
An OMG® Systems Modeling Publication

Kernel Modeling Language™ (KerML™)

Version 1.0 Beta 4
(Release 2025-04)

OMG Document Number: ptc/2025-04-01

Date: April 2025

Standard document URL: https://www.omg.org/spec/KerML/1.0/

Machine Readable File(s): https://www.omg.org/spec/KerML/20250201/

Normative:

https://www.omg.org/spec/KerML/20250201/KerML.xmi
https://www.omg.org/spec/KerML/20250201/Semantic-Library.kpar
https://www.omg.org/spec/KerML/20250201/Data-Type-Library.kpar
https://www.omg.org/spec/KerML/20250201/Function-Library.kpar
https://www.omg.org/spec/KerML/20250201/KerML-Model-Interchange.json
https://www.omg.org/spec/KerML/20250201/KerML.json

https://www.omg.org/spec/KerML/1.0/
https://www.omg.org/spec/KerML/20250201/
https://www.omg.org/spec/KerML/20250201/KerML.xmi
https://www.omg.org/spec/KerML/20250201/Semantic-Library.kpar
https://www.omg.org/spec/KerML/20250201/Data-Type-Library.kpar
https://www.omg.org/spec/KerML/20250201/Function-Library.kpar
https://www.omg.org/spec/KerML/20250201/KerML-Model-Interchange.json
https://www.omg.org/spec/KerML/20250201/KerML.json

Copyright © 2019-2025, 88solutions Corporation
Copyright © 2019-2025, Airbus
Copyright © 2019-2025, Aras Corporation
Copyright © 2019-2025, Association of Universities for Research in Astronomy (AURA)
Copyright © 2019-2025, BigLever Software
Copyright © 2019-2025, Boeing
Copyright © 2022-2025, Budapest University of Technology and Economics
Copyright © 2021-2025, Commissariat à l'énergie atomique et aux énergies alternatives (CEA)
Copyright © 2019-2025, Contact Software GmbH
Copyright © 2019-2025, Dassault Systèmes (No Magic)
Copyright © 2019-2025, DSC Corporation
Copyright © 2020-2025, DEKonsult
Copyright © 2020-2025, Delligatti Associates LLC
Copyright © 2019-2025, The Charles Stark Draper Laboratory, Inc.
Copyright © 2020-2025, ESTACA
Copyright © 2023-2025, Galois, Inc.
Copyright © 2019-2025, GfSE e.V.
Copyright © 2019-2025, George Mason University
Copyright © 2019-2025, IBM
Copyright © 2019-2025, Idaho National Laboratory
Copyright © 2019-2025, INCOSE
Copyright © 2019-2025, Intercax LLC
Copyright © 2019-2025, Jet Propulsion Laboratory (California Institute of Technology)
Copyright © 2019-2025, Kenntnis LLC
Copyright © 2020-2025, Kungliga Tekniska högskolon (KTH)
Copyright © 2019-2025, LightStreet Consulting LLC
Copyright © 2019-2025, Lockheed Martin Corporation
Copyright © 2019-2025, Maplesoft
Copyright © 2021-2025, MID GmbH
Copyright © 2020-2025, MITRE
Copyright © 2019-2025, Model Alchemy Consulting
Copyright © 2019-2025, Model Driven Solutions, Inc.
Copyright © 2019-2025, Model Foundry Pty. Ltd.
Copyright © 2023-2025, Object Management Group, Inc.
Copyright © 2019-2025, On-Line Application Research Corporation (OAC)
Copyright © 2019-2025, oose Innovative Informatik eG
Copyright © 2019-2025, Østfold University College
Copyright © 2019-2025, PTC
Copyright © 2020-2025, Qualtech Systems, Inc.
Copyright © 2019-2025, SAF Consulting
Copyright © 2019-2025, Simula Research Laboratory AS
Copyright © 2019-2025, System Strategy, Inc.
Copyright © 2019-2025, Thematix Partners, LLC
Copyright © 2019-2025, Tom Sawyer
Copyright © 2023-2025, Tucson Embedded Systems, Inc.
Copyright © 2019-2025, Universidad de Cantabria
Copyright © 2019-2025, University of Alabama in Huntsville
Copyright © 2019-2025, University of Detroit Mercy
Copyright © 2019-2025, University of Kaiserslauten
Copyright © 2020-2025, Willert Software Tools GmbH (SodiusWillert)

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the
terms, conditions and notices set forth below. This document does not represent a commitment to
implement any portion of this specification in any companys products. The information contained in this
document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this document
and distribute copies of the modified version. Each of the copyright holders listed above has agreed that
no person shall be deemed to have infringed the copyright in the included material of any such copyright
holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby
grant you a fully-paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to
sublicense), to use this specification to create and distribute software and special purpose specifications
that are based upon this specification, and to use, copy, and distribute this specification as provided
under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will
not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these
terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG
specifications may require use of an invention covered by patent rights. OMG shall not be responsible for
identifying patents for which a license may be required by any OMG specification, or for conducting legal
inquiries into the legal validity or scope of those patents that are brought to its attention. OMG
specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and
communications regulations and statutes. This document contains information which is protected by
copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
used in any form or by any means--graphic, electronic, or mechanical, including photocopying, recording,
taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY
CONTAIN ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES
LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO
THIS PUBLICATION, INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR

OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR A
PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR
ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER DAMAGES,
INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS
MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne
by you. This disclaimer of warranty constitutes an essential part of the license granted to you to use this
specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in
subparagraph (c) (1) (ii) of The Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 or in subparagraph (c)(1) and (2) of the Commercial Computer Software - Restricted Rights
clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of the DoD F.A.R. Supplement
and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its
successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757,
U.S.A.

TRADEMARKS

CORBA®, CORBA logos®, FIBO®, Financial Industry Business Ontology®, Financial Instrument Global
Identifier®, IIOP®, IMM®, Model Driven Architecture®, MDA®, Object Management Group®, OMG®, OMG
Logo®, SoaML®, SOAML®, SysML®, UAF®, Unified Modeling Language™, UML®, UML Cube Logo®,
VSIPL®, and XMI® are registered trademarks of the Object Management Group, Inc.

For a complete list of trademarks, see: https://www.omg.org/legal/tm_list.htm. All other products or
company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or
through its designees) is and shall at all times be the sole entity that may authorize developers, suppliers
and sellers of computer software to use certification marks, trademarks or other special designations to
indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this
specification if and only if the software compliance is of a nature fully matching the applicable compliance
points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim
compliance or conformance with this specification. In the event that testing suites are implemented or
approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing
suites.

https://www.omg.org/legal/tm_list.htm

OMG’S ISSUE REPORTING PROCEDURE

All OMG specifications are subject to continuous review and improvement. As part of this process we
encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page https://www.omg.org, under
Documents, Report a Bug/Issue.

http://www.omg.org/

Table of Contents
0 Preface...17
1 Scope...1
2 Conformance...3
3 Normative References...5
4 Terms and Definitions...7
5 Symbols ..9
6 Introduction...11

6.1 Language Architecture..11
6.2 Document Organization ..11
6.3 Acknowledgements...12

7 Language Description ...15
7.1 Language Description Overview ..15
7.2 Root...15

7.2.1 Root Overview ..15
7.2.2 Elements and Relationships ..15

7.2.2.1 Elements and Relationships Overview..15
7.2.2.2 Elements ..16
7.2.2.3 Relationships ...17

7.2.3 Dependencies ..17
7.2.3.1 Dependencies Overview..17
7.2.3.2 Dependency Declaration ...18

7.2.4 Annotations ...18
7.2.4.1 Annotations Overview...18
7.2.4.2 Comments and Documentation ...18
7.2.4.3 Textual Representations ..20

7.2.5 Namespaces...20
7.2.5.1 Namespaces Overview ..20
7.2.5.2 Namespace Declaration...21
7.2.5.3 Root Namespaces ..23
7.2.5.4 Imports ..23

7.3 Core...25
7.3.1 Core Overview ..25
7.3.2 Types ...26

7.3.2.1 Types Overview ..26
7.3.2.2 Type Declaration ...26
7.3.2.3 Specialization ..27
7.3.2.4 Conjugation ...28
7.3.2.5 Disjoining ..29
7.3.2.6 Feature Membership..29
7.3.2.7 Unioning, Intersecting, and Differencing..30

7.3.3 Classifiers..31
7.3.3.1 Classifiers Overview ...31
7.3.3.2 Classifier Declaration..31
7.3.3.3 Subclassification..31

7.3.4 Features ...32
7.3.4.1 Features Overview...32
7.3.4.2 Feature Declaration ...32
7.3.4.3 Feature Typing ..34
7.3.4.4 Subsetting ..35
7.3.4.5 Redefinition...36
7.3.4.6 Feature Chaining ...37
7.3.4.7 Feature Inverting ...38
7.3.4.8 Type Featuring ..39

Kernel Modeling Language v1.0 Beta 4 i

7.4 Kernel..39
7.4.1 Kernel Overview ...40
7.4.2 Data Types ..40
7.4.3 Classes...41
7.4.4 Structures...41
7.4.5 Associations ..42

7.4.5.1 Associations Overview..42
7.4.5.2 Association Declaration ..42
7.4.5.3 Association Structures...45

7.4.6 Connectors...46
7.4.6.1 Connectors Overview..46
7.4.6.2 Connector Declaration...47
7.4.6.3 Binding Connector Declaration...50
7.4.6.4 Succession Declaration ...51

7.4.7 Behaviors...51
7.4.7.1 Behaviors Overview..51
7.4.7.2 Behavior Declaration...52
7.4.7.3 Step Declaration ..53

7.4.8 Functions ...53
7.4.8.1 Functions Overview ..53
7.4.8.2 Function Declaration ...54
7.4.8.3 Expression Declaration ...55
7.4.8.4 Predicate Declaration ..56
7.4.8.5 Boolean Expression and Invariant Declaration ...56

7.4.9 Expressions ...57
7.4.9.1 Expressions Overview...57
7.4.9.2 Operator Expressions ..57
7.4.9.3 Primary Expressions..59
7.4.9.4 Base Expressions...61
7.4.9.5 Literal Expressions..63

7.4.10 Interactions..64
7.4.10.1 Interactions Overview ...64
7.4.10.2 Interaction Declaration..64
7.4.10.3 Flow Declaration ...64

7.4.11 Feature Values...66
7.4.12 Multiplicities ...67
7.4.13 Metadata..68
7.4.14 Packages..71

8 Metamodel ..73
8.1 Metamodel Overview..73
8.2 Concrete Syntax ..73

8.2.1 Concrete Syntax Overview ...73
8.2.2 Lexical Structure ...75

8.2.2.1 Line Terminators and White Space...75
8.2.2.2 Notes and Comments ..76
8.2.2.3 Names..76
8.2.2.4 Numeric Values...77
8.2.2.5 String Value...77
8.2.2.6 Reserved Words ..77
8.2.2.7 Symbols...78

8.2.3 Root Concrete Syntax ...78
8.2.3.1 Elements and Relationships Concrete Syntax...78
8.2.3.2 Dependencies Concrete Syntax...78
8.2.3.3 Annotations Concrete Syntax..79

8.2.3.3.1 Annotations ...79
8.2.3.3.2 Comments and Documentation ...79

ii Kernel Modeling Language v1.0 Beta 4

8.2.3.3.3 Textual Representation..80
8.2.3.4 Namespaces Concrete Syntax ...80

8.2.3.4.1 Namespaces ...80
8.2.3.4.2 Imports...81
8.2.3.4.3 Namespace Elements...82

8.2.3.5 Name Resolution ...82
8.2.3.5.1 Name Resolution Overview ..82
8.2.3.5.2 Local and Global Namespaces ..83
8.2.3.5.3 Local and Visible Resolution ..85
8.2.3.5.4 Full Resolution ..85

8.2.4 Core Concrete Syntax ...85
8.2.4.1 Types Concrete Syntax..85

8.2.4.1.1 Types ...85
8.2.4.1.2 Specialization ..86
8.2.4.1.3 Conjugation ...87
8.2.4.1.4 Disjoining ..87
8.2.4.1.5 Unioning, Intersecting and Differencing...87
8.2.4.1.6 Feature Membership..87

8.2.4.2 Classifiers Concrete Syntax ..88
8.2.4.2.1 Classifiers ..88
8.2.4.2.2 Subclassification..88

8.2.4.3 Features Concrete Syntax..88
8.2.4.3.1 Features ...88
8.2.4.3.2 Feature Typing ..90
8.2.4.3.3 Subsetting ..90
8.2.4.3.4 Redefinition ...90
8.2.4.3.5 Feature Chaining ...91
8.2.4.3.6 Feature Inverting ...91
8.2.4.3.7 Type Featuring ..91

8.2.5 Kernel Concrete Syntax ..91
8.2.5.1 Data Types Concrete Syntax ...91
8.2.5.2 Classes Concrete Syntax ...91
8.2.5.3 Structures Concrete Syntax ...91
8.2.5.4 Associations Concrete Syntax...92
8.2.5.5 Connectors Concrete Syntax ...92

8.2.5.5.1 Connectors...92
8.2.5.5.2 Binding Connectors...92
8.2.5.5.3 Successions..93

8.2.5.6 Behaviors Concrete Syntax ...93
8.2.5.6.1 Behaviors...93
8.2.5.6.2 Steps ..93

8.2.5.7 Functions Concrete Syntax..93
8.2.5.7.1 Functions ...93
8.2.5.7.2 Expressions..93
8.2.5.7.3 Predicates...94
8.2.5.7.4 Boolean Expressions and Invariants..94

8.2.5.8 Expressions Concrete Syntax ..94
8.2.5.8.1 Operator Expressions ..94
8.2.5.8.2 Primary Expressions..99
8.2.5.8.3 Base Expressions...101
8.2.5.8.4 Literal Expressions ..102

8.2.5.9 Interactions Concrete Syntax ..103
8.2.5.9.1 Interactions ..103
8.2.5.9.2 Flows ...103

8.2.5.10 Feature Values Concrete Syntax ...104
8.2.5.11 Multiplicities Concrete Syntax..104

Kernel Modeling Language v1.0 Beta 4 iii

8.2.5.12 Metadata Concrete Syntax ..104
8.2.5.13 Packages Concrete Syntax ..105

8.3 Abstract Syntax ...105
8.3.1 Abstract Syntax Overview ..106
8.3.2 Root Abstract Syntax ..108

8.3.2.1 Elements and Relationships Abstract Syntax..108
8.3.2.1.1 Overview ...109
8.3.2.1.2 Element..109
8.3.2.1.3 Relationship...114

8.3.2.2 Dependencies Abstract Syntax..115
8.3.2.2.1 Overview ...115
8.3.2.2.2 Dependency ...115

8.3.2.3 Annotations Abstract Syntax...116
8.3.2.3.1 Overview ...117
8.3.2.3.2 AnnotatingElement..117
8.3.2.3.3 Annotation ...118
8.3.2.3.4 Comment ...120
8.3.2.3.5 Documentation ..120
8.3.2.3.6 TextualRepresentation...121

8.3.2.4 Namespaces Abstract Syntax ..122
8.3.2.4.1 Overview ...122
8.3.2.4.2 Import ..123
8.3.2.4.3 Membership...124
8.3.2.4.4 MembershipImport..125
8.3.2.4.5 Namespace...126
8.3.2.4.6 NamespaceImport..130
8.3.2.4.7 VisibilityKind..130
8.3.2.4.8 OwningMembership..131

8.3.3 Core Abstract Syntax ..132
8.3.3.1 Types Abstract Syntax ..132

8.3.3.1.1 Overview ...133
8.3.3.1.2 Conjugation ...136
8.3.3.1.3 Differencing...137
8.3.3.1.4 Disjoining ..137
8.3.3.1.5 FeatureDirectionKind..138
8.3.3.1.6 FeatureMembership...138
8.3.3.1.7 Intersecting ..139
8.3.3.1.8 Specialization ..139
8.3.3.1.9 Multiplicity..140
8.3.3.1.10 Type...141
8.3.3.1.11 Unioning..150

8.3.3.2 Classifiers Abstract Syntax ...150
8.3.3.2.1 Overview ...151
8.3.3.2.2 Classifier..151
8.3.3.2.3 Subclassification..152

8.3.3.3 Features Abstract Syntax...152
8.3.3.3.1 Overview ...153
8.3.3.3.2 CrossSubsetting ...155
8.3.3.3.3 EndFeatureMembership ..157
8.3.3.3.4 Feature ...157
8.3.3.3.5 FeatureChaining ..172
8.3.3.3.6 FeatureInverting ..172
8.3.3.3.7 FeatureTyping ...173
8.3.3.3.8 Redefinition ...173
8.3.3.3.9 ReferenceSubsetting..175
8.3.3.3.10 Subsetting ..175

iv Kernel Modeling Language v1.0 Beta 4

8.3.3.3.11 TypeFeaturing ...176
8.3.4 Kernel Abstract Syntax ...177

8.3.4.1 Data Types Abstract Syntax..177
8.3.4.1.1 Overview ...177
8.3.4.1.2 DataType ...177

8.3.4.2 Classes Abstract Syntax ..178
8.3.4.2.1 Overview ...178
8.3.4.2.2 Class ..178

8.3.4.3 Structures Abstract Syntax ..179
8.3.4.3.1 Overview ...179
8.3.4.3.2 Structure ..179

8.3.4.4 Associations Abstract Syntax..180
8.3.4.4.1 Overview ...180
8.3.4.4.2 Association ..180
8.3.4.4.3 AssociationStructure ...182

8.3.4.5 Connectors Abstract Syntax ..183
8.3.4.5.1 Overview ...184
8.3.4.5.2 Binding Connector ..184
8.3.4.5.3 Connector ..185
8.3.4.5.4 Succession ...188

8.3.4.6 Behaviors Abstract Syntax ..188
8.3.4.6.1 Overview ...189
8.3.4.6.2 Behavior ..189
8.3.4.6.3 Step..190
8.3.4.6.4 ParameterMembership...192

8.3.4.7 Functions Abstract Syntax ..192
8.3.4.7.1 Overview ...193
8.3.4.7.2 BooleanExpression..193
8.3.4.7.3 Expression ...194
8.3.4.7.4 Function...197
8.3.4.7.5 Invariant...198
8.3.4.7.6 Predicate ..199
8.3.4.7.7 ResultExpressionMembership...199
8.3.4.7.8 ReturnParameterMembership..200

8.3.4.8 Expressions Abstract Syntax...200
8.3.4.8.1 Overview ...201
8.3.4.8.2 CollectExpression..201
8.3.4.8.3 ConstructorExpression ..202
8.3.4.8.4 FeatureChainExpression..203
8.3.4.8.5 FeatureReferenceExpression ...205
8.3.4.8.6 IndexExpression ..207
8.3.4.8.7 InstantiationExpression ...208
8.3.4.8.8 InvocationExpression ..209
8.3.4.8.9 LiteralBoolean ...211
8.3.4.8.10 LiteralExpression...211
8.3.4.8.11 LiteralInfinity ..212
8.3.4.8.12 LiteralInteger ...213
8.3.4.8.13 LiteralRational...213
8.3.4.8.14 LiteralString...214
8.3.4.8.15 MetadataAccessExpression ...214
8.3.4.8.16 NullExpression ..216
8.3.4.8.17 OperatorExpression ...216
8.3.4.8.18 SelectExpression ...217

8.3.4.9 Interactions Abstract Syntax ...218
8.3.4.9.1 Overview ...218
8.3.4.9.2 Flow...218

Kernel Modeling Language v1.0 Beta 4 v

8.3.4.9.3 FlowEnd ..220
8.3.4.9.4 Interaction..221
8.3.4.9.5 PayloadFeature ..221
8.3.4.9.6 SuccessionFlow...222

8.3.4.10 Feature Values Abstract Syntax ..222
8.3.4.10.1 Overview ...223
8.3.4.10.2 FeatureValue ...223

8.3.4.11 Multiplicities Abstract Syntax...224
8.3.4.11.1 Overview ...225
8.3.4.11.2 MultiplicityRange..225

8.3.4.12 Metadata Abstract Syntax ...227
8.3.4.12.1 Overview ...228
8.3.4.12.2 Metaclass ...228
8.3.4.12.3 MetadataFeature ..228

8.3.4.13 Packages Abstract Syntax ...231
8.3.4.13.1 Overview ...231
8.3.4.13.2 ElementFilterMembership...231
8.3.4.13.3 LibraryPackage..232
8.3.4.13.4 Package..233

8.4 Semantics ..233
8.4.1 Semantics Overview..233
8.4.2 Semantic Constraints and Implied Relationships..235
8.4.3 Core Semantics..236

8.4.3.1 Core Semantics Overview...236
8.4.3.1.1 Core Semantic Constraints ..237
8.4.3.1.2 Core Semantics Mathematical Preliminaries ..239

8.4.3.2 Types Semantics..241
8.4.3.3 Classifiers Semantics...242
8.4.3.4 Features Semantics..242

8.4.4 Kernel Semantics ..245
8.4.4.1 Kernel Semantics Overview..245
8.4.4.2 Data Types Semantics ...251
8.4.4.3 Classes Semantics ...251
8.4.4.4 Structures Semantics ...252
8.4.4.5 Associations Semantics ...253

8.4.4.5.1 Associations...253
8.4.4.5.2 Association Structures...257

8.4.4.6 Connectors Semantics ...257
8.4.4.6.1 Connectors...257
8.4.4.6.2 Binding Connectors...260
8.4.4.6.3 Successions..260

8.4.4.7 Behaviors Semantics ...261
8.4.4.7.1 Behaviors...261
8.4.4.7.2 Steps ..261

8.4.4.8 Functions Semantics..262
8.4.4.8.1 Functions and Predicates ...262
8.4.4.8.2 Expressions and Invariants..263

8.4.4.9 Expressions Semantics ..264
8.4.4.9.1 Null Expressions..264
8.4.4.9.2 Literal Expressions ..264
8.4.4.9.3 Feature Reference Expressions ...264
8.4.4.9.4 Constructor Expressions..265
8.4.4.9.5 Invocation Expressions..266
8.4.4.9.6 Operator Expressions ..266
8.4.4.9.7 Metadata Access Expressions ...268
8.4.4.9.8 Model-Level Evaluable Expressions...269

vi Kernel Modeling Language v1.0 Beta 4

8.4.4.10 Interactions Semantics...270
8.4.4.10.1 Interactions ..270
8.4.4.10.2 Flows ...271

8.4.4.11 Feature Values Semantics ...271
8.4.4.12 Multiplicities Semantics ..273

8.4.4.12.1 Multiplicities ...273
8.4.4.12.2 Multiplicity Ranges ...274

8.4.4.13 Metadata Semantics...275
8.4.4.13.1 Metaclasses..275
8.4.4.13.2 Metadata Features..275
8.4.4.13.3 Semantic Metadata ..276

8.4.4.14 Packages Semantics...276
9 Model Libraries...277

9.1 Model Libraries Overview ..277
9.2 Semantic Library...277

9.2.1 Semantic Library Overview ..277
9.2.2 Base ...278

9.2.2.1 Base Overview ..278
9.2.2.2 Elements ..278

9.2.2.2.1 Anything..278
9.2.2.2.2 DataValue..279
9.2.2.2.3 dataValues ...279
9.2.2.2.4 exactlyOne...280
9.2.2.2.5 naturals ..280
9.2.2.2.6 oneToMany ...281
9.2.2.2.7 things ...281
9.2.2.2.8 zeroOrOne ...281
9.2.2.2.9 zeroToMany ..282

9.2.3 Links..282
9.2.3.1 Links Overview...282
9.2.3.2 Elements ..283

9.2.3.2.1 BinaryLink...283
9.2.3.2.2 binaryLinks..283
9.2.3.2.3 Link ...284
9.2.3.2.4 links ...284
9.2.3.2.5 SelfLink ...284
9.2.3.2.6 selfLinks ..285

9.2.4 Occurrences...286
9.2.4.1 Occurrences Overview ..286
9.2.4.2 Elements ..288

9.2.4.2.1 HappensBefore ..288
9.2.4.2.2 happensBeforeLinks..289
9.2.4.2.3 HappensDuring..289
9.2.4.2.4 HappensJustBefore..290
9.2.4.2.5 HappensLink ...291
9.2.4.2.6 HappensWhile ...291
9.2.4.2.7 IncomingTransferSort ...292
9.2.4.2.8 InnerSpaceOf...292
9.2.4.2.9 InsideOf ...293
9.2.4.2.10 JustOutsideOf ..293
9.2.4.2.11 Life ..294
9.2.4.2.12 MatesWith ...294
9.2.4.2.13 Occurrence...295
9.2.4.2.14 occurrences..301
9.2.4.2.15 OutsideOf ..301
9.2.4.2.16 PortionOf ...302

Kernel Modeling Language v1.0 Beta 4 vii

9.2.4.2.17 SelfSameLifeLink ...302
9.2.4.2.18 SnapshotOf ..303
9.2.4.2.19 SpaceLink..304
9.2.4.2.20 SpaceShotOf..304
9.2.4.2.21 SpaceSliceOf ...305
9.2.4.2.22 SurroundedBy..305
9.2.4.2.23 TimeSliceOf ..306
9.2.4.2.24 Within..306
9.2.4.2.25 WithinBoth ..307
9.2.4.2.26 Without..308

9.2.5 Objects...308
9.2.5.1 Objects Overview..308
9.2.5.2 Elements ..309

9.2.5.2.1 BinaryLinkObject ..309
9.2.5.2.2 binaryLinkObjects ...310
9.2.5.2.3 Body ..310
9.2.5.2.4 Curve ...310
9.2.5.2.5 LinkObject...311
9.2.5.2.6 linkObjects...311
9.2.5.2.7 Object ..312
9.2.5.2.8 objects..313
9.2.5.2.9 Point ..313
9.2.5.2.10 StructuredSpaceObject ..313
9.2.5.2.11 Surface...314

9.2.6 Performances...315
9.2.6.1 Performances Overview ..315
9.2.6.2 Elements ..316

9.2.6.2.1 BooleanEvaluation ..316
9.2.6.2.2 booleanEvaluations ...316
9.2.6.2.3 constructorEvaluations ..316
9.2.6.2.4 Evaluation..317
9.2.6.2.5 evaluations...317
9.2.6.2.6 falseEvaluations...318
9.2.6.2.7 InvolvedIn ...318
9.2.6.2.8 LiteralEvaluation ...319
9.2.6.2.9 literalEvaluations...319
9.2.6.2.10 MetadataAccessEvaluation ...319
9.2.6.2.11 metadataAccessEvaluations ..320
9.2.6.2.12 NullEvaluation...320
9.2.6.2.13 nullEvaluations..321
9.2.6.2.14 Performance...321
9.2.6.2.15 performances ...322
9.2.6.2.16 Performs ..322
9.2.6.2.17 trueEvaluations..323

9.2.7 Transfers..323
9.2.7.1 Transfers Overview...323
9.2.7.2 Elements ..324

9.2.7.2.1 AcceptPerformance ...324
9.2.7.2.2 FlowTransfer ...325
9.2.7.2.3 FlowTransferBefore ..325
9.2.7.2.4 flowTransfers...326
9.2.7.2.5 flowTransfersBefore..326
9.2.7.2.6 MessageTransfer ...327
9.2.7.2.7 messageTransfers ..327
9.2.7.2.8 SendPerformance...327
9.2.7.2.9 Transfer ...328

viii Kernel Modeling Language v1.0 Beta 4

9.2.7.2.10 TransferBefore...329
9.2.7.2.11 transfers ...329
9.2.7.2.12 transfersBefore ..330

9.2.8 Feature Referencing Performances ...330
9.2.8.1 Feature Referencing Performances Overview...330
9.2.8.2 Elements ..330

9.2.8.2.1 BooleanEvaluationResultMonitorPerformance...330
9.2.8.2.2 BooleanEvaluationResultToMonitorPerformance ..331
9.2.8.2.3 EvaluationResultMonitorPerformance..332
9.2.8.2.4 FeatureAccessPerformance ...332
9.2.8.2.5 FeatureMonitorPerformance ...333
9.2.8.2.6 FeatureReadEvaluation ...334
9.2.8.2.7 FeatureReferencingPerformance ...334
9.2.8.2.8 FeatureWritePerformance ...335

9.2.9 Control Performances..335
9.2.9.1 Control Performances Overview...335
9.2.9.2 Elements ..336

9.2.9.2.1 DecisionPerformance ..336
9.2.9.2.2 IfElsePerformance ...337
9.2.9.2.3 IfPerformance..337
9.2.9.2.4 IfThenElsePerformance...337
9.2.9.2.5 IfThenPerformance..338
9.2.9.2.6 LoopPerformance ..338
9.2.9.2.7 MergePerformance ..339

9.2.10 Transition Performances ...339
9.2.10.1 Transition Performances Overview...339
9.2.10.2 Elements ..340

9.2.10.2.1 NonStateTransitionPerformance ...340
9.2.10.2.2 TPCGuardConstraint ...341
9.2.10.2.3 TransitionPerformance ..341

9.2.11 State Performances..342
9.2.11.1 State Performances Overview ...342
9.2.11.2 Elements ..343

9.2.11.2.1 StatePerformance...343
9.2.11.2.2 StateTransitionPerformance ..344

9.2.12 Clocks..345
9.2.12.1 Clocks Overview...345
9.2.12.2 Elements ..345

9.2.12.2.1 BasicClock...345
9.2.12.2.2 BasicDurationOf..345
9.2.12.2.3 BasicTimeOf ...346
9.2.12.2.4 Clock ...346
9.2.12.2.5 DurationOf...347
9.2.12.2.6 TimeOf ..347
9.2.12.2.7 universalClock...348
9.2.12.2.8 UniversalClockLife ...348

9.2.13 Observation ...349
9.2.13.1 Observation Overview...349
9.2.13.2 Elements ..349

9.2.13.2.1 CancelObservation ..349
9.2.13.2.2 ChangeMonitor..349
9.2.13.2.3 ChangeSignal...350
9.2.13.2.4 defaultMonitor...350
9.2.13.2.5 DefaultMonitorLife ...351
9.2.13.2.6 ObserveChange ...351
9.2.13.2.7 StartObservation..352

Kernel Modeling Language v1.0 Beta 4 ix

9.2.14 Triggers ...352
9.2.14.1 Triggers Overview...352
9.2.14.2 Elements ..352

9.2.14.2.1 TimeSignal ..352
9.2.14.2.2 TriggerAfter...353
9.2.14.2.3 TriggerAt ...354
9.2.14.2.4 TriggerWhen ...354

9.2.15 SpatialFrames..355
9.2.15.1 SpatialFrames Overview ...355
9.2.15.2 Elements ..355

9.2.15.2.1 CartesianCurrentDisplacementOf ...355
9.2.15.2.2 CartesianCurrentPositionOf ..356
9.2.15.2.3 CartesianDisplacementOf..356
9.2.15.2.4 CartesianPositionOf...357
9.2.15.2.5 CartesianSpatialFrame...358
9.2.15.2.6 CurrentDisplacementOf...358
9.2.15.2.7 CurrentPositionOf ...359
9.2.15.2.8 defaultFrame..359
9.2.15.2.9 DefaultFrameLife ..359
9.2.15.2.10 DisplacementOf...360
9.2.15.2.11 PositionOf..361
9.2.15.2.12 SpatialFrame..361

9.2.16 Metaobjects ...362
9.2.16.1 Metaobjects Overview...362
9.2.16.2 Elements ..362

9.2.16.2.1 Metaobject ...362
9.2.16.2.2 metaobjects..362
9.2.16.2.3 SemanticMetadata ...363

9.2.17 KerML...363
9.3 Data Type Library...364

9.3.1 Data Types Library Overview...364
9.3.2 Scalar Values...364

9.3.2.1 Scalar Values Overview ..364
9.3.2.2 Elements ..365

9.3.2.2.1 Boolean..365
9.3.2.2.2 Complex ..365
9.3.2.2.3 Integer..365
9.3.2.2.4 Natural ...366
9.3.2.2.5 Number..366
9.3.2.2.6 NumericalValue...366
9.3.2.2.7 Positive ..367
9.3.2.2.8 Rational ...367
9.3.2.2.9 Real..368
9.3.2.2.10 ScalarValue ...368
9.3.2.2.11 String ...368

9.3.3 Collections...369
9.3.3.1 Collections Overview..369
9.3.3.2 Elements ..369

9.3.3.2.1 Array..369
9.3.3.2.2 Bag...370
9.3.3.2.3 Collection ..370
9.3.3.2.4 KeyValuePair ..370
9.3.3.2.5 List...371
9.3.3.2.6 Map..371
9.3.3.2.7 OrderedCollection ...372
9.3.3.2.8 OrderedMap...372

x Kernel Modeling Language v1.0 Beta 4

9.3.3.2.9 OrderedSet...373
9.3.3.2.10 Set..373
9.3.3.2.11 UniqueCollection...373

9.3.4 Vector Values..374
9.3.4.1 Vector Values Overview ...374
9.3.4.2 Elements ..374

9.3.4.2.1 CartesianThreeVectorValue ..374
9.3.4.2.2 CartesianVectorValue ...374
9.3.4.2.3 NumericalVectorValue..375
9.3.4.2.4 ThreeVectorValue ...375
9.3.4.2.5 VectorValue...376

9.4 Function Library ...376
9.4.1 Function Library Overview...376
9.4.2 Base Functions ..376

9.4.2.1 Base Functions Overview..376
9.4.2.2 Elements ..376

9.4.3 Data Functions ..378
9.4.3.1 Data Functions Overview..378
9.4.3.2 Elements ..378

9.4.4 Scalar Functions ..379
9.4.4.1 Scalar Functions Overview ...379
9.4.4.2 Elements ..379

9.4.5 Boolean Functions...380
9.4.5.1 Boolean Functions Overview ..380
9.4.5.2 Elements ..380

9.4.6 String Functions ..380
9.4.6.1 String Functions Overview..380
9.4.6.2 Elements ..380

9.4.7 Numerical Functions ...381
9.4.7.1 Numerical Functions Overview ..381
9.4.7.2 Elements ..381

9.4.8 Complex Functions ...382
9.4.8.1 Complex Functions Overview...382
9.4.8.2 Elements ..382

9.4.9 Real Functions...383
9.4.9.1 Real Functions Overview ..383
9.4.9.2 Elements ..383

9.4.10 Rational Functions ..384
9.4.10.1 Rational Functions Overview..384
9.4.10.2 Elements ..384

9.4.11 Integer Functions...385
9.4.11.1 Integer Functions Overview ..385
9.4.11.2 Elements ..385

9.4.12 Natural Functions ..386
9.4.12.1 Natural Functions Overview ...386
9.4.12.2 Elements ..386

9.4.13 Trig Functions ...386
9.4.13.1 Trig Functions Overview ..386
9.4.13.2 Elements ..387

9.4.14 Sequence Functions...387
9.4.14.1 Sequence Functions Overview ..387
9.4.14.2 Elements ..387

9.4.15 Collection Functions ...389
9.4.15.1 Collection Functions Overview...389
9.4.15.2 Elements ..389

Kernel Modeling Language v1.0 Beta 4 xi

9.4.16 Vector Functions ...390
9.4.16.1 Vector Functions Overview ..391
9.4.16.2 Elements ..391

9.4.17 Control Functions..395
9.4.17.1 Control Functions Overview ...395
9.4.17.2 Elements ..395

9.4.18 Occurrence Functions..397
9.4.18.1 Occurrence Functions Overview...397
9.4.18.2 Elements ..397

10 Model Interchange ..401
10.1 Model Interchange Overview..401
10.2 Model Interchange Formats ..401
10.3 Model Interchange Projects ..401
10.4 JSON Serialization..405

10.4.1 Serialization Overview..405
10.4.2 Primitive Type Serialization ...405
10.4.3 Enumeration Serialization...406
10.4.4 Element Reference Serialization ...406
10.4.5 Element Serialization ..406
10.4.6 Model Serialization ...406

A Annex: Model Execution ...407
A.1 Overview..407
A.2 Modeling Instances and Feature Values ..407
A.3 Instantiation Procedure...408

A.3.1 Overview ..408
A.3.2 Without connectors ..408
A.3.3 One-to-one connectors ...409
A.3.4 One-to-unrestricted connectors ..410
A.3.5 Timing for structures..412
A.3.6 Timing for behaviors, Sequences ...415
A.3.7 Timing for behaviors, Decisions and merges...417
A.3.8 Timing for behavior, Changing feature values...420

xii Kernel Modeling Language v1.0 Beta 4

List of Tables
1. Grammar Production Definitions...74
2. EBNF Notation Conventions ...74
3. Abstract Syntax Synthesis Notation...74
4. Escape Sequences ..76
5. Operator Mapping..97
6. Operator Precedence (highest to lowest) ...98
7. Primary Expression Operator Mapping ...101
8. Core Semantics Implied Relationships ..237
9. Core Semantics Implied Relationships Supporting Kernel Semantics ..237
10. Kernel Semantics Implied Specializations...245
11. Kernel Semantics Other Implied Relationships...249
12. Interchange Project Information ..403
13. Interchange Project Metadata ..404
14. UML Primitive Type Serialization ..405

Kernel Modeling Language v1.0 Beta 4 xiii

List of Figures
1. KerML Syntax Layers..106
2. KerML Element Hierarchy ..107
3. KerML Relationship Hierarchy ...107
4. Elements...109
5. Dependencies ...115
6. Annotation..117
7. Namespaces..122
8. Imports ...123
9. Types..133
10. Specialization...134
11. Conjugation..134
12. Disjoining...135
13. Unioning ..135
14. Intersecting...135
15. Differencing ...136
16. Classifiers...151
17. Features ..153
18. Subsetting...154
19. Feature Chaining..154
20. Feature Inverting..155
21. End Feature Membership...155
22. Cross Subsetting ..155
23. Data Types ...177
24. Classes..178
25. Structures ...179
26. Associations ...180
27. Connectors ...184
28. Behaviors ...189
29. Parameter Memberships...189
30. Functions..193
31. Predicates ...193
32. Function Memberships...193
33. Expressions ..201
34. Literal Expressions...201
35. Interactions...218
36. Flows..218
37. Feature Values ...223
38. Multiplicities ..225
39. Metadata Annotation..228
40. Packages...231
41. KerML Semantic Layers..235
42. Interchange Projects...403

xiv Kernel Modeling Language v1.0 Beta 4

Kernel Modeling Language v1.0 Beta 4 xv

xvi Kernel Modeling Language v1.0 Beta 4

0 Preface
OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable, and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and
networking infrastructures, and software development environments. OMG’s specifications include: UML®

(Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common
Warehouse Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at https://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. All OMG
Specifications are available from the OMG website at: https://www.omg.org/spec

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and
PDF format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management
Group, Inc. at:

OMG Headquarters
9C Medway Road, PMB 274
Milford, MA 01757
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult https://www.iso.org

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page https://www.omg.org, under Specifications, Report an Issue.

Kernel Modeling Language v1.0 Beta 4 xvii

https://www.omg.org/
https://www.omg.org/spec
mailto:pubs@omg.org
https://www.iso.org/
https://www.omg.org/

xviii Kernel Modeling Language v1.0 Beta 4

1 Scope
The Kernel Modeling Language (KerML) is an application-independent modeling language with a well-grounded
formal semantics for modeling existing or planned systems. The language includes general syntactic constructs for
structuring models, such as relationships, annotations and namespaces; core semantic constructs that have semantics
based on classification; and additional constructs for commonly needed modeling capabilities, such as associations
and behaviors.

System models are expressed in KerML using a textual concrete syntax. This can be parsed to an abstract syntax
representation, which is then given a semantic interpretation for the system being modeled. The semantics for the
KerML core constructs is grounded in formal mathematical logic, providing a consistent basis for mathematical
reasoning about KerML models. However, beyond this, the semantics of KerML constructs are specified by the
relationship of user model elements to the KerML Semantic Library.

The Semantic Library models, also expressed in KerML, provide an ontological model of the meaning of KerML
models. Indeed, all KerML models can be semantically expressed using solely core modeling constructs referencing
the appropriate semantic concepts defined in the Semantic Library. KerML semantic constructs beyond the core are
essentially just syntactic conveniences for reusing specific library concepts: structures for modeling objects,
behaviors for modeling performances, associations for modeling links, etc.

Indeed, the full KerML language can be considered to be simply a syntactic extension of the core, which is
semantically extended using library models. By intent, this approach can also be used to build on KerML to create
more specific modeling languages. Application specific modeling languages can be built on KerML by extending
the KerML abstract syntax, specializing its semantics, with concrete syntaxes similar to or entirely different from
KerML's.

To support this, the KerML Semantic Library also includes additional library models beyond those directly
providing semantics for KerML syntactic constructs, capturing typical semantic patterns (such as asynchronous
transfers and state-based behavior) that can be reused by languages built on KerML. Specialized modeling
languages can provide additional syntax for these libraries, tailored to their applications, with semantics based
largely or entirely on the KerML libraries.

In this way, KerML can provide the kernel for a family of syntactically diverse but semantically integrated modeling
languages.

Kernel Modeling Language v1.0 Beta 4 1

2 Kernel Modeling Language v1.0 Beta 4

2 Conformance
This specification defines the Kernel Modeling Language (KerML), a language used to construct models of (real or
virtual, planned or imagined) things. The specification includes this document and the content of the machine-
readable files listed on the cover page. If there are any conflicts between this document and the machine-readable
files, the machine-readable files take precedence.

A KerML model shall conform to this specification only if it can be represented according to the syntactic
requirements specified in Clause 8 . The model may be represented in a form consistent with the requirements for
the KerML concrete syntax, in which case it can be parsed (as specified in Clause 8) into an abstract syntax form,
or may be represented only in an abstract syntax form (see also 8.2 and 8.3).

A KerML modeling tool is a software application that creates, manages, analyzes, visualizes, executes or performs
other services on KerML models. A tool can conform to this specification in one or more of the following ways.

1. Abstract Syntax Conformance. A tool demonstrating Abstract Syntax Conformance provides a user
interface and/or API that enables instances of KerML abstract syntax metaclasses to be created, read,
updated, and deleted. The tool must also provide a way to validate the well-formedness of models that
corresponds to the constraints defined in the KerML metamodel. A well-formed model represented
according to the abstract syntax is syntactically conformant to KerML as defined above. (See Clause 8 .)

2. Concrete Syntax Conformance. A tool demonstrating Concrete Syntax Conformance provides a user
interface and/or API that enables instances of KerML concrete syntax notation to be created, read,
updated, and deleted. Note that a conforming tool may also provide the ability to create, read, update and
delete additional notational elements that are not defined in KerML. Concrete Syntax Conformance
implies Abstract Syntax Conformance, in that creating models in the concrete syntax acts as a user
interface for the abstract syntax. However, a tool demonstrating Concrete Syntax Conformance need not
represent a model internally in exactly the form modeled for the abstract syntax in this specification. (See
Clause 8 .)

3. Semantic Conformance. A tool demonstrating Semantic Conformance provides a demonstrable way to
interpret a syntactically conformant model (as defined above) according to the KerML semantics, e.g.,
via model execution, simulation, or reasoning, when and only when such interpretations are possible.
Semantic Conformance implies Abstract Syntax Conformance, in that the semantics for KerML are only
defined on models represented in the abstract syntax. (See Clause 8 and Clause 9 . See also 6.1 for further
discussion of the interpretation of models and their syntactic and semantic conformance.)

4. Model Interchange Conformance. A tool demonstrating model interchange conformance can import and/
or export syntactically conformant KerML models (as defined above) as specified in Clause 10 .

Every conformant KerML modeling tool shall demonstrate at least Abstract Syntax Conformance and Model
Interchange Conformance. In addition, such a tool may demonstrate Concrete Syntax Conformance and/or Semantic
Conformance, both of which are dependent on Abstract Syntax Conformance.

Kernel Modeling Language v1.0 Beta 4 3

4 Kernel Modeling Language v1.0 Beta 4

3 Normative References
The following normative documents contain provisions which, through reference in this text, constitute provisions
of this specification.

[ADLER] ZLIB Compressed Data Format Specification, Version 3.3
https://datatracker.ietf.org/doc/html/rfc1950

[Alf] Action Language for Foundational UML (Alf), Version 1.1
https://www.omg.org/spec/ALF/1.1

[BLAKE] The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC)
https://www.rfc-editor.org/rfc/rfc7693
BLAKE3
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf

[fUML] Semantics of a Foundational Subset for Executable UML Models (fUML), Version 1.4
https://www.omg.org/spec/fUML/1.4

[ISO8601] ISO 8601-1:2019 (First edition) Date and time – Representations for information interchange — Part 1:
Basic rules
https://www.iso.org/standard/70907.html

[ISO10646] ISO/IEC 10646:2010 (Second edition) Information technology – Universal Coded Character Set (UCS)

[ISO15897] ISO/IEC 15897:2011 Information technology – User interfaces – Procedures for the registration of
cultural elements
https://www.iso.org/standard/50707.html

[JSON] ISO/IEC 21778:2017 Information technology – The JSON data interchange syntax
https://www.iso.org/standard/71616.html
(see also IECMA-404 The JSON data interchange syntax
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/)

[MD] The MD2 Message-Digest Algorithm
https://datatracker.ietf.org/doc/html/rfc1319
The MD4 Message-Digest Algorithm
https://www.rfc-editor.org/rfc/rfc1320
The MD5 Message-Digest Algorithm
https://www.rfc-editor.org/rfc/rfc1321

[MOF] Meta Object Facility, Version 2.5.1
https://www.omg.org/spec/MOF/2.5.1

[OCL] Object Constraint Language, Version 2.4
https://www.omg.org/spec/OCL/2.4

[SHS] FIPS Pub 180-4 Secure Hash Standard
https://csrc.nist.gov/publications/detail/fips/180/4/final

[SMOF] MOF Support for Semantic Structures, Version 1.0
https://www.omg.org/spec/SMOF/1.0

[SysAPI] Systems Modeling Application Programming Interface (API) and Services
(as submitted contemporaneously with this proposed KerML specification)

Kernel Modeling Language v1.0 Beta 4 5

https://datatracker.ietf.org/doc/html/rfc1950
https://www.omg.org/spec/ALF/1.1
https://www.rfc-editor.org/rfc/rfc7693
https://github.com/BLAKE3-team/BLAKE3-specs/blob/master/blake3.pdf
https://www.omg.org/spec/fUML/1.4
https://www.iso.org/standard/70907.html
https://www.iso.org/standard/50707.html
https://www.iso.org/standard/71616.html
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://datatracker.ietf.org/doc/html/rfc1319
https://www.rfc-editor.org/rfc/rfc1320
https://www.rfc-editor.org/rfc/rfc1321
https://www.omg.org/spec/MOF/2.5.1
https://www.omg.org/spec/OCL/2.4
https://csrc.nist.gov/publications/detail/fips/180/4/final
https://www.omg.org/spec/SMOF/1.0

[UUID] ITU-T X.667 (10/2012) Information technology – Procedures for the operation of object identifier
registration authorities: Generation of universally unique identifiers and their use in object identifiers
https://www.itu.int/rec/T-REC-X.667-201210-I
(see also A Universally Unique IDentifier (UUID) URN Namespace
https://tools.ietf.org/html/rfc4122)

[XMI] XML Metadata Interchange, Version 2.5.1
https://www.omg.org/spec/XMI/2.5.1

[ZIP] .ZIP File Format Specification
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

6 Kernel Modeling Language v1.0 Beta 4

https://www.itu.int/rec/T-REC-X.667-201210-I
https://tools.ietf.org/html/rfc4122
https://www.omg.org/spec/XMI/2.5.1
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

4 Terms and Definitions
Various terms and definitions are specified throughout the body of this specification.

Kernel Modeling Language v1.0 Beta 4 7

8 Kernel Modeling Language v1.0 Beta 4

5 Symbols
A concrete syntax for KerML is specified in subclause 8.2 of this specification.

Kernel Modeling Language v1.0 Beta 4 9

10 Kernel Modeling Language v1.0 Beta 4

6 Introduction
6.1 Language Architecture
Developing systems generally involves creating a number of different specifications. For instance, a requirements
specification gives the intended effects of a system, while a design specification determines how the system will
bring about those effects. Many designs might be developed and evaluated against the same requirements. A test
specification then describes test procedures that check whether requirements are met by real or virtual systems built
and operated according to some design.

A model is a representation in some modeling language of all or part of any of the above kinds of system
specification. The semantics of such models defines what it means for real or virtual things in a modeled system to
conform to the specification given by the model. KerML is a foundational modeling language for expressing various
kinds of system models with consistent semantics.

Syntactically, KerML is divided into three layers, with each layer building increasingly specific constructs on the
previous layer. These layers are, from general to specific:

1. The Root Layer includes the most general syntactic constructs for structuring models, such as elements,
relationships, annotations, and packaging.

2. The Core Layer includes the most general constructs that have semantics based on classification.
3. The Kernel Layer provides commonly needed modeling capabilities, such as associations and behavior.

The Core Layer grounds KerML semantics by interpreting it using mathematical logic. However, additional
semantics are then specified through the relationship of Kernel abstract syntax constructs to model elements in the
Kernel Semantic Library, which is written in KerML itself. Models expressed in KerML thus essentially reuse
elements of the Semantic Library to give them semantics. The Semantic Library models give the basic conditions for
the conformance of modeled things to the model, which are then augmented in the user model as appropriate.

Having a consistent specification of semantics helps people interpret models in the same way. In particular, because
the Semantic Library models are expressed in the same language as user models, engineers and tool builders can
inspect the library models to formally understand what real or virtual effects are actually being specified by their
models for systems being modeled. More uniform model interpretation improves communication between everyone
involved in modeling, including modelers and tool builders.

6.2 Document Organization
The remainder of this document is organized into four major clauses.

• Clause 7 describes KerML from a user point of view, covering all the modeling constructs in the language.
It is an informative reference for the normative language specification given in the following three
subclauses.

• Clause 8 specifies the normative metamodel for the KerML language. This includes the complete grammar
for the concrete syntax, which is a textual notation (see 8.2), the abstract syntax, which is a MOF model
(see 8.3), and formal semantics (see 8.4).

• Clause 9 specifies the normative Kernel Model Libraries, each of which is a set of library models
available to be used in all KerML user models. They include the Semantic Library, which is a set of
KerML models used to provide Kernel-layer semantics to user models (see 9.2), the Data Type Library of
standard data types (see 9.3) and the Function Library of functions on those data types (see 9.4).

• Clause 10 specifies the format for standard file-based interchange of KerML models between tools.

In addition, Annex A provides basic (non-normative) guidance on incrementally instantiating models for execution,
in a way that conforms to the formal semantics as (normatively) specified in the metamodel (see 8.4), as supported
by the Semantic Model Library (see 9.2).

Kernel Modeling Language v1.0 Beta 4 11

6.3 Acknowledgements
This specification represents the work of many organizations and individuals. The Kernel Model Language concept,
as developed for use with SysML v2, is based on earlier work of the KerML Working Group, which was led by:

• Conrad Bock, US National Institute of Standards and Technology (NIST)
• Charles Galey, Jet Propulsion Laboratory
• Bjorn Cole, Lockheed Martin Corporation

The primary authors of this specification document and the syntactic and library models described in it are:

• Ed Seidewitz, Model Driven Solutions
• Conrad Bock, US National Institute of Standards and Technology (NIST)
• Bjorn Cole, Lockheed Martin Corporation
• Ivan Gomes, Twingineer
• Hans Peter de Koning, DEKonsult
• Vince Molnár, Budpest University of Technology and Economics

Other contributors include:

• Manfred Koethe, 88solutions
• Karen Ryan, Siemens

The specification was formally submitted for standardization by the following organizations:

• 88solutions Corporation
• Dassault Systèmes
• GfSE e.V.
• IBM
• INCOSE
• Intercax LLC
• Lockheed Martin Corporation
• MITRE
• Model Driven Solutions, Inc.
• PTC
• Simula Research Laboratory AS
• Thematix Partners LLC

However, work on the specification was also supported by over 200 people in over 80 organizations that participated
in the SysML v2 Submission Team (SST). The following individuals had leadership roles in the SST:

• Manas Bajaj, Intercax LLC (API and services development lead)
• Yves Bernard, Airbus (v1 to v2 transformation co-lead)
• Bjorn Cole, Lockheed Martin Corporation (metamodel development co-lead)
• Sanford Friedenthal, SAF Consulting (SST co-lead, requirements V&V lead)
• Charles Galey, Lockheed Martin Corporation (metamodel development co-lead)
• Karen Ryan, Siemens (metamodel development co-lead)
• Ed Seidewitz, Model Driven Solutions (SST co-lead, pilot implementation lead)
• Tim Weilkiens, oose (v1 to v2 transformation co-lead)

The specification was prepared using CATIA No Magic modeling tools and the OpenMBEE system for model
publication (http://www.openmbee.org), with the invaluable support of the following individuals:

• Tyler Anderson, No Magic/Dassault Systèmes
• Christopher Delp, Jet Propulsion Laboratory
• Ivan Gomes, Twingineer

12 Kernel Modeling Language v1.0 Beta 4

http://www.openmbee.org/

• Doris Lam, Jet Propulsion Laboratory
• Robert Karban, Jet Propulsion Laboratory
• Christopher Klotz, No Magic/Dassault Systèmes
• John Watson, Lightstreet Consulting

Kernel Modeling Language v1.0 Beta 4 13

14 Kernel Modeling Language v1.0 Beta 4

7 Language Description
(Informative)

7.1 Language Description Overview
This clause provides an informative description of KerML. Clause 8 gives the full definition of the KerML
metamodel, which is the normative specification for implementing the language. In contrast, the description in this
clause focuses on how the various constructs of the language are used, along with the Kernel Model Library (see
Clause 9), to construct models. While non-normative, it is intended to be precise and consistent with the normative
specification of the language.

The following subclauses present the language features in each of the Root, Core and Kernel Layers of KerML (as
described in 6.1). Each layer is then further subdivided, following a parallel structure to the packaging of the
metamodel (see 8.1). Each subclause within a layer includes references to the corresponding concrete syntax,
abstract syntax and semantics subclauses from the normative metamodel specification. In this way, the clause can be
used as a general reference for KerML as well as a guide for better understanding of the formal specification of the
metamodel.

This clause contains many examples of the KerML textual notation. In order to distinguish this text from normal
body text, the following stylistic conventions are used in this clause.

1. Textual notation appears in "code" font. This includes references to individual element names from both
example models (such as Vehicle and wheels) and the Kernel Model Library (such as Performance
and performances), as well as more extensive model snippets.

2. Keywords appear in boldface, both when referenced in-line in body text ("Features are declared using
the feature keyword.") and when used within complete notation examples.

3. Longer samples of textual notation are written in separate paragraphs, indented relative to body
paragraphs.

7.2 Root
7.2.1 Root Overview

The Root layer provides the most general syntactic capabilities of the language: elements and relationships between
them, annotations of elements, and membership of elements in namespaces. These capabilities are the syntactic
foundation for structuring models in KerML, but they do not actually represent anything about a modeled system,
and so have no semantic specification. The Core and Kernel layers build on the foundation provided by Root to
provide constructs with modeling semantics (see 7.3 and 7.4).

7.2.2 Elements and Relationships
7.2.2.1 Elements and Relationships Overview

Metamodel references:

• Concrete syntax, 8.2.3.1
• Abstract syntax, 8.3.2.1
• Semantics, none

Elements are the constituents of a model. Some elements represent relationships between other elements, known as
the related elements of the relationship. In general terms, a model is constructed as a graph structure in which
relationships form the edges connecting non-relationship elements constituting the nodes. However, since
relationships are themselves elements, it is also possible in KerML for a relationship to be a related element in a
relationship and for there to be relationships between relationships.

Kernel Modeling Language v1.0 Beta 4 15

One of the related elements of a relationship may be the owning related element of the relationship. If the owning
related element of a relationship is deleted from a model, then the relationship is also deleted. Some of the related
elements of a relationship (distinct from the owning related element, if any) may be owned related elements. If a
relationship has owned related elements, then, if the relationship is deleted from a model, all its owned related
elements are also deleted.

The owned relationships of an element are all those relationships for which the element is the owning related
element. The owned elements of an element are all those elements that are owned related elements of the owned
relationships of the element (notice the extra level of indirection through the owned relationships). The owning
relationship of an element (if any) is the relationship for which the element is an owned related element (of which
the element can have at most one). The owner of an element (if any) is the owning related element of the owning
relationship of the element (again, notice the extra level of indirection through the owning relationship).

The deletion rules for relationships imply that, if an element is deleted from a model, then all its owned relationships
are also deleted and, therefore, all its owned elements. This may result in a further cascade of deletions until all
deletion rules are satisfied. An element that has no owner acts as the root element of an ownership tree structure,
such that all elements and relationships in the structure are deleted if the root element is deleted. Deleting any
element other than the root element results in the deletion of the entire subtree rooted in that element.

7.2.2.2 Elements

Every element has a unique identifier known as its element ID. The properties of an element can change over its
lifetime, but its element ID does not change after the element is created. An element may also have additional
identifiers, its alias IDs, which may be assigned for tool-specific purposes.

The KerML textual notation, however, does not have any provision for specifying element or alias IDs, since these
are expected to be managed by the underlying modeling tooling. Instead, an element may also have a name and/or a
short name, by which it can be referenced in the notation. While the language makes no formal distinction between
names and short names, the intent is that the name of an element should be fully descriptive, particularly in the
context of the definition of the element, while the short name, if given, should be an abbreviated name useful for
referring to the element. (For further discussion of naming, see also 7.2.5).

In most cases, an element is declared using a keyword indicating the kind of element it is (e.g., classifier or
feature). The declaration of an element may also specify a short name and/or name for it, in that order. The short
name is distinguished by being surrounded by the delimiting characters < and >.

classifier <c123> AClassifier;
feature aFeature;

Note that it is not required to specify either a short name or a name for an element. However, unless at least one of
these is given, it is not possible to reference the element from elsewhere in the textual notation.

Names and short names have the same lexical structure, which has two variants.

1. A basic name is one that can be lexically distinguished in itself from other parts of the notation. The initial
character of a basic name must be a lowercase letter, an uppercase letter or an underscore. The remaining
characters of a basic name can be any character allowed as an initial character or any digit. However, a
reserved keyword may not be used as a name, even though it has the form of a basic name (see 8.2.2.6 for
the list of reserved words).

Vehicle
power_line

2. An unrestricted name provides a way to represent a name that contains any character. It is represented as a
non-empty sequence of characters surrounded by single quotes. The name consists of the characters within
the single quotes – the single quotes are not included as part of the represented name. The characters
within the single quotes may not include non-printable characters (including backspace, tab and newline).

16 Kernel Modeling Language v1.0 Beta 4

However, these characters may be included as part of the name itself through use of an escape sequence.
In addition, the single quote character or the backslash character may only be included within the name by
using an escape sequence.

'+'
'circuits in line'
'On/Off Switch'
'Ångström'

An escape sequence is a sequence of two text characters starting with a backslash as an escape character,
which actually denotes only a single character (except for the newline escape sequence, which represents
however many characters is necessary to represent an end of line in a specific implementation). Table 4 in
subclause 8.2.2.3 shows the meaning of the allowed escape sequences.

In addition to the declaration notated as above, the representation for an element may include a body, which is a list
of owned elements delimited by curly braces {...}. It is a general principle of the KerML textual concrete syntax that
the representation of owned elements are nested inside the body of the representation of the owning element. In this
way, when the notation for the owning element is removed in its entirety from the representation of a model, the
owned elements are also removed.

namespace P {
// This is the body of the namespace, declaring its owned members.
classifier A;
classifier B {

// This is the body of the classifier, declaring its owned features.
feature x;
feature y;

}
}

7.2.2.3 Relationships

The related elements of a relationship are divided into source and target elements. A relationship is said to be
directed from its source elements to its target elements. It is allowed for a relationship to have only source or only
target elements. However, by convention, an undirected relationship is usually represented as having only target
elements.

A relationship must have at least two related elements. A relationship with exactly two related elements is known as
a binary relationship. A directed binary relationship is a binary relationship in which one related element is the
source and one is the target. Most specialized kinds of relationship in KerML are directed binary relationships (the
principal exceptions being dependencies, associations and connectors, see 7.2.3 , 7.4.5 , and 7.4.6).

Various kinds of relationships are declared with special notations showing their related elements. A relationship may
also have a body that specifies owned related elements of the relationship, which may include any kind of element
other than an annotating element (see 7.2.4). If an annotating element (i.e., a comment, textual representation or
metadata feature) is included in the body of a relationship, then, rather than being directly an owned related element
of the containing relationship, the annotating element is an owned related element of an annotation relationship
owned by the containing relationship (see 7.2.3.2 for an example).

7.2.3 Dependencies
7.2.3.1 Dependencies Overview

Metamodel references:

• Concrete syntax, 8.2.3.2
• Abstract syntax, 8.3.2.2
• Semantics, none

Kernel Modeling Language v1.0 Beta 4 17

A dependency is a kind of relationship between any number of client (source) and supplier (target) elements. It
implies that a change to a supplier element may result in a change to a client element. Dependencies can be useful
for representing relationships between elements in an abstract way. For example, a dependency can be used to
represent that an upper layer of an architecture stack may depend on a lower layer of the stack.

7.2.3.2 Dependency Declaration

A dependency is declared using the keyword dependency, optionally followed by a short name and/or name (see
7.2.2). The client elements of the dependency are then given as a comma-separated list of qualified names following
the keyword from, followed by a similar list of the supplier elements after the keyword to. If no short name or
name is given for the dependency, then the keyword from may be omitted.

dependency Use
from 'Application Layer' to 'Service Layer';

// 'Service Layer' is the client of this dependency, not its name.
dependency 'Service Layer'

to 'Data Layer', 'External Interface Layer';

A dependency declaration may also optionally have a relationship body (see 7.2.2.3) containing any additional
owned related elements (which act as suppliers) and annotating elements owned by the dependency via annotation
relationships (see 7.2.4).

dependency 'Service Layer'
to 'Data Layer', 'External Interface Layer' {
/* 'Service Layer' is the client of this dependency,
* not its name. */

}

7.2.4 Annotations
7.2.4.1 Annotations Overview

Metamodel references:

• Concrete syntax, 8.2.3.3
• Abstract syntax, 8.3.2.3
• Semantics, none

An annotation is a relationship between an annotated element and an annotating element that provides additional
information about the element being annotated. Any kind of element may be annotated, but only certain kinds of
elements may be annotating elements. Specific kinds of annotating elements include comments and textual
representations (see 7.2.4.2 and 7.2.4.3). A further kind of annotating element for user-defined metadata is defined
in the Kernel layer (see 7.4.13).

Each annotation relationship is between a single annotating element and a single annotated element, but an
annotating element may have multiple annotation relationships with different annotated elements, and any element
may have multiple annotations. The annotated element of an annotation can optionally be the owning related
element of the annotation, in which case the annotation is an owned annotation of the owning annotated element. If
an annotating element is an owned member of a namespace (see 7.2.5) and is not involved in any annotation
relationships, then its owning namespace is considered to be its annotated element without the need for an explicit
annotation relationship.

7.2.4.2 Comments and Documentation

18 Kernel Modeling Language v1.0 Beta 4

A comment is an annotating element with a textual body that in some way describes its annotated element.
Documentation is a kind of comment that has the special status of documenting the annotated element, known in this
case as the documented element. A documentation comment is always an owned element of its documented element.

The full declaration of a comment begins with the keyword comment, optionally followed by a short name and/or
name (see 7.2.2.2). One or more annotated elements are then identified for the comment after the keyword about,
indicating that the comment has annotation relationships to each of the identified elements. The body of the
comment is written lexically as regular comment text between /* and */ delimiters (see also 8.2.2.2).

classifier A;
classifier B;
comment Comment1 about A, B

/* This is the comment body text. */

If the comment is an owned member of a namespace (see 7.2.5), then the explicit identification of annotated
elements can be omitted, in which case the annotated element is implicitly the containing namespace. Further, in this
case, if no short name or name is given for the comment, then the comment keyword can also be omitted.

namespace N {
comment C /* This is a comment about N. */

/* This is also a comment about N. */
}

A locale can also be specified for a comment, using the keyword locale followed by the locale string, placed
immediately before the comment body (whether or not the comment keyword is used). The locale identifies the
language of the body text and, optionally, the region and/or encoding. The format is
language[_territory][.codeset][@modifier] (conformant to [ISO15897]).

comment C_US_English locale "en_US"
/* This is US English comment text */

A documentation comment is notated similarly to a regular comment, but using the keyword doc rather than
comment. The documented element of a documentation comment is always the owning element of the
documentation.

dependency X from A to B {
doc X_Comment

/* This is a documentation comment about X. */
doc /* This is more documentation about X. */

}
namespace P {

doc P_Comment /* This is a documentation comment about P. */
}

The actual body text of a comment does not include the initial /* and final */ characters. Further, the written text is
processed to allow formatting using * characters to delimit consistent initial indentation of a comment lines. For
example, the comment notation in:

namespace CommentExample {
/*
* This is an example of multiline
* comment text with typical formatting
* for readable display in a text editor.
*/

}

would result in the following body text in the comment element in the represented model:

Kernel Modeling Language v1.0 Beta 4 19

This is an example of multiline
comment text with typical formatting

for readable display in a text editor.

The body text of a comment can include markup information (such as HTML), and a tool may (but is not required
to) display such text as rendered according to the markup. (See 8.2.3.3.2 for the complete rules for processing
comment text.)

7.2.4.3 Textual Representations

A textual representation is an annotating element whose textual body represents its annotated element (known in
this case as the represented element) in a given language. A textual representation is notated similarly to a
documentation comment (see 7.2.4.2), but with the keyword rep used instead of comment. As for documentation, a
textual representation is always owned by its represented element. In particular, if the textual representation is an
owned member of a namespace (see 7.2.5), the represented element is the containing Namespace. A textual
representation declaration must also specify the language used for the textual body as a literal string (see 8.2.2.5)
following the keyword language. If the textual representation has no short name or name, then the rep keyword
can also be omitted.

class C {
feature x: Real;
inv x_constraint {

rep inOCL language "ocl"
/* self.x > 0.0 */

}
}
behavior setX(c : C, newX : Real) {

language "alf"
/* c.x = newX;
* WriteLine("Set new x");
*/

}

The lexical comment text given for a textual representation is processed as for regular comment text (see 7.2.4.2),
and it is the result after such processing that is the textual representation body expected to conform to the named
language.

Note. Since the lexical form of a comment is used to specify the textual representation body, it is not possible to
include comments of a similar form in the body text.

The language name in a textual representation is case insensitive. The name can be of a natural language, but will
often be for a machine-parsable language. In particular, there are recognized standard language names.

If the language is "kerml", then the body of the textual representation must be a legal representation of the
represented element in the KerML textual notation. A tool can use such a textual representation to record the
original KerML notation text from which an element is parsed. Other standard language names that can be used in a
textual representation include "ocl" and "alf", in which case the body of the textual representation must be
written in the Object Constraint Language [OCL] or the Action Language for fUML [Alf], respectively.

However, for any other language than "kerml", the KerML specification does not define how the body text is to be
semantically interpreted as part of the model being represented. An element with no other definition than a textual
representation in a language other than KerML is essentially a semantically "opaque" element specified in the other
language. Nevertheless, a conforming KerML tool may (but is not required to) interpret such an element consistently
with the specification of the named language.

7.2.5 Namespaces
7.2.5.1 Namespaces Overview

20 Kernel Modeling Language v1.0 Beta 4

Metamodel references:

• Concrete syntax, 8.2.3.4
• Abstract syntax, 8.3.2.4
• Semantics, none

A namespace is an element that contains other elements via membership relationships with those elements. The
namespace is the source element and owner of the membership. The target of a membership can be any kind of
element, known as the member element of the membership. If the membership is an owning membership, then the
member element is known as an owned member element, which is the only owned related element of the
membership.

A namespace may also import memberships from other namespaces. Further, a type, which is kind of namespace,
may inherit memberships from other types that it specializes (see 7.3.2).

The members of a namespace are the member elements of all the memberships of the namespace (whether
owned, imported or inherited). The owned members of a namespace are the owned member elements of all the
owned memberships of the namespace that are owning memberships.

If an element is a member of a namespace, then any name for that element relative to the namespace is known as an
unqualified name for that element in the namespace. If the containing namespace is not a root namespace (see
7.2.5.3), then the qualified name for the member element consists of a name for the containing namespace, known
as the qualifier, followed by an unqualified name for the element. Since a namespace is an element that may itself be
a member of another namespace, a qualifier may be a qualified name. Therefore, a qualified name of an element, in
general, has the form of a list of unqualified names of namespaces, each relative to the previous one, followed by the
unqualified name of the element in the final namespace.

A qualified name is notated as a sequence of segment names separated by "::" punctuation. An unqualified name
can be considered the degenerate case of a qualified name with a single segment name. A qualified name is used in
the KerML textual concrete syntax to identify an element that is being referred to in the representation of another
element. A qualified name used in this way does not appear in the corresponding abstract syntax—instead, the
abstract syntax representation contains an actual reference to the identified element.

Name resolution is the process of determining the element that is identified by a qualified name (see 8.2.3.5).
Normally, name resolution begins by searching in the local namespace containing the qualified name reference. If
local name resolution is not successful, the search proceeds outwards to successive containing namespaces until a
root namespace is reached (see 7.2.5.3), at which point a final attempt is made to search the global namespace
consisting of all available root namespaces. However, if a qualified name is preceded by the global scope
qualification $::, then name resolution begins in the global namespace, regardless of the location of the qualified
name reference.

Since namespaces and their members may have aliases (see 7.2.5.2), it is possible for there to be multiple qualified
names for an element even if it does not itself have aliases. On the other hand, if a namespace does not have any
name, then its members will have no qualified names, even if they are themselves named.

7.2.5.2 Namespace Declaration

A namespace that is not a root namespace (see 7.2.5.3), and does not represent any more specialized modeling
construct (such as a type—see 7.3.2) is declared using the keyword namespace, optionally followed by a short
name and/or name (see 7.2.2.2). The body of the namespace is notated as a list of representations of the content of
the namespace delimited between curly braces {...}. If the namespace is empty, then the body may be omitted and
the declaration ended instead with a semicolon.

namespace <'1.1'> N1; // This is an empty namespace.
namespace <'1.2'> N2 {

doc /* This is an example of a namespace body. */

Kernel Modeling Language v1.0 Beta 4 21

class C;
datatype D;
feature f : C;
namespace N3; // This is a nested namespace.

}

Declaring an element within the body of a namespace denotes that the element is an owned member of the
namespace—that is, that there is an owning membership relationship between the namespace and the member
element.

The visibility of the membership can be specified by placing one of the keywords public, protected or private
before the public element declaration. If the membership is public (the default), then it is visible outside of the
namespace. If it is private, then it is not visible. For namespaces other than types, protected visibility is
equivalent to private. For types, protected visibility has a special meaning relating to member inheritance (see
7.3.2).

namespace N3 {
public class C;
private datatype D;
feature f : C; // public by default

}

An alias for an element is a non-owning membership of the element in a namespace, which may or may not be the
same namespace that owns the element. An alias name or short name is determined only relative to its membership
in the namespace, and can therefore be different than the name or short name defined on the element itself. Note that
the same element may be related to a namespace by multiple alias memberships, allowing the element to have
multiple, different names relative to that namespace.

An alias is declared using the keyword alias followed by the alias short name and/or name, with a qualified
name identifying the element given after the keyword for. The alias declaration may optionally include a body as
described for relationships in 7.2.2.3 . The visibility of the alias membership can be specified as for an owned
member.

namespace N4 {
class A;
class B;
alias <C> CCC for B {

doc /* Documentation of the alias. */
}
private alias D for B;

}

A comment (see 7.2.4.2), including documentation, declared within a namespace body also becomes an owned
member of the namespace. If no annotated elements are specified for the comment (with an about clause), then, by
default, the comment is considered to be about the containing namespace.

namespace N5 {
class A;
comment Comment1 about A

/* This is a comment about class A. */

comment Comment2
/* This is a comment about namespace N5. */

/* This is also a comment about namespace N5. */

doc N9_Doc
/* This is documentation about namespace N5. */

}

22 Kernel Modeling Language v1.0 Beta 4

With the ability to specify names, short names and aliases for elements, any element can potentially have several
names relative to a namespace. However, the set of names provided for any one member of a namespace must be
disjoint from the set of names provided for any other member of the namespace. That is, a namespace effectively
provides a "space" of names, each one of which uniquely identifies a single member element of the namespace
(though there may be multiple names that identify the same element). This is known as the distinguishibility of
namespace memberships.

7.2.5.3 Root Namespaces

A root namespace is a namespace that has no owner. The owned members of a root namespace are known as top-
level elements. Any element that is not a root namespace has an owner and, therefore, must be in the ownership tree
of a top-level element of some root namespace.

The declaration of a root namespace is implicit and no identification of it is provided in the KerML textual notation.
Instead, the body of a root namespace is given simply by the list of representations of its top-level elements.

doc /* This is a model notated in KerML concrete syntax. */
classifier A {

feature c : C;
}
class C;
datatype D;
feature f: C;
package P;

Since the notation does not provide a means for naming a root namespace, the name of a top-level element is not
qualified by the name of its containing root namespace. The name resolution rules consider all top-level elements to
be directly and globally visible without qualification (see 8.2.3.5). Therefore, the fully qualified name of an element
relative to a root namespace always begins with the name of a top-level element in the root namespace, without
regard to the name (if any) of the root namespace.

7.2.5.4 Imports

A namespace may import visible memberships from other namespaces. The complete set of memberships of a
namespace include all its owned memberships and all its imported memberships, and the member elements of
imported memberships are included in the set of members of the namespace. Various kinds of namespaces may also
define additional memberships to be included in the set of memberships of that kind of namespace (for instance, the
memberships of a type also include its inherited members – see 7.3.2) and which of those are visible (e.g., public
inherited memberships).

If the member name or member short name of any imported membership conflicts with the name of any owned
member, or with the name of any visible membership from any other imported namespace, then the conflicting
membership is hidden and is not included in the set of imported memberships of the importing namespace. As a
result of this rule and the distinguishability rule for owned members (see 7.2.5.2), the names of all owned and
imported members will always be distinct from each other. Any specialized kind of namespace that adds further
kinds of memberships (e.g., inherited memberships of types) always maintains the property that the names of all
memberships of a namespace are distinct from each other.

The namespace that is the source of an import relationship, known as the importing namespace, also owns it. There
are two types of import relationships. A membership import is a relationship between the importing namespace and
a single membership, which becomes an imported membership of the importing namespace. A namespace import is
a relationship between the importing namespace and an imported namespace, in which all visible memberships of
the imported namespace become imported memberships of the importing namespace.

A membership import is denoted using the keyword import followed by a qualified name, which identifies the
imported membership (be member name or member short name). The member element of the imported membership
becomes an imported member of the importing namespace. Note that the imported membership may be for an alias

Kernel Modeling Language v1.0 Beta 4 23

of the imported member (see 7.2.5.2), in which case the element will be known by that name in the importing
namespace.

namespace N6 {
private import N4::A;
private import N4::C; // Imported with name "C".
namespace M {

import C; // "C" is re-imported from N4 into M.
}

}

A namespace import is also denoted using the keyword import followed by a qualified name, but with the qualified
name suffixed by "::*". In this case, the qualified name identifies the imported namespace. All visible
memberships of the imported namespace then become imported memberships of the importing namespace.

namespace N7 {
// Memberships A, B and C are all imported from N4.
private import N4::*;

}

If the declaration of either a membership or namespace import is further suffixed by "::**", then the import
is recursive. Such an import is equivalent to importing memberships as described above for either an imported
membership or namespace, followed by further recursively importing from each imported member that is itself a
namespace, with the following limitations:

1. Recursive import only continues with a namespace that is either the imported element of an original
recursive membership import or an owned member of an imported namespace.

2. Memberships inherited via implied specializations (of any kind) are not imported by recursive imports
(see also 7.3.2.3 on Specialization and 8.4.2 on Semantic Constraints and Implied Relationships).

namespace N8 {
class A;
class B;
namespace M {

class C;
}

}
namespace N9 {

private import N8::**;
// The above recursive import is equivalent to all
// of the following taken together:
// import N8;
// import N8::*;
// import N8::M::*;

}
namespace N10 {

private import N8::*::**;
// The above recursive import is equivalent to all
// of the following taken together:
// import N8::*;
// import N8::M::*;
// (Note that N8 itself is not imported.)

}

The visibility of an import is always shown explicitly by placing the keyword private, protected, or public
before the import declaration. If the import is private (which is the default in the abstract syntax), then the
imported memberships become private relative to the importing namespace. A visibility of protected is the
same as private, unless the importing namespace is a type, in which case the imported memberships are also
visible in all specializations of the type (see also 7.3.2.3 on protected visibility). If the import is public, then all

24 Kernel Modeling Language v1.0 Beta 4

the imported memberships become public for the importing namespace. An import declaration may optionally have
a body, as described for relationships in 7.2.2.3 .

namespace N11 {
public import N4::A {

/* The imported membership is visible outside N11. */
}

private import N5::* {
doc /* None of the imported memberships are visible

* outside of N11. */
}

}

If an import is owned by a root namespace (see 7.2.5.3), then the memberships imported by it are visible to and
within all the top-level elements of the root namespace. However, an import owned by a root namespace is required
to be private, so none of the imported memberships become globally visible outside of the root namespace. (This
rule disallows the "re-export" of the same element from multiple different root namespaces, which would cause
ambiguity that could complicate the resolution of unqualified, globally-visible names.)

An import may also be declared with one or more filter conditions. Given as model-level evaluable Boolean
expressions (see 7.4.9), listed after the imported membership or namespace specification, each surrounded by
square brackets [...]. Such a filtered import is equivalent to importing an implicit package that then both imports
the given imported membership or namespace and has all the given filter conditions. The effect is such that, for a
filtered import, memberships are imported if and only if they satisfy all the given filter conditions. (While filtered
imports may be used in any namespace, packages and filter conditions are actually Kernel-layer concepts, because
expressions are only defined in that layer. See 7.4.14 .)

namespace N12 {
private import Annotations::*;

// Only import elements of NA that are annotated as Approved.
private import NA::*[@Approved];

}

7.3 Core
7.3.1 Core Overview

The Core layer builds on the Root layer to add the minimum constructs for modeling systems as designed, built and
operated. Semantics is about how models are interpreted as giving conditions on how things should be (i.e., as
a specification of a modeled system) or as a reflection of how things are (i.e, as a description of a modeled system).
KerML semantics are based on classification: a model has elements that classify things in the modeled system.

A type is the most general kind of model element that classifies things (see 8.2.4.1.1). Classifiers are types that
classify things, such as cars, people and processes being carried out, as well as how they are related by features (see
7.3.3). Features are also types, classifying relations between things (see 8.2.4.3.1). In addition to simple relations
between two things, KerML allows features to classify longer chains of relations. For example, cars owned by
people who live in a particular city might be required to be registered. These cars are identified by a chain of two
relations, first the ownership of the car, then the residence of the owner.

KerML also supports taxonomies of classifications using specialization relationships between types. All the things
classified by a specialized type are also classified by the general types it is related to via specialization relationships.
This means that all the things classified by a specialized type have all the features of its general types, referred to
as inheriting features from general to specific types. KerML includes several special kinds of specialization,
including subclassification between classifiers, subsetting and redefinition between features, and feature
typing between a feature and another type.

Kernel Modeling Language v1.0 Beta 4 25

7.3.2 Types
7.3.2.1 Types Overview

Metamodel references:

• Concrete syntax, 8.2.4.1
• Abstract syntax, 8.3.3.1
• Semantics, 8.4.3.2

Types classify things in a modeled system. The set of things classified by a type is the extent of the type, each
member of which is an instance of the type. Everything being modeled is an instance of the type Anything from
the Base library model (see 9.2.2).

A type gives conditions for what things must be in or not in its extent (sufficient and necessary conditions,
respectively). The simplest conditions directly identify instances that must be in or not in the extent. Other
conditions can give characteristics of instances indicating they must be in or not in the extent. These conditions
apply to all procedures that determine the extents of types, including logical solving, inference, and execution.

For example, a type Car could require every instance in its extent (everything it classifies) to have four wheels,
which means anything that does not have four wheels is not in its extent (necessary condition). It does not mean all
four wheeled things are in the extent (are cars), however. (Note that necessary conditions are usually stated as what
must be true of all instances in the extent, even though they really only determine what is not.) Alternatively, Car
could require all four wheeled things to be in its extent (sufficient condition).

Types are namespaces, enabling them to have members via membership relationships to other elements identified as
their members (see 7.2.5). These include inherited memberships, which are certain memberships from the general
types of their owned specializations (see 7.3.2.3). The member names of all inherited memberships must be distinct
from each other and from the member names of all owned memberships. A membership that would otherwise be
imported is hidden by an inherited membership with the same member name, similarly to how it would be hidden by
a conflicting owned membership (see 7.2.5).

Note. Name conflicts due to inherited memberships can be resolved by redefining them to give non-conflicting
member names (see 7.3.4).

7.3.2.2 Type Declaration

A type is declared using the keyword type, optionally followed by a short name and/or name. In addition, a type
declaration defines either one or more owned specializations for the type (see 7.3.2.3) or a conjugator for the type
(see 7.3.2.4). This may optionally be followed by the definition of one or more owned disjoinings (see 7.3.2.5).

type A specializes Base::Anything disjoint from B;
type C conjugates A;

A type is specified as abstract by placing the keyword abstract before the keyword type. A type that is not
abstract is called a concrete type. Declaring a type to be abstract means that all instances of the type must also be
instances of at least one concrete type that directly or indirectly specializes the abstract type.

abstract type A specializes Base::Anything;
type A1 specializes A;
type A2 specializes A;

The multiplicity constrains the number of instances in the extent of a type (the cardinality of the extent). A
multiplicity is a feature whose values are natural numbers (extended with infinity, see 9.3.2.1) that are the only ones
allowed for the cardinality of its featuring type (each multiplicity is the feature of exactly one Type). A type can
have at most one feature that is its multiplicity. Cardinality for classifiers is the number of things it classifies. For

26 Kernel Modeling Language v1.0 Beta 4

features that are not end features (see below), cardinality is the number of values of the feature for a specific
instance of its featuring types.

Note. The semantics of multiplicity is different for features that are identified as end features. End Features are used
primarily in the definition of associations and connectors, and the semantics of end features is discussed in
conjunction with them (see 7.4.5 and 7.4.6 , respectively).

The multiplicity of a type can be specified as a range after any identification of the Type, between square brackets
[...]. (See 7.4.12 for a complete description of multiplicity ranges, including declaring named multiplicity
features.)

// This Type has exactly one instance.
type Singleton[1] specializes Base::Anything;

The body of a type is specified as for a generic namespace, by listing the members between curly braces {...} (see
7.2.5.2). However, for types, protected members, indicated using the keyword protected instead of public or
private, have special visibility rules for inheritance (see 7.3.2.3). A feature declared as an owned member of a
type is automatically considered to be an owned feature of the type, related by a feature membership, unless its
declaration is preceded by the keyword member, in which case it is related by regular membership (see 7.3.2.6 for
details).

type Super specializes Base::Anything {
private namespace N {

type Sub specializes Super;
}
protected feature f : N::Sub;
member feature f1 : Super featured by N::Sub;

}

The conditions that a type places on its instances (e.g., what feature it has) are always considered necessary. They
can be indicated as sufficient by placing the keyword all after the keyword type. In this case, the type places
additional sufficiency conditions on its instances corresponding to all the necessary conditions. For example, if Car
requires all instances to be four-wheeled (necessary), and then is also indicated as sufficient, its extent will include
all four wheeled things and no others. (See also the discussion in 7.3.2.1 .)

type all Car specializes MaterialThing {
feature wheels[4] : Wheel;

}

7.3.2.3 Specialization

Specializations are relationships between types, identified as specific and general, indicating that all instances of the
specific type are instances of the general one (that is, the extent of the specific type is a subset of the extent of the
general one, which might be the same set). This means instances of the specific type have all the features of the
general one, referred to syntactically as inheriting features from general to specific types. A type may participate in
multiple specialization relationships, both as specific and general types.

A specialization relationship is declared using the keyword specialization, optionally followed by a short name
and/or a name. The qualified name of the specific type, or a feature chain (see 7.3.4.6) if the specific type is such a
feature, is then given after the keyword subtype, followed by the qualified name of the general type, or a feature
chain if the general type is such a feature, after the keyword specializes. The symbol :> can be used
interchangeably with the keyword specializes. A specialization declaration can also optionally have a
relationship body (see 7.2.2.3) for, e.g., nested annotations.

specialization Gen subtype A specializes B;
specialization subtype x :> Base::things {

doc /* This specialization is unnamed. */
}

Kernel Modeling Language v1.0 Beta 4 27

If no shortName or name is given, then the keyword specialization may be omitted.

subtype C specializes A;
subtype C specializes B;

The direct supertypes of a type are all the general types in specializations for which the type is the specific type, and
the direct subtypes of a type are all the specific types in specializations for which the type is the general type.
Indirect supertypes include, recursively, the supertypes of the direct supertypes of a type, and similarly for indirect
subtypes.

Specialization relationships can form cycles, which means all types in the cycle have the same instances (same
extent). However, since all types are required to specialize the base type Anything (directly or indirectly), no cycle
of valid types can be entirely closed, unless it includes the type Anything.

The owned specializations of a type are those specializations that are owned relationships of the type (see 7.2.2),
for which the type is the specific type. An owned specialization of a type is defined as part of the declaration of the
type, rather than in a separate declaration, by including the qualified name or feature chain of the general type in a
list after the keyword specializes (or the symbol :>).

type C specializes A, B;
type f :> Base::things;

A type inherits all visible and protected memberships of the general types of its owned specializations. Protected
memberships are all owned and inherited memberships of the general type whose visibility is declared as protected
(see also 7.3.2.2 on protected visibility) and all memberships imported via imports with visibility protected
(see also 7.2.5.4 on import visibility). This means protected memberships are memberships that are only visible to
their owning type and to (direct or indirect) specializations of it.

type A specializes Base::Anything {
feature f; // Public by default.
protected feature g;
private feature h;

}
type B specializes A {

// B inherits feature memberships for
// f and g, but not h.

}

7.3.2.4 Conjugation

Conjugation is a relationship between types, identified as the original type and the conjugated type, indicating the
conjugated type inherits visible and protected memberships from the original type, except the direction of input and
output features is reversed (see 7.3.4.1 on features with direction). Features with direction in relative to the
original type are treated as having direction out relative to the conjugated type, and vice versa for direction out
treated as in. Features with no direction or direction inout in the original type are inherited without change.

A conjugation relationship is declared using the keyword conjugation, followed by a short name and/or a name.
The qualified name of the conjugated type, or a feature chain (see 7.3.4.6) if the conjugated type is such a feature,
is then given after the keyword conjugate, followed by the qualified name of the original type, or a feature chain if
the original type is such a feature, after the keyword conjugates. The symbol ~ can be used interchangeably with
the keyword conjugates. A conjugation declaration can also optionally have a relationship body (see 7.2.2.3) for,
e.g., nested annotations.

type Original specializes Base::Anything {
in feature Input;

}
type Conjugate1 specializes Base::Anything;
type Conjugate2 specializes Base::Anything;

28 Kernel Modeling Language v1.0 Beta 4

conjugation c1 conjugate Conjugate1 conjugates Original;
conjugation c2 conjugate Conjugate2 ~ Original {

doc /* This conjugation is equivalent to c1. */
}

If no short name or name is given, then the keyword conjugation may be omitted.

conjugate Conjugate1 conjugates Original;
conjugate Conjugate2 ~ Original;

An owned conjugation is an owned relationship of a type (7.2.2) that is a conjugation relationship, for which the
type is the conjugated type. An owned conjugation for a type is defined as part of the declaration of the type, rather
than in a separate declaration, by including the qualified name or feature chain of the original type after the keyword
conjugates (or the symbol ~).

type Conjugate1 conjugates Original;
type Conjugate2 ~ Conjugate1;

A type can be the conjugated type of at most one conjugation relationship, and a conjugated type cannot be the
specific type in any specialization relationship.

7.3.2.5 Disjoining

Types related by disjoining do not share instances (instances cannot be in more than one of the extents; the extents
are disjoint). For example, a classifier for mammals is disjoint from a classifier for minerals, and a feature for
people's parents is disjoint from a feature for their children.

A disjoining relationship is declared using the keyword disjoining, optionally followed by a short name and/or a
name. The qualified name of the first type, or a feature chain (see 7.3.4.6) if the type is such a feature, is then given
after the keyword disjoint, followed by the qualified name of the second type, or a feature chain, if the the type is
such a feature, after the keyword from. A disjoining declaration can also optionally have a relationship body (see
7.2.2.3) for, e.g., nested annotations.

disjoining Disj disjoint A from B;
disjoining disjoint Mammal from Mineral;
disjoining disjoint Person::parents from Person::children {

doc /* No Person can have a parent as a child. */
}

If no short name or name is given, then the keyword disjoining may be omitted.

disjoint A from B;
disjoint Mammal from Mineral;
disjoint Person::parents from Person::children;

An owned disjoining of a type is an owned relationship of the type (see 7.2.2) that is a disjoining relationship. An
owned disjoining is defined as part of the declaration of the type, rather than in a separate declaration, by including
the qualified name or feature chain of the disjoining type in a list after the keyword disjoint from, placed after
any owned specializations.

type C specializes Anything disjoint from A, B;
type Mammal :> Animal disjoint from Mineral;

7.3.2.6 Feature Membership

A feature membership is a relationship between a type and a feature that is a kind of owning membership that also
implies type featuring (see 7.3.4.8). Features related to a type via feature membership are identified as

Kernel Modeling Language v1.0 Beta 4 29

owned features of the type. The owning type is one of the feature's featuring types, meaning that the feature specifies
a relation between the owning type and the type of the feature.

A feature that is declared within the body of a type is normally an owned feature of that type, so it automatically has
that type as a featuring type. This also applies to the bodies of classifiers (see 7.3.3) and features (see 7.3.4), since
they are kinds of types. A feature may also be aliased in a type like any other Element (see 7.2.5), in which case it
is related to the aliasing type by a regular membership relationship, not a feature membership, and, so, does not
become one of the owned features of the type.

feature person[*] : Person;
classifier Person {

// This declares an owned feature using a feature membership.
feature age[1] : ScalarValues::Integer;

// This is not a feature membership.
alias personAlias for person;

}

However, if a feature declaration in the body of type is preceded by the keyword member, then the feature is owned
by the containing type via a membership relationship, not a feature membership. In this case, the feature is not an
owned feature of the containing type, and it does not automatically have the containing type as a featuring type,
though it may have featuring types declared in its featured by list (see 7.3.4.1 on declaring the owned typings of
a feature).

classifier A;
classifier B {

// Feature f has B as its featuring type.
feature f;

// Feature g has A as its featuring type, not B.
member feature g featured by A;

}

7.3.2.7 Unioning, Intersecting, and Differencing

Unioning, intersecting, and differencing are relationships between an owning type and a set of other types.

1. Unioning specifies that the owning type classifies everything that is classified by any of the unioned types.
2. Intersecting specifies that the owning type classifies everything that is classified by all of the intersecting

types.
3. Differencing specifies that the owning type classifies everything that is classified by the first of the

differenced types but not by any of the remaining types.

Since these relationships are always owned by the source type, they are defined as part of the declaration of that
type, using the keywords unions, intersects, and differences, respectively, followed by a list of qualified
names (or feature chains, if appropriate, see 7.3.4.6) of the related types. These relationship clauses are placed after
any owned specializations (see 7.3.2.3) but may otherwise appear in any order with each other and with any
disjoining clause (see 7.3.2.5).

classifier Adult;
classifier Child;

classifier Person unions Adult, Child {
feature dependents : Child[*];
feature offspring : Person[*];
feature grownOffspring : Adult[*] :> offspring;
feature dependentOffspring : Child[*] :> dependents, offspring

differences offspring, grownOffspring

30 Kernel Modeling Language v1.0 Beta 4

intersects dependents, offspring;
}

Multiple relationships of each kind can be specified using multiple clauses in a single declaration. In the case of
differencing, any additional differences clauses after the first one mean that the owning type does not classify
anything classified by any of the related types. It is not allowable, though, for a type to have just one of any of these
relationships over all.

// This is valid.
classifier Person unions Adult unions Child;

// This is NOT valid.
classifier Person unions Adult;

7.3.3 Classifiers
7.3.3.1 Classifiers Overview

Metamodel references:

• Concrete syntax, 8.2.4.2
• Abstract syntax, 8.3.3.2
• Semantics, 8.4.3.3

Classifiers are types that classify things in the modeled system, as distinct from features, which model the relations
between them (see 7.3.4). Subclassification is a kind of specialization that specifically relates classifiers.

7.3.3.2 Classifier Declaration

The notation for a classifier is the same as the generic notation for a type (see 7.3.2.2), except using the keyword
classifier rather than type. However, any general types referenced in a specializes list must be Classifiers,
and the specializations defined are specifically subclassifications (see 7.3.3.3). A classifier is also not required to
have any owned subclassifications explicitly specified. If no explicit subclassification is given for a classifier, and
the classifier is not conjugated, then the classifier is given a default subclassification to the most general base
classifier Anything from the Base library model (see 9.2.2).

classifier Person { // Default superclassifier is Base::Anything.
feature age : ScalarValues::Integer;

}
classifier Child specializes Person;

The declaration of a classifier may also specify that the classifier is a conjugated type (see 7.3.2.4), in which case
the original type must also be a classifier.

classifier FuelInPort {
in feature fuelFlow : Fuel;

}
classifier FuelOutPort conjugates FuelInPort;

7.3.3.3 Subclassification

A subclassification relationship is declared using the keyword specialization, optionally followed by a short
name and/or a name. The qualified name of the subclassifier is then given after the keyword subclassifier,
followed by the qualified name of the superclassifier after the keyword specializes. The symbol :> can be used
interchangeably with the keyword specializes. A subclassification declaration can also optionally have a
relationship body (see 7.2.2.3) for, e.g., nested annotations.

Kernel Modeling Language v1.0 Beta 4 31

specialization Super subclassifier A specializes B;
specialization subclassifier B :> A {

/* This subclassification is unnamed. */
}

If no short name or name is given, then the keyword specialization may be omitted.

subclassifier C specializes A;
subclassifier C specializes B;

An owned subclassification of a classifier is defined as part of the declaration of the classifier, rather than in a
separate declaration, by including the qualified name of the superclassifier in a list after the keyword specializes
(or the symbol :>).

classifier C specializes A, B;

7.3.4 Features
7.3.4.1 Features Overview

Metamodel references:

• Concrete syntax, 8.2.4.3
• Abstract syntax, 8.3.3.3
• Semantics, 8.4.3.4

Features are types that classify how things in a modeled system are related, including by chains of relations.
Relations between things can also be treated as things, allowing relations between relations, recurring as many times
as needed. A feature relates instances in the intersection of the extents of its featuring types (the domain) with
instances in the intersection of the extents of its featured types (the co-domain). Instances in the domain of a feature
are said to "have values" that are instances of the co-domain. The domain of features with no explicit featuring types
is the type Anything from the Base library model (see 9.2.2).

Type featuring is a relationship between a feature and a type that identifies the type as a featuring type of the feature.
Feature membership is a kind of owning membership that also implies type featuring, by which a type owns a
feature and becomes a featuring type of that feature (see 7.3.2.6).

There are also several forms of specialization that apply specifically to features.

• Feature typing is a relationship between a feature and a type that identifies the type as a featured type of
the feature.

• Subsetting is a relationship between a specific feature (the subsetting feature) and a more general feature
(the subsetted feature), where the specific feature may further constrain the featuring types, featured types
and multiplicity of the general feature.

• Redefinition is a kind of subsetting in which the specific feature (the redefining feature) also replaces an
otherwise inherited general feature (the redefined feature) in the context of the owning type of the specific
feature.

7.3.4.2 Feature Declaration

The notation for a feature is similar to the generic notation for a type (see 7.3.2.2), except using the keyword
feature rather than type. Further, a feature can have any of three kinds of specialization, each identified by a
specific keyword or equivalent symbol:

• typed by or : – Specifies FeatureTyping (see 7.3.4.3).
• subsets or :> – Specifies Subsetting (see 7.3.4.4).
• redefines or :>> – Specifies Redefinition (see 7.3.4.5).

32 Kernel Modeling Language v1.0 Beta 4

In general, clauses for the different kinds of Specialization can appear in any order in a Feature declaration.

feature x typed by A, B subsets f redefines g;

// Equivalent declaration:
feature x redefines g typed by A subsets f typed by B;

If no subsetting (or redefinition) is explicitly specified for a feature, and the feature is not conjugated, then the
feature is given a default subsetting of the most general base feature things from the Base library model (see 9.2.2
). This is true even if a feature typing is given for the feature.

abstract feature person : Person; // Default subsets Base::things.
feature child subsets person;

The declaration of a feature may also specify that the feature is a conjugated type (see 7.3.2.4), in which case the
original type must also be a feature. In this case, the feature must not have any owned specializations.

classifier Tanks {
feature fuelInPort {

in feature fuelFlow : Fuel;
}
feature fuelOutPort ~ fuelInPort;

}

As for any type, the multiplicity of a feature can be given in square brackets [...] after any identification of the
feature (see also 7.3.2.2). However, the multiplicity for a feature can also be placed after one of the specialization
clauses in the feature declaration, but, in all cases, only one multiplicity may be specified. In particular, this allows a
notation style for multiplicity consistent with that used in previous modeling languages (such as [UML]). It is also
useful when redefining a Feature without giving an explicit name (see 7.3.4.5).

feature parent[2] : Person;
feature mother : Person[1] :> parent;
feature redefines children[0];

In addition to, or instead of, an explicit multiplicity, a feature declaration can include either or both of the following
keywords (in either order). The properties flagged by these keywords are only meaningful if the feature has a
multiplicity upper bound greater than one.

• nonunique – If a feature is non-unique, then, for any domain instance, the same co-domain instance may
appear more than once as a value of the feature. The default is that the feature is unique.

• ordered – If a feature is ordered, then for any domain instance, the values of the feature can be placed in
order, indexed from 1 to the number of values. The default is that the feature is unordered.

feature sensorReadings : ScalarValues::Real [*] nonunique ordered;

There are four other kinds of relationships that can be declared as owned relationships of a feature, each indicated by
a specific keyword:

• disjoint from – Specifies disjoining (see 7.3.2.5).
• chains – Specifies feature chaining (see 7.3.4.6).
• inverse of – Specifies feature inverting (see 7.3.4.7).
• featured by – Specifies type featuring (see 7.3.4.7).

The clauses for these relationships must appear after any specialization or conjugation part, but can otherwise appear
in any order.

feature cousins : Person[*] chains parents.siblings.children featured by Person;
feature children : Person[*] featured by Person inverse of parents;

Kernel Modeling Language v1.0 Beta 4 33

There are a number of additional properties of a feature that can be flagged by adding specific keywords to its
declaration. If present, these are always specified in the following order, before the keyword feature:

1. in, out, inout – Specifies the direction of a feature, which determines what is allowed to change its
values on instances of its domain:

◦ in – Things "outside" the instance. These features identify things input to an instance.
◦ out – The instance itself or things "inside" it. These features identify things output by an

instance.
◦ inout – Both things "outside" and "inside" the instance. These features identify things that are

both input to and output by an instance.
2. derived – Specifies that the feature is derived. Such a feature is typically expected to have a bound

feature value expression that completely determines its value at all times (see 7.4.11 on feature values,
which is a kernel concept).

3. abstract – Specifies that the feature is abstract (see 7.3.2.2 on abstract types in general).
4. composite or portion – Specifies that the feature is either a composite or portion feature (specifying

both is not allowed).
◦ Values of a composite feature, on each instance of the feature's domain, cannot exist after the

featuring instance ceases to exist. This only applies to values at the time the instance goes out of
existence, not to other things in the co-domain that might have been values before that. Values
of a composite feature also cannot be values of another composite feature that is not on the same
instance of the feature's domain. Values of a composite feature also cannot be values of another
composite feature that is not on the same instance of the feature's domain.

◦ Portions are features whose values cannot exist without the whole, because they are the “same
thing” as the whole. (For example, the portion of a person's life when they are a child cannot be
added or removed from that person's life.)

5. var or const – Specifies that the feature is variable or constant (specifying both is not allowed). Portions
cannot be variable or constant.

◦ Values of a variable feature may vary in time over the duration of a featuring instance.
◦ A constant feature is one that is potentially variable but has been constrained to have the same

values over the entire duration of a featuring instance. (This is useful, for example, to redefine a
variable feature to be constant over some temporal portion of a featuring instance.)

(Note that the semantics of composite, portion, var and const require a model of things existing in time, which
is provided in the Kernel layer, see 7.4.3 . See also the discussion of end features in 7.4.5 .)

abstract classifier Account {
abstract feature ntries : Entry[*] ordered;
derived feature balance = sum(entries.amount);

}

classifier Tank specializes Object {
in var feature fuelFlow: Fuel;
var feature fuel : Fuel {

portion feature fuelPortion : Fuel;
}

}

7.3.4.3 Feature Typing

A feature typing relationship is declared using the keyword specialization, optionally followed by a short name
and/or a name. The qualified name of the typed feature is then given after the keyword typing, followed by the
qualified name of the type, or a feature chain (see 7.3.4.6), after the keyword typed by. The symbol : can be used
interchangeably with the keyword typed by. A feature typing declaration can also optionally have a relationship
body (see 7.2.2.3) for, e.g., nested annotations.

specialization t1 typing customer typed by Person;
specialization t2 typing employer : Organization {

34 Kernel Modeling Language v1.0 Beta 4

doc /* An employer is an Organization. */
}

If no short name or name is given, then the keyword specialization may be omitted.

typing customer typed by Person;
typing employer : Organization;

An owned feature typing is a feature typing that is an owned relationship of its type feature. An owned feature
typing is defined as part of the declaration of the typed feature, rather than in a separate declaration, by including the
qualified name or feature chain for the type in a list after the keyword typed by (or the symbol :).

feature foodItem typed by Food, InventoryItem;

7.3.4.4 Subsetting

Subsetting is a kind of specialization between two features. This means that the values of the subsetting feature are
also values of the subsetted feature on each instance (separately) of the domain of the subsetting feature.

