region.
path:String Optional attribute. The location of the physical artifact that contains the given source
region.
Associations
file:SourceFile[0..1] Thisassociation allows zero or more SourceRegion elementsto be associated with asingle

SourceFile element of the Inventory Model.

Constraints

1. Thelocation of the source file should be provided using at |east one of the following methods:

« Path attribute of the SourceRegion element
« Path attribute of the SourceFile element of the Inventory model

Semantics

KDM assumes that a source file is a sequence of lines, identified by a linenumber. Each line is a sequence of characters,
identified by a position within the line. Whitespace characters like tabulation are considered to be a single character. The
“end of line” character is not considered to be part of the line.

The path attribute should uniquely identify the physical artifact. The nature of the path attribute is outside of the scope of
the KDM. For example, this can be a URI.

Individual SourceRef elements may own multiple SourceRegion elements that represent a situation where there are
multiple disjoint regions of source code that correspond to the given KDM element.

60 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

11.7 ExtendedInventoryElements Class Diagram

The ExtendedInventoryElements class diagram defines two “wildcard” generic elements for the inventory model as
determined by the KDM model pattern: a generic inventory entity and a generic inventory relationship. The classes and
associations of the ExtendedI nventoryElements diagram are shown in Figure 11.5.

AbstractinventoryRelationship

AbstractinventoryElement ?
<—— | InventoryRelationship
1
+from 0.. o
{redefines from} h
InventoryE lement +to 1
{redefines to} KD M E ntity

(from core)

Figure 11.5 - ExtendedInventoryElements Class Diagram
11.7.1 InventoryElement Class (generic)

The InventoryElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

Abstractl nventoryElement

Constraints
1. InventoryElement should have at least one stereotype.
Semantics
An inventory entity with under specified semantics. It is a concrete class that can be used as the base element of a new

“virtual” meta-model entity type of the inventory model. Thisis one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

11.7.2 InventoryRelationship Class (generic)

The InventoryRelationship class is a generic meta-model element that can be used to define new “virtual” inventory
relationships through the KDM light-weight extension mechanism.

Superclass

AbstractlnventoryRelationship

© ISO/IEC 2012 - All rights reserved 61



ISO/IEC 19506:2012(E)

Associations

from:AbstractinventoryElement[1] the inventory element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. InventoryRelationship should have at |east one stereotype.

Semantics

An inventory relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the inventory model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

62 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Subpart Il - Program Elements Layer

The Program Elements Layer defines a large set of meta-model elements whose purpose is to provide a language-
independent intermediate representation for various constructs determined by common programming |anguages.

Packages of the Program Elements Layer define an architecture viewpoint for the Code domain.

+ Concerns
« What are the computational elements of the system?
* What are the modules of the system?
* What isthe low-level organization of the computational elements?
» What are the datatypes used by the computational elements?
» What are the units of behavior of the system?

« What are the low-level relationships between the code elements, in particular what are the control-flow and data-
flow relationships ?

« What are the important non-computational elements?
« How are computational elements and modules related to the physical artifacts of the system?

» Viewpoint language:

Code views conform to KDM XMI schema. The viewpoint language for the Code architectural viewpoint is
defined by the Code and Action packages. It includes several abstract entities, such as AbstractCodeElement and
Codeltem, several generic entities, such as Datatype, Computational Object and Module, as well as severa
concrete entities, such as StorableUnit, CallableUnit, CompilationUnit, and ActionElement. The viewpoint
language for the Code architectural viewpoint also includes several relationships, which are subclasses of
AbstractCodeRelationship and AbstractA ctionRelationship.

« Analytic methods:

The Code architectural viewpoint supports the following main kinds of checking:

» Composition (for example, what code el ements are owned by a CompilationUnit, SharedUnit, or a CodeA ssembly;
what action elements are owned by a CallableUnit)?

« Dataflow (for example, what action elements read from a given StorableUnit; what action elements writeto a
given StorableUnit; what action elements create dynamic instances of a given Datatype; what action elements
address a particular StorableUnit; what data element are being read as actual parametersin acall)?

« Control flow (for example, what CallableUnit is used in a call; what action element is executed after the given
action element; what action elements are executed before the given action element; what data element is used to
dispatch control flow from a given action element; what action element is executed after the given element under
what conditions; what is the exceptional flow of control; what action elements are executed as entry pointsto a
given module or a CallableUnit)?

« Datatypes (for example, what is the datatype of the given storable unit; what is the base datatype of the given
pointer type; what is the base datatype of the given element of the record type; what is the signature of the given

CallableUnit)?

Other kinds of checking are related to the interfaces, templates, and pre-processor. All relationships defined in the Code
model are non-transitive. Additional computations are required to derive, for example, al action elements that can be
executed after the given action element, or all CallableUnits that a given action element can dispatch control to.

© ISO/IEC 2012 - All rights reserved 63



ISO/IEC 19506:2012(E)

The KDM mechanism of aggregated relationship is used to derive relationships between KDM elements that own or
reference various Code elements (usually, Module and CodeAssembly) based on the low-level relationship between
individual Code elements.

« Construction methods:

 Code views that correspond to the KDM Code architectural viewpoint are usually constructed by parser-like tools
that take artifacts of the system as the input and produce one or mode Code views as output.

« Construction of the Code view is determined by the syntax and semantics of the programming language of the
corresponding artifact, and is based on the mapping from the given programming language to KDM; such mapping
is specific only to the programming language and not to a specific software system.

« The mapping from a particular programming language to KDM may produce additional information (system-
specific, or programming language-specific, or extractor tool-specific). Thisinformation can be attached to KDM
elements using stereotypes, attributes, or annotations.

Program Layer defines a single KDM Model, called CodeModel, and consists of the following KDM packages:

« Code
« Action

Code package defines Codeltems (named elements determined by the programming language, the so-called “symbols,”
“definitions,” etc.) and structural relations between them. Codeltems are further categorized into Computational Object,
Datatypes, and Modules. Action package defines behavioral elements and various behavioral relationships, which
determine the control- and data- flows between code items.

Description of the Code package is further subdivided into the following parts:
» Code Elements representing Modules
» Code Elements representing Computational Objects
» Code Elements representing Datatypes
» Code Elements representing Preprocessor Directives
» Miscellaneous Code Elements

Data representation of KDM is aligned with 1SO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements” (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “ datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes primitive datatypes (for example Integer, Boolean), complex user-
defined datatypes (for example, array, pointer, sequence) and named datatypes (for example, a class, a synonym type).
KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data el ement that uses it.

64 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

The meta-model elements of the Program Elements Layer uses the following naming conventions (whenever practical):
» suffix “Element” - usually designates a generic meta-model element.
« suffix “Type” - designates a meta-model element representing some datatype.

« suffix “Unit” - designates a concrete meta-model element.

© ISO/IEC 2012 - All rights reserved 65



ISO/IEC 19506:2012(E)

66

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

12 Code Package

Subpart 1 - General

12.1 Overview

The Code package defines a set of meta-model elements whose purpose is to represent implementation level program
elements and their associations. It is determined by one or more programming languages used in the design of the given
existing software system. Code package includes meta-model elements, which represent common program elements
supported by various programming languages, such as data types, data items, classes, procedures, macros, prototypes, and
templates.

Asageneral rule, in agiven KDM instance, each instance of the code meta-model element represents some programming
language construct, determined by the programming language of the existing software system. Each instance of a code
meta-model element corresponds to a certain region of the source code in one of the artifacts of the existing software
system. Exceptions to this rule are:

« instances of the CodeModel meta-model element that are parts of the KDM infrastructure. This meta-model element is
acontainer for other code element instances.

» instances of code element that explicitly represent certain abstractions provided by a programming language, such as
primitive datatypes and predefined datatypes.

12.2 Organization of the Code Package

The Code package consists of the following 24 class diagrams:
1. CodeModel
2. Codelnheritances

Modules

Control Elements

DataElements

Values

PrimitiveTypes

EnumeratedTypes

© © N o 0 M W

CompositeTypes
10. DerivedTypes
11. Signature

12. DefinedTypes

13. ClassTypes

© ISO/IEC 2012 - All rights reserved 67



ISO/IEC 19506:2012(E)

14. Templates

15. TemplateRelations

16. ClassRelations

17. TypeRelations

18. InterfaceRelations

19. PreprocessorDirectives

20. PreprocessorRelations

21. Comment

22. Visihility

23. VisihilityRelations

24. ExtendedCodeElements
The Code package depends on the following packages:

« Source
» Core
« kdm

12.3 CodeModel Class Diagram

The CodeModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to implementation-level program elements and their associations.

The CodeModel diagram defines the following classes determined by the KDM model pattern:

» CodeModel —aclass representing a model for CodeElement.

» AbstractCodeElement — a class representing an abstract parent class for all KDM entities that can be used to model
code.

» AbstractCodeRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent code.

The CodeModel diagram also defines several key abstract classes, which determine the KDM taxonomy for program
elements:

» Codeltem

« Computational Object
« Datatype

+ Module

The class diagram shown in Figure 12.1 captures these classes and their relations.

68 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

CodeModel

AbstractCodeRelationship

+model
{subsets model}

0..» ~ +codeRelation
{subsets ownedRe lation}

+codeElement
{subsets ownedElement}
AbstractCodeElement

Codeltem

D atatype ComputationalObject Module

Figure 12.1 - CodeModel Class Diagram

12.3.1 CodeModel Class

The CodeModel is the specific KDM model that owns collections of facts about the existing software system such that
these facts correspond to the Code domain. CodeModel is the only model of the Program Elements Layer of KDM.

CodeModel follows the uniform pattern for KDM models.

Superclass
KDMModel

Associations

codeElement:AbstractCodeElement[0..*] {ordered} The set of thetop-level elementsthat are defined in this code model.
The CodeModel element is the owner of such CodeElement. This
property subsets the ownedElement property of KDMModel derived
union.

Semantics

CodeModel is a container for code elements. The implementer shall arrange code elements into one or more code models.
KDM import tools should not make any assumptions about the organization of code elements into code models.

12.3.2 AbstractCodeElement Class (abstract)
The AbstractCodeElement is an abstract class representing any generic determined by a programming language.

Superclass
KDMEntity

© ISO/IEC 2012 - All rights reserved 69



ISO/IEC 19506:2012(E)

Associations

codeRelation:CodeRelation[0..*] The set of code relations owned by this code model.
source: SourceRef[0..1] Link to the physical artifact for the given code element.
Semantics

AbstractCodeElement is an abstract class that is used to constrain the owned e ements of some KDM containers in the
Code model.

12.3.3 AbstractCodeRelationship Class (abstract)
The AbstractCodeRelationship is an abstract class representing any relationship determined by a programming language.

Superclass
KDMRelationship

Semantics

AbstractCodeRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Code
model.

12.3.4 Codeltem Class (abstract)

Codeltem class represents the named elements determined by the programming language (the so-called “symbols,”
“definitions,” etc.). There are AbstractCodeElements that are not Codeltems, for example ActionElements that are defined
in the Action package.

Superclass
AbstractCodeElement

Semantics

Codeltem is an abstract class that is used to constrain the owned elements of some KDM containers in the Code model.
12.3.5 ComputationalObject Class (generic)

Computational Object class represents the named elements determined by the programming language, which describe
certain computational objects at the runtime, for example, procedures, and variables.

Superclass

Codeltem

Constraints

1. Instance of the Computational Object element should have at least one stereotype.

70 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

Computational Object is a generic element with under specified semantics that can be used as an extension point to define
new “virtual” meta-model elements that represent specific named control elements or data elements that do not fit into
semantic categories of the concrete subclasses of Computational Object.

12.3.6 Datatype Class (generic)
Datatype class represents the named elements determined by the programming language that describes datatypes.

Superclass
Codeltem

Constraints
L.Instance of the Datatype element should have at |east one stereotype.

Semantics

Datatype is a generic element with under-specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named datatypes that do not fit into semantic categories of the
concrete subclasses of Datatype.

12.4 Codelnheritances Class Diagram

The Codel nheritances class diagram defines how classes of the Code package inherit from the Core package. The class
diagram shown in Figure 12.2 captures these relations.

KDM Model KD M E ntity KDMRelationship

(from kdm) (from core) (from core)

i 7

CodeModel AbstractCodeRelationship

AbstractCodeElement

0..1

CodeSource

+source
0.*

SourceRef
(from source)

Figure 12.2 - Codelnheritances Class Diagram

© ISO/IEC 2012 - All rights reserved 71



ISO/IEC 19506:2012(E)

Subpart 2: Code Elements Representing Modules

12.5 Modules Class Diagram

The Modules class diagram defines meta-model elements that represent packaging aspects of programming languages,
such as compilation units, shared files, and binary components. The class diagram shown in Figure 12.3 captures these
classes and their associations.

Codeltem

+owner
% (subsets owner} 0.* AbstractCodeElement

Module

0.1 +codeElement
/ {subsets ownedElement
ordered}

LanguageUnit

CompilationUnit Package

]

Shared Unit

CodeAssembly

Figure 12.3 - Module Class Diagram
12.5.1 Module Class (generic)

The Module class is a generic KDM modeling element that represents an entire software module or a component, as
determined by the programming language and the software development environment. A module is a discrete and
identifiable program unit that contains other program elements and may be used as a logical component of the software
system. Usually modules promote encapsulation (i.e., information hiding) through a separation between the interface and
the implementation. In the context of representing existing software systems, modules provide the context for establishing
the associations between the programming language elements that are owned by them, especially when the same logical
component of a software product line is compiled multiple times with different compilation options and linked into
multiple executables. Instances of the Module class represent the logical containers for program elements determined by
the programming language. Modules may be further related to other KDM items, for example to KDM Inventory items of
the Inventory model; or to KDM deployment elements of the Platform model. In the situation of modeling a complex
software product line, logical Modules may need to be duplicated, because the exact relationships determined by the
particular software component may depend on the engineering context.

The Module is an abstract KDM container that provides a common parent for several concrete classes.

Superclass

Codeltem

72 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

codeElement:AbstractCodeElement[0..*] {ordered} Thelist of owned CodeElement

Constraints

1. Module class and its subclasses should not own SourceRef elements.

2. Code Model cannot directly own any code elements other than the subclasses of the Module class.
3. Every code element should be owned by some instance of the Module class or its subclasses.

4. Instance of the Module element should have at |east one stereotype.
5

No other code element should own Module elements and its subclasses.

Semantics

Module is alogical container for program elements. Subclasses of Module element define semantically distinct flavors of
Module, representing common categories of containers.

The implementer shall select an appropriate subclass of the Module element.
12.5.2 CompilationUnit Class

The CompilationUnit class is a meta-model element that represents a logical container that owns program elements. A
compilation unit is alogical part of the existing software system that is sufficiently complete to be processed by the
corresponding software development environment. Compilation unit is usually related to some artifact of the existing
software system, for example, a physical source file. Compilation units are supported by the selected programming
languages of the existing software system and as determined by the corresponding engineering process.

Superclass
Module

Semantics

CompilationUnit is a stand-alone named container for program elements. Usually a CompilationUnit corresponds to a
SourceFile in the InventoryModel.

12.5.3 SharedUnit Class

The SharedUnit class is a meta-model element that represents a shared source file as supported by the selected
programming languages of the existing software system and as determined by the engineering process.

Superclass
Module

© ISO/IEC 2012 - All rights reserved 73



ISO/IEC 19506:2012(E)

Semantics

SharedUnit is a subclass of CompilationUnit, which emphasizes the ability of the program elements owned by the
SharedUnit to be shared among stand-alone program elements through some form of inclusion mechanism.

12.5.4 LanguageUnit Class

The LanguageUnit class is a meta-model element, which represents predefined datatypes and other common elements
determined by a particular programming language.

Superclass
Module

Constraints

1. PredefinedType class and its subclasses can only be contained in a LanguageUnit container.

Semantics

LanguageUnit is alogical container that owns definitions of primitive and predefined datatypes for a particular language,
as well as other common elements for a particular programming language. LanguageUnit may or may not correspond to a
SourceFile in the InventoryModel. Some of the predefined program elements are defined in standards system files. The
implementer shall add such files to the InventoryModel. Primitive datatypes usually do not have any corresponding files,
in this situation the LanguageUnit does not have a counterpart in the InventoryModel.

12.5.5 CodeAssembly Class

The CodeAssembly represents a logical container for the program elements that were built together (for example,
compiled and linked into an executable, so that al variant selection during the compilation and static linking was resolved
in a certain coordinated fashion). The same collection of logical entities has to be analyzed together. A source file may
produce a different logical model when, for example, compiled and linked for a different hardware platform, or for a
different operating system. The CodeAssembly represents a collection of entities that have been analyzed together. A
different variant of the conceptual family of software systems (even involving same compilation units) may need to be
cloned into a separate CodeAssembly.

Superclass
Module

Semantics

CodeAssembly is alogical container that provides the context for entities and relationships for a collection of program
elements. CodeAssembly may correspond to ExecutableFile elements of the InventoryModel. CodeAssembly may contain
the so-called custom initialization block that refers to the initialization blocks of contained CompilationUnit elements.

12.5.6 Package Class

The Package class is a subtype for Module that logical collections of program elements, as directly supported by some
programming languages, such as Java.

74 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
Module

Semantics
A Package is alogical container for program elements as well as Modules. Packages can be nested.

Part 3: Code Elements Representing Computational Objects

12.6 ControlElements Class Diagram

The Control Elements class diagram defines basic meta-model elements to represent callable computational objects, such
as procedures, functions, methods, etc. The class diagram shown in Figure 12.4 shows these classes and their relations.

ComputationalObject Datatype
I H
ﬁﬁ SignatureType o

+owner
ControlElement %
AbstractCodeElement
0.1 oA
+codeElement
{subsets ownedElement
ordered}
CallableUnit MethodUnit <<enumeration>>
Bkind : CalableKind ehocn i
2kind : MethodKind MethodKind
Bexport : ExportKind “method
; constructor
<<enumeration>> wdestructor
CallableKind woperator
wexternal irtual
aregular wabstract
Joperator “unknown
astored
“unknown

Figure 12.4 - ControlElements Class Diagram
12.6.1 ControlElement Class (generic)

The Control Element class is a common superclass that defines attributes for callable code elements. In the meta-model it
has the role of an endpoint for some KDM relations.

Superclass
Computational Object

© ISO/IEC 2012 - All rights reserved 75



ISO/IEC 19506:2012(E)

Attributes and Associations

type:Datatype[0..1] Optional association to the datatype of this control element
codeElement:AbstractCodeElement[0..*] {ordered} Represents owned code elements, such as local definitions and
actions.

Constraints

1. ControlElement should have at |east one stereotype.

2. ControlElement should own a Signature.

Semantics

ControlElement is a generic element with under specified semantics that can be used as an extension point to define new
“virtual” meta-model elements that represent specific named control constructs that do not fit into semantic categories of
the concrete subclasses of ControlElement.

ControlElement represents named items of the software system that describe certain behavior that can be performed by
demand, through the invocation mechanism, such as a call-return mechanism, directly supported by many processor units
and high-level programming languages.

ControlElement owns other program elements, which can include nested Control Elements.
12.6.2 CallableUnit Class

The CallableUnit represents a basic stand-alone element that can be called, such as a procedure or a function.

Superclass

Control Element

Attributes

kind:CallableKind indicator of the kind of the callable unit

Semantics

A CallableUnit represents a named unit of behavior that can be invoked through a call-return mechanism. Thisis a
subclass of a ControlElement. From the runtime perspective, a CallableUnit element represents a single computational
object, which is identified directly (using the name) or indirectly (using a reference). More precisely, the call-return
mechanism implies an invocation stack, since a CallableUnit may call itself, and there may be multiple instances of the
behavior represented by the CallableUnit, at various stages of completion, each corresponding to an entry in the
invocation stack.

A CallableUnit represents global or local procedures and functions.

76 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.6.3 CallableKind Data Type (enumerated)
CallableKind enumerated data type specifies some common properties of the CallableUnit.

Literal values

regular specifies aregular definition of a procedure or function

external specifies an external procedure (a prototype, definition is elsewhere)
operator specifies a definition of an operator

stored specifies a stored procedure in DataM odel

unknown properties are unknown

12.6.4 MethodUnit Class
The MethodUnit represents member functions owned by a ClassUnit.

Superclass
CallableElement

Attributes

kind:MethodKind indicator of the kind of the method represented by this element

export: ExportKind represents the visibility of the method (public, private, protected)

Semantics

The MethodUnit represents member functions owned by a ClassUnit, including user-defined operators, constructors, and
destructors.

From the runtime perspective, each MethodUnit element represents a computational object that exists in the context of
some class instance, therefore there exists multiple instances of such objects, each identified by the method name as well
as the reference to the corresponding class instance. A class instance is identified either directly (by name) or indirectly
(by reference).

12.6.5 MethodKind data type (enumeration)

MethodKind enumerated data type defines additional specification of the kind of method, defined by a MethodUnit model
element.

Literal Values

method The MethodUnit represents a regular member function.

© ISO/IEC 2012 - All rights reserved 77



ISO/IEC 19506:2012(E)

constructor The MethodUnit represents a constructor.

destructor The MethodUnit represents a destructor.

operator The MethodUnit represents an operator.

virtual The MethodUnit represents a virtual method.

abstract The MethodUnit represents an abstract method or member of an Interface.
unknown The kind of the MethodUnit is none of the above.

Example (C language)

int main(int argc, char* argv[]) ({
printf (“Hello, World\n”) ;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="HelloWorld Example">
<model xmi:id="1id.0" xmi:type="code:CodeModel" name="HelloWorld"s>
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit" name="hello.c">
<codeElement xmi:id="id.2" xmi:type="code:CallableUnit"
name="main" type="id.5" kind="regular'"s>
<source xmi:id="id.3" language="C" snippet="int main(int argc, char* argvI[]) {}"/>
<entryFlow xmi:id="id.4" to="id.12" from="id.2"/>
<codeElement xmi:id="id.5" xmi:type="code:Signature" name="main">
<source xmi:id="id.6" snippet="int main(int argc, char * argv[]);"/>
<parameterUnit xmi:id="id.7" name="argc" type="id.25" pos="1"/>
<parameterUnit xmi:id="id.8" name="argv" type="id.9" pos="2">
<codeElement xmi:id="id.9" xmi:type="code:ArrayType">
<itemUnit xmi:id="1d.10" type="id.19"/>
</codeElement>
</parameterUnit>
<parameterUnit xmi:id="id.11" type="id.25" kind="return"/>
</codeElement>
<codeElement xmi:id="id.12" xmi:type="action:ActionElement" name="al" kind="Call">
<source xmi:id="id.13" language="C" snippet="printf (&quot;Hello, World!\n&quot;);"/>
<codeElement xmi:id="1id.14" xmi:type="code:Value"
name="&quot ;Hello, World!\n&quot;" type="id.19"/>
<actionRelation xmi:id="id.15" xmi:type="action:Reads" to="id.14" from="id.12"/>
<actionRelation xmi:id="id.16" xmi:type="action:Calls" to="id.20" from="id.12"/>
<actionRelation xmi:id="id.17" xmi:type="action:CompliesTo"
to="1id.20" from="id.12"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.18" xmi:type="code:LanguageUnit">
<codeElement xmi:id="1d.19" xmi:type="code:StringType" name="char *"/>
<codeElement xmi:id="id.20" xmi:type="code:CallableUnit" name="printf" type="id.21">

78 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1d.21" xmi:type="code:Signature" name="printf"s
<parameterUnit xmi:id="1id.22" name="" type="1id.25" kind="return" pos="0"/>
<parameterUnit xmi:id="1id.23" name="format" type="id.19" pos="1"/>
<parameterUnit xmi:id="id.24" name="arguments" kind="variadic" pos="2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.25" xmi:type="code:IntegerType" name="int"/>
</codeElement>
</model>
<model xmi:id="id.26" xmi:type="source:InventoryModel" name="HelloWorld"s>
<inventoryElement xmi:id="id.27" xmi:type="source:SourceFile"
name="hello.c" language="C"/>
</model>
</kdm: Segment >

12.7 DataElements Class Diagram

The DataElements class diagram defines meta-model constructs to represent the named data items of existing software
systems (for example, global and local variables, record files, and formal parameters). The class diagram at Figure 12.5
shows these classes and their associations.

ComputationalObject +codeElement [ftype
{subsets ownedElement} Datatype
0.1
DataElement +owner
Boxt - String {subsets owner} Type
wsize D Integer| g«
MemberUnit ParameterUnit
StorableUnit - - - <kind : ParameterKind
<kind : StorableKind ftemUnit S &pos : Integer
<<enumeration>> <<enumeration>>
IndexUnit StorableKind ExportKind
<global <public
wlocal <private
wstatic <protected
wexternal <final
wregister <unknown
<unknown

Figure 12.5 - DataElement Class Diagram

© ISO/IEC 2012 - All rights reserved 79



ISO/IEC 19506:2012(E)

12.7.1 DataElement Class (generic)

The DataElement class is a generic modeling element that defines the common properties of several concrete classes that
represent the named data items of existing software systems (for example, global and local variables, record files, and
formal parameters). KDM models usually use specific concrete subclasses. The DataElement class itself is a concrete
class that can be used as an extended code element, with a certain stereotype. As an extended element DataElement is
more specific than CodeElement.

Superclass
Computational Object

Attributes
ext:String Optional extension representing the original representation of the data element.
size: Integer Specifies the optional constraint on the number of elements any value of the storable element may

contain according to the semantics of the base datatype. Size attribute corresponds to the maximum-
size bound in a size-subtype of the base datatype.

Associations

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype of the current
DataElement.
type:Datatype[1] The datatype of the DataElement that describes the values of the DataElement.
Semantics

DataElement represents computational objects of the existing software system that are associated with a value of a
particular datatype. DataElement class is an extended meta-model element, that can be used to represent variables of an
existing software system, that do not fit into more precise semantics of the subclasses of DataElement.

Constraints
1. DataElement class should have at least one Stereotype.

12.7.2 StorableUnit Class

StorableUnit class is a concrete subclass of the StorableElement class that represents variables of the existing software
system.

Superclass
DataElement

80 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Attribute
kind:StorableKind Optional attribute that specifies the common details of a StorableUnit (see
StorableKind enumeration datatype).
Semantics

StorableUnit represents a variable of existing software system - a computational object to which different values of the
same datatype can be associated at different times. From the runtime perspective, a StorableUnit element represents a
single computational object, which is identified either directly (by name) or indirectly (by reference).

StorableUnit represents both global and local variables.
12.7.3 StorableKind data type (enumeration)

StorableKind enumeration data type defines several common properties of a StorableUnit related to their life-cycle,
visibility, and memory type.

Literal values

global specifies aglobal variable

local specifiesalocal variable

static specifies aglobal variable with restricted scope
external specifies an external variable (a prototype)
register specifies atemporary variable

unknown properties are unknown

12.7.4 ExportKind data type (enumeration)

ExportKind enumeration data type defines several common properties of a MemberUnit and MethodUnit related to their
visibility and other properties.

Literal values

public specifies a public member or method
private specifies private member or method
protected specifies a protected member or method
final specifies final member or method
unknown properties are unknown

© ISO/IEC 2012 - All rights reserved 81



ISO/IEC 19506:2012(E)

12.7.5 ItemUnit Class

ItemUnit class is a concrete subclass of the DataElement class that represents anonymous data items that are parts of
complex datatypes; for example, record fields, pointers, and arrays. Instances of ItemUnit class are endpoints of KDM
data relations that describe access to complex datatypes.

Superclass
DataElement

Semantics

An ItemUnit represents a data element that exists in the context of another data element. From the runtime perspective,
each ItemUnit represents a family of data elements, each of which is identified not only by the identity of the ItemUnit,
but also by the identity of the owner element.

12.7.6 IndexUnit Class

IndexUnit class is a concrete subclass of the DataElement class that represents an index of an array datatype. Instances
of IndexUnit class are endpoints of KDM data relations that describe access to arrays.

Superclass
DataElement

Semantics

IndexUnit represents an index of an ArrayType. IndexUnit is an optional element.
12.7.7 MemberUnit Class

MemberUnit class is a concrete subclass of the DataElement class that represents a member of a class type. Instances of
MemberUnit class are endpoints of KDM data relations that describe access to classes. MemberUnit is similar to an
ItemUnit. The difference between an ItemUnit and a MemberUnit is that an ItemUnit usually represents a part of a certain
existing computational object, while the computational object corresponding to a MemberUnit is usually determined by
the class instance. In case of accessing structures via pointers, this distinction becomes more subtle. MemberUnit defines
some additional attributes.

Superclass
DataElement

Attributes

export:ExportKind Represents the visibility of the member (public, private, protected).

Constraints
1.  MemberUnit can be owned only by a ClassUnit.

82 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

MemberUnit represents a member of a class. From the runtime perspective, each MemberUnit element represents a family
of computational objects, each of which is a part of some class instance. Each MemberUnit is identified by the name of
the MemberUnit, as well as by the direct or indirect identity of the corresponding class instance.

12.7.8 ParameterUnit Class

ParameterUnit class is a concrete subclass of the DataElement class that represents a formal parameter; for example, a
formal parameter of a procedure. ParameterUnits are owned by the Signature element. Instances of ParameterUnit class
are endpoints of KDM data relations that describe access to formal parameters.

Superclass

DataElement

Attributes
kind:ParameterKind optional attribute defining the parameter passing convention for the attribute
pos:Integer position of the attribute in the signature

Constraints

1. Return parameter of a signature does not have a pos attribute.
2. Return ParameterUnit is a signature should have a kind="return.”

3. There can be at most one ParameterUnit within a certain Signature with areturn kind.

Semantics

ParameterUnit is a data element that from the runtime perspective represents a computational object that exists in the
context of an instance of some ControlElement “in the process of execution.”

Instances of ParameterUnit class are owned by instances of a Signature class. ParameterUnits within a Signature are
ordered. The value of the pos attribute of a ParameterUnit should correspond to the position of the parameter in the
Signature. The return ParameterUnit is distinguished by the value of the kind attribute. To represent signatures of
programming languages that allow named parameters (binding of actual parameters by name rather than by a position),
the producer of the KDM model is responsible for computing correct positions of the named parameters and determining
appropriate ParameterUnits as targets for relations to named parameters. ParameterKind enumeration datatype is
described in “Signature Class Diagram” on page 99.

12.8 ValueElements Class Diagram

ValueElements class diagram defines meta-model elements that represent data values, which are used in the artifacts of
the existing software system.

The classes and associations of the ValueElements class diagram are shown at Figure 12.6.

© ISO/IEC 2012 - All rights reserved 83



ISO/IEC 19506:2012(E)

DataElement

<ext : String
wsize : Integer

+valueElement
{subsets ownedElement

ordered}
ValueElement
0.*
0.1
Value ValuelList

+owner
{subsets owner}

Figure 12.6 - ValueElements Class Diagram
12.8.1 ValueElement Class (generic)

ValueElement class is a generic meta-model element that represents values used in the artifacts of existing software
systems. This class defines the common properties of the concrete subclasses, for which more precise semantics is
provided. KDM model of an existing software system usually uses concrete subclasses of the ValueElement class.

Superclass
DataElement

Constraints
1. VaueElement and its subclasses should not have owned code elements.

2. VaueElement and its subclasses cannot be used as the target of relations Writes and Addresses.

3. ValueElement class instance should have at least one Stereotype.

Semantics

A value element is a data element that represents a single value of the corresponding datatype.

ValueElement class and its subclasses correspond to ISO/IEC 11404 literals and values. The datatype of the value is
represented by the type property (defined for its superclass DataElement class).

12.8.2 Value Class

Value class is a meta-model element that represents values used in the artifacts of existing software systems.

84 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
ValueElement

Semantics

Value class corresponds to 1SO/IEC 11404 literals of primitive types, such as boolean-literal, state-literal, enumerated-
literal, character-literal, ordinal-literal, time-literal, integer-literal, rational-literal, scaled-literal, real-literal, void-literal,
pointer-literal, bitstring-literal, string-literal.

The name attribute of the ValueClass represents the name or a string representation of the value.
12.8.3 ValuelList Class
The ValueList class is a meta-model element that represents values of aggregated datatypes.

Superclass
ValueElement

Associations
valueElement:ValueElement[0..*] component values

Semantics

A Valuelist is a data element associated with a single value of some non-primitive datatype. The value of the complex
datatype is represented as a tuple of values for each subcomponent of the complex datatype.

Value class corresponds to |SO/IEC 11404 values for aggregated datatypes such as choice-value, record-value, set-value,
sequence-value, bag-value, array-value, table-value.
Part 4. Code Elements Representing Datatypes

Data representation of KDM is aligned with ISO/IEC 11404 (General-Purpose Datatypes) standard. In particular, KDM
provides distinct meta-model elements for “data elements’ (for example, global and local variables, constants, record
fields, parameters, class members, array items, and pointer base elements) and “datatypes.” Each data element has an
association “type” to its datatype. KDM distinguishes

- primitive datatypes (for example, Integer, Boolean),
« complex user-defined datatypes (for example, array, pointer, sequence), and
» named datatypes (for example, a class, a synonym type).

KDM meta-model elements corresponding to datatypes are subclasses of a generic class Datatype. KDM meta-model
elements corresponding to data elements are subclasses of a generic class DataElement.

KDM model elements represent existing artifacts determined by a programming language. KDM meta-model elements
provide sufficient coverage for most common datatypes and data elements, common to programming languages. KDM
also provides several powerful generic extensible elements that can be further used with stereotypes to represent
uncommon situations.

© ISO/IEC 2012 - All rights reserved 85



ISO/IEC 19506:2012(E)

In addition to the type association, KDM relationship “HasType” is used to track named datatypes. Anonymous datatypes
can be owned by the data el ement that uses it.

Concrete examples of datatypes, data items, and the use of the type association, and the HasType relationship are
provided further in the text of the specification.

12.9 PrimitiveTypes Class Diagram

The PrimitiveTypes class diagram defines meta-model elements that represent predefined types common to various
programming languages. The classes and association of the PrimitiveTypes diagram are shown in Figure 12.7.

BooleanType

OrdinalType

CharType

TimeType

OctetstringType

OctetType

BitType

StringType

D atatype
% BitstringType
Primitive Type
FloatType
IntegerType ScaledType

DecimalType

DateType

Figure 12.7 - PrimitiveTypes Class Diagram

12.9.1 PrimitiveType Class (generic)

VoidType

The PrimitiveType is a generic meta-model element that represents primitive data types determined by various
programming languages.

Superclass
Datatype

Constraints

86

1. PrimitiveType should have at least one stereotype.

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Semantics

PrimitiveType element has under specified semantics. It can be used as an extension point to define new “virtual” meta-model
elements to represent specific primitive types that do not fit into semantic categories defined by concrete subclasses of
PrimitiveType class.

12.9.2 BooleanType Class

The BooleanType is a meta-model element that represents Boolean data types common to various programming
languages. A Boolean is a mathematical datatype associated with two-valued logic.

Superclass
PrimitiveType

Semantics
The KDM BooleanType class corresponds to |SO/IEC 11404 Boolean datatype.

12.9.3 CharType Class

The CharType is a meta-model element that represents character data types common to various programming languages.
Character is afamily of datatypes whose value spaces are character-sets.

Superclass
PrimitiveType

Semantics
The KDM CharType class corresponds to 1SO/IEC 11404 Character datatype.

12.9.4 OrdinalType Class

The Ordina Type class is a meta-model element that represents ordinal datatypes available in some programming
languages. Ordinal is the datatype of the ordinal numbers, as distinct from the quantifying numbers (datatype Integer).
Ordina is the infinite enumerated type.

Superclass
PrimitiveType

Semantics
The KDM Ordinal Type class corresponds to |SO/IEC 11404 Ordinal datatype.

12.9.5 DateType Class

The DateType is a meta-model element that represents built-in data types related to dates.

© ISO/IEC 2012 - All rights reserved 87



ISO/IEC 19506:2012(E)

Superclass
PrimitiveType

Semantics

12.9.6 TimeType Class

The TimeType is a meta-model element that represents built-in data types related to time. Time is a family of datatypes
whose values are points in time to various common resolutions: year, month, day, hour, minute, second, and fractions
thereof.

Superclass
PrimitiveType

Semantics

The KDM TimeType class corresponds to ISO/IEC 11404 Time datatype. The interpretation of the details of the Time
datatype (in particular the time unit) is outside of the scope of KDM. KDM analysis tools can be used to analyze the
KDM representation of an existing system to systematically identify the detailed information regarding the details of the
Time data items. The time-unit, and other attributes can be added to the data item of the TimeType.

12.9.7 IntegerType Class

The IntegerType is a meta-model element that represents integer data type common to various programming languages.
Integer is the mathematical datatype comprising exact integer values.

Superclass
PrimitiveType

Semantics
The KDM IntegerType class corresponds to | SO/IEC 11404 Integer datatype.

12.9.8 DecimalType Class

The Decimal Type is a meta-model element that represents decimal data types common to various programming
languages.

Superclass
PrimitiveType

Semantics
The KDM Decimal Type class corresponds to | SO/IEC 11404 Integer datatype.

88 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.9.9 ScaledType Class

The ScaledType is a meta-model element that represents fixed point data types common to various programming
languages. Scaled is a family of datatypes whose value spaces are subsets of the rational value space, each individual
datatype having afixed denominator, but the scaled datatypes possess the concept of approximate value.

Superclass
PrimitiveType

Semantics
The KDM ScaledType class corresponds to 1SO/IEC 11404 Scaled datatype.

12.9.10 FloatType Class

The FloatType is a meta-model element that represents float data types common to various programming languages. Float
is a family of datatypes that are computational approximations to the mathematical datatype comprising the “real
numbers.”

Superclass
PrimitiveType

Semantics
The KDM FloatType class corresponds to |SO/IEC 11404 Real datatype.

12.9.11 VoidType Class

The VoidType is a meta-model element that represents built-in “void” type defined in certain programming languages.
Void is a datatype representing an object whose presence is syntactically or semantically required, but carries no
information is a given instance.

Superclass

PrimitiveType

Semantics
The KDM VoidType class corresponds to |SO/IEC 11404 Void datatype.

12.9.12 StringType Class

The StringType is a meta-model element that represents string data type common to various programming |anguages.
String is a datatype representing strings of characters from standard character-sets.

Superclass

PrimitiveType

© ISO/IEC 2012 - All rights reserved 89



ISO/IEC 19506:2012(E)

Semantics

The KDM StringType class corresponds to |SO/IEC 11404 defined datatype Character string. The interpretation of the
details of the character encoding of the StringType is outside of the scope of KDM. Multibyte character strings can be
represented as StringType with a stereotype.

12.9.13 BitType Class

The BitType class is a meta-model element representing the bit datatype available in some programming languages. Bit is
the datatype representing the binary digits “0” and “1.”

Superclass
PrimitiveType

Semantics
The KDM BitType class corresponds to ISO/IEC 11404 defined datatype Bit.

12.9.14 BitstringType Class

The BitstringType class is a meta-model element that represents bit string datatypes available in some programming
languages. Bitstring is the datatype of variable-length strings of binary digits.

Superclass
PrimitiveType

Semantics
The KDM BitstringType class corresponds to |SO/IEC 11404 defined datatype Bit string.

12.9.15 OctetType Class

The OctetType class is a meta-model element that represents octet datatypes available in some programming languages.
Octet is a datatype of 8-bit codes, as used for character-sets and private encodings.

Superclass
PrimitiveType

Semantics
The KDM OctetType class corresponds to |SO/IEC 11404 defined datatype Octet.

12.9.16 OctetstringType Class

The OctetstringType class is a meta-model element that represents octet string datatypes available in some programming
languages. Octet string is a variable-length encoding using 8-bit codes.

90 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
PrimitiveType

Semantics
The KDM OctetstringType class corresponds to | SO/IEC 11404 defined datatype Octet string.

12.10 EnumeratedTypes Class Diagram

The EnumeratedTypes class diagram defines meta-model elements that represent enumerated types, which are common to
various programming languages. The classes and associations of the EnumeratedTypes diagram are shown in Figure 12.8.

D atatype
ﬂl 0..*
EnumeratedType 1 Value
+owner +value
{subsets owner} {subsets ownedElement
ordered}

Figure 12.8 - EnumeratedTypes Class Diagram
12.10.1 EnumeratedType Class

The EnumeratedType is a meta-model element that represents user-defined enumerated data types. EnumeratedType
datatype defines the set of enumerated literals. Enumerated datatype is a user-defined datatype, which has a finite number
of distinguished values.

Superclass
Datatype

Associations

value:Value[0..*] {ordered} Thelist of enumerated literals defined for the given EnumeratedType.

Semantics

EnumeratedType corresponds to 1SO/IEC 11404 Enumerated and State families of datatypes. Enumerated datatype is a
family of datatypes, each of which comprises a finite number of distinguished values having an intrinsic order. State is a
family of datatypes, each of which comprises a finite number of distinguished but unordered values. KDM does not make
distinction between these two families.

Values of the Enumerated and State datatypes are represented by a Value meta-model element that is owned by the
EnumeratedType.

© ISO/IEC 2012 - All rights reserved 91



ISO/IEC 19506:2012(E)

12.11 CompositeTypes Class Diagram

The CompositeTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages (for example, records, structures, and unions). Composite datatypes is a broad category
of user-defined datatypes that includes situations in which the value of the datatype is made up of values of multiple
component datatypes.

The classes and associations of the StructuredTypes diagram are shown in Figure 12.9.

D atatype

4 +owner

CompositeType ﬁmsers owner} ItemUnit
0..1 0..*
{sub;(iegg Twngth lement
Record Type ChoiceType ordered)

Figure 12.9 - CompositeTypes Class Diagram
12.11.1 CompositeType Class (generic)

The CompositeType is a meta-model element that represents user-defined composite datatypes, such as records,
structures, and unions. This element is further subclassed by more specific KDM classes. CompositeType class defines
common properties for its specific subclasses, each of which has distinct semantics. CompositeType class is a KDM
container. KDM models of existing software systems usually use the concrete subclasses of CompositeType class.
CompositeType class itself is a concrete class and can be used as an extended meta-model element, with a stereotype.
CompositeType class is a more specific meta-model element than CodeElement.

Superclass
Datatype

Associations

itemUnit:ltemUnit[0..*] {ordered}  Thelist of named items that represent components of the composite datatype; for
example representing the individual fields of arecord.

Constraints
1. CompositeType class should be used with a stereotype.

Semantics

CompositeType class corresponds to 1SO/IEC 11404 generated datatypes each of whose values is made up of values of
component datatypes. In particular, KDM CompositeType class corresponds to aggregate datatypes that involve a field list
in their definition, and choice datatype. The Name attribute of each ItemUnit owned by the CompositeType represents the
name of the field-type. The datatype of the field-type is represented by the type attribute of the ItemUnit.

92 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

CompositeType class is an extended meta-model element, that can be used to represent generated datatypes of an existing
software system that do not fit into more precise semantics of the subclasses of CompositeType.

Any anonymous datatype used by an ItemUnit of the CompositeType should be owned by that ItemUnit.
12.11.2 ChoiceType Class

The ChoiceType class is a meta-model element that represents choice datatypes: user-defined datatypes in existing
software systems, each of whose values is a single value from any of a set of alternative datatypes. An example of a
choice datatype is a Pascal and Ada variant record, and a union in the C programming language. In the KDM
representation, each alternative datatype is represented as an ItemUnit.

Superclass

CompositeType

Semantics

The ChoiceType corresponds to | SO/IEC 11404 choice generated datatype. KDM representation does not explicitly
represent the field-identifier. Name attribute of each ItemUnit owned by the ChoiceType represents either the field-
identifier of the alternative datatype or a single select item that identifies the variant. The datatype of the alternative is
represented by the type attribute of the ItemUnit owned by the ChoiceType.

12.11.3 RecordType Class

The RecordType class is a meta-model element that represents record datatypes: user-defined datatypes in existing
software systems, whose values are heterogeneous aggregations (tuples) of values of component datatypes, each
aggregation having one value of each component datatype. Component datatypes are keyed by a fixed “field-identifier,”
which is represented by the Name attribute of the IltemUnit owned by the RecordType. Examples of record datatypes
include a structure in C, a record in Cobol.

Superclass

CompositeType

Semantics

The RecordType corresponds to |SO/IEC 11404 record aggregate datatype. The Name attribute of each ItemUnit owned
by the RecordType represents the field-identifier. The datatype of the field is represented by the type attribute of the
ItemUnit owned by the ChoiceType.

Example (Cobol)

01 StudentDetails.

02 StudentId PIC 9(7).
02 StudentName.

03 FirstName PIC X(10).

03 MiddleInitial PIC X.

03 Surname PIC X(15).
02 DateOfBirth.

03 DayOfBirth PIC 99.

03 MonthOfBirth PIC 99.
03 YearOfBirth PIC 9(4).

© ISO/IEC 2012 - All rights reserved 93



ISO/IEC 19506:2012(E)

02 CourseCode PIC X(4).
MOVE "Doyle" To Surname

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Record Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
<codeElement xmi:id="1id.2" xmi:type="code:StorableUnit"
name="StudentDetails" type="1id.3">
<codeElement xmi:id="1id.3" xmi:type="code:RecordType" name="StudentDetails">
<itemUnit xmi:id="id.4" name="StudentID" type="id.23" ext="PIC 9(7)"/>
<itemUnit xmi:id="id.5" name="StudentName" type="id.6">
<codeElement xmi:id="id.6" xmi:type="code:RecordType" name="StudentName">
<itemUnit xmi:id="id.7" name="FirstName" type="1id.24" ext="PIC X(10)" size="10"/>
<itemUnit xmi:id="1id.8" name="MiddleName" type="id.24" ext="PIC X" size="1"/>
<itemUnit xmi:id="1id.9" name="Surname" type="1id.24" ext="PIC X(15)" size="15"/>
</codeElement>
</itemUnit>
<itemUnit xmi:id="id.10" name="DateOfBirth"s>
<codeElement xmi:id="id.11" xmi:type="code:RecordType" name="DateOfBirth"s>
<itemUnit xmi:id="1id.12" name="DayOfBirth" type="id.23" ext="PIC 99" size="2"/>
<itemUnit xmi:id="1d.13" name="MonthOfBirth" type="id.23" ext="PIC 99" size="2"/>
<itemUnit xmi:id="1id.14" name="YearOfBirth" type="id.23" ext="PIC 9(4)"
size="4"/>
</codeElement>
</itemUnits>
<itemUnit xmi:id="id.15" name="CourseCode" type="id.24" ext="PIC X(4)" size="4"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.16" xmi:type="action:BlockUnit">
<codeElement xmi:id="id.17" xmi:type="action:ActionElement">
<codeElement xmi:id="1id.18" xmi:type="code:Value"
name="&quot ;Doyle&quot ;" type="id.24"/>
<actionRelation xmi:id="id.19" xmi:type="action:Addresses" to="id.2" from="id.17"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.18" from="id.17"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.9" from="id.17"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.22" xmi:type="code:LanguageUnit" name="Cobol common definitions">
<codeElement xmi:id="id.23" xmi:type="code:DecimalType"/>
<codeElement xmi:id="id.24" xmi:type="code:StringType"/>
</codeElement>
</model>
</kdm: Segment >

94 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.12 DerivedTypes Class Diagram

The DerivedTypes class diagram defines meta-model elements that represent derived types, which are common to various
programming languages. Examples of derived types include pointers, arrays, and sets. Derived datatypes is a broad
category of user-defined datatypes that include situations, in which the value of the datatype is made up of values of a
single component datatype, usually referred to as the element datatype. The classes and associations of the DerivedTypes
diagram are shown in Figure 12.10.

ltemUnit Datatype
1
+itemUnit
{subsets ownedElement}
- PointerType
+owner 0.1 DerivedType w
{subsets owner}
SequenceType
<size : Integer
BagType
RangeType ArrayType : g. yp
zlower : Integer = rers— <size : Integer
Gupper : Integer wsize : Integer SetType
<size : Integer
+owner 0.1
{subsets owner}
+indexUnit
{subsets ownedElement} 1
IndexUnit

Figure 12.10 - DerivedTypes Class Diagram
12.12.1 DerivedType Class (generic)

DerivedType class defines common properties for its specific subclasses, each of which has distinct semantics.
DerivedType class isa KDM container. KDM models of existing software systems usually use the concrete subclasses of
DerivedType class. DerivedType class itself is a concrete class and can be used as an extended meta-model element, with
a stereotype. DerivedType class is a more specific meta-model element than CodeElement.

Superclass
Datatype

Associations

itemUnit:ltemUnit[1] The ItemUnit that represents the base class of the derived type.

Constraints
1. DerivedType class should be used with a stereotype.

© ISO/IEC 2012 - All rights reserved 95



ISO/IEC 19506:2012(E)

Semantics

DerivedType class corresponds to several 1SO/IEC 11404 aggregated datatypes, whose values are made up of values of a
single component datatype. DerivedType class is an extended meta-model element, that can be used to represent
aggregated datatypes with a single base datatype of an existing software system, that do not fit into more precise
semantics of the subclasses of DerivedType. The name attribute of the ItemUnit can be omitted. The datatype of the
element-type is represented by the type attribute of the ItemUnit owned by the DerivedType.

Any anonymous datatype used by ItemUnit of the DerivedType should be owned by that ItemUnit.
12.12.2 ArrayType Class
The ArrayType is a meta-model element that represents array datatypes.

Superclass

DerivedType

Attributes

size:Integer the size of the array (the maximum number of elements)
Associations

indexUnit:IndexUnit[1] the index of the array

Semantics

ArrayType corresponds to ISO/IEC 11404 array datatype. The name attribute of the ItemUnit can be omitted if the
element type is anonymous. The datatype of the element-type is represented by the type attribute of the ItemUnit owned
by the ArrayType. The IndexItem represents the index of the array. The name attribute of the IndexUnit can be omitted.

KDM ArrayType supports a single index. Multidimensional arrays are represented by nested ArrayType elements, in
which the top ArrayType represents the first (outer) dimension, and its ItemUnit has type ArrayType that represents the
next (internal) dimension and so on.

Any anonymous datatype used by IndexUnit of the ArrayType should be owned by that IndexUnit.
12.12.3 PointerType Class

The PointerType is a meta-model element that represents pointer datatypes whose values constitute a means of reference
to values of another datatype, designated the element datatype.

Superclass

DerivedType

96 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

PointerType corresponds to |SO/IEC 11404 pointer generated datatype. From 1SO perspective the pointer datatype is not
an aggregated datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the
ItemUnit owned by the PointerType can be omitted. The datatype of the element-type is represented by the type attribute
of the ItemUnit owned by the PointerType.

Example (C)

struct tlist ({
struct tlist * next;
int value;

} * phead, * pcurrent;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="LinkedList Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="action:BlockUnit">
<codeElement xmi:id="1d.2" xmi:type="code:StorableUnit"
name="phead" type="id.3" kind="unknown">
<codeElement xmi:id="1d.3" xmi:type="code:PointerType">
<itemUnit xmi:id="id.4" type="id.5">
<codeElement xmi:id="id.5" xmi:type="code:RecordType" name="tlist">
<itemUnit xmi:id="id.6" name="next" type="id.3"/>
<itemUnit xmi:id="id.7" name="value" type="id.8">
<codeElement xmi:id="id.8" xmi:type="code:IntegerType" name="int"/>
</itemUnit>
</codeElement>
</itemUnit>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.9" xmi:type="code:StorableUnit"
name="pcurrent" type="id.3" kind="unknown"/>
</codeElement>
</model>
</kdm: Segment >

12.12.4 RangeType Class

RangeType is a meta-model element that represents user-defined subtypes of any ordered datatype by placing new upper
and/or lower bounds on the value space.

Superclass
DerivedType

© ISO/IEC 2012 - All rights reserved 97



ISO/IEC 19506:2012(E)

Attributes
lower: Integer the optional lower boundary of the range
upper: Integer the optional upper boundary of the range

Constraints
1. Atleast one boundary value attribute should be present.

Semantics

RangeType corresponds to 1SO/IEC 11404 range subtype. From [SO perspective the range subtype is not an aggregated
datatype, which leads to some mismatch with the semantics of the superclass. The Name attribute of the ItemUnit owned
by the RangeType can be omitted. The datatype of the base type is represented by the type attribute of the ItemUnit
owned by the RangeType.

When a boundary value attribute is omitted, this means that the corresponding value is unspecified.
12.12.5 BagType Class

BagType classis a meta-model element that represents bag types in existing software systems: the user-defined datatypes,
whose values are collections of instances of values from the element datatype. Bag types allow multiple instances of the
same value to occur in a given collection; the ordering of the value instances is not significant.

Superclass
DerivedType

Semantics

BagType corresponds to | SO/IEC 11404 bag aggregated datatype. The Name attribute of the ItemUnit owned by the
BagType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the BagType.

12.12.6 SetType Class

SetType is a meta-model element that represents set types in existing software systems: the user-defined datatypes, whose
value space is the set of all subsets of the value space of the element datatype, with operations appropriate to the
mathematical set.

Superclass
DerivedType

Semantics

SetType corresponds to |SO/IEC 11404 set aggregated datatype. The Name attribute of the IltemUnit owned by the
SetType can be omitted. The datatype of the element type is represented by the type attribute of the ItemUnit owned by
the SetType.

98 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.12.7 SequenceType Class

SequenceType class is ameta-model element that represents sequence types in existing software systems: the user-defined
datatypes, whose values are ordered sequences of values from the element datatype. The ordering is imposed on the
values and not intrinsic in the element datatype; the same value may occur more than once in a given sequence.

Superclass
DerivedType

Semantics

SequenceType corresponds to |SO/IEC 11404 sequence aggregated datatype. The Name attribute of the [temUnit owned
by the SequenceType can be omitted. The datatype of the element type is represented by the type attribute of the [temUnit
owned by the SequenceType.

12.13 Signature Class Diagram

The Signature class diagram defines meta-model elements, which represent the signature concept common to various
programming languages. The classes and associations of the Signature diagram are shown in Figure 12.11.

Datatype
+owner
{subsets owner} +parameterUnit
Signature {subsets ownedElement
0.1 ordered}
0”*
Ceramatatiind
bvval «kind : ParameterKind

zngg#@ <pos : Integer

<byReference

wvariadic

creturn

<throws

@exception

<catchall

<unknown

Figure 12.11 - Signature Class Diagram
12.13.1 Signature Class

The Signature is a meta-model element that represents the concept of a procedure signature, which is common to various
programming languages.

Superclass
Datatype

© ISO/IEC 2012 - All rights reserved 99



ISO/IEC 19506:2012(E)

Associations
parameterUnit:ParameterUnit[0..*] the list of parameters of the current Signature

Semantics

A Signature meta-model element has a dual role in KDM models. First, it corresponds to a procedure-type family of
datatypes, corresponding to the procedure-type of 1SO/IEC 11404 standard. Second, it corresponds to a specific data
element as part of a computational object represented by a Control Element. In this second sense, the Signature element
corresponds to the mechanism of formal and actual parameters.

12.13.2 ParameterKind Enumeration Datatype

ParameterKind datatype defines the kind of parameter passing conventions.

Literals
byValue parameter is passed by value
byName parameter is passed by name
byReference parameter is passed by reference
variadic parameter is variadic
return parameter being returned
throws parameter represents an exception thrown by the procedure
exception parameter to a catch block
catchall special parameter to a catch block
unknown parameter passing convention is unknown
Semantics

If the parameter kind is omitted, then the corresponding parameter is passed byValue. Return parameter is only
distinguished by the parameter kind return value. If no parameters of a Signature have parameter kind value return, this
means that the Signature does not define a return value.

12.14 DefinedTypes Class Diagram

DefinedTypes class diagram defines meta-model constructs to represent defined datatypes (datatypes defined by a type
declaration). The capability of defining new type identifiers is supported in many programming languages.

The classes and associations involved in the definition of KDM DefinedTypes are shown in Figure 12.12.

100 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

+codeElement
{subsets ownedElement}

ttype Datatype | 0-1

BaseType

+owner
{subsets owner}

DefinedType

TypeUnit SynonymType

Figure 12.12 - DefinedTypes Class Diagram

12.14.1 DefinedType Class (abstract)

The DefinedType class is an abstract class that defines the common properties of several concrete classes that are used to
represent type declarations in existing software systems.

Superclass
Datatype

Associations

codeElement:Datatype[0..*] Anonymous datatypes used in the definition of the datatype.
type:Datatype[1] The datatype of the DefinedType that describes the values of the corresponding
datatype.
Semantics

DefinedType element represents a named element of existing software system, which corresponds to a user-defined
datatype.

12.14.2 TypeUnit Class

The TypeUnit meta-model element represents the so-called new datatype declarations. New datatype declarations define
the value-space of a new datatype, which is distinct from any other datatype.

Superclass
DefinedType

© ISO/IEC 2012 - All rights reserved 101



ISO/IEC 19506:2012(E)

Semantics

TypeUnit corresponds to ISO/IEC 11404 New datatype declaration and New generator declarations.

12.14.3 SynonymuUnit Class

The Synonym meta-model element represents the so-called renaming declarations. Renaming declarations declare the
type name to be a synonym for another datatype.

Superclass
DefinedType

Semantics

SynonymUnit corresponds to | SO/IEC 11404 Renaming declarations.

12.15 ClassTypes Class Diagram

The ClassTypes class diagram defines meta-model elements that represent common composite datatypes provided by
various programming languages. The classes and association of the ClassTypes diagram are shown in Figure 12.13.

Datatype

ClassUnit

<isAbstract: Boolean

+owner
{subsets owner}

{subsets ownedElement

+codeElement

ordered}

0..*
Codeltem

Figure 12.13 - ClassTypes Class Diagram

12.16 ClassUnit Class

Interface Unit

+owner

{subsets owner}

+codeElement
{subsets ownedElement
ordered}

The ClassUnit is a meta-model element that represents user-defined classes in object-oriented languages. A class datatype
is a named datatype that represents a class. an ordered collection of named elements, each of which can be another
Codeltem, such as a MemberUnit or a MethodUnit.

