
General Ledger Specification

February 2001
Version 1.0

Copyright 1999, Blueprint Technologies, Inc.
Copyright 1999, Economica AS.
Copyright 1999, Real Objects Ltd.
Copyright 1999, SINTEF AS.
Copyright 1999, Stanford Software International Ltd.
Copyright 1999, The Software Box Ltd.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the mod-
ified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm.

Contents
Preface . 1

1. Overview . 1-1
1.1 GL Facility - Description . 1-1

1.2 GL Facility - Approach . 1-2

1.3 GL Facility - Interface Summary . 1-3

1.4 GL Facility - Architecture . 1-3

2. Modules and Interfaces. 2-1
2.1 Module - CORBA::FdGeneralLedger 2-1

2.1.1 GL Facility - Included OMG/ISO IDL Files. . . 2-2

2.1.2 GL Facility - Module FdGeneralLedger 2-2
2.1.3 GL Facility - Environment Contract 2-2

2.1.4 GL Facility - General Invariants 2-2
2.1.5 GL Facility - Ledger Invariants 2-3

2.1.6 GL Facility - Account Invariants 2-3
2.1.7 GL Facility - Transaction Invariants 2-4

2.1.8 GL Facility - Entry Invariants. 2-4
2.1.9 GL Facility - Forward Declarations 2-5

2.1.10 GL Facility - Basic Data Type Naming
Conventions . 2-5

2.1.11 GL Facility - Basic Data Type Definitions 2-5

2.1.12 GL Facility - Basic Data Type Information . . . 2-6
2.1.13 GL Facility - Account Information 2-7

2.1.14 GL Facility - Transaction Information 2-8
2.1.15 GL Facility - Entry Information 2-9

2.1.16 GL Facility - Transaction Summary
Information. 2-10

2.1.17 GL Facility - Operation Exception Conditions . 2-10
2.1.18 GL Facility - Miscellaneous Operation

Exception Conditions . 2-13

2.2 GL Facility - Arbitrator Interface . 2-14

2.2.1 GL Arbitrator Interface General Invariants 2-14
2.2.2 GL Arbitrator Interface

Operation ::get_ledger_names() 2-14

2.2.3 GL Arbitrator Interface
Operation ::open_session() 2-15

2.3 GL Facility - Profile Interface . 2-16
2.3.1 GL Profile Interface General Invariants 2-17

2.3.2 GL Profile Interface
Operation ::close_session() 2-17
General Ledger, v1.0 i

Contents
2.3.3 GL Profile Interface Operation ::retrieval() . . . 2-18
2.3.4 GL Profile Interface Operation ::book_keeping() 2-19

2.3.5 GL Profile Interface Operation ::integrity() . . . 2-19
2.3.6 GL Profile Interface

Operation ::LedgerLifecycle() 2-20
2.3.7 GL Profile Interface

Operation ::FacilityLifecycle() 2-21

2.3.8 GL Profile Interface
Operation ::get_ledger_currency() 2-22

2.3.9 GL Profile Interface
Operation ::get_entry_types() 2-23

2.4 GL Facility - Retrieval Interface . 2-24

2.4.1 GL Retrieval Interface General Invariants 2-24
2.4.2 GL Retrieval Interface

Operation ::get_all_account_info() 2-25
2.4.3 GL Retrieval Interface Operation ::get_account()2-25

2.4.4 GL Retrieval Interface
Operation ::get_multiple_accounts() 2-26

2.4.5 GL Retrieval Interface
Operation ::get_all_accounts() 2-27

2.4.6 GL Retrieval Interface
Operation ::get_trans_ids() 2-28

2.4.7 GL Retrieval Interface
Operation ::get_trans_info_summary(). 2-29

2.4.8 GL Retrieval Interface
Operation ::get_trans_info_by_refs() 2-29

2.4.9 GL Retrieval Interface
Operation ::get_trans_info_by_date() 2-30

2.4.10 GL Retrieval Interface
Operation ::get_entry_count_by_account() . . . 2-31

2.4.11 GL Retrieval Interface
Operation ::get_entry_count_by_type() 2-32

2.4.12 GL Retrieval Interface
Operation ::get_transaction() 2-33

2.4.13 GL Retrieval Interface
Operation ::get_transactions_by_ids() 2-34

2.4.14 GL Retrieval Interface
Operation ::get_transactions_by_date() 2-35

2.4.15 GL Retrieval Interface
Operation ::get_entries_by_type() 2-36

2.4.16 GL Retrieval Interface
Operation ::get_entries_by_account(). 2-37

2.5 GL Facility - BookKeeping Interface 2-38
ii General Ledger, v1.0

Contents
2.5.1 GL BookKeeping Interface General Invariants. 2-38

2.5.2 GL BookKeeping Interface
Operation ::post_transaction() 2-38

2.5.3 GL BookKeeping Interface
Operation ::post_transaction_list() 2-40

2.6 GL Facility - LedgerLifecycle Interface. 2-41

2.6.1 GL LedgerLifecycle Interface General Invariants2-41
2.6.2 GL LedgerLifecycle Interface

Operation ::create_account() 2-41

2.6.3 GL LedgerLifecycle Interface
Operation ::remove_account() 2-42

2.6.4 GL LedgerLifecycle Interface
Operation ::modify_account() 2-43

2.6.5 GL LedgerLifecycle Interface
Operation ::set_ledger_currency() 2-44

2.6.6 GL LedgerLifecycle Interface
Operation ::set_entry_types() 2-45

2.7 GL Facility - Integrity Interface . 2-46
2.7.1 GL Integrity General Invariants 2-46

2.8 GL Integrity Interface Operation . 2-47

2.8.1 GL Integrity Interface
Operation ::get_dynamic_selection() 2-47

2.8.2 GL Integrity Interface
Operation ::check_integrity() 2-48

2.9 GL Facility - FacilityLifecycle Interface 2-48

2.9.1 GL FacilityLifecycle Interface
General Invariants. 2-49

2.9.2 GL FacilityLifecycle Interface
Operation ::create_ledger_chart_of_accounts() 2-49

2.9.3 GL FacilityLifecycle Interface
Operation ::remove_ledger() 2-50

 Appendix A - Complete OMG IDL A-1

 Appendix B - References . B-1

Appendix C - Requirements . C-1
General Ledger, v1.0 iii

Contents
iv General Ledger, v1.0

Preface
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.
February 2001 General Ledger, v1.0 1

Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Language Mappings, a collection of language mapping specifications. See
the individual language mapping specifications.

• CORBAservices: Common Object Services Specification contains specifications for
OMG’s Object Services.

• CORBAfacilities: Common Facilities Specification is a collection of services that
many applications may share, but which are not as fundamental as the Object
Services. For instance, a system management or electronic mail facility could be
classified as a common facility.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:
2 General Ledger, v1.0 February 2001

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Blueprint Technologies, Inc.

• Economica AS

• Real Objects Ltd.

• SINTEF AS

• Stanford Software International Ltd.

• The Software Box Ltd.
February 2001 General Ledger, v1.0 3

4 General Ledger, v1.0 February 2001

Overview 1
Contents

This chapter contains the following topics.

1.1 GL Facility - Description

The OMG General Ledger Facility defines the interfaces and their semantics that are
required to enable interoperability between General Ledger systems and accounting
applications, as well as other distributed objects and applications for accounting
purposes.

The business accounting function (of which, General Ledger is the common core) is a
statutory requirement for all commercial organizations and individual proprietorship. The
vast majority of General Ledger systems are proprietary, non-standard and non-
interoperable, even though the underlying accounting concepts have been stable for over
500 years. Applications such as Payroll systems and Report Writers need to interoperate
with General Ledger systems, however; this is currently a tedious, difficult, and error
prone task due to the general lack of technology standardization. Additionally, many
other accounting applications including Accounts Payable, Accounts Receivable,
Inventory, Sales and Purchase Order Processing, and Invoicing also need to interoperate
with General Ledger systems. Standard interfaces to General Ledger would allow the
user to mix and match different vendors’ implementations of accounting applications,
and enable interoperability with other kinds of applications.

Topic Page

“GL Facility - Description” 1-1

“GL Facility - Approach” 1-2

“GL Facility - Interface Summary” 1-3

“GL Facility - Architecture” 1-3
February 2001 General Ledger, v1.0 1-1

1

Figure 1-1 Ludwig von Mises Quotation

“Monetary calculation is the guiding star of action under the social system of division of
labor. It is the compass of the man embarking upon production ... [It] is the main vehicle
of planning and acting in the social setting of a society of free enterprise directed and
controlled by the market and its prices ... Our civilization is inseparably linked with our
methods of economic calculation. It would perish if we were to abandon this most
precious intellectual tool of acting. Goethe was right in calling book-keeping by double
entry ‘one of the finest inventions of the human mind’.” - Ludwig von Mises, Human
Action: A Treatise on Economics, Regnery, 1963.

1.2 GL Facility - Approach

The General Ledger (GL) Facility specifies interfaces that encapsulate distributed object
frameworks implementing accounting General Ledgers; these GLs are conformant with
International Accounting Standards for double entry book-keeping. The GL interfaces
comprise a framework (in the object-oriented sense) that supports the implementation of
accounting client applications (for example, Accounts Payable, Accounts Receivable,
Payroll, and so forth).

The architectural intention is to facilitate the convenient implementation of interoperable
accounting applications, referred to as “clients” in this specification. The overall
intention is to provide as complete a set of GL services as possible in order to support the
implementation of accounting clients that need to interoperate with one or more GL
Facility implementations.

All user interfaces are the responsibility of the clients whereas GL Facility
implementations are responsible for back-end operations. The GL Facility supports
various GL characteristics and operations such as persistence, multi-currency, and other
requirements specified by the Object Management Group's General Ledger Facility
Request for Proposal, as recommended by the OMG Financial Domain Task Force
(FDTF), the OMG Accounting Working Group, the European Union’s Esprit COMPASS
project, and many others.
1-2 General Ledger, v1.0 February 2001

1

1.3 GL Facility - Interface Summary

The General Ledger Facility defines interfaces (using OMG IDL | ISO DIS 14750) to
support the capabilities as outlined previously. Ta ble1-1 gives a high level description of
the General Ledger (GL) Facility interfaces. Subsequent sections describe the GL
Facility interfaces in more detail.

1.4 GL Facility - Architecture

Figure 1-2 Different Interfaces that Comprise the GL Facility

Figure 1-2 illustrates the different interfaces that comprise the GL Facility, as
documented previously in Table 1-1. The intention of the diagram is to show that one or
more GL client(s) makes a request for a new GL client session from the GL Facility’s
Arbitrator interface. If the invocation was successful, the GL

Table 1-1 General Ledger Interfaces

Interface Purpose Primary GL Client(s)
GL Arbitrator GL client session establishment all GL clients

GL Profile Discriminatory access to GL services GL client session

GL BookKeeping GL Transaction entry GL data entry clients

GL Retrieval GL information Retrieval operations GL reporting clients

GL LedgerLifecycle GL Lifecycle operations GL administration clients

GL Integrity GL Integrity checks GL administration clients

GL FacilityLifecycle GL Facility Lifecycle operations GL administration clients

GL Facility

Selected
General
Ledger

GL Facility
Arbitrator
Interface

Facility
Lifecycle

Ledger
Lifecycle

Book
Keeping

Retrieval

Integrity

GL Client (n+1)

GL Client (n)

Profile (n)

Profile (n+1)
February 2001 GL Facility - Interface Summary 1-3

1

Arbitrator::open_session() operation returns a GL Profile interface that provides
information about the current session, as well as making provision for controlled access
to the various interfaces and operations supported by the GL Facility.
1-4 General Ledger, v1.0 February 2001

Modules and Interfaces 2
Contents

This chapter contains the following topics.

2.1 Module - CORBA::FdGeneralLedger

The FdGeneralLedger module specifies the interfaces of the GL Facility, as well as
the structs, exceptions, and typedefs used by those interfaces. The interfaces are defined
for different types of client applications and users, so that a GL client does not have to
depend upon interfaces it doesn’t use.

Topic Page

“Module - CORBA::FdGeneralLedger” 2-1

“GL Facility - Arbitrator Interface” 2-14

“GL Facility - Profile Interface” 2-16

“GL Facility - Retrieval Interface” 2-24

“GL Facility - BookKeeping Interface” 2-38

“GL Facility - LedgerLifecycle Interface” 2-41

“GL Facility - Integrity Interface” 2-46

“GL Integrity Interface Operation” 2-47

“GL Facility - FacilityLifecycle Interface” 2-48
February 2001 General Ledger, v1.0 2-1

2

2.1.1 GL Facility - Included OMG/ISO IDL Files

#include <FbcCurrency.idl>#include <CBO.idl>

The GL Facility uses the Currency type as defined by the OMG Currency Facility
specification, and uses the DTime type defined by the OMG Common Business Objects
specification. See Appendix A for more information.

2.1.2 GL Facility - Module FdGeneralLedger

module FdGeneralLedger {

The module statement establishes the syntactic scope for the GL Facility definitions. The
module name follows the OMG Financial Domain Task Force naming standards by
prefixing the module name with “Fd.”

2.1.3 GL Facility - Environment Contract

The following bulleted items are the key assumptions provisioned for the environmental
objects containing and managing the GL Facility.

• The GL Facility assumes that GL client authentication for the security policy
domain has occurred prior to access to GL Facility interfaces. See Appendix A for
more information.

• The GL Facility assumes that access controls will be applied according to system
domain policies prior to and during GL client sessions. For example, the passing of
clear-text parameters in operation invocations will be protected from unauthorized
access or disclosure.

• The only interface provided to GL clients prior to GL session establishment is the
GL Arbitrator interface. The environment shall not disclose other GL interfaces to
GL clients. That is the responsibility of the GL Arbitrator interface. For example,
only the GL Arbitrator interface shall be advertised in the Trader Service and Name
Service. Other GL interfaces are provided by the GL Profile interface, subsequent to
GL client session establishment.

2.1.4 GL Facility - General Invariants

This section details key assumptions regarding the responsibilities of GL Facility
implementations, as well as detailing various invariants for General Ledgers, GL
Accounts, GL Transactions, and GL Entries.