A subsetting relationship is declared using the keyword specialization, optionally followed by a short name
and/or a name. The qualified name of the subsetting feature, or a feature chain (see 7.3.4.6), is then given after the
keyword subset, followed by the qualified name of the subsetted feature, or a feature chain, after the keyword
subsets. The symbol :> can be used interchangeably with the keyword subsets. A subsetting declaration can
also optionally have a relationship body (see 7.2.2.3) for, e.g., nested annotations.

specialization Sub subset parent subsets person;
specialization subset mother subsets parent {

doc /* All mothers are parents. */
}

If no short name or name is given, then the keyword specialization may be omitted.

subset rearWheels subsets wheels;
subset rearWheels subsets driveWheels;

An owned subsetting is a subsetting that is an owned relationship of the subsetting feature. An owned subsetting is
defined as part of the declaration of the subsetting feature, rather than in a separate declaration, by including the
qualified name or feature chain of the subsetted feature in a list after the keyword subsets (or the symbol :>).

feature rearWheels subsets wheels, driveWheels;

A subsetting feature can restrict aspects of the subsetted feature, otherwise it will, by default, have the same
properties as the subsetted feature. In particular, a subsetting feature can constrain its featured types to be
specializations of those of the subsetted feature and add additional feature types. A subsetting feature can also
restrict the multiplicity of its subsetted feature to allow cardinalities that are smaller than those of the subsetted
feature (e.g., by specifying smaller lower and/or upper bounds).

classifier Wheel;
classifier DriveWheel specializes Wheel;
feature anyWheels[*] : Wheel;

classifier Automobile {
// Restricts multiplicity
composite feature wheels[4] subsets anyWheels;
// Restricts multiplicity and type.
composite feature driveWheels[2] : DriveWheel subsets wheels;

}

Kernel Modeling Language v1.0 Beta 4 35

If a subsetted feature is ordered, then the subsetting feature must also be ordered. If the subsetted feature is
unordered, then the subsetting feature will be unordered by default, unless explicitly flagged as ordered.

classifier Automobile {
composite feature wheels[4] ordered subsets anyWheels;
// driveWheels must be ordered because wheels is ordered.
composite feature driveWheels[2] ordered : DriveWheel subsets wheels;

}

If a subsetted feature is unique, then the subsetting feature must not be specified as non-unique. If the subsetted
feature is non-unique, then the subsetting feature will still be unique by default, unless specifically flagged as
nonunique.

feature urls[*] nonunique : URL;
classifier Server {

feature accessibleURLs subsets urls; // Unique by default.
feature visibleURLs subsets accessibleURLs; // Cannot be nonunique.

}

7.3.4.5 Redefinition

Redefinition is a kind of subsetting that requires the values of the redefining feature and the redefined feature to be
the same on each instance (separately) of the domain of the redefining feature. This means any restrictions on the
values of the redefining feature relative to the redefined feature, such as typing or multiplicity, also apply to the
values of the redefined feature, and vice versa.

A redefinition relationship is declared using the keyword specialization, optionally followed by a short name
and/or a name. The qualified name of the redefining feature, or a feature chain (see 7.3.4.6), is then given after the
keyword redefinition, followed by the qualified name of the redefined feature, or a feature chain, after the
keyword redefines. The symbol :>> can be used interchangeably with the keyword redefines. A redefinition
declaration can also optionally have a relationship body (see 7.2.2.3) for, e.g., nested annotations.

specialization Redef redefinition LegalRecord::guardian redefines parent;
specialization redefinition Vehicle::vin redefines RegisteredAsset::identifier {

doc /* A "vin" is a Vehicle Identification Number. */
}

If no short name or name is given, then the keyword specialization may be omitted.

redefinition Vehicle::vin redefines RegisteredAsset::identifier;
redefinition Vehicle::vin redefines legalIdentification;

A feature can only be redefined once for any featuring type. A feature without any feature types is considered to be
implicitly featured by the most general base type Anything (see 7.3.4.1). It is therefore allowable to redefine such
a feature by a redefining feature that does have some other featuring type. It is, however, illegal for one such feature
to redefine another, because that would correspond to a semantically inconsistent redefinition of one feature of
Anything by another.

The restrictions on the specification of the multiplicity, ordering and uniqueness of a subsetting feature (see 7.3.4.4)
also apply to a redefining feature. In addition, the multiplicity of a redefining feature must only allow cardinalities
that are consistent with the multiplicity of the redefined feature (e.g., it cannot have a multiplicity lower bound that
is less than that of the redefined feature).

An owned redefinition is a redefinition that is an owned relationship of its redefining feature. An owned redefinition
of a feature is defined as part of the declaration of the feature, rather than in a separate declaration, by including the
qualified name or feature chain of the redefined feature in a list after the keyword redefines (or the symbol :>>).

feature vin redefines RegisteredAsset::identifier, legalIdentification;

36 Kernel Modeling Language v1.0 Beta 4

If a redefining feature is declared as an owned feature of a type (see 7.3.2.6), then each of the redefined features of
its owned redefinitions must be features that would otherwise be inherited from supertypes of its owning type. When
redefined, however, these otherwise inheritable features are not inherited and are, instead, replaced by the redefining
feature. This enables the redefining feature to have the same name as a redefined feature, if desired. (Note, however,
that even though a redefined feature is not in the namespace of the owning type of the redefining feature, the
redefined feature still has values on instances of that type, particularly when they are considered as instances of the
supertype that owns the redefined feature. The values will be the same as for the redefining feature, as described
above.)

In general, the resolution of a qualified name begins with the namespace in which the name appears and proceeds
outwards from there to containing namespaces (see 8.2.3.5). However, the resolution of the qualified names of
redefined features of owned redefinitions follow special rules. In particular, the local namespace of the owning type
of the redefining feature is not included in the name resolution of the redefined features, with resolution beginning
instead with the direct supertypes of the owning type. Since redefined features are not inherited, they would not be
included in the local namespace of the owning type and, therefore, could not be referenced by an unqualified name.
The special rules for redefined features, however, allow such a reference, because the name resolution begins with
the namespaces of the supertypes of the owning type, one of which must contain the redefined feature.

classifier RegisteredAsset {
feature identifier : Identifier;

}
classifier Vehicle : RegisteredAsset { // Owning type.

// Legal even though "identifier" is not inherited.
feature vin redefines identifier;

}

If neither a name nor a short name is given in the declaration of a feature with an owned redefinition, then the
feature is implicitly given the same name and short name as the first redefined feature (which may itself have
implicit names, if the redefined feature is itself a redefining feature). These implicit names are used in name
resolution, just as explicitly declared names would be. This is useful when declaring a feature that redefines another
feature in order to constrain it, while maintaining the same naming.

classifier WheeledVehicle {
// The declared name is "wheels".
composite feature wheels[1..*] : Wheel;

}
classifier MotorizedVehicle specializes WheeledVehicle {

// The effective name is "wheels", the same name as
// WheeledVehicle::wheels, which is being redefined.
composite feature redefines wheels[2..4];

}
classifier Automobile specializes MotorizedVehicle {

// The effecive name is "wheels", the same (effective) name
// as "MotorizedVehicle::wheels", which is being redefined.
composite feature redefines wheels[4] : AutomobileWheel;

}

7.3.4.6 Feature Chaining

Feature chaining is an owned relationship between the owning chained feature and a chaining feature. If a feature
has any chaining features, then it must have at least two. The list of chaining features of a chained feature is called
its feature chain.

The meaning of a chained feature depends on its feature chain. The values of a chained feature are the same as the
values of the last feature in the chain. These can be found by starting with the values of the first feature (for each
instance of the chained feature's domain), then on each of those, finding the values of the second feature in the
chain, and so on, to values of the last feature. If a chained feature is ordered, any ordering of values earlier in the
chain are imposed on values found later in the chain. If a chained feature is non-unique, duplicate values found

Kernel Modeling Language v1.0 Beta 4 37

in the last feature of the chain (which might be due to multiple values of the earlier features) are preserved in the
chained feature, otherwise the last feature can have no duplicates.

A feature chain is notated as a sequence of two or more qualified names separated by dot (.) symbols. Each
qualified name in a feature chain must resolve to a feature. The first qualified name in a feature chain is resolved in
the local namespace as usual (see 8.2.3.5). Subsequent qualified names are then resolved using the previously
resolved feature as the context namespace (but considering only visible memberships). This notation specifies a list
of chaining features, as given by the resolution of the qualified names in the chain, in order.

The feature chain notation can be placed after the keyword chains in the declaration of the Feature, appearing after
any specialization or conjugation part, but before any disjoining or type featuring part (see also 7.3.4.2).

feature cousins chains parents.siblings.children;

The featuring types of the chaining feature are implicitly considered to include the featuring types of the first
chaining feature. Similarly, the featured types of the chaining feature are implicitly considered to include the
featured types of the last chaining feature.

The feature chain notation may also be used to specify a related element in the declaration of any of the following
relationships:

1. Specialization (see 7.3.2.3)
2. Conugation (see 7.3.2.4)
3. Unioning, intersecting and differencing (see 7.3.2.7)
4. Disjoining (see 7.3.2.5)
5. Subsetting (see 7.3.4.4)
6. Redefinition (see 7.3.4.5)
7. Feature inverting (see 7.3.4.7)
8. Connector (see 7.4.6 , in the Kernel layer)

In this case, the related element specified using the feature chain notation becomes an owned related feature of the
relationship with the feature chain as notated.

feature uncles subsets parents.siblings;
feature cousins redefines parents.siblings.children;
connector vehicle.wheelAssembly.wheels to vehicle.road;

Note. A similar dot notation is also used for the related Kernel-layer concept of a feature chain expression (see
7.4.9.3). However, it is always syntactically unambiguous as to whether the notation should be parsed as a plain
feature chain or as a feature chain expression.

7.3.4.7 Feature Inverting

Feature inverting is a relationship between two features whose interpretations as relations are the inverse of each
other. For example, a feature identifying each person's parents is the inverse of a feature identifying each person's
children. A person identified as a parent of another will identify that other as one of their children.

A feature inverting relationship is declared using the keyword inverting, optionally followed by a short
name and/or a name. The qualified name of the first feature, or a feature chain (see 7.3.4.6), is then given after the
keyword inverse, followed by the qualified name of the second feature, or a feature chain, after the keyword of. A
feature inverting declaration can also optionally have a relationship body (see 7.2.2.3) for, e.g., nested annotations.

inverting parent_child inverse Person::parent of Person::child {
doc /* A Person is the parent of their children. */

}

If no short name or name is given, then the keyword inverting may be omitted.

38 Kernel Modeling Language v1.0 Beta 4

inverse Person::parents of Person::children;

An owned feature inverting is a feature inverting that is an owned relationship of its first feature. An owned feature
inverting is defined as part of the declaration of the inverted feature, rather than in a separate declaration, by giving
the qualified name or feature chain of the other feature after the keyword inverse of.

classifier Person {
feature children : Person[*];
feature parents : Person[*] inverse of children;

}

Note that only a single feature identification is allowed after inverse of. While it is possible to declare multiple
feature inverting relationships for a single feature, this is generally not useful.

Inverse features can be arbitrarily nested. However, while it is allowable to use feature chains in the declaration of a
feature inverting relationship, note that a feature chain is a separate feature from any of the features it chains. In
order to indicate that two declared features are inverses, one should use qualified names rather than feature chains.

classifier A {
feature b1: B {

feature c1: C;
}

}
classifier C {

feature b2: B {
feature a2: A inverse of A::b1::c1;

}
}

7.3.4.8 Type Featuring

Type featuring is a relationship between a feature and a type, identifying the type as a featuring type of the feature
(see also 7.3.4.1). Feature membership is a kind of type featuring that also makes the feature an owned member of
the featuring type (see 7.3.2.6).

A type featuring relationship is declared using the keyword featuring, optionally followed by a short name and/or
a name, and the keyword of. The qualified name of the featured feature is then given, followed by the qualified
name of the featuring type after the keyword featured by. A type featuring declaration can also optionally have a
relationship body (see 7.2.2.3) for, e.g., nested annotations.

featuring engine_by_Vehicle of engine featured by Vehicle;
featuring power featured by engine {

doc /* The engine of a Vehicle has power. */
}

An owned type featuring is a type featuring that is an owned relationship of the featured feature. An owned type
featuring is defined as part of the declaration of the feature, rather than in a separate declaration, by including the
qualified name of the featuring type in a list after the keyword featured by.

classifier Vehicle;
classifier PoweredComponent;
feature engine : Engine featured by Vehicle, PoweredComponent;

Note that the domain of a feature is given by the intersection of its featuring types. That is, in the above example, an
instance in the domain of engine must be both a Vehicle and a PoweredComponent.

7.4 Kernel

Kernel Modeling Language v1.0 Beta 4 39

7.4.1 Kernel Overview

The Kernel layer completes KerML. It extends the Core layer to add modeling capabilities beyond basic
classification. These include specialized classifiers for things that have the semantics of data values (data types)
from others that have an independent existence over time and space (classes), and for reified relationships between
things (associations).

Classes have instances that exist or happen in time and space. They are divided into those for structure and
behavior. Structures typically limit how things and relations between them might change over time, while behaviors
specify changes within those limits. Structures and behaviors do not overlap, but structures can be involved in,
perform, and own behaviors. Behaviors can coordinate other behaviors via steps (usages of behaviors). Functions
are behaviors that yield a single result, which can be used to form trees of expressions. Interactions combine
behaviors and associations. Some associations are also structures.

The Kernel layer adds semantics beyond the Core primarily by specifying how model elements use the Kernel
model library (see Clause 9), rather than be specified mathematically as in the Core. The Kernel textual syntax
introduces keywords that translate to patterns of using Core abstract syntax and library models, acting as syntactic
"markers" for modeling patterns tying Kernel to the Core. In the simplest case, this involves introducing implicit
specializations of model library types. For example, classes must directly or indirectly subclassify the library class
Occurrence, while behaviors must directly or indirectly subclassify the library class Performance. Sometimes
more complicated reuse patterns are needed. For example, binary associations (with exactly two ends) specialize
BinaryLink from the library, and additionally require the ends of the association to redefine the
source and target ends of BinaryLink.

This is also how other modeling languages can be built on KerML. Domain-specific metamodels and libraries can
also reuse Kernel metamodel and libraries, inheriting the patterns of library reuse above, as well as the mathematical
semantics they inherit from Core. This enables domain-specific modelers to use terms and syntax familiar to them
and still benefit from automated assistance based on mathematically-defined semantics.

7.4.2 Data Types

Metamodel references:

• Concrete syntax, 8.2.5.1
• Abstract syntax, 8.3.4.1
• Semantics, 8.4.4.2

Data types are classifiers that classify data values (see 9.2.2.2.2). Certain primitive data types have specified extents
of values, such as the numerical and other types from the ScalarValues library model (see 9.3.2). Other data
types have features whose values can distinguish one instance of the data type from another. But, otherwise,
different data values are not distinguishable.

This means that data types cannot also be classes or associations, or share instances with them. It also means that
data types classify things that do not exist in time or space, because they require changing relations to other things.
The feature values of a data value cannot change over time, because different feature values would inherently
identify a different data value.

A data type is declared as a classifier (see 7.3.3), using the keyword datatype. If no owned superclassing is
explicitly given for the data type, then it is implicitly given a default superclassing to the data type DataValue from
the Base library model (see 9.2.2).

If any of the types of a feature are data types, then none of its types can be classes or associations, because classes
and associations are disjoint from data types (see 8.4.4.2). If a feature has data types as its types, and no owned
subsetting or owned redefinition is explicitly given in the feature declaration, then the feature is implicitly given a
default subsetting to the Feature dataValues from the Base model library (see 9.2.2).

40 Kernel Modeling Language v1.0 Beta 4

datatype IdNumber specializes ScalarValues::Integer;
datatype Reading { // Subtypes Base::DataValue by default

feature sensorId : IdNumber; // Subsets Base::dataValues by default.
feature value : ScalarValues::Real;

}

7.4.3 Classes

Metamodel references:

• Concrete syntax, 8.2.5.2
• Abstract syntax, 8.3.4.2
• Semantics, 8.4.4.3

Classes are classifiers that classify occurrences, which exist in time and space (see 9.2.4). Relations between an
occurrence and other things can change over time and space, while the occurrence still maintains an independent
identity.

A class is declared as a classifier (see 7.3.3), using the keyword class. If no owned superclassing is explicitly
given for the class, then it is implicitly given a default superclassing to the class Occurrence from the
Occurrences model library (see 9.2.4).

If any of the types of a feature are classes, then none of its types can be data types, because data types are disjoint
from classes (see 8.4.4.3). If a feature has class types, and no owned subsetting or owned redefinition is explicitly
given in the feature declaration, then the feature is implicitly given a default subsetting to the feature occurrences
from the Occurrences library model (see 9.2.4), unless at least one of the types is an association structure, in
which case the default subclassing is as described in 7.4.5 .

Some or all of the features of a class may be specified as variable features using the keyword var (see also 7.3.4.2).
A variable feature is one whose values may vary over the lifetime of its featuring occurrence. A variable feature may
subset a non-variable feature or a variable feature, but a non-variable feature may not subset a variable feature.

class Situation { // Specializes Occurrences::Occurrence by default.
feature kind : SituationCode;
var feature condition : ConditionCode;
var feature alarmSounding : ScalarValues::Boolean;

}
class SituationStatusMonitor specializes StatusMonitor {

// Subsets Occurrences::occurrences by default.
abstract feature lifetimeSituations : Situation[*];
var feature currentSituation : Situation subsets lifetimeSituations;

}

Alternatively, a features may be specified as a constant feature using the keyword const (see also 7.3.4.2). A
constant feature is a potentially variable feature which has nevertheless been constrained to have unchanging values,
perhaps within some limited context. A constant feature may subset any constant, variable or non-variable feature,
but any subsetting feature of a constant feature must also be constant.

class ControlledSituation specializes Situation {
var feature underControl : ScalarValues::Boolean;
portion controlPeriods[*] subsets timeSlices {

const feature redefines underControl = true;
const feature redefines condition;

}
}

7.4.4 Structures

Kernel Modeling Language v1.0 Beta 4 41

Metamodel references:

• Concrete syntax, 8.2.5.3
• Abstract syntax, 8.3.4.3
• Semantics, 8.4.4.4

Structures are classes that classify objects, which are kinds of occurrences. Structures typically limit how their
instances and relations between them can change over time, as opposed to Behaviors, which indicate how objects
and their relations change. Structures and behaviors do not overlap, but structures can own behaviors, and the
objects they classify can be involved in and perform behaviors.

A structure is declared as a classifier (see 7.3.3), using the keyword struct. If no owned superclassing is explicitly
given for the structure, then it is implicitly given a default superclassing to the structure Object from the
Objects library model (see 9.2.5).

If any of the types of a feature are structures, then all of them must be. If a feature has structure types, and no owned
subsetting or owned redefinition is explicitly given in the feature declaration, then the feature is implicitly given a
default subsetting to the feature objects from the Objects library model (see 9.2.5), unless at least one of the
types is an association structure, in which case the default subsetting shall be as specified in 7.4.5 .

struct Sensor { // Specializes Objects::Object by default.
feature id : IdNumber;
var feature currentReading : ScalarValues::Real;
step updateReading { ... } // Performed behavior

}
struct SensorAssembly specializes Assembly {

composite var feature sensors[*] : Sensor; // Subsets Objects::objects by default.
}

7.4.5 Associations
7.4.5.1 Associations Overview

Metamodel references:

• Concrete syntax, 8.2.5.4
• Abstract syntax, 8.3.4.4
• Semantics, 8.4.4.5

Associations are classifiers that classify links between things (see 9.2.3.1). Unless the association is abstract, at least
two of its features must be association ends, which identify the things being linked by (at the "ends" of) each link
(exactly one thing per end, which might be the same thing). Associations with exactly two association ends are
called binary associations. The end features of an association identify the participants in the links that are instances
of the association and must have multiplicity 1..1. Associations can also have features that are not end features,
which characterize each instance of the association separately from the things it links.

An association is also a relationship between the types of its association ends, called its related types (which need
not be unique). Links are between instances of an association's related types. For binary associations, the two related
types are identified as the source type and the target type (which may be the same). For associations with more than
two association ends ("n-ary"), the first related type is the source type and all the remaining related types are target
types.

7.4.5.2 Association Declaration

An association is declared as a classifier (see 7.3.3), using the keyword assoc. Association ends are declared as
features (see 7.3.4.2), prefixed by the keyword end. If no owned superclassification is explicitly given for the

42 Kernel Modeling Language v1.0 Beta 4

association, then it is implicitly given a default superclassification to either the association BinaryLink (if it is a
binary association) or the association Link (otherwise), both of which are from the Links library model (see 9.2.3).

assoc Ownership { // Specializes Links::BinaryLink by default.
end feature owner[1] : LegalEntity; // Redefines BinaryLink::source.
end feature ownedAsset[1] : Asset; // Redefines BinaryLink::target.
feature valuationOnPurchase : MonetaryValue;

}

The keyword feature may also be omitted from an association end declaration (unless it has an owned cross
feature, as described later).

assoc Ownership {
end owner[1] : LegalEntity;
end ownedAsset[1] : Asset;
feature valuationOnPurchase : MonetaryValue;

}

Note. For a binary association, the source and target ends are already declared to have multiplicity 1..1, so this
does not need to be redeclared in redefinitions of these features. However, for non-binary associations, the end
multiplicity must be explicitly declared as 1..1 to override the usual default of 0..*.

For a binary association, one or both association ends can be explicitly declared to subset a cross feature owned by
the other related type. This is done with cross subsetting, which is a special kind of subsetting relationship specified
using the keyword crosses or the symbol =>. Only end features may have cross subsetting relationships, and an
end feature can have at most one owned cross subsetting.

classifier LegalEntity {
feature assetsOwned [*] ordered : Asset;

}
classifier Asset {

feature owningEntities [1..*] : LegalEntity;
}
assoc AssetOwnership {

end feature owner : LegalEntity crosses ownedAsset.owningEntities;
end feature ownedAsset : Asset => owner.assetsOwned;
feature valuationOnPurchase : MonetaryValue;

}

This specifies that each instance of the AssetOwnership association must link a value of the owningEntities
feature of the ownedAsset with a value of the assetsOwned feature of the owner. That is, creating a
AssetOwnership link between a LegalEntity and an Asset means that the Asset must be one of the
assetsOwned by the LegalEntity and that the LegalEntity must be one of the owningEntities of the
Asset. As shown above, the target of a cross subsetting relationship must be a feature chain (see 7.3.4.6) in which
the first feature is the other association end and the second feature is the cross feature for that end.

Cross feature multiplicity effectively constrains the number of instances of an association. It applies to each set of
instances (links) of the association that have the same (single) values for each of the other ends. For a binary
association, this is the same as the number of values resulting from "navigating" across the association from an
instance of one related type to instances of the other related type. Cross feature uniqueness and ordering apply to the
instances navigated to, preventing duplication among them and ordering them to form a sequence.

For example, given a specific Asset, navigating across all AssetOwnership links with that Asset as the
ownedAsset to the corresponding owner gives a collection of LegalEntities that must be the same as the
owningEntities of the Asset. The owningEntities feature has a multiplicity lower bound of 1, requiring that
there must be at least one AssetOwnership link for every Asset. Similarly, given a specific LegalEntity,
navigating across all AssetOwnership links with that LegalEntity as the owner to the corresponding
ownedAssets gives a collection of Assets that must be the same as the assetsOwned of the LegalEntity. The

Kernel Modeling Language v1.0 Beta 4 43

declaration of assetsOwned as ordered means that this collection is ordered in the same order as the assetsOwned
of the LegalEntity. Similarly, if assetsOwned were non-unique, the collection could contain duplicate Assets.

Note that these semantics presume that values of cross features are exclusively due to the existence of links between
them. However, it is still possible for the cross features to have values that do not correspond to any links, allowing
the cross features to meet their multiplicity constraints without requiring corresponding links exist. That is, the
declaration of cross features imposes necessary but not sufficient conditions on links that are instances of the
association (see 7.3.2.1). To make these conditions also sufficient, requiring instances of the association to exist
when cross feature values do, the association declaration can include the all keyword (see 7.3.2.2).

For example, as declared above, it is possible for a LegalEntity to have assetsOwned for which there are no
instances of AssetOwnership linking the LegalEntity to the corresponding Assets. But with the declaration
below, adding just an all keyword, a LegalEntity having an Asset as one of its assetsOwned is sufficient to
require that an AssetOwnership link exists between that LegalEntity and that Asset, and, therefore, that the
LegalEntity is also one of the owningEntities of the Asset.

assoc all AssetOwnership {
end feature owner : LegalEntity crosses ownedAsset.owningEntities;
end feature ownedAsset : Asset => owner.assetsOwned;
feature valuationOnPurchase : MonetaryValue;

}

It is also possible to declare cross features directly in the declaration of the ends of an association, rather than nested
in the related types of the association. Such owned cross features are declared between the end and feature
keywords of the association end declarations (and, in this case, the feature keyword is required). These may be
full feature declarations, including declared name and or short name, owned subsettings and redefinitions, etc., but
without bodies and nested elements (see 7.3.4.2 on feature declaration).

assoc LegalAssetOwnership {
end owningEntities[1..*] feature owner : LegalEntity;
end assetsOwned[*] ordered feature ownedAsset : Asset;
feature valuationOnPurchase : MonetaryValue;

}

Note. Owned cross features are in the namespace of the owning association ends, so their names are qualified by the
name of the association ends, e,g., LegalAssetOwnership::owner::owningEntities.

For a binary association, an owned cross feature is implied to be featured by the type of the other association end,
rather than its owning association end. Further, an association end with a cross feature has an implied cross
subsetting relationship to the cross feature through the other end feature. This ensures owned cross features have the
same semantics as cross features that are nested directly in the related types of the association. (For further details,
see 8.4.4.5 on association semantics.)

Note. If an association end has an owned cross feature, then it may not have an explicit cross subsetting relationship
declared to an unowned cross feature.

While owned cross features can have full feature declarations, it is often sufficient to just include the cross
multiplicity, ordering, and/or uniqueness on one or more association ends.

assoc LegalAssetOwnership {
end [1..*] feature owner : LegalEntity;
end [*] ordered feature ownedAsset : Asset;
feature valuationOnPurchase : MonetaryValue;

}

This specifies that every Asset must have one or more LegalEntities as its owners, and that every
LegalEntity may have zero or more Assets as ownedAssets, which are ordered. Note that the association ends

44 Kernel Modeling Language v1.0 Beta 4

themselves, as participants of the association, still always have multiplicity 1..1, whether or not this is included in
the declaration.

Cross features can also be used in associations with more than two ends. In general, the cross multiplicity, ordering,
and uniqueness of an association end apply to the the collection of its values from each set of instances of the
association that have the same (single) values for each of the other ends.

assoc AgreedAssetOwnership {
end [*] feature owner : LegalEntity;
end [*] ordered feature ownedAsset : Asset;
end [0..1] feature agreement : OwnershipAgreement;

}

The cross multiplicity 0..1 for agreement requires that, for every pair of a LegalEntity and an Asset, at most
one AgreedAssetOwnership instance may link that LegalEntity as its owner and Asset as its ownedAsset to
an OwnershipAgreement as its agreement. Similarly, every pair of a LegalEntity as owner and an
OwnershipAgreement as agreement may be linked to any number of Assets as ownedAsset, including none at
all, as declared by the cross multiplicity of ownedAsset. This collection of linked Assests is ordered, as declared
by the cross ordering of ownedAsset. The same applies to the cross multiplicity of owner. (For further details, see
8.4.4.5 on association semantics.)

If an association has a single superclassifier that is an association, it may inherit association ends from this
superclassifier association. However, if it declares any owned association ends, then each of these must redefine an
association end of the superclassifier association, in order, up to the number of association ends of the
superclassifier. If no redefinition is given explicitly for an owned association end, then it is considered to implicitly
redefine the association end at the same position, in order, of the superclassifier Association (including implicit
defaults), if any. An implicitly or explicitly redefining association end may also further constrain the cross
multiplicity (if any) of the superclassifier association ends that it redefines.

assoc SoleAssetOwnership specializes LegalAssetOwnership {
end [1] feature owner; // Redefines LegalAssetOwnership::owner.
// ownedAsset is inherited as an association end.
// valuationOnPurchase is inherited as a non-end feature.

}

If an association has more than one superclassifier that is an association, then the association must declare a number
of owned association ends at least equal to the maximum number of association ends of any of its superclassifier
associations. Each of these owned association ends must then redefine the corresponding association end (if any) at
the same position, in order, of each of the superclassifier associations.

If a feature has one or more association types, then it must subset the feature links from the Links library model
(see 9.2.3). If any of the types are binary associations, then it must subset the feature binaryLinks from the
Links library model (see 9.2.3). If necessary, the feature is given implicit subsettings to meet these requirements.
(See also 7.4.6 on connectors as features typed by associations.)

7.4.5.3 Association Structures

Association structures are both associations and structures (see 7.4.4 on structures), classifying link objects, which
are both links and objects (see 9.2.5.1 on objects). As objects, link objects can be created and destroyed, and their
non-end features can change over time if they are variable and not constant (see also 7.3.4.2). However, the end
features of a link object are always constant, their values cannot change over its lifetime.

An association structure is declared like a regular association (see 7.4.5.2), but using the keyword assoc struct.
An association structure must directly or indirectly specialize the base associations structure LinkObject. If this is
not the case due to the explicit owned superclassifications in its declaration, then it is implicitly given a default
superclassification to either the association structure BinaryLinkObject (if it is a binary association structure) or
the association structure LinkObject (otherwise), both of which are from the Objects library model (see 9.2.5).

Kernel Modeling Language v1.0 Beta 4 45

The same rules on association ends described in 7.4.5.2 for associations also apply to association structures. An
association structure may specialize an association that is not an association structure, but all subclassifications of an
association structure must be association structures.

struct LegalEntity {
var feature assetsOwned [*] ordered : Asset;

}
struct Asset {

var feature owningEntities [1..*] : LegalEntity;
}
assoc struct ExtendedAssetOwnership { // Specializes Objects::BinaryLinkObject by default.

end feature owner : LegalEntity crosses ownedAsset.owningEntities;
end feature ownedAsset : Asset crosses owner.assetsOwned;
feature valuationOnPurchase : MonetaryValue;
// The values of the feature "revaluations" may change over time.
var feature revaluations[*] ordered : MonetaryValue;

}

The end features of an association structure may also be declared as constant features by placing the keyword const
before the keyword end. Whether or not an end feature is declared as constant, its value cannot change for the
lifetime of an instance of the owning association structure. However, a constant end feature may subset or redefine a
variable feature, while a regular end feature cannot.

struct AssetOwnershipRecord {
var feature owner : LegalEntity [1];
var feature ownedAsset : Asset [1];

}
assoc struct AssetOwnershipRelationship specializes AssetOwnershipRecord {

const end feature redefines owner;
const end feature redefines ownedAsset;

}

If a feature has one or more types that are association structures, then it must subset the feature linkObjects from
the Objects library model (see 9.2.5). If any of the types are binary association structures, then it must subset the
feature binaryLinkObjects from the Objects library model (see 9.2.5). If necessary, the feature is given
implicit subsettings to meet these requirements.

7.4.6 Connectors
7.4.6.1 Connectors Overview

Metamodel references:

• Concrete syntax, 8.2.5.5
• Abstract syntax, 8.3.4.5
• Semantics, 8.4.4.6

Connectors are features that are typed by associations (see 7.4.5), having values that are links (see 9.2.3.1). Like
an association, a connector has end features, known as its connector ends. Each connector end redefines an
association end from each of the associations that type the connector and subsets a feature that becomes a related
feature of the connector. Connectors typed by binary associations are called binary connectors.

A connector is also a relationship between its related features. For binary connectors, the two related features are
identified as the source feature and the target feature, which might be the same. For connectors with more that two
connector ends ("n-ary"), the first related feature is the source feature and all the remaining related features are
target features.

46 Kernel Modeling Language v1.0 Beta 4

Connectors can be thought of as "instance-specific" associations, because their values (which are links) are each
limited to linking things identified via related features on the same instance of the connector's domain (or by things
identified by that instance, recursively, see below). For example, an association could be used to model an engine
driving wheels, and to type a connector in the car model. This connector specifies an engine driving wheels only in
the same car, not in another car, as would be allowed with just the association.

Specifically, the values (links) of a connector are restricted to those that link things

1. classified by the types of its association ends, regardless of the domain of the connector
2. identified by its related features for the same instance of the domain of the connector (or by things

identified by that instance, recursively).

For example, if the wheels in a car are taken to be part of its drive train, rather than part of the car directly, then the
engine in each car will drive wheels identified by that car's drive train, rather than a feature of the car directly. This
requires that each related feature of a connector have some featuring type of the connector as a direct or indirect
featuring type (where a feature with no featuring type is treated as if the classifier Anything was its featuring type).
In particular, this condition is satisfied if a connector has an owned type that either also directly owns the related
features of the connector or from which the related features can be reached by chaining (see 7.3.4.6). Otherwise,
explicit owned type featurings (see 7.3.4.8) should be used to ensure that the connector has a sufficiently general
domain.

Binding connectors are binary connectors that require their source and target features to have the same values on
each instance of their domain. They are typed by the library association SelfLink, which only links things in the
modeled universe to themselves (see 9.2.3.1). To be meaningful, the declared co-domains of the related features of
a binding connector must at least overlap. Since the interpretations of data types are disjoint from those of classes,
this means that a feature typed by data types can only be bound to another feature typed by data types. In the
determination of the equivalence of such features, indistinguishable data values are considered equivalent. The
binding of features typed by classes to another feature typed by classes, on the other hand indicates that the same
occurrences play the roles represented by each of the related features.

Successions are binary connectors requiring their source and target features to identify Occurrences that are ordered
in time. They are typed by the library association HappensBefore (see 9.2.4.1), which links occurrences that
happen completely separately in time, with the connector's source feature being the earlier occurrence and the target
feature being the later occurrence.

7.4.6.2 Connector Declaration

A connector is declared as a feature (see 7.3.4.2) using the keyword connector. If no owned subsetting or owned
redefinition is explicitly given for a connector, and none of its types are association structures, then the connector is
implicitly given a default subsetting to the feature binaryLinks from the Links library model (see 9.2.3), if it is a
binary connector, or to the feature links from the Links library model, otherwise. If at least one of the types of a
connector is an association structure, then the default subsetting is instead to the feature binaryLinkObjects from
the Objects library model (see 9.2.5), if it is a binary connector, or to the feature linkObjects from the
Objects library model, otherwise.

In addition, a connector declaration includes connector end features that reference the features related by the
connector. The connector ends may either be owned by the connector or inherited from the associations that type it
or other connectors that it subsets (see also the description of association ends in 7.4.5). Each owned end of a
connector redefines the end at the corresponding position (if any) of each of the associations or connectors it
specializes. A connector with more than two ends can also have more ends than any of its supertypes. However, a
connector that specializes a binary association or connector must itself be binary, with exactly two ends.

The related feature referenced by a connector end is specified using the keyword references or the equivalent
symbol ::>. The number of connector ends is the same as the number of related features (including duplicates).

Kernel Modeling Language v1.0 Beta 4 47

// Specializes Objects::BinaryLinkObject by default.
assoc struct Mounting {

end feature mountingAxle : Axle;
end feature mountedWheel : Wheel;

}
struct WheelAssembly {

composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;

// Subsets Objects::binaryLinkObjects by default.
connector mount[2] : Mounting {

end feature mountingAxle references axle;
end feature mountedWheel references wheels;

}
}

The references notation indicates that connector end features have reference subsetting relationships to the
features related by the connector. Reference subsetting has the same semantics as regular subsetting (see 7.3.4.4)
but is used to syntactically differentiate one of the owned subsettings of a feature. While reference subsetting is used
primarily for connector ends in KerML, it can actually be specified as an owned subsetting in the declaration of any
kind of feature, using the references or ::> symbol. A feature is allowed to have at most one owned subsetting
that is a reference subsetting.

Instead of explicitly declaring connector ends in the body of the connector, they can be listed between parentheses,
after the regular feature declaration part and before the body of the connector (if any). In this case, the end
declarations are limited to be of the form e references f or e ::> f, where e is the name of an association end
and f is the qualified name of a related feature.

struct WheelAssembly {
composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;
connector mount[2] : Mounting (

mountingAxle ::> axle,
mountedWheel ::> wheels

);
}

The association end names can also be omitted, in which case the connector ends are matched in order to
corresponding association ends.

struct WheelAssembly {
composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;

connector mount[2] : Mounting (axle, wheels);
}

By default, the connector ends of a connector are declared in the same order as the association ends of the types of
the connector. However, if the connector has a single type, then the related features can be given in any order, with
each related feature paired with an association end of the type using a notation of the form e references f or e
::> f, where e is the name of an association end and f is the qualified name of a related feature. In this case, the
name of each association end must appear exactly once in the list of connector end declarations.

A special notation can be used for a binary connector, in which the source related feature is referenced after the
keyword from, and the target related feature is referenced after the keyword to.

struct WheelAssembly {
composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;

48 Kernel Modeling Language v1.0 Beta 4

connector mount : Mounting from axle to wheels;
}

If a binary connector declaration includes only the related features part, then the keyword from can be omitted.

struct WheelAssembly {
composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;

// Subsets Links::binaryLinks by default.
connector axle to wheels;

}

If a binary connector has a single type, then the names of the association ends of the type can also be used in the
declaration of the connector ends in the special notation for binary connectors. However, since the connector ends
are always declared in order from source to target in this notation, the association end names given must match those
from the type in the order they are declared for that type.

struct WheelAssembly {
composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;
connector mount[2] : Mounting

from mountingAxle ::> axle
to mountedWheel ::> wheels;

}

Connector ends may have cross features, specified using cross subsetting, as for association ends (see 7.4.5.2). The
cross feature for the connector end further constrains any inherited cross feature(s).

struct WheelAssembly {
composite feature axle[1] : Axle {

feature mountedWheels[2] : Wheel;
}
composite feature wheels[2] : Wheel;
connector mount[2] : Mounting {

end mountingAxle references axle;
end mountedWheel references wheels crosses mountingAxle.mountedWheels;

}
}

Connector ends may also have owned cross features. In the full notation for the end declaration, this is specified just
as for an association end (see 7.4.5.2).

struct WheelAssembly {
composite feature halfAxles[2] : Axle;
composite feature wheels[2] : Wheel;
// Connects each one of the halfAxles to a different one of the wheels.
connector mount[2] : Mounting {

end [1] feature mountingAxle references halfAxles;
end [1] feature mountedWheel references wheels;

}
}

In the shorthand notations, a cross multiplicity (but not ordering or non-uniqueness) can be given at the beginning of
the end declaration.

struct WheelAssembly {
composite feature halfAxles[2] : Axle;
composite feature wheels[2] : Wheel;
// Connects each one of the halfAxles to a different one of the wheels.

Kernel Modeling Language v1.0 Beta 4 49

connector mount[2] : Mounting from [1] halfAxles to [1] wheels;
}

Note that, if a connector is an owned feature of a type (as above), the context consistency condition for the related
features of the connector (see 7.4.6.1) requires that these features also be directly or indirectly nested within the
owning type. The feature chain dot notation (see 7.3.4.6) should be used when connecting so-called "deeply
nested" features.

While the resolution of a feature chain is similar to a qualified name, the feature path contextualizes the resolution of
the final feature. Thus, for example, while the qualified name axle::halfAxles statically resolves to
Axle::halfAxles, in the Feature chain axle.halfAxles, halfAxles is understood to be specifically the
feature as nested in axle.

struct Axle {
composite feature halfAxles[2] : HalfAxle;

}
struct Wheel {

composite feature hub : Hub[1];
composite feature tire : Tire[1];

}
struct WheelAssembly {

composite feature axle[1] : Axle;
composite feature wheels[2] : Wheel;

connector mount : Mounting from axle.halfAxles to wheels.hub;
}

7.4.6.3 Binding Connector Declaration

A binding connector is declared as a feature (see 7.3.4.2) using the keyword binding. In addition, a binding
connector declaration gives, after the keyword of, the qualified names of the two related features that are bound by
the binding connector, separated by the symbol =, after the regular feature declaration part and before the body of
the binding connector (if any). If no owned subsetting or owned redefinition is explicitly given, then the binding
connector is implicitly given a default subsetting to the feature selfLinks from the Links library model (see 9.2.3
). Note that, due to this default subsetting, if no type is explicitly given for a binding connector, then it will
implicitly have the type SelfLink (the type of selfLinks).

struct Vehicle {
composite feature fuelTank {

out var feature fuelFlowOut : Fuel;
}

composite feature engine {
in var feature fuelFlowIn : Fuel;

}

// Subsets Links::selfLinks by default.
binding fuelFlowBinding of fuelTank.fuelFlowOut = engine.fuelFlowIn;

}

If a binding connector declaration includes only the related features part, then the keyword of can be omitted.

struct Vehicle {
composite feature fuelTank {

out var feature fuelFlowOut : Fuel;
}

composite feature engine {
in var feature fuelFlowIn : Fuel;

}

50 Kernel Modeling Language v1.0 Beta 4

binding fuelTank.fuelFlowOut = engine.fuelFlowIn;
}

(See also 7.4.11 on the use of binding connectors with feature values.)

7.4.6.4 Succession Declaration

A succession is declared as a feature (see 7.3.4.2) using the keyword succession. In addition, the succession
declaration gives the qualified name of the source feature after the keyword first and the qualified name of the
target feature after the keyword then. If no owned subsetting or owned redefinition is explicitly given, then the
succession is implicitly given a default subsetting to the feature happensBeforeLinks from the Occurrences
library model (see 9.2.4). Note that, due to this default subsetting, if no type is explicitly given for a succession,
then it will implicitly have the type HappensBefore (the type of happensBeforeLinks).

behavior TakePicture {
composite step focus : Focus;
composite step shoot : Shoot;
succession controlFlow first focus then shoot;

}

If a succession declaration includes only the related features part, then the keyword first can be omitted.

behavior TakePicture {
composite step focus : Focus;
composite step shoot : Shoot;
succession focus then shoot;

}

As for connector ends on regular connectors, constraining multiplicities can also be defined for the connector ends
of successions.

behavior TakePicture {
composite step focus[*] : Focus;
composite step shoot[1] : Shoot;
// A focus may be preceded by a previous focus.
succession [0..1] focus then [0..1] focus;
// A shoot must follow a focus.
succession [1] focus then [0..1] shoot;

}

7.4.7 Behaviors
7.4.7.1 Behaviors Overview

Metamodel references:

• Concrete syntax, 8.2.5.6
• Abstract syntax, 8.3.4.6
• Semantics, 8.4.4.7

Behaviors are classes that classify performances, which are kinds of occurrences that can be spread out in
disconnected portions of space and time (see 9.2.6). The performance of behaviors can cause effects on other
things, including their existence and relations, some of which might be accepted as input to or provided as output
from the behavior.

Behaviors can have steps, which are features typed by behaviors, allowing the containing behavior to coordinate the
performance of other behaviors. Steps can be ordered in time using succession connectors (see 7.4.6.4). They can

Kernel Modeling Language v1.0 Beta 4 51

also be connected by flows to model things flowing between the output of one step and the input of another. Steps
can also nest other steps to augment or redefine steps inherited from their behavior types.

7.4.7.2 Behavior Declaration

A behavior is declared as a classifier (see 7.3.3), using the keyword behavior. If no owned superclassing is
explicitly given for the behavior, then it is implicitly given a default superclassing to the behavior Performance
from the Performances library model (see 9.2.6).

Features declared in the body of a behavior with a non-null direction (see 7.3.4.2) are considered to be the owned
parameters of the behavior. Features with direction in are input parameters, those with direction out are output
parameters, and those with direction inout are both input and output parameters.

// Specializes Performances::Performance by default.
behavior TakePicture {

in scene : Scene;
out picture : Picture;

}

Parameters are ordered in the lexical order they are declared in the body of a behavior. They may appear at any
location within the body.

If a behavior has owned subclassifications whose superclassifiers are behaviors, then each of the owned parameters
of the subclassifier behavior must, in order, redefine the parameter at the same position of each of the superclassifier
behaviors. The redefining parameters shall have the same direction as the redefined parameters.

behavior A { in a1; out a2; }
behavior B { in b1; out b2; }
behavior C specializes A, B {

in c1 redefines a1, b1;
out c2 redefines a2, b2;

}

If there is a single superclassifier behavior, then the subclassifier behavior can declare fewer owned parameters than
the superclassifier behavior, inheriting any additional parameters from the superclassifier (which are considered to
be ordered after any owned parameters). If there is more than one superclassifier behavior, then every parameter
from every superclassifier must be redefined by an owned parameter of the subclassifier. If every superclassifier
parameter is redefined, then the subclassifier behavior may also declare additional parameters, ordered after the
redefining parameters. If no redefinitions are given explicitly for a parameter, then the parameter is implicitly given
owned redefinitions of superclassifier parameters sufficient to meet the previously stated requirements.

behavior A1 :> A { in aa; } // aa redefines A::a1, A::a2 is inherited.
behavior B1 :> B { in b1; out b2; inout b3; } // Redefinitions are implicit.
behavior C1 :> A1, B1 { in c1; out c2; inout c3; }

Steps (see 7.4.7.3) declared in the body of a behavior are the owned steps of the containing behavior. A behavior
can also inherit or redefine non-private steps from any superclassifier Behavior.

behavior Focus { in scene : Scene; out image : Image; }
behavior Shoot { in image : Image; out picture : Picture; }
behavior TakePicture {

in scene : Scene;
out picture : Picture;
composite step focus : Focus;
composite step shoot : Shoot;

}

52 Kernel Modeling Language v1.0 Beta 4

Though the performance of a behavior takes place over time, the order in which its steps are declared has no
implication for temporal ordering of the performance of those steps. Any restriction on temporal order, or any other
connections between the steps, must be modeled explicitly.

behavior TakePicture {
in scene : Scene;
out picture : Picture;

binding focus.scene = scene;
composite step focus : Focus;
succession focus then shoot;
composite flow focus.image to shoot.image;
composite step shoot : Shoot;
binding picture = shoot.picture;

}

7.4.7.3 Step Declaration

A step is declared as a feature (see 7.3.4.2) using the keyword step. If no owned subsetting or owned redefinition
is explicitly given, then the step is implicitly given a default subsetting to the feature performances from the
Performances library model (see 9.2.6).

As for a behavior, directed features declared in the body of a step are considered to be parameters of the step (see
7.4.7.2). If a step has owned specializations (including all feature typings, subsettings, and redefinitions), whose
general type is a behavior or a step. then the rules for the redefinition of parameters of the behaviors and steps are
the same as for the redefinition of the parameters of superclassifier behaviors by a subclassifier behavior (see
7.4.7.2).

step focus : Focus {
// Parameters redefine parameters of Focus.
in scene;
out image;

}

// Parameters are inherited.
step refocus subsets focus;

A step can also have a body, which may have steps in it. A step can inherit or redefine steps from its behavior types
or any other steps it subsets.

step takePictureWithAutoFocus : TakePicture {
in feature unfocusedScene redefines scene;
step redefines focus : AutoFocus;
out feature focusedPicture redefines picture;

}

7.4.8 Functions
7.4.8.1 Functions Overview

Metamodel references:

• Concrete syntax, 8.2.5.7
• Abstract syntax, 8.3.4.7
• Semantics, 8.4.4.8

Functions are behaviors (see 7.4.7) with one out parameter designated as the result parameter. Functions classify
evaluations (see 9.2.6.2.4), which are kinds of performances that produce results as values of the result parameter.
Like all behaviors, functions can change things, often referred to as "side effects". A pure function is one that has no

Kernel Modeling Language v1.0 Beta 4 53

side effects and always produces the same results given the same input values, similarly to a function in the
mathematical sense. The numerical functions in the Kernel Function Library (see 9.4), for example, are pure
functions.

Expressions are steps (see 7.4.7) typed by only a single function, which means that their values are evaluations. An
expression whose value is an evaluation with results is said to evaluate to those results. They can be steps in any
behavior, but a function, in particular, can designate one of its expression steps as the result expression that gives the
value of its result parameter. Expressions can have their own nested parameters, to augment or redefine those of
their functions, including the result parameter. They can also own other expressions and designate a result
expression, similarly to a function. (See also 7.4.9 for more on expressions).

Predicates are functions whose result is a single Boolean value (that is, true or false). A predicate determines
whether the values of its input parameters meet particular conditions at the time of its evaluation, resulting in true if
they do, and false otherwise. Predicates classify boolean evaluations, which are specialized evaluations giving a
Boolean result (see 9.2.6.2.1).

Boolean expressions are expressions whose function is a predicate and, so, evaluate to a Boolean result. A boolean
expression might, in general, evaluate to true at some times and false at other times. An invariant, though, is a
boolean expression that must always evaluate to either true at all times or false at all times. By default, an invariant
is asserted to always evaluate to true, while a negated invariant is asserted to always evaluate to false.

7.4.8.2 Function Declaration

A function is declared as a behavior (see 7.4.7.2), using the keyword function. If no owned superclassing is
explicitly given for a function, then it is implicitly given a default subclassification to the function Evaluation
from the Performances library model (see 9.2.6). As for a behavior, any feature declared in the body of a function
with an explicit direction is considered to be a parameter of the function. In addition, the result parameter of a
function may be declared in its body by beginning the declaration with the keyword return (instead of a direction
keyword).

// Specializes Performances::Evaluation by default.
function Velocity {

in v_i : VelocityValue;
in a : AccelerationValue;
in dt : TimeValue;
return v_f : VelocityValue;

}

If a function has owned subclassifications that are behaviors, then the rules for redefinition or inheritance of non-
result parameters are the same as for a behavior (see 7.4.7.2). If some of the superclassifier behaviors are functions,
then the result parameter of the subclassifier function must redefine the result parameters of the superclassifier
functions. If, in this case, the result parameter of the subclassifier function has no owned redefinitions, then it is
implicitly given redefinitions of the result parameter of each of the superclassifier functions.

abstract function Dynamics {
in initialState : DynamicState;
in time : TimeValue;
return : DynamicState;

}
function VehicleDynamics specializes Dynamics {

// Each parameter redefines the corresponding superclassifier parameter
in initialState : VehicleState;
in time : TimeValue;
return : VehicleState;

}

The body of a function is like the body of a behavior (see 7.4.7.2), with the optional addition of the declaration of a
result expression at the end. A result expression is always written using the Expression notation described in 7.4.9 ,

54 Kernel Modeling Language v1.0 Beta 4

not using the Expression declaration notation from 7.4.8.3 . The result of the result expression is implicitly bound to
the result parameter of the containing function.

function Average {
in scores[1..*] : Rational;
return : Rational;

sum(scores) / size(scores)
}

Note. A result expression is written without a final semicolon.

The result of a function can also be explicitly bound, either using a binding connector (see 7.4.6.3) or a feature
value on the result parameter declaration (see 7.4.11). In this case, the body of the function should not include a
result expression.

function Average {
in scores[1..*] : Rational;
return : Rational = sum(scores) / size(scores);

}

7.4.8.3 Expression Declaration

An expression can be declared as a step (see 7.4.7.3) using the keyword expr (see also 7.4.9 for more traditional
expression notation). If no owned subsetting or owned redefinition is explicitly given, then the expression is
implicitly given a default subsetting to the feature evaluations from the Performances library model (see 9.2.6
).

As for a step, directed features declared in the body of an expression are considered to be parameters of the
expression (see 7.4.7.3). If an expression has owned specializations (including all feature typings, subsettings, and
redefinitions) whose general type is a behavior (including a function) or a step (including an expression), then the
rules for the redefinition of the parameters of those behaviors and steps are the same as for the redefinition of the
parameters of superclassifier behaviors by a subclassifier function (see 7.4.8.2).

expr computation : ComputeDynamics {
// Parameters redefined parameters of ComputeDynamics.
in state;
in dt;
return result;

}
expr vehicleComputation subsets computation {

// Input parameters are inherited, result is redefined.
return : VehicleState;

}

Like a function body, an expression body can also specify a result expression.

expr : VehicleDynamics {
in initialState;
in time;
return result;

vehicleComputation(initialState, time)
}

Or the result can be explicitly bound.

expr : Dynamics {
in initialState;
in time;

Kernel Modeling Language v1.0 Beta 4 55

return result : VehicleState =
vehicleComputation(initialState, time);

}

7.4.8.4 Predicate Declaration

A predicate is declared as a function (see 7.4.8), using the keyword predicate. If no owned subclassification is
explicitly given for a predicate, then it is implicitly given a default subclassification to the predicate
BooleanEvaluation from the Performances library model (see 9.2.6). If a predicate has owned
subclassifications that are behaviors, then the rules for redefinition or inheritance of non-result parameters are the
same as for a function (see 7.4.8.2). Since a predicate must always return a Boolean result, it is not necessary to
explicitly declare a result parameter for it. However, if a result parameter is declared, then it must have type
Boolean from the ScalarValues library model (see 9.3.2) and multiplicity 1..1 (see 7.4.12).

predicate isAssembled {
in assembly : Assembly;
in subassemblies[*] : Assembly;

}

The body of a predicate is the same as a function body (see 7.4.8). If a result expression is included, then it must
have a Boolean result.

predicate isFull {
in tank : FuelTank;
tank.fuelLevel == tank.maxFuelLevel

}

7.4.8.5 Boolean Expression and Invariant Declaration

A boolean expression is declared as an expression (see 7.4.8.3), using the keyword bool. If no owned subsetting or
owned redefinition is explicitly given, then the boolean expression is implicitly given a default subsetting to the
feature booleanEvaluations from the Performances library model (see 9.2.6).

As for an expression, directed features declared in the body of a boolean expression are considered to be parameters
of the boolean expression (see 7.4.8.3). If a boolean expression has owned specializations (including all feature
typings, subsettings, and redefinitions) whose general type is a behavior or step, then the rules for the redefinition of
the parameters of those behaviors and steps are the same as for a regular expression declaration (see 7.4.8.3). The
requirements on, and default for, the result parameter of a boolean expression are the same as for a predicate (see
7.4.8.4).

// All input parameters are inherited.
bool assemblyChecks[*] : isAssembled;

Like a predicate body (see 7.4.8.4), a boolean expression body can specify a Boolean result expression.

class FuelTank {
feature fuelLevel : Real;
feature readonly maxFuelLevel : Real;
bool isFull { fuelLevel == maxFuelLevel }

}

An invariant is declared like any other boolean expression, except using the keyword inv instead of bool, and,
additionally, this keyword may be optionally followed by one of the keywords true or false, to indicate whether
the invariant is asserted to be true or false (i.e., is negated). The default is true.

class FuelTank {
feature fuelLevel : Real;
feature readonly maxFuelLevel : Real;

56 Kernel Modeling Language v1.0 Beta 4

// The invariant is asserted true by default.
inv { fuelLevel >= 0 & fuelLevel <= maxFuelLevel }
// The invariant is explicitly asserted false, that is, it is negated.
inv false { fuelLevel > maxFuelLevel }

}

7.4.9 Expressions
7.4.9.1 Expressions Overview

Metamodel references:

• Concrete syntax, 8.2.5.8
• Abstract syntax, 8.3.4.8
• Semantics, 8.4.4.9

As described in 7.4.8 , expressions are steps typed by functions, and 7.4.8.3 covers the general notation for
declaring an expression as a step. However, expressions are commonly organized into tree structures, with
expressions as the nodes, and the input parameters of each expression bound to the result of each of its child
expressions. KerML includes extensive textual notation for constructing expression trees, including traditional
operator notations for functions in the Kernel Model Library (see Clause 9).

These expression notations map entirely to an abstract syntax involving just a few specialized kinds of expressions:

• The non-leaf nodes of an expression tree are invocation expressions, a kind of expression that specifies its
input values as the results of other expressions (its argument expressions), one for each of the input
parameters of its invoked function.

• The edges of the tree are binding connectors between the input parameters of an invocation expression
(redefining those of its function) and the results of its argument expressions.

• The leaf nodes are these kinds of expressions:
◦ Feature reference expressions evaluate to values of a referenced feature that is not part of the

expression tree.
◦ Literal expressions evaluate to the literal value of one of the primitive data types from the

ScalarValues model library (see 9.3.2).
◦ Null expressions evaluate to the empty set.

An expression can also be the referent of a feature reference expression in an expression tree, as above. This enables
the evaluation of the referent expression to be taken as the value of the argument of an invocation, rather than
passing the value of the result of the evaluation. As a shorthand for doing this, the concrete syntax for an expression
body (as described in 7.4.8.3) can be used as a leaf node in the expression syntax tree.

A model-level evaluable expression is an expression that refers to metadata, which is data about model elements,
rather than the things being modeled. Model-level evaluable expressions can give values to the features of metadata
(see 7.4.13) and be used as element filtering conditions in packages (see 7.4.14). The expressiveness of model-level
evaluable expressions is restricted to support this:

• All null expressions, literal expressions and feature reference expressions are model-level evaluable.
• An invocation expression is model-level evaluable if and only if it meets the following conditions:

1. All its argument expressions are model-level evaluable.
2. It invokes a function that is listed as being model-level evaluable in Table 5 (in 8.2.5.8.1) or Table 7 (in

8.2.5.8.2).

7.4.9.2 Operator Expressions

Operator expression notation provides a shorthand for invocation expressions that invoke a library function
represented as an operator symbol. (Table 5 in 8.2.5.8.1 shows the mapping from operator symbols to the functions

Kernel Modeling Language v1.0 Beta 4 57

they represent from the Kernel Model Library.) An operator expression contains subexpressions called its operands
that generally correspond to the argument expressions of the invocation expression, except in the case of operators
representing control functions, in which case the evaluation of certain operands is as determined by the function.

Operator expressions include the following:

• Conditional expressions. The conditional test operator if is followed by three operands, with the symbol
? after the first operand and the keyword else after the second operand. A conditional expression
evaluates to the value of its second or third operand, depending on whether the result of its first operand is
true or false. Note that only one of the second or third operand is actually evaluated.

if x >= 0? x else -x

• Binary operator expressions. A binary operator is one that has two operands. The binary operators include
numerical operators (+, -, *, /, %, ^, **), logical operators (&, |, xor), comparison operators (==, !=, <, >,
<=, >=, ===, !==), and the range construction operator (..). In general, both operands become arguments
of the invocation expression, with their results being passed to the invocation of the function represented
by the operator. However, the null-coalescing (??), conditional and (and), conditional or (or) and
implication (implies) operators all correspond to control functions in which their second operand is only
evaluated depending on a certain condition of the value of their first operand (whether it is null, true, false,
or true, respectively).

x + y
list#(i) ?? default
i > 0 and sensor#(i) != null
sensor == null or sensor.reading > 0

The operators == and != apply to operands that have single values, testing whether they are equal or
unequal, respectively. They also evaluate to true or false, respectively, if their operands are both null (no
values). The operators === and !== apply specifically to values that are occurrences (see 9.2.4). They test
whether two occurrences are portions (in space and/or time) of the same life occurrence. Informally, these
operators test whether or not two occurrences have the same "identity". For data values (values that are not
occurrences), === and !== are the same as == and !=.

currentPortion == tripPortion // True for same trip portions
currentPortion === tripPortion // True for any two portions of same trip

• Unary operator expressions. A unary operator is one that has a single operand. The result of evaluating
the operand is passed to the invocation of the Function represented by the operator. The unary operators
include the numerical operators + and - and the logical operator not.

-x
not isOutOfRange(sensor)
not completed

• Classification expressions. The classification operators are syntactically similar to binary operators, but,
instead of an expression as their second operand, they take a type name. The classification operators
istype and hastype test whether all of the values of their first operand is classified by the named type
(either including or not including subtypes, respectively). The @ operator is similar to istype, but tests
whether at least one of the values of its first operand is classified by the named type. Note that this means
that istype and hastype evaluate to true on a null (empty list) value, while @ evaluates to false.

sensors istype ThermalSensor // Are all sensors ThermalSensors?
sensors @ ThermalSensor // Is any sensor a ThermalSensor?
person hastype Administrator

The classification operator as, known as the cast operator, performs an isType test of whether each of
the values of its first operand is classified by the named type, and then it selects only those values that pass

58 Kernel Modeling Language v1.0 Beta 4

the test to include in its result. The result values of such a cast expression (if any) are always guaranteed to
be instances of the named type.

sensors as ThermalSensor
person as Administrator

The classification operators may also be used without a first operand, in which case the first operand is
implicitly Anything::self (see 9.2.2.2.1). This is useful, in particular, when used as a test within an
element filter condition expression (see 7.4.14).

istype ThermalSensor
@ThermalSensor
hastype Administrator
as Supervisor

• Metaclassification expressions. The metaclassification operators @@ and meta take the qualified name of
any kind of element as their first operand and a metaclass (see 7.4.13) as their second operand. They are
shorthands for classification expressions with the operators @ and as, respectively, and a metadata access
expression (see 7.4.9.4) as their first operand. As such, @@ tests whether any metadata associated with an
element are classified by the given metaclass, while meta filters the metadata associated with an element
and evaluates to those that are classified by the given metaclass.

// Shorthand for designModel.metadata @ ApprovalAnnotation
designModel @@ ApprovalAnnotation

// Shorthand for sensors.metadata as KerML::Feature
sensors meta KerML::Feature

// Evaluates to the string "sensors".
(sensors meta KerML::Feature).name

• Extent expressions. The extent operator all is syntactically similar to a unary operator, but, instead of an
expression as its operand, it takes a type name. An extent expression evaluates to a sequence of all
instances of the named type.

all Sensor

In an operator expression containing nested operator expressions, the nested expressions are implicitly grouped
according to the precedence of the operators involved, as given in Table 6 (in 8.2.5.8.1). Operator expressions with
higher precedence operators are grouped more tightly than those with lower precedence operators. In addition, all
binary operators other than exponentiation group to the left. The exponentiation operators (^ and **) group to the
right. For example, the operator expression

-w + x * y * z + a ^ b ^ c

is considered equivalent to

((-w) + ((x * y) * z)) + (a ^ (b ^ c))

7.4.9.3 Primary Expressions

Primary expression notation provides additional shorthands for certain kinds of invocation expressions.For those
cases in which the invoked function is represented by an operator symbol, the symbol is mapped to the appropriate
library function as given in Table 7 (in 8.2.5.8.2).

Primary expressions include the following:

• Index expression. An index expression specifies the invocation of the indexing function '#' from the
BaseFunctions library model (see 9.4.2). The default behavior for this function is given by the

Kernel Modeling Language v1.0 Beta 4 59

specialization SequenceFunctions::'#', for which the first operand is expected to evaluate to a
sequence of values, and the second operand is expected to evaluate to an index into that sequence. Default
indexing is from 1 using Natural numbers. Note that parentheses are required around the second
operand.

sensors#(activeSensorIndex)

However, the behavior of the '#' operator is specialized for the OrderedCollection (see 9.3.3.2.7)
and Array (see 9.3.3.2.1) data types from the Collections library model. In this case, the first operand
must be a single value of one of these data types. For an Array, the second operand is a sequence of
indexes whose size is the rank of the Array (i.e., the number of dimensions of the Array).

detectorArray#(n, m)

• Sequence expression. A sequence expression consists of a list of one or more expressions separated by
comma (,) symbols, optionally terminated by a final comma, all surrounded by parentheses (...). Such an
expression specifies sequential invocations of the sequence concatenation function ',' from the
BaseFunctions library model (see 9.4.2). The default behavior for this Function is given by the
specialization SequenceFunctions::',', which concatenates the sequence of values resulting from
evaluating its two arguments. With this behavior, a sequence expression concatenates, in order, the results
of evaluating all the listed expressions.

(temperatureSensor, windSensor, precipitationSensor)
(1, 3, 5, 7, 11, 13,)

A sequence expression with a single constituent expression simply evaluates to the value of the contained
expression, as would be expected for a parenthesized expression. The empty sequence () is not actually a
sequence expression, but, rather, an alternative notation for a null expression (see 7.4.9.4).

(highValue + lowValue) / 2

Sequences of values are not themselves values. Therefore, sequences are "flat", with no element of a
sequence itself being a sequence. For example, ((1, 2, 3), 4), (1, (2, 3), 4) and (1, null,
(2, 3, 4)) all evaluate to the same sequence of values as (1, 2, 3, 4). To model nested collection
values, use the data types from the Collections library model (see 9.3.3).

• Feature chain expression. A feature chain expression consists of a primary expression and a feature
qualified name or a feature chain (7.3.4.6), separated by a dot (.) symbol. The referenced feature is
evaluated in the context of each of the result values of the primary expression, in order. The resulting
feature values are then collected into a sequence in order of evaluation. The qualified name for the referent
feature is resolved using the result parameter of the primary expression as the context namespace (see
8.2.3.5), but considering only visible memberships.

// The primary expression is "getPlatform(id)".
// The feature chain is "sensors.isActive".
// Results in a sequence of Boolean values,
// one for each platform sensor.
getPlatform(id).sensors.isActive

To avoid ambiguity, the primary expression of a feature chain expression cannot be itself a feature chain
expression. To read a list of features sequentially, rather than in a single evaluation, delimit nested feature
chain expressions using parentheses

// First evaluate "getPlaform(id).sensors",
// then evaluate ".isActive" on the result of that.
(getPlatform(id).sensors).isActive

• Collect expression. A collect expression consists of a primary expression and an expression body (see
7.4.9.4) separated by a dot (.) symbol. The expression body must have a single input parameter. The

60 Kernel Modeling Language v1.0 Beta 4

expression body is evaluated on each of the result values from the primary expression, in order, and each
of the results are collected into a sequence in order of evaluation (that is, a collect expression is a
shorthand for invoking the ControlFunctions::collect function).

sensors.{in s: Sensor; s.reading} // results in a sequence of
// readings of each of the sensors

• Select expression. A select expression consists of a primary expression and an expression body (see
7.4.9.4) separated by a dot-question-mark (.?) symbol. The expression body must have a single input
parameter and a Boolean result. The expression body is evaluated on each of the result values from the
primary expression, in order, and those for which the expression body evaluates to true are selected for
inclusion in the result of the select expression (that is, a select expression is a shorthand for invoking the
ControlFunctions::select function).

sensors.?{in s: Sensor; s.isActive} // results in the subsequence of
// sensors that are active

• Function operation expression. A function operation expression is a special syntax for an invocation
expression in which the first argument is given before the arrow (->) symbol, which is followed by the
name of the function to be invoked and an argument list for any remaining arguments (see 7.4.9.4). This
is useful for chaining invocations in an effective data flow.

sensors -> selectSensorsOver(limit) -> computeCriticalValue()

If the invoked function has exactly two input parameters, and the second input parameter is an expression,
then an expression body (see 7.4.9.4) can be used as the argument for the second argument without
surrounding parentheses. The argument expression body should declare parameters consistent with those
on the parameter expression (if any). This is particularly useful when invoking functions from the
ControlFunctions library model (see 9.4.17).

sensors -> select {in s: Sensor; s::isActive}
members -> reject {in member: Member; not member->isInGoodStanding()}
factors -> reduce {in x: Real; in y: Real; x * y}

If the argument expression is simply the direct invocation of another function, then the argument
expression may be specified using simply the name of the invoked function.

factors -> reduce RealFunctions::'*'

7.4.9.4 Base Expressions

Base expression notation includes representations for literal expressions, null expressions, invocation expressions,
feature reference expressions (including using expression bodies as base expressions).

• Literal expressions are described in 7.4.9.5 .
• A null expression is notated by the keyword null. A null expression always evaluates to a result of "no

values", which is equivalent to the empty sequence ().
• An invocation expression can be directly represented by giving the qualified name for the function to be

invoked followed by a list of argument expressions, surrounded by parentheses () and separated by
commas. The parentheses must be included, even if the argument list is empty.

IntegerFunctions::'+'(i, j)
isInGoodStanding(member#(n))
AddMember(org, member)

The arguments are matched to the input parameters of the given function in order. Alternatively, the
arguments may be matched to parameters by name, using the form paramName = argExpression, in

Kernel Modeling Language v1.0 Beta 4 61

which case they may be given in any order. Note that, if the named argument notation is used, it must be
used for all arguments.

AddMember(newMember = member, organization = org)

If the qualified name given for an invocation expression resolves to an expression instead of a function,
then the invocation expression is considered to subset the named expression, meaning that, effectively, the
invocation is taken to be for the function of the named expression, as specialized by that expression.

function UnaryFunction {in x : Anything; return: Anything;}
function apply {

in expr fn : UnaryFunction;
in value : Anything;

// Invokes UnaryFunction as specified by parameter fn.
return : Anything = fn(value);

}

It is also possible to specify an expression to be invoked using a feature chain (see 7.3.4.6).

class Stats {
feature vales[1..*] : Real;
expr avg { sum(values)/size(values) }

}
feature myStats : States {

redefines feature values = (1.0, 2.0, 3.0);
}
feature myAvg = myStats.avg();

If the qualified name given for an invocation expression resolves to a behavior that is not a function (or a
feature typed by a behavior that is not a function), then that behavior is performed and the result of the
expression is the performance itself. This allows, for example, access to the values of the out parameters
of the behavior computed during its performance.

behavior RefineImage {
in image : Image;
out refinedImage : Image;
out logMessages : String[*];

}
feature run1 = RefineImage(image1);
feature refinedImage1 = run1.refinedImage;
feature log1 = run1.logMessages;

• A constructor expression is represented by the keyword new followed by the qualified name of a type to
be instantiated invoked followed by a parenthesized list of argument expressions, similarly to an
invocation expression. The result of the expression is a new instance of the target type, with the results of
the argument expressions bound to the public features of the type, in order or by name.

class Member {
feature firstName : String;
feature lastName : String;
feature memberNumber : Integer;
feature sponsor : Member[0..1];

}
feature thisMember = new Member("Jane", "Doe", 1234, null);
feature nextMember = new Member(

firstName = "John", lastName = "Doe", sponsor = thisMember,
memberNumber = thisMember.memberNumber + 1);

• A feature reference expression is represented simply by the qualified name of the feature being
referenced.

62 Kernel Modeling Language v1.0 Beta 4

member
spacecraft::mainAssembly::sensors
sensor::isActive

Note that the referenced feature may be an expression. The notation for a reference to an expression is
distinguished from the notation for an invocation by not having following parentheses.

expr addOne : UnaryFunction {
if x istype Integer? (x as Integer) + 1 else 0

}
feature two = apply(addOne, 1); // "addOne" is a reference to expr addOne

Rather than declaring a named expression in order to pass it as an argument, an expression body may be
used directly as a base expression. In this case, any parameters must be declared as features with direction
within the expression body (see 7.4.8.3). Such body expressions are particularly useful when used for the
second argument of a function operation expression (see 7.4.9.3).

feature two =
apply({in x; if x istype Integer? (x as Integer) + 1 else 0}, 1);

feature incrementedValues =
values -> collect {in x: Number; x + 1};

• A metadata access expression is represented by suffixing the qualified name of any kind of element with
the notation .metadata. This is a reflective expression that evaluates to the sequence of metadata features
associated with the named element in the model itself, as instances of their respective metaclasses (see
7.4.13 on metadata and metaclasses). In addition, the last value in the sequence is an instance of the
metaclass for the named element from the KerML reflective abstract syntax model (see 9.2.17),
representing its instantiation as a model element.

metaclass SecurityAnnotation;
class SecureSystem {

metadata SecurityAnnotation;
}

// Two values: an instance of SecurityAnnotation
// and an instance of type KerML::Class.
feature sysMetadata = SecureSystem.metadata;

7.4.9.5 Literal Expressions

A literal expression is represented by giving a lexical literal for the value of the expression.

• A literal Boolean is represented by either of the keywords true or false.
• A literal string is represented by a lexical string value surrounded by double quotes "…" as specified in

8.2.2.5 .

"This is a string literal."

• A literal integer is represented by a lexical decimal value as specified in 8.2.2.4 . Note that notation is
only provided for non-negative integers (i.e., natural numbers). Negative integers can be represented by
applying the unary negation operator - (see 7.4.9.2) to an unsigned decimal literal.

0
1234

• A literal rational is represented with a syntax constructed from lexical decimal values and exponential
values (see 8.2.2.4). The full rational number notation allows for a literal with a decimal point, with or
without an exponential part, as well as an exponential value without a decimal point.

Kernel Modeling Language v1.0 Beta 4 63

3.14
.5
2.5E-10
1E+3

• A literal infinity is represented by the symbol *.

7.4.10 Interactions
7.4.10.1 Interactions Overview

Metamodel references:

• Concrete syntax, 8.2.5.9
• Abstract syntax, 8.3.4.9
• Semantics, 8.4.4.10

Interactions are behaviors that are also associations (see 7.4.7 and 7.4.5 , respectively), classifying performances
that are also links between occurrences (see 9.2.3 through 9.2.6). They specify how the linked participants affect
each other and collaborate.

Transfers are interactions between two participants that carry payload values from one occurrence to another, with
payload values optionally identified by output and input features of the source and target occurrence,
respectively (see 9.2.7).

Flows are steps that are also binary connectors (see 7.4.7 and 7.4.6 , respectively), with values that are transfers. A
flow optionally ensures that a payload is transferred from an output feature of the connected source feature to an
input feature of the target feature. Succession flows are flows that are also successions (see 7.4.6). They identify
transfers that happen after their source (that is, after the end of the occurrence where the payload comes from) and
before their target (that is, before the start of the occurrence where the payload goes to).

7.4.10.2 Interaction Declaration

An interaction is declared as a behavior (see 7.4.7), using the keyword interaction. If no owned
subclassification is explicitly given for the interaction, then it is implicitly given default subclassifications to both
the behavior Performance from the Performances library model (see 9.2.6) and the association BinaryLink or
the association Link from the Links library model (see 9.2.3), depending on whether it is a binary interaction or
not.

As a kind of behavior, if the interaction has owned subclassifications whose superclasses are behaviors, then the
rules related to their parameters are the same as for any subclassifier behavior (see 7.4.7). As a kind of association,
the body of an interaction must declare at least two association ends. If the interaction has owned subclassifications
whose superclassifiers are associations, the rules related to their association ends are the same as for any association
that is a subclassifier (see 7.4.5).

interaction Authorization {
end feature client[*] : Computer;
end feature server[*] : Computer;
composite step login;
composite step authorize;
composite succession login then authorize;

}

7.4.10.3 Flow Declaration

A flow declaration is syntactically similar to a binary connector declaration (see 7.4.6), using the keyword flow, or
succession flow for a succession flow. If no owned subsetting or owned redefinition is explicitly given, then the

64 Kernel Modeling Language v1.0 Beta 4

flow is implicitly given a default subsetting to the flow transfers from the Transfers model library (see 9.2.7),
or to the succession flow transfersBefore, if a succession flow is being declared. If a flow has owned
specializations (including all feature typings, subsettings, and redefinitions) whose general type is a behavior or a
step, then the rules for the redefinition of the parameters of those behaviors and steps are the same as for the
redefinition of the parameters of general behavior or step by a specializing step (see 7.4.7.3).

Unlike a regular binary connector declaration, though, a flow declaration does not directly specify the related
features for the flow. Instead, the declaration gives the source output feature for the transfer after the keyword from
and the target input Feature for the transfer after the keyword to. The related features are then determined as the
owning features of the features given in the flow declaration. It is these related features that are constrained to have a
common context with the flow (see 7.4.6), not the features actually given in the declaration.

struct Vehicle {
composite feature fuelTank[1] {

out var feature fuelOut[1] : Fuel;
}
composite feature engine {

in var feature fuelIn[1] : Fuel;
}
// The flow actually connects the fuelTank to the engine.
// The transfer moves Fuel from fuelOut to fuelIn.
flow fuelFlow from fuelTank::fuelOut to engine::fuelIn;

}

The source output and target input features of a flow can also be specified using feature chains (see 7.3.4.6). In this
case, the related features are determined as the features identified by the chains, excluding the last feature. This is
particularly useful when the desired related features are inherited features.

struct Vehicle {
composite feature fuelTank[1] {

out feature fuelOut[1] : Fuel;
}
composite feature engine[1] {

in feature fuelIn[1] : Fuel;
}

}

feature vehicle : Vehicle {
// The flow actually connects the inherited fuelTank
// feature to the inherited engine feature.
flow fuelFlow from fuelTank.fuelOut to engine.fuelIn;

}

A flow declaration can also include an explicit declaration of the type and/or multiplicity of the payload that is
flowing, after the keyword of. This asserts that anything transferred by the flow have the declared type. In the
absence of an payload declaration, any values may flow across the flow, consistent with the types of the source
output and target input features.

flow of flowingFuel : Fuel from fuelTank.fuelOut to engine.fuelIn;

If no feature declaration or payload declaration details are included in a flow declaration, then the keyword from
may also be omitted.

flow fuelTank.fuelOut to engine.fuelIn;

Flows are also commonly used to move anything from the output parameters of one step to the input parameters of
another step.

Kernel Modeling Language v1.0 Beta 4 65

behavior TakePicture {
composite step focus : Focus { out image[1] : Image; }
composite step shoot : Shoot { in image[1] : Image; }
// The use of a succession flow means that focus must complete before
// the image is transferred, after which shoot can begin.
succession flow focus.image to shoot.image;

}

7.4.11 Feature Values

Metamodel references:

• Concrete syntax, 8.2.5.10
• Abstract syntax, 8.3.4.10
• Semantics, 8.4.4.11

A feature value is a membership relationship (see 7.2.5) between an owning feature and a value expression, whose
result provides values for the feature. The feature value relationship is specified as either bound or initial, and as
either fixed or a default. A feature can have at most one feature value relationship.

A fixed, bound feature value relationship is declared using the symbol = followed by a representation of the value
expression using the concrete syntax described in 7.4.9 . This notation is appended to the declaration of the owning
feature of the feature value.

feature monthsInYear : Natural = 12;
struct TestRecord {

feature scores[1..*] : Integer;
derived feature averageScore[1] : Rational = sum(scores)/size(scores);

}

Features that have a feature value relationship of this form implicitly have a nested binding connector (see 7.4.6)
between the feature and the result of the value expression, with the binding connector having the same featuring
types as the declared feature (i.e., TestRecord, in the example above).

Note. The semantics of binding mean that such a feature value asserts that a feature is equivalent to the result of the
value expression. To highlight this, a feature with such a feature value can be flagged as derived (though this is not
required, nor is it required that the value of a derived feature be computed using a feature value – see also 7.3.4.2
).

A fixed, initial feature value relationship is declared as above but using the symbol := instead of =.

var feature count[1] : Natural := 0;

In this case, the feature also has an implicit nested binding connector, but the featuring types of the binding
connector are the starting snapshots of the featuring types of the declared feature. That is, the result of the value
expression gives the initial values of the declared feature but, unlike in the case of a bound value, these initial values
may subsequently change. This means that only variable features (see 7.3.4.2) may have initial feature values.

A default feature value relationship is declared similarly to the above, but with the keyword default preceding the
symbol = or :=, depending on whether it is bound or initial. However, for a default, bound feature value, the symbol
= may be elided.

struct Vehicle {
var feature mass[1] : Real default 1500.0;
var feature engine[1] : Engine default := standardEngine;

}
struct TestWithCutoff :> TestRecord {

66 Kernel Modeling Language v1.0 Beta 4

feature cutoff[1] : Rational default = 0.75 * averageScore;
}

For a default feature value relationship, no binding connector is added to the feature declaration, but the default will
apply when an instance of the featuring type is constructed, if no other explicit values are given for the feature.

A feature value relationship can be included with the following kinds of feature declaration:

• Feature (see 7.3.4.2)
• Step (see 7.4.7.3)
• Expression (see 7.4.8.3)
• Boolean expression and invariant (see 7.4.8.5)

behavior ProvidePower {
in cmd[1] : Command;
out wheelTorque[1] : Torque;

composite step generate : GenerateTorque {
in cmd = ProvidePower::cmd;
out generatedTorque;

}
composite step apply : ApplyTorque {

in generatedTorque = generate.generatedTorque;
out appliedTorque = ProvidePower::wheelTorque;

}
}

7.4.12 Multiplicities

Metamodel references:

• Concrete syntax, 8.2.5.11
• Abstract syntax, 8.3.4.11
• Semantics, 8.4.4.12

Multiplicity is defined in the Core layer as a feature for specifying cardinalities (number of instances) of a type by
enumerating all numbers the cardinality might be (see 7.3.2.2). The Kernel layer provides a specific way to do this
by specifying a range of cardinalities. A multiplicity range has lower bound and upper bound expressions that are
evaluated to determine the lowest and highest cardinalities, with both expression evaluating to natural numbers (that
is, of type Natural from the ScalarValues library model, see 9.3.2). An upper bound value of * (infinity) means
that the cardinality includes all numbers greater than or equal to the lower bound value.

A multiplicity range is written in the form [lowerBound..upperBound], where each of lowerBound and
upperBound is either a literal expression or a feature reference expression represented in the notation described in
7.4.9 . Literal expressions can be used to specify a multiplicity range with fixed lower and/or upper bounds. If the
result of the lowerBound expression is *, then the meaning of the multiplicity range is not defined.

A multiplicity range can also be written without the lower bound (or ..). In this case, the result of the single
expression is used as both the lower and upper bound of the range, unless the result is the infinite value *, in which
case the lower bound is taken to be 0.

Multiplicity ranges can be used in the declaration of types, particularly features (see 7.3.4.2).

struct Automobile {
feature n : Positive[1];
composite feature wheels : Wheel[n]; // Equivalent to [n..n] for n < *
feature driveWheels[2..n] subsets wheels;

Kernel Modeling Language v1.0 Beta 4 67

}
feature autoCollection : Automobile[*]; // Equivalent to [0..*]

It is also possible to declared a multiplicity feature using the keyword multiplicity, optionally followed by a
short name and/or name, and including either a multiplicity range or a subsetting of another multiplicity. A
multiplicity declaration is a kind of feature declaration, and it can optionally include a body as in a generic feature
declaration (see 7.3.4.2).

multiplicity zeroOrMore [0..*];
multiplicity m subsets zeroOrMore;

If a multiplicity feature is declared in the body of a type, then this becomes the multiplicity of the type. A type can
have at most one multiplicity, whether this is given in the declaration or the body of the type.

feature driveWheels subsets wheels {
multiplicity [2..n];

}
feature autoCollection {

multiplicity subsets zeroOrMore;
}

7.4.13 Metadata

Metamodel references:

• Concrete syntax, 8.2.5.12
• Abstract syntax, 8.3.4.12
• Semantics, 8.4.4.13

Metadata is additional information on elements of a model that does not have any instance-level semantics (in the
sense described in 7.3.1). In general, metadata is specified in annotating elements (including comments and textual
representations) attached to annotated elements (see 7.2.4). A metadata feature is a kind of annotating element that
allows for the definition of structured metadata with modeler-specified features. This may be used, for example, to
add tool-specific information to a model that can be relevant to the function of various kinds of tooling that may use
or process a model, or domain-specific information relevant to a certain project or organization.

A metadata feature is syntactically a feature (see 7.3.4) that is typed by a single metaclass, which is a kind of
structure (see 7.4.4), with implicit multiplicity 1..1. If the metaclass has no features, then the metadata feature
simply acts as a user-defined syntactic tag on the annotated element. If the metaclass has features, then the metadata
feature must have nested features that redefine each of the features of its type, binding them to the results of model-
level evaluable expressions (see 7.4.9), which provide the values of the specified attributive metadata for the
annotated element.

A metaclass is declared like a structure (see 7.4.4), but using the keyword metaclass. If no owned
subclassification is explicitly given for the metaclass, then it is implicitly given a default subclassification to the
metaclass Metaobject from the Metaobjects library model (see 9.2.16).

metaclass SecurityRelated;

metaclass ApprovalAnnotation {
feature approved[1] : Boolean;
feature approver[1] : String;

}

A metadata feature is declared using the keyword metadata (or the symbol @), optionally followed by a short name
and/or name, followed by the keyword typed by (or the symbol :) and the qualified name of exactly one
metaclass. If no short name or name is given, then the keyword typed by (or the symbol :) may also be omitted.

68 Kernel Modeling Language v1.0 Beta 4

One or more annotated elements are then identified for the metadata feature after the keyword about, indicating that
the metadata feature has annotation relationships to each of the identified elements (see 7.2.4).

metadata securityDesignAnnotation : SecurityRelated about SecurityDesign;

Any owned feature of a metadata feature must be a redefinition of a feature of the typing metaclass, with a feature
value binding it to the result of a model-level evaluable expressions (see 7.4.9). The owned features of a metadata
feature must always have the same names as the names of the typing metaclass, so the shorthand prefix redefines
notation (see 7.3.4.5) is always used.

metadata ApprovalAnnotation about Design {
feature redefines approved = true;
feature redefines approver = "John Smith";

}

The keywords feature and/or redefines (or the equivalent symbol :>>) may be omitted in the declaration of a
metadata feature.

metadata ApprovalAnnotation about Design {
approved = true;
approver = "John Smith";

}

If the metadata feature is an owned member of a namespace (see 7.2.5), then the explicit identification of annotated
elements (following the about keyword) can be omitted, in which case the annotated element is implicitly the
containing namespace (see 7.2.4).

class Design {
// This metadata feature is implicitly about the class Design.
@ApprovalAnnotation {

approved = true;
approver = "John Smith";

}
}

If a metadata feature has one or more concrete features that directly or indirectly subset
Metaobject::annotatedElement, then, for each annotated element of the metadata feature, there must be at
least one such feature for which the metaclass of the annotated element conforms to all the types of the feature
(which must all be specializations of the reflective metaclass KerML::Element, see 9.2.17).

metaclass Command {
// A metadata feature of this metaclass may annotate
// a behavior or a step.
subsets annotatedElement : KerML::Behavior;
subsets annotatedElement : KerML::Step;

}

behavior Save specializes UserAction {
@Command; // This is valid.
redefine step doAction {

@Command; // This is valid.
}

}
struct Options {

@Command; // This is INVALID.
}

If the metaclass of a metadata feature is a direct or indirect specialization of Metaobjects::SemanticMetadata
(see 9.2.16.2.3), then the annotated elements must all be types and the feature SemanticMetadata::baseType

Kernel Modeling Language v1.0 Beta 4 69

must be bound to a value of type KerML::Type (see 9.2.17). Each type annotated by such semantic metadata has
an implicit specialization added to a type determined from the baseType value as follows:

• If the annotated type is neither a classifier nor a feature, then the annotated type implicitly specializes the
baseType.

• If the annotated type is a classifier and the baseType is a classifier, then annotated classifier implicitly
subclassifies the baseType.

• If the annotated type is a classifier and the baseType is a feature, then the annotated classifier implicitly
subclassifies each type of the baseType.

• If the annotated type is a feature and the baseType is a feature, then the annotated feature shall implicitly
subset the baseType.

• In all other cases, no implicit specialization is added.

When evaluated in a model-level evaluable expression, the meta-cast operator meta (see 7.4.9.2) may be used to
cast a feature referenced as its first operand to the actual reflective metaclass value for this feature, which may then
be bound to the baseType feature of SemanticMetadata.

behavior UserAction;
step userActions : UserAction[*] nonunique;
metaclass Command specializes SemanticMetadata {

// The cast operation "userAction meta KerML::Feature" has
// type KerML::Feature, which conforms to the type Type of
// baseType. Since userActions is a step, the expression
// evaluates at model level to a value of type KerML::Step.
redefines baseType = userActions meta KerML::Feature;

}

// Save implicitly subclassifies UserAction (which is the
// type of userActions).
behavior Save {

@Command;
}

// previousAction implicitly subsets userActions.
step previousAction[1] {

@Command;
}

User-Defined Keywords

A user-defined keyword is a (possibly qualified) metaclass name or short name preceded by the symbol #. The user-
defined keyword is placed immediately before the language-defined (reserved) keyword for the declaration and
specifies a metadata feature annotation of the declared element. Note that this notation can only be used for metadata
features that do not have nested features. If the named metaclass is a kind of SemanticMetadata, then the implicit
specialization rules given above for semantic metadata apply.

// It is often convenient to use a lower-case initial name or
// short name for semantic metadata intended to be used as a keyword.
metaclass <command> CommandMetadata :> SemanticMetadata {

redefines baseType = userActions meta KerML::Feature;
}

#command behavior Save;
#command step previousAction[1];

It is also possible to include more than one user defined-keyword in a declaration.

#SecurityRelated #command behavior Save;

70 Kernel Modeling Language v1.0 Beta 4

7.4.14 Packages

Metamodel references:

• Concrete syntax, 8.2.5.13
• Abstract syntax, 8.3.4.13
• Semantics, 8.4.4.14

Packages are namespaces used to group elements, without any instance-level semantics (as opposed to types, which
are namespaces with classification semantics, see 7.3.2). A package is notated like a generic namespace (see
7.2.5.2), but using the keyword package instead of namespace.

package AddressBooks {
datatype Entry {

feature name[1]: String;
feature address[1]: String;

}
struct AddressBook {

composite feature entries[*]: Entry;
}

}

A package may also have one or more filter conditions for selecting a subset of its imported memberships. A filter
condition is a Boolean-valued, model-level evaluable expression (see 7.4.9) that must evaluate to true for any
imported member of the package. These are notated using the keyword filter followed by the filter condition
expression.

package Annotations {
metaclass ApprovalAnnotation {

feature approved[1] : Boolean;
feature approver[1] : String;
feature level[1] : Natural;

}
...

}

package DesignModel {
public import Annotations::*;
struct System {

@ApprovalAnnotation {
approved = true;
approver = "John Smith";
level = 2;

}
}
...

}

package UpperLevelApprovals {
// This package imports all direct or indirect members
// of the DesignModel package that have been approved
// at a level greater than 1.
public import DesignModel::**;
filter @Annotations::ApprovalAnnotation and

Annotations::ApprovalAnnotation::approved and
Annotations::ApprovalAnnotation::level > 1;

}

A filter condition can operate on metadata on elements (see 7.4.13), such as checking for a metadata feature of
a particular type or accessing the values of the features of a metadata feature. For the purposes of filter condition

Kernel Modeling Language v1.0 Beta 4 71

expressions, every element is also considered to have an implicit metadata feature that is typed by a metaclass from
the reflective library model of the KerML abstract syntax (see 9.2.17). This enables filter conditions to test for the
abstract syntax metaclass of an element and to access the values of abstract syntax meta-attributes.

Note that a filter condition in a package will filter all imports of that Package. That is why full qualification is used
for Annotations::ApprovalAnnotation in the example above, since imported elements of the Annotations
package would be filtered out by the very filter condition in which the elements are intended to be used. This may be
avoided by combining one or more filter conditions with a specific import, using the filtered import notation
described in 7.2.5.4).

package UpperLevelApprovals {
// Recursively import all annotation data types and all
// features of those types.
private import Annotations::**;

// The filter condition for this import applies only to
// elements imported from the DesignModel package.
public import DesignModel::**[@ApprovalAnnotation and approved and level > 1];

}

The KerML library package contains a complete model of the KerML abstract syntax represented in KerML itself.
When a filter condition is evaluated on an element, abstract syntax metadata for the element can be tested as if the
element had an implicit metadata feature typed by the type from the KerML package corresponding to the metaclass
of the element.

package PackageApprovals {
private import Annotations::*;
private import KerML::*;

// This imports all structures from the DesignModel that have
// at least one owned feature and have been marked as approved.
public import DesignModel::**[@Structure and

Structure::ownedFeature != null and
@ApprovalAnnotation and
ApprovalAnnotation::approved];

}

In general, a library package is a package that is expected to be commonly available and reused across many user
models. A package can be explicitly identified as a library package using the keyword library. This allows tooling
to identify any element contained directly in a library package as being a library element from that specific library
package.

library package AddressBooks {
...

}

The standard library packages in the Kernel Model Libraries (see Clause 9) are further identified using the
keyword standard. However, only library packages from the Kernel Model Libraries, or from other recognized
standard model libraries, should be identified as standard library packages.

72 Kernel Modeling Language v1.0 Beta 4

8 Metamodel
8.1 Metamodel Overview
This clause presents the normative specification of the metamodel for KerML, which includes the KerML concrete
syntax, abstract syntax and semantics (though the complete semantics depends on the model library specified in
Clause 9).

1. Concrete syntax specifies how the language appears to modelers. Modelers construct and review models
using a textual notation that conforms to the concrete syntax specification (see 8.2).

2. Abstract syntax specifies linguistic terms and relations between them (as opposed to library model terms),
which may be expressed in the concrete syntax (see 8.3). The abstract syntax omits aspects of the
concrete syntax, such as delimiters and formatting, that are do not affect what modelers are trying to
expression. A concrete syntax representation of a model can be parsed into an abstract syntax
representation, or an abstract syntax representation can be serialized into the concrete syntax notation. The
mapping between the concrete and abstract syntax is given as part of the grammar specification for the
concrete syntax (see 8.2.1 on the conventions for this).

3. Semantics specifies the interpretation of models as representations of or specifications for modeled
systems (see 8.4). The semantics for a core subset of the abstract syntax are specified using mathematical
logic. Semantics for the rest of KerML are specified by mapping complicated abstract syntax constructs
into equivalent models using the core subset, and, in particular, introducing implied relationships to
required elements from the KerML model library (see 8.4.1 on this approach).

As described in 6.1, KerML is divided into Root, Core and Kernel Layers, which cut across each of the above facets.
The subclauses on Concrete Syntax (8.2) and Abstract Syntax (8.3) are each further subdivided into subclauses on
the three layers, and then, within each layer, into subclauses following the package structure of the abstract syntax.
Subclause 8.4 on Semantics only covers the Core and Kernel Layers, because Root Layer constructs do not have
model-level semantics.

Throughout this clause, the names of elements from the KerML abstract syntax model appear in a "code" font.
Further:

1. Names of metaclasses appear exactly as in the abstract syntax, including capitalization, except possibly
with added pluralization. When used as English common nouns, e.g., "an Element", "multiple
FeatureTypings", they refer to instances of the metaclass. E.g., "Elements can own other Elements"
refers to instances of the metaclass Element that reside in models. This can be modified with the term
"metaclass" as necessary to refer to the metaclass itself instead of its instances, e.g., "The Element
metaclass is contained in the Elements package."

2. Names of properties of metaclasses, when used as English common nouns, e.g., “an
ownedRelatedElement”, “multiple featuringTypes”, refer to values of the properties. This can be
modified using the term "metaproperty" as necessary to refer to the metaproperty itself instead of its
values, e.g., "The ownedRelatedElement metaproperty is contained in the Elements package."

Similar stylistic conventions apply to text about KerML models, except that an "italic code" front is used.

1. Convention 1 above applies to KerML Types (e.g., Performance), using "type" (or a more specialized
term) instead of "metaclass" (e.g., "the Performance behavior").

2. Convention 2 above applies to KerML Features (e.g, performances), using "feature" (or a more
specialized term) instead of "metaproperty" (e.g., "the performances step").

8.2 Concrete Syntax
8.2.1 Concrete Syntax Overview

Kernel Modeling Language v1.0 Beta 4 73

The concrete syntax for KerML is a textual notation that can be used to express or construct an abstract syntax
representation of a model. The lexical structure of the KerML textual notation defines how the string of characters
in a text is divided into a set of lexical elements. Such lexical elements can be categorized as whitespace, notes, or
tokens. Only tokens are significant for the mapping of the notation to the abstract syntax. The syntactic structure of
the KerML textual notation defines how lexical tokens are grouped and mapped to an abstract syntax representation
of a model.

Both the lexical and syntactic structures are specified as grammars consisting of productions for lexical elements or
non-terminal syntactic elements (see Table 1). The body of a production is specified using an Extended Backus
Naur Form (EBNF) notation (see Table 2). The syntactic grammar includes further notations to describe how the
concrete syntax maps to the abstract syntax element being synthesized (see Table 3).

Subclause 8.2.2 presents the lexical grammar for KerML. Subclauses 8.2.3 , 8.2.4 , and 8.2.5 then each present the
portion of the syntactic grammar for KerML covering the Root, Core and Kernel Layers of KerML (see 6.1). Each
of these subclauses is further divided into subclauses corresponding to each of the packages from the abstract syntax
model (see 8.3). The starting production for the syntactic grammar is RootNamespace (see 8.2.3.4.1).

Table 1. Grammar Production Definitions

LEXICAL_ELEMENT = ... Define a production for the LEXICAL_ELEMENT.

NonterminalElement :
AbstractSyntaxElement = ...

Define a production for the NonterminalElement that
synthesizes the AbstractSyntaxElement. If the
NonterminalElement has the same name as the
AbstractSyntaxElement, then ":
AbstractSyntaxElement" may be omitted.

Table 2. EBNF Notation Conventions

Lexical element LEXICAL_ELEMENT
Terminal element 'terminal'
Non-terminal element NonterminalElement
Sequential elements Element1 Element2
Alternative elements Element1 | Element2
Optional elements (zero or one) Element ?
Repeated elements (zero or more) Element *
Repeated elements (one or more) Element +
Grouping (Elements ...)

Table 3. Abstract Syntax Synthesis Notation

Property assignment p = Element
Assign the result of parsing the
concrete syntax Element to abstract
syntax property p.

74 Kernel Modeling Language v1.0 Beta 4

List property construction p += Element
Add the result of parsing the
concrete syntax Element to the
abstract syntax list property p.

Boolean property assignment p ?= Element
If the concrete syntax Element is
parsed, then set the abstract Boolean
property p to true.

Non-parsing assignment { p = value }
{ p += value }

Assign (or add) the given value to
the abstract syntax property p,
without parsing any input. The
value may be a literal or a reference
to another abstract syntax property.
The symbol "this" refers to the
element being synthesized.

Name resolution [QualifiedName]
Parse a QualifiedName, then
resolve that name to an Element
reference (see 8.2.3.5) for use as a
value in an assignment as above.

8.2.2 Lexical Structure
8.2.2.1 Line Terminators and White Space

LINE_TERMINATOR =
implementation defined character sequence

LINE_TEXT =
character sequence excluding LINE_TERMINATORs

WHITE_SPACE =
space | tab | form_feed | LINE_TERMINATOR

Notes

1. Notation text is divided up into lines separated by line terminators. A line terminator may be a single
character (such as a line feed) or a sequence of characters (such as a carriage return/line feed
combination). This specification does not require any specific encoding for a line terminator, but any
encoding used must be consistent throughout any specific input text.

2. Any characters in text line that are not a part of the line terminator are referred to as line text.

3. A white space character is a space, tab, form feed or line terminator. Any contiguous sequence of white
space characters can be used to separate tokens that would otherwise be considered to be part of a single
token. It is otherwise ignored, with the single exception that a line terminator is used to mark the end of a
single-line note (see 8.2.2.2).

Kernel Modeling Language v1.0 Beta 4 75

8.2.2.2 Notes and Comments

SINGLE_LINE_NOTE =
'//' LINE_TEXT

MULTILINE_NOTE =
'//*' COMMENT_TEXT '*/'

REGULAR_COMMENT =
'/*' COMMENT_TEXT '*/'

COMMENT_TEXT =
(COMMENT_LINE_TEXT | LINE_TERMINATOR)*

COMMENT_LINE_TEXT =
LINE_TEXT excluding the sequence '*/'

8.2.2.3 Names

NAME =
BASIC_NAME | UNRESTRICTED_NAME

BASIC_NAME =
BASIC_INITIAL_CHARACTER BASIC_NAME_CHARACTER*

UNRESTRICTED_NAME =
single_quote (NAME_CHARACTER | ESCAPE_SEQUENCE)* single_quote
(see Note 1)

BASIC_INITIAL_CHARACTER =
ALPHABETIC_CHARACTER | '_'

BASIC_NAME_CHARACTER =
BASIC_INITIAL_CHARACTER | DECIMAL_DIGIT

ALPHABETIC_CHARACTER =
any character 'a' through 'z' or 'A' through 'Z'

DECIMAL_DIGIT =
any character '0' through '9'

NAME_CHARACTER =
any printable character other than backslash or single_quote

ESCAPE_SEQUENCE =
see Note 2

Notes

1. The single_quote character is '. The name represented by an UNRESTRICTED_NAME shall consist of
the characters within the single quotes, with escape characters resolved as described below. The
surrounding single quote characters are not part of the represented name.

2. An ESCAPE_SEQUENCE is a sequence of two text characters starting with a backslash that actually denotes
only a single character, except for the newline escape sequence, which represents however many
characters is necessary to represent an end of line in a specific implementation (see also 8.2.2.1). Table 4
shows the meaning of the allowed escape sequences. The ESCAPE_SEQUENCES in an
UNRESTRICTED_NAME shall be replaced by the characters specified as their meanings in the actual
represented name.

76 Kernel Modeling Language v1.0 Beta 4

Table 4. Escape Sequences

Escape Sequence Meaning

\' Single Quote

\" Double Quote

\b Backspace

\f Form Feed

\t Tab

\n Line Terminator

\\ Backslash

8.2.2.4 Numeric Values

DECIMAL_VALUE =
DECIMAL_DIGIT+

EXPONENTIAL_VALUE =
DECIMAL_VALUE ('e' | 'E') ('+' | '-')? DECIMAL_VALUE

Notes

1. A DECIMAL_VALUE may specify a natural literal, or it may be part of the specification of a real literal (see
8.2.5.8.4). Note that a DECIMAL_VALUE does not include a sign, because negating a literal is an operator
in the KerML Expression syntax.

2. An EXPONENTIAL_VALUE may be used in the specification of a real literal (see 8.2.5.8.4). Note that a
decimal point and fractional part are not included in the lexical structure of an exponential value. They are
handled as part of the syntax of real literals.

8.2.2.5 String Value

STRING_VALUE =
'"' (STRING_CHARACTER | ESCAPE_SEQUENCE)* '"'

STRING_CHARACTER =
any printable character other than backslash or '"'

Notes

1. ESCAPE_SEQUENCE is specified in 8.2.2.3 .

8.2.2.6 Reserved Words

A reserved keyword is a token that has the lexical structure of a basic name but cannot actually be used as a basic
name. The following keywords are so reserved in KerML.

about abstract alias all and as assoc behavior binding bool by chains class
classifier comment composite conjugate conjugates conjugation connector const
crosses datatype default dependency derived differences disjoining disjoint doc
else end expr false feature featured featuring filter first flow for from
function hastype if implies import in inout interaction intersects inv inverse

Kernel Modeling Language v1.0 Beta 4 77

inverting istype language library locale member meta metaclass metadata
multiplicity namespace nonunique not null of or ordered out package portion
predicate private protected public redefines redefinition references rep return
specialization specializes standard step struct subclassifier subset subsets
subtype succession then to true type typed typing unions var xor

Tooling for the KerML textual notation should generally highlight keywords relative to other text, for example by
using boldface and/or distinctive coloring. However, while keywords are shown in boldface in this specification, the
specification does not require any specific highlighting (or any highlighting at all), and KerML textual notation
documents are expected to be interchanged as plain text (see also Clause 10 on Model Interchange).

8.2.2.7 Symbols

The symbols shown below are non-name tokens composed entirely of characters that are not alphanumeric. In some
cases these symbols have no meaning themselves, but are used to allow unambiguous separation between other
tokens that do have meaning. In other cases, they are distinguished notations in the KerML Expression sublanguage
(see 8.2.5.8) that map to particular library Functions or symbolic shorthand for meaningful relationships.