Superclass

Datatype

102

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Attributes

isAbstract:Boolean the indicator of an abstract class
Associations

codeElement:Codeltem[0..*|{ordered} thelist of class members

Semantics

ClassUnit is a named container for an ordered collection of named elements, each of which can be another Codeltem,
such as a MemberUnit or a MethodUnit. Program elements owned by a ClassUnit may also include other (nested
ClassUnits), internal datatype definitions, etc. From the runtime perspective, ClassUnit represents a family of
computational objects, called class instances. MemberUnits and MethodUnits of a certain ClassUnit are identified both by
the name of the member or method, as well as by a direct or indirect identification of the corresponding class instance.

12.16.1 InterfaceUnit Class

The InterfaceUnit is a meta-model element that represents the interface concept common to various programming
languages.

In the meta-model InterfaceUnit is a subclass of Datatype. InterfaceUnit is a KDM container. InterfaceUnit owns a list of
code items that represent data types as well as MethodUnits or CallableUnits. MethodUnit elements owned by an
InterfaceUnit may be targets of Calls relations.

Superclass
Datatype

Associations
codeElement:Codeltem[0..*] {ordered} Thelist of TypeElementsthat corresponds with the target Interface.

Semantics

InterfaceUnit is alogical container for code items. InterfaceUnit corresponds to a compile time description of the
capabilities, that can be implemented by computational objects. InterfaceUnit owns datatype definitions as well as
ControlElements, which in the representation of an existing software may be the targets of certain relationships, since the
binding between the interface and the actual computational objects may occur at runtime.

12.17 Templates Class Diagram

The Templates class diagram provide basic meta-model constructs to define templates, parameters, instantiations of
template and their relationships. Figure 12.14 shows these classes and their associations.

© ISO/IEC 2012 - All rights reserved 103



ISO/IEC 19506:2012(E)

D atatype

TemplateUnit

TemplateType 0.1

+owner
{subsets owner}

+codeElement
{subsets ownedElement
ordered} 0..*

Codeltem

TemplateParameter

Figure 12.14 - Templates Class Diagram
12.17.1 TemplateUnit Class

The TemplateUnit is a meta-model element that represents parameterized datatypes, common to some programming
languages; for example, Ada generics, Java generics, C++ templates.

Superclass
Datatype

Associations
codeElement:Codeltem[1] template formal parameters and the base datatype or computational object

Constraints
1. TemplateParameter should be first in the list of code elements owned by the TemplateUnit.

Semantics

The TemplateUnit class corresponds to atype declaration with formal type parameters from the ISO/IEC 11404. TemplateUnit
owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter elements owned
by the TemplateUnit.

12.17.2 TemplateParameter Class

TemplateParameter is a meta-model element that represents parameters of a TemplateUnit. In the meta-model,
TemplateParameter is a subclass of TypeElement.

Superclass
Datatype

104 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

TemplateParameter represents aformal parameter of atype declaration with formal parameters (corresponding to ISO/IEC
11404). TemplateParameter is owned directly by a certain TemplateUnit. Correspondence between actual and formal
parameters is positional .

12.17.3 TemplateType Class

TemplateType class is a meta-model element that represents references to parameterized datatypes. The TemplateType
class owns the actual parameters to the datatype reference, represented by “ParameterTo” relationships. The
TemplateType class also owns the “InstanceOf” relationship to the TemplateUnit that represents the referenced
parameterized datatype. TemplateType has the role of a Datatype.

Superclass
Datatype

Constraints
1. TemplateType class should be the origin only to template relations “ InstanceOf” and “ ParameterTo.”

Semantics

The TemplateType class corresponds to a type-reference with actual type parameters to a type declaration with formal
type parameters from the I SO/IEC 11404. The type declaration with formal parameters is represented by a TemplateUnit,
which owns the corresponding datatype definition. Formal type parameters are represented by TemplateParameter
elements owned by the TemplateUnit. The association between the type reference and the type declaration is represented
by the “InstanceOf” relationship.

Relationship “ParameterTo” represents the actual type parameter. The association between the actual and formal type
parameters is positional.

12.18 TemplateRelations Class Diagram

The TemplateRelations class diagram defines KDM relationships that are related to the concept of an template. Figure
12.16 shows these classes and their associations.

© ISO/IEC 2012 - All rights reserved 105



ISO/IEC 19506:2012(E)

AbstractCodeRelationship

ParameterTo
Instance Of
0. *0. » 0..*

+to
1 {redefines to}

+rom
{redefines from}

+to
{redefines to}

{redefines from}
1

Codeltem AbstractCodeElement

TemplateUnit

Figure 12.15 - TemplateRelations Class Diagram
12.18.1 InstanceOf Class

The InstanceOf is a meta-model element that represents “instantiation” relation between an AbstractCodeElement (for
example, a ClassUnit) and a TemplateUnit. In the meta-model 1nstanceOf is a subclass of AbstractCodeRelationship.

Superclass
AbstractCodeRelationship

Associations

from:AbstractCodeElement[1] The AbstractCodeElement that represents the instantiation of atemplate.

to:TemplateUnit[1] The TemplateUnit that is being instantiated.

Constraints
1. Theto- and from- endpoints of the relationship should be different.

Semantics

InstanceOf relationship represents an association between a reference to a parameterized datatype or a parameterized
entity (for example, a generic method), to the corresponding declaration of the parameterized class.

12.18.2 ParameterTo Class

The ParameterTo is a meta-model element that represents an actual type parameter in the context of areferenceto a
parameterized entity. ParameterTo is “parametrization” relation between an AbstractCodeElement (for example, a
TemplateType or an ActionElement) and a Codeltem.

106 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
AbstractCodeRel ationship

Associations

from:AbstractCodeElement[1] the reference to the parameterized entity (the context of the actual type parameter)

to:Codeltem[1] actual parameter to template instantiation

Constraints
1. ParameterTo relationship should be owned only by TemplateType or ActionElement.

2. Theto- and from- endpoints of the relationship should be different.

Semantics

Reference to a parameterized datatype is represented by a TemplateType element. Another situation is an ActionElement
that references a parameterized entity; for example, a call to a generic method. In this situation the ActionElement
provides the context of the reference and owns the ParameterTo and InstanceOf relationships.

Example (Java)

class foo {
static <T> void fromArrayToCollection (T[] a, Collection<T> c) {
for (T o : a) {
c.add (o) ;
}
}

void demo() {
String[] sa = new String[100];
Collection<String> c¢s = new ArrayList<Strings();
fromArrayToCollection(sa, cs);// T inferred to be String

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Template Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:ClassUnit" name="foo">
<codeElement xmi:id="id.2" xmi:type="code:TemplateUnit"
name="fromArrayToCollection&lt;T>">
<codeElement xmi:id="id.3" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1d.4" xmi:type="code:MethodUnit"
name="fromArrayToCollection" type="id.6">
<entryFlow xmi:id="1id.5" to="id.14" from="id.4"/>
<codeElement xmi:id="id.6" xmi:type="code:Signature">
<parameterUnit xmi:id="id.7" name="a">
<codeElement xmi:id="1id.8" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.9" type="id.3"/>
</codeElement>

© ISO/IEC 2012 - All rights reserved 107



ISO/IEC 19506:2012(E)

</parameterUnit>
<parameterUnit xmi:id="1d.10" name="c" type="id.11">
<codeElement xmi:id="1d.11" xmi:type="code:TemplateType"
name="Collection&lt;T1l>">
<codeRelation xmi:id="id.12" xmi:type="code:ParameterTo"
to="id.3" from="id.11"/>
<codeRelation xmi:id="1d.13" xmi:type="code:InstanceOf"
to="id.75" from="id.11"/>
</codeElement >
</parameterUnit>
</codeElement >
<codeElement xmi:id="id.14" xmi:type="action:ActionElement"
name="al" kind="Compound">
<codeElement xmi:id="1id.15" xmi:type="action:ActionElement"
name="al.l" kind="Call">
<actionRelation xmi:id="id.16" xmi:type="action:Addresses"
to="id.7" from="id.15"/>
<actionRelation xmi:id="id.17" xmi:type="action:Calls" to="id.81" from="id.15"/>
<actionRelation xmi:id="id.18" xmi:type="action:Flow" to="id.19" from="id.15"/>
</codeElement>
<codeElement xmi:id="1d.19" xmi:type="action:ActionElement"
name="al.2" kind="Call">
<codeElement xmi:id="1id.20" xmi:type="code:StorableUnit"
name="t1l" type="id.88" kind="register"/>
<actionRelation xmi:id="1d.21" xmi:type="action:Addresses"
to="1id.40" from="id.19"/>
<actionRelation xmi:id="1id.22" xmi:type="action:Calls" to="id.83" from="id.19"/>
<actionRelation xmi:id="1id.23" xmi:type="action:Writes" to="id.20" from="id.29"/>
<actionRelation xmi:id="id.24" xmi:type="action:Flow" to="id.25" from="id.19"/>
</codeElement>
<codeElement xmi:id="1id.25" xmi:type="action:ActionElement"
name="1.3" kind="Condition"s>
<actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.20" from="id.25"/>
<actionRelation xmi:id="id.27" xmi:type="action:TrueFlow"
to="1d.29" from="id.25"/>
<actionRelation xmi:id="1id.28" xmi:type="action:FalseFlow"
to="1d.39" from="id.25"/>
</codeElement>
<codeElement xmi:id="1d.29" xmi:type="action:ActionElement"
name="al.4" kind="Call">
<actionRelation xmi:id="1d.30" xmi:type="action:Addresses"
to="1d.40" from="id.29"/>
<actionRelation xmi:id="id.31" xmi:type="action:Calls" to="id.82" from="id.29"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.44" from="id.29"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.29"/>
</codeElement>
<codeElement xmi:id="id.34" xmi:type="action:ActionElement"
name="al.5" kind="Call">
<actionRelation xmi:id="1id.35" xmi:type="action:Addresses"
to="id.10" from="id.34"/>
<actionRelation xmi:id="1id.36" xmi:type="action:Reads" to="id.44" from="id.34"/>
<actionRelation xmi:id="1id.37" xmi:type="action:Calls" to="id.84" from="id.34"/>
<actionRelation xmi:id="1id.38" xmi:type="action:Flow" to="id.19" from="id.34"/>
</codeElement>

<codeElement xmi:id="1d.39" xmi:type="action:ActionElement" name="1.6" kind="Nop"/>

108 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1d.40" xmi:type="code:StorableUnit"
name="iter" type="id.41" kind="register">
<codeElement xmi:id="1id.41" xmi:type="code:TemplateType" name="Iterator&lt;T1l>">
<codeRelation xmi:id="id.42" xmi:type="code:InstanceOf"
to="id.78" from="id.41"/>
<codeRelation xmi:id="id.43" xmi:type="code:ParameterTo"
to="id.3" from="id.41"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.44" xmi:type="code:StorableUnit"
name="o" type="id.3" kind="local"/>
<actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.15" from="id.14"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.46" xmi:type="code:MethodUnit" name="demo" type="id.47">
<codeElement xmi:id="id.47" xmi:type="code:Signature"/>
<codeElement xmi:id="1d.48" xmi:type="code:StorableUnit"
name="sa" type="1id.49" kind="local">
<codeElement xmi:id="1d.49" xmi:type="code:ArrayType" name="ar2">
<itemUnit xmi:id="id.50" type="1id.89"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.51" xmi:type="action:ActionElement" name="demo.l" kind="New">
<codeElement xmi:id="1id.52" xmi:type="code:Value" name="100" type="id.90"/>
<actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.52" from="id.51"/>
<actionRelation xmi:id="id.54" xmi:type="action:Creates" to="id.49" from="id.51"/>
<actionRelation xmi:id="id.55" xmi:type="action:Writes" to="1id.48" from="id.51"/>
<actionRelation xmi:id="1d.56" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="1d.57" xmi:type="code:StorableUnit"
name="cs" type="1id.58" kind="local">
<codeElement xmi:id="1d.58" xmi:type="code:TemplateType"
name="Collection&lt;String>">
<codeRelation xmi:id="id.59" xmi:type="code:ParameterTo" to="id.89" from="id.58"/>
<codeRelation xmi:id="id.60" xmi:type="code:InstanceOf" to="id.75" from="id.58"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.61" xmi:type="action:ActionElement" name="demo.2" kind="New">
<codeElement xmi:id="1d.62" xmi:type="code:TemplateType"
name="ArrayList&lt;String>">
<codeRelation xmi:id="id.63" xmi:type="code:ParameterTo" to="id.89" from="id.62"/>
<codeRelation xmi:id="id.64" xmi:type="code:InstanceOf" to="id.85" from="id.62"/>
</codeElement>
<actionRelation xmi:id="id.65" xmi:type="action:Creates" to="id.62" from="id.51"/>
<actionRelation xmi:id="id.66" xmi:type="action:Writes" to="id.57" from="id.61"/>
<actionRelation xmi:id="1id.67" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="1d.68" xmi:type="action:ActionElement" name="demo.3" kind="Call">
<codeRelation xmi:id="id.69" xmi:type="code:InstanceOf" to="id.2" from="id.68"/>
<codeRelation xmi:id="id.70" xmi:type="code:ParameterTo" to="id.89" from="id.68"/>
<actionRelation xmi:id="id.71" xmi:type="action:Reads" to="id.48" from="id.68"/>
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.57" from="id.68"/>
<actionRelation xmi:id="id.73" xmi:type="action:Calls" to="id.4" from="id.é68"/>
</codeElement>

© ISO/IEC 2012 - All rights reserved 109



ISO/IEC 19506:2012(E)

</codeElement>
</codeElement>
<codeElement xmi:id="1id.74" xmi:type="code:LanguageUnit" name="Common Java datatypes">
<codeElement xmi:id="id.75" xmi:type="code:TemplateUnit" name="Collection&lt;T>">
<codeElement xmi:id="id.76" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1id.77" xmi:type="code:ClassUnit" name="Collection"/>
</codeElement>
<codeElement xmi:id="1id.78" xmi:type="code:TemplateUnit" name="Iterator&lt;T>">
<codeElement xmi:id="1id.79" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1id.80" xmi:type="code:ClassUnit" name="Iterator"s
<codeElement xmi:id="id.81" xmi:type="code:MethodUnit"
name="iterator" kind="constructor"/>
<codeElement xmi:id="1id.82" xmi:type="code:MethodUnit" name="next"/>
<codeElement xmi:id="1d.83" xmi:type="code:MethodUnit" name="hasNext"/>
<codeElement xmi:id="id.84" xmi:type="code:MethodUnit" name="add"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.85" xmi:type="code:TemplateUnit" name="ArrayListé&lt;T>">
<codeElement xmi:id="1id.86" xmi:type="code:TemplateParameter" name="T"/>
<codeElement xmi:id="1id.87" xmi:type="code:ClassUnit" name="ArrayList"/>
</codeElement>
<codeElement xmi:id="1id.88" xmi:type="code:BooleanType" name="Boolean"/>
<codeElement xmi:id="1id.89" xmi:type="code:StringType" name="String"/>
<codeElement xmi:id="1d.90" xmi:type="code:IntegerType" name="Integer"/>
</codeElement>
</model>
</kdm: Segment >

12.19 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations’ by the
corresponding “definition” code elements. The classes and associations of the InterfaceRelations diagram are shown in
Figure 12.16.

110 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractCodeRelationship

Implements . 0.*
ImplementationOf
0..*
+from +from
+to {redefines from} \ 1 1 {redefnes from} +to
1 1 {redefines to}

Codeltem

{redefines to}

Figure 12.16 - InterfaceRelations Class Diagram
12.19.1 Implements Class

The Implements is a meta-model element that represents “implementation” association between a Codeltem (for example,
a ClassUnit) and an InterfaceUnit. “Implements” relationship is similar to “Extends.” For example, Java “implements’
construct can be represented by KDM “Implements” relationship.

Superclass
AbstractCodeRel ationship

Associations

from:Codeltem[1] The Codeltem that implements a certain I nterfaceUnit.

to:Codeltem[1] The InterfaceUnit that is being implemented by Codeltem.

Constraints
1. Thefrom- and to- endpoints should be different.

Semantics
See next sub clause.

© ISO/IEC 2012 - All rights reserved 111



ISO/IEC 19506:2012(E)

12.19.2 ImplementationOf Class

The ImplementationOf is a meta-model element that represents “implementation” association between a Codeltem; for
example, a MethodUnit and a particular “external” entity; for example, a MethodUnit owned by an InterfaceUnit.
“ImplementationOf” relationship represents associations between a declaration and a definition of a computation object,
common to various programming languages. While the “Implements” relationship is between entire containers (the target
is an InterfaceUnit), the “ImplementationOf” relationship represents a broader range of situations:

 Particular MethodUnit of a ClassUnit that “Implements’ an InterfaceUnit, is an “ImplementationOf” a particular
MethodUnit, owned by that InterfaceUnit.

» A CdlableUnit may be an “ImplementationOf” a CallableUnit with kind external, which represents the declaration
(the prototype) of that CallableUnit.

» A StorableUnit may be an “ImplementationOf” a StorableUnit with kind external, which represents the external
declaration of the StorableUnit, such as, for example, the “extern” construct in the C language.

Superclass
AbstractCodeRel ationship

Associations

from:Codeltem[1] Codeltem that implements a certain “ declaration.”

to:Codeltem[1] “declaration” that is being implemented by the Codeltem.

Constraints

1. Itisobligatory that either the origin of the ImplementationOf relationship is a ControlElement, and the target isa
ControlElement or the origin is a DataElement and the target is a DataElement.

2. Thekind attribute of the Codeltem at the origin of the ImplementationOf relationship should not be equal to
“external.”

3. Thekind attribute of the Codeltem at the target of the ImplementationOf relationship should be equal to “external” or
“abstract.”

4. Thefrom- and to- endpoints should be different.

Semantics

A “declaration” entity may be represented in KDM as a Computational Object (Control Element or DataElement) with kind
“external” or “abstract.” Kind “abstract” is used for the members of the InterfaceUnit. In case of a Control Element,
Signature represents the procedure type, but not the declaration entity itself.

If both the definition and the declaration of some computational object “foo” are available:
« Thedefinition of “foo” may be the origin of the ImplementationOf relationship to the declaration of “foo.”

» For acertain action element that uses “fo0o,” the target of the KDM callable or data relations will be the definition of
“foo.”

112 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

» The action element that uses “foo” may be the origin of a“CompliesTo” action relationship (defined at the
InterfaceRel ations class diagram of the Action package) to the declaration of “foo.”

If only the declaration of some computational object “bar” is available in the given context of capturing knowledge about
the existing software system:

» For acertain action element that uses “bar,” the target of the KDM callable or data relations will be the declaration of
“bar.”

» The action element that uses “bar” may be the origin of a“CompliesTo” action relationship (defined at the
InterfaceRel ations class diagram of the Action package) to the declaration of “bar.”

Declaration elements are usually owned by a certain SharedUnit.

In case of complex engineering process that involves multiple shared units, that are included into compilation unitsin
complex ways, the existing software system may have multiple declarations for the same computational object, or even
different computational objects with the same name but different properties that are used in different contexts. In this
situation the above KDM mechanism that involves three relationships (the “real” usage, the “ImplementationOf,” and the
“CompliesTo” relationships) can be used to detect subtle maintenance issues. For example, when for the same action
element the target of the “ImplementationOf” relationship originating from the target of the “real” usage relationship, if
different from the target of the “CompliesTo” relationship originating from the action element itself.

Example (Java):
package flip;
public interface iFlip {
public int flip(int 1i);

}

package flip;
public class foo implements iFlip {
public foo() {}
public flip(int i) {
return i * -1;
}
}

package flip;
public class FlipClient {
public static void main(Stringl] args) {
foo f= new foo();
iFlip g=(iFlip) £;
f.£f1ip(100) ;

}

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Interface Example">

<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:Package" name="flip">
<codeElement xmi:id="id.2" xmi:type="code:ClassUnit" name="foo">

© ISO/IEC 2012 - All rights reserved 113



ISO/IEC 19506:2012(E)

<codeRelation xmi:id="id.3" xmi:type="code:Implements" to="id.21" from="id.2"/>
<codeElement xmi:id="1id.4" xmi:type="code:MethodUnit" name="flip" type="id.23">
<codeRelation xmi:id="id.5" xmi:type="code:ImplementationOf"
to="id.22" from="id.4"/>
<entryFlow xmi:id="id.é" to="id.10" from="id.4"/>
<codeElement xmi:id="id.7" xmi:type="code:Signature" name="flip">
<parameterUnit xmi:id="id.8" name="i" type="id.53"/>
<parameterUnit xmi:id="id.9" type="id.53" kind="return"/>
</codeElement>
<codeElement xmi:id="id.10" xmi:type="action:ActionElement"
name="d1l" kind="Multiply">
<codeElement xmi:id="1id.11" xmi:type="code:Value" name="-1" type="id.53"/>
<codeElement xmi:id="1id.12" xmi:type="code:StorableUnit"
name="t5" type="1d.53" kind="register"/>
<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.8" from="id.10"/>
<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.11" from="id.10"/>
<actionRelation xmi:id="id.15" xmi:type="action:Writes" to="id.12" from="id.10"/>
<actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.17" from="id.10"/>
</codeElement>
<codeElement xmi:id="1id.17" xmi:type="action:ActionElement" name="d2" kind="Return"s>
<actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.12" from="id.17"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.19" xmi:type="code:MethodUnit"
name="foo" type="1id.20" kind="constructor">
<codeElement xmi:id="1d.20" xmi:type="code:Signature" name="foo"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.21" xmi:type="code:InterfaceUnit" name="IFlip">
<codeElement xmi:id="id.22" xmi:type="code:MethodUnit"
name="flip" type="1id.23" kind="abstract"/>
<codeElement xmi:id="1d.23" xmi:type="code:Signature" name="flip">
<parameterUnit xmi:id="1id.24" name="i" type="id.53" pos="1"/>
<parameterUnit xmi:id="id.25" type="1id.53" kind="return" pos="0"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.26" xmi:type="code:ClassUnit" name="Flipclient">
<codeElement xmi:id="1d.27" xmi:type="code:MethodUnit" name="main" type="id.29">
<entryFlow xmi:id="1d.28" to="id.35" from="id.27"/>
<codeElement xmi:id="1id.29" xmi:type="code:Signature" name="main">
<parameterUnit xmi:id="1d.30" name="args" type="id.31" pos="1">
<codeElement xmi:id="id.31" xmi:type="code:ArrayType">
<itemUnit xmi:id="1id.32" name="args[]" type="id.54"/>
</codeElement >
</parameterUnit>
</codeElement>
<codeElement xmi:id="id.33" xmi:type="code:StorableUnit"
name="f" type="id.2" kind="local"/>
<codeElement xmi:id="id.34" xmi:type="code:StorableUnit"
name="g" type="id.21" kind="local"/>
<codeElement xmi:id="1id.35" xmi:type="action:ActionElement" name="al" kind="New">
<actionRelation xmi:id="id.36" xmi:type="action:Creates" to="id.2" from="id.35"/>
<actionRelation xmi:id="id.37" xmi:type="action:Writes" to="id.33" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Flow" to="id.39" from="id.35"/>
</codeElement>

114 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1d.39" xmi:type="action:ActionElement"
name="a2" kind="MethodCall">
<actionRelation xmi:id="1d.40" xmi:type="action:CompliesTo"
to="id.20" from="id.39"/>
<actionRelation xmi:id="id.41" xmi:type="action:Addresses"
to="1id.33" from="id.39"/>
<actionRelation xmi:id="id.42" xmi:type="action:Calls" to="id.19" from="id.39"/>
<actionRelation xmi:id="id.43" xmi:type="action:Flow" to="id.44" from="id.39"/>
</codeElement >
<codeElement xmi:id="1d.44" xmi:type="action:ActionElement"
name="a3" kind="DynCast">
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.33" from="id.44"/>
<actionRelation xmi:id="id.46" xmi:type="action:UsesType" to="1id.21" from="id.44"/>
<actionRelation xmi:id="id.47" xmi:type="action:Writes" to="1id.34" from="id.44"/>
<actionRelation xmi:id="id.48" xmi:type="action:Flow" to="1d.49" from="id.44"/>
</codeElement>
<codeElement xmi:id="1d.49" xmi:type="action:ActionElement"
name="a4" kind="InterfaceCall">
<actionRelation xmi:id="1d.50" xmi:type="action:CompliesTo"
to="1id.23" from="id.49"/>
<actionRelation xmi:id="1d.51" xmi:type="action:Addresses"
to="id.34" from="1id.49"/>
<actionRelation xmi:id="id.52" xmi:type="action:Calls" to="id.22" from="id.49"/>
</codeElement>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.53" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="1id.54" xmi:type="code:StringType" name="String"/>
</model>
</kdm: Segment >

12.20 TypeRelations Class Diagram

The TypeRelations class diagram defines meta-model elements that represent semantic associations between datatypes
and data elements. The classes and associations of the TypeRelations diagram are shown in Figure 12.17.

AbstractCodeRelationship

HasType

HasValue

+from

+to

. redefines from}
{redefines to}

+from 1
{redefines from}

+to
1 {redefines to} Datatype

1

AbstractC odeE*Iem ent

1Codeltem

Figure 12.17 - TypeRelations Class Diagram

© ISO/IEC 2012 - All rights reserved 115



ISO/IEC 19506:2012(E)

12.20.1 HasType Class

The HasType is a specific meta-model element that represents semantic relation between a data element and the
corresponding type element.

Superclass
AbstractCodeRel ationship

Associations

from:Codeltem[1] the source data element

to:Datatype[1] the target datatype element

Constraints

1. Thefrom- and to- endpoints should be different.

Semantics

HasType relationship represents an association between a code item that uses a certain user-defined type, and that
datatype. Each data element has a direct association to its datatype. HasType relationship duplicates this information if the
datatype is a named user-defined datatype (rather than an anonymous datatype or a primitive datatype) that allows a
uniform representation of this information as a KDM relationship. In particular, this relationship can then be used in
AggregatedRel ationships.

12.20.2 HasValue Class

The HasValue is a specific meta-model element that represents semantic relation between a data element and its
initialization element, which can be a data element or an action element for complex initializations that involve
expressions. HasValue is an optional element that compliments the real initialization semantics by a sequence of action

elements in the initialization code.

Superclass
AbstractCodeRel ationship

Associations

from:Codeltem[1] the source data element

to:AbstractCodeElement[1] the target AbstractCodeElement (datatype or action element)

Constraints

1. If thetarget of the HasValueis an ActionElement, then this ActionElement should have an outgoing Writes or
Addresses relationship to the Codeltem that is the source of the HasValue relationship.

116 © ISO/IEC 2012 - Al rights reserved



Semantics

ISO/IEC 19506:2012(E)

HasV alue relationship as an optional way to represent initialization. Thetarget of the HasV alue relationship can beaVaue for
simpleinitializationsthat involve constants, or Data Element for simpleinitializationsthat involve another data element, or an
ActionElement that writes to the source element for complex initializations involving expressions.

Inmicro KDM initialization isrepresented by explicit initialization actions with appropriate control flow. Initialization actions
should be owned by special initialization block units. Control flow semantics of initializations (especialy for initializations of

global and static data elements) is represented using the EntryFlow relationship. HasValue relationship does not represent

control flow. It provides a convenient way to associate a data element with its value.

Example (C++)

[*----d.h---%/
class D {

private: int num;

public:
D(int x) { this-s>num=x; printf(“Hello, this is %d\n”, x); }
work () { printf (“This is %d working\n”, this->num);

i
/*---a.cpp---*/
#include "d.h"
int gl=0;

D di1(1);

/*---b.cpp--*/
#include "d.h"
extern D di;

D d2(2);

main() {
int 12=0;
D * d3=new D(3);
dl.work () ;
d2.work () ;
d3->work () ;

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="ClassD Example">

<model xmi:id="1d.0" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.1" xmi:type="code:CodeAssembly">
<entryFlow xmi:id="1d.120" to="id.94" from="id.1"/>

<codeElement xmi:id="id.2" xmi:type="code:CompilationUnit" name="a.cpp">

<entryFlow xmi:id="1id.121" to="id.10" from="id.2"/>

<codeElement xmi:id="1id.3" xmi:type="code:IncludeDirective" name="impl">

<codeRelation xmi:id="id.4" xmi:type="code:Includes" to="id.22"
</codeElement>
<codeElement xmi:id="1d.5" xmi:type="code:StorableUnit" name="gl"
<codeRelation xmi:id="id.6" xmi:type="code:HasValue" to="id.20"
</codeElement>
<codeElement xmi:id="id.7" xmi:type="code:StorableUnit" name="d1l"

© ISO/IEC 2012 - All rights reserved

from="id.3"/>

type="1d.105">
from="id.5"/>

type="1id.23">

117



ISO/IEC 19506:2012(E)

<codeRelation xmi:id="id.8" xmi:type="code:HasType" to="id.23" from="id.7"/>
<codeRelation xmi:id="id.9" xmi:type="code:ImplementationOf"
to="id.47" from="id.7"/>
<codeRelation xmi:id="id.124" xmi:type="code:HasValue" to="id.l6" from="id.7"/>

</codeElement>
<codeElement xmi:id="1id.10" xmi:type="action:BlockUnit" name="bil" kind="Init”>
<entryFlow xmi:id="id.11" to="id.12" from="id.10"/>
<codeElement xmi:id="1id.12" xmi:type="action:ActionElement" name="il" kind="Assign">
<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.20" from="id.12"/>
<actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.5" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Flow" to="id.16" from="id.12"/>
</codeElement>
<codeElement xmi:id="1id.16" xmi:type="action:ActionElement" name="i2" kind="Calls">
<actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.21" from="id.16"/>
<actionRelation xmi:id="id.18" xmi:type="action:Calls" to="id.25" from="id.1l6"/>
<actionRelation xmi:id="id.19" xmi:type="action:Writes" to="id.7" from="id.1l6"/>
</codeElement >
<codeElement xmi:id="id.20" xmi:type="code:Value" name="0"/>
<codeElement xmi:id="id.21" xmi:type="code:Value" name="1"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.22" xmi:type="code:SharedUnit" name="d.h">
<codeElement xmi:id="id.23" xmi:type="code:ClassUnit" name="D">
<codeElement xmi:id="1id.24" xmi:type="code:MemberUnit"
name="num" type="id.105" export="private"/>
<codeElement xmi:id="1id.25" xmi:type="code:MethodUnit" name="D">
<entryFlow xmi:id="id.26" to="id.28" from="id.25"/>
<codeElement xmi:id="id.27" xmi:type="code:Value"
name="&quot ;Hello, this is %d\n&gquot;" type="id.111"/>
<codeElement xmi:id="1d.28" xmi:type="action:ActionElement"
name="a4" kind="Assign">
<actionRelation xmi:id="1id.29" xmi:type="action:Reads" to="id.37" from="id.28"/>
<actionRelation xmi:id="1id.30" xmi:type="action:Writes" to="id.24" from="id.28"/>
<actionRelation xmi:id="id.31" xmi:type="action:Flow" to="id.32" from="id.28"/>
</codeElement>
<codeElement xmi:id="1id.32" xmi:type="action:ActionElement" name="a5" kind="Call">
<actionRelation xmi:id="1id.33" xmi:type="action:Reads" to="id.27" from="id.32"/>
<actionRelation xmi:id="1id.34" xmi:type="action:Reads" to="id.37" from="id.32"/>
<actionRelation xmi:id="id.35" xmi:type="action:Calls" to="id.106" from="id.32"/>
</codeElement>
<codeElement xmi:id="id.36" xmi:type="code:Signature" name="D">
<parameterUnit xmi:id="id.37" name="x" pos="1"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.38" xmi:type="code:MethodUnit" name="work"s>
<codeElement xmi:id="id.39" xmi:type="code:Value"
name="&quot ; This is %d working\né&quot;"/>
<codeElement xmi:id="id.40" xmi:type="action:ActionElement" name="a6" kind="Call">
<actionRelation xmi:id="id.41" xmi:type="action:Reads" to="id.39" from="id.40"/>
<actionRelation xmi:id="1id.42" xmi:type="action:Reads" to="id.24" from="id.40"/>
<actionRelation xmi:id="id.43" xmi:type="action:Calls" to="id.106" from="id.40"/>
</codeElement>
</codeElement >
</codeElement>

118 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

</codeElement>
<codeElement xmi:id="1d.44" xmi:type="code:CompilationUnit" name="b.cpp">
<entryFlow xmi:id="id.122" to="1d.87" from="id.44"/>
<codeElement xmi:id="1d.45" xmi:type="code:IncludeDirective" name="imp2">
<codeRelation xmi:id="id.46" xmi:type="code:Includes" to="id.22" from="id.45"/>
</codeElement>
<codeElement xmi:id="1d.47" xmi:type="code:StorableUnit"
name="extern dl" kind="external"/>
<codeElement xmi:id="1d.48" xmi:type="code:CallableUnit" name="main">
<entryFlow xmi:id="1id.49" to="id.70" from="id.48"/>
<codeElement xmi:id="1d.50" xmi:type="code:StorableUnit" name="12" type="id.105">
<codeRelation xmi:id="id.51" xmi:type="code:HasValue" to="id.20" from="id.50"/>
</codeElement>
<codeElement xmi:id="1d.52" xmi:type="code:StorableUnit" name="d2">
<codeRelation xmi:id="id.53" xmi:type="code:HasType" to="id.23" from="id.52"/>
<codeRelation xmi:id="1id.125" xmi:type="code:HasValue" to="id.89" from="id.52"/>
</codeElement>
<codeElement xmi:id="id.54" xmi:type="code:StorableUnit" name="d3" type="id.55">
<codeRelation xmi:id="id.126" xmi:type="code:HasValue" to="id.79" from="id.54"/>
<codeElement xmi:id="1id.55" xmi:type="code:PointerType">
<itemUnit xmi:id="1id.56" type="id.23">
<codeRelation xmi:id="id.57" xmi:type="code:HasType" to="id.23" from="id.56"/>
</itemUnit>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.58" xmi:type="action:ActionElement" name="al" kind="Call">
<actionRelation xmi:id="id.59" xmi:type="action:Calls" to="id.38" from="id.58"/>
<actionRelation xmi:id="id.60" xmi:type="action:Addresses" to="id.7" from="id.58"/>
<actionRelation xmi:id="id.61" xmi:type="action:CompliesTo"
to="1id.47" from="id.58"/>
<actionRelation xmi:id="id.62" xmi:type="action:Flow" to="id.63" from="id.58"/>
</codeElement>
<codeElement xmi:id="1d.63" xmi:type="action:ActionElement" name="a2" kind="Call">
<actionRelation xmi:id="id.64" xmi:type="action:Calls" to="id.38" from="id.63"/>
<actionRelation xmi:id="id.65" xmi:type="action:Addresses"
to="1id.52" from="id.63"/>
<actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.67" from="id.63"/>
</codeElement>
<codeElement xmi:id="1d.67" xmi:type="action:ActionElement" name="a3" kind="Call">
<actionRelation xmi:id="id.68" xmi:type="action:Calls" to="id.38" from="id.67"/>
<actionRelation xmi:id="1id.69" xmi:type="action:Addresses"
to="id.56" from="id.67"/>
</codeElement>
<codeElement xmi:id="1d.70" xmi:type="action:BlockUnit" name="bi2" kind="Init”>
<codeElement xmi:id="id.71" xmi:type="action:ActionElement"
name="i3" kind="Assign">
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.20" from="id.71"/>
<actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.50" from="id.71"/>
<actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.79" from="id.71"/>
</codeElement>
<codeElement xmi:id="1id.75" xmi:type="action:ActionElement" name="1i4" kind="New">
<actionRelation xmi:id="1id.76" xmi:type="action:Creates"
to="id.23" from="id.75"/>
<actionRelation xmi:id="id.77" xmi:type="action:Writes" to="id.54" from="id.75"/>
<actionRelation xmi:id="id.78" xmi:type="action:Flow" to="id.79" from="id.75"/>

© ISO/IEC 2012 - All rights reserved 119



ISO/IEC 19506:2012(E)

</codeElement>
<codeElement xmi:id="1id.79" xmi:type="action:ActionElement"
name="1i5" kind="MethodCall">
<actionRelation xmi:id="1id.80" xmi:type="action:Reads" to="id.85" from="id.79"/>
<actionRelation xmi:id="1id.81" xmi:type="action:Addresses"
to="id.54" from="id.79"/>
<actionRelation xmi:id="1id.82" xmi:type="action:Calls" to="id.25" from="id.79"/>
<actionRelation xmi:id="id.83" xmi:type="action:Writes" to="id.56" from="id.79"/>
<actionRelation xmi:id="id.84" xmi:type="action:Flow" to="id.58" from="id.79"/>
</codeElement >
<codeElement xmi:id="1id.85" xmi:type="code:Value" name="3"/>
<entryFlow xmi:id="id.86" to="id.71" from="id.70"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.87" xmi:type="action:BlockUnit" name="bi3" kind="Init”>
<entryFlow xmi:id="id.88" to="1id.89" from="id.87"/>
<codeElement xmi:id="id.89" xmi:type="action:ActionElement" name="i6" kind="Call">
<actionRelation xmi:id="id.90" xmi:type="action:Reads" to="id.93" from="id.89"/>
<actionRelation xmi:id="id.91" xmi:type="action:Calls" to="id.25" from="id.89"/>
<actionRelation xmi:id="id.92" xmi:type="action:Writes" to="id.52" from="id.89"/>
</codeElement>
<codeElement xmi:id="1id.93" xmi:type="code:Value" name="2" type="id.105"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.94" xmi:type="action:BlockUnit" name="bi4" kind="Init">
<entryFlow xmi:id="1d.95" to="id.96" from="id.94"/>
<codeElement xmi:id="1d.96" xmi:type="action:ActionElement" name="i7" kind="Init">
<entryFlow xmi:id="id.97" to="id.10" from="id.96"/>
<actionRelation xmi:id="id.98" xmi:type="action:Flow" to="id.99" from="id.96"/>
</codeElement>
<codeElement xmi:1id="1d.99" xmi:type="action:ActionElement" name="i8" kind="Init">
<entryFlow xmi:id="1d.100" to="1id.87" from="1d.99"/>
<actionRelation xmi:id="id.101" xmi:type="action:Flow" to="id.102" from="1id.99"/>
</codeElement>
<codeElement xmi:id="id.102" xmi:type="action:ActionElement" name="i9" kind="Call">
<actionRelation xmi:id="id.103" xmi:type="action:Calls" to="1id.48" from="id.102"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="id.104" xmi:type="code:LanguageUnit">
<codeElement xmi:id="1d.105" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="id.106" xmi:type="code:CallableUnit" name="printf" type="id.107">
<codeElement xmi:id="1d.107" xmi:type="code:Signature" name="printf"s>
<parameterUnit xmi:id="1d.108" type="id.105" kind="return" pos="0"/>
<parameterUnit xmi:id="1d.109" name="format" type="id.111" pos="1"/>
<parameterUnit xmi:id="1d.110" name="arguments" type="id.112"
kind="variadic" pos="2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.111" xmi:type="code:StringType" name="char *"/>
<codeElement xmi:id="1id.112" xmi:type="code:VoidType"/>
</codeElement>
</model>
</kdm: Segment >

120 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.21 ClassRelations Class Diagram

The ClassRelations class diagram defines meta-model elements that represent semantic associations between datatypes.
The classes and associations of the ClassRelations diagram are shown in Figure 12.18.

AbstractCodeRelationship

" | Extends

+from +o
{redefines from} {redefines to}
1
Datatype 8

1

Figure 12.18 - ClassRelations Class Diagram

12.21.1 Extends Class

The Extends is a specific meta-model element that represents semantic relation between two classes, where one class
(called a “child” class) extends another class (called its “parent” class) through inheritance, common to object-oriented
languages.

Superclass
AbstractCodeRel ationship

Associations

from:Datatype[1] the child Class

to:Datatype[1] the parent Class

Constraints
1. Thefrom- and to- endpoints should be different.

Semantics

Extends relationship represents the associations between two datatypes in which the first datatype (called the “ child” class)
“subclasses’ the second datatype (called the “ parent” class) by inheriting the semantics and owned elements of the parent
class.

© ISO/IEC 2012 - All rights reserved 121



ISO/IEC 19506:2012(E)

Part 5: Code Elements Representing Preprocessor Directives

A typical preprocessor allows the use of an embedded language in the source code written in some primary language. It
is different than let’'s say an HTML/Javascript program or programs with embedded assembler routines where there is
more than one language but those don’t end up forming a modified version in a single language that is what gets compiled
and executed (and that could be traced after, etc.). Example of the use of the preprocessor include Cobol copy replacing,
Exec CICS, Exec SQL, 4GL user-defined language elements (such as MENTER macro/command in Dataflex).

The Exec SQL in Cobol example might be one of the best and easiest to look at. From a modeling/representation
perspective the SQL statement itself is very much what we want to capture along with the various data elements and
variables involved and their flow. However, an embedded SQL statement is expanded by the SQL pre-processor that
generates some low-level code that will translate into a call to some library. By capturing this as generated code and
correctly associating the elements, we can understand the program both from its SQL semantic, as well as from its
execution realm. And our relationship between the “SQL language” elements to the “native’ code elements that are
generated is the glue tying things together. Trying to do the same analysis and operations by simply working with a
couple of SourceRef would be very limiting indeed.

Preprocessor directive is a language/dialect on its own and it should be handled and treated as a first class citizen in
KDM. However, the preprocessor support is an optional part of the code model, so that and the non-preprocessor-enabl ed
LO KDM tool can seamlessly ignore the embedded language and work only with the primary language. The implementer
shall either:

1. Represent the embedded language in KDM and ignore the primary code that results from expansion of some
preprocessor directives (provided this can lead to a meaningful model).

2. Ignore the embedded language and represent only the primary language in KDM.
3. Represent both the embedded and the generated primary code and relations between the two.

In order to achieve this goal, KDM modeling framework provides a strong separation between embedded language
representation and primary language representation.

Preprocessor support in KDM allows conveying information that a certain code element appeared as the result of being:

- originaly coded in the primary language
« included from another file by a preprocessor
» generated by a preprocessor as an expansion of an embedded language directive
- selected by satisfying appropriate conditions by the preprocessor
KDM provides the following modeling elements for representing preprocessor directives:
» PreprocessorDirective - representation of a generic preprocessor directive and a superclass for several other concrete
preprocessor directives.
« MacroUnit -representation of macro definitions.

« MacroDirective - representation of an embedded language construct as distinguishable from the primary language
construct. Thisis also known asaMacro Call.

» IncludeDirective - representation of an include directive of apreprocessor.
« ConditionalDirective - representation of a pre-processor conditional branch.

122 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.22 Preprocessor Class Diagram

The Preprocessor class diagram defines the meta-model elements to represent embedded language constructs and to
support common modeling situations resulting from the use of a language preprocessor (for example, preprocessor
defined as part of the C language, or the preprocessing capabilities of Coboal).

The class diagram in Figure 12.19 shows these classes and their associations.

AbstractCodeElement +codeElement
0..* {subsets ownedElement}

PreprocessorD irective

0.1 +owner
. {subsets owner}

ConditionalDirective

MacroUnit
<kind : MacroKind

IncludeDirective

<<enumeration>>
MacroKind

MacroDirective “regular

<option

<undefined
e xternal
<unknown

Figure 12.19 - Preprocessor Class Diagram
12.22.1 PreprocessorDirective Class (generic)

PreprocessorDirective is a generic meta-model element that represents preprocessor directives common to some
programming languages (for example, the C language preprocessor capabilities). This class is extended by several
concrete meta-model elements that represent several key directive types common to language preprocessors. KDM
representations of existing systems are expected to use concrete subclasses of PreprocessorDirective, however this class
itself is a concrete meta-model element and can be used as an extended element with an appropriate stereotype to
represent other types of preprocessing directives not covered by the standard subclasses. Semantics of preprocessor
directives in KDM is described later in this sub clause.

Superclass
AbstractCodeElement

Associations

codeElement:AbstractCodeElement[0..*] This optional code element represents the content of the preprocessor
directive.

Constraints
1. PreprocessorDirective should have a stereotype.

© ISO/IEC 2012 - All rights reserved 123



ISO/IEC 19506:2012(E)

Semantics

From the KDM perspective, each preprocessor directive (an embedded |anguage statement) is a container for code
elements (possibly empty). KDM preprocessor support does not define any further special elements for semantic-rich
representation of the embedded language directives. The implementer may provide additional information using
stereotypes. The macro declaration is just code written for example in the “ Cpreprocessor” language and can be
represented using standard KDM constructs, such as CodeElements, Action, Flow, etc., if needed or light-weight
extension elements, like Stereotypes and ExtendedValues. In many situations, the right implementation choice is to leave
the directive as an empty container with a name, and likely, a SourceRef with a code snippet.

It is possible to provide a high-fidelity semantic-rich representation of the preprocessor directives themselves (for
example, parameters to MacroUnit, the body of the MacroUnit as CodeElements, conditional compilation expressions as
KDM micro actions and flows) however in most situations this is inadequate. Besides, since many preprocessors operate
at the level of lexical tokens or below, the representation of the body of the MacroUnit may not be adequate at the level
of the CodeModel. In many situations, only the resulting code in the primary language can be interpreted semantically
and represented as meaningful KDM CodeElements. Relationship Alternative is a practical approximation of a more
precise description of the flow between the alternative branches of the conditional compilation directive. Examples to this
clause only illustrate a simplified approach.

“Generated” code (code in the primary language that results from executing the preprocessor directives) is owned by a
BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor directive. It
is recommended that the generated code has a SourceRef with a snippet, since it is not present in the original source file
and cannot be referred to using the SourceRegion construct.

“Included” code (code in the primary language that results from executing the pre-processor include directive) is also
owned by a BlockUnit. There is a relation GeneratedFrom from the entire BlockUnit to the corresponding pre-processor
directive. From the logical perspective, the contents of an included file are owned by a certain SharedUnit. The
implementer may either clone the included code elements or to reuse them and keep a single copy in the SharedUnit. The
recommended approach is to clone the elements of the SharedUnit.

The implementer of KDM has the following implementation choices:

« Ignore the embedded language constructs, represent original and generated primary code; the resulting KDM does not
contain any pre-processor directives, and relationships expand and alternative; information about the embedded
language cannot be recovered from the KDM representation.

» Ignore the generated primary code, provide a high-fidelity representation to the embedded construct; the embedded
construct is the origin and the target of KDM relationships; some details of how the embedded construct is expanded
into the primary code may not be recovered from the KDM instance (but in general, the embedded construct provides
a better choice, sinceit is the construct introduced by the devel oper).

» Represent both the embedded constructs and the primary code, provide a high-fidelity representation only to the
primary code; there is a BlockUnit that owns the generated code, the generated code is the origin and the target of
KDM relationships; there are no KDM relations to and from the embedded construct (other than Expands and
Alternative); thereis a GeneratedFrom relation from the entire BlockUnit to the corresponding embedded construct.

» Represent both the embedded constructs and the primary code, provide the high fidelity representation to the
embedded construct: there is a BlockUnit that owns the generated code, the embedded construct is the origin and the
target of KDM relationships; there are no KDM relationships to and from the BlockUnit representing the generated
code (but there may be some local relationships inside the BlockUnit); there is a GeneratedFrom relation from the
entire BlockUnit to the corresponding embedded construct.

124 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

12.22.2 MacroUnit Class

MacroUnit class represents macro definitions common to several programming languages. Although KDM allows
semantic-rich contents of MacroUnit (as it is a subclass of a ControlElement), usually it is sufficient to represent a macro
definition only as a names KDM element that can be the target of special Expands relations, so that its usage in the
primary code as well as in other macro definitions can be tracked. The kind attribute provides some additional semantic
information about the macro definition.

Superclass

PreprocessorDirective

Attributes
kind:MacroKind additional semantic properties of the macro definition

Semantics

MacroUnit represents a preprocessor directive that defines a named rule for generating code, usually in the form of a
macrodefinition, possible with the parameters and the body, where the occurrence of the name of the macro with the
actual parameters is substituted by the body of the macro definition. KDM does not explicitly represent parameters to the
macro directive or the body of the macro definition, since the granularity of these objects is usually related to string
manipulation. However, the optional owned code element may be used to represent these.

The implementer shall select a particular strategy to represent macro units.
12.22.3 MacroKind data type (enumeration)
MacroKind enumeration datatype describes several semantic classes of MacroUnits.

Literal Value

regular Macro definition has a body and may have parameters.

option Macro definition without a body and parameters, only a name.

undefined This value represents an undefined macro as the target for some relationsin the
representation of default branches of conditional compilation and variants.

external external compilation option

unknown unknown class of a macro definition

12.22.4 MacroDirective Class

MacroDirective class represents the so-called “macro call,” the occurrence of a macro name (possible with parameters) in
the primary code, such that the preprocessor recognizes it and “expands’ by substituting the macro directive construct
with its “definition.” A block of “generated” code elements that represent the primary code resulting from macro
expansion may be associated with the MacroDirective.

© ISO/IEC 2012 - All rights reserved 125



ISO/IEC 19506:2012(E)

Superclass

PreprocessorDirective

Semantics

MacroDirective represents the so-called “macrocall,” or an occurrence of a macro name (possibly with the actual
parameters) which is substituted by the body of the macro definition in which the occurrences of the formal parameters
are substituted by the corresponding actual parameters. A MacroDirective can own an optional action element as the
origin of the action relationships to the actual parameters to the MacroDirective.

12.22.5 IncludeDirective Class

IncludeDirective class represents the so-called include directive, common to several programming languages and their
preprocessors (for example, the COPY statement in Cobol, the #include directive in the C language). The include
directive is usually related to a SharedUnit (for example, a copybook in Cobol, or a header file in C). A block of
“included” code elements, which are the clones of the elements owned by the SharedUnit may be associated with the
include directive. Semantics of the IncludeDirective class is described later in this section in more detail.

Superclass

PreprocessorDirective

Semantics

IncludeDirective represents a preprocessor directive that is related to copying the content of some SharedUnit into a
stand-alone CompilationUnit.

12.22.6 Conditional Directive Class

ConditionalDirective class represents the so-called “variant” of a software system, resulting from the use of conditional
compilation capabilities, common to several programming languages and their preprocessors (for example the #if ...
#endif and #ifdef ... #endif directives of the preprocessor of the C language). Conditional Directive represents a single
“branch” of the conditional compilation construct. A block of “conditional” code elements that represent the elements of
this particular variant that were selected for compilation may be associated with the conditional directive. Semantics of
the Conditional Directive class is described later in this section in more detail.

Superclass
PreprocessorDirective

Semantics

Conditional directive identifies a variant of the software system within a software product line that is controlled by the so-
called conditional compilation. Conditional directive determines a block of “generated” code, corresponding to the
selected variant. The block of “generated” code identifies the corresponding conditional directive.

12.23 PreprocessorRelations Class Diagram

The Preprocessor class diagram defines several concrete relationship types for the KDM support of embedded language
constructs and pre-processor directives, common to several programming languages.

126 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

The classes and associations of the PreprocessorRelations class diagram are shown at Figure 12.20.

AbstractCodeRelationship

VariantTo L i
Expands
+to
{redefines to} Redefines
rom 0.% o.*

{redefines from} {redefings to}

+
from 1 +to
Includes 0.* {redefin m}y 1 {redefines to}
PreprocessorD irective +from
0. +from 1 {redefines fiqm}
: {redefines from} 1
+to
{redefines to}
+to 1
{redefines to} 0..* GeneratedFrom

AbstractCodeElement

1
+from
{redefines from}

Figure 12.20 - PreprocessorRelations Class Diagram

12.23.1 Expands Class

Expands class represents the rel ationship between a MacroUnit to another MacroUnit or from a MacroDirectiveto a
MacroUnit. This relationship results from using the name of the target macro definition in the context of the origin MacroUnit
or MacroDirective.

Superclass
AbstractCodeRelationship

Associations

to:MacroUnit[1] the target MacroUnit
from:PreprocessorDirective[1] The origin context in which the MacroUnit is used.
Semantics

The implementer shall identify and represent associations between MacroUnits, aswell as a MacroDirective and the
corresponding MacroUnit according to the semantics of the preprocessor. See general description of the Preprocessor support
for the implementer guidelines.

© ISO/IEC 2012 - All rights reserved 127



ISO/IEC 19506:2012(E)

12.23.2 GeneratedFrom Class

GeneratedFrom class represents the relationship between a block of code elements that were not originally produced by the
developers, but were produced by the preprocessor as the result of processing a certain preprocessor directive. In particular,
according to the level of granularity selected in KDM, aligned with the concrete subclasses of the PreprocessorDirective class,
the resulting code may represent one of the following:

» “generated” code that correspondsto a certain MacroDirective.
« “included” code that corresponds to a certain IncludeDirective.
» “conditional” code that was selected as a particular “variant” of a software product line with conditional compilation.

GeneratedFrom relationship originates from the entire BlockUnit that owns the “generated” code and target the corresponding
PreprocessorDirective.

Superclass
AbstractCodeRelationship

Associations

to:PreprocessorDirective[1] A subclass of a PreprocessorDirective class that represents the preprocessor
directive that was involved in producing the code.

from:AbstractCodeElement[1] The BlockUnit that owns the “generated” code.

Constraints
1. Theorigin of the GeneratedFrom relationship should be a BlockUnit.

Semantics
See the general description of the preprocessor directives for the implementer’ s guidelines.

Example (C preprocessor)

#define GT(A,B) ((A) > (B))
#define GMAX(A,B) g=( GT(A,B) ? (A) : (B))
GMAX (p+q, r+s );

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Macro Directive Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CompilationUnit">
<codeElement xmi:id="1id.2" xmi:type="code:MacroUnit" name="GMAX">
<source language="Cpreprocessor"
snippet="#define GMAX(A,B) g=( GT(A,B) ? (A) : (B) )"/>
<codeRelation xmi:id="id.3" xmi:type="code:Expands" to="id.4" from="id.2"/>
</codeElement>
<codeElement xmi:id="1id.4" xmi:type="code:MacroUnit" name="GT">

128 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<source language="Cpreprocessor" snippet="#define GT(A,B) ((A) > (B))"/>
</codeElement>
<codeElement xmi:id="1d.5" xmi:type="action:BlockUnit">
<codeElement xmi:id="1id.é6" xmi:type="code:StorableUnit" name="p" type="1id.49"/>
<codeElement xmi:id="1id.7" xmi:type="code:StorableUnit" name="q" type="1id.49"/>
<codeElement xmi:id="1d.8" xmi:type="code:StorableUnit" name="r" type="1id.49"/>
<codeElement xmi:id="1d.9" xmi:type="code:StorableUnit" name="sg" type="1d.49"/>
<codeElement xmi:id="1d.10" xmi:type="code:StorableUnit" name="g" type="1d.49"/>
<codeElement xmi:id="1d.11" xmi:type="code:MacroDirective" name="ml">
<source xmi:id="id.12" language="Cpreprocessor" snippet="GMAX (p+q,r+s);"/>
<codeRelation xmi:id="id.13" xmi:type="code:Expands" to="id.2" from="id.11"/>
</codeElement>
<codeElement xmi:id="1d.14" xmi:type="action:BlockUnit" name="bml">
<codeRelation xmi:id="id.15" xmi:type="code:GeneratedFrom" to="id.11" from="id.14"/>
<codeElement xmi:id="1d.16" xmi:type="action:ActionElement">
<source xmi:id="id.17" language="C"
snippet="g=( ((p+q) > (r+s)) ? (p+q) : (r+s) );"/>
<codeElement xmi:id="id.18" xmi:type="action:ActionElement" name="al" kind="Add">
<actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.6" from="id.18"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.10" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.47" from="id.18"/>
<actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.23" from="id.18"/>
</codeElement>
<codeElement xmi:id="id.23" xmi:type="action:ActionElement" name="a2" kind="Add">
<actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.8" from="id.23"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.9" from="id.23"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="1id.48" from="id.23"/>
<actionRelation xmi:id="1d.27" xmi:type="action:Flow" from="id.23"/>
</codeElement>
<codeElement xmi:id="id.28" xmi:type="action:ActionElement"
name="a3" kind="GreaterThan">
<codeElement xmi:id="1d.29" xmi:type="code:StorableUnit"
name="c" type="1id.50" kind="register"/>
<actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.47" from="id.28"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.48" from="id.28"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.29" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
</codeElement>
<codeElement xmi:id="1id.34" xmi:type="action:ActionElement"
name="a3.1" kind="Condition">
<actionRelation xmi:id="id.35" xmi:type="action:Reads"
to="1d.29" from="id.34"/>
<actionRelation xmi:id="1d.36" xmi:type="action:TrueFlow"
to="1id.38" from="id.28"/>
<actionRelation xmi:id="1d.37" xmi:type="action:FalseFlow"
to="id.42" from="id.34"/>
</codeElement>
<codeElement xmi:id="id.38" xmi:type="action:ActionElement"
name="a4" kind="Assign">
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.47" from="id.38"/>
<actionRelation xmi:id="id.40" xmi:type="action:Writes" to="id.10" from="id.38"/>
<actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.46" from="id.38"/>
</codeElement>
<codeElement xmi:id="id.42" xmi:type="action:ActionElement"
name="a5" kind="Assign">

© ISO/IEC 2012 - All rights reserved 129



ISO/IEC 19506:2012(E)

<actionRelation xmi:id="1id.43" xmi:type="action:Reads" to="id.48" from="id.42"/>
<actionRelation xmi:id="1id.44" xmi:type="action:Writes" to="id.7" from="id.42"/>
<actionRelation xmi:id="id.45" xmi:type="action:Flow" to="id.46" from="id.42"/>
</codeElement>
<codeElement xmi:id="1d.46" xmi:type="action:ActionElement" name="aé" kind="Nop"/>
<codeElement xmi:id="id.47" xmi:type="code:StorableUnit"
name="t1" type="1d.49" kind="register"/>
<codeElement xmi:id="1d.48" xmi:type="code:StorableUnit"
name="t2" type="1d.49" kind="register"/>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.49" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="1id.50" xmi:type="code:BooleanType" name="boolean"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.23.3 Includes Class

Includes class represents the relationship from an IncludeDirective to a SharedUnit that represents the code elements being
included.

Superclass
AbstractCodeRelationship

Associations

from:AbstractCodeElement[1] the code € ements being included (usually a SharedUnit)

from:PreprocessorDirective[1] The IncludeDirective class that represents the include directive.