The GL Facility maintains state for each client session. For example, each GL client
session concerns only one known General Ledger and that General Ledger's established
Chart of Accounts.
2-2 General Ledger, v1.0 February 2001

2

There is a one-to-one mapping between each General Ledger and each Chart of Accounts
in each GL Facility instance. This “single set of books” constraint is conformant with
International Accounting Standards. However, a GL Facility is not responsible for
enforcing this constraint in federation with other GL Facility installations.

Operations performed during each GL client session are constrained by session-specific
GL policies. See Section 2.9, “GL Facility - FacilityLifecycle Interface,” on page 2-48
for administrative operations.

Implementations make available at least one Chart of Accounts to GL clients so that an
initial GL client session may be established in situations where no General Ledgers exist.
This chart may either be empty or a default chart. Implementations with zero General
Ledgers are prohibited.

2.1.5 GL Facility - Ledger Invariants

The specified names of General Ledgers to be constrained and managed by the GL
Facility must be unique. The duplication of General Ledger names is prohibited. The
naming of specific General Ledgers is usually carried out by privileged GL Facility
administrators.

The decision to remove a specific General Ledger, GL Account, GL Transaction, or GL
Entry from the GL Facility is set by organizational and environment specific policies.

The currently selected General Ledger’s reporting currency is determined by
organizational policy. A reporting currency is the nominated currency used by a reporting
enterprise and is used in the presentation of general purpose financial statements. The
reporting enterprise is an enterprise or other organizational entity, for which there are
users who rely on general purpose financial statements as their major source of
information about the enterprise. A single General Ledger constrained by a GL Facility
implementation may support only a single reporting currency.

Individual GL Transactions and GL Entries must be “date stamped” in order to comply
with Generally Accepted Accounting Principles (GAAP). However, these date stamps
can have very different meanings and therefore impact. For example, GL Transactions
and GL Entries have an “actual date” that represents a “physical” or “actual” calendar
date. However, this date is not necessarily the same date as the “logical” accounting date
or “entry date” also associated with a GL Entry. It is assumed that GL Facility
implementations will support the GL Retrieval (and other) GL interface operations based
on either or both of the date semantics associated with GL Transactions and GL Entries.

2.1.6 GL Facility - Account Invariants

GL Account references constrained by a specific General Ledger’s Chart of Accounts
must be unique. The duplication of GL Account references is prohibited.

The decision to remove a specific GL Account from a specific General Ledger
constrained and managed by the GL Facility is set by organizational and environment
specific policies. The specific GL Account must exist and cannot be in use. GL Accounts
February 2001 Module - CORBA::FdGeneralLedger 2-3

2

that are in use cannot be removed. A GL Account is in use when there are associated GL
Transactions and/or GL Entries in the specified General Ledger or the balance of the
account is non-zero.

GL Accounts must be created with an account balance equal to zero. The monetary
amount represented by the balance of a single GL Account that has no associated GL
Transactions and/or GL Entries can only be equal to zero. A newly created GL Account
must be created first, prior to the posting of any GL Transactions and GL Entries to be
associated with a specified GL Account. The creation of new GL Accounts with a non-
zero balance is prohibited.

GL Account references may not be modified in any way. The only way to modify a GL
Account reference is by removing it before it is in use. A specified GL Account cannot
be modified if it is in use. The modification of GL Account references is prohibited.

2.1.7 GL Facility - Transaction Invariants

GL Transaction references must be unique. The duplication of GL Transaction references
is prohibited. GL Transaction references may not be removed or modified in any way.
The modification and removal of GL Transaction references is prohibited.

The sum of all GL Entry debits and credits constrained by any GL Transaction must be
equal (i.e., “balanced”). GL Transactions that are unbalanced are prohibited. If the debit
and credit accounts of the GL Entries constrained by a single GL Transaction are the
same, implementations will ensure that the debit takes place before the credit in the audit
trail.

GL Transaction references may be ignored by implementations that automatically
allocate these references at the server.

The GL Transaction BookKeeping::post_transaction_list() operation return values
must match the corresponding TransactionIdList for implementations, which allocate
GL Transaction references at the client.

2.1.8 GL Facility - Entry Invariants

A single GL Entry constrained by a single GL Transaction and posted to a specific
General Ledger constrained by the GL Facility has an identifier that must be unique. This
identifier represents the “audit trail” number of each GL entry.

GL Entries may not be removed or modified in any way. A GL Entry that has been
posted to any General Ledger constrained and managed by an instance of the GL Facility
cannot be removed or modified. The modification and/or removal of GL Entries is
prohibited.

A single GL Entry constrained by a single GL Transaction and posted to a specific
General Ledger has an identifier that specifies whether the GL Entry was a debit or
credit. A single GL Entry can only be a debit or credit.
2-4 General Ledger, v1.0 February 2001

2

A single GL Entry constrained by a single GL Transaction and posted to a specific
General Ledger constrained and managed by an instance of the GL Facility has an
identifier that specifies the precise nature of that GL Entry. Implementations claiming
conformance with this specification provide each GL Entry a type with a unique GL
Entry type code, which semantically differentiates between the various types of GL
related financial accounting transactions (for example, “Journal Debit” or “Journal
Credit.”)

A single GL Entry constrained by a single GL Transaction and posted to a specific
General Ledger constrained and managed by the GL Facility will record details of the
amount (debited or credited) in a foreign currency, as well as in the nominated reporting
currency for a specific General Ledger.

2.1.9 GL Facility - Forward Declarations

Forward declarations are included for all of the interfaces defined in the GL Facility.

interface Arbitrator; // establish GL client session
interface Profile; // GL Facility metadata
interface BookKeeping; // GL data entry
interface Retrieval; // GL data acquisition
interface LedgerLifecycle; // GL lifecycle management
interface Integrity; // GL data integrity checks
interface FacilityLifecycle; // GL Facility lifecycle management

2.1.10 GL Facility - Basic Data Type Naming Conventions

The FdGeneralLedger module defines several data types for GL accounting information.
Among these are a number of sequence types, which follow the naming convention
<T>List where <T> is the type of the sequence elements. All string types used in the
module are wstrings.

2.1.11 GL Facility - Basic Data Type Definitions

typedef FbcCurrency::Money Money; // imported from the OMG Currency
// specification, module FbcCurrency

typedef sequence<wstring> wstringList; // sequence of type wstring
typedef sequence<boolean> booleanList; // sequence of type boolean
typedef sequence <octet> octetList // used for authorization code

typedef wstring CurrencyMnemonic; // a reference to a single currency

typedef wstring TransactionId; // a single GL Transaction reference
typedef sequence<TransactionId> TransactionIdList;

typedef wstring EntryId; // audit trail number for a GL Entry
typedef sequence<EntryId> EntryIdList;

typedef wstring AccountId; // a single GL Account reference
typedef sequence<AccountId> AccountIdList;
February 2001 Module - CORBA::FdGeneralLedger 2-5

2

typedef wstring EntryType; // a single GL Entry type
typedef sequence<EntryType> EntryTypeInfoList;

typedef wstring PeriodId; // a reference to a user defined period

2.1.12 GL Facility - Basic Data Type Information

typedef unsigned short ChartKind;
const ChartKind EMPTY_CHART = 1;
const ChartKind DEFAULT_CHART = 2;
const ChartKind EXISTING_CHART = 3;

An instance of the GL Facility constrains and manages one or more General Ledgers,
each of which requires a single Chart of Accounts (schema) to be established before
proper operation can be assured. The data type ChartKind specifies the different kinds
of Chart of Accounts schemata for the initialization of a new General Ledger, which is to
be constrained and managed by an instance of the GL Facility. Please refer to the
Section 2.9, “GL Facility - FacilityLifecycle Interface,” on page 2-48 interface operation
create_ledger_chart_of_accounts() for specific information.

Each General Ledger has an identifying name and a single Chart of GL Accounts
schema. A new General Ledger may be initialized without first specifying the Chart of
Accounts. That is, the new General Ledger is created but has zero GL Accounts defined.
This schema type is represented by the EMPTY_CHART member of the ChartKind
data type.

A single Chart of GL Accounts schema (associated with a single General Ledger) may be
required to be conformant with specific accounting practices and/or regulations in a
particular locale or country, for example. This schema type is represented by the
DEFAULT_CHART member of the ChartKind data type. Governments and other
regulatory bodies of the vast majority of countries in the world have specific minimum
requirements regarding a General Ledger’s Chart of Accounts schema.

A new General Ledger may be based on an existing Chart of Accounts in another
General Ledger managed by the GL Facility. This schema type is represented by the
EXISTING_CHART member of the ChartKind data type. The new Chart of Accounts
may be revised subsequently by using the administrative operations provided by the GL
FacilityLifecycle interface.

enum DebitOrCredit { DEBIT, CREDIT };

The data type DebitOrCredit specifies whether a single GL Entry is a debit or a credit.
A single GL Entry can be either a debit or a credit.

Struct Date { CBO::DTime setting;
 boolean is_set; };
2-6 General Ledger, v1.0 February 2001

2

The data type Date is used for all date operations. However, the CBO::DTime does not
allow for “not set” date values, which are frequently needed for many date oriented
operations. The boolean is_set is added to provide a workaround for many frequently
encountered situations that require a blank date, such as the retrieval of information from
legacy systems.

struct DateRange { Date start_date; Date end_date; };

The data type DateRange specifies date ranges for the purpose of supporting general
purpose retrieval operations on GL accounting information such as GL Transactions and
GL Entries, for example. The DateRange data type is inclusive of both a start_date
and end_date.

2.1.13 GL Facility - Account Information

The GL Facility is responsible for one or more General Ledgers. A single, specific
General Ledger must constrain and manage a single collection of GL Accounts, also
known as a “Chart of Accounts.”

Subsequently, GL Transactions and their associated GL Entries may be further associated
with one or more GL Accounts (specified in the currently selected General Ledger’s
Chart of Accounts schema) by “posting” (i.e., recording) GL Transactions concerning at
least two (or more) GL Accounts contained in the General Ledger’s Chart of Accounts
schema. Please see the various GL LedgerLifecycle interface operations for specific
information about General Ledger administrative operations as well as the GL
Profile::BookKeeping interface operations for more information about posting GL
Transactions.

struct AccountInfo { AccountId acc_id;
 wstring acc_description;
};
typedef sequence<AccountInfo> AccountInfoList;

The data type AccountInfo comprises a single GL Account reference that is unique to
a specific General Ledger, as well as a user defined GL Account name, which may be
used to describe the nature or purpose for which a particular GL Account will be used.
For example, salaries, bank current account. The data type AccountInfoList is a
collection type for the data type AccountInfo.

struct Account {
AccountInfo acc_info;
boolean is_control_account;
Money balance;

};
typedef sequence<Account> AccountList;

The data type Account specifies summary information describing a single GL Account.
The data type AccountList is a collection type for GL Accounts.
February 2001 Module - CORBA::FdGeneralLedger 2-7

2

The acc_info member of the data type AccountInfo specifies a unique GL Account
reference and name describing the name or purpose of this particular GL Account (for
example, salaries or bank current account).

If a GL Account has been specified as a “Control Account,” the member
is_control_account will always return TRUE. A GL Control Account accumulates a
monetary value of related subsidiary GL Accounts over time. Some examples of GL
Control Account designations could be Debtor's Control Account, Creditor's Control
Account, Inventory, Buildings, and Equipment.

The GL Account member balance is a state value representing an accumulated monetary
value as recorded in the currently selected General Ledger, to date. The GL Account
balance represents a monetary amount in the currently selected General Ledger’s
reporting currency.

2.1.14 GL Facility - Transaction Information

struct TransactionInfo {
 TransactionId trans_id;

wstring voucher_ref;
Date voucher_date;
Date act_trans_date;
PeriodId period_id;

};
typedef sequence <TransactionInfo> TransactionInfoList;

The data type TransactionInfo specifies summary information about a single, specific
GL Transaction. The data type TransactionInfoList is a collection type for multiple
TransactionInfo data types

The member trans_id specifies a unique GL Transaction reference for a single, specific
GL Transaction.

The member voucher_ref refers to any external (e.g., physical) documentation that may
be related to (or associated with) a single GL Transaction such as a check, purchase
order, or invoice number. Many National statutory regulations require that each GL
Transaction in the accounting books must correspond to a “real” business transaction
(usually represented by a paper voucher) and that it must also be easy to trace a specific
GL Entry in the books to a corresponding voucher. This information may also be
required for internal auditing purposes.

The member voucher_date refers to the date of the “real” business transaction that
caused the GL Transaction to be created and posted to the General Ledger. For example,
a date on some external documentation (e.g., voucher) that a GL Transaction is to be (or
was) associated with. Please see the TransactionInfo member voucher_ref as
mentioned previously.

The member act_trans_date refers to the “physical” or actual calendar date that the
GL Transaction was (or is to be) posted to the currently selected General Ledger, and
may be used for general purpose GL Transaction retrieval.
2-8 General Ledger, v1.0 February 2001

2

The member period_id refers to an implementation-defined accounting period for the
logical posting of this GL Transaction. The data type PeriodId is of type wstring.

Generally, financial accounting is done within “accounting periods.” An accounting
period is defined as a period of time (of arbitrary length), whose only constraint is that a
given accounting period is shorter than a full financial year. This applies not only to
General Ledger accounting, but also to other often related accounting functions such as
Accounts Receivable and Accounts Payable. The set up of accounting periods is typically
performed only once a year and is the subject of organizational policy. This specification
makes no prescriptive statements about the rules that may be applied when using
accounting periods.

As of this writing, both Period Management as well as Closing and Reconciliation
Facilities are being considered as potential candidates for future OMG FDTF RFPs.