() { } [] ; , ~ @ # % & ^ | * ** + - / -> $. .. :
:: :> :>> ::> => < <= = := == === != !== > >= ? ?? .?

Some symbols are made of of multiple characters that may themselves individually be valid symbol tokens.
Nevertheless, a multi-symbol token is not considered a combination of the individual symbol tokens. For example,
“::” is considered a single token, not a combination of two “:” tokens. Input characters shall be grouped from left
to right to form the longest possible sequence of characters to be grouped into a single token. So “a:::b” would be
analyzed into four tokens: “a”, “::”, “:” and “b” (which, as it turns out, is not a valid sequence of tokens in the
KerML textual concrete syntax).

Certain keywords in the concrete syntax have an equivalent symbolic representation. For convenience, the concrete
syntax grammar uses the following special lexical terminals, which match either the symbol or the corresponding
keyword.

TYPED_BY = ':' | 'typed' 'by'
SPECIALIZES = ':>' | 'specializes'
SUBSETS = ':>' | 'subsets'
REFERENCES = '::>' | 'references'
CROSSES = '=>' | 'crosses'
REDEFINES = ':>>' | 'redefines'
CONJUGATES = '~' | 'conjugates'

8.2.3 Root Concrete Syntax
8.2.3.1 Elements and Relationships Concrete Syntax

Identification : Element =
('<' declaredShortName = NAME '>')?
(declaredName = NAME)?

RelationshipBody : Relationship =
';' | '{' RelationshipOwnedElement* '}'

RelationshipOwnedElement : Relationship =
ownedRelatedElement += OwnedRelatedElement

| ownedRelationship += OwnedAnnotation

OwnedRelatedElement : Element =
NonFeatureElement | FeatureElement

8.2.3.2 Dependencies Concrete Syntax

78 Kernel Modeling Language v1.0 Beta 4

Dependency =
(ownedRelationship += PrefixMetadataAnnotation)*
'dependency' (Identification? 'from')?
client += [QualifiedName] (',' client += [QualifiedName])* 'to'
supplier += [QualifiedName] (',' supplier += [QualifiedName])*
RelationshipBody

Notes

1. PrefixMetadataAnnotation is defined in the Kernel layer (see 8.2.5.12).

8.2.3.3 Annotations Concrete Syntax

8.2.3.3.1 Annotations

Annotation =
annotatedElement = [QualifiedName]

OwnedAnnotation : Annotation =
ownedRelatedElement += AnnotatingElement

AnnotatingElement =
Comment

| Documentation
| TextualRepresentation
| MetadataFeature

Notes

1. MetadataFeature is defined in the Kernel layer (see 8.2.5.12).

8.2.3.3.2 Comments and Documentation

Comment =
('comment' Identification

('about' ownedRelationsip += Annotation
(',' ownedRelationship += Annotation)*

)?
)?
('locale' locale = STRING_VALUE)?
body = REGULAR_COMMENT

Documentation =
'doc' Identification
('locale' locale = STRING_VALUE)?
body = REGULAR_COMMENT

Notes

1. The text of a lexical REGULAR_COMMENT or PREFIX_COMMENT shall be processed as follows before it is
included as the body of a Comment or Documentation:

1. Remove the initial /* and final */ characters.

2. Remove any white space immediately after the initial /*, up to and including the first line
terminator (if any).

3. On each subsequent line of the text:

1. Strip initial white space other than line terminators.

Kernel Modeling Language v1.0 Beta 4 79

2. Then, if the first remaining character is "*", remove it.

3. Then, if the first remaining character is now a space, remove it.

2. The body text of a Comment can include markup information (such as HTML), and a conforming tool may
display such text as rendered according to the markup. However, marked up "rich text" for a Comment
written using the KerML textual concrete syntax shall be stored in the Comment body in plain text
including all mark up text, with all line terminators and white space included as entered, other than what is
removed according to the rules above.

8.2.3.3.3 Textual Representation

TextualRepresentation =
('rep' Identification)?
'language' language = STRING_VALUE
body = REGULAR_COMMENT

Notes

1. The lexical text of a REGULAR_COMMENT shall be processed as specified in 8.2.3.3.2 for Comments before
being included as the body of a TextualRepresentation.

2. See also 8.3.2.3.6 on the standard language names recognized for a TextualRepresentation.

8.2.3.4 Namespaces Concrete Syntax

8.2.3.4.1 Namespaces

RootNamespace : Namespace =
NamespaceBodyElement*

(See Note 1)

Namespace =
(ownedRelationship += PrefixMetadataMember)*
NamespaceDeclaration NamespaceBody

(See Note 2)

NamespaceDeclaration : Namespace =
'namespace' Identification

NamespaceBody : Namespace =
';' | '{' NamespaceBodyElement* '}'

NamespaceBodyElement : Namespace =
ownedRelationship += NamespaceMember

| ownedRelationship += AliasMember
| ownedRelationship += Import

MemberPrefix : Membership =
(visibility = VisibilityIndicator)?

VisibilityIndicator : VisibilityKind =
'public' | 'private' | 'protected'

NamespaceMember : OwningMembership =
NonFeatureMember

| NamespaceFeatureMember

NonFeatureMember : OwningMembership =
MemberPrefix
ownedRelatedElement += MemberElement

80 Kernel Modeling Language v1.0 Beta 4

NamespaceFeatureMember : OwningMembership =
MemberPrefix
ownedRelatedElement += FeatureElement

AliasMember : Membership =
MemberPrefix
'alias' ('<' memberShortName = NAME '>')?
(memberName = NAME)?
'for' memberElement = [QualifiedName]
RelationshipBody

QualifiedName =
('$' '::')? (NAME '::')* NAME

(See Note 3)

Notes

1. A root Namespace is a Namespace that has no owningNamespace (see 8.3.2.4). Every Element other
than a root Namespace must be contained, directly or indirectly, within some root Namespace. Therefore,
every valid KerML concrete syntax text can be parsed starting from the RootNamespace production.

2. PrefixMetadataMember is defined in the Kernel layer (see 8.2.5.12).
3. A qualified name is notated as a sequence of segment names separated by "::" punctuation, optionally

with the global scope qualifier "$" as an initial segment. An unqualified name can be considered the
degenerate case of a qualified name with a single segment name. A qualified name is used in the KerML
textual concrete syntax to identify an Element that is being referred to in the representation of another
Element. A qualified name used in this way does not appear in the corresponding abstract
syntax—instead, the abstract syntax representation contains an actual reference to the identified Element.
Name resolution is the process of determining the Element that is identified by a qualified name. The
segment names of the qualified name other than the last identify a sequence of nested Namespaces that
provide the context for resolving the final segment name (see 8.2.3.5). The notation [QualifiedName]
is used in concrete syntax grammar productions to indicate the result of resolving text parsed as a
QualifiedName (see also 8.2.1).

8.2.3.4.2 Imports

Import =
visibility = VisibilityIndicator
'import' (isImportAll ?= 'all')?
ImportDeclaration RelationshipBody

ImportDeclaration : Import
MembershipImport | NamespaceImport

MembershipImport =
importedMembership = [QualifiedName]
('::' isRecursive ?= '**')?

(see Note 1)

NamespaceImport =
importedNamespace = [QualifiedName] '::' '*'
('::' isRecursive ?= '**')?

| importedNamespace = FilterPackage
{ ownedRelatedElement += importedNamespace }

FilterPackage : Package =
ownedRelationship += ImportDeclaration
(ownedRelationship += FilterPackageMember)+

FilterPackageMember : ElementFilterMembership =
'[' ownedRelatedElement += OwnedExpression ']'

Kernel Modeling Language v1.0 Beta 4 81

Notes

1. The importedMembership of a MembershipImport is the single case in which the Element required
from the resolution [QualifiedName] is the actual Membership identified by the QualifedName, not
the memberElement of that Membership (see 8.2.3.5).

8.2.3.4.3 Namespace Elements

MemberElement : Element =
AnnotatingElement | NonFeatureElement

NonFeatureElement : Element =
Dependency

| Namespace
| Type
| Classifier
| DataType
| Class
| Structure
| Metaclass
| Association
| AssociationStructure
| Interaction
| Behavior
| Function
| Predicate
| Multiplicity
| Package
| LibraryPackage
| Specialization
| Conjugation
| Subclassification
| Disjoining
| FeatureInverting
| FeatureTyping
| Subsetting
| Redefinition
| TypeFeaturing

FeatureElement : Feature =
Feature

| Step
| Expression
| BooleanExpression
| Invariant
| Connector
| BindingConnector
| Succession
| Flow
| SuccessionFlow

8.2.3.5 Name Resolution

8.2.3.5.1 Name Resolution Overview

A qualified name consists of a sequence of one or more segment names (see 8.2.3.4.1). Each segment names is a
simple name, that is, it is a lexical NAME token (see 8.2.2.3). The qualification part of a qualified name with more
than one segment name is itself a qualified name, consisting of all the segment names of the original qualified name
except for the last. For example the qualified name A::B::C consists of the segment names A, B and C, and its
qualification part is A::B. A qualified name may also have the global scope qualifier "$" as an initial segment, for
example, $::A::B::C.

82 Kernel Modeling Language v1.0 Beta 4

Name resolution is a process for determining the Element that is identified by a qualified name. The result of the
process is actually a Membership relationship identified by the qualified name. However, in all cases but one, the
required Element to be inserted into the abstract syntax is the memberElement of that Membership, in which case
the metaclass of the memberElement must conform to the expected metaclass in the context of the name resolution.
The one exception is the resolution of the qualified name for the importedMembership of a MembershipImport
(see 8.2.3.4.2), in which case the required Element is the identified Membership itself.

The basic name resolution process consists of the following two steps. The terms "local Namespace", "visible
resolution" and "full resolution" used below are defined in 8.2.3.5.2 , 8.2.3.5.3 , and 8.2.3.5.4 .

1. If the qualified name has only one segment name, with no global scope qualifier, then the resolution of the
qualified name is the full resolution of that segment name relative to the local Namespace for the
qualified name – unless the local Namespace is a root Namespace, in which case the global Namespace
is used instead.

2. If the qualified name consists of a global scope qualifier and a single segment name, the resolution of the
qualified name is the resolution of the segment name relative to the global Namespace.

3. Otherwise, resolve the qualification part of the qualified name relative to the local Namespace of the
original qualified name. This must resolve to a Namespace, and the resolution of the original qualified
name is then the visible resolution of its last segment name relative to this Namespace.

If the above steps fail, or if the resulting Element does not have the proper type for its context, then the qualified
name has no resolution, and the parsing of the text containing it fails with a name resolution error.

Note. Invoking the Namespace::resolve, as defined in the abstract syntax (see 8.3.2.4.5), carries out the above
basic resolution process with the target Namespace considered as the local Namespace for the given qualified
name.

The basic name resolution process is used directly to resolve a qualified name in all cases except when the qualified
name specifies the redefinedFeature of a Redefinition with an owningFeature that has an owningType. In
this case, the basic name resolution processes is repeated with the general Type of each ownedSpecialization of
the owningType considered in turn as the local Namespace, until a resolution is found. If no resolution is found for
any of these, then the overall resolution fails.

Note. When implementing the name resolution process as specified here, some additional points need to be
considered.

• The descriptions given in 8.2.3.5.2 , 8.2.3.5.3 , and 8.2.3.5.4 presume that the derived membership,
importedMembership and (for a Type) inheritedMembership properties of a Namespace have been
fully computed, including memberships resulting from implied Relationships (see 8.4.2). However,
when parsing a complete KerML concrete syntax text, the values of these properties may themselves be
based on other Relationships (e.g., alias Memberships, Imports and Specializations) whose
target references are given by qualified names that must be resolved. Name resolution must therefore
proceed incrementally during a parse, avoiding infinite loops caused by attempting to resolve again names
that are already pending resolution. Note, however, that it is possible to at least locally resolve a name to a
Membership in a Namespace without immediately resolving the memberElement of that Membership.

• Circularity is allowed for Imports and Specializations. Therefore, when traversing the graph of
these Relationships, an implementation must avoid re-processing a Namespace that has already been
visited.

8.2.3.5.2 Local and Global Namespaces

Every Namespace other than a root Namespace (see 8.2.3.4.1) is nested in a containing Namespace called its
owningNamespace (see 8.3.2.4).

Kernel Modeling Language v1.0 Beta 4 83

A root Namespace has an implicit containing Namespace known as its global Namespace. The global Namespace
for a root Namespace includes all the visible Memberships of all other root Namespaces that are available to the
first Namespace, which shall include at least all the root Namespaces from the KerML Model Libraries (see Clause
9). If a tool imports a model interchange project (see 10.3), then the available Namespaces shall also include all
the root Namespaces from any used project of the imported project. A conforming tool can also provide means for
making additional Namespaces available to a root Namespace, such as by creating a new root Namespace or
adding an additional used project.

A qualified name is always used to identify an Element that is a target Element of some context
Relationship. The local Namespace for resolving the qualified name is then determined depending on the kind
of context Relationship, as given in the following.

Import (see 8.3.2.4.2)

• The local Namespace is the importOwningNamespace.

Membership (see 8.3.2.4.3)

• If the membershipOwningNamespace is a FeatureReferenceExpression (see 8.3.4.8.5), then the
local Namespace is the non-invocation Namespace for the membershipOwningNamespace, which is
defined to be the nearest containing Namespace that is none of the following:

◦ FeatureReferenceExpression
◦ InstantiationExpression
◦ ownedFeature of an InstantiationExpression
◦ ownedFeature of the result of a ConstructorExpression

• If the Membership is not a FeatureMembership and the membershipOwningNamespace is an
InstantiationExpression (see 8.3.4.8.7), then the local Namespace is the non-invocation
Namespace for the membershipOwningNamespace, determined as for a
FeatureReferenceExpression above.

• If the membershipOwningNamespace is a FeatureChainExpression see 8.3.4.8.4 , then the local
Namespace is the result parameter of the argument Expression of the FeatureChainExpression.

• Otherwise, the local Namespace is the membershipOwningNamespace.

Specialization (see 8.3.3.1.8)

• If the Specialization is a ReferenceSubsetting (see 8.3.3.3.9), and its referencingFeature is
an end Feature whose owningType is a Connector, then the local Namespace is the
owningNamespace of the Connector.

• Otherwise, if the owningType is not null, then the local Namespace is the owningNamespace of the
owningType.

• Otherwise, the local Namespace is the owningNamespace of the Specialization.

Conjugation (see 8.3.3.1.2)

• If the owningType is not null, the local Namespace is the owningNamespace of the owningType.
• Otherwise, the local Namespace is the owningNamespace of the Conjugation.

FeatureChaining (see 8.3.3.3.5)

• If the FeatureChaining is the first ownedFeatureChaining of its featureChained, then the local
Namespace is determined as if the owningRelationship of the featureChained (which will be a
Membership, Subsetting or Conjugation) was the context Relationship (see above).

• Otherwise, the local Namespace is the chainingFeature of the previous FeatureChaining in the
ownedFeatureChaining list.

84 Kernel Modeling Language v1.0 Beta 4

8.2.3.5.3 Local and Visible Resolution

A Namespace defines a mapping from names to its memberships, know as the local resolution of those names.
Each membership of a Namespace is the local resolution for its memberShortName and memberName (if non-
null). Note that this includes owned, imported and (if the Namespace is a Type) inherited Memberships.

Note. If the Namespace is well formed, then there can be at most one Membership that is the local resolution of
any given name.

The visible resolution of a name is similar to its local resolution, but the memberships considered are restricted to
those that are visible outside the Namespace. The visible Memberships of a Namespace shall comprise the
following:

• All ownedMemberships of the Namespace with visibility = public.
• All importedMemberships of the Namespace that are derived from Import Relationships with

visibility = public.
• If the Namespace is a Type, then all inheritedMemberships of the Type with visibility =

public.

8.2.3.5.4 Full Resolution

The full resolution of a simple name relative to a Namespace considers Memberships not only in that Namespace,
but also in directly or indirectly containing Namespaces, all the way out to the global Namespace. Full resolution
relative to a Namespace other than the global Namespace proceeds as follows:

1. If the name has a local resolution relative to a Namespace (see 8.2.3.5.3), then that is also its full
resolution relative to that Namespace.

2. Otherwise:
◦ If the Namespace is not a root Namespace, then the full resolution of the name relative to the

original Namespace is determined as its full resolution relative to the owningNamespace of the
original Namespace.

◦ If the Namespace is a root Namespace, then the full resolution of the name resolution relative
to the original Namespace is its resolution in the global Namespace.

The resolution of a simple name in the global Namespace is the the Membership in the global Namespace (as
defined in 8.2.3.5.2) whose (non-null) shortMemberName or memberName is equal to the simple name.

Note. It is possible that there will be more than one Membership in the global Namespace that resolves a given
simple name. In this case, one of these Memberships is chosen for the resolution of the name, but which one is
chosen is not otherwise determined by this specification.

8.2.4 Core Concrete Syntax
8.2.4.1 Types Concrete Syntax

8.2.4.1.1 Types

Type =
TypePrefix 'type'
TypeDeclaration TypeBody

TypePrefix : Type =
(isAbstract ?= 'abstract')?
(ownedRelationship += PrefixMetadataMember)*

TypeDeclaration : Type =
(isSufficient ?= 'all')? Identification

Kernel Modeling Language v1.0 Beta 4 85

(ownedRelationship += OwnedMultiplicity)?
(SpecializationPart | ConjugationPart)+
TypeRelationshipPart*

SpecializationPart : Type =
SPECIALIZES ownedRelationship += OwnedSpecialization
(',' ownedRelationship += OwnedSpecialization)*

ConjugationPart : Type =
CONJUGATES ownedRelationship += OwnedConjugation

TypeRelationshipPart : Type =
DisjoiningPart

| UnioningPart
| IntersectingPart
| DifferencingPart

DisjoiningPart : Type =
'disjoint' 'from' ownedRelationship += OwnedDisjoining
(',' ownedRelationship += OwnedDisjoining)*

UnioningPart : Type =
'unions' ownedRelationship += Unioning
(',' ownedRelationship += Unioning)*

IntersectingPart : Type =
'intersects' ownedRelationship += Intersecting
(',' ownedRelationship += Intersecting)*

DifferencingPart : Type =
'differences' ownedRelationship += Differencing
(',' ownedRelationship += Differencing)*

TypeBody : Type =
';' | '{' TypeBodyElement* '}'

TypeBodyElement : Type =
ownedRelationship += NonFeatureMember

| ownedRelationship += FeatureMember
| ownedRelationship += AliasMember
| ownedRelationship += Import

8.2.4.1.2 Specialization

Specialization =
('specialization' Identification)?
'subtype' SpecificType
SPECIALIZES GeneralType
RelationshipBody

OwnedSpecialization : Specialization =
GeneralType

SpecificType : Specialization :
specific = [QualifiedName]

| specific += OwnedFeatureChain
{ ownedRelatedElement += specific }

GeneralType : Specialization =
general = [QualifiedName]

| general += OwnedFeatureChain
{ ownedRelatedElement += general }

86 Kernel Modeling Language v1.0 Beta 4

8.2.4.1.3 Conjugation

Conjugation =
('conjugation' Identification)?
'conjugate'
(conjugatedType = [QualifiedName]
| conjugatedType = FeatureChain

{ ownedRelatedElement += conjugatedType }
)
CONJUGATES
(originalType = [QualifiedName]
| originalType = FeatureChain

{ ownedRelatedElement += originalType }
)
RelationshipBody

OwnedConjugation : Conjugation =
originalType = [QualifiedName]

| originalType = FeatureChain
{ ownedRelatedElement += originalType }

8.2.4.1.4 Disjoining

Disjoining =
('disjoining' Identification)?
'disjoint'
(typeDisjoined = [QualifiedName]
| typeDisjoined = FeatureChain

{ ownedRelatedElement += typeDisjoined }
)
'from'
(disjoiningType = [QualifiedName]
| disjoiningType = FeatureChain

{ ownedRelatedElement += disjoiningType }
)
RelationshipBody

OwnedDisjoining : Disjoining =
disjoiningType = [QualifiedName]

| disjoiningType = FeatureChain
{ ownedRelatedElement += disjoiningType }

8.2.4.1.5 Unioning, Intersecting and Differencing

Unioning =
unioningType = [QualifiedName]

| ownedRelatedElement += OwnedFeatureChain

Intersecting =
intersectingType = [QualifiedName]

| ownedRelatedElement += OwnedFeatureChain

Differencing =
differencingType = [QualifiedName]

| ownedRelatedElement += OwnedFeatureChain

8.2.4.1.6 Feature Membership

FeatureMember : OwningMembership =
TypeFeatureMember

| OwnedFeatureMember

Kernel Modeling Language v1.0 Beta 4 87

TypeFeatureMember : OwningMembership =
MemberPrefix 'member' ownedRelatedElement += FeatureElement

OwnedFeatureMember : FeatureMembership =
MemberPrefix ownedRelatedElement += FeatureElement

8.2.4.2 Classifiers Concrete Syntax

8.2.4.2.1 Classifiers

Classifier =
TypePrefix 'classifier'
ClassifierDeclaration TypeBody

ClassifierDeclaration : Classifier =
(isSufficient ?= 'all')? Identification
(ownedRelationship += OwnedMultiplicity)?
(SuperclassingPart | ConjugationPart)?
TypeRelationshipPart*

SuperclassingPart : Classifier =
SPECIALIZES ownedRelationship += OwnedSubclassification
(',' ownedRelationship += OwnedSubclassification)*

8.2.4.2.2 Subclassification

Subclassification =
('specialization' Identification)?
'subclassifier' subclassifier = [QualifiedName]
SPECIALIZES superclassifier = [QualifiedName]
RelationshipBody

OwnedSubclassification : Subclassification =
superclassifier = [QualifiedName]

8.2.4.3 Features Concrete Syntax

8.2.4.3.1 Features

Feature =
(FeaturePrefix

('feature' | ownedRelationship += PrefixMetadataMember)
FeatureDeclaration?
)

| (EndFeaturePrefix | BasicFeaturePrefix)
FeatureDeclaration

)
ValuePart? TypeBody

(See Note 1)

EndFeaturePrefix : Feature =
(isConstant ?= 'const' { isVariable = true })?
isEnd ?= 'end'

BasicFeaturePrefix : Feature :
(direction = FeatureDirection)?
(isDerived ?= 'derived')?
(isAbstract ?= 'abstract')?
(isComposite ?= 'composite' | isPortion ?= 'portion')?
(isVariable ?= 'var' | isConstant ?= 'const' { isVariable = true })?

FeaturePrefix :

88 Kernel Modeling Language v1.0 Beta 4

(EndFeaturePrefix (ownedRelationship += OwnedCrossFeatureMember)?
| BasicFeaturePrefix
)
(ownedRelationship += PrefixMetadataMember)*

(see Note 1)

OwnedCrossFeatureMember : OwningMembership =
ownedRelatedElement += OwnedCrossFeature

OwnedCrossFeature : Feature =
BasicFeaturePrefix FeatureDeclaration

FeatureDirection : FeatureDirectionKind =
'in' | 'out' | 'inout'

FeatureDeclaration : Feature =
(isSufficient ?= 'all')?
(FeatureIdentification

(FeatureSpecializationPart | ConjugationPart)?
| FeatureSpecializationPart
| ConjugationPart
)
FeatureRelationshipPart*

FeatureIdentification : Feature =
'<' declaredShortName = NAME '>' (declaredName = NAME)?

| declaredName = NAME

FeatureRelationshipPart : Feature =
TypeRelationshipPart

| ChainingPart
| InvertingPart
| TypeFeaturingPart

ChainingPart : Feature =
'chains'
(ownedRelationship += OwnedFeatureChaining
| FeatureChain)

InvertingPart : Feature =
'inverse' 'of' ownedRelationship += OwnedFeatureInverting

TypeFeaturingPart : Feature =
'featured' 'by' ownedRelatioship += OwnedTypeFeaturing
(',' ownedTypeFeaturing += OwnedTypeFeaturing)*

FeatureSpecializationPart : Feature =
FeatureSpecialization+ MultiplicityPart? FeatureSpecialization*

| MultiplicityPart FeatureSpecialization*

MultiplicityPart : Feature =
ownedRelationship += OwnedMultiplicity

| (ownedRelationship += OwnedMultiplicity)?
(isOrdered ?= 'ordered' ({isUnique = false} 'nonunique')?
| {isUnique = false} 'nonunique' (isOrdered ?= 'ordered')?)

FeatureSpecialization : Feature =
Typings | Subsettings | References | Crosses | Redefinitions

Typings : Feature =
TypedBy (',' ownedRelationship += OwnedFeatureTyping)*

TypedBy : Feature =

Kernel Modeling Language v1.0 Beta 4 89

TYPED_BY ownedRelationship += OwnedFeatureTyping

Subsettings : Feature =
Subsets (',' ownedRelationship += OwnedSubsetting)*

Subsets : Feature =
SUBSETS ownedRelationship += OwnedSubsetting

References : Feature =
REFERENCES ownedRelationship += OwnedReferenceSubsetting

Crosses : Feature =
CROSSES ownedRelationship += OwnedCrossSubsetting

Redefinitions : Feature =
Redefines (',' ownedRelationship += OwnedRedefinition)*

Redefines : Feature =
REDEFINES ownedRelationship += OwnedRedefinition

Notes

1. PrefixMetadataMember is defined in the Kernel layer (see 8.3.4.12).

8.2.4.3.2 Feature Typing

FeatureTyping =
('specialization' Identification)?
'typing' typedFeature = [QualifiedName]
TYPED_BY GeneralType
RelationshipBody

OwnedFeatureTyping : FeatureTyping =
GeneralType

8.2.4.3.3 Subsetting

Subsetting =
('specialization' Identification)?
'subset' SpecificType
SUBSETS GeneralType
RelationshipBody

OwnedSubsetting : Subsetting =
GeneralType

OwnedReferenceSubsetting : ReferenceSubsetting =
GeneralType

OwnedCrossSubsetting : CrossSubsetting =
GeneralType

8.2.4.3.4 Redefinition

Redefinition =
('specialization' Identification)?
'redefinition' SpecificType
REDEFINES GeneralType
RelationshipBody

OwnedRedefinition : Redefinition =
GeneralType

90 Kernel Modeling Language v1.0 Beta 4

8.2.4.3.5 Feature Chaining

OwnedFeatureChain : Feature =
FeatureChain

FeatureChain : Feature =
ownedRelationship += OwnedFeatureChaining
('.' ownedRelationship += OwnedFeatureChaining)+

OwnedFeatureChaining : FeatureChaining =
chainingFeature = [QualifiedName]

8.2.4.3.6 Feature Inverting

FeatureInverting =
('inverting' Identification?)?
'inverse'
(featureInverted = [QualifiedName]
| featureInverted = OwnedFeatureChain

{ ownedRelatedElement += featureInverted }
)
'of'
(invertingFeature = [QualifiedName]
| ownedRelatedElement += OwnedFeatureChain

{ ownedRelatedElement += invertingFeature }
)
RelationshipBody

OwnedFeatureInverting : FeatureInverting =
invertingFeature = [QualifiedName]

| invertingFeature = OwnedFeatureChain
{ ownedRelatedElement += invertingFeature }

8.2.4.3.7 Type Featuring

TypeFeaturing =
'featuring' (Identification 'of')?
featureOfType = [QualifiedName]
'by' featuringType = [QualifiedName]
RelationshipBody

OwnedTypeFeaturing : TypeFeaturing =
featuringType = [QualifiedName]

8.2.5 Kernel Concrete Syntax
8.2.5.1 Data Types Concrete Syntax

DataType =
TypePrefix 'datatype'
ClassifierDeclaration TypeBody

8.2.5.2 Classes Concrete Syntax

Class =
TypePrefix 'class'
ClassifierDeclaration TypeBody

8.2.5.3 Structures Concrete Syntax

Kernel Modeling Language v1.0 Beta 4 91

Structure =
TypePrefix 'struct'
ClassifierDeclaration TypeBody

8.2.5.4 Associations Concrete Syntax

Association =
TypePrefix 'assoc'
ClassifierDeclaration TypeBody

AssociationStructure =
TypePrefix 'assoc' 'struct'
ClassifierDeclaration TypeBody

8.2.5.5 Connectors Concrete Syntax

8.2.5.5.1 Connectors

Connector =
FeaturePrefix 'connector'
(FeatureDeclaration? ValuePart?
| ConnectorDeclaration
)
TypeBody

ConnectorDeclaration : Connector =
BinaryConnectorDeclaration | NaryConnectorDeclaration

BinaryConnectorDeclaration : Connector =
(FeatureDeclaration? 'from' | isSufficient ?= 'all' 'from'?)?
ownedRelationship += ConnectorEndMember 'to'
ownedRelationship += ConnectorEndMember

NaryConnectorDeclaration : Connector =
FeatureDeclaration?
'(' ownedRelationship += ConnectorEndMember ','

ownedRelationship += ConnectorEndMember
(',' ownedRelationship += ConnectorEndMember)*

')'

ConnectorEndMember : EndFeatureMembership =
ownedRelatedElement += ConnectorEnd

ConnectorEnd : Feature =
(ownedRelationship += OwnedCrossMultiplicityMember)?
(declaredName = NAME REFERENCES)?
ownedRelationship += OwnedReferenceSubsetting

OwnedCrossMultiplicityMember : OwningMembership =
ownedRelatedElement += OwnedCrossMultiplicity

OwnedCrossMultiplicity : Feature =
ownedRelationship += OwnedMultiplicity

8.2.5.5.2 Binding Connectors

BindingConnector =
FeaturePrefix 'binding'
BindingConnectorDeclaration TypeBody

BindingConnectorDeclaration : BindingConnector =
FeatureDeclaration

92 Kernel Modeling Language v1.0 Beta 4

('of' ownedRelationship += ConnectorEndMember
'=' ownedRelationship += ConnectorEndMember)?

| (isSufficient ?= 'all')?
('of'? ownedRelationship += ConnectorEndMember

'=' ownedRelationship += ConnectorEndMember)?

8.2.5.5.3 Successions

Succession =
FeaturePrefix 'succession'
SuccessionDeclaration TypeBody

SuccessionDeclaration : Succession =
FeatureDeclaration
('first' ownedRelationship += ConnectorEndMember

'then' ownedRelationship += ConnectorEndMember)?
| (s.isSufficient ?= 'all')?

('first'? ownedRelationship += ConnectorEndMember
'then' ownedRelationship += ConnectorEndMember)?

8.2.5.6 Behaviors Concrete Syntax

8.2.5.6.1 Behaviors

Behavior =
TypePrefix 'behavior'
ClassifierDeclaration TypeBody

8.2.5.6.2 Steps

Step =
FeaturePrefix
'step' FeatureDeclaration ValuePart?
TypeBody

8.2.5.7 Functions Concrete Syntax

8.2.5.7.1 Functions

Function =
TypePrefix 'function'
ClassifierDeclaration FunctionBody

FunctionBody : Type =
';' | '{' FunctionBodyPart '}'

FunctionBodyPart : Type =
(TypeBodyElement
| ownedRelationship += ReturnFeatureMember
)*

(ownedRelationship += ResultExpressionMember)?

ReturnFeatureMember : ReturnParameterMembership =
MemberPrefix 'return'
ownedRelatedElement += FeatureElement

ResultExpressionMember : ResultExpressionMembership =
MemberPrefix
ownedRelatedElement += OwnedExpression

8.2.5.7.2 Expressions

Kernel Modeling Language v1.0 Beta 4 93

Expression =
FeaturePrefix
'expr' FeatureDeclaration ValuePart?
FunctionBody

8.2.5.7.3 Predicates

Predicate =
TypePrefix 'predicate'
ClassifierDeclaration FunctionBody

8.2.5.7.4 Boolean Expressions and Invariants

BooleanExpression =
FeaturePrefix
'bool' FeatureDeclaration ValuePart?
FunctionBody

Invariant =
FeaturePrefix
'inv' ('true' | isNegated ?= 'false')?
FeatureDeclaration ValuePart?
FunctionBody

8.2.5.8 Expressions Concrete Syntax

8.2.5.8.1 Operator Expressions

OwnedExpressionReferenceMember : FeatureMembership =
ownedRelationship += OwnedExpressionReference

OwnedExpressionReference : FeatureReferenceExpression =
ownedRelationship += OwnedExpressionMember

OwnedExpressionMember : FeatureMembership =
ownedFeatureMember = OwnedExpression

OwnedExpression : Expression =
ConditionalExpression

| ConditionalBinaryOperatorExpression
| BinaryOperatorExpression
| UnaryOperatorExpression
| ClassificationExpression
| MetaclassificationExpression
| ExtentExpression
| PrimaryExpression

ConditionalExpression : OperatorExpression =
operator = 'if'
ownedRelationship += ArgumentMember '?'
ownedRelationship += ArgumentExpressionMember 'else'
ownedRelationship += ArgumentExpressionMember
ownedRelationship += EmptyResultMember

ConditionalBinaryOperatorExpression : OperatorExpression =
ownedRelationship += ArgumentMember
operator = ConditionalBinaryOperator
ownedRelationship += ArgumentExpressionMember
ownedRelationship += EmptyResultMember

ConditionalBinaryOperator =
'??' | 'or' | 'and' | 'implies'

94 Kernel Modeling Language v1.0 Beta 4

BinaryOperatorExpression : OperatorExpression =
ownedRelationship += ArgumentMember
operator = BinaryOperator
ownedRelationship += ArgumentMember
ownedRelationship += EmptyResultMember

BinaryOperator =
'|' | '&' | 'xor' | '..'

| '==' | '!=' | '===' | '!=='
| '<' | '>' | '<=' | '>='
| '+' | '-' | '*' | '/'
| '%' | '^' | '**'

UnaryOperatorExpression : OperatorExpression =
operator = UnaryOperator
ownedRelationship += ArgumentMember
ownedRelationship += EmptyResultMember

UnaryOperator =
'+' | '-' | '~' | 'not'

ClassificationExpression : OperatorExpression =
(ownedRelationship += ArgumentMember)?
(operator = ClassificationTestOperator

ownedRelationship += TypeReferenceMember
| operator = CastOperator

ownedRelationship += TypeResultMember
)
ownedRelationship += EmptyResultMember

ClassificationTestOperator =
'istype' | 'hastype' | '@'

CastOperator =
'as'

MetaclassificationExpression : OperatorExpression =
ownedRelationship += MetadataArgumentMember
(operator = MetaClassificationTestOperator

ownedRelationship += TypeReferenceMember
| operator = MetaCastOperator

ownedRelationship += TypeResultMember
)
ownedRelationship += EmptyResultMember

ArgumentMember : ParameterMembership =
ownedMemberParameter = Argument

Argument : Feature =
ownedRelationship += ArgumentValue

ArgumentValue : FeatureValue =
value = OwnedExpression

ArgumentExpressionMember : FeatureMembership =
ownedRelatedElement += ArgumentExpression

ArgumentExpression : Feature =
ownedRelationship += ArgumentExpressionValue

ArgumentExpressionValue : FeatureValue =
value = OwnedExpressionReference

Kernel Modeling Language v1.0 Beta 4 95

MetadataArgumentMember : ParameterMembership =
ownedRelatedElement += MetadataArgument

MetadataArgument : Feature =
ownedRelationship += MetadataValue

MetadataValue : FeatureValue =
value = MetadataReference

MetadataReference : MetadataAccessExpression =
ownedRelationship += ElementReferenceMember

MetaclassificationTestOperator =
'@@'

MetaCastOperator =
'meta'

ExtentExpression : OperatorExpression =
operator = 'all'
ownedRelationship += TypeReferenceMember

TypeReferenceMember : ParameterMembership =
ownedMemberFeature = TypeReference

TypeResultMember : ResultParameterMembership =
ownedMemberFeature = TypeReference

TypeReference : Feature =
ownedRelationship += ReferenceTyping

ReferenceTyping : FeatureTyping =
type = [QualifiedName]

EmptyResultMember : ReturnParameterMembership =
ownedRelatedElement += EmptyFeature

EmptyFeature : Feature =
{ }

Notes

1. OperatorExpressions provide a shorthand notation for InvocationExpressions that invoke a
library Function represented as an operator symbol. Table 5 shows the mapping from operator
symbols to the Functions they represent from the Kernel Model Library (see Clause 9). An
OperatorExpression contains subexpressions called its operands that generally correspond to the
argument Expressions of the OperatorExpression, except in the case of operators representing
control Functions, in which case the evaluation of certain operands is as determined by the Function
(see 8.4.4.9 for details).

2. Though not directly expressed in the syntactic productions given above, in any OperatorExpression
containing nested OperatorExpressions, the nested OperatorExpressions shall be implicitly
grouped according to the precedence of the operators involved, as given in Table 6 .
OperatorExpressions with higher precedence operators shall be grouped more tightly than those
with lower precedence operators. Further, all BinaryOperators other than exponentiation are left-
associative (i.e, they group to the left), while the exponentiation operators (^ and **) are right-associative
(i.e., they group to the right).

3. The unary operator symbol ~ maps to the library Function DataFunctions::'~', as shown in Table
5 . This abstract Function may be given a concrete definition in a domain-specific Function library, but

96 Kernel Modeling Language v1.0 Beta 4

no default definition is provided in the Kernel Functions Library. If no domain-specific definition is
available, a tool should give a warning if this operator is used.

Table 5. Operator Mapping

Operator Library Function Description Model-Level Evaluable?

all BaseFunctions::'all' Type extent No

istype BaseFunctions::'istype'
All argument values are
directly or indirectly instances
of a type

Yes

hastype BaseFunctions::'hastype' All argument values are
directly instances of a type Yes

@ BaseFunctions::'@'
Any argument value is
directly or indirectly an
instance of a type

Yes

@@ BaseFunctions::'@@'
Any argument value is
directly or indirectly an
instance of a metaclass

Yes

as BaseFunctions::as Select instances of type (cast) Yes

meta BaseFunctions::meta Select instances of a
metaclass (metacast) Yes

== BaseFunctions::'==' Equality Yes

!= BaseFunctions::'!=' Inequality Yes

=== BaseFunctions::'==='
Same (equality for data
values, same lives for
occurrences)

Yes

!== BaseFunctions::'!==' Not same Yes

xor DataFunctions::'xor' Logical "exclusive or" Yes

not DataFunctions::'not' Logical "not" Yes

~ DataFunctions::'~' Undefined No

| DataFunctions::'|' Logical "inclusive or" Yes

& DataFunctions::'&' Logical "and" Yes

< DataFunctions::'<' Less than Yes

> DataFunctions::'>' Greater than Yes

<= DataFunctions::'<=' Less than or equal to Yes

>= DataFunctions::'>=' Greater than or equal to Yes

+ DataFunctions::'+' Addition Yes

- DataFunctions::'-' Subtraction Yes

* DataFunctions::'*' Multiplication Yes

/ DataFunctions::'/' Division Yes

% DataFunctions::'%' Remainder Yes

Kernel Modeling Language v1.0 Beta 4 97

Operator Library Function Description Model-Level Evaluable?

^ ** DataFunctions::'^' Exponentiation Yes

.. DataFunctions::'..' Range construction Yes

?? ControlFunctions::'??' Null coalescing Yes

if ControlFunctions::'if' Conditional test (ternary) Yes

or ControlFunctions::'or' Conditional "or" Yes

and ControlFunctions::'and' Conditional "and" Yes

implies ControlFunctions::'implies' Conditional "implication" Yes

Table 6. Operator Precedence (highest to lowest)

Unary

all

+ - ~ not

Binary

^ **

* / %

+ -

..

< > <= >=

istype hastype @ @@ as meta

== != === !==

& and

xor

| or

implies

??

Ternary

98 Kernel Modeling Language v1.0 Beta 4

if

8.2.5.8.2 Primary Expressions

PrimaryExpression : Expression =
FeatureChainExpression

| NonFeatureChainPrimaryExpression

PrimaryArgumentValue : FeatureValue =
value = PrimaryExpression

PrimaryArgument : Feature =
ownedRelationship += PrimaryArgumentValue

PrimaryArgumentMember : ParameterMembership =
ownedMemberParameter = PrimaryArgument

NonFeatureChainPrimaryExpression : Expression =
BracketExpression

| IndexExpression
| SequenceExpression
| SelectExpression
| CollectExpression
| FunctionOperationExpression
| BaseExpression

NonFeatureChainPrimaryArgumentValue : FeatureValue =
value = NonFeatureChainPrimaryExpression

NonFeatureChainPrimaryArgument : Feature =
ownedRelationship += NonFeatureChainPrimaryArgumentValue

NonFeatureChainPrimaryArgumentMember : ParameterMembership =
ownedMemberParameter = PrimaryArgument

BracketExpression : OperatorExpression =
ownedRelationship += PrimaryArgumentMember
operator = '['
ownedRelationship += SequenceExpressionListMember ']'

IndexExpression =
ownedRelationship += PrimaryArgumentMember '#'
'(' ownedRelationship += SequenceExpressionListMember ')'

SequenceExpression : Expression =
'(' SequenceExpressionList ')'

SequenceExpressionList : Expression =
OwnedExpression ','? | SequenceOperatorExpression

SequenceOperatorExpression : OperatorExpression =
ownedRelationship += OwnedExpressionMember
operator = ','
ownedRelationship += SequenceExpressionListMember

SequenceExpressionListMember : FeatureMembership =
ownedMemberFeature = SequenceExpressionList

FeatureChainExpression =
ownedRelationship += NonFeatureChainPrimaryArgumentMember '.'
ownedRelationship += FeatureChainMember

Kernel Modeling Language v1.0 Beta 4 99

CollectExpression =
ownedRelationship += PrimaryArgumentMember '.'
ownedRelationship += BodyArgumentMember

SelectExpression =
ownedRelationship += PrimaryArgumentMember '.?'
ownedRelationship += BodyArgumentMember

FunctionOperationExpression : InvocationExpression =
ownedRelationship += PrimaryArgumentMember '->'
ownedRelationship += InvocationTypeMember
(ownedRelationship += BodyArgumentMember
| ownedRelationship += FunctionReferenceArgumentMember
| ArgumentList)
ownedRelationship += EmptyResultMember

BodyArgumentMember : ParameterMembership =
ownedMemberParameter = BodyArgument

BodyArgument : Feature =
ownedRelationship += BodyArgumentValue

BodyArgumentValue : FeatureValue =
value = BodyExpression

FunctionReferenceArgumentMember : ParameterMembershiup =
ownedMemberParameter = FunctionReferenceArgument

FunctionReferenceArgument : Feature =
ownedRelationship += FunctionReferenceArgumentValue

FunctionReferenceArgumentValue : FeatureValue =
value = FunctionReferenceExpression

FunctionReferenceExpression : FeatureReferenceExpression =
ownedRelationship += FunctionReferenceMember

FunctionReferenceMember : FeatureMembership =
ownedMemberFeature = FunctionReference

FunctionReference : Expression =
ownedRelationship += ReferenceTyping

FeatureChainMember : Membership =
FeatureReferenceMember

| OwnedFeatureChainMember

OwnedFeatureChainMember : OwningMembership =
ownedMemberElement = FeatureChain

Notes

1. Primary expressions provide additional shorthand notations for certain kinds of
InvocationExpressions. For those cases in which the InvocationExpression is an
OperatorExpression, its operator shall be resolved to the appropriate library function as given in
Table 7 . Note also that, for a CollectionExpression or SelectExpression, the abstract syntax
constrains the operator to be collect and select, respectively, separately from the . and .? symbols
used in their concrete syntax notation (see 8.3.4.8.2 and 8.3.4.8.18).

2. The grammar allows a bracket syntax [...]that parses to an invocation of the library Function
BaseFunctions::'[', as shown in Table 7 . This notation is available for use with domain-specific

100 Kernel Modeling Language v1.0 Beta 4

library models that given a concrete definition to the abstract base '[' Function, but no default
definition is provided in the Kernel Functions Library. If no domain-specific definition is available, a tool
should give a warning if this operator is used.

Table 7. Primary Expression Operator Mapping

Operator Library Function Description Model-level Evaluable?

[BaseFunctions::'[' Undefined No

BaseFunctions::'#' Indexing Yes

, BaseFunctions::',' Sequence construction Yes

. ControlFunctions::'.' Feature chaining Yes

collect ControlFunctions::collect Sequence collection Yes

select ControlFunctions::select Sequence selection Yes

8.2.5.8.3 Base Expressions

BaseExpression : Expression =
NullExpression

| LiteralExpression
| FeatureReferenceExpression
| MetadataAccessExpression
| InvocationExpression
| ConstructorExpression
| BodyExpression

NullExpression : NullExpression =
'null' | '(' ')'

FeatureReferenceExpression : FeatureReferenceExpression =
ownedRelationship += FeatureReferenceMember
ownedRelationship += EmptyResultMember

FeatureReferenceMember : Membership =
memberElement = FeatureReference

FeatureReference : Feature =
[QualifiedName]

MetadataAccessExpression =
ownedRelationship += ElementReferenceMember '.' 'metadata'

ElementReferenceMember : Membership =
memberElement = [QualifiedName]

InvocationExpression : InvocationExpression =
ownedRelationship += InstatiatedTypeMember
ArgumentList
ownedRelationship += EmptyResultMember

ConstructorExpression =
'new' ownedRelationship += InstantiatedTypeMember
ownedRelationship += ConstructorResultMember

ConstructorResultMember : ReturnParameterMembership =
ownedRelatedElement += ConstructorResult

ConstructorResult : Feature =

Kernel Modeling Language v1.0 Beta 4 101

ArgumentList

InstantiatedTypeMember : Membership =
memberElement = InstantiatedTypeReference

| OwnedFeatureChainMember

InstantiatedTypeReference : Type =
[QualifiedName]

ArgumentList : Feature =
'(' (PositionalArgumentList | NamedArgumentList)? ')'

PositionalArgumentList : Feature =
e.ownedRelationship += ArgumentMember
(',' e.ownedRelationship += ArgumentMember)*

NamedArgumentList : Feature =
ownedRelationship += NamedArgumentMember
(',' ownedRelationship += NamedArgumentMember)*

NamedArgumentMember : FeatureMembership =
ownedMemberFeature = NamedArgument

NamedArgument : Feature =
ownedRelationship += ParameterRedefinition '='
ownedRelationship += ArgumentValue

ParameterRedefinition : Redefinition =
redefinedFeature = [QualifiedName]

BodyExpression : FeatureReferenceExpression =
ownedRelationship += ExpressionBodyMember

ExpressionBodyMember : FeatureMembership =
ownedMemberFeature = ExpressionBody

ExpressionBody : Expression =
'{' FunctionBodyPart '}'

8.2.5.8.4 Literal Expressions

LiteralExpression =
LiteralBoolean

| LiteralString
| LiteralInteger
| LiteralReal
| LiteralInfinity

LiteralBoolean =
value = BooleanValue

BooleanValue : Boolean =
'true' | 'false'

LiteralString =
value = STRING_VALUE

LiteralInteger =
value = DECIMAL_VALUE

LiteralReal =
value = RealValue

102 Kernel Modeling Language v1.0 Beta 4

RealValue : Real =
DECIMAL_VALUE? '.' (DECIMAL_VALUE | EXPONENTIAL_VALUE)

| EXPONENTIAL_VALUE

LiteralInfinity =
'*'

8.2.5.9 Interactions Concrete Syntax

8.2.5.9.1 Interactions

Interaction =
TypePrefix 'interaction'
ClassifierDeclaration TypeBody

8.2.5.9.2 Flows

Flow =
FeaturePrefix 'flow'
ItemFlowDeclaration TypeBody

SuccessionFlow =
FeaturePrefix 'succession' 'flow'
ItemFlowDeclaration TypeBody

FlowDeclaration : Flow =
FeatureDeclaration ValuePart?
('of' ownedRelationship += PayloadFeatureMember)?
('from' ownedRelationship += FlowEndMember

'to' ownedRelationship += FlowEndMember)?
| (isSufficient ?= 'all')?

ownedRelationship += FlowEndMember 'to'
ownedRelationship += FlowEndMember

PayloadFeatureMember : FeatureMembership =
ownedRelatedElement = PayloadFeature

PayloadFeature =
Identification PayloadFeatureSpecializationPart ValuePart?

| Identification ValuePart
| (ownedRelationship += OwnedFeatureTyping

(ownedRelationship += OwnedMultiplicity)?
| ownedRelationship += OwnedMultiplicity

(ownedRelationship += OwnedFeatureTyping)?

PayloadFeatureSpecializationPart : Feature =
FeatureSpecialization+ MultiplicityPart?
FeatureSpecialization*

| MultiplicityPart FeatureSpecialization+

FlowEndMember : EndFeatureMembership =
ownedRelatedElement += FlowEnd

FlowEnd =
(ownedRelationship += OwnedReferenceSubsetting '.')?
ownedRelationship += FlowFeatureMember

FlowFeatureMember : FeatureMembership =
ownedRelatedElement += FlowFeature

FlowFeature : Feature =
ownedRelationship += FlowFeatureRedefinition

(See Note 1)

Kernel Modeling Language v1.0 Beta 4 103

FlowFeatureRedefinition : Redefinition =
redefinedFeature = [QualifiedName]

Notes

1. To ensure that an FlowFeature passes the validateRedefinitionDirectionConformance
constraint (see 8.3.3.3.8), its direction must be set to the direction of its redefinedFeature, relative
to its owning FlowEnd, that is, the result of the following OCL expression:

owningType.directionOf(ownedRedefinition->at(1).redefinedFeature)

8.2.5.10 Feature Values Concrete Syntax

ValuePart : Feature =
ownedRelationship += FeatureValue

FeatureValue =
('='
| isInitial ?= ':='
| isDefault ?= 'default' ('=' | isInitial ?= ':=')?
)
ownedRelatedElement += OwnedExpression

8.2.5.11 Multiplicities Concrete Syntax

Multiplicity =
MultiplicitySubset | MultiplicityRange

MultiplicitySubset : Multiplicity =
'multiplicity' Identification Subsets
TypeBody

MultiplicityRange =
'multiplicity' Identification MultiplicityBounds
TypeBody

OwnedMultiplicity : OwningMembership =
ownedRelatedElement += OwnedMultiplicityRange

OwnedMultiplicityRange : MultiplicityRange =
MultiplicityBounds

MultiplicityBounds : MultiplicityRange =
'[' (ownedRelationship += MultiplicityExpressionMember '..')?

ownedRelationship += MultiplicityExpressionMember ']'

MultiplicityExpressionMember : OwningMembership =
ownedRelatedElement += (LiteralExpression | FeatureReferenceExpression)

8.2.5.12 Metadata Concrete Syntax

Metaclass =
TypePrefix 'metaclass'
ClassifierDeclaration TypeBody

PrefixMetadataAnnotation : Annotation =
'#' ownedRelatedElement += PrefixMetadataFeature

PrefixMetadataMember : OwningMembership =
'#' ownedRelatedElement += PrefixMetadataFeature

104 Kernel Modeling Language v1.0 Beta 4

PrefixMetadataFeature : MetadataFeature :
ownedRelationship += OwnedFeatureTyping

MetadataFeature =
(ownedRelationship += PrefixMetadataMember)*
('@' | 'metadata')
MetadataFeatureDeclaration
('about' ownedRelationship += Annotation

(',' ownedRelationship += Annotation)*
)?
MetadataBody

MetadataFeatureDeclaration : MetadataFeature =
(Identification (':' | 'typed' 'by'))?
ownedRelationship += OwnedFeatureTyping

MetadataBody : Feature =
';' | '{' (ownedRelationship += MetadataBodyElement)* '}'

MetadataBodyElement : Membership =
NonFeatureMember

| MetadataBodyFeatureMember
| AliasMember
| Import

MetadataBodyFeatureMember : FeatureMembership =
ownedMemberFeature = MetadataBodyFeature

MetadataBodyFeature : Feature =
'feature'? (':>>' | 'redefines')? ownedRelationship += OwnedRedefinition
FeatureSpecializationPart? ValuePart?
MetadataBody

8.2.5.13 Packages Concrete Syntax

Package =
(ownedRelationship += PrefixMetadataMember)*
PackageDeclaration PackageBody

LibraryPackage =
(isStandard ?= 'standard') 'library'
(ownedRelationship += PrefixMetadataMember)*
PackageDeclaration PackageBody

PackageDeclaration : Package =
'package' Identification

PackageBody : Package =
';'

| '{' (NamespaceBodyElement
| ownedRelationship += ElementFilterMember
)*

'}'

ElementFilterMember : ElementFilterMembership =
MemberPrefix
'filter' condition = OwnedExpression ';'

8.3 Abstract Syntax

Kernel Modeling Language v1.0 Beta 4 105

8.3.1 Abstract Syntax Overview

Kernel

Root

Core

The Kernel layer completes the
KerML metamodel.

The Core layer provides the
semantic foundation for KerML.

The Root layer provides the
syntactic foundation for KerML.

FeatureValues
Multiplicities

Associations

Expressions
Interactions

Connectors

Structures

DataTypes

Functions
Behaviors

Packages
Metadata

Classes

Dependencies

Namespaces
Annotations

Elements

Classifiers
Features

Types

«import»

«import»

Figure 1. KerML Syntax Layers

The KerML abstract syntax is specified as a UML model conforming to the CMOF conformance point of the Meta
Object Facility Core Specification [MOF]. As shown in Fig. 1 , this model is divided into three top-level packages
corresponding to the three layers of KerML (see 8.1). Each top-level package contains nested packages for the
modeling areas it addresses. Further, the Core package imports the Root package and the Kernel package imports the
Core package, so that the Kernel package contains (as owned or imported members) all abstract syntax elements.
Fig. 2 shows the generalization hierarchy for all abstract syntax elements, other than those that represent KerML
Relationships, and Fig. 3 shows a similar hierarchy for all abstract syntax elements that represent Relationships.

106 Kernel Modeling Language v1.0 Beta 4

FeatureReferenceExpressionMetadataAccessExpression

FeatureChainExpression

InstantiationExpression

ConstructorExpression

TextualRepresentation

InvocationExpression

AssociationStructure

SuccessionFlow

OperatorExpression

BooleanExpression

AnnotatingElement

MetadataFeature

BindingConnector

CollectExpression

MultiplicityRange

LiteralExpression

SelectExpression IndexExpression

Documentation

NullExpression

LiteralBoolean LiteralRational

Type

Metaclass

Structure

Package

Succession

Association Class

Behavior

Function

Feature

Multiplicity

Namespace

Predicate

Comment

Connector

Classifier

LiteralString

Interaction

Invariant

Step

Expression

DataType

Element

LiteralInteger LiteralInfinity

Flow

Figure 2. KerML Element Hierarchy

ResultExpressionMembership

ReturnParameterMembership

EndFeatureMembership

ElementFilterMembership

ParameterMembership

ReferenceSubsetting

OwningMembership

FeatureMembership

MembershipImport NamespaceImport

Subclassification

CrossSubsetting

FeatureChaining

TypeFeaturing

Specialization

FeatureTyping

Membership IntersectingDifferencingUnioning

Disjoining ConnectorConjugation

Annotation Association

Subsetting

Redefinition

FeatureValue

Element

Relationship

Import

Figure 3. KerML Relationship Hierarchy

The MOF-compliant class model for the abstract syntax defines the basic structural representation for any KerML
model. It is also the basis for the textual concrete syntax (see 8.2) and for other forms of serialization used for
interchanging models (see Clause 10). In addition to this basic structure, the abstract syntax also includes
constraints defined on various metaclasses. A conformant tool shall be able to accept any KerML model that
conforms to the structural abstract syntax class model, and it may then additionally report on and/or enforce the
constraints on a model so represented (as further described below).

The abstract syntax model includes three kinds of constraints:

Kernel Modeling Language v1.0 Beta 4 107

1. Derivation constraints. These constraints specify the how the values of the derived properties of a
metaclass are computed from the values of other properties in the abstract syntax model. A tool
conformant to the KerML abstract syntax shall always enforce derivation constraints. However, the
computed values of derived properties may depend on whether implied relationships are included in the
model or not (see below). A derivation constraint has a name starting with the word derive, followed by
the name of the metaclass it constrains, followed by the name of the derived property it is for. The OCL
specification of such a constraint always has the form of an equality, with the derived property on the left-
hand side and the derivation expression on the right-hand side. For example, the derivation constraint for
the derived property Element::ownedElement is called deriveElementOwnedElement and has the
OCL specification ownedElement = ownedRelationship.ownedRelatedElement.

Note. Derivation constraints are not included for derived properties in the following cases:

◦ The derived property subsets a property with multiplicity upper bound 1. In this case, if the
derived property has a value, it must be the same as that of the subsetted property.

◦ The derived property redefines another derived property. In this case, the derivation of the
redefined property also applies to the redefining property, though the redefining property will
generally place additional constraints on type and/or multiplicity.

2. Semantic constraints. These constraints specify relationships that are semantically required in a KerML
model (see 8.4.2), particularly relationships with elements in the Kernel Semantic Library (see 9.2).
These constraints may be violated by a model as entered by a user or as interchanged. In this case, a tool
may satisfy the constraints by introducing implied relationships into the model, it may simply report their
violation, or it may ignore the violations. Semantic constraints have names that start with the word check,
followed by the name of the constrained metaclass, followed by a descriptive word or phrase. For
example, checkTypeSpecialization.

3. Validation constraints. These constraints specify additional syntactic conditions that must be satisfied in
order to give a model a proper semantic interpretation. They are written presuming that all semantic
constraints are satisfied. A valid model is a model that satisfies all validation constraints. A tool
conformant to the KerML abstract syntax should report violations of validation constraints. A tool
conformant to the KerML semantics is only required to operate on valid models. Validation constraints
have names that start with the word validate, followed by the name of the metaclass, followed by a
descriptive word or phrase. For example, validateConnectorRelatedFeatures.

8.3.2 Root Abstract Syntax
8.3.2.1 Elements and Relationships Abstract Syntax

108 Kernel Modeling Language v1.0 Beta 4

8.3.2.1.1 Overview

+path() : String{redefines path}
+libraryNamespace() : Namespace [0..1]{redefines libraryNamespace}

+isImplied : Boolean = false

Relationship

+path() : String
+libraryNamespace() : Namespace [0..1]
+effectiveName() : String [0..1]
+effectiveShortName() : String [0..1]
+escapedName() : String [0..1]

+/isLibraryElement : Boolean
+isImpliedIncluded : Boolean = false
+/qualifiedName : String [0..1]
+/name : String [0..1]
+/shortName : String [0..1]
+declaredName : String [0..1]
+declaredShortName : String [0..1]
+aliasIds : String [0..*]{ordered}
+elementId : String{id}

Element

{subsets relationship}

+targetRelationship

0..*

{subsets relatedElement,
ordered}

+target

0..*

{subsets relationship}

+owningRelationship

0..1

{subsets relatedElement,
ordered}

+ownedRelatedElement

0..*

{subsets relationship}

+sourceRelationship

0..*

{subsets relatedElement,
ordered}

+source

0..*

{subsets relationship,
ordered}

+ownedRelationship

0..*

{subsets
relatedElement}

+owningRelatedElement

0..1

{union, nonunique}

+/relationship

0..*

{ordered, nonunique}

+/relatedElement

0..*

+/owner 0..1+/ownedElement
{ordered}
0..*

Figure 4. Elements

It is a general design principle of the KerML abstract syntax that non-Relationship Elements are related only by
reified instances of Relationships. All other meta-associations between Elements are derived from these reified
Relationships. For example, the owningRelatedElement/ownedRelationship meta-association between an
Element and a Relationship is fundamental to establishing the structure of a model. However, the
owner/ownedElement meta-association between two Elements is derived, based on the Relationship structure
between them.

8.3.2.1.2 Element

Description

An Element is a constituent of a model that is uniquely identified relative to all other Elements. It can have
Relationships with other Elements. Some of these Relationships might imply ownership of other
Elements, which means that if an Element is deleted from a model, then so are all the Elements that it owns.

General Classes

None.

Attributes

aliasIds : String [0..*] {ordered}

Kernel Modeling Language v1.0 Beta 4 109

Various alternative identifiers for this Element. Generally, these will be set by tools.

declaredName : String [0..1]

The declared name of this Element.

declaredShortName : String [0..1]

An optional alternative name for the Element that is intended to be shorter or in some way more succinct than its
primary name. It may act as a modeler-specified identifier for the Element, though it is then the responsibility of
the modeler to maintain the uniqueness of this identifier within a model or relative to some other context.

/documentation : Documentation [0..*] {subsets ownedElement, annotatingElement, ordered}

The Documentation owned by this Element.

elementId : String

The globally unique identifier for this Element. This is intended to be set by tooling, and it must not change during
the lifetime of the Element.

isImpliedIncluded : Boolean

Whether all necessary implied Relationships have been included in the ownedRelationships of this Element.
This property may be true, even if there are not actually any ownedRelationships with isImplied = true,
meaning that no such Relationships are actually implied for this Element. However, if it is false, then
ownedRelationships may not contain any implied Relationships. That is, either all required implied
Relationships must be included, or none of them.

/isLibraryElement : Boolean

Whether this Element is contained in the ownership tree of a library model.

/name : String [0..1]

The name to be used for this Element during name resolution within its owningNamespace. This is derived using
the effectiveName() operation. By default, it is the same as the declaredName, but this is overridden for certain
kinds of Elements to compute a name even when the declaredName is null.

/ownedAnnotation : Annotation [0..*] {subsets ownedRelationship, annotation, ordered}

The ownedRelationships of this Element that are Annotations, for which this Element is the
annotatedElement.

/ownedElement : Element [0..*] {ordered}

The Elements owned by this Element, derived as the ownedRelatedElements of the
ownedRelationships of this Element.

ownedRelationship : Relationship [0..*] {subsets relationship, ordered}

The Relationships for which this Element is the owningRelatedElement.

/owner : Element [0..1]

110 Kernel Modeling Language v1.0 Beta 4

The owner of this Element, derived as the owningRelatedElement of the owningRelationship of this
Element, if any.

/owningMembership : OwningMembership [0..1] {subsets owningRelationship, membership}

The owningRelationship of this Element, if that Relationship is a Membership.

/owningNamespace : Namespace [0..1] {subsets namespace}

The Namespace that owns this Element, which is the membershipOwningNamespace of the
owningMembership of this Element, if any.

owningRelationship : Relationship [0..1] {subsets relationship}

The Relationship for which this Element is an ownedRelatedElement, if any.

/qualifiedName : String [0..1]

The full ownership-qualified name of this Element, represented in a form that is valid according to the KerML
textual concrete syntax for qualified names (including use of unrestricted name notation and escaped characters, as
necessary). The qualifiedName is null if this Element has no owningNamespace or if there is not a complete
ownership chain of named Namespaces from a root Namespace to this Element. If the owningNamespace has
other Elements with the same name as this one, then the qualifiedName is null for all such Elements other than
the first.

/shortName : String [0..1]

The short name to be used for this Element during name resolution within its owningNamespace. This is derived
using the effectiveShortName() operation. By default, it is the same as the declaredShortName, but this is
overridden for certain kinds of Elements to compute a shortName even when the declaredName is null.

/textualRepresentation : TextualRepresentation [0..*] {subsets ownedElement, annotatingElement, ordered}

The TextualRepresentations that annotate this Element.

Operations

effectiveName() : String [0..1]

Return an effective name for this Element. By default this is the same as its declaredName.

body: declaredName

effectiveShortName() : String [0..1]

Return an effective shortName for this Element. By default this is the same as its declaredShortName.

body: declaredShortName

escapedName() : String [0..1]

Return name, if that is not null, otherwise the shortName, if that is not null, otherwise null. If the returned value is
non-null, it is returned as-is if it has the form of a basic name, or, otherwise, represented as a restricted name
according to the lexical structure of the KerML textual notation (i.e., surrounded by single quote characters and with
special characters escaped).

Kernel Modeling Language v1.0 Beta 4 111

libraryNamespace() : Namespace [0..1]

By default, return the library Namespace of the owningRelationship of this Element, if it has one.

body: if owningRelationship <> null then owningRelationship.libraryNamespace()
else null endif

path() : String

Return a unique description of the location of this Element in the containment structure rooted in a root
Namespace. If the Element has a non-null qualifiedName, then return that. Otherwise, if it has an
owningRelationship, then return the string constructed by appending to the path of it's owningRelationship
the character / followed by the string representation of its position in the list of ownedRelatedElements of the
owningRelationship (indexed starting at 1). Otherwise, return the empty string.

(Note that this operation is overridden for Relationships to use owningRelatedElement when appropriate.)

body: if qualifiedName <> null then qualifiedName
else if owningRelationship <> null then

owningRelationship.path() + '/' +
owningRelationship.ownedRelatedElement->indexOf(self).toString()
-- A position index shall be converted to a decimal string representation
-- consisting of only decimal digits, with no sign, leading zeros or leading
-- or trailing whitespace.

else ''
endif endif

Constraints

deriveElementDocumentation

The documentation of an Element is its ownedElements that are Documentation.

documentation = ownedElement->selectByKind(Documentation)

deriveElementIsLibraryElement

An Element isLibraryElement if libraryNamespace() is not null.

isLibraryElement = libraryNamespace() <> null

deriveElementName

The name of an Element is given by the result of the effectiveName() operation.

name = effectiveName()

deriveElementOwnedAnnotation

The ownedAnnotations of an Element are its ownedRelationships that are Annotations, for which the
Element is the annotatedElement.

ownedAnnotation = ownedRelationship->
selectByKind(Annotation)->
select(a | a.annotatedElement = self)

deriveElementOwnedElement

112 Kernel Modeling Language v1.0 Beta 4

The ownedElements of an Element are the ownedRelatedElements of its ownedRelationships.

ownedElement = ownedRelationship.ownedRelatedElement

deriveElementOwner

The owner of an Element is the owningRelatedElement of its owningRelationship.

owner = owningRelationship.owningRelatedElement

deriveElementQualifiedName

If this Element does not have an owningNamespace, then its qualifiedName is null. If the owningNamespace
of this Element is a root Namespace, then the qualifiedName of the Element is the escaped name of the
Element (if any). If the owningNamespace is non-null but not a root Namespace, then the qualifiedName of
this Element is constructed from the qualifiedName of the owningNamespace and the escaped name of the
Element, unless the qualifiedName of the owningNamespace is null or the escaped name is null, in which case
the qualifiedName of this Element is also null. Further, if the owningNamespace has other ownedMembers
with the same non-null name as this Element, and this Element is not the first, then the qualifiedName of this
Element is null.

qualifiedName =
if owningNamespace = null then null
else if name <> null and

owningNamespace.ownedMember->
select(m | m.name = name).indexOf(self) <> 1 then null

else if owningNamespace.owner = null then escapedName()
else if owningNamespace.qualifiedName = null or

escapedName() = null then null
else owningNamespace.qualifiedName + '::' + escapedName()
endif endif endif endif

deriveElementShortName

The shortName of an Element is given by the result of the effectiveShortName() operation.

shortName = effectiveShortName()

deriveElementTextualRepresentation

The textualRepresentations of an Element are its ownedElements that are TextualRepresentations.

textualRepresentation = ownedElement->selectByKind(TextualRepresentation)

deriveOwningNamespace

The owningNamespace of an Element is the membershipOwningNamspace of its owningMembership (if any).

owningNamespace =
if owningMembership = null then null
else owningMembership.membershipOwningNamespace
endif

validateElementIsImpliedIncluded

If an Element has any ownedRelationships for which isImplied = true, then the Element must also have
isImpliedIncluded = true. (Note that an Element can have isImplied = true even if no

Kernel Modeling Language v1.0 Beta 4 113

ownedRelationships have isImplied = true, indicating the Element simply has no implied
Relationships.

ownedRelationship->exists(isImplied) implies isImpliedIncluded

8.3.2.1.3 Relationship

Description

A Relationship is an Element that relates other Element. Some of its relatedElements may be owned, in
which case those ownedRelatedElements will be deleted from a model if their owningRelationship is. A
Relationship may also be owned by another Element, in which case the ownedRelatedElements of the
Relationship are also considered to be transitively owned by the owningRelatedElement of the
Relationship.

The relatedElements of a Relationship are divided into source and target Elements. The
Relationship is considered to be directed from the source to the target Elements. An undirected
Relationship may have either all source or all target Elements.

A "relationship Element" in the abstract syntax is generically any Element that is an instance of either
Relationship or a direct or indirect specialization of Relationship. Any other kind of Element is a "non-
relationship Element". It is a convention of that non-relationship Elements are only related via reified relationship
Elements. Any meta-associations directly between non-relationship Elements must be derived from underlying
reified Relationship.

General Classes

Element

Attributes

isImplied : Boolean

Whether this Relationship was generated by tooling to meet semantic rules, rather than being directly created by a
modeler.

ownedRelatedElement : Element [0..*] {subsets relatedElement, ordered}

The relatedElements of this Relationship that are owned by the Relationship.

owningRelatedElement : Element [0..1] {subsets relatedElement}

The relatedElement of this Relationship that owns the Relationship, if any.

/relatedElement : Element [0..*] {ordered, nonunique}

The Elements that are related by this Relationship, derived as the union of the source and target Elements of the
Relationship.

source : Element [0..*] {subsets relatedElement, ordered}

The relatedElements from which this Relationship is considered to be directed.

target : Element [0..*] {subsets relatedElement, ordered}

The relatedElements to which this Relationship is considered to be directed.

114 Kernel Modeling Language v1.0 Beta 4

Operations

libraryNamespace() : Namespace [0..1] {redefines libraryNamespace}

Return whether this Relationship has either an owningRelatedElement or owningRelationship that is a
library element.

body: if owningRelatedElement <> null then owningRelatedElement.libraryNamespace()
else if owningRelationship <> null then owningRelationship.libraryNamespace()
else null endif endif

path() : String {redefines path}

If the owningRelationship of the Relationship is null but its owningRelatedElement is non-null, construct
the path using the position of the Relationship in the list of ownedRelationships of its
owningRelatedElement. Otherwise, return the path of the Relationship as specified for an Element in
general.

body: if owningRelationship = null and owningRelatedElement <> null then
owningRelatedElement.path() + '/' +
owningRelatedElement.ownedRelationship->indexOf(self).toString()
-- A position index shall be converted to a decimal string representation
-- consisting of only decimal digits, with no sign, leading zeros or leading
-- or trailing whitespace.

else self.oclAsType(Element).path()
endif

Constraints

deriveRelationshipRelatedElement

The relatedElements of a Relationship consist of all of its source Elements followed by all of its target
Elements.

relatedElement = source->union(target)

8.3.2.2 Dependencies Abstract Syntax

8.3.2.2.1 Overview

Element

Relationship

Dependency

{subsets sourceRelationship}

+clientDependency

0..*

{redefines source,
ordered}

+client

1..*

{subsets targetRelationship}

+supplierDependency

0..*

{redefines
target, ordered}

+supplier

1..*

Figure 5. Dependencies

8.3.2.2.2 Dependency

Kernel Modeling Language v1.0 Beta 4 115

Description

A Dependency is a Relationship that indicates that one or more client Elements require one more
supplier Elements for their complete specification. In general, this means that a change to one of the supplier
Elements may necessitate a change to, or re-specification of, the client Elements.

Note that a Dependency is entirely a model-level Relationship, without instance-level semantics.

General Classes

Relationship

Attributes

client : Element [1..*] {redefines source, ordered}

The Element or Elements dependent on the supplier Elements.

supplier : Element [1..*] {redefines target, ordered}

The Element or Elements on which the client Elements depend in some respect.

Operations

None.

Constraints

None.

8.3.2.3 Annotations Abstract Syntax

116 Kernel Modeling Language v1.0 Beta 4

8.3.2.3.1 Overview

AnnotationAnnotatingElement

+body : String [1]
+language : String [1]

TextualRepresentation

Element

+body : String [1]
+locale : String [0..1]

Comment

Documentation

Relationship

{subsets owner, redefines annotatedElement}

+/representedElement

1

{subsets annotatingElement,
subsets ownedElement, ordered}

+/textualRepresentation

0..*

{subsets annotatingElement,
subsets ownedElement, ordered}

+/documentation

0..*

{subsets owner, redefines annotatedElement}

+/documentedElement

1

{subsets annotatedElement, subsets owningRelatedElement}

+/owningAnnotatedElement

0..1

{subsets annotation,
subsets
ownedRelationship,
ordered}
+/ownedAnnotation0..*

{subsets targetRelationship,
ordered} +annotation 0..*

+annotatedElement

{redefines target}
1

+/owningAnnotatingRelationship

{subsets annotation,
subsets owningRelationship}

0..1
{subsets annotatingElement,
subsets ownedRelatedElement}

+/ownedAnnotatingElement

0..1

{subsets annotatingElement,
subsets owningRelatedElement}

+/owningAnnotatingElement

0..1

+/ownedAnnotatingRelationship

{subsets annotation,
subsets ownedRelationship,
ordered}

0..*

{subsets sourceRelationship,
ordered}

+/annotation

0..*

+/annotatingElement

{redefines source}
1

+/annotatedElement

{ordered}
1..*

+/annotatingElement

{ordered}
0..*

Figure 6. Annotation

8.3.2.3.2 AnnotatingElement

Description

An AnnotatingElement is an Element that provides additional description of or metadata on some other
Element. An AnnotatingElement is either attached to its annotatedElements by Annotation
Relationships, or it implicitly annotates its owningNamespace.

General Classes

Element

Attributes

/annotatedElement : Element [1..*] {ordered}

The Elements that are annotated by this AnnotatingElement. If annotation is not empty, these are the
annotatedElements of the annotations. If annotation is empty, then it is the owningNamespace of the
AnnotatingElement.

/annotation : Annotation [0..*] {subsets sourceRelationship, ordered}

Kernel Modeling Language v1.0 Beta 4 117

The Annotations that relate this AnnotatingElement to its annotatedElements. This includes the
owningAnnotatingRelationship (if any) followed by all the ownedAnnotatingRelationshps.

/ownedAnnotatingRelationship : Annotation [0..*] {subsets annotation, ownedRelationship, ordered}

The ownedRelationships of this AnnotatingElement that are Annotations, for which this
AnnotatingElement is the annotatingElement.

/owningAnnotatingRelationship : Annotation [0..1] {subsets owningRelationship, annotation}

The owningRelationship of this AnnotatingRelationship, if it is an Annotation

Operations

None.

Constraints

deriveAnnotatingElementAnnotatedElement

If an AnnotatingElement has annotations, then its annotatedElements are the annotatedElements of all
its annotations. Otherwise, it's single annotatedElement is its owningNamespace.

annotatedElement =
if annotation->notEmpty() then annotation.annotatedElement
else Sequence{owningNamespace} endif

deriveAnnotatingElementAnnotation

The annotations of an AnnotatingElement are its owningAnnotatingRelationship (if any) followed by
all its ownedAnnotatingRelationships.

annotation =
if owningAnnotatingRelationship = null then ownedAnnotatingRelationship
else owningAnnotatingRelationship->prepend(owningAnnotatingRelationship)
endif

deriveAnnotatingElementOwnedAnnotatingRelationship

The ownedAnnotatingRelationships of an AnnotatingElement are its ownedRelationships that are
Annotations, for which the AnnotatingElement is not the annotatedElement.

ownedAnnotatingRelationship = ownedRelationship->
selectByKind(Annotation)->
select(a | a.annotatedElement <> self)

8.3.2.3.3 Annotation

Description

An Annotation is a Relationship between an AnnotatingElement and the Element that is annotated by that
AnnotatingElement.

General Classes

Relationship

118 Kernel Modeling Language v1.0 Beta 4

Attributes

annotatedElement : Element {redefines target}

The Element that is annotated by the annotatingElement of this Annotation.

/annotatingElement : AnnotatingElement {redefines source}

The AnnotatingElement that annotates the annotatedElement of this Annotation. This is always either the
ownedAnnotatingElement or the owningAnnotatingElement.

/ownedAnnotatingElement : AnnotatingElement [0..1] {subsets annotatingElement, ownedRelatedElement}

The annotatingElement of this Annotation, when it is an ownedRelatedElement.

/owningAnnotatedElement : Element [0..1] {subsets annotatedElement, owningRelatedElement}

The annotatedElement of this Annotation, when it is also the owningRelatedElement.

/owningAnnotatingElement : AnnotatingElement [0..1] {subsets annotatingElement, owningRelatedElement}

The annotatingElement of this Annotation, when it is the owningRelatedElement.

Operations

None.

Constraints

deriveAnnotationAnnotatingElement

The annotatingElement of an Annotation is either its ownedAnnotatingElement or its
owningAnnotatingElement.

annotatingElement =
if ownedAnnotatingElement <> null then ownedAnnotatingElement
else owningAnnotatingElement
endif

deriveAnnotationOwnedAnnotatingElement

The ownedAnnotatingElement of an Annotation is the first ownedRelatedElement that is an
AnnotatingElement, if any.

ownedAnnotatingElement =
let ownedAnnotatingElements : Sequence(AnnotatingElement) =

ownedRelatedElement->selectByKind(AnnotatingElement) in
if ownedAnnotatingElements->isEmpty() then null
else ownedAnnotatingElements->first()
endif

validateAnnotationAnnotatedElementOwnership

An Annotation owns its annotatingElement if and only if it is owned by its annotatedElement.

(owningAnnotatedElement <> null) = (ownedAnnotatingElement <> null)

Kernel Modeling Language v1.0 Beta 4 119

validateAnnotationAnnotatingElement

Either the ownedAnnotatingElement of an Annotation must be non-null, or the owningAnnotatingElement
must be non-null, but not both.

ownedAnnotatingElement <> null xor owningAnnotatingElement <> null

8.3.2.3.4 Comment

Description

A Comment is an AnnotatingElement whose body in some way describes its annotatedElements.

General Classes

AnnotatingElement

Attributes

body : String

The annotation text for the Comment.

locale : String [0..1]

Identification of the language of the body text and, optionally, the region and/or encoding. The format shall be a
POSIX locale conformant to ISO/IEC 15897, with the format
[language[_territory][.codeset][@modifier]].

Operations

None.

Constraints

None.

8.3.2.3.5 Documentation

Description

Documentation is a Comment that specifically documents a documentedElement, which must be its owner.

General Classes

Comment

Attributes

/documentedElement : Element {subsets owner, redefines annotatedElement}

The Element that is documented by this Documentation.

Operations

None.

120 Kernel Modeling Language v1.0 Beta 4

Constraints

None.

8.3.2.3.6 TextualRepresentation

Description

A TextualRepresentation is an AnnotatingElement whose body represents the representedElement in a
given language. The representedElement must be the owner of the TextualRepresentation. The named
language can be a natural language, in which case the body is an informal representation, or an artificial language,
in which case the body is expected to be a formal, machine-parsable representation.

If the named language of a TextualRepresentation is machine-parsable, then the body text should be legal
input text as defined for that language. The interpretation of the named language string shall be case insensitive.
The following language names are defined to correspond to the given standard languages:

kerml Kernel Modeling Language

ocl Object Constraint Language

alf Action Language for fUML

Other specifications may define specific language strings, other than those shown above, to be used to indicate the
use of languages from those specifications in KerML TextualRepresentation.

If the language of a TextualRepresentation is "kerml", then the body text shall be a legal representation of
the representedElement in the KerML textual concrete syntax. A conforming tool can use such a
TextualRepresentation Annotation to record the original KerML concrete syntax text from which an
Element was parsed. In this case, it is a tool responsibility to ensure that the body of the
TextualRepresentation remains correct (or the Annotation is removed) if the annotated Element changes other
than by re-parsing the body text.

An Element with a TextualRepresentation in a language other than KerML is essentially a semantically
"opaque" Element specified in the other language. However, a conforming KerML tool may interpret such an
element consistently with the specification of the named language.

General Classes

AnnotatingElement

Attributes

body : String

The textual representation of the representedElement in the given language.

language : String

The natural or artifical language in which the body text is written.

/representedElement : Element {subsets owner, redefines annotatedElement}

The Element that is represented by this TextualRepresentation.

Operations

Kernel Modeling Language v1.0 Beta 4 121

None.

Constraints

None.

8.3.2.4 Namespaces Abstract Syntax

8.3.2.4.1 Overview

+unqualifiedNameOf(qualifiedName : String) : String
+qualificationOf(qualifiedName : String) : String [0..1]
+resolveVisible(name : String) : Membership [0..1]
+resolveLocal(name : String) : Membership [0..1]
+resolveGlobal(qualifiedName : String) : Membership [0..1]
+resolve(qualifiedName : String) : Membership [0..1]
+membershipsOfVisibility(visibility : VisibilityKind [0..1], excluded : Namespace [0..*]) : Membership [0..*]
+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]
+visibleMemberships(excluded : Namespace [0..*], isRecursive : Boolean, includeAll : Boolean) : Membership [0..*]
+visibilityOf(mem : Membership) : VisibilityKind
+namesOf(element : Element) : String [0..*]

Namespace

+path() : String{redefines path}

+/ownedMemberName : String [0..1]{redefines memberName}
+/ownedMemberShortName : String [0..1]{redefines memberShortName}
+/ownedMemberElementId : String{redefines memberElementId}

OwningMembership

+visibility : VisibilityKind = public
+memberName : String [0..1]
+memberShortName : String [0..1]
+/memberElementId : String

+isDistinguishableFrom(other : Membership) : Boolean

Membership

Element

public
protected
private

VisibilityKind
«enumeration»

Relationship

{subsets membership,
subsets owningRelationship}

+/owningMembership

0..1

{subsets ownedRelatedElement,
redefines memberElement}

+/ownedMemberElement

1

{subsets targetRelationship}

+membership

0..*

+memberElement

{redefines target}
1

{subsets
membershipNamespace}

+/importingNamespace 0..*

{subsets membership,
ordered}

+/importedMembership 0..*

{subsets membershipNamespace,
subsets owningRelatedElement,
redefines source}

+/membershipOwningNamespace
1

{subsets membership, subsets
ownedRelationship, subsets
sourceRelationship, ordered}

+/ownedMembership 0..*

+/membershipNamespace
{union}

1..*

{union, ordered}
+/membership 0..*

{subsets namespace}
+/owningNamespace 0..1

{subsets member, ordered}
+/ownedMember 0..*

+/namespace0..*

+/member
{ordered}

0..*

Figure 7. Namespaces

122 Kernel Modeling Language v1.0 Beta 4

+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]{redefines importedMemberships}

MembershipImport

+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]{redefines importedMemberships}

NamespaceImport

+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]

+isImportAll : Boolean = false
+isRecursive : Boolean = false
+visibility : VisibilityKind = private

Import

Namespace

Relationship

Membership

Element

{subsets owningRelatedElement,
redefines source}

+/importOwningNamespace

1
{subsets ownedRelationship,
subsets sourceRelationship,
ordered}

+/ownedImport

0..*
+/membershipImport

0..*

+/importedElement

1

+memberElement
{redefines target}
1

{subsets targetRelationship}

+membership

0..*

{subsets targetRelationship}

+import

0..*

+importedNamespace
{redefines target}

1

+importedMembership {redefines target}
1

{redefines targetRelationship}
+import 0..*

Figure 8. Imports

8.3.2.4.2 Import

Description

An Import is an Relationship between its importOwningNamespace and either a Membership (for a
MembershipImport) or another Namespace (for a NamespaceImport), which determines a set of Memberships
that become importedMemberships of the importOwningNamespace. If isImportAll = false (the default),
then only public Memberships are considered "visible". If isImportAll = true, then all Memberships are
considered "visible", regardless of their declared visibility. If isRecursive = true, then visible
Memberships are also recursively imported from owned sub-Namespaces.

General Classes

Relationship

Attributes

/importedElement : Element

The effectively imported Element for this Import. For a MembershipImport, this is the memberElement of the
importedMembership. For a NamespaceImport, it is the importedNamespace.

/importOwningNamespace : Namespace {subsets owningRelatedElement, redefines source}

The Namespace into which Memberships are imported by this Import, which must be the owningRelatedElement
of the Import.

isImportAll : Boolean

Whether to import memberships without regard to declared visibility.

isRecursive : Boolean

Whether to recursively import Memberships from visible, owned sub-Namespaces.

visibility : VisibilityKind

The visibility level of the imported members from this Import relative to the importOwningNamespace. The
default is private.

Operations

Kernel Modeling Language v1.0 Beta 4 123

importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]

Returns Memberships that are to become importedMemberships of the importOwningNamespace. (The
excluded parameter is used to handle the possibility of circular Import Relationships.)

Constraints

validateImportTopLevelVisibility

A top-level Import (that is, one that is owned by a root Namespace) must have a visibility of private.

importOwningNamespace.owner = null implies
visibility = VisibilityKind::private

8.3.2.4.3 Membership

Description

A Membership is a Relationship between a Namespace and an Element that indicates the Element is a
member of (i.e., is contained in) the Namespace. Any memberNames specify how the memberElement is identified
in the Namespace and the visibility specifies whether or not the memberElement is publicly visible from
outside the Namespace.

If a Membership is an OwningMembership, then it owns its memberElement, which becomes an ownedMember
of the membershipOwningNamespace. Otherwise, the memberNames of a Membership are effectively aliases
within the membershipOwningNamespace for an Element with a separate OwningMembership in the same or a
different Namespace.

General Classes

Relationship

Attributes

memberElement : Element {redefines target}

The Element that becomes a member of the membershipOwningNamespace due to this Membership.

/memberElementId : String

The elementId of the memberElement.

memberName : String [0..1]

The name of the memberElement relative to the membershipOwningNamespace.

/membershipOwningNamespace : Namespace {subsets membershipNamespace, owningRelatedElement, redefines
source}

The Namespace of which the memberElement becomes a member due to this Membership.

memberShortName : String [0..1]

The short name of the memberElement relative to the membershipOwningNamespace.

visibility : VisibilityKind

124 Kernel Modeling Language v1.0 Beta 4

Whether or not the Membership of the memberElement in the membershipOwningNamespace is publicly visible
outside that Namespace.

Operations

isDistinguishableFrom(other : Membership) : Boolean

Whether this Membership is distinguishable from a given other Membership. By default, this is true if this
Membership has no memberShortName or memberName; or each of the memberShortName and memberName are
different than both of those of the other Membership; or neither of the metaclasses of the memberElement of this
Membership and the memberElement of the other Membership conform to the other. But this may be
overridden in specializations of Membership.

body: not (memberElement.oclKindOf(other.memberElement.oclType()) or
other.memberElement.oclKindOf(memberElement.oclType())) or

(shortMemberName = null or
(shortMemberName <> other.shortMemberName and
shortMemberName <> other.memberName)) and

(memberName = null or
(memberName <> other.shortMemberName and
memberName <> other.memberName)))

Constraints

deriveMembershipMemberElementId

The memberElementId of a Membership is the elementId of its memberElement.

memberElementId = memberElement.elementId

8.3.2.4.4 MembershipImport

Description

A MembershipImport is an Import that imports its importedMembership into the importOwningNamespace.
If isRecursive = true and the memberElement of the importedMembership is a Namespace, then the
equivalent of a recursive NamespaceImport is also performed on that Namespace.

General Classes

Import

Attributes

importedMembership : Membership {redefines target}

The Membership to be imported.

Operations

importedMemberships(excluded : Namespace [0..*]) : Membership [0..*] {redefines importedMemberships}

Returns at least the importedMembership. If isRecursive = true and the memberElement of the
importedMembership is a Namespace, then Memberships are also recursively imported from that Namespace.

body: if not isRecursive or
not importedElement.oclIsKindOf(Namespace) or

Kernel Modeling Language v1.0 Beta 4 125

excluded->includes(importedElement)
then Sequence{importedMembership}
else importedElement.oclAsType(Namespace).

visibleMemberships(excluded, true, importAll)->
prepend(importedMembership)

endif

Constraints

deriveMembershipImportImportedElement

The importedElement of a MembershipImport is the memberElement of its importedMembership.

importedElement = importedMembership.memberElement

8.3.2.4.5 Namespace

Description

A Namespace is an Element that contains other Elements, known as its members, via Membership
Relationships with those Elements. The members of a Namespace may be owned by the Namespace, aliased
in the Namespace, or imported into the Namespace via Import Relationships.

A Namespace can provide names for its members via the memberNames and memberShortNames specified by the
Memberships in the Namespace. If a Membership specifies a memberName and/or memberShortName, then
those are names of the corresponding memberElement relative to the Namespace. For an OwningMembership, the
ownedMemberName and ownedMemberShortName are given by the Element name and shortName. Note that the
same Element may be the memberElement of multiple Memberships in a Namespace (though it may be owned
at most once), each of which may define a separate alias for the Element relative to the Namespace.

General Classes

Element

Attributes

/importedMembership : Membership [0..*] {subsets membership, ordered}

The Memberships in this Namespace that result from the ownedImports of this Namespace.

/member : Element [0..*] {ordered}

The set of all member Elements of this Namespace, which are the memberElements of all memberships of the
Namespace.

/membership : Membership [0..*] {ordered, union}

All Memberships in this Namespace, including (at least) the union of ownedMemberships and
importedMemberships.

/ownedImport : Import [0..*] {subsets sourceRelationship, ownedRelationship, ordered}

The ownedRelationships of this Namespace that are Imports, for which the Namespace is the
importOwningNamespace.

/ownedMember : Element [0..*] {subsets member, ordered}

126 Kernel Modeling Language v1.0 Beta 4

The owned members of this Namespace, which are the ownedMemberElements of the ownedMemberships of the
Namespace.

/ownedMembership : Membership [0..*] {subsets membership, sourceRelationship, ownedRelationship, ordered}

The ownedRelationships of this Namespace that are Memberships, for which the Namespace is the
membershipOwningNamespace.

Operations

importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]

Derive the imported Memberships of this Namespace as the importedMembership of all ownedImports,
excluding those Imports whose importOwningNamespace is in the excluded set, and excluding Memberships
that have distinguisibility collisions with each other or with any ownedMembership.

body: ownedImport.importedMemberships(excluded->including(self))

membershipsOfVisibility(visibility : VisibilityKind [0..1], excluded : Namespace [0..*]) : Membership [0..*]

If visibility is not null, return the Memberships of this Namespace with the given visibility, including
ownedMemberships with the given visibility and Memberships imported with the given visibility. If
visibility is null, return all ownedMemberships and imported Memberships regardless of visibility. When
computing imported Memberships, ignore this Namespace and any Namespaces in the given excluded set.

body: ownedMembership->
select(mem | visibility = null or mem.visibility = visibility)->
union(ownedImport->

select(imp | visibility = null or imp.visibility = visibility).
importedMemberships(excluded->including(self)))

namesOf(element : Element) : String [0..*]

Return the names of the given element as it is known in this Namespace.

body: let elementMemberships : Sequence(Membership) =
memberships->select(memberElement = element) in

memberships.memberShortName->
union(memberships.memberName)->
asSet()

qualificationOf(qualifiedName : String) : String [0..1]

Return a string with valid KerML syntax representing the qualification part of a given qualifiedName, that is, a
qualified name with all the segment names of the given name except the last. If the given qualifiedName has only
one segment, then return null.

body: No OCL

resolve(qualifiedName : String) : Membership [0..1]

Resolve the given qualified name to the named Membership (if any), starting with this Namespace as the local
scope. The qualified name string must conform to the concrete syntax of the KerML textual notation. According to
the KerML name resolution rules every qualified name will resolve to either a single Membership, or to none.

body: let qualification : String = qualificationOf(qualifiedName) in
let name : String = unqualifiedNameOf(qualifiedName) in
if qualification = null then resolveLocal(name)

Kernel Modeling Language v1.0 Beta 4 127

else if qualification = '$' then resolveGlobal(name)
else

let namespaceMembership : Membership = resolve(qualification) in
if namespaceMembership = null or

not namespaceMembership.memberElement.oclIsKindOf(Namespace)
then null
else

namespaceMembership.memberElement.oclAsType(Namespace).
resolveVisible(name)

endif
endif endif

resolveGlobal(qualifiedName : String) : Membership [0..1]

Resolve the given qualified name to the named Membership (if any) in the effective global Namespace that is the
outermost naming scope. The qualified name string must conform to the concrete syntax of the KerML textual
notation.

body: No OCL

resolveLocal(name : String) : Membership [0..1]

Resolve a simple name starting with this Namespace as the local scope, and continuing with containing outer scopes
as necessary. However, if this Namespace is a root Namespace, then the resolution is done directly in global scope.

body: if owningNamespace = null then resolveGlobal(name)
else

let memberships : Membership = membership->
select(memberShortName = name or memberName = name) in

if memberships->notEmpty() then memberships->first()
else owningNamspace.resolveLocal(name)
endif

endif

resolveVisible(name : String) : Membership [0..1]

Resolve a simple name from the visible Memberships of this Namespace.

body: let memberships : Sequence(Membership) =
visibleMemberships(Set{}, false, false)->
select(memberShortName = name or memberName = name) in

if memberships->isEmpty() then null
else memberships->first()
endif

unqualifiedNameOf(qualifiedName : String) : String

Return the simple name that is the last segment name of the given qualifiedName. If this segment name has the
form of a KerML unrestricted name, then "unescape" it by removing the surrounding single quotes and replacing all
escape sequences with the specified character.

body: No OCL

visibilityOf(mem : Membership) : VisibilityKind

Returns this visibility of mem relative to this Namespace. If mem is an importedMembership, this is the
visibility of its Import. Otherwise it is the visibility of the Membership itself.

128 Kernel Modeling Language v1.0 Beta 4

body: if importedMembership->includes(mem) then
ownedImport->

select(importedMemberships(Set{})->includes(mem)).
first().visibility

else if memberships->includes(mem) then
mem.visibility

else
VisibilityKind::private

endif

visibleMemberships(excluded : Namespace [0..*], isRecursive : Boolean, includeAll : Boolean) : Membership [0..*]

If includeAll = true, then return all the Memberships of this Namespace. Otherwise, return only the publicly
visible Memberships of this Namespace, including ownedMemberships that have a visibility of public and
Memberships imported with a visibility of public. If isRecursive = true, also recursively include all
visible Memberships of any public owned Namespaces, or, if IncludeAll = true, all Memberships of all
owned Namespaces. When computing imported Memberships, ignore this Namespace and any Namespaces in
the given excluded set.

body: let visibleMemberships : OrderedSet(Membership) =
if includeAll then membershipsOfVisibility(null, excluded)
else membershipsOfVisibility(VisibilityKind::public, excluded)
endif in

if not isRecursive then visibleMemberships
else visibleMemberships->union(ownedMember->

selectAsKind(Namespace).
select(includeAll or owningMembership.visibility = VisibilityKind::public)->
visibleMemberships(excluded->including(self), true, includeAll))

endif

Constraints

deriveNamespaceImportedMembership

The importedMemberships of a Namespace are derived using the importedMemberships() operation, with no
initially excluded Namespaces.

importedMembership = importedMemberships(Set{})

deriveNamespaceMembers

The members of a Namespace are the memberElements of all its memberships.

member = membership.memberElement

deriveNamespaceOwnedImport

The ownedImports of a Namespace are all its ownedRelationships that are Imports.

ownedImport = ownedRelationship->selectByKind(Import)

deriveNamespaceOwnedMember

The ownedMembers of a Namespace are the ownedMemberElements of all its ownedMemberships that are
OwningMemberships

ownedMember = ownedMembership->selectByKind(OwningMembership).ownedMemberElement

deriveNamespaceOwnedMembership

Kernel Modeling Language v1.0 Beta 4 129

The ownedMemberships of a Namespace are all its ownedRelationships that are Memberships.

ownedMembership = ownedRelationship->selectByKind(Membership)

validateNamespaceDistinguishibility

All memberships of a Namespace must be distinguishable from each other.

membership->forAll(m1 |
membership->forAll(m2 |

m1 <> m2 implies m1.isDistinguishableFrom(m2)))

8.3.2.4.6 NamespaceImport

Description

A NamespaceImport is an Import that imports Memberships from its importedNamespace into the
importOwningNamespace. If isRecursive = false, then only the visible Memberships of the
importedNamespace are imported. If isRecursive = true, then, in addition, Memberships are recursively
imported from any ownedMembers of the importedNamespace that are Namespaces.

General Classes

Import

Attributes

importedNamespace : Namespace {redefines target}

The Namespace whose visible Memberships are imported by this NamespaceImport.

Operations

importedMemberships(excluded : Namespace [0..*]) : Membership [0..*] {redefines importedMemberships}

Returns at least the visible Memberships of the importedNamespace. If isRecursive = true, then
Memberships are also recursively imported from any ownedMembers of the importedNamespace that are
themselves Namespaces.

body: if excluded->includes(importedNamespace) then Sequence{}
else importedNamespace.visibleMemberships(excluded, isRecursive, isImportAll)

Constraints

deriveNamespaceImportImportedElement

The importedElement of a NamespaceImport is its importedNamespace.

importedElement = importedNamespace

8.3.2.4.7 VisibilityKind

Description

VisibilityKind is an enumeration whose literals specify the visibility of a Membership of an Element in a
Namespace outside of that Namespace. Note that "visibility" specifically restricts whether an Element in a
Namespace may be referenced by name from outside the Namespace and only otherwise restricts access to an

130 Kernel Modeling Language v1.0 Beta 4

Element as provided by specific constraints in the abstract syntax (e.g., preventing the import or inheritance of
private Elements).

General Classes

None.

Literal Values

private

Indicates a Membership is not visible outside its owning Namespace.

protected

An intermediate level of visibility between public and private. By default, it is equivalent to private for the
purposes of normal access to and import of Elements from a Namespace. However, other Relationships may
be specified to include Memberships with protected visibility in the list of memberships for a Namespace
(e.g., Specialization).

public

Indicates that a Membership is publicly visible outside its owning Namespace.

8.3.2.4.8 OwningMembership

Description

An OwningMembership is a Membership that owns its memberElement as a ownedRelatedElement. The
ownedMemberElement becomes an ownedMember of the membershipOwningNamespace.

General Classes

Membership

Attributes

/ownedMemberElement : Element {subsets ownedRelatedElement, redefines memberElement}

The Element that becomes an ownedMember of the membershipOwningNamespace due to this
OwningMembership.

/ownedMemberElementId : String {redefines memberElementId}

The elementId of the ownedMemberElement.

/ownedMemberName : String [0..1] {redefines memberName}

The name of the ownedMemberElement.

/ownedMemberShortName : String [0..1] {redefines memberShortName}

The shortName of the ownedMemberElement.

Operations

Kernel Modeling Language v1.0 Beta 4 131

path() : String {redefines path}

If the ownedMemberElement of this OwningMembership has a non-null qualifiedName, then return the string
constructed by appending to that qualifiedName the string "/owningMembership". Otherwise, return the path
of the OwningMembership as specified for a Relationship

body: if ownedElement.qualifiedName <> null then
ownedElement.qualifiedName + '/owningMembership'

else self.oclAsType(Relationship).path()
endif

Constraints

deriveOwningMembershipOwnedMemberName

The ownedMemberName of an OwningMembership is the name of its ownedMemberElement.

ownedMemberName = ownedMemberElement.name

deriveOwningMembershipOwnedMemberShortName

The ownedMemberShortName of an OwningMembership is the shortName of its ownedMemberElement.

ownedMemberShortName = ownedMemberElement.shortName

8.3.3 Core Abstract Syntax
8.3.3.1 Types Abstract Syntax

132 Kernel Modeling Language v1.0 Beta 4

8.3.3.1.1 Overview

+multiplicities() : Multiplicity [0..*]
+isCompatibleWith(otherType : Type)
+specializesFromLibrary(libraryTypeName : String) : Boolean
+specializes(supertype : Type) : Boolean
+allSupertypes() : Type [0..*]
+supertypes(excludeImplied : Boolean) : Type [0..*]
+directionOfExcluding(feature : Feature, excluded : Type [0..*]) : FeatureDirectionKind [0..1]
+directionOf(feature : Feature) : FeatureDirectionKind [0..1]
+allRedefinedFeaturesOf(membership : Membership) : Feature [0..*]
+removeRedefinedFeatures(memberships : Membership [0..*]) : Membership [0..*]
+nonPrivateMemberships(excludedNamespaces : Namespace [0..*], excludedTypes : Type [0..*], excludeImplied : Boolean) : Membership [0..*]
+inheritableMemberships(excludedNamespaces : Namespace [0..*], excludedTypes : Type [0..*], excludeImplied : Boolean) : Membership [0..*]
+inheritedMemberships(excludedNamespaces : Namespace [0..*], excludedTypes : Type [0..*], excludeImplied : Boolean) : Membership [0..*]
+visibleMemberships(excluded : Namespace [0..*], isRecursive : Boolean, includeAll : Boolean) : Membership [0..*]{redefines visibleMemberships}

+/isConjugated : Boolean
+isSufficient : Boolean = false
+isAbstract : Boolean = false

Type

Feature

FeatureMembership

Namespace OwningMembership

Multiplicity

Membership

{subsets membership,
ordered}
+/inheritedMembership

0..*

{subsets membershipNamespace}
+/inheritingType 0..*

{subsets namespace}

+/typeWithMultiplicity

0..1
{subsets ownedMember}

+/multiplicity

0..1

+/featureMembership
{ordered}

0..*

+/type

1..*

{subsets feature, ordered}

+/directedFeature

0..*
+/typeWithDirectedFeature

{subsets typeWithFeature}
0..*

{subsets feature,
ordered}

+/inheritedFeature

0..*
{subsets typeWithFeature}

+/inheritingType

0..*

{subsets endFeature,
subsets ownedFeature,
ordered}

+/ownedEndFeature

0..*
{subsets owningType,
subsets typeWithEndFeature}

+/endOwningType

0..1

{subsets feature,
ordered}

+/endFeature

0..*
{subsets typeWithFeature}

+/typeWithEndFeature
0..*

{subsets type, redefines
membershipOwningNamespace}

+/owningType

1

{subsets featureMembership,
subsets ownedMembership,
ordered}

+/ownedFeatureMembership

0..*

{subsets member, ordered}

+/feature

0..*
{subsets namespace}

+/typeWithFeature

0..*

{subsets typeWithFeature}

+/typeWithInput

0..*
{subsets directedFeature,
ordered}

+/input

0..*

{subsets typeWithFeature}

+/typeWithOutput

0..*
{subsets directedFeature,
ordered}

+/output

0..*

{subsets featuringType,
subsets owningNamespace,
subsets typeWithFeature}

+/owningType

0..1
{subsets ownedMember,
ordered}

+/ownedFeature

0..*

+/owningFeatureMembership
{subsets
owningMembership}

0..1

{redefines
ownedMemberElement}

+/ownedMemberFeature 1

Figure 9. Types

Kernel Modeling Language v1.0 Beta 4 133

TypeSpecialization

Relationship

{subsets owningRelatedElement,
subsets specific}

+/owningType

0..1
{subsets ownedRelationship,
subsets specialization,
ordered}

+/ownedSpecialization

0..*

{subsets sourceRelationship}

+specialization

0..*
{redefines source}

+specific

1

{redefines targetRelationship}

+generalization
0..*

{redefines target}

+general

1

Figure 10. Specialization

TypeConjugation

Relationship

{subsets targetRelationship}

+conjugation

0..*
{redefines target}

+originalType

1

{subsets sourceRelationship}

+conjugator

0..1
{redefines source}

+conjugatedType

1

{subsets conjugatedType,
subsets owningRelatedElement}

+/owningType

0..1
{subsets conjugator, subsets
ownedRelationship}

+/ownedConjugator

0..1

Figure 11. Conjugation

134 Kernel Modeling Language v1.0 Beta 4

Type Disjoining

Relationship

{subsets
owningRelatedElement,
subsets typeDisjoined}

+/owningType

0..1
{subsets disjoiningTypeDisjoining,
subsets ownedRelationship}

+/ownedDisjoining

0..*

{redefines source}

+typeDisjoined

1
{subsets sourceRelationship}

+disjoiningTypeDisjoining

0..*

{redefines target}

+disjoiningType

1
{subsets targetRelationship}

+disjoinedTypeDisjoining

0..*

Figure 12. Disjoining

Type Unioning

Relationship

{subsets targetRelationship}

+unionedUnioning

0..*
{redefines target}

+unioningType

1

{subsets ownedRelationship,
subsets sourceRelationship,
ordered}

+/ownedUnioning

0..*
{subsets owningRelatedElement,
redefines source}

+/typeUnioned

1
+/unionedType

0..*

+/unioningType

{ordered}
0..*

Figure 13. Unioning

IntersectingType

Relationship

{subsets targetRelationship}

+intersectedIntersecting

0..*

+intersectingType

{redefines target}
1

{subsets owningRelatedElement,
redefines source}

+/typeIntersected

1
{subsets ownedRelationship,
subsets sourceRelationship,
ordered}

+/ownedIntersecting

0..*
+/intersectedType

0..*

+/intersectingType

{ordered}
0..*

Figure 14. Intersecting

Kernel Modeling Language v1.0 Beta 4 135

DifferencingType

Relationship

{subsets owningRelatedElement,
redefines source}

+/typeDifferenced

1
{subsets ownedRelationship,
subsets sourceRelationship,
ordered}

+/ownedDifferencing

0..*

{subsets targetRelationship}

+differencedDifferencing

0..*

+differencingType

{redefines target}
1

+/differencedType

0..*

+/differencingType

{ordered}
0..*

Figure 15. Differencing

8.3.3.1.2 Conjugation

Description

Conjugation is a Relationship between two types in which the conjugatedType inherits all the Features of
the originalType, but with all input and output Features reversed. That is, any Features with a
direction in relative to the originalType are considered to have an effective direction of out relative to the
conjugatedType and, similarly, Features with direction out in the originalType are considered to have an
effective direction of in in the conjugatedType. Features with direction inout, or with no direction, in
the originalType, are inherited without change.