Constraints

1. Theorigin of the Includes relationship should be an IncludeDirective.

Semantics

The implementer shall identify and represent include relationships according to the semantics of the particular
preprocessor.

Example (C preprocessor)
/*---a.h---%/

.cl
L..C2. ..
[*---a.c---%*/
#include “a.h”

.cl...

<?xml version="1.0" encoding="UTF-8"?>

130 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Include Directive Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<extensionFamily xmi:id="id.1" >
<stereotype xmi:id="id.2" name="sample"/>
</extensionFamily>
<codeElement xmi:id="id.3" xmi:type="code:SharedUnit" name="a.h">
<codeElement xmi:id="id.4" xmi:type="code:CodeElement" stereotype="id.2" name="cl">
<source xmi:id="id.5" language="C"/>
</codeElement>
<codeElement xmi:id="1d.6" xmi:type="code:CodeElement" stereotype="id.2" name="c2">
<source xmi:id="id.7" language="C"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.8" xmi:type="code:CompilationUnit" name="a.c">
<codeElement xmi:id="1d.9" xmi:type="code:IncludeDirective">
<source language="Cpreprocessor" snippet="#include &quot;a.h&quot;"/>
<codeRelation xmi:id="id.10" xmi:type="code:Includes" to="id.3" from="id.9"/>
</codeElement>
<codeElement xmi:id="id.11" xmi:type="action:BlockUnit" name="bl">
<codeRelation xmi:id="id.12" xmi:type="code:GeneratedFrom" to="id.9" from="id.11"/>
<codeElement xmi:id="1d.13" xmi:type="code:CodeElement"
stereotype="id.2" name="cl clone">
<source xmi:id="id.14" language="C"/>
</codeElement>
<codeElement xmi:id="1id.15" xmi:type="code:CodeElement"
stereotype="id.2" name="c2_clone">
<source xmi:id="id.16" language="C"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.17" xmi:type="action:BlockUnit" name="b2">
<codeElement xmi:id="1d.18" xmi:type="action:ActionElement" name="al">
<actionRelation xmi:id="id.19" xmi:type="action:ActionRelationship"
to="1id.13" from="id.18"/>
</codeElement>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.23.4 VariantTo Class

VariantTo class represents the relationship between variants of a software product line with conditional compilation. This
relationship connects the Conditional Directive to each alternative branch of the conditional compilation directive. KDM
representation is expected to identify asingle “default” variant, to which additional variants are alternatives. Thereisno
VariantTo relationship to the “default” variant, only to the alternative ones. Each variant is expected to contain the relationship
GeneratedFrom connecting it to the corresponding Conditional Directive. The “default” variant is expected to have a
VariantTo relationship to every alternative branch.

© ISO/IEC 2012 - All rights reserved 131



ISO/IEC 19506:2012(E)

Superclass
AbstractCodeRelationship

Associations

to:PreprocessorDirective[1] Conditional Directive class that represents an alternative variant of the conditional.

from:PreprocessorDirective[1] A Conditional Directive class that represents the default variant of the conditional.

Constraints
1. Theorigin of the VariantTo relationship should be a Conditional Directive.

2. Thetarget of the VariantTo relationship should be a Conditional Directive.

Semantics

The implementer shall identify and represent the variants and associations between the “generated” code and the
corresponding conditional directive according to the semantics of the preprocessor. See the general description of the
preprocessor directive support and the implementer guidelines.

Example (C preprocessor)

#define UNIX 1
#if UNIX | DEBUG
g=1;

#endif

Ifdef UNIX
g=1

#else

g=2

#endif

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Variants Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:MacroUnit" name="UNIX">
<source language="Cproprocessor" snippet="#define UNIX 1"/>
</codeElement>
<codeElement xmi:id="id.2" xmi:type="code:MacroUnit" name="DEBUG" kind="external"/>
<codeElement xmi:id="1id.3" xmi:type="code:StorableUnit" name="g" type="1id.4">
<codeElement xmi:id="id.4" xmi:type="code:IntegerType"/>
</codeElement>
<codeElement xmi:id="id.5" xmi:type="code:ConditionalDirective" name="cl">
<source language="Cpreprocessor" snippet="#if UNIX | DEBUG"/>
<codeRelation xmi:id="id.6" xmi:type="code:Expands" to="id.1l" from="id.5"/>
<codeRelation xmi:id="id.7" xmi:type="code:Expands" to="id.2" from="id.5"/>
</codeElement>

132 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1d.8" xmi:type="action:BlockUnit" name="bl">
<codeRelation xmi:id="id.9" xmi:type="code:GeneratedFrom" to="id.5" from="id.8"/>
<codeElement xmi:id="1d.10" xmi:type="action:ActionElement" name="al" kind="Assign">
<source xmi:id="id.11" language="C" snippet="g=123"/>
<codeElement xmi:id="1id.12" xmi:type="code:Value" name="123" type="id.4"/>
<actionRelation xmi:id="id.13" xmi:type="action:Reads" to="id.12" from="id.10"/>
<actionRelation xmi:id="id.14" xmi:type="action:Writes" to="id.3" from="id.10"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.15" xmi:type="code:ConditionalDirective" name="c2">
<source language="Cpreprocessor" snippet="#ifdef UNIX"/>
<codeRelation xmi:id="id.16" xmi:type="code:Expands" to="id.l" from="id.15"/>
<codeRelation xmi:id="id.17" xmi:type="code:VariantTo" to="id.25" from="id.15"/>
</codeElement>
<codeElement xmi:id="1d.18" xmi:type="action:BlockUnit" name="b2">
<codeRelation xmi:id="id.19" xmi:type="code:GeneratedFrom" to="id.15" from="id.18"/>
<codeElement xmi:id="1d.20" xmi:type="action:ActionElement" name="a2" kind="Assign">
<source xmi:id="id.21" language="C" snippet="g=123"/>
<codeElement xmi:id="1id.22" xmi:type="code:Value" name="1" type="id.4"/>
<actionRelation xmi:id="id.23" xmi:type="action:Reads" to="id.22" from="1id.20"/>
<actionRelation xmi:id="id.24" xmi:type="action:Writes" to="id.3" from="id.20"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.25" xmi:type="code:ConditionalDirective" name="c3">
<source language="Cpreprocessor" snippet="#else"/>
<codeRelation xmi:id="id.26" xmi:type="code:Expands" to="id.l1" from="id.25"/>
</codeElement>
<codeElement xmi:id="1id.27" xmi:type="action:BlockUnit" name="b3">
<codeRelation xmi:id="id.28" xmi:type="code:GeneratedFrom" to="id.25" from="id.27"/>
<codeElement xmi:id="1d.29" xmi:type="action:ActionElement" name="a3" kind="Assign">
<source xmi:id="id.30" language="C" snippet="g=123"/>
<codeElement xmi:id="1d.31" xmi:type="code:Value" name="2" type="id.4"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.31" from="1id.29"/>
<actionRelation xmi:id="id.33" xmi:type="action:Writes" to="id.3" from="id.29"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.23.5 Redefines Class

Redefines class represents the rel ationship between a MacroUnit and another MacroUnit (usually with the same name) where
the origin MacroUnit is aredefinition of the MacroUnit that is the target of the relationship. In many preprocessors, the
redefinition is achieved simply by providing another macro definition with the same name. KDM Expands relationships are
expected to correctly represent the semantics of the given preprocessor, by targeting the MacroUnit which is “current”
definition at the given point.

Superclass
AbstractCodeRelationship

© ISO/IEC 2012 - All rights reserved 133



ISO/IEC 19506:2012(E)

Associations

to:MacroUnit[1] the old MacroUnit

from:PreprocessorDirective[1] the new MacroUnit

Constraints
1. Theorigin of the Redefines relationship should be a MacroUnit.

Semantics

The implementer shall identify and represent redefinitions of macro units according to the semantics of the particular
preprocessor.

Example (C preprocessor)

#define A 1
#define A 2
#undef A
#pragma once

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlnsExmi:igttg:(/schema.omg.org/spec/XMI/Z.l” Y
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Preprocessor Directives example">
<model xmi:id="1id.0" xmi:type="code:CodeModel">
<extensionFamily xmi:id="id.1" >
<stereotype xmi:id="id.2" name="directive"s>
<tag xmi:id="id.3" tag="directive_type" type="String"/>
</stereotype>
</extensionFamily>
<codeElement xmi:id="1id.4" xmi:type="code:MacroUnit" name="A">
<source language="Cpreprocessor" snippet="#define A 1"/>
</codeElement>
<codeElement xmi:id="id.5" xmi:type="code:MacroUnit" name="DEBUG" kind="option"s>
<source language="Cpreprocessor" snippet="#define DEBUG"/>
</codeElement>
<codeElement xmi:id="1id.6" xmi:type="code:MacroUnit" name="A">
<source language="Cpreprocessor" snippet="#define A 2"/>
<codeRelation xmi:id="id.7" xmi:type="code:Redefines" to="id.4" from="id.6"/>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="code:MacroUnit" name="A" kind="undefined">
<source language="Cpreprocessor" snippet="#undef A"/>
<codeRelation xmi:id="id.9" xmi:type="code:Redefines" to="id.é6" from="id.8"/>
</codeElement>
<codeElement xmi:id="1id.10" xmi:type="code:PreprocessorDirective" stereotype="id.2" name="dl">
<taggedvValue xmi:id="1id.11" xmi:type="kdm:TaggedvValue" tag="id.3" value="pragma once"/>
<source language='"Cpreprocessor" snippet="#pragma once"/>
</codeElement>
</model>
</kdm: Segment >

134 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Subpart 7: Miscellaneous Code Elements

12.24 Comments Class Diagram

The Comments class diagram defines meta-model elements that represent comments. Comment is at the bottom of the
inheritance hierarchy so that it can occur in all containers without restrictions. The classes and associations of the
Comments diagram are shown in Figure 12.21.

AbstractCodeElement ModelElement

(from core)

{subsets owner}
+owner

Comments CommentUnit
wtext : String

+comment 0..*
{subsets ownedElement
ordered}

Figure 12.21 - Comments Class Diagram
12.24.1 CommentUnit Class

The CommentUnit is a meta-model element that represents comments in existing systems (including any special
comments). CommentUnit element can be used to introduce comments during transformation of the existing system
(including special comments).

Superclass
M odel Element

Attributes

text:String the representation of the comment

Semantics

CommentUnit represents comments in the source code. CommentUnits are associated with a certain code element. The
implementer shall make an adequate decision on how to associate line comments with the surrounding elements in the
source code.

© ISO/IEC 2012 - All rights reserved 135



ISO/IEC 19506:2012(E)

12.24.2 AbstractCodeElement Class (additional properties)

Associations

comment:CommentUnit[0..*] CommentUnits associated with the AbstractCodeElement

Semantics

12.25 Visibility Class Diagram

The Visibility class diagram defines meta-model elements that represent visibility of code elements in their corresponding
containers. The classes and associations that make up the Visibility diagram are shown in Figure 12.22.

+groupedCode
{subsets groupedElement} Codeltem

0..*

NamespaceUnit

+group
{subsets group}

Figure 12.22 - Visibility Class Diagram
12.25.1 Namespace Class

The Namespace is a specific meta-model element that represents the target of the Visibleln or Imports visibility
relationships.

Superclass
Codeltem

Associations

groupedCode:Codeltem][0..*] A KDM group of code elements that belong to the namespace. The actual
owners of these elements are the corresponding modul es, not the namespace,
since namespaces can, in general cross cut the module boundaries.

136 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Constraints
1. Namespace element should not belong to own group.

Semantics

A Namespace is a group of code elements. A Namespace can be owned by Module element or one of its subclasses.
Namespace class represents a unit of visibility (for example, the namespace concept in C++).

An anonymous hamespace can represent a group of code elements that are the target of an Imports relationship.

12.26 VisibilityRelations Class Diagram

The VisibilityRelations class diagram defines meta-model elements that represent visibility of code elements in their
corresponding containers. The classes and associations of the Visibility diagram are shown in Figure 12.22.

AbstractCodeRelationship

+from +from
{redefines from} {redefiyg\
1
Visibleln 4\ Codeltem o Imports
+to B
+to 1 1 ({redefines to} ‘ 0.*
0.* {redefines to}

Figure 12.23 - VisibilityRelations Class Diagram

12.26.1 Visibleln Class

The Visibleln is a specific meta-model element that represents semantic relation between two code items, where one
provides the restricted visibility context for another code item.

Superclass
AbstractCodeRel ationship

Associations

from:Codeltem[1] The Codeltem visibility of which is specified.

to:Codeltem[1] The Codeltem that provides the visibility context.

© ISO/IEC 2012 - All rights reserved 137



ISO/IEC 19506:2012(E)

Semantics

Visibleln optional relationship represents an association between a code item and one of the containers that corresponds to the
visibility scope of thefirst item. Thisrelationship is optional, since all other KDM relationships are determined by the
semantics of the target language, including the visibility rules.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Visibility and Comment Example">
<model xmi:id="1id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="id.2" xmi:type="code:NamespaceUnit"
name="ab" groupedCode="id.4 id.9 id.13"/>
<codeElement xmi:id="1id.3" xmi:type="code:CompilationUnit" name="a">
<codeElement xmi:id="1id.4" xmi:type="code:CallableUnit"
name="foo" type="id.8" kind="regular"s>
<comment text="Comment #1 to foo"/>
<comment text="Comment #2 to foo"/>
<codeRelation xmi:id="id.5" xmi:type="code:VisibleIn" to="id.2" from="id.4"/>
<codeElement xmi:id="id.6" xmi:type="action:ActionElement" name="al">
<comment xmi:id="id.7" text="Comment to action element al"/>
</codeElement>
<codeElement xmi:id="id.8" xmi:type="code:Signature" name="foo"/>
</codeElement>
<codeElement xmi:id="id.9" xmi:type="code:IntegerType" name="int">
<comment xmi:id="id.10" text="Comment to integer type"/>
<codeRelation xmi:id="id.11" xmi:type="code:VisibleIn" to="id.2"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.12" xmi:type="code:CompilationUnit" name="b">
<codeElement xmi:id="id.13" xmi:type="code:RecordType" name="bar"s>
<comment xmi:id="id.14" text="Comment to record type bar"/>
<codeRelation xmi:id="id.15" xmi:type="code:VisibleIn" to="id.2" from="id.13"/>
<itemUnit xmi:id="1id.16" name="foobar" type="id.9">
<comment xmi:id="id.17" text="Comment to item unit foobar"/>
<codeRelation xmi:id="id.18" xmi:type="code:VisibleIn" to="id.13" from="id.16"/>
</itemUnits>
</codeElement>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

12.26.2 Imports Class

The Imports meta-model element represents an association between two Codeltems where one Codeltem “imports’
definitions from anocther. The “import” relationship is common to several programming languages (for example, the
import statement in Java). In this relationship the origin Codeltem (usually, a CompilationUnit or a subclass of Module)
resolves the visibility of certain names that are defined (owned) by the target Codeltem (usually, another CompilationUnit

138 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

or some other subclass of Module, but possibly a NamespaceUnit from another Codeltem, or even an individual code
element). The Imports class simply represents the “import” relationships between Codeltem, for example, for tracking
dependencies between packages. KDM representations themselves do not require additional import statements in order to
have relationships between Codeltem, or even between different models.

Superclass
AbstractCodeRelationship

Associations

from:Codeltem[1] A subclass of CodeResource that represents the “consumer” of the imported definitions.

to:Codeltem[1] A subclass of CodeResource that represents the “owner” of the imported definitions.

Constraints
1. Theorigin of the Imports relationship should be a subclass of Module.

Semantics
The implementer shall identify and represent import directives and their targets according to the semantics of the

programming language of the existing software system.
12.27 ExtendedCodeElements Class Diagram

The ExtendedCodeElements class diagram defines two “wildcard” generic elements for the code model as determined by
the KDM model pattern: a generic code entity and a generic code relationship.

The classes and associations of the ExtendedCodeElements diagram are shown in Figure 12.22.

AbstractCodeRelationship

Codeltem CodeRelationship
+from 0.*
{redefines from} 0%
h +to
{redefines to}
CodeElement 1
KDMEntity
(from core)

Figure 12.24 - ExtendedCodeElements Class Diagram

© ISO/IEC 2012 - All rights reserved 139



ISO/IEC 19506:2012(E)

12.27.1 CodeElement Class (generic)

The CodeElement is a generic meta-model element that can be used to define new “virtual” meta-model elements through
the KDM light-weight extension mechanism.

Superclass

Codeltem

Constraints

1. CodeElement should have at least one stereotype.

Semantics

A code entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the code model. Thisis one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

12.27.2 CodeRelationship Class (generic)

The CodeRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass
AbstractCodeRelationship

Associations

from:Codeltem[1] the Codeltem

to:KDMEntity[1] the KDMEntity

Constraints
1. CodeRelationship should have at least one stereotype.

Semantics

A code relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the code model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

140 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

13 Action Package

13.1 Overview

The Action package defines a set of meta-model elements whose purpose is to represent implementation-level behavior
descriptions determined by programming languages, for example statements, operators, conditions, features, as well as
their associations, for example control and data flow. Action package extends the KDM Code package. As a general rule,
in a given KDM instance, each instance of an action element represents some programming language construct,
determined by the programming language of the existing software system. Each instance of an action meta-model element
corresponds to a certain region of the source code in one of the artifacts of the software system. An action element usually
represents one or more statements, and an action relationship usually represents a usage of a name in a statement.

13.2 Organization of the Action Package

The Action package consists of the following 11 class diagrams:
+ ActionElements
» ActionFlow
 Actionlnheritances
+ CallableRelations
- DataRelations
» ExceptionBlocks
» ExceptionFlow
» ExceptionRelations
 InterfaceRelations
» UsesRelations
-+ ExtendedActionElements
The Action package depends on the following packages:
+ Core
e kdm

» Source

13.3 ActionElements Class Diagram
In general, the Action package follows the uniform pattern for KDM models and extends the KDM Framework with

specific meta-model elements related to implementation-level behavior. The Action package deviates from a uniform
pattern for KDM models because the Action package does not define a separate KDM model, but rather extends the Code

© ISO/IEC 2012 - All rights reserved 141



ISO/IEC 19506:2012(E)

model, defined in the Code package. Therefore each Action element is a subclass of AbstractCodeElement. Action
package defines most of the relationship types to the Code model. Together, Action and Code packages constitute the
Program Elements Layer of KDM.

The ActionElements diagram defines the following classes determined by the KDM model pattern:
» ActionElement —main class of the Action package.

» AbstractActionRelationship - a class representing an abstract parent of all KDM relationships that can be used to
represent actions (in general, related to usages of names in programming language statements).

The class diagram shown in Figure 13.1 captures these classes and their relations.

+actionRelation
{subsets ownedRelation

ordered}
ActionE lement ‘1//% AbstractActionRelationship
<kind : String
0”*
¢
" 0.1
BlockUnit AbstractCodeElement
+towner (from code)
{subsets owner}
0.1
+codeElement +entryFlow
{subsets ownedE lement} ¢ « {subsets ownedRelation}
0..*
AbstractCodeElement
(from code) EntryFlow

Figure 13.1 - ActionElements Class Diagram
13.3.1 ActionElement Class

The ActionElement is a class to describe a basic unit of behavior. ActionElements are endpoints for primitive relations.
ActionElement can be linked to the original representation through the SourceRef element from the Source package.

Superclass
AbstractCodeElement

Attributes

kind:String Represents the meaning of the operations, performed by the ActionElement.

142 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

actionRelation:ActionRelationship[0..*] Action relationships originating from the given action element.

codeElement: AbstractCodeElement[0..*] Owned code elements (for example, nested action elements, or nested
BlockUnits, or nested definitions of datatypes and computational objects).

Constraints

1. ActionElement may own StorableUnit or ValueElement and their subclasses and nested action elements.

Semantics

An action element represents a unit of behavior. It can represent one or more programming language statements, or even
a part of a programming language statement. The implementer shall select the granularity of the action elements. As a
minimum, each Control Element should own at least one ActionElement so that it can be the endpoint of all
ActionRelationships originating from the corresponding Control Element. Static analysis grade KDM implementations
should use well-defined fine grained ActionElements, specified as the “micro KDM” compliance point.

Data elements owned by the ActionElement represent temporary variables or values used by the action element. Action
elements may be nested, when one ActionElement instance is a container for other ActionElements.

For micro KDM compliance the list of the allowed action element kind values and their meaning is described in Annex
A. For non-micro KDM implementation, the value of the kind is not normative.

The implementer shall map programming language statements and other descriptions of behavior into KDM
ActionElements.

An ActionElement can own other ActionElements. Such ActionElement is called a “composite action.” Composite action
represents an entire set of leaf actions owned directly or indirectly.

13.3.2 AbstractActionRelationship Class (abstract)

The AbstractActionRelationship is the parent class representing various KDM relationships that originate from an
ActionElement.

Superclass
KDMRelationship

Semantics

Usually, an action relationship corresponds to some usage of a hame in a programming language statement. Action
relationships originate from ActionElements as opposed to code relationships that originate from code elements.
AbstractActionRelationship is subclassed by several concrete action relationship meta-elements.

13.3.3 BlockUnit Class

The BlockUnit represents logically and physically related blocks of ActionElement, for example, blocks of statements.

© ISO/IEC 2012 - All rights reserved 143



ISO/IEC 19506:2012(E)

Superclass
ActionElement

Associations
codeElement:AbstractCodeElement|0..*] owned code elements including nested BlockUnits

Semantics

A BlockUnit is alogical container for action elements. BlockUnit is similar to a composite ActionElement that can also
contain nested ActionElement and data elements. BlockUnit represents the entire set of leaf Actions, owned by the
BlockUnit directly or indirectly.

13.3.4 AbstractCodeElement (additional properties)

Associations

entryFlow:EntryFlow][0..*] EntryFlow relationships that associate the given abstract code element and some
action elements owned by it, which are designated as the entry actions.

Semantics

Control flow is transferred to the Entry actions when the AbstractCodeElement that owns them is entered. Multiple
EntryFlow elements represent nondeterministic control flow.

13.4 Actioninheritances Class Diagram

The Actionlnheritances class diagram is determined by the uniform pattern for extending the KDM framework. Action
package does not define a separate KDM model, but extends the Code model. The class diagram shown in Figure 13.2
captures these classes and their associations.

AbstractCodeElement

(from code) KDMRelationship

(from core)

ActionElement
<kind : String AbstractActionRelationship

Figure 13.2 - ActionInheritances Class Diagram

144 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

13.5 ActionFlow Class Diagram

The ActionFlow class diagram provides basic meta-model constructs to define the control-flow between ActionElements.
The class diagram shown in Figure 13.3 captures these classes and their relations.

AbstractActionRelationship

1 +10
0..* {redefines to}
{redgfines from}

ActionElement | 1
0..* @kind : String

ControlFlow

EntryF low

+to

\—T 1 {redefines to} 0..
Flow +from

{redefines from}
+from
1

AbstractCodeElement
(from code)

*

FalseFlow

GuardedFlow

TrueFlow

Figure 13.3 - ActionFlow Class Diagram

13.5.1 ControlFlow Class (generic)
The ControlFlow is a generic modeling element that represents control flow relation between two ActionElements. It is
further subclassed with more specific modeling elements. ControlFlow class could be used to represent programming

constructs that are not covered by any of the specific subclasses as an extension point.

Superclass
AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the control flow

to:ActionElement[1] The target of control flow, when represented by the next action element in the
trace determined by the control flow.

Constraints
1. ControlFlow class should always be used with a stereotype.

© ISO/IEC 2012 - All rights reserved 145



ISO/IEC 19506:2012(E)

Semantics

From the KDM representation perspective, ControlFlow meta-element is an extension point that can be used as the base
element for new “virtual” meta-model elements, representing specific control flow relationships not covered by the
semantic categories of its concrete subclasses. From the meta-model perspective, the ControlFlow element defines the
common properties of various control flow relationship representations in KDM.

Multiple ControlFlow elements represent nondeterministic choice of behavior.

The implementer shall map control flow mechanisms of the given programming language into ControlFlow meta-
elements. The implementer shall adequately represent the control flows of the existing system by a set of action elements
and Control Flow relationships between them.

13.5.2 EntryFlow Class

The EntryFlow is a modeling element that represents an initial flow of control into a KDM element. The EntryFlow
relationship is used in a uniform way for describing entry points to other KDM code elements. It should be used to
represent any type of special entry flows, such as the entry from a CodeAssembly to the initialization code block or
action, from Module to initialization block, from a callable unit to the initialization block, from a class to the initiaization
block or from a compound action to the first internal action.

Superclass
AbstractActionRel ationship

Associations

from:AbstractCodeElement[1] AbstractCodeElement that owns one or more action elements that
represents its behavior.

to:ActionElement[1] The action element that is selected when the owner element is called.

Constraints

1. Each AbstractCodeElement or its subclass such that it owns one or more ActionElement should have a corresponding
EntryFlow relationship in which the “from” attribute is the AbstractCodeElement.

2. The"to” attribute of an EntryFlow element should be an ActionElement that is owned by the AbstractCodeElement
that isthe “from™ attribute of the EntryFlow.

Semantics

The “entry” action element is the first action element in a trace that corresponds to the behavior of the owner
AbstractCodeElement. Multiple action elements that are designated as “entry” actions, represent a nondeterministic
choice, i.e., several possible trace families, each of which start with a different “entry” action element.

1. Represent initialization code as BlockUnit element with special micro action kind "Init."

2. Initialization code can belong to a Control Element, CompilationUnit, or CodeAssembly.

146 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

3. TheEntryFlow relationship is used in auniform way for describing entry points to other KDM code elements. It
should be used for any type of special flows, e.g., entry to a CodeAssembly to init Block or action, from Module to
init block, from callable unit to init block, from class to init block, or from compound action to the first internal
action.

4. The CodeAssembly should have custom initialization block that consists of a sequence of action elements, including
action elements with action kind="Init” and an EntryFlow relation to the initialization blocks of the owned
CompilationUnits (and other owned elements when appropriate), and an action element with action kind="Calls" and
aCallsrelation to the logical entry point (for example, the CallableUnit “main”). The initialization blocks of
compilation units referred to by custom initialization block in a CodeA ssembly do not need to have the Flow
relationship at their respective last action element. The control flow is resumed with the Flow relationship of the
initialization action in the custom initialization block. See example at “HasValue Class’ on page 116.

13.5.3 Flow Class

The Flow class is a modeling element that represents control flow relationship between two ActionElements such that the
ActionElement that corresponds to the “to” attribute of the Flow is a successor of the ActionElement that corresponds to
the “from” attribute of the Flow.

Superclass

Control Flow

Constraints

1. If thereisone or more Flow elements there should be no TrueFlow, FalseFlow, or GuardedFlow with the same action
element as the “from” attribute.

Semantics

If there exists two or more Flow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of contral.

13.5.4 TrueFlow Class

The TrueFlow class is a modeling element that represents control flow relationship between two ActionElements such that
» the ActionElement that corresponds to the “from” attribute of the TrueFlow represents the logical condition; and

» the ActionElement that correspondsto the “to” attribute of the TrueFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the TrueFlow when the value of the condition is true.

Superclass

Control Flow

Constraints

1. If there exists an ActionElement with a TrueFlow element, there should be no GuardedFlow or Flow el ements that
have the same ActionElement as the “from” attribute (but there can be Fal seFlow).

© ISO/IEC 2012 - All rights reserved 147



ISO/IEC 19506:2012(E)

Semantics

If there exists two or more TrueFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control. If there is no FalseFlow element, then the current ActionElement is terminal,
when condition is not satisfied.

13.5.5 FalseFlow Class

The FalseFlow class is a modeling element that represents control flow relationship between two ActionElements such
that

» the ActionElement that corresponds to the “from” attribute of the FalseFlow represents the logical condition, and

» the ActionElement that corresponds to the “to” attribute of the FalseFlow is a successor of the ActionElement that
corresponds to the “from” attribute of the FalseFlow when the value of other conditionsis not satisfied.

FalseFlow represents the “default” control flow branch in representing conditional statements and switch statements.
FalseFlow is a specific modeling element that is used in combination with either TrueFlow or GuardedFlow.

Superclass
ControlFlow

Constraints
1. If there exists a FalseFlow element, there should be either:

« acorresponding TrueFlow element such that both the TrueFlow and the FalseFlow elements have the same
ActionElement as the “from” attribute, or

» one or more GuardedFlow elements that have the same ActionElement as the “from” attribute, and

« there are no other relationship elements that are subclasses of FlowRel ationship that have the same ActionElement
asthe“from” attribute.

Semantics

If there exists two or more FalseFlow elements, such that they share the same ActionElement as the “from” attribute, they
represent an unspecified flow of control.

13.5.6 GuardedFlow Class
The GuardedFlow class is a modeling element that represents control flow relationship between two or more
ActionElements such that:

» the ActionElement that correspondsto the “from” attribute of the GuardedFlow represents the selection statement (for
example, a“switch” statement); and

 the ActionElement that corresponds to the “to” attribute of the GuardedFlow represents the guarding condition that
determines a branch of control flow; and

« thebranch of control flow determined by the ActionElement that corresponds to the “to” attribute of the GuardedF ow
element is a successor of the ActionElement that corresponds to the “from” attribute of the GuardedFlow when the
guarded condition in the context of the selection statement is satisfied.

148 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

FalseFlow element can be used in combination with one or more GuardedFlow elements to represent the default branch
of control flow, for example, to represent the default branch of a switch statement.

Superclass

Control Flow

Constraints

1. If there exists a GuardedFlow element, there should be no other relationship elements that are subclasses of
FlowRelationship that have the same ActionElement as the “from” attribute, with exception of one or more
GuardedFlow elements or zero or one FalseFlow element.

Semantics

In micro-KDM conformant implementations the ActionElement that correspondsto the “to” attribute of the GuardedFlow has
kind="Guard.” It has a Reads relationship to the value of the guard for the corresponding branch.

13.6 CallableRelations Class Diagram

The CalableRelations class diagram defines a set of meta-model elements to represent call-type behavior that associate
ActionElement to ControlElement and represent control flows of the existing software system.

The CallableRelations diagram describes the following types:

» Cadlls- isamodeling element that represents a call-type rel ationship between an A ctionElement and a Call ableElement
or one of its subclass elements, in which the ActionElement represents some form of a call statement, and the
CallableElement represents the element being called.

- Dispatches - isamodeling element that represents a call-type of relationship between an ActionElement and a data
item, in which the ActionElement represents some form of acall, and the data item represents a pointer to a procedure

type.

© ISO/IEC 2012 - All rights reserved 149



ISO/IEC 19506:2012(E)

The class diagram shown in Figure 13.4 captures these classes and their relations.

AbstractActionRelationship

Dispatches cals
0..* +from 0.*
0. redefines from} 0.*
1 1
. +from
ActionElement {redefines from} +
x2kind : String ) 0
1 {redefines to}
ControlElement
(from code)
+to
{redefines to}
1

DataElement
(from code)

wext : String

wsize : Integer

Figure 13.4 - CallableRelations Class Diagram

13.6.1 Calls Class

Calls is a modeling element that represents a call-type relationship between an ActionElement and a Control Element or
one of its subclass elements. The ActionElement represents some form of a call statement, and the Control Element
represents the element being called. In the meta-model the Calls element is a subclass of ActionRelationship.

Superclass
AbstractActionRelationship

Associations

from:ActionElement[1] the action element from which the call relation originates
to:ControlElement[1] the target Control Element
Semantics

Callsrelationship corresponds to the ISO/IEC 11404 “invoke” operation on a procedure type. It can represent acall to a
procedure, a static method, a non-static method of a particular object instance, a virtual method, or an interface element.

Callsrelation to a non-static method should be accompanied by an Addresses relationship to the corresponding object.

150 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Precise semantics of acall can be represented by the “kind” element of the owner ActionElement, according to the guidelines
provided in the “micro KDM” compliance paint.

13.6.2 Dispatches Class

Dispatches is a modeling element that represents a call-type of relationship between an ActionElement and a data item.
The ActionElement represents some form of a call behavior, and the data item represents a pointer to a procedure type.

Superclass
AbstractA ctionRelationship

Associations

from:ActionElement[1] The action element from which the call relation originates.
to:DataElement[1] The data element that represents the pointer to a procedure type.
Semantics

Dispatches relation does not identify the actual target of the call. Additional analysis of the KDM instance may be
required to determine the real targets of the Dispatches call.

Example (C)
typedef int (*fp) (int i );
int foo(int i) {}
int bar( int i) {}
void foobar () {
fp pf;
pf=foo;
pf=bar;
*pE (1) ;

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Dispatch Example">
<model xmi:id="1d.0" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.1" xmi:type="code:CompilationUnit" name="Dispatch.c">
<codeElement xmi:id="1d.2" xmi:type="code:CallableUnit"
name="foo" type="1id.15" kind="regular"s>
<codeRelation xmi:id="id.3" xmi:type="code:HasType" to="id.14" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="code:Signature" name="foo">
<parameterUnit xmi:id="id.5" name="a" type="id.13"/>
<parameterUnit xmi:id="id.é" type="id.13" kind="return"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.7" xmi:type="code:CallableUnit"
name="bar" type="id.15" kind="regular"s>

© ISO/IEC 2012 - All rights reserved 151



ISO/IEC 19506:2012(E)

<codeRelation xmi:id="id.8" xmi:type="code:HasType" to="id.14" from="id.7"/>
<codeElement xmi:id="1id.9" xmi:type="code:Signature" name="bar">
<parameterUnit xmi:id="1d.10" name="a" type="id.13"/>
<parameterUnit xmi:id="id.11" type="id.13" kind="return"/>
</codeElement >
</codeElement>
<codeElement xmi:id="1id.12" xmi:type="code:StorableUnit" name="pf" type="id.14"/>
<codeElement xmi:id="1id.13" xmi:type="code:IntegerType" name="int"/>
<codeElement xmi:id="1id.14" xmi:type="code:TypeUnit" name="fp" type="id.15">
<codeElement xmi:id="id.15" xmi:type="code:Signature" name="f">
<parameterUnit xmi:id="id.16" name="a" type="id.13"/>
<parameterUnit xmi:id="id.17" type="id.13" kind="return"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.18" xmi:type="code:CallableUnit" name="foobar" type="1d.33">
<entryFlow xmi:id="1d.19" to="id.20" from="id.18"/>
<codeElement xmi:id="id.20" xmi:type="action:ActionElement" name="al" kind="Assign">
<actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.2" from="id.20"/>
<actionRelation xmi:id="id.22" xmi:type="action:Writes" to="id.12" from="id.20"/>
<actionRelation xmi:id="id.23" xmi:type="action:Flow" to="id.24" from="id.20"/>
</codeElement>
<codeElement xmi:id="id.24" xmi:type="action:ActionElement" name="a2" kind="Assign">
<actionRelation xmi:id="id.25" xmi:type="action:Addresses" to="id.2" from="id.24"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.12" from="id.24"/>
<actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.24"/>
</codeElement>
<codeElement xmi:id="1d.28" xmi:type="action:ActionElement" name="a3" kind="PtrCall"s>
<codeElement xmi:id="1d.29" xmi:type="code:Value" name="1" type="id.13"/>
<actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.12" from="id.28"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.29" from="id.28"/>
<actionRelation xmi:id="1d.32" xmi:type="action:Dispatches"
to="id.12" from="id.28"/>
</codeElement>
<codeElement xmi:id="1id.33" xmi:type="code:Signature" name="foobar"/>
</codeElement>
</codeElement>
</model>
</kdm: Segment >

13.7 DataRelations Class Diagram

The DataRelations class diagram defines a set of meta-model elements that represent data flow relationships between
action elements and data elements. The “from” endpoint of these relationships is some ActionElement that represents a
statement that involves a data operation. The “to” endpoint represents some code item. Data relationships are shown at
Figure 13.5.

152 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractActionRelationship

DataElement

: . (from code)
Compl:tauon:IObJect wext : String
(from code) @size : Integer
+to 1
{redefines to}
0.*
Py {redefines to}
0.*
Reads
Datatype
(from code)
0
Writes
0__*
+from Creates

{redefines frgm}
1

ActionElement efines from}
«<kind : String 1

Figure 13.5 - DataRelations Class Diagram

13.7.1 Reads Class

The Reads relationship represents a flow of data from a DataElement to an ActionElement (read access to the
DataElement).

Superclass
AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Reads relationship.
to:DataElement[1] The DataElement that is the source of the flow of data.
Semantics

Reads relationship represents an association between an action element, which implements a flow of data from a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

© ISO/IEC 2012 - All rights reserved 153



ISO/IEC 19506:2012(E)

13.7.2 Writes Class
The Writes represents flow of data from an ActionElement to a DataElement (write access to the DataElement).

Superclass
AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that owns the Writes relationship.
to:DataElement[1] The DataElement that is the sink of the flow of data.
Semantics

Writes relationship represents an association between an action element, which implements a flow of datato a certain
data element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.3 Addresses Class

Addresses relationship represents access to a complex data structure, where the Reads or Writes relationships are applied
to the elements of the data structure, or where an address of a data element is taken.

Superclass
AbstractActionRelationship

Associations

from:ActionElement[1] The action element that owns the Addresses relationship.
to:ComputationalObject[1] The Computational object that is being accessed.
Semantics

Addresses relationship represents an association between an action element that receives a reference to a certain data
element to the corresponding data element according to the semantics of the programming language of the existing
software system.

13.7.4 Creates Class

The Creates represents an association between an ActionElement and a Datatype such that the ActionElement creates a
new instance of the Datatype.

Superclass
AbstractActionRel ationship

154 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

from:ActionElement[1] The action element that owns the Creates relationship.
to:Datatype[1] The DataElement that is instantiated by the ActionElement.
Semantics

Creates relationship represents an association between an action element that creates a new instance of a certain data
element to the corresponding datatype according to the semantics of the programming language of the existing software
system.

13.8 ExceptionBlocks Class Diagram

The Exceptions class diagram defines meta-model elements that represent containers involved in exception-handling
mechanism common to several programming languages. These classes are illustrated at Figure 13.6.

Basic try-, catch- and finally-blocks are represented by dedicated containers defined as subclasses of the ExceptionUnit to
represent the contents of those blocks. The TryUnit provides the containment to track the dependent Catch clauses and the
optional finally block (for languages that support it).

The Catch container can own ParameterUnit to represent the data passed to it by the exception-handling mechanism when
this block is activated, the so-called “its catch object.” This allows exceptions to be modeled like any other object and to
have their own inheritance. The ParameterUnit that represents the “catch object” of a catch-block has special
ParameterKind value kind="exception” to represent parameter passing via exception mechanism or kind="catchall” to
represent the catch all construct in C++.

BlockUnit

b

ExceptionUnit

TryUnit CatchUnit

FinallyUnit

Figure 13.6 - ExceptionBlocks Class Diagram
13.8.1 ExceptionUnit Class

ExceptionUnit class is a generic meta-model element that provides a common superclass to various KDM containers for
representing exception handling. ExceptionUnit is a subclass of a BlockUnit. ExceptionUnit is a KDM container, which
can own both ActionElement (for example, statements in the catch-block) as well as Codeltem (for example, parameters

© ISO/IEC 2012 - All rights reserved 155



ISO/IEC 19506:2012(E)

to the catch-block, local definitions, and nested blocks). ExceptionUnit is a generic element, and KDM models are
expected to use concrete subclasses of ExceptionUnit with more precise semantics. However, ExceptionUnit can be used
as an extended modeling element with a stereotype. ExceptionUnit is more specific than a BlockUnit.

Superclass
BlockUnit

Constraints

1. ExceptionUnit should have a stereotype.

Semantics

13.8.2 TryUnit Class

TryUnit class is a meta-model element that represents try-blocks common to several programming languages. TryUnit is
a container for action elements and associated definitions of Codeltems. The purpose of a TryUnit is to represent try-
blocks and to manage exception flow to related catch-blocks and finally-block (for programming languages that support
this concept). In particular, the TryUnit is the origin of ExceptionFlow relations to the corresponding CatchUnits and
FinallyUnit blocks, which represent related catch- and finally-blocks. TryUnit may own nested TryUnit blocks.

Superclass

ExceptionUnit

Semantics

TryUnit represents a try-block.
13.8.3 CatchUnit Class

CatchUnit is a meta-model element that represents catch-blocks. Particular CatchUnit should be associated to a particular
TryUnit through ExceptionFlow relation. CatchUnit may contain ParameterUnit that represents the exception object
passed to the catch-block by the exception-handling mechanism.

Superclass
ExceptionUnit

Constraints

1. CatchUnit should be associated to a TryUnit. In particular, a CatchUnit should be the target of an ExceptionFlow
relationship that originates from some TryUnit.

Semantics

CatchUnit represents one of the catch-blocks associated with a certain try-block. Usually, one or more CatchUnits follow
a TryUnit. Each CatchUnit should be associated with the corresponding TryUnit through an instance of ExceptionFlow
relationship.

156 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

13.8.4 FinallyUnit Class

FinallyUnit is a meta-model element that represents finally-block associated with a certain try-block. The FinallyUnit is

associated with the code responding TryUnit through an ExitFlow relation.

Superclass

ExceptionUnit

Constraints

1. FinallyBlock should be associated to a TryUnit. In particular, a FinallyUnit should be the target of an ExitFlow

relationship that originates from some TryUnit.

2. TryUnit should not be associated with more than one FinallyBlock.

Semantics

FinallyBlock represents a finally-block associated with a certain try-block.

Example

.<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Exceptions Example">
<model xmi:id="id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.1" xmi:type="code:ClassUnit" name="A">
<codeElement xmi:id="1d.2" xmi:type="code:MethodUnit" name="foo">
<entryFlow xmi:id="1id.3" to="id.4" from="id.2"/>
<codeElement xmi:id="id.4" xmi:type="action:TryUnit" name="t1l">
<codeElement xmi:id="id.5" xmi:type="action:ActionElement" name="al" kind="Call">
<actionRelation xmi:id="id.6" xmi:type="action:Calls" to="id.23" from="id.5"/>
</codeElement>
<actionRelation xmi:id="id.7" xmi:type="action:Flow" to="id.5" from="id.4"/>
<actionRelation xmi:id="1d.8" xmi:type="action:ExceptionFlow"
to="1d.10" from="id.4"/>
<actionRelation xmi:id="id.9" xmi:type="action:ExitFlow" to="id.l17" from="id.4"/>
</codeElement>
<codeElement xmi:id="1d.10" xmi:type="action:CatchUnit" name="cl">
<codeElement xmi:id="1id.11" xmi:type="code:ParameterUnit" name="e" type="id.67"/>

<codeElement xmi:id="1d.12" xmi:type="action:ActionElement" name="a2" kind="Call">

<codeElement xmi:id="1id.13" xmi:type="code:Value"
name="&quot ; Something went wrong&quot;" type="1id.69"/>

<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.13" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Calls" to="id.66" from="id.12"/>

</codeElement>

<actionRelation xmi:id="id.16" xmi:type="action:Flow" to="id.12" from="id.10"/>
</codeElement>
<codeElement xmi:id="1id.17" xmi:type="action:FinallyUnit" name="f1">

<codeElement xmi:id="1d.18" xmi:type="action:ActionElement" name="a3" kind="Call">

<codeElement xmi:id="id.19" xmi:type="code:Value"
name="&quot ; Good bye&quot;" type="1id.69"/>

© ISO/IEC 2012 - All rights reserved

157



ISO/IEC 19506:2012(E)

<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.19" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.66" from="id.18"/>
</codeElement>
<actionRelation xmi:id="id.22" xmi:type="action:Flow" to="id.18" from="id.17"/>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.23" xmi:type="code:MethodUnit" name="bar"s>
<entryFlow xmi:id="1id.24" to="id.25" from="id.23"/>
<codeElement xmi:id="1d.25" xmi:type="action:TryUnit" name="t2">
<codeElement xmi:id="id.26" xmi:type="action:ActionElement"
name="a4" kind="ArrayReplace">
<source xmi:id="id.27" language="Java" snippet="arr[20]=20"/>
<codeElement xmi:id="1d.28" xmi:type="code:Value" name="20" type="id.70"/>
<actionRelation xmi:id="1d.29" xmi:type="action:Addresses"
to="1d.59" from="id.26"/>
<actionRelation xmi:id="id.30" xmi:type="action:Reads" to="id.28" from="id.26"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.28" from="id.26"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.61" from="id.26"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.26"/>
</codeElement>
<codeElement xmi:id="1id.34" xmi:type="action:ActionElement" name="a5" kind="Call">
<actionRelation xmi:id="id.35" xmi:type="action:Reads" to="id.59" from="id.34"/>
<actionRelation xmi:id="id.36" xmi:type="action:Calls" to="id.66" from="id.42"/>
</codeElement>
<actionRelation xmi:id="id.37" xmi:type="action:Flow" to="id.26" from="id.25"/>
<actionRelation xmi:id="1d.38" xmi:type="action:ExceptionFlow"
to="1id.40" from="id.25"/>
<actionRelation xmi:id="id.39" xmi:type="action:ExitFlow"/>
</codeElement>
<codeElement xmi:id="1id.40" xmi:type="action:CatchUnit" name="c2">
<codeElement xmi:id="1id.41" xmi:type="code:ParameterUnit" name="e" type="1id.68"/>
<codeElement xmi:id="1d.42" xmi:type="action:ActionElement" name="aé" kind="Call">
<codeElement xmi:id="1d.43" xmi:type="code:Value"
name="§&guot ; Oops&gquot ;" type="1id.69"/>
<actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.43" from="id.47"/>
<actionRelation xmi:id="id.45" xmi:type="action:Calls" to="id.66" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.47" from="id.42"/>
</codeElement>
<codeElement xmi:id="1d.47" xmi:type="action:ActionElement" name="a7" kind="Throw">
<codeElement xmi:id="id.48" xmi:type="code:Value"
name="&quot ;Went too far&quot;" type="id.69"/>
<actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.48" from="id.47"/>
<actionRelation xmi:id="id.50" xmi:type="action:Throws"/>
</codeElement>
<actionRelation xmi:id="id.51" xmi:type="action:Flow" to="id.42" from="id.40"/>
</codeElement>
<codeElement xmi:id="id.52" xmi:type="action:FinallyUnit" name="£f2">
<codeElement xmi:id="id.53" xmi:type="action:ActionElement" name="a8" kind="Call">
<actionRelation xmi:id="id.54" xmi:type="action:Reads" to="id.59" from="id.53"/>
<actionRelation xmi:id="id.55" xmi:type="action:Calls" to="id.66" from="id.42"/>
</codeElement>
<actionRelation xmi:id="id.56" xmi:type="action:Flow" to="id.53" from="id.52"/>
</codeElement>
<codeElement xmi:id="id.57" xmi:type="code:Signature">
<parameterUnit xmi:id="1id.58" type="id.63" kind="throws"/>

158 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

</codeElement>
</codeElement>
<codeElement xmi:id="1d.59" xmi:type="code:MemberUnit"
name="arr" type="1id.60" size="10">
<codeElement xmi:id="1d.60" xmi:type="code:ArrayType">
<itemUnit xmi:id="id.61" type="id.70"/>
<indexUnit xmi:id="id.é62" type="id.70"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.63" xmi:type="code:ClassUnit"
name="MoreDescriptiveException" isAbstract="true">
<codeRelation xmi:id="id.64" xmi:type="code:Extends" to="id.67" from="id.63"/>
</codeElement>
</model>
<model xmi:id="id.65" xmi:type="code:CodeModel" name="Java common definitions">
<codeElement xmi:id="1d.66" xmi:type="code:CallableUnit" name="println"/>
<codeElement xmi:id="1d.67" xmi:type="code:ClassUnit" name="Exception"/>
<codeElement xmi:id="1d.68" xmi:type="code:ClassUnit"
name="ArrayIndexOutOfBoundsException" isAbstract="false"/>
<codeElement xmi:id="1d.69" xmi:type="code:StringType"/>
<codeElement xmi:id="1id.70" xmi:type="code:IntegerType"/>
</model>
</kdm: Segment >

13.9 ExceptionFlow Class Diagram

ExceptionFlow class diagram defines meta-model elements that represent flow of control determined by exception
handling mechanisms common to several programming languages.

Because of their somewhat unpredictable nature, exceptions can create havoc in performing flow analysis. The concepts
here support tracking both user-defined exceptions, normal system exceptions, and runtime exceptions.

There exists certain action elements (for example, representing statements) where the exceptions are raised and that throw
the exception and initiate the transfer of control to the exception flow. The flow for these is represented by the
ExceptionFlow class. The ExceptionFlow relationship goes from an ActionElement representing the source of the throw,
to a CallableElement that represents the catcher of the exception. The ExceptionFlow target is either the local CatchUnit
that will handle the exception or point back to the TryUnit.

Exception flow elements are gptional for LO KDM models. KDM export tools at LO compliance level may lack the full
understanding necessary to precisely pinpoint the source of an Exception. KDM model produced by one tool can be
further analyzed by a different tool to add more information about the flow of control determined by the exception
handling mechanism. The origin of the ExceptionFlow can be under specified and use the TryUnit as the “from” point for
the ExceptionFlow, thus omitting the details of exactly where the exception might have been raised. For user-defined
exceptions, tools should normally be able to capture the origin points by analyzing the various methods invoked and
recursively analyzing their code and also by taking advantage of the declaration throws clause (except that this might list
exceptions that are not always thrown). As for system/runtime exceptions, it is really up to the implementer to determine
how much they want to capture. Knowing what type of operations can cause those kinds of exceptions can go along way
in supporting complex analysis.

© ISO/IEC 2012 - All rights reserved 159



ISO/IEC 19506:2012(E)

For each exception that a method invocation can raise, there should be an ExceptionFlow from that point to the immediate
catcher, unless the user chose to only represent the exception generically from the TryUnit. In those cases there should be
as many ExceptionFlow as there are possible exceptions that can be raised by the code in the try block.

Next if thereis afinally clause, afinaly flow would go from the TryUnit to the FinallyUnit to cover the finalization. The
FinallyFlow is represented with a general ExitFlow relationship. This concept might appear to be a bit convoluted since
normal flow would go from the end of the try and flow to the finally block and from there to the next block, but the
process when we are analyzing the exception flow is as follows: For each TryUnit that the ExceptionFlow must unwind
to reach its destination, it must check for an ExitFlow in the TryUnit and run through that flow before unwinding the call
stack. This is repeated until the CatchUnit is reached (either it was local and already the endpoint of the ExceptionFlow
or it is determined by analysis during unwinding). Then the flow for the catch is performed, followed by an ExitFlow
local to the Catch, if one exists. This is as consistent as possible with the separate mechanism used by exception
supporting languages to handle try/catch functionality in the first place. As stated by Bjarne Stroustrup, “The exception
handling mechanism is a non local control structure based on stack unwinding that can be seen as an alternative return
mechanism.” Hence the necessity for the extra level of smarts needed to analyze those flow paths.

Exceptions raised and caught within exceptions catch blocks should create and manage their own flow path.

AbstractActionRelationship

ExceptionFlow

ExitFlow {redefines flom} 0.*
+from
0..* {redefines from}
1
+to 1 | ActionElement
<zkind : String
+to
{redefines to} 1 {redefines to}

Figure 13.7 - ExceptionFlow Class Diagram

13.9.1 ExitFlow Class

ExitFlow class is a meta-model element that represents an implicit flow of control that should be taken when the
corresponding block is exiting and has terminated normally or abruptly after executing the catch-block. For example,
ExitFlow can be used to relate a try-block with the corresponding finally-block.

Superclass
AbstractActionRel ationship

160 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

from:ActionElement[1] ActionElement (for example, atry-block) for which the “on-exit” behavior was
specified.
to:ActionElement[1] ActionElement (usually, afinally-block) that represents the behavior that isinvoked

upon successful exit of the origin block (“on exit”).

Semantics

ExitFlow relationship represents an association between a TryUnit and the corresponding FinallyBlock according to the
semantics of the programming language of the existing software system.

Example

See example in section ExceptionBlocks.

13.9.2 ExceptionFlow Class

The ExceptionFlow relationship represents an exception flow relationship between a TryUnit and the corresponding
CatchUnit, or between a particular action element that can raise an exception to the corresponding CatchUnit.

Superclass
AbstractActionRelationship

Associations

from:ActionElement[1] the origin of the exception flow

to:ActionElement[1] The CatchUnit to which control is transferred when an exception is raised.

Constraints
1. Thetarget action element of the ExceptionFlow relationship should be a CatchUnit.

Semantics

ExceptionFlow relationship represents an exception control flow between an action element that raises a certain
exception, and the CatchUnit that handles this exception according to the semantics of the programming language of the
existing software system.

13.10 ExceptionRelations Class Diagram

The ExceptionRelations class diagram defines a set of meta-model elements that represent data flow relationships
associated with exception handling mechanism common to various programming languages.

© ISO/IEC 2012 - All rights reserved 161



ISO/IEC 19506:2012(E)

AbstractActionRelationship

ActionEle ment +from
=kind : String redlefines from}

\ , | DataElement
fi d
o Thows | ————={ (fom code)

0..* +to
{redefines to}

Figure 13.8 - ExceptionRelations Class Diagram

13.10.1 Throws Class

The Throws class is a meta-model element that represents throw-statements supported by several programming languages.
These are the user-defined throws for exception, as opposed to the so-called normal system exceptions and runtime
exceptions. Throw statements are essentially regular code elements, which simply have an additional relationship to their
throw entity, using the Throws relationship.

See ExceptionBlocks and ExceptionFlow for representation of the control flow, related to exception handling mechanism.

Superclass
AbstractActionRel ationship

Associations

from:ActionElement|[1] The ActionElement that throws the exception.
to:DataElement[1] the exception data element being thrown
Semantics

Throws relationship represents an association between an action element that raises a certain exception and the data
element that is associated with that exception. The implementer shall identify and represent these associations according
to the semantics of the programming language of the existing software system.

13.11 InterfaceRelations Class Diagram

The InterfaceRelations class diagram defines KDM relationships that represent the usages of a “declarations’ by the
action elements. The classes and associations of the InterfaceRelations diagram are shown in Figure 13.9.

162 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractActionRelationship

CompliesTo

0..* 3
+from 0..
{redefines from}

ActionElement 1

<kind : String o 1
{redefines to} Codeltem
(from code)

Figure 13.9 - InterfaceRelations Class Diagram

13.11.1 CompliesTo Class

The CompliesTo is a meta-model element that represents an association between an action element that “uses” some
computational object, and the “declaration” of that computational object.

Superclass
AbstractActionRel ationship

Associations

from:ActionElement[1] The origin of the relationship; action element that “uses’ some computational
object.
to:Codeltem[1] the “declaration” of that computational object

Constraints
1. Thekind attribute of the Codeltem at the target of the CompliesTo relationship should be equal to “external” or
“abstract.”

2. Theaction element that isthe origin of the “CompliesTo” relationship should own acallable or data action
relationship to some computational object and the target of CompliesTo relationship should be one of the declarations
of that computational object.

Semantics
See InterfaceRel ations section of the Code package clause.

© ISO/IEC 2012 - All rights reserved 163



ISO/IEC 19506:2012(E)

13.12 UsesRelations Class Diagram

The UsesRelations class diagram defines meta-model elements that represent associations between ActionElement and
Datatype related to type cast operations. The class diagram shown in Figure 13.10 captures these classes and their
relations.

AbstractActionRelationship

UsesType
0.* 0.* +to
1 {redefines to}
1
ActionElement {rzggmmes from} Zféang
wkind : String : :

Figure 13.10 - UsesRelations Class Diagram
13.12.1 UsesType Class
The UsesType relationship represents a type cast or a type conversion performed by an ActionElement.

Superclass
AbstractActionRel ationship

Associations

from:ActionElement[1] The action element that performs a type cast or a type conversion.
to:Datatype[1] The datatype involved in a type operation.
Semantics

UsesType relationship represents an association between an action element that performs a type cast or a type conversion
operation and the corresponding Datatype. The precise nature of the type operation can be further specified by the “kind”
attribute of the action element. See the “micro KDM” clause.

13.13 ExtendedActionElements Class Diagram

The ExtendedA ctionElements class diagram defines an additional “wildcard” generic element for the code model as
determined by the KDM model pattern: a generic action relationship.

The classes and associations of the ExtendedA ctionElements diagram are shown in Figure 13.11.

164 © ISO/IEC 2012 - Al rights reserved



1

ActionElement
<kind : String

AbstractActionRelationship

ActionRelationship

+from

{redefines from}

+to
{redefines to}

Figure 13.11 - ExtendedActionElements Class Diagram

13.13.1 ActionRelationship Class (generic)

1

K DM E ntity

(from core)

ISO/IEC 19506:2012(E)

The ActionRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractA ctionRelationship

Associations

from:ActionElement[1]

to:KDMEntity[1]

Constraints

1. ActionRelationship should have at least one stereotype.

Semantics

the origin action element

the target KDM entity

An action relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the code model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM

representation.

© ISO/IEC 2012 - All rights reserved

165



ISO/IEC 19506:2012(E)

166 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

14 Micro KDM

14.1 Overview

This clause describes the foundation for KDM models with precise semantics, referred to as the L1 MICRO KDM
compliance point (“micro KDM").

Let's use the term KDM “macro Action” to refer to an ActionElement with under specified semantics, whose role in a
KDM meta-model is to represent certain existing behavior corresponding to one or more statements in the existing
software system. The term “macro action” should not be confused with the preprocessor directives common to certain
programming languages.

A KDM “macro action” represents the endpoint of the action relationships, and can own a SourceRef element, which
links it to the artifacts of the existing software system. KDM LO compliance point does not specify the semantics of a
KDM “macro action” leaving it up to implementers to design the mapping from the programming languages involved in
the artifacts of the existing software systems and KDM.

In order to use the KDM Program Element layer for control- and data-flow analysis applications, as well as for providing
more precision for the Resource Layer and the abstraction Layer, additional semantics constraints are required to
coordinate producers and consumers of KDM models. The micro KDM compliance point serves this purpose. It
constrains the granularity of the leaf action elements, and their meaning by providing the set of micro actions with
predefined semantics.