2.1.15 GL Facility - Entry Information

Each GL Transaction is composed of at least two (or more) GL Entries. Every GL Entry
in the GL Facility corresponds to either a debit or a credit. Each GL Entry contains the
details of an amount (debited or credited) in a foreign currency, as well as that same
amount in the nominated reporting currency of a specific General Ledger. In combination
with the historical exchange rate information provided by an instance of the OMG
Currency Facility, this provides sufficient information to generate multi-currency general
purpose financial statements, should this be required.

struct Entry {
 TransactionId trans_id;

EntryId entry_id;
Date entry_date;
EntryType entry_type;
AccountId acc_id;
Money orig_amount
Money amount;
DebitOrCredit dr_cr;
wstring description;
wstring voucher_ref;

};
typedef sequence<Entry> EntryList;

The data type EntryList specifies a collection type for multiple GL Entries. The data
type Entry specifies information about a single GL Entry.

The member trans_id specifies the parent GL Transaction that a single GL Entry is
associated with and is synonymous with the TransactionId data type of the
TransactionInfo data type mentioned previously.

The member entry_id specifies the “audit trail” number of a GL Entry, while the
members entry_date and data type entry_type (respectively) specify the “logical”
date that a GL Entry was (or is to be) posted and the GL Entry type identifying the type
of a single GL Entry.
February 2001 Module - CORBA::FdGeneralLedger 2-9

2

The member acc_id specifies the GL Account associated with a single GL Entry.

The member orig_amount specifies the original amount of money of a foreign
currency business transaction. A “foreign currency” is defined as a currency other than
the reporting currency of an enterprise. See Section 2.3.8, “GL Profile Interface
Operation ::get_ledger_currency(),” on page 2-22 for more information.

The member Amount specifies the monetary amount of a GL Entry in a General Ledger’s
reporting currency, while the member dr_cr indicates whether the GL Account involved
was (or is to be) debited or credited.

The GL Entry members description and voucher_ref hold user defined annotation that
describes the GL Entry, and a voucher reference to any relevant documentation
associated with the GL Entry.

struct EntryTypeInfo {
 EntryType type;
 wstring description;

};
typedef sequence<EntryTypeInfo> EntryTypeInfoList;

The data type EntryTypeInfo refers to a single, specific GL Entry type and an
associated high level description such as “Journal Debit” or “Journal Credit,” for
example. The data type EntryTypeInfoList is a collection type of EntryTypeInfo.

The member type refers to a single GL Entry type, which represents the type of financial
accounting transaction associated with a single, specific GL Entry.

The member description refers to a high level, human-readable description such as
“Journal Credit” or “Journal Debit.”

2.1.16 GL Facility - Transaction Summary Information

struct Transaction {
 TransactionInfo trans_info;

EntryList entries;
};
 typedef sequence<Transaction> TransactionList;

The data type Transaction specifies a collection type for a single GL Transaction and its
associated GL Entries. The data type TransactionList specifies a collection type for
multiple GL Transactions and their associated GL Entries.

2.1.17 GL Facility - Operation Exception Conditions

This section gives detailed information about the various operation exception conditions
that may be raised by the various GL Facility interface operations. The exception
declaration comes first, immediately followed by information specific to the exception.
Many of these exceptions are used both individually and in combination in this
specification. These exceptions can only be raised by the various GL Facility operations
described in this specification and are distinct from CORBA “system exceptions.”
2-10 General Ledger, v1.0 February 2001

2

exception BadDate {
wstring error;
Date bad_value; };

A single Date data type passed as a parameter in an operation invocation has been
deemed to be invalid and has been rejected. A descriptive error message is returned as a
wstring, along with the value of the bad Date that was rejected. The following non-
exhaustive list suggests reasons as to why this exception may be raised:

• end date before start date

• invalid date format

• invalid date

• unknown century.

exception BadChartKind {
wstring error;
ChartKind bad_value; };

A single ChartKind data type passed as a parameter in an operation invocation has been
deemed to be invalid and has been rejected. A descriptive error message is returned as a
wstring, along with the value of the bad ChartKind that was rejected. See “GL
FacilityLifecycle Interface Operation ::create_ledger_chart_of_accounts()” on page 2-49
for more information.

exception BadTransaction {
wstring error; };

A single GL Transaction passed as a parameter in an operation invocation has been
deemed to be invalid and has been rejected. A descriptive error message is returned as a
wstring. The exception BadTransaction will be raised if either the GL Transaction or
its associated GL Entries have illegal or otherwise invalid values or if the GL Entries
constrained by the GL Transaction are not balanced. See Section 2.5.2, “GL
BookKeeping Interface Operation ::post_transaction(),” on page 2-38 for more
information.

exception BadTransactionsInList {
 wstring error;

booleanList is_bad; };

One or more GL Transactions in a collection of GL Transactions has a problem. A
descriptive error message is returned as a wstring, along with the member is_bad,
which indicates the position in the list of one or more problem GL Transactions. The
exception BadTransactionsInList will be raised if any of the GL Transactions or their
GL Entries have illegal or otherwise invalid values, or if any of the sets of GL Entries
constrained by the GL Transactions are not balanced.

Please note that the booleanList returned by this exception must be at least the same
length as the list of GL Transactions passed as an input parameter in relevant operation
February 2001 Module - CORBA::FdGeneralLedger 2-11

2

invocations. See Section 2.5.3, “GL BookKeeping Interface Operation
::post_transaction_list(),” on page 2-40 for more information. If the
BadTransactionsInList exception is raised, then none of the GL Transactions in the
list may be posted.

exception BadEntryType {
wstring error;

 EntryType bad_value; };

A single EntryType data type passed in an operation invocation related to GL Entry
types has been deemed to be invalid and has been rejected. A descriptive error message
is returned as a wstring, along with the value of the bad EntryType that caused the
problem. See Section 2.3.9, “GL Profile Interface Operation ::get_entry_types(),” on
page 2-23 and Section 2.6.6, “GL LedgerLifecycle Interface Operation
::set_entry_types(),” on page 2-45 for more information.

exception BadEntryTypeInfoList {
 wstring error;
 EntryTypeInfoList bad_values; };

One or more of the GL EntryType data types passed in an operation invocation related
to GL Entries is deemed to be invalid and has been rejected. A descriptive error message
is returned as a wstring, along with a list of bad EntryTypes that caused the problem.
See Section 2.6.6, “GL LedgerLifecycle Interface Operation ::set_entry_types(),” on
page 2-45 for more information.

exception BadCurrencyMnemonic {
 wstring error;
 CurrencyMnemonic bad_value; };

The exception BadCurrencyMnemonic is raised if the CurrencyMnemonic used
in the LedgerLifecycle::set_ledger_currency() operation is deemed to be invalid.

exception BadAccountId {
 wstring error;
 AccountId bad_value; };

A single GL Account has an associated GL Account reference that uniquely
distinguishes it from other GL Accounts. There is a problem with a GL Account
reference passed in an operation invocation which has caused the exception to be raised.
A descriptive error message is returned as a wstring, along with the value of the
AccountId that caused the problem.

exception BadTransId {
 wstring error;
 TransactionId bad_value; };
2-12 General Ledger, v1.0 February 2001

2

A single GL Transaction has an associated GL Transaction reference that uniquely
distinguishes it from other GL Transactions. There is a problem with a GL Transaction
reference passed in an operation invocation, which has caused this exception to be raised.
A descriptive error message is returned as a wstring, along with the value of the
TransactionId that caused the problem.

2.1.18 GL Facility - Miscellaneous Operation Exception Conditions

exception CannotRemove { wstring error; };

There is a problem involving an operation invocation that has attempted to remove a GL
related entity. A descriptive error message is returned as a wstring. This exception is
explicitly raised by the LedgerLifecycle::remove_ledger() and remove_account()
operations.

exception PermissionDenied { wstring error; };

The exception PermissionDenied is raised if a GL client session has not been
established with the appropriate authorization to invoke an operation. A descriptive error
message is returned as a wstring. See Section 2.1.3, “GL Facility - Environment
Contract,” on page 2-2 for more information.

exception UnknownLedger { wstring error; wstring bad_value; };

There is a problem in accessing the specified General Ledger. A descriptive error
message and the name of the specified General Ledger are both returned as wstring
types. The exception UnknownLedger is explicitly raised if the specified General
Ledger is not known or is otherwise unrecognized by the GL Facility.

exception BadIntegritySelection {
 wstring error;
 wstring bad_value; };

A single GL Integrity check is unknown to the GL Facility or is otherwise invalid and has
been rejected. A descriptive error message, as well as the value of the bad integrity
selection are both returned as wstring types. Please refer to the various GL Facility
interface operations in “GL Facility - Integrity Interface” on page 2-46 for more
information.

exception BadAccountName {
 wstring error;
 wstring bad_value; };

There is a problem with a parameter passed in an invocation operation. A descriptive
error message is returned as a wstring, along with the value that caused the problem,
both of which are returned as wstring data types. This exception is explicitly raised if
the GL Account description is to be duplicated in the currently selected General Ledger.
February 2001 Module - CORBA::FdGeneralLedger 2-13

2

See Section 2.6.2, “GL LedgerLifecycle Interface Operation ::create_account(),” on
page 2-41 and Section 2.6.4, “GL LedgerLifecycle Interface Operation
::modify_account(),” on page 2-43 for more information.

2.2 GL Facility - Arbitrator Interface

The GL Arbitrator is the initial interface used to establish a GL client session. See
Section 1.4, “GL Facility - Architecture,” on page 1-3, Section 2.1.3, “GL Facility -
Environment Contract,” on page 2-2, and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.

A GL client session must be established prior to use of the GL Facility. If the Arbitrator
open_session() operation completed successfully, a Profile interface is returned which
offers access to the various interfaces and operations of the GL Facility. Each GL client
session must use a unique instance of the returned Profile interface.

2.2.1 GL Arbitrator Interface General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL Arbitrator interface.

The GL Facility must have been pre-configured for general purpose usage by a GL
Facility Administrator. There must be at least one General Ledger in existence and
known to the GL Facility for these interface operations to succeed. The creation of new
General Ledgers is facilitated by the GL FacilityLifecycle interface operations. See
Section 2.1.3, “GL Facility - Environment Contract,” on page2-2 and Section2.1.4, “ GL
Facility - General Invariants,” on page 2-2 for more information.

2.2.2 GL Arbitrator Interface Operation ::get_ledger_names()

wstringList get_ledger_names();

Description

Each GL Facility can manage the General Ledgers of many different types of
organizational entities such as for-profit companies, not-for-profit organizations,
individual projects, and proprietorship. The GL Arbitrator interface operation
get_ledger_names() retrieves the complete set of names associated with all General
Ledgers constrained and managed by an instance of the GL Facility.

<<Interface>>

Arbitrator

+ get_ledger_names() : wstringList

+ open_session (ledger_name : wstring, authorization_code : octetList) : Profile
2-14 General Ledger, v1.0 February 2001

2

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns a wstringList of General Ledger names that
represents the complete set of General Ledgers constrained and managed by the GL
Facility.

Exceptions

None

Postconditions

None

2.2.3 GL Arbitrator Interface Operation ::open_session()

Profile open_session (
in wstring ledger_name,

 in octetList authorization_code)
raises (UnknownLedger, PermissionDenied);

};

Description

This operation establishes a GL client session for subsequent interaction with a specified
General Ledger constrained and managed by the GL Facility. If this operation is
successful, a GL client session is established with the specified General Ledger. The GL
Profile interface operation get_ledger_names() returns a wstringList of General
Ledger names, which represents the complete set of General Ledgers constrained and
managed by the GL Facility.

Preconditions

None
February 2001 GL Facility - Arbitrator Interface 2-15

2

Input Parameters

To successfully establish the GL client session, the name of a General Ledger is
specified, as well as a valid authorization code provided by an external service, such as
the CORBA Security Service. See Section 2.1.3, “GL Facility - Environment Contract,”
on page 2-2 and Section 2.1.4, “GL Facility - General Invariants,” on page 2-2.

Output Parameters

None

Return Value

If the operation invocation completed successfully, the Arbitrator::open_session()
returns a Profile interface that provides GL client session information, as well as
providing support for controllable access to the various interfaces and operations of the
GL Facility.

Exceptions

The exception UnknownLedger is raised if the specified General Ledger is not known
to the GL Facility. The exception PermissionDenied is raised if the GL client does
not have permission to access the specified General Ledger.

Postconditions

None

2.3 GL Facility - Profile Interface

The GL Arbitrator is the initial interface used to establish a GL client session. A GL
client session must be established prior to use of the GL Facility.

If the Arbitrator::open_session operation invocation was successful, the Arbitrator
returns a Profile interface that offers access to the various interfaces and operations of
the GL Facility. Each GL client session must use a unique instance of the returned
Profile interface.

<<Interface>>

Profile

+ close_session() : void

+ book_keeping : BookKeeping

+ retrieval() : Retrieval

+ integrity() : Integrity

+ ledger_lifecycle() : LedgerLifecycle
2-16 General Ledger, v1.0 February 2001

2

2.3.1 GL Profile Interface General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL Profile interface.

A GL client session must have been established with the Arbitrator::open_session()
operation and each GL client session must use a unique instance of the Profile interface.
Once the Profile::close_session() operation is invoked, all references to other
interfaces in the current GL client session immediately become invalid.

The GL Facility must have been pre-configured for general purpose usage and there must
also be at least one General Ledger in existence for these operations to succeed.
Furthermore, a non empty Chart of Accounts must also exist. Please see Section 2.1.3,
“GL Facility - Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility -
General Invariants,” on page 2-2 for more information.