A Type may participate as a conjugatedType in at most one Conjugation relationship, and such a Type may
not also be the specific Type in any Specialization relationship.

General Classes

Relationship

Attributes

conjugatedType : Type {redefines source}

The Type that is the result of applying Conjugation to the originalType.

originalType : Type {redefines target}

The Type to be conjugated.

/owningType : Type [0..1] {subsets conjugatedType, owningRelatedElement}

The conjugatedType of this Conjugation that is also its owningRelatedElement.

Operations

None.

Constraints

None.

136 Kernel Modeling Language v1.0 Beta 4

8.3.3.1.3 Differencing

Description

Differencing is a Relationship that makes its differencingType one of the differencingTypes of its
typeDifferenced.

General Classes

Relationship

Attributes

differencingType : Type {redefines target}

Type that partly determines interpretations of typeDifferenced, as described in Type::differencingType.

/typeDifferenced : Type {subsets owningRelatedElement, redefines source}

Type with interpretations partly determined by differencingType, as described in Type::differencingType.

Operations

None.

Constraints

None.

8.3.3.1.4 Disjoining

Description

A Disjoining is a Relationship between Types asserted to have interpretations that are not shared (disjoint)
between them, identified as typeDisjoined and disjoiningType. For example, a Classifier for mammals is
disjoint from a Classifier for minerals, and a Feature for people's parents is disjoint from a Feature for their
children.

General Classes

Relationship

Attributes

disjoiningType : Type {redefines target}

Type asserted to be disjoint with the typeDisjoined.

/owningType : Type [0..1] {subsets typeDisjoined, owningRelatedElement}

A typeDisjoined that is also an owningRelatedElement.

typeDisjoined : Type {redefines source}

Type asserted to be disjoint with the disjoiningType.

Kernel Modeling Language v1.0 Beta 4 137

Operations

None.

Constraints

None.

8.3.3.1.5 FeatureDirectionKind

Description

FeatureDirectionKind enumerates the possible kinds of direction that a Feature may be given as a member
of a Type.

General Classes

None.

Literal Values

in

Values of the Feature on each instance of its domain are determined externally to that instance and used internally.

inout

Values of the Feature on each instance are determined either as in or out directions, or both.

out

Values of the Feature on each instance of its domain are determined internally to that instance and used externally.

8.3.3.1.6 FeatureMembership

Description

A FeatureMembership is an OwningMembership between an ownedMemberFeature and an owningType. If
the ownedMemberFeature has isVariable = false, then the FeatureMembership implies that the
owningType is also a featuringType of the ownedMemberFeature. If the ownedMemberFeature has
isVariable = true, then the FeatureMembership implies that the ownedMemberFeature is featured by the
snapshots of the owningType, which must specialize the Kernel Semantic Library base class Occurrence.

General Classes

OwningMembership

Attributes

/ownedMemberFeature : Feature {redefines ownedMemberElement}

The Feature that this FeatureMembership relates to its owningType, making it an ownedFeature of the
owningType.

/owningType : Type {subsets type, redefines membershipOwningNamespace}

138 Kernel Modeling Language v1.0 Beta 4

The Type that owns this FeatureMembership.

Operations

None.

Constraints

None.

8.3.3.1.7 Intersecting

Description

Intersecting is a Relationship that makes its intersectingType one of the intersectingTypes of its
typeIntersected.

General Classes

Relationship

Attributes

intersectingType : Type {redefines target}

Type that partly determines interpretations of typeIntersected, as described in Type::intersectingType.

/typeIntersected : Type {subsets owningRelatedElement, redefines source}

Type with interpretations partly determined by intersectingType, as described in Type::intersectingType.

Operations

None.

Constraints

None.

8.3.3.1.8 Specialization

Description

Specialization is a Relationship between two Types that requires all instances of the specific type to also
be instances of the general Type (i.e., the set of instances of the specific Type is a subset of those of the
general Type, which might be the same set).

General Classes

Relationship

Attributes

general : Type {redefines target}

A Type with a superset of all instances of the specific Type, which might be the same set.

Kernel Modeling Language v1.0 Beta 4 139

/owningType : Type [0..1] {subsets specific, owningRelatedElement}

The Type that is the specific Type of this Specialization and owns it as its owningRelatedElement.

specific : Type {redefines source}

A Type with a subset of all instances of the general Type, which might be the same set.

Operations

None.

Constraints

validateSpecificationSpecificNotConjugated

The specific Type of a Specialization cannot be a conjugated Type.

not specific.isConjugated

8.3.3.1.9 Multiplicity

Description

A Multiplicity is a Feature whose co-domain is a set of natural numbers giving the allowed cardinalities of
each typeWithMultiplicity. The cardinality of a Type is defined as follows, depending on whether the Type is
a Classifier or Feature.

• Classifier – The number of basic instances of the Classifier, that is, those instances representing
things, which are not instances of any subtypes of the Classifier that are Features.

• Features – The number of instances with the same featuring instances. In the case of a Feature with a
Classifier as its featuringType, this is the number of values of Feature for each basic instance of
the Classifier. Note that, for non-unique Features, all duplicate values are included in this count.

Multiplicity co-domains (in models) can be specified by Expression that might vary in their results. If the
typeWithMultiplicity is a Classifier, the domain of the Multiplicity shall be Base::Anything. If the
typeWithMultiplicity is a Feature, the Multiplicity shall have the same domain as the
typeWithMultiplicity.

General Classes

Feature

Attributes

None.

Operations

None.

Constraints

checkMultiplicitySpecialization

140 Kernel Modeling Language v1.0 Beta 4

A Multiplicity must directly or indirectly specialize the Feature Base::naturals from the Kernel Semantic
Library.

specializesFromLibrary('Base::naturals')

checkMultiplicityTypeFeaturing

If the owningType of a Multiplicity is a Feature, then the Multiplicity must have the same
featuringTypes as that Feature. Otherwise, it must have no featuringTypes (meaning that it is implicitly
featured by the base Classifier Anything).

if owningType <> null and owningType.oclIsKindOf(Feature) then
featuringType =

owningType.oclAsType(Feature).featuringType
else

featuringType->isEmpty()
endif

8.3.3.1.10 Type

Description

A Type is a Namespace that is the most general kind of Element supporting the semantics of classification. A
Type may be a Classifier or a Feature, defining conditions on what is classified by the Type (see also the
description of isSufficient).

General Classes

Namespace

Attributes

/differencingType : Type [0..*] {ordered}

The interpretations of a Type with differencingTypes are asserted to be those of the first of those Types, but
not including those of the remaining Types. For example, a Classifier might be the difference of a Classifier
for people and another for people of a particular nationality, leaving people who are not of that nationality.
Similarly, a feature of people might be the difference between a feature for their children and a Classifier for
people of a particular sex, identifying their children not of that sex (because the interpretations of the children
Feature that identify those of that sex are also interpretations of the Classifier for that sex).

/directedFeature : Feature [0..*] {subsets feature, ordered}

The features of this Type that have a non-null direction.

/endFeature : Feature [0..*] {subsets feature, ordered}

All features of this Type with isEnd = true.

/feature : Feature [0..*] {subsets member, ordered}

The ownedMemberFeatures of the featureMemberships of this Type.

/featureMembership : FeatureMembership [0..*] {ordered}

Kernel Modeling Language v1.0 Beta 4 141

The FeatureMemberships for features of this Type, which include all ownedFeatureMemberships and
those inheritedMemberships that are FeatureMemberships (but does not include any
importedMemberships).

/inheritedFeature : Feature [0..*] {subsets feature, ordered}

All the memberFeatures of the inheritedMemberships of this Type that are FeatureMemberships.

/inheritedMembership : Membership [0..*] {subsets membership, ordered}

All Memberships inherited by this Type via Specialization or Conjugation. These are included in the
derived union for the memberships of the Type.

/input : Feature [0..*] {subsets directedFeature, ordered}

All features related to this Type by FeatureMemberships that have direction in or inout.

/intersectingType : Type [0..*] {ordered}

The interpretations of a Type with intersectingTypes are asserted to be those in common among the
intersectingTypes, which are the Types derived from the intersectingType of the ownedIntersectings
of this Type. For example, a Classifier might be an intersection of Classifiers for people of a particular sex
and of a particular nationality. Similarly, a feature for people's children of a particular sex might be the intersection
of a Feature for their children and a Classifier for people of that sex (because the interpretations of the children
Feature that identify those of that sex are also interpretations of the Classifier for that sex).

isAbstract : Boolean

Indicates whether instances of this Type must also be instances of at least one of its specialized Types.

/isConjugated : Boolean

Indicates whether this Type has an ownedConjugator.

isSufficient : Boolean

Whether all things that meet the classification conditions of this Type must be classified by the Type.

(A Type gives conditions that must be met by whatever it classifies, but when isSufficient is false, things may
meet those conditions but still not be classified by the Type. For example, a Type Car that is not sufficient could
require everything it classifies to have four wheels, but not all four wheeled things would classify as cars. However,
if the Type Car were sufficient, it would classify all four-wheeled things.)

/multiplicity : Multiplicity [0..1] {subsets ownedMember}

An ownedMember of this Type that is a Multiplicity, which constraints the cardinality of the Type. If there is no
such ownedMember, then the cardinality of this Type is constrained by all the Multiplicity constraints
applicable to any direct supertypes.

/output : Feature [0..*] {subsets directedFeature, ordered}

All features related to this Type by FeatureMemberships that have direction out or inout.

/ownedConjugator : Conjugation [0..1] {subsets ownedRelationship, conjugator}

A Conjugation owned by this Type for which the Type is the originalType.

142 Kernel Modeling Language v1.0 Beta 4

/ownedDifferencing : Differencing [0..*] {subsets sourceRelationship, ownedRelationship, ordered}

The ownedRelationships of this Type that are Differencings, having this Type as their typeDifferenced.

/ownedDisjoining : Disjoining [0..*] {subsets ownedRelationship, disjoiningTypeDisjoining}

The ownedRelationships of this Type that are Disjoinings, for which the Type is the typeDisjoined Type.

/ownedEndFeature : Feature [0..*] {subsets endFeature, ownedFeature, ordered}

All endFeatures of this Type that are ownedFeatures.

/ownedFeature : Feature [0..*] {subsets ownedMember, ordered}

The ownedMemberFeatures of the ownedFeatureMemberships of this Type.

/ownedFeatureMembership : FeatureMembership [0..*] {subsets ownedMembership, featureMembership, ordered}

The ownedMemberships of this Type that are FeatureMemberships, for which the Type is the owningType.
Each such FeatureMembership identifies an ownedFeature of the Type.

/ownedIntersecting : Intersecting [0..*] {subsets ownedRelationship, sourceRelationship, ordered}

The ownedRelationships of this Type that are Intersectings, have the Type as their typeIntersected.

/ownedSpecialization : Specialization [0..*] {subsets specialization, ownedRelationship, ordered}

The ownedRelationships of this Type that are Specializations, for which the Type is the specific Type.

/ownedUnioning : Unioning [0..*] {subsets ownedRelationship, sourceRelationship, ordered}

The ownedRelationships of this Type that are Unionings, having the Type as their typeUnioned.

/unioningType : Type [0..*] {ordered}

The interpretations of a Type with unioningTypes are asserted to be the same as those of all the unioningTypes
together, which are the Types derived from the unioningType of the ownedUnionings of this Type. For
example, a Classifier for people might be the union of Classifiers for all the sexes. Similarly, a feature for
people's children might be the union of features dividing them in the same ways as people in general.

Operations

allRedefinedFeaturesOf(membership : Membership) : Feature [0..*]

If the memberElement of the given membership is a Feature, then return all Features directly or indirectly
redefined by the memberElement.

body: if not membership.memberElement.oclIsType(Feature) then Set{}
else membership.memberElement.oclAsType(Feature).allRedefinedFeatures()
endif

allSupertypes() : Type [0..*]

Return this Type and all Types that are directly or transitively supertypes of this Type (as determined by the
supertypes operation with excludeImplied = false).

Kernel Modeling Language v1.0 Beta 4 143

body: OrderedSet{self}->closure(supertypes(false))

directionOf(feature : Feature) : FeatureDirectionKind [0..1]

If the given feature is a feature of this Type, then return its direction relative to this Type, taking conjugation
into account.

body: directionOfExcluding(f, Set{})

directionOfExcluding(feature : Feature, excluded : Type [0..*]) : FeatureDirectionKind [0..1]

Return the direction of the given feature relative to this Type, excluding a given set of Types from the search of
supertypes of this Type.

body: let excludedSelf : Set(Type) = excluded->including(self) in
if feature.owningType = self then feature.direction
else

let directions : Sequence(FeatureDirectionKind) =
supertypes(false)->excluding(excludedSelf).
directionOfExcluding(feature, excludedSelf)->
select(d | d <> null) in

if directions->isEmpty() then null
else

let direction : FeatureDirectionKind = directions->first() in
if not isConjugated then direction
else if direction = FeatureDirectionKind::_'in' then FeatureDirectionKind::out
else if direction = FeatureDirectionKind::out then FeatureDirectionKind::_'in'
else direction
endif endif endif endif

endif

inheritableMemberships(excludedNamespaces : Namespace [0..*], excludedTypes : Type [0..*], excludeImplied :
Boolean) : Membership [0..*]

Return all the non-private Memberships of all the supertypes of this Type, excluding any supertypes that are this
Type or are in the given set of excludedTypes. If excludeImplied = true, then also transitively exclude any
supertypes from implied Specializations.

body: let excludingSelf : Set(Type) = excludedType->including(self) in
supertypes(excludeImplied)->reject(t | excludingSelf->includes(t)).

nonPrivateMemberships(excludedNamespaces, excludingSelf, excludeImplied)

inheritedMemberships(excludedNamespaces : Namespace [0..*], excludedTypes : Type [0..*], excludeImplied :
Boolean) : Membership [0..*]

Return the Memberships inheritable from supertypes of this Type with redefined Features removed. When
computing inheritable Memberships, exclude Imports of excludedNamespaces, Specializations of
excludedTypes, and, if excludeImplied = true, all implied Specializations.

body: removeRedefinedFeatures(
inheritableMemberships(excludedNamespaces, excludedTypes, excludeImplied))

isCompatibleWith(otherType : Type)

By default, this Type is compatible with an otherType if it directly or indirectly specializes the otherType.

body: specializes(otherType)

multiplicities() : Multiplicity [0..*]

144 Kernel Modeling Language v1.0 Beta 4

Return the owned or inherited Multiplicities for this Type<./code>.

body: if multiplicity <> null then OrderedSet{multiplicity}
else

ownedSpecialization.general->closure(t |
if t.multiplicity <> null then OrderedSet{}
else ownedSpecialization.general

)->select(multiplicity <> null).multiplicity->asOrderedSet()
endif

nonPrivateMemberships(excludedNamespaces : Namespace [0..*], excludedTypes : Type [0..*], excludeImplied :
Boolean) : Membership [0..*]

Return the public, protected and inherited Memberships of this Type. When computing imported
Memberships, exclude the given set of excludedNamespaces. When computing inherited Memberships,
exclude Types in the given set of excludedTypes. If excludeImplied = true, then also exclude any
supertypes from implied Specializations.

body: let publicMemberships : OrderedSet(Membership) =
membershipsOfVisibility(VisibilityKind::public, excludedNamespaces) in

let protectedMemberships : OrderedSet(Membership) =
membershipsOfVisibility(VisibilityKind::protected, excludedNamespaces) in

let inheritedMemberships : OrderedSet(Membership) =
inheritedMemberships(excludedNamespaces, excludedTypes, excludeImplied) in

publicMemberships->
union(protectedMemberships)->
union(inheritedMemberships)

removeRedefinedFeatures(memberships : Membership [0..*]) : Membership [0..*]

Return a subset of memberships, removing those Memberships whose memberElements are Features and for
which either of the following two conditions holds:

1. The memberElement of the Membership is included in redefined Features of another Membership in
memberships.

2. One of the redefined Features of the Membership is a directly redefinedFeature of an
ownedFeature of this Type.

For this purpose, the redefined Features of a Membership whose memberElement is a Feature includes the
memberElement and all Features directly or indirectly redefined by the memberElement.

body: let reducedMemberships : Sequence(Membership) =
memberships->reject(mem1 |

memberships->excluding(mem1)->
exists(mem2 | allRedefinedFeaturesOf(mem2)->

includes(mem1.memberElement))) in
let redefinedFeatures : Set(Feature) =

ownedFeature.redefinition.redefinedFeature->asSet() in
reducedMemberships->reject(mem | allRedefinedFeaturesOf(mem)->

exists(feature | redefinedFeatures->includes(feature)))

specializes(supertype : Type) : Boolean

Check whether this Type is a direct or indirect specialization of the given supertype.

body: if isConjugated then
ownedConjugator.originalType.specializes(supertype)

else

Kernel Modeling Language v1.0 Beta 4 145

allSupertypes()->includes(supertype)
endif

specializesFromLibrary(libraryTypeName : String) : Boolean

Check whether this Type is a direct or indirect specialization of the named library Type. libraryTypeName must
conform to the syntax of a KerML qualified name and must resolve to a Type in global scope.

body: let mem : Membership = resolveGlobal(libraryTypeName) in
mem <> null and mem.memberElement.oclIsKindOf(Type) and
specializes(mem.memberElement.oclAsType(Type))

supertypes(excludeImplied : Boolean) : Type [0..*]

If this Type is conjugated, then return just the originalType of the Conjugation. Otherwise, return the
general Types from all ownedSpecializations of this type, if excludeImplied = false, or all non-
implied ownedSpecializations, if excludeImplied = true.

body: if isConjugated then Sequence{conjugator.originalType}
else if not excludeImplied then ownedSpecialization.general
else ownedSpecialization->reject(isImplied).general
endif
endif

visibleMemberships(excluded : Namespace [0..*], isRecursive : Boolean, includeAll : Boolean) : Membership [0..*]
{redefines visibleMemberships}

The visible Memberships of a Type include inheritedMemberships.

body: let visibleMemberships : OrderedSet(Membership) =
self.oclAsType(Namespace).

visibleMemberships(excluded, isRecursive, includeAll) in
let visibleInheritedMemberships : OrderedSet(Membership) =

inheritedMemberships(excluded->including(self), Set{}, isRecursive)->
select(includeAll or visibility = VisibilityKind::public) in

visibleMemberships->union(visibleInheritedMemberships)

Constraints

checkTypeSpecialization

A Type must directly or indirectly specialize Base::Anything from the Kernel Semantic Library.

specializesFromLibrary('Base::Anything')

deriveTypeDifferencingType

The differencingTypes of a Type are the differencingTypes of its ownedDifferencings, in the same
order.

differencingType = ownedDifferencing.differencingType

deriveTypeDirectedFeature

The directedFeatures of a Type are those features for which the direction is non-null.

directedFeature = feature->select(f | directionOf(f) <> null)

146 Kernel Modeling Language v1.0 Beta 4

deriveTypeEndFeature

The endFeatures of a Type are all its features for which isEnd = true.

endFeature = feature->select(isEnd)

deriveTypeFeature

The features of a Type are the ownedMemberFeatures of its featureMemberships

feature = featureMembership.ownedMemberFeature

deriveTypeFeatureMembership

The featureMemberships of a Type is the union of the ownedFeatureMemberships and those
inheritedMemberships that are FeatureMemberships.

featureMembership = ownedFeatureMembership->union(
inheritedMembership->selectByKind(FeatureMembership))

deriveTypeInheritedFeature

The inheritedFeatures of this Type are the memberFeatures of the inheritedMemberships that are
FeatureMemberships.

inheritedFeature = inheritedMemberships->
selectByKind(FeatureMembership).memberFeature

deriveTypeInheritedMembership

The inheritedMemberships of a Type are determined by the inheritedMemberships()
operation.

inheritedMembership = inheritedMemberships(Set{}, Set{}, false)

deriveTypeInput

The inputs of a Type are those of its features that have a direction of in or inout relative to the Type, taking
conjugation into account.

input = feature->select(f |
let direction: FeatureDirectionKind = directionOf(f) in
direction = FeatureDirectionKind::_'in' or
direction = FeatureDirectionKind::inout)

deriveTypeIntersectingType

The intersectingTypes of a Type are the intersectingTypes of its ownedIntersectings.

intersectingType = ownedIntersecting.intersectingType

deriveTypeMultiplicity

If a Type has an owned Multiplicity, then that is its multiplicity. Otherwise, if the Type has an
ownedSpecialization, then its multiplicity is the multiplicity of the general Type of that
Specialization.

Kernel Modeling Language v1.0 Beta 4 147

multiplicity =
let ownedMultiplicities: Sequence(Multiplicity) =

ownedMember->selectByKind(Multiplicity) in
if ownedMultiplicities->isEmpty() then null
else ownedMultiplicities->first()
endif

deriveTypeOutput

The outputs of a Type are those of its features that have a direction of out or inout relative to the Type, taking
conjugation into account.

output = feature->select(f |
let direction: FeatureDirectionKind = directionOf(f) in
direction = FeatureDirectionKind::out or
direction = FeatureDirectionKind::inout)

deriveTypeOwnedConjugator

The ownedConjugator of a Type is the its single ownedRelationship that is a Conjugation.

ownedConjugator =
let ownedConjugators: Sequence(Conjugator) =

ownedRelationship->selectByKind(Conjugation) in
if ownedConjugators->isEmpty() then null
else ownedConjugators->at(1) endif

deriveTypeOwnedDifferencing

The ownedDifferencings of a Type are its ownedRelationships that are Differencings.

ownedDifferencing =
ownedRelationship->selectByKind(Differencing)

deriveTypeOwnedDisjoining

The ownedDisjoinings of a Type are the ownedRelationships that are Disjoinings.

ownedDisjoining =
ownedRelationship->selectByKind(Disjoining)

deriveTypeOwnedEndFeature

The ownedEndFeatures of a Type are all its ownedFeatures for which isEnd = true.

ownedEndFeature = ownedFeature->select(isEnd)

deriveTypeOwnedFeature

The ownedFeatures of a Type are the ownedMemberFeatures of its ownedFeatureMemberships

ownedFeature = ownedFeatureMembership.ownedMemberFeature

deriveTypeOwnedFeatureMembership

The ownedFeatureMemberships of a Type are its ownedMemberships that are FeatureMemberships.

ownedFeatureMembership = ownedRelationship->selectByKind(FeatureMembership)

148 Kernel Modeling Language v1.0 Beta 4

deriveTypeOwnedIntersecting

The ownedIntersectings of a Type are the ownedRelationships that are Intersectings.

ownedRelationship->selectByKind(Intersecting)

deriveTypeOwnedSpecialization

The ownedSpecializations of a Type are the ownedRelationships that are Specializations whose
special Type is the owning Type.

ownedSpecialization = ownedRelationship->selectByKind(Specialization)->
select(s | s.special = self)

deriveTypeOwnedUnioning

The ownedUnionings of a Type are the ownedRelationships that are Unionings.

ownedUnioning =
ownedRelationship->selectByKind(Unioning)

deriveTypeUnioningType

The unioningTypes of a Type are the unioningTypes of its ownedUnionings.

unioningType = ownedUnioning.unioningType

validateTypeAtMostOneConjugator

A Type must have at most one owned Conjugation Relationship.

ownedRelationship->selectByKind(Conjugation)->size() <= 1

validateTypeDifferencingTypesNotSelf

A Type cannot be one of its own differencingTypes.

differencingType->excludes(self)

validateTypeIntersectingTypesNotSelf

A Type cannot be one of its own intersectingTypes.

intersectingType->excludes(self)

validateTypeOwnedDifferencingNotOne

A Type must not have exactly one ownedDifferencing.

ownedDifferencing->size() <> 1

validateTypeOwnedIntersectingNotOne

A Type must not have exactly one ownedIntersecting.

ownedIntersecting->size() <> 1

Kernel Modeling Language v1.0 Beta 4 149

validateTypeOwnedMultiplicity

A Type may have at most one ownedMember that is a Multiplicity.

ownedMember->selectByKind(Multiplicity)->size() <= 1

validateTypeOwnedUnioningNotOne

A Type must not have exactly one ownedUnioning.

ownedUnioning->size() <> 1

validateTypeUnioningTypesNotSelf

A Type cannot be one of its own unioningTypes.

unioningType->excludes(self)

8.3.3.1.11 Unioning

Description

Unioning is a Relationship that makes its unioningType one of the unioningTypes of its typeUnioned.

General Classes

Relationship

Attributes

/typeUnioned : Type {subsets owningRelatedElement, redefines source}

Type with interpretations partly determined by unioningType, as described in Type::unioningType.

unioningType : Type {redefines target}

Type that partly determines interpretations of typeUnioned, as described in Type::unioningType.

Operations

None.

Constraints

None.

8.3.3.2 Classifiers Abstract Syntax

150 Kernel Modeling Language v1.0 Beta 4

8.3.3.2.1 Overview

Subclassification Classifier

Specialization Type

{redefines owningType}

+/owningClassifier

0..1
{subsets ownedSpecialization}

+/ownedSubclassification

0..*

{subsets generalization}

+superclassification

0..*
{redefines general}

+superclassifier

1

{subsets specialization}

+subclassification

0..*
{redefines specific}

+subclassifier

1

Figure 16. Classifiers

8.3.3.2.2 Classifier

Description

A Classifier is a Type that classifies:

• Things (in the universe) regardless of how Features relate them. (These are interpreted semantically as
sequences of exactly one thing.)

• How the above things are related by Features. (These are interpreted semantically as sequences of
multiple things, such that the last thing in the sequence is also classified by the Classifier. Note that
this means that a Classifier modeled as specializing a Feature cannot classify anything.)

General Classes

Type

Attributes

/ownedSubclassification : Subclassification [0..*] {subsets ownedSpecialization}

The ownedSpecializations of this Classifier that are Subclassifications, for which this Classifier
is the subclassifier.

Operations

None.

Constraints

deriveClassifierOwnedSubclassification

The ownedSubclassifications of a Classifier are its ownedSpecializations that are
Subclassifications.

Kernel Modeling Language v1.0 Beta 4 151

ownedSubclassification =
ownedSpecialization->selectByKind(Subclassification)

validateClassifierMultiplicityDomain

If a Classifier has a multiplicity, then the multiplicity must have no featuringTypes (meaning that
its domain is implicitly Base::Anything).

multiplicity <> null implies multiplicity.featuringType->isEmpty()

8.3.3.2.3 Subclassification

Description

Subclassification is Specialization in which both the specific and general Types are Classifier.
This means all instances of the specific Classifier are also instances of the general Classifier.

General Classes

Specialization

Attributes

/owningClassifier : Classifier [0..1] {redefines owningType}

The Classifier that owns this Subclassification relationship, which must also be its subclassifier.

subclassifier : Classifier {redefines specific}

The more specific Classifier in this Subclassification.

superclassifier : Classifier {redefines general}

The more general Classifier in this Subclassification.

Operations

None.

Constraints

None.

8.3.3.3 Features Abstract Syntax

152 Kernel Modeling Language v1.0 Beta 4

8.3.3.3.1 Overview

+isFeaturingType(type : Type) : Boolean
+canAccess(feature : Feature) : Boolean
+isFeaturedWithin(type : Type [0..1]) : Boolean
+allRedefinedFeatures() : Feature [0..*]
+ownedCrossFeature() : Feature [0..1]
+isOwnedCrossFeature() : Boolean
+isCartesianProduct() : Boolean
+asCartesianProduct() : Type [0..*]
+typingFeatures() : Feature [0..*]
+isCompatibleWith(otherType : Type){redefines isCompatibleWith}
+subsetsChain(first : Feature, second : Feature) : Boolean
+redefinesFromLibrary(libraryFeatureName : String) : Boolean
+redefines(redefinedFeature : Feature) : Boolean
+supertypes(excludeImplied : Boolean) : Type [0..*]{redefines supertypes}
+namingFeature() : Feature [0..1]
+effectiveName() : String [0..1]{redefines effectiveName}
+effectiveShortName() : String [0..1]{redefines effectiveShortName}
+directionFor(type : Type) : FeatureDirectionKind [0..1]

+direction : FeatureDirectionKind [0..1]
+isConstant : Boolean = false
+isVariable : Boolean = false
+isPortion : Boolean = false
+isDerived : Boolean = false
+isEnd : Boolean = false
+isComposite : Boolean = false
+isOrdered : Boolean = false
+isUnique : Boolean = true

Feature

Type

TypeFeaturing FeatureTyping

out
inout
in

FeatureDirectionKind
«enumeration»

Relationship Specialization

{subsets targetRelationship}

+typeFeaturingOfType
0..*

{redefines target}
+featuringType

1

{subsets generalization}
+typingByType

0..*

{redefines general}
+type

1

{subsets sourceRelationship}

+typeFeaturing

0..*
{redefines source}

+featureOfType

1

{subsets ownedRelationship,
subsets typeFeaturing,
ordered}

+/ownedTypeFeaturing

0..*
{subsets featureOfType,
subsets owningRelatedElement}

+/owningFeatureOfType

0..1
{subsets ownedSpecialization,
subsets typing, ordered}

+/ownedTyping
0..*

{subsets typedFeature,
redefines owningType}

+/owningFeature

0..1

{subsets specialization}

 typing

0..*
{redefines specific}

+typedFeature

1

+/featuringType

{ordered}

0..*

+/featureOfType 0..*

{ordered}

+/type0..*

+/typedFeature0..*

Figure 17. Features

Kernel Modeling Language v1.0 Beta 4 153

Feature

ReferenceSubsetting

Subsetting

Redefinition

Specialization

{redefines owningFeature,
redefines subsettingFeature}

+/referencingFeature

1

+/ownedReferenceSubsetting

{subsets ownedSubsetting}
0..1

{subsets supersetting}

+referencing

0..*
{redefines subsettedFeature}

+referencedFeature

1

{subsets ownedSpecialization,
subsets subsetting}

+/ownedSubsetting

0..*
{subsets subsettingFeature,
redefines owningType}

+/owningFeature

0..1

{subsets subsetting}

+redefinition

0..*
{redefines subsettingFeature}

+redefiningFeature

1

{subsets generalization}

+supersetting
0..*

{redefines general}

+subsettedFeature

1

{subsets specialization}

+subsetting

0..*

+subsettingFeature

{redefines specific}
1

{subsets owningFeature}

+/owningFeature

0..1
{subsets ownedSubsetting}

+/ownedRedefinition

0..*

{subsets supersetting}

+redefining

0..*
{redefines subsettedFeature}

+redefinedFeature

1

Figure 18. Subsetting

Feature FeatureChaining

Relationship

{subsets targetRelationship}

+chainedFeatureChaining

0..*
{redefines target}

+chainingFeature

1

{subsets ownedRelationship,
subsets sourceRelationship,
ordered}

+/ownedFeatureChaining

0..*
{subsets
owningRelatedElement,
 redefines source}

+/featureChained

1

+/chainingFeature

{ordered,
nonunique}

0..*

+/chainedFeature

0..*

+/featureTarget1+/baseFeature 0..*

Figure 19. Feature Chaining

154 Kernel Modeling Language v1.0 Beta 4

Feature FeatureInverting

Relationship

{redefines source}

+featureInverted

1
{subsets sourceRelationship}

+invertingFeatureInverting

0..*

{subsets featureInverted,
subsets owningRelatedElement}

+/owningFeature

0..1
{subsets invertingFeatureInverting,
subsets ownedRelationship}

+/ownedFeatureInverting

0..*

{redefines target}

+invertingFeature

1
{subsets targetRelationship}

+invertedFeatureInverting

0..*

Figure 20. Feature Inverting

EndFeatureMembership

FeatureMembership

Feature

{redefines ownedMemberFeature}
+/ownedMemberFeature 1

{subsets owningFeatureMembership}
+/owningEndFeatureMembership 0..1

Figure 21. End Feature Membership

CrossSubsetting Feature

Subsetting

{redefines owningFeature,
redefines subsettingFeature}

+/crossingFeature

1
{subsets ownedSubsetting}

+/ownedCrossSubsetting

0..1

{redefines subsettedFeature}

+crossedFeature

1
{subsets supersetting}

+crossSupersetting

0..1
+/crossFeature

0..1

+/featureCrossing

0..*

Figure 22. Cross Subsetting

8.3.3.3.2 CrossSubsetting

Kernel Modeling Language v1.0 Beta 4 155

Description

CrossSubsetting is a kind of Subsetting for end Features, as identified by crossingFeature, to subset a
chained Feature, identified by crossedFeature. It navigates to instances of the end Feature’s type from
instances of other end Feature types on the same owningType (at least two end Features are required for any of
them to have a CrossSubsetting).

The crossedFeature of a CrossSubsetting must have a feature chain of exactly two Features. The second
Feature in the chain is the crossFeature of the crossingFeature (end Feature), which has the same type as
the crossingFeature. When the owningType of the crossingFeature has exactly two end Features, the
first Feature in the chain of the crossedFeature is the other end Feature. The crossFeature’s
featuringType in this case is the other end Feature. When the owningType has more than two end Features,
the first Feature in the chain is a Feature that CrossMultiplies all the other end Features, which is also the
featuringType of the crossFeature.

A crossFeature must be owned by its featureCrossing (end Feature) when the featureCrossing
owningType has more than two end Features. Otherwise, for exactly two end Features, the crossFeatures of
each the ends can instead optionally be inherited by the other end from one of its types or a subsetted Feature.

General Classes

Subsetting

Attributes

crossedFeature : Feature {redefines subsettedFeature}

The chained Feature that is cross subset by the crossingFeature of this CrossSubsetting.

/crossingFeature : Feature {redefines owningFeature, subsettingFeature}

The end Feature that owns this CrossSubsetting relationship and is also its subsettingFeature.

Operations

None.

Constraints

validateCrossSubsettingCrossedFeature

The crossedFeature of a CrossSubsetting must have exactly two chainingFeatures. If the
crossingFeature of the CrossSubsetting is one of two end Features, then the first chainingFeature
must be the other end Feature.

crossingFeature.isEnd and crossingFeature.owningType <> null implies
let endFeatures: Sequence(Feature) = crossingFeature.owningType.endFeature in
let chainingFeatures: Sequence(Feature) = crossedFeature.chainingFeature in
chainingFeatures->size() = 2 and
endFeatures->size() = 2 implies

chainingFeatures->at(1) = endFeatures->excluding(crossingFeature)->at(1)

validateCrossSubsettingCrossingFeature

The crossingFeature of a CrossSubsetting must be an end Feature that is owned by a Type with at least
two end Features.

156 Kernel Modeling Language v1.0 Beta 4

crossingFeature.isEnd and
crossingFeature.owningType<>null and
crossingFeature.owningType.endFeature ->size() > 1

8.3.3.3.3 EndFeatureMembership

Description

EndFeatureMembership is a FeatureMembership that requires its memberFeature be owned and have isEnd
= true.

General Classes

FeatureMembership

Attributes

/ownedMemberFeature : Feature {redefines ownedMemberFeature}

Operations

None.

Constraints

validateEndFeatureMembershipIsEnd

The ownedMemberFeature of an EndFeatureMembership must be an end Feature.

ownedMemberFeature.isEnd

8.3.3.3.4 Feature

Description

A Feature is a Type that classifies relations between multiple things (in the universe). The domain of the relation
is the intersection of the featuringTypes of the Feature. (The domain of a Feature with no featuringTyps
is implicitly the most general Type Base::Anything from the Kernel Semantic Library.) The co-domain of the
relation is the intersection of the types of the Feature.

In the simplest cases, the featuringTypes and types are Classifiers and the Feature relates two things, one
from the domain and one from the range. Examples include cars paired with wheels, people paired with other
people, and cars paired with numbers representing the car length.

Since Features are Types, their featuringTypes and types can be Features. In this case, the Feature
effectively classifies relations between relations, which can be interpreted as the sequence of things related by the
domain Feature concatenated with the sequence of things related by the co-domain Feature.

The values of a Feature for a given instance of its domain are all the instances of its co-domain that are related to
that domain instance by the Feature. The values of a Feature with chainingFeatures are the same as values
of the last Feature in the chain, which can be found by starting with values of the first Feature, then using those
values as domain instances to obtain valus of the second Feature, and so on, to values of the last Feature.

General Classes

Type

Kernel Modeling Language v1.0 Beta 4 157

Attributes

/chainingFeature : Feature [0..*] {ordered, nonunique}

The Feature that are chained together to determine the values of this Feature, derived from the
chainingFeatures of the ownedFeatureChainings of this Feature, in the same order. The values of a
Feature with chainingFeatures are the same as values of the last Feature in the chain, which can be found by
starting with the values of the first Feature (for each instance of the domain of the original Feature), then using
each of those as domain instances to find the values of the second Feature in chainingFeatures, and so on, to
values of the last Feature.

/crossFeature : Feature [0..1]

The second chainingFeature of the crossedFeature of the ownedCrossSubsetting of this Feature, if it
has one. Semantically, the values of the crossFeature of an end Feature must include all values of the end
Feature obtained when navigating from values of the other end Features of the same owningType.

direction : FeatureDirectionKind [0..1]

Indicates how values of this Feature are determined or used (as specified for the FeatureDirectionKind).

/endOwningType : Type [0..1] {subsets typeWithEndFeature, owningType}

The Type that is related to this Feature by an EndFeatureMembership in which the Feature is an
ownedMemberFeature.

/featureTarget : Feature

The last of the chainingFeatures of this Feature, if it has any. Otherwise, this Feature itself.

/featuringType : Type [0..*] {ordered}

Types that feature this Feature, such that any instance in the domain of the Feature must be classified by all of
these Types, including at least all the featuringTypes of its typeFeaturings. If the Feature is chained, then
the featuringTypes of the first Feature in the chain are also featuringTypes of the chained Feature.

isComposite : Boolean

Whether the Feature is a composite feature of its featuringType. If so, the values of the Feature cannot
exist after its featuring instance no longer does and cannot be values of another composite feature that is not on the
same featuring instance.

isConstant : Boolean

If isVariable is true, then whether the value of this Feature nevertheless does not change over all snapshots of
its owningType.

isDerived : Boolean

Whether the values of this Feature can always be computed from the values of other Features.

isEnd : Boolean

Whether or not this Feature is an end Feature. An end Feature always has multiplicity 1, mapping each of its
domain instances to a single co-domain instance. However, it may have a crossFeature, in which case values of
the crossFeature must be the same as those found by navigation across instances of the owningType from values

158 Kernel Modeling Language v1.0 Beta 4

of other end Features to values of this Feature. If the owningType has n end Features, then the multiplicity,
ordering, and uniqueness declared for the crossFeature of any one of these end Features constrains the
cardinality, ordering, and uniqueness of the collection of values of that Feature reached by navigation when the
values of the other n-1 end Features are held fixed.

isOrdered : Boolean

Whether an order exists for the values of this Feature or not.

isPortion : Boolean

Whether the values of this Feature are contained in the space and time of instances of the domain of the Feature
and represent the same thing as those instances.

isUnique : Boolean

Whether or not values for this Feature must have no duplicates or not.

isVariable : Boolean

Whether the value of this Feature might vary over time. That is, whether the Feature may have a different value
for each snapshot of an owningType that is an Occurrence.

/ownedCrossSubsetting : CrossSubsetting [0..1] {subsets ownedSubsetting}

The one ownedSubsetting of this Feature, if any, that is a CrossSubsetting}, for which the Feature
is the crossingFeature.

/ownedFeatureChaining : FeatureChaining [0..*] {subsets sourceRelationship, ownedRelationship, ordered}

The ownedRelationships of this Feature that are FeatureChainings, for which the Feature will be the
featureChained.

/ownedFeatureInverting : FeatureInverting [0..*] {subsets ownedRelationship, invertingFeatureInverting}

The ownedRelationships of this Feature that are FeatureInvertings and for which the Feature is the
featureInverted.

/ownedRedefinition : Redefinition [0..*] {subsets ownedSubsetting}

The ownedSubsettings of this Feature that are Redefinitions, for which the Feature is the
redefiningFeature.

/ownedReferenceSubsetting : ReferenceSubsetting [0..1] {subsets ownedSubsetting}

The one ownedSubsetting of this Feature, if any, that is a ReferenceSubsetting, for which the Feature is
the referencingFeature.

/ownedSubsetting : Subsetting [0..*] {subsets ownedSpecialization, subsetting}

The ownedSpecializations of this Feature that are Subsettings, for which the Feature is the
subsettingFeature.

/ownedTypeFeaturing : TypeFeaturing [0..*] {subsets ownedRelationship, typeFeaturing, ordered}

Kernel Modeling Language v1.0 Beta 4 159

The ownedRelationships of this Feature that are TypeFeaturings and for which the Feature is the
featureOfType.

/ownedTyping : FeatureTyping [0..*] {subsets ownedSpecialization, typing, ordered}

The ownedSpecializations of this Feature that are FeatureTypings, for which the Feature is the
typedFeature.

/owningFeatureMembership : FeatureMembership [0..1] {subsets owningMembership}

The FeatureMembership that owns this Feature as an ownedMemberFeature, determining its owningType.

/owningType : Type [0..1] {subsets typeWithFeature, owningNamespace, featuringType}

The Type that is the owningType of the owningFeatureMembership of this Feature.

/type : Type [0..*] {ordered}

Types that restrict the values of this Feature, such that the values must be instances of all the types. The types of
a Feature are derived from its typings and the types of its subsettings. If the Feature is chained, then the
types of the last Feature in the chain are also types of the chained Feature.

Operations

allRedefinedFeatures() : Feature [0..*]

Return this Feature and all the Features that are directly or indirectly Redefined by this Feature.

body: ownedRedefinition.redefinedFeature->
closure(ownedRedefinition.redefinedFeature)->
asOrderedSet()->prepend(self)

asCartesianProduct() : Type [0..*]

If isCartesianProduct is true, then return the list of Types whose Cartesian product can be represented by this
Feature. (If isCartesianProduct is not true, the operation will still return a valid value, it will just not
represent anything useful.)

body: featuringType->select(t | t.owner <> self)->
union(featuringType->select(t | t.owner = self)->

selectByKind(Feature).asCartesianProduct())->
union(type)

canAccess(feature : Feature) : Boolean

A Feature can access another feature if the other feature is featured within one of the direct or indirect
featuringTypes of this Feature.

body: let anythingType: Element =
subsettingFeature.resolveGlobal('Base::Anything').memberElement in

let allFeaturingTypes : Sequence(Type) =
featuringTypes->closure(t |

if not t.oclIsKindOf(Feature) then Sequence{}
else

let featuringTypes : OrderedSet(Type) = t.oclAsType(Feature).featuringType in
if featuringTypes->isEmpty() then Sequence{anythingType}
else featuringTypes
endif

160 Kernel Modeling Language v1.0 Beta 4

endif) in
allFeaturingTypes->exists(t | feature.isFeaturedWithin(t))

directionFor(type : Type) : FeatureDirectionKind [0..1]

Return the directionOf this Feature relative to the given type.

body: type.directionOf(self)

effectiveName() : String [0..1] {redefines effectiveName}

If a Feature has no declaredName or declaredShortName , then its effective name is given by the effective
name of the Feature returned by the namingFeature() operation, if any.

body: if declaredShortName <> null or declaredName <> null then
declaredName

else
let namingFeature : Feature = namingFeature() in
if namingFeature = null then

null
else

namingFeature.effectiveName()
endif

endif

effectiveShortName() : String [0..1] {redefines effectiveShortName}

If a Feature has no declaredShortName or declaredName, then its effective shortName is given by the
effective shortName of the Feature returned by the namingFeature() operation, if any.

body: if declaredShortName <> null or declaredName <> null then
declaredShortName

else
let namingFeature : Feature = namingFeature() in
if namingFeature = null then

null
else

namingFeature.effectiveShortName()
endif

endif

isCartesianProduct() : Boolean

Check whether this Feature can be used to represent a Cartesian product of Types.

body: type->size() = 1 and
featuringType.size() = 1 and
(featuringType.first().owner = self implies

featuringType.first().oclIsKindOf(Feature) and
featuringType.first().oclAsType(Feature).isCartesianProduct())

isCompatibleWith(otherType : Type) {redefines isCompatibleWith}

A Feature is compatible with an otherType if it either directly or indirectly specializes the otherType or if the
otherType is also a Feature and all of the following are true.

1. Neither this Feature or the otherType have any ownedFeatures.
2. This Feature directly or indirectly redefines a Feature that is also directly or indirectly redefined by the

otherType.

Kernel Modeling Language v1.0 Beta 4 161

3. This Feature can access the otherType.

body: specializes(otherType) or
supertype.oclIsKindOf(Feature) and
ownedFeature->isEmpty() and
otherType.ownedFeature->isEmpty() and
ownedRedefinitions.allRedefinedFeatures()->exists(f |

otherType.oclAsType(Feature).allRedefinedFeatures()->includes(f)) and
canAccess(otherType.oclAsType(Feature))

isFeaturedWithin(type : Type [0..1]) : Boolean

Return if the featuringTypes of this Feature are compatible with the given type. If type is null, then check if
this Feature is explicitly or implicitly featured by Base::Anything. If this Feature has isVariable = true,
then also consider it to be featured within its owningType. If this Feature is a feature chain whose first
chainingFeature has isVariable = true, then also consider it to be featured within the owningType of its
first chainingFeature.

body: if type = null then
featuringType->forAll(f | f = resolveGlobal('Base::Anything').memberElement)

else
featuringType->forAll(f | type.isCompatibleWith(f)) or
isVariable and type.specializes(owningType) or
chainingFeature->notEmpty() and chainingFeature->first().isVariable and

type.specializes(chainingFeature->first().owningType)
endif

isFeaturingType(type : Type) : Boolean

Return whether the given type must be a featuringType of this Feature. If this Feature has isVariable =
false, then return true if the type is the owningType of the Feature. If isVariable = true, then return true
if the type is a Feature representing the snapshots of the owningType of this Feature.

body: owningType <> null and
if not isVariable then type = owningType
else if owningType = resolveGlobal('Occurrences::Occurrence').memberElement then

type = resolveGlobal('Occurrences::Occurrence::snapshots').memberElement
else

type.oclIsKindOf(Feature) and
let feature : Feature = type.oclAsType(Feature) in
feature.featuringType->includes(owningType) and
feature.redefinesFromLibrary('Occurrences::Occurrence::snapshots')

endif

isOwnedCrossFeature() : Boolean

Return whether this Feature is an owned cross Feature of an end Feature.

body: owningNamespace <> null and
owningNamespace.oclIsKindOf(Feature) and
owningNamespace.oclAsType(Feature).ownedCrossFeature() = self

namingFeature() : Feature [0..1]

By default, the naming Feature of a Feature is given by its first redefinedFeature of its first
ownedRedefinition, if any.

body: if ownedRedefinition->isEmpty() then
null

162 Kernel Modeling Language v1.0 Beta 4

else
ownedRedefinition->at(1).redefinedFeature

endif

ownedCrossFeature() : Feature [0..1]

If this Feature is an end Feature of its owningType, then return the first ownedMember of the Feature that is a
Feature, but not a Multiplicity or a MetadataFeature, and whose owningMembership is not a
FeatureMembership. If this exists, it is the crossFeature of the end Feature.

body: if not isEnd or owningType = null then null
else

let ownedMemberFeatures: Sequence(Feature) =
ownedMember->selectByKind(Feature)->

reject(oclIsKindOf(Multiplicity) or
oclIsKindOf(MetadataFeature) or
oclIsKindOf(FeatureValue))->

reject(owningMembership.oclIsKindOf(FeatureMembership)) in
if ownedMemberFeatures.isEmpty() then null
else ownedMemberFeatures->first()
endif

redefines(redefinedFeature : Feature) : Boolean

Check whether this Feature directly redefines the given redefinedFeature.

body: ownedRedefinition.redefinedFeature->includes(redefinedFeature)

redefinesFromLibrary(libraryFeatureName : String) : Boolean

Check whether this Feature directly redefines the named library Feature. libraryFeatureName must conform
to the syntax of a KerML qualified name and must resolve to a Feature in global scope.

body: let mem: Membership = resolveGlobal(libraryFeatureName) in
mem <> null and mem.memberElement.oclIsKindOf(Feature) and
redefines(mem.memberElement.oclAsType(Feature))

subsetsChain(first : Feature, second : Feature) : Boolean

Check whether this Feature directly or indirectly specializes a Feature whose last two chainingFeatures are
the given Features first and second.

body: allSuperTypes()->selectAsKind(Feature)->
exists(f | let n: Integer = f.chainingFeature->size() in

n >= 2 and
f.chainingFeature->at(n-1) = first and
f.chainingFeature->at(n) = second)

supertypes(excludeImplied : Boolean) : Type [0..*] {redefines supertypes}

body: let supertypes : OrderedSet(Type) =
self.oclAsType(Type).supertypes(excludeImplied) in

if featureTarget = self then supertypes
else supertypes->append(featureTarget)
endif

typingFeatures() : Feature [0..*]

Kernel Modeling Language v1.0 Beta 4 163

Return the Features used to determine the types of this Feature (other than this Feature itself). If this
Feature is not conjugated, then the typingFeatures consist of all subsetted Features, except from
CrossSubsetting, and the last chainingFeature (if any). If this Feature is conjugated, then the
typingFeatures are only its originalType (if the originalType is a Feature).

Note. CrossSubsetting is excluded from the determination of the type of a Feature in order to avoid
circularity in the construction of implied CrossSubsetting relationships. The
validateFeatureCrossFeatureType requires that the crossFeature of a Feature have the same type as
the Feature.

body: if not isConjugated then
let subsettedFeatures : OrderedSet(Feature) =

subsetting->reject(s | s.oclIsKindOf(CrossSubsetting)).subsettedFeatures in
if chainingFeature->isEmpty() or

subsettedFeature->includes(chainingFeature->last())
then subsettedFeatures
else subsettedFeatures->append(chainingFeature->last())
endif

else if conjugator.originalType.oclIsKindOf(Feature) then
OrderedSet{conjugator.originalType.oclAsType(Feature)}

else OrderedSet{}
endif endif

Constraints

checkFeatureCrossingSpecialization

If this Feature has isEnd = true and ownedCrossFeature returns a non-null value, then the crossFeature
of the Feature must be the Feature returned from ownedCrossFeature (which implies that this Feature has
an appropriate ownedCrossSubsetting to realize this).

ownedCrossFeature() <> null implies
crossFeature = ownedCrossFeature()

checkFeatureDataValueSpecialization

If a Feature has an ownedTyping relationship to a DataType, then it must directly or indirectly specialize
Base::dataValues from the Kernel Semantic Library.

ownedTyping.type->exists(selectByKind(DataType)) implies
specializesFromLibrary('Base::dataValues')

checkFeatureEndRedefinition

If a Feature has isEnd = true and an owningType that is not empty, then, for each direct supertype of its
owningType, it must redefine the endFeature at the same position, if any.

isEnd and owningType <> null implies
let i : Integer =

owningType.ownedEndFeature->indexOf(self) in
owningType.ownedSpecialization.general->

forAll(supertype |
supertype.endFeature->size() >= i implies

redefines(supertype.endFeature->at(i))

checkFeatureEndSpecialization

164 Kernel Modeling Language v1.0 Beta 4

If a Feature has isEnd = true and an owningType that is an Association or a Connector, then it must
directly or indirectly specialize Links::Link::participant from the Kernel Semantic Library.

isEnd and owningType <> null and
(owningType.oclIsKindOf(Association) or
owningType.oclIsKindOf(Connector)) implies

specializesFromLibrary('Links::Link::participant')

checkFeatureFeatureMembershipTypeFeaturing

If a Feature is owned via a FeatureMembership, then it must have a featuringType for which the operation
isFeaturingType returns true.

owningFeatureMembership <> null implies
featuringTypes->exists(t | isFeaturingType(t))

checkFeatureFlowFeatureRedefinition

If a Feature is the first ownedFeature of a first or second FlowEnd, then it must directly or indirectly specialize
either Transfers::Transfer::source::sourceOutput or
Transfers::Transfer::target::targetInput, respectively, from the Kernel Semantic Library.

owningType <> null and
owningType.oclIsKindOf(FlowEnd) and
owningType.ownedFeature->at(1) = self implies

let flowType : Type = owningType.owningType in
flowType <> null implies

let i : Integer =
flowType.ownedFeature.indexOf(owningType) in

(i = 1 implies
redefinesFromLibrary('Transfers::Transfer::source::sourceOutput')) and

(i = 2 implies
redefinesFromLibrary('Transfers::Transfer::source::targetInput'))

checkFeatureObjectSpecialization

If a Feature has an ownedTyping relationship to a Structure, then it must directly or indirectly specialize
Objects::objects from the Kernel Semantics Library.

ownedTyping.type->exists(selectByKind(Structure)) implies
specializesFromLibary('Objects::objects')

checkFeatureOccurrenceSpecialization

If a Feature has an ownedTyping relationship to a Class, then it must directly or indirectly specialize
Occurrences::occurrences from the Kernel Semantic Library.

ownedTyping.type->exists(selectByKind(Class)) implies
specializesFromLibrary('Occurrences::occurrences')

checkFeatureOwnedCrossFeatureRedefinitionSpecialization

If this Feature is the ownedCrossFeature of an end Feature, then, for any end Feature that is redefined by
the owning end Feature of this Feature, this Feature must subset the crossFeature of the redefined end
Feature, if this exists.

isOwnedCrossFeature() implies
ownedSubsetting.subsettedFeature->includesAll(

Kernel Modeling Language v1.0 Beta 4 165

owner.oclAsType(Feature).ownedRedefinition.redefinedFeature->
select(crossFeature <> null).crossFeature)

checkFeatureOwnedCrossFeatureSpecialization

If this Feature is the ownedCrossFeature of an end Feature, then it must directly or indirectly specialize the
types of its owning end Feature.

isOwnedCrossFeature() implies
owner.oclAsType(Feature).type->forAll(t | self.specializes(t))

checkFeatureOwnedCrossFeatureTypeFeaturing

If this Feature is the ownedCrossFeature of an end Feature, then it must have featuringTypes consistent
with the crossing from other end Features of the owningType of its end Feature.

isOwnedCrossFeature() implies
let otherEnds : OrderedSet(Feature) =

owner.oclAsType(Feature).owningType.endFeature->excluding(self) in
if (otherEnds->size() = 1) then

featuringType = otherEnds->first().type
else

featuringType->size() = 1 and
featuringType->first().isCartesianProduct() and
featuringType->first().asCartesianProduct() = otherEnds.type and
featuringType->first().allSupertypes()->includesAll(

owner.oclAsType(Feature).ownedRedefinition.redefinedFeature->
select(crossFeature() <> null).crossFeature().featuringType)

endif

checkFeatureParameterRedefinition

If a Feature is a parameter of an owningType that is a Behavior or Step, but not

• A result parameter
• A parameter of an InvocationExpression, with at least one non-implied ownedRedefinition

then, for each direct supertype of its owningType that is also a Behavior or Step, it must redefine the parameter
at the same position, if any.

owningType <> null and
not owningFeatureMembership.

oclIsKindOf(ReturnParameterMembership) and
(owningType.oclIsKindOf(Behavior) or
owningType.oclIsKindOf(Step) and

(owningType.oclIsKindOf(InvocationExpression) implies
not ownedRedefinition->exists(not isImplied))

implies
let i : Integer =

owningType.ownedFeature->select(direction <> null)->
reject(owningFeatureMembership.

oclIsKindOf(ReturnParameterMembership))->
indexOf(self) in

owningType.ownedSpecialization.general->
forAll(supertype |

let ownedParameters : Sequence(Feature) =
supertype.ownedFeature->select(direction <> null)->

reject(owningFeatureMembership.
oclIsKindOf(ReturnParameterMembership)) in

166 Kernel Modeling Language v1.0 Beta 4

ownedParameters->size() >= i implies
redefines(ownedParameters->at(i))

checkFeaturePortionSpecialization

If a Feature has isPortion = true, an ownedTyping relationship to a Class, and an owningType that is a
Class or another Feature typed by a Class, then it must directly or indirectly specialize
Occurrences::Occurrence::portions from the Kernel Semantic Library.

isPortion and
ownedTyping.type->includes(oclIsKindOf(Class)) and
owningType <> null and
(owningType.oclIsKindOf(Class) or
owningType.oclIsKindOf(Feature) and

owningType.oclAsType(Feature).type->
exists(oclIsKindOf(Class))) implies

specializesFromLibrary('Occurrence::Occurrence::portions')

checkFeatureResultRedefinition

If a Feature is a result parameter of an owningType that is a Function or Expression, then, for each direct
supertype of its owningType that is also a Function or Expression, it must redefine the result parameter.

owningType <> null and
(owningType.oclIsKindOf(Function) and

self = owningType.oclAsType(Function).result or
owningType.oclIsKindOf(Expression) and

self = owningType.oclAsType(Expression).result) implies
owningType.ownedSpecialization.general->

select(oclIsKindOf(Function) or oclIsKindOf(Expression))->
forAll(supertype |

redefines(
if superType.oclIsKindOf(Function) then

superType.oclAsType(Function).result
else

superType.oclAsType(Expression).result
endif)

checkFeatureSpecialization

A Feature must directly or indirectly specialize Base::things from the Kernel Semantic Library.

specializesFromLibrary('Base::things')

checkFeatureSubobjectSpecialization

A composite Feature typed by a Structure, and whose ownedType is a Structure or another Feature typed
by a Structure must directly or indirectly specialize Objects::Object::subobjects

isComposite and
ownedTyping.type->includes(oclIsKindOf(Structure)) and
owningType <> null and
(owningType.oclIsKindOf(Structure) or
owningType.type->includes(oclIsKindOf(Structure))) implies

specializesFromLibrary('Occurrence::Occurrence::suboccurrences')

checkFeatureSuboccurrenceSpecialization

Kernel Modeling Language v1.0 Beta 4 167

A composite Feature that has an ownedTyping relationship to a Class, and whose ownedType is a Class or
another Feature typed by a Class, must directly or indirectly specialize
Occurrences::Occurrence::suboccurrences

isComposite and
ownedTyping.type->includes(oclIsKindOf(Class)) and
owningType <> null and
(owningType.oclIsKindOf(Class) or
owningType.oclIsKindOf(Feature) and

owningType.oclAsType(Feature).type->
exists(oclIsKindOf(Class))) implies

specializesFromLibrary('Occurrence::Occurrence::suboccurrences')

checkFeatureValuationSpecialization

If a Feature has a FeatureValue, no ownedSpecializations that are not implied, and is not directed, then it
must specialize the result of the value Expression of the FeatureValue.

direction = null and
ownedSpecializations->forAll(isImplied) implies

ownedMembership->
selectByKind(FeatureValue)->
forAll(fv | specializes(fv.value.result))

deriveFeatureChainingFeature

The chainingFeatures of a Feature are the chainingFeatures of its ownedFeatureChainings.

chainingFeature = ownedFeatureChaining.chainingFeature

deriveFeatureCrossFeature

The crossFeature of a Feature is the second chainingFeature of the crossedFeature of the
ownedCrossSubsetting of the Feature, if any.

crossFeature =
if ownedCrossSubsetting = null then null
else

let chainingFeatures: Sequence(Feature) =
ownedCrossSubsetting.crossedFeature.chainingFeature in

if chainingFeatures->size() < 2 then null
else chainingFeatures->at(2)

endif

deriveFeatureFeatureTarget

If a Feature has no chainingFeatures, then its featureTarget is the Feature itself, otherwise the
featureTarget is the last of the chainingFeatures.

featureTarget = if chainingFeature->isEmpty() then self else chainingFeature->last() endif

deriveFeatureFeaturingType

The featuringTypes of a Feature include the featuringTypes of all the typeFeaturings of the Feature.
If the Feature has chainingFeatures, then its featuringTypes also include the featuringTypes of the first
chainingFeature.

featuringType =
let featuringTypes : OrderedSet(Type) =

168 Kernel Modeling Language v1.0 Beta 4

featuring.type->asOrderedSet() in
if chainingFeature->isEmpty() then featuringTypes
else

featuringTypes->
union(chainingFeature->first().featuringType)->
asOrderedSet()

endif

deriveFeatureOwnedCrossSubsetting

The ownedCrossSubsetting of a Feature is the ownedSubsetting that is a CrossSubsetting, if any.

ownedCrossSubsetting =
let crossSubsettings: Sequence(CrossSubsetting) =

ownedSubsetting->selectByKind(CrossSubsetting) in
if crossSubsettings->isEmpty() then null
else crossSubsettings->first()
endif

deriveFeatureOwnedFeatureChaining

The ownedFeatureChainings of a Feature are the ownedRelationships that are FeatureChainings.

ownedFeatureChaining = ownedRelationship->selectByKind(FeatureChaining)

deriveFeatureOwnedFeatureInverting

The ownedFeatureInvertings of a Feature are its ownedRelationships that are FeatureInvertings.

ownedFeatureInverting = ownedRelationship->selectByKind(FeatureInverting)->
select(fi | fi.featureInverted = self)

deriveFeatureOwnedRedefinition

The ownedRedefinitions of a Feature are its ownedSubsettings that are Redefinitions.

ownedRedefinition = ownedSubsetting->selectByKind(Redefinition)

deriveFeatureOwnedReferenceSubsetting

The ownedReferenceSubsetting of a Feature is the first ownedSubsetting that is a
ReferenceSubsetting (if any).

ownedReferenceSubsetting =
let referenceSubsettings : OrderedSet(ReferenceSubsetting) =

ownedSubsetting->selectByKind(ReferenceSubsetting) in
if referenceSubsettings->isEmpty() then null
else referenceSubsettings->first() endif

deriveFeatureOwnedSubsetting

The ownedSubsettings of a Feature are its ownedSpecializations that are Subsettings.

ownedSubsetting = ownedSpecialization->selectByKind(Subsetting)

deriveFeatureOwnedTypeFeaturing

The ownedTypeFeaturings of a Feature are its ownedRelationships that are TypeFeaturings and which
have the Feature as their featureOfType.

Kernel Modeling Language v1.0 Beta 4 169

ownedTypeFeaturing = ownedRelationship->selectByKind(TypeFeaturing)->
select(tf | tf.featureOfType = self)

deriveFeatureOwnedTyping

The ownedTypings of a Feature are its ownedSpecializations that are FeatureTypings.

ownedTyping = ownedGeneralization->selectByKind(FeatureTyping)

deriveFeatureType

The types of a Feature are the union of the types of its typings and the types of the Features it subsets,
with all redundant supertypes removed. If the Feature has chainingFeatures, then the union also includes the
types of the last chainingFeature.

type =
let types : OrderedSet(Types) = OrderedSet{self}->

-- Note: The closure operation automatically handles circular relationships.
closure(typingFeatures()).typing.type->asOrderedSet() in

types->reject(t1 | types->exist(t2 | t2 <> t1 and t2.specializes(t1)))

validateFeatureChainingFeatureConformance

Each chainingFeature (other than the first) must be featured within the previous chainingFeature.

Sequence{2..chainingFeature->size()}->forAll(i |
chainingFeature->at(i).isFeaturedWithin(chainingFeature->at(i-1)))

validateFeatureChainingFeatureNotOne

A Feature must have either no chainingFeatures or more than one.

chainingFeature->size() <> 1

validateFeatureChainingFeaturesNotSelf

A Feature cannot be one of its own chainingFeatures.

chainingFeature->excludes(self)

validateFeatureConstantIsVariable

A Feature with isConstant = true must have isVariable = true

isConstant implies isVariable

validateFeatureCrossFeatureSpecialization

If this Feature has a crossFeature, then, for any Feature that is redefined by this Feature, the
crossFeature must specialize the crossFeature of the redefined end Feature, if this exists.

crossFeature <> null implies
ownedRedefinition.redefinedFeature.crossFeature->

forAll(f | f <> null implies crossFeature.specializes(f))

validateFeatureCrossFeatureType

The crossFeature of a Feature must have the same types as the Feature.

170 Kernel Modeling Language v1.0 Beta 4

crossFeature <> null implies
crossFeature.type->asSet() = type->asSet()

validateFeatureEndIsConstant

A Feature with isEnd = true and isVariable = true must have isConstant = true.

isEnd and isVariable implies isConstant

validateFeatureEndMultiplicity

If a Feature has isEnd = true, then it must have multiplicity 1..1.

isEnd implies
multiplicities().allSuperTypes()->flatten()->
selectByKind(MultiplicityRange)->exists(hasBounds(1,1))

validateFeatureEndNoDirection

A Feature with isEnd = true must have no direction.

isEnd implied direction = null

validateFeatureEndNotDerivedAbstractCompositeOrPortion

A Feature with isEnd = true must have all of isDerived = false, isAbstract = false, isComposite
= false, and isPortion = false.

isEnd implies not (isDerived or isAbstract or isComposite or isPortion)

validateFeatureIsVariable

A Feature with isVariable = true must have an owningType that directly or indirectly specializes the Class
Occurrences::Occurrence from the Kernel Semantic Library.

isVariable implies
owningType <> null and
owningType.specializes('Occurrences::Occurrence')

validateFeatureMultiplicityDomain

If a Feature has a multiplicity, then the featuringTypes of the multiplicity must be the same as those
of the Feature itself.

multiplicity <> null implies multiplicity.featuringType = featuringType

validateFeatureOwnedCrossSubsetting

A Feature must have at most one ownedSubsetting that is a CrossSubsetting.

ownedSubsetting->selectByKind(CrossSubsetting)->size() <= 1

validateFeatureOwnedReferenceSubsetting

A Feature must have at most one ownedSubsetting that is an ReferenceSubsetting.

ownedSubsetting->selectByKind(ReferenceSubsetting)->size() <= 1

Kernel Modeling Language v1.0 Beta 4 171

validateFeaturePortionNotVariable

isPortion implies not isVariable

8.3.3.3.5 FeatureChaining

Description

FeatureChaining is a Relationship that makes its target Feature one of the chainingFeatures of its
owning Feature.

General Classes

Relationship

Attributes

chainingFeature : Feature {redefines target}

The Feature whose values partly determine values of featureChained, as described in
Feature::chainingFeature.

/featureChained : Feature {subsets owningRelatedElement, redefines source}

The Feature whose values are partly determined by values of the chainingFeature, as described in
Feature::chainingFeature.

Operations

None.

Constraints

None.

8.3.3.3.6 FeatureInverting

Description

A FeatureInverting is a Relationship between Features asserting that their interpretations (sequences) are
the reverse of each other, identified as featureInverted and invertingFeature. For example, a Feature
identifying each person's parents is the inverse of a Feature identifying each person's children. A person identified
as a parent of another will identify that other as one of their children.

General Classes

Relationship

Attributes

featureInverted : Feature {redefines source}

The Feature that is an inverse of the invertingFeature.

invertingFeature : Feature {redefines target}

172 Kernel Modeling Language v1.0 Beta 4

The Feature that is an inverse of the invertedFeature.

/owningFeature : Feature [0..1] {subsets owningRelatedElement, featureInverted}

A featureInverted that is also the owningRelatedElement of this FeatureInverting.

Operations

None.

Constraints

None.

8.3.3.3.7 FeatureTyping

Description

FeatureTyping is Specialization in which the specific Type is a Feature. This means the set of instances
of the (specific) typedFeature is a subset of the set of instances of the (general) type. In the simplest case, the
type is a Classifier, whereupon the typedFeature has values that are instances of the Classifier.

General Classes

Specialization

Attributes

/owningFeature : Feature [0..1] {subsets typedFeature, redefines owningType}

A typedFeature that is also the owningRelatedElement of this FeatureTyping.

type : Type {redefines general}

The Type that is being applied by this FeatureTyping.

typedFeature : Feature {redefines specific}

The Feature that has a type determined by this FeatureTyping.

Operations

None.

Constraints

None.

8.3.3.3.8 Redefinition

Description

Redefinition is a kind of Subsetting that requires the redefinedFeature and the redefiningFeature to
have the same values (on each instance of the domain of the redefiningFeature). This means any restrictions on
the redefiningFeature, such as type or multiplicity, also apply to the redefinedFeature (on each
instance of the domain of the redefiningFeature), and vice versa. The redefinedFeature might have values

Kernel Modeling Language v1.0 Beta 4 173

for instances of the domain of the redefiningFeature, but only as instances of the domain of the
redefinedFeature that happen to also be instances of the domain of the redefiningFeature. This is supported
by the constraints inherited from Subsetting on the domains of the redefiningFeature and
redefinedFeature. However, these constraints are narrowed for Redefinition to require the owningTypes of
the redefiningFeature and redefinedFeature to be different and the redefinedFeature to not be inherited
into the owningNamespace of the redefiningFeature.This enables the redefiningFeature to have the same
name as the redefinedFeature, if desired.

General Classes

Subsetting

Attributes

redefinedFeature : Feature {redefines subsettedFeature}

The Feature that is redefined by the redefiningFeature of this Redefinition.

redefiningFeature : Feature {redefines subsettingFeature}

The Feature that is redefining the redefinedFeature of this Redefinition.

Operations

None.

Constraints

validateRedefinitionDirectionConformance

If the redefinedFeature of a Redefinition has a direction of in or out (relative to any featuringType of
the redefiningFeature or the owningType, if the redefiningFeature has isVariable = true), then the
redefiningFeature must have the same direction. If the redefinedFeature has a direction of inout, then
the redefiningFeature must have a non-null direction. (Note: the direction of the redefinedFeature
relative to a featuringType of the redefiningFeature is the direction it would have if it had been inherited
and not redefined.)

let featuringTypes : Sequence(Type) =
if redefiningFeature.isVariable then Sequence{redefiningFeature.owningType}
else redefiningFeature.featuringType
endif in

featuringTypes->forAll(t |
let direction : FeatureDirectionKind = t.directionOf(redefinedFeature) in
((direction = FeatureDirectionKind::_'in' or

direction = FeatureDirectionKind::out) implies
redefiningFeature.direction = direction)

and
(direction = FeatureDirectionKind::inout implies

redefiningFeature.direction <> null))

validateRedefinitionEndConformance

If the redefinedFeature of a Redefinition has isEnd = true, then the redefiningFeature must have isEnd = true.

redefinedFeature.isEnd implies redefiningFeature.isEnd

validateRedefinitionFeaturingTypes

174 Kernel Modeling Language v1.0 Beta 4

The redefiningFeature of a Redefinition must have at least one featuringType that is not also a
featuringType of the redefinedFeature.

let anythingType: Type =
redefiningFeature.resolveGlobal('Base::Anything').modelElement.oclAsType(Type) in

-- Including "Anything" accounts for implicit featuringType of Features
-- with no explicit featuringType.
let redefiningFeaturingTypes: Set(Type) =

if redefiningFeature.isVariable then Set{redefiningFeature.owningType}
else redefiningFeature.featuringTypes->asSet()->including(anythingType)
endif in

let redefinedFeaturingTypes: Set(Type) =
if redefinedFeature.isVariable then Set{redefinedFeature.owningType}
else redefinedFeature.featuringTypes->asSet()->including(anythingType)
endif in

redefiningFeaturingTypes <> redefinedFeaturingType

8.3.3.3.9 ReferenceSubsetting

Description

ReferenceSubsetting is a kind of Subsetting in which the referencedFeature is syntactically
distinguished from other Features subsetted by the referencingFeature. ReferenceSubsetting has the
same semantics as Subsetting, but the referencedFeature may have a special purpose relative to the
referencingFeature. For instance, ReferenceSubsetting is used to identify the relatedFeatures of a
Connector.

ReferenceSubsetting is always an ownedRelationship of its referencingFeature. A Feature can have
at most one ownedReferenceSubsetting.

General Classes

Subsetting

Attributes

referencedFeature : Feature {redefines subsettedFeature}

The Feature that is referenced by the referencingFeature of this ReferenceSubsetting.

/referencingFeature : Feature {redefines subsettingFeature, owningFeature}

The Feature that owns this ReferenceSubsetting relationship, which is also its subsettingFeature.

Operations

None.

Constraints

None.

8.3.3.3.10 Subsetting

Description

Subsetting is Specialization in which the specific and general Types are Features. This means all
values of the subsettingFeature (on instances of its domain, i.e., the intersection of its featuringTypes) are

Kernel Modeling Language v1.0 Beta 4 175

values of the subsettedFeature on instances of its domain. To support this the domain of the
subsettingFeature must be the same or specialize (at least indirectly) the domain of the subsettedFeature
(via Specialization), and the co-domain (intersection of the types) of the subsettingFeature must
specialize the co-domain of the subsettedFeature.

General Classes

Specialization

Attributes

/owningFeature : Feature [0..1] {subsets subsettingFeature, redefines owningType}

A subsettingFeature that is also the owningRelatedElement of this Subsetting.

subsettedFeature : Feature {redefines general}

The Feature that is subsetted by the subsettingFeature of this Subsetting.

subsettingFeature : Feature {redefines specific}

The Feature that is a subset of the subsettedFeature of this Subsetting.

Operations

None.

Constraints

validateSubsettingConstantConformance

If the subsettedFeature of a Subsetting has isConstant = true and the subsettingFeature has
isVariable = true, then the subsettingFeature must have isConstant = true.

subsettedFeature.isConstant and subsettingFeature.isVariable implies
subsettingFeature.isConstant

validateSubsettingFeaturingTypes

The subsettedFeature must be accessible by the subsettingFeature.

subsettingFeature.canAccess(subsettedFeature)

validateSubsettingUniquenessConformance

If the subsettedFeature of a Subsetting has isUnique = true, then the subsettingFeature must have
isUnique = true.

subsettedFeature.isUnique implies subsettingFeature.isUnique

8.3.3.3.11 TypeFeaturing

Description

A TypeFeaturing is a Featuring Relationship in which the featureOfType is the source and the
featuringType is the target.

176 Kernel Modeling Language v1.0 Beta 4

General Classes

Relationship

Attributes

featureOfType : Feature {redefines source}

The Feature that is featured by the featuringType. It is the source of the TypeFeaturing.

featuringType : Type {redefines target}

The Type that features the featureOfType. It is the target of the TypeFeaturing.

/owningFeatureOfType : Feature [0..1] {subsets featureOfType, owningRelatedElement}

A featureOfType that is also the owningRelatedElement of this TypeFeaturing.

Operations

None.

Constraints

None.

8.3.4 Kernel Abstract Syntax
8.3.4.1 Data Types Abstract Syntax

8.3.4.1.1 Overview

DataType

Classifier

Figure 23. Data Types

8.3.4.1.2 DataType

Description

A DataType is a Classifier of things (in the universe) that can only be distinguished by how they are related to
other things (via Features). This means multiple things classified by the same DataType

• Cannot be distinguished when they are related to other things in exactly the same way, even when they are
intended to be about different things.

• Can be distinguished when they are related to other things in different ways, even when they are intended
to be about the same thing.

General Classes

Kernel Modeling Language v1.0 Beta 4 177

Classifier

Attributes

None.

Operations

None.

Constraints

checkDataTypeSpecialization

A DataType must directly or indirectly specialize the base DataType Base::DataValue from the Kernel
Semantic Library.

specializesFromLibrary('Base::DataValue')

validateDataTypeSpecialization

A DataType must not specialize a Class or an Association.

ownedSpecialization.general->
forAll(not oclIsKindOf(Class) and

not oclIsKindOf(Association))

8.3.4.2 Classes Abstract Syntax

8.3.4.2.1 Overview

Class

Classifier

Figure 24. Classes

8.3.4.2.2 Class

Description

A Class is a Classifier of things (in the universe) that can be distinguished without regard to how they are
related to other things (via Features). This means multiple things classified by the same Class can be
distinguished, even when they are related other things in exactly the same way.

General Classes

Classifier

Attributes

None.

178 Kernel Modeling Language v1.0 Beta 4

Operations

None.

Constraints

checkClassSpecialization

A Class must directly or indirectly specialize the base Class Occurrences::Occurrence from the Kernel
Semantic Library.

specializesFromLibrary('Occurrences::Occurrence')

validateClassSpecialization

A Class must not specialize a DataType and it can only specialize an Association if it is also itself a kind of
Association (such as an AssociationStructure or Interaction).

ownedSpecialization.general->
forAll(not oclIsKindOf(DataType)) and

not oclIsKindOf(Association) implies
ownedSpecialization.general->

forAll(not oclIsKindOf(Association))

8.3.4.3 Structures Abstract Syntax

8.3.4.3.1 Overview

Structure

Class

Figure 25. Structures

8.3.4.3.2 Structure

Description

A Structure is a Class of objects in the modeled universe that are primarily structural in nature. While such an
object is not itself behavioral, it may be involved in and acted on by Behaviors, and it may be the performer of
some of them.

General Classes

Class

Attributes

None.

Operations

None.

Kernel Modeling Language v1.0 Beta 4 179

Constraints

checkStructureSpecialization

A Structure must directly or indirectly specialize the base Structure Objects::Object from the Kernel
Semantic Library.

specializesFromLibrary('Objects::Object')

validateStructureSpecialization

A Structure must not specialize a Behavior.

ownedSpecialization.general->forAll(not oclIsKindOf(Behavior))

8.3.4.4 Associations Abstract Syntax

8.3.4.4.1 Overview

Association Type

AssociationStructure

Classifier

Structure

Class

Feature

Relationship

{subsets association,
subsets targetAssociation}

+/targetAssociation

0..* {subsets relatedType,
redefines target}

+/targetType

0..*

{subsets relatedType,
redefines source}

+/sourceType

0..1{subsets association,
subsets sourceRelationship}

+/sourceAssociation

0..*

{subsets
relationship}

+/association

0..* {redefines relatedElement,
ordered, nonunique}

+/relatedType

0..*

{subsets
typeWithEndFeature}

+/associationWithEnd

0..* {redefines
endFeature}

+/associationEnd

0..*

Figure 26. Associations

8.3.4.4.2 Association

Description

An Association is a Relationship and a Classifier to enable classification of links between things (in the
universe). The co-domains (types) of the associationEnd Features are the relatedTypes, as co-domain and
participants (linked things) of an Association identify each other.

General Classes

Classifier
Relationship

180 Kernel Modeling Language v1.0 Beta 4

Attributes

/associationEnd : Feature [0..*] {redefines endFeature}

The features of the Association that identify the things that can be related by it. A concrete Association
must have at least two associationEnds. When it has exactly two, the Association is called a binary
Association.

/relatedType : Type [0..*] {redefines relatedElement, ordered, nonunique}

The types of the associationEnds of the Association, which are the relatedElements of the
Association considered as a Relationship.

/sourceType : Type [0..1] {subsets relatedType, redefines source}

The source relatedType for this Association. It is the first relatedType of the Association.

/targetType : Type [0..*] {subsets relatedType, redefines target}

The target relatedTypes for this Association. This includes all the relatedTypes other than the
sourceType.

Operations

None.

Constraints

checkAssociationBinarySpecialization

A binary Association must directly or indirectly specialize the base Association Links::binaryLink from
the Kernel Semantic Library.

associationEnd->size() = 2 implies
specializesFromLibrary('Links::BinaryLink')

checkAssociationSpecialization

An Association must directly or indirectly specialize the base Association Links::Link from the Kernel
Semantic Library.

specializesFromLibrary('Links::Link')

deriveAssociationRelatedType

The relatedTypes of an Association are the types of its associationEnds.

relatedType = associationEnd.type

deriveAssociationSourceType

The sourceType of an Association is its first relatedType (if any).

sourceType =
if relatedType->isEmpty() then null
else relatedType->first() endif

Kernel Modeling Language v1.0 Beta 4 181

deriveAssociationTargetType

targetType =
if relatedType->size() < 2 then OrderedSet{}
else

relatedType->
subSequence(2, relatedType->size())->
asOrderedSet()

endif

validateAssociationBinarySpecialization

If an Association has more than two associationEnds, then it must not specialize, directly or indirectly, the
Association BinaryLink from the Kernel Semantic Library.

associationEnds->size() > 2 implies
not specializesFromLibrary('Links::BinaryLink')

validateAssociationEndTypes

The ownedEndFeatures of an Association must have exactly one type

ownedEndFeature->forAll(type->size() = 1)

validateAssociationRelatedTypes

If an Association is concrete (not abstract), then it must have at least two relatedTypes.

not isAbstract implies relatedType->size() >= 2

validateAssociationStructureIntersection

If an Association is also a kind of Structure, then it must be an AssociationStructure.

oclIsKindOf(Structure) = oclIsKindOf(AssociationStructure)

8.3.4.4.3 AssociationStructure

Description

An AssociationStructure is an Association that is also a Structure, classifying link objects that are both
links and objects. As objects, link objects can be created and destroyed, and their non-end Features can change
over time. However, the values of the end Features of a link object are fixed and cannot change over its lifetime.

General Classes

Association
Structure

Attributes

None.

Operations

None.

Constraints

182 Kernel Modeling Language v1.0 Beta 4

checkAssociationStructureBinarySpecialization

A binary AssociationStructure must directly or indirectly specialize the base AssociationStructure
Objects::BinaryLinkObject from the Kernel Semantic Library.

endFeature->size() = 2 implies
specializesFromLibrary('Objects::BinaryLinkObject')

checkAssociationStructureSpecialization

An AssociationStructure must directly or indirectly specialize the base AssociationStructure
Objects::LinkObject from the Kernel Semantic Library.

specializesFromLibrary('Objects::LinkObject')

8.3.4.5 Connectors Abstract Syntax

Kernel Modeling Language v1.0 Beta 4 183

8.3.4.5.1 Overview

Connector Feature

Type

BindingConnector

Association

Relationship

Succession

+/featuredConnector

0..*

+/defaultFeaturingType

0..1

{subsets typedFeature}

+/typedConnector
0..*

{redefines type, ordered}

+/association

0..*

{subsets connector,
subsets targetRelationship}

+/targetConnector

0..*
{subsets relatedFeature,
redefines target, ordered}

+/targetFeature

0..*

{subsets connector,
subsets sourceRelationship}

+/sourceConnector

0..*
{subsets relatedFeature,
redefines source,
ordered}

+/sourceFeature

0..1

{redefines endFeature,
ordered}

+/connectorEnd

0..*
{subsets typeWithEndFeature}

+/featuringConnector

0..*

{subsets relationship}

+/connector

0..*

{redefines relatedElement,
ordered, nonunique}

+/relatedFeature

0..*

Figure 27. Connectors

8.3.4.5.2 Binding Connector

Description

A BindingConnector is a binary Connector that requires its relatedFeatures to identify the same things
(have the same values).

General Classes

Connector

Attributes

184 Kernel Modeling Language v1.0 Beta 4

None.

Operations

None.

Constraints

checkBindingConnectorSpecialization

A BindingConnector must directly or indirectly specialize the base BindingConnector Links::selfLinks
from the Kernel Semantic Library.

specializesFromLibrary('Links::selfLinks')

validateBindingConnectorIsBinary

A BindingConnector must be binary.

relatedFeature->size() = 2

8.3.4.5.3 Connector

Description

A Connector is a usage of Associations, with links restricted according to instances of the Type in which they
are used (domain of the Connector). The associations of the Connector restrict what kinds of things might be
linked. The Connector further restricts these links to be between values of Features on instances of its domain.

General Classes

Feature
Relationship

Attributes

/association : Association [0..*] {redefines type, ordered}

The Associations that type the Connector.

/connectorEnd : Feature [0..*] {redefines endFeature, ordered}

The endFeatures of a Connector, which redefine the endFeatures of the associations of the Connector.
The connectorEnds determine via ReferenceSubsetting Relationships which Features are related by the
Connector.

/defaultFeaturingType : Type [0..1]

The innermost Type that is a common direct or indirect featuringType of the relatedFeatures, such that, if it
exists and was the featuringType of this Connector, the Connector would satisfy the
checkConnectorTypeFeaturing constraint.

/relatedFeature : Feature [0..*] {redefines relatedElement, ordered, nonunique}

The Features that are related by this Connector considered as a Relationship and that restrict the links it
identifies, given by the referenced Features of the connectorEnds of the Connector.

Kernel Modeling Language v1.0 Beta 4 185

/sourceFeature : Feature [0..1] {subsets relatedFeature, redefines source, ordered}

The source relatedFeature for this Connector. It is the first relatedFeature.

/targetFeature : Feature [0..*] {subsets relatedFeature, redefines target, ordered}

The target relatedFeatures for this Connector. This includes all the relatedFeatures other than the
sourceFeature.

Operations

None.

Constraints

checkConnectorBinaryObjectSpecialization

A binary Connector for an AssociationStructure must directly or indirectly specialize the base Connector
Objects::binaryLinkObjects from the Kernel Semantic Library.

connectorEnds->size() = 2 and
association->exists(oclIsKindOf(AssociationStructure)) implies

specializesFromLibrary('Objects::binaryLinkObjects')

checkConnectorBinarySpecialization

A binary Connector must directly or indirectly specialize the base Connector Links::binaryLinks from the
Kernel Semantic Library.

connectorEnd->size() = 2 implies
specializesFromLibrary('Links::binaryLinks')

checkConnectorObjectSpecialization

A Connector for an AssociationStructure must directly or indirectly specialize the base Connector
Objects::linkObjects from the Kernel Semantic Library.

association->exists(oclIsKindOf(AssociationStructure)) implies
specializesFromLibrary('Objects::linkObjects')

checkConnectorSpecialization

A Connector must directly or indirectly specialize the base Connector Links::links from the Kernel Semantic
Library.

specializesFromLibrary('Links::links')

checkConnectorTypeFeaturing

Each relatedFeature of a Connector must have each featuringType of the Connector as a direct or indirect
featuringType (where a Feature with no featuringType is treated as if the Classifier Base::Anything
was its featuringType).

relatedFeature->forAll(f |
if featuringType->isEmpty() then f.isFeaturedWithin(null)
else featuringType->forAll(t | f.isFeaturedWithin(t))
endif)

186 Kernel Modeling Language v1.0 Beta 4

deriveConnectorDefaultFeaturingType

The defaultFeaturingType of a Connector is the innermost common direct or indirect featuringType of the
relatedFeatures of the Connector, so that each relatedElement is featured within the
defaultFeaturingType, if such exists.

let commonFeaturingTypes : OrderedSet(Type) =
relatedFeature->closure(featuringType)->select(t |

relatedFeature->forAll(f | f.isFeaturedWithin(t))
) in

let nearestCommonFeaturingTypes : OrderedSet(Type) =
commonFeaturingTypes->reject(t1 |

commonFeaturingTypes->exists(t2 |
t2 <> t1 and t2->closure(featuringType)->contains(t1)

)) in
if nearestCommonFeaturingTypes->isEmpty() then null
else nearestCommonFeaturingTypes->first()
endif

deriveConnectorRelatedFeature

The relatedFeatures of a Connector are the referenced Features of its connectorEnds.

relatedFeature = connectorEnd.ownedReferenceSubsetting->
select(s | s <> null).subsettedFeature

deriveConnectorSourceFeature

The sourceFeature of a Connector is its first relatedFeature (if any).

sourceFeature =
if relatedFeature->isEmpty() then null
else relatedFeature->first()
endif

deriveConnectorTargetFeature

The targetFeatures of a Connector are the relatedFeatures other than the sourceFeature.

targetFeature =
if relatedFeature->size() < 2 then OrderedSet{}
else

relatedFeature->
subSequence(2, relatedFeature->size())->
asOrderedSet()

endif

validateConnectorBinarySpecialization

If a Connector has more than two connectorEnds, then it must not specialize, directly or indirectly, the
Association BinaryLink from the Kernel Semantic Library.

connectorEnds->size() > 2 implies
not specializesFromLibrary('Links::BinaryLink')

validateConnectorRelatedFeatures

If a Connector is concrete (not abstract), then it must have at least two relatedFeatures.

Kernel Modeling Language v1.0 Beta 4 187

not isAbstract implies relatedFeature->size() >= 2

8.3.4.5.4 Succession

Description

A Succession is a binary Connector that requires its relatedFeatures to happen separately in time.

General Classes

Connector

Attributes

None.

Operations

None.

Constraints

checkSuccessionSpecialization

A Succession must directly or indirectly specialize the Feature Occurrences::happensBeforeLinks from the
Kernel Semantic Library.

specializesFromLibrary('Occurrences::happensBeforeLinks')

8.3.4.6 Behaviors Abstract Syntax

188 Kernel Modeling Language v1.0 Beta 4

8.3.4.6.1 Overview

Feature

StepBehavior

Type

Class

Classifier

{subsets typeWithFeature}

+/parameteredBehavior

0..*

{redefines
directedFeature,
ordered}

+/parameter

0..*

{subsets typeWithFeature}

+/featuringBehavior

0..*
{subsets feature}

+/step

0..*

{subsets type,
ordered}

+/behavior

0..*

{subsets typedFeature}

+/typedStep

0..*

+/directedFeature

0..*

+/typeWithDirectedFeature

0..*

+/typeWithFeature

0..*

+/feature

0..*

{ordered}

+/type

0..*

+/typedFeature

0..*

{subsets typeWithFeature}

+/parameteredStep

0..*

{redefines
directedFeature,
ordered}

+/parameter

0..*

Figure 28. Behaviors

+parameterDirection() : FeatureDirectionKind [1]

ParameterMembership

FeatureMembership

Feature

{subsets owningFeatureMembership}

+/owningParameterMembership 0..1

{redefines ownedMemberFeature}+/ownedMemberParameter
1

Figure 29. Parameter Memberships

8.3.4.6.2 Behavior

Description

Kernel Modeling Language v1.0 Beta 4 189

A Behavior coordinates occurrences of other Behaviors, as well as changes in objects. Behaviors can be
decomposed into Steps and be characterized by parameters.

General Classes

Class

Attributes

/parameter : Feature [0..*] {redefines directedFeature, ordered}

The parameters of this Behavior, which are defined as its directedFeatures, whose values are passed into and/
or out of a performance of the Behavior.

/step : Step [0..*] {subsets feature}

The Steps that make up this Behavior.

Operations

None.

Constraints

checkBehaviorSpecialization

A Behavior must directly or indirectly specialize the base Behavior Performances::Performance from the
Kernel Semantic Library.

specializesFromLibrary('Performances::Performance')

deriveBehaviorStep

The steps of a Behavior are its features that are Steps.

step = feature->selectByKind(Step)

validateBehaviorSpecialization

A Behavior must not specialize a Structure.

ownedSpecialization.general->forAll(not oclIsKindOf(Structure))

8.3.4.6.3 Step

Description

A Step is a Feature that is typed by one or more Behaviors. Steps may be used by one Behavior to
coordinate the performance of other Behaviors, supporting a steady refinement of behavioral descriptions. Steps
can be ordered in time and can be connected using Flows to specify things flowing between their parameters.

General Classes

Feature

Attributes

190 Kernel Modeling Language v1.0 Beta 4

/behavior : Behavior [0..*] {subsets type, ordered}

The Behaviors that type this Step.

/parameter : Feature [0..*] {redefines directedFeature, ordered}

The parameters of this Step, which are defined as its directedFeatures, whose values are passed into and/or
out of a performance of the Step.

Operations

None.

Constraints

checkStepEnclosedPerformanceSpecialization

AStep whose owningType is a Behavior or another Step must directly or indirectly specialize the Step
Performances::Performance::enclosedPerformance.

owningType <> null and
(owningType.oclIsKindOf(Behavior) or
owningType.oclIsKindOf(Step)) implies

specializesFromLibrary('Performances::Performance::enclosedPerformance')

checkStepOwnedPerformanceSpecialization

A composite Step whose owningType is a Structure or a Feature typed by a Structure must directly or
indirectly specialize the Step Objects::Object::ownedPerformance.

isComposite and owningType <> null and
(owningType.oclIsKindOf(Structure) or
owningType.oclIsKindOf(Feature) and
owningType.oclAsType(Feature).type->

exists(oclIsKindOf(Structure)) implies
specializesFromLibrary('Objects::Object::ownedPerformance')

checkStepSpecialization

A Step must directly or indirectly specialize the base Step Performances::performances from the Kernel
Semantic Library.

specializesFromLibrary('Performances::performances')

checkStepSubperformanceSpecialization

AStep whose owningType is a Behavior or another Step, and which is composite, must directly or indirectly
specialize the Step Performances::Performance::subperformance.

owningType <> null and
(owningType.oclIsKindOf(Behavior) or
owningType.oclIsKindOf(Step)) and

self.isComposite implies
specializesFromLibrary('Performances::Performance::subperformance')

deriveStepBehavior

The behaviors of a Step are all its types that are Behaviors.

Kernel Modeling Language v1.0 Beta 4 191

behavior = type->selectByKind(Behavior)

8.3.4.6.4 ParameterMembership

Description

A ParameterMembership is a FeatureMembership that identifies its memberFeature as a parameter, which is
always owned, and must have a direction. A ParameterMembership must be owned by a Behavior, a Step,
or the result parameter of a ConstructorExpression.

General Classes

FeatureMembership

Attributes

/ownedMemberParameter : Feature {redefines ownedMemberFeature}

The Feature that is identified as a parameter by this ParameterMembership.

Operations

parameterDirection() : FeatureDirectionKind

Return the required value of the direction of the ownedMemberParameter. By default, this is in.

body: FeatureDirectionKind::_'in'

Constraints

validateParameterMembershipOwningType

A ParameterMembership must be owned by a Behavior,Step, or the result parameter of a
ConstructorExpression.

owningType.oclIsKindOf(Behavior) or owningType.oclIsKindOf(Step) or
owningType.owningMembership.oclIsKindOf(ReturnParameterMembership) and

owningType.owningNamespace.oclIsKindOf(ConstructorExpression)

validateParameterMembershipParameterDirection

The ownedMemberParameter of a ParameterMembership must have a direction equal to the result of the
parameterDirection() operation.

ownedMemberParameter.direction = parameterDirection()

8.3.4.7 Functions Abstract Syntax

192 Kernel Modeling Language v1.0 Beta 4

8.3.4.7.1 Overview

+checkCondition(target : Element) : Boolean
+evaluate(target : Element) : Element [0..*]
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean

+/isModelLevelEvaluable : Boolean

Expression

+/isModelLevelEvaluable : Boolean

Function

StepBehavior Feature

{subsets featuringBehavior}

+computedFunction

0..*
{subsets step}

+/expression

0..*

{subsets typedStep}

+/typedExpression

0..*
{redefines behavior}

+/function

0..1

{subsets parameteredBehavior}

+/computingFunction

0..*

{subsets output,
subsets parameter}

+/result 1

{subsets parameteredStep}

+/computingExpression

0..*

{subsets output,
subsets parameter}

+/result1

Figure 30. Functions

+isNegated : Boolean = false

Invariant

BooleanExpressionPredicate

Function Expression

{redefines behavior}

+/function

0..1
{subsets typedStep}

+/typedExpression

0..*

{subsets typedExpression}

+/typedBooleanExpression

0..*
{redefines function}

+/predicate

0..1

Figure 31. Predicates

+parameterDirection() : FeatureDirectionKind [1]{redefines parameterDirection}

ReturnParameterMembership

+parameterDirection() : FeatureDirectionKind [1]

ParameterMembership ResultExpressionMembership

FeatureMembership

Expression

+/owningResultExpressionMembership
{subsets owningFeatureMembership}
0..1

{redefines ownedMemberFeature}
+/ownedResultExpression 1

Figure 32. Function Memberships

8.3.4.7.2 BooleanExpression

Description

A BooleanExpression is a Boolean-valued Expression whose type is a Predicate. It represents a logical
condition resulting from the evaluation of the Predicate.

Kernel Modeling Language v1.0 Beta 4 193

General Classes

Expression

Attributes

/predicate : Predicate [0..1] {redefines function}

The Predicate that types this BooleanExpression.

The Predicate that types the Expression.

Operations

None.

Constraints

checkBooleanExpressionSpecialization

A BooleanExpression must directly or indirectly specialize the base BooleanExpression
Performances::booleanEvaluations from the Kernel Semantic Library.

specializesFromLibrary('Performances::booleanEvaluations')

8.3.4.7.3 Expression

Description

An Expression is a Step that is typed by a Function. An Expression that also has a Function as its
featuringType is a computational step within that Function. An Expression always has a single result
parameter, which redefines the result parameter of its defining function. This allows Expressions to be
interconnected in tree structures, in which inputs to each Expression in the tree are determined as the results of
other Expression in the tree.

General Classes

Step

Attributes

/function : Function [0..1] {redefines behavior}

The Function that types this Expression.

This is the Function that types the Expression.

/isModelLevelEvaluable : Boolean

Whether this Expression meets the constraints necessary to be evaluated at model level, that is, using metadata
within the model.

/result : Feature {subsets parameter, output}

194 Kernel Modeling Language v1.0 Beta 4

An output parameter of the Expression whose value is the result of the Expression. The result of an
Expression is either inherited from its function or it is related to the Expression via a
ReturnParameterMembership, in which case it redefines the result parameter of its function.

Operations

checkCondition(target : Element) : Boolean

Model-level evaluate this Expression with the given target. If the result is a LiteralBoolean, return its
value. Otherwise return false.

body: let results: Sequence(Element) = evaluate(target) in
result->size() = 1 and
results->first().oclIsKindOf(LiteralBoolean) and
results->first().oclAsType(LiteralBoolean).value

evaluate(target : Element) : Element [0..*]

If this Expression isModelLevelEvaluable, then evaluate it using the target as the context Element for
resolving Feature names and testing classification. The result is a collection of Elements, which, for a fully
evaluable Expression, will be a LiteralExpression or a Feature that is not an Expression.

pre: isModelLevelEvaluable
body: let resultExprs : Sequence(Expression) =

ownedFeatureMembership->
selectByKind(ResultExpressionMembership).
ownedResultExpression in

if resultExpr->isEmpty() then Sequence{}
else resultExprs->first().evaluate(target)
endif

modelLevelEvaluable(visited : Feature [0..*]) : Boolean

Return whether this Expression is model-level evaluable. The visited parameter is used to track possible
circular Feature references made from FeatureReferenceExpressions (see the redefinition of this operation
for FeatureReferenceExpression). Such circular references are not allowed in model-level evaluable
expressions.

An Expression that is not otherwise specialized is model-level evaluable if it has no (non-implied)
ownedSpecializations and all its ownedFeatures are either in parameters, the result parameter or a result
Expression owned via a ResultExpressionMembership. The parameters must not have any
ownedFeatures or a FeatureValue, and the result Expression must be model-level evaluable.

body: ownedSpecialization->forAll(isImplied) and
ownedFeature->forAll(f |

(directionOf(f) = FeatureDirectionKind::_'in' or f = result) and
f.ownedFeature->isEmpty() and f.valuation = null or

f.owningFeatureMembership.oclIsKindOf(ResultExpressionMembership) and
f.oclAsType(Expression).modelLevelEvaluable(visited)

Constraints

checkExpressionResultBindingConnector

Kernel Modeling Language v1.0 Beta 4 195

If an Expression has an Expression owned via a ResultExpressionMembership, then the owning
Expression must also own a BindingConnector between its result parameter and the result parameter
of the result Expression.

ownedMembership.selectByKind(ResultExpressionMembership)->
forAll(mem | ownedFeature.selectByKind(BindingConnector)->

exists(binding |
binding.relatedFeature->includes(result) and
binding.relatedFeature->includes(mem.ownedResultExpression.result)))

checkExpressionSpecialization

An Expression must directly or indirectly specialize the base Expression Performances::evaluations
from the Kernel Semantic Library.

specializesFromLibrary('Performances::evaluations')

checkExpressionTypeFeaturing

If this Expression is owned by a FeatureValue, then it must have the same featuringTypes as the
featureWithValue of the FeatureValue.

owningMembership <> null and
owningMembership.oclIsKindOf(FeatureValue) implies

let featureWithValue : Feature =
owningMembership.oclAsType(FeatureValue).featureWithValue in

featuringType = featureWithValue.featuringType

deriveExpressionIsModelLevelEvaluable

Whether an Expression isModelLevelEvaluable is determined by the modelLevelEvaluable() operation.

isModelLevelEvaluable = modelLevelEvaluable(Set(Element){})

deriveExpressionResult

The result parameter of an Expression is its parameter owned (possibly in a supertype) via a
ReturnParameterMembership (if any).

result =
let resultParams : Sequence(Feature) =

featureMemberships->
selectByKind(ReturnParameterMembership).
ownedMemberParameter in

if resultParams->notEmpty() then resultParams->first()
else null
endif

validateExpressionResultExpressionMembership

An Expression must have at most one ResultExpressionMembership.

membership->selectByKind(ResultExpressionMembership)->size() <= 1

validateExpressionResultParameterMembership

An Expression must have exactly one featureMembership (owned or inherited) that is a
ResultParameterMembership.