According to the “micro KDM” approach, the original “macro action” is treated as a container that owns certain “micro
actions” with predefined semantics and thus precise semantics of the “macro action” is defined. As the result micro KDM
constrains the patterns of how to map the statements of the existing system as determined by the programming language
into KDM. This is similar to the mapping performed by a compiler into the Java Virtual Machine or Microsoft .NET.

From a compiler technology perspective, KDM micro actions provide the so-called Intermediate Representation (IR) for
control and data flow analysis. Micro KDM is arather high-level IR. Micro KDM actions are aligned with the |SO 11404
datatypes (operations on primitive datatypes and access to complex datatypes) as well as with the KDM patterns for
representing program elements.

Separation into a “macro action” and “micro actions” allows:

» Theflexibility of selecting the “macro action element” as the point for linking it to the existing artifacts. For example
to asourcefile or to an AST, providing a meaningful source ref (a macro action can still represent one or more
statements in the original existing system), and

» provides precise representation of the original “macro action” through a mapping to micro actions with predefined
semantics.

Micro actions are the actual endpoints of the KDM relationships. The original “macro action element” (the one that owns
the micro actions) aggregates these relationships through the uniform semantics of KDM aggregated relationships. The
micro actions fit into the existing flow semantics, which makes it possible to use KDM representations for precise control
and data flow analysis.

© ISO/IEC 2012 - All rights reserved 167



ISO/IEC 19506:2012(E)

According to the “encapsulated relationship pattern” of KDM, each action element should own the ActionRelationships
that originate from this action element. A KDM relationship originates from an element, if the “from” property of the
relationship is equal to the identity of the element. The encapsulated relationship pattern is described in the Code KDM
section. The collection of action relationships owned by an element is ordered. From the KDM perspective, the owned
ActionRelationships represent the parameters to the action element.

Each micro KDM action has the following 5 parts (Action Kind, Outputs, Inputs, Control, and Extras):

» ActionKind - is nature of the operation performed by the micro action. Thisisrepresented asa“kind” attribute to the
micro action. The action kind may designate certain outgoing relationships as part of the Control. For example, the
“Call” micro action designates the Calls outgoing relationship as part of Control. Action kinds are defined as case
sensitive stringsin Annex A.

» Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

+ Inputs - Ordered incoming Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for amicro action.

« Contral - owned outgoing control flow relationships for the action.

» Extras- owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind. For
example, these can be interface compliance relation “ CompliesTo” or any extended action relationships.

Constraints

1. Every leaf action element of the KDM model shall be amicro KDM action, where the operation performed by the
action is designated by the value of the action kind, specified in the list of the micro actionsin Annex A.

2. Implementers shall capture the meaning of the existing artifacts as determined by the programming languages and
runtime platform and map it into connected graphs of micro actions; the meaning of the resulting micro KDM model
is determined by the semantics of the micro actions.

Semantics
Semantics of KDM micro actions is defined in Annex A: “Semantics of the Micro KDM Action Elements.”

Example

z=1+f (x,vy) ;
*d[x+3]=1;
dly+31=&z;
y=*d [x+3] ;

function foo does not comply to micro KDM semantic constraints;
function bar complies to micro KDM

<?xml version="1.0" encoding="UTF-8"?>

<kdm: Segment
xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="Micro KDM Example">

<model xmi:id="id.0" xmi:type="code:CodeModel">

168 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1d.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="1d.2" xmi:type="code:CallableUnit" name="foo" kind="regular"s>
<entryFlow xmi:id="1d.3" to="id.4" from="id.2"/>
<codeElement xmi:id="1d.4" xmi:type="action:ActionElement" name="f1" kind="unknown">
<source xmi:id="id.5" language="C" snippet="z=1+f(x,y)"/>
<actionRelation xmi:id="id.6" xmi:type="action:Calls" to="1d.107" from="id.4"/>
<actionRelation xmi:id="id.7" xmi:type="action:Reads" to="1d.97" from="id.4"/>
<actionRelation xmi:id="id.8" xmi:type="action:Reads" to="1d.98" from="id.4"/>
<actionRelation xmi:id="id.9" xmi:type="action:Writes" to="id.99" from="id.4"/>
<actionRelation xmi:id="id.10" xmi:type="action:Reads" to="id.105" from="id.4"/>
<actionRelation xmi:id="id.11" xmi:type="action:Flow" from="id.4"/>
</codeElement>
<codeElement xmi:id="1d.12" xmi:type="action:ActionElement" name="f2" kind="unknown"s>
<source xmi:id="id.13" language="C" snippet="*d[x+3]=1;d[y+3]=&amp;z;y=*d[x+3];"/>
<actionRelation xmi:id="id.14" xmi:type="action:Reads" to="id.97" from="id.12"/>
<actionRelation xmi:id="id.15" xmi:type="action:Addresses" to="id.100" from="id.12"/>
<actionRelation xmi:id="id.16" xmi:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.105" from="id.12"/>
<actionRelation xmi:id="id.18" xmi:type="action:Addresses" to="id.100" from="id.12"/>
<actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.98" from="id.12"/>
<actionRelation xmi:id="id.20" xmi:type="action:Reads" to="id.106" from="id.12"/>
<actionRelation xmi:id="id.21" xmi:type="action:Addresses" to="id.99" from="id.12"/>
<actionRelation xmi:id="id.22" xmi:type="action:Writes" to="1d.98" from="id.4"/>
<actionRelation xmi:id="id.23" xmi:type="action:Addresses" to="id.100" from="id.12"/>
<actionRelation xmi:id="id.24" xmi:type="action:Reads" to="id.97" from="id.12"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.106" from="id.12"/>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.26" xmi:type="code:CallableUnit" name="bar" kind="regular"s>
<entryFlow xmi:id="1d.27" to="id.28" from="id.26"/>
<codeElement xmi:id="1d.28" xmi:type="action:ActionElement" name="bl" kind="compound">
<source xmi:id="id.29" language="C" snippet="z=1+f(x,y)"/>
<codeElement xmi:id="1d.30" xmi:type="code:StorableUnit" name="t1"
type="1id.112" kind="register"/>
<codeElement xmi:id="1d.31" xmi:type="action:ActionElement" name="bl.1" kind="Call">
<actionRelation xmi:id="id.32" xmi:type="action:Calls" to="id.107" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Reads" to="id.97" from="id.28"/>
<actionRelation xmi:id="id.34" xmi:type="action:Reads" to="id.98" from="id.28"/>
<actionRelation xmi:id="id.35" xmi:type="action:Writes" to="id.30" from="id.31"/>
<actionRelation xmi:id="id.36" xmi:type="action:Flow" from="id.31"/>
</codeElement >
<codeElement xmi:id="1d.37" xmi:type="action:ActionElement" name="bl.2" kind="Add">
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.105" from="id.37"/>
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.30" from="id.37"/>
<actionRelation xmi:id="id.40" xmi:type="action:Writes" to="1id.99" from="id.37"/>
</codeElement>
<actionRelation xmi:id="id.41" xmi:type="action:Flow" to="id.31" from="id.28"/>
</codeElement>
<codeElement xmi:id="1d.42" xmi:type="action:ActionElement" name="b2" kind="compound"s>
<source xmi:id="id.43" language="C" snippet="*d[x+3]=1;d[y+3]=&amp;z;y=*d[x+3];"/>

<codeElement xmi:id="1d.44" xmi:type="code:StorableUnit" name="t2"

© ISO/IEC 2012 - All rights reserved 169



ISO/IEC 19506:2012(E)

type="1d.103" kind="register"/>

<codeElement xmi:id="1d.45" xmi:type="code:StorableUnit" name="t3"
type="1id.112" kind="register"/>

<codeElement xmi:id="1d.46" xmi:type="code:StorableUnit" name="t4"
type="1id.112" kind="register"/>

<codeElement xmi:id="1d.47" xmi:type="code:StorableUnit" name="t5"
type="1d.103" kind="register"/>

<codeElement xmi:id="1d.48" xmi:type="code:StorableUnit" name="té6"
type="1id.112" kind="register"/>

<codeElement xmi:id="1d.49" xmi:type="code:StorableUnit" name="t7"

type="1d.103" kind="register"/>
<codeElement xmi:id="1d.50" xmi:type="action:ActionElement" name="b2.1" kind="Add">
to="1d.97" from="id.50"/>
to="id.106" from="id.50"/>
from="id.50"/>
from="id.50"/>

<actionRelation xmi:id="id.51" xmi:type="action:Reads"

<actionRelation xmi:id="id.52" xmi:type="action:Reads"

<actionRelation xmi:id="id.53" xmi:type="action:Writes" to="id.44"

<actionRelation xmi:id="id.54" xmi:type="action:Flow" to="id.55"
</codeElement>

<codeElement xmi:id="1d.55" xmi:type="action:ActionElement" name="b2.2" kind="ArraySelect">

<actionRelation xmi:id="1d.56" xmi:type="action:Addresses" to="id.100" from="id.55"/>
<actionRelation xmi:id="1id.57" xmi:type="action:Reads" to="id.102" from="id.55"/>
<actionRelation xmi:id="1id.58" xmi:type="action:Reads" to="id.44" from="id.55"/>
<actionRelation xmi:id="1id.59" xmi:type="action:Writes" to="id.45" from="id.55"/>
<actionRelation xmi:id="1id.60" xmi:type="action:Flow" from="id.55"/>

</codeElement>

<codeElement xmi:id="1id.61" xmi:type="action:ActionElement" name="b2.3" kind="PtrReplace">

<actionRelation xmi:id="1id.62" xmi:type="action:Reads" to="id.45" from="id.61"/>
<actionRelation xmi:id="1id.63" xmi:type="action:Reads" to="id.105" from="id.61"/>
<actionRelation xmi:id="id.64" xmi:type="action:Writes" to="1id.104" from="id.61"/>
<actionRelation xmi:id="1id.65" xmi:type="action:Flow" to="id.66" from="id.61"/>

</codeElement>

<codeElement xmi:id="id.66" xmi:type="action:ActionElement" name="b2.4" kind="Add">

<actionRelation xmi:id="1id.67" xmi:type="action:Reads" to="id.98" from="id.12"/>

<actionRelation xmi:id="1id.68" xmi:type="action:Reads" to="id.106" from="id.12"/>

<actionRelation xmi:id="1d.69" xmi:type="action:Writes" to="id.46" from="id.66"/>

<actionRelation xmi:id="1id.70" xmi:type="action:Flow" to="id.71" from="id.66"/>
</codeElement >

<codeElement xmi:id="id.71" xmi:type="action:ActionElement" name="b2.5" kind="Ptr"s>

<actionRelation xmi:id="id.72" xmi:type="action:Addresses" to="id.99" from="id.12"/>

<actionRelation xmi:id="1id.73" xmi:type="action:Writes" to="id.47" from="id.71"/>

<actionRelation xmi:id="1id.74" xmi:type="action:Flow" to="id.75" from="id.71"/>

</codeElement >

<codeElement xmi:id="id.75" xmi:type="action:ActionElement" name="b2.6" kind="ArrayReplace">

<actionRelation xmi:id="id.76" xmi:type="action:Addresses" to="id.100" from="id.12"/>
<actionRelation xmi:id="id.77" xmi:type="action:Reads" to="id.46" from="id.75"/>
<actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.47" from="id.75"/>
<actionRelation xmi:id="id.79" xmi:type="action:Writes" to="1id.102" from="id.75"/>
<actionRelation xmi:id="id.80" xmi:type="action:Flow" from="id.75"/>

</codeElement>

<codeElement xmi:id="id.81" xmi:type="action:ActionElement" name="b2.7" kind="Add">

<actionRelation xmi:id="1id.82" xmi:type="action:Reads" to="1id.97"

<actionRelation xmi:id="1id.83" xmi:type="action:Reads" to="id.106"

170

from="1id.12"/>
from="1id.12"/>

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

<actionRelation xmi:id="id.84" xmi:type="action:Writes" to="id.48" from="id.81"/>
<actionRelation xmi:id="id.85" xmi:type="action:Flow" from="id.81"/>
</codeElement>
<codeElement xmi:id="1d.86" xmi:type="action:ActionElement" name="b2.8" kind="ArraySelect">
<actionRelation xmi:id="id.87" xmi:type="action:Addresses" to="id.100" from="id.12"/>
<actionRelation xmi:id="id.88" xmi:type="action:Reads" to="id.48" from="id.86"/>
<actionRelation xmi:id="id.89" xmi:type="action:Reads" to="id.102" from="id.86"/>
<actionRelation xmi:id="id.90" xmi:type="action:Writes" to="1d.49" from="id.86"/>
<actionRelation xmi:id="id.91" xmi:type="action:Flow" to="id.92" from="id.86"/>
</codeElement>
<codeElement xmi:id="1d.92" xmi:type="action:ActionElement" name="b2.9" kind="PtrSelect">
<actionRelation xmi:id="id.93" xmi:type="action:Reads" to="id.49" from="id.92"/>
<actionRelation xmi:id="id.94" xmi:type="action:Reads" to="id.104" from="id.92"/>
<actionRelation xmi:id="id.95" xmi:type="action:Writes" to="1id.98" from="id.92"/>
</codeElement>
<actionRelation xmi:id="id.96" xmi:type="action:Flow" to="id.50" from="id.42"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1d.97" xmi:type="code:StorableUnit" name="x" type="id.112"/>
<codeElement xmi:id="1d.98" xmi:type="code:StorableUnit" name="y" type="id.112"/>
<codeElement xmi:id="1d.99" xmi:type="code:StorableUnit" name="z" type="id.112"/>
<codeElement xmi:id="1d.100" xmi:type="code:StorableUnit" name="d" type="id.101">
<codeElement xmi:id="1d.101" xmi:type="code:ArrayType" name="">
<itemUnit xmi:id="1d.102" name="d[]" type="id.103">
<codeElement xmi:id="1d.103" xmi:type="code:PointerType">
<itemUnit xmi:id="id.104" name="*d[]" type="id.112"/>
</codeElement>
</itemUnit>
</codeElement >
</codeElement>
<codeElement xmi:id="1d.105" xmi:type="code:Value" name="1" type="id.112"/>
<codeElement xmi:id="1d.106" xmi:type="code:Value" name="3" type="id.112"/>
<codeElement xmi:id="1d.107" xmi:type="code:CallableUnit" name="f" type="id.108">
<codeElement xmi:id="1d.108" xmi:type="code:Signature">
<parameterUnit xmi:id="1id.109" name="a" type="1id.112" pos="1"/>
<parameterUnit xmi:id="id.110" name="b" type="id.112" pos="2"/>
<parameterUnit xmi:id="1id.111" type="id.112" kind="return"/>
</codeElement>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.112" xmi:type="code:IntegerType" name="int"/>
</model>

</kdm: Segment >

© ISO/IEC 2012 - All rights reserved 171



ISO/IEC 19506:2012(E)

172 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Subpart Ill - Runtime Resources Layer

This clause describes common patterns for representing the operating environment of existing software systems. The
following are the common properties of the Runtime Resources Layer packages Data, Ul, Platform, and Event:

They provide modeling elements to represent “resources’ (something managed by the runtime platform).
They provide abstract “resource actions’ to manage these resources.

These actions are implemented by the program elements as one or more API calls to some external platform-specific
packages.

Thereis abinding involved between the actions and the resources.

Resource may involve some “inverted” control in the form of callbacks and event handlers, allowing applications to be
programmed in event-driven style.

The content of the information flow involving the resource is associated with some data organi zation.

Resource often has a certain state, and tracking the changes of the state over time may be an important concernin
understanding the logic of the existing system.

Since Runtime Resources Layer packages capture high-value knowledge about the existing system and its operating
environment, which may involve advance analysis and some manual expertise KDM is designed in such a way that the
Runtime Resources Layer analysis can use KDM models from the Program Elements Layer as input and produce Runtime
Resources Layer models as output. There should be no references from lower KDM layers to higher layers; therefore, new
Runtime Resources Layer models can be built on top of existing Program Element layer models.

Packages of the Runtime Resources Layer package systematically uses the following KDM patterns:

Each Runtime Resources Layer package defines entities and containers to represent specific “resources.” Each
package may define additional elementsto represent additional concerns. For example, the Data package involves less
resource definitions, and focuses on the representation of various data organization capabilities. The Event package
provides the meta-model elements for representing state, state transitions caused by events. States, transitions, and
events can be considered as runtime platform resources. The Ul package provides the meta-model elements for
representing user interfaces. User interfaces can also be considered runtime platform resources. The Platform package
deals with conventional runtime platform resources, such as inter-process communication, the use of registries,
management of data, etc.

Each Runtime Resources Layer package defines specific structural relations between “resources.” For example, the
Platform package defines relationship BindsTo, which represents alogical association between two resources.

Each Runtime Resources Layer package defines specific resource actions to represent manipulation of resource
through API calls. Resource actions use the following KDM pattern. Each resource action is an entity of the base
abstract class for the corresponding package. This classis named AbstractX X X Element, where “XXX” isthe name of
the package. So, the resource action is not a subclass of ActionElement, and this promotes modularity between KDM
packages, each of which defines an independent KDM compliance point. However, each resource action owns one or
more ActionElements through property called “abstraction.” Each resource action also has the property called
“implementation” that uses the KDM grouping mechanism to associate the resource action with one or more
ActionElements owned by the Code model. The “implementation” group of the resource action represents the original
API calls asthey were represented in the Program Elements layer input model. The “ abstraction” property uses KDM
container mechanism to add the behavior counterparts to the API calls that represent the true logic of the resource
operation, including the flow of data and control. The “abstracted” ActionElements are owned directly by the
corresponding resource action, and are not part of any Code model.

© ISO/IEC 2012 - All rights reserved 173



ISO/IEC 19506:2012(E)

» The nature of the resource-specific operation performed by a particular resource action is represented by the “kind”
attribute of the resource actions. The resource action owns resource action relations through the “ abstraction” action
container. It isthe owned “abstracted” action that is the direct owner of the resource action relationship.

- “abstraction” action container property isin fact systematically added to all elements of Runtime Resources Layer
packages. This way each resource can use the meta-model elements defined in the Program Elements layer to specify
behavior specific to that resource.

» The"abstraction” action container pattern is used to systematically represent the forms of “inverted” control provided
by runtime platforms. This pattern can be separately referred to asthe KDM Event pattern. Each Runtime Resources
Layer package defines its own meta-model element for representing events. For example, the Ul package defines the
class UlEvent. The “abstraction” action container mechanism allows ActionElements to be added to event elements.
Callsrelation originating from such an abstracted action element represents the “callback” mechanism, provided by
several runtime platforms.

Runtime Resources Layer packages are independent, however they can offer additional capabilities when more than one
is implemented. In order not to enforce any particular order in which these packages should be implemented, KDM
involves the following approach: resource action relationships are subclasses of the AbstractActionRelationship class
from the Action Package. In the full KDM implementation that uses all packages, all resource actions are available for
any ActionElement. Code models should not use the extended relationships. The extended resource action relationships
can only be used by the actions in “abstraction” action containers in Runtime Resources Layer models. A notable example
of this mechanism are the actions “HasState” defined in the Event package, which makes it possible to associate an
element of an event model with any resource. Another example is the “HasContent” relation defined in the Data package,
which allows associating an element of a data model with any resource.

» The“abstraction” action containers, available for each resource also allow arbitrary Flow relations between “resource
actions” and between resources to provide abstractions of the flow between “resource actions.”

» The Runtime Resources Layer patterns are aligned with the micro KDM, which allow precise modeling of behavior
related to resources as the foundation for halistic high-fidelity analysis of existing software systems. It can be achieved
by associating sets of precise micro KDM actions with “abstraction” action containers.

Additional Runtime concerns involve dynamic structures (instances of some logical entities and their relationships) that
emerge at the so-called “run time” of the software system. For example, dynamic entities include processes and threads.
Instances of processes and threads can be created dynamically and in many cases relations between the dynamically
created instances of processes and threads are an essential part of the knowledge of existing systems. Pure logical
perspective in that case may be insufficient.

When separation of concerns between application code and Runtime platform is considered, it is important to be clear
about the so-called bindings and various mechanisms to achieve a binding or delay it.

A binding is a common way of referring to a certain irrevocable implementation decision. Too much binding is often
referred to as “hardcoding.” This often results in systems that are difficult to maintain and reuse. They are often also
difficult to understand. Too little binding leads to dynamic systems, where everything is resolved at run time (as late as
possible). This often results in systems that are difficult to understand and error-prone. Modern platforms excel in
managing binding time. Usually binding is managed at deployment time.

A large number of software development practices is about efficient management of binding time, including portable
adaptors, code generation, model-driven architecture. Efficient management of binding time is often called platform
independence.

174 © ISO/IEC 2012 - Al rights reserved



Binding time

» Generation time binding

» Language & platform design binding

» Versioning time

» Compiletime binding, including

* Macro expansion

» Templates

« Product line variants defined by conditional compilation

» Link time binding
» Deployment time binding
« Initialization time binding

« Runtime

ISO/IEC 19506:2012(E)

Table 3. Binding Time

Table 4. What is being bound

Table 5. Result

Generation time

Syntax, variant, pattern, mapping, etc.

Generated code

Language & platform design

Syntax, entities and relations,
including platform resource types

Source code

Versioning Module source files Module version

Compiletime Intra-modul e rel ations (def-use) Module
--  Macro Syntax, macro to expanded code Expanded macro (source code)
-- Template Template parameters Template instance

- Product line variant defined by
conditional compilation and
includes

Conditional compilation, macro,
includes, symbolic links.

Component Variant

component interface; major processes
and threads; dynamiclinking, dynamic
load (using platform-specific
configuration files).

(static) Link time Intra-component relations within Deployed Component
deployable component

Deployment time Resource names to resources (using Deployed System
platform-specific configuration files)

Initialization time Component implementation to System

Run time

User input, object factory, virtua
function, function pointer, reflection,
instances of processes, instances of
objects, instances of data, etc.

Particular Execution Path

© ISO/IEC 2012 - All rights reserved

175



ISO/IEC 19506:2012(E)

176 © ISO/IEC 2012 - Al rights reserved



15

ISO/IEC 19506:2012(E)

Platform Package

15.1 Overview

Platform package defines a set of meta-model elements whose purpose is to represent the runtime operating environments
of existing software systems. Application code is not self-contained as it is determined not only by the selected
programming languages, but also by the selected Runtime platform. Platform elements determine the execution context
for the application. Platform package defines meta-model elements that represent common Runtime platform concerns:

Runtime platform consists of many diverse elements (platform parts).

Platform provides resources to deployment components.

Platform provides services that are related to resources.

Application code invokes services to manage the life-cycle of aresource.

Control flow between application components is often determined by the platform.
Platform provides error handling across application components.

Platform provides integration of application components.

Examples of Platform Parts include UNIX OS File System, UNIX OS process management system, Windows 2000, OSY
390, Java (J2SE), Perl language Runtime support, IBM CICS TS, IBM MQSeries, Jakarta Struts, BEA Tuxedo, CORBA,
HTTP, TCP/IP, Eclipse, EJB, IMS, Database middleware, Servlets.

Platform package defines an architectural viewpoint for the Platform domain.

Concerns:
» What are the resources used by the software system?
« What elements of the run-time platform are used by the software system?
» What behavior is associated with the resources of the run-time platform?
« What control flows are initiated by the eventsin the resources?
* What control flows are initiated by the run-time environment?
* What are the bindings to the run-time environment?
* What are the deployment configurations of the software system?

« What are the dynamic/concurrent threads of activity within the software system?
Viewpoint language:

Platform views conform to KDM XMI schema. The viewpoint language for the Platform architectural viewpoint
is defined by the Platform package. It includes an abstract entity AbstractPlatformElement, several generic
entities, such as ResourceType, RuntimeResource, as well as several concrete entities, such as PlatformAction,
PlatformEvent, External Actor, MarshalledResource, NamingResource, etc. The viewpoint language for the
Platform architectural viewpoint also includes several relationships, which are subclasses of
AbstractPlatformRel ationship.

© ISO/IEC 2012 - All rights reserved 177



ISO/IEC 19506:2012(E)

« Analytic methods:

The Platform architectural viewpoint supports the following main kinds of checking:

« Dataflow (for example, what action elements read from a given resource; what action elements write to agiven
resource; what action elements manage a given resource; including indirect data flow using a MarshalledResource
or a MessagingResource where a particular resource is used to perform a data flow between the "send" action
element and the "receive" action element)

« Control flow (for example, what action elements are triggered by eventsin a given resource; what action elements
operate on a given resource)

« ldentify of resource instances based on resource handles in various modules
Platform Views are used in combination with Code views and Inventory views.

« Construction methods:

« Platform views that correspond to the KDM Platform architectural viewpoint are usually constructed by analyzing
Code views for the given system as well as the platform-specific configuration artifacts. The platform extractor
tool uses the knowledge of the API and semantics for the given run-time platform to produce one or mode Platform
views as output

< Asan alternative, for some languages like Cobol, in which the elements of the run-time platform are explicitly
defined by the language, the platform views are produced by the parser-like tools which take artifacts of the system
asthe input and produce one or mode Platform views as output (together with the corresponding Code views)

 Congtruction of the Platform view is determined by the semantics of the run-time platform, and it based on the
mapping from the given run-time platform to KDM; such mapping is specific only to the run-time platform and not
to a specific software system

» The mapping from aparticular run-time platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using
stereotypes, attributes or annotations

15.2 Organization of the Platform Package

The Platform package consists of the following 10 class diagrams:

« PlatformModel

» Patformlinheritances

- PlatformResources

» PlatformRelations

- PatformActions

» ProvisioningRelations

» Deployment

» RuntimeResources

* RuntimeActions

» ExtendedPlatformElements

The Platform package depends on the following packages:

» Core

178 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

o kdm
« Code
« Action

15.3 PlatformModel Class Diagram

The PlatformModel class diagram follows the uniform pattern for extending KDM Framework followed by each KDM
model. The classes and associations of the PlatformModel diagram are shown in Figure 15.1.

PlatformModel

AbstractPlatformRelationship

0.1
+mode
{subsets mo%e,}
0..* .
+relation
+platformElement {subsets ownedRelation}
1
{subsets ownedElement} 0%
AbstractPlatformElement | 0"
+group
+owner 0.1 {subsets group}
{subsets owner} +implementation
{subsets groupedElement}
0"*
+abstraction AbstractCodeElement
{subsets ownedElement (from code)
ordered} *

ActionElement
(from action)

Figure 15.1 - PlatformModel Class Diagram
15.3.1 PlatformModel Class

PlatformModel is a specific KDM model that owns collections of facts about the existing software system such that these
facts correspond to the Platform domain. PlatformModel provides a container for platform elements.

Superclass
KDMModel

© ISO/IEC 2012 - All rights reserved 179



ISO/IEC 19506:2012(E)

Associations

platformElement:PlatformElement[0..*] owned platform elements

Semantics

PlatformModel is alogical container for platform elements. The implementer shall arrange platform elements into one or
more platform models.

15.3.2 AbstractPlatformElement Class (abstract)

The AbstractPlatformElement is an abstract meta-model element that represents entities of the operating environments of
software systems.

Superclass
KDMEntity

Associations

platformRelation:PlatformRelation[0..*] Platform relationship that originates from the platform element.
abstraction:ActionElement|[0..*] owned “ abstraction” actions

implementation:AbstractCodeElement[0..*] Grouped association to the AbstractCodeElement element that are
represented by the current PlatformElement from some CodeModel.

source:SourceRef[0..*] traceability links owned by the given platform element

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeM odel.

2. Implementation AbstractCodeElement should be subclasses of Computational Object or ActionElement.

3. Abstraction ActionElement should be owned by the same PlatformModel .

Semantics

An instance of an AbstractPlatformElement represents either an instance of some runtime resource or some API call that
manages some runtime resource. The implementation association links AbstractPlatformElement to the corresponding
elements of some CodeModel. “Abstraction” action elements can be used to specify precise semantics of the
PlatformElement.

15.3.3 AbstractPlatformRelationship Class (abstract)

The AbstractPlatformRelationship is an abstract meta-model element that represents associations between platform
entities.

180 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
KDMRelationship

Semantics
An instance of an AbstractPlatformRelationship represents structural association between two runtime resources.

15.4 Platforminheritances Class Diagram

The PlatformlInheritances class diagram represents inheritances of the meta-modeling elements of the Platform package.
The classes and associations of the Platformlnheritances diagram are shown in Figure 15.2.

KDMModel K DM Entity KDMRelationship
(from kdm) M (from core)
PlatformModel AbstractPlatform Element AbstractPlatform Relationship
0.1

Platform Source

+source

SourceRef
(from source)

Figure 15.2 - PlatformInheritances Class Diagram

15.5 PlatformResources Class Diagram

The PlatformResources class diagram defines the meta-model elements to represent platform resources. The classes and
associations of the PlatformResources diagram are shown in Figure 15.3.

© ISO/IEC 2012 - All rights reserved 181



ISO/IEC 19506:2012(E)

+platformElement [ Ay syractPlatformElement

0..*
{subsets ownedElement} ZT
PlaformAction
kind : Strin et
ResourceType < g 0.1
0..1
+owner +owner
{subsets owner}
{subsets owner}
MarshalledResource”] ExternalActor

NamingResource

Dﬁtal\/ﬁanager
[
|

LockResourcd StreamResource {subsets ownedElemepnt}
MessagingResourgfé ]
PlatformE vent
- s2kind : String .
ExecutionResource FileResource 0..

+platformElement

Figure 15.3 - PlatformResources Class Diagram
15.5.1 ResourceType Class

The ResourceType is a meta-model element that represents a platform resource. The purpose of a platform is to simplify
application development by closing the gap between the application domain and the facilities that are available to
application programmers. The latter are referred to as platform resources. Examples of resource types include UNIX File,
UNIX 10 Stream, UNIX socket, UNIX Process, UNIX thread, AWT widget, CICS File, CICS transaction, UNIX
semaphore, UNIX shared memory segment, OS/390 VSAM file, IDBC connection, HTTP session, HTTP request, UNIX
memory block, CICS commarea, COBOL file.

KDM introduces Platform Resource as an explicit abstraction in order to separate the explicit parts that are written by
application programmers from parts that are provided by the platform. The underlying implementation details may be
quite complex, for example, marshaled call includes client stubs, skeletons, platform-managers. The type of the Platform
Resource denotes the semantics of the resource.

Platform resources can be further subdivided into smaller groups of services (resource types). Platform resources are
usually grouped into platform stacks. Platform resource is an element of the overall platform used by a particular system.
Complete Platform is the entire collection of platform resources used by the segments of the system. Platform resource
may be associated with logical packages for a particular programming language.

Superclass
AbstractPlatformElement

182 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

platformElement:AbstractPlatformElement|0..*] The set of platform elements that are owned by the given
ResourceType.

Semantics
ResourceType may represent an individual runtime resource instance or a container for several such instances.

The implementer shall identify runtime resources used by the existing software system according to the semantics of the
platform used by the existing system, resource configuration files, and other appropriate sources of information.

Specific subclasses of ResourceType define specific categories of resources available to implementers. Other types of
resources can be represented by a generic instance of ResourceType meta-model element with a stereotype.

15.5.2 NamingResource Class

NamingResource represents platform resources that provide registration and lookup services (e.g., registry). In the meta-
model NamingResource is a subclass of ResourceType.

Superclass
ResourceType

Semantics

15.5.3 MarshalledResource Class

MarshalledResource represents platform resources that provide intercomponent communication via remote synchronous
calls (for example, RPC, CORBA method call, Java remote method invocation). In the meta-model MarshalledResource

is a subclass of ResourceType.

Superclass

ResourceType
Semantics

15.5.4 MessagingResource Class

M essagingResource represents platform resources that provide intercomponent communication via asynchronous
messages (e.g., IBM MQSeries messages).

Superclass

ResourceType

© ISO/IEC 2012 - All rights reserved 183



ISO/IEC 19506:2012(E)

Semantics

15.5.5 FileResource Class

FileResource represents platform resources that provide any non-database related storage. In the meta-model the
FileResource class is a subclass of ResourceType.

Superclass

ResourceType

Semantics

15.5.6 ExecutionResource Class
ExecutionResource represents dynamic Runtime elements (e.g., process or thread).

Superclass

ResourceType

Semantics

15.5.7 LockResource Class
L ockResource represents a synchronization resource common to multithreaded runtime environments.

Superclass
ResourceType

Semantics

15.5.8 StreamResource Class
StreamResource represents a simple input/output resource, for example UNIX-like stream.

Superclass

ResourceType

Semantics

15.5.9 DataManager Class

DataManager represents a database management system. DataManager is associated with particular data elements that
represent the data description of the data managed by the data manager.

184 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
ResourceType

Semantics

15.5.10 PlatformEvent Class

The PlatformEvent class is a meta-model element representing various events and callbacks associated with runtime
platforms. This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
ResourceType

Attributes

kind:String Represents the nature of the action performed by this Event.
Semantics
15.5.11 PlatformAction Class

PlatformAction class follows the pattern of a “resource action” class, specific to the Platform package. The nature of the
action represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractPlatformElement

Attributes

kind:String Represents the nature of the action performed by this element.

Associations

platformElement:PlatformEvent[0..]  The set of platform events that are owned by the given PlatformAction.

15.5.12 ExternalActor Class

ExternalActor is a meta-model element that represents entities outside of the boundary of the software system being
modeled. For example, external actor can be a user of the system. External actors interact with the software system.

In the meta-model ExternalActor is a PlatformElement. Semantics of ExternalActors is outside of the scope of KDM.

Superclass
PlatformAction

© ISO/IEC 2012 - All rights reserved 185



ISO/IEC 19506:2012(E)

Semantics

15.6 PlatformRelations Class Diagram

The PlatformRelations class diagram defines associations between ResourceTypes. The classes and associations of the
PlatformRelations diagram are shown in Figure 15.4.

AbstractPlatformRelationship

BindsTo

1
+from +o J/
1

{redefines from} fredefines to} | KDMENtity
ResourceType (from core)

Figure 15.4 - PlatformRelations Class Diagram
15.6.1 BindsTo Class
BindsTo defines a semantic association between two ResourceTypes.

Superclass
PlatformRelationship

Associations

from:ResourceType[1] The ResourceType that is the source of the relationship (the from-endpoint).
to:KDMEntity[1] The KDMEntity to which the current Resource is bound (the to-endpoint).
Semantics

15.7 ProvisioningRelations Class Diagram

The ProvisioningRelations class diagram defines meta-model elements that represent the physical elements of the
Runtime platform that provide certain services and manage resources.

The classes and associations of the ProvisioningRelations diagram are shown in Figure 15.5.

186 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractPlatformRelationship

Requires
+from
{redefines from}
0..* 0..*
+to 1

{redefines to 1 DeployedComponent

AbstractP latform Element

Figure 15.5 - ProvisioningRelations Class Diagram
15.7.1 Requires Class
Requires defines semantic relationship between a DeployedComponent and an AbstractPlatformElement.

Superclass
PlatformRelationship

Associations

from:DeployedComponent[1] The DeployedComponent that isthe source of the rel ationship (the from-endpoint).
to:AbstractPlatformElement[1] The AbstractPlatformElement that isthe target of the relationship (the to-endpoint).
Semantics

15.8 PlatformActions Class Diagram

The PlatformActions class diagram defines meta-model elements that represent specific actions that are the endpoints of
certain Platform relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations of the PlatformActions diagram are shown in Figure 15.6.

© ISO/IEC 2012 - All rights reserved 187



ISO/IEC 19506:2012(E)

AbstractActionRelationship
(from action)

ReadsResource
WritesResource o
ManagesResource
0.* 0.*
DefinedBy
tto +to
¢ {redefines to} def .
+1rom redefines to
0.x | 0.* {redefines from} ) { }
{redefinds fromjedefines form} N 1), 1
+to Resource Type
+o 1 {redefines to}

—\
from 1 | ActionElement

Codeltem {redefines from (from action)
(from code) <kind : String

defines to
1 1 b,

Figure 15.6 - PlatformActions Class Diagram
15.8.1 ManagesResource Class

ManagesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources that are not related to the flow of data to and from the resource. ManagesResource relationship is
similar to Addresses relationship from Action Package. The nature of the operation on the resource is represented by the
“kind” attribute of the PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

188 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

15.8.2 ReadsResource Class

ReadsResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data from the resource. ReadsResource relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRel ationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

Constraints
1. Thisrelationship should not be used in Code models

15.8.3 WritesResource Class

WritesResource class follows the pattern of a “resource action relationship.” It represents various types of accesses to
platform resources where there is a flow of data to the resource. WritesResource relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
PlatformAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ResourceType[1] the resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

15.8.4 DefinedBy Class

DefinedBy is a meta-model element that represents association between a platform resource and the logical package that
describes the interface to this resource. The Codeltem at the to-endpoint of this KDM relationship is usually an interface
or a package.

© ISO/IEC 2012 - All rights reserved 189



ISO/IEC 19506:2012(E)

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:Codeltem[1] the Codeltem describing the resource

Constraints
1. Thisrelationship cannot be used in the Code Model.

Semantics

DefinedBy is an optional relationship. The implementer shall correctly associate the platform resource with the
corresponding logical definition of this resource (usually a Signature, an Interface, or a Package). The logical description
of the package usually refers to some external implementation, as platform resources are usually described by some third-
party packages, provided as part of the runtime platform of the application. Individual API calls corresponding to the
given resource, should have the CompliesTo relations to the individual API descriptions the definition represented by the
Codeltem at the to-endpoint of the DefinedBy relationship.

15.9 Deployment Class Diagram

The Deployment class diagram defines meta-model elements that represent deployment elements and their relations. In
particular, the elements of the Deployment diagram address physical structures and how logical components are mapped
to these physical structures.

The classes and associations of the Deployment diagram are shown in Figure 15.7.

190 © ISO/IEC 2012 - Al rights reserved



DeployedSoftwareSystem

0..*
+group
{subsets group}

+groupedComponent
{subsets groupedElement}

D eployed Component

0 _*

+group

ISO/IEC 19506:2012(E)

AbstractPlatformElement

+deployedComponent
{sybsets ownedElement}

Machine

+deployedResource
{subsets ownedElement}

+owner
{subsets owner}

D eployedResource

{subsets group}

0..*

+groupedCode
{subsets groupedElement}

Module
(from code)

(V0 ¥
+owner
{subsets owner}
+platformElement 0.*
{subsets ownedElement} ResourceType

Figure 15.7 - Deployment Class Diagram

15.9.1 DeployedComponent Class

The DeployedComponent represents a unit of deployment as defined by a particular platform. Major platform parts
provide a packaging mechanism of deploying application functionality. Deployment component is a replaceable unit of an
application. For example, DLL, shared library, COM, Eclipse plugin, Executable, Jar file, War file for Tomcat, SQL
Stored procedure, CORBA module, EJB, JavaBean, Jakarta Struts Action, Jakarta Struts Form.

Superclass
AbstractPlatformElement

Associations

groupedCode:Module[0..*]

© ISO/IEC 2012 - All rights reserved

The code components that are deployed to the target DeployedComponent (KDM
grouping association).

191



ISO/IEC 19506:2012(E)

Semantics

15.9.2 DeployedSoftwareSystem Class

The DeployedSoftwareSystem is a meta-model element that represents an instance of a software system at deployment or
at the initialization time. DeployedSoftwareSystem is a physical instance of some logical SoftwareSystem.
DeployedSoftwareSystem is associated with a set of DeployedComponents, which correspond to the set of logical
components of the logical SoftwareSystem. Each SoftwareSystem involves one or more Components. Some components
can be involved in more than one SoftwareSystem (allowing description of the so-called Software Product Lines). Each
Component involves one or more model Modules. Again, each Module can be involved in more than one Component.
Component is a unit of deployment. Each logical component can be deployed multiple times, each time represented by a
unique DeploymentComponent element. DeployedSoftwareSystem is a counterpart of the corresponding logical
SoftwareSystem.

Superclass
AbstractPlatformElement

Associations

groupedComponent:DeployedComponent[0..*] The set of physical DeployedComponents that make up the target
system. The physical components correspond to the logical
components of the system.

Semantics
15.9.3 Machine Class
The Machine is a meta-model element that represents the hardware node which hosts deployed components.

Superclass
AbstractPlatformElement

Associations

deployedComponent:DeployedComponent[0..*] The set of DeployedComponent elements deployed to this node.
deployedResource:DeployedResource[0..*] The set of DeployedResource elements deployed to this node.
Semantics

192 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

15.9.4 DeployedResource Class

The DeployedResource is a meta-model element that represents a set of platform resource instances as they are deployed
in a particular deployment configuration. DeployedResource is associated with a set of ResourceType elements.
DeployedResource provides a unique physical context for a logical resource, as each logical resource can be associated
with multiple DeployedResources.

Superclass
AbstractPl atformElement

Associations
platformElement:ResourceType[0..*] The set of ResourceTypesthat are deployed into thetarget DeployedResource.

Semantics

15.10 RuntimeResources Class Diagram

The RuntimeResources class diagram defines meta-model elements that represent dynamic structures (instances of some
logical entities and their relationships) that emerge at the so-called “run time” of the software system. For example,
dynamic entities include processes and threads. Instances of processes and threads can be created dynamically and in
many cases relations between the dynamically created instances of processes and threads are an essential part of the
knowledge of existing systems. Another example of dynamic structures involves deployed components that are |oaded
dynamically.

The classes and associations of the RuntimeResources diagram are shown in Figure 15.8.

ResourceType

7

RuntimeResource

Thread Process

Figure 15.8 - RuntimeResources Class Diagram

© ISO/IEC 2012 - All rights reserved 193



ISO/IEC 19506:2012(E)

15.10.1 RuntimeResource (generic)

The RuntimeResource is a generic meta-model element that represents an entity that has its own execution thread (for
example, process or thread). RuntimeResource is subclassed by Process and Thread. In the meta-model RuntimeResource
is used as the endpoint of certain relationships.

Superclass
ResourceType

Semantics

15.10.2 Process Class
The Process is a meta-model element that represents instances of processes.

Superclass

RuntimeResource

Semantics

15.10.3 Thread Class
The Thread is a meta-model element that represents instances of the so-called threads (light-weight processes).

Superclass
RuntimeResource

Semantics

15.11 RuntimeActions Class Diagram

The RuntimeActions class diagram defines meta-model elements that represent specific Runtime actions as the endpoints
of certain Runtime relationships. The elements of this diagram extend ActionElement from the KDM Action package.

The classes and associations that make up the RuntimeActions diagram are shown in Figure 15.9.

194 © ISO/IEC 2012 - Al rights reserved



AbstractPlatformRelationship

DeployedComponent |,

Loads

! 0

{redefines to} ; o
RuntimeResource | *10 Spawns
1 0.4

{redefines to} 0..*

+ +rom
rom 1/, {redefines from}

{redefines from}

ActionElement
(from action)

<zkind : String

Figure 15.9 - RuntimeActions Class Diagram

15.11.1 Loads Class

ISO/IEC 19506:2012(E)

The Loads class is a meta-model element that represents “dynamic loading relationship” between a LoadingService action
endpoint and the DeployedComponent.

In the meta-model Loads is a subclass of a generic element RuntimeRelation.

Superclass
AbstractPlatformRelationship

Associations

from:ActionElement[1]

to:DeploymentComponent[1]

© ISO/IEC 2012 - All rights reserved

“abstracted” action element owned by some resource

The component that is being |oaded.

195



ISO/IEC 19506:2012(E)

Semantics

15.11.2 Spawns Class

The Spawns class is a meta-model element that represents “dynamic process creation” or “dynamic thread creation
relationship between a SpawningService action endpoint and the Runnablelnterface (Process or Thread).

Superclass
AbstractPlatformRel ationship

Associations

from:ActionElement|[1] “abstracted” action element owned by some resource
to:RuntimeResource[1] The runtime resource element (Process or Thread) that is being
spawned.
Semantics

15.12 ExtendedPlatformElements Class Diagram

The ExtendedPlatformElements class diagram defines two “wildcard” generic elements for the code model as determined
by the KDM model pattern: a generic platform entity and a generic platform relationship.

The classes and associations of the ExtendedPlatformElements diagram are shown in Figure 15.10.

AbstractP latform Relationship

AbstractPlatformElement +rom
<——— | PlatformRelationship
+ 0.~
{redefines from}
0.*
+to
1 {redefines to}
PlatformElement KDMEntity
(from core)

Figure 15.10 - ExtendedPlatformElements Class Diagram

196 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

15.12.1 PlatformElement Class (generic)

The PlatformElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass
AbstractPlatformElement

Constraints

1. PlatformElement should have at least one stereotype
Semantics

A platform entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity types of the platform model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

15.12.2 PlatformRelationship Class (generic)

The PlatformRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractPlatformRel ationship

Associations

from:AbstractPlatformElement[1] the platform element endpoint

to:KDMEntity[1] the target of the relationship

Constraints
1. PlatformRelationship should have at |east one stereotype

Semantics

A platform relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the platform model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

© ISO/IEC 2012 - All rights reserved 197



ISO/IEC 19506:2012(E)

198 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

16 Ul Package

16.1 Overview

The Ul package defines a set of meta-model elements whose purpose is to represent facets of information related to user
interfaces, including their composition, their sequence of operations, and their relationships to the existing software

systems.

The Ul package defines an architectural viewpoint for the Ul domain.

© ISO/IEC 2012 - All rights reserved

+ Concerns:
« What are the distinct elements of the user interface of the systems?
« What is the organization of the user interface?
* How user interface uses artifacts of the system (for example, images) ?
* What data flows originate from the user interface ?
« What data flows output to the user interface?

« What control flows are initiated by the user interface?
« Viewpoint language:

Ul views conform to KDM XMI schema. The viewpoint language for the Ul architectural viewpoint is defined
by the Ul package. It includes an abstract entity AbstractUlElement, several generic entities, such as UlResource,
UlDisplay, as well as severa concrete entities, such as Screen, Report, UIField, UlAction, UIEvent, etc. The
viewpoint language for the Ul architectural viewpoint also includes several relationships, which are subclasses of

AbstractUl Relationship.
« Analytic methods:

The Ul architectural viewpoint supports the following main kinds of checking:
» Dataflow (for example, what action elements read from a given Ul element; what action elementswriteto agiven
Ul element; what action elements manage a given Ul element)

« Control flow (for example, what action elements are triggered by eventsin agiven Ul element; what action
elements operate on a given Ul element)

« Workflow (what Ul elements will be displayed after the given one; what Ul elements are displayed before the
given one)

Ul Views are used in combination with Code views and Inventory views.

« Construction methods:

« Ul viewsthat correspond to the KDM Ul architectural viewpoint are usually constructed by analyzing Code views
for the given system as well asthe Ul-specific configuration artifacts. The Ul extractor tool uses the knowledge of
the API and semantics for the given run-time platform to produce one or mode Ul views as output.

< Asan alternative, for some languages like Cobol, in which the elements of the Ul are explicitly defined by the
language, the Ul views are produced by the parser-like tools which take artifacts of the system as the input and
produce one or mode Ul views as output (together with the corresponding Code views).

199



ISO/IEC 19506:2012(E)

16.2 Organization of the Ul Package

The Ul package consists of the following 6 class diagrams:

The Ul package depends on the following packages:

 Congtruction of the Ul view is determined by the semantics of the Ul platform, and it based on the mapping from
the given Ul platform to KDM; such mapping is specific only to the Ul platform and not to a specific software

system.

« The mapping from a particular Ul platform to KDM may produce additional information (system-specific, or
platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using

stereotypes, attributes, or annotations.

UlModel
UlInheritances
UlResources
UlIRelations
UlActions
ExtendedUI Elements

Action
Code
kdm
Source
Core

16.3 UIModel Class Diagram

The UIModel class diagram follows the uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to static representations of the principal components of a user interface. The class diagram

shown in Figure 16.1 captures these classes and their relations.

200

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

UIModel

AbstractUIRelationship

+model
{subsets model} +UIRelation

{subsets ownedRelation}

+UIElement

*

AbstractUIElement | ©-

+group
{subsets group}

+owner
{subsets owner}

+abstraction

{subsets ownedElement

ordered} +implementation

{subsets groupedElement} 0..*

ActionEIe_ment AbstractC odeElement
(from action) (from code)

Figure 16.1 - UIModel Class Diagram
16.3.1 UIModel Class
The UIModel is the specific KDM model that corresponds to the user interface of the existing software system.

Superclass
KDMModel

Associations
UIElement:UIElement[0..*] user interface elements owned by the given UIModel

Semantics

UIModel provides a container for various user-interface elements. The implementer shall arrange user-interface elements
into one or more UIModel containers.

16.3.2 AbstractUIElement Class (abstract)

The AbstractUIElement is the abstract superclass for various concrete user interface elements. As such, it is the class that
represents both compound and elementary items in a model of a system’s user interface.

Superclass
KDMEntity

© ISO/IEC 2012 - All rights reserved 201



ISO/IEC 19506:2012(E)

Associations

UlRelation:AbstractUIRelationship[0..*] Ul relationships originating from the given Ul element
abstraction:ActionElement[0..*] owned “abstraction” actions

implementation:AbstractCodeElement|[0..*] Grouped association to AbstractCodeElement from some CodeModel that
are represented by the current Ul element.

source: SourceRef[0..1] link to the physical artifact for the given Ul element

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeM odel.

2. Implementation AbstractCodeElement should be subclasses of Computational Object or ActionElement.

3. Abstraction ActionElement should be owned by the same UIModel.

Semantics

The implementer shall map specific user interface element types determined by the particular user-interface system of the
existing software system, into concrete subclasses of the AbstractUlElement. The implementer shall map each user
interface element into some instance of the AbstractUlElement. Implementation elements are one or more
Computational Objects or ActionElements from some CodeModel that are represented by the current Ul element.
“Abstraction” actions may be used to represent precise semantics of the Ul Element.

16.3.3 AbstractUIRelationship Class (abstract)
The AbstractUIRelationship is the abstract superclass for various user interface relationships.

Superclass
KDMRelationship

Semantics

The implementer shall map specific user interface association types determined by the particular user-interface system of
the existing software system, into concrete subclasses of the AbstractUIRelationship. The implementer shall map each
user interface association into some instance of the AbstactUIRelationship.

16.4 Ullnheritances Class Diagram

The Ullnheritances class diagram defines how classes of the Ul package are related to the meta-model elements defined
in the Core package. The classes and associations that make up the Ullnheritances class diagram are shown in Figure
16.2.

202 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

KDMModel KD M E ntity KDMRelationship
(from kdm) (from core) (from core)
UlModel AbstractUIRelationship
AbstractU IE lem ent
0.1
UlISqurce
+source
0“*
SourceRef

(from source)

Figure 16.2 - Ulinheritances Class Diagram

16.5 UIResources Class Diagram

The UIResource class diagram defines several specific KDM containers that own collections of user interface elements.
The class diagram shown in Figure 16.3 captures these classes and their relations.

+UIElement
{subsets ownedE lement}

AbstractUIElement

UIResource UlAction
Zkind : String €
0.1
+owner
{subsets ownet} +owner
{subsets owner}
UIDisplay
UlField
_ UEvent |
<kind : String
I | 0“*
Screen +UElement
Report {subsets ownedElement}

Figure 16.3 - UIResources Class Diagram

© ISO/IEC 2012 - All rights reserved 203



ISO/IEC 19506:2012(E)

16.5.1 UIResource Class (generic)

The UIResource is the superclass for several user interface elements that can be containers for other user interface
elements. For example, it represents a compound unit of display. Thisis a generic element.

Superclass
AbstractUIElement

Associations
UIElement:UIElement|[0..*] Ul elements owned by this UIResource

Constraints
1. UIResource should have at least one stereotype.

Semantics
UIResource is a generic element with under specified semantics. It can be used as an extension point.

16.5.2 UIDisplay Class (generic)
The UIDisplay is the superclass of Screen and Report. It represents a compound unit of display.

Superclass

UIResource

Constraints

1. UlDisplay should have at |east one stereotype.

Semantics
UlDisplay is a generic element with under specified semantics. It can be used as an extension point.

16.5.3 Screen Class

The Screen is a compound unit of display, such as a Web page or character-mode terminal that is used to present and
capture information. The screen may be composed of multiple instances of AbstractUlElement and its subclasses.

Superclass

UlIDisplay

204 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

16.5.4 Report Class

The Report is a compound unit of display, such as a printed report, that is used to present information. The report may be
composed of multiple instances of AbstractUlElement and its subclasses.

Superclass
UlIDisplay

Semantics

16.5.5 UlField Class

The UlField is a unit of display, such as a control on aform, a text field on a character-mode terminal, or a field printed
on areport.

Superclass
UlResource

Semantics

16.5.6 UlEvent Class

The UlEvent class is a meta-model element representing various events and callbacks associated with user interfaces.
This class follows the KDM event pattern, common to Resource Layer packages.

Superclass
UlResource

Attributes
kind:String represents the nature of the action performed by this Event

16.5.7 UlAction Class

UlAction class follows the pattern of a “resource action” class, specific to the Ul package. The nature of the action
represented by a particular element is designated by its “kind” attribute.

Superclass
AbstractUl Element

Attributes

kind:String represents the nature of the action performed by this element

© ISO/IEC 2012 - All rights reserved 205



ISO/IEC 19506:2012(E)

Associations

UIElement:UIEvent[0..*] Ul events owned by this UlAction

Semantics

16.6 UlRelations Class Diagram

The UIRelations class diagram provides basic meta-model constructs to define the binding between elements of a display
and their content. The class diagram shown in Figure 16.4 captures these classes and their relations.

AbstractUIRelationship

0..*
0.* UIFlow
UlLayout | %" +rom
0.* {redefines fram}
1
1 1 AbstractUIElement
UResource | 1
+o
+
o +from {redefines to}
{redefines to} {redefines from}

Figure 16.4 - UIRelations Class Diagram

16.6.1 UlFlow Class

The UIFlow relationship class captures the behavior of the user interface as the sequentia flow from one instance of
Display to another.

Superclass
AbstractUIRelationship

Associations

from:AbstractUIElement[1]

to:AbstractUIElement[1]

Semantics

206 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

16.6.2 UlLayout Class

The UlLayout relationship class captures an association between two instances of Display — one that defines the content
for a portion of a user interface, and one that defines its layout.

Superclass
AbstractUIRelationship

Associations

from:UIResource[1] the origin Ul Resource
to:UIResource[1] the target Ul Resource
Semantics

16.7 UlActions Class Diagram

The UlActions class diagram defines several KDM relations for the Ul package. It provides basic meta-model constructs
to define the sequence of display in a user interface, and the mapping between a user interface and the events it may
generate.

The class diagram shown in Figure 16.5 captures these classes and their relations.

AbstractActionRelationship
(from action)

AbstractU IRelationship

+to
{redefines to}

UIResource

ManagesUl

1
+10
{redefines to}

Displaysimage

Displays

ReadsUI

+to
1{redefines to}

Image
(from source)

{redefines from}

+from -
{redefines from} | ActionElement
(ffom action)

<kind : String

Figure 16.5 - UlActions Class Diagram

© ISO/IEC 2012 - All rights reserved 207



ISO/IEC 19506:2012(E)

16.7.1 Displays Class

The Displays relationship class represents the relationship between an instance of Callablelnterface and the instance of
UlElement that is presented on the interface as a result of the execution of the Callablelnterface.

Superclass
AbstractUIRelationship

Associations

from:ActionElement[1] the ActionElement that displays a certain Ul resource
to:UIResource[1] the target Ul resource
Semantics

16.7.2 Displaysimage Class

The Displaysimage captures the relationship between an image file — an instance of Image — and its presentation on a user
interface — an instance of DisplayUnit.

Superclass
AbstractUIRelationship

Associations

from:ActionElement[1] The ActionElement that displays a certain Image.
to:lmage[1] the target Image element
Semantics

16.7.3 ManagesUl Class

ManagesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources that are not related to the flow of data to and from the resource. ManagesUI relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the UlAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[ 1] “abstracted” action owned by some resource

208 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

to:UIResource[ 1] the user interface resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

16.7.4 ReadsUI Class

ReadsUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data from the resource. ReadsUI relationship is similar to Reads relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[ 1] the user interface resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

16.7.5 WritesUI Class

WritesUI class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is a flow of data to the resource. WritesUI relationship is similar to Writes relationship
from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the UlAction
that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:UIResource[ 1] the user interface resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

© ISO/IEC 2012 - All rights reserved 209



ISO/IEC 19506:2012(E)

16.8 ExtendedUIElements Class Diagram

The ExtendedUI Elements class diagram defines two “wildcard” generic elements for the Ul model as determined by the
KDM model pattern: a generic Ul entity and a generic Ul relationship.

The class diagram shown in Figure 16.6 captures these classes and their relations.

AbstractUIRelationship

AbstractUIElement

<————— | UlRelationship
1 o

+rom

{redefines from} +o

{redefines to}

UIElement KDMEntity

(from core)

1

Figure 16.6 - ExtendedUIElements Class Diagram

16.9 UlElement Class (generic)

The UlElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass
AbstractUIElement

Constraints

1. UlElement should have at least one stereotype.

Semantics

A Ul entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual”
meta-model entity type of the Ul model. This is one of the KDM extension points that can integrate additional language-
specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

16.9.1 UlRelationship Class (generic)

The UlIRelationship relationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

210 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
AbstractUIRelationship

Associations

from:AbstractUIElement[1] the origin Ul element

to:KDMEntity[1] the target KDM entity

Constraints
1. UlIRelationship should have at |east one sterectype.

Semantics

A Ul relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the Ul model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

© ISO/IEC 2012 - All rights reserved 211



ISO/IEC 19506:2012(E)

212 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

17 Event Package

17.1 Overview

The Event package defines a set of meta-model elements whose purpose is to represent high-level behavior of
applications, in particular event-driven state transitions. Elements of the KDM Event package represent states, transitions,
and event. States can be concrete, for example, the ones that are explicitly supported by some state-machine based
runtime framework or a high level programming language, such as CHILL. On the other hand, KDM Event model can
represent abstract states, for example, states that are associated with a particular algorithm, resource, or a user interface.

The Event packages defines an architectural viewpoint for the Event domain.

« Concerns
» What are the distinct states involved in the behavior of the software system?
» What are the events that cause transitions between states?
« What action elements are executed in agiven state?