2.3.2 GL Profile Interface Operation ::close_session()

void close_session();

Description

This operation invocation ends the current GL client session, reclaiming session
resources and state. Once this operation is invoked and has completed, all references to
other interfaces in the current GL client session immediately become invalid. This
operation invocation also invalidates any references to the current Profile interface so
that GL client session resources are properly released.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

None

+ facility_lifecycle() : FacilityLifecycle

+ get_ledger_currency() : CurrencyMnemonic

+ get_entry_types() : EntryTypeInfoList
February 2001 GL Facility - Profile Interface 2-17

2

Exceptions

None

Postconditions

None

2.3.3 GL Profile Interface Operation ::retrieval()

Retrieval retrieval() raises (PermissionDenied);

Description

This operation retrieves a reference to the Retrieval interface for use in the current GL
client session. If the operation was successful, the various operations of the Retrieval
interface are made generally available to the GL client for use in the current session.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns a Retrieval interface for use in the current GL client
session. Once the GL client session has been closed, the reference to the Retrieval
interface is no longer valid.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None
2-18 General Ledger, v1.0 February 2001

2

2.3.4 GL Profile Interface Operation ::book_keeping()

BookKeeping book_keeping() raises (PermissionDenied);

Description

This operation retrieves a reference to the BookKeeping interface for use in the current
GL client session. If the operation was successful, the various operations of the
BookKeeping interface are made generally available to the GL client for use in the
current session.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns a BookKeeping interface for use in the current GL
client session. Once the GL client session has been closed, the reference to the
BookKeeping interface is no longer valid.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None

2.3.5 GL Profile Interface Operation ::integrity()

Integrity integrity() raises (PermissionDenied);

Description

This operation retrieves a reference to the Integrity interface for use in the current GL
client session. If the operation was successful, the various operations of the Integrity
interface are made generally available to the GL client for use in the current session.
February 2001 GL Facility - Profile Interface 2-19

2

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns an Integrity interface for use in the current GL client
session. Once the GL client session has been closed, the reference to the Integrity
interface is no longer valid.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None

2.3.6 GL Profile Interface Operation ::LedgerLifecycle()

LedgerLifecycle ledger_lifecycle() raises (PermissionDenied);

Description

This operation retrieves a reference to the LedgerLifecycle interface for use in the
current GL client session. If the operation was successful, the various operations of the
LedgerLifecycle interface are made generally available to the GL client for use in the
current session.

Preconditions

None

Input Parameters

None

Output Parameters

None
2-20 General Ledger, v1.0 February 2001

2

Return Value

This operation invocation returns a LedgerLifecycle interface for use in the current GL
client session. Once the GL client session has been closed, the reference to the
LedgerLifecycle interface is no longer valid.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None

2.3.7 GL Profile Interface Operation ::FacilityLifecycle()

FacilityLifecycle facility_lifecycle() raises (PermissionDenied);

Description

This operation retrieves a reference to the GL FacilityLifecycle interface for use in the
current client session. If the operation was successful, the various operations of the GL
FacilityLifecycle interface are made generally available to the GL client for use in the
current session.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns a FacilityLifecycle interface for use in the current GL
client session. Once the GL client session has been closed, the reference to the GL
FacilityLifecycle interface is no longer valid.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.
February 2001 GL Facility - Profile Interface 2-21

2

Postconditions

None

2.3.8 GL Profile Interface Operation ::get_ledger_currency()

CurrencyMnemonic get_ledger_currency() raises (PermissionDenied);

Description

This operation invocation retrieves the user defined reporting currency of the currently
selected General Ledger. If the operation was successful, the GL client has access to the
specified reporting currency of the currently selected General Ledger. A reporting
currency is the nominated currency used by a reporting enterprise and is used in the
presentation of general purpose financial statements. The reporting enterprise is an
enterprise or other organizational entity for which there are users who rely on general
purpose financial statements as their major source of information about the enterprise.

A “foreign currency” is defined as a currency other than the reporting currency of an
enterprise. The exchange rate is defined as the ratio for the exchange of two currencies.
A foreign currency transaction should be recorded, on initial recognition in the reporting
currency, by applying to the foreign currency amount the exchange rate between the
reporting currency and the foreign currency at the date of the transaction. See
Section 2.6.5, “GL LedgerLifecycle Interface Operation ::set_ledger_currency(),” on
page 2-44 for more information.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns a CurrencyMnemonic for use in the current GL
client session, which specifies the reporting currency for the currently selected General
Ledger. The contents of the CurrencyMnemonic will be either one of the ISO
currency mnemonics defined by the OMG Currency Facility or a specific user-defined
mnemonic previously defined using that Facility.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.
2-22 General Ledger, v1.0 February 2001

2

Postconditions

None

2.3.9 GL Profile Interface Operation ::get_entry_types()

EntryTypeInfoList get_entry_types () raises (PermissionDenied);

Description

This operation retrieves a list of GL Entry types for the currently selected General
Ledger. GL Entry types are discrete types assigned to individual GL Entries such as
Journal Debits, Journal Credits, and so forth. If the operation was successful, the GL
client has access to a list of GL Entry types that help describe the purpose of GL Entries
in the currently selected General Ledger. See the corresponding operation: Sectio n2.6.6,
“GL LedgerLifecycle Interface Operation ::set_entry_types(),” on page 2-45.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns an EntryTypeInfoList, which specifies all valid GL
Entry types for the currently selected General Ledger.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None.
February 2001 GL Facility - Profile Interface 2-23

2

2.4 GL Facility - Retrieval Interface

The GL Retrieval interface supports general purpose information retrieval capabilities
related to the GL Accounts, Transactions, and Entries in the currently selected General
Ledger.

2.4.1 GL Retrieval Interface General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL Retrieval interface. A GL client session must have been established with the
Arbitrator::open_session() operation and each GL client session must use a unique
instance of the Profile interface. The GL Facility must have been pre-configured for
general purpose usage and there must also be at least one General Ledger in existence in
order for these operations to succeed. Furthermore, a non-empty Chart of Accounts must
also exist. See Section 2.1.3, “GL Facility - Environment Contract,” on page 2-2 and
Section 2.1.4, “GL Facility - General Invariants,” on page 2-2 for more information.

The GL Retrieval interface defines several operations that have a DateRange data
type passed as an input parameter in the invocation. The DateRange data type specifies
an inclusive date range with two members, each of which represent a start_date and
end_date, respectively. Implementations claiming conformance with this specification
should ensure that all GL Transactions and GL Entries are date stamped; however, in
certain situations (such as legacy systems, for example), GL Transactions and GL Entries
may have dates that are “not set.” A particular date associated with a single GL
Transaction or GL Entry that is “not set,” is considered to be “earlier” than the earliest

<<Interface>>

Retrieval

+ get_all_account_info() : AccountInfoList

+ get_account (acc_id : AccountId) : Account

+ get_multiple_accounts (account_ids : AccountIdList) : AccountList

+ get_all_accounts() : AccountList

+ get_trans_ids (date_range : DateRange) : TransactionIdList

+ get_trans_info_summary (trans_id : TransactionId) : TransactionInfo

+ get_trans_info_by_refs (trans_ids : TransactionIdList) : TransactionInfoList

+ get_trans_info_by_date (date_range : DateRange) : TransactionInfoList

+ get_entry_count_by_type (date_range : DateRange, entry_type : EntryType) : unsigned long

+ get_entry_count_by_account (date_range : DateRange, acc_id : AccountId) : unsigned long

+ get_transaction() : Transaction

+ get_transactions_by_ids (trans_ids : TransactionList) : TransactionList

+ get_transactions_by_date (date_range : DateRange) : TransactionList

+ get_entries_by_type (date_range : DateRange, entry_type : EntryType) : EntryList

+ get_entries_by_account (date_range : DateRange, acc_id :AccountId) : EntryList
2-24 General Ledger, v1.0 February 2001

2

date stamp which is “set” (i.e., has a date stamp). Implementations should provide
support for the inclusive retrieval of both dated and undated GL Transaction and GL
Entry information.

2.4.2 GL Retrieval Interface Operation ::get_all_account_info()

AccountInfoList get_all_account_info()raises (PermissionDenied);

Description

This operation invocation retrieves a sequence of all GL Account references and
descriptive names that exist in the currently selected General Ledger. If the operation was
successful, the GL client has access to a list of all GL Accounts in the currently selected
General Ledger. The data type AccountInfoList contains information that describes the
name and purpose of all GL Accounts in the currently selected General Ledger.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns an AccountInfoList, each member of which contains
a GL Account reference and descriptive name (i.e., purpose) of an individual GL
Account, for all GL Accounts in the currently selected General Ledger.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None

2.4.3 GL Retrieval Interface Operation ::get_account()

Account get_account (
in AccountId acc_id)
raises (BadAccountId, PermissionDenied);
February 2001 GL Facility - Retrieval Interface 2-25

2

Description

This operation invocation retrieves GL Account summary information for a single,
specific GL Account reference. If the operation was successful, the GL client has access
to the Account data type, which includes the GL Account reference, name, and current
balance. See the GL Retrieval interface operation get_multiple_accounts(), which
may be used to retrieve a specified collection of GL Accounts.

Preconditions

None

Input Parameters

The acc_id parameter is passed in the invocation, which uniquely specifies the target
GL Account in the currently selected General Ledger. The data type AccountId is a
wide string data type.

Output Parameters

None

Return Value

This operation invocation returns the data type Account, which represents summary
information about the specified GL Account in the currently selected General Ledger.

Exceptions

The exception BadAccountId will be raised if the specified GL Account is not found
in the currently selected General Ledger or is invalid in some other way. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.

Postconditions

None

2.4.4 GL Retrieval Interface Operation ::get_multiple_accounts()

AccountList get_multiple_accounts (
in AccountIdList account_ids)
raises (BadAccountId, PermissionDenied);

Description

This operation invocation retrieves selected GL Account summary information for a
specific collection of GL Accounts. If the operation was successful, the GL client has
access to the AccountList data type, which includes the GL Account references, names
and current balances of each of the specified GL Accounts in the currently selected
General Ledger.
2-26 General Ledger, v1.0 February 2001

2

Preconditions

None

Input Parameters

The parameter account_ids is passed in the invocation, which specifies the target GL
Accounts in the currently selected General Ledger.

Output Parameters

None

Return Value

This operation invocation returns an AccountList data type for the specified GL
Accounts in the currently selected General Ledger.

Exceptions

The exception BadAccountId will be raised if any of the GL Account references
specified is not found in the currently selected General Ledger or is invalid in some other
way. The exception PermissionDenied will be raised if the GL client does not have
permission to invoke this interface operation.

Postconditions

None

2.4.5 GL Retrieval Interface Operation ::get_all_accounts()

AccountList get_all_accounts() raises (PermissionDenied);

Description

This operation invocation retrieves GL Account summary information for all GL
Accounts in the currently selected General Ledger. If the operation was successful, the
GL client has access to the AccountList data type, which includes the GL Account
references, names, and current balances for all GL Accounts in the currently selected
General Ledger.

Preconditions

None

Input Parameters

None

Output Parameters

None
February 2001 GL Facility - Retrieval Interface 2-27

2

Return Value

This operation invocation returns GL Account summary information for all GL Accounts
in the currently selected General Ledger in the form of an AccountList data type.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the call
or does not have permission to use this interface.

Postconditions

None

2.4.6 GL Retrieval Interface Operation ::get_trans_ids()

TransactionIdList get_trans_ids(
 in DateRange date_range)

 raises (BadDate, PermissionDenied);

Description

This operation invocation retrieves the GL Transaction identifiers of all GL Transactions
specified by an inclusive date range. If the operation was successful, the GL client has
access to the TransactionIdList data type, which represents a collection type of GL
Transaction references.

Preconditions

None.

Input Parameters

The parameter date_range is passed in the invocation, which specifies an inclusive start
and end date, specifying the period within which GL Transactions should be retrieved.

Output Parameters

None

Return Value

This operation invocation returns a TransactionIdList data type, which is a sequence of
TransactionId data types which in turn corresponds to the GL Transactions retrieved
within the specified inclusive date range in the currently selected General Ledger.

Exceptions

The exception BadDate will be raised if either or both of the dates are deemed to be
invalid. The exception PermissionDenied will be raised if the GL client does not
have permission to invoke this interface operation.
2-28 General Ledger, v1.0 February 2001

2

Postconditions

None

2.4.7 GL Retrieval Interface Operation ::get_trans_info_summary()

TransactionInfo get_trans_info_summary(
in TransactionId trans_id)

raises (BadTransId, PermissionDenied);

Description

This operation invocation retrieves summary information about a single GL Transaction
in the currently selected General Ledger, given a single, specific GL Transaction
reference. If the operation was successful, the GL client has access to the
TransactionInfo data type, which represents summary information about the specified
GL Transaction.

Preconditions

None

Input Parameters

The parameter trans_id is passed in the invocation, which specifies a single GL
Transaction reference.

Output Parameters

None

Return Value

This operation invocation returns a TransactionInfo data type that corresponds to a
specific GL Transaction found within the currently selected General Ledger. The
TransactionInfo data type includes summary information about the specified GL
Transaction.

Exceptions

The exception BadTransId will be raised if the reference could not be located or was in
some other way deemed to be invalid. The exception PermissionDenied will be
raised if the GL client does not have permission to invoke this interface operation.

Postconditions

None

2.4.8 GL Retrieval Interface Operation ::get_trans_info_by_refs()

TransactionInfoList get_trans_info_by_refs(
February 2001 GL Facility - Retrieval Interface 2-29

2

in TransactionIdList trans_ids)
raises (BadTransId, PermissionDenied);

Description

This operation invocation retrieves multiple GL Transaction summaries for a specified
list of GL Transaction references in the currently selected General Ledger. If the
operation was successful, the GL client has access to the TransactionInfoList data
type, which is a collection type for GL Transaction summaries.

Preconditions

None

Input Parameters

The parameter trans_ids is passed in the invocation, which precisely specifies the
collection of GL Transaction references from which GL Transaction summary
information should be retrieved.

Output Parameters

None

Return Value

This operation invocation returns a TransactionInfoList that is a sequence of
TransactionInfo data types, which in turn correspond to GL Transactions found within
the specified selection criteria in the currently selected General Ledger. The
TransactionInfo data type includes summary information about the specified GL
Transaction.

Exceptions

The exception BadTransId will be raised if any of the GL Transaction references
specified are not found in the currently selected General Ledger or are invalid in some
other way. The exception PermissionDenied will be raised if the GL client does not
have permission to invoke this interface operation.

Postconditions

None

2.4.9 GL Retrieval Interface Operation ::get_trans_info_by_date()

TransactionInfoList get_trans_info_by_date(
 in DateRange date_range)

 raises (BadDate, PermissionDenied);
2-30 General Ledger, v1.0 February 2001

2

Description

This operation invocation retrieves all GL Transaction summaries for each GL Account
in the currently selected General Ledger according to a specified inclusive date range. If
the operation was successful, the GL client has access to the TransactionInfoList data
type, which is a collection type for GL Transaction summaries within the specified date
range.