196 Kernel Modeling Language v1.0 Beta 4

featureMembership->
selectByKind(ReturnParameterMembership)->
size() = 1

8.3.4.7.4 Function

Description

A Function is a Behavior that has an out parameter that is identified as its result. A Function represents
the performance of a calculation that produces the values of its result parameter. This calculation may be
decomposed into Expressions that are steps of the Function.

General Classes

Behavior

Attributes

/expression : Expression [0..*] {subsets step}

The set of expressions that represent computational steps or parts of a system of equations within the Function.

The Expressions that are steps in the calculation of the result of this Function.

/isModelLevelEvaluable : Boolean

Whether this Function can be used as the function of a model-level evaluable InvocationExpression.
Certain Functions from the Kernel Functions Library are considered to have isModelLevelEvaluable =
true. For all other Functions it is false.

Note: See the specification of the KerML concrete syntax notation for Expressions for an identification of which
library Functions are model-level evaluable.

/result : Feature {subsets parameter, output}

The object or value that is the result of evaluating the Function.

The result parameter of the Function, which is owned by the Function via a
ReturnParameterMembership.

Operations

None.

Constraints

checkFunctionResultBindingConnector

If a Function has an Expression owned via a ResultExpressionMembership, then the owning Function
must also own a BindingConnector between its result parameter and the result parameter of the result
Expression.

ownedMembership.selectByKind(ResultExpressionMembership)->
forAll(mem | ownedFeature.selectByKind(BindingConnector)->

exists(binding |
binding.relatedFeature->includes(result) and
binding.relatedFeature->includes(mem.ownedResultExpression.result)))

Kernel Modeling Language v1.0 Beta 4 197

checkFunctionSpecialization

A Function must directly or indirectly specialize the base Function Performances::Evaluation from the
Kernel Semantic Library.

specializesFromLibrary('Performances::Evaluation')

deriveFunctionResult

The result parameter of a Function is its parameter owned (possibly in a supertype) via a
ReturnParameterMembership (if any).

result =
let resultParams : Sequence(Feature) =

featureMemberships->
selectByKind(ReturnParameterMembership).
ownedMemberParameter in

if resultParams->notEmpty() then resultParams->first()
else null
endif

validateFunctionResultExpressionMembership

A Function must have at most one ResultExpressionMembership.

membership->selectByKind(ResultExpressionMembership)->size() <= 1

validateFunctionResultParameterMembership

A Function must have exactly one featureMembership (owned or inherited) that is a
ResultParameterMembership.

featureMembership->
selectByKind(ReturnParameterMembership)->
size() = 1

8.3.4.7.5 Invariant

Description

An Invariant is a BooleanExpression that is asserted to have a specific Boolean result value. If isNegated
= false, then the result is asserted to be true. If isNegated = true, then the result is asserted to be false.

General Classes

BooleanExpression

Attributes

isNegated : Boolean

Whether this Invariant is asserted to be false rather than true.

Operations

None.

Constraints

198 Kernel Modeling Language v1.0 Beta 4

checkInvariantSpecialization

An Invariant must directly or indirectly specialize either of the following BooleanExpressions from the
Kernel Semantic Library: Performances::trueEvaluations, if isNegated = false, or
Performances::falseEvaluations, if isNegated = true.

if isNegated then
specializesFromLibrary('Performances::falseEvaluations')

else
specializesFromLibrary('Performances::trueEvaluations')

endif

8.3.4.7.6 Predicate

Description

A Predicate is a Function whose result parameter has type Boolean and multiplicity 1..1.

General Classes

Function

Attributes

None.

Operations

None.

Constraints

checkPredicateSpecialization

A Predicate must directly or indirectly specialize the base Predicate Performances::BooleanEvaluation
from the Kernel Semantic Library.

specializesFromLibrary('Performances::BooleanEvaluation')

8.3.4.7.7 ResultExpressionMembership

Description

A ResultExpressionMembership is a FeatureMembership that indicates that the ownedResultExpression
provides the result values for the Function or Expression that owns it. The owning Function or Expression
must contain a BindingConnector between the result parameter of the ownedResultExpression and the
result parameter of the owning Function or Expression.

General Classes

FeatureMembership

Attributes

/ownedResultExpression : Expression {redefines ownedMemberFeature}

The Expression that provides the result for the owner of the ResultExpressionMembership.

Kernel Modeling Language v1.0 Beta 4 199

Operations

None.

Constraints

validateResultExpressionMembershipOwningType

The owningType of a ResultExpressionMembership must be a Function or Expression.

owningType.oclIsKindOf(Function) or owningType.oclIsKindOf(Expression)

8.3.4.7.8 ReturnParameterMembership

Description

A ReturnParameterMembership is a ParameterMembership that indicates that the ownedMemberParameter
is the result parameter of a Function or Expression. The direction of the ownedMemberParameter must
be out.

General Classes

ParameterMembership

Attributes

None.

Operations

parameterDirection() : FeatureDirectionKind {redefines parameterDirection, leaf}

The ownedMemberParameter of a ReturnParameterMembership must have direction out. (This is a leaf
operation that cannot be further redefined.)

body: FeatureDirectionKind::out

Constraints

validateReturnParameterMembershipOwningType

The owningType of a ReturnParameterMembership must be a Function or Expression.

owningType.oclIsKindOf(Function) or owningType.oclIsKindOf(Expression)

8.3.4.8 Expressions Abstract Syntax

200 Kernel Modeling Language v1.0 Beta 4

8.3.4.8.1 Overview

+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

ConstructorExpression

+metaclassFeature() : MetadataFeature
+evaluate(target : Element) : Element [0..*]{redefines evaluate}
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

MetadataAccessExpression

+evaluate(target : Element) : Element [0..*]{redefines evaluate}
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

NullExpression

+evaluate(target : Element) : Element [0..*]{redefines evaluate}
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

LiteralExpression

+evaluate(target : Element) : Element [0..*]{redefines evaluate}
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

InvocationExpression

+evaluate(target : Element) : Element [0..*]{redefines evaluate}
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

FeatureReferenceExpression

+checkCondition(target : Element) : Boolean
+evaluate(target : Element) : Element [0..*]
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean

+/isModelLevelEvaluable : Boolean

Expression

+instantiatedType() : Type{redefines instantiatedType}

+operator : String

OperatorExpression

+operator : String = collect{redefines operator}

CollectExpression

+operator : String = #{redefines operator}

IndexExpression

+operator : String = select{redefines operator}

SelectExpression

+operator : String = .{redefines operator}

FeatureChainExpression

+instantiatedType() : Type [0..1]

InstantiationExpression Type

Element

Step

Feature

+/instantiation 0..1

+/argument

{ordered}
0..*

+/instantiationExpression

{subsets namespace}
0..*

{subsets member}

+/instantiatedType

1

{subsets member}
+/referent 1

+/referenceExpression
{subsets namespace}
0..*

{subsets namespace}

+/chainExpression 0..*

{subsets member}
+/targetFeature 1 +/referencedElement

{subsets member}
1

{subsets namespace}
+/accessExpression 0..*

Figure 33. Expressions

+evaluate(target : Element) : Element [0..*]{redefines evaluate}
+modelLevelEvaluable(visited : Feature [0..*]) : Boolean{redefines modelLevelEvaluable}

LiteralExpression

+value : Boolean

LiteralBoolean

+value : Real

LiteralRational

+value : Integer

LiteralInteger

Expression

LiteralInfinity

+value : String

LiteralString

Figure 34. Literal Expressions

8.3.4.8.2 CollectExpression

Description

A CollectExpression is an OperatorExpression whose operator is "collect", which resolves to the
Function ControlFunctions::collect from the Kernel Functions Library.

General Classes

OperatorExpression

Attributes

Kernel Modeling Language v1.0 Beta 4 201

operator : String {redefines operator}

Operations

None.

Constraints

validateCollectExpressionOperator

The operator of a CollectExpression must be "collect".

operator = 'collect'

8.3.4.8.3 ConstructorExpression

Description

A ConstructorExpression is an InstantiationExpression whose result specializes its
instantiatedType, binding some or all of the features of the instantiatedType to the results of its
argument Expressions.

General Classes

InstantiationExpression

Attributes

None.

Operations

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A ConstructorExpression is model-level evaluable if all its argument Expressions are model-level evaluable.

body: argument->forAll(modelLevelEvaluable(visited))

Constraints

checkConstructorExpressionResultDefaultValueBindingConnector

The result of a ConstructorExpression must own a BindingConnector between the featureWithValue
and value Expression of any FeatureValue that is the effective default value for a feature of the
instantiatedType of the InvocationExpression.

TBD

checkConstructorExpressionResultFeatureRedefinition

Each ownedFeature of the result of a ConstructionExpression must redefine exactly one public feature of
the instantiatedType of the ConstructorExpression.

let features : OrderedSet(Feature) = instantiatedType.feature->
select(owningMembership.visibility = VisibilityKind::public) in

result.ownedFeature->forAll(f |

202 Kernel Modeling Language v1.0 Beta 4

f.ownedRedefinition.redefinedFeature->
intersection(features)->size() = 1)

checkConstructorExpressionResultSpecialization

The result of a ConstructorExpression must specialize the instantiatedType of the
ConstructorExpression.

result.specializes(instantiatedType)

checkConstructorExpressionSpecialization

A ConstructorExpression must directly or indirectly specialize the Expression
Performances::constructorEvaluations from the Kernel Semantic Library.

specializes('Performances::constructorEvaluations')

deriveConstructorExpressionArgument

The arguments of a ConstructorExpression are the value Expressions of the FeatureValues of the
ownedFeatures of its result parameter, in an order corresponding to the order of the features of the
instantiatedType that the result ownedFeatures redefine.

instantiatedType.feature->collect(f |
result.ownedFeatures->select(redefines(f)).valuation->
select(v | v <> null).value

)

validateConstructorExpressionNoDuplicateFeatureRedefinition

Two different ownedFeatures of the result of a ConstructorExpression must not redefine the same
feature of the instantiatedType of the ConstructorExpression.

let features : OrderedSet(Feature) = instantiatedType.feature->
select(visibility = VisibilityKind::public) in

result.ownedFeature->forAll(f1 | result.ownedFeature->forAll(f2 |
f1 <> f2 implies

f1.ownedRedefinition.redefinedFeature->
intersection(f2.ownedRedefinition.redefinedFeature)->
intersection(features)->isEmpty()))

validateConstructorExpressionOwnedFeatures

A ConstructorExpression must not have any ownedFeatures other than its result.

ownedFeatures->excluding(result)->isEmpty()

8.3.4.8.4 FeatureChainExpression

Description

A FeatureChainExpression is an OperatorExpression whose operator is ".", which resolves to the
Function ControlFunctions::'.' from the Kernel Functions Library. It evaluates to the result of chaining the
result Feature of its single argument Expression with its targetFeature.

General Classes

OperatorExpression

Kernel Modeling Language v1.0 Beta 4 203

Attributes

operator : String {redefines operator}

/targetFeature : Feature {subsets member}

The Feature that is accessed by this FeatureChainExpression, which is its first non-parameter
member.

Operations

sourceTargetFeature() : Feature [0..1]

Return the first ownedFeature of the first owned input parameter of this FeatureChainExpression (if any).

body: let inputParameters : Feature = ownedFeatures->
select(direction = _'in') in

if inputParameters->isEmpty() or
inputParameters->first().ownedFeature->isEmpty()

then null
else inputParameters->first().ownedFeature->first()
endif

Constraints

checkFeatureChainExpressionResultSpecialization

The result parameter of a FeatureChainExpression must specialize the feature chain of the
FeatureChainExpression.

let inputParameters : Sequence(Feature) =
ownedFeatures->select(direction = _'in') in

let sourceTargetFeature : Feature =
owningExpression.sourceTargetFeature() in

sourceTargetFeature <> null and
result.subsetsChain(inputParameters->first(), sourceTargetFeature) and
result.owningType = self

checkFeatureChainExpressionSourceTargetRedefinition

The first ownedFeature of the first owned input parameter of a FeatureChainExpression must redefine its
targetFeature.

let sourceParameter : Feature = sourceTargetFeature() in
sourceTargetFeature <> null and
sourceTargetFeature.redefines(targetFeature)

checkFeatureChainExpressionTargetRedefinition

The first ownedFeature of the first owned input parameter of a FeatureChainExpression must redefine the
Feature ControlFunctions::'.'::source::target from the Kernel Functions Library.

let sourceParameter : Feature = sourceTargetFeature() in
sourceTargetFeature <> null and
sourceTargetFeature.redefinesFromLibrary('ControlFunctions::\'.\'::source::target')

deriveFeatureChainExpressionTargetFeature

204 Kernel Modeling Language v1.0 Beta 4

The targetFeature of a FeatureChainExpression is the memberElement of its first ownedMembership that
is not a ParameterMembership.

targetFeature =
let nonParameterMemberships : Sequence(Membership) = ownedMembership->

reject(oclIsKindOf(ParameterMembership)) in
if nonParameterMemberships->isEmpty() or

not nonParameterMemberships->first().memberElement.oclIsKindOf(Feature)
then null
else nonParameterMemberships->first().memberElement.oclAsType(Feature)
endif

validateFeatureChainExpressionConformance

The targetFeature of a FeatureChainExpression must be featured within the result parameter of the
argument Expression of the FeatureChainExpression.

argument->notEmpty() implies
targetFeature.isFeaturedWithin(argument->first().result)

validateFeatureChainExpressionOperator

The operator of a FeatureChainExpression must be ".".

operator = '.'

8.3.4.8.5 FeatureReferenceExpression

Description

A FeatureReferenceExpression is an Expression whose result is bound to a referent Feature.

General Classes

Expression

Attributes

/referent : Feature {subsets member}

The Feature that is referenced by this FeatureReferenceExpression, which is its first non-parameter
member.

Operations

evaluate(target : Element) : Element [0..*] {redefines evaluate}

First, determine a value Expression for the referent:

• If the target Element is a Type that has a feature that is the referent or (directly or indirectly)
redefines it, then the value Expression of the FeatureValue for that feature (if any).

• Else, if the referent has no featuringTypes, the value Expression of the FeatureValue for the
referent (if any).

Then:

• If such a value Expression exists, return the result of evaluating that Expression on the target.

Kernel Modeling Language v1.0 Beta 4 205

• Else, if the referent is not an Expression, return the referent.
• Else return the empty sequence.

body: if not target.oclIsKindOf(Type) then Sequence{}
else

let feature: Sequence(Feature) =
target.oclAsType(Type).feature->select(f |

f.ownedRedefinition.redefinedFeature->
includes(referent)) in

if feature->notEmpty() then
feature.valuation.value.evaluate(target)

else if referent.featuringType->isEmpty()
then referent

else Sequence{}
endif endif

endif

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A FeatureReferenceExpression is model-level evaluable if it's referent

• conforms to the self-reference feature Anything::self;
• is an Expression that is model-level evaluable;
• has an owningType that is a Metaclass or MetadataFeature; or
• has no featuringTypes and, if it has a FeatureValue, the value Expression is model-level

evaluable.

body: referent.conformsTo('Anything::self') or
visited->excludes(referent) and
(referent.oclIsKindOf(Expression) and

referent.oclAsType(Expression).modelLevelEvaluable(visited->including(referent)) or
referent.owningType <> null and

(referent.owningType.isOclKindOf(MetaClass) or
referent.owningType.isOclKindOf(MetadataFeature)) or

referent.featuringType->isEmpty() and
(referent.valuation = null or
referent.valuation.modelLevelEvaluable(visited->including(referent))))

Constraints

checkFeatureReferenceExpressionBindingConnector

A FeatureReferenceExpression must have an ownedMember that is a BindingConnector between the
referent and result of the FeatureReferenceExpression.

ownedMember->selectByKind(BindingConnector)->exists(b |
b.relatedFeatures->includes(targetFeature) and
b.relatedFeatures->includes(result))

checkFeatureReferenceExpressionResultSpecialization

The result parameter of a FeatureReferenceExpression must specialize the referent of the
FeatureReferenceExpression.

result.owningType() = self and result.specializes(referent)

deriveFeatureReferenceExpressionReferent

206 Kernel Modeling Language v1.0 Beta 4

The referent of a FeatureReferenceExpression is the memberElement of its first ownedMembership that
is not a ParameterMembership.

referent =
let nonParameterMemberships : Sequence(Membership) = ownedMembership->

reject(oclIsKindOf(ParameterMembership)) in
if nonParameterMemberships->isEmpty() or

not nonParameterMemberships->first().memberElement.oclIsKindOf(Feature)
then null
else nonParameterMemberships->first().memberElement.oclAsType(Feature)
endif

validateFeatureReferenceExpressionReferentIsFeature

The first ownedMembership of a FeatureReferenceExpression that is not a ParameterMembership must
have a Feature as its memberElement.

let membership : Membership =
ownedMembership->reject(m | m.oclIsKindOf(ParameterMembership)) in

membership->notEmpty() and
membership->at(1).memberElement.oclIsKindOf(Feature)

validateFeatureReferenceExpressionResult

A FeatureReferenceExpression must own its result parameter.

result.owningType = self

8.3.4.8.6 IndexExpression

Description

An IndexExpression is an OperatorExpression whose operator is "#", which resolves to the Function
BasicFunctions::'#' from the Kernel Functions Library.

General Classes

OperatorExpression

Attributes

operator : String {redefines operator}

Operations

None.

Constraints

checkIndexExpressionResultSpecialization

The result of an IndexExpression must specialize the result parameter of the first argument of the
IndexExpression, unless that result already directly or indirectly specializes the DataType
Collections::Array from the Kernel Data Type Library.

arguments->notEmpty() and
not arguments->first().result.specializesFromLibrary('Collections::Array') implies

result.specializes(arguments->first().result)

Kernel Modeling Language v1.0 Beta 4 207

validateIndexExpressionOperator

The operator of an IndexExpression must be "#".

operator = '#'

8.3.4.8.7 InstantiationExpression

Description

An InstantiationExpression is an Expression that instantiates its instantiatedType, binding some or all
of the features of that Type to the results of its arguments.

InstantiationExpression is abstract, with concrete subclasses InvocationExpression and
ConstructorExpression.

General Classes

Expression

Attributes

/argument : Expression [0..*] {ordered}

The Expressions whose results are bound to features of the instantiatedType. The arguments are
ordered consistent with the order of the features, though they may not be one-to-one with all the features.

Note. The derivation of argument is given in the concrete subclasses of InstantiationExpression.

/instantiatedType : Type {subsets member}

The Type that is being instantiated.

Operations

instantiatedType() : Type [0..1]

Return the Type to act as the instantiatedType for this InstantiationExpression. By default, this is the
memberElement of the first ownedMembership that is not a FeatureMembership, which must be a Type.

Note. This operation is overridden in the subclass OperatorExpression.

body: let members : Sequence(Element) = ownedMembership->
reject(oclIsKindOf(FeatureMembership)).memberElement in

if members->isEmpty() or not members->first().oclIsKindOf(Type) then null
else typeMembers->first().oclAsType(Type)
endif

Constraints

deriveInstantiationExpressionInstantiatedType

The instantiatedType of an InstantiationExpression is given by the result of the instantiatedType()
operation.

instantiatedType = instantiatedType()

208 Kernel Modeling Language v1.0 Beta 4

validateInstantiationExpressionInstantiatedType

An InstantiationExpression must have an InstantiatedType.

instantiatedType() <> null

validateInstantiationExpressionResult

An InstantiationExpression must own its result parameter.

result.owningType = self

8.3.4.8.8 InvocationExpression

Description

An InvocationExpression is an InstantiationExpression whose instantiatedType must be a
Behavior or a Feature typed by a single Behavior (such as a Step). Each of the input parameters of the
instantiatedType are bound to the result of an argument Expression. If the instantiatedType is a
Function or a Feature typed by a Function, then the result of the InvocationExpression is the result
of the invoked Function. Otherwise, the result is an instance of the instantiatedType (essentially like a
behavioral ConstructorExpression).

General Classes

InstantiationExpression

Attributes

None.

Operations

evaluate(target : Element) : Element [0..*] {redefines evaluate}

Apply the Function that is the type of this InvocationExpression to the argument values resulting from
evaluating each of the argument Expressions on the given target. If the application is not possible, then return
an empty sequence.

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

An InvocationExpression is model-level evaluable if all its argument Expressions are model-level
evaluable and its function is model-level evaluable.

body: argument->forAll(modelLevelEvaluable(visited)) and
function.isModelLevelEvaluable

Constraints

checkInvocationExpressionBehaviorBindingConnector

If the instantiatedType of an InvocationExpression is neither a Function nor a Feature whose type is a
Function, then the InvocationExpression must own a BindingConnector between itself and its result
parameter.

not instantiatedType.oclIsKindOf(Function) and
not (instantiatedType.oclIsKindOf(Feature) and

Kernel Modeling Language v1.0 Beta 4 209

instantiatedType.oclAsType(Feature).type->exists(oclIsKindOf(Function))) implies
ownedFeature.selectByKind(BindingConnector)->exists(

relatedFeature->includes(self) and
relatedFeature->includes(result))

checkInvocationExpressionBehaviorResultSpecialization

If the instantiatedType of an InvocationExpression is neither a Function nor a Feature whose type is a
Function, then the result of the InvocationExpression must specialize the instantiatedType.

not instantiatedType.oclIsKindOf(Function) and
not (instantiatedType.oclIsKindOf(Feature) and

instantiatedType.oclAsType(Feature).type->exists(oclIsKindOf(Function))) implies
result.specializes(instantiatedType)

checkInvocationExpressionDefaultValueBindingConnector

An InvocationExpression must own a BindingConnector between the featureWithValue and value
Expression of any FeatureValue that is the effective default value for a feature of the instantiatedType
of the InvocationExpression.

TBD

checkInvocationExpressionSpecialization

An InvocationExpression must specialize its instantiatedType.

specializes(instantiatedType)

deriveInvocationExpressionArgument

The arguments of an InvocationExpression are the value Expressions of the FeatureValues of its
ownedFeatures, in an order corresponding to the order of the input parameters of the instantiatedType that
the ownedFeatures redefine.

instantiatedType.input->collect(inp |
ownedFeatures->select(redefines(inp)).valuation->
select(v | v <> null).value

)

validateInvocationExpressionInstantiatedType

The instantiatedType of an InvocationExpression must be either a Behavior or a Feature with a single
type, which is a Behavior.

instantiatedType.oclIsKindOf(Behavior) or
instantiatedType.oclIsKindOf(Feature) and

instantiatedType.type->exists(oclIsKindOf(Behavior)) and
instantiatedType.type->size(1)

validateInvocationExpressionNoDuplicateParameterRedefinition

Two different ownedFeatures of an InvocationExpression must not redefine the same feature of the
instantiatedType of the InvocationExpression.

let features : OrderedSet(Feature) = instantiatedType.feature in
input->forAll(inp1 | input->forAll(inp2 |

inp1 <> inp2 implies

210 Kernel Modeling Language v1.0 Beta 4

inp1.ownedRedefinition.redefinedFeature->
intersection(inp2.ownedRedefinition.redefinedFeature)->
intersection(features)->isEmpty()))

validateInvocationExpressionOwnedFeatures

Other than its result, all the ownedFeatures of an InvocationExpression must have direction = in.

ownedFeature->forAll(f |
f <> result implies

f.direction = FeatureDirectionKind::_'in')

validateInvocationExpressionParameterRedefinition

Each input parameter of an InvocationExpression must redefine exactly one input parameter of the
instantiatedType of the InvocationExpression.

let parameters : OrderedSet(Feature) = instantiatedType.input in
input->forAll(inp |

inp.ownedRedefinition.redefinedFeature->
intersection(parameters)->size() = 1)

8.3.4.8.9 LiteralBoolean

Description

LiteralBoolean is a LiteralExpression that provides a Boolean value as a result. Its result parameter
must have type Boolean.

General Classes

LiteralExpression

Attributes

value : Boolean

The Boolean value that is the result of evaluating this LiteralBoolean.

The Boolean value that is the result of evaluating this Expression.

Operations

None.

Constraints

checkLiteralBooleanSpecialization

A LiteralBoolean must directly or indirectly specialize Performances::literalBooleanEvaluations
from the Kernel Semantic Library.

specializesFromLibrary('Performances::literalBooleanEvaluations')

8.3.4.8.10 LiteralExpression

Description

Kernel Modeling Language v1.0 Beta 4 211

A LiteralExpression is an Expression that provides a basic DataValue as a result.

General Classes

Expression

Attributes

None.

Operations

evaluate(target : Element) : Element [0..*] {redefines evaluate}

The model-level value of a LiteralExpression is itself.

body: Sequence{self}

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A LiteralExpression is always model-level evaluable.

body: true

Constraints

checkLiteralExpressionSpecialization

A LiteralExpression must directly or indirectly specialize the base LiteralExpression
Performances::literalEvaluations from the Kernel Semantic Library.

specializesFromLibrary('Performances::literalEvaluations')

deriveLiteralExpressionIsModelLevelEvaluable

A LiteralExpression is always model-level evaluable.

isModelLevelEvaluable = true

8.3.4.8.11 LiteralInfinity

Description

A LiteralInfinity is a LiteralExpression that provides the positive infinity value (*). It's result must
have the type Positive.

General Classes

LiteralExpression

Attributes

None.

Operations

None.

212 Kernel Modeling Language v1.0 Beta 4

Constraints

checkLiteralInfinitySpecialization

A LiteralInfinity must directly or indirectly specialize Performances::literalIntegerEvaluations
from the Kernel Semantic Library.

specializesFromLibrary('Performances::literalIntegerEvaluations')

8.3.4.8.12 LiteralInteger

Description

A LiteralInteger is a LiteralExpression that provides an Integer value as a result. Its result
parameter must have the type Integer.

General Classes

LiteralExpression

Attributes

value : Integer

The Integer value that is the result of evaluating this Expression.

The Integer value that is the result of evaluating this LiteralInteger.

Operations

None.

Constraints

checkLiteralIntegerSpecialization

A LiteralInteger must directly or indirectly specialize Performances::literalIntegerEvaluations
from the Kernel Semantic Library.

specializesFromLibrary('Performances::literalIntegerEvaluations')

8.3.4.8.13 LiteralRational

Description

A LiteralRational is a LiteralExpression that provides a Rational value as a result. Its result
parameter must have the type Rational.

General Classes

LiteralExpression

Attributes

value : Real

The Real value that is the result of evaluating this Expression.

Kernel Modeling Language v1.0 Beta 4 213

The value whose rational approximation is the result of evaluating this LiteralRational.

Operations

None.

Constraints

checkLiteralRationalSpecialization

A LiteralRational must directly or indirectly specialize Performances::literalRationalEvaluations
from the Kernel Semantic Library.

specializesFromLibrary('Performances::literalRationalEvaluations')

8.3.4.8.14 LiteralString

Description

A LiteralString is a LiteralExpression that provides a String value as a result. Its result parameter
must have the type String.

General Classes

LiteralExpression

Attributes

value : String

The String value that is the result of evaluating this LiteralString.

The String value that is the result of evaluating this Expression.

Operations

None.

Constraints

checkLiteralStringSpecialization

A LiteralString must directly or indirectly specialize Performances::literalStringEvaluations from
the Kernel Semantic Library.

specializesFromLibrary('Performances::literalStringEvaluations')

8.3.4.8.15 MetadataAccessExpression

Description

A MetadataAccessExpression is an Expression whose result is a sequence of instances of Metaclasses
representing all the MetadataFeature annotations of the referencedElement. In addition, the sequence
includes an instance of the reflective Metaclass corresponding to the MOF class of the referencedElement,
with values for all the abstract syntax properties of the referencedElement.

General Classes

214 Kernel Modeling Language v1.0 Beta 4

Expression

Attributes

/referencedElement : Element {subsets member}

The Element whose metadata is being accessed.

Operations

evaluate(target : Element) : Element [0..*] {redefines evaluate}

Return the ownedElements of the referencedElement that are MetadataFeatures and have the
referencedElement as an annotatedElement, plus a MetadataFeature whose annotatedElement is the
referencedElement, whose metaclass is the reflective Metaclass corresponding to the MOF class of the
referencedElement and whose ownedFeatures are bound to the values of the MOF properties of the
referencedElement.

body: referencedElement.ownedElement->
select(oclIsKindOf(MetadataFeature)

and annotatedElement->includes(referencedElement))->
including(metaclassFeature())

metaclassFeature() : MetadataFeature

Return a MetadataFeature whose annotatedElement is the referencedElement, whose metaclass is the
reflective Metaclass corresponding to the MOF class of the referencedElement and whose ownedFeatures
are bound to the MOF properties of the referencedElement.

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A MetadataAccessExpression is always model-level evaluable.

body: true

Constraints

checkMetadataAccessExpressionSpecialization

A MetadataAccessExpression must directly or indirectly specialize the base MetadataAccessExpression
Performances::metadataAccessEvaluations from the Kernel Semantic Library.

specializesFromLibrary('Performances::metadataAccessEvaluations')

deriveMetadataAccessExpressionReferencdElement

The referencedElement of a MetadataAccessExpression is the memberElement of its first
ownedMembership that is not a FeatureMembership.

referencedElement =
let elements : Sequence(Element) = ownedMembership->

reject(oclIsKindOf(FeatureMembership)).memberElement in
if elements->isEmpty() then null
else elements->first()
endif

validateMetadataAccessExpressionReferencedElement

Kernel Modeling Language v1.0 Beta 4 215

A MetadataAccessExpression must have at least one ownedMember that is not a FeatureMembership.

ownedMembership->exists(not oclIsKindOf(FeatureMembership))

8.3.4.8.16 NullExpression

Description

A NullExpression is an Expression that results in a null value.

General Classes

Expression

Attributes

None.

Operations

evaluate(target : Element) : Element [0..*] {redefines evaluate}

The model-level value of a NullExpression is an empty sequence.

body: Sequence{}

modelLevelEvaluable(visited : Feature [0..*]) : Boolean {redefines modelLevelEvaluable}

A NullExpression is always model-level evaluable.

body: true

Constraints

checkNullExpressionSpecialization

A NullExpression must directly or indirectly specialize the base NullExpression
Performances::nullEvaluations from the Kernel Semantic Library.

specializesFromLibrary('Performances::nullEvaluations')

8.3.4.8.17 OperatorExpression

Description

An OperatorExpression is an InvocationExpression whose function is determined by resolving its
operator in the context of one of the standard packages from the Kernel Function Library.

General Classes

InvocationExpression

Attributes

operator : String

216 Kernel Modeling Language v1.0 Beta 4

An operator symbol that names a corresponding Function from one of the standard packages from the Kernel
Function Library .

Operations

instantiatedType() : Type {redefines instantiatedType}

The instantiatedType of an OperatorExpression is the resolution of it's operator from one of the packages
BaseFunctions, DataFunctions, or ControlFunctions from the Kernel Function Library.

body: let libFunctions : Sequence(Element) =
Sequence{'BaseFunctions', 'DataFunctions', 'ControlFunctions'}->
collect(ns | resolveGlobal(ns + "::'" + operator + "'").
memberElement) in

if libFunctions->isEmpty() then null
else libFunctions->first().oclAsType(Type)
endif

Constraints

None.

8.3.4.8.18 SelectExpression

Description

A SelectExpression is an OperatorExpression whose operator is "select", which resolves to the
Function ControlFunctions::select from the Kernel Functions Library.

General Classes

OperatorExpression

Attributes

operator : String {redefines operator}

Operations

None.

Constraints

checkSelectExpressionResultSpecialization

The result of a SelectExpression must specialize the result parameter of the first argument of the
SelectExpression.

arguments->notEmpty() implies
result.specializes(arguments->first().result)

validateSelectExpressionOperator

The operator of a SelectExpression must be 'select'.

operator = 'select'

Kernel Modeling Language v1.0 Beta 4 217

8.3.4.9 Interactions Abstract Syntax

8.3.4.9.1 Overview

Interaction

AssociationBehavior

Figure 35. Interactions

Flow

Feature

SuccessionFlow

FlowEnd

PayloadFeature

Interaction

Classifier

Succession

Connector Step

{subsets featuringConnector}

+/featuringFlow

0..*
{subsets connectorEnd,
ordered}

+/flowEnd

0..2

{subsets ownedFeature}

+/payloadFeature

0..1

+/flowWithPayloadFeature

{subsets owningType}
0..1

{redefines association,
redefines behavior, ordered}

+/interaction

0..*
{subsets typedConnector,
subsets typedStep}

+/typedFlow
0..*

{ordered, nonunique}

+/payloadType

0..*

+/flowForPayloadType

0..*

+/flowFromOutput

0..*

+/sourceOutputFeature

{ordered, nonunique}
0..1

+/flowToInput

0..*
{ordered, nonunique}

+/targetInputFeature

0..1

Figure 36. Flows

8.3.4.9.2 Flow

Description

An Flow is a Step that represents the transfer of values from one Feature to another. Flows can take non-zero
time to complete.

218 Kernel Modeling Language v1.0 Beta 4

General Classes

Connector
Step

Attributes

/flowEnd : FlowEnd [0..2] {subsets connectorEnd, ordered}

The connectorEnds of this Flow that are FlowEnds.

/interaction : Interaction [0..*] {redefines association, behavior, ordered}

The Interactions that type this Flow. Interactions are both Associations and Behaviors, which can type
Connectors and Steps, respectively.

/payloadFeature : PayloadFeature [0..1] {subsets ownedFeature}

The ownedFeature of the Flow that is a PayloadFeature (if any).

/payloadType : Classifier [0..*] {ordered, nonunique}

The type of values transferred, which is the type of the payloadFeature of the Flow.

/sourceOutputFeature : Feature [0..1] {ordered, nonunique}

The Feature that provides the items carried by the Flow. It must be a feature of the source of the Flow.

/targetInputFeature : Feature [0..1] {ordered, nonunique}

The Feature that receives the values carried by the Flow. It must be a feature of the target of the Flow.

Operations

None.

Constraints

checkFlowSpecialization

A Flow must directly or indirectly specialize the Step Transfers::transfers from the Kernel Semantic
Library.

specializesFromLibrary('Transfers::transfers')

checkFlowWithEndsSpecialization

A Flow with ownedEndFeatures must specialize the Step Transfers::flowTransfers from the Kernel
Semantic Library.

ownedEndFeatures->notEmpty() implies
specializesFromLibrary('Transfers::flowTransfers')

deriveFlowFlowEnd

The flowEnds of a Flow are all its connectorEnds that are FlowEnds.

Kernel Modeling Language v1.0 Beta 4 219

flowEnd = connectorEnd->selectByKind(FlowEnd)

deriveFlowPayloadFeature

The payloadFeature of a Flow is the single one of its ownedFeatures that is a PayloadFeature.

payloadFeature =
let payloadFeatures : Sequence(PayloadFeature) =

ownedFeature->selectByKind(PayloadFeature) in
if payloadFeatures->isEmpty() then null
else payloadFeatures->first()
endif

deriveFlowPayloadType

The payloadTypes of a Flow are the types of the payloadFeature of the Flow (if any).

payloadType =
if payloadFeature = null then Sequence{}
else payloadFeature.type
endif

deriveFlowSourceOutputFeature

The sourceOutputFeature of a Flow is the first ownedFeature of the first connectorEnd of the Flow.

sourceOutputFeature =
if connectorEnd->isEmpty() or

connectorEnd.ownedFeature->isEmpty()
then null
else connectorEnd.ownedFeature->first()
endif

deriveFlowTargetInputFeature

The targetInputFeature of a Flow is the first ownedFeature of the second connectorEnd of the Flow.

targetInputFeature =
if connectorEnd->size() < 2 or

connectorEnd->at(2).ownedFeature->isEmpty()
then null
else connectorEnd->at(2).ownedFeature->first()
endif

validateFlowPayloadFeature

A Flow must have at most one ownedFeature that is an PayloadFeature.

ownedFeature->selectByKind(PayloadFeature)->size() <= 1

8.3.4.9.3 FlowEnd

Description

A FlowEnd is a Feature that is one of the connectorEnds giving the source or target of a Flow. For Flows
typed by FlowTransfer or its specializations, FlowEnds must have exactly one ownedFeature, which redefines
Transfer::source::sourceOutput or Transfer::target::targetInput and redefines the corresponding
feature of the relatedElement for its end.

220 Kernel Modeling Language v1.0 Beta 4

General Classes

Feature

Attributes

None.

Operations

None.

Constraints

validateFlowEndIsEnd

A FlowEnd must be an end Feature.

isEnd

validateFlowEndNestedFeature

A FlowEnd must have exactly one ownedFeature.

ownedFeature->size() = 1

validateFlowEndOwningType

The owningType of a FlowEnd must be a Flow.

owningType <> null and owningType.oclIsKindOf(Flow)

8.3.4.9.4 Interaction

Description

An Interaction is a Behavior that is also an Association, providing a context for multiple objects that have
behaviors that impact one another.

General Classes

Association
Behavior

Attributes

None.

Operations

None.

Constraints

None.

8.3.4.9.5 PayloadFeature

Kernel Modeling Language v1.0 Beta 4 221

Description

A PayloadFeature is the ownedFeature of a Flow that identifies the things carried by the kinds of transfers that
are instances of the Flow.

General Classes

Feature

Attributes

None.

Operations

None.

Constraints

checkPayloadFeatureRedefinition

A PayloadFeature must redefine the Feature Transfers::Transfer::payload from the Kernel Semantic
Library.

redefinesFromLibrary('Transfers::Transfer::payload')

8.3.4.9.6 SuccessionFlow

Description

A SuccessionFlow is a Flow that also provides temporal ordering. It classifies Transfers that cannot start until
the source Occurrence has completed and that must complete before the target Occurrence can start.

General Classes

Succession
Flow

Attributes

None.

Operations

None.

Constraints

checkSuccessionFlowSpecialization

A SuccessionFlow must directly or indirectly specialize the Step Transfers::flowTransfersBefore from
the Kernel Semantic Library.

specializesFromLibrary('Transfers::flowTransfersBefore')

8.3.4.10 Feature Values Abstract Syntax

222 Kernel Modeling Language v1.0 Beta 4

8.3.4.10.1 Overview

+isDefault : Boolean = false
+isInitial : Boolean = false

FeatureValue

OwningMembership

ExpressionFeature

{redefines
ownedMemberElement}

+/value

1

+/expressedValuation

{subsets
owningMembership}

0..1

{subsets
ownedMembership}

+/valuation

0..1
{subsets
membershipOwningNamespace}

+/featureWithValue

1

Figure 37. Feature Values

8.3.4.10.2 FeatureValue

Description

A FeatureValue is a Membership that identifies a particular member Expression that provides the value of the
Feature that owns the FeatureValue. The value is specified as either a bound value or an initial value, and as
either a concrete or default value. A Feature can have at most one FeatureValue.

The result of the value Expression is bound to the featureWithValue using a BindingConnector. If
isInitial = false, then the featuringType of the BindingConnector is the same as the featuringType
of the featureWithValue. If isInitial = true, then the featuringType of the BindingConnector is
restricted to its startShot.

If isDefault = false, then the above semantics of the FeatureValue are realized for the given
featureWithValue. Otherwise, the semantics are realized for any individual of the featuringType of the
featureWithValue, unless another value is explicitly given for the featureWithValue for that individual.

General Classes

OwningMembership

Attributes

/featureWithValue : Feature {subsets membershipOwningNamespace}

The Feature to be provided a value.

The Feature to be provided a value.

isDefault : Boolean

Whether this FeatureValue is a concrete specification of the bound or initial value of the featureWithValue, or
just a default value that may be overridden.

isInitial : Boolean

Whether this FeatureValue specifies a bound value or an initial value for the featureWithValue.

/value : Expression {redefines ownedMemberElement}

The Expression that provides the value of the featureWithValue as its result.

The Expression that provides the value as a result.

Kernel Modeling Language v1.0 Beta 4 223

Operations

None.

Constraints

checkFeatureValueBindingConnector

If isDefault = false, then the featureWithValue must have an ownedMember that is a BindingConnector
whose relatedElements are the featureWithValue and a feature chain consisting of the value Expression
and its result. If isInitial = false, then this BindingConnector must have featuringTypes that are the
same as those of the featureWithValue. If isInitial = true, then the BindingConnector must have
that.startShot as its featuringType.

not isDefault implies
featureWithValue.ownedMember->

selectByKind(BindingConnector)->exists(b |
b.relatedFeature->includes(featureWithValue) and
b.relatedFeature->exists(f |

f.chainingFeature = Sequence{value, value.result}) and
if not isInitial then

b.featuringType = featureWithValue.featuringType
else

b.featuringType->exists(t |
t.oclIsKindOf(Feature) and
t.oclAsType(Feature).chainingFeature =

Sequence{
resolveGlobal('Base::things::that').

memberElement,
resolveGlobal('Occurrences::Occurrence::startShot').

memberElement
}

)
endif)

validateFeatureValueIsInitial

If a FeatureValue has isInitial = true, then its featureWithValue must have isVariable = true.

isInitial implies featureWithValue.isVariable

validateFeatureValueOverriding

All Features directly or indirectly redefined by the featureWithValue of a FeatureValue must have only
default FeatureValues.

featureWithValue.redefinition.redefinedFeature->
closure(redefinition.redefinedFeature).valuation->
forAll(isDefault)

8.3.4.11 Multiplicities Abstract Syntax

224 Kernel Modeling Language v1.0 Beta 4

8.3.4.11.1 Overview

+valueOf(bound : Expression [0..1]) : UnlimitedNatural [0..1]
+hasBounds(lower : Integer, upper : UnlimitedNatural) : Boolean

MultiplicityRange

Expression

Multiplicity

{subsets owningType}
+/multiplicity

0..1

{subsets ownedMember,
ordered}

+/bound

1..2

{subsets
multiplicity}

+/multiplicity 0..1

{subsets bound}
+/upperBound 1

{subsets
multiplicity}

+/multiplicity 0..1

{subsets bound}
+/lowerBound 0..1

Figure 38. Multiplicities

8.3.4.11.2 MultiplicityRange

Description

A MultiplicityRange is a Multiplicity whose value is defined to be the (inclusive) range of natural numbers
given by the result of a lowerBound Expression and the result of an upperBound Expression. The result of
these Expressions shall be of type Natural. If the result of the upperBound Expression is the unbounded
value *, then the specified range includes all natural numbers greater than or equal to the lowerBound value. If no
lowerBound Expression, then the default is that the lower bound has the same value as the upper bound, except if
the upperBound evaluates to *, in which case the default for the lower bound is 0.

General Classes

Multiplicity

Attributes

/bound : Expression [1..2] {subsets ownedMember, ordered}

The owned Expressions of the MultiplicityRange whose results provide its bounds. These must be the first
ownedMembers of the MultiplicityRange.

/lowerBound : Expression [0..1] {subsets bound}

The Expression whose result provides the lower bound of the MultiplicityRange. If no lowerBound
Expression is given, then the lower bound shall have the same value as the upper bound, unless the upper bound is
unbounded (*), in which case the lower bound shall be 0.

/upperBound : Expression {subsets bound}

The Expression whose result is the upper bound of the MultiplicityRange.

Kernel Modeling Language v1.0 Beta 4 225

Operations

hasBounds(lower : Integer, upper : UnlimitedNatural) : Boolean

Check whether this MultiplicityRange represents the range bounded by the given values lower and upper,
presuming the lowerBound and upperBound Expressions are model-level evaluable.

body: valueOf(upperBound) = upper and
let lowerValue: UnlimitedNatural = valueOf(lowerBound) in
(lowerValue = lower or
lowerValue = null and

(lower = upper or
lower = 0 and upper = *))

valueOf(bound : Expression [0..1]) : UnlimitedNatural [0..1]

Evaluate the given bound Expression (at model level) and return the result represented as a MOF
UnlimitedNatural value.

body: if bound = null or not bound.isModelLevelEvaluable then
null

else
let boundEval: Sequence(Element) = bound.evaluate(owningType) in
if boundEval->size() <> 1 then null else

let valueEval: Element = boundEval->at(1) in
if valueEval.oclIsKindOf(LiteralInfinity) then *
else if valueEval.oclIsKindOf(LiteralInteger) then

let value : Integer =
valueEval.oclAsKindOf(LiteralInteger).value in

if value >= 0 then value else null endif
else null
endif endif

endif
endif

Constraints

checkMultiplicityRangeExpressionTypeFeaturing

The bounds of a MultiplicityRange must have the same featuringTypes as the MultiplicityRange.

bound->forAll(b | b.featuringType = self.featuringType)

deriveMultiplicityRangeBound

The bounds of a MultiplicityRange are the lowerBound (if any) followed by the upperBound.

bound =
if upperBound = null then Sequence{}
else if lowerBound = null then Sequence{upperBound}
else Sequence{lowerBound, upperBound}
endif endif

deriveMultiplicityRangeLowerBound

If a MultiplicityRange has two ownedMembers that are Expressions, then the lowerBound is the first of
these, otherwise it is null.

226 Kernel Modeling Language v1.0 Beta 4

lowerBound =
let ownedExpressions : Sequence(Expression) =

ownedMember->selectByKind(Expression) in
if ownedExpressions->size() < 2 then null
else ownedExpressions->first()
endif

deriveMultiplicityRangeUpperBound

If a MultiplicityRange has one ownedMember that is an Expression, then this is the upperBound. If it has
more than one ownedMember that is an Expression, then the upperBound is the second of those. Otherwise, it is
null.

upperBound =
let ownedExpressions : Sequence(Expression) =

ownedMember->selectByKind(Expression) in
if ownedExpressions->isEmpty() then null
else if ownedExpressions->size() = 1 then ownedExpressions->at(1)
else ownedExpressions->at(2)
endif endif

validateMultiplicityRangeBoundResultTypes

The results of the bound Expression(s) of a MultiplicityRange must be typed by
ScalarValues::Intger from the Kernel Data Types Library. If a bound is model-level evaluable, then it must
evaluate to a non-negative value.

bound->forAll(b |
b.result.specializesFromLibrary('ScalarValues::Integer') and
let value : UnlimitedNatural = valueOf(b) in
value <> null implies value >= 0

)

validateMultiplicityRangeBounds

The lowerBound (if any) and upperBound Expressions must be the first ownedMembers of a
MultiplicityRange.

if lowerBound = null then
ownedMember->notEmpty() and
ownedMember->at(1) = upperBound

else
ownedMember->size() > 1 and
ownedMember->at(1) = lowerBound and
ownedMember->at(2) = upperBound

endif

8.3.4.12 Metadata Abstract Syntax

Kernel Modeling Language v1.0 Beta 4 227

8.3.4.12.1 Overview

+syntaxElement() : Element [0..1]
+isSyntactic() : Boolean
+isSemantic() : Boolean
+evaluateFeature(baseFeature : Feature) : Element [0..*]

MetadataFeature

AnnotatingElement

Structure

Metaclass

Feature

{subsets typedFeature}

+/typedMetadata

0..*
{subsets type}

+/metaclass

0..1

Figure 39. Metadata Annotation

8.3.4.12.2 Metaclass

Description

A Metaclass is a Structure used to type MetadataFeatures.

General Classes

Structure

Attributes

None.

Operations

None.

Constraints

checkMetaclassSpecialization

A Metaclass must directly or indirectly specialize the base Metaclass Metaobjects::Metaobject from the
Kernel Semantic Library.

specializesFromLibrary('Metaobjects::Metaobject')

8.3.4.12.3 MetadataFeature

Description

A MetadataFeature is a Feature that is an AnnotatingElement used to annotate another Element with
metadata. It is typed by a Metaclass. All its ownedFeatures must redefine features of its metaclass and any
feature bindings must be model-level evaluable.

General Classes

228 Kernel Modeling Language v1.0 Beta 4

Feature
AnnotatingElement

Attributes

/metaclass : Metaclass [0..1] {subsets type}

The type of this MetadataFeature, which must be a Metaclass.

Operations

evaluateFeature(baseFeature : Feature) : Element [0..*]

If the given baseFeature is a feature of this MetadataFeature, or is directly or indirectly redefined by a
feature, then return the result of evaluating the appropriate (model-level evaluable) value Expression for it (if
any), with the MetadataFeature as the target.

body: let selectedFeatures : Sequence(Feature) = feature->
select(closure(ownedRedefinition.redefinedFeature)->

includes(baseFeature)) in
if selectedFeatures->isEmpty() then null
else

let selectedFeature : Feature = selectedFeatures->first() in
let featureValues : FeatureValue = selectedFeature->

closure(ownedRedefinition.redefinedFeature).ownedMember->
selectAsKind(FeatureValue) in

if featureValues->isEmpty() then null
else featureValues->first().value.evaluate(self)
endif

isSemantic() : Boolean

Check if this MetadataFeature has a metaclass which is a kind of SemanticMetadata.

body: specializesFromLibrary('Metaobjects::SemanticMetadata')

isSyntactic() : Boolean

Check if this MetadataFeature has a metaclass that is a kind of KerML::Element (that is, it is from the
reflective abstract syntax model).

body: specializesFromLibrary('KerML::Element')

syntaxElement() : Element [0..1]

If this MetadataFeature reflectively represents a model element, then return the corresponding Element instance
from the MOF abstract syntax representation of the model.

pre: isSyntactic()
body: No OCL

Constraints

checkMetadataFeatureSemanticSpecialization

If this MetadataFeature is an application of SemanticMetadata, then its annotatingElement must be a
Type. The annotated Type must then directly or indirectly specialize the specified value of the baseType, unless

Kernel Modeling Language v1.0 Beta 4 229

the Type is a Classifier and the baseType represents a kind of Feature, in which case the Classifier must
directly or indirectly specialize each of the types of the Feature.

isSemantic() implies
let annotatedTypes : Sequence(Type) =

annotatedElement->selectAsKind(Type) in
let baseTypes : Sequence(MetadataFeature) =

evaluateFeature(resolveGlobal(
'Metaobjects::SemanticMetadata::baseType').
memberElement.
oclAsType(Feature))->

selectAsKind(MetadataFeature) in
annotatedTypes->notEmpty() and
baseTypes()->notEmpty() and
baseTypes()->first().isSyntactic() implies

let annotatedType : Type = annotatedTypes->first() in
let baseType : Element = baseTypes->first().syntaxElement() in
if annotatedType.oclIsKindOf(Classifier) and

baseType.oclIsKindOf(Feature) then
baseType.oclAsType(Feature).type->

forAll(t | annotatedType.specializes(t))
else if baseType.oclIsKindOf(Type) then

annotatedType.specializes(baseType.oclAsType(Type))
else

true
endif

checkMetadataFeatureSpecialization

A MetadataFeature must directly or indirectly specialize the base MetadataFeature
Metaobjects::metaobjects from the Kernel Semantic Library.

specializesFromLibrary('Metaobjects::metaobjects')

deriveMetadataFeatureMetaclass

The metaclass of a MetadataFeature is one of its types that is a Metaclass

metaclass =
let metaclassTypes : Sequence(Type) = type->selectByKind(Metaclass) in
if metaclassTypes->isEmpty() then null
else metaClassTypes->first()
endif

validateMetadataFeatureAnnotatedElement

The annotatedElements of a MetadataFeature must have an abstract syntax metaclass consistent with the
annotatedElement declarations for the MetadataFeature.

let baseAnnotatedElementFeature : Feature =
resolveGlobal('Metaobjects::Metaobject::annotatedElement').memberElement.
oclAsType(Feature) in

let annotatedElementFeatures : OrderedSet(Feature) = feature->
select(specializes(baseAnnotatedElementFeature))->
excluding(baseAnnotatedElementFeature) in

annotatedElementFeatures->notEmpty() implies
let annotatedElementTypes : Set(Feature) =

annotatedElementFeatures.typing.type->asSet() in
let metaclasses : Set(Metaclass) =

annotatedElement.oclType().qualifiedName->collect(qn |

230 Kernel Modeling Language v1.0 Beta 4

resolveGlobal(qn).memberElement.oclAsType(Metaclass)) in
metaclasses->forAll(m | annotatedElementTypes->exists(t | m.specializes(t)))

validateMetadataFeatureBody

Each ownedFeature of a MetadataFeature must have no declared name, redefine a single Feature, either have
no featureValue or a featureValue with a value Expression that is model-level evaluable, and only have
ownedFeatures that also meet these restrictions.

ownedFeature->closure(ownedFeature)->forAll(f |
f.declaredName = null and f.declaredShortName = null and
f.valuation <> null implies f.valuation.value.isModelLevelEvaluable and
f.redefinition.redefinedFeature->size() = 1)

validateMetadataFeatureMetaclass

A MetadataFeature must have exactly one type that is a Metaclass.

type->selectByKind(Metaclass).size() = 1

validateMetadataFeatureMetaclassNotAbstract

The metaclass of a MetadataFeature must not be abstract.

not metaclass.isAbstract

8.3.4.13 Packages Abstract Syntax

8.3.4.13.1 Overview

+includeAsMember(element : Element) : Boolean
+importedMemberships(excluded : Namespace [0..*]) : Membership [0..*]{redefines importedMemberships}

Package

+libraryNamespace() : Namespace [0..1]{redefines libraryNamespace}

+isStandard : Boolean = false

LibraryPackage

ElementFilterMembership

OwningMembershipNamespace

Expression

{subsets owningNamespace}
+/conditionedPackage 0..1

{subsets ownedMember,
ordered}

+/filterCondition

0..*

{redefines ownedMemberElement}
+/condition 1

{subsets owningMembership}
+/owningFilter 0..1

Figure 40. Packages

8.3.4.13.2 ElementFilterMembership

Description

ElementFilterMembership is a Membership between a Namespace and a model-level evaluable
Boolean-valued Expression, asserting that imported members of the Namespace should be filtered using the
condition Expression. A general Namespace does not define any specific filtering behavior, but such behavior
may be defined for various specialized kinds of Namespaces.

General Classes

Kernel Modeling Language v1.0 Beta 4 231

OwningMembership

Attributes

/condition : Expression {redefines ownedMemberElement}

The model-level evaluable Boolean-valued Expression used to filter the imported members of the
membershipOwningNamespace of this ElementFilterMembership.

Operations

None.

Constraints

validateElementFilterMembershipConditionIsBoolean

The result parameter of the condition Expression must directly or indirectly specialize
ScalarValues::Boolean.

condition.result.specializesFromLibrary('ScalarValues::Boolean')

validateElementFilterMembershipConditionIsModelLevelEvaluable

The condition Expression must be model-level evaluable.

condition.isModelLevelEvaluable

8.3.4.13.3 LibraryPackage

Description

A LibraryPackage is a Package that is the container for a model library. A LibraryPackage is itself a library
Element as are all Elements that are directly or indirectly contained in it.

General Classes

Package

Attributes

isStandard : Boolean

Whether this LibraryPackage contains a standard library model. This should only be set to true for
LibraryPackages in the standard Kernel Model Libraries or in normative model libraries for a language built on
KerML.

Operations

libraryNamespace() : Namespace [0..1] {redefines libraryNamespace}

The libraryNamespace for a LibraryPackage is itself.

body: self

Constraints

232 Kernel Modeling Language v1.0 Beta 4

None.

8.3.4.13.4 Package

Description

A Package is a Namespace used to group Elements, without any instance-level semantics. It may have one or
more model-level evaluable filterCondition Expressions used to filter its importedMemberships. Any
imported member must meet all of the filterConditions.

General Classes

Namespace

Attributes

/filterCondition : Expression [0..*] {subsets ownedMember, ordered}

The model-level evaluable Boolean-valued Expression used to filter the members of this Package, which are
owned by the Package are via ElementFilterMemberships.

Operations

importedMemberships(excluded : Namespace [0..*]) : Membership [0..*] {redefines importedMemberships}

Exclude Elements that do not meet all the filterConditions.

body: self.oclAsType(Namespace).importedMemberships(excluded)->
select(m | self.includeAsMember(m.memberElement))

includeAsMember(element : Element) : Boolean

Determine whether the given element meets all the filterConditions.

body: let metadataFeatures: Sequence(AnnotatingElement) =
element.ownedAnnotation.annotatingElement->

selectByKind(MetadataFeature) in
self.filterCondition->forAll(cond |

metadataFeatures->exists(elem |
cond.checkCondition(elem)))

Constraints

derivePackageFilterCondition

The filterConditions of a Package are the conditions of its owned ElementFilterMemberships.

filterCondition = ownedMembership->
selectByKind(ElementFilterMembership).condition

8.4 Semantics
8.4.1 Semantics Overview

A KerML model is intended to represent a system being modeled. The model is interpreted to make statements
about the modeled system. The model may describe an existing system, in which case, if the model is correct, the
statements it is interpreted to make about the system should all be true. A model may also be used to specify an

Kernel Modeling Language v1.0 Beta 4 233

imagined or planned system, in which case the statements the model is interpreted to make should be true for any
system that is properly constructed and operated according to the model.

The semantics of KerML specify how a KerML model is to be interpreted. The semantics are defined in terms of the
abstract syntax representation of the model, and only for models which are valid relative to the structure and
constraints specified for the KerML abstract syntax (see 8.3). As further specified in this subclause, models
expressed in KerML are given semantics by implicitly reusing elements from the semantic models in the Kernel
Model Library (see Clause 9). These library models represent conditions on the structure and behavior of the system
being modeled, which are further augmented in a user model as appropriate.

A formal specification of semantics allows models to be interpreted consistently. In particular, all KerML models
extend library models expressed in KerML itself, understandable by KerML modelers. These library models can
then be ultimately reduced to a small, core subset of KerML, which is grounded in mathematical logic. The goal is
to provide uniform model interpretation, which improves communication between everyone involved in modeling,
including modelers and tool builders.

KerML semantics are specified by a combination of mathematics and model libraries, as illustrated in Fig. 41 . The
left side of this diagram shows the abstract syntax packages corresponding to the three layers of KerML (see 6.1).
The right side shows the corresponding semantic layering.

1. The Root Layer defines the syntactic foundation KerML and, as such, does not have a semantic
interpretation relative to the modeled system.

2. The Core Layer is grounded in mathematical semantics, supported by the Base package from the Kernel
Model Library (see 9.2.2). Subclause 8.4.3 specifies the semantics of the Core layer.

3. The Kernel Layer is given semantics fully through its relationship to the Model Library (see Clause 9).
Subclause 8.4.4 specifies the semantics of the Kernel layer .

234 Kernel Modeling Language v1.0 Beta 4

Kernel

Core Semantics

Core

Root

Kernel
Semantic
Library

Base

mathematical
semantics

FeatureValues
Multiplicities

Associations

Expressions
Interactions

Connectors

Structures

DataTypes

Functions
Behaviors

Packages
Metadata

Classes

Classifiers
Features

Types

Dependencies

Namespaces
Annotations

Elements

metamodel

semantic library

metamodel

semantic library

«import»

«import»

Figure 41. KerML Semantic Layers

8.4.2 Semantic Constraints and Implied Relationships

As described in 8.4.1 , KerML semantics are specified by a combination of a mathematical interpretation of the Core
layer and a set of required relationships between Core and Kernel model elements and elements of the Kernel
Semantic Library (see 9.2). The latter requirements are formalized by semantic constraints included in the KerML
abstract syntax (see also 8.3.1 on the various kinds of constraints in the abstract syntax). Additionally, other
semantic constraints require relationships between elements within a user model necessary for the model to be
semantically well formed.

Specifically, there are four categories of semantic constraints, each dealing with a different kind of relationship.

1. Specialization constraints. These constraints require that Type elements of a certain kind directly or
indirectly specialize some specific base Type from the Kernel Semantic Library. They are the fundamental
means for providing semantics to abstract syntax elements in the Kernel layer. Specialization constraints
always have the word Specialization in their name. For example, checkDataTypeSpecialization
requires that a DataType directly or indirectly specialize the Semantic Library DataType
Base::DataValue.

Kernel Modeling Language v1.0 Beta 4 235

2. Redefinition constraints. These constraints require that certain Features in a model have Redefinition
relationships with certain other Features in the model. While Redefinitions are kinds of
Specializations, redefinition constraints differ from the specialization constraints described above in
that they are between two elements of a user model, rather than between an element of a user model and
an element of a library model. Redefinition constraints always have the word Redefinition in their
name. For example, checkConnectorEndRedefinition requires that the ends of a Connector
redefine any ends of the Types that it specializes.

3. Type-featuring constraints. These constraints require that certain Features in a model have
TypeFeaturing relationships with certain other Types in the model. They arise at points in a model in
which the OwningMembership structure is different than the required Featuring relationship, so
FeatureMembership cannot be used. Type-featuring constraints always have the words
TypeFeaturing in their name. For example, checkFeatureValueExpressionTypeFeaturing
requires that the value Expression owned by a FeatureValue relationship (a kind of
OwningMembership) have the same featuringTypes as the owning featureWithValue of the
FeatureValue, rather than being featured by the featureWithValue itself (as would have been the
case for a FeatureMembership).

4. Binding-connector constraints. These constraints require that BindingConnectors exist between certain
Features in a model. The primary example of such a constraint is
checkFeatureValueBindingConnector, which requires that the featureWithValue of a
FeatureValue own a BindingConnector between itself and the result parameter of the value
Expression of the FeatureValue.

A KerML model parsed from the textual concrete syntax (see 8.2) or obtained through model interchange (see
Clause 10) will not necessarily meet the semantic constraints specified for the abstract syntax. In this case, a tool
may insert certain implied Relationships into the model in order to meet the semantic constraints. The overview
subclauses for the Core Semantics (see 8.4.3.1) and Kernel Semantics (see 8.4.4.1) include tables that define what
implied Relationships should be included to satisfy each semantic constraint when it would otherwise be
violated. In all cases, the semantics of a model are only defined if it meets all semantic and validation constraints
(see 8.3.1).

When including implied Relationships for specialization constraints, it is possible that multiple such constraints
may apply to a single element. For example, a Structure is a kind of Class, which is a kind of Classifier, and
there are specialization constraints for all three of these metaclasses, with corresponding implied
Subclassification Relationships. However, simply including all three implied Subclassification
would be redundant, because the Subclassification implied by the checkStructureSpecialization
constraint will also automatically satisfy the checkClassSpecialization and
checkClassifierSpecialization constraints.

Therefore, in order to avoid redundant Relationships, a tool should observe the following rules when selecting
which Specializations to actually include for a certain specific Type, out of the set of those implied by all
specialization constraints applicable to the Type:

1. If there is any ownedSpecialization or other implied Specialization whose general Type is a
direct or indirect subtype of (but not the same as) the general Type of an implied Specialization, or
if there is an ownedSpecialization with the same general Type, then that implied
Specialization should not be included.

2. If there are two implied Specializations with the same general Type, then only one should be
included.

Note that the above rules do not apply to Redefinitions implied by redefinition constraints, because
Redefinition relationships have semantics beyond just basic Specialization.

8.4.3 Core Semantics
8.4.3.1 Core Semantics Overview

236 Kernel Modeling Language v1.0 Beta 4

8.4.3.1.1 Core Semantic Constraints

The Core semantics are primarily specified mathematically, but the Core metaclasses Type, Classifier, and
Feature also have certain semantic constraints (see 8.4.2). Subclause 8.4.3.1.2 describes the general mathematical
framework for Core semantics, with specific rules for Types, Classifiers and Features given in 8.4.3.2 ,
8.4.3.3 , and 8.4.3.4 , respectively. The following summarizes the corresponding semantic constraints.

The checkTypeSpecialization and checkFeatureSpecialization constraints are actually already implied
by the mathematical semantics for Types and Features, but they are included in the abstract syntax so that they
can also be reflected syntactically in models by the implied Relationships shown in Table 8 . In addition, Table
9 lists the implied Relationships for semantic constraints on the Core metaclass Feature that actually support
the semantics of various Kernel-layer constructs, as further described in the Kernel Semantics (8.4.4) subclauses
referenced in the table entries for those constraints. In all cases, the source and owningRelatedElement of the
Relationship is the Element being constrained, with the target being as given in the last column of the table.

Table 8. Core Semantics Implied Relationships

Semantic Constraint Implied Relationship Target

checkTypeSpecialization Subclassification Base::Anything (see 9.2.2.2.1)

checkFeatureSpecialization Subsetting Base::things (see 9.2.2.2.7)

Notes

1. The checkTypeSpecialization constraint applies to all Types, but the Subclassification
Relationship is only implied for Classifiers (see 8.4.3.3).

2. Satisfaction of the checkFeatureSpecialization constraint implies satisfaction of the
checkTypeSpecialization constraint (see 8.4.3.4).

Table 9. Core Semantics Implied Relationships Supporting Kernel Semantics

Semantic Constraint Implied Relationship Target

checkFeatureDataValue
Specialization Subsetting

Base::dataValues (see 9.2.2.2.3)
Supports Data Types Semantics (see
8.4.4.2)

checkFeatureOccurrence
Specialization Subsetting

Occurrences::occurrences (see
9.2.4.2.14)
Supports Classes Semantics (see
8.4.4.3)

checkFeatureSuboccurrence
Specialization Subsetting

Occurrences::Occurrence::
suboccurrences (see 9.2.4.2.13)
Supports Classes Semantics (see
8.4.4.3)

checkFeatureFeatureMembership
TypeFeaturing TypeFeaturing

A Type for which
isFeaturingType
is true on the Feature
Supports Classes Semantics (see
8.4.4.3)
(See Note 1)

checkFeatureObject
Specialization Subsetting

Objects::objects (see 9.2.5.2.8)
Supports Structures Semantics (see
8.4.4.4)

Kernel Modeling Language v1.0 Beta 4 237

Semantic Constraint Implied Relationship Target

checkFeatureSubobject
Specialization Subsetting

Objects::Object::subobjects
(see 9.2.5.2.7)
Supports Structures Semantics (see
8.4.4.4)

checkFeatureEnd
Specialization Subsetting

Links::Link::participant (see
9.2.3.2.3)
Supports Associations Semantics
(see 8.4.4.5)

checkFeatureEndRedefinition Redefinition

endFeatures of supertypes of
the owning Type of the Feature
Supports Associations and
Connectors Semantics (see 8.4.4.5
and 8.4.4.6)

checkFeatureCrossing
Specialization CrossSubsetting

Feature chain (see Note 2)

Supports Associations and
Connectors Semantics (see 8.4.4.5
and 8.4.4.6)

checkFeatureOwnedCrossFeature
RedefinitionSpecialization Subsetting

Cross Feature of the redefined
end Feature (if any)

Supports Associations and
Connectors Semantics (see 8.4.4.5
and 8.4.4.6)

checkFeatureOwnedCrossFeature
Specialization FeatureTyping

types of the owning end
Feature

Supports Associations and
Connectors Semantics (see 8.4.4.5
and 8.4.4.6)

checkFeatureOwnedCrossFeature
TypeFeaturing TypeFeaturing

See Note 3

Supports Associations and
Connectors Semantics (see 8.4.4.5
and 8.4.4.6)

checkFeatureParameter
Redefinition Redefinition

parameters of supertypes of the
owning Behavior or Step of the
Feature
Supports Behaviors and Steps
Semantics (see 8.4.4.7)

checkFeatureResult
Redefinition Redefinition

result parameters of supertypes
of the owning Function or
Expression of the Feature
Supports Functions and Expressions
Semantics (see 8.4.4.8)

238 Kernel Modeling Language v1.0 Beta 4

Semantic Constraint Implied Relationship Target

checkFeatureFlowFeature
Redefinition Redefinition

Transfer::source::
sourceOutput or
Transfer::target::
targetInput (see 9.2.7.2.9)
Supports Flows Semantics (see
8.4.4.10.2)

checkFeatureValuation
Specialization Subsetting

The result of the value
Expression of an owned
FeatureValue of a Feature
Supports Feature Values Semantics
(see 8.4.4.11)

Notes

1. For the checkFeatureFeatureMembershipTypeFeaturing constraint, if the Feature has
isVariable = false, then the target Type is the owningType of the Feature. If the Feature has
isVariable = true and the owningType is the base Class Occurrences::Occurrence, then the
target is Occurrences::Occurrence::snapshots (see 9.2.4.2.13). Otherwise, the target Type shall
be constructed so as to satisfy the constraint and shall be owned as an ownedRelatedElement of the
implied TypeFeaturing relationship. For further details, see 8.4.4.3 .

2. For the checkFeatureCrossingSpecialization constraint on an end Feature, the target feature
chain shall consist of two Features. The first Feature is owned by the chain, is typed by the
featuringType of the ownedCrossFeature of the end Feature, and is featured by the owningType
of the end Feature. The second Feature is the ownedCrossFeature of the end Feature. For further
details, see 8.4.4.5.1 .

3. For the checkFeatureOwnedCrossFeatureTypeFeaturing constraint, if the owningType of the
owning end Feature has exactly two endFeatures, then an ownedCrossFeature shall be featured by
the types of the other end than its owning end Feature. If the owningType has more than two
endFeatures, then the ownedCrossFeature shall be featured by a Feature representing a Cartesian
product of the types of the other end Features of the owningType than the owning end Feature of
the ownedCrossFeature. For further details, see 8.4.4.5.1 .

8.4.3.1.2 Core Semantics Mathematical Preliminaries

The mathematical specification of Core semantics uses a model-theoretic approach. Core mathematical semantics
are expressed in first order logic notation, extended as follows:

1. A conjunction specifying that multiple variables are members of the same set can be shortened to a
comma-delimited series of variables followed by a single membership symbol (s1, s2 ∈ S is short for
s1 ∈ S ∧ s2 ∈ S). Quantifiers can use this in variable declarations, rather than leaving it to the body of
the statement before an implication (∀tg, ts ∈ VT ... is short for∀tg, ts tg ∈ VT ∧ ts ∈ VT ⇒ ...).

2. Dots (.) appearing between metaproperty names have the same meaning as in OCL, including implicit
collections [OCL].

3. Sets are identified in the usual set-builder notation, which specifies members of a set between curly braces
("{}"). The notation is extended with "#" before an opening brace to refer to the cardinality of a set.

Element names appearing in the mathematical semantics refer to the Element itself, rather than its instances, using
the same font conventions as given in 8.1 .

The mathematical semantics use the following model-theoretic terms, explained in terms of this specification:

Kernel Modeling Language v1.0 Beta 4 239

• Vocabulary: Model elements conforming to the KerML abstract syntax, with additional restrictions given
in this subclause.

• Universe: All actual or potential things the vocabulary could possibly be about.
• Interpretation: The relationship between vocabulary and mathematical structures made of elements of the

universe.

The above terms are mathematically defined below.

• A vocabulary V = (VT, VC, VF) is a 3-tuple where:
◦ VT is a set of types (model elements classified by Type or its specializations, see 8.3.3.1).
◦ VC ⊆ VT is a set of classifiers (model elements classified by Classifier or its specializations,

see 8.3.3.2), including at least Base::Anything from KerML Semantic Model Library, see
9.2.2).

◦ VF ⊆VT is a set of features (model elements classified by Feature or its specializations, see
8.3.3.3), including at least Base::things from the KerML Semantic Model Library (see 9.2.2
).

◦ VT = VC ∪ VF

• An interpretation I = (Δ, Σ , ⋅T) for V is a 3-tuple where:
◦ Δ is a non-empty set (universe),
◦ Σ = (P, <P) is a non-empty set P with a strict partial ordering <P (marking set), and
◦ ⋅T is an (interpretation) function relating elements of the vocabulary to sets of all non-empty

tuples (sequences) of elements of the universe, with an element of the marking set in between
each one for sequences of multiple elements. It has domain VT and co-domain that is the power
set of S:

S = Δ 1 ∪ Δ × P × Δ ∪ Δ × P × Δ × P × Δ …
where Δ1 is the set of sets of size 1 covering all the elements of the universe (a unary Cartesian
power).

The semantics of KerML are restrictions on the interpretation relationship, as given mathematically in this and
subsequent subclauses on the Core semantics. The phrase result of interpreting a model (vocabulary) element refers
to sequences paired with the element by ⋅T, also called the interpretation of the model element, for short.

The (minimal interpretation) function ⋅minT specializes ⋅T to the subset of sequences that have no others in the
interpretation as tails, except when applied to Anything.

∀t ∈ Type, s1 ∈ S s1 ∈ (t)minT ≡ s1 ∈ (t)T ∧ (t ≠ Anything ⇒ (∀s2 ∈ S s2 ∈ (t)T ∧ s2 ≠ s1 ⇒ ¬tail(s2, s1)))

Functions and predicates for sequences are introduced below. Predicates prefixed with form: are defined in
[fUML], Clause 10 (Base Semantics).

• length is a function version of fUML's sequence-length.
∀s, n n = length(s) ≡ (form:sequence-length s n)

• at is a function version of fUML's in-position-count.
∀x, s, n x = at(s, n) ≡ (form:in-position-count s n x)

• head is true if the first sequence is the same as the second for some or all of the second starting at the
beginning, otherwise is false.

240 Kernel Modeling Language v1.0 Beta 4

∀s1, s2 head(s1, s2) ⇒ form:Sequence(s1) ∧ form:Sequence(s2)
∀s1, s2 head(s1, s2) ≡ (length(s1) ≤ length(s2)) ∧

(∀i ∈ Z + i ≥ 1 ∧ i ≤ length(s1) ⇒ at(s1, i) = at(s2, i))

• tail is true if the first sequence is the same as the second for some or all of the second finishing at the end,
otherwise is false:
∀s1, s2 tail(s1, s2) ⇒ form:Sequence(s1) ∧ form:Sequence(s2)
∀s1, s2 tail(s1, s2) ≡ (length(s1) ≤ length(s2)) ∧

(∀h, i ∈ Z + (h = length(s2) − length(s1)) ∧ i > h ∧ i ≤ length(s2) ⇒ at(s1, i − h) = at(s2, i)

• head-tail is true if the first and second sequences are the head and tail of the third sequence, respectively,
otherwise is false:
∀s1, s2 head-tail(s1, s2, s0) ⇒
form:Sequence(s1) ∧ form:Sequence(s2) ∧ form:Sequence(s0)

∀s1, s2 head-tail(s1, s2, s0) ≡ head(s1, s0) ∧ tail(s2, s0)

• concat is true if the first sequence has the second as head, the third as tail, and its length is the sum of the
lengths of the other two, otherwise is false.
∀s0, s1, s2 concat(s0, s1, s2) ⇒ form:Sequence(s0) ∧ form:Sequence(s1) ∧ form:Sequence(s2)
∀s0, s1, s2 concat(s0, s1, s2) ≡ (length(s0) = length(s1) + length(s2)) ∧ head-tail(s1, s2, s0)

• concat-around is true if the first sequence has the second as head, the fourth as tail, and the third element
in between.
∀s0, s1, p, s2 concat-around(s0, s1, p, s2) ⇒
form:Sequence(s0) ∧ form:Sequence(s1) ∧ form:Sequence(s2)

∀s0, s1, p, s2 concat-around(s0, s1, p, s2) ≡ (length(s0) = length(s1) + length(s2) + 1) ∧
head-tail(s1, s2, s0) ∧ at(p, length(s1)+1)

• reverse is true if the sequences have the same elements, but in reverse order, otherwise is false.
∀s1, s2 reverse(s1, s2) ⇒ form:Sequence(s1) ∧ form:Sequence(s2)
∀s1, s2 reverse(s1, s2) ≡ (length(s1) = length(s2)) ∧

(∀i ∈ Z + i ≥ 1 ∧ i ≤ length(s1) ⇒ at(s1, (length(s1) − i+1) = at(s2, i))

8.4.3.2 Types Semantics

Abstract syntax reference: 8.3.3.1

The checkTypeSpecialization constraint requires that all Types directly or indirectly specialize
Base::Anything (see 9.2.2.2.1). However, there is no implied relationship shall be inserted to satisfy this
constraint for a Type that is not a Classifier or a Feature (see also 8.4.3.3 and 8.4.3.4 on Classifiers and
Features, respectively).

The mathematical interpretation (see 8.4.3.1.2) of Types in a model shall satisfy the following rules:

1. All sequences in the interpretation of a Type are in the interpretations of the Types it specializes.

∀tg, ts ∈ VT tg ∈ ts.specialization.general ⇒ (ts)
T ⊆ (tg)T

2. No sequences in the interpretation of a Type are in the interpretations of its disjoining Types.

Kernel Modeling Language v1.0 Beta 4 241

∀t, td ∈ VT td ∈ t.disjoiningTypeDisjoining.disjoiningType ⇒ ((t)T ∩ (td)T = ∅)

3. The interpretations of a Type that has unioningTypes are all and only the interpretations of those
Types.
∀t ∈ VT, utl form:Sequence(utl) ∧ utl = t.unioningTypes ∧ length(utl) > 0 ⇒

(t)T = ∪i = 1
length(utl) (at(utl, i))T

4. The interpretations of a Type that has intersectingTypes are all and only the interpretations in
common between all the Types.
∀t ∈ VT, itl form:Sequence(itl) ∧ itl = t.intersectingTypes ∧ length(itl) > 0 ⇒

(t)T = ∩i = 1
length(itl) (at(itl, i))T

5. The interpretations of a Type that has differencingTypes are all and only the interpretations of the
first differencingType that are not interpretations of the remaining ones.
∀t ∈ VT, dtl form:Sequence(dtl) ∧ dtl = t.differencingTypes ∧ length(dtl) > 0 ⇒

(t)T = (at(dtl, 1))T ∖ ∪i = 2
length(dtl) (at(dtl, i))T

8.4.3.3 Classifiers Semantics

Abstract syntax reference: 8.3.3.2

The checkTypeSpecialization constraint is semantically required for Classifiers by the rules below. If
necessary, it may be syntactically satisfied in a model by inserting an implied Subclassification
Relationship to Base::Anything (see also Table 8).

The mathematical interpretation (see 8.4.3.1.2) of the Classifiers in a model shall satisfy the following rules:

1. If the interpretation of a Classifier includes a sequence, it also includes the 1-tail of that sequence.

∀c ∈ VC, s1 ∈ S s1 ∈ (c)T ⇒ (∀s2 ∈ S tail(s2, s1) ∧ length(s2) = 1 ⇒ s2 ∈ (c)T)

2. The interpretation of the Classifier Anything includes all sequences of all elements of the universe
and markings.

(Anything)T = S

8.4.3.4 Features Semantics

Abstract syntax reference: 8.3.3.3

The checkFeatureSpecialization constraint is semantically required by the first two rules below, combined
with the definition of .T in 8.4.3.1.2 . If necessary, it may be syntactically satisfied in a model by inserting an
implied Subsetting Relationship to Base::things (see also Table 8). Note that satisfaction of the
checkFeatureSpecialization constraint implies satisfaction of the checkTypeSpecialization constraint,
because Base::things is a FeatureTyping specialization of Base::Anything.

The mathematical interpretation (see 8.4.3.1.2) of the Features in a model shall satisfy the following rules:

1. The interpretations of Features must have length greater than two.

∀s ∈ S, f ∈ VF s ∈ (f)T ⇒ length(s) > 2

242 Kernel Modeling Language v1.0 Beta 4

2. The interpretation of the Feature things is all sequences of length greater than two.

(things)T = { s | s ∈ S ∧ length(s) > 2 }

See other rules below.

Features interpreted as sequences of length three or more can be treated as if they were interpreted as ordered
triples ("marked" binary relations), where the first and third elements are interpretations of the domain and co-
domain of the Feature, respectively, while the second element is a marking from P. The predicate feature-pair
below determines whether two sequences can be treated in this way.

Two sequences are a feature pair of a Feature if and only if the interpretation of the Feature includes a sequence
s0 such that following are true:

• s0 is the concatenation of the two sequences, in order, with an elements of P (marking) marking in
between them.

• The first sequence is in the minimal interpretation of all featuringTypes of the Feature.
• The second sequence is in the minimal interpretations of all types of the Feature.

∀s1, s2 ∈ S, p ∈ P, f ∈ VF feature-pair(s1, p, s2, f) ≡

∃s0 ∈ S s0 ∈ (f)T ∧ concat-around(s0, s1, p, s2) ∧
(∀t1 ∈ VT t1 ∈ f.featuringType ⇒ s1 ∈ (t1)minT) ∧
(∀t2 ∈ VT t2 ∈ f.type ⇒ s2 ∈ (t2)minT)

Markings for the same s1 above can be related by <P to order s2 across multiple interpretations (values) of f.
Interpretations of f can have the same s1 and s2, differing only in p to distinguish duplicate s2 (values of f).

The interpretation of the Features in a model shall satisfy the following rules:

3. All sequences in an interpretation of a Feature have a tail with non-overlapping head and tail that are
feature pairs of the Feature.

∀s0 ∈ S, f ∈ VF s0 ∈ (f)T ⇒ ∃st, s1, s2 ∈ S, p ∈ P tail(st, s0) ∧ head-tail(s1, s2, st) ∧
(length(st) > length(s1) + length(s2)) ∧ feature-pair(s1, p, s2, f)

4. Values of redefiningFeatures are the same as the values of their redefinedFeatures restricted to
the domain of the redefiningFeature.
∀fg, fs ∈ VF fg ∈ fs.redefinedFeature ⇒

(∀s1 ∈ S (∀fts ∈ VT fts ∈ fs.featuringType ⇒ s1 ∈ (fts)
minT) ⇒

(∀s2 ∈ S, p ∈ P (feature-pair(s1, p, s2, fs) ≡ feature-pair(s1, p, s2, fg))))

5. The multiplicity of a Feature includes the cardinality of its values, counting duplicates.

∀s1 ∈ S, f ∈ VF, n ∈ Z + (∀t1 ∈ VT t1 ∈ f.featuringType ⇒ s1 ∈ (t1)minT) ∧
n = #{(p, s2) | feature-pair(s1, p, s2, f)} ⇒

∃p ∈ P feature-pair(s1, p, (n), f.multiplicity)

6. If a Feature is unique, there are no values with the same markings.
∀s1, s2 ∈ S, p1, p2 ∈ P, f ∈ VF f.isUnique ⇒

(feature-pair(s1, p1, s2, f) ∧ feature-pair(s1, p2, s2, f) ⇒ p1=p2)

Kernel Modeling Language v1.0 Beta 4 243

7. If a Feature is ordered, the markings of its values are totally ordered and mark exactly one value each.
∀s1, s2, s3 ∈ S, p1, p2 ∈ P, f ∈ VF f.isOrdered ⇒

(feature-pair(s1, p1, s2, f) ∧ feature-pair(s1, p2, s3, f) ⇒ (p1=p2 ∧ s2=s3) ∨ p1<P p2 ∨ p2<P p1)

8. Sequences in the interpretation of an inverting feature are the reverse of those in the inverted feature.
∀f1, f2 ∈ VF f2 ∈ f1.invertingFeatureInverting.invertingFeature ⇒

(∀s1 ∈ S s1 ∈ (f1)T ≡ (∃s2 ∈ S s2 ∈ (f2)T ∧ reverse(s2, s1)))

9. The interpretation of a Feature with a chain is determined by the interpretations of the subchains, see
additional predicates below.
∀f ∈ VF, cfl cfl = f.chainingFeature ∧ form:Sequence(cfl) ∧ length(cfl) > 1 ⇒ chain-feature-n(f, cfl)

The interpretations of a Feature (f) specified as a chain of two others (f1 and f2) are all sequences formed from
Feature pairs of the two others that share the same sequence as second and first in their pairs, respectively. If f is
ordered, marking order in interpretations of f applies the order of f1 values to those of f2 found via each value of f1.
If f is non-unique, duplicate values of f2 (which might be due to multiple values of f1) are preserved in f, otherwise f2
can have no duplicate values (including any due to multiple values of f1).

∀paths, sd, f1, f2, scd paths = all-chain-path-2(sd, f1, f2, scd) ⇒
form:Set(paths) ∧ sd, scd ∈ S ∧ f1, f2 ∈ VF

∀sd, f1, f2, scd all-chain-path-2(sd, f1, f2, scd) =
{ (pm, sm, pm11) | pm, pm11 ∈ P ∧ sm ∈ S ∧

feature-pair(sd, pm, sm, f1) ∧ feature-pair(sm, pm11, scd, f2) }

∀f, f1, f2 chain-feature-2(f, f1, f2) ⇒ f, f1, f2 ∈ VF

∀f, f1, f2 chain-feature-2(f, f1, f2) ⇒
(∀sd, scd ∈ S #{ pcd | feature-pair(sd, pcd, scd, f) =

#all-chain-path-2(f1, f2, scd))

∀f, f1, f2 chain-feature-2(f, f1, f2) ⇒
(∀sd, scd1, scd2, ppath1, ppath2 ∧

ppath1 ∈ all-chain-path-2(f1, f2, scd1) ∧
ppath2 ∈ all-chain-path-2(f1, f2, scd2) ∧
(∀ pm1, pm11 ∈ P, sm1, sm2 ∈ S

pm1=at(ppath1, 1) ∧ sm1=at(ppath1, 2) ∧ pm11=at(ppath1, 3) ∧
pm2=at(ppath2, 1) ∧ sm2=at(ppath2, 2) ∧ pm21=at(ppath2, 3) ∧
((pm1 <P pm2) ∨ (pm1=pm2 ∧ sm1=sm2 ∧ pm11 <P pm21) ⇒

(∃pcd1, pcd2 ∈ P pcd1 <P pcd2 ∧
feature-pair(sd, pcd1, scd1, f) ∧ feature-pair(sd, pcd2, scd2, f))))

A Feature (f) specified as a chain of two or more others (fl, a list of features longer than 1) is the last in a series of
Features specified by incremental subchains (flc), starting with the first two Features in fl, (specifying the first
Feature in flc), then the first three in fl (specifying the second Feature in flc), and so on, to all the Features in fl
(specifying the last feature in flc, which is the original Feature f). If f is ordered, marking order in interpretations of
each subchain apply to values of later subchains. If f is non-unique, duplicate values of the last Feature in fl (which
might be due to multiple values of the other Features) are preserved in f, otherwise the last Feature in fl can have
no duplicates (including any due to multiple values of the other Features).

244 Kernel Modeling Language v1.0 Beta 4

∀f, fl chain-feature-n(f, fl) ⇒
f ∈ VF ∧ fl ⊆ VF ∧ form:Sequence(fl) ∧ length(fl) > 1

∀f, fl chain-feature-n(f, fl) ≡
∃flc ⊆ VF ∧ form:Sequence(flc) ∧ length(flc) = length(fl) − 1 ∧

(∀i ∈ Z + i > 1 ∧ i <= length(fl) ⇒
chain-feature-2(at(flc, i-1), at(fl, i-1), at(fl, i)) ∧ f = at(flc, length(flc))

8.4.4 Kernel Semantics
8.4.4.1 Kernel Semantics Overview

The semantics of constructs in the Kernel Layer are specified in terms of the foundational constructs defined in the
Core layer supported by reuse of model elements from the Kernel Semantic Model Library (see 9.2). The most
common way in which library model elements are used is through specialization, in order to meet subtyping
constraints specified in the abstract syntax. For example, Structures are required to (directly or indirectly)
subclassify Object from the Objects library model, while Features typed by Structures must subset
objects. Similarly, Behaviors must subclassify Performance from the Performances library model, while
Steps (Features typed by Behaviors) must subset performances. The requirement for such specialization is
specified by specialization constraints in the abstract syntax, as listed in Table 10 along with the implied
Specializations that may be used to satisfy them (see 8.4.2 for discussion of specialization constraints and
implied Relationships).

Sometimes more complicated reuse patterns are needed. For example, binary Associations (with exactly two
ends) specialize BinaryLink from the library, and additionally require the ends of the Association to redefine
the source and target ends of BinaryLink. Such patterns are specified by redefinition constraints and other
kinds of semantic constraints in the abstract syntax, as listed in Table 11 along with the implied Relationships
that may be used to satisfy them (see also 8.4.2). In addition the Core semantic constraints listed in Table 9 actually
support the semantics of Kernel layer constructs.

In all cases, all Kernel syntactic constructs can be ultimately reduced to semantically equivalent Core patterns.
Various elements of the Kernel abstract syntax essentially act as "markers" for modeling patterns typing the Kernel
to the Core. The following subclauses specify the semantics for each syntactic area of the Kernel Layer in terms of
the semantic constraints that must be satisfied for various Kernel elements, the pattern of relationships these imply,
and the model library elements that are reused to support this.

Table 10. Kernel Semantics Implied Specializations

Semantic Constraint Implied Relationship Target

checkDataTypeSpecialization Subclassification Base::DataValue (see 9.2.2.2.2)

checkClassSpecialization Subclassification Occurrences::Occurrence (see
9.2.4.2.13)

checkStructureSpecialization Subclassification Objects::Object (see 9.2.5.2.7)

checkAssociation
Specialization Subclassification Links::Link (see 9.2.3.2.3)

Kernel Modeling Language v1.0 Beta 4 245

Semantic Constraint Implied Relationship Target

checkAssociationBinary
Specialization Subclassification Links::BinaryLink (see 9.2.3.2.1)

checkAssociationStructure
Specialization Subclassification Objects::LinkObject (see 9.2.5.2.5

)

checkAssociationStructure
BinarySpecialization Subclassification Objects::BinaryLinkObject (see

9.2.5.2.1)

checkConnectorSpecialization Subsetting Links::links (see 9.2.3.2.4)

checkConnectorBinary
Specialization Subsetting Links::binaryLinks (see 9.2.3.2.2)

checkConnectorObject
Specialization Subsetting Objects::linkObjects (see

9.2.5.2.6)

checkConnectorBinaryObject
Specialization Subsetting Objects::binaryLinkObjects (see

9.2.5.2.2)

checkBindingConnector
Specialization Subsetting Links::selfLinks (see 9.2.3.2.6)

checkSuccession
Specialization Subsetting Occurrences::

happensBeforeLinks (see 9.2.4.2.2)

checkBehaviorSpecialization Subclassification Performances::Performance (see
9.2.6.2.14)

checkStepSpecialization Subsetting Performances::performances (see
9.2.6.2.15)

checkStepEnclosedPerformance
Specialization Subsetting

Performances::Performance::
enclosedPerformance (see
9.2.6.2.14)

checkStepSubperformance
Specialization Subsetting Performances::Performance::

subperformance (see 9.2.6.2.14)

checkStepOwnedPerformance
Specialization Subsetting Objects::Object::

ownedPerformance (see 9.2.5.2.7)

checkFunctionSpecialization Subclassification Performances::Evaluation (see
9.2.6.2.4)

246 Kernel Modeling Language v1.0 Beta 4

Semantic Constraint Implied Relationship Target

checkPredicateSpecialization Subclassification Performances::
BooleanEvaluation (see 9.2.6.2.1)

checkExpression
Specialization Subsetting Performances::evaluations (see

9.2.6.2.5)

checkBooleanExpression
Specialization Subsetting Performances::

booleanEvaluations (see 9.2.6.2.2)

checkInvariantSpecialization Subsetting

Performances::
trueEvaluations (see 9.2.6.2.17), for
true Invariants, or Performances::
falseEvaluations (see 9.2.6.2.6), for
false (negated) Invariants

checkNullExpression
Specialization Subsetting Performances::

nullEvaluations (see 9.2.6.2.13)

checkLiteralExpression
Specialization Subsetting Performances::

literalEvaluations (see 9.2.6.2.9)

checkLiteralBoolean
Specialization Subsetting

Performances::
literalBooleanEvaluations
(see 9.2.6)

checkLiteralInfinity
Specialization Subsetting

Performances::
literalIntegerEvaluations
(see 9.2.6)

checkLiteralInteger
Specialization Subsetting

Performances::
literalIntegerEvaluations
(see 9.2.6)

checkLiteralRational
Specialization Subsetting

Performances::
literalRationalEvaluations
(see 9.2.6)

checkLiteralString
Specialization Subsetting

Performances::
literalStringEvaluations (see
9.2.6)

checkFeatureReference
ExpressionResult
Specialization

Subsetting
The referent of the
FeatureReferenceExpression
(see Note 1)

CheckConstructorExpression
Specialization Subsetting Performances::constructorEvaluations

(see 9.2.6.2.3)

CheckConstructorExpression
ResultSpecialization

FeatureTyping
Subsetting
Specialization
(see Note 3)

The instantiatedType of the
ConstructorExpression

Kernel Modeling Language v1.0 Beta 4 247

Semantic Constraint Implied Relationship Target

CheckInvocationExpression
Specialization

FeatureTyping
Subsetting
Specialization
(see Note 3)

The instantiatedType of the
InvocationExpression

CheckInvocationExpression
BehaviorResultSpecialization

FeatureTyping
Subsetting
Specialization
(see Note 3)

The instantiatedType of the
InvocationExpression
(see Note 1)

checkFeatureChainExpression
ResultSpecialization Subsetting

A feature chain of the input
parameter and sourceTarget() of
the FeatureChainExpression
(see Note 1)

checkSelectExpressionResult
Specialization Subsetting

The result parameter of the first
argument of the SelectExpression
(see Note 1)

checkIndexExpressionResult
Specialization Subsetting

The result parameter of the first
argument of the IndexExpression
(see Note 1)

checkMetadataAccess
ExpressionSpecialization Subsetting

Performances::
metadataAccessEvaluations (see
9.2.6.2.11)

checkFlowSpecialization Subsetting Transfers::transfers (see
9.2.7.2.11)

checkFlowWithEndsSpecializationSubsetting Transfers::flowTransfers (see
9.2.7.2.4)

checkSuccessionFlow
Specialization Subsetting Transfers::flowTransfersBefore

(see 9.2.7.2.5)

checkMultiplicity
Specialization Subsetting Base::naturals (see 9.2.2.2.5)

checkMetaclassSpecialization Subclassification Metaobjects::Metaobject (see
9.2.16.2.1)

checkMetadataFeature
Specialization Subsetting Metaobjects::metaobjects (see

9.2.16.2.2)

checkMetadataFeatureSemantic
Specialization

Specialization
Subclassification
FeatureTyping
Subsetting
(see Note 2)

(See Note 2 and 8.4.4.13)

Notes.

248 Kernel Modeling Language v1.0 Beta 4

1. For all constraints other than checkMetadataFeatureSemanticSpecialization and the other
constraints listed below, the source of any implied Relationship is the annotated element of the
constraint, with the target as given in the table. For
checkMetadataFeatureSemanticSpecialization, see Note 2. For the following constraints, the
source is the result parameter of the Expression that is the annotated element of the constraint.

◦ checkFeatureReferenceExpressionResultSpecialization
◦ checkConstructorExpressionResultSpecialization
◦ checkInvocationExpressionResultSpecialization
◦ checkFeatureChainExpressionResultSpecialization
◦ checkSelectExpressionResultSpecialization
◦ checkIndexExpressionResultSpecialization

2. The checkMetadataFeatureSemanticSpecialization constraint only applies to a
MetadataFeature that has a metaclass that is a kind of SemanticMetadata (see 9.2.16.2.3). The
source of the implied Relationship for this constraint is not the MetadataFeature but, rather, the
Type annotated by the MetadataFeature, and a conforming tool need only insert the Relationship if
the MetadataFeature is an ownedMember of the Type. The kind of Relationship that is implied and
its target are determined as follows:

◦ If the annotated Type and the baseType are both Classifiers, then Subclassification
targeting the baseType.

◦ If the annotated Type is a Feature and the baseType is a Classifier, then
FeatureTyping targeting the baseType.

◦ If the annotated Type and the baseType are both Features, then Subsetting targeting the
baseType.

◦ If the annotated Type is a Classifier and the baseType is a Feature, then
Subclassifications targeting each of the types of the Feature.

3. For the checkConstructorExpressionResultSpecialization and
checkInvocationExpressionSpecialization constraints, the implied Relationship is a
Subclassification if the instantiatedType is a Classifier, a Subsetting if the
instantiatedType is a Feature, and a Specialization otherwise.

Table 11. Kernel Semantics Other Implied Relationships

Semantic Constraint Implied Relationship Target
(or source and target for binding)

checkPayloadFeature
Redefinition Redefinition Transfers::Transfer::payload

(see 9.2.7.2.9)

checkConnectorTypeFeaturing
(see Note 2) TypeFeaturing The defaultFeaturingType of

the Connector

checkExpressionTypeFeaturing TypeFeaturing
The featuringTypes of the
featureWithValue of the
FeatureValue that owns the
Expression

checkFunctionResult
BindingConnector BindingConnector

From the result of the result
Expression of the Function to its
result parameter.

checkExpressionResult
BindingConnector BindingConnector

From the result of the result
Expression of the constrained
Expression to its result
parameter.

Kernel Modeling Language v1.0 Beta 4 249

Semantic Constraint Implied Relationship Target
(or source and target for binding)

checkFeatureReference
ExpressionBindingConnector BindingConnector

Between the referent and result
of the
FeatureReferenceExpression

checkConstructorExpression
ResultFeatureRedefinition Redefinition

feature of the
instantiatedType of the
ConstructorExpression
(see Note 6)

checkConstructorExpression
ResultDefaultValue
BindingConnector
(see Note 4)

BindingConnector

Between features of the result
of the
ConstructorExpression and
results of default value
Expressions
for those features.

checkInvocationExpression
BehaviorBindingConnector
(see Note 3)

BindingConnector
Between the
InvocationExpression itself and
its result parameter.

checkInvocationExpression
DefaultValueBindingConnector
(see Note 4)

BindingConnector
Between features of the
InvocationExpression and
results of default value
Expressions for those features.

checkFeatureChainExpression
TargetRedefinition
(see Note 5)

Redefinition
ControlFunctions::'.'::
source::target
(see 9.4.17)

checkFeatureChainExpression
SourceTargetRedefinition
(see Note 5)

Redefinition The targetFeature of the
FeatureChainExpression

checkFeatureValue
BindingConnector BindingConnector

Between the featureWithValue
of the FeatureValue and a feature
chain of the value Expression
and its result

Notes

1. For redefinition and type featuring constraints, except for
checkConstructorExpressionResultFeatureRedefinition, the annotated element of the
constraint is the source and owningRelatedElement of the implied Relationship, with the target
as given in the last column table. For the
checkConstructorExpressionResultFeatureRedefnition constraint, the source is an
ownedFeature of the result parameter of the ConstructorExpression. For binding connector
constraints, the annotated element of the constraint is the owningNamespace of the implied
Relationship, with the source and target of the Relationship as given in the last column of the
table.

2. For the checkConnectorTypeFeaturing constraint, an implied TypeFeaturing shall only be
included to satisfy the constraint if the Connector has no owningType, no non-implied
ownedTypeFeaturings, and a non-null defaultFeaturingType.

3. The checkInvocationExpressionBehaviorBindingConnector constraint only applies if the
instantiatedType is not a Function or a Feature typed by a Function.

250 Kernel Modeling Language v1.0 Beta 4

4. The checkConstructorExpressionResultDefaultValueBindingConnector and
checkInvocationExpressionDefaultValueBindingConnector constraints apply to each
ownedFeature that redefines a Feature for which there is an effective default value (see 8.4.4.11).

5. For the checkFeatureChainExpressionTargetRedefinition and
checkFeatureChainExpressionSourceTargetRedefinition constraints, the
redefiningFeature of the implied Redefinition is a nested Feature of the first owned input
parameter of the FeatureChainExpression (corresponding to the source parameter of the '.'
Function).

6. For the checkConstructorExpressionResultFeatureRedefinition constraint, the target of the
Redefinition shall be the feature of the instantiatedType at the same position in order in the
instantiatingType that as the position of the redefining ownedFeature in the
ConstructorExpression result parameter.

8.4.4.2 Data Types Semantics

Abstract syntax reference: 8.3.4.1

The checkDataTypeSpecialization constraint requires that DataTypes specialize the base DataType
Base::DataValue (see 9.2.2.2.2). The checkFeatureDataValueSpecialization constraint requires that
Features typed by a DataType specialize the Feature Base::dataValues (see 9.2.2.2.3), which is typed by
Base::DataValue.

datatype D specializes Base::DataValue {
feature a : ScalarValue::String subsets Base::dataValues;
feature b : D subsets Base::dataValues;

}

The Type Base::DataValue is disjoint with Occurrences::Occurrence and Links::Link, the base Types
for Classes and Associations (see 8.4.4.3 and 8.4.4.5 , respectively). This means that a DataType cannot
specialize a Class or Association and that a Feature typed by a DataType cannot also be typed by a Class or
Association.

8.4.4.3 Classes Semantics

Abstract syntax reference: 8.3.4.2

The checkClassSpecialization constraint requires that Classes specialize the base Class
Occurrences::Occurrence (see 9.2.4.2.13). The checkFeatureOccurrenceSpecialization constraint
requires that Features typed by a Class specialize the Feature Occurrences::occurrences (see 9.2.4.2.14),
which is typed by Occurrences::Occurrence. Further, the checkFeatureSuboccurrenceSpecialization
constraint requires that composite Features typed by a Class, and whose ownedType is a Class or another
Feature typed by a Class, specialize the Feature Occurrences::Occurrence::suboccurrences (see
9.2.4.2.13), which subsets Occurrences::occurrences.

class C specializes Occurrences::Occurrence {
feature a : C subsets Occurrences::occurrences;
composite feature b : C subsets Occurrences::Occurrence::suboccurrences;

}

The Class Occurrences::Occurrence is disjoint with Base::DataValues, the base Type for DataTypes
(see 8.4.4.2). This means that a Class cannot specialize a DataType and that a Feature typed by a Class cannot
also be typed by a DataType. Note that Occurrences::Occurrence is not disjoint with Link::Links, because
an AssociationStructure is both an Association and a Structure (which is a kind of Class), so the base
AssociationStructure Objects::LinkObject specializes both Link::Links and (indirectly)
Occurrences::Occurrence.

Kernel Modeling Language v1.0 Beta 4 251

Unlike DataValues, Occurrences are modeled as occurring in three-dimensional space and persisting over time.
The Occurrences library model includes an extensive set of Associations between Occurrences that model
various spatial and temporal relations, such as InsideOf, OutsideOf, HappensBefore, HappensDuring, etc. In
particular, the Association HappensBefore is the base Type for Successions, the basic modeling construct
for time-ordering Occurrences (see 8.4.4.6 on the semantics of Successions). For further detail on the
Occurrences model, see 9.2.4.1 .

A Class (or any Type that directly or indirectly specializes Occurrence) may have ownedFeatures with
isVariable = true. The checkFeatureFeatureMembershipTypeFeaturing constraint requires that such
variable Features are featured by the snapshots of their owningType. A snapshot covers the entire spatial
extent of an Occurrence at a specific point in time. Therefore, an instance of the owningType can potentially have
a different value for the variable Feature at each point in time during its Life. (See 9.2.4.1 for more on
snapshots and Lives.)