« Viewpoint language:

Event views conform to KDM XMI schema. The viewpoint language for the Event architectural viewpoint is
defined by the Event package. It includes an abstract entity AbstractEventElement, generic entity EventResource,
UlDisplay, as well as several concrete entities, such as State, Transition, Event, EventAction, etc. The viewpoint
language for the Ul architectural viewpoint also includes several relationships, which are subclasses of
AbstractEventRel ationship.

« Analytic methods:

The Event architectural viewpoint supports the following main kinds of checking:
 Reachability (for example, what states are reachable from the given state).

« Control flow (for example, what action elements are triggered by a given state transition; what action elementswill
be executed for a given traversal of the state transition graph).

 Dataflow (what data sequences correspond to a given traversal of the state transition graph).
Event Views are used in combination with Code views, Data views, Platform views, and Inventory views.

« Construction methods:

« Event views that correspond to the KDM Event architectural viewpoint are usually constructed by analyzing Code
views for the given system as well asthe configuration artefacts specific to the event-driven framework. The Event
extractor tool uses the knowledge of the API and semantics of the event-driven framework to produce one or more
Event views as output.

 Congtruction of the Event view is determined by the semantics of the event-driven framework, and it is based on
the mapping from the given event-driven framework to KDM; such mapping is specific only to the event-driven
framework and not to a specific software system.

» The mapping from a particular event-driven framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using
stereotypes, attributes, or annotations.

© ISO/IEC 2012 - All rights reserved 213



ISO/IEC 19506:2012(E)

17.2 Organization of the Event Package

The Event package consists of the following 6 class diagrams:

« EventModel

» Eventinheritances
« EventResources

» EventRelations

- EventActions

- ExtendedEventElements

The Event package depends on the following packages:

« Core

e kdm

« Source
« Code

- Action

17.3 EventModel Class Diagram

The EventModel class diagram follows a uniform pattern for KDM models to extend the KDM framework with specific
meta-model elements related to event-driven state transition behavior.

The class diagram shown in Figure 17.1 captures these classes and their relations.

EventModel

+model

{subsets model}

+eventElement
{subsets ownedElement}

+abstraction

{subsets ownedEle ment
ordered}
0..*

ActionElement
(from action)

AbstractEventRelationship

0..*
+eventRelation

AbstractEventElement

{subsets ownedRelation}

+group
{subsets group}

.1

+owner
{subsets owner}

+implementation

{subsets groupedElement} [g *

Figure 17.1 - EventModel Class Diagram

214

AbstractCodeElement
(from code)

© ISO/IEC 2012

- All rights reserved



ISO/IEC 19506:2012(E)

17.3.1 EventModel Class

The EventModel is a specific KDM model that represents entities and relations describing events and responses to events
in an enterprise application.

Superclass
KDMModel

Associations
eventElement:AbstractEventElement[0..*] event elements owned by the given event model

Semantics

EventModel is a container for instances of event elements. The implementer shall arrange event elements into one or
more event models.

17.3.2 AbstractEventElement Class (abstract)
The AbstractEventElement is an abstract superclass for various event elements.

Superclass
KDMEntity

Associations

eventRelation:AbstractEventRelationship[0..*] event relations owned by the give element
abstraction:ActionElement|[0..*] owned “abstracted” action elements
implementation:AbstractCodeElement|[0..*] group association to AbstractCodeElement elements from some

CodeModel that are represented by the current EventElement

source:SourceRef[0..*] traceability links to the “source code” of the artifact

Constraints
1. Implementation AbstractCodeElement should be owned by some CodeM odel.

2. Implementation AbstractCodeElement should be subclass of Computational Object or ActionElement.

3. Abstraction ActionElement should be owned by the same EventModel.

Semantics

Implementation AbstractCodeElements are one or more Computational Objects or ActionElements that are represented by
the current EventElement. “Abstraction” actions can be used to represent precise semantics of the EventElement.

© ISO/IEC 2012 - All rights reserved 215



ISO/IEC 19506:2012(E)

17.3.3 AbstractEventRelationship Class (abstract)

The AbstractEventRelationship is the superclass of associations of the event model. This is an abstract meta-model
element for representing various relations involving states and events.

Superclass
KDMRelationship

Semantics

17.4 Eventlnheritances Class Diagram

The Eventlnheritances class diagram defines how classes of the Event package are related to the meta-model elements
defined in the Core package. The classes and associations that make up the Eventlnheritances diagram are shown in
Figure 17.2.

KDMModel
(from kdm)

I

KD M E ntity

(from core)

i

KDMRelationship

(from core)

1

EventModel

AbstractEventElement

AbstractEventRelationship

0..1
EventSource

+source 0

SourceRef
(from source)

Figure 17.2 - Eventinheritances Class Diagram

17.5 EventResources Class Diagram

The EventResources class diagram defines specific event elements. The class diagram shown in Figure 17.3 captures
these classes and their relations.

216

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

+eventElement
{subsets ownedElement}

AbstractEventElement

0..*

0..1
{subsets owner} EventAction
EventResource wkind : String
0..1
+owner +owner
{subsets owner}
S +eventElement
s Transition Event {subsets ownedElement}
okind : Sting<——
f—————— 0..*
nitalState OnEntry SN

Figure 17.3 - EventResourcesClass Diagram
17.5.1 EventResource Class (generic)
The EventResource is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass
AbstractEventElement

Associations
eventElement:AbstractEventElement|[0..*] Event elements owned by this EventResource

Semantics
17.5.2 Event Class

The Event is the generic AbstractEventElement that can be instantiated in KDM instances.

Superclass
EventResource

Attributes

kind:String represents the nature of this Event

© ISO/IEC 2012 - All rights reserved 217



ISO/IEC 19506:2012(E)

Semantics

17.5.3 State Class

The State class represents a state associated with certain behavior. This can be a concrete state, for example, supported by
a state-machine runtime framework. This can also be an abstract state associated with some process, algorithm,
component, or resource discovered during the analysis of the software system. An example of an abstract state is the step
of the protocol that involves a messaging resource. An abstract state may not have any direct and tangible manifestation
in the artifacts of the software system. On the other hand, a concrete state may be implemented in a tangible way, for
example, using a variable or as a class provided by the application framework. States can be nested.

Superclass
EventResource

17.5.4 InitialState Class
The Initial State class is a subclass of the State class. It represents a default initial state.

Superclass
State

17.5.5 Transition Class

The Transition class represents a transition that is performed when a certain event is consumed in a certain state.
Transition element should be owned by some state element. Transition can be associated with the corresponding Event by
using the “ConsumesEvent” resource relation. A transition element can also own some Event elements. Transition does
not have an “implementation” group. Instead, it is considered as some sort of a trigger. The association between the
transition and corresponding behavior is achieved through the “abstraction” action container of the transition. Usually,
thisis a Calls action relation. For more complex situations, the “CodeGroup” capability of the “abstraction” action
element can be used.

Superclass
EventResource

17.5.6 OnEntry Class

The OnEntry class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been entered.

Superclass

Transition

218 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

17.5.7 OnExit Class

The OnExit class represents specific transitions that are configured to be performed by the runtime framework when a
certain state has been

Superclass

Transition

17.5.8 EventAction Class

EventAction class follows the pattern of a “resource action” class, specific to the event package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Subpart 3: Resource Layer Actions.

Superclass
AbstractEventElement

Attributes
kind:String represents the nature of the action performed by this element
Associations

eventElement:Event[0..*] The set of Event elementsthat is owned by the current EventAction element.

17.6 EventRelations Class Diagram

EventRelations diagram defines meta-model relationship elements that represent several structural properties of event-
driven systems. The class diagram shown in Figure 17.4 captures these classes and their relations.

AbstractEventR elationship

NextState

{redefines to}
+to

1 +o 0.* T Event

{redefines to}
State 1
1 Transition +from

+from {redefines from}
{redefines from}

0.* 0. ConsumesEvent

Figure 17.4 - EventRelations Class Diagram

© ISO/IEC 2012 - All rights reserved 219



ISO/IEC 19506:2012(E)

17.6.1 NextState Class

The NextState class represents the knowledge that upon completion of the behavior associated with a certain transition
element, the corresponding behavior will enter the given state. For example, in statically configured state-machine based
frameworks this information can be derived from the initialization of framework specific data structures. When there
exists several NextState relations originating from a given transition, this means that an unspecified choice is made by the
behavior associated with the transition. More precise “abstraction” can be provided by using the “abstraction” action
containers associated with various elements involved.

Superclass
AbstractEventRelationship

Associations

to:Transition[1] the transition

from:State[1] the state

17.7 ConsumesEvent Class

The ConsumesEvent class represents the knowledge that a certain transition element is associated with a certain event.
For example, in statically configured state-machine based frameworks this information can be derived from the
initialization of framework specific data structures.

Superclass
AbstractEventRelationship

Associations

from:Transition[1] the transition

to:Event[1] the event
17.8 EventActions Class Diagram

The EventActions class diagram defines basic KDM relations between EventActions and other entities from the Event
package. The class diagram shown in Figure 17.5 captures these classes and their relations.

220 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractActionRelationship
(from action)

ReadsState ProducesEvent
l U 0 %
0”* 0”* .-
Event +to_
Sae L *oO 2kind : Stringtefines to} HasState
{redefines to}
+f 0..*
{recggtmes from} 0..*
+f +from
rom 1 {redefines from} +to
{redefines from} | ActionElement | 1 1 {redefines to}
ok(::(;nasc?::\g AbstractEventElement

Figure 17.5 - EventActions Class Diagram

17.8.1 ReadsState Class

ReadsState class follows the pattern of a*“resource action relationship.” It represents various types of accesses to the state-
based runtime framework that provides a concrete implementation of states, where access is made to a particular state (for
example, accessing the current state, setting the next state). ReadsState relationship is similar to Addresses relationship from
Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the EventAction that
owns this relationship through the “ abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

Constraints:
1. Thisrelationship should not be used in Code models.

2. Theto endpoint of the relationship should be State of one of its subclasses.

© ISO/IEC 2012 - All rights reserved 221



ISO/IEC 19506:2012(E)

17.8.2 ProducesEvent Class

ProducesEvent class follows the pattern of a “resource action relationship.” It represents various types of accesses to the
state-based runtime framework where the application produces the event. ProducesEvent relationship is similar to Writes
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
EventAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement|[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being produced

Constraints
1. Thisrelationship should not be used in Code models.

2. The"“to” endpoint of the relationship should be Event.

17.8.3 HasState Class

HasState class follows the pattern of a “resource action relationship.” HasState is a structural relationship. It does not
represent resource manipulations. HasState relationship uses the “abstracted” action container mechanism to provide
certain capabilities to other Resource Layer packages. “HasState” relationship makes it possible to associate an element of
an event model with any resource.

Superclass
Action::AbstractActionRel ationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:EventResource[1] the event resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

17.9 ExtendedEventElements Class Diagram

The ExtendedEventElements class diagram defines two “wildcard” generic elements for the event model as determined by
the KDM model pattern: a generic event entity and a generic event relationship.

The classes and associations of the ExtendedEventElements diagram are shown in Figure 17.6.

222 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractE ventRelationship

AbstractEventElement

EventRelationship

1 0..

+from -
{redefines from} ON KDM Entity

1 (from core)

+to
{redefines to}

EventElement

Figure 17.6 - ExtendedEventElements Class Diagram
17.9.1 EventElement Class (generic)

The EventElement class is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass
AbstractEventElement

Constraints

1. EventElement should have at |east one stereotype.
Semantics

An event entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the event model. Thisis one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

17.9.2 EventRelationship Class (generic)

The EventRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractEventRelationship

© ISO/IEC 2012 - All rights reserved 223



ISO/IEC 19506:2012(E)

Associations

from:AbstractEventElement[1] the event element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. EventRelationship should have at |east one stereotype.

Semantics

An event relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the event model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

224 © ISO/IEC 2012 - Al rights reserved



18

ISO/IEC 19506:2012(E)

Data Package

18.1 Overview

The KDM Data Package defines a set of meta-model elements whose purpose is to represent organization of data in the
existing software system. Facts in the Data domain are usually determined by a Data Description Language (for example,
SQL) but may in some cases be determined by the code elements. KDM Data model uses the foundation provided by the
Code package related to the representations of simple datatypes. KDM Data model represents complex data repositories,
such as record files, relational databases, structured data stream, XML schemas, and documents.

The KDM Data package defines an architectural viewpoint for the Data domain.

Concerns
* What is the organization of persistent data in the software systems?
« What are the information models supported by the software system?
« What action elements read persistent data?
« What action elements write persistent data?
» What control flows are determined by the events corresponding to persistent data?

Viewpoint language

Data views conform to KDM XMI schema. The viewpoint language for the Data architectural viewpoint is
defined by the Data package. It includes abstract entities AbstractDataElement, AbstractContentElement, generic
entities DataResource, DataContainer, Contentltem, as well as several concrete entities, such as Catalog,
Relational Schema, DataEvent, DataAction, ColumnSet, RecordFile, XML Schema, etc. The viewpoint language
for the Data architectural viewpoint also includes several relationships, which are subclasses of
AbstractDataRel ationship.

Analytic methods:

The Data architectural viewpoint supports the following main kinds of checking:

» Data aggregation (the set of dataitems accessible from the given ColumnSet by adding data items through foreign
key relationships to other tables).

Data Views are used in combination with Code views and Inventory views.

Construction methods:

» Dataviews that correspond to the KDM Data architectural viewpoint are usually constructed by analyzing Data
Definition Language artifacts for the given data management platform. The Data extractor tool uses the knowledge
of the data management platform to produce one or mode Data views as output.

« Asan dternative, for some languages like Cobol, in which some elements of the Data are explicitly defined by the
language, the Data views are produced by the parser-like tools which take artifacts of the system asthe input and
produce one or mode Data views as output (together with the corresponding Code views).

 Congtruction of the Data view is determined by the semantics of the data management platform, and it based on
the mapping from the given data management platform to KDM; such mapping is specific only to the data
management platform and not to a specific software system.

© ISO/IEC 2012 - All rights reserved 225



ISO/IEC 19506:2012(E)

« The mapping from a particular data management platform to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using

stereotypes, attributes or annotations.

18.2 Organization of the Data Package

The Data package consists of the following 11 class diagrams:

- DaaModel

- Datalnheritance
» RelationalData

«  ColumnSet

» StructuredData

» ContentElements
« ContentRelations
»  Keylndex

» KeyRelations

- DataActions

» ExtendedDataElements

The Data Package depends on the following packages:

« Core

e kdm

« Source
« Code

- Action

18.3 Data Model Class Diagram

The Data Model follows the uniform pattern for KDM models to extend the KDM Framework with specific meta-model
elements related to data organization in complex data repositories. Figure 18.1 shows the classes and associations of the

DataModel class diagram.

226

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

DataModel

AbstractDataR elationship

0.*
+dataRelation

{subsets ownedRelation}

+model
{subsets model}

+dataElement 0.* 1
{subsets ownedElement}

AbstractDataElement

0.1
+owner
+abstraction subsets owner
{subsets ownedElement £ }
ordered}

ActionElement 0.*
(from action)

ckind : String

Figure 18.1 - Data Model
18.3.1 DataModel Class

The DataModel Class is the specific KDM model that corresponds to the logical organization of data of the existing
software system, in particular, related to persistent data. DataModel follows the uniform pattern for KDM models.

Superclass
KDMModel

Associations

dataElement :DataElement[0..*] data elements owned by the given DataM odel

Semantics

Data model is alogical container for the instances of data elements. The implementer shall arrange the instances of the
data elements into one or more DataM odels.

© ISO/IEC 2012 - All rights reserved 227



ISO/IEC 19506:2012(E)

18.3.2 AbstractDataElement Class (abstract)

The AbstractDataElement class is an abstract meta-model element that represents the discreet instance of a given data
element within a system. For example, a Customer_Number is one type of data element that might be found within a
system. Data model defines severa specific subclasses of AbstractDataElement, corresponding to common subcategories
of data elements.

Superclass
KDMEntity

Associations

abstraction: ActionElement[1] the “abstracted” actions that are owned by the current element

dataRelation:DataRelation[0..*] data relationships that originate from this data element

source: SourceRef[0..1] link to the physical artifact for the given data element
Semantics

Abstracted actions are owned by the data model. Usually they provide an abstracted representation of one or more API
callsin the code model. Abstracted actions own action relations to elements of code model, as well as some data rel ations.

Abstracted actions are ordered. The first action is the entry point.
18.3.3 AbstractDataRelationship Class (abstract)

An AbstractDataRel ationship class is an abstract superclass of the meta-model elements that represent associations
between data elements.

Superclass
KDMRelationship

Semantics

AbstractDataRelationship is an abstract class that is used to constrain the subclasses of KDMRelationship in the Data
model.

18.4 Data Inheritances Class Diagram
The Datalnheritances Diagram in Figure 18.2 shows how the meta-model elements defined in the Data package are

related to the meta-model elements defined in the Core package. Each of the Data Package classes within this diagram
inherits certain properties from KDM classes defined within the Core Package.

228 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

KDMModel -
(from kdm) KDM Entity KDMRelationship
(from core) (from core)

1 i T

D ataModel : A
AbstractDataElem ent AbstractDataRelationship

0.1

DataS|ource

+source 0+

SourceRef
(from source)

Figure 18.2 - Datalnheritances Diagram

18.5 DataResources Class Diagram

The DataResources class diagram provides basic meta-model constructs to represent data elements within the KDM
framework. The class diagram shown in Figure 18.3 captures these classes and their relations.

The DataResources diagram defines the framework for various data models. This framework follows the common pattern
of the Runtme Resource Layer. Data model defines a generic DataResource meta-model element that represents various
resources common to databases, such as a DataEvent and an IndexElement. Data model also defines a generic
DataContainer class that represents various data containers, such as a relational schema, a database catalog, an XML
schema, and a ColumnSet. DataContainer is a subclass of DataResource. DataContainer owns certain Data resources.
Data model includes AbstractDataContent element that is a direct subclass of AbstractDataElement, and not a subclass of
DataResource. Subclasses of AbstractContentElement are owned by XML Schema element.

© ISO/IEC 2012 - All rights reserved 229



ISO/IEC 19506:2012(E)

AbstractDataElement

+dataElement
{subsets ownedElement}

0..*
DataResource
+owner
{subsets owner}
0..1 +owner
DkatZACtlon R DataEvent {subsets owner}
ind : String = |@kind : Stri -
- 9 0..* 0 3 Sy DataContainer
+grou
{su setspgroup} +dataElement
0.* {subsets ownedElement}
Catalog RelationalSchema
+owner
{subsets owner} 0.1
0..* +implementation .
{subsets groupedElement} 0..
ActionElement Codeltem
(from action) (from code) | +codeElement
{subsets ownedElement}

Figure 18.3 - RelationalData Class Diagram
18.5.1 DataResource Class (generic)

The DataResource class is a generic meta-model element that represents various database resources, such as DataEvent
and IndexElement.

Superclass
AbstractDataElement

Constraints
1. DataResource should have at least one stereotype.

Semantics

DataResource is a generic meta-model element with under specified semantics. DataResource is a database element that
is associated with a certain data container, such as a Schema or a Table. It is a concrete class that can be used as the base
element of a new “virtual” meta-model entity type of the data model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation. DataResource is more specific than a generic ExtendedDataElement.

18.5.2 DataContainer Class (generic)

The DataContainer class is a generic meta-model element that represents various database containers.

230 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
DataResource

Associations
dataElement :DataResource[0..*] owned data resources

Semantics

DataContainer is a generic meta-model element with under specified semantics. DataContainer is a database element that
isalogical container for Data resource, such as DataEvent or IndexElement. It is a concrete class that can be used as the
base element of a new “virtua” meta-model entity type of the data model. This is one of the KDM extension points that
can integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the
standard KDM representation. DataContainer is more specific than a generic ExtendedDataElement.

18.5.3 Catalog Class
The Catalog class is the top level container that represents a relational or a hierarchical database.

Superclass
DataContainer

Semantics

18.5.4 RelationalSchema Class
The Relational Schema class is a relational database schema.

Superclass

DataContainer

Associations
codeElement:Codeltem]0..*] Stored procedures owned by this schema.

Semantics

Owned CodeElement represents stored procedures as well as scripts in data description language and data manipulation
language, such as T-SQL. Data manipulation performed by embedded data manipulation statements (for example,
embedded SQL) from code in some programming language (for example, Cobol or C) is represented via “abstracted data
actions.” Abstracted actions represent a “virtual” data manipulation statement, which is being implemented through
embedded data manipulation constructs (and the corresponding “generated” API calls).

In the situation of the data manipulation and data description scripts that are executed directly by the relational database
engine, KDM allows more tight integration of the corresponding Codeltem with the Data Model.

© ISO/IEC 2012 - All rights reserved 231



ISO/IEC 19506:2012(E)

18.5.5 DataEvent Class

The DataEvent class is a meta-model element that represents various events in databases that can trigger execution of
stored procedures, the so-called triggers. KDM models database events as “first class citizens’ of the KDM
representation.

Superclass
DataResource

Attributes
kind :String semantic description of the data event

Semantics

Events are changes in entities or in relations among entities, so that the core KDM elements are entities and relations
rather than events. However, KDM represents events as “first class citizens,” although events might have to take on some
of the character of entities for this to be acceptable. KDM data event represents various events in databases as KDM
entities. Data events are associated with triggers. A trigger is a special kind of stored procedure that automatically
executes when an event occurs in the database server. DML triggers execute when a user tries to modify data through a
data manipulation language (DML) event. DML events are INSERT, UPDATE, or DELETE statements on atable or view.
DDL triggers execute in response to a variety of data definition language (DDL) events. These events primarily
correspond to CREATE, ALTER, and DROP statements, and certain system stored procedures that perform DDL-like
operations. Logon triggers fire in response to the LOGON event that is raised when a user session is being established.

As a subclass of AbstractDataElement, a DataEvent can own “abstracted” action element. Trigger is a stored procedure,
which is represented as a CallableUnit, owned by a certain Relational Schema. Trigger is associated with a data event
through a Calls relationship, owned by the “abstracted” action of the corresponding data event. DataEvent is owned by a
certain DataContainer.

18.5.6 DataAction Class

DataAction class follows the pattern of a “resource action” class, specific to the data package. The nature of the action
represented by a particular element is designated by its “kind” attribute. Descriptions of the common platform action kind
are provided in Part 3: Resource Layer actions.

Superclass
AbstractDataElement

Attributes

kind:String represents the nature of the action performed by this element

232 © ISO/IEC 2012 - Al rights reserved



Associations

ISO/IEC 19506:2012(E)

implementation:ActionElement[0..] group association to ActionElement represented by the current DataAction
dataElement:DataEvent[0..*] event elements owned by the current DataAction
Semantics

DataAction represents a “virtual” action element that represents the logical action performed by the runtime platform of

the existing software system.

18.6 ColumnSet Class Diagram

The ColumnSet class diagram provides basic meta-model elements to define the tables and views of relational databases,
segments of hierarchical databases, and record files as collections of columns. The class diagram shown in Figure 18.4

captures these classes and their relations.

DataContainer

+owner
{subsets owner}

ColumnSet 0..* ItemUnit
<& (from code)
0..1
+itemUnit
{subsets ownedElement
ordered}
DataSegment
RecordFile
RelationalView RelationalTable

Figure 18.4 - ColumnSet Class Diagram

18.6.1 ColumnSet (generic)

The ColumnSet class is a generic meta-model element that represents collections of columns (also referred to as fields).

Columns are modeled as ItemUnits.

Superclass

DataContainer

Associations

itemUnit :ItemUnit[0..*] Individual columns owned by this ColumnSet are represented as data el ements.

© ISO/IEC 2012 - All rights reserved

233



ISO/IEC 19506:2012(E)

Semantics

ColumnSet corresponds to an |SO/IEC 11404 Table datatype, whose values are collections of values in the product space of
one or more field datatypes, such that each value in the product space represents an association among the values of thefields.
Although the field datatypes may beinfinite, any given value of atable datatype contains a finite number of associations.

KDM defines several concrete subclasses of ColumnSet to represent several common data organizations, such as relational
Tables and Views, Record files, and Segments of hierarchical databases.

Fields of the Columnset are represented as ItemUnits.
18.6.2 RelationalTable Class
A Relational Table is a specific subclass of ColumnSet class that represents tables of relational databases.

Superclass
ColumnSet

Semantics

Tables are entities that contain all the datain relational databases. Each table represents a type of data that is meaningful
to its users. A table definition is a collection of columns. In tables, datais organized in a row-and-column format similar
to a spreadsheet. Each row represents a unique record, and each column represents a field within the record. For example,
a table that contains employee data for a company can contain a row for each employee and columns representing
employee information such as employee number, name, address, job title, and home telephone number.

Tables in a relational database have the following main components:

« Columns. Each column represents some attribute of the object modeled by the table, such as a parts table having
columnsfor 1D, color, and weight.

» Rows. Each row represents an individual occurrence of the object modeled by the table. For example, the parts table
would have one row for each part carried by the company.

The PlatformResource that corresponds to Relational Table is DataM anager.

Example (T-SQL)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)
CREATE TABLE revenueRecognitions (contract int, amount decimal, recognizedOn date,

PRIMARY KEY (contract, recognizedOn))

CREATE PROCEDURE INSERT RECOGNITION
(IN contractID int, IN amount decimal, IN recognizedOn date, OUT result int)
LANGUAGE SQL
BEGIN
INSERT INTO revenueRecognitions VALUES( contractID, amount, recognizedOn) ;
SET result = 1;
END

CREATE TRIGGER reminderl

ON Contracts.revenueRecognitions
AFTER INSERT, UPDATE

234 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AS RAISERROR ('Notify Sales', 16, 10)
GO

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:platform="http://schema.omg.org/spec/KDM/1.2/platform" name="Schema Example"s>
<model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">
<dataElement xmi:id="1d.1" xmi:type="data:RelationalSchema" name="Contracts">
<dataElement xmi:id="1d.2" xmi:type="data:RelationalTable" name="products">
<dataElement xmi:id="1id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>
<itemUnit xmi:id="id.4" name="ID" type="id.57"/>
<itemUnit xmi:id="id.5" name="name" type="1id.58"/>
<itemUnit xmi:id="id.é" name="type" type="1id.58"/>
</dataElement>
<dataElement xmi:id="1d.7" xmi:type="data:RelationalTable" name="contracts">
<dataElement xmi:id="1id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>
<dataElement xmi:id="1d.9" xmi:type="data:ReferenceKey" implementation="id.12">
<dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>
</dataElement>
<itemUnit xmi:id="id.11" name="ID" type="id.57"/>
<itemUnit xmi:id="id.12" name="product" type="id.57"/>
<itemUnit xmi:id="id.13" name="revenue" type="1id.59"/>
<itemUnit xmi:id="id.14" name="dateSigned" type="id.60"/>
</dataElement>
<dataElement xmi:id="1id.15" xmi:type="data:RelationalTable" name="revenueRecognitions">
<dataElement xmi:id="1id.16" xmi:type="data:UniqueKey" implementation="id.25 id.27"/>
<dataElement xmi:id="1d.17" xmi:type="data:ReferenceKey" implementation="id.25">
<dataRelation xmi:id="id.18" xmi:type="data:KeyRelation" to="id.8" from="id.17"/>
</dataElement>
<dataElement xmi:id="1d.19" xmi:type="data:DataEvent" name="el" kind="Insert">
<abstraction xmi:id="id.20" name="el.l" kind="Call">
<actionRelation xmi:id="id.21" xmi:type="action:Calls" to="id.47" from="id.20"/>
</abstraction>
</dataElement>
<dataElement xmi:id="1d.22" xmi:type="data:DataEvent" name="e2" kind="Update">
<abstraction xmi:id="id.23" name="e2.1" kind="Call">
<actionRelation xmi:id="id.24" xmi:type="action:Calls" to="id.47" from="id.23"/>
</abstraction>
</dataElement>
<itemUnit xmi:id="id.25" name="contract" type="id.57"/>
<itemUnit xmi:id="id.26" name="amount" type="1id.59"/>
<itemUnit xmi:id="id.27" name="recognizedOn" type="1id.60"/>
</dataElement>
<codeElement xmi:id="id.28" xmi:type="code:CallableUnit" name="INSERT_RECOGNITIONS" kind="regular"s>
<entryFlow xmi:id="1d.29" to="id.35" from="id.28"/>
<codeElement xmi:id="1d.30" xmi:type="code:Signature">
<parameterUnit xmi:id="id.31" name="contractID" type="id.57" pos="1"/>
<parameterUnit xmi:id="1id.32" name="amount" type="id.59" pos="2"/>
<parameterUnit xmi:id="1id.33" name="recognizedOn" type="id.60" pos="3"/>
<parameterUnit xmi:id="1id.34" name="result" type="id.57" kind="byReference" pos="4"/>

© ISO/IEC 2012 - All rights reserved 235



ISO/IEC 19506:2012(E)

</codeElement>
<codeElement xmi:id="1d.35" xmi:type="action:ActionElement" name="al" kind="Insert">
<gsource xmi:id="id.36" language="SQL"
snippet="INSERT INTO revenueRecognitions VALUES( contractID, amount, recognizedOn);"/>
<actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.31" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.32" from="id.35"/>
<actionRelation xmi:id="id.39" xmi:type="action:Reads" to="id.33" from="id.35"/>
<actionRelation xmi:id="id.40" xmi:type="data:WritesColumnSet" to="1id.15" from="id.35"/>
<actionRelation xmi:id="id.41" xmi:type="data:ProducesDataEvent" to="1id.19" from="id.35"/>
</codeElement>
<codeElement xmi:id="id.42" xmi:type="action:ActionElement" name="a2" kind="Assign">
<source xmi:id="id.43" language="SQL" snippet="SET result = 1;"/>
<codeElement xmi:id="id.44" xmi:type="code:Value" name="1"/>
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.44" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Writes" to="id.34" from="id.42"/>
</codeElement >
</codeElement>
<codeElement xmi:id="id.47" xmi:type="code:CallableUnit" name="reminderl"s
<entryFlow xmi:id="1d.48" to="id.49" from="id.47"/>
<codeElement xmi:id="1d.49" xmi:type="action:ActionElement" name="a3" kind="Throw">
<codeElement xmi:id="1d.50" xmi:type="code:ValueList" name="error">
<valueElement xmi:id="id.51" xmi:type="code:Value"
name="&quot ;Notify sales!&guot;" type="id.58"/>
<valueElement xmi:id="id.52" xmi:type="code:Value" name="16" type="1id.57"/>
<valueElement xmi:id="id.53" xmi:type="code:Value" name="10" type="id.57"/>
</codeElement>
<actionRelation xmi:id="id.54" xmi:type="action:Throws" to="id.50" from="id.49"/>
</codeElement>
</codeElement>
</dataElement>
</model>
<model xmi:id="1id.55" xmi:type="code:CodeModel">
<codeElement xmi:id="1id.56" xmi:type="code:LanguageUnit" name="SQL datatypes">
<codeElement xmi:id="1id.57" xmi:type="code:IntegerType" name="sgl int"/>
<codeElement xmi:id="1id.58" xmi:type="code:StringType" name="sqgl varchar"/>
<codeElement xmi:id="1d.59" xmi:type="code:DecimalType" name="sgl decimal"/>
<codeElement xmi:id="1id.60" xmi:type="code:DateType" name="sgl date"/>
<codeElement xmi:id="1id.61" xmi:type="code:BooleanType"/>
</codeElement>
</model>
<model xmi:id="id.62" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.63" xmi:type="platform:ExternalActor">
<abstraction xmi:id="id.64" >
<actionRelation xmi:id="id.65" xmi:type="data:ProducesDataEvent" to="1id.19" from="id.64"/>
</abstractions>
</platformElement>
</model>
</kdm: Segment >

236 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

18.6.3 RelationalView Class

A Relational View classis a specific subclass of the ColumnSet class that represents Views of relational databases. A view
isavirtual table whose contents are defined by a query. Like areal table, a view consists of a set of named columns and
rows of data. Unless indexed, a view does not exist as a stored set of data values in a database. The rows and columns of
data come from tables referenced in the query defining the view and are produced dynamically when the view is
referenced.

A view acts as afilter on the underlying tables referenced in the view. The query that defines the view can be from one
or more tables or from other views in the current or other databases. Distributed queries can also be used to define views
that use data from multiple heterogeneous sources. This is useful, for example, if you want to combine similarly
structured data from different servers, each of which stores data for a different region of your organization.

Superclass
ColumnSet

Semantics

A view can be thought of as either a virtual table or a stored query. Unless a view is indexed, its data is not stored in the
database as a distinct object. What is stored in the database is a SELECT statement. The result set of the SELECT
statement forms the virtual table returned by the view. A user can use this virtual table by referencing the view name in
SQL statements the same way a table is referenced. Usually there are no restrictions on querying through views and few
restrictions on modifying data through them.

In KDM, a Relational View owns ItemUnits that correspond to the fields of the virtual table. An “abstracted” action of the
View can store the corresponding SELECT statement.

18.6.4 DataSegment Class
A DataSegment class is a meta-model element that represents a segment of a hierarchical database, such as IMS.

Superclass
ColumnSet

Semantics

A hierarchical database is a kind of database management system that links records together in a tree data structure such
that each record type has only one owner. Hierarchical structures were widely used in the first mainframe database
management systems. However, due to their restrictions, they often cannot be used to relate structures that exist in the real
world.

A database segment defines the fields for a set of segment instances similar to the way arelational table defines columns
for aset of rowsin atable. In this way, segments relate to relational tables, and fields in a segment relate to columnsin a
relational table.

Example (IMS):

DLR_PCB1 PCB TYPE=DB, DBDNAME=DEALERDB, PROCOPT=GO, KEYLEN=42
SENSEG NAME=DEALER, PARENT=0
SENSEG NAME=MODEL, PARENT=DEALER

© ISO/IEC 2012 - All rights reserved 237



ISO/IEC 19506:2012(E)

SENSEG NAME=ORDER, PARENT=MODEL

SENSEG NAME=SALES, PARENT=MODEL

SENSEG NAME=STOCK, PARENT=MODEL

PSBGEN PSBNAME=DLR_PSB,MAXQ=200, LANG=JAVA
END

DBD NAME=DEALERDB,ACCESS= (HDAM, OSAM) , RMNAME= (DFSHDC40.1.10)
SEGM NAME=DEALER, PARENT=0,BYTES=94,

FIELD NAME= (DLRNO, SEQ,U) ,BYTES=4, START=1, TYPE=C
FIELD NAME=DLRNAME, BYTES=30, START=5, TYPE=C

SEGM NAME=MODEL, PARENT=DEALER, BYTES=43

FIELD NAME= (MODTYPE, SEQ,U) ,BYTES=2, START=1, TYPE=C
FIELD NAME=MAKE,BYTES=10,START=3, TYPE=C

FIELD NAME=MODEL,BYTES=10,START=13, TYPE=C

FIELD NAME=YEAR,BYTES=4,START=23,TYPE=C

FIELD NAME=MSRP,BYTES=5,START=27, TYPE=P

SEGM NAME=ORDER, PARENT=MODEL, BYTES=127

FIELD NAME= (ORDNBR, SEQ,U) ,BYTES=6,START=1, TYPE=C
FIELD NAME=LASTNME, BYTES=25,START=50, TYPE=C

FIELD NAME=FIRSTNME, BYTES=25,START=75, TYPE=C

SEGM NAME=SALES, PARENT=MODEL, BYTES=113

FIELD NAME= (SALDATE, SEQ,U) ,BYTES=8, START=1, TYPE=C
FIELD NAME=LASTNME, BYTES=25, START=9, TYPE=C

FIELD NAME=FIRSTNME, BYTES=25,START=34, TYPE=C
FIELD NAME=STKVIN,BYTES=20,START=94, TYPE=C

SEGM NAME=STOCK, PARENT=MODEL, BYTES=62

FIELD NAME= (STKVIN, SEQ,U) ,BYTES=20,START=1, TYPE=C
FIELD NAME=COLOR,BYTES=10,START=37, TYPE=C

FIELD NAME=PRICE,BYTES=5,START=47, TYPE=C

FIELD NAME=LOT,BYTES=10,START=52, TYPE=C

DBDGEN

FINISH

END

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="IMS Example">
<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:Catalog" name="DEALERDB">
<dataElement xmi:id="1id.2" xmi:type="data:DataSegment" name="Dealer">
<dataElement xmi:id="id.3" xmi:type="data:DataSegment" name="Model">
<dataElement xmi:id="id.4" xmi:type="data:DataSegment" name="Order">
<dataElement xmi:id="id.5" xmi:type="data:UniqueKey" implementation="id.6"/>
<itemUnit xmi:id="id.6" name="ORDNBR" type="1id.30" size="2"/>
<itemUnit xmi:id="id.7" name="LASTNME" type="id.30" size="25"/>
<itemUnit xmi:id="id.8" name="FIRSTNME" type="id.30" size="25"/>
</dataElement>
<dataElement xmi:id="1id.9" xmi:type="data:DataSegment" name="Sales">
<dataElement xmi:id="id.10" xmi:type="data:UniqueKey" implementation="id.11"/>
<itemUnit xmi:id="id.11" name="SALDATE" type="1id.30" size="8"/>
<itemUnit xmi:id="id.12" name="LASTNME" type="1id.30" size="25"/>
<itemUnit xmi:id="id.13" name="FIRSTNME" type="id.30" size="25"/>

238 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<itemUnit xmi:id="id.14" name="STKVIN" type="id.30" size="20"/>
</dataElement>
<dataElement xmi:id="1d.15" xmi:type="data:DataSegment" name="Stock">
<dataElement xmi:id="1id.16" xmi:type="data:UniqueKey" implementation="id.17"/>
<itemUnit xmi:id="id.17" name="STKVIN" type="id.30" size="20"/>
<itemUnit xmi:id="id.18" name="COLOR" type="id.30" size="10"/>
<itemUnit xmi:id="id.19" name="PRICE" type="1id.30" size="5"/>
<itemUnit xmi:id="id.20" name="LOT" type="id.30" size="10"/>
</dataElement>
<dataElement xmi:id="1id.21" xmi:type="data:UniqueKey" implementation="id.22"/>
<itemUnit xmi:id="id.22" name="MODTYPE" type="1id.30" size="2"/>
<itemUnit xmi:id="id.23" name="MAKE" size="10"/>
<itemUnit xmi:id="id.24" name="YEAR" size="4"/>
<itemUnit xmi:id="id.25" name="MSRP" type="id.31" size="5"/>
</dataElement>
<dataElement xmi:id="1d.26" xmi:type="data:UniqueKey" implementation="id.27"/>
<itemUnit xmi:id="id.27" name="DRLNO" type="1id.30" size="4"/>
<itemUnit xmi:id="id.28" name="DLRNAME" size="30"/>
</dataElement>
</dataElement>
</model>
<model xmi:id="1d.29" xmi:type="code:CodeModel" name="Common IMS datatypes">
<codeElement xmi:id="1d.30" xmi:type="code:StringType" name="IMS type c"/>
<codeElement xmi:id="1d.31" xmi:type="code:DecimalType" name="IMS type packeddecimal"/>
</model>
</kdm: Segment >

18.6.5 RecordFile Class

The RecordFile class is a meta-model element that represents files as a set of records. RecordFile can be indexed or
sequential.

Superclass
ColumnSet

Semantics

In a non-relational database system, arecord is an entry in afile, consisting of individual elements of information, which
together provide full details about an aspect of the information needed by the system. Individual elements are held in
fields and all records are held in files. An example of a record might be an employee. Every detail of the employee, for
example, date of birth, department code, or full names will be found in a number of fields. A fileis a set of records, where
each record is a sequence of fields. A sequentia file is a computer file storage format in which one record follows
another. Records can be accessed sequentially only. It is required with magnetic tape. An indexed file owns one or more
indexes that allow records to be retrieved by a specific value or in a particular sort order.

Example (cobol)

Thefollowing exampleillustrates the representation of RecordFile. The CodeModel of thisexampleisincomplete asit focuses
on the DataModel, and well as combined representation involving the CodeModel, DataM odel, PlatformModel, and
EventModel.

© ISO/IEC 2012 - All rights reserved 239



ISO/IEC 19506:2012(E)

FILE-CONTROL.

SELECT SEQUENTIAL-FILE ASSIGN TO 'A:\SEQ.DAT'
ORGANIZATION IS LINE SEQUENTIAL.

SELECT INDEXED-FILE
ASSIGN TO 'A:\INDMAST.DAT'
ORGANIZATION IS INDEXED
ASSESS IS SEQUENTIAL
RECORD KEY IS IND-SOC-SEC-NUM
FILE STATUS IS INDEXED-STATUS-BYTES.

FILE SECTION.
FD SEQUENTIAL FILE
RECORD COTNAINS 39 CHARACTERS
DATA RECORD IS SEQUENTIAL-RECORD.
01 SEQUENTIAL-RECORD.
05 SEQ-SOC-SEC-NUM PIC X(9).
05 SEQ-REST-OF-RECORDPIC X(30).

FD INDEXED-FILE
RECORD CONTAINS 39 CHARACTERS
DATA RECORD IS INDEXED-RECORD.
01 INDEXED-RECORD.
05 IND-SOC-SEC-NUM PIC X (9).
05 IND-REST-OF-RECORDPIC X(30).

PROCEDURE DIVISION.
0010-UPDATE-MASTER-FILE.
OPEN INPUT SEQUENTIAL-FILE
OUTPUT INDEXED-FILE.

PERFORM UNTIL END-OF-FILE-SWITCH = 'YES'
READ SEQUENTIAL-FILE
AT END

MOVE 'YES' TO END-OF-FILE-SWITCH
NOT AT END
MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEC-NUM
MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD
WRITE INDEXED-RECORD
INVALID KEY PERFORM 0020-EXPLAIN-WRITE-ERROR
END-WRITE
END-READ
END-PERFORM.
CLOSE SEQUENTIAL-FILE
INDEXED-FILE.

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"
xmlns:event="http://schema.omg.org/spec/KDM/1.2/event"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:platform="http://schema.omg.org/spec/KDM/1.2/platform" name="RecordFile example">

<model xmi:id="id.0" xmi:type="data:DataModel">

<dataElement xmi:id="id.1" xmi:type="data:RecordFile" name="SEQUENTIAL-FILE">

240 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<itemUnit xmi:id="id.2" name="SEQ-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>
<itemUnit xmi:id="id.3" name="SEQ-REST-OF-RECORD" type="1id.115" ext="PIC X (30)" size="30"/>
</dataElement>
<dataElement xmi:id="id.4" xmi:type="data:RecordFile" name="INDEXED-FILE">
<dataElement xmi:id="1id.5" xmi:type="data:UniqueKey" implementation="id.7"/>
<dataElement xmi:id="1id.6" xmi:type="data:Index" implementation="id.7"/>
<itemUnit xmi:id="id.7" name="IND-SOC-SEC-NUM" type="id.115" ext="PIC X(9)" size="9"/>
<itemUnit xmi:id="id.8" name="IND-REST-OF-RECORD" type="1d.115" ext="PIC X (30)" size="30"/>
</dataElement>
<dataElement xmi:id="1d.9" xmi:type="data:DataAction" name="dal" kind="open" implementation="id.44">
<abstraction xmi:id="1d.10" name="dal" kind="open">
<actionRelation xmi:id="id.11" xmi:type="data:ManagesData" to="id.l" from="id.10"/>
<actionRelation xmi:id="id.12" xmi:type="platform:ManagesResource" to="id.75" from="id.10"/>
</abstraction>
</dataElement>
<dataElement xmi:id="1d.13" xmi:type="data:DataAction" name="da2" kind="open" implementation="id.44">
<abstraction xmi:id="id.14" name="da2" kind="open">
<actionRelation xmi:id="id.15" xmi:type="platform:ManagesResource" to="id.79" from="id.14"/>
<actionRelation xmi:id="id.16" xmi:type="data:ManagesData" to="id.4" from="id.14"/>
</abstraction>
</dataElement>
<dataElement xmi:id="1id.17" xmi:type="data:DataAction" name="da3" kind="read" implementation="id.47">
<abstraction xmi:id="1d.18" name="da3" kind="read">
<actionRelation xmi:id="id.19" xmi:type="data:ReadsColumnSet" to="id.1l" from="id.18"/>
<actionRelation xmi:id="id.20" xmi:type="action:Writes" to="id.2" from="id.18"/>
<actionRelation xmi:id="id.21" xmi:type="action:Writes" to="id.3" from="id.18"/>
<actionRelation xmi:id="id.22" xmi:type="platform:ReadsResource" to="id.75" from="id.18"/>
</abstractions>
<dataElement xmi:id="id.23" name="at end" kind="EOF">
<abstraction xmi:id="id.24" name="ael">
<actionRelation xmi:id="id.25" xmi:type="action:ExceptionFlow" to="id.50" from="id.24"/>
</abstraction>
</dataElement>
<dataElement xmi:id="id.26" name="not at end" kind="NOT EOF">
<abstraction xmi:id="1d.27" name="nael">
<actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.53" from="id.27"/>
</abstraction>
</dataElement>
</dataElement>
<dataElement xmi:id="1d.29" xmi:type="data:DataAction" name="da4" kind="write"
implementation="id.59">
<abstraction xmi:id="id.30" name="da4" kind="write">
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.7" from="id.30"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.8" from="id.30"/>
<actionRelation xmi:id="id.33" xmi:type="data:WritesColumnSet" to="id.4" from="id.30"/>
<actionRelation xmi:id="id.34" xmi:type="platform:WritesResource" to="id.79" from="id.30"/>
</abstractions>
<dataElement xmi:id="id.35" name="invalid key" kind="INVALID KEY">
<abstraction xmi:id="id.36" name="ik1l">
<actionRelation xmi:id="id.37" xmi:type="action:ExceptionFlow" to="id.62" from="id.36"/>
</abstraction>
</dataElement>
</dataElement>
<dataElement xmi:id="1d.38" xmi:type="data:DataAction" name="da5" kind="close">
<abstraction xmi:id="id.39" name="da5" kind="close"/>

© ISO/IEC 2012 - All rights reserved 241



ISO/IEC 19506:2012(E)

</dataElement>
<dataElement xmi:id="1d.40" xmi:type="data:DataAction" name="daé6" kind="close">
<abstraction xmi:id="1d.41" name="da5" kind="close"/>
</dataElement>
</model>
<model xmi:id="id.42" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.43" xmi:type="code:CodeAssembly">
<codeElement xmi:id="1id.44" xmi:type="action:ActionElement" name="a0" kind="open">
<gsource xmi:id="id.45" language="Cobol"
snippet="OPEN INPUT SEQUENTIAL-FILE OUTPUT INDEXED-FILE."/>
<actionRelation xmi:id="id.46" xmi:type="action:Flow" to="id.47" from="id.44"/>
</codeElement>
<codeElement xmi:id="1d.47" xmi:type="action:ActionElement" name="al" kind="read">
<source xmi:id="id.48" language="Cobol" snippet="READ SEQUENTIAL-FILE"/>
<actionRelation xmi:id="id.49" xmi:type="action:Flow" to="id.53" from="id.47"/>
</codeElement>
<codeElement xmi:id="id.50" xmi:type="action:ActionElement" name="a2">
<source xmi:id="id.51" language="Cobol" snippet="MOVE 'YES' TO END-OF-FILE-SWITCH"/>
<actionRelation xmi:id="id.52" xmi:type="action:Flow" to="id.64" from="id.50"/>
</codeElement>
<codeElement xmi:id="1d.53" xmi:type="action:ActionElement" name="a3">
<source xmi:id="id.54" language="Cobol" snippet="MOVE SEQ-SOC-SEC-NUM TO IND-SOC-SEQ-NUM"/>
<actionRelation xmi:id="id.55" xmi:type="action:Flow" to="id.56" from="id.53"/>
</codeElement>
<codeElement xmi:id="1id.56" xmi:type="action:ActionElement" name="a4">
<source xmi:id="id.57" language="Cobol" snippet="MOVE SEQ-REST-OF-RECORD TO IND-REST-OF-RECORD"/>
<actionRelation xmi:id="id.58" xmi:type="action:Flow" to="id.59" from="id.56"/>
</codeElement>
<codeElement xmi:id="id.59" xmi:type="action:ActionElement" name="a5" kind="call"s>
<source xmi:id="id.60" language="Cobol" snippet="WRITE INDEXED-RECORD"/>
<actionRelation xmi:id="id.61" xmi:type="action:Flow" to="id.64" from="id.59"/>
</codeElement>
<codeElement xmi:id="1id.62" xmi:type="action:ActionElement" name="aé" kind="write">
<source xmi:id="id.63" language="Cobol" snippet="PERFORM 0020-EXPLAIN-WRITE-ERROR"/>
</codeElement>
<codeElement xmi:id="id.64" xmi:type="action:ActionElement" name="a7" kind="write"s>
<source xmi:id="id.65" language="Cobol" snippet="UNTIL END-OF-FILE-SWITCH = 'YES'"/>
<actionRelation xmi:id="id.66" xmi:type="action:FalseFlow" to="id.47" from="id.64"/>
<actionRelation xmi:id="id.67" xmi:type="action:TrueFlow" to="id.68" from="id.64"/>
</codeElement>
<codeElement xmi:id="id.68" xmi:type="action:ActionElement" name="a8" kind="close">
<source xmi:id="id.69" language="Cobol" snippet="Close SEQUENTIAL-FILE INDEXED-FILE."/>
</codeElement>
</codeElement>
</model>
<model xmi:id="id.70" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.71" xmi:type="platform:DeployedSoftwareSystem" groupedComponent="id.73"/>
<platformElement xmi:id="id.72" xmi:type="platform:Machine">
<deployedComponent xmi:id="1id.73" groupedCode="id.43"/>
<deployedResource xmi:id="1id.74" >
<platformElement xmi:id="id.75" xmi:type="platform:StreamResource">
<abstraction xmi:id="1id.76" name="ral" kind="">
<actionRelation xmi:id="id.77" xmi:type="data:HasContent" to="id.1l" from="id.76"/>
<actionRelation xmi:id="id.78" xmi:type="event:HasState" to="id.89" from="id.76"/>
</abstractions>

242 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

</platformElement>
<platformElement xmi:id="id.79" xmi:type="platform:FileResource">
<abstraction xmi:id="1id.80" name="ra2" kind="">
<actionRelation xmi:id="id.81" xmi:type="data:HasContent" to="id.4" from="id.80"/>
</abstractions>
</platformElement>
</deployedResource>
</platformElement>
<platformElement xmi:id="1id.82" xmi:type="platform:PlatformAction" name="pal" kind="open">

<abstraction xmi:id="1d.83" name="pal">

<actionRelation xmi:id="id.84" xmi:type="platform:ManagesResource" to="id.75" from="id.83"/>

</abstractions>
</platformElement>
<platformElement xmi:id="1id.85" xmi:type="platform:PlatformAction" name="pa2" kind="open">

<abstraction xmi:id="1d.86" name="pa2">

<actionRelation xmi:id="id.87" xmi:type="platform:ManagesResource" to="id.79" from="id.86"/>

</abstractions>
</platformElement>
</model>
<model xmi:id="1d.88" xmi:type="event:EventModel">
<eventElement xmi:id="1id.89" xmi:type="event:EventResource" name="sequential-file">
<eventElement xmi:id="id.90" xmi:type="event:State" name="closed">
<eventElement xmi:id="id.91" xmi:type="event:Transition" name="trl"s>
<eventRelation xmi:id="1id.92" xmi:type="event:ConsumesEvent" to="id.110" from="id.91"/>
<eventRelation xmi:id="1d.93" xmi:type="event:NextState" to="id.103" from="id.91"/>
<eventRelation xmi:id="1d.94" xmi:type="event:NextState" to="id.95" from="id.91"/>
</eventElement>
</eventElement>
<eventElement xmi:id="id.95" xmi:type="event:State" name="opened.not at end"s>
<eventElement xmi:id="id.96" xmi:type="event:Transition" name="tr2">
<eventRelation xmi:id="1d.97" xmi:type="event:ConsumesEvent" to="id.111" from="id.96"/>
<eventRelation xmi:id="1d.98" xmi:type="event:NextState" to="id.103" from="id.96"/>
<eventRelation xmi:id="1d.99" xmi:type="event:NextState" to="id.95" from="id.96"/>
</eventElement>
<eventElement xmi:id="id.100" xmi:type="event:Transition" name="tr3">
<eventRelation xmi:id="1d.101" xmi:type="event:ConsumesEvent" to="id.112" from="id.100"/>
<eventRelation xmi:id="1d.102" xmi:type="event:NextState" to="id.90" from="id.100"/>
</eventElement>
</eventElement>
<eventElement xmi:id="id.103" xmi:type="event:State" name="opened.at end"s>
<eventElement xmi:id="id.104" xmi:type="event:Transition" name="tr4">
<eventRelation xmi:id="1d.105" xmi:type="event:ConsumesEvent" to="id.112" from="id.104"/>
<eventRelation xmi:id="1d.106" xmi:type="event:NextState" to="1id.90" from="id.104"/>
</eventElement>
<eventElement xmi:id="1id.107" xmi:type="event:Transition" name="tr5">
<eventRelation xmi:id="1d.108" xmi:type="event:ConsumesEvent" to="id.111" from="id.107"/>
<eventRelation xmi:id="1d.109" xmi:type="event:NextState" to="1id.103" from="id.107"/>
</eventElement>
</eventElement>
<eventElement xmi:id="id.110" xmi:type="event:Event" name="open" kind="open"/>
<eventElement xmi:id="id.111" xmi:type="event:Event" name="read"/>
<eventElement xmi:id="id.112" xmi:type="event:Event" name="close"/>
</eventElement>
</model>
<model xmi:id="1d.113" xmi:type="code:CodeModel">

© ISO/IEC 2012 - All rights reserved

243



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1id.114" xmi:type="code:LanguageUnit">
<codeElement xmi:id="1d.115" xmi:type="code:StringType" name="X"/>
</codeElement>
</model>
</kdm: Segment >

18.7 Keylndex Class Diagram

The Keylndex class diagram collects together classes and associations of the Data package. They provide basic meta-
model constructs to define the various data related relationships.

The class diagram shown in Figure 18.5 captures these classes and their relations.

DataResource

% +group

{subsets group} .
Ind e XE lem ent Ite m Unit
(from code)

0..* 0..*

+implementation
Index {subsets groupedElement}

ReferenceKey

UniqueKey

Figure 18.5 - KeyIndex Class Diagram

18.7.1 IndexElement Class (generic)

IndexElement class is a generic meta-model element that defines the common properties of the index items and key items
of persistent data stores. IndexElement uses the KDM group mechanism. IndexElement is subclassed by concrete classes
with more precise semantics. IndexElement is itself a concrete class that can be used as an extended meta-model element
with an appropriate stereotype to represent situations that do not fit into the semantics of the subclasses of the

IndexElement.

Superclass
DataResource

Associations

implementation : ltemUnit[1] The set of ItemUnits that constitute the index.

Constraints
1. Index owned by a data element should group elements that are owned by that data element.

2. IndexElement should have a stereotype.

244 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

IndexElement defines a group of data elements that can be used as an endpoint for various data relationships.
18.7.2 UniqueKey Class

A UniqueKey is ameta-model element that represents primary keys in relational database tables, segments of hierarchical
databases, or indexed files. UniqueKey is a group of columns.

Superclass

IndexElement

Constraints

1. UniqueKey owned by adata element should group ItemUnit elements that are owned by that data element.

Semantics

A UniqueKey represents the primary key to a certain table or relational database or certain fieldsin an indexed file. A primary
key is one or more columns whose values uniquely identify every row in atable or every record in an indexed file. Normally
an index always exists on the primary key.

18.7.3 ReferenceKey Class

A ReferenceKey is a meta-model element that represents foreign key in databases or indexed files. ReferenceKey is a
group of columns.

Superclass

IndexElement

Constraints

1. ReferenceKey owned by adata element should group ItemUnit elements that are owned by that data element.

Semantics

A foreign key isthe primary key of one data structure that is placed into a related data structure to represent a relationship
among those structures. Foreign keys resolve relationships, and support navigation among data structures. ReferenceKey isa
group of one or more columnsin arelational database table or segment of a hierarchical database or an indexed file that
implements a many-to-one relationship that the table, segment, or file in question has with another table, segment, or file, or
with itself.

18.7.4 Index Class
An Index classis a meta-model element that represents an index to arelational or hierarchical database or an indexed file.

Superclass

IndexElement

© ISO/IEC 2012 - All rights reserved 245



ISO/IEC 19506:2012(E)

Constraints
1. Index owned by a data element should group ItemUnit elements that are owned by that data element.

Semantics

Index is a mechanism to locate and access data within a database. An index may quote one or more columns and be a
means of enforcing uniqueness on their values.

18.8 Key Relations Class Diagram

Figure 18.6 depicts the key relations within the Data Package. A Key is a way to access data without reading through an
entire data structure sequentially.

AbstractD ataRelationship

-

KeyRelation
0
0..*
! 1
UniqueKe +to
g y {redefines to} {redgi%%rsnfm | ReferenceKey
m}

Figure 18.6 - KeyRelations Class Diagram

A KeyRelation class associates a ReferenceKey in one data container, with a UniqueKey in another container, which
means that there is one and only one key value for that data.

18.8.1 KeyRelationship Class

A KeyRelationship is a meta-model element that represents an association between a ReferenceKey with the
corresponding UniqueKey.

Superclass
AbstractDataRelationship

Associations

from : ReferenceKey[1] Foreign key is a certain table, segment, or file.

to: UniqueKey[1] Primary key is a certain table, segment, or key.

246 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

ReferenceK ey is a group of one or more columnsin arelational database table or segment of a hierarchical database or an
indexed file that implements a many-to-one relationship that the table, segment, or file in question has with another table,
segment, or file, or with itself.

18.9 DataActions Class Diagram

DataAction class diagram defines a set of meta-model elements whose purpose is to represent semantic associations
between the elements of data models, as well as associations between data models and other KDM models. Figure 18.7
depicts the key classes and association of the DataAction diagram. Data actions follow the common pattern of “resource
actions.” Each data action is a “projection” of one or more action elements of the Code Model that uses some API to the
runtime platform to manage data resources. Each data action is linked back to the corresponding action elements from one
or more code models through the “implementation” association. Each data action may own one or more “ abstracted”
actions, which are used to model detailed resource related semantics.