Preconditions

None

Input Parameters

The parameter date_range is passed in the invocation that specifies an inclusive start
and end date, specifying the period within which GL Transactions should be retrieved.

Output Parameters

None

Return Value

This operation invocation returns a TransactionInfoList that is a sequence of
TransactionInfo data types that correspond to GL Transactions found within the
specified date range in the currently selected General Ledger. The TransactionInfo data
type includes summary information about the specified GL Transaction.

Exceptions

The exception BadDate will be raised if either or both of the dates are deemed to be
invalid. The exception PermissionDenied will be raised if the GL client does not
have permission to invoke this interface operation.

Postconditions

None.

2.4.10 GL Retrieval Interface Operation ::get_entry_count_by_account()

unsigned long get_entry_count_by_account(
in DateRange date_range,

 in AccountId acc_id)
 raises (BadDate, BadAccountId, PermissionDenied);

Description

This operation invocation retrieves the total number of all GL Entries (i.e., individual GL
Entries) based on a specified inclusive date range, given a single GL Account reference.
The purpose of this operation is to assist clients in anticipating a possibly very large
number of GL Entries for any particular GL Account. If the operation was successful, the
February 2001 GL Facility - Retrieval Interface 2-31

2

total number of GL Entries can be determined so that particular situations can be
anticipated, where the number of GL Entries for a specific GL Account could be too
large to handle. See Section 2.3.9, “GL Profile Interface Operation ::get_entry_types(),”
on page 2-23 and Section 2.6.6, “GL LedgerLifecycle Interface Operation
::set_entry_types(),” on page 2-45 for more information.

Preconditions

None

Input Parameters

The parameter date_range is passed in the invocation, which specifies an inclusive start
and end date. The parameter acc_id is also passed in the invocation, which specifies a
single GL Account.

Output Parameters

None

Return Value

This operation returns an unsigned long that represents the total number of GL Entries
belonging to a specific GL Account reference, which match the selection criteria in the
currently selected General Ledger. Please note that the count returned by this operation is
a minimum value. Other GL clients using the same General Ledger may have posted
additional GL Transactions and GL Entries before a GL client makes use of the returned
value.

Exceptions

The exception BadDate will be raised if either or both of the dates are deemed to be
invalid. The exception BadAccountId will be raised if the specified GL Account
reference is invalid or not found. The exception PermissionDenied will be raised if
the GL client does not have permission to invoke this interface operation.

Postconditions

None

2.4.11 GL Retrieval Interface Operation ::get_entry_count_by_type()

unsigned long get_entry_count_by_type(
in DateRange date_range,
in EntryType entry_type
raises (BadDate, BadEntryType, PermissionDenied)
2-32 General Ledger, v1.0 February 2001

2

Description

This operation invocation retrieves the total number of GL Entries (i.e., individual GL
Entries) based on a specified inclusive date range, given a single GL Entry type. The
purpose of this operation is to assist clients in anticipating a possibly very large number
of GL Entries of any particular GL Entry type. If the operation was successful, the total
number of GL Entries of a specific type can be determined so that particular situations
can be anticipated, where the number of GL Entries could be too large to handle. See
Section 2.3.9, “GL Profile Interface Operation ::get_entry_types(),” on page 2-23 and
Section 2.6.6, “GL LedgerLifecycle Interface Operation ::set_entry_types(),” on
page 2-45 for more information.

Preconditions

None

Input Parameters

The parameter date_range is passed in the invocation that specifies an inclusive start
and end date. The parameter entry_type is also passed in the invocation that specifies a
single GL Entry type.

Output Parameters

None

Return Value

This operation returns an unsigned long that represents the total number of GL Entries
of the specified GL Entry type, which match the selection criteria in the currently
selected General Ledger. Please note that the count returned by this operation is a
minimum value. Other GL clients using the same General Ledger may have posted
additional GL Transactions and GL Entries before a GL client makes use of the returned
value.

Exceptions

The exception BadDate will be raised if either or both of the dates are deemed to be
invalid. The exception BadEntryType will be raised if the specified GL Entry Type is
invalid or not found. The exception PermissionDenied will be raised if the GL client
does not have permission to invoke this interface operation.

Postconditions

None

2.4.12 GL Retrieval Interface Operation ::get_transaction()

Transaction get_transaction(
 in TransactionId trans_id)

 raises (BadTransId, PermissionDenied);
February 2001 GL Facility - Retrieval Interface 2-33

2

Description

This operation invocation retrieves a single GL Transaction summary and a list of
associated GL Entries for a single, specific GL Transaction reference in the currently
selected General Ledger. If the operation was successful, the GL client has access to a
Transaction data type that represents summary information about the specified GL
Transaction and associated GL Entries.

Preconditions

None

Input Parameters

The parameter trans_id is passed in the invocation that specifies the single, specific GL
Transaction to retrieve from the currently selected General Ledger.

Output Parameters

None

Return Value

This operation invocation returns a Transaction data type that corresponds to a specific
GL Transaction found within the currently selected General Ledger. The Transaction
data type represents summary information about the specified GL Transaction and
associated GL Entries. The Transaction data type also specifies an EntryList data type,
which corresponds to the GL Entries associated with the specified GL Transaction.

Exceptions

The exception BadTransId will be raised if the specified GL Transaction reference
could not be located or was in some other way deemed to be invalid. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.

Postconditions

None

2.4.13 GL Retrieval Interface Operation ::get_transactions_by_ids()

TransactionList get_transactions_by_ids(
in TransactionIdList trans_ids)
raises (BadTransId, PermissionDenied);

Description

This operation invocation retrieves a list of GL Transaction summaries and associated
GL Entries for each GL Transaction reference in the currently selected General Ledger,
given a list of GL Transaction references. If the operation was successful, the GL client
2-34 General Ledger, v1.0 February 2001

2

has access to a TransactionList data type, which is a collection of type GL
Transaction. The GL Transaction data type represents summary information about
the specified GL Transaction and associated GL Entries.

Preconditions

None

Input Parameters

The parameter trans_id is passed in the invocation that specifies a collection of GL
Transaction references.

Output Parameters

None

Return Value

This operation invocation returns a TransactionList data type that specifies a collection
of type Transaction. The Transaction data type includes information about a specified
GL Transaction such as a Transaction reference as well as the physical and logical dates
associated with the specified list of GL Transactions. The Transaction data type also
specifies an EntryList data type, which corresponds to the GL Entries associated with a
specific GL Transaction.

Exceptions

The exception BadTransId will be raised if a GL Transaction reference could not be
located or was in some other way deemed to be invalid. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.

Postconditions

None

2.4.14 GL Retrieval Interface Operation ::get_transactions_by_date()

TransactionList get_transactions_by_date(
in DateRange date_range)

 raises (BadDate, PermissionDenied);

Description

This operation invocation retrieves a list of all GL Transaction summaries and associated
GL Entries for each GL Transaction in the currently selected General Ledger, which
matches the input date parameters. If the operation was successful, the GL client has
access to the TransactionList data type that specifies a collection of type Transaction.
February 2001 GL Facility - Retrieval Interface 2-35

2

Preconditions

None

Input Parameters

The parameter date_range is passed in the invocation, which specifies an inclusive start
and end date.

Output Parameters

None

Return Value

This operation invocation returns a TransactionList data type that specifies a collection
of type Transaction. The Transaction data type includes information about a specified
GL Transaction such as a Transaction reference as well as the physical and logical dates
associated with the specified list of GL Transactions. The Transaction data type also
specifies an EntryList data type, which corresponds to the GL Entries associated with a
specific GL Transaction.

Exceptions

The exception BadDate will be raised if the date is deemed to be invalid. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.

Postconditions

None

2.4.15 GL Retrieval Interface Operation ::get_entries_by_type()

EntryList get_entries_by_type (
in DateRange date_range,
in EntryType entry_type)
raises (BadDate, BadEntryType, PermissionDenied);

Description

This operation invocation retrieves a list of all GL Entries (i.e., individual GL Entries)
based on an inclusive date range and a single EntryType data type. If the operation was
successful, the GL client has access to all GL Entries that match the specified
EntryType that were posted in the specified date range. See Section 2.3.9, “GL Profile
Interface Operation ::get_entry_types(),” on page 2-23 for more information.

Preconditions

None
2-36 General Ledger, v1.0 February 2001

2

Input Parameters

The parameter date_range is passed in the invocation that specifies an inclusive start
and end date, as well as a specific GL entry_type identifying the type of GL Entries to
retrieve.

Output Parameters

None

Return Value

This operation invocation returns an EntryList data type, which is a collection type for
GL Entries.

Exceptions

The exception BadDate will be raised if either of the dates in the date range are
deemed to be invalid. The exception BadEntryType will be raised if the EntryType
parameter is invalid. The exception PermissionDenied will be raised if the GL client
does not have permission to invoke this interface operation.

Postconditions

None

2.4.16 GL Retrieval Interface Operation ::get_entries_by_account()

EntryList get_entries_by_account (
in DateRange date_range,

 in AccountId acc_id)
 raises (BadDate, BadAccountId, PermissionDenied);

Description

This operation invocation retrieves the number of all GL Entries (i.e., individual GL
Entries) based on a date range and a single GL Account reference. If the operation was
successful, the GL client has access to an EntryList data type of all GL Entries
associated with a specific GL Account that were posted within the specified date range.

Preconditions

None

Input Parameters

The parameter date_range is passed in the invocation, which specifies an inclusive start
and end date, specifying the period within which GL Entries should be retrieved as well
as a specific GL Account reference that specifies the GL Entries to retrieve.
February 2001 GL Facility - Retrieval Interface 2-37

2

Output Parameters

None

Return Value

This operation invocation returns an EntryList data type, which represents a collection
of GL Entries that match the date selection criteria and belong to the specified GL
Account reference.

Exceptions

The exception BadDate will be raised if either of the dates in the specified date range
are deemed to be invalid. The exception BadAccountId will be raised if the GL
Account reference is invalid or not found. The exception PermissionDenied will be
raised if the GL client does not have permission to invoke this interface operation.

Postconditions

None

2.5 GL Facility - BookKeeping Interface

The GL Bookkeeping interface is used for entering new GL Transactions in the currently
selected General Ledger.

2.5.1 GL BookKeeping Interface General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL BookKeeping interface.

A GL client session must have been established with the Arbitrator::open_session()
operation and each GL client session must use a unique instance of the Profile interface.
The GL Facility must have been pre-configured for general purpose usage and there must
also be at least one General Ledger in existence for these operations to succeed.
Furthermore, a non-empty Chart of Accounts must also exist. See Section 2.1.3, “GL
Facility - Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.

2.5.2 GL BookKeeping Interface Operation ::post_transaction()

TransactionId post_transaction(

<<Interface>>

BookKeeping

+ post_transaction (single_transaction : Transaction) : TransactionId

+ post_transaction_list (transactions : TransactionList) : TransactionIdList
2-38 General Ledger, v1.0 February 2001

2

in Transaction single_transaction) raises (BadTransaction,
PermissionDenied);

Description

This operation posts a single GL Transaction to the currently selected General Ledger. A
GL Transaction is not only composed of information about the GL Transaction itself, but
at a more fundamental level, a single GL Transaction is composed of a set of at least two
(or more) GL Accounts and at least two (or more) GL Entries. A single GL Entry
specifies a single GL Account in the currently selected General Ledger’s Chart of
Accounts, which will either be debited or credited.

In the context of a GL Transaction, a single GL Account may be conceptualized as either
a source GL Account (debit) or a destination GL Account (credit). The GL Transaction
ensures that money is always debited from the single specified GL Account (source).

The source GL Account is specified by a single GL Entry (which is a member of the set
to be posted and constrained by the GL Transaction) and is called the “debit account.”
The GL Transaction also ensures that the money debited from the source GL Account is
credited to another (different) GL Account (destination). The destination GL Account is
specified by a single GL Entry, which is a member of the set constrained by the GL
Transaction and is called the “credit account.”

Preconditions

None

Input Parameters

The parameter single_transaction is passed in the invocation. The Transaction data
type specifies a collection type for a single GL Transaction and its associated GL Entries.

Output Parameters

None

Return Value

This operation invocation returns a TransactionId data type, which specifies a unique
GL Transaction reference for a single specific GL Transaction.

Exceptions

The exception BadTransaction will be raised if either the GL Transaction or its
associated GL Entries have illegal or otherwise invalid values, or if the GL Entries
constrained by the GL Transaction are not balanced. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.
February 2001 GL Facility - BookKeeping Interface 2-39

2

Postconditions

The new GL Transaction and its associated GL Entries are posted to the currently
selected General Ledger, and the balances of each of the specified GL Accounts
referenced by the GL Entries are updated accordingly.

2.5.3 GL BookKeeping Interface Operation ::post_transaction_list()

TransactionIdList post_transaction_list(
in TransactionList transactions)
raises (BadTransactionsInList, PermissionDenied);

Description

This operation invocation posts a collection of GL Transactions to the currently selected
General Ledger. See the corresponding Section2.5.2, “ GL BookKeeping Interface
Operation ::post_transaction(),” on page 2-38 for more information.

Preconditions

None

Input Parameters

The parameter transaction is passed in the invocation. The data type TransactionList
specifies a collection type for multiple GL Transactions and the associated GL Entries.

Output Parameters

None

Return Value

This operation invocation returns a TransactionIdList data type, which specifies a
collection type for GL Transaction references.

Exceptions

The exception BadTransactionsInList will be raised if any of the specified GL
Transactions or their GL Entries have illegal or otherwise invalid values, or if any of the
sets of GL Entries constrained by the GL Transactions are not balanced. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.

Postconditions

The new GL Transactions are added to the currently selected General Ledger, and the
balances of the GL Accounts referenced by the GL Entries are updated accordingly.
2-40 General Ledger, v1.0 February 2001

2

2.6 GL Facility - LedgerLifecycle Interface

The GL LedgerLifecycle interface is primarily intended for use in the establishment
and subsequent maintenance of a specific Chart of Accounts for a specific General
Ledger constrained and managed by the GL Facility. Generally, these operations are only
used by privileged GL Facility Administrators. See Section 2.1.3, “GL Facility -
Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.