For example, a variable Feature declared as in the following is required to have as its featuringType a Feature
that redefines Occurrence::snapshots and is itself featured by the owningType of the variable Feature.

class C1 {
var feature v1;

}

Thus, the above variable Feature declaration is semantically equivalent to (with implied Specializations also
shown):

class C1 specializes Occurrences::Occurrence{
var feature v1 subsets Base::things featured by C1_snapshots {

member feature C1_snapshots
redefines Occurrences::Occurrence::snapshots
featured by C1;

}
}

The Feature C1_snapshots is shown above as nested in the corresponding variable Feature v1 for purposes of
presentation in the textual notation. However, when an implied TypeFeaturing relationship is added to satisfy the
checkFeatureFeatureMembershipTypeFeaturing constraint, the "snapshots" featuringType is included as
an ownedRelatedFeature of the implied TypeFeaturing. That is, the implied abstract syntax ownership
structure for, e.g., the variable Feature C1::v1 above is:

Feature v1
[Subsetting (IMPLIED)] Feature Base::things
[TypeFeaturing (IMPLIED)] Feature C1_snapshots (OWNED)

[Redefinition] Occurrences::snapshots
[TypeFeaturing] C1

(The name C1_snapshots is used here for correspondence to the earlier textual notation presentation. This
Feature would not be expected to be named in an actual implementation.)

8.4.4.4 Structures Semantics

Abstract syntax reference: 8.3.4.3

The checkStructureSpecialization constraint requires that Structures specialize the base Structure
Objects::Object (see 9.2.5.2.7). The checkFeatureObjectSpecialization constraint requires that
Features typed by a Structure specialize the Feature Objects::objects (see 9.2.5.2.8), which is typed by
Objects::Object. Further, the checkFeatureSubobjectSpecialization constraint requires that composite
Features typed by a Structure, and whose ownedType is a Structure or another Feature typed by a

252 Kernel Modeling Language v1.0 Beta 4

Structure, specialize the Feature Objects::Object::subobjects (see 9.2.5.2.7), which subsets
Object::objects.

struct S specializes Objects::Object {
feature a : S subsets Object::objects;
composite feature b : S subsets Objects::Object::subobjects;

}

Objects are Occurrences representing physical or virtual structures that occur over time. For physical structures,
the Objects library model also provides a the specialization StructuredSpaceObject, which models Objects
that can be spatial decomposed into cells of the same or lower dimension. The Type Object is disjoint with the
Type Performance, another specialization of Occurrence, which is the base Type for Behaviors (see 8.4.4.7 on
the semantics of Behaviors). For further detail on the Objects model, see 9.2.5.1 .

8.4.4.5 Associations Semantics

Abstract Syntax Reference: 8.3.4.4

8.4.4.5.1 Associations

The checkAssociationSpecialization and checkFeatureEndSpecialization constraints require that an
Association specialize the base Association Links::Link (see 9.2.3.2.3) and that its associationEnds
subset Links::Link::participant. In addition, the validateFeatureEndMultiplicity constraint requires
that the associationEnds must have multiplicity 1..1. These constraints essentially require an N-ary
Association to have the form (with implied relationships included):

assoc A specializes Links::Link {
end feature e1[1..1] subsets Links::Link::participant;
end feature e2[1..1] subsets Links::Link::participant;
...
end feature eN[1..1] subsets Links::Link::participant;

}

The Link instance for an Association is thus a tuple of participants, where each participant is a single
value of an associationEnd of the Association. Note also that the Feature Link::participant is declared
readonly, meaning that the participants in a link cannot change once the link is created.

The checkFeatureEndRedefinition constraint requires that, if an Association has an
ownedSubclassification to another Association, then its associationEnds redefine the
associationEnds of the superclassifier Association. In this case, the subclassifier Association
will indirectly specialize Link through a chain of Subclassifications, and each of its associationEnds will
indirectly subset Links::participant through a chain of Redefinition and Subsetting.

The checkAssociationBinarySpecialization constraint requires that a binary Association (one with
exactly two associationEnds) specialize Links::BinaryLink. BinaryLink specializes Link to have exactly
two participants corresponding to two ends called source and target. As required by the
checkFeatureEndRedefinition constraint, the first associationEnd of a binary Association will redefine
Links::BinaryLink::source and its second associationEnd will redefine Links::BinaryLink::target.

assoc B specializes Links::BinaryLink {
end feature e1 redefines Links::BinaryLink::source;
end feature e2 redefines Links::BinaryLink::target;

}

Note that, as associationEnds of BinaryLink, source and target already have multiplicities of 1..1, which
ensures that the ends of any binary Association do too.

Kernel Modeling Language v1.0 Beta 4 253

A binary Association can also specify cross features for one or both of its associationEnds using
CrossSubsetting. Such a cross feature must be a feature of the type of the other associationEnd than the
one for the cross feature.

The validateCrossSubsettingCrossedFeature constraint requires that the target of a CrossSubsetting be
a feature chain consisting of the other associationEnd and the cross feature. CrossSubsetting is a kind of
Subsetting, so it semantically requires that the value of an associationEnd be one of the values of the cross
feature for the other associationEnd.

This also means that, if an associationEnd of a binary Association has a cross feature, then the cross-feature
multiplicity applies to each set of instances (links) of the Association that have the same (singleton) value for the
associationEnd. Cross feature uniqueness and ordering apply to the collection of values of the other
associationEnd in each of those link sets, preventing duplication in each collection and ordering them to form a
sequence.

For example, the binary Association B1 below specifies cross features for both its ends (without implied
relationships included):

classifier T1 {
feature e2_cross[0..1] : T2;

}
classifier T2 {

feature e1_cross[1..4] nonunique ordered : T1;
}
assoc B1 {

end feature e1 : T1 crosses e2.e1_cross;
end feature e2 : T2 crosses e1.e2_cross;

}

The multiplicities specified for e1_cross and e2_cross then mean that:

▪ For each value of e1_cross, there is at most one instance of B1 for which e1 has that value and e2 has
the corresponding value of e2_cross (multiplicity 0..1).

▪ For each value of e2_cross, there are one to four instances of B1 for which e2 has that value and e1 has
the corresponding value of e1_cross (multiplicity 1..4). Further, there may be more than one of these
instances with the same value of e1 (nonunique) and the instances have an implied ordering (ordered).

Note. Ordering and uniqueness are irrelevant on the associationEnds themselves, since they must always have
multiplicity 1..1.

Note that cross features impose only necessary conditions on the instances of an Association, which do not
require existence of instances of the Association for all values of its cross features. To make these conditions also
sufficient, requiring existence of these instances, the Association must have isSufficient = true (see
8.3.3.1.10). For example, if B1 above has isSufficient = true, then an instance t1 of T1 having a value t2 for
e2_cross is sufficient to require that an instance of B1 exist linking t1 to t2 and, therefore, that t1 is a value of
e1_cross for t2.

assoc all B1 { // "all" declares isSufficient = true
end feature e1 : T1 crosses e2.e1_cross;
end feature e2 : T2 crosses e1.e2_cross;

}

Cross features may also be directly owned by the corresponding associationEnd. The
checkFeatureOwnedCrossFeatureTypeFeaturing constraint requires such an owned cross feature (for a
binary Association) be featured by the type of the other associationEnd (which means it must be owned by
the associationEnd via OwnedMembership but not FeatureMembership). Further, the
checkFeatureCrossingSpecialization constraint requires that the associationEnd has a

254 Kernel Modeling Language v1.0 Beta 4

CrossSubsetting that targets a feature chain whose first Feature is the other associationEnd and whose
second Feature is the owned cross feature.

An owned cross feature may be declared with the declaration of the corresponding associationEnd. For example,
the following binary Association declaration (the cross feature names are optional, but they are included here for
convenience of reference):

assoc B2
end e1_cross [1..4] nonunique ordered feature e1 : T1;
end e2_cross [0..1] feature e2 : T2;

}

is parsed (with implied relationships included) as:

assoc B2 specializes Links::BinaryLink {
end feature e1 : T1 redefines Links::BinaryLink::source;

crosses e2.e1_cross {
member feature e1_cross[1..4] nonunique ordered : T1

featured by T2;
}
end feature e2 : T2 redefines Links::BinaryLink::target;

crosses e1.e2_cross {
member feature e2_cross[0..1] : T2 featured by T1;

}
}

Note. The feature chain notations e2.e1_cross and e2.e1_cross in the above notional equivalent will actually
not parse, because e1_cross is not in the namespace of e2 and e2_cross is not in the namespace of e1. However,
the Features meet the semantic requirements for a feature chain (i.e., the type of the first Feature is the
featuringType of the second Feature), so the construct is valid in the abstract syntax.

An Association with three or more associationEnds may also have ends with cross features, but, in this case,
the cross features must be owned by their corresponding associationEnds. For example, the ternary
Association

assoc Ternary {
end a_cross[1] feature a[1] : A;
end b_cross[0..2] feature b[1] : B;
end c_cross[*] nonunique ordered feature c[1] : C;

}

is effectively parsed (including implied relationships) as

assoc Ternary specializes Links::Link {
end feature a[1] : A subsets Links::Link::participant

crosses b_c.a_cross {
member feature b_c : B_C featured by Ternary;
member feature B_C : C featured by B;
member feature a_cross[1] : A featured by B_C;

}
end feature b[1] : B subsets Links::Link::participant

crosses a_c.b_cross {
member feature a_c : A_C featured by Ternary;
member feature A_C : C featured by A;
member feature b_cross[0..2] : B featured by A_C;

}
end feature c[1] : C subsets Links::Link::participant

crosses a_b.c_cross {
member feature a_b : A_B featured by Ternary;
member feature A_B : C featured by B;

Kernel Modeling Language v1.0 Beta 4 255

member feature c_cross[*] : C featured by A_B;
}

}

Consider specifically the assocationEnd a in the above Association. Since the Association is not binary,
there is no longer a single other assocationEnd to a. So, in order to satisfy the
checkFeatureOwnedCrossFeatureTypeFeaturing constraint, the cross feature a_cross is featured by the
Feature B_C, which is constructed as being typed by C and featured by B. According to the Core semantics for
Features (see 8.4.3.4), the Feature B_C is (minimally) interpreted as having instances that are pairs of instances
of B and C, in that order. That is, the feature can be considered to semantically represent a Cartesian product of the
set of instances of B and the set of instances of C. The associationEnd a then has a CrossSubsetting of a
feature chain that starts with the Feature b_c, which is typed by B_C, followed by the cross feature a_cross,
which is featured by B_C. As a result, the values of a_cross for each instance of Ternary are the values of the
associationEnd a on all the instances of Ternary that have the same values for the other two
associationEnds.

Note also that the Features B_C and b_c are shown above as nested in the associationEnd a for purposes of
presentation in the textual notation. However, when added with the implied relationships needed to satisfy semantic
constraints, these Features are actually ownedRelatedElements of, respectively, the implied TypeFeaturing
relationship on owned cross feature a_cross and the first FeatureChaining relationship in the target feature
chain of the implied CrossSubsetting relationship on the associationEnd a.

That is, the implied abstract syntax ownership structure is:

Feature a
[CrossSubsetting (IMPLIED)] Feature (OWNED)

[FeatureChaining] Feature b_c (OWNED)
[FeatureTyping] Feature B_C
[TypeFeaturing] Association Ternary

[FeatureChaining] a_cross
[OwningMembership] Feature a_cross (OWNED)

[FeatureTyping (IMPLIED)] Classifier A
[TypeFeaturing (IMPLIED)] Feature B_C (OWNED)

[TypeFeaturing] Classifier B
[FeatureTyping] Classifier C

(The names B_C and b_c are included here for correspondence to the earlier textual notation presentation. These
Features would not be expected to be named in an actual implementation.)

Similar syntax and semantics apply to all three of the associationEnds of Ternary. Each instance of Ternary
consists of three participants, one value for each of the associationEnds a, b and c. But the multiplicities
specified for the owned cross features of the associationEnds then assert that:

1. For any specific values of b and c, there must be exactly one instance of Ternary, with the single value allowed
for a.
2. For any specific values of a and c, there may be up to two instances of Ternary, all of which must have different
values for b (default uniqueness).
3. For any specific values of a and b, there may be any number of instance of Ternary, which are ordered and
allow repeated values for c.

This approach is applied to any N-ary Association with N of 3 or greater by extending the pattern for representing
a Cartesian product of Classifiers using a Feature to any number of Classifiers. The operation
Feature::isCartesianProduct checks whether a Feature meets the pattern for representing a Cartesian
product. If so, then the operation Feature::asCartesianProduct returns the ordered list of Classifiers in the
product. (See 8.3.3.3.4 for the specifications of these operations.)

256 Kernel Modeling Language v1.0 Beta 4

This gives the following general semantics for owned cross feature multiplicity: For an Association with N
associationEnds, with N of 2 or greater, consider the i-th associationEnd ei. The multiplicity of the owned
cross feature of ei applies to each set of instances of the Association that have the same (singleton) values for
each of the N-1 associationEnds other than ei. Uniqueness and ordering of the owned cross feature apply to the
collection of values of ei in each of those link sets, preventing duplication in each collection and ordering them to
form a sequence.

As described previously, the checkFeatureEndRedefinition constraint requires the associationEnds of an
specialized Association to redefine the ends of the Associations it specializes. If a redefining
associationEnd has an owned cross feature, the
checkFeatureOwnedCrossFeatureRedefinitionSpecialization constraint further requires that the owned
cross feature of the redefining associationEnd must subset the cross feature of the redefined associationEnd.
Note that this constraint must be satisfied even of the cross feature of the redefined associationEnd is not owned
by that associationEnd.

For example, consider the following specialization of the Association B2 shown earlier:

assoc B2a specializes B2 {
end e1a_cross [0..2] nonunique ordered feature e1a : T1;
end e2a_cross [1..1] feature e2a : T2;

}

This is parsed (with implied relationships included) as:

assoc B2a specializes B2 {
end feature e1a : T1 redefines B2::e1

crosses e2a.e1a_cross {
member feature e1a_cross[0..2] nonunique ordered : T1

subsets B2::e1::e1_cross featured by T2;
}
end feature e2 : T2 redefines B2::e2

crosses e1.e2a_cross {
member feature e2a_cross[1..1] : T2

subsets B2::e2::e2_cross featured by T1;
}

}Type

8.4.4.5.2 Association Structures

An AssociationStructure is both an Association and a Structure and, therefore, the semantic constraints
of both Associations and Structures (see 8.4.4.4) apply to AssociationStructures. The
checkAssociationStructureSpecialization constraint requires an AssociationStructure to specialize
Objects::LinkObject (see 9.2.5.2.5), which specializes both Links::Link and Objects::Object. The
checkAssociationStructureBinarySpecialization constraint requires a binary AssociationStructure
to specialize Objects::BinaryLinkObject (see 9.2.5.2.1), which specializes both Links::BinaryLink and
an Objects::LinkObject.

8.4.4.6 Connectors Semantics

Abstract syntax reference: 8.3.4.5

8.4.4.6.1 Connectors

A Connector can only be typed by Associations. The checkConnectorSpecialization constraint then
requires that Connectors specialize the base Feature Link::links (see 9.2.3.2.4), which is typed by the base
Association Links::Link (see 9.2.3.2.3). Further, the checkFeatureEndRedefinition constraint requires
that the connectorEnds of a Connector redefine the associationEnds of its typing Associations. As a

Kernel Modeling Language v1.0 Beta 4 257

result, a Connector typed by an N-ary Association is essentially required to have the form (with implicit
relationships included):

connector a : A subsets Links::links {
end feature e1 redefines A::e1 references f1;
end feature e2 redefines A::e2 references f2;
...
end feature eN redefines A::eN references fN;

}

where e1, e2, ..., eN are the names of associationEnds of the Association A, in the order they are defined in A,
and the f1, f2, ..., fN are the relatedFeatures of the Connector. Multiplicities declared for connectorEnds
have the same special semantics as for associationEnds (see 8.4.4.5). If A is an AssociationStructure, then
the checkConnectorObjectSpecialization constraint requires that the Connector subsets
Objects::linkObjects (see 9.2.5.2.6) instead of Links::link.

A binary Connector is a Connector with exactly two connectorEnds, that is, a Connector typed by a binary
Association. The checkConnectorBinarySpecialization constraint requires that binary Connectors
specialize the base Feature Link::binaryLinks (see 9.2.3.2.2), which is typed by the Association
Links::BinaryLink (see 9.2.3.2.1). In particular, if no type is explicitly declared for a binary Connector, then
its connectorEnds simply redefine the source and target ends of the Association BinaryLink, which are
inherited by the Feature binaryLinks.

connector b : B subsets Links::binaryLinks {
end feature source redefines B::source references f1;
end feature target redefines B::target references f2;

}

If B is an AssociationStructure, then the checkConnectorBinaryObjectSpecialization constraint
requires that the Connector subsets Objects::binaryLinkObjects (see 9.2.5.2.2) instead of
Links::binaryLinks.

A connectorEnd may also have an owned cross feature, with the same syntax and semantics as for an owned cross
feature of an associationEnd (see 8.4.4.5.1). If the connectorEnd redefines an associationEnd (or other
connnectorEnd), then it's owned cross feature must meet the same semantic constraints as for the owned cross
feature of an associationEnd that redefines another associationEnd (see 8.4.4.5.1).

For example, the declaration

connector b2 : B2 {
end e1a_cross [0..2] nonunique ordered feature e1a

references f1;
end e2a_cross [1..1] feature e2a references f2;

}

is parsed (with implied relationships included) as:

connector b2 : B2 subsets Links::binaryLinks {
end feature e1a redefines B2::e1 references f1

crosses e2a.e1a_cross {
member feature e1a_cross[0..2] nonunique ordered : T1

subsets B2::e1::e1_cross featured by T2;
}
end feature e2 redefines B2::e2 references f2

crosses e1.e2_cross {
member feature e2a_cross[1..1] : T2

subsets B2::e2::e2_cross featured by T1;
}

}

258 Kernel Modeling Language v1.0 Beta 4

A Connector specifies a subset of the Links of its typing Associations for which the participants are
values of the relatedFeatures of the Connector. In addition, the checkConnectorTypeFeaturing constraint
requires that the featuringTypes of a Connector be consistent with those of its relatedFeatures. Typically,
a Connector will have an owningType that is its featuringType, in which case all of its relatedFeatures
must also be featured in the context of this Type.

// This is the simplest case of a Connector satisfying checkConnectorTypeFeaturing,
// in which the Connector and its relatedFeatures all have the same owningType.
classifier C1 {

feature f1;
feature f2;
connector cc1 {

end feature references f1;
end feature references f2;

}
}

An implied TypeFeaturing may be included to satisfy the checkConnectorTypeFeaturing constraint, but only
if the Connector has no explicit owningType or ownedTypeFeaturings, and the defaultFeaturingType of
the Connector is not null. The target of the implied TypeFeaturing is then given by the
defaultFeaturingType. The deriveConnectorDefaultFeaturingType constraint ensures that, if
defaultFeaturingType is non null, then it is the innermost Type such that, if it is the featuringType of a
Connector, the checkConnectorTypeFeaturing constraint will be met.

classifier C2 {
feature f1;
feature f2 {

// The defaultFeaturingType for Connector cc2 is Classifier C2, which is the
// common featuringType of the relatedFeatures of cc2.
member connector cc2 featured by C2 {

end feature references f1;
end feature references f2;

}
}

}

The primary case in which an implicit TypeFeaturing is necessary is for a BindingConnector that is itself
added implicitly for a FeatureValue (see 8.4.4.11).

The checkConnectorTypeFeaturing and deriveConnectorDefaultFeaturingType constraint uses the
Feature::isFeaturedWithin operation (see 8.3.3.3.4), which specially handles variable features. The
semantics of variable Features requires them to have featuringTypes that represent the snapshots of their
owningTypes. For example, consider the following:

class CL1 {
var feature v1 featured by CL1_snapshots {

member feature CL1_snapshots featured by CL1;
}

}
class CL2 specializes CL1 {

var feature v2 featured by CL2_snapshots {
member feature CL2_snapshots featured by CL2;

}
member connector ccv featured by CL2_snapshots {

end feature references v1;
end feature references v2;

}
}

Kernel Modeling Language v1.0 Beta 4 259

While the class CL2 specializes CL1, there is no explicit Specialization relationship between CL1_snapshots
and CL2_snapshots. However, any instance of CL2 is an instance of CL1, and CL1_snapshots and
CL2_snapshots are both redefinitions of the same base Feature Occurrences::Occurrence::snapshots,
so, semantically, C2_snapshots can be considered to be a redefinition of CL1_snapshots. The
isFeaturedWithin operation takes this into account by using the Type::isCompatibleWith operation. By
default, isCompatibleWith is just the same as specializes, but it is overriden in Feature to also treat
Features such as CL1_snapshots and CL2_snapshots as being compatible (see 9.2.5.2.7). This is why, in the
example above, the defaultFeaturingType for ccv is CL2_snapshots, which satisfies the
checkConnectorTypeFeaturing constraint for ccv.

In addition, the isFeaturedWithin operation specially considers a variable Feature to be featured within its
owningType, even though it is not directly featured by the owningType. This allows variable and non-variable
Features to be connected within a common featuring context.

class CL3 {
feature f;
var feature v;
connector cfv featured by CL3 {

end feature references f;
end feature references v;

}
}

Semantically, this means that, within an instance of CL3 each value of cfv links a value f and a value of v for some
specific snapshot of CL3. However, which snapshot this is for each value of cfv is not determined in this
specification, unless additional temporal constraints are explicitly included in the model.

8.4.4.6.2 Binding Connectors

The checkBindingConnectorSpecialization constraint requires that BindingConnectors specialize the
Feature Links::selfLinks (see 9.2.3.2.6), which is typed by the Association SelfLink (see 9.2.3.2.5).
SelfLink has two associationEnds that subset each other, meaning they identify the same things (have the
same values), which then also applies to BindingConnector connectorEnds that redefine the
associationEnds of SelfLink. The general semantic constraints for Connectors also apply to
BindingConnectors.

Thus, a BindingConnector declaration of the form

binding f1 = f2;

is, with implied Relationships included, semantically equivalent to

connector subsets Links::selfLinks {
end feature thisThing redefines Links::SelfLink::thisThing references f1;
end feature sameThing redefines Links::SelfLink::sameThing references f2;

}

8.4.4.6.3 Successions

The checkSuccessionSpecialization constraint requires that Successions specialize the Feature
Occurrences::happensBeforeLinks (see 9.2.4.2.2), which is typed by the Association HappensBefore (see
9.2.4.2.1). HappensBefore (see 9.2.4.2.1) has two associationEnds, asserting that the Occurrence identified
by its first associationEnd (earlierOccurrence) temporally precedes the one identified by its second
(laterOccurrence), which then also applies to Succession connectorEnds that redefine the
associationEnds of HappensBefore. The general semantic constraints for Connectors also apply to
Successions.

260 Kernel Modeling Language v1.0 Beta 4

This, a Succession declaration of the form

succession first f1 then f2;

is, with implied Relationships included, semantically equivalent to

connector subsets Occurrences::happensBeforeLinks {
end feature earlierOccurrence references f1

redefines Occurrences::HappensBefore::earlierOccurrence;
end feature laterOccurrence references f2

redefines Occurrences::HappensBefore::laterOccurrence;
}

8.4.4.7 Behaviors Semantics

Abstract syntax reference: 8.3.4.6

8.4.4.7.1 Behaviors

The checkBehaviorSpecialization constraint requires that Behaviors specialize
Performances::Performance (see 9.2.6.2.14). In addition, the checkFeatureParameterRedefinition
constraint requires that any owned parameters (i.e., directed ownedFeatures) of a Behavior redefine
corresponding parameters of any other Behaviors it specializes.

behavior B specializes Performances::Performance {
in feature x[0..*] subsets Base::things;
out feature y[0..1] subsets Base::things;
inout feature z subsets Base::things;

}
behavior B1 specializes B {

in feature x1[1] redefines B::x;
out feature y1[1] redefines B::y;
// z is inherited without redefinition

}

8.4.4.7.2 Steps

The checkStepSpecialization constraint requires that Steps specialize Performances::performances
(see 9.2.6.2.15). In addition, the checkFeatureParameterRedefinition constraint requires that any owned
parameters (i.e., directed ownedFeatures) of a Step redefine corresponding parameters of any other Steps
or Behaviors it specializes. In particular, a Step explicitly typed by a Behavior will generally redefine the
parameters of that Behavior.

step b : B subsets Performances::performances {
in feature x redefines B::x = x1;
out feature y redefines B::y;
inout feature z redefines B::z := z1 ;

}

step b1 : B1 subsets b {
in feature x redefines B1::x, b::x;
out feature y redefines B2::y, b::y;

}

Further, the checkStepEnclosedPerformanceSpecialization
and checkStepSubperformanceSpecialization constraints require that a Step whose owningType is a
Behavior or another Step specialize Performances::Performance::enclosedPerformance or, if it is
composite, Performances::Performance::subperformance (see 9.2.6.2.14). Finally, the
checkStepOwnedPerformanceSpecialization constraint requires that a composite Step whose owningType

Kernel Modeling Language v1.0 Beta 4 261

is a Structure or a Feature typed by a Structure specialize Objects::Object::ownedPerformance (see
9.2.5.2.7).

step s subsets Performances::performances {
step s1 subsets Performances::Performance::enclosedPerformance;
composite step s2 subsets Performances::Performance::subperformance;

}
struct S specializes Objects::Object {

composite step ss subsets Objects::Object::ownedPerformance;
}

8.4.4.8 Functions Semantics

Abstract syntax reference: 8.3.4.7

8.4.4.8.1 Functions and Predicates

Functions are kinds of Behaviors. The checkFunctionSpecialization constraint requires that Functions
specialize the base Function Performances::Evaluation (see 9.2.6.2.4), which is a specialization of
Performances::Performance. All other semantic constraints on Behaviors (see 8.4.4.7) also apply to
Functions. In addition, the checkFeatureResultRedefinition constraint requires that the result
parameter of a Function always redefine the result of any its supertypes that are also Functions, regardless
of their parameter position.

function F specializes Performances::Evaluation {
in a;
in b;
return result redefines Performances::Evaluation::result;

}
function G specializes F {

in a redefines F::a;
return result redefines F::result;
in b redefines F::b;

}

Further, if a Function owns an Expression via a ResultExpressionMembership, then the
checkFunctionResultBindingConnector constraint requires that the Function have, as an ownedFeature, a
BindingConnector between the result parameter of the Expression and the result parameter of the
Function.

function H specializes Performances::Evaluation {
return redefines Performances::Evaluation::result;
binding result = resultExpr.result; // Implied
resultExpr

}

where resultExpr is an arbitrary Expression and resultExpr.result represents a Feature chain to the
Expression result.

A Predicate is a kind of Function, so all semantic constraints for Functions also apply to Predicates. In
addition, the checkPredicateSpecialization constraint requires that Predicates specialize the base
Predicate Performances::BooleanEvaluation (see 9.2.6.2.1), which is a specialization of
Performances::Evaluation. BooleanEvaluation has a result parameter typed by Boolean, so
Predicates always have a Boolean result.

predicate P specializes Performances::BooleanEvaluation {
in x : ScalarValues::Real;
return redefines Performances::BooleanEvaluation::result;

262 Kernel Modeling Language v1.0 Beta 4

x > 0
}

8.4.4.8.2 Expressions and Invariants

Expressions are kinds of Steps. The checkExpressionSpecialization constraint requires that
Expressions specialize the base Expression Performances::evaluations (see 9.2.6.2.5), which is a
specialization of Performances::performances. All other semantic constraints on Steps (see 8.4.4.7) also
apply to Functions. In addition, the checkFeatureResultRedefinition constraint requires that the result
parameter of an Expression always redefine the result of any its supertypes that are Functions or other
Expressions, regardless of their parameter position.

expr f : F subsets Performances::evaluations {
in a redefines F::a;
in b redefines F::b;
return result redefines F::result, Performances::evaluations::result;

}
expr g : G subsets f {

return result redefines G::result, f::result;
}

Further, if an Expression owns another Expression via a ResultExpressionMembership, then the
checkExpressionResultBindingConnector constraint requires that the Expression have, as an
ownedFeature, a BindingConnector between the result parameter of the owned Expression and the
result parameter of the owning Expression.

expr h subsets Performances::Evaluation {
binding result = resultExpr.result; // Implied
resultExpr

}

where resultExpr is an arbitrary Expression and resultExpr.result represents a Feature chain to the
Expression result.

A BooleanExpression is a kind of Expression, so all semantic constraints for Expressions also apply to
BooleanExpressions. In addition, the checkBooleanExpressionSpecialization constraint requires that
BooleanExpressions specialize the base BooleanExpression Performances::booleanEvaluations (see
9.2.6.2.2), which is a specialization of Performances::evaluations.

expr p : P subsets Performances::booleanEvaluations {
in x : ScalarValues::Integer redefines P::x;
return redefines P::x, Performance::BooleanEvaluation::result;

}

An Invariant is a kind of BooleanExpression, so all semantic constraints for BooleanExpressions also
apply to Invariants. In addition, the checkInvariantSpecialization constraint requires that Invariants
specialize either the BooleanExpression Performances::trueEvaluations (see 9.2.6.2.17) or, if the
Invariant is negated, the BooleanExpression Performances::falseEvaluations (see 9.2.6.2.6), both of
which are specializations of Performances::booleanEvaluations. The BooleanExpression
trueEvaluations has its result bound to true, while the BooleanExpression falseEvaluations has its
result bound to false.

inv true i1 subsets Performances::trueEvaluations {
p(3)

}
inv false i2 subsets Performances::falseEvaluations {

p(-3)
}

Kernel Modeling Language v1.0 Beta 4 263

8.4.4.9 Expressions Semantics

Abstract syntax reference: 8.3.4.8

8.4.4.9.1 Null Expressions

The checkNullExpressionSpecialization constraint requires that NullExpressions specialize the
Expression Performances::nullEvaluations (see 9.2.6.2.13), which is typed by the Function
Performances::NullEvaluation (see 9.2.6.2.12). The result parameter of NullEvaluation has
multiplicity 0..0, which means that a NullExpression always produces an empty result. The general semantic
constraints for Expressions (see 8.4.4.8) also apply to NullExpressions.

8.4.4.9.2 Literal Expressions

The checkLiteralExpressionSpecialization constraint requires that LiteralExpressions specialize the
Expression Performances::literalEvaluations (see 9.2.6.2.9), which is typed by the Function
Performances::LiteralEvaluation (see 9.2.6.2.8). The result parameter of LiteralEvaluation has
multiplicity 1..1 and is typed by Base::DataValue (see 9.2.2.2.2). This means that a LiteralExpression
always produces a single DataValue as its result. What value is actually produced depends on the kind of
LiteralExpression. The general semantic constraints for Expressions (see 8.4.4.8) also apply to
LiteralExpressions.

With the exception of LiteralInfinity, each kind of LiteralExpression has a value property typed by a
UML primitive type [UML, MOF]. The result produced by such a LiteralExpression is given by this value.
LiteralInfinity does not have a value property, because its result is always "infinity" (written * the KerML
textual notation; see 8.2.5.8.4), which is a number from the DataType ScalarValues::Positive that is greater
than all the integers.

Note. In the abstract syntax, the value property of LiteralRational has type Real (see 8.3.4.8.13), because
that is the available UML/MOF primitive type. However, only the rational-number subset of the real numbers can be
represented using a finite literal. So the result of a LiteralRational is actually always classified in the KerML
DataType Rational.

8.4.4.9.3 Feature Reference Expressions

There is no specific specialization requirement for a FeatureReferenceExpression. However, the general
checkExpressionSpecialization constraint (see 8.4.4.8) requires that a FeatureReferenceExpression
specialize Performances::Evaluation (see 9.2.6.2.4). All other general semantic constraints for Expressions
(see 8.4.4.8) also apply to FeatureReferenceExpressions.

A FeatureReferenceExpression is parsed with a non-owning Membership relationship to its referent
Feature (see 8.2.5.8.3). The checkFeatureReferenceExpressionBindingConnector constraint then
requires that there be a BindingConnector between this member Feature and the result parameter of the
FeatureReferenceExpression. The checkFeatureReferenceExpressionResultSpecialization
constraint further requires that the result parameter also subset the Feature. While this subsetting is technically
implied by the semantics of the BindingConnector (see 8.4.4.6), including the Subsetting relationship allows
for simpler static type checking of the result of the FeatureReferenceExpression.

Given the above, a FeatureReferenceExpression whose referent is a Feature f is semantically equivalent
to the Expression

expr subsets Performances::evaluations {
alias for f;
return result

redefines Performances::Evaluation::result
subsets f;

264 Kernel Modeling Language v1.0 Beta 4

member binding result = f;
}

A body Expression (see 8.2.5.8.3) is parsed as a FeatureReferenceExpression that contains the
Expression body as its owned referent. That is, a body Expression of the form

{ body }

is semantically equivalent to

expr subsets Performances::evaluations {
expr e subsets Performances::evaluation { body }
return result

redefines Performances::Evaluation::result
subsets e;

binding result = e;
}

This means that the result of the Expression is the Evaluation of the body Expression itself, rather than the
result of actually evaluating the body. If and when this Evaluation actually occurs can then be further constrained,
e.g., within an invoked Function for which the body Expression is an argument (as done, for example, by
ControlFunctions – see 8.4.4.9.6).

8.4.4.9.4 Constructor Expressions

A ConstructorExpression of the form new T(e1, e2, ...), where T is the name of a Type and e1, e2, ...
are argument Expressions, is parsed with a Membership to T (its instantiatedType) and a result
parameter having nested ownedFeatures of the result that have FeatureValue relationships to the
arguments (see 8.2.5.8.3). The checkConstructorExpressionSpecialization constraint requires that
ConstructorExpressions specialize the Expression Performances::constuctorEvaluations (see
9.2.6.2.3), which subsets Performances::evaluations (see 9.2.6.2.5), redefining its result parameter to
have multiplicity 1..1. This means that a ConstructorExpression always produces a single value as its result.
In addition, the checkConstructorExpressionResultSpecialization constraint requires that the result of
a ConstructorExpression specialize the instantiatedType (via a FeatureTyping if the
instantiatedType is a Classifier or a Subsetting if it is a Feature), and the
checkConstructorExpressionResultFeatureRedefinition constraint requires that the nested
ownedFeatures of the result each redefine a public feature of the instantiatedType. Thus, a
ConstructorExpression of this form is semantically equivalent to

expr subsets Performances::constructorEvaluations {
alias of T; // If T is a feature chain, this is an OwningMembership.
return result : T [1] redefines Performances::constructorEvaluations::result;

feature a redefines T::a = e1;
feature b redefines T::b = e2;
...

}
}

where, in the positional-argument notation, the features of T are defined in order. If the named-argument notation
new T(a = e1, b = e2, ...) is used, then the nested ownedFeatures redefine the named features of T,
regardless of order.

The semantic constraints for FeatureValues (see 8.4.4.11) then require that each nested ownedFeature is bound
to the result of the corresponding Expression (i.e., a is bound to e1.result, etc.). Thus, a
ConstructorExpression represents an Evaluation that results in a single instance of Type T whose features
have values determined by the results of the argument Expressions.

Kernel Modeling Language v1.0 Beta 4 265

8.4.4.9.5 Invocation Expressions

An InvocationExpression of the form F(e1, e2, ...), where F is the name of a Function and e1, e2, ...
are argument Expressions, is parsed with a Membership to F (its instantiatedType) and input parameters
that have FeatureValue relationships to the arguments (see 8.2.5.8.3). The general semantic constraints for
Expressions (see 8.4.4.8.2) also apply to InvocationExpressions. In addition, the
checkInvocationExpressionSpecialization constraint requires that an InvocationExpression
specialize its instantiatedType (via a FeatureTyping). Thus, an InvocationExpression of this form is
semantically equivalent to

expr : F subsets Performances::evaluations {
alias of F;
feature a redefines F::a = e1;
feature b redefines F::b = e2;
...
return result redefines F::result;

}

If, instead of a Function F, the instantiatedType is a non-Function Behavior B, then B has no result
parameter for the InvocationExpression result to redefine. Instead, the
checkInvocationExpressionBehaviorBindingConnector constraint requires that the
InvocationExpression have an owned BindingConnector between itself and its result parameter – that is,
the InvocationExpression evaluates, as an Expression, to itself, as an instance of B. In addition, the
checkInvocationExpressionBehaviorResultSpecialization constraint requires that the result
parameter of the expression specialize the instantiatedType.

expr e : B subsets Performances::evaluations {
alias of B;
feature a redefines B::a = e1;
feature b redefines B::b = e2;
...
return result : B redefines Performances::evaluations::result;
binding result = e;

}

Note that, in this case, the derived function of the InvocationExpression will always be
Performances::Evaluation, the type of Performances::evaluations.

If the instantiatedType is a Feature, the semantics are similar, except that the InvocationExpression has a
Subsetting relationship with the instantiatedType, instead of a FeatureTyping relationship. If the Feature
is typed by a Function, then the InvocationExpression is effectively treated as an invocation of that
Function. If the Feature is typed by a non-Function Behavior, then the InvocationExpression is treated a
Performance of that Behavior, returning itself as the result. Note also that, if the instantiatedType is a
Feature with chainingFeatures, then it will be related to the InvocationExpression by an
OwningMembership (but not a FeatureMembership).

8.4.4.9.6 Operator Expressions

An OperatorExpression is an InvocationExpression in which the invoked Function is identified by an
operator symbol. The instantiatedType of an OperatorExpression is specially derived to be the
Function that is the resolution of the operator symbol as a name in the first one of the library Packages
BaseFunctions, DataFunctions or ControlFunctions. The general semantic constraints for Expressions
(see 8.4.4.9) also apply to OperatorExpressions.

With the exception of operators for ControlFunctions (see below), the concrete syntax for
OperatorExpressions (see 8.2.5.8.1) is thus essentially just a special surface syntax for

266 Kernel Modeling Language v1.0 Beta 4

InvocationExpressions of the standard library Functions identified by their operator symbols. For
example, a unary OperatorExpression such as

not expr

is equivalent to the InvocationExpression

DataFunctions::'not' (expr)

and a binary OperatorExpression such as

expr_1 + expr_2

is equivalent to the InvocationExpression

DataFunctions::'+' (expr_1, expr_2)

where these InvocationExpressions are then semantically interpreted as in 8.4.4.9.5 .

The + and - operators are the only operators that have both unary and binary usages. However, the corresponding
library Functions have optional 0..1 multiplicity on their second parameters, so it is acceptable to simply not
provide an input for the second argument when mapping the unary usages of these operators.

Functions in the library models BaseFunctions and ScalarFunctions are extensively specialized in other
library models to constrain their parameter types (e.g., the Package RealFunctions constrains parameter
types to be Real, etc.). The result values the evaluation of such a Function shall be determined by the most
specialized of its subtypes that is consistent with the types of its the dynamics result values from evaluating its
argument Expressions.

Control Functions

Certain OperatorExpressions denote invocations of Functions in the ControlFunctions library model (see
9.4.17) that have one or more parameters that are Expressions. In the concrete syntax for such
OperatorExpressions (see 8.2.5.8.1), the arguments corresponding to these parameters are parsed as if they
were body Expressions (as described in 8.4.4.9.3), so they can effectively be passed without being immediately
evaluated.

The second and third arguments of the ternary conditional test operator if are for Expression parameters.
Therefore, the notation for a conditional test OperatorExpression of the form

if expr_1 ? expr_2 else expr_3

is parsed as

ControlFunctions::'if' (expr_1, { expr_2 }, { expr_3 })

The second arguments of the binary conditional logical operators and, or, and implies are for Expression
parameters. Therefore, the notation for a conditional logical OperatorExpression of the form

expr_1 and expr_2

is parsed as

ControlFunctions::'and' (expr_1, { expr_2 })

and similarly for or and implies.

Kernel Modeling Language v1.0 Beta 4 267

A FeatureChainExpression is an OperatorExpression whose operator corresponds to the Function
ControlFunctions::'.'. This Function has a single parameter called source, but this parameter has a
nested Feature called target. A FeatureChainExpression is parsed with an argument Expression for the
source parameter and, additionally, a non-parameter Membership for its targetFeature, which is an alias
Membership if the targetFeature is not a chain and an OwningMembership if the targetFeature is a chain.
The checkFeatureChainExpressionTargetRedefinition constraint requires that the source parameter of
the FeatureChainExpression have a nested Feature that redefines
ControlFunctions::'.'::source::target, and the
checkFeatureChainExpressionSourceTargetRedefinition requires that this nested Feature also redefine
the targetFeature. The checkFeatureChainExpressionResultSpecialization constraint requires that
the result parameter of a FeatureChainExpression subset the feature chain consisting of the redefining
source parameter of the FeatureChainExpression and the nested Feature of that parameter.

Given the above, a FeatureChainExpression of the form

src.f

(where src is an Expression) is semantically equivalent to the Expression

expr : ControlFunctions::'.' subsets Performances::evaluations {
feature redefines ControlFunctions::'.'::source = src {

feature redefines ControlFunctions::'.'::source::target
redefines f;

}
alias for f;
return subsets source.f;

}

A FeatureChainExpression whose targetFeature is a Feature chain, of the form

src.f.g.h

is semantically equivalent to the Expression

expr : ControlFunctions::'.' subsets Performances::evaluations {
feature redefines ControlFunctions::'.'::source = src {

feature redefines ControlFunctions::'.'::source::target
redefines tgt;

}
feature tgt chains f.g.h;
return subsets source.tgt;

}

The performance of the Function '.' then results in the effective chaining of the value of its source parameter
(which will be the result of the argument Expression of the FeatureChainExpression) and the
source::target Feature (which will be the targetFeature of the FeatureChainExpression).

8.4.4.9.7 Metadata Access Expressions

The checkMetadataAccessExpressionSpecialization constraint requires that a
MetadataAccessExpression specialize the Expression Performances::metadataAccessEvaluations
(see 9.2.6.2.11), which is typed by the Function Performances::MetadataAccessEvaluation (see
9.2.6.2.10). The result parameter of MetadataAccessEvaluation is ordered and typed by
Metaobjects::Metaobject (see 9.2.16.2.1). The general semantic constraints for Expressions (see 8.4.4.9)
also apply to MetadataAccessExpressions.

A MetadataAccessExpression evaluates to an ordered set of Metaobjects, which are determined as follows:

268 Kernel Modeling Language v1.0 Beta 4

• A Metaobject representing each MetadataFeature (see 8.3.4.12.3) owned by the
referencedElement of the MetadataAccessExpression that has the referenceElement as an
annotatedElement, in the order that the MetadataFeatures appear in the model. Each of these
Metaobjects is an instance of the metaclass of the corresponding MetadataFeature, with the
features of each instance having values determined by evaluating the bound Expressions of the
features in the MetadataFeature as model-level evaluable Expressions (see below).

• Followed by a Metaobject that is an instance of the Metaclass from the reflective KerML abstract
syntax library model (see 9.2.17) corresponding to the MOF metaclass of the referencedElement of
the MetadataAccessExpression, with features having values corresponding to the values of the
MOF properties for the referencedElement.

Note that every Metaclass is required to specialize Metaobjects::Metaobject, so the typing of the results of
a MetadataAccessExpression is consistent.

For example, the MetadataAccessExpression C.metadata for the following referencedElement:

class C {
metadata M;

}

would evaluate to two Metaobjects: an instance of the Metaclass M representing the MetadataFeature
annotation on C and an instance of KerML::Class representing the referencedElement C itself.

8.4.4.9.8 Model-Level Evaluable Expressions

A model-level evaluable Expression is an Expression that can be evaluated using metadata available within a
model itself. This means that the evaluation rules for such an Expression can be defined entirely within the
abstract syntax. A model-level evaluable Expression is evaluated on a given target Element (see 8.4.4.13 and
8.4.4.14 for the targets used in the case of metadata values and filterConditions, respectively), using the
Expression::evaluate operation, resulting in an ordered list of Elements. The rules for this operation are
specified in the abstract syntax (see 8.3.4.8) and are summarized below:

1. A NullExpression evaluates to the empty list.
2. A LiteralExpression evaluates to itself.
3. A FeatureReferenceExpression is evaluated by first determining a value Expression for the

referent:
◦ If the target Element is a Type that has a feature that is the referent or (directly or

indirectly) redefines it, then use the value Expression of the FeatureValue for that
feature (if any).

◦ Else, if the referent has no featuringTypes, then use the value Expression of the
FeatureValue for the referent (if any).

Then:
◦ If such a value Expression exists, the FeatureReferenceExpression evaluates to the

result of evaluating that Expression on the target.
◦ Else, if the referent is not an Expression, the FeatureReferenceExpression evaluates

to the referent.
◦ Else, the FeatureReferenceExpression evaluates to the empty list.

4. A MetadataAccessExpression evaluates to the ownedElements of the referencedFeature that
are MetadataFeatures and have the referencedElement as an annotatedElement, plus a
MetadataFeature whose annotatedElement is the referencedElement, whose metaclass is the
reflective Metaclass in the KerML library model (see 9.2.17) corresponding to the MOF class of the
referencedElement, and whose ownedFeatures are bound to the values of the MOF properties of the
referencedElement.

Kernel Modeling Language v1.0 Beta 4 269

5. An InvocationExpression evaluates to an application of its function to argument values
corresponding to the results of evaluating each of the argument Expressions of the
InvocationExpression, with the correspondence as given below.

Every Element in the list resulting from a model-level evaluation of an Expression according to the above rules
will be either a LiteralExpression or a Feature that is not an Expression. If each of these Elements is
further evaluated according to its regular instance-level semantics, then the resulting list of instances will correspond
to the result that would be obtained by evaluating the original Expression using its regular semantics on the
referenced metadata of the target Element.

8.4.4.10 Interactions Semantics

Abstract syntax reference: 8.3.4.9

8.4.4.10.1 Interactions

An Interaction is both an Association and a Behavior, and, therefore, the semantic constraints for both
Associations (see 8.4.4.5) and Behaviors (see 8.4.4.7) apply. In particular, the
checkAssociationSpecialization constraint requires that an Interaction specialize Links::Link (see
9.2.3.2.3), or, if it is a binary Interaction (with exactly two end Features), the
checkAssociationBinarySpecialization constraint requires that it specializes Links::BinaryLink (see
9.2.3.2.1). And the checkBehaviorSpecialization constraint requires that it also specialize
Performances::Performance (see 9.2.6.2.14).

These constraints require an N-ary Interaction to have the form (with implied relationships included)

interaction I specializes Link::Link, Performances::Performance {
end feature e1 subsets Links::Link::participant;
end feature e2 subsets Links::Link::participant;
...
end feature eN subsets Links::Link::participant;

}

with a binary Interaction having the form

interaction B specializes Links::BinaryLink, Performances::Performance {
end feature e1 redefines Links::BinaryLink::source;
end feature e2 redefines Links::BinaryLink::target;

}

The checkFeatureEndRedefinition and checkFeatureParameterRefinition constraints also apply to
Interactions.

interaction I1 specializes Links::BinaryLink, Performances::Performance {
in feature x1;
out feature y1;

end feature e1;
end feature f1;

}
interaction I2 specializes I1 {

in feature x2 redefines x1;
out feature y2 redefines y1;

end feature e2 redefines e1;
end feature f2 redefines f1;

}

270 Kernel Modeling Language v1.0 Beta 4

8.4.4.10.2 Flows

A Flow is both a Connector and a Step and, therefore, the semantic constraints for both Connectors (see
8.4.4.6) and Steps (see 8.4.4.7) also apply to Flows. In addition, the checkFlowSpecialization constraint
requires that Flows specialize Transfers::transfers (see 9.2.7.2.11). In addition, if the Flow has
ownedEndFeatures (see below), then it must specialize Transfers::flowTransfers (see 9.2.7.2.4).

The textual notation for an Flow, of the form

flow of i : T from f1.f1_out to f2.f2_in;

is parsed with i : T as a PayloadFeature and having two FlowEnds, one referencing f1 with an owned Feature
redefining f1_out and one referencing f2 with an owned Feature redefining f2_in (see 8.2.5.9.2). A
PayloadFeature is just a Feature owned by a Flow that has the special semantic constraint
checkPayloadFeatureRedefinition that requires that a PayloadFeature redefine
Transfers::Transfer::payload (see 9.2.7.2.9). A FlowEnd is an end Feature owned by a Flow that is
required to have a single ownedFeature. The general checkFeatureEndRedefinition constraint (see 8.4.4.6)
requires that the two FlowEnds of a Flow redefine Transfers::Transfer::source and
Transfers::Transfer::target (see 9.2.7.2.9), respectively. The
checkFeatureFlowFeatureRedefinition constraint then requires that the ownedFeatures of the FlowEnds
redefine Transfer::source::sourceOutput or Transfer::target::targetInput.

flow subsets Transfers::flowTransfers {
// PayloadFeature
feature i : T redefines Transfers::Transfer::item;

// First FlowEnd
end feature redefines Transfers::Transfer::source references f1 {

feature redefines Transfers::Transfer::source::sourceOutput, f1_out;
}

// Second FlowEnd
end feature references f2 redefines Transfers::Transfer::target {

feature redefines Transfers::Transfer::target::targetInput, f2_in;
}

}

A SuccessionFlow is semantically the same, except that the checkSuccessionFlowSpecialization
constraint requires that it specialize Transfers::flowTransfersBefore (see 9.2.7.2.5), which means that the
SuccessionFlow additionally has the semantics of a Succession between it source and target (see 8.4.4.6.3
on the semantics of Successions).

8.4.4.11 Feature Values Semantics

Abstract syntax reference: 8.3.4.10

A FeatureValue is a kind of OwningMembership between a Feature and an Expression. Note that the
FeatureValue relationship is not a Featuring relationship, so its featureWithValue (that is, its owning
Feature) is not the featuringType of the the value Expression. Instead, the
checkExpressionFeaturingType constraint requires that the value Expression have the same
featuringTypes as the featureWithValue. Most commonly, if the featureWithValue is an ownedFeature
of a Type, this means that the Expression will have that Type as its featuringType.

The checkFeatureValuationSpecialization constraint requires that, if the featureWithValue has no
explicit ownedSpecializations and is not directed, then it subsets the result parameter of the value
Expression. This reflects the semantics that the values of the featureWithValue is determined by the value
Expression, giving the featureWithValue an implied typing that is useful for static type checking. On the other

Kernel Modeling Language v1.0 Beta 4 271

hand, if the featureWithValue has ownedSpecializations or is directed, then its static typing can be
considered determined by its declaration excluding the FeatureValue (but including any implied
Specializations), which should then be validated against the typing of the result of the value Expression.

If the FeatureValue has isDefault = false, the checkFeatureValueBindingConnector constraint
requires that its featureWithValue have an ownedMember that is a BindingConnector between that Feature
and the result parameter of the value Expression of the FeatureValue. In addition, if the FeatureValue
has isInitial = false, then the featuringTypes of this BindingConnector must be the same as those of
the featureWithValue. Most commonly, if the featureWithValue is an ownedFeature of a Type, then the
BindingConnector will have that Type as its featuringType. Other general semantic constraints for
Connectors (see 8.4.4.6) also apply to the BindingConnector required for a FeatureValue.

Given the above, the textual notation for a FeatureValue with isDefault = false and isInitial = false,
of the form

type T {
feature f = expr;

}

is semantically equivalent to

type T {
feature f {

member expr e featured by T { ... }
member binding b featured by T of f = e.result;

}
}

where e is the semantic interpretation of expr as described in 8.4.4.9 .

If a FeatureValue has isDefault = false but isInitial = true, then the
validateFeatureValueIsInitial constraint requires that the featureWithValue of the featureValue
have isVariable = true, and the checkFeatureValueBindingConnector constraint requires different
featuringTypes for the BindingConnector than when isInitial = false. In this case, the
BindingConnector must be featured by the startShot (see 9.2.4.2.13) of the that reference of its owning
featureWithValue (see 9.2.2.2.7). Note that this is only possible if the featureWithValue is featured by a
Class (see also 8.4.4.3 on the semantics of Classes). Most commonly, if the featureWithValue is an
ownedFeature of a Class or a Feature typed by a Class, then the BindingConnector will have the
startShot of that Class as its featuringType, meaning that the binding only applies initially, that is, at the very
start of an Occurrence that is an instance of the Class.

Thus, the textual notation for a FeatureValue with isDefault = false and isInitial = true, of the form

class C {
var feature f := expr;

}

is semantically equivalent to (see also 8.4.4.3 on the semantics of variable features)

class C specializes Occurrences::Occurrence {
feature f specializes Base::things featured by C_snapshots {

member feature C_snapshots
redefines Occurrences::snapshots
featured by C;

member expr e featured by C_snapshots { ... }
member binding b featured by that.startShot of f = e.result;

}
}

272 Kernel Modeling Language v1.0 Beta 4

(note that the that is considered to be implicitly typed by Occurrence in this case).

If a FeatureValue has isDefault = true, then no BindingConnector is required for the
featureWithValue at its point of declaration. Instead, the
checkInvocationExpressionDefaultValueBindingConnector constraint requires that an
InvocationExpression own a BindingConnector between the featureWithValue and value Expression
of any FeatureValue that is the effective default value for a Feature of the invoked Type of the
InvocationExpression, where effective default value is defined as follows:

• If the Feature has an owned FeatureValue with isDefault = true, then this is its effective default
value.

• If the Feature does not have an owned FeatureValue, but the set of effective default values of the
Features it redefines has a single unique member, then this is the effective default value of the original
Feature.

• Otherwise the Feature does not have an effective default value.

For example, given the Type declaration

type T {
feature f default = e;

}

a binding for f is included for the invocation T(), which is then semantically equivalent to

expr : T {
binding f = f::e.result;

}

where f::e.result is the result of the value Expression from the default FeatureValue. On the other hand,
for the invocation T(f = 1), the Feature f will be bound to 1 rather than the FeatureValue default. A similar
construction applies for FeatureValues with isDefault = true and isInitial = true. (See also 8.4.4.9 on
the general semantics of InvocationExpressions.)

8.4.4.12 Multiplicities Semantics

Abstract syntax reference: 8.3.4.11

8.4.4.12.1 Multiplicities

A Multiplicity is a kind of Feature, so the general semantics of Features (see 8.4.3.4 also apply to a
Multiplicity. In addition, the checkMultiplicitySpecialization constraint requires that a
Multiplicity specialize the Feature Base::naturals (see 9.2.2.2.5), which is typed by the DataType
ScalarValues::Natural (see 9.3.2.2.4). This constraint effectively requires that the co-domain of a
Multiplicity be a subset of the natural numbers, which can be specified by reference to a library Multiplicity
(such as Base:exactlyOne or Base::oneToMany) or using a MultiplicityRange from the Kernel layer (see
8.4.4.12.2).

The validateTypeOwnedMultiplicity constraint requires that a Type have at most one ownedMember that is a
Multiplicity. If a Type has such an owned Multiplicity, then it is the typeWithMultiplicity of that
Multiplicity. The value of the Multiplicity is then the cardinality of its typeWithMultiplicity and,
therefore, the type (co-domain) of the Multiplicity restricts that cardinality. The cardinality of a Type is
defined generally as follows:

• For a Classifier, the cardinality is the number of basic instances of the Classifier, that is, those
instances that represent the things classified by the Classifier and are not instances of any subtype of
the Classifier that is a Feature.

Kernel Modeling Language v1.0 Beta 4 273

• For a Feature, the cardinality is the number of values of the Feature for any specific featuring instance
(where duplicate features are included in the count, if the Feature is non-unique).

However, there are special rules for the semantics of Multiplicity for end Features (see 8.4.4.5).

The checkMultiplicityTypeFeaturing constraint requires that a Multiplicity with a Feature as its
owningNamespace have the same featuringTypes (domain) as that Feature, and, otherwise, have no
featuringTypes. In particular, a Multiplicity is owned by a Feature that has an owningType, then the
featuringType of the Multiplicity is the owningType of its owning Feature. This means that the
Multiplicity has a value for each instance of the featuringType that is the cardinality of the instances of its
owning Feature that are featured by that same instance of the featuringType.

classifier C1 {
feature f {

// Implied TypeFeaturing by C2.
// Gives the cardinality of the values of f for each
// instance of C2 (which is constrained to be 1).
multiplicity subsets Base::exactlyOne;

}
}

If a Type does not have an owned Multiplicity, but has ownedSpecializations, then its cardinality is
constrained by the Multiplicities for all of the general Types of those ownedSpecializations (i.e., its direct
supertypes). In practice, this means that the effective Multiplicity of the Type is the most restrictive
Multiplicity of its direct supertypes.

classifier C2 {
feature f {

multiplicity subsets Base::exactlyOne;
}
feature g {

multiplicity subsets Base::oneToMany;
}

// The multiplicities exactlyOne and oneToMany both apply
// to h, which means that, effectively, it has a multiplicity
// of exactlyOne.
feature h subsets f,g;

}

8.4.4.12.2 Multiplicity Ranges

A MultiplicityRange is a Multiplicity whose co-domain is given as an inclusive range of values of the type
Natural. It thus constrains the cardinality of its typeWithMultiplicity to be within this range. A
MultiplicityRange of the form

[expr_1.. expr_2]

represents the range of values that are greater than or equal to the result of the Expression expr_1 and less than or
equal to the result of the Expression expr_2. Note that all other Natural values are less than the value of *,
representing positive infinity, so the MultiplicityRange [0..*] is the range of all values of Natural (that is,
no restriction on cardinality).

A MultiplicityRange having only a single expression:

[expr]

is interpreted in one of the following ways:

274 Kernel Modeling Language v1.0 Beta 4

• If expr evaluates to *, then it is equivalent to the range [0..*] (i.e., the entire extent of Natural).
• Otherwise, it is equivalent to [expr..expr] (that is, the cardinality is restricted to the single value given

by the result of expr).

Note. The KerML textual notation grammar only allows LiteralExpressions and
FeatureReferenceExpressions as the bound Expressions in a MultiplicityRange (see 8.2.5.11).
However, the abstract syntax allows arbitrary Expressions (see 8.3.4.11).

The checkMultiplicityRangeExpressionTypeFeaturing constraint requires that the bound Expressions
of a MultiplicityRange have the same featuringTypes as the MultiplicityRange. The featuringTypes
of a MultiplicityRange are determined by the checkMultiplicityTypeFeaturing constraint (8.4.4.12.1).
If the MultiplicityRange has an owningNamespace that is not a Feature, then it has no featuringTypes, so
its domain is implicitly Base::Anything, and its bound Expressions can only reference other Features in that
context.

package P {
// Implicitly featured by Anything.
feature n : ScalarValues::Natural;
classifier C3 {

// An ownedMember, not an ownedFeature.
// Implicitly featured by Anything.
// Implied Subsetting of Base::naturals.
multiplicity [P::n];

}
}

If the MultiplicityRange has an owningNamespace that is a Feature, then it is required to have
featuringTypes that are the same as the owning Feature. In particular, if its owning Feature has an
owningType, then the featuringType of the MultiplicityRange (and its bound Expressions) is the
owningType of its owning Feature.

classifier C4 {
feature n : ScalarValues::Natural;
feature m : Member {

// Implied TypeFeaturing by C4.
// Implied Subsetting of Base::naturals.
multiplicity [1..C4::n];

}
}

8.4.4.13 Metadata Semantics

Abstact syntax reference: 8.3.4.12

8.4.4.13.1 Metaclasses

The checkMetaclassSpecialization constraint requires that Metaclasses specialize the base Metaclass
Metaobjects::Metaobject (see 9.2.16.2.1). A Metaclass is a kind of Structure (see 8.4.4.4), but it's
instances are Metaobjects that are part of the structure of a model itself, rather than as an instance in the system
represented by the model. The KerML libary model is a reflective model of the MOF abstract syntax for KerML,
containing one KerML Metaclass corresponding to each MOF metaclass in the abstract syntax model (see 9.2.17
for more details on the relationship between the KerML model and the abstract syntax).

8.4.4.13.2 Metadata Features

A MetadataFeature is both a Feature typed by a Metaclass and an AnnotatingElement that annotates other
Elements in a model. The checkMetadataFeatureSpecialization requires that MetadataFeatures

Kernel Modeling Language v1.0 Beta 4 275

specialize the Feature Metaobjects::metaobjects (see 9.2.16.2.2). At a meta-level, a MetadataFeature
can be treated as if the reflective Metaclasses of its annotatedElements were its featuringTypes. In this
case, the MetadataFeature defines a map from its annotatedElements, as instances of their Metaclasses, to
a single instance of the metaclass of the MetadataFeature.

Further, a model-level evaluable Expression is an Expression that can be evaluated using metadata available
within a model itself (see 8.4.4.9). If a model-level evaluable Expression is evaluated on such metadata according
to the regular semantics of Expressions, then the result will correspond to the static evaluation of the
Expression within the model. Therefore, if a MetadataFeature is instantiated as above, the binding of its
features to the results of evaluating the model-level evaluable value Expressions of its FeatureValues can
be interpreted according to the regular semantics of FeatureValues (see 8.4.4.11) and BindingConnectors
(see 8.4.4.6).

When a value Expression is model-level evaluated (as described in 8.4.4.9), its target is the MetadataFeature
that owns the featureWithValue. This means that the value Expression for a nested Feature of a
MetadataFeature may reference other Features of the MetadataFeature, as well as Features with no
featuringTypes or Anything as a featuringType.

8.4.4.13.3 Semantic Metadata

A semantic MetadataFeature is one that directly or indirectly specializes Metaobjects::SemanticMetadata
(see 9.2.16.2.3) It is used to introduce a user-defined specialization constraint on the Type annotated by the
MetadataFeature. SemanticMetadata has the Feature baseType typed by the reflective Metaclass
KerML::Type (see 9.2.17) that is redefined by a semantic MetadataFeature. The target of the effective
specialization constraint defined by a semantic MetadataFeature is determined by the value Expression bound
to its baseType Feature using a FeatureValue (see 8.4.4.11), which is evaluated as a model-level evaluable
Expression (see 8.4.4.9).

Specifically, for each semantic MetadataFeature annotating a Type, the
checkMetadataFeatureSemanticSpecialization constraint requires that the annotated Type directly or
indirectly specialize the Type bound to the baseType of the MetadataFeature, unless the annotated Type is a
Classifier and the baseType is a Feature. For the case when the Type is a Classifier and the baseType is
a Feature, the constraint requires that the annotated Classifier directly or indirectly specialize each type of the
baseType Feature.

8.4.4.14 Packages Semantics

Abstract syntax reference: 8.3.4.13

Packages do not have instance-level semantics (they do not affect instances).

The filterConditions of a Package are model-level evaluable Expressions that are evaluated as described in
8.4.4.9 . All filterConditions are checked against every Membership that would otherwise be imported into
the Package if it had no filterConditions. A Membership shall be imported into the Package if and only if
every filterCondition evaluates to true either with no target Element, or with any MetadataFeature of the
memberElement of the Membership as the target Element.

276 Kernel Modeling Language v1.0 Beta 4

9 Model Libraries
9.1 Model Libraries Overview
A model library is a collection of library models that can be reused across many user models. KerML includes three
standard model libraries: the Semantic Library (see 9.2), the Data Type Library (see 9.3), and the Function Library
(see 9.4). Each library model in these standard model libraries consists of a single root namespace with one top-
level element that is a standard library package, with no subpackages. All of these library models are described for
reference in subclauses of this clause.

The normative machine-readable representation for each of these model libraries is a project interchange file,
formatted according to the standard for KerML model interchange given in Clause 10 . Each library model is
packaged as a model interchange file in the project interchange file for its corresponding model library. Regardless
of whether such a library model is interchanged in textual notation, XMI or JSON format, the elementId for any
Element in the library model shall be a name-based (version 5, using SHA-1) UUID (see [UUID, 14.3]), which are
constructed from a name space identifier and a name determined as follows:

• For the top-level standard library package:
◦ name space identifier shall be the NameSpace_URL UUID, as given in [UUID, D.9] (which is

6ba7b811-9dad-11d1-80b4-00c04fd430c8).
◦ name shall be the URL constructed by prepending https://www.omg.org/spec/KerML/ to

the name of the package, converted to bytes using a UTF-8 encoding (see [ISO10646, Annex
D]).

• For any element directly or indirectly contained in the top-level standard library package (for which that
package will be the libraryNamespace):

◦ name space identifier shall be the UUID of the top-level standard library package (as determined
above).

◦ name shall be the string returned by the path() operation of the element, converted to bytes
using a UTF-8 encoding (see [ISO10646, Annex D]). (See 8.3.2.1.2 for the specification of the
path() operation for Element and 8.3.2.1.3 and 8.3.2.4.8 for its overridings for
Relationship and owningMembership, respectively.)

The elementIds constructed as given above shall be normative across all forms of interchange of the library
models. For Elements with non-null qualifiedNames, in particular, the elementIds shall remain stable for
future versions of the library models, though future revisions of this specification may deprecate certain existing
Elements and their names, or introduce new Elements with new names and hence UUIDS that are distinct (with a
high probability).

A tool may also use the above approach for generating the UUIDS for Elements of models other than standard
library models. However, it is then the responsibility of the tool to assign a unique URL to each top-level element in
a model, since this is required in order to ensure the uniqueness of the generated UUIDs. Note also that, if a model
undergoes frequent changes in the names and/or ordering of Elements, this may result in unexpected changes or
reassignment of generated UUIDs.

9.2 Semantic Library
9.2.1 Semantic Library Overview

The Semantic Library is a collection of KerML models that are part of the semantics of the metamodel (see Clause
8). They are reused when constructing KerML user models (instantiating the abstract syntax), as specified by
constraints and semantics of metaelements, such as Types being required to specialize Anything from the library
and Behaviors specializing Performance (see 8.4). The library can be specialized for particular applications,
such as systems modeling.

Kernel Modeling Language v1.0 Beta 4 277

The Semantic Library contains a set of packages, one for each library model, as described in a subsequent
subclauses. The following are the major areas covered in the Semantic Library.

1. The Base library model (see 9.2.2) begins the Specialization hierarchy for all KerML Types,
including the most general Classifier Anything and the most general Feature things. It also
contains the most general DataType DataValue and its corresponding Feature dataValues. The
Links library model (see 9.2.3) specializes Base to provide the semantics for Associations between
things.

2. The Occurrences library model (see 9.2.4) introduces Occurrence, the most general Class of things
that exist or happen in time and space, as well as the basic temporal Associations between them. The
Objects library model (see 9.2.5) specializes Occurrences to provide a model of Objects and
LinkObjects, giving semantics to Structures and AssociationStructures, respectively. The
Performances library model (see 9.2.6) specializes Occurrences to provide a model of
Performances and Evaluations, giving semantics to Behaviors and Expressions, respectively.
Temporal associations can be used by Successions to specify the order in which Performances are
carried out during other Performances, or when Objects exist in relation to each other, or
combinations involving Performances and Objects. The Transfers library model (see 9.2.7) models
flow of things between Occurrences, giving semantics to Interactions and Flows. The
FeatureAccessPerformances library model (see 9.2.8) defines specialized Performances for access
and modifying the values of features at specific points in time.

3. The ControlPerformances, TransitionPerformances and StatePerformances library models
(see 9.2.9 , 9.2.10 , and 9.2.11) provide for coordination of multiple Performances to carry out some
task by using them as types of Steps in an overall containing Behavior. KerML does not provide
syntax specific to these library elements (e.g., KerML does not have any "control node" or "state machine"
syntax), though it is expected that other languages built on KerML, and using these library models, can
add syntax as needed by their applications.

9.2.2 Base
9.2.2.1 Base Overview

This library model begins the Specialization hierarchy for all KerML Types (see 8.3.3.1 and 8.4.3.2), starting
with the most general Classifier Anything, the type of the most general Feature things, which classify
everything in the modeled universe and the relations between them, respectively. Being the most general library
elements for their metaclasses means all Classifiers and Features in models, including in libraries, specialize
them, respectively. They are specialized into the most general DataType DataValue, the type of dataValues,
the most general Feature typed by DataTypes, respectively (see 8.3.4.1). DataValues are Anything that can
only be distinguished by how they are related to other things (via Features and Assocations). These are further
specialized into Natural and naturals, respectively, an extension for mathematical natural numbers (integers
zero and greater) extended with a number greater than all the integers ("infinity"), but treated like one, notated as *
(see 9.3.2.1). The Feature self of Anything relates each thing in the universe to itself only (see SelfLinks in
9.2.3.1).

9.2.2.2 Elements

9.2.2.2.1 Anything

Element

Classifier

Description

Anything is the most general Classifier (M1 instance of M2 Classifier). All other M1 Elements (in
libraries or user models) specialize it (directly or indirectly). Anything is the type for things, the most general

278 Kernel Modeling Language v1.0 Beta 4

Feature. Since FeatureTyping is a kind of Specialization, this means that things also specializes
Anything.

General Types

None.

Features

self : Anything {subsets things}

The source of a SelfLink of this thing to itself. self is thus a feature that relates everything to itself. It is also the
value of the nested that feature of all other things featured by this thing.

Constraints

None.

9.2.2.2.2 DataValue

Element

DataType

Description

A DataValue is Anything that can only be distinguished by how it is related to other things (via Features).
DataValue is the most general Datatype (M1 instance of M2 Datatype). All other M1 Datatypes (in libraries
or user models) specialize it (directly or indirectly).

General Types

Anything

Features

None.

Constraints

None.

9.2.2.2.3 dataValues

Element

Feature

Description

dataValues is a specialization of things restricted to type DataValue. All other Features typed by
DataValue or its specializations (in libraries or user models) specialize it (directly or indirectly).

General Types

DataValue

Kernel Modeling Language v1.0 Beta 4 279

things

Features

None.

Constraints

None.

9.2.2.2.4 exactlyOne

Element

MultiplicityRange

Description

exactlyOne is a MultiplicityRange requiring a cardinality of exactly one.

General Types

naturals

Features

None.

Constraints

None.

9.2.2.2.5 naturals

Element

Feature

Description

naturals is a specialization of dataValues restricted to type Natural. It is the root Feature of all
multiplicities, which map from a Feature to the set of Natural numbers representing allowable cardinalities of the
Feature.

General Types

dataValues

Natural

Features

None.

Constraints

280 Kernel Modeling Language v1.0 Beta 4

None.

9.2.2.2.6 oneToMany

Element

MultiplicityRange

Description

oneToMany is a MultiplicityRange requiring a cardinality of one or more.

General Types

naturals

Features

None.

Constraints

None.

9.2.2.2.7 things

Element

Feature

Description

things is the most general Feature (M1 instance of M2 Feature). All other Features (in libraries or user
models) specialize it (subset or redefine, directly or indirectly). It is typed by Anything.

things has multiplicity lower bound 1 because, for any featuring instance, it includes at least that instance as the
value of Anything::self.

General Types

Anything

Features

that : Anything

For each value of things, the "featuring instance" of that value. Formally, for any sequence s classified by things,
the that includes a sequence whose prefix is s, followed by the second-to-last element of s. This is enforced by
declaring Anything::self to be the chaining of things.that, restricting that to the single value of self for
all things.

Constraints

None.

9.2.2.2.8 zeroOrOne

Kernel Modeling Language v1.0 Beta 4 281

Element

MultiplicityRange

Description

zeroOrOne is a MultiplicityRange requiring a cardinality of zero or one.

General Types

naturals

Features

None.

Constraints

None.

9.2.2.2.9 zeroToMany

Element

MultiplicityRange

Description

zeroToMany is a MultiplicityRange requiring a cardinality of zero or more.

General Types

naturals

Features

None.

Constraints

None.

9.2.3 Links
9.2.3.1 Links Overview

This library model introduces the most general Association Link, the type of links, the most general Feature
typed by Associations (see 8.3.4.4 and 8.4.4.5). The participant Feature of Link generalizes all
associationEnds (directly or indirectly), identifying the things being linked by (at the "ends" of) each Link
(exactly one thing per end, which might be the same things). Link is specialized into BinaryLink, the most
general Association with exactly two associationEnds, source and target, which subset participant
and identify the two things linked, which might be the same thing. BinaryLink is the type of binaryLinks, the
most general Feature typed by binary Associations. They are specialized into SelfLink and selfLinks,
respectively, for links that have the same thing on both ends, identified by thisThing and thatThing,
redefining source and target, respectively. These are used by BindingConnectors to specify that Features
have the same values (see 7.4.6.3). SelfLinks are not in time or space (they are not Occurrences, see 9.2.4).

282 Kernel Modeling Language v1.0 Beta 4

9.2.3.2 Elements

9.2.3.2.1 BinaryLink

Element

Association

Description

BinaryLink is a Link with exactly two participant Features ("binary" Association). All other binary
Associations (in libraries or user models) specialize it (directly or indirectly).

General Types

Link

Features

participant : Anything [2] {redefines participant, ordered, nonunique}

The participants of this BinaryLink, which are restricted to be exactly two.

source : Anything {subsets participant}

The participant that is the source of this BinaryLink.

target : Anything {subsets participant}

The participant that is the target of this BinaryLink.

Constraints

None.

9.2.3.2.2 binaryLinks

Element

Feature

Description

binaryLinks is a specialization of links restricted to type BinaryLink. All other Features typed by
BinaryLink or its specializations (in libraries or user models) specialize it (directly or indirectly).

General Types

links

BinaryLink

Features

None.

Constraints

Kernel Modeling Language v1.0 Beta 4 283

None.

9.2.3.2.3 Link

Element

Association

Description

Link is the most general Association (M1 instance of M2 Association). All other Associations (in libraries
or user models) specialize it (directly or indirectly). Specializations of Link are domains of Features subsetting
Link::participant, exactly as many as associationEnds of the Association classifying it, each with
multiplicity 1. Values of Link::participant on specialized Links must be a value of at least one of its
subsetting Features.

General Types

Anything

Features

participant : Anything [2..*] {ordered, nonunique}

The participants that are associated by this Link.

Constraints

None.

9.2.3.2.4 links

Element

Feature

Description

links is a specialization of things restricted to type Link. It is the most general feature typed by Link. All other
Features typed by Link or its specializations (in libraries or user models) specialize it (directly or indirectly).

General Types

things

Link

Features

None.

Constraints

None.

9.2.3.2.5 SelfLink

284 Kernel Modeling Language v1.0 Beta 4

Element

Association

Description

SelfLink is a BinaryLink where the sourceParticipant and targetParticipant are the same. All other
BinaryLinks where this is the case specialize it (directly or indirectly).

General Types

SelfSameLifeLink

BinaryLink

Features

sameThing : Anything {subsets thisThing, redefines target}

The target participant of this SelfLink, which must be the same as the source participant. Crosses
thisThing.self2.

self2 : Anything

Owned cross feature for sameThing, with cross multiplicity 1...1

thisThing : Anything {subsets sameThing, redefines source}

The source participant of this SelfLink, which must be the same as the target participant. Crosses
sameThing.self.

Constraints

None.

9.2.3.2.6 selfLinks

Element

Feature

Description

selfLinks is a specialization of binaryLinks restricted to type SelfLink. It is the most general
BindingConnector. All other BindingConnectors (in libraries or user models) specialize it (directly or
indirectly).

General Types

SelfLink

binaryLinks

Features

sameThing : Anything {redefines sameThing, target}

Kernel Modeling Language v1.0 Beta 4 285

thisThing : Anything {redefines source, thisThing}

Constraints

None.

9.2.4 Occurrences
9.2.4.1 Occurrences Overview

Occurrences

This library adds a model of things existing in time and space, starting with Occurrence, the most general Class
(see 8.3.4.2), which classifies Anything that takes up time and space, and occurrences, the most general
Feature typed by Classes. Occurrences can take up the same or overlapping time and space when they
represent different things happening or existing in it. For example, the time and space taken by a room might have
air moving in it, as well as light, radio waves, and so on.

Occurrences divide into Objects and Performances (see 9.2.5.1 and 9.2.6.1 , respectively), corresponding to
Classes dividing into Structures and Behaviors (see 7.4.4 and 7.4.7.1 , respectively). This subclause covers
what is in common between Objects and Performances.

Lives and Portions

A Life is an Occurrence that takes up the entire time and space of anything that happens or exists. All
Occurences, including Lives, identify other Occurrences as their portions (the most general portion
Feature, see 9.2.4.2.13 and 8.3.3.3.4), which happen or exist in some or all of their time and space. Portions are
the same "thing" as the Occurrences they are a portionOf, just considered for a potentially smaller period of
time and region in space. Occurrences are always a portionOf themselves, with Lives being a portionOf only
themselves. Occurrences have the same Life as those they are a portionOf, identified by portionOfLife.
This means following portionOf repeatedly will always reach a single Life, even though some Occurrences
along the way might be a portionOf of more than one other Occurrence.

SelfSameLifeLinks include SelfLinks (Links between each thing and itself, see 9.2.3.1), as well as Links
between Occurrences that are a portionOf the same Life (have the same portionOfLife).

Time and Space Slices

Time slices are portions that take up all the space of their larger Occurrences within a potentially smaller period
of time than the whole Occurrence, identified as timeSlices of the Occurrences they are a portionOf. Time
slices might have Feature values and Links to other things peculiar to their smaller period of time. Occurrences
are always timeSlicesOf themselves. The snapShots of Occurrences are timeSlices that take no time. The
earliest snapShot of an Occurrence is its startShot, the latest is its endShot. All the others happen during its
middleTimeSlice. Occurrences with a startShot the same as their endShot take no time, have no
middleTimeSlice, and vice-versa.

Space slices are portions that include all the time of their larger Occurrences, but not necessary all their space,
identified as spaceSlices of the Occurrences they are a portionOf. Space slices might have Feature values
and Links to other things peculiar to their smaller region in space. Occurrences are always spaceSlicesOf
themselves. The spaceShots of Occurrences are spaceSlices that have a lower innerSpaceDimension than
the Occurrences they are spaceSlicesOf, which is the number of variables needed to identify any space point
occupied by an Occurrence, without regard to higher dimensional spaces in which it might be embedded. For
example, the innerSpaceDimension of a Curve is 1 (see 9.2.5.1), because points on it can be identified by the
distance from one end, even if the curve bends in two or three dimensions. A Curve can be a spaceShot of a
Surface or Body, which have innerSpaceDimension of 2 and 3, respectively. The spaceSlices of an

286 Kernel Modeling Language v1.0 Beta 4

Occurrence that are not spaceShots must have the same innerSpaceDimension as the Occurrence. How
much an Occurrence bends in higher dimensions is its outerSpaceDimension (see 9.2.5.1). For example, the
outerSpaceDimension of a planar curve is 2 or 1 (Line), while it is 3 for non-planar.

Temporal and Spatial Associations

Occurrences can be completely separated in time or space, or both, as indicated by these specialized Links:

• HappensBefore Links between Occurrences indicate they are completely separate in time, with one
happening or existing completely before another. The predecessors and successors of
Occurrences are those that HappenBefore them and after them (those that they HappenBefore),
respectively. HappensJustBefore Links are HappensBefore Links between Occurrences where
there is no possibility of other Occurrences happening or existing in the time between them. The
immediatePredecessors and immediateSuccessors of Occurrences are those that
HappenJustBefore them and just after them (those that they HappenJustBefore), respectively.
Occurrences separated in time are not necessarily separated in space.

• OutsideOf Links between Occurrences indicate they are completely separate in space, without
specifying their relative positions (such as above or to the left). The outsideOccurrences of
Occurrences are those that exist OutsideOf them. JustOutsideOf Links are OutsideOf Links
between Occurrences where there is no possibility of other Occurrences happening or existing in the
space between at least some of their spaceBoundaries, see space boundaries below. The
justOutsideOccurrences of Occurrences are those that exist JustOutsideOf them.
Occurrences separated in space are not necessarily separated in time.

Without Links between Occurrences are provided as a convenience to indicate one HappenBefore another or
is OutsideOf the other or both (they do not overlap at all in space-time), with the withoutOccurrences of an
Occurrence being the ones that are Without it.

Occurrences can completely overlap others in time or space, or both, as indicated by these specialized Links:

• HappensDuring Links between Occurrences indicate one happens or exists completely within the
time taken by another, with the timeEnclosedOccurrences of an Occurrence being the ones that
HappenDuring it. Occurrences overlapping in time do not necessarily overlap in space.

• InsideOf Links between Occurrences indicate one happens or exists completely within the space
taken by another, with the spaceEnclosedOccurrences of an Occurrence being the ones that
InsideOf it. Occurrences overlapping in space do not necessarily overlap in time.

Within Links between Occurrences are provided as a convenience to indicate one HappensDuring another and
is InsideOf that other (one is completely overlapped by the other in space-time), with the
spaceTimeEnclosedOccurrences of an Occurrence being the ones that are WithIn it.

Occurrences cannot be linked by both HappensBefore and HappensDuring, OutsideOf and InsideOf, or
Within and Without. They also cannot HappenBefore or be OutsideOf or Without themselves, but always
HappensDuring and are InsideOf and Within themselves. When an Occurrence HappensBefore another, all
Occurrences that HappenDuring the earlier one (including itself) also HappenBefore those that HappenDuring
the later one (including itself).

Occurrences that HappenDuring each other both ways (circularly) happen or exist at the same time, which is
provided for convenience by HappensWhile, a specialization of HappensDuring, with the
timeCoincidentOccurrences of an Occurrence being the ones that HappenWhile it. Occurrences that are
InsideOf each other both ways occupy exactly the same space, even though they might happen or exist at separate
times. Occurrences that are Within each other both ways happen at exactly the same time and occupy exactly the

Kernel Modeling Language v1.0 Beta 4 287

same space, which is provided for convenience by WithinBoth, a specialization of Within, with the
spaceTimeCoincidentOccurrences of an Occurrence being the ones that are WithinBoth it.

The Links above to do not take up time or space, they are temporal and spatial relations between things that do
(they are disjoint with LinkObject, see 9.2.5.1).

Other Time-Space Relations

The time and space taken by an Occurrence can be related in three ways to the time and space taken by others,
identified by the Features below. An Occurrence with values for these Features takes the same time and space
as

• unionOf: taken by all the other Occurrences together.
• intersectionOf: is common to all the other Occurrences.
• differencesOf: the first other Occurrence that is not taken by the rest.

The values of the above Features are Sets of Occurrences to enable the time and space of an Occurrence to
be specified in multiple ways, with each set taken as a complete specification of the time and space taken by the
Occurrence.

Space Boundaries and Interiors

The spaceSlices of each Occurrence are divided into a spaceBoundary, which is a spaceShot, and a
spaceInterior, which is a spaceSlice that is not a spaceShot (has the same innerSpaceDimension as the
Occurrence). They are JustOutsideOf each other and union (see below) to the entire Occurrence. Space
boundaries cannot have a spaceBoundary, which means they also cannot have a spaceInterior, indicated by
isClosed=true, For example, a ball has a sphere as its spaceBoundary, but the sphere isClosed.

A spaceBoundary might have spaceSlices that are also closed and have the same innerSpaceDimension as
the spaceBoundary (not among its spaceShots). In some cases one of these spaceSlices surrounds the others,
identified as the outer, a nested feature of spaceBoundary, and the others as the inner ones. This means the
outer one can be taken as the spaceBoundary of another Occurrence with a spaceInterior that completely
includes the inners. The inner spaceBoundaries can also be taken as spaceBoundaries of their own
Occurrences, the spaceInteriors of which are identified as the innerSpaceOccurrences ("holes") of the
Occurrence having the spaceBoundary. These two cases are covered by SurroundedBy Links between
Occurrences, with the surroundedByOccurrences of an Occurrence being the ones they are SurroundedBy.

MatesWith Links are JustOutsideOf Links between Occurrences indicating that they union (see below) to an
Occurrence with a spaceBoundary but no spaceInterior. This means there is no possibility of other
Occurrences happening or existing in the space between them. JustOutsideOf Links additionally include those
between Occurrences where only some of their spaceSlices (of their spaceBoundaries) are linked by
MatesWith.

9.2.4.2 Elements

9.2.4.2.1 HappensBefore

Element

Association

Description

HappensBefore is a Without Association linking an earlierOccurrence to a laterOccurrence,
indicating that the Occurrences do not overlap in time (not necessarily in space, see OutsideOf; none of their
snapshots happen at the same time), and the earlierOccurrence happens first. This means no Occurrence

288 Kernel Modeling Language v1.0 Beta 4

HappensBefore itself. Every Occurrence that HappensDuring the earlierOccurrence (including itself) also
HappensBefore every Occurrence that HappensDuring the laterOccurrence (including itself).

General Types

Without

HappensLink

Features

earlierOccurrence : Occurrence {subsets sourceOccurrence, redefines separateOccurrenceToo}

The participant of this HappensBefore link that happens (ends) earlier than the other participant (starts). Crosses
laterOccurrence.predecessors.

laterOccurrence : Occurrence {subsets targetOccurrence, redefines separateOccurrence}

The participant of this HappensBefore link that happens later than (starts after) the other participant (ends).
Crosses earlierOccurrence.successors.

Constraints

None.

9.2.4.2.2 happensBeforeLinks

Element

Feature

Description

happensBeforeLinks is a specialization of binaryLinks restricted to type earlierOccurrence. It is the most
general Succession (M1 instance of M2 Succession). All other Successions (in libraries or user models)
specialize it (directly or indirectly).

General Types

HappensBefore

binaryLinks

Features

earlierOccurrence : Occurrence {redefines source, earlierOccurrence}

laterOccurrence : Occurrence {redefines laterOccurrence, target}

Constraints

None.

9.2.4.2.3 HappensDuring

Element

Kernel Modeling Language v1.0 Beta 4 289

Association

Description

HappensDuring links its shorterOccurrence to its longerOccurrence, indicating that the
shorterOccurrence completely overlaps the longerOccurrence in time (not necessarily in space, see
InsideOf; all snapshots of the shorterOccurrence happen at the same time as some snapshot of the
longerOccurrence). This means every Occurrence HappensDuring itself and that HappensDuring is
transitive. Every Occurrence that HappensDuring the longerOccurrence also HappensBefore the
shorterOccurrence. The shorterOccurrence also HappensBefore every Occurrence that the
longerOccurrence does.

General Types

HappensLink

Features

happensDuring : Occurrence [1..*]

Occurrences that completely overlap a shorterOccurrence in time (not necessarily in space, see insideOf;
they start when this shorterOccurrence does or earlier and end when the shorterOccurrence does or later),
including the shorterOccurrence. Owned cross feature for longerOccurrence.

longerOccurrence : Occurrence {redefines targetOccurrence}

The participant in this HappensDuring Link that completely overlaps the other in time. Crosses
shorterOccurrence.happensDuring.

shorterOccurrence : Occurrence {redefines sourceOccurrence}

The participant in this HappensDuring Link that is completely overlapped by the other in time. Crosses
longerOccurrence.timeEnclosedOccurrences.

Constraints

None.

9.2.4.2.4 HappensJustBefore

Element

Association

Description

HappensJustBefore is HappensBefore asserting that there is no possibility of other Occurrences happening in
the time between the earlierOccurrence and laterOccurrence.

General Types

HappensBefore

Features

earlierOccurrence : Occurrence {redefines earlierOccurrence}

290 Kernel Modeling Language v1.0 Beta 4

Crosses laterOccurrence.immediatePredecessors.

laterOccurrence : Occurrence {redefines laterOccurrence}

Crosses earlierOccurrence.immediateSuccessors.

Constraints

None.

9.2.4.2.5 HappensLink

Element

Association

Description

HappensLink is the most general Association that asserts temporal relationships between a
sourceOccurrence and a targetOccurrence. They cannot happen in time (be Occurrences), making them
disjoint with LinkObject.

General Types

BinaryLink

Features

sourceOccurrence : Occurrence {redefines source}

targetOccurrence : Occurrence {redefines target}

Constraints

None.

9.2.4.2.6 HappensWhile

Element

Association

Description

HappensWhile is a HappensDuring and its inverse. This means the linked Occurrences completely overlap
each other in time (they happen at the same time) all snapshots of each Occurrence happen at the same time as
one of the snapshots of other. This means every Occurrence HappensWhile itself and that HappensWhile is
transitive.

General Types

HappensDuring

Features

happensWhile : Occurrence [1..*] {subsets happensDuring, timeCoincidentOccurrences}

Kernel Modeling Language v1.0 Beta 4 291

thatOccurrence : Occurrence {redefines longerOccurrence}

Crosses thisOccurrence.timeCoincidentOccurrences.

thisOccurrence : Occurrence {redefines shorterOccurrence}

Crosses thatOccurrence.timeCoincidentOccurrences.

Constraints

None.

9.2.4.2.7 IncomingTransferSort

Element

Predicate

Description

A Predicate of two Transfers that is true when the first should be accepted instead of the other.

General Types

BooleanEvaluation

Features

in t1 : Transfer

In parameter.

in t2 : Transfer

In parameter.

return t1First : Boolean

Return parameter.

Constraints

None.

9.2.4.2.8 InnerSpaceOf

Element

Association

Description

InnerSpace is an OutsideOf asserting that the space surrounded by an inner space boundary of one occurrence
(outerSpace) is completely occupied by another occurrence (innerSpace).

General Types

292 Kernel Modeling Language v1.0 Beta 4

OutsideOf

Features

innerSpace : Occurrence {redefines separateSpace}

The participant of this InnerSpaceOf Link that completely occupies the space surrounded by an inner space
boundary of the other. Crosses outerSpace.innerSpaceOccurrences.

outerSpace : Occurrence {redefines separateSpaceToo}

The participant of this InnerSpaceOf Link with an inner space boundary is completely occupied by the other.

Constraints

None.

9.2.4.2.9 InsideOf

Element

Association

Description

InsideOf is a BinaryLink between its smallerSpace and largerSpace, indicating that the largerSpace
completely overlaps the smallerSpace in space (not necessarily in time, see HappensDuring; all four dimensional
points of the smallerSpace are in the spatial extent of the largerSpace). This means every Occurrence is
InsideOf itself and that InsideOf is transitive.

General Types

SpaceLink

Features

insideOf : Occurrence [1..*]

Occurrences that completely overlap a smallerSpace in space (not necessarily in time, see happensDuring),
including the smallerSpace. Owned cross feature for largerSpace.

largerSpace : Occurrence {redefines target}

The participant in this InsideOf Link that completely overlaps the other in space. Crosses
smallerSpace.insideOf.

smallerSpace : Occurrence {redefines source}

The participant in this InsideOf Link that is completely overlapped by the other in space. Crosses
largerSpace.spaceEnclosedOccurrences.

Constraints

None.

9.2.4.2.10 JustOutsideOf

Kernel Modeling Language v1.0 Beta 4 293

Element

Association

Description

JustInsideOf is an OutsideOf Association linking two Occurrences that have some space slices with no
space between them.

General Types

OutsideOf

Features

separateSpace : Occurrence {redefines separateSpace}

Crosses separateSpaceToo.justOutsideOfOccurrences.

separateSpaceToo : Occurrence {redefines separateSpaceToo}

Crosses separateSpace.justOutsideOfOccurrences.

Constraints

None.

9.2.4.2.11 Life

Element

Class

Description

Life is the class of Occurrences that are "maximal portions". That is, they are only portions of themselves.

General Types

Occurrence

Features

None.

Constraints

None.

9.2.4.2.12 MatesWith

Element

Association

Description

294 Kernel Modeling Language v1.0 Beta 4

General Types

JustOutsideOf

Features

matingSpace : Occurrence {redefines separateSpace}

Crosses matingSpaceToo.matingOccurrences.

matingSpaceToo : Occurrence {redefines separateSpaceToo}

Crosses matingSpace.matingOccurrences.

Constraints

None.

9.2.4.2.13 Occurrence

Element

Class

Description

An Occurrence is Anything that happens over time and space (the four physical dimensions). Occurrences can
be portions of another Occurrence within time and space, including slices in time, leading to snapshots that take
zero time.

General Types

Anything

Features

difference : Occurrence [0..1]

A (nested) Feature of differencesOf identifying an Occurrence that is the intersectionsOf of the
Occurrences identified by interdiff (minuend and interdiff.notSubtrahend).

differencesOf : OrderedSet [0..*]

Ordered sets of Occurrences, where the time and space taken by first Occurrence in each set (minuend) that is
not in the time and space taken by the remaining Occurrences (subtrahend, resulting in difference) is the
same as taken by this Occurrence (all four dimensional points in the minuend that are not in any subtrahend are
at the same time and space as those in this Occurrence).

dispatchScope : Occurrence

elements : Occurrence [0..*]

A nested Feature of unionsOf, intersectionsOf, and differencesOf for the elements of each of their
(Ordered)Sets

endShot : Occurrence {subsets snapshots}

Kernel Modeling Language v1.0 Beta 4 295

The snapshot of this Occurrence that happensAfter all its other snapshots.

immediatePredecessors : Occurrence [0..*] {subsets predecessors}

Occurrences that start just after this Occurrence ends, with no possibility of other Occurrences happening in
the time between them.

immediateSuccessors : Occurrence [0..*] {subsets successors}

Occurrences that end just before this Occurrence starts, with no possibility of other Occurrences happening in
the time between them.

incomingTransfer : Transfer [0..*]

incomingTransferSort : IncomingTransferSort [0..*]

Determines which Transfers to accept when multiple are available and which of the unaccepted Transfers are
never to be accepted (dispatched), by comparing two Transfers at a time. Defaults to
earlierFirstIncomingTransferSort, which is true if the first Transfer ends (arrives) before the other.

incomingTransferToSelf : Transfer [0..*] {subsets incomingTransfer}

Transfers for which this Occurrence is the targetParticipant.

inner : Occurrence [0..*]

A spaceSlice of spaceBoundary, see spaceBoundary.

innerSpaceDimension : Natural

The number of variables needed to identify space points in this Occurrence, from 0 to 3, without regard to higher
dimensional spaces it might be embedded in. For example, the innerSpaceDimension of a curve is 1, even if it
twists in three dimensions, see outerSpaceDimension.

innerSpaceOccurrences : Occurrence [0..*] {subsets outsideOfOccurrences}

Occurrences that completely occupy the space surrounded by an inner space boundary of this occurrence.

interdiff : Set [0..*]

A (nested) Feature of differencesOf identifying a set that includes its minuend and all Occurrences that are not
in its subtrahend.

intersection : Occurrence [0..1]

A (nested) Feature of intersectionsOf identifying an Occurrence that a) is completely Within (the space
and time of) all intersectionsOf elements, and b) satisfies the conditions of the same element's
nonIntersection.

intersectionsOf : Set [0..*]

Sets of Occurrences, where the time and space taken in common between the Occurrences in each set
(intersectionsOf::intersection) is at the same as taken by this Occurrence (all four dimensional points
common to the Occurrences in each set are at the same time and space as those in this Occurrence).

/isClosed : Boolean

296 Kernel Modeling Language v1.0 Beta 4

True if this Occurrence has a spaceBoundary, false otherwise.

isDispatch : Boolean

Determines whether the same incoming transfer can be accepted more than once by StatePerformances
composed under dispatchScope. It defaults to true for Performances, and false for other Occurrences
(including Objects).

isRunToCompletion : Boolean

Determines whether TransitionPerformances composed under runToCompletionScope can happen during
StatePerformance entry Performances composed under this Occurrence.

justOutsideOfOccurrences : Occurrence [0..*] {subsets outsideOfOccurrences}

Occurrences that have no space between some of their spaceSlices and some spaceSlices of this
Occurrence.

localClock : Clock

A local Clock to be used as the corresponding time reference for this Occurrence and, by default, all
ownedOccurrences. By default this is the singleton Clocks::universalClock

matingOccurrences : Occurrence [0..*] {subsets justOutsideOfOccurrences}

Occurrences that have no space between them and this one.

middleTimeSlice : Occurrence [0..1] {subsets timeSlices}

timeSlice of this Occurrence that takes all of the time between its startShot and endShot. Occurrences do
not have middleTimeSlice if their startShot is the same as their endShot (such as being a snapShot of
another Occurrence), otherwise they do.

minuend : Occurrence [0..1] {subsets elements, ordered}

A (nested) Feature of differencesOf that identifies the first Occurrence in its elements.

nonIntersection : Occurrence [0..*] {subsets spaceTimeEnclosedPoints}

A nested Feature of intersectionsOf.elements identifying all the spaceTimeEnclosedPoints of each
element that are not identified by intersection. These must be Without (separate in space or time from) at
least one other element.

notSubtrahend : Occurrence [0..*]

A (nested) Feature of differencesOf.interdiff identifying all Occurrences that are not identified by the
subtrahend in each value differencesOf separately.

outer : Occurrence [0..1]

A spaceSlice of spaceBoundary, see spaceBoundary.

outerSpaceDimension : Natural [0..1]

For Occurrence of innerSpaceDimension 1 or 2, the number of variables needed to identify their space points
in higher dimensional spaces they might be embedded in, from the innerSpaceDimension to 3. For example , an

Kernel Modeling Language v1.0 Beta 4 297

outerSpaceDimension 3 for a curve indicates it twists in three dimensions. An outerSpaceDimension equal to
innerSpaceDimension indicates the occurrence is spatially straight (innerSpaceDimension 1 embedded in 2 or
3 dimensions) or flat (innerSpaceDimension 2 embedded in 3 dimensions).

outgoingTransfer : Transfer [0..*]

outgoingTransferFromSelf : Transfer [0..*] {subsets outgoingTransfer}

Transfers for which this Occurrence is the sourceParticipant.

outsideOfOccurrences : Occurrence [0..*] {subsets withoutOccurrences}

Occurrences that are completely separate from this one in space (not necessarily in time, see successors and
predecessors).

portionOf : Occurrence [1..*] {subsets within}

All Occurrences that this one is Within that are considered the same thing occurring (same portionOfLife),
including this one.

portionOfLife : Life

The Life of which this Occurrence is a portion. By default, portion is self (that is, the Occurrence is itself
a Life).

portions : Occurrence [1..*] {subsets spaceTimeEnclosedOccurrences}

All Occurrences Within this one that are considered the same thing occurring (same portionOfLife),
including this one.

predecessors : Occurrence [0..*] {subsets withoutOccurrences}

Occurrences that are completely separate from this one in time (not necessarily in space, see
outsideOfOccurrences) and that happen before this one (end earlier than this one starts).

runToCompletionScope : Occurrence

sameLifeOccurrences : Occurrence [1..*]

self : Occurrence {subsets timeSlices, spaceSlices, spaceTimeCoincidentOccurrences, sameLifeOccurrences,
redefines self}

This Occurrence (related to itself via a SelfLink).

snapshotOf : Occurrence [0..*] {subsets timeSliceOf}

Occurrences of which this Occurrence is a snapshot.

snapshots : Occurrence [1..*] {subsets timeSlices}

All timeSlices of this Occurrence that happen at a single instant of time (zero duration).

spaceBoundary : Occurrence [0..1] {subsets spaceShots}

298 Kernel Modeling Language v1.0 Beta 4

A spaceShot of this Occurrence that is not among those of its spaceInterior, which it must be OutsideOf. It
must not have a spaceBoundary (isClosed = true). It can be divided into spaceSlices that also have no
spaceBoundary, where the inner ones are SurroundedBy the outer one.

spaceEnclosedOccurrences : Occurrence [1..*]

Occurrences that this one completely overlaps in space (not necessarily in time, see
timeEnclosedOccurrences), including this one.

spaceInterior : Occurrence [0..1] {subsets spaceSlices}

A spaceSlice of this Occurrence that includes all its spaceShots except the spaceBoundary, which must
exist and be outsideOf it. The spaceInterior must be of the same innerSpaceDimension as this
Occurrence, except if it is zero, whereupon there is no spaceInterior.

spaceShotOf : Occurrence [1..*] {subsets spaceSliceOf}

All Occurrences of which this Occurrence is a spaceShot.

spaceShots : Occurrence [1..*] {subsets spaceSlices}

All spaceSlices of this Occurrence that are of a lower innerSpaceDimension than it.

spaceSliceOf : Occurrence [1..*] {subsets portionOf}

An Occurrence this one is a spaceSlices of.

spaceSlices : Occurrence [1..*] {subsets portions}

All portions of this Occurrence that extend for exactly the same time and some or all the space, relative to
spatial location of this Occurrence. This means every Occurrence is a spaceSlice of itself.

spaceTimeCoincidentOccurrences : Occurrence [1..*] {subsets timeCoincidentOccurrences,
spaceEnclosedOccurrences}

Occurrences that this one completely includes in both space and time, and vice-versa, including this one.

spaceTimeEnclosedOccurrences : Occurrence [1..*] {subsets spaceEnclosedOccurrences,
timeEnclosedOccurrences}

All timeEnclosedOccurrences of this Occurrence that are also spaceEnclosedOccurrences, including
itself.

spaceTimeEnclosedPoints : Occurrence [1..*] {subsets spaceTimeEnclosedOccurrences}

All spaceTimeEnclosedOccurrences of this Occurrence that take up no time or space
(innerSpaceDimension 0 and startShot the same as endShot).

startShot : Occurrence {subsets snapshots}

The snapshot of this Occurrence that happensBefore all its other snapshots.

suboccurrences : Occurrence [0..*]

Composite suboccurrences of this Occurrence. The localClock of all suboccurrences defaults to the
localClock of its containing Occurrence.

Kernel Modeling Language v1.0 Beta 4 299

subtrahend : Occurrence [0..*] {subsets elements}

A (nested) Feature of differencesOf that identifies all the Occurrences in its elements except the first one.

successors : Occurrence [0..*] {subsets withoutOccurrences}

Occurrences that are completely separate from this one in time (not necessarily in space, see
<code>outsideOfOccurrences) and that happen after this one (start later than this one ends).

surroundedByOccurrences : Occurrence {subsets outsideOfOccurrences}

Occurrences that have inner spaces that completely include this Occurrence.

this : Occurrence

The "context" Occurrence within which this Occurrence takes place. By default, it is this Occurrence itself.
However, this is overridden for ownedPerformances of Objects and subperformances of Performances

timeCoincidentOccurrences : Occurrence [1..*] {subsets timeEnclosedOccurrences}

Occurrences that HappenWhile this one does (Occurrences that start and end at the same time as this one).

timeEnclosedOccurrences : Occurrence [1..*]

Occurrences that this one completely overlaps in time (not necessarily in space, see
spaceEnclosedOccurrences; they start at the same time or later and end at the same time or earlier), including
this one.

timeSliceOf : Occurrence [1..*] {subsets portionOf}

Occurrences of which this one is a timeSlice, including this one.

timeSlices : Occurrence [1..*] {subsets portions}

portionsthat extend for some or all the time of this Occurrence, but all its space during that time, including
itself.

union : Occurrence [0..1]

A (nested) Feature of unionsOf identifying an Occurrence with a) spaceTimeEnclosedOccurrences
including all those identified by a unionsOf element, and b) all the Occurrence's
spaceTimeEnclosedPoints Within (the space and time of) at least one of the elements.

unionsOf : Set [0..*]

Sets of Occurrences, where the time and space taken by all the Occurrences in each set together
(unionsOf::union) is the same as taken by this Occurrence (all four dimensional points in the Occurrences of
each set are at the same time and space as those of this Occurrence).

withoutOccurrences : Occurrence [0..*]

All Occurrences that are successors, successors, and/or OutsideOf of this one.