AbstractActionRelationship
(from action)

ReadsColumnSet
ProducesDataEvent ManagesData

+o

0..* {redefines to} 0.*
+o o 0.%
{redefines to} - 1 DataEvent
1 wXkind : String
ColumnSet
+rom HasContent
defines f .
+o 1 {redefines from} o > o
defi -
{redefines to} 1 . {redefinesfrom} +o
1 +o {redefines to}
o ActionElement [~ 1 {redefines to} 1
- i +rom
i (irom action) AbstractDataElement
WritesColumnSet /1 Bkind : String {redefines from}
0..*
+from

{redefines from}
Figure 18.7 - DataActions Class Diagram

18.9.1 ReadsColumnSet Class

ReadsColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to
data resources where there is a flow of data from the resource. ReadsColumnSet relationship is similar to Reads
relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

© ISO/IEC 2012 - All rights reserved 247



ISO/IEC 19506:2012(E)

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

Semantics

ReadsColumnSet represents a data flow from a certain ColumnSet element to a data action.
18.9.2 WritesColumnSet Class

WritesColumnSet class follows the pattern of a “resource action relationship.” It represents various types of accesses to

user interface resources where there is a flow of data to the resource. WritesColumnSet relationship is similar to Writes

relationship from Action Package. The nature of the operation on the resource is represented by the “kind” attribute of the
DataAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[1] “abstracted” action owned by some resource

to:ColumnSet[1] the data resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

Semantics

WritesColumnSet represents a data flow from a data action to a certain ColumnSet element.
18.9.3 ManagesData Class

Manages class follows the pattern of a “resource action relationship.” It represents various types of accesses to user
interface resources where there is no flow of datato or from the resource. ManagesData relationship is similar to
Addresses relationship from Action Package. The nature of the operation on the resource is represented by the “kind”
attribute of the DataAction that owns this relationship through the “abstracted” action container property.

Superclass
Action::AbstractActionRelationship

248 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

from:ActionElement[ 1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

Semantics

Manages represents a certain change of state to a certain AbstractDataElement.
18.9.4 HasContent Class

HasContent class follows the pattern of a “resource action relationship.” HasContent is a structural relationship. It does
not represent resource manipulations. HasContent relationship uses the “abstracted” action container mechanism to
provide certain capabilities to other Resource Layer packages. “HasContent” relationship makes it possible to associate an
element of a data model with any resource.

Superclass
Action::AbstractActionRelationship

Associations

from:ActionElement[ 1] “abstracted” action owned by some resource

to:AbstractDataElement[1] the data resource being accessed

Constraints
1. Thisrelationship should not be used in Code models.

Semantics

HasContent represents an association between any KDM resource or behavior abstraction element (through the
“abstracted” action mechanism) and the data element, describing the data organization related to this element.

Example (Java, embedded SQL, JDBC)

CREATE TABLE products (ID int primary key, name varchar, type varchar)
CREATE TABLE contracts (ID int primary key, product int, revenue decimal, dateSigned date)

final String findContractStatements=
"SELECT * FROM contracts c, products p" +
"WHERE ID = ? AND c.product = p.ID ";

public void calculateRecognitions( long contractID ) {

Connection db=DriverManager.getConnection ("jdbc:odbc:foobar", "sunny","") ;
PreparedStatement stmt=db.prepareStatement (findContractStatement) ;

© ISO/IEC 2012 - All rights reserved 249



ISO/IEC 19506:2012(E)

stmt.setLong (1, contractID) ;

ResultSet contracts=stmt.executeQuery () ;

contracts.next () ;

Money totalRevenue=Money.dollars (contracts.getBigDecimal ("revenue")) ;
MfDate recognitionDate=new MfDate (contracts.getDate ("dateSigned")) ;

}

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:platform="http://schema.omg.org/spec/KDM/1.2/platform" name="Data Example">
<model xmi:id="id.0" xmi:type="data:DataModel" name="Contracts">
<dataElement xmi:id="id.1" xmi:type="data:RelationalSchema" name="Contracts"s>
<dataElement xmi:id="id.2" xmi:type="data:RelationalTable" name="products">
<dataElement xmi:id="id.3" xmi:type="data:UniqueKey" name="ID" implementation="id.4"/>
<itemUnit xmi:id="id.4" name="ID" type="id.172"/>
<itemUnit xmi:id="id.5" name="name" type="1id.173"/>
<itemUnit xmi:id="id.é" name="type" type="id.173"/>
</dataElement>
<dataElement xmi:id="id.7" xmi:type="data:RelationalTable" name="contracts"s>
<dataElement xmi:id="id.8" xmi:type="data:UniqueKey" name="ID" implementation="id.11"/>
<dataElement xmi:id="1id.9" xmi:type="data:ReferenceKey" implementation="id.12">
<dataRelation xmi:id="id.10" xmi:type="data:KeyRelation" to="id.3" from="id.9"/>
</dataElement>
<itemUnit xmi:id="id.11" name="ID" type="id.172"/>
<itemUnit xmi:id="id.12" name="product" type="1id.172"/>
<itemUnit xmi:id="id.13" name="revenue" type="1id.174"/>
<itemUnit xmi:id="id.14" name="dateSigned" type="id.175"/>
</dataElement>
</dataElement>
<dataElement xmi:id="id.15" xmi:type="data:DataAction" name="d1l" kind="Connect"
implementation="id.79">
<abstraction xmi:id="id.16" name="dal" kind="Connect"s>
<actionRelation xmi:id="id.17" xmi:type="action:Reads" to="id.80" from="id.16"/>
<actionRelation xmi:id="id.18" xmi:type="action:Reads" to="id.81" from="id.16"/>
<actionRelation xmi:id="id.19" xmi:type="action:Reads" to="id.82" from="id.1l6"/>
<actionRelation xmi:id="id.20" xmi:type="platform:ManagesResource" to="1id.67"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1id.21" xmi:type="data:DataAction" name="d2" kind="Select"
implementation="id.90 id.96 id.104">
<source xmi:id="id.22" language="sqgl"
snippet="&quot;select * from contracts c, products p where ID = ? and c.product=p.ID &quot;"/>
<abstraction xmi:id="id.23" name="wl" kind="Equal">
<codeElement xmi:id="id.24" xmi:type="code:StorableUnit" name="t1l" type="id.176" kind="register"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.11" from="id.23"/>
<actionRelation xmi:id="id.26" xmi:type="action:Reads" to="id.77" from="id.23"/>
<actionRelation xmi:id="id.27" xmi:type="action:Writes" to="id.24" from="id.23"/>
<actionRelation xmi:id="id.28" xmi:type="action:Flow" to="id.29"/>
</abstractions>
<abstraction xmi:id="id.29" name="w2" kind="Equal">

250 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<codeElement xmi:id="id.30" xmi:type="code:StorableUnit" name="t2" type="id.176" kind="register"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.12" from="1id.29"/>
<actionRelation xmi:id="id.32" xmi:type="action:Reads" to="id.4" from="id.29"/>
<actionRelation xmi:id="id.33" xmi:type="action:Writes" from="id.29"/>
<actionRelation xmi:id="id.34" xmi:type="action:Flow" to="id.35" from="id.29"/>
</abstractions>
<abstraction xmi:id="1d.35" name="w3" kind="And">
<codeElement xmi:id="id.36" xmi:type="code:StorableUnit" name="t3" type="id.176" kind="register"/>
<actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.24" from="id.35"/>
<actionRelation xmi:id="id.38" xmi:type="action:Reads" to="id.30"/>
<actionRelation xmi:id="id.39" xmi:type="action:Flow" to="id.40" from="id.35"/>
</abstractions>
<abstraction xmi:id="1d.40" name="w4" kind="Condition">
<actionRelation xmi:id="id.41" xmi:type="action:TrueFlow" to="id.42" from="id.40"/>
</abstraction>
<abstraction xmi:id="id.42" name="sl1l" kind="Select'">
<actionRelation xmi:id="id.43" xmi:type="data:ReadsColumnSet" to="id.7" from="id.42"/>
<actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.11" from="id.42"/>
<actionRelation xmi:id="id.45" xmi:type="action:Reads" to="id.12" from="id.42"/>
<actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.13" from="id.42"/>
<actionRelation xmi:id="id.47" xmi:type="action:Reads" to="id.14" from="id.42"/>
<actionRelation xmi:id="id.48" xmi:type="data:ReadsColumnSet" to="id.2"/>
<actionRelation xmi:id="id.49" xmi:type="action:Reads" to="id.4" from="id.42"/>
<actionRelation xmi:id="id.50" xmi:type="action:Reads" to="id.5" from="id.42"/>
<actionRelation xmi:id="id.51" xmi:type="action:Reads" to="id.6" from="id.42"/>
<actionRelation xmi:id="id.52" xmi:type="action:Writes" to="1d.103" from="id.42"/>
<actionRelation xmi:id="id.53" xmi:type="platform:ReadsResource" to="id.67" from="id.42"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1id.54" xmi:type="data:DataAction" name="d3" kind="Retrieve"
implementation="id.115">
<abstraction xmi:id="1d.55" name="da2" kind="Assign">
<actionRelation xmi:id="id.56" xmi:type="action:Reads" to="id.13" from="id.55"/>
<actionRelation xmi:id="id.57" xmi:type="action:Addresses" to="id.103" from="id.55"/>
<actionRelation xmi:id="id.58" xmi:type="action:Writes" to="1id.117" from="id.55"/>
</abstractions>
</dataElement>
<dataElement xmi:id="1d.59" xmi:type="data:DataAction" name="d4" kind="Retrieve"
implementation="id.130">
<abstraction xmi:id="1d.60" name="da3" kind="Assign">
<actionRelation xmi:id="id.61" xmi:type="action:Reads" to="id.14" from="id.60"/>
<actionRelation xmi:id="id.62" xmi:type="action:Addresses" to="id.103" from="id.60"/>
<actionRelation xmi:id="id.63" xmi:type="action:Writes" to="id.132" from="id.60"/>
</abstraction>
</dataElement>
</model>
<model xmi:id="id.64" xmi:type="platform:PlatformModel">
<platformElement xmi:id="id.65" xmi:type="platform:Machine">
<resource xmi:id="id.66" >
<resource xmi:id="1d.67" xmi:type="platform:DataManager" name="foobar">
<abstraction xmi:id="1id.68" name="dml">
<actionRelation xmi:id="id.69" xmi:type="data:HasContent" to="id.1"/>
</abstractions>
</resource>
</resource>

© ISO/IEC 2012 - All rights reserved 251



ISO/IEC 19506:2012(E)

</platformElement>

</model>

<model xmi:id="1id.70" xmi:type="code:CodeModel" name="Application">

252

<codeElement xmi:id="id.71" xmi:type="code:ClassUnit" name="DataExample">

<codeElement xmi:id="id.72" xmi:type="code:MemberUnit" name="findContractStatement">

<codeRelation xmi:id="id.73"
</codeElement>

xmi:type="code:HasValue" to="id.145" from="id.72"/>

<codeElement xmi:id="1id.74" xmi:type="code:MethodUnit" name="calculateRecognitions">
<entryFlow xmi:id="1id.75" to="id.79" from="id.74"/>

<codeElement xmi:id="id.76"

<parameterUnit xmi:id="id.77"

</codeElement>
<codeElement xmi:id="id.78"
<codeElement xmi:id="id.79"

<codeElement xmi:id="1d.80" xmi:type="code:Value"
<codeElement xmi:id="id.81" xmi:type="code:Value"
<codeElement xmi:id="id.82" xmi:type="code:Value"

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="1id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id
</codeElement>

<codeElement xmi:id="1d.89" xmi:type="code:StorableUnit" name="stmt" type="id.161" kind="local"/>

xmi :

xmi :

xmi :

type="code:Signature">
name="contractNumber" type="id.179"/>

type="action:ActionElement" name="cl" kind="Call">
name="&quot ; jdbc:odbc: foobar&quot;"/>

name="&quot ; &quot ;" type="id.178"/>

83" xmi:type="action:Reads" to="id.80" from="id.79"/>
84" xmi:type="action:Reads" to="id.81" from="id.79"/>
85" xmi:type="action:Reads" to="id.82" from="id.79"/>
86" xmi:type="action:Calls" to="id.154" from="id.79"/>
87" xmi:type="action:Writes" to="id.78" from="id.79"/>
88" xmi:type="action:Flow" to="id.90" from="id.79"/>

<codeElement xmi:1id="1d.90" xmi:type="action:ActionElement" name="c2" kind="MethodCall">

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.
</codeElement>

91" xmi:type="action:Addresses" to="1id.78" from="id.90"/>
92" xmi:type="action:Reads" to="id.72" from="id.90"/>

93" xmi:type="action:Calls" to="id.156" from="id.90"/>
94" xmi:type="action:Writes" to="id.89" from="id.90"/>
95" xmi:type="action:Flow" to="id.96" from="id.90"/>

<codeElement xmi:id="1d.96" xmi:type="action:ActionElement" name="c3" kind="MethodCall">

<codeElement xmi:id="1d.97" xmi:type="code:Value" name="1"/>

<actionRelation xmi:id="id

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.

<actionRelation xmi:id="id.
</codeElement>

<codeElement xmi:id="id.103"
kind="local"/>
<codeElement xmi:id="1id.104"
<actionRelation
<actionRelation
<actionRelation
<actionRelation
</codeElement>
<codeElement xmi:id="id.109"

<actionRelation xmi:id="id.
<actionRelation xmi:id="id.
<actionRelation xmi:id="id.

</codeElement>
<codeElement xmi:id="id.113"
kind="1local"/>

.98" xmi:type="action:Addresses" to="1id.89"

xmi:id="id.
xmi:id="id.
xmi:id="1id.
xmi:id="1id.

from="id.96" />
from="id.96"/>
from="1id.96"/>
from="1id.96"/>
from="1id.96"/>

99" xmi:type="action:Reads" to="1id.97"
100" xmi:type="action:Reads" to="id.77"
101" xmi:type="action:Calls" to="id.1l62"
102" xmi:type="action:Flow" to="1d.104"

xmi:type="code:StorableUnit" name="contracts" type="id.1l57"

xmi:type="action:ActionElement" name="c4" kind="MethodCall"s>

105" xmi:type="action:Addresses" to="id.89" from="id.104"/>
106" xmi:type="action:Calls" to="id.163" from="id.104"/>
107" xmi:type="action:Writes" to="1d.103" from="id.104"/>
108" xmi:type="action:Flow" to="1d.109" from="id.104"/>

xmi:type="action:ActionElement" name="c5" kind="MethodCall">
110" xmi:type="action:Addresses" to="id.103" from="id.109"/>
from="1id.109"/>
from="id.109"/>

111" xmi:type="action:Calls" to="id.158"
112" xmi:type="action:Flow" to="1id.114"

xmi:type="code:StorableUnit" name="totalRevenue" type="id.1l65"

© ISO/IEC 2012 - All rights reserved

type="code:StorableUnit" name="db" type="id.155" kind="local"/>

name="&quot ; sunny&quot; " type="id.178"/>



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1d.114" xmi:type="action:ActionElement" name="c6" kind="Compound">
<codeElement xmi:id="1d.115" xmi:type="action:ActionElement" name="c6.1" kind="Call">
<codeElement xmi:id="id.116" xmi:type="code:Value" name="&quot;revenue&quot;"/>
<codeElement xmi:id="1d.117" xmi:type="code:StorableUnit" name="t4" kind="register"/>
<actionRelation xmi:id="id.118" xmi:type="action:Addresses" to="1d.103" from="id.115"/>
<actionRelation xmi:id="id.119" xmi:type="action:Calls" to="id.159" from="id.115"/>
<actionRelation xmi:id="id.120" xmi:type="action:Writes" to="id.117" from="id.115"/>
<actionRelation xmi:id="id.121" xmi:type="action:Flow" to="id.122" from="id.115"/>
</codeElement >
<codeElement xmi:id="1id.122" xmi:type="action:ActionElement" name="c6.2" kind="Call">
<actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.117" from="id.122"/>
<actionRelation xmi:id="id.124" xmi:type="action:Calls" to="id.166" from="id.122"/>
<actionRelation xmi:id="id.125" xmi:type="action:Writes" to="id.113" from="id.122"/>
<actionRelation xmi:id="id.126" xmi:type="action:Flow"/>
</codeElement>
<actionRelation xmi:id="id.127" xmi:type="action:Flow" to="id.115" from="id.114"/>
</codeElement>
<codeElement xmi:id="1d.128" xmi:type="code:StorableUnit" name="recognizedDate" type="id.168"
kind="local"/>
<codeElement xmi:id="1d.129" xmi:type="action:ActionElement" name="c7" kind="MethodCall">
<codeElement xmi:id="1d.130" xmi:type="action:ActionElement" name="c7.1" kind="Call">
<codeElement xmi:id="1d.131" xmi:type="code:Value" name="&quot;dateSigned&quot;"/>
<codeElement xmi:id="1id.132" xmi:type="code:StorableUnit" name="t5" kind="register"/>
<actionRelation xmi:id="id.133" xmi:type="action:Addresses" to="1d.103" from="id.130"/>
<actionRelation xmi:id="id.134" xmi:type="action:Calls" to="id.160" from="id.130"/>
<actionRelation xmi:id="id.135" xmi:type="action:Writes" to="id.132" from="id.130"/>
<actionRelation xmi:id="id.136" xmi:type="action:Flow" to="id.137" from="id.130"/>
</codeElement>
<codeElement xmi:id="1d.137" xmi:type="action:ActionElement" name="c7.2" kind="New">
<actionRelation xmi:id="id.138" xmi:type="action:Creates" to="1id.168" from="id.137"/>
<actionRelation xmi:id="id.139" xmi:type="action:Writes" to="id.128" from="id.137"/>
<actionRelation xmi:id="id.140" xmi:type="action:Flow"/>
</codeElement>
<codeElement xmi:id="1d.141" xmi:type="action:ActionElement" name="c7.3" kind="MethodCall">
<actionRelation xmi:id="id.142" xmi:type="action:Reads" to="id.132" from="id.137"/>
<actionRelation xmi:id="id.143" xmi:type="action:Calls" to="id.169" from="id.141"/>
<actionRelation xmi:id="id.144" xmi:type="action:Writes" to="id.128" from="id.141"/>
</codeElement>
</codeElement >
</codeElement>
<codeElement xmi:id="id.145" xmi:type="code:Value"
name="&quot ; SELECT * FROM contracts c, products p WHERE ID=? AND c.product=p.ID&quot;"
type="id.178"/>
<codeElement xmi:id="1d.146" xmi:type="code:MethodUnit" name="init" kind="constructor"s>
<entryFlow xmi:id="1d.147" to="1d.148" from="id.146"/>
<codeElement xmi:id="1d.148" xmi:type="action:ActionElement" name="il" kind="Assign">
<actionRelation xmi:id="id.149" xmi:type="action:Reads" to="1id.145" from="id.148"/>
<actionRelation xmi:id="id.150" xmi:type="action:Writes" to="id.72" from="id.148"/>
</codeElement>
</codeElement>
</codeElement>
</model>
<model xmi:id="1d.151" xmi:type="code:CodeModel" name="Java packages'">
<codeElement xmi:id="id.152" xmi:type="code:Package" name="java.sqgl">
<codeElement xmi:id="1id.153" xmi:type="code:ClassUnit" name="DriverManager'>

© ISO/IEC 2012 - All rights reserved 253



ISO/IEC 19506:2012(E)

<codeElement xmi:id="1id.154" xmi:type="code:MethodUnit" name="getConnection" kind="abstract"/>
</codeElement>
<codeElement xmi:id="1d.155" xmi:type="code:ClassUnit" name="Connection">
<codeElement xmi:id="1d.156" xmi:type="code:MethodUnit" name="prepareStatement" kind="abstract"/>
</codeElement>
<codeElement xmi:id="id.157" xmi:type="code:ClassUnit" name="ResultSet">
<codeElement xmi:id="1d.158" xmi:type="code:MethodUnit" name="next" kind="abstract"/>
<codeElement xmi:id="1d.159" xmi:type="code:MethodUnit" name="getBigDecimal" kind="abstract"/>
<codeElement xmi:id="1d.160" xmi:type="code:MethodUnit" name="getDate" kind="abstract"/>
</codeElement>
<codeElement xmi:id="id.161" xmi:type="code:ClassUnit" name="Statement">
<codeElement xmi:id="1id.162" xmi:type="code:MethodUnit" name="setLong" kind="abstract"/>
<codeElement xmi:id="1d.163" xmi:type="code:MethodUnit" name="executeQuery" kind="abstract"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.164" xmi:type="code:Package" name="Money">
<codeElement xmi:id="id.165" xmi:type="code:ClassUnit" name="Money">
<codeElement xmi:id="1id.166" xmi:type="code:MethodUnit" name="dollars" kind="abstract"/>
</codeElement>
</codeElement>
<codeElement xmi:id="1id.167" xmi:type="code:Package" name="MfDate">
<codeElement xmi:id="id.168" xmi:type="code:ClassUnit" name="MfDate">
<codeElement xmi:id="1d.169" xmi:type="code:MethodUnit" name="MfDate" kind="abstract"/>
</codeElement>
</codeElement>
</model>
<model xmi:id="1id.170" xmi:type="code:CodeModel" name="Common Datatypes">
<codeElement xmi:id="id.171" xmi:type="code:LanguageUnit" name="SQL datatypes">
<codeElement xmi:id="1id.172" xmi:type="code:IntegerType" name="sqgl int"/>
<codeElement xmi:id="1d.173" xmi:type="code:StringType" name="sgl varchar"/>
<codeElement xmi:id="1d.174" xmi:type="code:DecimalType" name="sgl decimal"/>
<codeElement xmi:id="1d.175" xmi:type="code:DateType" name="sgl date"/>
<codeElement xmi:id="1d.176" xmi:type="code:BooleanType"/>
</codeElement>
<codeElement xmi:id="id.177" xmi:type="code:LanguageUnit" name="Java datatypes">
<codeElement xmi:id="id.178" xmi:type="code:StringType"/>
<codeElement xmi:id="1d.179" xmi:type="code:IntegerType" name="java long"/>
<codeElement xmi:id="1d.180" xmi:type="code:IntegerType" name="java byte"/>
</codeElement>
</model>
</kdm: Segment >

18.10 StructuredData Class Diagram

The StructuredData class diagram provides basic meta-model constructs to define the XML files that can be used by
enterprise applications for persistent storage or as an exchange mechanism between components. The class diagram
shown in Figure 18.8 captures these classes and their relations.

254 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractDataElement

XMLSchema | AbstractContentElement
0..1 0.*
+owner +contentElement
{subsets owner} {subsets ownedElement}

Figure 18.8 - StructuredData Class Diagram
18.10.1 XMLSchema
The XML Schema class represents the top level container for a KDM metamodel of an XML document.

Superclass
AbstractDataElement

Associations
contentElement :AbstractContentElement[0..*]  Individual content elements owned by this schema.

Semantics

XMLSchemais alogical container for AbstractContentElements as well as some other DataResource elements (for
example, DataEvents).

18.10.2 AbstractContentElement (abstract)
The AbstractContentElement class is an abstract parent for several concrete classes whose purpose is to represent the
content of XML schemas and documents as well as various structured data items that can be associated with other KDM

elements.

Superclass
AbstractDataElement

Semantics
AbstractContentElement represents common properties of content elements.

18.11 ContentElements Class Diagram

The ContentElements class diagram defines basic meta-model constructs to represent XML elements. The class diagram
shown in Figure 18.9 captures these classes and their relations.

© ISO/IEC 2012 - All rights reserved 255



ISO/IEC 19506:

2012(E)

+contentElement

{subsets ownedElement

ordered}

+owner
{subsets owner}g 1

ComplexContentType

MixedContent

AllContent

ChoiceContent

SeqgContent

0..

*

AbstractContentElement

ContentType

+type

1

+type
MemberTypes

Contentitem

0"*
+contentElement
{subsets ownedElement}

Gr}pupContent
!

|

ContentElement

\

\ContentReference

\

SimpleContentType

|

<kind : String

ContentRestriction

<kind : String
<value : String

Figure 18.9 - ContentElements Class Diagram

18.11.1 Contentltem (generic)

ContentAttribute

The Contentltem class is a generic meta-model element that represents named items and references of the XML schema:
elements, attributes, references, and groups.

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*]

type:ComplexContentType[0..1]

256

owned content elements

content type of the current Contentltem

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Semantics

18.11.2 ComplexContentType

The ComplexContentType class represents Complex Types of an XML schema definition. XSD indicators are modeled as
subclasses of ComplexContentType.

Superclass

AbstractContentElement

Associations

contentElement :AbstractContentElement[0..*] Owned content el ements

Semantics

18.11.3 SimpleContentType
The SimpleContentType class represents Simple Types of an XML schema definition.

Superclass

ComplexContentType

Attributes

kind:String content kind of the current SimpleContentType
Associations

type:ComplexContentType[0..*] content type of the current Contentltem

Semantics

Simpletypes, such as string and decimal, are built in to XML Schema, while others are derived from the built-in's. The kind of
SimpleContentType can be “list,” “union,” “enumeration,” etc.

18.11.4 ContentRestriction

The ContentRestriction class represents restrictions to Simple Types, Elements, Attributes, and References.

Superclass

AbstractContentElement

© ISO/IEC 2012 - All rights reserved 257



ISO/IEC 19506:2012(E)

Attributes
kind :String type of the content restriction (XML)
value:String value of the constraint

Semantics

kind isan XSD restriction, such as minExclusive, mininclusive, maxExclusive, maxInclusive, total Digits, fractionDigits,
length, minLength, maxL ength, enumeration, whiteSpace, pattern; or XSD an element attribute, such as minOccurs,
maxQOccurs, required, fixed; or an XSD enumeration.

Example

<xsd:simpleType name="myInteger">
<xsd:restriction base="xsd:integer">
<xsd:minInclusive value="10000"/>
<xsd:maxInclusive value="99999"/>
</xsd:restrictions>
</xsd:simpleType>

<xsd:simpleType name="SKU">
<xsd:restriction base="xsd:string">
<xsd:pattern value="\d{3}-[A-Z]{2}"/>
</xsd:restrictions>
</xsd:simpleType>

<xsd:simpleType name="USState">
<xsd:restriction base="xsd:string">
<xsd:enumeration value="AK"/>
<xsd:enumeration value="AL"/>
<xsd:enumeration value="AR"/>
<!-- and soon ... -->
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="1istOfMyIntType">
<xsd:list itemType="myInteger"/>
</xsd:simpleType>

<xsd:simpleType name="USStateList">
<xsd:1list itemType="USState"/>
</xsd:simpleType>

<xsd:simpleType name="SixUSStates">
<xsd:restriction base="USStateList">
<xsd:length value="6"/>
</xsd:restriction>
</xsd:simpleType>

<xsd:simpleType name="zipUnion">

<xsd:union memberTypes="USState listOfMyIntType"/>
</xsd:simpleType>

258 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="XML Simple Content Example">
<model xmi:id="1d.0" xmi:type="data:DataModel">
<dataElement xmi:id="1d.1" xmi:type="data:XMLSchema" name="SimpleType examples">
<contentElement xmi:id="1d.2" xmi:type="data:SimpleContentType" name="MyInteger"s>
<dataRelation xmi:id="id.3" xmi:type="data:RestrictionOf" to="id.27" from="id.2"/>
<contentElement xmi:id="id.4" xmi:type="data:ContentRestriction"
kind="minInclusive" value="10000"/>
<contentElement xmi:id="1id.5" xmi:type="data:ContentRestriction"
kind="maxInclusive" value="99999"/>
</contentElement>
<contentElement xmi:id="1id.6" xmi:type="data:SimpleContentType" name="SKU">
<dataRelation xmi:id="id.7" xmi:type="data:RestrictionOf" to="id.29" from="id.2"/>
<contentElement xmi:id="id.8" xmi:type="data:ContentRestriction"
kind="pattern" value="&quot;\d{3}-[A-Z]{2}&quot;"/>
</contentElement>
<contentElement xmi:id="1d.9" xmi:type="data:SimpleContentType" name="USState">
<contentElement xmi:id="id.10" xmi:type="data:ContentRestriction"
kind="enumeration" value="&quot;AK&guot;"/>
<contentElement xmi:id="id.11" xmi:type="data:ContentRestriction"
kind="enumeration" value="&quot;AL&gquot;"/>
<contentElement xmi:id="1id.12" xmi:type="data:ContentRestriction"
kind="enumeration" value="&quot;AR&quot;"/>
</contentElement>
<contentElement xmi:id="1d.13" xmi:type="data:SimpleContentType" name="1listOfMyIntType">
<contentElement xmi:id="id.14" xmi:type="data:ListContent">
<dataRelation xmi:id="id.15" xmi:type="data:TypedBy" to="id.2" from="id.14"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.16" xmi:type="data:SimpleContentType" name="USStateList">
<contentElement xmi:id="id.17" xmi:type="data:ListContent" name="">
<dataRelation xmi:id="id.18" xmi:type="data:TypedBy" to="id.9" from="id.17"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.19" xmi:type="data:SimpleContentType" name="SixUSStates">
<dataRelation xmi:id="id.20" xmi:type="data:RestrictionOf" to="id.16" from="id.19"/>
<contentElement xmi:id="id.21" xmi:type="data:ContentRestriction" kind="length" value="6"/>
</contentElement>
<contentElement xmi:id="1d.22" xmi:type="data:SimpleContentType" name="zipUnion">
<contentElement xmi:id="1d.23" xmi:type="data:UnionContent"s>
<dataRelation xmi:id="id.24" xmi:type="data:TypedBy" to="id.9" from="id.23"/>
<dataRelation xmi:id="id.25" xmi:type="data:TypedBy" to="id.13" from="id.23"/>
</contentElement>
</contentElement>
</dataElement>
<dataElement xmi:id="1d.26" xmi:type="data:XMLSchema" name="xsd">
<contentElement xmi:id="1d.27" xmi:type="data:SimpleContentType" name="xsd:Integer">
<dataRelation xmi:id="id.28" xmi:type="data:DatatypeOf" to="id.41" from="id.27"/>
</contentElement>
<contentElement xmi:id="1d.29" xmi:type="data:SimpleContentType" name="xsd:String"s>
<dataRelation xmi:id="1id.30" xmi:type="data:DatatypeOf" to="id.42" from="id.29"/>

© ISO/IEC 2012 - All rights reserved 259



ISO/IEC 19506:2012(E)

</contentElement>

<contentElement xmi:id="1d.31" xmi:type="data:SimpleContentType" name="xsd:Decimal">
<dataRelation xmi:id="id.32" xmi:type="data:DatatypeOf" to="id.43" from="id.31"/>

</contentElement>

<contentElement xmi:id="id.33" xmi:type="data:SimpleContentType" name="xsd:positivelnteger"s>
<dataRelation xmi:id="id.34" xmi:type="data:DatatypeOf" to="id.41" from="id.33"/>

</contentElement>

<contentElement xmi:id="1d.35" xmi:type="data:SimpleContentType" name="xsd:date">
<dataRelation xmi:id="id.36" xmi:type="data:DatatypeOf" to="id.44" from="id.35"/>

</contentElement>

<contentElement xmi:id="id.37" xmi:type="data:SimpleContentType" name="xsd:any"/>

<contentElement xmi:id="id.38" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>

</dataElement>
</model>

<model xmi:id="1d.39" xmi:type="code:CodeModel">
<codeElement xmi:id="id.40" xmi:type="code:LanguageUnit">

<codeElement xmi:id="1id.41" xmi:type="code:IntegerType" name="xsd integer"/>
<codeElement xmi:id="1id.42" xmi:type="code:StringType" name="xsd string"/>
<codeElement xmi:id="1d.43" xmi:type="code:DecimalType" name="xsd decimal"/>
<codeElement xmi:id="1id.44" xmi:type="code:DateType" name="xsd date"/>
</codeElement>
</model>

</kdm: Segment >

18.11.5 AllContent Class
An AllContent class is a meta-model element that represents complex types with the “all” order indicator.

Superclass

ComplexContentType

Semantics

18.11.6 SeqContent Class
The SegContent class is a meta-model element that represents complex types with the “sequence” order indicator.

Superclass
ComplexContentType

Semantics

18.11.7 ChoiceContent Class
A ChoiceContent class is a meta-model element that represents complex types with the “choice” order indicator.

Superclass

XMLComplexType

260 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

18.11.8 GroupContent Class
A GroupContent class is a meta-model element that represents complex types with the “group” group indicator.

Superclass

ComplexContentType

Semantics

18.11.9 MixedContent Class
A MixedContent class is a meta-model element that represents complex types with the “mixed” indicator.

Superclass
ComplexContentType

Semantics

18.11.10 ContentAttribute Class

A ContentAttribute class is a meta-model element that represents the XML “attribute” declaration mechanism of XML
Schemas.

Superclass
Contentltem

Semantics

18.11.11 ContentElement Class

A ContentElement class is a meta-model element that represents the XML “element” declaration mechanism of XML
Schemas.

Superclass
Contentltem

Semantics

18.11.12 ContentReference Class

A ContentReference class is a meta-model element that represents the XML “reference” declaration mechanism of XML
Schemas.

© ISO/IEC 2012 - All rights reserved 261



ISO/IEC 19506:2012(E)

Superclass
Contentltem

Semantics

Example

<xsd:element name="letterBody">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="salutation">
<xsd:complexType mixed="true">
<xsd:sequence>
<xsd:element name="name" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="quantity" type="xsd:positiveInteger"/>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
<!-- etc. -->

</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="USAddress" >

<xsd:sequence>

<xsd:element name="name" type="xsd:string"/>
<xsd:element name="street" type="xsd:string"/>
<xsd:element name="city" type="xsd:string"/>
<xsd:element name="state" type="xsd:string"/>
<xsd:element name="zip" type="xsd:decimal"/>

</xsd:sequence>
<xsd:attribute name="country" type="xsd:NMTOKEN" fixed="US"/>
</xsd:complexType>

<xsd:complexType name="Items">
<xsd:sequence>
<xsd:element name="item" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="productName" type="xsd:string"/>
<xsd:element name="quantity">
<xsd:simpleType>
<xsd:restriction base="xsd:positiveInteger">
<xsd:maxExclusive value="100"/>
</xsd:restriction>
</xsd:simpleType>
</xsd:element>
<xsd:element name="USPrice" type="xsd:decimal"/>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="shipDate" type="xsd:date" minOccurs="0"/>
</xsd:sequence>
<xsd:attribute name="partNum" type="SKU" use="required"/>
</xsd:complexType>

262 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

</xsd:element>
</xsd:sequence>
</xsd:complexType>

<xsd:element name="internationalPrice">
<xsd:complexType>
<xsd:complexContent>
<xsd:restriction base="xsd:anyType">
<xsd:attribute name="currency" type="xsd:string"/>
<xsd:attribute name="value" type="xsd:decimal"/>
</xsd:restriction>
</xsd:complexContent>
</xsd:complexType>
</xsd:element>

<xsd:complexType name="PurchaseOrderType'">
<xsd:sequence>
<xsd:choice>
<xsd:group ref="gshipAndBill"/>
<xsd:element name="singleUSAddress" type="USAddress"/>
</xsd:choice>
<xsd:element ref="comment" minOccurs="0"/>
<xsd:element name="items" type="Items"/>
</xsd:sequence>
<xsd:attribute name="orderDate" type="xsd:date"/>
</xsd:complexType>

<xsd:group id="shipAndBill"s>
<xsd:sequence>
<xsd:element name="shipTo" type="USAddress"/>
<xsd:element name="billTo" type="USAddress"/>
</xsd:sequence>
</xsd:group>

<?xml version="1.0" encoding="UTF-8"?>

<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:data="http://schema.omg.org/spec/KDM/1.2/data"

xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm" name="XML Complex Content Example"s>

<model xmi:id="id.0" xmi:type="data:DataModel">
<dataElement xmi:id="id.1" xmi:type="data:XMLSchema" name="Complex Content'"s>
<contentElement xmi:id="1d.2" xmi:type="data:ContentElement" name="letterBody">
<dataRelation xmi:id="id.3" xmi:type="data:TypedBy" to="id.4" from="id.2"/>
<contentElement xmi:id="1id.4" xmi:type="data:MixedContent" name="ml">
<contentElement xmi:id="id.5" xmi:type="data:SegContent">
<contentElement xmi:id="id.6" xmi:type="data:ContentElement" name="salutation"s>
<dataRelation xmi:id="id.7" xmi:type="data:TypedBy" to="id.8" from="id.6"/>
<contentElement xmi:id="id.8" xmi:type="data:MixedContent"s>
<contentElement xmi:id="1id.9" xmi:type="data:SeqgContent">
<contentElement xmi:id="1d.10" xmi:type="data:ContentElement" name="name">
<dataRelation xmi:id="id.11" xmi:type="data:TypedBy" to="1id.88" from="id
</contentElement>
</contentElement>
</contentElement>

© ISO/IEC 2012 - All rights reserved

.1o0"/>

263



ISO/IEC 19506:2012(E)

</contentElement>

<contentElement xmi:id="1id.12" xmi:type="data:ContentElement" name="quantity"s>
<dataRelation xmi:id="1id.13" xmi:type="data:TypedBy" to="id.92" from="id.12"/>

</contentElement>

<contentElement xmi:id="id.14" xmi:type="data:ContentElement" name="productName">
<dataRelation xmi:id="id.15" xmi:type="data:TypedBy" to="id.88" from="id.14"/>

</contentElement>

<contentElement xmi:id="1d.16" xmi:type="data:ContentElement" name="shipDate">
<dataRelation xmi:id="1id.17" xmi:type="data:TypedBy" to="id.94" from="id.1l6"/>

</contentElement>
</contentElement>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.18" xmi:type="data:ComplexContentType" name="USAddress">

<contentElement xmi:id="1d.19" xmi:type="data:SegContent">

<contentElement xmi:id="1id.20" xmi:type="data:ContentElement" name="name">
<dataRelation xmi:id="id.21" xmi:type="data:TypedBy" to="id.88" from="id.20"/>

</contentElement>

<contentElement xmi:id="1d.22" xmi:type="data:ContentElement" name="street">
<dataRelation xmi:id="id.23" xmi:type="data:TypedBy" to="id.88" from="id.22"/>

</contentElement>

<contentElement xmi:id="id.24" xmi:type="data:ContentElement" name="city">
<dataRelation xmi:id="id.25" xmi:type="data:TypedBy" to="id.88" from="id.24"/>

</contentElement>

<contentElement xmi:id="1d.26" xmi:type="data:ContentElement" name="state">
<dataRelation xmi:id="id.27" xmi:type="data:TypedBy" to="id.88" from="id.26"/>

</contentElement>

<contentElement xmi:id="id.28" xmi:type="data:ContentElement" name="zip">
<dataRelation xmi:id="id.29" xmi:type="data:TypedBy" to="id.88" from="id.28"/>

</contentElement>
</contentElement>
<contentElement xmi:id="1d.30" xmi:type="data:ContentAttribute" name="country"s>
<dataRelation xmi:id="id.31" xmi:type="data:TypedBy" to="id.97" from="id.30"/>
<contentElement xmi:id="id.32" xmi:type="data:ContentRestriction"
kind="fixed" value="&quot;US&gquot;"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.33" xmi:type="data:ComplexContentType" name="items">
<contentElement xmi:id="1id.34" xmi:type="data:SegContent">
<contentElement xmi:id="id.35" xmi:type="data:ContentElement" name="item">
<dataRelation xmi:id="id.36" xmi:type="data:TypedBy" to="id.39" from="id.35"/>
<contentElement xmi:id="id.37" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>
<contentElement xmi:id="1d.38" xmi:type="data:ContentRestriction"
kind="maxOccurs" value="unbounded"/>
<contentElement xmi:id="1d.39" xmi:type="data:ComplexContentType" name="1i">
<contentElement xmi:id="1d.40" xmi:type="data:SegContent">
<contentElement xmi:id="id.41"

xmi:type="data:ContentElement" name="productNamel">

<dataRelation xmi:id="1id.42" xmi:type="data:TypedBy" to="id.88" from="id.41"/>
</contentElement>
<contentElement xmi:id="1d.43" xmi:type="data:ContentElement" name="quantityl"s>
45" from="1id.43"/>
<contentElement xmi:id="1d.45" xmi:type="data:SimpleContentType" name="stl">

from="1d.45"/>

<dataRelation xmi:id="1id.44" xmi:type="data:TypedBy" to="id.

<dataRelation xmi:id="id.46" xmi:type="data:RestrictionOf" to="id.92"

<contentElement xmi:id="1id.47" xmi:type="data:ContentRestriction"
kind="maxExclusive" value="100"/>

264 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

</contentElement>
</contentElement>
<contentElement xmi:id="1d.48" xmi:type="data:ContentElement" name="USPrice">
<dataRelation xmi:id="id.49" xmi:type="data:TypedBy" to="id.90" from="id.48"/>
</contentElement>
<contentElement xmi:id="id.50" xmi:type="data:ContentReference">
<dataRelation xmi:id="id.51" xmi:type="data:ReferenceTo" to="id.83" from="id.50"/>
<contentElement xmi:id="1d.52" xmi:type="data:ContentRestriction"
kind="minOccurs" value="0"/>
</contentElement>
<contentElement xmi:id="id.53" xmi:type="data:ContentElement" name="shipDatel">
<dataRelation xmi:id="id.54" xmi:type="data:TypedBy" to="id.94" from="id.53"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.55" xmi:type="data:ContentAttribute" name="partNum">
<dataRelation xmi:id="id.56" xmi:type="data:TypedBy" from="id.55"/>
<contentElement xmi:id="id.57" xmi:type="data:ContentRestriction"
kind="use" value="required"/>
</contentElement>
</contentElement>
</contentElement>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.58" xmi:type="data:ContentElement" name="international price"s>
<contentElement xmi:id="1d.59" xmi:type="data:ComplexContentType" name="">
<dataRelation xmi:id="id.60" xmi:type="data:RestrictionOf" to="id.96" from="id.59"/>
<contentElement xmi:id="1d.61" xmi:type="data:ContentAttribute" name="currencyl">
<dataRelation xmi:id="id.62" xmi:type="data:TypedBy" to="id.88" from="id.61"/>
</contentElement>
<contentElement xmi:id="id.63" xmi:type="data:ContentAttribute" name="value">
<dataRelation xmi:id="id.64" xmi:type="data:TypedBy" to="id.90" from="id.61"/>
</contentElement>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.65" xmi:type="data:ComplexContentType" name="PurchaseOrderType">
<contentElement xmi:id="id.66" xmi:type="data:SegContent">
<contentElement xmi:id="1d.67" xmi:type="data:ChoiceContent">
<contentElement xmi:id="1d.68" xmi:type="data:ContentReference">
<dataRelation xmi:id="id.69" xmi:type="data:ReferenceTo" to="id.79" from="id.68"/>
</contentElement>
<contentElement xmi:id="id.70" xmi:type="data:ContentElement" name="singleUSAddress">
<dataRelation xmi:id="id.71" xmi:type="data:TypedBy" to="id.18" from="id.70"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1id.72" xmi:type="data:ContentReference">
<dataRelation xmi:id="id.73" xmi:type="data:ReferenceTo" to="id.83" from="id.72"/>
<contentElement xmi:id="1id.74" xmi:type="data:ContentRestriction" kind="minOccurs" value="0"/>
</contentElement>
<contentElement xmi:id="id.75" xmi:type="data:ContentElement" name="items">
<dataRelation xmi:id="id.76" xmi:type="data:TypedBy" to="id.33" from="id.75"/>
</contentElement>
</contentElement>
<contentElement xmi:id="id.77" xmi:type="data:ContentAttribute" name="orderDate">
<dataRelation xmi:id="id.78" xmi:type="data:TypedBy" to="id.94" from="id.77"/>
</contentElement>

© ISO/IEC 2012 - All rights reserved 265



ISO/IEC 19506:2012(E)

</contentElement>
<contentElement xmi:id="1d.79" xmi:type="data:GroupContent" name="shipAndBill">
<contentElement xmi:id="1d.80" xmi:type="data:SegContent">
<contentElement xmi:id="id.81" xmi:type="data:ContentElement"/>
<contentElement xmi:id="id.82" xmi:type="data:ContentElement"/>
</contentElement>
</contentElement>
<contentElement xmi:id="1d.83" xmi:type="data:ContentElement" name="comment">
<dataRelation xmi:id="id.84" xmi:type="data:TypedBy" to="id.88" from="id.83"/>
</contentElement>
</dataElement>
<dataElement xmi:id="id.85" xmi:type="data:XMLSchema" name="xsd">
<contentElement xmi:id="1d.86" xmi:type="data:SimpleContentType" name="xsd:Integer">
<dataRelation xmi:id="id.87" xmi:type="data:DatatypeOf" to="id.100" from="id.86"/>
</contentElement>
<contentElement xmi:id="1id.88" xmi:type="data:SimpleContentType" name="xsd:String"s>
<dataRelation xmi:id="id.89" xmi:type="data:DatatypeOf" to="id.101" from="id.88"/>
</contentElement>
<contentElement xmi:id="1d.90" xmi:type="data:SimpleContentType" name="xsd:Decimal">
<dataRelation xmi:id="id.91" xmi:type="data:DatatypeOf" to="id.102" from="id.90"/>
</contentElement>
<contentElement xmi:id="1id.92" xmi:type="data:SimpleContentType" name="xsd:positivelnteger"s
<dataRelation xmi:id="id.93" xmi:type="data:DatatypeOf" to="id.100" from="id.92"/>
</contentElement>
<contentElement xmi:id="1d.94" xmi:type="data:SimpleContentType" name="xsd:date">
<dataRelation xmi:id="id.95" xmi:type="data:DatatypeOf" to="id.103" from="id.94"/>
</contentElement>
<contentElement xmi:id="id.96" xmi:type="data:SimpleContentType" name="xsd:any"/>
<contentElement xmi:id="id.97" xmi:type="data:SimpleContentType" name="xsd:NMTOKEN"/>
</dataElement>
</model>
<model xmi:id="1d.98" xmi:type="code:CodeModel">
<codeElement xmi:id="1d.99" xmi:type="code:LanguageUnit">
<codeElement xmi:id="1d.100" xmi:type="code:IntegerType" name="xsd integer"/>
<codeElement xmi:id="1d.101" xmi:type="code:StringType" name="xsd string"/>
<codeElement xmi:id="1d.102" xmi:type="code:DecimalType" name="xsd decimal"/>
<codeElement xmi:id="1d.103" xmi:type="code:DateType" name="xsd date"/>
</codeElement>
</model>
</kdm: Segment >

18.12 ContentRelations Class Diagram

The ContentRelations class diagram provides basic meta-model relationships that represent various structural properties
of the content. The class diagram shown in Figure 18.10 captures these classes and their relations.

266 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractDataRelationship

D atatype Of 0. ReferenceTo

TypedBy

+from
{redefines from}

+to * 1
{redefines fo} 1 Contentitem
D atatype N {redefines from} +to
(from code) 1 {reé%fines to} {redefines to}

+from
{redefines from}

+from

1
0..* !

{redefines to}

ExtensionTo RestrictionOf

0..* {redefines to}

Figure 18.10 - ContentRelations Class Diagram

18.12.1 TypedBy Class

The TypedBY class represents the relationship between a Contentltem and a content type, that can be represented by a
ComplexContentType class or one of its subclasses.

Superclass
AbstractDataRel ationship

Associations

from:Contentltem[ 1] the content element or attribute

to:ComplexContentType[ 1] the content type element

Constraints
1. The“from” endpoint should be a ContentElement or a ContentAttribute class.

Semantics

TypedBYy relationship represents an association between a content element and its type when this type is user-defined.
This relationship is similar to HasType from CodeM odel.

© ISO/IEC 2012 - All rights reserved 267



ISO/IEC 19506:2012(E)

18.12.2 DatatypeOf Class

The DatatypeOf class represents the relationship between a CompelxContentType and a Datatype defined in some Code
model.

Superclass
AbstractDataRel ationship

Associations

from:ComplexContentType[1] the content type
to:Datatype[1] the datatype element
Semantics

DatatypeOf relationship represents an association between a content type and primitive datatype.
18.12.3 ReferenceTo Class

The ReferenceTo class represents the rel ationship between a ContentReference and a ContentElement, ContentAttribute, or
ContentGroup definition.

Superclass
AbstractDataRel ationship

Associations

from:Contentltem[ 1] the content reference

to:Contentltem[1] the content element or attribute or group

Constraints

1. The“from” endpoint should be a ContentReference.

2. The“to” endpoint should be a ContentElement, a ContentAttribute, or GroupContent.

Semantics
ReferenceTo relationship represents an association between a content reference and the corresponding definition.

18.12.4 ExtensionTo Class

The ExtensionTo class represents the relationship between two content types, where one type is an extension to another. The
semantics of deriving new types by extension isthat as the result a new complex type or simple typeisdefined that contains all
the elements of the original type plus additional elementsthat are provided as the extension.

268 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
AbstractDataRel ationship

Associations

from:ComplexContentType[1] the new (extended) content type

to:ComplexContentType[1] the base content type

Constraints

Semantics
ExtensionTo relationship represents an association between a content type and its base type.

18.12.5 RestrictionOf Class

The RestrictionOf class represents the relationship between two content types, where one typeis arestriction to another. The
semantics of deriving new types by restriction is that as the result a new complex type or simple typeis defined that contains
al the elements and constraints of the original type plus additional constraints that are provided as the restriction.

Superclass
AbstractDataRel ationship

Associations

from:ComplexContentType[1] the new (restricted) content type
to:ComplexContentType[1] the base content type
Semantics

RestrictionOf relationship represents an association between a content type and its base type.

18.13 ExtendedDataElements Class Diagram

The ExtendedDataElements class diagram defines two “wildcard” generic elements for the data model as determined by
the KDM model pattern: a generic data entity and a generic data relationship.

The classes and associations of the ExtendedDataElements diagram are shown in Figure 18.11.

© ISO/IEC 2012 - All rights reserved 269



ISO/IEC 19506:2012(E)

AbstractD ataRe lationship

AbstractD ataElement

1\ DataRelationship

0..*

+from 0.+
{redefines from}

1 +to

{redefines to}

ExtendedDataElement

KD M Entity
(from core)

Figure 18.11 - ExtendedDataElements Class Diagram

18.13.1 ExtendedDataElement Class

The ExtendedDataElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractDataElement

Constraints
1. ExtendedDataElement should have at least one stereotype.

Semantics

A dataentity with under specified semantics. It is aconcrete class that can be used as the base element of anew “virtual” meta-
model entity type of the data model. Thisis one of the KDM extension points that can integrate additional language-specific,
application-specific, or implementer-specific pieces of knowledge into the standard KDM representation.

18.13.2 DataRelationship Class

The DataRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractDataRelationship

270 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

from:AbstractDataElement[1] the data element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. DataRelationship should have at |east one stereotype.

Semantics

A data relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship types of the data model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

© ISO/IEC 2012 - All rights reserved 271



ISO/IEC 19506:2012(E)

272 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Subpart IV - Abstractions Layer

Abstraction Layer defines a set of meta-model elements that represent domain-specific and application-specific
abstractions, as well as artifacts related to the build process of the exsting software system. The meta-model elements of
the Abstractions Layer provide various containers and groups to other meta-model elements.

Abstractions Layer defines the following 3 KDM Models:
» Structure
» Conceptua
+ Build

© ISO/IEC 2012 - All rights reserved 273



ISO/IEC 19506:2012(E)

274 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

19 Structure Package

19.1 Overview

Structure package defines meta-model elements that represent architectural components of existing software systems,
such as subsystems, layers, packages, etc. and define traceability of these elements to other KDM facts for the same

system.

The Structure package defines an architecture viewpoint for the Structure domain. The architectural views based on the
viewpoint defined by the Structure model represent how the structural elements of the software system are related to the
modules defined in the Code views that correspond to the Code architectural viewpoint defined by the Code model. The
architectural viewpoint is defined as follows.

« Concerns
« What are the structural elements of the system, and what is the organization of these elements?
» What software elements compose the system?
» How the structural elements of the system are related to the computational elements?

» What are the connections of these elements based on the rel ationships between the corresponding computational
elements?

* What are the interfaces of the structural elements of the system?
« Viewpoint language

Structure views conform to KDM XMI schema. The viewpoint language for the Structure architectural viewpoint
is defined by the Structure package. It includes abstract entity AbstractStructureElement, and several concrete
entities, such as Subsystem, Layer, Component, SoftwareSystem, ArchitectureView. The viewpoint language for
the Structure architectural viewpoint also includes an abstract relationship AbstractStructureRel ationship.

» Analytic methods
The Structure architectural viewpoint supports the following main kinds of checking:

« Attachment (are components properly connected?)

 Coupling and cohesion (the number of internal relationship within a component compared to the number of
relationships to other components).

« Efferent and afferent relationship (uses of acomponent by other components and usages of other component by the
given component).

« Interfaces (what is the required and provided interface of the given component?)

Structure Views are used in combination with Code views, Data views, Platform views, Ul views, and Inventory
views. Specifically, Structure views corresponding to this architectural viewpoint represent how the structural
elements of the software system are related to the modules defined in the Code views that correspond to the Code
architectural viewpoint, defined by the Code package.

« Construction methods:

« Structureviewsthat correspond to the KDM Structure architectural viewpoint are usually constructed by analyzing
architecture models of the given system. The Structure extractor tool uses the knowledge of the architecture
models to produce one or mode Structure views as output.

© ISO/IEC 2012 - All rights reserved 275



ISO/IEC 19506:2012(E)

< Asan alternative, structure views can be produced manually using the input from the architect of the system and
architecture documentation.

« Congtruction of the Structure view is determined by the architectural description of the system.

« Construction of the Structure views corresponding to a particular architectural description may involve additional
information (system-specific or architecture-specific). This information can be attached to KDM elements using
stereotypes, attributes, or annotations.

The organization of the system may be presented as a single Structure view or a set of multiple Structure view showing
layers, components, subsystems, or packages. The reach of this representation extends from a uniform architecture to
entire family of module-sharing subsystems.

The Structure model owns a collection of Structural Element instances.

Packages are the leaf elements of the Structure model, representing a division of a system’s Code Modules into discrete,
non-overlapping parts. An undifferentiated architecture is represented by a single Package.

Structural Group recursively gathers Structural Elements to represent various architectural divisions. The Software System
subclass provides a gathering point for all the system’s packages directly or indirectly through other Structure elements.
The packages may be further grouped into Subsystems, Layers, and Components, or Architecture Views.

19.2 Organization of the Structure Package

The Structure package defines a collection of meta-model elements whose purpose is to represent architectural
organization of the existing software system.

The Structure package consists of the following 3 class diagrams:
+ StructureModel
« Structurelnheritances
» ExtendedStructureElements
The Structure package depends on the following packages:
+ Core

« kdm

19.3 StructureModel Class Diagram

The StructureModel class diagram follows the uniform pattern for KDM models and extends the KDM framework with
specific meta-model elements related to high-level structural elements and their associations. The class diagram shown in
Figure 19.1 captures these classes and their relations.

276 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

StructureModel

AbstractStructureRelationship

0..*
+model +structureRelationship
subsets ownedRglation i i
(subsets model} { } KD MAggregatedR elatio nship
(from core)
eElement
{subsets ownedElement} Aggregat 0.
0..* 0.1 o
" +aggregated
+structureElement 1 ggreg
O -
{subsets ownedElement) n\syactStructureElement |0-* 0. | KDM Entity
n (from core)
+owner group
{subsets group}
{subsets owner} i K
0.1 +implementation

{subsets groupedElement}

Architecture View

SoftwareSystem

Subsystem Component Layer

Figure 19.1 - StructureModel Class Diagram
19.3.1 StructureModel Class

The StructureModel is a specific KDM model that represents the logical organization of a software system and owns all
of the system’s Structural Elements.

Superclass
KDMModel

Associations

structureElement:AbstractStructureElement[0..*] structure elements owned by the model

Semantics

19.3.2 AbstractStructureElement Class (abstract)

The AbstractStructureElement represents an architectural part, related to the organization of the existing software system
into modules.

Superclass
KDMEntity

© ISO/IEC 2012 - All rights reserved 277



ISO/IEC 19506:2012(E)

Associations

structureElement:AbstractStructureElement[0..*] structure elements owned by the model
structureRelationship: AbstractStructureRelationship[0..*]

aggregated:KDMAggregatedRelationship[0..*]

implementation:KDMEntity[0..*]

Semantics

19.3.3 AbstractStructureRelationship Class (abstract)
The AbstractStructureRel ationship class.

Superclass
KDMRelationship

Semantics
19.3.4 Subsystem Class
The Subsystem collects the architectural parts of a software subsystem. The parts may be any other Structural Element.

Superclass
StructureGroup

Semantics

19.3.5 Layer Class

The Layer collects the architectural parts of a software subsystem to represent a software layer. The parts may be any
other StructuralElement.

Superclass
StructureGroup

Semantics
19.3.6 Component Class

The Component represents a collection, directly or indirectly, of code resources, which comprises an architectural
component.

Superclass
StructureGroup

278 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

19.3.7 SoftwareSystem Class
The SoftwareSystem represents the entire system organization. It may contain subsystem or other StructureElements.

Superclass

StructureGroup

Semantics

19.3.8 ArchitectureView Class

The ArchitectureView class represents an arbitrary architectural view, as defined by 1SO 42010. Within a KDM instance
an ArchitectureView element may be used in a Structure model either stand-alone or in combination with other elements
defined by the Structure package. The KDM ArchitectureView owns a collection of KDM entities that corresponds to a
particular architectural view of the software system. To conform to the 1SO 42010 requirements for architectural
description, the creator of the KDM instance should further document the corresponding architectural viewpoint by using
a stereotype to the ArchitectureView element, attributes or annotations.

Superclass

StructureGroup
Semantics

19.4 Structurelnheritances Class Diagram

The Structurel nheritances class diagram shown in Figure 19.2 depicts how the meta-model elements defined in the
Structure package are related to the meta-model elements defined in the Core package. Each of the Structure Package
classes within this diagram inherits certain properties from KDM classes defined within the Core Package.