The GL LedgerLifecycle interface operations support the creation and subsequent
revision of a specified General Ledger’s Chart of Accounts, which was initialized with
the EMPTY_CHART member of the ChartKind data type, by allowing for the
addition, removal, and modification of specified GL Accounts. See Section 2.1.12, “GL
Facility - Basic Data Type Information,” on page 2-6.

The GL LedgerLifecycle interface may also be used to establish the reporting currency
for a specific General Ledger, as well as establishing or revising a set of GL Entry types
used to identify the EntryType of GL Entry. See Section 2.1.3, “GL Facility -
Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.

2.6.1 GL LedgerLifecycle Interface General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL LedgerLifecycle interface.

A GL client session must have been established with the Arbitrator::open_session()
operation and each GL client session must use a unique instance of the Profile interface.
The GL Facility must have been pre-configured for general purpose usage and there must
also be at least one General Ledger in existence for these operations to succeed.
Furthermore, a non-empty Chart of Accounts must also exist. See Section 2.1.3, “GL
Facility - Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.

2.6.2 GL LedgerLifecycle Interface Operation ::create_account()

void create_account(
in AccountId acc_id,

<<Interface>>

LedgerLifecycle

+ create_account (acc_id : AccountId, is_control_account : boolean, acc_description : wstring) : void

+ remove_account (acc_id : AccountId) : void

+ modify_account (acc_id : AccountId, new_acc_description : wstring) void

+ set_ledger_currency (currency_mnemonic : CurrencyMnemonic) : void

+ set_entry_types (entry_types : EntryTypeInfoList) : void
February 2001 GL Facility - LedgerLifecycle Interface 2-41

2

in wstring acc_description,
in boolean is_control_account)
raises (BadAccountId, BadAccountName, PermissionDenied);

Description

This operation adds a new GL Account to the currently selected General Ledger’s Chart
of Accounts schema. This is an infrequently used operation and is typically only used by
privileged GL Administrators.

Preconditions

None

Input Parameters

The parameter acc_id is passed in the invocation that specifies a unique reference to the
new GL Account to be created. The parameter acc_description is also passed in the
invocation, which specifies a high level name describing the purpose to which the new
account will be used (for example, salaries, bank current account). The parameter
is_control_account is also passed in the invocation, which determines whether the
new account will behave as a “Control Account.” A GL Control Account accumulates a
monetary value of related subsidiary GL Accounts over time. Some examples of GL
Control Account designations could be Debtor's Control Account, Creditor's Control
Account, Inventory, Buildings and Equipment.

Output Parameters

None

Return Value

None

Exceptions

The exceptions BadAccountId and BadAccountName will be raised if either or
both of the input parameters are unknown or are otherwise invalid. The exception
PermissionDenied will be raised if the GL client does not have permission to invoke
this interface operation.

Postconditions

The new GL Account is created and appears in the Chart of Accounts of the currently
selected General Ledger.

2.6.3 GL LedgerLifecycle Interface Operation ::remove_account()

void remove_account(
in AccountId acc_id)
raises (BadAccountId, CannotRemove, PermissionDenied);
2-42 General Ledger, v1.0 February 2001

2

Description

This operation removes a single, specific GL Account from the currently selected
General Ledger’s Chart of Accounts schema. This is an infrequently used operation and
is typically only used by privileged GL Administrators.

Preconditions

None

Input Parameters

The parameter acc_id is passed in the invocation, which explicitly specifies the GL
Account to be removed.

Output Parameters

None

Return Value

None

Exceptions

The exception BadAccountId will be raised if the reference cannot be located in the
currently selected General Ledger or is otherwise deemed invalid. The exception
CannotRemove will be raised if an unauthorized attempt is made to remove a GL
Account. See Section 2.1.3, “GL Facility - Environment Contract,” on page 2-2 and
Section 2.1.4, “GL Facility - General Invariants,” on pag e2-2 for more information. The
exception PermissionDenied will be raised if the GL client does not have permission
to invoke this interface operation.

Postconditions

The GL Account specified by the data type AccountId passed in the invocation is
removed from the currently selected General Ledger’s Chart of Accounts schema.

2.6.4 GL LedgerLifecycle Interface Operation ::modify_account()

void modify_account(
in AccountId acc_id,
in wstring new_acc_description)
raises (BadAccountId, BadAccountName, PermissionDenied);

Description

This operation modifies only the descriptive name associated with the specified GL
Account.
February 2001 GL Facility - LedgerLifecycle Interface 2-43

2

Preconditions

None

Input Parameters

The parameter acc_id is passed in the invocation, which explicitly specifies the GL
Account to modify, as well as a new account description for the specified GL Account
(for example, salaries or bank current account).

Output Parameters

None

Return Value

None

Exceptions

The exception BadAccountId will be raised if the GL Account reference cannot be
located in the currently selected General Ledger or is otherwise deemed to be invalid.
The exception BadAccountName will be raised if the information specified by this
parameter is invalid or the specified GL Account description already exists. The
exception PermissionDenied will be raised if the GL client does not have permission
to invoke this interface operation.

Postconditions

The specified GL Account name has been modified as specified.

2.6.5 GL LedgerLifecycle Interface Operation ::set_ledger_currency()

void set_ledger_currency (
in CurrencyMnemonic currency_mnemonic)
raises (BadCurrencyMnemonic, PermissionDenied);

Description

This operation specifies the reporting currency of the currently selected General Ledger.
This interface operation is typically used when setting up a new General Ledger. See
Section 2.3.8, “GL Profile Interface Operation ::get_ledger_currency(),” on page2-22 for
more information on the reporting currency, as well as Appendix A.

Preconditions

None

Input Parameters

The parameter currency_mnemonic is passed as a parameter in the invocation.
2-44 General Ledger, v1.0 February 2001

2

Output Parameters

None

Return Value

None

Exceptions

The exception BadCurrencyMnemonic is raised if there is a problem with the input
parameter. The exception PermissionDenied is raised if it is deemed that the GL
client does not have permission to set the specified General Ledger’s reporting currency.

Postconditions

The currently selected General Ledger’s reporting currency is set as specified in the
invocation.

2.6.6 GL LedgerLifecycle Interface Operation ::set_entry_types()

void set_entry_types(
in EntryTypeInfoList entry_types)
raises (BadEntryTypeInfoList, PermissionDenied);

Description

This operation is used to establish or revise a set of GL Entry types. Please see the
corresponding GL Profile operation set_entry_types() for detailed information.

Preconditions

None

Input Parameters

The parameter entry_types is passed in the invocation that specifies name/value pairs
describing both the purpose of the GL Entry EntryType as well as their mnemonic
identifiers.

Output Parameters

None

Return Value

None
February 2001 GL Facility - LedgerLifecycle Interface 2-45

2

Exceptions

The exception BadEntryTypeInfoList is raised if there is a problem with the input
parameter passed in the invocation. The exception PermissionDenied is raised if it is
deemed that the GL client does not have permission to set the specified General Ledger’s
GL Entry types.

Postconditions

The currently selected General Ledger’s GL Entry types are set as specified in the
invocation.

2.7 GL Facility - Integrity Interface

The GL Integrity interface provides for general purpose integrity checks on a specific
General Ledger’s Chart of Accounts, Transactions and Entries in the currently selected
General Ledger. Generally, these operations are only used by privileged GL Facility
Administrators. See Section 2.1.3, “GL Facility - Environment Contract,” on page 2-2
and Section 2.1.4, “GL Facility - General Invariants,” on page 2-2 for more information.

Although a specific underlying technical infrastructure may offer certain assurances with
regard to general data integrity, in practice, it is not uncommon that the necessity arises
to verify and test the integrity of specific information. Even though this specification
provides for the flexible retrieval of GL related information, there are numerous common
situations that implementations claiming conformance with this specification could
provide to GL clients that need to “troubleshoot” GL information, either pre-emptively or
retrospectively.

For example, implementations claiming conformance with this specification could check
that the current balance of a specified GL Account (or set of GL Accounts) is in
agreement with the total reported after the summation of associated GL Transactions and
Entries, or perhaps check that there are no “phantom” GL Transactions (i.e., GL
Transactions that for some unknown reason have no GL Entries associated with them).

2.7.1 GL Integrity General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL Integrity interface.

A GL client session must have been established with the Arbitrator::open_session()
operation and each GL client session must use a unique instance of the Profile interface.
The GL Facility must have been pre-configured for general purpose usage and there must
also be at least one General Ledger in existence for these operations to succeed.

<<Interface>>

Integrity

+ get_dynamic_selection() : wstringList

+ check_integrity (integrity_check : wstring) : boolean
2-46 General Ledger, v1.0 February 2001

2

Furthermore, a non-empty Chart of Accounts must also exist. See Section 2.1.3, “GL
Facility - Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.

The GL Facility makes available a non-zero list of supported GL Integrity checks that
may be used by suitably authorized GL clients. This specification does not mandate the
specific nature or number of available integrity checks but does mandate that
implementations claiming conformance with this specification support GL Integrity
checking.

2.8 GL Integrity Interface Operation

2.8.1 GL Integrity Interface Operation ::get_dynamic_selection()

wstringList get_dynamic_selection()raises (PermissionDenied);

Description

This operation invocation returns a wstringList of available integrity checks to be
performed on the information contained in the currently selected General Ledger. Each
integrity check is represented by a unique human-readable name, which specifies both
the purpose and scope of the integrity check to be performed.

Preconditions

None

Input Parameters

None

Output Parameters

None

Return Value

This operation invocation returns a wstringList containing an implementation defined
list of integrity checks.

Exceptions

The exception PermissionDenied is raised if the GL client has not successfully
established a valid GL client session with Arbitrator::open_session() prior to the
call or does not have permission to use this interface.

Postconditions

None
February 2001 GL Integrity Interface Operation 2-47

2

2.8.2 GL Integrity Interface Operation ::check_integrity()

boolean check_integrity (
 in wstring integrity_check)
 raises (BadIntegritySelection, PermissionDenied);

Description

This operation is used to verify the integrity of the General Ledger data in the currently
selected General Ledger. The specific integrity check to be performed on the currently
selected General Ledger must be one of those returned by the
get_dynamic_selection() operation, which has to be invoked first.

Preconditions

None

Input Parameters

The parameter integrity_check is passed in the operation invocation.

Output Parameters

None

Return Value

This operation invocation returns TRUE if the integrity check passes or FALSE if there
are warnings, errors, or other inconsistencies detected.

Exceptions

The exception BadIntegritySelection will be raised if the name of the specified
integrity check is invalid or unknown to the GL Facility. The exception
PermissionDenied is raised if it is deemed that the GL client does not have
permission to invoke this operation.

Postconditions

The specified GL integrity check either succeeded or failed.

2.9 GL Facility - FacilityLifecycle Interface

The GL FacilityLifecycle operations are intended for use by GL client sessions that are
oriented toward GL administrative functionality. Generally, these operations are only
used by privileged GL Facility Administrators. See Section 2.1.3, “GL Facility -
Environment Contract,” on page 2-2 and Section 2.1.4, “GL Facility - General
Invariants,” on page 2-2 for more information.
2-48 General Ledger, v1.0 February 2001

2

These operations are used to initially establish a Chart of Accounts schema for a specific
General Ledger constrained and managed by the GL Facility, as well as providing the
capability to remove a specified General Ledger from a GL Facility.

2.9.1 GL FacilityLifecycle Interface General Invariants

This section details invariants that are generally applicable to all operations supported by
the GL FacilityLifecycle interface.

A GL client session must have been established with the Arbitrator::open_session()
operation and each GL client session must use a unique instance of the Profile interface.
To remove a specific General Ledger, the GL Facility must have been pre-configured for
general purpose usage and there must also be at least one General Ledger in existence for
this operation to succeed. See Section 2.1.3, “GL Facility - Environment Contract,” on
page 2-2 and Section 2.1.4, “GL Facility - General Invariants,” on page 2-2 for more
information.

2.9.2 GL FacilityLifecycle Interface Operation
::create_ledger_chart_of_accounts()

void create_ledger_chart_of_accounts (
in wstring new_ledger_name,
in ChartKind chart_of_accounts_schema,
in wstring copied_ledger_name_for_schema)
raises (UnknownLedger, BadChartKind, PermissionDenied);

Description

This operation is used to create a new General Ledger, to be constrained and managed by
an instance of the GL Facility. Please note that this is an infrequently used operation and
is typically only carried out by privileged GL Facility Administrators. See Sect ion2.1.12,
“GL Facility - Basic Data Type Information,” on page 2-6.

Preconditions

None

<<Interface>>

FacilityLifecycle

+ create_ledger_chart_of_accounts (new_ledger_name : wstring,

 chart_of_accounts_schema : ChartKind,

 copied_ledger_name_for_schema : wstring) : void

+ remove_ledger (ledger_name : wstring) : void
February 2001 GL Facility - FacilityLifecycle Interface 2-49

2

Input Parameters

The parameter new_ledger_name is passed in the invocation that specifies the unique
name of the new General Ledger to create.

The parameter chart_of_accounts_schema is also passed in the invocation that
specifies whether to create an EMPTY_CHART of GL Accounts (i.e., zero GL
Accounts) or a DEFAULT_CHART of GL Accounts, or whether the GL Facility
implementation should create a “clone” from an EXISTING_CHART of GL Accounts
in an existing General Ledger known to the GL Facility.

If the chart_of_accounts_schema specifies that an existing Chart of Accounts in
another General Ledger should be used as a model and, if the
copied_ledger_name_for_schema specifies a valid General Ledger name known to
the GL Facility, then the Chart of Accounts schema is copied from the specified General
Ledger constrained and managed by the GL Facility.

Output Parameters

None

Return Value

None

Exceptions

The exception UnknownLedger is raised if the new Chart of Accounts schema is to be
based on another General Ledger and the specified General Ledger cannot be located or
is otherwise invalid.

The exception BadChartKind is raised if an invalid Chart of Accounts kind is
specified.

The exception PermissionDenied is raised if it is deemed that the GL client does not
have permission to invoke this interface operation.