Constraints

None.

300 Kernel Modeling Language v1.0 Beta 4

9.2.4.2.14 occurrences

Element

Feature

Description

occurrences is a specialization of things restricted to type Occurrence. It is the most general Feature typed
by Occurrence. All other Features typed by Occurrence or its specializations (in libraries or user models)
specialize it (directly or indirectly).

General Types

things

Occurrence

Features

None.

Constraints

None.

9.2.4.2.15 OutsideOf

Element

Association

Description

OutsideOf is a Without Association linking its separateSpaceToo and its
separateOccurrence, indicating that these Occurrences do not overlap in space (not
necessarily in time, see HappensBefore; no four dimensional points of the Occurrences
are in the spatial extent of both of them). This means no Occurrence is OutsideOf
itself.

General Types

SpaceLink

Without

Features

separateSpace : Occurrence {redefines separateOccurrence}

The second participant in this OutsideOf Link. Crosses separateSpaceToo.outsideOfOccurrences.

separateSpaceToo : Occurrence {redefines separateOccurrenceToo}

The first participant in this OutsideOf Link. Crosses separateSpace.outsideOfOccurrences.

Kernel Modeling Language v1.0 Beta 4 301

Constraints

None.

9.2.4.2.16 PortionOf

Element

Association

Description

PortionOf is a Within Association that links its portionOccurrence to its portionedOccurrence,
indicating they are considered the same thing occurring (same portionOfLife), but with the
portionOccurrence potentially taking up less time and space than the portionedOccurrence. This means
every Occurrence is a PortionOf itself. The innerSpaceDimension of portionOccurrence is the same or
lower than of the portionedOccurrence.

General Types

Within

Features

portionedOccurrence : Occurrence {redefines largerOccurrence}

The participant in this PortionOf Link that is the largerOccurrence. Crosses
portionOccurrence.portionOf.

portionOccurrence : Occurrence {redefines smallerOccurrence}

The participant in this PortionOf Link that is the smallerOccurrence. Crosses
portionedOccurrence.portions.

Constraints

None.

9.2.4.2.17 SelfSameLifeLink

Element

Association

Description

SelfSameLinks are all the BinaryLinks such that the sourceParticipant and targetParticipant are
either

• Occurrences (which might be lives) that are portions of the same life, or
• DataValues that are equal.

General Types

BinaryLink

302 Kernel Modeling Language v1.0 Beta 4

Features

mySelfSameLife : Anything {redefines source}

The source end of a SelfLifeLink. Crosses selfSameLife.myselfSameLives.

myselfSameLives : Anything [1..*]

Owned cross feature of myselfSameLife.

selfSameLife : Anything {redefines target}

The target end of a SelfLifeLink. Crosses myselfSameLife.selfSameLives.

selfSameLives : Anything [1..*]

Owned cross feature of selfSameLife.

sourceDataValue : DataValue {subsets mySelfSameLife}

Same as the mySelfSameLife when it is an DataValue.

sourceOccurrence : Occurrence {subsets mySelfSameLife}

Same as the mySelfSameLife when it is an Occurrence.

targetDataValue : DataValue {subsets selfSameLife}

Same as the selfSameLife when it is an DataValue.

targetOccurrence : Occurrence {subsets selfSameLife}

Same as the selfSameLife when it is an Occurrence. Also subsets
sourceOccurrence.sameLifeOccurrences.

Constraints

None.

9.2.4.2.18 SnapshotOf

Element

Association

Description

SnapshotOf is a TimeSliceOf that links its snapshotOccurrence to its snapshottedOccurrence, indicating
that snapshotOccurrence takes no time (startShot and endShot are the same).

General Types

TimeSliceOf

Features

Kernel Modeling Language v1.0 Beta 4 303

snapshotOcccurrence : Occurrence {redefines timeSliceOccurrence}

The participant in this SnapshotOf Link that is the timeSliceOccurrence. Crosses
snapshottedOccurrence.snapshots.

snapshottedOccurrence : Occurrence {redefines timeSlicedOccurrence}

The participant in this SnapshotOf Link that is the timeSlicedOccurrence. Crosses
snapshotOccurrence.snapshotOf.

Constraints

None.

9.2.4.2.19 SpaceLink

Element

Association

Description

SpaceLink is the most general association that asserts spatial relationships between a sourceOccurrence and a
targetOccurrence. Because SpaceLinks assert spatial relationships, they cannot also be Occurrences that
happen in space. Therefore SpaceLink is disjoint with LinkObject, that is, no SpaceLink can also be a
LinkObject.

General Types

BinaryLink

Features

sourceOccurrence : Occurrence {redefines source}

targetOccurrence : Occurrence {redefines target}

Constraints

None.

9.2.4.2.20 SpaceShotOf

Element

Association

Description

SpaceShotOf is a SpaceSliceOf that links its spaceShotOccurrence to its spaceSnapshottedOccurrence,
indicating the spaceShotOccurrence is of a lower innerSpaceDimension than the
spaceShottedOccurrence

General Types

SpaceSliceOf

304 Kernel Modeling Language v1.0 Beta 4

Features

spaceShotOccurrence : Occurrence {redefines spaceSliceOccurrence}

The participant in this SpaceShotOf Link that is the spaceSliceOccurrence. Crosses
spaceShottedOccurrence.spaceShots.

spaceShottedOccurrence : Occurrence {redefines spaceSlicedOccurrence}

The participant in this SpaceShotOf Link that is the spaceSlicedOccurrence. Crosses
spaceShotOccurrence.spaceShotOf.

Constraints

None.

9.2.4.2.21 SpaceSliceOf

Element

Association

Description

SpaceSliceOf is a PortionOf that links its spaceSliceOccurrence to its spaceSlicedOccurrence,
indicating the spaceSliceOccurrence extends for exactly the same time and some or all the space of the
spaceSlicedOccurrence and that the spaceSliceOccurrence is of the same of lower
innerSpaceDimension than the spaceSliceOccurrence. This means every Occurrence is a SpaceSliceOf
itself and SpaceSliceOf is transitive.

General Types

PortionOf

Features

spaceSlicedOccurrence : Occurrence {redefines portionedOccurrence}

The participant in this SpaceSliceOf Link that is the portionedOccurrence. Crosses
spaceSliceOccurrence.spaceSliceOf.

spaceSliceOccurrence : Occurrence {redefines portionOccurrence}

The participant in this SpaceSliceOf Link that is the portionOccurrence. Crosses
spaceSlicedOccurrence.spaceSlices.

Constraints

None.

9.2.4.2.22 SurroundedBy

Element

Association

Kernel Modeling Language v1.0 Beta 4 305

Description

SurroundedBy is an OutsideOf asserting that one occurrence (surroundedSpace) is included in space by an
innerSpaceOccurrence of another (surroundingSpace).

General Types

OutsideOf

Features

surroundedSpace : Occurrence {redefines separateSpaceToo}

The participant in this SurroundedBy Link that is completely included in the inner space of the other.

surroundingSpace : Occurrence {redefines separateSpace}

The participant in this SurroundedBy Link that has an inner space that completely includes the other.

Constraints

None.

9.2.4.2.23 TimeSliceOf

Element

Association

Description

TimeSliceOf is a PortionOf that links its timeSliceOccurrence to its timeSlicedOccurrence, indicating
that extend for exactly the same time and some or all the space of this Occurrence, including itself. This means
every Occurrence is a TimeSliceOf itself.

General Types

PortionOf

Features

timeSlicedOccurrence : Occurrence {redefines portionedOccurrence}

The participant in this TimeSliceOf Link that is the portionedOccurrence. Crosses
timeSliceOccurrence.timeSliceOf.

timeSliceOccurrence : Occurrence {redefines portionOccurrence}

The participant in this TimeSliceOf Link that is the portionOccurrence. Crosses
timeSlicedOccurrence.timeSlices.

Constraints

None.

9.2.4.2.24 Within

306 Kernel Modeling Language v1.0 Beta 4

Element

Association

Description

Within classifies all and only links that are HappensDuring and InsideOf. They link their largerOccurrence
to their smallerOccurrence, indicating the largerOccurrence completely overlaps the smallerOccurrence
in time and space (all four dimensional points of the smallerOccurrence HappensDuring and InsideOf the
largerOccurrence). This means every Occurrence is Within itself and Within is transitive.

General Types

HappensDuring

InsideOf

Features

largerOccurrence : Occurrence {redefines largerSpace, longerOccurrence}

The participant in this Within Link that is the longerOccurrence and largerSpace. Crosses
shorterOccurrence.within.

smallerOccurrence : Occurrence {redefines shorterOccurrence, smallerSpace}

The participant in this Within Link that is the shorterOccurrence and smallerSpace. Crosses
largerOccurrence.spaceTimeEnclosedOccurrences.

within : Occurrence [1..*] {subsets insideOf, happensDuring}

All Occurrences that the smallerOccurrence happensDuring and is insideOf, including the
smallerOccurrence. Owned cross feature of _largerOccurrence.

Constraints

None.

9.2.4.2.25 WithinBoth

Element

Association

Description

WithinBoth is a Within and its inverse. This means the linked Occurrences completely overlap each other in
space and time (they occupy the same four dimensional region). This means every Occurrence is Within with
itself and Within is transitive.

General Types

Within

HappensWhile

Kernel Modeling Language v1.0 Beta 4 307

Features

thatOccurrence : Occurrence {redefines largerOccurrence}

Crosses thisOccurrence.spaceTimeCoincidentOccurrences.

thisOccurrence : Occurrence {redefines smallerOccurrence}

Crosses thatOccurrence.spaceTimeCoincidentOccurrences.

Constraints

None.

9.2.4.2.26 Without

Element

Association

Description

Without classifies all links that are HappensDuring or InsideOf, or both. They link their
separateOccurrenceToo to their separateOccurrence, indicating that the Occurrences do not overlap in
time and/or space (no four dimensional point is in both Occurrences). This means no Occurrence is Without
itself.

General Types

BinaryLink

Features

separateOccurrence : Occurrence {redefines target}

The second participant in this Without Link. Crosss separateOccurrenceToo.withoutOccurrences.

separateOccurrenceToo : Occurrence {redefines source}

The first participant in this Without Link. Crosses separateOccurrence.withoutOccurrences.

Constraints

None.

9.2.5 Objects
9.2.5.1 Objects Overview

Objects are Occurrences that take up a single region of time and space, even though they might be in multiple places
over time. Object is the most general Structure, while objects is the most general Feature typed by Structures (see
8.3.4.3 and compare to Performances in 9.2.6.1). Objects and Performances do not overlap, but Performances can
Involve Objects, which can Perform Performances.

LinkObjects are Objects that are also Links, and linkObjects is the most general Feature typed by LinkObject.
LinkObjects occupy time and space, like other Objects, with potentially varying relationships to other things over

308 Kernel Modeling Language v1.0 Beta 4

time, except for which things are its participants (the things being linked), identified by its associationEnd
Features (the "ends" of a link are permanent, though participants can be Occurrences with changing
relationships to other things). The values of LinkObject Features that are not associationEnds can change over
time. LinkObjects can exist between the same Occurrences for only some of the time those Occurrences exist,
reflecting changing relationships of those Occurrences. BinaryLinkObjects are BinaryLinks that are also
LinkObjects, and binaryLinkObjects is the most general Feature typed by BinaryLinkObject.

Body(s), Surfaces, Curves, and Points are Objects with innerSpaceDimension of 3, 2, 1, and 0, respectively.

Structured Space Objects

StructuredSpaceObjects are Objects with three Features Subsetting spaceSlices:

• faces, identifying Surfaces.
• edges, identifying Curves.
• vertices, identifying Points.

The above are collectively structuredSpaceCells, which are also StructuredSpaceObjects, enabling faces to
identify edges and vertices among the spaceSlices of their spaceBoundaries, if any, and edges to identify
vertices among theirs. Cells of closed StructuredSpaceObjects (isClosed = true) must be JustOutside others
along their entire spaceBoundary (every cell's spaceSlices must MateWith some spaceSlice of another cell,
see Space Boundaries and Interiors in 9.2.4.1), which usually means all the edges and vertices of cells
MateWith those of other cells, enabling the StructuredSpaceObject to be the spaceBoundary for other Objects. The
innerSpaceDimension of a StructuredSpaceObject is the highest innerSpaceDimension of its
structuredSpaceCells.

Models can specialize the three Features above for various kinds of Objects, for example, one for cylinders would
include:

• Three Features Subsetting faces for the top, bottom, and middle Surfaces of a cylinder. The edges of
these Features are Curves (circles) that are spaceBoundaries of the top and bottom Surfaces (discs), and
spaceSlices of the spaceBoundary of the middle Surface (a rectangle joined at two opposite sides).

• Two Features Subsetting edges for the top and bottom of the cylinder. Each Feature identifies two Curves
that are the edges of adjacent faces, specified by BindingConnectors between the Feature and required
edges. These two Curves must mate, specified by a MateWith Connector between the Feature and itself.

• A Feature redefining vertices to multiplicity 0.

9.2.5.2 Elements

9.2.5.2.1 BinaryLinkObject

Element

AssociationStructure

Description

General Types

LinkObject

BinaryLink

Features

toSources : Anything [0..*] {redefines }

Kernel Modeling Language v1.0 Beta 4 309

toTargets : Anything [0..*] {redefines }

Constraints

None.

9.2.5.2.2 binaryLinkObjects

Element

Feature

Description

General Types

linkObjects

BinaryLinkObject

binaryLinks

Features

None.

Constraints

None.

9.2.5.2.3 Body

Element

Structure

Description

Objects of innerSpaceDimension 3.

General Types

Object

Features

innerSpaceDimension : Integer {redefines innerSpaceDimension}

Constraints

None.

9.2.5.2.4 Curve

Element

Structure

310 Kernel Modeling Language v1.0 Beta 4

Description

Objects of innerSpaceDimension 1.

General Types

Object

Features

innerSpaceDimension : Integer {redefines innerSpaceDimension}

Constraints

None.

9.2.5.2.5 LinkObject

Element

AssociationStructure

Description

LinkObject is the most general AssociationStructure (M1 instance of M2 AssociationStructure). All
other AssociationStructures (in libraries or user models) specialize it (directly or indirectly).

General Types

Object

Link

Features

None.

Constraints

None.

9.2.5.2.6 linkObjects

Element

Feature

Description

linkObjects is a specialization of links and objects restricted to type LinkObject. It is the most general
feature typed by LinkObject. All other Features typed by LinkObject or its specializations (in libraries or user
models) specialize it (directly or indirectly).

General Types

objects

Kernel Modeling Language v1.0 Beta 4 311

LinkObject

links

Features

None.

Constraints

None.

9.2.5.2.7 Object

Element

Structure

Description

An Object is an Occurrence that is not a Performance. It is the most general Structure. All other
Structures specialize it directly or indirectly.

General Types

Occurrence

Features

enactedPerformances : Performance [0..*] {subsets timeEnclosedOccurrences, involvingPerformances}

Performances that are enacted by this Object.

involvingPerformances : Performance [0..*]

Performances in which this Object is involved.

ownedPerformances : Performance [0..*] {subsets timeEnclosedOccurrences, involvingPerformances,
suboccurrences}

Performances that are owned by this Object. The owning Object is the default this reference for all
ownedPerformances.

self : Object {redefines self}

structuredSpaceBoundary : StructuredSpaceObject [0..1] {subsets spaceBoundary}

A spaceBoundary that is a StructuredSpaceObject.

subobjects : Object [0..*] {subsets suboccurrences}

The suboccurrences of this Object that are also Objects.

Constraints

None.

312 Kernel Modeling Language v1.0 Beta 4

9.2.5.2.8 objects

Element

Feature

Description

objects is a specialization of occurrences restricted to type Object. It is the most general Feature typed by
Object. All other Features typed by Object or its specializations (in libraries or user models) specialize it
(directly or indirectly).

General Types

occurrences

Object

Features

None.

Constraints

None.

9.2.5.2.9 Point

Element

Structure

Description

Objects of innerSpaceDimension 0.

General Types

Object

Features

innerSpaceDimension : Integer {redefines innerSpaceDimension}

Constraints

None.

9.2.5.2.10 StructuredSpaceObject

Element

Structure

Description

Kernel Modeling Language v1.0 Beta 4 313

A StructuredSpaceObject is an Object that is broken up into smaller structuredSpaceCells of the same
or lower innerSpaceDimension: faces of innerSpaceDimension 2, edges of innerSpaceDimension 1,
and vertices of innerSpaceDimension 0, with the highest of these being the innerSpaceDimension of the
StructuredSpaceObject. Boundaries of structuredSpaceObjectCells are the union of others of lower
innerSpaceDimension (edges and vertices on the boundary of faces, and vertices on the boundary of
edges), some of which meet when this StructuredSpaceObject isClosed (faces meet at their edges and/or
vertices, while edges meet at their vertices), as required to be a spaceBoundary of an Object .

General Types

Object

Features

cellOrientation : Integer [0..1]

A nested Feature of structuredSpaceObjectCell that gives them a "direction" (1 or -1) or none (0). For
example, the cellOrientation of a face indicates to which side the "positive" normal vector points, of an edge
the positive direction along the edge, and of a vertex the positive direction "in or out" of it. When the
cellOrientation of all edges and vertices are given, and the StructuredSpaceObject isClosed, the
cellOrientations of the (completely) overlapping ones sum to zero.

edges : Curve [0..*] {subsets structuredSpaceObjectCells, ordered}

The structuredSpaceObjectCells of innerSpaceDimension 1 in this StructuredSpaceObject.

faces : Surface [0..*] {subsets structuredSpaceObjectCells, ordered}

The structuredSpaceObjectCells of innerSpaceDimension 2 in this StructuredSpaceObject.

/innerSpaceDimension : Integer {redefines innerSpaceDimension}

Highest innerSpaceDimension of the structuredSpaceObjectCells.

structuredSpaceObjectCells : StructuredSpaceObject [1..*] {subsets spaceSlices}

All and only the spaceSlices of this StructuredSpaceObject that are its faces, edges, and vertices.

vertices : Point [0..*] {subsets structuredSpaceObjectCells, ordered}

The structuredSpaceObjectCells of innerSpaceDimension 0 in this StructuredSpaceObject.

Constraints

None.

9.2.5.2.11 Surface

Element

Structure

Description

Objects of innerSpaceDimension 2.

314 Kernel Modeling Language v1.0 Beta 4

General Types

Object

Features

genus : Integer [0..1]

The number of "holes" in this Surface, assuming it isClosed. For example, it is 0 for spheres and 1 for toruses,
including one-handled coffee cups.

innerSpaceDimension : Integer {redefines innerSpaceDimension}

Constraints

None.

9.2.6 Performances
9.2.6.1 Performances Overview

Performances

Performances are Occurrences that can be spread out in disconnected portions of space and time. Performance is
the most general Behavior, while performances is the most general Feature typed by Behaviors (see 8.3.4.6 and
compare to Objects in 9.2.5). Performances can coordinate others that HappenDuring them, identified as their
subperformances (see Steps in 8.3.4.6 and 8.4.4.7). Performances also coordinate and potentially affect other
things, some of which might come into existence (start, be "created") or cease to exist (end, be "destroyed") during a
Performance, and some that might be used without being affected at all ("catalysts"). Some of these other things
might be Objects, identified as a Performance's involvedObjects, some of which might be "responsible" for
(enact, Perform) a Performance, identified as its performers. Performances can also accept things as input or
provide them as output (as parameters, see 8.3.4.6).

Evaluations

Evaluations are Performances that produce at most one thing (value) identified by their result parameter.
Evaluation is the most general Function, while evaluations is the most general Feature identifying them, typed by
Functions (see 8.3.4.7). In other respects Evaluations are like any other Performance.

LiteralEvaluations are Evaluations with exactly one result, specified as a constant in a model via classification
by LiteralExpression (see 8.3.4.8 for this and the rest of the paragraph). LiteralEvaluation is the most general
LiteralExpression, specialized in the same way, and literalEvaluations is the most general feature identifying
them, also similarly specialized.

BooleanEvaluations are Evaluations (but not LiteralEvaluations) with exactly one true or
false result. BooleanEvaluation is the most general Predicate, and booleanEvaluations is the most general
feature identifying them, specialized (incompletely) into those that always have true or always false results,
trueEvaluations and falseEvaluations, respectively. LiteralBooleanEvaluations are LiteralEvaluations and
BooleanEvaluations, with result specified in a model, potentially identified by trueEvaluations
or falseEvaluations, or one of their specializations.

NullEvaluations are Evaluations that produce no values for their result. NullEvaluation is the most general
NullExpression, and nullEvalutions is the most general Feature typed by NullExpression (see 8.3.4.8).

Kernel Modeling Language v1.0 Beta 4 315

9.2.6.2 Elements

9.2.6.2.1 BooleanEvaluation

Element

Predicate

Description

BooleanEvaluation is a specialization of Evaluation that is the most general Predicate that may be
evaluated to produce a Boolean truth value.

General Types

Evaluation

Features

result : Boolean {redefines result}

The Boolean result of this BooleanExpression.

Constraints

None.

9.2.6.2.2 booleanEvaluations

Element

BooleanExpression

Description

booleanEvaluations is a specialization of evaluations restricted to type BooleanEvaluation.

General Types

evaluations

BooleanEvaluation

Features

None.

Constraints

None.

9.2.6.2.3 constructorEvaluations

Element

Expression

316 Kernel Modeling Language v1.0 Beta 4

Description

constructorEvaluations is a specialization of evaluations that restricts the multiplicity of its result
parameter to 1..1, requiring a constructorEvaluation to result in a single value.

General Types

evaluations

Features

result : Anything {redefines result}

Constraints

None.

9.2.6.2.4 Evaluation

Element

Function

Description

An Evaluation is a Performance that ends with the production of a result.

General Types

Performance

Features

result : Anything [0..*] {nonunique}

The outcome of the Evaluation.

Constraints

None.

9.2.6.2.5 evaluations

Element

Expression

Description

evaluations is a specialization of performances for Evaluations of functions.

General Types

Evaluation

performances

Kernel Modeling Language v1.0 Beta 4 317

Features

None.

Constraints

None.

9.2.6.2.6 falseEvaluations

Element

BooleanExpression

Description

falseEvaluations is a subset of booleanEvaluations that result in false. It is the most general Feature of
Invariants that are negated.

General Types

booleanEvaluations

Features

[no name] : LiteralEvaluation

Constraints

None.

9.2.6.2.7 InvolvedIn

Element

Association

Description

InvolvedIn asserts that the involvedObject is involved in the involvingPerformance.

General Types

BinaryLink

Features

involvedObject : Object {redefines source}

Crosses involvingPerformance.involvedObjects.

involvingPerformance : Performance {redefines target}

Crosses involvedObject.involvingPerformances.

Constraints

318 Kernel Modeling Language v1.0 Beta 4

None.

9.2.6.2.8 LiteralEvaluation

Element

Function

Description

LiteralEvaluation is a specialization of Evaluation for the case of LiteralExpressions.

General Types

Evaluation

Features

result : DataValue {redefines result}

The result of this LiteralEvaluation, which is always a single DataValue.

Constraints

None.

9.2.6.2.9 literalEvaluations

Element

Expression

Description

literalEvaluations is a specialization of evaluations restricted to type LiteralEvaluation.

General Types

evaluations

LiteralEvaluation

Features

None.

Constraints

None.

9.2.6.2.10 MetadataAccessEvaluation

Element

Function

Kernel Modeling Language v1.0 Beta 4 319

Description

MetadataAccessEvaluation is a specialization of Evaluation for the case of
MetadataAccessExpressions.

General Types

Evaluation

Features

result : Metaobject [0..*] {redefines result}

The result of this MetadataEvaluation.

Constraints

None.

9.2.6.2.11 metadataAccessEvaluations

Element

Expression

Description

metadataAccessEvaluations is a specialization of evaluations restricted to type
MetadataAccessEvaluation.

General Types

evaluations

MetadataAccessEvaluation

Features

None.

Constraints

None.

9.2.6.2.12 NullEvaluation

Element

Function

Description

NullEvaluation is a specialization of Evaluation for the case of NullExpressions.

General Types

320 Kernel Modeling Language v1.0 Beta 4

Evaluation

Features

result : Anything [0] {redefines result}

The result of this NullEvaluation, which always must be empty (i.e., "null").

Constraints

None.

9.2.6.2.13 nullEvaluations

Element

Expression

Description

nullEvaluations is a specialization of evaluations restricted to type NullEvaluation.

General Types

NullEvaluation

evaluations

Features

None.

Constraints

None.

9.2.6.2.14 Performance

Element

Behavior

Description

A Performance is an Occurrence that is not a Object. It is the most general Behavior. All other Behaviors
specialize it directly or indirectly.

General Types

Occurrence

Features

enclosedPerformances : Performance [0..*] {subsets timeEnclosedOccurrences}

<code>timeEnclosedOccurrences of this Performance that are also Performances.

Kernel Modeling Language v1.0 Beta 4 321

involvedObjects : Object [0..*]

Objects that are involved in this Performance.

performers : Object [0..*] {subsets involvedObjects}

Objects that enact this Performance.

self : Performance {redefines self}

subperformances : Performance [0..*] {subsets enclosedPerformances, suboccurrences}

enclosedPerformances that are composite. The default this context of a subperformance is by default the
same as that of its owning Performance. This means that the context for any Performance that is in a
composition tree rooted in a Performance that is not itself owned by an Object is the root Performance. If the
root Performance is an ownedPerformance of an Object, then that Object is the context.

thisPeformance : Performance

The "context" Performance during which this Performance takes place. It defaults to the root of the
subperformances composition tree. It is the default dispatchScope for Performances.

Constraints

None.

9.2.6.2.15 performances

Element

Step

Description

performances is the most general feature for Performances of Behaviors.

General Types

things

Performance

Features

None.

Constraints

None.

9.2.6.2.16 Performs

Element

Association

322 Kernel Modeling Language v1.0 Beta 4

Description

Performs is a specialization of InvolvedIn that asserts that the performer enacts the enactedPerformance.

General Types

InvolvedIn

Features

performance : Performance {redefines involvingPerformance}

Crosses performerObject.enactedPerformances.

performerObject : Object {redefines involvedObject}

Crosses performance.performers.

Constraints

None.

9.2.6.2.17 trueEvaluations

Element

BooleanExpression

Description

falseEvaluations is a subset of booleanEvaluations that result in false. It is the most general Feature of
Invariants that are not negated.

General Types

booleanEvaluations

Features

None.

Constraints

None.

9.2.7 Transfers
9.2.7.1 Transfers Overview

Transfers are Performances and BinaryLinks that carry payloads from their source Occurrence to their
target Occurrence. FlowTransfers are Transfers that start by "picking up" their payload from the
sourceOutput Feature (or one of its redefinitions) of the source and end with "dropping it off" at the
targetInput Feature of the target (or one of its redefinitions, see 8.3.3.1.5 about outputs and inputs).
FlowTransfers do this by specifying the existence of BinaryLinkObjects between their source / target and
values of sourceOutput / targetInput Features of those, identified by the Connectors sourceOutputLink
and targetOutputLink, respectively (these can be redefined to specialized associations when FlowTransfer is

Kernel Modeling Language v1.0 Beta 4 323

used). Each sourceOutputLink identifies an output as its transferPayload (one of the values of
sourceOutput on the source at the time a FlowTransfer starts) . Each targetInputLink identifies an input
also as its transferPayload (one of the values of targetInput on the target at the time a Transfer ends).
Both collections of transferPayloads are the same as the FlowTransfer's payloads, and do not change while
it is carried out.

Transfers are required to take zero time when their isInstant Feature is true (startShot and endShot are
the same, see Portions and Time Slices in 9.2.4.1), otherwise they might take time to carry out.

Two Boolean Features of FlowTransfers affect timing of their sourceOutputLinks and
targetOutputLinks:

• isMove true requires sourceOutputLinks to end (cease to exist) when the Transfer starts, otherwise
the Transfer has no effect on the sourceOutputLinks.

• isPush true requires the Transfer to start when its sourceOutputLinks do (begin to exist),
otherwise the Transfer can start anytime after the sourceOutputLinks do.

MessageTransfers are Transfers that do not have the additional capabilities of FlowTransfers.
SendPerformances and AcceptPerformances are Performances for specifying when MessageTransfers
come into and go out of Occurrences, respectively. SendPerformances require a MessageTransfer as
outgoingTransferFromSelf from a designated sender (defaulting to this, see Clause), carrying a payload,
optionally to a designated receiver. AcceptPerformances require an incomingTransferToSelf to a
designated receiver (defaulting to this), carrying a payload.

Transfer and its specializations are binary Interactions, while transfers is the most general Feature typed
by Transfer or its specializations, and the most general Flow (see 8.3.4.9). Transfer is not the most general
binary Interaction, and transfers is not the most general feature typed by binary Interactions, because
binary Interactions can include more than one Flow, as well as other Interactions.

Flow's payloadType gives the kind of things being transferred (most generally the type of payload, above). For
FlowTransfers, Flow's sourceOutputFeature and targetInputFeature specify which Features of its
connected Feature Occurrences identify outputs and inputs, respectively (most generally sourceOutput and
targetInput above, respectively).

9.2.7.2 Elements

9.2.7.2.1 AcceptPerformance

Element

Behavior

Description

AcceptPerformances are Performances that require an incomingTransferToSelf of a designated
receiver Occurrence (defaulting to this), providing a payload as output.

General Types

Performance

Features

acceptedTransfer : MessageTransfer [0..1] {subsets receiver.incomingTransfersToSelf}

payload : Anything [0..*]

324 Kernel Modeling Language v1.0 Beta 4

receiver : Occurrence

receiver.incomingTransfersToSelf : Transfer [0..*]

Constraints

None.

9.2.7.2.2 FlowTransfer

Element

Interaction

Description

A FlowTransfer is a Transfer identifying an output feature of the source from which to pick up a payload
and an input feature of the target to which to drop it off. They can start when the payload is available at the
source and move or copy it to the target.

General Types

Transfer

Features

isMove : Boolean

If isMove is true, then the entire payload leaves the source at the start of the Transfer.

isPush : Boolean

If isPush is true, then the Transfer begins when the payload is available at the source.

sourceOutputLink : BinaryLinkObject [1..*]

The output of the payload from source.sourceOutput.

targetInputLink : BinaryLinkObject [1..*]

The input of the payload to target.targetInput.

Constraints

None.

9.2.7.2.3 FlowTransferBefore

Element

Interaction

Description

General Types

Kernel Modeling Language v1.0 Beta 4 325

FlowTransfer

TransferBefore

Features

source : Occurrence {redefines source, source}

target : Occurrence {redefines target, target}

Constraints

None.

9.2.7.2.4 flowTransfers

Element

Flow

Description

General Types

FlowTransfer

transfers

Features

source : Occurrence {redefines source, source}

target : Occurrence {redefines target, target}

Constraints

None.

9.2.7.2.5 flowTransfersBefore

Element

Flow

Description

General Types

FlowTransferBefore

flowTransfers

transfersBefore

Features

source : Occurrence {redefines source, source, source}

326 Kernel Modeling Language v1.0 Beta 4

target : Occurrence {redefines target, target, target}

Constraints

None.

9.2.7.2.6 MessageTransfer

Element

Interaction

Description

A MessageTransfer is a Transfer that does not specify where the payload is picked up and dropped off (see
FlowTransfer). They are sent by SendPerformances and accepted by AcceptPerformances.

General Types

Transfer

Features

None.

Constraints

None.

9.2.7.2.7 messageTransfers

Element

Flow

Description

General Types

transfers

MessageTransfer

Features

source : Occurrence {redefines source, source}

target : Occurrence {redefines target, target}

Constraints

None.

9.2.7.2.8 SendPerformance

Element

Kernel Modeling Language v1.0 Beta 4 327

Behavior

Description

SendPerformances are Performances that require an outgoingTransferFromSelf from a designated
sender Occurrence (defaulting to this), carrying a given payload, optionally to a designated receiver.

General Types

Performance

Features

payload : Anything [0..*]

receiver : Occurrence [0..1]

receiver.incomingTransfersToSelf : Transfer [0..*]

sender : Occurrence

sender.outgoingTransfersToSelf : Transfer [0..*]

sentTransfer : MessageTransfer {subsets sender.outgoingTransfersToSelf}

Constraints

None.

9.2.7.2.9 Transfer

Element

Interaction

Description

A Transfer is a Performance and BinaryLink that carries a Payload from its source to its target.

General Types

Performance

BinaryLink

Features

isInstant : Boolean

If isInstance is true, then the Transfer is instantaneous.

payload : Anything [1..*]

The things that are to be transferred.

source : Occurrence {redefines source}

328 Kernel Modeling Language v1.0 Beta 4

The entity whose output is the source of the payload to be transferred.

target : Occurrence {redefines target}

The entity whose input is the target of the payload to be transferred.

Constraints

None.

9.2.7.2.10 TransferBefore

Element

Interaction

Description

A TransferBefore is Transfer that happens after its source and before its target.

General Types

HappensBefore

Transfer

Features

self : TransferBefore {redefines self}

source : Occurrence {redefines earlierOccurrence, source}

target : Occurrence {redefines laterOccurrence, target}

Constraints

None.

9.2.7.2.11 transfers

Element

Flow

Description

General Types

Transfer

performances

binaryLinks

Features

Kernel Modeling Language v1.0 Beta 4 329

source : Occurrence {redefines source, source}

target : Occurrence {redefines target, target}

Constraints

None.

9.2.7.2.12 transfersBefore

Element

Flow

Description

General Types

transfers

happensBeforeLinks

TransferBefore

Features

source : Occurrence {redefines source, source, earlierOccurrence}

target : Occurrence {redefines target, target, laterOccurrence}

Constraints

None.

9.2.8 Feature Referencing Performances
9.2.8.1 Feature Referencing Performances Overview

The FeatureReferencingPerformances package defines Behaviors used to read and write values of a
referenced Feature of an Occurrence as of the time the Performance of the Behavior ends.

9.2.8.2 Elements

9.2.8.2.1 BooleanEvaluationResultMonitorPerformance

Element

Description

A BooleanEvaluationResultMonitorPerformance is a EvaluationResultMonitorPerformance that
waits for changes in the result of a BooleanEvaluation identified by onOccurrence.

General Types

EvaluationResultMonitorPerformance

Features

330 Kernel Modeling Language v1.0 Beta 4

afterValues : Boolean {redefines afterValues}

beforeValues : Boolean {redefines beforeValues}

monitoredOccurrence : BooleanEvaluation {subsets timeSlices, redefines monitoredOccurrence}

A timeSlice of onOccurrence during which its values for result change.

onOccurrence : BooleanEvaluation {redefines onOccurrence}

The BooleanEvaluation being monitored for changes in its result values.

result : Boolean {redefines result, nonunique}

Redefines BooleanEvaluation::result and monitoredFeature.

Constraints

None.

9.2.8.2.2 BooleanEvaluationResultToMonitorPerformance

Element

Description

A BooleanEvaluationResultToMonitorPerformance is a FeatureReferencingPerformance that waits
for the result of a BooleanEvaluation (identified by onOccurrence) to change to either true or false, as
indicated by isToTrue (defaulting to true). If the result is already true (or false), the performance waits for the
result to become false (or true) before waiting again for it to change back.

General Types

FeatureReferencingPerformance

Features

afterValues : Boolean {redefines values, nonunique}

The values of monitoredFeature for onOccurrence immediately after they change. Always the same as
isToTrue.

endWhen : HappensJustBefore

See FeatureMonitorPerformance::endWhen. It is restricted to HappensJustBefore in monitor1 and
monitor2.

isToTrue : Boolean

monitor1 : BooleanEvaluationResultMonitorPerformance

Waits for the result of onOccurrence to change.

monitor2 : BooleanEvaluationResultMonitorPerformance [0..1]

Kernel Modeling Language v1.0 Beta 4 331

Waits for the result of onOccurrence to change again, only if the change detected by monitor1 was not the
same as isToTrue.

onOccurrence : BooleanEvaluation {redefines onOccurrence}

The BooleanEvaluation being monitored for changes in its result values.

Constraints

bertmpMonitor1ElseMonitor2

isEmpty(monitor2) == (monitor1.afterValues == isToTrue)

9.2.8.2.3 EvaluationResultMonitorPerformance

Element

Behavior

Description

An EvaluationResultMonitorPerformance is a FeatureMonitorPerformance that waits for changes in
result of an Evaluation identified by onOccurrence. The Predicate being evaluated must be able to produce
multiple results over time, for example by only using BindingConnectors (SelfLinks) between Steps,
rather than Successions or Flows, including in its Step behaviors.

General Types

FeatureMonitorPerformance

Features

monitoredOccurrence : Evaluation {subsets timeSlices, redefines monitoredOccurrence}

A timeSlice of onOccurrence during which its values for result change.

onOccurrence : Evaluation {redefines onOccurrence}

The Evaluation being monitored for changes in its result values.

result : Anything [0..*] {redefines monitoredFeature, nonunique}

Redefines Evaluation::result and monitoredFeature

Constraints

None.

9.2.8.2.4 FeatureAccessPerformance

Element

Behavior

Description

332 Kernel Modeling Language v1.0 Beta 4

A FeatureAccessPerformance is a FeatureReferencingPerformance where values are all the values of
accessedFeature for onOccurrence at the time the Performance ends. Specializations or usages of this
narrow accessedFeature to particular Features.

General Types

FeatureReferencingPerformance

Features

accessedFeature : Anything [0..*] {nonunique}

The Feature of onOccurrence that has values at the time this FeatureAccessPerformance ends.

startingAt : Occurrence {subsets timeSlices}

A timeslice of onOccurrence that starts when this FeatureAccessPerformance ends.

Constraints

None.

9.2.8.2.5 FeatureMonitorPerformance

Element

Behavior

Description

A FeatureMonitorPerformance is a FeatureReferencingPerformance that waits for values of
monitoredFeature to change on onOccurrence from what they were when the Performance started. The
values before and after the change are given by beforeValues and afterValues.

General Types

FeatureReferencingPerformance

Features

afterSnapshot : Occurrence {subsets snapshots}

A snapshot of monitoredOccurrence just after its values for monitoredFeature change.

afterValues : Anything [0..*] {redefines values}

The values of monitoredFeature for monitoredOccurrence immediately after they change

beforeTimeSlice : Occurrence {subsets timeSlices}

A timeSlice of monitoredOccurrence, starting at the same time, and ending just before its values for
monitoredFeature change.

beforeValues : Anything [0..*]

The values of monitoredFeature for monitoredOccurrence before any change

Kernel Modeling Language v1.0 Beta 4 333

endWhen : HappensBefore

A Succession (Connector typed by HappensBefore) from afterSnapshot to the endShot of this
FeatureMonitorPerformance. Can be specialized to specify how soon the Performance should end after the
change in monitoredFeature.

monitoredFeature : Anything [0..*] {nonunique}

The Feature being monitored for changes in values on monitoredOccurrence.

monitoredOccurrence : Occurrence {subsets timeSlices}

A timeSlice of onOccurrence, starting when this FeatureMonitorPerformance starts, during which the
values of monitoredFeature change.

Constraints

fmpBeforeAfterValuesNotSame

not beforeValues == afterValues

9.2.8.2.6 FeatureReadEvaluation

Element

Function

Description

A FeatureReadEvaluation is a FeatureAccessPerformance that is a Function providing as its result the
values of accessedFeature of onOccurrence at the time the Evaluation ends.

General Types

Evaluation

FeatureAccessPerformance

Features

result : Anything [0..*] {redefines result, values, nonunique}

Values of the Feature being accessed, as an out parameter.

Constraints

None.

9.2.8.2.7 FeatureReferencingPerformance

Element

Behavior

Description

334 Kernel Modeling Language v1.0 Beta 4

A FeatureReferencingPerformance is a Performance generalizing other Behaviors relating to values of a
Feature of onOccurrence, as specified in the specialized Behaviors.

General Types

Performance

Features

onOccurrence : Occurrence

An Occurrence that has values for a Feature determined in specializations of this Behavior.

values : Anything [0..*] {nonunique}

Values of a Feature of onOccurrence, determined in specializations of this Behavior.

Constraints

None.

9.2.8.2.8 FeatureWritePerformance

Element

Behavior

Description

A FeatureWritePerformance is a FeatureAccessPerformance that ensures the values of
accessedFeature of onOccurrence are exactly the replacementValues at the time the Performance ends.

General Types

FeatureAccessPerformance

Features

replacementValues : Anything [0..*] {redefines values, nonunique}

Values of the Feature being accessed, as an inout parameter to replace all the values.

Constraints

None.

9.2.9 Control Performances
9.2.9.1 Control Performances Overview

The ControlPerformances package defines Behaviors used to type Steps that control the sequencing of
performance of other Steps, including the following.

DecisionPerformances are Performances used by ("decision") Steps to ensure that each
DecisionPerformance (value) of the Step is the earlierOccurrence of exactly one HappensBefore link of

Kernel Modeling Language v1.0 Beta 4 335

the Successions going out of the Step. Successions going out of Steps typed by DecisionPerformance or
its specializations must:

• have connector end multiplicities of 1 towards the Step, and 0..1 away from it.
• be included in a Feature of its featuringBehavior that unions (see 7.3.2.7) all the outgoing

Successions, and is bound to the outgoingHBLink of the Step (see 7.3.4.6 on feature chaining).

MergePerformances are Performances used by ("merge") Steps to ensure that each MergePerformance
(value) of the Step is the laterOccurrence of exactly one HappensBefore link of the Successions coming
into the step. Successions coming into Steps typed by MergePerformance or its specializations must:

• have connector end multiplicities of 1 towards the Step, and 0..1 away from it.
• subset a Feature of its featuringBehavior that unions all the incoming Successions, and is bound

to the incomingHBLink of the Step.

IfPerformances are Performances that determine whether a clause occurs based on the result of a
BooleanEvaluation (see 9.2.6.1). Two specializations IfThenPerformance and IfElsePerformance have
one clause each, thenClause and elseClause, respectively, that occur when the BooleanEvaluation is true
or false, respectively. IfThenElsePerformance is an IfPerformance that has both a thenClause and an
elseClause.

LoopPerformances are Performances with a body that occurs iteratively as determined by
BooleanEvaluations whileTest and untilTest. The body occurs repeatedly in sequence (iteratively) as long
as the result of whileTest is true before each iteration (and after the previous one, if any), and the result of
untilTest is false after each iteration and before the next one (except after the last one, when it is false).

9.2.9.2 Elements

9.2.9.2.1 DecisionPerformance

Element

Behavior

Description

A DecisionPerformance is a Performance that represents the selection of one of the Successions that have
the DecisionPerformance behavior as their source. All such Successions must subset the outgoingHBLink
feature of the source DecisionPerformance. For each instance of DecisionPerformance, the
outgoingHBLink is an instance of exactly one of the Successions, ordering the DecisionPerformance as
happening before an instance of the target of that Succession.

General Types

Performance

Features

outgoingHBLink : HappensBefore

Specializations subset this from the union of all Successions going out of a decision step.

Constraints

None.

336 Kernel Modeling Language v1.0 Beta 4

9.2.9.2.2 IfElsePerformance

Element

Behavior

Description

An IfElsePerformance is an IfPerformance where elseClause occurs after and only after the ifTest
Evaluation result is not true.

General Types

IfPerformance

Features

elseClause : Occurrence [0..1]

Constraints

None.

9.2.9.2.3 IfPerformance

Element

Behavior

Description

An IfPerformance is a Performance that determines whether the ifTest Evaluation result is
true (by whether the ifTrue connector has a value).

General Types

Performance

Features

ifTest : BooleanEvaluation

trueLiteral : LiteralEvaluation

Constraints

None.

9.2.9.2.4 IfThenElsePerformance

Element

Behavior

Description

Kernel Modeling Language v1.0 Beta 4 337

An IfThenElsePerformance is an IfPerformance that has both a thenClause and an elseClause.

General Types

IfThenPerformance

Features

elseClause : Occurrence [0..1]

Constraints

None.

9.2.9.2.5 IfThenPerformance

Element

Behavior

Description

An IfThenPerformance is an IfPerformance where thenClause occurs after and only after the ifTest
Evaluation result is true.

General Types

IfPerformance

Features

thenClause : Occurrence [0..1]

Constraints

None.

9.2.9.2.6 LoopPerformance

Element

Behavior

Description

A LoopPerformance is a Performance where body occurs repeatedly in sequence (iterates) as long as the while
evaluation result is true before each iteration (and after the previous one, except the first time) and the until
evaluation result is not true after each iteration and before the next one (except the last one).

General Types

Performance

Features

body : Occurrence [0..*]

338 Kernel Modeling Language v1.0 Beta 4

untilDecision : IfElsePerformance [0..*]

untilTest : BooleanEvaluation [0..*]

whileDecision : IfThenPerformance [1..*]

whileTest : BooleanEvaluation [1..*]

Constraints

None.

9.2.9.2.7 MergePerformance

Element

Behavior

Description

A MergePerformance is a Performance that represents the merging of all Successions that target the
MergePerformance behavior. All such Successions must subset the incomingHBLink feature of the target
MergePerformance. For each instance of MergePerformance, the incomingHBLink is an instance of exactly
one of the Successions, ordering the MergePerformance as happening after an instance of the source of that
Succession.

General Types

Performance

Features

incomingHBLink : HappensBefore

Specializations subset this from the union of all successions coming into a merge step.

Constraints

None.

9.2.10 Transition Performances
9.2.10.1 Transition Performances Overview

The TransitionPerformances package contains a library model of the semantics of conditional transitions
between Occurrences, including the performance of specified Behaviors when the transition occurs.

TransitionPerformances are Performances used to

• determine whether a Succession (see 7.4.6.4) going out of an Occurrence Feature
(Succession::sourceFeature) has values (HappensBefore links), based on values of
sourceFeature (Occurrences) and other conditions, including ending of Transfers.

• perform specified Behaviors for each value of the Succession above.

Kernel Modeling Language v1.0 Beta 4 339

Values of the Succession above are determined by values of a Step typed by TransitionPerformance or a
specialization of it, owned by the same Behavior as the Succession. A BindingConnector links the
Succession and the transition step's transitionLink, ensuring

• Each transition step determines the values of exactly one Succession that is not constrained by any other
transition step.

• All conditions of exactly one TransitionPerformance must be satisfied for each HappensBefore
link, while all conditions of the other TransitionPerformances (values) fail, leaving no values for
their transitionLink.

The transitionLinkSource of the transition step is connected to the sourceFeature of the Succession by a
BindingConnector, because conditions on the Succession depend on each Occurrence of its sourceFeature
separately, which TransitionPerformances identify as their transitionLinkSource. This ensures every
Occurrence of the sourceFeature of the Succession is paired with a unique TransitionPerformance, and
vice-versa, that determines whether the Succession has a value (HappensBefore link) for that Occurrence.

TransitionPerformances with a transitionLink must satisfy these conditions:

• identify at least one Transfer trigger that targets triggerTarget.
• all Transfers identified by trigger must happen before all Evaluations identified by guard.
• all Evaluations identified by guard must have result value true.

The effect of a TransitionPerformance can have values (Performances) only if the above conditions hold.
The effect Performances must happen after the guards and before the laterOccurrence of
transitionLink.

Usages of (Steps typed by) TransitionPerformance or its specializations can redefine or subset guard and
effect to specify how they are carried out, as well as specify how triggers are identified. These usages can

• be steps of any Behavior (not only "state machines"), as well as constrain Successions going out of
any kind of Step (not only those identifying StatePerformances, see).

• employ any method of identifying triggers, including requiring none at all, as well as constraining
Transfer targets to be, for example, the StatePerformance itself, or a Performance it is a
subperformance of, or an Object enacting that Performance.

TransitionPerformances are either StateTransitionPerformances or
NonStateTransitionPerformances, depending on whether the transitionLinkSource is a
StatePerformance or not. Both ensure guards happen before the laterOccurrence of transitionLink, in
case there are no effects, but do this in different ways. NonStateTransitionPerformances require their
guards to happen after transitionLinkSource (see 9.2.11.1 about StateTransitionPerformances).

9.2.10.2 Elements

9.2.10.2.1 NonStateTransitionPerformance

Element

Behavior

Description

General Types

TransitionPerformance

Features

340 Kernel Modeling Language v1.0 Beta 4

isTriggerAfter : Boolean

Constraints

None.

9.2.10.2.2 TPCGuardConstraint

Element

AssociationStructure

Description

General Types

BinaryLinkObject

Features

constrainedGuard : Evaluation {redefines target}

constrainedHBLink : HappensBefore {redefines source}

Crosses constrainedGuard.guardedLink.

guardedLink : HappensBefore [0..1] {redefines }

Owned cross feature for constrainedHBLink.

Constraints

None.

9.2.10.2.3 TransitionPerformance

Element

Behavior

Description

General Types

Performance

Features

accept : AcceptPerformance [0..1] {subsets enclosedPerformances}

effect : Performance [0..*] {subsets enclosedPerformances}

guard : Evaluation [0..*] {subsets enclosedPerformances}

guardConstraint : TPCGuardConstraint [0..*]

transitionLink : HappensBefore [0..1]

Kernel Modeling Language v1.0 Beta 4 341

transitionLinkSource : Performance

trigger : MessageTransfer [0..*]

triggerTarget : Occurrence

Constraints

None.

9.2.11 State Performances
9.2.11.1 State Performances Overview

The StatePerformances package contains a library model for the semantics of state-based behavior, including
StatePerformances and StateTransitionPerformances.

StatePerformances are DecisionPerformances (see 9.2.9.1) that

• only have Steps defined in this library, or specialized from them.
• can identify Transfers that might be followed by taking the last of the above Steps (see exit below).

Usages of StatePerformance can specialize its library-defined Steps to specify how they are carried out, as well
as how the Transfers above are identified. Any Behavior can use (have steps typed by) StatePerformances,
not only "state machines".

The StatePerformance Steps defined in this library are:

• entry [1]: happens before all Performances of middle.
• middle [1..*]: happen before the exit Performance (see below). Additional modeler-defined Steps

must subset this one.
• do [1]: a middle Performance that starts before the others.
• exit [1]: happens after the end of Transfers identified by the StatePerformance (see acceptable

below).

StatePerformances identify Transfers that happen before (potentially "trigger") their exit with these
Features:

• acceptable [*]: candidates for being identified as accepted.
• accepted [0..1]: one of the acceptable transfers that enables exit to start. This must have a value if

acceptable does.

The accepted Transfer must end (arrive) during a StatePerformance when its isTriggerDuring is true.

StateTransitionPerformances are one way to determine which Transfers are acceptable to a
StatePerformance. They are TransitionPerformances (see 9.2.10.1) that

• have a StatePerformance as their transitionLinkSource.
• are the type of Steps connected to Successions (see 7.4.6.4) going out of a StatePerformance Step

(as in "state machines").

StateTransitionPerformances identify MessageTransfers (see 9.2.7.1) by these Features:

• acceptable [*]: candidates for being identified as trigger. This subsets acceptable of their
transitionLinkSource.

342 Kernel Modeling Language v1.0 Beta 4

• trigger [0..1]: one of the acceptable transfers. This subsets accepted of their
transitionLinkSource.

The trigger Transfer must end (arrive) during the transitionLinkSource when
StateTransitionPerformance::isTriggerDuring is true.

The Subsettings above enable a StatePerformance Step to constrain all the
StateTransitionPerformances Steps connected to its outgoing Successions, including to decide which of
the MessageTransfers acceptable to those StateTransitionPerformances will be accepted by the
StatePerformance and trigger which outgoing Succession (will have a HappenBeforeLink value).

StateTransitionPerformances require their guards to happen after the nonDoMiddle Step of the
transitionLinkSource (all the middle Performances except for do) and before the exit Step (compare to
NonStateTransitionPerformances in 9.2.10.1).

StatePerformances identify the Transfer that triggered a transition into it (a
StateTransitionPerformance trigger), if any, by the Feature incomingTransitionTrigger.

Some Features of Occurrences constrain StatePerformances and TransitionPerformances composed
under them, as sometimes needed in state machines:

• incomingTransferSort determines which Transfer should be accepted when multiple are
acceptable ones, by comparing two Transfer at a time. It defaults to
earlierFirstIncomingTransferSort for Occurrences, including StatePerformances, which is
true if the first Transfer ends (arrives) before the other.

• isDispatch being true prevents the same Transfer from being accepted more than once by
StatePerformances composed under dispatchScope, and prevents from being accepted at all any
acceptable Transfers that are not accepted and are higher in incomingTransferSort order than
the one that is. It defaults to true for Performances, including StatePerformances, and false for
other Occurrences, while dispatchScope defaults to thisPerformance for StatePerformances,
the top Performance (indirectly) composing the StatePerformance (see 9.2.6.2.14), and self for
other Occurrences (see 9.2.2.1).

• isRunToCompletion being true prevents TransitionPerformances composed under
runToCompletionScope from happening during entry. It defaults to the same as it is on this for
StatePerformances, the Object directly composing thisPerformance, or thisPerformance if
there is none (see 9.2.4.2.13), and true for other Occurrences, while runToCompletionScope
defaults to the same as it is on this for StatePerformances, and self for other Occurrences.

9.2.11.2 Elements

9.2.11.2.1 StatePerformance

Element

Behavior

Description

General Types

DecisionPerformance

Features

acceptable : MessageTransfer [0..*] {union}

Kernel Modeling Language v1.0 Beta 4 343

accepted : MessageTransfer [0..1] {subsets acceptable}

deferrable : MessageTransfer [0..*] {subsets acceptable}

do : Performance {subsets middle}

entry : Performance {subsets timeEnclosedOccurrences}

exit : Performance {subsets timeEnclosedOccurrences}

incomingTransitionTrigger : MessageTransfer [0..1]

Transfer that triggered a transition into this state performance.

isTriggerDuring : Boolean

/middle : Performance [1..*] {subsets timeEnclosedOccurrences, union}

/nonDoMiddle : Performance [0..*] {subsets middle}

Constraints

None.

9.2.11.2.2 StateTransitionPerformance

Element

Behavior

Description

General Types

TransitionPerformance

Features

acceptable : MessageTransfer [0..*] {subsets triggerTarget.incomingTransfersToSelf,
transitionLinkSource.acceptable}

isTriggerDuring : Boolean

transitionLinkSource : StatePerformance {redefines transitionLinkSource}

transitionLinkSource.acceptable : MessageTransfer [0..*]

transitionLinkSource.accepted : MessageTransfer [0..1]

transitionLinkTarget : Occurrence [0..1]

trigger : MessageTransfer [0..1] {subsets acceptable, transitionLinkSource.accepted, redefines trigger}

triggerTarget.incomingTransfersToSelf : Transfer [0..*]

Constraints

344 Kernel Modeling Language v1.0 Beta 4

None.

9.2.12 Clocks
9.2.12.1 Clocks Overview

This package models Clocks that provide an advancing numerical reference usable for quantifying the time of an
Occurrence.

9.2.12.2 Elements

9.2.12.2.1 BasicClock

Element

Structure

Description

A BasicClock is a Clock whose currentTime is a Real number.

General Types

Clock

Features

currentTime : Real {redefines currentTime}

Constraints

None.

9.2.12.2.2 BasicDurationOf

Element

Function

Description

BasicDurationOf returns the DurationOf an Occurrence as a Real number relative to a BasicClock.

General Types

DurationOf

Features

clock : BasicClock {redefines clock}

Default is inherited Occurrence::localClock.

duration : Real {redefines duration}

o : Occurrence {redefines o}

Kernel Modeling Language v1.0 Beta 4 345

Constraints

None.

9.2.12.2.3 BasicTimeOf

Element

Function

Description

BasicTimeOf returns the TimeOf an Occurrence as a Real number relative to a BasicClock.

General Types

TimeOf

Features

clock : BasicClock {redefines clock}

Default is inherited Occurrence::localClock.

o : Occurrence {redefines o}

timeValue : Real {redefines timeInstant}

Constraints

None.

9.2.12.2.4 Clock

Element

Structure

Description

A Clock provides a scalar currentTime that advances montonically over its lifetime. Clock is an abstract base
Structure that can be specialized for different kinds of time quantification (e.g., discrete time, continuous time, time
with units, etc.).

General Types

Object

Features

currentTime : NumericalValue

A numerical time reference that advances over the lifetime of the Clock.

Constraints

346 Kernel Modeling Language v1.0 Beta 4

timeFlowConstraint

The currentTime of a snapshot of a Clock is equal to the TimeOf the snapshot relative to that Clock.

9.2.12.2.5 DurationOf

Element

Function

Description

DurationOf returns the duration of a given Occurrence relative to a given Clock, which is equal to the TimeOf
the end snapshot of the Occurrence minus the TimeOf its start snapshot.

General Types

Evaluation

Features

clock : Clock

Default is inherited Occurrence::localClock.

duration : NumericalValue

o : Occurrence

Constraints

None.

9.2.12.2.6 TimeOf

Element

Function

Description

TimeOf returns a scalar timeValue for a given Occurrence relative to a given Clock. The timeValue is the
time of the start of the Occurrence, which is considered to be synchronized with the snapshot of the Clock with a
currentTimetimeValue

General Types

Evaluation

Features

clock : Clock

Default is inherited Occurrence::localClock.

o : Occurrence

Kernel Modeling Language v1.0 Beta 4 347

timeInstant : NumericalValue

Constraints

startTimeConstraint

The TimeOf an Occurrence

timeContinuityConstraint

If one Occurrence happens immediately before another, then the TimeOf the end snapshot of the first Occurrence
equals the TimeOf the second Occurrence.

timeOrderingConstraint

If one Occurrence happens before another, then the TimeOf the end snapshot of the first Occurrence is no
greater than the TimeOf the second Occurrence.

9.2.12.2.7 universalClock

Element

Feature

Description

universalClock is a single Clock that can be used as a default universal time reference.

General Types

objects

UniversalClockLife

Features

None.

Constraints

None.

9.2.12.2.8 UniversalClockLife

Element

Structure

Description

UniversalClockLife is the classifier of the singleton Life of the universalClock

General Types

Life

348 Kernel Modeling Language v1.0 Beta 4

Clock

Features

None.

Constraints

None.

9.2.13 Observation
9.2.13.1 Observation Overview

This package models a framework for monitoring Boolean conditions and notifying registered observers when they
change from false to true.

9.2.13.2 Elements

9.2.13.2.1 CancelObservation

Element

Behavior

Description

Cancel all observations of a given ChangeSignal for a given Occurrence.

General Types

Performance

Features

observer : Occurrence

signal : ChangeSignal

Constraints

None.

9.2.13.2.2 ChangeMonitor

Element

Structure

Description

A ChangeMonitor is a collection of ongoing ChangeSignal observations for various observer Occurrences. It
provides convenient operations for starting and canceling the observations it manages.

General Types

Object

Kernel Modeling Language v1.0 Beta 4 349

Features

cancelObservation : CancelObservation [0..*]

Cancel all observations of a given ChangeSignal for a given Occurrence.

observations : ObserveChange [0..*]

startObservation : StartObservation [0..*]

Start an observation of a given ChangeSignal for a given Occurrence.

Constraints

None.

9.2.13.2.3 ChangeSignal

Element

Structure

Description

A ChangeSignal is a signal to be sent when the Boolean result of its changeCondition Expression changes
from false to true.

General Types

Object

Features

signalCondition : BooleanEvaluation

A BooleanExpression whose result is being monitored.

signalMonitor : ChangeMonitor

The ChangeMonitor responsible for monitoring the signalCondition.

Constraints

None.

9.2.13.2.4 defaultMonitor

Element

Feature

Description

defaultMonitor is a single ChangeMonitor that can be used as a default.

General Types

350 Kernel Modeling Language v1.0 Beta 4

DefaultMonitorLife

objects

Features

None.

Constraints

None.

9.2.13.2.5 DefaultMonitorLife

Element

Structure

Description

DefaultMonitorLife is the classifier of the singleton Life of the defaultMonitor.

General Types

Life

ChangeMonitor

Features

None.

Constraints

None.

9.2.13.2.6 ObserveChange

Element

Behavior

Description

Each Performance of ObserveChange waits for the result of the Boolean changeCondition of a given
ChangeSignal to change from false to true, and, when it does, sends the ChangeSignal to a given observer
Occurrence.

General Types

Performance

Features

changeObserver : Occurrence

Kernel Modeling Language v1.0 Beta 4 351

changeSignal : ChangeSignal

transfer : TransferBefore [0..1]

After waiting for the condition change (if necessary), then send changeSignal to changeObserver.

wait : IfThenPerformance

If the result of the changeSignal.signalCondition is false, then wait for it to become true:

in ifTest { not changeSignal.signalCondition() }
in thenClause : BooleanEvaluationResultToMonitorPerformance {

in onOccurrence = changeSignal.signalCondition;
}

Constraints

None.

9.2.13.2.7 StartObservation

Element

Behavior

Description

Start an observation of a given ChangeSignal for a given Occurrence.

General Types

Performance

Features

observer : Occurrence

signal : ChangeSignal

Constraints

None.

9.2.14 Triggers
9.2.14.1 Triggers Overview

This package contains functions that return ChangeSignals for triggering when a Boolean condition changes
from false to true, at a specific time or after a specific time delay.

9.2.14.2 Elements

9.2.14.2.1 TimeSignal

Element

Structure

352 Kernel Modeling Language v1.0 Beta 4

Description

A TimeSignal is a ChangeSignal whose condition is the currentTime of a given Clock reaching a specific
signalTime.

General Types

ChangeSignal

Features

signalClock : Clock

The Clock whose currentTime is being monitored.

signalCondition : BooleanEvaluation {redefines signalCondition}

The Boolean condition of the currentTime of the signalClock being equal to the signalTime.

signalTime : NumericalValue

The time at which the TimeSignal should be sent.

Constraints

None.

9.2.14.2.2 TriggerAfter

Element

Function

Description

TriggerAfter returns a monitored TimeSignal to be sent to a receiver after a certain time delay relative to a
given Clock.

General Types

Evaluation

Features

clock : Clock

The Clock to be used as the reference for the time delay. The default is the localClock, which will be bound
when the function is invoked.

delay : NumericalValue

The time duration, relative to the clock, after which the TimeSignal is sent.

monitor : ChangeMonitor

Kernel Modeling Language v1.0 Beta 4 353

The ChangeMonitor to be used to monitor the TimeSignal condition. The default is the
Observation::defaultMonitor

receiver : Occurrence

The Occurrence to which the TimeSignal is to be sent.

signal : TimeSignal

Constraints

None.

9.2.14.2.3 TriggerAt

Element

Function

Description

TriggerAt returns a monitored TimeSignal to be sent to a receiver when the currentTime of a given Clock
reaches a specific time.

General Types

Evaluation

Features

clock : Clock

The Clock to be used as the reference for the timeInstant. The default is the localClock, which will be bound
when the function is invoked.

monitor : ChangeMonitor

The ChangeMonitor to be used to monitor the TimeSignal condition. The default is the
Observation::defaultMonitor

receiver : Occurrence

The Occurrence to which the TimeSignal is to be sent.

signal : TimeSignal

timeInstant : NumericalValue

The time instant, relative to the clock, at which the TimeSignal should be sent.

Constraints

None.

9.2.14.2.4 TriggerWhen

354 Kernel Modeling Language v1.0 Beta 4

Element

Function

Description

TriggerWhen returns a monitored ChangeSignal for a given condition, to be sent to a given receiver when
the condition occurs.

General Types

Evaluation

Features

condition : BooleanEvaluation

The BooleanExpression to be monitored for changing from false to true.

monitor : ChangeMonitor

The ChangeMonitor to be used to monitor the ChangeSignal condition. The default is the
Observation::defaultMonitor

receiver : Occurrence

The Occurrence to which the ChangeSignal is to be sent.

signal : ChangeSignal

Constraints

None.

9.2.15 SpatialFrames
9.2.15.1 SpatialFrames Overview

This package models spatial frames of reference for quantifying the position of points in a three-dimensional space.

9.2.15.2 Elements

9.2.15.2.1 CartesianCurrentDisplacementOf

Element

Function

Description

The CurrentDisplacementOf two Points relative to a CartesianSpatialFrame is a
CartesianThreeVectorValue.

General Types

CurrentDisplacementOf

Kernel Modeling Language v1.0 Beta 4 355

Features

clock : Clock {redefines clock}

displacementVector : CartesianThreeVectorValue {redefines displacementVector}

frame : CartesianSpatialFrame {redefines frame}

point1 : Point {redefines point1}

point2 : Point {redefines point2}

Constraints

None.

9.2.15.2.2 CartesianCurrentPositionOf

Element

Function

Description

The CurrentPositionOf a Point relative to a CartesianSpatialFrame is a CartesianThreeVectorValue.

General Types

CurrentPositionOf

Features

clock : Clock {redefines clock}

Defaults to the localClock of the frame.

frame : CartesianSpatialFrame {redefines frame}

point : Point {redefines point}

positionVector : CartesianThreeVectorValue {redefines positionVector}

Constraints

None.

9.2.15.2.3 CartesianDisplacementOf

Element

Function

Description

The DisplacementOf two Points relative to a CartesianSpatialFrame is a CartesianThreeVectorValue.

356 Kernel Modeling Language v1.0 Beta 4

General Types

DisplacementOf

Features

clock : Clock {redefines clock}

Defaults to the localClock of the frame.

displacementVector : CartesianThreeVectorValue {redefines displacementVector}

frame : CartesianSpatialFrame {redefines frame}

point1 : Point {redefines point1}

point2 : Point {redefines point2}

time : NumericalValue {redefines time}

Constraints

None.

9.2.15.2.4 CartesianPositionOf

Element

Function

Description

The PositionOf a Point relative to a CartesianSpatialFrame is a CartesianThreeVectorValue.

General Types

PositionOf

Features

clock : Clock {redefines clock}

Defaults to the localClock of the frame.

frame : CartesianSpatialFrame {redefines frame}

point : Point {redefines point}

positionVector : CartesianThreeVectorValue {redefines positionVector}

time : NumericalValue {redefines time}

Constraints

None.

Kernel Modeling Language v1.0 Beta 4 357

9.2.15.2.5 CartesianSpatialFrame

Element

Structure

Description

A CartesianSpatialFrame is a SpatialFrame relative to which all position and displacement vectors can be
represented as CartesianThreeVectorValues.

General Types

SpatialFrame

Features

None.

Constraints

None.

9.2.15.2.6 CurrentDisplacementOf

Element

Function

Description

The CurrentDisplacementOf two Points relative to a SpatialFrame and Clock is the DisplacementOf the
Points relative to the SpacialFrame at the currentTime of the Clock.

General Types

Evaluation

Features

clock : Clock

Defaults to the localClock of the frame.

displacementVector : ThreeVectorValue

frame : SpatialFrame

point1 : Point

point2 : Point

Constraints

None.

358 Kernel Modeling Language v1.0 Beta 4

9.2.15.2.7 CurrentPositionOf

Element

Function

Description

The CurrentPositionOf a Point relative to a SpatialFrame and a Clock is the PositionOf the Point
relative to the SpatialFrame at the currentTime of the Clock.

General Types

Evaluation

Features

clock : Clock

Defaults to the localClock of the frame.

frame : SpatialFrame

point : Point

positionVector : ThreeVectorValue

Constraints

None.

9.2.15.2.8 defaultFrame

Element

Feature

Description

defaultFrame is a fixed SpatialFrame used as a universal default.

General Types

objects

DefaultFrameLife

Features

None.

Constraints

None.

9.2.15.2.9 DefaultFrameLife

Kernel Modeling Language v1.0 Beta 4 359

Element

Structure

Description

DefaultFrameLife is the classifier of the singleton Life of the defaultFrame.

General Types

SpatialFrame

Life

Features

None.

Constraints

None.

9.2.15.2.10 DisplacementOf

Element

Function

Description

The DisplacementOf two Points relative to a SpatialFrame, at a specific time relative to a given Clock, is
the displacementVector computed as the difference between the PositionOf the first Point and PositionOf
the second Point, relative to that SpatialFrame, at that time

General Types

Evaluation

Features

clock : Clock

Defaults to the localClock of the frame.

displacementVector : ThreeVectorValue

frame : SpatialFrame

point1 : Point

point2 : Point

time : NumericalValue

Constraints

360 Kernel Modeling Language v1.0 Beta 4

zeroDisplacementConstraint

If either point1 or point2 occurs within the other, then the displacementVector is the zero vector.

(point1.spaceTimeEnclosedOccurrences->includes(point2) or
point2.spaceTimeEnclosedOccurrences->includes(point1)) implies

isZeroVector(displacementVector)

9.2.15.2.11 PositionOf

Element

Function

Description

The PositionOf a Point relative to a SpatialFrame, at a specific time relative to a given Clock, as a
positionVector that is a ThreeVectorValue.

General Types

Evaluation

Features

clock : Clock

Defaults to the localClock of the frame.

frame : SpatialFrame

point : Point

positionVector : ThreeVectorValue

time : NumericalValue

Constraints

positionTimePrecondition

The given point must exist at the given time.

TimeOf(point.startShot) <= time and
time <= TimeOf(point.endShot)

spacePositionConstraint

The result positionVector is equal to the PositionOf the Point spaceShot of the frame that encloses the
given point, at the given time.

(frame.spaceShots as Point)->forAll{in p : Point;
p.spaceTimeEnclosedOccurrences->includes(point) implies
positionVector == PositionOf(p, time, frame)

}

9.2.15.2.12 SpatialFrame

Kernel Modeling Language v1.0 Beta 4 361

Element

Structure

Description

A SpatialFrame is a three-dimensional Body that provides a spatial extent that acts as a frame of reference for
defining the physical position and displacement vectors of Points over time.

General Types

Body

Features

None.

Constraints

None.

9.2.16 Metaobjects
9.2.16.1 Metaobjects Overview

This package defines Metaclasses and Features that are related to the typing of syntactic and semantic
metadata.

9.2.16.2 Elements

9.2.16.2.1 Metaobject

Element

Metaclass

Description

A Metaobject contains syntactic or semantic information about one or more annotatedElements. It is the most
general Metaclass. All other Metaclasses must subclassify it directly or indirectly.

General Types

Object

Features

annotatedElement : Element [1..*]

The Elements annotated by this Metaobject. This is set automatically when a Metaobject is instantiated as the
value of a MetadataFeature.

Constraints

None.

9.2.16.2.2 metaobjects

362 Kernel Modeling Language v1.0 Beta 4

Element

Feature

Description

metaobjects is a specialization of objects restricted to type Metaobject. It is the most general
MetadataFeature. All other MetadataFeatures must subset it directly or indirectly.

General Types

objects

Metaobject

Features

None.

Constraints

None.

9.2.16.2.3 SemanticMetadata

Element

Metaclass

Description

SemanticMetadata is Metadata that requires its single annotatedElement to directly or
indirectly specialize a baseType that models the semantics for the annotatedElement.

General Types

Metaobject

Features

annotatedElement : Type {redefines annotatedElement}

The single annotatedElement of this SemanticMetadata, which must be a Type.

baseType : Type

The required base Type for the annotatedElement.

Constraints

None.

9.2.17 KerML

This package contains a reflective KerML model of the KerML abstract syntax. It is generated from the normative
MOF abstract syntax model (see 8.3) as follows.

Kernel Modeling Language v1.0 Beta 4 363

1. The KerML model contains subpackages for Root, Core, and Kernel, but all elements are also imported
into the top-level package, so they can be referenced directly from the KerML namespace.

2. A metaclass from the MOF model is mapped into a Metaclass in the KerML package.
◦ The MOF metaclass name is mapped unchanged.
◦ Generalizations of the MOF metaclass are mapped to ownedSpecializations.
◦ All properties from the MOF metaclass are mapped to features of the corresponding KerML

Metaclass (see below). All non-association-end properties are grouped before association-end
properties.

3. A property from the MOF model is mapped into a Feature.
◦ The feature property isVariable is set to true.
◦ The following feature properties are set as appropriate:

▪ isAbstract = true if the MOF property is a derived union
▪ isComposite = true if the MOF property is composite.
▪ isConstant = true if the MOF property is read-only.
▪ isDerived = true if the MOF property is derived.
▪ isOrdered = true if the MOF property is ordered.
▪ isUnique = false if the MOF property is non-unique.

◦ The MOF property name is mapped unchanged.
◦ The MOF property type is mapped to an ownedTyping relationship.

▪ If the MOF property type is a primitive type, the relationship is to the corresponding
type from the ScalarValues package (see 9.3.2).

▪ If the MOF property type is a metaclass, the relationship is to the corresponding
reflective Metaclass.

◦ The MOF property multiplicity is mapped to an owned MultiplicityRange with bounds
given by LiteralExpressions.

◦ Subsetted properties from the MOF property are mapped to ownedSubsettings of the
corresponding reflective Features.

◦ Redefined properties from the MOF property are mapped to ownedRedefinitions of the
corresponding reflective Features.

◦ If the MOF property is annotatedElement, then Metaobject::annotatedElement is
added to the list of redefined properties for the mapping.

4. An enumeration from the MOF model is mapped into a DataType.
◦ The MOF enumeration name is mapped unchanged.
◦ Each enumeration literal from the MOF enumeration is mapped into an ownedMember Feature

(not an ownedFeature).
▪ The MOF enumeration literal name is mapped unchanged.
▪ The member Feature is given an owned MultiplicityRange of 1..1.

Note that associations are not mapped from the MOF model and, hence, non-navigable association-owned end
properties are not included in the reflective model.

9.3 Data Type Library
9.3.1 Data Types Library Overview

The Data Types Library provides a standard set of commonly used DataTypes for scalar, vector and collection
values.

9.3.2 Scalar Values
9.3.2.1 Scalar Values Overview

This package contains a basic set of primitive scalar (non-collection) data types. These include Boolean and
String types and a hierarchy of concrete Number types, from the most general type of Complex numbers to the
most specific type of Positive integers.

364 Kernel Modeling Language v1.0 Beta 4

9.3.2.2 Elements

9.3.2.2.1 Boolean

Element

DataType

Description

Boolean is a ScalarValue type whose instances are true and false.

General Types

ScalarValue

Features

None.

Constraints

None.

9.3.2.2.2 Complex

Element

DataType

Description

Complex is the type of complex numbers.

General Types

Number

Features

None.

Constraints

None.

9.3.2.2.3 Integer

Element

DataType

Description

Integer is the type of mathematical integers, extended with values for positive and negative infinity.

General Types

Kernel Modeling Language v1.0 Beta 4 365

Rational

Features

None.

Constraints

None.

9.3.2.2.4 Natural

Element

DataType

Description

Natural is the type of non-negative integers, extended with a value for positive infinity.

General Types

Integer

Features

None.

Constraints

None.

9.3.2.2.5 Number

Element

DataType

Description

Number is the base type for all NumericalValue types that represent numbers.

General Types

NumericalValue

Features

None.

Constraints

None.

9.3.2.2.6 NumericalValue

Element

366 Kernel Modeling Language v1.0 Beta 4

DataType

Description

NumericalValue is the base type for all ScalarValue types that represent numerical values.

General Types

ScalarValue

Features

None.

Constraints

None.

9.3.2.2.7 Positive

Element

DataType

Description

Positive is the type of positive integers (not including zero), extended with a value for positive infinity.

General Types

Natural

Features

None.

Constraints

None.

9.3.2.2.8 Rational

Element

DataType

Description

Rational is the type of rational numbers, extended with values for positive and negative infinity.

General Types

Real

Features

Kernel Modeling Language v1.0 Beta 4 367

None.

Constraints

None.

9.3.2.2.9 Real

Element

DataType

Description

RealRealis the type of mathematical (extended) real numbers. This includes both rational and irrational numbers,
and values for positive and negative infinity.

General Types

Complex

Features

None.

Constraints

None.

9.3.2.2.10 ScalarValue

Element

DataType

Description

A ScalarValue is a DataValue whose instances are considered to be primitive, not collections or structures of
other values.

General Types

DataValue

Features

None.

Constraints

None.

9.3.2.2.11 String

Element

368 Kernel Modeling Language v1.0 Beta 4

DataType

Description

em>String is a ScalarValue type whose instances are strings of characters.

General Types

ScalarValue

Features

None.

Constraints

None.

9.3.3 Collections
9.3.3.1 Collections Overview

This package defines a standard set of Collection data types. Unlike sequences of values defined directly using
multiplicity, these data types allow for the possibility of collections as elements of collections.

9.3.3.2 Elements

9.3.3.2.1 Array

Element

DataType

Description

An Array is a fixed size, multi-dimensional Collection of which the elements are nonunique and ordered. Its
dimensions specify how many dimensions the array has, and how many elements there are in each dimension. The
rank is equal to the number of dimensions. The flattenedSize is equal to the total number of elements in the
array.

Feature elements is a flattened sequence of all elements of an Array and can be accessed by a tuple of indices.
The number of indices is equal to rank. The elements are packed according to row-major convention, as in the C
programming language.

Note 1. Feature dimensions may be empty, which denotes a zero dimensional Array, allowing an Array to
collapse to a single element. This is useful to allow for specialization of an Array into a type restricted to represent
a scalar. The flattenedSize of a zero dimensional Array is 1.

Note 2. An Array can also represent the generalized concept of a mathematical matrix of any rank, i.e. not limited
to rank two.

General Types

OrderedCollection

Features

Kernel Modeling Language v1.0 Beta 4 369

dimensions : Positive [0..*] {ordered, nonunique}

flattenedSize : Positive

rank : Natural

Constraints

sizeConstraint

flattenedSize == size(elements)

9.3.3.2.2 Bag

Element

DataType

Description

A Bag is a variable size Collection of which the elements are unordered and nonunique.

General Types

Collection

Features

None.

Constraints

None.

9.3.3.2.3 Collection

Element

DataType

Description

A Collection is an abstract DataType that represents a collection of elements of a given type.

General Types

Anything

Features

elements : Anything [0..*] {nonunique}

Constraints

None.

9.3.3.2.4 KeyValuePair

370 Kernel Modeling Language v1.0 Beta 4

Element

DataType

Description

A KeyValuePair is an abstract DataType that represents a tuple of a key and an associated value val.

General Types

DataValue

Features

key : Anything

val : Anything

Constraints

None.

9.3.3.2.5 List

Element

DataType

Description

A List is a variable size Collection of which the elements are nonunique and ordered.

General Types

OrderedCollection

Features

None.

Constraints

None.

9.3.3.2.6 Map

Element

DataType

Description

A Map is a variable size Collection of which the elements are KeyValuePairs. The keys must be unique
within in the Map. The vakyues need not be unique.

General Types

Kernel Modeling Language v1.0 Beta 4 371

UniqueCollection

Features

elements : KeyValuePair [0..*] {redefines elements}

Constraints

None.

9.3.3.2.7 OrderedCollection

Element

DataType

Description

An OrderedCollection is a Collection of which the elements are ordered and not necessarily unique.

General Types

Collection

Features

elements : Anything [0..*] {redefines elements, ordered, nonunique}

Constraints

None.

9.3.3.2.8 OrderedMap

Element

DataType

Description

An OrderedMap is a variable size Map that maintains ordering of its elements.

The ordering may be by key of the KeyValuePair elements, or by order of construction, or any other method. The
essential aspect is that ordering is maintained and guaranteed across accesses to the OrderedMap.

General Types

OrderedCollection

Map

Features

elements : KeyValuePair [0..*] {redefines elements, ordered}

Constraints

372 Kernel Modeling Language v1.0 Beta 4

None.

9.3.3.2.9 OrderedSet

Element

DataType

Description

An OrderedSet is a variable size Collection of which the elements are unique and ordered.

General Types

UniqueCollection

OrderedCollection

Features

elements : Anything [0..*] {redefines elements, ordered}

Constraints

None.

9.3.3.2.10 Set

Element

DataType

Description

A Set is a variable size Collection of which the elements are unique and unordered.

General Types

UniqueCollection

Features

None.

Constraints

None.

9.3.3.2.11 UniqueCollection

Element

DataType

Description

Kernel Modeling Language v1.0 Beta 4 373

A UniqueCollection is a Collection of which the elements are unique and not necessarily ordered.

General Types

Collection

Features

elements : Anything [0..*] {redefines elements}

Constraints

None.

9.3.4 Vector Values
9.3.4.1 Vector Values Overview

This package provides a basic model of abstract vectors as well as concrete vectors whose components are
NumericalValues. The package VectorFunctions defines the corresponding vector-space functions.

9.3.4.2 Elements

9.3.4.2.1 CartesianThreeVectorValue

Element

DataType

Description

A CartesianThreeVectorValue is a NumericalVectorValue that is both Cartesian and has dimension 3.

General Types

CartesianVectorValue

ThreeVectorValue

Features

None.

Constraints

None.

9.3.4.2.2 CartesianVectorValue

Element

DataType

Description

A CartesianVectorValue is a NumericalVectorValue for which there are specific implementations in
VectorFunctions of the abstract vector-space functions.

374 Kernel Modeling Language v1.0 Beta 4

Note: The restriction of the element type to Real is to facilitate the complete definition of these functions.

General Types

NumericalVectorValue

Features

elements : Real [0..*] {redefines elements}

Constraints

None.

9.3.4.2.3 NumericalVectorValue

Element

DataType

Description

A NumericalVectorValue is a kind of VectorValue that is specifically represented as a one-dimensional Array
of NumericalValues. The dimension is allowed to be empty, permitting a NumericalVectorValue of rank 0,
which is essentially isomorphic to a scalar NumericalValue.

General Types

Array

VectorValue

Features

dimension : Positive [0..1] {redefines dimensions}

elements : NumericalValue [0..*] {redefines elements}

Constraints

None.

9.3.4.2.4 ThreeVectorValue

Element

DataType

Description

A ThreeVectorValue is a NumericalVectorValue that has dimension 3.

General Types

NumericalVectorValue

Kernel Modeling Language v1.0 Beta 4 375

Features

dimension : Positive [0..*] {redefines elements}

Constraints

None.

9.3.4.2.5 VectorValue

Element

DataType

Description

A VectorValue is an abstract data type whose values may be operated on using VectorFunctions.

General Types

None.

Features

None.

Constraints

None.

9.4 Function Library
The Function Library includes library models of basic Functions that operate on DataTypes from the Data Type
Library (see 9.3). The KerML operator expression notation translates to invocations of some of these library
Functions. It is expected that other languages built on KerML will provide additional domain models as needed by
their applications, which can include specializations of the library Functions for domain-specific DataTypes. The
same KerML concrete syntax for Expressions can be used with these specialized Functions and DataTypes,
extended with domain-specific semantics.

9.4.1 Function Library Overview

The Function Library includes library models of basic Functions that operate on DataTypes from the Data Type
Library (see 9.3). The KerML operator expression notation translates to invocations of some of these library
Functions. It is expected that other languages built on KerML will provide additional domain models as needed by
their applications, which can include specializations of the library Functions for domain-specific DataTypes. The
same KerML concrete syntax for Expressions can be used with these specialized Functions and DataTypes,
extended with domain-specific semantics.

9.4.2 Base Functions
9.4.2.1 Base Functions Overview

This package defines a basic set of Functions defined on all kinds of values. Most correspond to similarly named
operators in the KerML expression notation.

9.4.2.2 Elements

376 Kernel Modeling Language v1.0 Beta 4

abstract function '=='{
in x: Anything[0..1];
in y: Anything[0..1];
return : Boolean[1];

}

function '!='{
in x: Anything[0..1];
in y: Anything[0..1];
return : Boolean[1] = not (x == y);

}

abstract function '==='{
in x: Anything[0..1];
in y: Anything[0..1];
return : Boolean[1];

}

function '!=='{
in x: Anything[0..1];
in y: Anything[0..1];
return : Boolean[1] = not (x === y);

}

function ToString{
in x: Anything[0..1];
return : String;

}

function '['{
in x: Anything[0..*] nonunique;
in y: Anything[0..*] nonunique;
return : Anything[0..*] nonunique;

}

function '#'{
in seq: Anything[0..*] ordered nonunique;
in index: Positive[1..*] ordered nonunique;
return : Anything[0..1];

}

function ','{
in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}

abstract function 'all'{
return : Object[0..*];

}

abstract function 'istype'{
in seq: Anything[0..*];
abstract feature 'type': Anything;
return : Boolean[1];

}

abstract function 'hastype'{
in seq: Anything[0..*];
abstract feature 'type': Anything;
return : Boolean;

}

Kernel Modeling Language v1.0 Beta 4 377

abstract function '@'{
in seq: Anything[0..*];
abstract feature 'type': Anything;
return : Boolean[1];

}

abstract function '@@'{
in seq: Metaobject[0..*];
abstract feature 'type': Metaobject;
return : Boolean[1];

}

abstract function 'as'{
in seq: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}

abstract function 'meta'{
in seq: Metaobject[0..*] ordered nonunique;
return : Metaobject[0..*] ordered nonunique;

}

9.4.3 Data Functions
9.4.3.1 Data Functions Overview

This package defines the abstract base Functions corresponding to all the unary and binary operators in the KerML
expression notation that might be defined on various kinds of DataValues.

9.4.3.2 Elements

abstract function '==' specializes BaseFunctions::'=='
{ in x: DataValue[0..1]; in y: DataValue[0..1]; return : Boolean[1]; }

abstract function '===' specializes BaseFunctions::'==='
{ in x: DataValue[0..1]; in y: DataValue[0..1]; return : Boolean[1]; }

abstract function '+'
{ in x: DataValue[1]; in y: DataValue[0..1]; return : DataValue[1]; }

abstract function '-'
{ in x: DataValue[1]; in y: DataValue[0..1]; return : DataValue[1]; }

abstract function '*'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '/'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '**'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '^'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '%'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function 'not'
{ in x: DataValue[1]; return : DataValue[1]; }

abstract function 'xor'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '~'
{ in x: DataValue[1]; return : DataValue[1]; }

abstract function '|'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '&'
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

378 Kernel Modeling Language v1.0 Beta 4

abstract function '<'
{ in x: DataValue[1]; in y: DataValue[1]; return : Boolean[1]; }

abstract function '>'
{ in x: DataValue[1]; in y: DataValue[1]; return : Boolean[1]; }

abstract function '<='
{ in x: DataValue[1]; in y: DataValue[1]; return : Boolean[1]; }

abstract function '>='
{ in x: DataValue[1]; in y: DataValue[1]; return : Boolean[1]; }

abstract function max
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function min
{ in x: DataValue[1]; in y: DataValue[1]; return : DataValue[1]; }

abstract function '..'
{ in lower: DataValue[1]; in upper: DataValue[1]; return : DataValue[0..*] ordered; }

9.4.4 Scalar Functions
9.4.4.1 Scalar Functions Overview

This package defines abstract Functions that specialize the DataFunctions for use with ScalarValues.

9.4.4.2 Elements

abstract function '+' specializes DataFunctions::'+'
{ in x: ScalarValue[1]; in y: ScalarValue[0..1]; return : ScalarValue[1]; }

abstract function '-' specializes DataFunctions::'-'
{ in x: ScalarValue[1]; in y: ScalarValue[0..1]; return : ScalarValue[1]; }

abstract function '*' specializes DataFunctions::'*'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '/' specializes DataFunctions::'/'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '**' specializes DataFunctions::'**'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '^' specializes DataFunctions::'^'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '%' specializes DataFunctions::'%'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function 'not' specializes DataFunctions::'not'
{ in x: ScalarValue[1]; return : ScalarValue[1]; }

abstract function 'xor' specializes DataFunctions::'xor'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '~' specializes DataFunctions::'~'
{ in x: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '|' specializes DataFunctions::'|'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '&' specializes DataFunctions::'&'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '<' specializes DataFunctions::'<'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : Boolean[1]; }

abstract function '>' specializes DataFunctions::'>'
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : Boolean[1]; }

abstract function '<=' specializes DataFunctions::'<='
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : Boolean[1]; }

abstract function '>=' specializes DataFunctions::'>='
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : Boolean[1]; }

Kernel Modeling Language v1.0 Beta 4 379

abstract function max specializes DataFunctions::max
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function min specializes DataFunctions::min
{ in x: ScalarValue[1]; in y: ScalarValue[1]; return : ScalarValue[1]; }

abstract function '..' specializes DataFunctions::'..'
{ in lower: ScalarValue[1]; in upper: ScalarValue[1];

return : ScalarValue[0..*]; }

9.4.5 Boolean Functions
9.4.5.1 Boolean Functions Overview

This package defines Functions on Boolean values, including those corresponding to (non-conditional) logical
operators in the KerML expression notation.

9.4.5.2 Elements

function 'not' specializes ScalarFunctions::'not'
{ in x: Boolean[1]; return : Boolean[1]; }

function 'xor' specializes ScalarFunctions::'xor'
{ in x: Boolean[1]; in y: Boolean[1]; return : Boolean[1]; }

function '|' specializes ScalarFunctions::'|'
{ in x: Boolean[1]; in y: Boolean[1]; return : Boolean[1]; }

function '&' specializes ScalarFunctions::'&'
{ in x: Boolean[1]; in y: Boolean[1]; return : Boolean[1]; }

function '==' specializes DataFunctions::'=='
{ in x: Boolean[0..1]; in y: Boolean[0..1]; return : Boolean[1]; }

function ToString specializes BaseFunctions::ToString
{ in x: Boolean[1]; return : String[1]; }

function ToBoolean
{ in x: String[1]; return : Boolean[1]; }

9.4.6 String Functions
9.4.6.1 String Functions Overview

This package defines Functions on String values, including those corresponding to string concatenation and
comparison operators in the KerML expression notation.

9.4.6.2 Elements

function '+' specializes ScalarFunctions::'+'
{ in x: String[1]; in y:String[1]; return : String[1]; }

function Length
{ in x: String[1]; return : Natural[1]; }

function Substring
{ in x: String[1]; in lower: Integer[1]; in upper: Integer[1];

return : String[1]; }

function '<' specializes ScalarFunctions::'<'
{ in x: String[1]; in y: String[1]; return : Boolean[1]; }

function '>' specializes ScalarFunctions::'>'
{ in x: String[1]; in y: String[1]; return : Boolean[1]; }

function '<=' specializes ScalarFunctions::'<='
{ in x: String[1]; in y: String[1]; return : Boolean[1]; }

function '>=' specializes ScalarFunctions::'>='

380 Kernel Modeling Language v1.0 Beta 4

{ in x: String[1]; in y: String[1]; return : Boolean[1]; }

function '==' specializes DataFunctions::'=='
{ in x: String[0..1]; in y: String[0..1]; return : Boolean[1]; }

function ToString specializes BaseFunctions::ToString
{ in x: String[1]; }

9.4.7 Numerical Functions
9.4.7.1 Numerical Functions Overview

This package defines abstract Functions on Numerical values for general arithmetic and comparison operations.

9.4.7.2 Elements

abstract function isZero
{ in x: NumericalValue[1]; return : Boolean; }

abstract function isUnit
{ in x : NumericalValue[1]; return : Boolean; }

abstract function abs
{ in x: NumericalValue[1]; return : NumericalValue[1]; }

abstract function '+' specializes ScalarFunctions::'+'
{ in x: NumericalValue[1]; in y: NumericalValue[0..1];

return : NumericalValue[1]; }
abstract function '-' specializes ScalarFunctions::'-'

{ in x: NumericalValue[1]; in y: NumericalValue[0..1];
return : NumericalValue[1]; }

abstract function '*' specializes ScalarFunctions::'*'
{ in x: NumericalValue[1]; in y: NumericalValue[1];

return : NumericalValue[1]; }
abstract function '/' specializes ScalarFunctions::'/'

{ in x: NumericalValue[1]; in y: NumericalValue[1];
return : NumericalValue[1]; }

abstract function '**' specializes ScalarFunctions::'**'
{ in x: NumericalValue[1]; in y: NumericalValue[1];

return : NumericalValue[1]; }
abstract function '^' specializes ScalarFunctions::'^'

{ in x: NumericalValue[1]; in y: NumericalValue[1];
return : NumericalValue[1]; }

abstract function '%' specializes ScalarFunctions::'%'
{ in x: NumericalValue[1]; in y: NumericalValue[1];

return : NumericalValue[1]; }

abstract function '<' specializes ScalarFunctions::'<'
{ in x: NumericalValue[1]; in y: NumericalValue[1]; return : Boolean[1]; }

abstract function '>' specializes ScalarFunctions::'>'
{ in x: NumericalValue[1]; in y: NumericalValue[1]; return : Boolean[1]; }

abstract function '<=' specializes ScalarFunctions::'<='
{ in x: NumericalValue[1]; in y: NumericalValue[1]; return : Boolean[1]; }

abstract function '>=' specializes ScalarFunctions::'>='
{ in x: NumericalValue[1]; in y: NumericalValue[1]; return : Boolean[1]; }

abstract function max specializes ScalarFunctions::max
{ in x: NumericalValue[1]; in y: NumericalValue[1];

return : NumericalValue[1]; }
abstract function min specializes ScalarFunctions::min

{ in x: NumericalValue[1]; in y: NumericalValue[1];
return : NumericalValue[1]; }

Kernel Modeling Language v1.0 Beta 4 381

abstract function sum
{ in collection: ScalarValue[0..*]; return : ScalarValue[1]; }

abstract function product
{ in collection: ScalarValue[0..*]; return : ScalarValue[1]; }

9.4.8 Complex Functions
9.4.8.1 Complex Functions Overview

This package defines Functions on Complex values, including concrete specializations of the general arithmetic and
comparison operations.

9.4.8.2 Elements

feature i: Complex[1] = rect(0.0, 1.0);

function rect
{ in re: Real[1]; in im: Real[1]; return : Complex[1]; }

function polar
{ in abs: Real[1]; in arg: Real[1]; return : Complex[1]; }

function re
{ in x: Complex[1]; return : Real[1]; }

function im
{ in x: Complex[1]; return : Real[1]; }

function isZero specializes NumericalFunctions::isZero
{ in x : Complex[1]; return : Boolean[1]; }

function isUnit specializes NumericalFunctions::isUnit
{ in x : Complex[1]; return : Boolean[1]; }

function abs specializes NumericalFunctions::abs
{ in x: Complex[1]; return : Real[1]; }

function arg
{ in x: Complex[1]; return : Real[1]; }

function '+' specializes NumericalFunctions::'+'
{ in x: Complex[1]; in y: Complex[0..1]; return : Complex[1]; }

function '-' specializes NumericalFunctions::'-'
{ in x: Complex[1]; in y: Complex[0..1]; return : Complex[1]; }

function '*' specializes NumericalFunctions::'*'
{ in x: Complex[1]; in y: Complex[1]; return : Complex[1]; }

function '/' specializes NumericalFunctions::'/'
{ in x: Complex[1]; in y: Complex[1]; return : Complex[1]; }

function '**' specializes NumericalFunctions::'**'
{ in x: Complex[1]; in y: Complex[1]; return : Complex[1]; }

function '^' specializes NumericalFunctions::'^'
{ in x: Complex[1]; in y: Complex[1]; return : Complex[1]; }

function '==' specializes DataFunctions::'=='
{ in x: Complex[0..1]; in y: Complex[0..1]; return : Boolean[1]; }

function ToString specializes BaseFunctions::ToString
{ in x: Complex[1]; return : String[1]; }

function ToComplex
{ in x: String[1]; return : Complex[1]; }

function sum specializes NumericalFunctions::sum
{ in collection: Complex[0..*]; return : Complex[1]; }

function product specializes NumericalFunctions::product
{ in collection: Complex[0..*]; return : Complex[1]; }

382 Kernel Modeling Language v1.0 Beta 4

9.4.9 Real Functions
9.4.9.1 Real Functions Overview

This package defines Functions on Real values, including concrete specializations of the general arithmetic and
comparison operations.

9.4.9.2 Elements

function re :> ComplexFunctions::re
{ in x: Real[1]; return : Real[1] = x; }

function im :> ComplexFunctions::im
{ in x: Real[1]; return : Real[1] = 0.0; }

function abs specializes ComplexFunctions::abs
{ in x: Real[1]; return : Real[1]; }

function arg specializes ComplexFunctions::arg
{ in x: Real[1]; return : Real[1] = 0.0; }

function '+' specializes ComplexFunctions::'+'
{ in x: Real[1]; in y: Real[0..1]; return : Real[1]; }

function '-' specializes ComplexFunctions::'-'
{ in x: Real[1]; in y: Real[0..1]; return : Real[1]; }

function '*' specializes ComplexFunctions::'*'
{ in x: Real[1]; in y: Real[1]; return : Real[1]; }

function '/' specializes ComplexFunctions::'/'
{ in x: Real[1]; in y: Real[1]; return : Real[1]; }

function '**' specializes ComplexFunctions::'**'
{ in x: Real[1]; in y: Real[1]; return : Real[1]; }

function '^' specializes ComplexFunctions::'^'
{ in x: Real[1]; in y: Real[1]; return : Real[1]; }

function '<' specializes NumericalFunctions::'<'
{ in x: Real[1]; in y: Real[1]; return : Boolean[1]; }

function '>' specializes NumericalFunctions::'>'
{ in x: Real[1]; in y: Real[1]; return : Boolean[1]; }

function '<=' specializes NumericalFunctions::'<='
{ in x: Real[1]; in y: Real[1]; return : Boolean[1]; }

function '>=' specializes NumericalFunctions::'>='
{ in x: Real[1]; in y: Real[1]; return : Boolean[1]; }

function max specializes NumericalFunctions::max
{ in x: Real[1]; in y: Real[1]; return : Real[1]; }

function min specializes NumericalFunctions::min
{ in x: Real[1]; in y: Real[1]; return : Real[1]; }

function '==' specializes ComplexFunctions::'=='
{ in x: Real[0..1]; in y: Real[0..1]; return : Boolean[1]; }

function sqrt
{ in x: Real[1]; return : Real[1]; }

function floor
{ in x: Real[1]; return : Integer[1]; }

function round
{ in x: Real[1]; return : Integer[1]; }

function ToString specializes ComplexFunctions::ToString
{ in x: Real[1]; return : String[1]; }

function ToInteger
{ in x: Real[1]; return : Integer[1]; }

function ToRational

Kernel Modeling Language v1.0 Beta 4 383

{ in x: Real[1]; return : Rational[1]; }
function ToReal

{ in x: String[1]; return : Real[1]; }

function sum specializes ComplexFunctions::sum
{ in collection: Real[0..*]; return : Real; }

function product specializes ComplexFunctions::product
{ in collection: Real[0..*]; return : Real; }

9.4.10 Rational Functions
9.4.10.1 Rational Functions Overview

This package defines Functions on Rational values, including concrete specializations of the general arithmetic and
comparison operations.

9.4.10.2 Elements

function rat
{ in numer: Integer[1]; in denum: Integer[1]; return : Rational[1]; }

function numer
{ in rat: Rational[1]; return : Integer[1]; }

function denom
{ in rat: Rational[1]; return : Integer[1]; }

function abs specializes RealFunctions::abs
{ in x: Rational[1]; return : Rational[1]; }

function '+' specializes RealFunctions::'+'
{ in x: Rational[1]; in y: Rational[0..1]; return : Rational[1]; }

function '-' specializes RealFunctions::'-'
{ in x: Rational[1]; in y: Rational[0..1]; return : Rational[1]; }

function '*' specializes RealFunctions::'*'
{ in x: Rational[1]; in y: Rational[1]; return : Rational[1]; }

function '/' specializes RealFunctions::'/'
{ in x: Rational[1]; in y: Rational[1]; return : Rational[1]; }

function '**' specializes RealFunctions::'**'
{ in x: Rational[1]; in y: Rational[1]; return : Rational[1]; }

function '^' specializes RealFunctions::'^'
{ in x: Rational[1]; in y: Rational[1]; return : Rational[1]; }

function '<' specializes RealFunctions::'<'
{ in x: Rational[1]; in y: Rational[1]; return : Boolean[1]; }

function '>' specializes RealFunctions::'>'
{ in x: Rational[1]; in y: Rational[1]; return : Boolean[1]; }

function '<=' specializes RealFunctions::'<='
{ in x: Rational[1]; in y: Rational[1]; return : Boolean[1]; }

function '>=' specializes RealFunctions::'>='
{ in x: Rational[1]; in y: Rational[1]; return : Boolean[1]; }

function max specializes RealFunctions::max
{ in x: Rational[1]; in y: Rational[1]; return : Rational[1]; }

function min specializes RealFunctions::min
{ in x: Rational[1]; in y: Rational[1]; return : Rational[1]; }

function '==' specializes RealFunctions::'=='
{ in x: Rational[0..1]; in y: Rational[0..1]; return : Boolean[1]; }

function gcd
{ in x: Rational[1]; in y: Rational[1]; return : Integer[1]; }

384 Kernel Modeling Language v1.0 Beta 4

function floor specializes RealFunctions::floor
{ in x: Rational[1]; return : Integer[1]; }

function round specializes RealFunctions::round
{ in x: Rational[1]; return : Integer[1]; }

function ToString specializes RealFunctions::ToString
{ in x: Rational[1]; return : String[1]; }

function ToInteger
{ in x: Rational[1]; return : Integer[1]; }

function ToRational
{ in x: String[1]; return : Rational[1]; }

function sum specializes RealFunctions::sum
{ in collection: Rational[0..*]; return : Rational[1]; }

function product specializes RealFunctions::product
{ in collection: Rational[0..*]; return : Rational[1]; }

9.4.11 Integer Functions
9.4.11.1 Integer Functions Overview

This package defines Functions on Integer values, including concrete specializations of the general arithmetic and
comparison operations.