- KDMRelationship
KDMModel KD M Entity (from core)

(from kdm) (from core)

% AbstractStructureRelationship

StructureModel

AbstractStructureElement

Figure 19.2 - Structurelnheritances Class Diagram

© ISO/IEC 2012 - All rights reserved 279



ISO/IEC 19506:2012(E)

19.5 ExtendedStructureElements Class Diagram

The ExtendedStructureElements class diagram defines two “wildcard” generic elements for the structure model as
determined by the KDM model pattern: a generic structure entity and a generic structure relationship.

The classes and associations of the ExtendedStructureElements diagram are shown in Figure 19.3.

AbstractStructureRelationship

AbstractStructureElement

from 1
{redefines from}

0..*

KDM E ntity
(from core)

StructureRelationship

StructureElement

0..* 1
+to
{redefines to}

Figure 19.3 - ExtendedStructureElements Class Diagram
19.5.1 StructureElement Class (generic)

The StructureElement class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractStructureElement

Constraints
1. StructureElement should have at |east one stereotype.

Semantics

A structure entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the structure model. Thisis one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

19.5.2 StructureRelationship Class (generic)

The StructureRelationship class is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass
AbstractStructureRel ationship

280 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

from:AbstractStructureElement[1] the structure element origin endpoint of the relationship

to:KDMEntity[1] the target of the relationship

Constraints
1. StructureRelationship should have at least one stereotype.

Semantics

A structure relationship with under specified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the structure model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

© ISO/IEC 2012 - All rights reserved 281



ISO/IEC 19506:2012(E)

282 © ISO/IEC 2012 - Al rights reserved



20

ISO/IEC 19506:2012(E)

Conceptual Package

20.1 Overview

The Conceptual Model defined in the KDM Conceptual package provides constructs for creating a conceptual model
during the analysis phase of knowledge discovery from existing code.

The Conceptual package defines an architectural viewpoint for the Business Rules domain.

Concerns:
* What are the domain terms implemented by the system?
« What are the behavior elements of the system?
« What are the business rules implemented by the system?
« What are the scenarios supported by the system?

Viewpoint language:

Conceptua views conform to KDM XMI schema. The viewpoint language for the Conceptual architectural
viewpoint is defined by the Conceptual package. It includes abstract entity AbstractConceptual Element, and
several concrete entities, such as TermUnit, FactUnit, RuleUnit, Scenario, BehaviorUnit. The viewpoint language
for the Conceptual architectural viewpoint also includes Conceptual Flow relationship, which is a subclass of an
abstract relationship AbstractConceptual Relationship.

Analytic methods

The Conceptual architectural viewpoint supports the following main kinds of checking:

 Conceptual relationships (what are the relationships between conceptual entities, based on their implementation by
the Code and Data entities?)

« Scenario flow (what are the control flow relationships between the two scenarios based on the flow between action
elements referenced by each scenario?)

» BehaviorUnit coupling (what are the control flow and data flow relationships between two behavior units based on
the action elements referenced by each behavior unit?)

« Business Rule analysis (what isthe logic of the business rule based on the action elements referenced by the
business rule?)

Conceptual Views are used in combination with Code views, Data views, Platform views, Ul views, and
Inventory views.

Construction methods:

 Conceptual views can be produced manually using the input from the information analysis and the architect of the
system and architecture documentation.

« Construction of the Conceptual view is determined by the domain model and the architectural description of the
system.

« Construction of the Conceptual views corresponding to a particular architectural description may involve
additional information (system-specific or architecture-specific). Thisinformation can be attached to KDM
elements using stereotypes, attributes, or annotations.

© ISO/IEC 2012 - All rights reserved 283



ISO/IEC 19506:2012(E)

The Conceptual Model enables mapping of KDM compliant model to models compliant to other specifications. Currently,
it provides “concept” classes - TermUnit and FactUnit facilitating mapping to SBVR.

These meta-model elements support the process of mining higher level (conceptual) information from lower-level KDM
models and capturing it as additional KDM entities and relationship, thus allowing further analysis of an enriched model.
KDM Conceptual model is aligned with SBVR specification in the following way. The KDM Conceptual Model allows
representing three “concepts’ that are key to SBVR: Term, Fact, and Rule. The following is a mapping of these KDM
“concepts’ to the SBVR terminology:

» Term correspondsto SBVR Noun (collectively referring to SBVR Terms and SBV R Names).
» Fact corresponds to SBVR Fact.
» Rulerepresents a condition, group of conditions, or constraint.

The SBVR “concepts’ (i.e., Term, Fact, and Rule) are not defined in KDM. Instead, the KDM Conceptual Model defines
the implementations of these “concepts’ - TermUnit, FactUnit, and RuleUnit. The mapping between KDM and SBVR is
facilitated with the help of (0..*) to (0..*) relationships between pairs (i.e., <Term, TermUnit> and <Fact, FactUnit> and
<Rule, RuleUnit>) as shown in Figure 20.1.

The ConceptualModel also provides “behavior” types - BehaviorUnit and ScenarioUnit that support mapping to various
external models including but not limited to activities/flow chart and swim lane diagrams, and use case scenarios. The
following explains the difference between these “behavior” types:

» BehaviorUnit represents a behavior graph with several paths through the application logic and associated conditions.
The “implementation” of this graph is provided by the ActionElements connected with Flow relations, from the
Program Elements KDM layer. The graph can be as small as asingle ActionElement. BehaviorUnit is an “ abstraction”
of ActionElements since it provides a modeling element for representing a collection of ActionElementsthat is
meaningful from the application domain perspective, and further manipulate with this representation as afirst class
citizen of the ConceptualModel of KDM.

» ScenarioUnit represents a path (or multiple related paths) through the behavior graph. For example, ScenarioUnit
corresponds to atrace through the systems, or a“use case.” ScenarioUnit can own an entire collection of
BehaviorUnits, connected with Conceptual Flow elements and can thus represent a slice of the original behavior graph
in the implementation of the software system. The conditions responsible for navigation between alternative paths
within the graph can be represented as RuleUnits.

» RuleUnit represents a condition, agroup of conditions, or a constraint. RuleUnit is a representation for some
meaningful navigation conditions within behavior graphs represented by several BehaviorUnits.

284 © ISO/IEC 2012 - Al rights reserved



SBWR
Term Fact Rule
(from SBYR) (from SBYF) (from SBYR)
+term | 8.7 +act | 0.7 +rue |97
|
Congeptual
(from| KD}
+temimplgmentation i +rulelmplementation
+factlmp|emeﬂtaﬂ]on o
. ..hn ..
TermUnit FactUnit RulelUnit

{from Conceptual)

(from Conceptual)

{from Conceptual)

Figure 20.1 - Mapping between KDM and SBVR

20.2 Organization of the Conceptual Package

ISO/IEC 19506:2012(E)

The Conceptual package defines meta-model elements that represent high-level, high-value application-specific

“conceptual” elements of existing software systems and their traceability to other KDM facts.

The Conceptual Package consists of the following 5 class diagrams:

Conceptua Model
Conceptual Inheritances
Conceptua Elements
Conceptual Relations

ExtendedConceptua Elements

The Conceptual package depends on the following packages:

Core
kdm

20.3 ConceptualModel Class Diagram

The ConceptualModel class diagram collects together all classes and associations of the Conceptual package. They
provide basic meta-model constructs to define specialized “concept” types. These meta-model objects and relationships
between them will be used as a foundation for a conceptual model built by a mining tool as a result of knowledge
discovery from existing code. The ConceptualModel diagram defines meta-model elements to represent application-
specific “concept” types, “fact” types, and “rules.” An example of a“concept” is a “customer,” or a “savings account.”

© ISO/IEC 2012 - All rights reserved

285



ISO/IEC 19506:2012(E)

An example of a“fact” is a“customer opens a new savings account.” An example of a“rule” is“if the initial amount of
money in a saving account is greater than $1000.00, then offer a higher interest account.” Even in awell-designed system
an application-domain specific concept, like “customer” is rarely mapped one-to-one to a single programming language
construct that can be directly discovered in the source code of the existing system. Instead, such “concept” is
implemented by multiple programming language constructs, often spanning multiple source files, programming
languages, and technologies. These KDM meta-model objects and relationships between them provide the foundation for
mining business rules and other high-value application-specific knowledge from existing code.

ConceptualModel follows the regular KDM pattern of extending the common Infrastructure framework by defining a
specific KDM model class, an abstract superclass of all modeling elements in the ConceptualModel - the
AbstractConceptual Element class. ConceptualModel provides another abstract superclass for all relationships, specific to
this model - AbstractConceptual Relationship class. All meta-model elements of the ConceptualModel extend the
AbstractConceptual Element class and implement the “model” and “ownedRelation” properties. Each entity of the
ConceptualModel can own relationships, specific to this model. According to this pattern, each entity should own
relationships that originate from this entity (i.e., the value of the “from” property should be equal to the id of the owner
of the relationship). This framework provides several extension points for the KDM light-weight extension mechanism. In
particular, in accordance to the general KDM pattern, the ConceptualModel framework includes a generic extensible
modeling element Conceptua Element, and a generic Conceptual Relationship class.

The class diagram shown in Figure 20.2 captures these classes and their relations.

ConceptualModel

AbstractConceptual Relationship

{subsets model} 0.*

ptualRelation
+conceptualElement

{subsets ownedElement}
0..*

+group
{subsets group}

+abstraction
{subsets ownedElement

o * 0 *
ActionElement
(from action) KDMEnti
+implementation (from ¢ Oret)y

{subsets groupedElement}

Figure 20.2 - ConceptualModel Class Diagram
20.3.1 ConceptualModel

The ConceptualModel class is a specific KDM model that owns collections of facts about conceptual elements
implemented by a given existing software system.

286 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Superclass
KDMModel

Associations

conceptualElement:AbstractConceptualElement[0..*]  |dentifies the root “concept” elements of the hierarchy of the
conceptual elements contained in the model. The
ConceptualModel can contain zero or more such trees.

Semantics

20.3.2 AbstractConceptualElement (abstract)

AbstractConceptual Element class is the top superclass for the ConceptualModel. It defines several common properties for
all further meta-model elements in the Conceptual Package. In particular, it defines the fundamental “implementation”
property - a KDM grouping mechanism to link conceptual elements to the implementation elements. The
“implementation” property represents the set of elements in lower-level KDM model that represents implementation-
specific high-fidelity knowledge of the software system. The “implementation” property realizes the mapping between the
implementation of a certain concept to the KDM entity representing this concept - some concrete subclass of the
AbstractConceptual Element. The set of KDM entities available through the “implementation” property becomes the
“extent” of the application-specific concept being represented by the conceptual element. The conceptual element itself
becomes the “handle” for the otherwise intangible and abstract high-value application domain specific concept.

It is expected that building conceptual models in general, and especially, determining the appropriate “implementation
set,” is a difficult value-added knowledge discovery process that may involve domain experts and application experts.
KDM framework provides the intermediate representation for capturing the knowledge generated by this process.

Superclass
KDMEntity

Associations

conceptualRelation:AbstractConceptualRelation[0..*] For each concrete instance of AbstractConceptual Element this
property represents the set of conceptual relationships that
originate from this element.

implementation: KDMEntity[0..*] For each concrete instance of AbstractConceptual Element this
property represents the set of KDM entities that realize the
high-level concept in the low-level artifacts of the existing
system.

abstraction:ActionElement[0..*] This element represents action elements that are owned by the
conceptual element and that represent semantic associations for
the conceptual element.

source:SourceRef[0..*] Traceahility links to the physical artifacts represented by this
element.

© ISO/IEC 2012 - All rights reserved 287



ISO/IEC 19506:2012(E)

Constraints

1. For each conceptua element, the value of the from property of each conceptual relationship, owned by this element,
should be equal to the identity of this element (the “relationship encapsulation” pattern).

20.3.3 AbstractConceptualRelationship Class (abstract)

The AbstractConceptual Relationship class is determined by the KDM model pattern. It provides a common superclass for
specific KDM relationships, defined in the Conceptual package.

Semantics

20.4 Conceptualinheritances Class Diagram

The ConceptualInheritance class diagram defines how the conceptual meta-model elements fit into the KDM
Infrastructure. The Conceptuall nheritances class diagram is shown in Figure 20.3.

KD M Entity KDM Relationship
K(I?rl\{ln'\ﬂdorg;el (from core) (from core)
ConceptualModel AbstractC onceptualElement AbstractConceptualRelationship
0..1
ConceptualSource
+source 0.+
SourceRef

(from source)

Figure 20.3 - Conceptuallnheritances Class Diagram

20.5 ConceptualElements Class Diagram

Conceptual Elements class diagram defines specific KDM modeling elements for representing domain-specific concepts as
they areimplemented by existing software systems. These elements are concrete subcl asses of the AbstractConceptual Element
class.

The classes and association of the Conceptual Elements class diagram are shown at Figure 20.4.

288 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

+conceptualElement +conceptualElement
AbstractConceptualElement P Role

{subsets ownedE lement} 1

0..*

ConceptualRole

+owner 1
{subsets owner}

0--1 ConceptualContainer TermUnit
FactUnit BehaviorUnit

RuleUnit

ScenarioUnit

Figure 20.4 - ConceptualElements Class Diagram
20.5.1 ConceptualContainer Class

The Conceptual Container classis a generic meta-model element that represents a container for conceptual entities. Several
other concrete conceptual elements are subclasses of Conceptual Container, so that they can also own other conceptual
elements. The purpose of the Conceptual Container meta-model element isto facilitate hierarchical organization and grouping
of “concepts’ within Conceptual Model. Conceptual Container also can be used as an extended modeling element with a
stereotype.

Superclass
AbstractConceptual Element

Associations

conceptual Element: AbstractConceptual Element[0..*] elements that are owned by this container

Constraints
1. ConceptualUnit should not own Conceptual Role elements.

© ISO/IEC 2012 - All rights reserved 289



ISO/IEC 19506:2012(E)

20.5.2 TermUnit

The TermUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or
PlatformResource layer. From the knowledge discovery perspective, such collection may include program elements
involved in the implementation of a certain application domain concept. A TermUnit then provides a representation of
such concept inside the KDM model, which can be used for further analysis and later exported into a business rule
modeling tool in the process known as application business rules mining. The TermUnit class is aligned with SBVR term
or name concepts. Semantically, a TermUnit represents some “noun concept.”

Superclass
AbstractConceptual Element

Semantics

20.5.3 FactUnit

The FactUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
behavior of the software system (for example, aformula for calculating an allowance can be considered as a fact) or some
property of the software system meaningful in the application domain. FactUnit may be also associated with an arbitrary
collection of the KDM entities. A FactUnit then provides a representation of such property inside the KDM model which
can be used for further analysis and later exported into a business rule modeling tool in the process known as application
business rules mining. The FactUnit class is aligned with SBVR fact type concept. Semantically, a FactUnit represents a
“verb concept,” or an “objectified verb concept,” that can be later used as a noun.

Superclass

Conceptual Container

Semantics

20.5.4 RuleUnit

The RuleUnit class represents an association between multiple Conceptual entities, such as TermUnit or FactUnit. This
association can be unary, binary, or n-ary. From the knowledge mining perspective, a FactUnit may correspond to some
condition or constraint in the software system (for example, a condition under which an allowance can be increased, or a
statement that a certain property should always be satisfied). RuleUnit also may be associated with an arbitrary collection
of the KDM entities (these often involve action elements that represent conditions). A RuleUnit then provides a
representation of such condition or constraint inside the KDM model that can be used for further analysis and later
exported into a business rule modeling tool in the process known as application business rules mining. The RuleUnit class
is aligned with SBVR rule concept. Semantically, a RuleUnit uses some base “verb concept” (usually represented as a fact
type) and adds to it obligation, necessity, qualifications, quantifications, conditions, etc.

Superclass
Conceptual Container

290 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Semantics

20.5.5 ConceptualRole

The Conceptual Role class represents a role played by a participant in a conceptual association, such as a FactUnit or a
RuleUnit. Conceptual Role el ements are owned by some container, a subclass of Conceptual Unit. The Conceptual Role element
provides a placeholder for capturing the name of thisrole as the “name” attribute of the class. Additional annotations of
stereotypes can be provided by using the KDM light-weight extension mechanism.

Superclass
AbstractConceptua Unit

Associations

conceptual Element: AbstractConceptual Element[ 1] Represents the participant in the association for the given
role.

Semantics

20.5.6 BehaviorUnit Class

The BehaviorUnit class represents an arbitrary collection of KDM entities from the Program Elements layer or Platform
Resource layer. From the knowledge discovery perspective, such collection may represent some behavior meaningful in
the application domain (or simply interesting for the analysis, understanding, and modernization of the software system).
A BehaviorUnit then provides a representation of such behavior inside the KDM model that can be used for further
analysis. In particular, larger slices of the program logic can be represented as collections of BehaviorUnit elements
linked by Conceptual Flow relationships.

The BehaviorUnit class represents a behavior graph with several paths through the application logic. The
“implementation” of this graph is provided by the ActionElements connected with Flow relations, from the Program
Elements KDM layer. The graph can be as small as a single ActionElement. BehaviorUnit is an “abstraction” of
ActionElements since it provides a modeling element for representing a collection of ActionElements that is meaningful
from the application domain perspective, and further manipulate with this representation as a first class citizen of the
ConceptuaModel of KDM.

Superclass
Conceptual Container

20.5.7 ScenarioUnit Class

ScenarioUnit represents a path (or multiple related paths) through the behavior graph of the application logic. For
example, ScenarioUnit corresponds to a trace through the systems, or a“use case.” The “implementation” of this graph is
provided by the ActionElements connected with Flow relations, from the Program Elements KDM layer. Semantically, the
difference between a BehaviorUnit and a ScenarioUnit is that a BehaviorUnit is an abstraction of behavior, while
ScenarioUnit is an abstraction of atrace. For example, an interesting formula, or an algorithm can be represented as a
BehaviorUnit rather than a ScenarioUnit. On the other hand, an interesting data flow path through the application can be
represented as a ScenarioUnit rather than a BehaviorUnit. ScenarioUnit can own an entire collection of BehaviorUnits,

© ISO/IEC 2012 - All rights reserved 291



ISO/IEC 19506:2012(E)

connected with Conceptual Flow elements and can thus represent a slice of the original behavior graph in the
implementation of the software system. The conditions responsible for navigation between alternative paths within the
graph can be represented as RuleUnits.

Superclass

Conceptual Container

20.6 ConceptualRelations Class Diagram

Conceptua Relations class diagram defines specific conceptual relationship called Conceptual Flow. The classes and
associations involved in the Conceptual Relations class diagram are shown in Figure 20.5.

AbstractC onceptual Relationship

ConceptualFlow

+om_| conceptualContainer | *t°

1 1
{redefines from} {redefines to}

Figure 20.5 - ConceptualRelations Class Diagram
20.6.1 ConceptualFlow Class

The ConceptualFlow class is a KDM relationship defined for the conceptual model. It represents the fact that one
behavior may be continued into some other behavior. When multiple Conceptual Flow relations exist for a given
conceptual element (according to the KDM relationship encapsulation pattern, these relationships should be owned by the
conceptual element and the “from” property of the relationship should be equal to the identity of the element), this means
that the behavior represented by that conceptual element may be continued by either of these flows nondeterministically.
The follow-up behavior is designated by the conceptual element represented by the “to” property of the Conceptual Flow
relationship. When the “to” endpoint of the Conceptual Flow relationship designates a container, this means that any
behavior from that container can be the continuation of the initial behavior. When the “from” endpoint of the
Conceptua Flow relationship is a container, this means that any behavior element owned by that container can be used as
the initial behavior. This relationship provides an abstraction for the Flow relations in the Program Elements layer.
Conceptua Flow relation provides a modeling element for representing behavior slices of the application logic that are
meaningful from the application domain perspective, and further manipulate with this representation as afirst class citizen
of the ConceptualModel of KDM.

Superclass

AbstractConceptual Relationship

292 © ISO/IEC 2012 - Al rights reserved



Associations

from: AbstractConceptualElement[1]

to:AbstractConceptualElement[1]

Example

Form Definition
Program TransactionsApproval

010 Fieldl - Customer ID
011 Field2 - Customer First Name
012 Field3 - Customer Last Name

013 Field4 (list) - Account Number
014 Field5 (list) - Account Type
015 Fieldé (list) - Account Balance
Program

Program TransactionsApproval

Program begin

File Name:

File Name:

represents the initial behavior

represents a potential follow-up behavior

MMO0319.Hfm

MM0245 .HLa

100 // Definitions of variables mapable to the form fields

101 Define Cust_ID(Char 20)

102 Define Cust_FName (Char 25)

103 Define Cust_LName (Char 35)

104 Define Acc_ Numb (Char 12) [10]

105 Define Acc_Type (Char 2) [10]

106 Define Acc_Balance (Currency) [10]
107

108 // Definition of other variables
109 Define Bal (Currency)

110 Define Ind(Integer)

111 Define AdjustedBal (Currency)

112 Define ApproveTrans (Boolean)

113 Define Allowance (Currency)

150 // Populating variables entered in the form

151 Fieldl -> Cust_ID

152 Field2 -> Cust_FName
153 Field3 -> Cust_LName
154 Field4[1] -> Acc_Numb[0]
155 Field5[1] -> Acc_Typel0]
156 Field6[1] -> Acc_Balance([0]
200 // Processing

201 Allowance = $100.00
202 Ind =1

203 Bal = Acc_Balance[Ind - 1]
204 AdjustedBal = Bal + Allowance

© ISO/IEC 2012 - All rights reserved

// The allowance shall be calculated for each customer

ISO/IEC 19506:2012(E)

293



ISO/IEC 19506:2012(E)

240 If(AdjustedBal > $1000.00)
241 Then ApproveTrans = True
242 Else ApproveTrans = False

Program end

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:action="http://schema.omg.org/spec/KDM/1.2/action"
xmlns:code="http://schema.omg.org/spec/KDM/1.2/code"
xmlns:conceptual="http://schema.omg.org/spec/KDM/1.2/conceptual"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.2/source"
xmlns:ui="http://schema.omg.org/spec/KDM/1.2/ui" name="Conceptual Example">
<model xmi:id="1id.0" xmi:type="code:CodeModel">
<codeElement xmi:id="id.1" xmi:type="code:CodeAssembly">
<codeElement xmi:id="id.2" xmi:type="code:StorableUnit" name="Cust_ ID"
type="1id.127" ext="Char 20" size="20">
<comment xmi:id="id.3" text="// Definitions of variables mapable to the form fields"/>
</codeElement>
<codeElement xmi:id="id.4" xmi:type="code:StorableUnit" name="Cust_ FName"
type="1d.127" ext="Char 25" size="25"/>
<codeElement xmi:id="id.5" xmi:type="code:StorableUnit" name="Cust_ LName"
type="1id.127" ext="Char 35" size="35"/>
<codeElement xmi:id="id.é6" xmi:type="code:StorableUnit" name="Acc_Numb"

type="id.7" ext="" size="1">
<codeElement xmi:id="id.7" xmi:type="code:ArrayType" size="10">
<itemUnit xmi:id="1id.8" name="Acc_Numb[]" type="1id.127" ext="Char 12" size="12"/>
</codeElement>
</codeElement>

<codeElement xmi:id="id.9" xmi:type="code:StorableUnit" name="Acc_Type"

type="1id.10" ext="" size="1">
<codeElement xmi:id="1d.10" xmi:type="code:ArrayType" size="10">
<itemUnit xmi:id="id.11" name="Acc_Typel[]l" type="1d.127" ext="Char 2" size="2"/>
</codeElement>
</codeElement>

<codeElement xmi:id="id.12" xmi:type="code:StorableUnit" name="Acc_Balance"

type="1id.13" ext="" size="1">
<codeElement xmi:id="1id.13" xmi:type="code:ArrayType" size="10">
<itemUnit xmi:id="id.14" name="Acc_Balance[]" type="id.128" ext="Currency" size="2"/>
</codeElement>
</codeElement>

<codeElement xmi:id="id.15" xmi:type="code:StorableUnit" name="Bal"

type="1id.128" ext="" size="1" kind="local">
<comment xmi:id="id.16" text="// Definition of other variables"/>

</codeElement>

<codeElement xmi:id="1id.17" xmi:type="code:StorableUnit" name="Ind"
type="1d.129" ext="" size="1" kind="local"/>

<codeElement xmi:id="id.18" xmi:type="code:StorableUnit" name="AdjustedBal"
type="1d.128" ext="" size="1" kind="local"/>

<codeElement xmi:id="id.19" xmi:type="code:StorableUnit" name="ApprovedTrans"
type="1d.130" ext="" size="1" kind="local"/>

<codeElement xmi:id="1d.20" xmi:type="code:StorableUnit" name="Allowance"

294 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

type="1d.128" ext="" size="1" kind="local"/>
<codeElement xmi:id="1d.21" xmi:type="action:ActionElement" name="1il1" kind="Assign">
<source xmi:id="id.22" language="Hla" snippet="Fieldl -> Cust_ ID"/>
<comment xmi:id="id.23" text="// Populating variables entered in the form"/>
<codeElement xmi:id="1d.24" xmi:type="code:StorableUnit" name="Fieldl"
type="1d.127" kind="register"/>
<actionRelation xmi:id="id.25" xmi:type="action:Reads" to="id.24" from="id.21"/>
<actionRelation xmi:id="id.26" xmi:type="action:Writes" to="id.2" from="id.21"/>
<actionRelation xmi:id="id.27" xmi:type="action:Flow" to="id.28" from="id.21"/>
</codeElement>
<codeElement xmi:id="1d.28" xmi:type="action:ActionElement" name="i2" kind="Assign">
<source xmi:id="id.29" language="Hla" snippet="Field2 -> Cust_FName"/>
<codeElement xmi:id="1d.30" xmi:type="code:StorableUnit" name="Field2"
type="1d.127" kind="register"/>
<actionRelation xmi:id="id.31" xmi:type="action:Reads" to="id.30" from="id.28"/>
<actionRelation xmi:id="id.32" xmi:type="action:Writes" to="id.4" from="id.28"/>
<actionRelation xmi:id="id.33" xmi:type="action:Flow" to="id.34" from="id.28"/>
</codeElement>
<codeElement xmi:id="1d.34" xmi:type="action:ActionElement" name="1i3" kind="Assign">
<source xmi:id="1id.35" language="Hla" snippet="Field3 -> Cust_ LName"/>
<codeElement xmi:id="1d.36" xmi:type="code:StorableUnit" name="Field3"
type="1d.127" kind="register"/>
<actionRelation xmi:id="id.37" xmi:type="action:Reads" to="id.36" from="id.34"/>
<actionRelation xmi:id="id.38" xmi:type="action:Writes" to="id.5" from="id.34"/>
<actionRelation xmi:id="id.39" xmi:type="action:Flow" to="1d.40" from="id.34"/>
</codeElement>
<codeElement xmi:id="1d.40" xmi:type="action:ActionElement" name="1i4" kind="ArrayReplace">
<source xmi:id="id.41" language="Hla" snippet="Field5([1] -> Acc_Typel[0]"/>
<codeElement xmi:id="id.42" xmi:type="code:Value" name="0" type="1d.129"/>
<codeElement xmi:id="1d.43" xmi:type="code:StorableUnit" name="Field4"
type="1d.127" kind="register"/>
<actionRelation xmi:id="id.44" xmi:type="action:Reads" to="id.42" from="1id.40"/>
<actionRelation xmi:id="id.45" xmi:type="action:Addresses" to="id.9" from="id.40"/>
<actionRelation xmi:id="id.46" xmi:type="action:Reads" to="id.43" from="id.40"/>
<actionRelation xmi:id="id.47" xmi:type="action:Writes" to="id.8" from="id.40"/>
<actionRelation xmi:id="id.48" xmi:type="action:Flow" to="1id.49" from="id.40"/>
</codeElement>
<codeElement xmi:id="1d.49" xmi:type="action:ActionElement" name="1i5" kind="ArrayReplace">
<source xmi:id="1id.50" language="Hla" snippet="Field4[1] -> Acc Numb[0]"/>
<codeElement xmi:id="id.51" xmi:type="code:Value" name="0" type="1d.129"/>
<codeElement xmi:id="1d.52" xmi:type="code:StorableUnit" name="Field5"
type="1id.127" kind="register"/>
<actionRelation xmi:id="id.53" xmi:type="action:Reads" to="id.51" from="1id.49"/>
<actionRelation xmi:id="id.54" xmi:type="action:Addresses" to="id.6" from="id.49"/>
<actionRelation xmi:id="id.55" xmi:type="action:Reads" to="id.52" from="1id.49"/>
<actionRelation xmi:id="id.56" xmi:type="action:Writes" to="id.11" from="id.49"/>
<actionRelation xmi:id="id.57" xmi:type="action:Flow" to="id.58" from="1id.49"/>
</codeElement>
<codeElement xmi:id="1d.58" xmi:type="action:ActionElement" name="i6" kind="ArrayReplace">
<source xmi:id="1id.59" language="Hla" snippet="Fieldé6[1] -> Acc_Balance[0]"/>
<codeElement xmi:id="1d.60" xmi:type="code:Value" name="0" type="id.129"/>
<codeElement xmi:id="1d.61" xmi:type="code:StorableUnit" name="Fieldée"
type="1d.127" kind="register"/>
<actionRelation xmi:id="id.62" xmi:type="action:Reads" to="id.60" from="id.58"/>
<actionRelation xmi:id="id.63" xmi:type="action:Addresses" to="id.12" from="id.58"/>

© ISO/IEC 2012 - All rights reserved 295



ISO/IEC 19506:2012(E)

<actionRelation xmi:id="id.64" xmi:type="action:Reads" to="id.61" from="id.58"/>
<actionRelation xmi:id="id.65" xmi:type="action:Writes" to="id.14" from="id.58"/>
<actionRelation xmi:id="id.66" xmi:type="action:Flow" to="id.67" from="id.21"/>
</codeElement>
<codeElement xmi:id="id.67" xmi:type="action:ActionElement" name="pl" kind="Assign">
<source xmi:id="id.68" language="Hla" snippet="Allowance = $100.00 "/>
<comment xmi:id="id.69" text="// Processing"/>
<comment xmi:id="1id.70" text="// The allowance shall be calculated for each customer"/>
<codeElement xmi:id="id.71" xmi:type="code:Value" name="100.00" type="id.128"/>
<actionRelation xmi:id="id.72" xmi:type="action:Reads" to="id.71" from="id.67"/>
<actionRelation xmi:id="id.73" xmi:type="action:Writes" to="id.20" from="id.67"/>
<actionRelation xmi:id="id.74" xmi:type="action:Flow" to="id.75" from="id.67"/>
</codeElement>
<codeElement xmi:id="1id.75" xmi:type="action:ActionElement" name="p2" kind="Assign">
<source xmi:id="id.76" language="Hla" snippet="Ind =1"/>
<codeElement xmi:id="id.77" xmi:type="code:Value" name="1" type="id.129"/>
<actionRelation xmi:id="id.78" xmi:type="action:Reads" to="id.77" from="id.75"/>
<actionRelation xmi:id="id.79" xmi:type="action:Writes" to="id.17" from="id.75"/>
<actionRelation xmi:id="id.80" xmi:type="action:Flow" to="id.49" from="id.75"/>
</codeElement>
<codeElement xmi:id="1d.81" xmi:type="action:ActionElement" name="p3" kind="Compound">
<source xmi:id="1d.82" language="Hla" snippet="Bal = Acc_Balance[Ind - 1]"/>
<codeElement xmi:id="1id.83" xmi:type="code:Value" name="1" type="id.129"/>
<codeElement xmi:id="id.84" xmi:type="code:StorableUnit" name="t1"
type="1d.129" ext="" kind="register"/>
<codeElement xmi:id="1d.85" xmi:type="action:ActionElement" name="p3.1" kind="Subtract"s>
<actionRelation xmi:id="id.86" xmi:type="action:Reads" to="id.l17" from="id.81"/>
<actionRelation xmi:id="id.87" xmi:type="action:Reads" to="id.83" from="id.81"/>
<actionRelation xmi:id="id.88" xmi:type="action:Writes" to="id.84" from="id.81"/>
<actionRelation xmi:id="id.89" xmi:type="action:Flow" to="id.90" from="id.85"/>
</codeElement>
<codeElement xmi:id="1d.90" xmi:type="action:ActionElement" name="p3.2" kind="ArraySelect">
<actionRelation xmi:id="id.91" xmi:type="action:Addresses" to="id.14" from="id.90"/>
<actionRelation xmi:id="id.92" xmi:type="action:Reads" to="id.84" from="id.81"/>
<actionRelation xmi:id="id.93" xmi:type="action:Writes" to="id.15" from="id.81"/>
</codeElement>
<actionRelation xmi:id="id.94" xmi:type="action:Flow" to="id.85" from="id.81"/>
<actionRelation xmi:id="id.95" xmi:type="action:Flow" to="id.96" from="id.81"/>
</codeElement>
<codeElement xmi:id="id.96" xmi:type="action:ActionElement" name="p4" kind="Assign">
<source xmi:id="id.97" language="Hla" snippet="AdjustedBal = Bal + Allowance"/>
<actionRelation xmi:id="id.98" xmi:type="action:Reads" to="id.15" from="id.96"/>
<actionRelation xmi:id="id.99" xmi:type="action:Reads" to="id.20" from="id.96"/>
<actionRelation xmi:id="id.100" xmi:type="action:Writes" to="id.18" from="id.96"/>
<actionRelation xmi:id="id.101" xmi:type="action:Flow" to="id.49" from="id.96"/>
</codeElement>
<codeElement xmi:id="id.102" xmi:type="action:ActionElement" name="p5" kind="Assign"s>
<source xmi:id="id.103" language="Hla" snippet="If (AdjustedBal > $1000.00)"/>
<codeElement xmi:id="id.104" xmi:type="code:StorableUnit" name="t2"
type="1d.130" kind="register"/>
<codeElement xmi:id="1d.105" xmi:type="action:ActionElement" name="p5.1" kind="GreaterThan">
<codeElement xmi:id="1d.106" xmi:type="code:Value" name="1000.00" type="id.128"/>
<actionRelation xmi:id="id.107" xmi:type="action:Reads" to="1id.18" from="id.105"/>
<actionRelation xmi:id="id.108" xmi:type="action:Reads" to="id.106" from="id.105"/>
<actionRelation xmi:id="id.109" xmi:type="action:Writes" to="id.104" from="id.105"/>

296 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

<actionRelation xmi:id="id.110" xmi:type="action:Flow" to="id.111" from="id.105"/>
</codeElement>
<codeElement xmi:id="1d.111" xmi:type="action:ActionElement" name="p5.2" kind="GreaterThan">
<actionRelation xmi:id="id.112" xmi:type="action:Reads" to="1d.104" from="id.111"/>
<actionRelation xmi:id="id.113" xmi:type="action:TrueFlow" to="id.115" from="id.111"/>
<actionRelation xmi:id="id.114" xmi:type="action:FalseFlow" to="id.120" from="id.111"/>
</codeElement>
<codeElement xmi:id="1d.115" xmi:type="action:ActionElement" name="pé6" kind="Assign">
<source xmi:id="id.116" language="Hla" snippet="Then ApproveTrans = True"/>
<codeElement xmi:id="1d.117" xmi:type="code:Value" name="true" type="id.130"/>
<actionRelation xmi:id="id.118" xmi:type="action:Reads" to="id.117" from="id.115"/>
<actionRelation xmi:id="id.119" xmi:type="action:Writes" to="id.19" from="id.115"/>
</codeElement>
<codeElement xmi:id="1d.120" xmi:type="action:ActionElement" name="p7" kind="Assign">
<source xmi:id="id.121" language="Hla" snippet="Else ApproveTrans = False"/>
<codeElement xmi:id="1id.122" xmi:type="code:Value" name="false" type="id.130"/>
<actionRelation xmi:id="id.123" xmi:type="action:Reads" to="id.122" from="id.120"/>
<actionRelation xmi:id="id.124" xmi:type="action:Writes" to="id.19" from="id.120"/>
</codeElement>
<actionRelation xmi:id="id.125" xmi:type="action:Flow" to="id.105" from="id.102"/>
</codeElement>
</codeElement>
<codeElement xmi:id="id.126" xmi:type="code:LanguageUnit">
<codeElement xmi:id="id.127" xmi:type="code:StringType"/>
<codeElement xmi:id="1d.128" xmi:type="code:DecimalType" name="Currency"/>
<codeElement xmi:id="1d.129" xmi:type="code:IntegerType"/>
<codeElement xmi:id="1d.130" xmi:type="code:BooleanType"/>
</codeElement>
</model>
<model xmi:id="1d.131" xmi:type="source:InventoryModel">
<inventoryElement xmi:id="id.132" xmi:type="source:Directory" path="SOURCES\HLanguage">
<inventoryElement xmi:id="id.133" xmi:type="source:SourceFile" name="mm0245.Hla"/>
<inventoryElement xmi:id="id.134" xmi:type="source:SourceFile" name="mm0319.Hfm"/>
</inventoryElement >
<inventoryElement xmi:id="id.135" xmi:type="source:Directory" path="SOURCES\Hlib"/>
</model>
<model xmi:id="1d.136" xmi:type="ui:UIModel">
<UIElement xmi:id="1id.137" xmi:type="ui:Screen" name="Customer Information"s
<UIElement xmi:id="1id.138" xmi:type="ui:UIField" name="Customer ID">
<abstraction xmi:id="1d.139" name="£f1">
<actionRelation xmi:id="id.140" xmi:type="action:Writes" to="id.24" from="id.139"/>
</abstractions>
</UIElement>
<UIElement xmi:id="1id.141" xmi:type="ui:UIField" name="Customer First Name">
<abstraction xmi:id="1id.142" name="f2">
<actionRelation xmi:id="id.143" xmi:type="action:Writes" to="id.30" from="id.142"/>
</abstractions>
</UIElement>
<UIElement xmi:id="id.144" xmi:type="ui:UIField" name="Customer Last Name">
<abstraction xmi:id="1d.145" name="£f3">
<actionRelation xmi:id="id.146" xmi:type="action:Writes" to="id.36" from="id.145"/>
</abstraction>
</UIElement>
<UIElement xmi:id="id.147" xmi:type="ui:UIField" name="Account Number"s>
<abstraction xmi:id="id.148" name="f4">

© ISO/IEC 2012 - All rights reserved 297



ISO/IEC 19506:2012(E)

<actionRelation xmi:id="id.149" xmi:type="action:Writes" to="id.43" from="id.148"/>
</abstractions>
</UIElements>
<UIElement xmi:id="id.150" xmi:type="ui:UIField" name="Account Type">
<abstraction xmi:id="id.151" name="£f5">
<actionRelation xmi:id="id.152" xmi:type="action:Writes" to="id.52" from="id.151"/>
</abstractions>
</UIElement>
<UIElement xmi:id="id.153" xmi:type="ui:UIField" name="Account Balance">
<abstraction xmi:id="id.154" name="f6">
<actionRelation xmi:id="id.155" xmi:type="action:Writes" to="id.61" from="id.154"/>
</abstractions>
</UIElement>
</UIElement>
</model>
<model xmi:id="id.156" xmi:type="conceptual:ConceptualModel" name="Customer Information"s
<conceptualElement xmi:id="id.157" xmi:type="conceptual:TermUnit" name="AccountBalance"
implementation="id.15 id.12 id.17 id.153"/>
<conceptualElement xmi:id="1d.158" xmi:type="conceptual:TermUnit" name="MaxAdjustedBalance"
implementation="id.106"/>
<conceptualElement xmi:id="1d.159" xmi:type="conceptual:TermUnit" name="AllowanceAmount"
implementation="1id.71"/>
<conceptualElement xmi:id="id.160" xmi:type="conceptual:TermUnit" name="Allowance"
implementation="1id.20"/>
<conceptualElement xmi:id="1id.161" xmi:type="conceptual:TermUnit" name="AdjustedBalance"
implementation="id.18"/>
<conceptualElement xmi:id="1d.162" xmi:type="conceptual:TermUnit" name="AccountBalanceField"
implementation="1id.153"/>
<conceptualElement xmi:id="id.163" xmi:type="conceptual:FactUnit"
name="AdjustedBalanceUnderThreshold" implementation="id.105">
<conceptualRelation xmi:id="id.164" xmi:type="conceptual:ConceptualFlow"
to="1d.178" from="id.163"/>
<conceptualRelation xmi:id="id.165" xmi:type="conceptual:ConceptualFlow"
to="1d.183" from="id.163"/>
<conceptualElement xmi:id="id.166" xmi:type="conceptual:ConceptualRole" name="Adjusted Balance"
conceptualElement="1id.161"/>
<conceptualElement xmi:id="1d.167" xmi:type="conceptual:ConceptualRole" name="Threshold"
conceptualElement="id.158"/>
</conceptualElement >
<conceptualElement xmi:id="id.168" xmi:type="conceptual:FactUnit" name="AccountBalanceCalculation"
implementation="id.58 id.75 id.81">
<conceptualRelation xmi:id="id.169" xmi:type="conceptual:ConceptualFlow"
to="id.172" from="id.168"/>
<conceptualElement xmi:id="1d.170" xmi:type="conceptual:ConceptualRole" name="Boundary element"
conceptualElement="id.162"/>
<conceptualElement xmi:id="id.171" xmi:type="conceptual:ConceptualRole" name="Account"
conceptualElement="1d.157"/>
</conceptualElement>
<conceptualElement xmi:id="id.172" xmi:type="conceptual:FactUnit"
name="AdjustedBalanceCalculation" implementation="1id.67 id.96">
<conceptualRelation xmi:id="id.173" xmi:type="conceptual:ConceptualFlow"
to="id.163" from="id.172"/>
<conceptualElement xmi:id="id.174" xmi:type="conceptual:ConceptualRole" name="Account Balance"
conceptualElement="1d.168"/>
<conceptualElement xmi:id="id.175" xmi:type="conceptual:ConceptualRole" name="Allowance Amount"

298 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

conceptualElement="id.159"/>
</conceptualElement>
<conceptualElement xmi:id="1d.176" xmi:type="conceptual:FactUnit" name="TransactionApproved"
implementation="id.19"/>
<conceptualElement xmi:id="1d.177" xmi:type="conceptual:FactUnit" name="TransactionNotApproved"
implementation="id.19"/>
<conceptualElement xmi:id="1d.178" xmi:type="conceptual:RuleUnit" name="ApproveTransaction"
implementation="id.105 id.111 id.115">
<gsource xmi:id="id.179" language="SBVR"
snippet="Transaction is approved if adjusted balance is under the threshold"/>
<conceptualRelation xmi:id="id.180" xmi:type="conceptual:ConceptualFlow"
to="1id.176" from="1id.178"/>
<conceptualElement xmi:id="1d.181" xmi:type="conceptual:ConceptualRole" name="Condition"
conceptualElement="id.163"/>
<conceptualElement xmi:id="1d.182" xmi:type="conceptual:ConceptualRole" name="Consequence"
conceptualElement="id.176"/>
</conceptualElement>
<conceptualElement xmi:id="1d.183" xmi:type="conceptual:RuleUnit" name="TransactionFailedApproval"
implementation="id.105 id.111 id.120">
<conceptualRelation xmi:id="1id.184" xmi:type="conceptual:ConceptualFlow"
to="1d.177" from="id.183"/>
<conceptualElement xmi:id="id.185" xmi:type="conceptual:ConceptualRole" name="NOT condition"
conceptualElement="id.163"/>
<conceptualElement xmi:id="id.186" xmi:type="conceptual:ConceptualRole" name="consequence"
conceptualElement="id.177"/>
</conceptualElement>
<conceptualElement xmi:id="1d.187" xmi:type="conceptual:ScenarioUnit">
<conceptualElement xmi:id="1id.188" xmi:type="conceptual:BehaviorUnit" name="Calculate Balance"
implementation="id.58 id.75 id.81">
<conceptualRelation xmi:id="id.189" xmi:type="conceptual:ConceptualFlow"
to="1d.190" from="id.188"/>
</conceptualElement>
<conceptualElement xmi:id="1d.190" xmi:type="conceptual:BehaviorUnit"
name="Calculate Adjusted Balance" implementation="id.67 id.96">
<conceptualRelation xmi:id="id.191" xmi:type="conceptual:ConceptualFlow"
to="1d.192" from="1id.190"/>
</conceptualElement>
<conceptualElement xmi:id="1d.192" xmi:type="conceptual:BehaviorUnit" name="Approve Transaction"
implementation="id.102 id.115 id.120"/>
</conceptualElement>
<conceptualElement xmi:id="1d.193" xmi:type="conceptual:BehaviorUnit" name="Input"
implementation="id.21 id.28 id.34 id.40 id.49 id.58">
<conceptualRelation xmi:id="1id.194" xmi:type="conceptual:ConceptualFlow"
to="1d.195" from="id.193"/>
</conceptualElement>
<conceptualElement xmi:id="1d.195" xmi:type="conceptual:BehaviorUnit" name="Processing"
implementation="id.67 id.75 id.81 id.85 id.90 id.96 id.102 id.105 id.111 id.115 id.120"/>
</model>
</kdm: Segment >

20.7 ExtendedConceptualElements Class Diagram

The ExtendedConceptual Elements class diagram defines two “wildcard” generic elements for the conceptual model as
determined by the KDM model pattern: a generic conceptual entity and a generic conceptual relationship.

© ISO/IEC 2012 - All rights reserved 299



ISO/IEC 19506:2012(E)

The classes and associations of the ExtendedConceptua Elements diagram are shown in Figure 20.6.

AbstractConceptualRelationship

AbstractConceptualElement

+from 1 0+

defines f . .
fredefines from} ConceptualRelationship

0.*

KD M Entity
ConceptualElement 0 1| (from core)

{redefines to}

Figure 20.6 - ExtendedConceptualElements Class Diagram
20.7.1 ConceptualElement Class (generic)

The ConceptualElement is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass

AbstractConceptual Element

Constraints
1. ConceptualElement should have at |east one stereotype

Semantics

A conceptual entity with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model entity type of the conceptual model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

20.7.2 ConceptualRelationship Class (generic)

The ConceptualRelationship is a generic meta-model element that can be used to define new “virtual” meta-model
elements through the KDM light-weight extension mechanism.

Superclass

AbstractConceptual Relationship

300 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Associations

from:AbstractConceptualElement[1] the conceptual element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

Constraints

1. Conceptual Relationship should have at |east one stereotype.

Semantics

A conceptual relationship with underspecified semantics. It is a concrete class that can be used as the base element of a
new “virtual” meta-model relationship type of the conceptual model. This is one of the KDM extension points that can
integrate additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard
KDM representation.

© ISO/IEC 2012 - All rights reserved 301



ISO/IEC 19506:2012(E)

302 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

21 Build Package

21.1 Overview

The Build package defines meta-model elements that represent the facts involved in the build process of the given
software system (including but not limited to the engineering transformations of the “source code’ to “executables’). The
Build package also includes the meta-model elements to represent the artifacts that are generated by the build process.

The Build package defines an architectural viewpoint for the Build domain.

« Concerns:
« What are the inputs to the build process?
» What artifacts are generated during the build process?
« What tools are used to perform build steps?
* What is the workflow of the build process?

* Who are the suppliers of the source artifacts?
- Viewpoint language

Build views conform to KDM XMI schema. The viewpoint language for the Build architectural viewpoint is
defined by the Build package. It includes abstract entity AbstractBuildElement, a generic entity BuildResource as
well as several concrete entities, such as BuildComponent, BuildStep, BuildProduct, BuildDescription, Library.
The viewpoint language for the Build architectural viewpoint also includes several build relationships, which is a
subclass of an abstract relationship AbstractBuildRelationship.

» Analytic methods
 Supply chain analysis (What are the artifacts that depend on a given supplier?)

Build Views are used in combination with Inventory views.

« Construction methods

« Build viewsthat correspond to the KDM Build architectural viewpoint are usually constructed by analyzing build
scripts and build configuration files for the given system. These inputs are specific to the build automation
framework. The Build extractor tool uses the knowledge of the semantics of the build automation framework to
produce one or more Build views as output.

 Congtruction of the Build view is determined by the semantics of the build automation framework, and it is based
on the mapping from the given build automation framework to KDM; such mapping is specific only to the build
automation framework and not to a specific software system.

» The mapping from a particular build automation framework to KDM may produce additional information (system-
specific, or platform-specific, or extractor tool-specific). Thisinformation can be attached to KDM elements using
stereotypes, attributes, or annotations.

21.2 Organization of the Build Package

The Build package defines meta-model elements that represent entities and relationships related to the build process of an
existing software system.

© ISO/IEC 2012 - All rights reserved 303



ISO/IEC 19506:2012(E)

The Build package consists of the following class diagrams:

« BuildModel
 BuildInheritances

» BuildResources

» BuildRelations

» ExtendedBuildRelations

The Build package depends on the following packages:

» Core
o kdm
« Source

21.3 BuildModel Class Diagram

The BuildModel class diagram provides basic meta-model elements that represent entities and relationships related to the
build process of an existing software system. The class diagram shown in Figure 21.1 captures these classes and their

relations.

BuildModel

0..1

+model AbstractBuildRelationship

{subsets model}

0.2~ +puildRelation
{subsets ownedRelation}

+buildE lement
{subsets ownedElement} |0..* 1

AbstractBuildElement

Supplier

Tool

SymbolicLink

Figure 21.1 - BuildModel Class Diagram

21.4 BuildModel Class

The BuildModel encapsulates meta-model constructs needed to model the building of a particular software system.

304

© ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Superclass
KDMModel

Associations
buildElement:AbstractBuildElement[0..*] The set of build elements owned by the model.
Semantics
21.4.1 AbstractBuildElement Class (abstract)
The AbstractBuildElement is the abstract base class from which all other build model elements are extended.

Superclass
KDMEntity

Associations

buildRelationship:AbstractBuildRelationship[0..*] the set of build relations

Semantics

21.4.2 AbstractBuildRelationship Class (abstract)
The AbstractBuildRelationship is the abstract base class.

Superclass
KDMRelationship

Semantics

21.4.3 Supplier Class

The Supplier class models producers of the 31 party software components as they contribute to the build process.

Superclass
AbstractBuildElement

Semantics

21.4.4 Tool Class

The Tool class represents software tools as they are used in the build process.

© ISO/IEC 2012 - All rights reserved

305



ISO/IEC 19506:2012(E)

Superclass

AbstractBuildElement

Semantics

21.4.5 SymbolicLink Class

The SymbolicLink is used to represent symbolic links.

Superclass

AbstractBuildElement

Semantics

21.5 BuildInheritances Class Diagram

The BuildInheritances class diagram shown in Figure 21.2 depicts how various build classes extend other KDM classes.
Each of the classes shown in this diagram inherits properties from classes found in the Core package.

Figure 21.2 - BuildInheritances Class Diagram

KDMM odel

KD M E ntity KDM Relationship
(from kdm) (from core) (from core)
BuildModel AbstractBuildElement AbstractBuildRelationship

21.6 BuildResources Class Diagram

The BuildResources class diagram provides basic meta-model constructs to model various common build resource and
their relations to the code model. The class diagram shown in Figure 21.3 captures these classes and their relations.

306

© ISO/IEC 2012 - All rights reserved



0..*

+buildElement | ApstractBuildElement

0..*

{subsets ownedElement}

ISO/IEC 19506:2012(E)

+groupedBuild

sets groupedElement}

+group +implementation
+owner o {subsets Pt {subsets groupedElement}
{subsets owner} . "
group -
! BuildResource {subsets group) KDMEntity
0..1 (from core)
0.* 0.*
Library .1 BuildSource
- source
BuildComponent BuildStep SourceRef
0.* (from source)
BuildP roduct Ylanguage : String
sasnippet : String

BuildDescription
wtext : String

Figure 21.3 - BuildResources Class Diagram

21.6.1 BuildResource Class

BuildResource class is a generic meta-model element that represents a container for build elements. It provides a common
superclass for the build elements that can own other build elements. BuildResource is also a group for other KDM
entities. Usually, a Build resource such as a Library, a BuildProduct, or a BuildComponent will group together some
Inventory elements. Certain BuildResource can also group other build elements.

Superclass
AbstractBuildElement

Associations

buildElement:AbstractBuildElement[0..*]
groupedBuild:AbstractBuildElement[0..*]
implementation:KDMEntity[0..*]

source:SourceRef[0..*]

© ISO/IEC 2012 - All rights reserved

owned build element

grouped build elements (KDM group mechanism)

Link to the physical artifact that is represented by the BuildResource
element.

307



ISO/IEC 19506:2012(E)

Constraints
1. BuildResource should either own elements or group elements, but not both.

2. “Implementation” group should not include other Build elements.

3. Build element should not be included in its own groupedBuild group.
Semantics

21.6.2 BuildComponent Class

The BuildComponent class represents binary files that correspond to deployable components, for example executable
files.

Superclass

BuildResource
Semantics

21.6.3 BuildDescription Class

The BuildDescription class is used to model objects such as make files or ant scripts, which describe the build process
itself.

Superclass

BuildResource
Semantics

21.6.4 BuildStep Class

BuildStep class is the key meta-model element of the Build model. It represents a unit of transformation performed by the
build process, during which certain input resources are processed and certain output resources are produced. BuildStep
element is the origin of several build relationships. For example, a Build step “consumes’ certain input resources,
“produces’ certain output resources, “is defined” by a certain build description, and may be “supported” by a certain tool.

Superclass

BuildResource

Semantics

21.7 BuildRelations Class Diagram

The BuildRelations class diagram defines the various build related relationships. The class diagram shown in Figure 21.4
captures these classes and their relations.

308 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

AbstractBuildRelationship

+to

{redefines to} Tool

BuildDescription
wtext : String

0.* 1

SupportedBy

DescribedBy

n}
BuildStep

+fro {re
{redefine froyl/ 1
LinksTo Consu;{qes SuppliedBy
U
0..* +to
{rledefines to}
Supplier

SymbolicLink

{redefines to {redefines from}

AbstractBuiIdEIlem ent

Figure 21.4 - BuildRelations Class Diagram

21.7.1 LinksTo Class

The LinksTo class models the relationship between two linked build resources.

Superclass
AbstractBuildRelationship

Associations

from:SymbolicLink[1]

to:AbstractBuildElement[1]

Semantics

Associations

from:AbstractBuildElement[1]

to:AbstractBuildElement[1]

© ISO/IEC 2012 - All rights reserved

309



ISO/IEC 19506:2012(E)

Semantics

21.7.2 Consumes Class

Consumes class defines association between a certain BuildStep element and certain build elements, called the input build
elements. These elements provide the input to the transformation, performed by the build step. For example, the set of
source files is an input to the compilation step.

Superclass
AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:AbstractBuildElement[1] the input build elements for the given step
Semantics

The implementer shall capture the input build elements for a certain build step in the form of “Consumes” relation.

When the target of the “Consumes’ relationship owns other build elements, this means that the build step (the origin of
the relationship) depends on al elements owned by the container (directly or indirectly).

When the origin of the “Consumes’ relationship is a container that owns one or more build steps (directly or indirectly),
this means that all build steps consume the elements designated as the target of the “Consumes” relationship.

21.7.3 Produces Class

Produces class defines association between a certain BuildStep element and certain build elements, called the output build
elements. These elements are produced as the result of the transformation, performed by the build step. For example, the
set of object files can be produced as the result of the compilation step.

Superclass
AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:AbstractBuildElement[1] the output build elements for the given step
Semantics

The implementer shall capture the output build elements for a certain build step in the form of “Produces’ relation.

When the target of the “Produces” relationship owns other build elements, this means that the build step (the origin of the
relationship) produces all elements owned by the container (directly or indirectly).

310 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

When the origin of the “Produces’ relationship is a container that owns one or more build steps (directly or indirectly),
this means that the elements designated as the target of the “Produces’ relationship are produced in collaboration of all
build steps, and no particular build step is the sole producer.

21.7.4 SupportedBy Class

SupportedBY class defines association between a certain BuildStep element and certain Tool element. The Tool element is
required to perform the build step. For example, a particular version of a compiler is required to perform the compilation
step.

Superclass
AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:Tool[1] The Tool element that representsthetool performing the transformati onsrepresented by
the given step.
Semantics

The implementer shall capture the required Tool elements for a certain build step in the form of “ SupportedBy” relation.

21.7.5 SuppliedBy Class

SuppliedBYy class defines association between certain build elements and their points of origin, represented by Supplier
element. For example, certain parts of the runtime platform can originate from a software vendor, some libraries can
originate from open source.

Superclass
AbstractBuildRelationship

Associations

from:AbstractBuildElement[1] the build e ement
to:Supplier[1] The Supplier element that represents the origin of the build element.
Semantics

The implementer shall capture the origin of build elements in the form of “SuppliedBy” relation.

When the origin of the “SuppliedBy” relationship is a container that owns one or more build elements (directly or
indirectly), this means that all elements designated as the source of the “SuppliedBy” relationship are supplied by a
particular Supplier element.

© ISO/IEC 2012 - All rights reserved 311



ISO/IEC 19506:2012(E)

21.7.6 DescribedBy Class

DescribedBYy class defines association between a certain build step and a certain BuildDescription element. These
elements are produced as the result of the transformation, performed by the build step. For example, the set of object files
can be produced as the result of the compilation step.

Superclass
AbstractBuildRelationship

Associations

from:BuildStep[1] the build step
to:BuildDescription[1] The BuildDescription element that describes the transformation represented by the build
step.
Semantics

The implementer shall capture the description of a certain build step in the form of “DescribedBy” relation to some
BuildDescription element.