Postconditions

A new General Ledger is created and is made generally available for new GL client
sessions and all GL Account balances in the new General Ledger are set to zero. The new
General Ledger appears in the wstringList returned by the
Profile::get_ledger_names() operation.

2.9.3 GL FacilityLifecycle Interface Operation ::remove_ledger()

void remove_ledger (
in wstring ledger_name)
raises (UnknownLedger, CannotRemove, PermissionDenied);
2-50 General Ledger, v1.0 February 2001

2

Description

This operation removes a single, specific General Ledger from the GL Facility. See
Section 2.1.3, “GL Facility - Environment Contract,” on page2-2 and Section2.1.4, “ GL
Facility - General Invariants,” on page 2-2 for more information.

See Section 2.2.2, “GL Arbitrator Interface Operation ::get_ledger_names(),” on
page 2-14 for more information on the retrieval of General Ledger names constrained and
managed by an instance of the GL Facility.

Preconditions

None

Input Parameters

The parameter ledger_name is passed in the operation invocation that refers to the
name of a single, specific General Ledger constrained and managed by the GL Facility.
This parameter explicitly specifies the General Ledger to remove.

Output Parameters

None

Return Value

None

Exceptions

The exception UnknownLedger is raised if the new Chart of Accounts schema is to be
based on another General Ledger and that General Ledger cannot be located or is
otherwise invalid. The exception CannotRemove will be raised according to specific
organizational policy decisions. The exception PermissionDenied is raised if it is
deemed that the GL client does not have permission to invoke this interface operation.

Postconditions

The specified General Ledger has been removed from the GL Facility.
February 2001 GL Facility - FacilityLifecycle Interface 2-51

2

2-52 General Ledger, v1.0 February 2001

 Complete OMG IDL A
A.1 Explanation of IDL Changes

The architectural intention of the GL Facility's API design is to facilitate the convenient
implementation of interoperable accounting applications, referred to as "clients" in the
specification. The overall intention is to provide as complete a set of GL services as
possible to support the implementation of accounting clients that need to interoperate
with one or more GL Facility implementations. One or more GL client(s) makes a
request for a new GL client session from the GL Facility's Arbitrator interface. If
successful, the GL Arbitrator returns a GL Profile interface that provides information
about the current session, as well as making provision for controlled access to the various
interfaces and operations supported by the GL Facility.

During the evaluation process, discussion always centered around the login_name and
password arguments of the GL Arbitrator's open_session() operation, and whether or
not these should be supplied by the CORBA Security service or the facility itself, if no
CORBA Security service was available. The authors took this approach to help the FDTF
to determine "policy" for the future evaluation of other proposed FDTF Domain Interface
specifications. The authors always had an open mind as to whether or not these
arguments should be included in the specification, but the final decision should be based
on a consensus between FDTF, the CORBAsecurity SIG and others. Consensus was
finally reached that these arguments should be excluded from the specification, hence the
change to the IDL as detailed in this document.

A.2 General Ledger Facility IDL

#ifndef _FdGeneralLedger_
#define _FdGeneralLedger_

/*
 * GENERAL LEDGER FACILITY IDL
 *
 * Revision History as of October 1998.
February 2001 General Ledger, v1.0 A-1

A

 * 20-10-1998 Additions to Revised Submission - York.
 * 30-10-1998 Revision and Clarification - Manchester.
 * 31-10-1998 Logical corrections - Manchester.
 * 01-11-1998 Syntax errors corrected - Orbix 2.3 IDL compiler - Washington.
 * 09-11-1998 Additional items left out from York - Leamington Spa.
 * 10-11-1998 Minor revisions and clarifications - San Francisco.
 * 27-11-1998 co-submitters meeting - London.
 * 28-11-1998 through to 02-12-1998 - Manchester.
 * 03-12-1998 through to 06-12-1998 - Oslo.
 * 07-12-1998 through to 21-12-1998 - all co-submitters.
 *
*/

#include <FbcCurrency.idl>
#include <CBO.idl>

module FdGeneralLedger // FORWARD DECLARATIONS

interface Arbitrator; // establish client session
interface Profile; // GL facility metadata
interface Retrieval; // data acquisition
interface BookKeeping; // data entry
interface LedgerLifecycle; // lifecycle management
interface Integrity; // data integrity checks
interface FacilityLifecycle; // Facility lifecycle management

 // DATA TYPE DECLARATIONS
typedef FbcCurrency::Money Money;
typedef sequence<wstring> wstringList;
typedef wstring CurrencyMnemonic; // ISO currency mnemonic
typedef wstring TransactionId; // a transaction reference
typedef sequence<TransactionId> TransactionIdList;
typedef wstring EntryId;
typedef sequence<EntryId> EntryIdList;
typedef wstring AccountId;
typedef sequence<AccountId> AccountIdList;
typedef wstring EntryType;
typedef sequence<EntryType> EntryTypeInfoList;
typedef wstring PeriodId; // reference to a user defined

// accounting period

typedef unsigned short ChartKind;
 // used to select a kind of new

// ledger schema
const ChartKind EMPTY_CHART = 1;
const ChartKind DEFAULT_CHART = 2;
const ChartKind EXISTING_CHART = 3;

enum DebitOrCredit { CREDIT, DEBIT }; // an entry is either a credit or
// a debit

struct Date { // Used for all date fields
CBO::DTime setting; // Does not allow "not set" dates
boolean is_set; // Needed for any useful date

// data type };
A-2 General Ledger, v1.0 February 2001

A

struct DateRange { Date start_date; Date end_date; };
 // specifies date ranges for

// purposes of retrieval
struct AccountInfo { AccountId acc_id; // account reference

wstring acc_description; // account name
};
typedef sequence<AccountInfo> AccountInfoList;

struct Account { // metadata describing an account
AccountInfo acc_info; // account reference and name
boolean is_control_account;

 // control accounts maintain
// running balances

Money balance; // accumulated balance as of
// "current" date

};
typedef sequence<Account> AccountList;// List of accounts

struct TransactionInfo { // Summary information about a
// transaction

TransactionId trans_id; // Transaction reference
wstring voucher_ref; // documentation of transaction
Date voucher_date; // Date of initiating action that

// causes the posting
Date act_trans_date; // Date of transaction posting -
PeriodIdperiod_id; // used for retrieval purposes

};
typedef sequence <TransactionInfo> TransactionInfoList;

struct Entry { // GL accounting entry

// informationTransactionId
trans_id; // This entry is part of this transaction
EntryId entry_id; // audit trail number for this entry
Date entry_date; // Date of entry posting
EntryTypeentry_type; // e.g. JournalCredit, JournalDebit etc.
AccountIdacc_id; // reference
Money orig_amount; // original amount in this currency
Money amount; // Quantity and currency units of this entry
DebitOrCreditdr_cr; // Debit or Credit GL Account
wstring description; // annotation describing the entry
wstring voucher_ref; // reference to documentation of entry

};
typedef sequence<Entry> EntryList; // List of accounting entries
struct Transaction { // GL accounting transaction information

TransactionInfo trans_info;// Summary information about transaction
EntryList entries; // Entries comprising the transaction
};
typedef sequence<Transaction> TransactionList;

// List of transactions
struct EntryTypeInfo {

EntryTypetype; // mnemonic of GL Entry type
wstring description; }; // Journal Debit, Credit etc

 typedef sequence<EntryTypeInfo> EntryTypeInfoList;
February 2001 General Ledger, v1.0 A-3

A

// EXCEPTION DECLARATIONS
exception BadDate { wstring error; Date bad_value; };

exception BadChartKind { wstring error; ChartKind bad_value; };

exception BadTransaction { wstring error; };

exception BadTransactionsInList {
wstring error;
unsigned long position_in_list; };

exception BadEntryType {

wstring error;
EntryType bad_value; };

exception BadEntryTypeInfoList {
wstring error;
EntryTypeInfoList bad_values; };

exception BadCurrencyMnemonic {
wstring error;
CurrencyMnemonic bad_value; };

exception BadAccountId {
wstring error;
AccountId bad_value; };

exception BadTransId {
wstring error;
TransactionId bad_value; };

exception CannotRemove { wstring error; };

exception PermissionDenied { wstring error; };

exception UnknownLedger {
wstring error;
wstring bad_value; };

exception BadIntegritySelection {
wstring error;
wstring bad_value; };

exception BadAccountName {
wstring error;
wstring bad_value; };

// INTERFACE DECLARATIONS interface Arbitrator {/
// Initiate client session on a specified General Ledger.

wstringList get_ledger_names(); // Returns names of available ledgers.
Profile open_session (

in wstring ledger_name,
in wstring login_name, in wstring password)
raises (UnknownLedger, PermissionDenied);

};
A-4 General Ledger, v1.0 February 2001

A

interface Profile {

void close_session();
 // End this client session, reclaiming

// session resources and state

// GL FRAMEWORK OPERATIONS

BookKeeping book_keeping() raises (PermissionDenied);
 // Get bookkeeping object reference

Retrieval retrieval() raises (PermissionDenied);
 // Get retrieval service reference

Integrity integrity() raises (PermissionDenied);
 // Get integrity service reference

LedgerLifecycle ledger_lifecycle() raises (PermissionDenied);
 // Get ledger lifecycle service reference

FacilityLifecycle facility_lifecycle() raises (PermissionDenied);
 // Get facility lifecycle service reference

 // PROFILE INFORMATION

CurrencyMnemonic get_ledger_currency() raises (PermissionDenied);
 // Principal currency used in current ledger

EntryTypeInfoList get_entry_types() raises (PermissionDenied);
 // Retrieve list of defined entry types };

interface Retrieval {
// ACCOUNT METADATA RETRIEVAL

AccountInfoList get_all_account_info();
// Retrieve account information.

Account get_account (in AccountId acc_id)
raises (BadAccountId, PermissionDenied);

 // Retrieve description of an account

AccountList get_multiple_accounts (in AccountIdList account_ids)
raises (BadAccountId, PermissionDenied);

 // Retrieve description for several accounts

AccountList get_all_accounts() raises (PermissionDenied);
// Retrieve all account summaries

 // TRANSACTION AND ENTRY METADATA

TransactionIdList get_trans_ids(in DateRange date_range)
raises (BadDate, PermissionDenied);

 // Retrieve number and list of account
// transaction references
// in the specified data range
February 2001 General Ledger, v1.0 A-5

A

TransactionInfo get_trans_info_summary(in TransactionId trans_id)
raises (BadTransId, PermissionDenied);

 // Retrieve a transaction summary
TransactionInfoList get_trans_info_by_refs(

in TransactionIdList trans_ids)
raises (BadTransId, PermissionDenied);

 // Retrieve a specific list of
// transaction references

TransactionInfoList get_trans_info_by_date(in DateRange date_range)
raises (BadDate, PermissionDenied);

// Retrieve transaction summaries from
// the specified date range

unsigned long get_entry_count_by_type(
in DateRange date_range,
in EntryType entry_type)
raises (BadDate, BadEntryType, PermissionDenied);

 // Retrieve the count of entries with
// the indicated entry type

 // (within the specified date range)

unsigned long get_entry_count_by_account(in DateRange date_range,
in AccountId acc_id)
raises (BadDate, BadAccountId, PermissionDenied);

// Retrieve the count of entries for
// an account within a date range

// TRANSACTION AND ENTRY RETRIEVAL
Transaction get_transaction(in TransactionId trans_id)

raises (BadTransId, PermissionDenied);
 // Retrieve a transaction info and its entries

TransactionList get_transactions_by_ids(
in TransactionIdList trans_ids)
raises (BadTransId, PermissionDenied);

 // Retrieve a list of transactions by
// reference number

TransactionList get_transactions_by_date(
in DateRange date_range)
raises (BadDate, PermissionDenied);

 // Retrieve a list of
// transactions with entries within a
// date range

EntryList get_entries_by_type (
in DateRange date_range,
in EntryType entry_type)
raises (BadDate, BadEntryType, PermissionDenied);

 // Retrieve a list of entries with the
// indicated entry type

EntryList get_entries_by_account (
in DateRange date_range,
in AccountId acc_id)
raises (BadDate, BadAccountId, PermissionDenied);

 // Retrieve a list of entries for an
// account (within a date range) };

A-6 General Ledger, v1.0 February 2001

A

interface BookKeeping {
// Each transaction is balanced. The
// sum of debits and credits balance.

TransactionId post_transaction(
in Transaction single_transaction)
raises (BadTransaction, PermissionDenied);

 // Post a transaction to the GL
// persistently - including one or

 // more related entries
TransactionIdList post_transaction_list(

in TransactionList transactions)
raises (BadTransactionsInList, PermissionDenied);

 // Post several transactions to the GL
// persistently - including one

 // or more sets of related entries };

interface LedgerLifecycle {
 // GL ACCOUNT LIFECYCLE

void create_account(in AccountId acc_id,
in wstring acc_description,
in boolean is_control_account)
raises (BadAccountId, BadAccountName, PermissionDenied);

 // add a new account to the
// ledger schema

void removeAccount(
in AccountId acc_id)
raises (BadAccountId, CannotRemove, PermissionDenied);

 // Remove an account description from
// the ledger schema

void modify_account(in AccountId acc_id,
in wstring new_acc_description)
raises (BadAccountId, BadAccountName, PermissionDenied);

 // Modify an account description

// LEDGER METADATA MANAGEMENT
void set_ledger_currency (

in CurrencyMnemonic currency_mnemonic)
raises (BadCurrencyMnemonic, PermissionDenied);

 // Specify the principal currency
// for this ledger

void set_entry_types(
in EntryTypeInfoList entry_types)
raises (BadEntryTypeInfoList, PermissionDenied);

 // Establish or revise a set of entry
// types };

interface Integrity {
wstringList get_dynamic_selection() raises (PermissionDenied);

 // Retrieve a list of integrity
// checking options

boolean check_integrity (
in wstring integrity_check)
raises (BadIntegritySelection, PermissionDenied);

 // Verify the integrity of the ledger
February 2001 General Ledger, v1.0 A-7

A

// data and/or metadata };
interface FacilityLifecycle {

// LEDGER/CHART OF ACCOUNTS LIFECYCLE
void create_ledger_chart_of_accounts (

in wstring new_ledger_name,
in ChartKind chart_of_accounts_schema,
in wstring copied_ledger_name_for_schema)
raises (UnknownLedger, BadChartKind, PermissionDenied);

 // add a new ledger to this facility
// instance

void remove_ledger (
in wstring ledger_name)
raises (UnknownLedger, CannotRemove, PermissionDenied);

 // Delete a ledger from this facility
// instance };};
// end of module FdGeneralLedger

#endif
A-8 General Ledger, v1.0 February 2001

 References B
B.1 List of References

1. Executive Encyclopedia: Fortune, 1987.

2. P. Allen and S. Frost, Component-Based Development for Enterprise Systems,
Applying The SELECTIVE Perspective: Cambridge, 1998.