9.4.11.2 Elements

function abs specializes RationalFunctions::abs
{ in x: Integer[1]; return : Natural[1]; }

function '+' specializes RationalFunctions::'+'
{ in x: Integer[1]; in y: Integer[0..1]; return : Integer[1]; }

function '-' specializes RationalFunctions::'-'
{ in x: Integer[1]; in y: Integer[0..1]; return : Integer[1]; }

function '*' specializes RationalFunctions::'*'
{ in x: Integer[1]; in y: Integer[1]; return : Integer[1]; }

function '/' specializes RationalFunctions::'/'
{ in x: Integer[1]; in y: Integer[1]; return : Rational[1]; }

function '**' specializes RationalFunctions::'**'
{ in x: Integer[1]; in y: Natural[1]; return : Integer[1]; }

function '^' specializes RationalFunctions::'^'
{ in x: Integer[1]; in y: Natural[1]; return : Integer[1]; }

function '%' specializes NumericalFunctions::'%'
{ in x: Integer[1]; in y: Integer[1]; return : Integer[1]; }

function '<' specializes RationalFunctions::'<'
{ in x: Integer[1]; in y: Integer[1]; return : Boolean[1]; }

function '>' specializes RationalFunctions::'>'
{ in x: Integer[1]; in y: Integer[1]; return : Boolean[1]; }

function '<=' specializes RationalFunctions::'<='
{ in x: Integer[1]; in y: Integer[1]; return : Boolean[1]; }

function '>=' specializes RationalFunctions::'>='
{ in x: Integer[1]; in y: Integer[1]; return : Boolean[1]; }

function max specializes RationalFunctions::max
{ in x: Integer[1]; in y: Integer[1]; return : Integer[1]; }

function min specializes RationalFunctions::min
{ in x: Integer[1]; in y: Integer[1]; return : Integer[1]; }

function '==' specializes DataFunctions::'=='
{ in x: Integer[0..1]; in y: Integer[0..1]; return : Boolean[1]; }

Kernel Modeling Language v1.0 Beta 4 385

function '..' specializes ScalarFunctions::'..'
{ in lower: Integer[1]; in upper: Integer[1]; return : Integer[0..*]; }

function ToString specializes RationalFunctions::ToString
{ in x: Integer[1]; return : String[1]; }

function ToNatural
{ in x: Integer[1]; return : Natural[1]; }

function ToInteger
{ in x: String[1]; return : Integer[1]; }

function sum specializes RationalFunctions::sum
{ in collection: Integer[0..*]; return : Integer[1]; }

function product specializes RationalFunctions::product
{ in collection: Integer[0..*]; return : Integer[1]; }

9.4.12 Natural Functions
9.4.12.1 Natural Functions Overview

This package defines Functions on Natural values, including concrete specializations of the general arithmetic and
comparison operations.

9.4.12.2 Elements

function '+' specializes IntegerFunctions::'+'
{ in x: Natural[1]; in y: Natural[0..1]; return : Natural[1]; }

function '*' specializes IntegerFunctions::'*'
{ in x: Natural[1]; in y: Natural[1]; return : Natural[1]; }

function '/' specializes IntegerFunctions::'/'
{ in x: Natural[1]; in y: Natural[1]; return : Natural[1]; }

function '%' specializes IntegerFunctions::'%'
{ in x: Natural[1]; in y: Natural[1]; return : Natural[1]; }

function '<' specializes IntegerFunctions::'<'
{ in x: Natural[1]; in y: Natural[1]; return : Boolean[1]; }

function '>' specializes IntegerFunctions::'>'
{ in x: Natural[1]; in y: Natural[1]; return : Boolean[1]; }

function '<=' specializes IntegerFunctions::'<='
{ in x: Natural[1]; in y: Natural[1]; return : Boolean[1]; }

function '>=' specializes IntegerFunctions::'>='
{ in x: Natural[1]; in y: Natural[1]; return : Boolean[1]; }

function max specializes IntegerFunctions::max
{ in x: Natural[1]; in y: Natural[1]; return : Natural[1]; }

function min specializes IntegerFunctions::min
{ in x: Natural[1]; in y: Natural[1]; return : Natural[1]; }

function '==' specializes IntegerFunctions::'=='
{ in x: Natural[0..1]; in y: Natural[0..1]; return : Boolean[1]; }

function ToString specializes IntegerFunctions::ToString
{ in x: Natural[1]; return : String[1]; }

function ToNatural
{ in x: String[1]; return : Natural[1]; }

9.4.13 Trig Functions
9.4.13.1 Trig Functions Overview

This package defines basic trigonometric functions on real numbers.

386 Kernel Modeling Language v1.0 Beta 4

9.4.13.2 Elements

feature pi : Real;
inv piPrecision { RealFunctions::round(pi * 1E20) == 314159265358979323846.0 }

function deg {
in theta_rad : Real[1];
return : Real[1] = theta_rad * 180 / pi;

}
function rad {

in theta_deg : Real;
return : Real[1] = theta_deg * pi / 180;

}

datatype UnitBoundedReal :> Real {
inv unitBound { -1.0 <= that & that <= 1.0 }

}

function sin {
in theta : Real[1];
return : UnitBoundedReal[1];

}
function cos {

in theta : Real[1];
return : UnitBoundedReal[1];

}
function tan {

in theta : Real[1];
return : Real = sin(theta) / cos(theta);

}
function cot {

in theta : Real;
return : Real = cos(theta) / sin(theta);

}

function arcsin {
in x : UnitBoundedReal[1];
return : Real[1];

}
function arccos {

in x : UnitBoundedReal[1];
return : Real[1];

}
function arctan {

in x : Real[1];
return : Real[1];

}

9.4.14 Sequence Functions
9.4.14.1 Sequence Functions Overview

This package defines Functions that operate on general sequences of values. (For Functions that operate on
Collection values, see CollectionFunctions.)

9.4.14.2 Elements

function '#' specializes BaseFunctions::'#' {
in seq: Anything[0..*] ordered nonunique;
in index: Positive[1];
return : Anything[0..1];

}

Kernel Modeling Language v1.0 Beta 4 387

function equals{
in x: Anything[0..*] ordered nonunique;
in y: Anything[0..*] ordered nonunique;
return : Boolean[1];

}

function same{
in x: Anything[0..*] ordered nonunique;
in y: Anything[0..*] ordered nonunique;
return : Boolean[1];

}

function size{
in seq: Anything[0..*] nonunique;
return : Natural[1];

}
function isEmpty{

in seq: Anything[0..*] nonunique;
return : Boolean[1];

}
function notEmpty{

in seq: Anything[0..*] nonunique;
return : Boolean[1];

}
function includes{

in seq1: Anything[0..*] nonunique;
in seq2: Anything[0..*] nonunique;
return : Boolean[1];

}
function includesOnly{

in seq1: Anything[0..*] nonunique;
in seq2: Anything[0..*] nonunique;
return : Boolean[1];

}
function excludes{

in seq1: Anything[0..*] nonunique;
in seq2: Anything[0..*] nonunique;
return : Boolean[1];

}

function union{
in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}
function intersection{

in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}
function including{

in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}

function includingAt{
in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
in index: Positive[1];
return : Anything[0..*] ordered nonunique;

}

388 Kernel Modeling Language v1.0 Beta 4

function excluding{
in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}

function excludingAt{
in seq1: Anything[0..*] ordered nonunique;
in seq2: Anything[0..*] ordered nonunique;
in startIndex: Positive[1];
in endIndex: Positive[1] default startIndex;
return : Anything[0..*] ordered nonunique;

}

function subsequence{
in seq: Anything[0..*] ordered nonunique;
in startIndex: Positive[1];
in endIndex: Positive[1] default size(seq);
return : Anything[0..*];

}
function head{

in seq: Anything[0..*] ordered nonunique;
return : Anything[0..1] = seq[1];

}
function tail{

in seq: Anything[0..*] ordered nonunique;
return : Anything[0..*] ordered nonunique;

}
function last{

in seq: Anything[0..*] ordered nonunique;
return : Anything[0..1];

}

behavior add {
inout seq: Anything[0..*] ordered nonunique;
in values: Anything[0..*] ordered nonunique;

}
behavior addAt {

inout seq: Anything[0..*] ordered nonunique;
in values: Anything[0..*] ordered nonunique;
in index: Positive[1];

}
behavior remove{

inout seq: Anything[0..*] ordered nonunique;
in values: Anything[0..*];

}
behavior removeAt{

inout seq: Anything[0..*] ordered nonunique;
in startIndex: Positive[1];
in endIndex: Positive[1] default startIndex;

}

9.4.15 Collection Functions
9.4.15.1 Collection Functions Overview

This package defines Functions on Collections (as defined in the Collections package). For Functions on general
sequences of values, see the SequenceFunctions package.

9.4.15.2 Elements

Kernel Modeling Language v1.0 Beta 4 389

function '==' specializes BaseFunctions::'==' {
in col1: Collection[0..1];
in col2: Collection[0..1];
return : Boolean[1];

}

function size {
in col: Collection[1];
return : Natural[1];

}

function isEmpty {
in col: Collection[1];
return : Boolean[1];

}

function notEmpty {
in col: Collection[1];
return : Boolean[1];

}

function contains {
in col: Collection[1];
in values: Anything[*];
return : Boolean[1];

}

function containsAll {
in col1: Collection[1];
in col2: Collection[2];
return : Boolean[1];

}

function head {
in col: OrderedCollection[1];
return : Anything[0..1];

}

function tail {
in col: OrderedCollection[1];
return : Anything[0..*] ordered nonunique;

}

function last {
in col: OrderedCollection[1];
return : Anything[0..1];

}

function '#' specializes BaseFunctions::'#' {
in col: OrderedCollection[1];
in index: Positive[1];
return : Anything[0..1];

}

function 'array#' specializes BaseFunctions::'#' {
in arr: Array[1];
in indexes: Positive[n] ordered nonunique;
return : Anything[0..1];
private feature n: Natural[1] = arr.rank;

}

9.4.16 Vector Functions

390 Kernel Modeling Language v1.0 Beta 4

9.4.16.1 Vector Functions Overview

This package defines abstract functions on VectorValues corresponding to the algebraic operations provided by a
vector space with inner product. It also includes concrete implementations of these functions specifically for
CartesianVectorValues.

9.4.16.2 Elements

abstract function isZeroVector {
doc
/*
* Return whether a VectorValue is a zero vector.
*/

in v: VectorValue[1];
return : Boolean[1];

}

abstract function '+' specializes DataFunctions::'+' {
doc
/*
* With two arguments, returns the sum of two VectorValues.
* With one argument, returns that VectorValue.
*/

in v: VectorValue[1];
in w: VectorValue[0..1];
return u: VectorValue[1];
inv zeroAddition { w == null or isZeroVector(w) implies u == w }
inv commutivity { w != null implies u == w + v }

}

abstract function '-' specializes DataFunctions::'-' {
doc
/*
* With two arguments, returns the difference of two VectorValues.
* With one arguments, returns the inverse
* of the given VectorValue, that is, the VectorValue that,
* when added to the original VectorValue, results in
* the zeroVector.
*/

in v: VectorValue[1];
in w: VectorValue[0..1];
return u: VectorValue[1];
inv negation { w == null implies isZeroVector(v + u) }
inv difference { w != null implies v + u == w }

}

abstract function sum0 {
doc
/*
* Return the sum of a collection of VectorValues.
* If the collection is empty, return a given zero vector.
*/

in coll: VectorValue[*] nonunique;
in zero: VectorValue[1];
inv precondition { isZeroVector(zero) }
return s: VectorValue[1] = coll->reduce '+' ?? zero;

}

Kernel Modeling Language v1.0 Beta 4 391

/* Functions specific to NumericalVectorValues. */

function VectorOf {
doc
/*
* Construct a NumericalVectorValue whose elements are a
* non-empty list of component NumericalValues.
* The dimension of the NumericalVectorValue is equal to
* the number of components.
*/

in components: NumericalValue[1..*] ordered nonunique;
return : NumericalVectorValue[1] {

:>> dimension = size(components);
:>> elements = components;

}
}

abstract function scalarVectorMult specializes DataFunctions::'*' {
doc
/*
* Scalar product of a NumericalValue and a NumericalVectorValue.
*/

in x: NumericalValue[1];
in v: NumericalVectorValue[1];
return w: NumericalVectorValue[1];
inv scaling { norm(w) == x * norm(v) }
inv zeroLength { isZeroVector(w) implies isZero(norm(w))}

}
alias '*' for scalarVectorMult;

abstract function vectorScalarMult specializes DataFunctions::'*' {
doc
/*
* Scalar product of a NumericalVectorValue and a NumericalValue,
* which has the same value as the scalar product of the
* NumericalValue and the NumericalVectorValue.
*/

in v: NumericalVectorValue[1];
in x: NumericalValue[1];
return w: NumericalVectorValue[1] = scalarVectorMult(x, v);

}

abstract function vectorScalarDiv specializes DataFunctions::'/' {
doc
/*
* Scalar quotient of a NumericalVectorValue and a NumericalValue,
* defined as the scalar product of the inverse of the
* NumericalValue and the NumericalVectorValue.
*/

in v: NumericalVectorValue[1];
in x: NumericalValue[1];
return w: NumericalVectorValue[1] = scalarVectorMult(1.0 / x, v);

}

abstract function inner specializes DataFunctions::'*' {
doc
/*
* Inner product of two NumericalVectorValues.
*/

392 Kernel Modeling Language v1.0 Beta 4

in v: NumericalVectorValue[1];
in w: NumericalVectorValue[1];
return x: NumericalValue[1];
inv commmutivity { x == inner(w, v) }
inv zeroInner { isZeroVector(v) or isZeroVector(w) implies isZero(x)}

}

abstract function norm {
doc
/*
* The norm (magnitude) of a NumericalVectorValue, as a NumericalValue.
*/

in v: NumericalVectorValue[1];
return l : NumericalValue[1];
inv squareNorm { l * l == inner(v,v) }
inv lengthZero { isZero(l) == isZeroVector(v) }

}

abstract function angle {
doc
/*
* The angle between two NumericalVectorValues, as a NumericalValue.
*/

in v: NumericalVectorValue[1];
in w: NumericalVectorValue[1];
return theta: NumericalValue[1];
inv commutivity { theta == angle(w, v) }
inv lengthInsensitive { theta == angle(w / norm(w), v / norm(v)) }

}

/* Specialized functions with concrete definitions for CartesianVectorValues. */

function CartesianVectorOf {
doc
/*
* Construct a CartesianVectorValue whose elements are
* a non-empty list of Real components.
* The dimension of the NumericalVectorValue is equal
* to the number of components.
*/

in components: Real[*] ordered nonunique;
return : CartesianVectorValue[1] {

:>> dimension = size(components);
:>> elements = components;

}
}
function CartesianThreeVectorOf specializes CartesianVectorOf {

in components: Real[3] ordered nonunique;
return : CartesianThreeVectorValue[1];

}

feature cartesianZeroVector: CartesianVectorValue[3] =
(

CartesianVectorOf(0.0),
CartesianVectorOf((0.0, 0.0)),
CartesianThreeVectorOf((0.0, 0.0, 0.0))

) {
doc
/*

Kernel Modeling Language v1.0 Beta 4 393

* Cartesian zero vectors of 1, 2 and 3 dimensions.
*/

}
feature cartesian3DZeroVector: CartesianThreeVectorValue[1] =

cartesianZeroVector[3];

function isCartesianZeroVector specializes isZeroVector {
doc
/*
* A CartesianVectorValue is a zero vector if all its elements are zero.
*/

in v: CartesianVectorValue[1];
return : Boolean[1] = v.elements->forAll{in x; x == 0.0};

}

function 'cartesian+' specializes '+' {
in v: CartesianVectorValue[1];
in w: CartesianVectorValue[0..1];
inv precondition { w != null implies v.dimension == w.dimension }
return u: CartesianVectorValue[1] =

if w == null? v
else CartesianVectorOf(

(1..w.dimension)->collect{in i : Positive; v[i] + w[i]}
);

}

function 'cartesian-' specializes '-' {
in v: CartesianVectorValue[1];
in w: CartesianVectorValue[0..1];
inv precondition { w != null implies v.dimension == w.dimension }
return u: CartesianVectorValue[1] =

CartesianVectorOf(
if w == null?

CartesianVectorOf(v.elements->collect{in x : Real; -x})
else CartesianVectorOf(

(1..v.dimension)->collect{in i : Positive; v[i] - w[i]}
)

);
}

function cartesianScalarVectorMult specializes scalarVectorMult {
in x: Real[1];
in v: CartesianVectorValue[1];
return w: CartesianVectorValue[1] =

CartesianVectorOf(
v.elements->collect{in y : Real; x * y}

);
}
function cartesianVectorScalarMult specializes vectorScalarMult {

in v: CartesianVectorValue[1];
in x: Real[1];
return w: CartesianVectorValue[1] = cartesianScalarVectorMult(x, v);

}

function cartesianInner specializes inner {
in v: CartesianVectorValue[1];
in w : CartesianVectorValue[1];
inv precondition { v.dimension == w.dimension }
return x: Real[1] =

(1..v.dimension)->collect{in i : Positive; v[i] * w[i]}->reduce RealFunctions::'+';
}

394 Kernel Modeling Language v1.0 Beta 4

function cartesianNorm specializes norm {
in v: CartesianVectorValue[1];
return l : NumericalValue[1] = sqrt(cartesianInner(v, v));

}

function cartesianAngle specializes angle {
in v: CartesianVectorValue[1]; in w: CartesianVectorValue[1];
inv precondition { v.dimension == w.dimension }
return theta: Real[1] = arccos(cartesianInner(v, w) / (norm(v) * norm(w)));

}

function sum {
in coll: CartesianThreeVectorValue[*];
return : CartesianThreeVectorValue[1] = sum0(coll, cartesian3DZeroVector);

}

9.4.17 Control Functions
9.4.17.1 Control Functions Overview

This package defines Functions that correspond to operators in the KerML expression notation for which one or
more operands are Expressions whose evaluation is determined by another operand.

9.4.17.2 Elements

abstract function '.' {
in feature source : Anything[0..*] nonunique {

abstract feature target : Anything[0..*] nonunique;
}
private feature chain chains source.target;
chain

}

abstract function 'if' {
in test: Boolean[1];
in expr thenValue[0..1] { return : Anything[0..*] ordered nonunique; }
in expr elseValue[0..1] { return : Anything[0..*] ordered nonunique; }
return : Anything[0..*] ordered nonunique;

}

abstract function '??' {
in firstValue: Anything[0..*] ordered nonunique;
in expr secondValue[0..1] { return : Anything[0..*] ordered nonunique; }
return : Anything[0..*] ordered nonunique;

}

function 'and' {
in firstValue: Boolean[1];
in expr secondValue[0..1] { return : Boolean[1]; }
return : Boolean[1];

}

function 'or'{
in firstValue: Boolean[1];
in expr secondValue[0..1] { return : Boolean[1]; }
return : Boolean[1];

}

function 'implies'{
in firstValue: Boolean[1];
in expr secondValue[0..1] { return : Boolean[1]; }
return : Boolean[1];

Kernel Modeling Language v1.0 Beta 4 395

}

abstract function collect {
in collection: Anything[0..*] ordered nonunique;
in expr mapper[0..*] {

in argument: Anything[1];
return : Anything[0..*] ordered nonunique;

}
return : Anything[0..*] ordered nonunique;

}

abstract function select {
in collection: Anything[0..*] ordered nonunique;
in expr selector[0..*] {

in argument: Anything[1];
return : Boolean[1];

}
return : Anything[0..*] ordered nonunique;

}

function selectOne {
in collection: Anything[0..*] ordered nonunique;
in expr selector1[0..*] {

in argument: Anything[1];
return : Boolean[1]; }

return : Anything[0..1] =
collection->select {in x; selector1(x)}[1];

}

abstract function reject{
in collection: Anything[0..*] ordered nonunique;
in expr rejector[0..*] {

in argument: Anything[1];
return : Boolean[1];

}
return : Anything[0..*] ordered nonunique;

}

abstract function reduce {
in collection: Anything[0..*] ordered nonunique;
in expr reducer[0..*] {

in firstArg: Anything[1];
in secondArg: Anything[1];
return : Anything[1];

}
return : Anything[0..*] ordered nonunique;

}

abstract function forAll {
in collection: Anything[0..*] ordered nonunique;
in expr test[0..*] {

in argument: Anything[1];
return : Boolean[1];

}
return : Boolean[1];

}

abstract function exists {
in collection: Anything[0..*] ordered nonunique;
in expr test[0..*] {

in argument: Anything[1];
return : Boolean[1];

}

396 Kernel Modeling Language v1.0 Beta 4

return : Boolean[1];
}

function allTrue {
in collection: Boolean[0..*];
return : Boolean[1] = collection->forAll {in x; x};

}

function anyTrue {
in collection: Boolean[0..*];
return : Boolean[1] = collection->exists {in x; x};

}

function minimize {
in collection: ScalarValue[1..*];
in expr fn[0..*] {

in argument: ScalarValue[1];
return : ScalarValue[1];

}
return : ScalarValue[1] =

collection->collect {in x; fn(x)}->reduce min;
}

function maximize {
in collection: ScalarValue[1..*];
in expr fn[0..*] {

in argument: ScalarValue[1];
return : ScalarValue[1];

}
return : ScalarValue =

collection->collect {in x; fn(x)}->reduce max;
}

9.4.18 Occurrence Functions
9.4.18.1 Occurrence Functions Overview

This package defines utility functions that operate on occurrences, primarily related to the time during which those
occurrences exist.

9.4.18.2 Elements

function '===' specializes BaseFunctions::'===' {
doc
/*
* Test whether two occurrences are portions of the same life. That is, whether they
* represent different portions of the same entity (colloquially, whether they have
* the same "identity").
*/

in x: Occurrence[0..1];
in y: Occurrence[0..1];

return : Boolean[1] = x.portionOfLife == y.portionOfLife;
}

function isDuring {
doc
/*
* Test whether a performance of this function happens during the input occurrence.
*/

Kernel Modeling Language v1.0 Beta 4 397

in occ: Occurrence[1];

private connector all during: HappensDuring[0..1] from self to occ;

return : Boolean[1] = notEmpty(during);
}

function create {
doc
/*
* Ensure that the start of a given occurrence happens during a performance of this
* function. The occurrence is also returned from the function.
*/

inout occ: Occurrence[1];

private connector : HappensDuring from occ.startShot to self;

return : Occurrence[1] = occ;
}

function destroy {
doc
/*
* Ensure that the end of a given occurrence happens during a performance of this
* function. The occurrence is also returned from the function.
*/

inout occ: Occurrence[0..1];

private connector : HappensDuring from occ.endShot[0..1] to self;

return : Occurrence[0..1] = occ;
}

function addNew {
doc
/*
* Add a newly created occurrence to the given group of occurrences and return the
* new occurrence.
*/

inout group: Occurrence[0..*] nonunique;
inout occ: Occurrence[1];

private composite step : add {
inout seq1 = group;
in seq2 = create(occ);

}

return : Occurrence[1] = occ;
}

function addNewAt {
doc
/*
* Add a newly created occurrence to the given ordered group of occurrences at the given
* index and return the new occurrence.
*/

inout group: Occurrence[0..*] ordered nonunique;
inout occ: Occurrence[1];
in index: Positive[1];

398 Kernel Modeling Language v1.0 Beta 4

private composite step : addAt {
inout seq = group;
in values = create(occ);
in startIndex = index;

}

return : Occurrence[1] = occ;
}

behavior removeOld {
doc
/*
* Remove a given occurrence from a group of occurrences and destroy it.
*/

inout group: Occurrence[0..*] nonunique;
inout occ: Occurrence[0..1];

private composite step removeStep : remove {
inout seq = group;
in values = occ;

}
private succession removeStep then destroyStep;
private composite step destroyStep : destroy {

inout occ = removeOld::occ;
}

}

behavior removeOldAt {
doc
/*
* Removes the occurrence at a given index in an ordered group of occurrences
* and destroy it.
*/

inout group: Occurrence[0..*] ordered nonunique;
in index: Positive[1];

private feature oldOcc = group[index];

private composite step removeStep : remove {
inout seq = group;
in index = removeOldAt::index;

}
private succession removeStep then destroyStep;
private composite step destroyStep : destroy {

inout occ = oldOcc;
}

}

Kernel Modeling Language v1.0 Beta 4 399

400 Kernel Modeling Language v1.0 Beta 4

10 Model Interchange
10.1 Model Interchange Overview
Model interchange is the capability to interchange models between tools using file-base resources (see Clause 2).
The unit of interchange is the project, which is defined as follows:

A project is a set of root namespaces (see 7.2.5.3 and 8.2.3.4.1), including all elements in the ownership
trees of those namespaces, and a set of references to used projects, such that every cross reference from an
element in the project is to another element in that project or to an element in one of the used projects.

The root namespaces in a project may be serialized into model interchange files, using any of the formats given in
10.2 . A project interchange file is then a compressed archive of model interchange files and additional required
metadata, as described in 10.3 .

KerML is intended to be used as the basis for building other modeling languages. Project-based model interchange
as defined in this clause may also be used to interchange models in such languages. Each of the following
subclauses includes descriptions of the allowed adaptations for interchanging models in KerML-based languages.

10.2 Model Interchange Formats
A model interchange file contains a textual representation (known as a serialization) of a single root namespace (see
7.2.5.3 and 8.2.3.4.1) and all the elements in the ownership tree root in that namespace. A model interchange file
shall have one of the following formats:

1. Textual notation, using the textual concrete syntax defined in this specification. Note that in certain limited
cases, models conformant with the KerML syntax, but prepared by a means other than using the KerML
textual concrete syntax, may not be fully serializable into the standard textual notation. In this case, a tool
may either not export such model at all using the textual notation, or export the model as closely as
possible, informing the user of any changes from the original model. A model interchange file in this
format shall have the file extension .kerml.

2. JSON, using a format according to the JSON serialization mapping defined in 10.4 . A model interchange
file in this format shall have the file extension .json.

3. XML, using the XML Metadata Interchange [XMI] format based on the MOF-conformant abstract syntax
metamodel for KerML. A model interchange file in this format shall have the file extension .xmi.

Every conformant KerML modeling tool shall provide the ability to import and/or export (as appropriate) models in
at least one of the first two formats.

For a KerML-based language:

1. Textual Notation. If the language has a textual concrete syntax, then this textual notation may be used as a
model interchange file format. The language shall define a distinguishing file extension for files of its
textual notation.

2. JSON. It shall always be possible to use JSON format as a model interchange file format, using the
mapping strategy defined in 10.4 , as applied to the abstract syntax of the language.

3. XML. If the language is defined using a MOF-conformat abstract syntax, then XMI may be used as a
model interchange file format.

A KerML-based-language specification may specify further requirements on what interchange formats must be
supported by conforming language tools.

10.3 Model Interchange Projects

Kernel Modeling Language v1.0 Beta 4 401

A project interchange file is contains a single project serialized as a set of model interchange files, archived using
the ZIP format [ZIP]. The archive shall contain a model interchange file for each of the root namespaces in the
project, each formatted in one of the formats listed in 10.2 . In addition, the archive shall contain, at its top level,
exactly one file named .project.json and exactly one file named .meta.json. A KerML project interchange
file shall have the file extension .kpar (KerML Project Archive).

Other than the use of the file extensions given in 10.2 , there are no requirements on the naming of the model
interchange files. Nevertheless, they should be named in a way that is compatible across different file systems and
that allows for easy reference using International Resource Identifiers (IRIs). The model interchange files may be
organized into subdirectories, but this has no impact on the global scope for the project, which is always a flat
namespace derived from the root namespaces of the project (see 8.2.3.5). However, each model interchange file
shall be identifiable by a unique path in the archive directory structure.

The .project.json file shall contain the InterchangeProject information shown in Fig. 42 , serialized as a
single JSON object according to the Project schema definition in the ModelInterchange.json artifact
provided with this specification. Table 12 gives all the properties of the InterchangeProject and
InterchangeProjectUsage elements, consistent with the normative JSON schema. Every element referenced in
a model interchange file in a project interchange file shall either also be contained in a model interchange file in that
project interchange file, or in one of the projects referenced in the usage list for the project interchange file.

The usage information for each used project includes an optional versionConstraint property. If given, then
only versions of the project identified by the resource property that meet this constraint may be used. For an
interchanged project, the version is as given in its version property. It is recommended, but not required, that
semantic versioning (see https://semver.org/) be used for the version numbering of interchange projects and
semantic versioning ranges (see, e.g., https://docs.npmjs.com/cli/v6/using-npm/semver#ranges) be used for version
constraints. Tools that support such version formatting should report any version constraint violations when
importing an interchange project, for any used projects with dereferencable resource IRIs.

The .meta.json file shall contain further metadata on the project interchange file, serialized as a single JSON
object according to the Meta schema definition in the ModelInterchange.json artifact provided with this
specification. Table 13 describes all the fields specified in the normative JSON schema.

A project interchange file for a KerML-based language shall include model interchange files specific to that
language (as described in 10.2). Such a project interchange file may use the generic .kpar extension, or it may
define its own language-specific extension. If it uses the .kpar extension, then the metadata for the file shall
identify the KerML-based language metamodel (see Table 13). Each project interchange file shall only contain
models in a single language, but it shall be able to have used projects both in the same language and in KerML (such
as from the Kernel Model Libraries). A KerML-based-language specification may also allow for project interchange
files that use projects in other KerML-based languages.

402 Kernel Modeling Language v1.0 Beta 4

https://semver.org/
https://docs.npmjs.com/cli/v6/using-npm/semver#ranges

+versionConstraint : String [0..1]
+resource : IRI

InterchangeProjectUsage

+topic : String [0..*]
+website : IRI [0..1]
+maintainer : String [0..*]
+license : String [0..1]
+version : String

InterchangeProject

+description : String [0..1]
+name : String

ProjectBase ProjectUsageBase
+usingProject

1 0..*

+usedProject

1 0..*

{redefines usingProject}

+/usingProject

1

+usage

0..*

{redefines usedProject}

+/usedProject

1 0..*

Figure 42. Interchange Projects

Table 12. Interchange Project Information

Property Type Mandatory Description

name string yes The name of the project.

description string no A description of the
project.

version string yes The version of the project
being interchanged.

license string no
The license by which
project content may be
used.

maintainer array (of strings) no A list of names of
maintainers of the project.

website IRI no
An IRI for a Web site with
further information on the
project.

topic array (of strings) no A list of topics relevant to
the project.

usage array (of objects) no

A list of project usage
entries, one for each
project used by the project
being interchanged, with
properties as given below.

resource IRI yes
(within a usage)

An IRI identifying the
project being used. If the
IRI is dereferenceable, it
should resolve to a project
interchange file for the
used project.

Kernel Modeling Language v1.0 Beta 4 403

Property Type Mandatory Description

versionConstraint string no
(within a usage)

A constraint on the
allowable versions of a
used project.

Table 13. Interchange Project Metadata

Name Type Mandatory Description

index object yes

An index of the global
scope of the project,
specified as a JSON object
with a key for each name,
whose associated value is
the path to the model
interchange file containing
the root namespace for the
named element. (See Notes
1 and 2.)

created string yes

The date and time of the
creation of the project
interchange file, in ISO
8601 format [ISO8601].

metamodel IRI no

An IRI identifying the
metamodel of the
modeling language of the
models being interchanged
in this project interchange
file. (See Note 3.)

includesDerived Boolean no

Whether derived property
values are included in the
model interchange files.
(See Note 4.)

includesImplied Boolean no

Whether implied
relationships are included
in the model interchange
files. (See Note 5.)

checksum object no

A dictionary mapping
paths to some or all of the
model interchange files to
a list of one or more
objects with the two
properties given below.
(See Note 2.)

value string yes
(within a checksum)

The checksum computed
according to the checksum
algorithm.

algorithm string yes
(within a checksum)

Identification of the
algorithm used to
computed the checksum
value. (See Note 6.)

404 Kernel Modeling Language v1.0 Beta 4

Notes

1. The index cross-references all the non-null shortNames and names of all the top-level elements of the
root namespaces of the project (see 7.2.5.3 and 8.2.3.5) to the model interchange file of the root
namespace that contains the element. Note that, while the names of all top-level elements in a root
namespace must be unique, it is allowable (though not recommended) for top-level elements in different
root namespaces of a project to have the same name.

2. File paths are always relative to the root of the project interchange file archive, with path segments
separated by the forward slash symbol /, ending in a file name with extension (e.g., structure/
assembly/Body.json)

3. For an OMG-standardized language, metamodel shall be the version-specific URI specified by OMG to
identify the language. For KerML, this URI has the form https://www.omg.org/spec/KerML/
yyyymmxx, with a version-specific date stamp "yyyymmxx". If metamodel is not given, the default is
KerML (for a project interchange file with the .kpar extension).

4. If includesDerived = true, then the serializations in all XMI and JSON format model interchange
files in the project interchange file shall include values for all derived properties. If includesDerived =
false, then XMI and JSON formatted model interchanges files shall not include values for any derived
properties. If includesDerived is not given, then whether derived property values are included may
vary one model interchange file to another, and it is also allowable for some values to be included for
some derived properties and not others.

5. If includesImplied = true, then the serializations in all XMI and JSON formatted model interchange
files in the project interchange file shall include all implied relationships, and the isImpliedIncluded
property shall have the value true for all elements (see 8.3.2.1 on isImpliedIncluded). If
includesImplied = false, then XMI and JSON formatted model interchange files shall not include
any implied relationships, and the isImpliedIncluded property shall have the value false for all
elements. If includesImplied is not given, then whether implied relationships are included may vary
from one model interchange file to another, and from element to element, as recorded by the value of the
includesImplied property for each element.

6. Valid values for the checksum algorithm are
◦ SHA1, SHA224, SHA256, SHA-384, SHA3-256, SHA3-384, SHA3-512 [SHS]
◦ BLAKE2b-256, BLAKE2b-384, BLAKE2b-512, BLAKE3 [BLAKE]
◦ MD2, MD4, MD5, MD6 [MD]
◦ ADLER32 [ADLER]

10.4 JSON Serialization
10.4.1 Serialization Overview

The JSON serialization format can be used to interchange any model conformant with the KerML abstract syntax.
Each root namespace shall correspond with a model interchange file with the file extension .json and contain
serializations of all model elements in the ownership tree root in that namespace. The contents of this file shall be in
the JSON (JavaScript Object Notation) format [JSON] and, for KerML, conform to the JSON schema definitions in
the KerML.json artifact provided with this specification. Other KerML-based languages may extend this schema or
define their own schema, consistent with the serialization strategy defined here as applied to the abstract syntax of
those languages.

The following subclauses describe the serialization strategy, as realized in the normative JSON schema for KerML.

10.4.2 Primitive Type Serialization

The UML primitive types used in the KerML abstract syntax map directly to core JSON Schema types, as shown in
Table 14 .

Kernel Modeling Language v1.0 Beta 4 405

Table 14. UML Primitive Type Serialization

UML Primitive Type JSON Schema Type

Boolean boolean

Integer integer

Real number

String string

10.4.3 Enumeration Serialization

Enumeration values map to a JSON Schema string with a value that is the name of the enumeration literal, with
the same capitalization as defined for the literal in the abstract syntax. For example, VisibilityKind::public
maps to the string "public".

10.4.4 Element Reference Serialization

Values of abstract syntax properties typed by a metaclass (that is, Element or one of its subclasses) map to a JSON
Schema object with a single field @id. The value of @id is a JSON Schema string with a value equal to the
value of the elementId of the Element. For example:

{
"@id": "15fe7607-ceb8-38bb-bd04-dde8ca657cec"

}

10.4.5 Element Serialization

A model element maps to a JSON Schema object with fields @id, @type, and a set of its attributes. The field @id
has a string value equal to the value of Element::elementId. The field @type has a string value equal to the
name of the specific MOF type of the element, e.g. "Structure".

The remaining JSON Schema fields are mapped from the set of MOF properties specified as attributes of the MOF
type of the element. This shall include all owned and inherited properties. In addition, while redefined properties are
not inherited under MOF/UML rules, they shall be included in the set of properties serialized for the element if they
have a different name than the redefining property.

Each of these maps to a JSON Schema field, where the name of the field is equal to the name of the attribute and the
value is equal to the serialization of the attribute value as described in the preceding subclauses. The value must
adhere to the allowed multiplicity of the MOF attribute:

• A multiplicity of [1..1] requires a non-null value.
• A multiplicity of[0..1] allows a value or null
• A multiplicity with an upper bound greater than 1 maps to a JSON Schema array with values equal to the

serialization of the attribute values described in the preceding subclauses.

10.4.6 Model Serialization

A root namespace maps to a JSON Schema array with values equal to the serialization, as described in the
preceding subclauses, of all model elements in the ownership tree rooted in that namespace.

406 Kernel Modeling Language v1.0 Beta 4

A Annex: Model Execution
(Informative)

A.1 Overview
The language semantics in this specification give conditions to check whether classifiers have been instantiated
properly (see 7.3.2.1). For structures this includes their parts and other required objects, as well as feature values
and links between them. For behaviors, this includes their steps and other required performances, as well as timing
links between them. These two kinds of classifiers are typically interrelated, structures can require behaviors for
proper instantiation and vice-versa.

This annex outlines a procedure for incrementally instantiating (executing) classifiers to ensure the completed
instances will pass the check above (satisfy classifier conditions). The order of instantiation obeys any timing
specified by the classifier. For example, some structures might require others to exist first, such as parents before
their children, or parts of a car before assembly, while behaviors typically require some steps to happen only after
others finish, such as painting objects before drying them. It covers the basic patterns needed to aid development of
a complete execution procedure.

A.2 Modeling Instances and Feature Values
Instances in this annex are modeled in KerML, rather than as runtime data structures. Execution is taken to be
creating these modeled instances in an order specified by their classifiers.

Instances are also modeled as classifiers (called atoms in this annex) that each correspond to their own single
(runtime) instance. Atoms are all disjoint from each other, but not necessarily from other (non-atom) classifiers
(such as the ones being instantiated). In the example below, MyBike and YourBike are atoms. They are both
classified by Bicycle (and Vehicle by specialization).

classifier Vehicle;
classifier Bicycle specializes Vehicle;
classifier MyBike [1] specializes Bicycle;
classifier YourBike [1] specializes Bicycle disjoint from MyBike;

Atoms in this annex are indicated by a user-defined keyword before classifier definitions, with multiplicity and
disjointness implied by the keyword, as below.

classifier Atom;
metaclass <atom> AtomMetadata specializes Metaobject {

baseType = Atom meta KerML::Classifier;
}

classifier Vehicle;
classifier Bicycle specializes Vehicle;

#atom
classifier MyBike specializes Bicycle;
#atom
classifier YourBike specializes Bicycle;

Atoms are assigned as feature values by typing a feature with them, or a union of atoms, and restricting the feature
multiplicity as needed to match the number of atoms being assigned. The example below creates a classifier for the
bicycle atoms above (OurBicycle), then redefines a feature (stores) to be typed by it. The multiplicity is restricted
to the exact number of atoms creating during execution (2).

Kernel Modeling Language v1.0 Beta 4 407

classifier Garage {
feature stores : Bicycle [*];

}
classifier OurBicycle unions MyBike, YourBike;

#atom
classifier OurGarage specializes Garage {

feature redefines stores : OurBicycle [2];
}

A.3 Instantiation Procedure
A.3.1 Overview

The instantiation procedure is described in cases of increasing capability. A.3.2 through A.3.4 cover features,
including connectors, without any timing specified. These are applicable to structure and behavior, though the
examples are structural. The rest of the procedure adds timing, first for structures, then behaviors.

A.3.2 Without connectors

Take the example below to illustrate the procedure, a (non-association) classifier without connectors (features typed
by associations).

classifier Bicycle {
feature rollsOn : Wheel [2];
feature holdsWheel : BikeFork [*];

}
classifier Wheel;
classifier BikeFork;

The instantiation procedure starts with

1. Create an atom of the classifier being instantiated (Bicycle).
2. Identify features of the instantiated classifier with lower multiplicity greater than zero that are not

connectors or other features typed by associations (rollsOn).
3. Create atoms for the types of the above features (Wheel), at least up to the lower multiplicity of each

feature (2), and assign them as values of the feature.

The model being executed in this example does not specify timing, though it is typically expected that

• classifiers are produced before their atoms.
• Atoms are produced before they are assigned as values or otherwise used by another atom.

The first instantiation step produces the first atom below

#atom
classifier MyBike specializes Bicycle;

The third creates the rest and modifies the one above. Atoms appear each time they are modified (MyBike), to
highlight execution order.

#atom
classifier MyWheel1 specializes Wheel;
#atom
classifier MyWheel2 specializes Wheel;

classifier MyWheel unions MyWheel1, MyWheel2;

#atom

408 Kernel Modeling Language v1.0 Beta 4

classifier MyBike specializes Bicycle {
feature redefines rollsOn : MyWheel;

}

A.3.3 One-to-one connectors

This covers connectors that

• have multiplicity 1 at both ends, but unrestricted (∗) overall.
• are not timing or binding connectors.

The first above requires the connected features to have the same number of values. When this is not possible, such
as the multiplicities of the connected features being incompatible (do not overlap, as in 0..1 and 2..*), the classifier is
not instantiable (satisfiable).

The example below adds a connector to the example in Without Connectors, with end multiplicities requiring each
wheel to be fixed to its own fork, and vice-versa.

classifier Bicycle {
feature rollsOn : Wheel [2];
feature holdsWheel : BikeFork [*];
connector fixWheel : BikeWheelFixed from rollsOn [1] to holdsWheel [1];

}
assoc BikeWheelFixed {

end feature wheel : Wheel;
end feature fixedTo : BikeFork;

}

The instantiation procedure from Without connectors continues with

4. Identify connectors of the classifier being instantiated (fixWheel).
5. For each connector above

a. Create association atoms for the types of the connectors identified in step 4 (BikeWheelFixed).
See below for how many.

b. Assign the two participant (end) features (wheel and fixed) in each association atom, with
values taken from the corresponding connected feature (rollsOn and holdsWheel). See below
for which values are taken.

c. Assign the association atoms above as values of the corresponding connectors.
For end multiplicity 1 on both ends

◦ Create the same number of association atoms as there are values of the connected features with
the most values at the time the association atoms are created (2).

◦ Assign each connected feature value as participant in exactly one association atom.
If one connected feature has fewer values than the other, create atoms for the type of that feature
(holdsWheel) up to the number in the other feature (rollsOn, 2), and assign them as values of
the feature with fewer values.

The model being executed in this example does not specify timing, though it is typically expected that

• association atoms are created just after values are assigned to connected features, whereupon the
instantiation steps above could be taken on each connector right after its connected features are assigned
values during step 3, see A.3.2 .

After the instantiations in Without connectors, the steps above produce the following atoms. First, 5.a creates as
many association atoms for the connector (fixWheel) as the connected feature with the most values (2 in rollsOn,
assigned in Without connectors).

Kernel Modeling Language v1.0 Beta 4 409

#atom
assoc MyBikeWheel1_Fork1_BWF_Link specializes BikeWheelFixed;
#atom
assoc MyBikeWheel2_Fork2_BWF_Link specializes BikeWheelFixed;

Before 5.b assigns participant features, the one-to-one connector end multiplicities require additional atoms for the
connected feature with fewer values (holdsWheel), to match the number of the values of the other connected
feature (rollsOn).

#atom
classifier MyBikeFork1 specializes BikeFork;
#atom
classifier MyBikeFork2 specializes BikeFork;

classifier MyBikeFork unions MyBikeFork1, MyBikeFork2;

#atom
classifier MyBike specializes Bicycle {

feature redefines rollsOn : MyWheel;
feature redefines holdsWheel : MyBikeFork;

}

Then 5.b assigns participant feature values to the association atoms created in 5.a, choosing in this execution to fix
the first and second wheels to the first and second forks, respectively,

#atom
assoc MyBikeWheel1_Fork1_BWF_Link specializes BikeWheelFixed {

end feature redefines wheel : MyWheel1;
end feature redefines fixedTo : MyBikeFork1;

}
#atom
assoc MyBikeWheel2_Fork2_BWF_Link specializes BikeWheelFixed {

end feature redefines wheel : MyWheel2;
end feature redefines fixedTo : MyBikeFork2;

}

Finally 5.c assigns the association atoms to the connector.

classifier MyBikeWheel_Fork_BWF_Link
unions MyBikeWheel1_Fork1_BWF_Link, MyBikeWheel2_Fork2_BWF_Link;

#atom
classifier MyBike specializes Bicycle {

feature redefines rollsOn : MyWheel;
feature redefines holdsWheel : MyBikeFork;
connector redefines fixWheel : MyBikeWheel_Fork_BWF_Link [2]

from rollsOn [1] to holdsWheel [1];
}

A.3.4 One-to-unrestricted connectors

This covers connectors that

• have multiplicity 1 at one end and unrestricted (∗) at the other, and unrestricted overall.
• are not timing or binding connectors.

The first above enables the feature connected at the unrestricted end to have any number of values in satisfiable
models, but if it has any values, all those values must be linked to exactly one (not necessarily unique) value of the
other connected feature (at the multiplicity 1 end) in the same instance of the classifier being instantiated. When this
is not possible, for example due to the connector's association multiplicities being too restrictive (such as not
allowing for links to all the values of the connected features), the classifier is not instantiable (satisfiable).

410 Kernel Modeling Language v1.0 Beta 4

The example below adds another feature and connector to the example in A.3.3 . Every basket is intended to be
fixed to one of the forks, though more than one basket might be fixed to the same fork, or some forks might have no
baskets, ot there might be no baskets at all.

classifier Bicycle {
feature carrier : BikeBasket [*];
connector carrierFixed : BikeBasketFixed from carrier [*] to holdsWheel [1];

}
classifier BikeBasket;

assoc BikeBasketFixed {
end feature basket : BikeBasket;
end feature fixedTo : BikeFork;

}

Then the instantiation procedure from A.3.3 is amended for one unrestricted end:

5. For each connector above
a. .., b. ..., c. ..., ...

For end multiplicity 1 on one end and unrestricted on the other
◦ Create the same number of association atoms as there are values of the connected feature at the

unrestricted end (carrier) at the time the association atoms are created.
◦ Assign each connected feature value at the unrestricted end as participant in exactly one

association atom.

Instantiation proceeds as in A.3.3 , modifying the classifier atom created there (MyBike), except the number of
association atoms created is determined by the number of values of the connected feature at the unrestricted end
(carrier), choosing in this execution to fix two baskets to the same fork.

#atom
classifier MyBikeBasket1 specializes BikeBasket;
#atom
classifier MyBikeBasket2 specializes BikeBasket;

classifier MyBikeBasket unions MyBikeBasket1, MyBikeBasket2;

#atom
classifier MyBike specializes Bicycle {

feature redefines carrier : MyBikeBasket [2];
}
#atom
assoc MyBikeBasket1_Fork1_BBF_Link specializes BikeBasketFixed {

end feature redefines basket : MyBikeBasket1;
end feature redefines fixedTo : MyBikeFork1;

}
#atom
assoc MyBikeBasket2_Fork1_BBF_Link specializes BikeBasketFixed {

end feature redefines basket : MyBikeBasket2;
end feature redefines fixedTo : MyBikeFork1;

}

classifier MyBikeBasket_Fork_BBF_Link
unions MyBikeBasket1_Fork1_BBF_Link, MyBikeBasket2_Fork1_BBF_Link;

#atom
classifier MyBike specializes Bicycle {

feature redefines carrier : MyBikeBasket [2];
connector redefines carrierFixed : MyBikeBasket_Fork_BBF_Link [2]

from carrier [*] to holdsWheel [1];
}

Kernel Modeling Language v1.0 Beta 4 411

A.3.5 Timing for structures

Classes are classifiers for things that exist in time (occurrences), as compared to numbers or other mathematical
entities. It usually matters when these things come into and go out of existence, at least relative to each other. For
example, in structures it is typically intended that parts exist for at least as long as the thing they are part of. In the
bicycle example above, the wheel atoms should exist at least as long as the bicycle atom. A simple way to do this is
for a structure and its parts to all exist at exactly the same time, as show below. Bicycle is class with its part features
subset from timeCoincidentOccurrences, ensuring the values of rollsOn and holdsWheel happen (start and
end) at exactly the same time as the bicycle occurrence they are part of, see 9.2.4.1 .

class Bicycle specializes Occurrence {
feature rollsOn : Wheel [2] subsets timeCoincidentOccurrences;
feature holdsWheel : BikeFork [2] subsets timeCoincidentOccurrences;

}

The keyword struct implies specialization from Occurrence and highlights the structural application of classes.
With it the example above becomes

struct Bicycle {
feature rollsOn : Wheel [2] subsets timeCoincidentOccurrences;
feature holdsWheel : BikeFork [2] subsets timeCoincidentOccurrences;

}

Some features always include the thing featuring them as a value (logically reflexive), such as self (see 9.2.2.1),
which subsets timeCoincidentOccurrences, because occurrences always exist at the same time as themselves
(see 7.3.4.4 about feature subsetting). The instantiation procedure in A.3.2 is amended below assign values to
reflexive features when it creates atoms for features with lower multiplicity greater than zero (3a), as well as assign
values to features being subsetted (3b).

3. ...
a. For features that always have their featuring thing as a value (at least self and the features it

subsets), assign that atom as a value.
b. If a feature subsets others (rollsOn and holdsWheel subset timeCoincidentOccurrences,

which subsets self), assign values to the others also.

The additional instantiation steps produce the atom below by

• Assigning MyBike with itself for self.
• Introducing a class for all part atoms of MyBike, as well as the assembled MyBike, and assigning

timeCoincidentOccurrences with it.

The model being executed requires all the occurrences to come into and go out of existence at the same time, but
since this is not possible when sequentially creating atoms, the ones below appear before they are assigned as values
or otherwise used by another atom.

struct MyBikeTimeCoincident unions MyWheel, MyBikeFork, MyBike;

#atom
struct MyBike specializes Bicycle {

feature redefines self : MyBike;
feature redefines timeCoincidentOccurrences : MyBikeTimeCoincident [5];
feature redefines rollsOn : MyWheel;
feature redefines holdsWheel : MyBikeFork;

}

It is more realistic for parts to exist before the things they they are a part of, such as the wheels and forks above
existing before they are assembled into a bicycle. It also might be that the parts outlive the bicycle, if it's only
disassembled rather than completely destroyed. A simple way to do this is for parts to exist longer than their

412 Kernel Modeling Language v1.0 Beta 4

assembly, as specified below by a HappensDuring connector (see 9.2.4.1) linking the bicycle (self) to all its parts
(allParts), specified as a union of the part features (equivalent to part features subsetting the union feature, but
excluding values that are not in the part features). This ensures each bicycle exists during the time their parts do, but
enables the parts to exist before assembly into a bicycle, and after disassembly, when the bicycle no longer exists.
They still might all exist at the exactly the same time, as in the previous example, because things that exist at the
same time all happen during each other.

struct Bicycle {
feature rollsOn : Wheel [2];
feature holdsWheel : BikeFork [2];
feature allParts : Occurrence unions rollsOn, holdsWheel;
connector b_during_ap : HappensDuring from [1] self to [*] allParts;

}

The instantiation procedure above is amended again to assign values to union features.

3. ...
a. ..., b ...
c. If a feature unions others (allParts unions rollsOn and holdsWheel), treat the others as

subsetting the union feature, but only assigning values that are in the subsets.

The instantiation procedure in A.3.4 , with the amendments above to A.3.2 , produces the additional or modified
atoms below.

#atom
assoc MyBike_During_Wheel1_Link specializes HappensDuring {

end feature redefines shorterOccurrence : MyBike;
end feature redefines longerOccurrence : MyWheel1;

}
#atom
assoc MyBike_During_Wheel2_Link specializes HappensDuring {

end feature redefines shorterOccurrence : MyBike;
end feature redefines longerOccurrence : MyWheel2;

}
#atom
assoc MyBike_During_Fork1_Link specializes HappensDuring {

end feature redefines shorterOccurrence : MyBike;
end feature redefines longerOccurrence : MyBikeFork1;

}
#atom
assoc MyBike_During_Fork2_Link specializes HappensDuring {

end feature redefines shorterOccurrence : MyBike;
end feature redefines longerOccurrence : MyBikeFork2;

}

assoc MyBike_During_Parts_Link specializes HappensDuring
unions MyBike_During_Wheel1_Link, MyBike_During_Fork1_Link,

MyBike_During_Wheel2_Link, MyBike_During_Fork2_Link;

struct MyBikeParts unions MyWheel, MyBikeFork;

#atom
struct MyBike specializes Bicycle {

feature redefines rollsOn : MyWheel;
feature redefines holdsWheel : MyBikeFork;
feature redefines allParts : MyBikeParts [4];

feature redefines self : MyBike;
connector redefines b_during_ap : MyBike_During_Parts_Link [4]

from [1] self to [*] allParts;
}

Kernel Modeling Language v1.0 Beta 4 413

Parts are sometimes expected not to exist after their structures, such as when a bicycle is completely destroyed,
rather than just disassembled. The wheels and forks above would not exist after the bicycle they are part of, even
though they might have existed before it (was assembled). Since parts can be replaced over time, the only ones
destroyed are those in the bicycle at the time it is destroyed (the parts replaced earlier are not affected because they
are no longer in the bicycle). This is specified below by a HappensWhile connector, equivalent to a HappenDuring
connector in both directions, ensuring the ends (endShot) of the parts (at the time the bicycle ends) happen at the
same time as the bicycle (the connected feature values are timeCoincidentOccurrences of each other). End
shots are instantaneous occurrences that happen at the end of another occurrence (life), but represent the same thing
as that occurrence, see 9.2.4.1 . The ends of the parts are identified by "navigating" (chaining) through a series of
features, each providing a value on which to get the next value in the navigation, starting with the end of the bicycle,
see 7.3.4.6 .

struct Bicycle {
...
feature redefines endShot : Bicycle;
connector be_while_pe : HappensWhile

from [1] endShot to [*] endShot.allParts.endShot;
}

The keyword composite implies the end timing above when used in defining rollsOn and holdsWheel, as
below.

struct Bicycle {
composite feature rollsOn : Wheel [2];
composite feature holdsWheel : BikeFork [2];
...

}

The instantiation steps in A.3.2 will assign a value to endShot, because it has multiplicity [1], but this is delayed
until everything else required in the structure has occurred, due to mandatory HappensBefore connectors to
endShot. With the amendments above, the steps in A.3.4 produce the additional or modified atoms below.

/* End atoms */
#atom
struct MyWheel1End specializes Wheel;
#atom
struct MyWheel1 specializes Wheel {

feature redefines endShot : MyWheel1End;
}
#atom
struct MyWheel2End specializes Wheel;
#atom
struct MyWheel2 specializes Wheel {

feature redefines endShot : MyWheel2End;
}
struct MyBikeFork1End specializes BikeFork;
#atom
struct MyBikeFork1 specializes BikeFork {

feature redefines endShot : MyBikeFork1End;
}
struct MyBikeFork2End specializes BikeFork;
#atom
struct MyBikeFork2 specializes BikeFork {

feature redefines endShot : MyBikeFork2End;
}
#atom
struct MyBikeEnd specializes Bicycle;

/* HappensWhile atoms */
#atom

414 Kernel Modeling Language v1.0 Beta 4

assoc MyBikeEnd_While_Wheel1End_Link specializes HappensWhile {
end feature redefines thisOccurrence : MyBikeEnd;
end feature redefines thatOccurrence : MyWheel1End;

}
#atom
assoc MyBikeEnd_While_Wheel2End_Link specializes HappensWhile {

end feature redefines thisOccurrence : MyBikeEnd;
end feature redefines thatOccurrence : MyWheel2End;

}
#atom
assoc MyBikeEnd_While_Fork1End_Link specializes HappensWhile {

end feature redefines thisOccurrence : MyBikeEnd;
end feature redefines thatOccurrence : MyBikeFork1End;

}
#atom
assoc MyBikeEnd_While_Fork2End_Link specializes HappensWhile {

end feature redefines thisOccurrence : MyBikeEnd;
end feature redefines thatOccurrence : MyBikeFork2End;

}

assoc MyBikeEnd_While_PartsEnd_Link specializes HappensWhile
unions MyBikeEnd_While_Wheel1End_Link, MyBikeEnd_While_Fork1End_Link,

MyBikeEnd_While_Wheel2End_Link, MyBikeEnd_While_Fork2End_Link;

#atom
struct MyBike specializes Bicycle {

...
feature redefines endShot : MyBikeEnd;
connector redefines be_while_pe : MyBikeEnd_While_PartsEnd_Link [4]

from [1] endShot to [*] endShot.allParts.endShot;
}

A.3.6 Timing for behaviors, Sequences

Behaviors also exist in time, but they come into and go out of existence differently than structures, relative to each
other. For example, in behaviors it is typically intended that its steps happen

• during the behavior occurrence they are part of, but not last as long as it does.
• before or after other steps in the same behavior occurrence.

These can be modeled by

• subsetting step features (those typed by behaviors) from timeEnclosedOccurrences, ensuring they
happen during the occurrence they are a step of, but are not required to happen the entire time, as with
timeCoincidentOccurrences.

• linking steps by HappensBefore connectors to specify the order they should occur in.

The example below does this for a behavior with three steps. Only the first one (paint) is required (by its
multiplicity), indicating the behavior starts there, while the rest (dry and ship) are unrestricted, to prevent the
instantiation procedure from giving values to (performing) them too early. This is left to the end multiplicities of the
timing connectors (p_before_d and d_before_s), which require their later step to happen once each time the
earlier step does, and vice-versa, see A.3.3 .

class Manufacture specializes Occurrence {
feature paint : Paint [1] subsets timeEnclosedOccurrences;
feature dry : Dry [*] subsets timeEnclosedOccurrences;
connector p_before_d: HappensBefore from [1] paint to [1] dry;
feature ship : Ship [*] subsets timeEnclosedOccurrences;
connector d_before_s: HappensBefore from [1] dry to [1] ship;

}

Kernel Modeling Language v1.0 Beta 4 415

behavior Paint;
behavior Dry;
behavior Ship;

The keyword

• step implies subsetting timeEnclosedOccurrences. These are features of behaviors typed by
behaviors.

• succession implies typing connectors by HappensBefore, and indicates the ends with first and then,
instead of from and to, respectively.

With these the example above becomes

behavior Manufacture {
step paint : Paint [1];
step dry : Dry [*];
succession p_before_d first [1] paint then [1] dry;
step ship : Ship [*];
succession d_before_s first [1] dry then [1] ship;

}

The instantiation procedure in A.3.3 produces the atoms below, including

• creating step atoms required by one-to-one connectors, and
• the typically expected order to create associaton atoms (association atoms are created and assigned just

after values are assigned to connected features), taken as required for behavioral connectors.

In this example, it results in creating the atoms below ("taking" steps) in the order typically expected for behavioral
execution, even though the procedure is the same as for structural execution. Atoms appear below each time they are
modified (MyManufacture), to highlight this.

It starts by creating and assigning an atom for paint, to satisfy its multiplicity, see A.3.2 . The procedure ignores
the others because their multiplicities do not require any values.

#atom
behavior MyManufacture specializes Manufacture;
#atom
behavior MyPaint specializes Paint;
#atom
behavior MyManufacture specializes Manufacture {

feature redefines timeEnclosedOccurrences : MyPaint [1];
step redefines paint : MyPaint;

}

Step 5 in A.3.3 reacts to the new step atom above by looking for connectors from it with multiplicity [1] at the
opposite end, finding p_before_d, then creating and assigning an atom for the step connected at that end (dry), to
satisfy that end's multiplicity.

#atom
behavior MyDry specializes Dry;

#atom
assoc MyPaint_Before_Dry_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyPaint;
end feature redefines laterOccurrence : MyDry;

}

behavior MyManufactureStepsPD unions MyPaint, MyDry;

#atom

416 Kernel Modeling Language v1.0 Beta 4

behavior MyManufacture specializes Manufacture {
feature redefines timeEnclosedOccurrences : MyManufactureStepsPD [2];
step redefines paint : MyPaint;
step redefines dry : MyDry [1];
succession redefines p_before_d : MyPaint_Before_Dry_Link [1]

first paint then dry;
}

Step 5 repeats for the remaining connector and step (d_before_s and ship).

#atom
behavior MyShip specializes Ship;

#atom
assoc MyDry_Before_Ship_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyDry;
end feature redefines laterOccurrence : MyShip;

}

behavior MyManufactureStepsPDS unions MyManufactureStepsPD, MyShip;

#atom
behavior MyManufacture specializes Manufacture {

feature redefines timeEnclosedOccurrences : MyManufactureStepsPDS [3];
step redefines paint : MyPaint;
step redefines dry : MyDry [1];
succession redefines p_before_d : MyPaint_Before_Dry_Link [1] first paint then dry;
step redefines ship : MyShip [1];
succession redefines d_before_s : MyDry_Before_Ship_Link [1] first dry then ship;

}

A.3.7 Timing for behaviors, Decisions and merges

Decisions and merges are steps that enable sequences to be selected during execution, rather than ahead of time in
models, as in A.3.6 :

• Decisions are steps with multiple outgoing successions, but only one is traversed during each execution of
the decision.

• Merges are steps with multiple incoming successions, but only one is traversed during each execution of
the merge.

These are modeled by

• Optional connector end multiplicities ([0..1]) on ends of the outgoing and incoming successions opposite
decision and merge steps, respectively. This enables execution to determine which succession is traversed
for each decision and merge.

• Decision and merges steps typed by DecisionPerformance and MergePerformance from the Kernel
library, respectively. These enable additional timing constraints that require exactly one succession to be
traversed for each decision and merge.

The example below includes a decision and merge, which appear in sequence like other steps, except with optional
branching successions out and in, respectively. The timing constraints at the end ensure successions going out of the
decision step and coming into the merge step have exactly one value (HappensBefore link) for each time those steps
happen, identified by the library features outgoingHBLink and incomingHBLink of DecisionPerformance and
MergePerformance, respectively, which are required to have exactly one value for each performance.

behavior Manufacture {
/* Before decision. */

step admit : Admit [1];

Kernel Modeling Language v1.0 Beta 4 417

succession a_before_i first [1] admit then [1] inspect;

/* Decision. */
step inspect : DecisionPerformance [*];

/* Two decision branches. */
succession i_before_f first [1] inspect then [0..1] finish;
step finish : Touchup [*];
succession i_before_r first [1] inspect then [0..1] recycle;
step recycle : MarkForRecycling [*];

/* Two merge branches. */
succession f_before_ms first [0..1] finish then [1] mShip;
succession r_before_ms first [0..1] recycle then [1] mShip;

/* Merge */
step mShip : MergePerformance [*];

/* After merge */
succession ms_before_s first [1] mShip then [1] ship;
step ship : Ship [*];

/* Decision and merge timing constraints. */
feature inspectOutgoingHBLinks : HappensBefore [*] unions i_before_f, i_before_r;
connector bindIOHBL : SelfLink

from [1] inspectOutgoingHBLinks to [1] inspect.outgoingHBLink;
feature mShipIncomingHBLinks : HappensBefore [*] unions f_before_ms, r_before_ms;
connector bindmSIHBL : SelfLink

from [1] mShipIncomingHBLinks to [1] mShip.incomingHBLink;
}
behavior Admit;
behavior Touchup;
behavior MarkForRecycling;
behavior Ship;

The instantiation procedure in A.3.3 is amended for decisions and merges:

5. For each connector above
a. .., b. ..., c. ..., ...

For succession connectors with decision steps as their source or merge steps as their target
◦ Create the same number of association atoms as there are values of all the connected features

opposite the decision or merge step (1 for each in this example).
◦ Assign each connected feature value as participant in exactly one association atom.

If all the connected features together opposite the decision or merge step has more or fewer
values than the decision or merge step, create atoms for the type of the feature with fewer values
up to the number in the other feature, and assign them as values of the first feature.

The instantiation steps above produce the following atoms, choosing in this execution to touchup, rather than mark
for recycling. Only the final result of execution is shown, at the end for brevity (MyManufacture), while the other
atoms appear in the order created.

/* Before decision. */
#atom
behavior MyAdmit specializes Admit;

/* Decision. */
#atom
behavior MyInspect specializes DecisionPerformance;
#atom
assoc MyAdmit_Before_Inspect_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyAdmit;

418 Kernel Modeling Language v1.0 Beta 4

end feature redefines laterOccurrence : MyInspect;
}

/* One decision branch taken. */
#atom
behavior MyTouchup specializes Touchup;
#atom
assoc MyInspect_Before_Touchup_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyInspect;
end feature redefines laterOccurrence : MyTouchup;

}
/* One merge branch taken. Merge. */

#atom
behavior MyMergeToShip specializes MergePerformance;
#atom
assoc MyTouchup_Before_Merge_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyTouchup;
end feature redefines laterOccurrence : MyMergeToShip;

}
/* After merge. */

#atom
behavior MyShip specializes Ship;
#atom
assoc MyMerge_Before_Ship_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyMergeToShip;
end feature redefines laterOccurrence : Ship;

}

behavior MyManufactureSteps unions MyAdmit, MyInspect, MyTouchup, MyMergeToShip, MyShip;

#atom
behavior MyManufacture specializes Manufacture {

feature redefines timeEnclosedOccurrences : MyManufactureSteps [5];

/* Before decision. */
step redefines admit : MyAdmit [1];

/* Decision. */
step redefines inspect : MyInspect [1];
succession redefines a_before_i : MyAdmit_Before_Inspect_Link [1]

first admit then inspect;

/* One decision branch taken. */
step redefines finish : MyTouchup [1];
succession redefines i_before_f : MyInspect_Before_Touchup_Link [1]

first inspect then finish;

/* One merge branch taken. */
succession redefines f_before_ms : MyTouchup_Before_Merge_Link [1]

first finish then mShip;

/* Merge. */
step redefines mShip: MyMergeToShip [1];

/* After merge */
step redefines ship : MyShip [1];
succession redefines ms_before_s : MyMerge_Before_Ship_Link [1]

first mShip then ship;

/* Decision and merge timing constraints. */
feature redefines inspectOutgoingHBLinks : MyInspect_Before_Touchup_Link;
feature redefines mShipIncomingHBLinks : MyTouchup_Before_Merge_Link;

}

Kernel Modeling Language v1.0 Beta 4 419

A.3.8 Timing for behavior, Changing feature values

This covers changes in feature values of occurrences. Change execution requires creating additional atoms for the
periods (time slices) when feature values are unchanged for each occurrence (life), and ordering the slices in time as
feature values change. Time slice atoms are also occurrences, but represent the same thing as their life occurrence,
just for a potentially smaller period of time, see 9.2.4.1 .

Changes to occurrence feature values is modeled using the library behavior FeatureWritePerformance as a step,
specifying when the change is to happen, see 9.2.8.1 . Time slices are created each time it is performed.

The example below adds to the example in A.3.6 .

• A class with changeable features (MyProduct with isPainted, isDry, isShipped).
• Features of behaviors to identify the above (objectToFinish).
• FeatureWritePerformance steps specifying when and how to change its feature values (in Paint, Dry, and

Ship).

FeatureWritePerformances ensure when they finish that the occurrence has a time slice starting right then with the
feature values specified, though the values might change immediately afterwards. Execution must define time slice
atoms that prevent feature values from changing between FeatureWritePerformances, see below.

behavior Manufacture {
feature objectToFinish : Product [1];
step paint : Paint [1]{

redefines objectToPaint = objectToFinish;
}
step dry : Dry [*] {

redefines objectToDry = objectToFinish;
}
succession p_before_d first [1] paint then [1] dry;
step ship : Ship [*] {

redefines objectToShip = objectToFinish;
}
succession d_before_s first [1] dry then [1] ship;

}

struct Product {
feature isPainted : Boolean [1] := false;
feature isDry : Boolean [1] := true;
feature isShipped : Boolean [1] := false;

}

behavior Paint {
feature objectToPaint : Product [1];

step painting : FeatureWritePerformance [1] {
in redefines onOccurrence : Product = objectToPaint {

redefines startingAt : Product {
redefines accessedFeature : Boolean [1] subsets isDry; } }

in redefines replacementValues = false;
}

succession p_before_p first [1] painting then [1] painted;
step painted : FeatureWritePerformance [*] {

in redefines onOccurrence : Product = objectToPaint {
redefines startingAt : Product {

redefines accessedFeature : Boolean [1] subsets isPainted; } }
in redefines replacementValues = true;

}
}

420 Kernel Modeling Language v1.0 Beta 4

behavior Dry {
feature objectToDry : Product [1];
step dried : FeatureWritePerformance [1] {

in redefines onOccurrence : Product = objectToDry {
redefines startingAt : Product {

redefines accessedFeature : Boolean [1] subsets isDry; } }
in redefines replacementValues = true;

}
}

behavior Ship {
feature objectToShip : Product [1];
step shipped : FeatureWritePerformance [1] {

in redefines onOccurrence : Product = objectToShip {
redefines startingAt : Product {

redefines accessedFeature : Boolean [1] subsets isShipped; } }
in redefines replacementValues = true;

}
}

The instantiation procedure is amended with

6. For behaviors with FeatureWritePerformances
a. Create classes for time slices (ProductTimeSlice) specializing the kinds of things they are slicing

(Product), and redefining the features being modified as readonly (isPainted, isDry,
isShipped).

b. Add time slice features to atoms of the kinds of things being modified (MyProduct):
i. Before the first FeatureWritePerformance (beforePaint),

ii. Between each successive FeatureWritePerformance (whilePainting, afterPaint,
afterDry),

iii. After the last FeatureWritePerformance (afterShip)
c. In the behavior atom using FeatureWritePerformance (MyManufacture), create atoms for the

above time slice features in order, assigning values to all the features, even if they were not
modified, and specify that

i. The first time slice above (i)
▪ Starts (startShot) at the same time (timeCoincidentOccurrences) as

the behavior.
▪ Ends just before (immediateSuccessors) the first

FeatureWritePerformance does (paint.painting.endShot).
ii. The middle time slices (ii)

▪ Start at the same time a FeatureWritePerformance ends.
▪ End just before the next one does.

iii. The last time slice (iii)
▪ Starts at the same time the last FeatureWritePerformance ends

(ship.shipped.endShot).
▪ Ends at the same times as the behavior.

The instantiation steps above produce the following atoms, adding to (or modifying) those created in A.3.3 . Step 6.a
produces

#atom
struct MyProduct specializes Product;
#atom
behavior MyManufacture specializes Manufacture;

struct ProductTimeSlice specializes Product {
readonly feature redefines isPainted;
readonly feature redefines isDry;

Kernel Modeling Language v1.0 Beta 4 421

readonly feature redefines isShipped;
}

Instantiation step 6.b.i. the start of 6.c.i produces the first time slice (beforePaint) and starts it.

#atom
struct MyProduct specializes Product {

feature beforePaint : ProductTimeSlice [1] subsets timeSlices;
}
#atom
behavior MyManufacture specializes Manufacture {

feature redefines objectToFinish : MyProduct;
feature redefines startShot

subsets objectToFinish.beforePaint.startShot.timeCoincidentOccurrences;
feature obPiP chains objectToFinish.beforePaint.isPainted = false;
feature obPiD chains objectToFinish.beforePaint.isDry = true;
feature obPiS chains objectToFinish.beforePaint.isShipped = false;

}

The first of instantiation step 6.b.ii and first start of 6.c.ii produces the second time slice (whilePainting), while
the end of 6.c.i ends the first (beforePaint). The MyManufacture features above are omitted for brevity.

#atom
struct MyProduct specializes Product {

feature beforePaint : ProductTimeSlice [1] subsets timeSlices;
feature whilePainting : ProductTimeSlice [1] subsets timeSlices;

}

behavior MyProductFeatureWrite specializes FeatureWritePerformance {
in redefines onOccurrence : MyProduct;

}
#atom
behavior PaintingMyProductFeatureWrite specializes MyProductFeatureWrite;
#atom
behavior MyPaint specializes Paint {

feature redefines objectToPaint : MyProduct;
step redefines painting : PaintingMyProductFeatureWrite;

}
#atom
behavior MyManufacture specializes Manufacture {

...
step redefines paint : MyPaint;
feature subsets objectToFinish.beforePaint.immediateSuccessors,

objectToFinish.whilePainting.startShot.timeCoincidentOccurrences
chains paint.painting.endShot;

feature owPiP chains objectToFinish.whilePainting.isPainted = false;
feature owPiD chains objectToFinish.whilePainting.isDry = false;
feature owPiS chains objectToFinish.whilePainting.isShipped = false;

}

The second of instantiation step 6.b.ii and second start of 6.c.ii produces the third time slice (afterPaint), while
the end of the first 6.c.ii ends the second (whilePainting).

#atom
struct MyProduct specializes Product {

feature beforePaint : ProductTimeSlice [1] subsets timeSlices;
feature whilePainting : ProductTimeSlice [1] subsets timeSlices;
feature afterPaint : ProductTimeSlice [1] subsets timeSlices;

}
#atom
behavior PaintedMyProductFeatureWrite specializes MyProductFeatureWrite;
#atom

422 Kernel Modeling Language v1.0 Beta 4

assoc MyPaintingFW_Before_PaintFW_Link specializes HappensBefore {
end feature redefines earlierOccurrence : PaintingMyProductFeatureWrite;
end feature redefines laterOccurrence : PaintedMyProductFeatureWrite;

}
#atom
behavior MyPaint specializes Paint {

feature redefines objectToPaint : MyProduct;
step redefines painting : PaintingMyProductFeatureWrite;
step redefines painted : PaintedMyProductFeatureWrite;
succession redefines p_before_p : MyPaintingFW_Before_PaintFW_Link

first painting then painted;
}
#atom
behavior MyManufacture specializes Manufacture {

...
feature subsets objectToFinish.whilePainting.immediateSuccessors,

objectToFinish.afterPaint.startShot.timeCoincidentOccurrences
chains paint.painted.endShot;

feature oaPiP chains objectToFinish.afterPaint.isPainted = true;
feature oaPiD chains objectToFinish.afterPaint.isDry = false;
feature oaPiS chains objectToFinish.afterPaint.isShipped = false;

}

The third of instantiation step 6.b.ii and third start of 6.c.ii produces the fourth time slice (afterDry), while the end
of the second 6.c.ii ends the third (afterPaint).

#atom
struct MyProduct specializes Product {

feature beforePaint : ProductTimeSlice [1] subsets timeSlices;
feature whilePainting : ProductTimeSlice [1] subsets timeSlices;
feature afterPaint : ProductTimeSlice [1] subsets timeSlices;
feature afterDry : ProductTimeSlice [1] subsets timeSlices;

}
#atom
behavior MyDry specializes Dry {

feature redefines objectToDry : MyProduct;
step redefines dried : MyProductFeatureWrite;

}
#atom
assoc MyPaint_Before_Dry_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyPaint;
end feature redefines laterOccurrence : MyDry;

}
behavior MyManufacture specializes Manufacture {

...
step redefines dry : MyDry;
succession redefines p_before_d : MyPaint_Before_Dry_Link [1] first paint then dry;
feature subsets objectToFinish.afterPaint.immediateSuccessors,

objectToFinish.afterDry.startShot.timeCoincidentOccurrences
chains dry.dried.endShot;

feature oaDiP chains objectToFinish.afterDry.isPainted = true;
feature oaDiD chains objectToFinish.afterDry.isDry = true;
feature oaDiS chains objectToFinish.afterDry.isShipped = false;

}

Instantiation step 6.b.iii and 6.c.iii produce the fifth time slice (afterShip), while the end of the third 6.c.ii ends
the fourth (afterDry).

#atom
struct MyProduct specializes Product {

feature beforePaint : ProductTimeSlice [1] subsets timeSlices;
feature whilePainting : ProductTimeSlice [1] subsets timeSlices;

Kernel Modeling Language v1.0 Beta 4 423

feature afterPaint : ProductTimeSlice [1] subsets timeSlices;
feature afterDry : ProductTimeSlice [1] subsets timeSlices;
feature afterShip : ProductTimeSlice [1] subsets timeSlices;

}
#atom
behavior MyShip specializes Ship {

feature redefines objectToShip : MyProduct;
step redefines shipped : MyProductFeatureWrite;

}
#atom
assoc MyDry_Before_Ship_Link specializes HappensBefore {

end feature redefines earlierOccurrence : MyDry;
end feature redefines laterOccurrence : MyShip;

}
#atom
behavior MyManufacture specializes Manufacture {

...
step redefines ship : MyShip;
succession redefines d_before_s : MyDry_Before_Ship_Link [1] first dry then ship;
feature subsets objectToFinish.afterDry.immediateSuccessors,

objectToFinish.afterShip.startShot.timeCoincidentOccurrences
chains ship.shipped.endShot;

feature redefines endShot subsets objectToFinish.afterShip.timeCoincidentOccurrences;
feature oaSiP chains objectToFinish.afterShip.isPainted = true;
feature oaSiD chains objectToFinish.afterShip.isDry = true;
feature oaSiS chains objectToFinish.afterShip.isShipped = true;

}

424 Kernel Modeling Language v1.0 Beta 4

	Table of Contents
	List of Tables
	List of Figures
	0 Preface
	OMG Specifications

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Symbols
	6 Introduction
	6.1 Language Architecture
	6.2 Document Organization
	6.3 Acknowledgements

	7 Language Description
	7.1 Language Description Overview
	7.2 Root
	7.2.1 Root Overview
	7.2.2 Elements and Relationships
	7.2.2.1 Elements and Relationships Overview
	7.2.2.2 Elements
	7.2.2.3 Relationships

	7.2.3 Dependencies
	7.2.3.1 Dependencies Overview
	7.2.3.2 Dependency Declaration

	7.2.4 Annotations
	7.2.4.1 Annotations Overview
	7.2.4.2 Comments and Documentation
	7.2.4.3 Textual Representations

	7.2.5 Namespaces
	7.2.5.1 Namespaces Overview
	7.2.5.2 Namespace Declaration
	7.2.5.3 Root Namespaces
	7.2.5.4 Imports

	7.3 Core
	7.3.1 Core Overview
	7.3.2 Types
	7.3.2.1 Types Overview
	7.3.2.2 Type Declaration
	7.3.2.3 Specialization
	7.3.2.4 Conjugation
	7.3.2.5 Disjoining
	7.3.2.6 Feature Membership
	7.3.2.7 Unioning, Intersecting, and Differencing

	7.3.3 Classifiers
	7.3.3.1 Classifiers Overview
	7.3.3.2 Classifier Declaration
	7.3.3.3 Subclassification

	7.3.4 Features
	7.3.4.1 Features Overview
	7.3.4.2 Feature Declaration
	7.3.4.3 Feature Typing
	7.3.4.4 Subsetting
	7.3.4.5 Redefinition
	7.3.4.6 Feature Chaining
	7.3.4.7 Feature Inverting
	7.3.4.8 Type Featuring

	7.4 Kernel
	7.4.1 Kernel Overview
	7.4.2 Data Types
	7.4.3 Classes
	7.4.4 Structures
	7.4.5 Associations
	7.4.5.1 Associations Overview
	7.4.5.2 Association Declaration
	7.4.5.3 Association Structures

	7.4.6 Connectors
	7.4.6.1 Connectors Overview
	7.4.6.2 Connector Declaration
	7.4.6.3 Binding Connector Declaration
	7.4.6.4 Succession Declaration

	7.4.7 Behaviors
	7.4.7.1 Behaviors Overview
	7.4.7.2 Behavior Declaration
	7.4.7.3 Step Declaration

	7.4.8 Functions
	7.4.8.1 Functions Overview
	7.4.8.2 Function Declaration
	7.4.8.3 Expression Declaration
	7.4.8.4 Predicate Declaration
	7.4.8.5 Boolean Expression and Invariant Declaration

	7.4.9 Expressions
	7.4.9.1 Expressions Overview
	7.4.9.2 Operator Expressions
	7.4.9.3 Primary Expressions
	7.4.9.4 Base Expressions
	7.4.9.5 Literal Expressions

	7.4.10 Interactions
	7.4.10.1 Interactions Overview
	7.4.10.2 Interaction Declaration
	7.4.10.3 Flow Declaration

	7.4.11 Feature Values
	7.4.12 Multiplicities
	7.4.13 Metadata
	User-Defined Keywords

	7.4.14 Packages

	8 Metamodel
	8.1 Metamodel Overview
	8.2 Concrete Syntax
	8.2.1 Concrete Syntax Overview
	8.2.2 Lexical Structure
	8.2.2.1 Line Terminators and White Space
	8.2.2.2 Notes and Comments
	8.2.2.3 Names
	8.2.2.4 Numeric Values
	8.2.2.5 String Value
	8.2.2.6 Reserved Words
	8.2.2.7 Symbols

	8.2.3 Root Concrete Syntax
	8.2.3.1 Elements and Relationships Concrete Syntax
	8.2.3.2 Dependencies Concrete Syntax
	8.2.3.3 Annotations Concrete Syntax
	8.2.3.3.1 Annotations
	8.2.3.3.2 Comments and Documentation
	8.2.3.3.3 Textual Representation

	8.2.3.4 Namespaces Concrete Syntax
	8.2.3.4.1 Namespaces
	8.2.3.4.2 Imports
	8.2.3.4.3 Namespace Elements

	8.2.3.5 Name Resolution
	8.2.3.5.1 Name Resolution Overview
	8.2.3.5.2 Local and Global Namespaces
	8.2.3.5.3 Local and Visible Resolution
	8.2.3.5.4 Full Resolution

	8.2.4 Core Concrete Syntax
	8.2.4.1 Types Concrete Syntax
	8.2.4.1.1 Types
	8.2.4.1.2 Specialization
	8.2.4.1.3 Conjugation
	8.2.4.1.4 Disjoining
	8.2.4.1.5 Unioning, Intersecting and Differencing
	8.2.4.1.6 Feature Membership

	8.2.4.2 Classifiers Concrete Syntax
	8.2.4.2.1 Classifiers
	8.2.4.2.2 Subclassification

	8.2.4.3 Features Concrete Syntax
	8.2.4.3.1 Features
	8.2.4.3.2 Feature Typing
	8.2.4.3.3 Subsetting
	8.2.4.3.4 Redefinition
	8.2.4.3.5 Feature Chaining
	8.2.4.3.6 Feature Inverting
	8.2.4.3.7 Type Featuring

	8.2.5 Kernel Concrete Syntax
	8.2.5.1 Data Types Concrete Syntax
	8.2.5.2 Classes Concrete Syntax
	8.2.5.3 Structures Concrete Syntax
	8.2.5.4 Associations Concrete Syntax
	8.2.5.5 Connectors Concrete Syntax
	8.2.5.5.1 Connectors
	8.2.5.5.2 Binding Connectors
	8.2.5.5.3 Successions

	8.2.5.6 Behaviors Concrete Syntax
	8.2.5.6.1 Behaviors
	8.2.5.6.2 Steps

	8.2.5.7 Functions Concrete Syntax
	8.2.5.7.1 Functions
	8.2.5.7.2 Expressions
	8.2.5.7.3 Predicates
	8.2.5.7.4 Boolean Expressions and Invariants

	8.2.5.8 Expressions Concrete Syntax
	8.2.5.8.1 Operator Expressions
	8.2.5.8.2 Primary Expressions
	8.2.5.8.3 Base Expressions
	8.2.5.8.4 Literal Expressions

	8.2.5.9 Interactions Concrete Syntax
	8.2.5.9.1 Interactions
	8.2.5.9.2 Flows

	8.2.5.10 Feature Values Concrete Syntax
	8.2.5.11 Multiplicities Concrete Syntax
	8.2.5.12 Metadata Concrete Syntax
	8.2.5.13 Packages Concrete Syntax

	8.3 Abstract Syntax
	8.3.1 Abstract Syntax Overview
	8.3.2 Root Abstract Syntax
	8.3.2.1 Elements and Relationships Abstract Syntax
	8.3.2.1.1 Overview
	8.3.2.1.2 Element
	8.3.2.1.3 Relationship

	8.3.2.2 Dependencies Abstract Syntax
	8.3.2.2.1 Overview
	8.3.2.2.2 Dependency

	8.3.2.3 Annotations Abstract Syntax
	8.3.2.3.1 Overview
	8.3.2.3.2 AnnotatingElement
	8.3.2.3.3 Annotation
	8.3.2.3.4 Comment
	8.3.2.3.5 Documentation
	8.3.2.3.6 TextualRepresentation

	8.3.2.4 Namespaces Abstract Syntax
	8.3.2.4.1 Overview
	8.3.2.4.2 Import
	8.3.2.4.3 Membership
	8.3.2.4.4 MembershipImport
	8.3.2.4.5 Namespace
	8.3.2.4.6 NamespaceImport
	8.3.2.4.7 VisibilityKind
	8.3.2.4.8 OwningMembership

	8.3.3 Core Abstract Syntax
	8.3.3.1 Types Abstract Syntax
	8.3.3.1.1 Overview
	8.3.3.1.2 Conjugation
	8.3.3.1.3 Differencing
	8.3.3.1.4 Disjoining
	8.3.3.1.5 FeatureDirectionKind
	8.3.3.1.6 FeatureMembership
	8.3.3.1.7 Intersecting
	8.3.3.1.8 Specialization
	8.3.3.1.9 Multiplicity
	8.3.3.1.10 Type
	8.3.3.1.11 Unioning

	8.3.3.2 Classifiers Abstract Syntax
	8.3.3.2.1 Overview
	8.3.3.2.2 Classifier
	8.3.3.2.3 Subclassification

	8.3.3.3 Features Abstract Syntax
	8.3.3.3.1 Overview
	8.3.3.3.2 CrossSubsetting
	8.3.3.3.3 EndFeatureMembership
	8.3.3.3.4 Feature
	8.3.3.3.5 FeatureChaining
	8.3.3.3.6 FeatureInverting
	8.3.3.3.7 FeatureTyping
	8.3.3.3.8 Redefinition
	8.3.3.3.9 ReferenceSubsetting
	8.3.3.3.10 Subsetting
	8.3.3.3.11 TypeFeaturing

	8.3.4 Kernel Abstract Syntax
	8.3.4.1 Data Types Abstract Syntax
	8.3.4.1.1 Overview
	8.3.4.1.2 DataType

	8.3.4.2 Classes Abstract Syntax
	8.3.4.2.1 Overview
	8.3.4.2.2 Class

	8.3.4.3 Structures Abstract Syntax
	8.3.4.3.1 Overview
	8.3.4.3.2 Structure

	8.3.4.4 Associations Abstract Syntax
	8.3.4.4.1 Overview
	8.3.4.4.2 Association
	8.3.4.4.3 AssociationStructure

	8.3.4.5 Connectors Abstract Syntax
	8.3.4.5.1 Overview
	8.3.4.5.2 Binding Connector
	8.3.4.5.3 Connector
	8.3.4.5.4 Succession

	8.3.4.6 Behaviors Abstract Syntax
	8.3.4.6.1 Overview
	8.3.4.6.2 Behavior
	8.3.4.6.3 Step
	8.3.4.6.4 ParameterMembership

	8.3.4.7 Functions Abstract Syntax
	8.3.4.7.1 Overview
	8.3.4.7.2 BooleanExpression
	8.3.4.7.3 Expression
	8.3.4.7.4 Function
	8.3.4.7.5 Invariant
	8.3.4.7.6 Predicate
	8.3.4.7.7 ResultExpressionMembership
	8.3.4.7.8 ReturnParameterMembership

	8.3.4.8 Expressions Abstract Syntax
	8.3.4.8.1 Overview
	8.3.4.8.2 CollectExpression
	8.3.4.8.3 ConstructorExpression
	8.3.4.8.4 FeatureChainExpression
	8.3.4.8.5 FeatureReferenceExpression
	8.3.4.8.6 IndexExpression
	8.3.4.8.7 InstantiationExpression
	8.3.4.8.8 InvocationExpression
	8.3.4.8.9 LiteralBoolean
	8.3.4.8.10 LiteralExpression
	8.3.4.8.11 LiteralInfinity
	8.3.4.8.12 LiteralInteger
	8.3.4.8.13 LiteralRational
	8.3.4.8.14 LiteralString
	8.3.4.8.15 MetadataAccessExpression
	8.3.4.8.16 NullExpression
	8.3.4.8.17 OperatorExpression
	8.3.4.8.18 SelectExpression

	8.3.4.9 Interactions Abstract Syntax
	8.3.4.9.1 Overview
	8.3.4.9.2 Flow
	8.3.4.9.3 FlowEnd
	8.3.4.9.4 Interaction
	8.3.4.9.5 PayloadFeature
	8.3.4.9.6 SuccessionFlow

	8.3.4.10 Feature Values Abstract Syntax
	8.3.4.10.1 Overview
	8.3.4.10.2 FeatureValue

	8.3.4.11 Multiplicities Abstract Syntax
	8.3.4.11.1 Overview
	8.3.4.11.2 MultiplicityRange

	8.3.4.12 Metadata Abstract Syntax
	8.3.4.12.1 Overview
	8.3.4.12.2 Metaclass
	8.3.4.12.3 MetadataFeature

	8.3.4.13 Packages Abstract Syntax
	8.3.4.13.1 Overview
	8.3.4.13.2 ElementFilterMembership
	8.3.4.13.3 LibraryPackage
	8.3.4.13.4 Package

	8.4 Semantics
	8.4.1 Semantics Overview
	8.4.2 Semantic Constraints and Implied Relationships
	8.4.3 Core Semantics
	8.4.3.1 Core Semantics Overview
	8.4.3.1.1 Core Semantic Constraints
	8.4.3.1.2 Core Semantics Mathematical Preliminaries

	8.4.3.2 Types Semantics
	8.4.3.3 Classifiers Semantics
	8.4.3.4 Features Semantics

	8.4.4 Kernel Semantics
	8.4.4.1 Kernel Semantics Overview
	8.4.4.2 Data Types Semantics
	8.4.4.3 Classes Semantics
	8.4.4.4 Structures Semantics
	8.4.4.5 Associations Semantics
	8.4.4.5.1 Associations
	8.4.4.5.2 Association Structures

	8.4.4.6 Connectors Semantics
	8.4.4.6.1 Connectors
	8.4.4.6.2 Binding Connectors
	8.4.4.6.3 Successions

	8.4.4.7 Behaviors Semantics
	8.4.4.7.1 Behaviors
	8.4.4.7.2 Steps

	8.4.4.8 Functions Semantics
	8.4.4.8.1 Functions and Predicates
	8.4.4.8.2 Expressions and Invariants

	8.4.4.9 Expressions Semantics
	8.4.4.9.1 Null Expressions
	8.4.4.9.2 Literal Expressions
	8.4.4.9.3 Feature Reference Expressions
	8.4.4.9.4 Constructor Expressions
	8.4.4.9.5 Invocation Expressions
	8.4.4.9.6 Operator Expressions
	Control Functions
	8.4.4.9.7 Metadata Access Expressions
	8.4.4.9.8 Model-Level Evaluable Expressions

	8.4.4.10 Interactions Semantics
	8.4.4.10.1 Interactions
	8.4.4.10.2 Flows

	8.4.4.11 Feature Values Semantics
	8.4.4.12 Multiplicities Semantics
	8.4.4.12.1 Multiplicities
	8.4.4.12.2 Multiplicity Ranges

	8.4.4.13 Metadata Semantics
	8.4.4.13.1 Metaclasses
	8.4.4.13.2 Metadata Features
	8.4.4.13.3 Semantic Metadata

	8.4.4.14 Packages Semantics

	9 Model Libraries
	9.1 Model Libraries Overview
	9.2 Semantic Library
	9.2.1 Semantic Library Overview
	9.2.2 Base
	9.2.2.1 Base Overview
	9.2.2.2 Elements
	9.2.2.2.1 Anything
	9.2.2.2.2 DataValue
	9.2.2.2.3 dataValues
	9.2.2.2.4 exactlyOne
	9.2.2.2.5 naturals
	9.2.2.2.6 oneToMany
	9.2.2.2.7 things
	9.2.2.2.8 zeroOrOne
	9.2.2.2.9 zeroToMany

	9.2.3 Links
	9.2.3.1 Links Overview
	9.2.3.2 Elements
	9.2.3.2.1 BinaryLink
	9.2.3.2.2 binaryLinks
	9.2.3.2.3 Link
	9.2.3.2.4 links
	9.2.3.2.5 SelfLink
	9.2.3.2.6 selfLinks

	9.2.4 Occurrences
	9.2.4.1 Occurrences Overview
	Occurrences
	Lives and Portions
	Time and Space Slices
	Temporal and Spatial Associations
	Other Time-Space Relations
	Space Boundaries and Interiors

	9.2.4.2 Elements
	9.2.4.2.1 HappensBefore
	9.2.4.2.2 happensBeforeLinks
	9.2.4.2.3 HappensDuring
	9.2.4.2.4 HappensJustBefore
	9.2.4.2.5 HappensLink
	9.2.4.2.6 HappensWhile
	9.2.4.2.7 IncomingTransferSort
	9.2.4.2.8 InnerSpaceOf
	9.2.4.2.9 InsideOf
	9.2.4.2.10 JustOutsideOf
	9.2.4.2.11 Life
	9.2.4.2.12 MatesWith
	9.2.4.2.13 Occurrence
	9.2.4.2.14 occurrences
	9.2.4.2.15 OutsideOf
	9.2.4.2.16 PortionOf
	9.2.4.2.17 SelfSameLifeLink
	9.2.4.2.18 SnapshotOf
	9.2.4.2.19 SpaceLink
	9.2.4.2.20 SpaceShotOf
	9.2.4.2.21 SpaceSliceOf
	9.2.4.2.22 SurroundedBy
	9.2.4.2.23 TimeSliceOf
	9.2.4.2.24 Within
	9.2.4.2.25 WithinBoth
	9.2.4.2.26 Without

	9.2.5 Objects
	9.2.5.1 Objects Overview
	Structured Space Objects

	9.2.5.2 Elements
	9.2.5.2.1 BinaryLinkObject
	9.2.5.2.2 binaryLinkObjects
	9.2.5.2.3 Body
	9.2.5.2.4 Curve
	9.2.5.2.5 LinkObject
	9.2.5.2.6 linkObjects
	9.2.5.2.7 Object
	9.2.5.2.8 objects
	9.2.5.2.9 Point
	9.2.5.2.10 StructuredSpaceObject
	9.2.5.2.11 Surface

	9.2.6 Performances
	9.2.6.1 Performances Overview
	Performances
	Evaluations

	9.2.6.2 Elements
	9.2.6.2.1 BooleanEvaluation
	9.2.6.2.2 booleanEvaluations
	9.2.6.2.3 constructorEvaluations
	9.2.6.2.4 Evaluation
	9.2.6.2.5 evaluations
	9.2.6.2.6 falseEvaluations
	9.2.6.2.7 InvolvedIn
	9.2.6.2.8 LiteralEvaluation
	9.2.6.2.9 literalEvaluations
	9.2.6.2.10 MetadataAccessEvaluation
	9.2.6.2.11 metadataAccessEvaluations
	9.2.6.2.12 NullEvaluation
	9.2.6.2.13 nullEvaluations
	9.2.6.2.14 Performance
	9.2.6.2.15 performances
	9.2.6.2.16 Performs
	9.2.6.2.17 trueEvaluations

	9.2.7 Transfers
	9.2.7.1 Transfers Overview
	9.2.7.2 Elements
	9.2.7.2.1 AcceptPerformance
	9.2.7.2.2 FlowTransfer
	9.2.7.2.3 FlowTransferBefore
	9.2.7.2.4 flowTransfers
	9.2.7.2.5 flowTransfersBefore
	9.2.7.2.6 MessageTransfer
	9.2.7.2.7 messageTransfers
	9.2.7.2.8 SendPerformance
	9.2.7.2.9 Transfer
	9.2.7.2.10 TransferBefore
	9.2.7.2.11 transfers
	9.2.7.2.12 transfersBefore

	9.2.8 Feature Referencing Performances
	9.2.8.1 Feature Referencing Performances Overview
	9.2.8.2 Elements
	9.2.8.2.1 BooleanEvaluationResultMonitorPerformance
	9.2.8.2.2 BooleanEvaluationResultToMonitorPerformance
	9.2.8.2.3 EvaluationResultMonitorPerformance
	9.2.8.2.4 FeatureAccessPerformance
	9.2.8.2.5 FeatureMonitorPerformance
	9.2.8.2.6 FeatureReadEvaluation
	9.2.8.2.7 FeatureReferencingPerformance
	9.2.8.2.8 FeatureWritePerformance

	9.2.9 Control Performances
	9.2.9.1 Control Performances Overview
	9.2.9.2 Elements
	9.2.9.2.1 DecisionPerformance
	9.2.9.2.2 IfElsePerformance
	9.2.9.2.3 IfPerformance
	9.2.9.2.4 IfThenElsePerformance
	9.2.9.2.5 IfThenPerformance
	9.2.9.2.6 LoopPerformance
	9.2.9.2.7 MergePerformance

	9.2.10 Transition Performances
	9.2.10.1 Transition Performances Overview
	9.2.10.2 Elements
	9.2.10.2.1 NonStateTransitionPerformance
	9.2.10.2.2 TPCGuardConstraint
	9.2.10.2.3 TransitionPerformance

	9.2.11 State Performances
	9.2.11.1 State Performances Overview
	9.2.11.2 Elements
	9.2.11.2.1 StatePerformance
	9.2.11.2.2 StateTransitionPerformance

	9.2.12 Clocks
	9.2.12.1 Clocks Overview
	9.2.12.2 Elements
	9.2.12.2.1 BasicClock
	9.2.12.2.2 BasicDurationOf
	9.2.12.2.3 BasicTimeOf
	9.2.12.2.4 Clock
	9.2.12.2.5 DurationOf
	9.2.12.2.6 TimeOf
	9.2.12.2.7 universalClock
	9.2.12.2.8 UniversalClockLife

	9.2.13 Observation
	9.2.13.1 Observation Overview
	9.2.13.2 Elements
	9.2.13.2.1 CancelObservation
	9.2.13.2.2 ChangeMonitor
	9.2.13.2.3 ChangeSignal
	9.2.13.2.4 defaultMonitor
	9.2.13.2.5 DefaultMonitorLife
	9.2.13.2.6 ObserveChange
	9.2.13.2.7 StartObservation

	9.2.14 Triggers
	9.2.14.1 Triggers Overview
	9.2.14.2 Elements
	9.2.14.2.1 TimeSignal
	9.2.14.2.2 TriggerAfter
	9.2.14.2.3 TriggerAt
	9.2.14.2.4 TriggerWhen

	9.2.15 SpatialFrames
	9.2.15.1 SpatialFrames Overview
	9.2.15.2 Elements
	9.2.15.2.1 CartesianCurrentDisplacementOf
	9.2.15.2.2 CartesianCurrentPositionOf
	9.2.15.2.3 CartesianDisplacementOf
	9.2.15.2.4 CartesianPositionOf
	9.2.15.2.5 CartesianSpatialFrame
	9.2.15.2.6 CurrentDisplacementOf
	9.2.15.2.7 CurrentPositionOf
	9.2.15.2.8 defaultFrame
	9.2.15.2.9 DefaultFrameLife
	9.2.15.2.10 DisplacementOf
	9.2.15.2.11 PositionOf
	9.2.15.2.12 SpatialFrame

	9.2.16 Metaobjects
	9.2.16.1 Metaobjects Overview
	9.2.16.2 Elements
	9.2.16.2.1 Metaobject
	9.2.16.2.2 metaobjects
	9.2.16.2.3 SemanticMetadata

	9.2.17 KerML

	9.3 Data Type Library
	9.3.1 Data Types Library Overview
	9.3.2 Scalar Values
	9.3.2.1 Scalar Values Overview
	9.3.2.2 Elements
	9.3.2.2.1 Boolean
	9.3.2.2.2 Complex
	9.3.2.2.3 Integer
	9.3.2.2.4 Natural
	9.3.2.2.5 Number
	9.3.2.2.6 NumericalValue
	9.3.2.2.7 Positive
	9.3.2.2.8 Rational
	9.3.2.2.9 Real
	9.3.2.2.10 ScalarValue
	9.3.2.2.11 String

	9.3.3 Collections
	9.3.3.1 Collections Overview
	9.3.3.2 Elements
	9.3.3.2.1 Array
	9.3.3.2.2 Bag
	9.3.3.2.3 Collection
	9.3.3.2.4 KeyValuePair
	9.3.3.2.5 List
	9.3.3.2.6 Map
	9.3.3.2.7 OrderedCollection
	9.3.3.2.8 OrderedMap
	9.3.3.2.9 OrderedSet
	9.3.3.2.10 Set
	9.3.3.2.11 UniqueCollection

	9.3.4 Vector Values
	9.3.4.1 Vector Values Overview
	9.3.4.2 Elements
	9.3.4.2.1 CartesianThreeVectorValue
	9.3.4.2.2 CartesianVectorValue
	9.3.4.2.3 NumericalVectorValue
	9.3.4.2.4 ThreeVectorValue
	9.3.4.2.5 VectorValue

	9.4 Function Library
	9.4.1 Function Library Overview
	9.4.2 Base Functions
	9.4.2.1 Base Functions Overview
	9.4.2.2 Elements

	9.4.3 Data Functions
	9.4.3.1 Data Functions Overview
	9.4.3.2 Elements

	9.4.4 Scalar Functions
	9.4.4.1 Scalar Functions Overview
	9.4.4.2 Elements

	9.4.5 Boolean Functions
	9.4.5.1 Boolean Functions Overview
	9.4.5.2 Elements

	9.4.6 String Functions
	9.4.6.1 String Functions Overview
	9.4.6.2 Elements

	9.4.7 Numerical Functions
	9.4.7.1 Numerical Functions Overview
	9.4.7.2 Elements

	9.4.8 Complex Functions
	9.4.8.1 Complex Functions Overview
	9.4.8.2 Elements

	9.4.9 Real Functions
	9.4.9.1 Real Functions Overview
	9.4.9.2 Elements

	9.4.10 Rational Functions
	9.4.10.1 Rational Functions Overview
	9.4.10.2 Elements

	9.4.11 Integer Functions
	9.4.11.1 Integer Functions Overview
	9.4.11.2 Elements

	9.4.12 Natural Functions
	9.4.12.1 Natural Functions Overview
	9.4.12.2 Elements

	9.4.13 Trig Functions
	9.4.13.1 Trig Functions Overview
	9.4.13.2 Elements

	9.4.14 Sequence Functions
	9.4.14.1 Sequence Functions Overview
	9.4.14.2 Elements

	9.4.15 Collection Functions
	9.4.15.1 Collection Functions Overview
	9.4.15.2 Elements

	9.4.16 Vector Functions
	9.4.16.1 Vector Functions Overview
	9.4.16.2 Elements

	9.4.17 Control Functions
	9.4.17.1 Control Functions Overview
	9.4.17.2 Elements

	9.4.18 Occurrence Functions
	9.4.18.1 Occurrence Functions Overview
	9.4.18.2 Elements

	10 Model Interchange
	10.1 Model Interchange Overview
	10.2 Model Interchange Formats
	10.3 Model Interchange Projects
	10.4 JSON Serialization
	10.4.1 Serialization Overview
	10.4.2 Primitive Type Serialization
	10.4.3 Enumeration Serialization
	10.4.4 Element Reference Serialization
	10.4.5 Element Serialization
	10.4.6 Model Serialization

	A Annex: Model Execution
	A.1 Overview
	A.2 Modeling Instances and Feature Values
	A.3 Instantiation Procedure
	A.3.1 Overview
	A.3.2 Without connectors
	A.3.3 One-to-one connectors
	A.3.4 One-to-unrestricted connectors
	A.3.5 Timing for structures
	A.3.6 Timing for behaviors, Sequences
	A.3.7 Timing for behaviors, Decisions and merges
	A.3.8 Timing for behavior, Changing feature values