Example

<?xml version="1.0" encoding="UTF-8"?>
<kdm:Segment xmi:version="2.1"
xmlns:xmi="http://schema.omg.org/spec/XMI/2.1"
xmlns:build="http://schema.omg.org/spec/KDM/1.2/build"
xmlns:kdm="http://schema.omg.org/spec/KDM/1.2/kdm"
xmlns:source="http://schema.omg.org/spec/KDM/1.2/source" name="Build Example">
<model xmi:id="id.0" xmi:type="source:InventoryModel">
<inventoryElement xmi:id="id.1" xmi:type="source:SourceFile" name="a.c">
<inventoryRelation xmi:id="id.2" xmi:type="source:DependsOn" to="id.5" from="id.l1"/>
</inventoryElement >
<inventoryElement xmi:id="1d.3" xmi:type="source:SourceFile" name="b.c">
<inventoryRelation xmi:id="1id.4" xmi:type="source:DependsOn" to="id.5" from="id.3"/>
</inventoryElement >
<inventoryElement xmi:id="id.5" xmi:type="source:SourceFile" name="ab.h"/>
<inventoryElement xmi:id="id.é" xmi:type="source:Directory">
<inventoryElement xmi:id="id.7" xmi:type="source:Image"/>
<inventoryElement xmi:id="id.8" xmi:type="source:Image"/>
</inventoryElement >
<inventoryElement xmi:id="id.9" xmi:type="source:SourceFile" name="makefile"/>
<inventoryElement xmi:id="id.10" xmi:type="source:ExecutableFile" name="ab.exe"/>
</model>
<model xmi:id="id.11" xmi:type="build:BuildModel">
<buildElement xmi:id="id.12" xmi:type="build:BuildComponent"
name="sources" implementation="id.1 id.5 id.3"/>
<buildElement xmi:id="id.13" xmi:type="build:BuildProduct"
name="ab product" implementation="id.10"/>
<buildElement xmi:id="id.14" xmi:type="build:BuildStep">
<buildRelation xmi:id="1id.15" xmi:type="build:DescribedBy" to="id.28" from="id.14"/>
<buildRelation xmi:id="id.16" xmi:type="build:SupportedBy" to="id.30" from="id.14"/>

312 © ISO/IEC 2012 - Al rights reserved



<buildElement xmi:id="id.17" xmi:type="build:BuildStep" name="compile">

ISO/IEC 19506:2012(E)

<buildRelation xmi:id="1d.18" xmi:type="build:Consumes" to="id.12" from="id.17"/>

<buildRelation xmi:id="1d.19" xmi:type="build:Produces" to="id.25" from="id.17"/>

<buildRelation xmi:id="1d.20" xmi:type="build:SupportedBy" to="id.26" from="id.17"/>
</buildElement>

<buildElement xmi:id="id.21" xmi:type="build:BuildStep" name="link">

<buildRelation xmi:id="1id.22" xmi:type="build:Consumes" to="id.25" from="id.21"/>

<buildRelation xmi:id="1id.23" xmi:type="build:Produces" to="id.13" from="id.21"/>

<buildRelation xmi:id="1id.24" xmi:type="build:SupportedBy" to="id.26" from="id.21"/>
</buildElement>

<buildElement xmi:id="id.25" xmi:type="build:BuildComponent" name="object files"/>

<buildElement xmi:id="id.26" xmi:type="build:Tool" name="C compiler">

<buildRelation xmi:id="1d.27" xmi:type="build:SuppliedBy" to="id.32" from="id.26"/>
</buildElement>
</buildElement>

<buildElement xmi:id="id.28" xmi:type="build:BuildDescription"
:id="id.29"

<source xmi

</buildElement>

<buildElement xmi:id="id.30" xmi:type="build:Tool" name="make">

language="shell" snippet="cc $(SOURCE)

implementation="id.9">
-o ab.exe"/>

<buildRelation xmi:id="1d.31" xmi:type="build:SuppliedBy" to="id.32" from="id.30"/>
</buildElement>
<buildElement xmi:id="1id.32" xmi:type="build:Supplier" name="Tools'R'Us corp"/>

</model>
</kdm: Segment >

21.8 ExtendedBuildElements Class Diagram

The ExtendedBuildElements class diagram defines two “wildcard” generic elements for the build model as determined by

the KDM model pattern: a generic build entity and a generic build relationship.

The classes and associations of the ExtendedBuildElements diagram are shown in Figure 21.5.

AbstractBuildRelationship

AbstractBuildElem ent

1\ BuildRelationship
+from 0-.
{redefines from} 0..%

BuildElement

Figure 21.5 - ExtendedBuildElements Class Diagram

21.8.1 BuildElement Class (generic)

The BuildElement is a generic meta-model element that can be used to define new “virtual”

the KDM light-weight extension mechanism.

© ISO/IEC 2012 - All rights reserved

+to
{redefines to}

KDM Entity
(from core)

meta-model elements through

313



ISO/IEC 19506:2012(E)

Superclass
AbstractBuildElement

Constraints
1. BuildElement should have at |east one stereotype.
Semantics

”

A build entity with under specified semantics. It is a concrete class that can be used as the base element of a new “virtual
meta-model entity type of the build model. This is one of the KDM extension points that can integrate additional
language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

21.8.2 BuildRelationship Class (generic)

The BuildRelationship is a generic meta-model element that can be used to define new “virtual” meta-model elements
through the KDM light-weight extension mechanism.

Superclass
AbstractBuildRelationship

Associations

from:AbstractBuildElement[1] the build element origin of the relationship

to:KDMEntity[1] the KDMEntity target of the relationship

Constraints
1. BuildRelationship should have at least one stereotype.

Semantics

A build relationship with under specified semantics. It is a concrete class that can be used as the base element of a new
“virtual” meta-model relationship type of the build model. This is one of the KDM extension points that can integrate
additional language-specific, application-specific, or implementer-specific pieces of knowledge into the standard KDM
representation.

314 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Annex A - Semantics of the Micro KDM
Action Elements

(normative)

A.1 General

This normative annex defines the semantics of micro KDM action elements. This annex assumes understanding of the
KDM Datatypes. Each micro KDM action has the following 5 parts (Action Kind, Inputs, Outputs, Control, and Extras).

Action Kind - is nature of the operation performed by the micro action. Thisis represented asa “kind” attribute to the
micro action. The action kind may designate certain outgoing relationship as part of the Control. For example, the
“call” micro action designated the Calls outgoing relationship as part of Control.

Outputs - represented by the owned outgoing Writes relationship, which usually represents the result of the micro
action. This part is optional.

Inputs - Ordered outgoing Reads and/or Addresses relationships that are owned by the action element, the order of the
relationships represent the order of the arguments for amicro action.

Control part - owned outgoing control flow relationships for the action.

Extras part - owned relationships other than Reads, Writes, and not designated as part of Control by the action Kind.
For example, these can be interface compliance relation “CompliesTo” or any extended action relationships.

A.2 Comparison Actions

Inputs: Two Reads relationships to DataElements representing val ues of the same datatype (except for Boolean
NOT, which has a single Reads relationship).

Outputs: Optional writesto a DataElement of a Boolean type (no Writes corresponds to an expression statement,
wheretheresult of the operationisignored; otherwise, theresult should be stored into a DataElement, which
can be permanent. For example, a StorableUnit with akind other than “register,” a MemberUnit, an
ItemUnit, or a ParameterUnit; or temporary, a StorableUnit with a“register” kind.

Control: Optional single flow - unconditional transfer of control to the next micro action (for example, as part of

complex expressions, no Flow corresponds to a terminal action).

© ISO/IEC 2012 - All rights reserved 315



ISO/IEC 19506:2012(E)

Table A.1- Comparison Actions

Micro action Semantics

Equals Polymorphic equals for two values of the same datatype, see |SO Equals operation for the
corresponding datatype.

NotEqual Polymorphic “not equal” for two values of the same datatype: not (A==B).

LessThanOrEqual Polymorphic“lessthan or equal” for two val ues of the same ordered datatype; see | SO InOrder
operation for the corresponding datatype.

LessThan Polymorphic “less than” for two values of the same ordered datatype: A<=B and not A==B.

GreaterThan Polymorphic “greater than or equal” for two values of the same ordered datatype: not A<=B.

GreaterThanOrEqual Polymorphic “less than or equal” for two values of the same ordered datatype: not A<=B or
A==B

Not Boolean NOT, see SO Boolean NOT operation.

And Boolean AND, see SO Boolean AND operation

Or Boolean OR, see SO Boolean OR operation

Xor Boolean XOR: (A and not B ) or (not A and B)

A.3 Actions Related to the Primitive Numerical Datatypes
Inputs: Two ordered Reads rel ationshi ps to DataEl ements representing val ues of the same datatype (except for neg,
succ, incr, dece unary operations, which has a single Reads relationship).

Outputs: Optional single writesto a DataElement of atype corresponding to the definition of the operation (can be
temporary register or avariable; no Writes corresponds to an expression statement, where the result of the
operation isignored).

Control: Optiona single flow - unconditional transfer of control to the next micro action.

Table A.2- Numerical actions

Micro action Semantics

Add Polymaorphic add operation for two values of the same numeric datatype, see SO Add operation
for the corresponding datatype.

Multiply Polymorphic multiply operation for two values of the same numeric datatype; see SO Add
operation for the corresponding datatype.

Negate Polymorphic unary negate operation for two values of the same numeric datatype; see 1SO
Negate operation for the corresponding datatype.

Subtract Polymorphic subtract operation for two values of the same numeric datatype; A+ neg B.

Divide Polymorphic divide operation for two values of the same numeric datatype.

Remainder Polymorphic remainder operation for two values of the same Integer Type datatype.

Successor Single Reads; Successor for ordinal or enumerated types, see |SO Successor operation.

316 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

A.4 Actions Related to Bitwise Operations on Primitive Datatypes

Inputs:

Outputs:

Control:

Two Reads relationships to DataElements representing val ues of the same datatype (except for neg, succ,
incr, decr unary operations, which has a single Reads rel ationship).

Optional single writesto a DataElement of the same type as the first StorableElement (can be atermporary
register or avariable).

Optional single flow - unconditional transfer of control.

Table A.3- Bitwise actions

Micro action Semantics Inputs
BitAnd Bitwise AND ontwo integersor bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype
BitOr Bitwise OR on two integers or bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype
BitNot Bitwise NOT on integer or bitstring or Two Reads relationships to DataElements
octetstring representing values of the same datatype
BitXor Bitwise XOR ontwointegersor bitstrings | Two Reads relationships to DataElements
or octetstrings representing values of the same datatype
L eftShift Arithmetic bitwise shift left oninteger or | First Reads relationship to a DataElement
bitstring or octetsting representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.
RightShift Arithmetic bitwise shift right on integer First Reads relationship to a DataElement
or bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.
BitRightShift Logical bitwise shift right on integer or First Reads relationship to a DataElement
bitstring or octetstring representing an integer, bitstring, or octetstring.
Second Reads relationship to an integer or ordinal
representing the number of bits to shift.

© ISO/IEC 2012 - All rights reserved

317




ISO/IEC 19506:2012(E)

A.5 Control Actions

Table A.4- Control actions

Micro action | Description Inputs Outputs Control
Assign Assignment Single Readsrelationship | Writesrelationship Optional single flow to the
(copy) to a DataElement represents the next micro action
representing the value DataElement (except for
aVaueElement) to
which the value of the
input DataElement is
assigned

Condition Condition Single Reads relationship none TrueFlow & FalseFlow -
to a DataElement conditional transfer of
representing the Boolean control
value

Table A.5

Micro action | Description Inputs Outputs Control

Cal Static call Zero or more Reads Optional Writesto the Callsrelationship to the
relationshipsto DataElement that Control Element represents
DataElements, that represents the return the flow of control to the
represent input actual value Control Element and the
parameters; ordered; return back; Subsequently
Value of each actual an optional single flow to
parameter is assigned to the next micro actionis
the corresponding formal performed.
parameter of the
Control Element.

Correspondenceis
established according to
the Pos attribute of the
formal parameter in the
signature of the
ControlElement. A
sequence of valuesis
assigned to the variable
argument.

MethodCall Method call Invokesrelationshiptothe | Sameas Call Callsrelationship to the
DataElement that MethodUnit represents the
represents the instance; flow of control to the
Zero or more Reads Method and the return
relationshipsto back; Subsequently an
DataElements, that optional single flow to the
represent input actual next micro action is
parameters; ordered. performed.

318 © ISO/IEC 2012 - Al rights reserved




ISO/IEC 19506:2012(E)

Table A.5
Micro action | Description Inputs Outputs Control
PtrCall Call viapointer Addresses relationship to Same as Call This represents adynamic
the DataElement that call to one of the possible
represents the pointer. targets of the pointer
Zero or more Reads (corresponding to the
relationships to current value of the
DataElements, that pointer). The Signature of
represent input actual the possible targetsis
parameters; ordered. represented as the type
attribute of the
DataElement; subsequently
an optional singleflow to
the next micro action is
performed
VirtualCall Virtual method Invokesrelationship tothe | Sameas Call Cdllsrelationship to the
call DataElement that MethodUnit represents the
represents the instance; superclass of the method
Zero or more Reads that will be determined
relationships to dynamically. This
DataElements, that represents the flow of
represent input actual control to the Method and
parameters; ordered. the return back;
Subsequently an optional
single flow to the next
micro action is performed.
Return return Single Reads represents none Control is returned back to
the DataElement that one of the Control Elements
contains the return value that has performed the call.
This pointer to the none Writesto a DataElement | Single flow to the next
current instance micro action
of the object
Nop dummy none none Optional single flow to the
next micro action
Goto Unconditional none none Single flow to the next
transfer of micro action
control
Label represents a none none Single flow to the next
|abel; the name micro action
of theactionis
the label

© ISO/IEC 2012 - All rights reserved

319




ISO/IEC 19506:2012(E)

Table A.5
Micro action | Description Inputs Outputs Control
Throw Raising none none Throws relationship to the
exception DataElement that
represents the “exception
object.” Optional
ExceptionFlow
relationship to a CatchUnit
that processes the
exception
Incr Variable post Single Addresses Optional Writes Optional single flow to the
increment relationship representsthe | relationship to another next micro action
operation DataElement whose value | DataElement to which
isincremented. the previous value of the
incremented variableis
assigned
Decr Variable post Single Addresses Optional Writes Optional single flow to the
decrement relationship representsthe | relationship to another next micro action
operation DataElement whose value | DataElement to which
is decremented. the previous value of the
incremented variable is
assigned
Switch Branching based | Single Readsto the none One or more GuardedFlow
onthevalueof a | DataElement that relations to a second micro
StorableElement | represents the selector action with asingle Reads
value relationship that represents
the guard value. A single
FalseFlow represents the
default branch. This
construct represents
selection of asingle branch
for which the value of the
selector is equal to the
value of the guard or the
default branch
Guard Representsstart | Single Readsrelationtoa | none Single flow unconditional
of thebranchof a | DataElement representing control flow to the first
complex the guard value action of the branch
condition
Compound Compound none none Single Flow - the entry
action flow to the first internal
action element
Init BlockUnit that none none EntryFlow unconditional
contains control flow to the first
initialization internal action
action elements
320 © ISO/IEC 2012 - Al rights reserved




A.6 Actions Related to Access to Datatypes

Inputs: see table
Outputs: see table.
Control:

Table A.6- Access actions

ISO/IEC 19506:2012(E)

optional single Flow to the next micro action (no Flow means a terminal action element).

Micro action Description Inputs Outputs
FieldSelect Access to a particular Single Addresses relationship to a Optional Writesrelationship
ItemUnit of aRecordType | DataElement (of a RecordType); Single represents the DataElement
Reads relationship to an ItemUnit (except for aVa ueElement)
representing the field being accessed. to which the value of the
field isassigned.
FieldReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular field of a DataElement (of a RecordType); Single ItemUnit representing the
RecordType Reads to a DataElement representing the | field being modified.
new value.
ChoiceSelect Access to a particular Single Addresses relationship to a Optional Writesrelationship
ItemUnit of aChoiceType | DataElement (of a ChoiceType); Single represents the DataElement
Reads relationship to an ItemUnit (except for aVa ueElement)
representing the field type being to which the value of the
accessed. field is assigned.
ChoiceReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular field of a DataElement (of a ChoiceType); Single ItemUnit representing the
ChoiceType Reads to a DataElement representing the | field being modified.
new value.
ptr Access to a pointer to a Single Addresses relationship to a Optional Writesrelationship
Storabl eElement DataElement. to the StorableElement that
will hold the new value.
PtrSelect Accesstoavaluevia Single Addresses relationship to a Optional Writesrelationship
pointer DataElement (of a PointerType); Single | to the ItemUnit of that
Reads relationship to an ItemUnit of that | PointerType
Pointer Type representing the ItemUnit
being accessed.
PtrReplace Modification of an Single Addresses relationship to a Writes rel ationship to the
ItemUnit of aPointerType | DataElement (of an PointerType); Last ItemUnit of that PointerType
Reads to a DataElement representing the
new value.
ArraySelect Access to a particular Single Addresses relationship to a Optional Writesrelationship
I[temUnit of an ArrayType | DataElement (of an ArrayType); Reads | representsthe DataElement
relationship to an ItemUnit representing (except for aVa ueElement)
the ItemUnit being accessed; Last Reads | to which the value of the
represents the Index. I[temUnit is assigned.

© ISO/IEC 2012 - All rights reserved

321



ISO/IEC 19506:2012(E)

Table A.6- Access actions

Micro action Description Inputs Outputs
ArrayReplace Modification of a Single Addresses relationship to a Writes relationship to an
particular ItemUnit of an | DataElement (of an ArrayType); Reads ItemUnit representing the
ArrayType that represents the Index; Last Readstoa | ItemUnit being modified.
DataElement representing the new value.
MemberSelect Access to a particular Invokes relationship to the DataElement | Optiona Writesrelationship
MemberUnit of a that represents the instance.Single Reads | represents the DataElement
ClassType relationship to an MemberUnit (except for aValueElement)
representing the member being accessed. | to which the value of the
field is assigned.
MemberReplace | Modification of a Single Invokes relationship to a Writes relationship to an
particular member of a DataElement (of a ClassType) that MemberUnit representing
ClassType representstheinstance of the object being | the member being modified.
accessed. Single Readsto a DataElement
representing the new value.
New Creation of anew Createsrelationship to the Datatypebeing | Writes relationship
dynamic instance of a created. represents the DataElement
datatype; this hasto be (except for aValueElement)
done separately if to which the referenceto the
required; thismicroaction new dynamic element is
does not invoke the assigned.
constructor of the new
object; thishasto be done
separately
NewArray Creation of anew Createsrelationship to the Datatypebeing | Writes relationship
dynamic instance of an created; Reads relation to the represents the DataElement
Array Type datatype DataElement that representsthelength of | (except for aValueElement)
the new array. towhich the referenceto the
new dynamic element is
assigned.

A.7 Actions Related to Type Conversions

Inputs:
Outputs:

Control:

322

see table

see table.

optional single Flow to the next micro action (no Flow means a terminal action element).

© ISO/IEC 2012 - All rights reserved




Table A.7- Type conversion actions

ISO/IEC 19506:2012(E)

Micro Description Inputs Outputs

action

Sizeof Determines the length of a Reads represents the DataElement Optional writesto a
DataElement (based on the or UsesType to the Datatype DataElement
datatype) or the length of a
Datatype.

I nstanceof Performs dynamic type Reads represents the DataEl ement; Optional Writesto a
checkif thedataelementisof | UsesTyperelation representsthe datatype. | DataElement of a Boolean
acertain datatype. type

DynCast Performsadynamic cast of a | Reads represents the DataEl ement; Optional Writesto a
DataElement to acertain UsesTyperelation representsthe datatype. | DataElement
Datatype.

TypeCast Performs a static type Reads represents the DataEl ement; Optional writesto a
conversion of aDataElement | UsesTyperelation representsthe datatype. | DataElement
to acertain Datatype.

A.8 Actions Related to StringType Operations

Inputs:

Outputs:

Control:

see table.

optional Writesto aDataElement (no Writes correspondsto an expression statement, where the result of the
operation isignored; otherwise, the result should be stored into a DataElement, which can be permanent,

ParameterUnit; or temporary, a StorableUnit with a“register” kind).

for example a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a

optional single Flow to the next micro action (no Flow means aterminal action element).

Table A.8- StringType actions

Micro action Description Inputs
ISEmpty Trueisthe string x is empty First Reads represents x;
Head Produces the value of the first element in the string x First Reads represents x;
Tail Produces sequence that results from deleting the first element inthe | First Reads represents x;
string x
Empty Produces and empty string UsesType to the required type
Append Produces the sequence that is formed by adding asingle valuey to First Reads represents x;
the end of the string x Second represents y
Note:"==" operation on 1SO strings is defined as full comparison, this does not work in Java, which has shallow

comparison of object references.

© ISO/IEC 2012 - All rights reserved

323




ISO/IEC 19506:2012(E)

A.9 Actions Related to SetType Operations

Inputs:

Outputs:

Control:

see table.

optional Writesto aDataElement (no Writes corresponds to an expression statement, where the result of the
operation is ignored; otherwise, the result should be stored into a DataElement, which can be permanent.
For example, a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit, or a
ParameterUnit; or temporary, a StorableUnit with a“register” kind).

optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.9- SetType actions

Micro action Description Inputs

Isln Trueisthevaluexisamember of thesety, elsefalse | First Reads represents x; Second represents y

Subset Trueif every member of x isamember of y First Reads represents x; Second representsy

Difference Producesthe set that consists of thevaluesthat arein | First Reads represents x; Second represents y
xandnotiny

Union Produces the set that consists of the valuesthat are | First Reads represents x; Second represents y
eitherinxoriny

Intersection Produces the set that consists of the valuesthat are | First Reads represents x; Second represents y
bothinx andiny

Select Produces avalue of the base type that isinthe set x | First Reads represents x;

ISEmpty Trueisthe set x is empty First Reads represents x;

Empty Produces and empty set UsesType to the required type

A.10 Actions Related to SequenceType Operations

Inputs:

Outputs:

Control:

see table.

Optional Writes to a DataElement (no Writes corresponds to an expression statement, where the result of
the operation isignored; otherwise, theresult should be stored into a DataElement, which can be permanent,
for example a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a
ParameterUnit; or temporary, a StorableUnit with a“register” kind).

optional single Flow to the next micro action (no Flow means a terminal action element).

Table A.10 - SequenceType actions

Micro action Description Inputs
ISEmpty True is the sequence x is empty. First Reads represents x;
Head Produces the value of the first element in the sequence x. First Reads represents x;
324 © ISO/IEC 2012 - Al rights reserved



Table A.10 - SequenceType actions

ISO/IEC 19506:2012(E)

Micro action Description Inputs
Tail Produces sequencethat resultsfrom deleting thefirst elementin | First Reads represents X;
the sequence x.
Empty Produces an empty sequence. UsesType to the required type
Append Produces the sequence that is formed by adding asingle value | First Reads represents x; Second

y to the end of the sequence x.

representsy

A.11 Actions Related to BagType Operations

Inputs:

Outputs:

Control:

see table.

optional Writesto aDataElement (no Writes correspondsto an expression statement, where the result of the
operation isignored; otherwise, the result should be stored into a DataElement, which can be permanent.
For example, a StorableUnit with akind other than “register,” a MemberUnit, an ItemUnit or a

ParameterUnit; or temporary, a StorableUnit with a“register” kind).

optional single Flow to the next micro action (no Flow means aterminal action element).

Table A.11- BagType actions

Micro action Description Inputs

ISEmpty Trueisthe bag x is empty First Reads represents x;

Select Produces a value of the base type that isin the bag x First Reads represents x;

Delete Produces the bag that is formed by deleting oneinstance | First Reads represents x; Second
of valuey from the bag x if any representsy

Empty Produces and empty bag UsesType to the required type

Insert Producesthe bag that isformed by adding oneinstanceof | First Reads represents x; Second
value y from the bag x representsy

Serialize Produces the sequence in which each element isrepeated | First Reads represents x;
as many time asit occurs in the bag x

A.12 Actions Related to Resources

Resource micro-actions represent specific statements that are determined by some programming languages and which

mani pulate resources provided by the operating environment. Such statements are alternative to using system calls. Kindsin
Table A.11 represent such statements as micro KDM ActionElements. Precise semantics of representing the operating
environment is described in Part 3 Runtime Resource Layer. In particular, a combination of resource actions, resource
relationships and resource events can be used, where the resource micro-action is part of a Code Model, while other elements
can be added in various models of the Resource Layer (Platform, Data, Event or Ul).

© ISO/IEC 2012 - All rights reserved

325



ISO/IEC 19506:2012(E)

Inputs: Zero or more Reads rel ationships to DataElements; represent input data, which is sent to the resource;
ordered.

Outputs: Zero or more Writes relationships to DataElements; represents output data, which is received from the
resource.

Control: optional single Flow to the next micro action (no Flow means a terminal action element).

Extras: optional resource-specific relationships.

Table A.12- Resource actions

Micro action Description

Platform ActionElement represents a statement that manipulates a Platform Resource.
Data ActionElement represents a statement that manipulates a Data Resource.
Event ActionElement represents a statement that manipulates an Event Resource.
ul ActionElement represents a statement that manipulates a Ul Resource.

326 © ISO/IEC 2012 - Al rights reserved



ISO/IEC 19506:2012(E)

Annex B
(normative)

Legal Information

B.1 Copyright Information

Copyright © 2006, Allen Systems Group, Inc.
Copyright © 2006, EDS

Copyright © 2006, Flashline

Copyright © 2006, IBM

Copyright © 2006, KDM Analytics

Copyright © 2006, Klocwork, Inc.

Copyright © 2012, Object Management Group

B.2 Use Of Specification - Terms, Conditions & Notices

The material in this specification details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This specification does not represent a commitment to implement any portion of this specification
in any company's products. The information contained in this specification is subject to change without notice.

B.3 Licenses

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this specification and to modify this specification and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein or
having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you afully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specificationsis for informational
purposes and will not be copied or posted on any network computer or broadcast in any mediaand will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

© ISO/IEC 2012 - All rights reserved 327



ISO/IEC 19506:2012(E)

B.4 Patents

The attention of adoptersisdirected to the possibility that compliance with or adoption of OM G specifications may require use
of aninvention covered by patent rights. OMG shall not be responsible for identifying patents for which alicense may be
required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of those patents that are
brought to its attention. OM G specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

B.5 General Use Restrictions

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communi cations regulations and
statutes. This specification contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright
owner.

B.6 Disclaimer Of Warranty

WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE
NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING
BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE
LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

B.7 Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulationsand
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.SA.

328 © ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

B.8 Trademarks

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI Logo™,
CWM™ CWM Logo™, IIOP™  MOF™ | OMG Interface Definition Language (IDL)™ , and OMG Systems Modeling
Language (OMG SysML)™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

B.9 Compliance

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at al times be the sole entity that may authorize devel opers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of thislicense may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partialy matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

© ISO/IEC 2012 - All rights reserved 329



ISO/IEC 19506:2012(E)

330 © ISO/IEC 2012 - All rights reserved



ISO/IEC 19506:2012(E)

Annex C
(normative)

Acknowledgements

The following companies submitted and/or supported parts of this specification:

» Allen Systems Group, Inc
« BluePhoenix
- EDS
» Flashline
- IBM
« Klocwork, Inc.
+ KDM Analytics
« SoftwareRevolution
» Tactical Strategy Group, Inc
« Unisys
The following persons were members of the core team that designed and wrote this specification: Nikolai Mansourov,

Michael Smith, Djenana Campara, Larry Hines, William Ulrich, Howard Hess, Henric Gomez, Chris Caputo, Vitaly
Khusidman, Barbara Errickson-Connor.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification: Pete Rivett, Adam Neal, Sumeet Malhotra, Jim Rhyne, Mark Dutra, Sara Porat, Fred
Cummins, Manfred Koethe, Alena Laskavaia, Alain Picard.

© ISO/IEC 2012 - All rights reserved 331



ISO/IEC 19506:2012(E)

332 © ISO/IEC 2012 - All rights reserved



INDEX

A

AbstractActionRelationship class 143
AbstractBuildElement class 307
AbstractCodeElement class 69
AbstractCodeRelationship class 70
AbstractConceptual Element class 289
AbstractConceptual Relationship class 290
AbstractContentElement class 257
AbstractDataElement class 230
AbstractDataRel ationship class 230
AbstractEventElement class 215
AbstractEventRelationship class 216
AbstractinventoryElement class 52
AbstractInventoryRelationship class 52
Abstractions Layer 12
AbstractPlatformElement class 180
AbstractPlatformRel ationship class 180
AbstractStructureElement class 279
AbstractUIElement class 201
AbstractUIRelationship class 202
Acknowledgements 9

Action package 141

ActionElement class 142
ActionElements class diagram 142
ActionFlow class diagram 145
Actionlnheritances class diagram 144
ActionRelationship class 165
Addressesclass 154
AggregatedRelations 27
AggregatedRelations class diagram 26
AllContent class 262

Annotation class 47

Annotation class diagram 45
architectural view 11

architectural viewpoint 11
architecture views 2
Architecture-Driven Modernization (ADM) 1
ArchitectureView class 281
ArrayTypeclass 96

atomic element 23

Attribute class 46

Audit classdiagram 35

B

BagType class 98
BehaviorUnit class 293
BinaryFile class 54
BindsTo class 186
BitStringType class 90
BitType class 90
BlockUnit class 143
BooleanType class 87

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19506:2012(E)

Build package 305
BuildComponent class 310
BuildDescription class 310
BuildElement class 315
Buildlnheritances class diagram 308
BuildModel class 306
BuildModel class diagram 306
BuildRelations class diagram 310
BuildRelationship class 316
BuildResource class 309
BuildResources class diagram 308
BuildStep class 310

C

CallableRelations class diagram 149
CallableUnit class 76

Cdlsclass 150

Catalog class 233

CatchUnit class 156

CharType class 87

ChoiceContent class 262
ChoiceTypeclass 93
ClassRelations class diagram 121
ClassTypes class diagram 102
ClassUnit class 102

Code package 67

CodeAssembly class 74
CodeElement class 140
Codelnheritances class diagram 71
Codeltem class 70

CodeModel class 69

CodeModel class diagram 68
CodeRelationship class 140
ColumnSet class 235

ColumnSet class diagram 235
Comments class diagram 135
CommentUnit class 135
compilation unit 73
CompilationUnit class 73
ComplexContentType class 259
compliance levels 2
CompliancetoLevel 1 3
CompliesTo class 163

Component class 280
CompositeType class 92
CompositeTypes class diagram 92
Computational Object class 70
Conceptual package 285
Conceptual Container class 291
Conceptual Element class 302
Conceptual Elements class diagram 290
Conceptual Flow class 294
Conceptual Inheritance class diagram 290
ConceptualModel class 288
ConceptualModel class diagram 287

333



ISO/IEC 19506:2012(E)

Conceptual Relations class diagram 294 DerivedType class 95

Conceptual Relationship class 302 DerivedTypes class diagram 95

ConceptualRole class 293 DescribedBy class 314

Conditional Directive class 126 design characteristics 12

Configuration class 54 Directory class 55

Consumes class 312 Dispatches class 151

ConsumesEvent class 220 Displays class 208

container 23 Displaysimage class 208

container ownership 19

containers 19 E

ContentAttribute class 263 Element 22

ContentElement class 263 enterprise application 1

ContentElements class diagram 257 EntryFlow class 146

Contentltem class 258 EnumeratedType class 91

ContentReference class 263 EnumeratedTypes class diagram 91

ContentRelations class diagram 268 Event class 217

ContentRestriction class 259 Event package 213

context 72 EventAction class 219

ControlElement class 75 EventActions class diagram 220

Control Elements class diagram 75 EventElement class 223

ControlFlow class 145 EventInheritances class diagram 216

Core package 21 EventModel class 215

CoreEntity class diagram 21 EventModel class diagram 214

Creates class 154 EventRelations class diagram 219
EventRelationship class 223

D EventResource class 217

Data Package 227 EventResources class diagram 216

DataAction class 234 ExceptionBlocks class diagram 155

DataAction class diagram 249 ExceptionFlow class 161

DataContainer class 232 ExceptionFlow class diagram 159

DataElement class 80 ExceptionRelations class diagram 161

DataElements class diagram 79 ExceptionUnit class 155

DataEvent class 234 ExecutableFile class 55

Datal nheritances class diagram 230 ExecutionResource class 184

DataManager class 184 existing software assets 1

DataModel Class 229 existing software systems 1

DataModel class diagram 228 ExitFlow class 160

DataRelations class diagram 152 Expands class 127

DataRelationship class 272 ExtendedA ctionElements class diagram 164

DataResource class 232 ExtendedBuildElements class diagram 315

DataResources class diagram 231 ExtendedCodeElements class diagram 139

DataSegment class 239 ExtendedConceptual Elements class diagram 301

Datatypeclass 71 ExtendedDataElement class 272

DatatypeOf class 270 ExtendedDataElements class diagram 271

DateType class 87 ExtendedEventElements class diagram 222

Decimal Type class 88 ExtendedinventoryElements class diagram 61

DefinedBy class 189 ExtendedPlatformElements class diagram 196

DefinedType class 101 ExtendedStructureElements class diagram 282

DefinedTypes class diagram 100 ExtendedUI Elements class diagram 210

Definitions 6 ExtendedVaue 43

DependsOn class 57 ExtendedValue class 43

DeployedComponent class 191 ExtendedValues 43

DeployedResource class 193 Extendsclass 121

DeployedSoftwareSystem class 192 extension points 38, 87, 140

Deployment class diagram 190 ExtensionFamily class 41

334 © ISO/IEC 2012 - Al rights reserved



Extensions class diagram 37
ExtensionTo class 270
ExternalActor class 185

F

facts 19

FactUnit class 292
FalseFlow class 148
FileResource class 184
FloatType class 89

Flow class 147

framework 20

Framework class diagram 32

G

GeneratedFrom class 128
group 23

group association 19
GroupContent class 263
GuardedFlow class 148

H

HasContent class 251
HasState class 222
HasType class 116
HasVaueclass 116

I

Image class 54

ImplementationOf class 112
Implements class 111

Imports class 138

IncludeDirective class 126

Includes class 130

Index class 247

IndexElement class 246

IndexUnit class 82

Initial State class 218

InstanceOf class 106

IntegerType class 88
InterfaceRelations class diagram 110, 162
InterfaceUnit class 103
intermediate representation 31
interoperability 1
InventoryContainer class 55
InventoryElement class 61
Inventorylnheritances class diagram 56
Inventoryltem class 53
InventoryModel 51

InventoryModel class 51
InventoryModel class diagram 51
InventoryRelations class diagram 57
InventoryRelationship class 61
ItemUnit class 82

© ISO/IEC 2012 - All rights reserved

K

KDM domains 2

KDM entity 24

KDM Framework 31

KDM implementation 3
KDM Infrastructure Layer 12
KDM layers 11

KDM model 12, 31

KDM relationship 24

KDM structure 15

KDM TimeType class 88
KDMFramework class 33
KDMModel class 33
Keylndex class diagram 246

KeyRelations class diagram 248

KeyRelationship class 248

Knowledge Discovery Meta-model (KDM) 1

L

LanguageUnit class 74
Layer 11

Layer class 280

Level 0(LO) 3

Level 1(L1) 3

Level 2(L2) 3

lightweight extension mechanism 22

LinksTo class 311
Loads class 195
L ockResource class 184

M

Machine class 192
MacroDirective class 125
MacroUnit class 125
ManagesData class 250
ManagesResource class 188
ManagesUlI class 208
mapping 16
MarshalledResource class 183
MemberUnit class 82
MessagingResource class 183
MethodUnit class 77

micro KDM 167
MixedContent class 263
ModelElement 22

models 31

module 72

Module class 72

Modules classdiagram 72

N

Namespace class 136
NamingResource class 183
NextState class 220
Normative References 5

ISO/IEC 19506:2012(E)

335



ISO/IEC 19506:2012(E)

O

OctetStringType class 90
OnEntry class 218
OnExit class 219
operational environment 1
Ordina Type class 87
origin entity 25

P

Package class 74

package named “kdm” 31
ParameterTo class 106
ParameterUnit class 83

Platform model class 179

Patform package 177
PlatformAction class 185
PlatformActions class diagram 187
PlatformElement class 197
PlatformEvent class 185
Platforminheritances class diagram 181
PlatformModel class diagram 179
PlatformRelations class diagram 186
PlatformRelationship class 197
PlatformResources class diagram 181
PointerType class 96

Preprocessor classdiagram 123, 126
PreprocessorDirective class 123
PrimitiveType class 86
PrimitiveTypes class diagram 86
Process class 194

Produces class 312

ProducesEvent class 222

Program Elements Layer 12

Project class 56
ProvisioningRelations class diagram 186

R

RangeType class 97

Reads class 153
ReadsColumnSet class 249
ReadsResource class 189
ReadsState class 221
ReadsUI class 209
RecordFile class 241
RecordType class 93
Redefines class 133
ReferenceKey class 247
ReferenceTo class 270
Relational Schema class 233
Relational Table class 236
RelationalView class 239
Report class 205

Requires class 187
ResourceDescription class 54
ResourceType class 182
RestrictionOf class 271

336

RuleUnit class 292

Runtime Resource Layer 12
RuntimeActions class diagram 194
RuntimeResources class diagram 193

S

ScaledTypeclass 89
ScenarioUnit class 293

Screen class 204

Segment class 34

segments 31

SeqContent class 262
SequenceType class 99
SetType class 98

SharedUnit class 73

Signature class diagram 99
SimpleContentType class 259
Software Assurance (SWA 1
SoftwareSystem class 281
source code 49

Source package 49, 50
SourceFile class 53

SourceRef class 58

SourceRef class diagram 58
SourceRegion class 60

Spawns class 196

State class 218

Stereotype class 39
StorableUnit class 80
StreamResource class 184
StringType class 89

Structure package 277
StructuredData class diagram 256
StructureElement class 282
Structurel nheritances class diagram 281
StructureModel class 279
StructureModel class diagram 278
StructureRelationship class 282
Subsystem class 280
SuppliedBy class 313
SupportedBy class 313
SymbolicLink class 308
Symbols 8

SynonymuUnit class 102

T
TagDefinition class 41

TaggedRef class 44

TaggedValue class 44

target entity 25

TemplateParameter class 104
TemplateRelations class diagram 105
Templates class diagram 103
TemplateType class 105
TemplateUnit class 104

terms 19

© ISO/IEC 2012 - All rights reserved



TermUnit class 292
Thread class 194
Throws class 162
TimeType class 88
Tool class 307
traceability links 20
Transition class 218
TrueFlow class 147
TryUnit class 156
TypedBy class 269
TypeRelations class diagram 115
TypeUnit class 101

U

Ul package 199

UlAction class 205

UlActions class diagram 207
UlDisplay class 204

UlElement class 210

UlEvent class 205

UIField class 205

UlFlow class 206
Ullnheritances class diagram 202
UlLayout class 207

UIModel classdiagram 200
UlRelations class diagram 206
UlRelationship class 210
UlResource class 204
UlResource class diagram 203
UniqueKey class 247
UsesRelations class diagram 164
UsesTypeclass 164

Y

Valueclass 84

ValueElement class 84
ValueElements class diagram 83
Valuelist class 85

VariantTo class 131

viewpoint language 11
Visibility classdiagram 136
VisibilityRelations class diagram 137
Visibleln class 137

VoidType class 89

W

Writesclass 154
WritesColumnSet class 250
WritesResource class 189
WritesUI class 209

X
XMLSchemaclass 257

© ISO/IEC 2012 - All rights reserved

ISO/IEC 19506:2012(E)

337



ISO/IEC 19506:2012(E)

338 © ISO/IEC 2012 - Al rights reserved



	1 Scope
	2 Conformance and Compliance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Additional Information
	6.1 Changes to Other OMG Specifications
	6.2 How to Read this International Standard

	7 Overview
	8 KDM
	8.1 Overview
	8.2 Organization of the KDM Packages

	9 Core Package
	9.1 Overview
	9.2 Organization of the Core Package
	9.3 CoreEntities Class Diagram
	9.3.1 Element Class (abstract)
	9.3.2 ModelElement Class (abstract)
	9.3.3 KDMEntity Class (abstract)

	9.4 CoreRelations Class Diagram
	9.4.1 KDMRelationship Class (abstract)
	9.4.2 KDMEntity (additional properties)

	9.5 AggregatedRelations Class Diagram
	9.5.1 AggregatedRelationship Class
	9.5.2 KDMEntity (additional properties)

	9.6 Datatypes Class Diagram
	9.6.1 Boolean Type (datatype)
	9.6.2 String Type (datatype)
	9.6.3 Integer Type (datatype)


	10 The Package Named “kdm”
	10.1 Overview
	10.2 Organization of the KDM Framework
	10.3 Framework Class Diagram
	10.3.1 KDMFramework Class (abstract)
	10.3.2 KDMModel Class (abstract)
	10.3.3 KDMEntity (additional properties)
	10.3.4 Segment Class

	10.4 Audit Class Diagram
	10.4.1 Audit Class
	10.4.2 KDMFramework (additional properties)

	10.5 Extensions Class Diagram
	10.5.1 Stereotype Class
	10.5.2 TagDefinition Class
	10.5.3 ExtensionFamily Class
	10.5.4 ModelElement (additional properties)

	10.6 ExtendedValues Class Diagram
	10.6.1 ExtendedValue Class (abstract)
	10.6.2 TaggedValue Class
	10.6.3 TaggedRef Class

	10.7 Annotations Class Diagram
	10.7.1 Attribute Class
	10.7.2 Annotation Class
	10.7.3 Element (additional properties)


	11 Source Package
	11.1 Overview
	11.2 Organization of the Source Package
	11.3 InventoryModel Class Diagram
	11.3.1 InventoryModel Class
	11.3.2 AbstractInventoryElement Class (abstract)
	11.3.3 AbstractInventoryRelationship Class (abstract)
	11.3.4 InventoryItem Class (generic)
	11.3.5 SourceFile Class
	11.3.6 Image Class
	11.3.7 Configuration Class
	11.3.8 ResourceDescription Class
	11.3.9 BinaryFile Class
	11.3.10 ExecutableFile Class
	11.3.11 InventoryContainer Class (generic)
	11.3.12 Directory Class
	11.3.13 Project Class

	11.4 InventoryInheritances Class Diagram
	11.5 InventoryRelations Class Diagram
	11.5.1 DependsOn Class

	11.6 SourceRef Class Diagram
	11.6.1 SourceRef Class
	11.6.2 SourceRegion Class

	11.7 ExtendedInventoryElements Class Diagram
	11.7.1 InventoryElement Class (generic)
	11.7.2 InventoryRelationship Class (generic)


	12 Code Package
	12.1 Overview
	12.2 Organization of the Code Package
	12.3 CodeModel Class Diagram
	12.3.1 CodeModel Class
	12.3.2 AbstractCodeElement Class (abstract)
	12.3.3 AbstractCodeRelationship Class (abstract)
	12.3.4 CodeItem Class (abstract)
	12.3.5 ComputationalObject Class (generic)
	12.3.6 Datatype Class (generic)

	12.4 CodeInheritances Class Diagram
	12.5 Modules Class Diagram
	12.5.1 Module Class (generic)
	12.5.2 CompilationUnit Class
	12.5.3 SharedUnit Class
	12.5.4 LanguageUnit Class
	12.5.5 CodeAssembly Class
	12.5.6 Package Class

	12.6 ControlElements Class Diagram
	12.6.1 ControlElement Class (generic)
	12.6.2 CallableUnit Class
	12.6.3 CallableKind Data Type (enumerated)
	12.6.4 MethodUnit Class
	12.6.5 MethodKind data type (enumeration)

	12.7 DataElements Class Diagram
	12.7.1 DataElement Class (generic)
	12.7.2 StorableUnit Class
	12.7.3 StorableKind data type (enumeration)
	12.7.4 ExportKind data type (enumeration)
	12.7.5 ItemUnit Class
	12.7.6 IndexUnit Class
	12.7.7 MemberUnit Class
	12.7.8 ParameterUnit Class

	12.8 ValueElements Class Diagram
	12.8.1 ValueElement Class (generic)
	12.8.2 Value Class
	12.8.3 ValueList Class

	12.9 PrimitiveTypes Class Diagram
	12.9.1 PrimitiveType Class (generic)
	12.9.2 BooleanType Class
	12.9.3 CharType Class
	12.9.4 OrdinalType Class
	12.9.5 DateType Class
	12.9.6 TimeType Class
	12.9.7 IntegerType Class
	12.9.8 DecimalType Class
	12.9.9 ScaledType Class
	12.9.10 FloatType Class
	12.9.11 VoidType Class
	12.9.12 StringType Class
	12.9.13 BitType Class
	12.9.14 BitstringType Class
	12.9.15 OctetType Class
	12.9.16 OctetstringType Class

	12.10 EnumeratedTypes Class Diagram
	12.10.1 EnumeratedType Class

	12.11 CompositeTypes Class Diagram
	12.11.1 CompositeType Class (generic)
	12.11.2 ChoiceType Class
	12.11.3 RecordType Class

	12.12 DerivedTypes Class Diagram
	12.12.1 DerivedType Class (generic)
	12.12.2 ArrayType Class
	12.12.3 PointerType Class
	12.12.4 RangeType Class
	12.12.5 BagType Class
	12.12.6 SetType Class
	12.12.7 SequenceType Class

	12.13 Signature Class Diagram
	12.13.1 Signature Class
	12.13.2 ParameterKind Enumeration Datatype

	12.14 DefinedTypes Class Diagram
	12.14.1 DefinedType Class (abstract)
	12.14.2 TypeUnit Class
	12.14.3 SynonymUnit Class

	12.15 ClassTypes Class Diagram
	12.16 ClassUnit Class
	12.16.1 InterfaceUnit Class

	12.17 Templates Class Diagram
	12.17.1 TemplateUnit Class
	12.17.2 TemplateParameter Class
	12.17.3 TemplateType Class

	12.18 TemplateRelations Class Diagram
	12.18.1 InstanceOf Class
	12.18.2 ParameterTo Class

	12.19 InterfaceRelations Class Diagram
	12.19.1 Implements Class
	12.19.2 ImplementationOf Class

	12.20 TypeRelations Class Diagram
	12.20.1 HasType Class
	12.20.2 HasValue Class

	12.21 ClassRelations Class Diagram
	12.21.1 Extends Class

	12.22 Preprocessor Class Diagram
	12.22.1 PreprocessorDirective Class (generic)
	12.22.2 MacroUnit Class
	12.22.3 MacroKind data type (enumeration)
	12.22.4 MacroDirective Class
	12.22.5 IncludeDirective Class
	12.22.6 Conditional Directive Class

	12.23 PreprocessorRelations Class Diagram
	12.23.1 Expands Class
	12.23.2 GeneratedFrom Class
	12.23.3 Includes Class
	12.23.4 VariantTo Class
	12.23.5 Redefines Class

	12.24 Comments Class Diagram
	12.24.1 CommentUnit Class
	12.24.2 AbstractCodeElement Class (additional properties)

	12.25 Visibility Class Diagram
	12.25.1 Namespace Class

	12.26 VisibilityRelations Class Diagram
	12.26.1 VisibleIn Class
	12.26.2 Imports Class

	12.27 ExtendedCodeElements Class Diagram
	12.27.1 CodeElement Class (generic)
	12.27.2 CodeRelationship Class (generic)


	13 Action Package
	13.1 Overview
	13.2 Organization of the Action Package
	13.3 ActionElements Class Diagram
	13.3.1 ActionElement Class
	13.3.2 AbstractActionRelationship Class (abstract)
	13.3.3 BlockUnit Class
	13.3.4 AbstractCodeElement (additional properties)

	13.4 ActionInheritances Class Diagram
	13.5 ActionFlow Class Diagram
	13.5.1 ControlFlow Class (generic)
	13.5.2 EntryFlow Class
	13.5.3 Flow Class
	13.5.4 TrueFlow Class
	13.5.5 FalseFlow Class
	13.5.6 GuardedFlow Class

	13.6 CallableRelations Class Diagram
	13.6.1 Calls Class
	13.6.2 Dispatches Class

	13.7 DataRelations Class Diagram
	13.7.1 Reads Class
	13.7.2 Writes Class
	13.7.3 Addresses Class
	13.7.4 Creates Class

	13.8 ExceptionBlocks Class Diagram
	13.8.1 ExceptionUnit Class
	13.8.2 TryUnit Class
	13.8.3 CatchUnit Class
	13.8.4 FinallyUnit Class

	13.9 ExceptionFlow Class Diagram
	13.9.1 ExitFlow Class
	13.9.2 ExceptionFlow Class

	13.10 ExceptionRelations Class Diagram
	13.10.1 Throws Class

	13.11 InterfaceRelations Class Diagram
	13.11.1 CompliesTo Class

	13.12 UsesRelations Class Diagram
	13.12.1 UsesType Class

	13.13 ExtendedActionElements Class Diagram
	13.13.1 ActionRelationship Class (generic)


	14 Micro KDM
	14.1 Overview

	15 Platform Package
	15.1 Overview
	15.2 Organization of the Platform Package
	15.3 PlatformModel Class Diagram
	15.3.1 PlatformModel Class
	15.3.2 AbstractPlatformElement Class (abstract)
	15.3.3 AbstractPlatformRelationship Class (abstract)

	15.4 PlatformInheritances Class Diagram
	15.5 PlatformResources Class Diagram
	15.5.1 ResourceType Class
	15.5.2 NamingResource Class
	15.5.3 MarshalledResource Class
	15.5.4 MessagingResource Class
	15.5.5 FileResource Class
	15.5.6 ExecutionResource Class
	15.5.7 LockResource Class
	15.5.8 StreamResource Class
	15.5.9 DataManager Class
	15.5.10 PlatformEvent Class
	15.5.11 PlatformAction Class
	15.5.12 ExternalActor Class

	15.6 PlatformRelations Class Diagram
	15.6.1 BindsTo Class

	15.7 ProvisioningRelations Class Diagram
	15.7.1 Requires Class

	15.8 PlatformActions Class Diagram
	15.8.1 ManagesResource Class
	15.8.2 ReadsResource Class
	15.8.3 WritesResource Class
	15.8.4 DefinedBy Class

	15.9 Deployment Class Diagram
	15.9.1 DeployedComponent Class
	15.9.2 DeployedSoftwareSystem Class
	15.9.3 Machine Class
	15.9.4 DeployedResource Class

	15.10 RuntimeResources Class Diagram
	15.10.1 RuntimeResource (generic)
	15.10.2 Process Class
	15.10.3 Thread Class

	15.11 RuntimeActions Class Diagram
	15.11.1 Loads Class
	15.11.2 Spawns Class

	15.12 ExtendedPlatformElements Class Diagram
	15.12.1 PlatformElement Class (generic)
	15.12.2 PlatformRelationship Class (generic)


	16 UI Package
	16.1 Overview
	16.2 Organization of the UI Package
	16.3 UIModel Class Diagram
	16.3.1 UIModel Class
	16.3.2 AbstractUIElement Class (abstract)
	16.3.3 AbstractUIRelationship Class (abstract)

	16.4 UIInheritances Class Diagram
	16.5 UIResources Class Diagram
	16.5.1 UIResource Class (generic)
	16.5.2 UIDisplay Class (generic)
	16.5.3 Screen Class
	16.5.4 Report Class
	16.5.5 UIField Class
	16.5.6 UIEvent Class
	16.5.7 UIAction Class

	16.6 UIRelations Class Diagram
	16.6.1 UIFlow Class
	16.6.2 UILayout Class

	16.7 UIActions Class Diagram
	16.7.1 Displays Class
	16.7.2 DisplaysImage Class
	16.7.3 ManagesUI Class
	16.7.4 ReadsUI Class
	16.7.5 WritesUI Class

	16.8 ExtendedUIElements Class Diagram
	16.9 UIElement Class (generic)
	16.9.1 UIRelationship Class (generic)


	17 Event Package
	17.1 Overview
	17.2 Organization of the Event Package
	17.3 EventModel Class Diagram
	17.3.1 EventModel Class
	17.3.2 AbstractEventElement Class (abstract)
	17.3.3 AbstractEventRelationship Class (abstract)

	17.4 EventInheritances Class Diagram
	17.5 EventResources Class Diagram
	17.5.1 EventResource Class (generic)
	17.5.2 Event Class
	17.5.3 State Class
	17.5.4 InitialState Class
	17.5.5 Transition Class
	17.5.6 OnEntry Class
	17.5.7 OnExit Class
	17.5.8 EventAction Class

	17.6 EventRelations Class Diagram
	17.6.1 NextState Class

	17.7 ConsumesEvent Class
	17.8 EventActions Class Diagram
	17.8.1 ReadsState Class
	17.8.2 ProducesEvent Class
	17.8.3 HasState Class

	17.9 ExtendedEventElements Class Diagram
	17.9.1 EventElement Class (generic)
	17.9.2 EventRelationship Class (generic)


	18 Data Package
	18.1 Overview
	18.2 Organization of the Data Package
	18.3 Data Model Class Diagram
	18.3.1 DataModel Class
	18.3.2 AbstractDataElement Class (abstract)
	18.3.3 AbstractDataRelationship Class (abstract)

	18.4 Data Inheritances Class Diagram
	18.5 DataResources Class Diagram
	18.5.1 DataResource Class (generic)
	18.5.2 DataContainer Class (generic)
	18.5.3 Catalog Class
	18.5.4 RelationalSchema Class
	18.5.5 DataEvent Class
	18.5.6 DataAction Class

	18.6 ColumnSet Class Diagram
	18.6.1 ColumnSet (generic)
	18.6.2 RelationalTable Class
	18.6.3 RelationalView Class
	18.6.4 DataSegment Class
	18.6.5 RecordFile Class

	18.7 KeyIndex Class Diagram
	18.7.1 IndexElement Class (generic)
	18.7.2 UniqueKey Class
	18.7.3 ReferenceKey Class
	18.7.4 Index Class

	18.8 Key Relations Class Diagram
	18.8.1 KeyRelationship Class

	18.9 DataActions Class Diagram
	18.9.1 ReadsColumnSet Class
	18.9.2 WritesColumnSet Class
	18.9.3 ManagesData Class
	18.9.4 HasContent Class

	18.10 StructuredData Class Diagram
	18.10.1 XMLSchema
	18.10.2 AbstractContentElement (abstract)

	18.11 ContentElements Class Diagram
	18.11.1 ContentItem (generic)
	18.11.2 ComplexContentType
	18.11.3 SimpleContentType
	18.11.4 ContentRestriction
	18.11.5 AllContent Class
	18.11.6 SeqContent Class
	18.11.7 ChoiceContent Class
	18.11.8 GroupContent Class
	18.11.9 MixedContent Class
	18.11.10 ContentAttribute Class
	18.11.11 ContentElement Class
	18.11.12 ContentReference Class

	18.12 ContentRelations Class Diagram
	18.12.1 TypedBy Class
	18.12.2 DatatypeOf Class
	18.12.3 ReferenceTo Class
	18.12.4 ExtensionTo Class
	18.12.5 RestrictionOf Class

	18.13 ExtendedDataElements Class Diagram
	18.13.1 ExtendedDataElement Class
	18.13.2 DataRelationship Class


	19 Structure Package
	19.1 Overview
	19.2 Organization of the Structure Package
	19.3 StructureModel Class Diagram
	19.3.1 StructureModel Class
	19.3.2 AbstractStructureElement Class (abstract)
	19.3.3 AbstractStructureRelationship Class (abstract)
	19.3.4 Subsystem Class
	19.3.5 Layer Class
	19.3.6 Component Class
	19.3.7 SoftwareSystem Class
	19.3.8 ArchitectureView Class

	19.4 StructureInheritances Class Diagram
	19.5 ExtendedStructureElements Class Diagram
	19.5.1 StructureElement Class (generic)
	19.5.2 StructureRelationship Class (generic)


	20 Conceptual Package
	20.1 Overview
	20.2 Organization of the Conceptual Package
	20.3 ConceptualModel Class Diagram
	20.3.1 ConceptualModel
	20.3.2 AbstractConceptualElement (abstract)
	20.3.3 AbstractConceptualRelationship Class (abstract)

	20.4 ConceptualInheritances Class Diagram
	20.5 ConceptualElements Class Diagram
	20.5.1 ConceptualContainer Class
	20.5.2 TermUnit
	20.5.3 FactUnit
	20.5.4 RuleUnit
	20.5.5 ConceptualRole
	20.5.6 BehaviorUnit Class
	20.5.7 ScenarioUnit Class

	20.6 ConceptualRelations Class Diagram
	20.6.1 ConceptualFlow Class

	20.7 ExtendedConceptualElements Class Diagram
	20.7.1 ConceptualElement Class (generic)
	20.7.2 ConceptualRelationship Class (generic)


	21 Build Package
	21.1 Overview
	21.2 Organization of the Build Package
	21.3 BuildModel Class Diagram
	21.4 BuildModel Class
	21.4.1 AbstractBuildElement Class (abstract)
	21.4.2 AbstractBuildRelationship Class (abstract)
	21.4.3 Supplier Class
	21.4.4 Tool Class
	21.4.5 SymbolicLink Class

	21.5 BuildInheritances Class Diagram
	21.6 BuildResources Class Diagram
	21.6.1 BuildResource Class
	21.6.2 BuildComponent Class
	21.6.3 BuildDescription Class
	21.6.4 BuildStep Class

	21.7 BuildRelations Class Diagram
	21.7.1 LinksTo Class
	21.7.2 Consumes Class
	21.7.3 Produces Class
	21.7.4 SupportedBy Class
	21.7.5 SuppliedBy Class
	21.7.6 DescribedBy Class

	21.8 ExtendedBuildElements Class Diagram
	21.8.1 BuildElement Class (generic)
	21.8.2 BuildRelationship Class (generic)


	Annex A - Semantics of the Micro KDM Action Elements
	A.1 General
	A.2 Comparison Actions
	A.3 Actions Related to the Primitive Numerical Datatypes
	A.4 Actions Related to Bitwise Operations on Primitive Datatypes
	A.5 Control Actions
	A.6 Actions Related to Access to Datatypes
	A.7 Actions Related to Type Conversions
	A.8 Actions Related to StringType Operations
	A.9 Actions Related to SetType Operations
	A.10 Actions Related to SequenceType Operations
	A.11 Actions Related to BagType Operations
	A.12 Actions Related to Resources
	B.1 Copyright Information
	B.2 Use Of Specification - Terms, Conditions & Notices
	B.3 Licenses
	B.4 Patents
	B.5 General Use Restrictions
	B.6 Disclaimer Of Warranty
	B.7 Restricted Rights Legend
	B.8 Trademarks
	B.9 Compliance


	Annex B - Legal Information
	Annex C - Acknowledgements