3. G. Booch, I. Jacobson, and J. Rumbaugh, “UML Semantics,” Rational Software
Corporation Version 1.0, January 13 1997.

4. W. J. Brown, R. C. Malveau, H. W. M. III, and T. J. Mowbray, Anti Patterns,
Refactoring Software, Architectures, and Projects in Crisis: John Wiley & Sons,
Inc., 1998.

5. C. F. Cargill, Information Technology Standardization: Theory, Process and
Organizations: Digital Press, 1989.

6. A. Cockburn, “Structuring Use Cases with Goals,” , 1997.

7. COMPASS, “COMPASS Software Engineering Handbook Part I - IV,” , 1998.

8. COMPASS, “Guide to Economics,” 1998.

9. COMPASS, “Volume I: Architecture Overview,” 1998.

10. COMPASS, “Volume II:,” 1998.

11. COMPASS, “Volume III,” 1998.

12. COMPASS, “Volume IV: GL Extensions and Components,” 1998.

13. COMPASS, “Volume V: Technology Viewpoint,” 1998.

14. M. Fowler, Analysis Patterns: Reusable Object Models: Addison-Wesley, 1997.
February 2001 General Ledger, v1.0 B-1

B

15. M. Fowler and K. Scott, UML distilled - applying the standard object modeling
language”: Addison Wesley, ISBN 0-201-32563, 1997.

16. A. S. Hollander, E. L. Denna, and J. O. Cherrington, Accounting, Information
Technology, and Business Solutions: IRWIN, 1996.

17. IASC, “International Accounting Standards,” 1998. International Accounting
Standards Committee

18. Y. Ijiri, Management Goals and Accounting for Control, vol. 3. Amsterdam,
Netherlands: North-Holland, 1965.

19. Y. Ijiri, Momentum Accounting and Triple-Entry Bookkeeping, vol. 31. Sarasota:
American Accounting Association, 1989.

20. ISO/IEC, “JTC1/SC21 Open Systems Interconnection, Data Management and Open
Distributed Processing,” , USA (ANSI).

21. ISO/IEC, “ISO/IEC 10746-1 Information technology - Basic reference model of
Open Distributed Processing - Part 1: Overview,” ISO ITU-T X.901 - ISO/IEC DIS
10746-1, 1996.

22. ISO/IEC, “ISO/IEC 10746-2 Information technology - Open Distributed Processing
- Reference Model:Foundations,” , 1996.

23. ISO/IEC, “ISO/IEC 10746-3 Information technology - Open Distributed Processing
- Reference Model: Architecture,” , 1996.

24. I. Jacobson, M. Christerson, P. Jonsson, and G. Övergaard, Object-Oriented
Software Engineering - A Use Case Driven Approach: Addison-Wesley, 1992.

25. R. E. Jensen, Phantasmagoric Accounting, vol. 14. Sarasota: American Accounting
Association, 1976.

26. H. Kilov, B. Rumpe, and I. Simmonds, “OOPSLA’97 Workshop on Object Oriented
Behavioral Semantic,” Institut fur Informatik der Technischen Universitat Munchen
1997.

27. H. Kilov, B. Rumpe, and I. Simmonds, “OOPSLA’98 Workshop on Behavioral
Semantics of OO Business and System Specifications,” Institut fur Informatik der
Technischen Universitat Munchen 1998.

28. MAGMA, “Magma Software engineering handbook,” SINTEF, draft 1997.

29. C. R. Malburg, Accounting for a new business: Bob Adams Inc, 1994.

30. L. v. Mises, Human: Action: A Treatise on Economics: Regnery, 1963.

31. T. J. Mowbray, “How to apply open systems to OO architectures,” in OBJECT
Magazine, 1996.

32. T. J. Mowbray and R. C. Malveau, CORBA Design Patterns: John Wiley & Sons,
Inc., 1997.

33. T. J. Mowbray and W. A. Ruh, Inside CORBA: John Wiley & Sons, 1997.
B-2 General Ledger, v1.0 February 2001

B

34. T. J. Mowbray and R. Zahavi, The Essential CORBA: Systems Integration Using
Distributed Objects: John Wiley & Sons, Inc., 1995.

35. OMG, “Common Facilities RFP3,” OMG Document Number 95.11.3, November
1995.

36. OMG, “CORBAfacilities: Common Facilities Architecture,” Object Management
Group Revision 4.0, November 1995.

37. OMG, “OMG Object Management Architecture Guide (OMA Guide), Revision
3.0,” , 1995.

38. OMG, “CORBAservices: Common Object Services Specification,” , 1997.

39. OMG, “The Common Object Request Broker: Architecture and Specification,
Revision 2.2,” Object Management Group Feb. 1998.

40. OMG/UML, “UML Notation,” . http://www.rational.com/uml/html/notation, 1997.

41. OMG/UML, “UML Semantics,” . http://www.rational.com/uml/html/semantics,
1997.

42. R. Orfali and D. Harkey, Client/Server Programming with Java and CORBA: John
Wiley & Sons, Inc., 1997.

43. T. Reenskaug, P. Wold, and O. A. Lehne, Working with Objects - The OOram
Software Engineering Method: Manning Publications, ISBN 1-884777-10-4, 1996.

44. J. D. Shank and V. Govindarajan, “Strategic Cost Analysis: The Crown Cork and
Seal Case,” Journal of Cost Management, vol. 2, pp. pp 5-16, 1989.

45. J. D. Shank and V. Govindarajan, “Strategic Cost Management and the Value
Chain,” Journal of Cost Management, vol. 5, pp. pp 5-21, 1992.

46. M. Shaw and D. Garlan, Software Architecture - Perspectives On An Emerging
Discipline: Prentice-Hall, 1996.

47. J. Siegel, CORBA Fundamentals and Programming: John Wiley & Sons, 1997.

48. C. Szyperski, Component Software, Beyond Object-Oriented Programming:
Addison-Wesley, 1998.

49. P. B. B. Turney, Common Cents: The ABC Performance Breakthrough: Hillsboro,
1991.
February 2001 General Ledger, v1.0 B-3

B

B-4 General Ledger, v1.0 February 2001

 Requirements C
C.1 Proof of Concept Statement

The principal contributors to this specification are involved with the European Union
funded COMPASS project, as part of which they have developed two alternative
prototype commercial implementations of General Ledger software guided by extensive
consultation with end users and vendors as well as utilizing existing OMG compliant
technology. The two implementations are based on existing accounting products and
demonstrate the applicability of this specification to both legacy and component-based
software; they will be available for display at the OMG Technical Meetings following the
final specification.

C.2 Service Dependencies and Relationships

C.2.1 OMG Security Service

This particular aspect of the specification has been the subject of a great deal co-
operative work with the CORBA Security SIG, the FDTF and the co-submitters for a
considerable length of time. Security is of paramount importance when dealing with
highly sensitive financial information. The co-submitters and their supporters believe that
the approach taken explicitly specifies a significant degree of support for application-
level security capabilities (i.e., dealing with authorisation and access control) which
could be implemented either by using the existing OMG Security Service (at level one or
above), or by a GL Facility implementation itself if no OMG Security Service
implementation is available.
February 2001 General Ledger, v1.0 C-1

C

C.2.2 OMG Object Transaction Service (OTS)

While this specification makes no explicit use of the OMG Object Transaction Service
itself, it is likely that implementations targeted at large enterprises will take advantage of
the facilities of this service for scalability. The specification neither precludes nor
mandates use of the OTS.

C.2.3 OMG Unified Modelling Language (UML)

The underlying models derived by the co-submitters as part of their work on the design
of the interface structure are based on the RM-ODP approach and documented using
OMG UML. Additional supporting documentation in the form of ODP based Enterprise
and Information viewpoint specifications have been provided separately in OMG DTC
documents finance/98-12-01 and finance/98-12-02 respectively.

C.2.4 OMG Currency Facility

This specification uses the OMG FbcCurrency Currency Facility, which provides a
Money type used in this specification. As some specifications and features are not yet
finalised by OMG nor available in actual implementations, the submitters have compiled
the GL Facility IDL by changing value types defined in the Currency Facility to interface
types.

C.2.5 OMG Relationship Service

Although this specification does not use this service itself, it is used by the Currency
Facility (see “Currency Facility” above).

C.2.6 OMG Query Service

Although this specification does not use this service itself, it is used by the Currency
Facility (see “Currency Facility” above).

C.3 Relationship to CORBA

The General Ledger Facility assumes the use of a CORBA compliant ORB.

C.4 Relationship to the OMG Object Model

The General Ledger Facility conforms to the OMG Object Model.
C-2 General Ledger, v1.0 February 2001

	Overview
	1.1 GL Facility - Description
	1.2 GL Facility - Approach
	1.3 GL Facility - Interface Summary
	1.4 GL Facility - Architecture

	Modules and Interfaces
	2.1 Module - CORBA::FdGeneralLedger
	2.1.1 GL Facility - Included OMG/ISO IDL Files
	2.1.2 GL Facility - Module FdGeneralLedger
	2.1.3 GL Facility - Environment Contract
	2.1.4 GL Facility - General Invariants
	2.1.5 GL Facility - Ledger Invariants
	2.1.6 GL Facility - Account Invariants
	2.1.7 GL Facility - Transaction Invariants
	2.1.8 GL Facility - Entry Invariants
	2.1.9 GL Facility - Forward Declarations
	2.1.10 GL Facility - Basic Data Type Naming Conventions
	2.1.11 GL Facility - Basic Data Type Definitions
	2.1.12 GL Facility - Basic Data Type Information
	2.1.13 GL Facility - Account Information
	2.1.14 GL Facility - Transaction Information
	2.1.15 GL Facility - Entry Information
	2.1.16 GL Facility - Transaction Summary Information
	2.1.17 GL Facility - Operation Exception Conditions
	2.1.18 GL Facility - Miscellaneous Operation Exception Conditions

	2.2 GL Facility - Arbitrator Interface
	2.2.1 GL Arbitrator Interface General Invariants
	2.2.2 GL Arbitrator Interface Operation ::get_ledger_names()
	2.2.3 GL Arbitrator Interface Operation ::open_session()

	2.3 GL Facility - Profile Interface
	2.3.1 GL Profile Interface General Invariants
	2.3.2 GL Profile Interface Operation ::close_session()
	2.3.3 GL Profile Interface Operation ::retrieval()
	2.3.4 GL Profile Interface Operation ::book_keeping()
	2.3.5 GL Profile Interface Operation ::integrity()
	2.3.6 GL Profile Interface Operation ::LedgerLifecycle()
	2.3.7 GL Profile Interface Operation ::FacilityLifecycle()
	2.3.8 GL Profile Interface Operation ::get_ledger_currency()
	2.3.9 GL Profile Interface Operation ::get_entry_types()

	2.4 GL Facility - Retrieval Interface
	2.4.1 GL Retrieval Interface General Invariants
	2.4.2 GL Retrieval Interface Operation ::get_all_account_info()
	2.4.3 GL Retrieval Interface Operation ::get_account()
	2.4.4 GL Retrieval Interface Operation ::get_multiple_accounts()
	2.4.5 GL Retrieval Interface Operation ::get_all_accounts()
	2.4.6 GL Retrieval Interface Operation ::get_trans_ids()
	2.4.7 GL Retrieval Interface Operation ::get_trans_info_summary()
	2.4.8 GL Retrieval Interface Operation ::get_trans_info_by_refs()
	2.4.9 GL Retrieval Interface Operation ::get_trans_info_by_date()
	2.4.10 GL Retrieval Interface Operation ::get_entry_count_by_account()
	2.4.11 GL Retrieval Interface Operation ::get_entry_count_by_type()
	2.4.12 GL Retrieval Interface Operation ::get_transaction()
	2.4.13 GL Retrieval Interface Operation ::get_transactions_by_ids()
	2.4.14 GL Retrieval Interface Operation ::get_transactions_by_date()
	2.4.15 GL Retrieval Interface Operation ::get_entries_by_type()
	2.4.16 GL Retrieval Interface Operation ::get_entries_by_account()

	2.5 GL Facility - BookKeeping Interface
	2.5.1 GL BookKeeping Interface General Invariants
	2.5.2 GL BookKeeping Interface Operation ::post_transaction()
	2.5.3 GL BookKeeping Interface Operation ::post_transaction_list()

	2.6 GL Facility - LedgerLifecycle Interface
	2.6.1 GL LedgerLifecycle Interface General Invariants
	2.6.2 GL LedgerLifecycle Interface Operation ::create_account()
	2.6.3 GL LedgerLifecycle Interface Operation ::remove_account()
	2.6.4 GL LedgerLifecycle Interface Operation ::modify_account()
	2.6.5 GL LedgerLifecycle Interface Operation ::set_ledger_currency()
	2.6.6 GL LedgerLifecycle Interface Operation ::set_entry_types()

	2.7 GL Facility - Integrity Interface
	2.7.1 GL Integrity General Invariants

	2.8 GL Integrity Interface Operation
	2.8.1 GL Integrity Interface Operation ::get_dynamic_selection()
	2.8.2 GL Integrity Interface Operation ::check_integrity()

	2.9 GL Facility - FacilityLifecycle Interface
	2.9.1 GL FacilityLifecycle Interface General Invariants
	2.9.2 GL FacilityLifecycle Interface Operation ::create_ledger_chart_of_accounts()
	2.9.3 GL FacilityLifecycle Interface Operation ::remove_ledger()

	Complete OMG IDL
	References
	Requirements

