
LicensingServiceSpecification

Version1.0
NewEdition:April 2000

Copyright 1995 Digital Equipment Corporation
Copyright 1995 Gradient Technologies, Inc.
Copyright 1995 International Business Machines, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document does
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY
WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF
FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is protected
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents
iii

iii
 iii

iv

iv

1-1

1-1
-1
-2

1-2
-3
1-3
 1-4
-5
-5
-6
1-6
-6

-7

1-7

1-8
-8
-9
-10
Preface .

About the Object Management Group
What is CORBA? .

Associated OMG Documents .

Acknowledgments .

1. Service Description .

1.1 Background Information .
1.1.1 Existing License Management Products 1
1.1.2 Business Policy . 1
1.1.3 License Types .
1.1.4 A History of License Types 1
1.1.5 Asset Management .
1.1.6 License Usage Practices
1.1.7 Scalability . 1
1.1.8 Reliability . 1
1.1.9 Legacy Applications 1
1.1.10 Security .
1.1.11 Client/Server Authentication 1
1.1.12 Example: Application Acquiring and Releasing a

Concurrent License . 1

1.2 Licensing Service Overview .

1.3 Key Components of a Licensing System
1.3.1 License Attributes . 1
1.3.2 Licensing Policy . 1
1.3.3 Interfaces Isolated From Business Policies . . 1
Licensing Service V1.0 April 2000 i

Contents

11

-12

-1

2-1
2-2
-2
-3

2-4
2-7
-7

1

-1

-1

1

1

1.4 Licensing in the CORBA Environment 1-

1.5 Design Principles . 1

2. Licensing Service Interfaces . 2

2.1 Licensing Service Interfaces .
2.1.1 Interfaces are Mandatory
2.1.2 Constraints on Object Behavior 2
2.1.3 Licensing Event Trace Diagram 2

2.2 The CosLicensing Module .
2.2.1 LicenseServiceManager Interface
2.2.2 ProducerSpecificLicenseService Interface 2

Glossary .

Appendix A - References . A

Appendix B - Use of Other Services B

Appendix C - Implementation Issues C-

Appendix D - Challenge Mechanism D-
ii Licensing Service V1.0 April 2000

Preface
ent
nd
td
s.

s at
l
by
and

rted
and
nted

ide a
,
ous
p a

d.
About This Document

Under the terms of the collaboration between OMG and X/Open Co Ltd, this docum
is a candidate for endorsement by X/Open, initially as a Preliminary Specification a
later as a full CAE Specification. The collaboration between OMG and X/Open Co L
ensures joint review and cohesive support for emerging object-based specification

X/Open Preliminary Specifications undergo close scrutiny through a review proces
X/Open before publication and are inherently stable specifications. Upgrade to ful
CAE Specification, after a reasonable interval, takes place following further review
X/Open. This further review considers the implementation experience of members
the full implications of conformance and branding.

Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base
Licensing Service V1.0 April 2000 iii

ted,
y
ject
nd

ing

st of

the

ed

lpful

sists

ive

o
n

,
tem
y.
What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where the
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Ob
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.

X/Open

X/Open is an independent, worldwide, open systems organization supported by mo
the world's largest information system suppliers, user organizations and software
companies. Its mission is to bring to users greater value from computing, through
practical implementation of open systems.

Intended Audience

The specifications described in this manual are aimed at software designers and
developers who want to produce applications that comply with OMG standards for
object services; the benefits of compliance are outlined in the following section, “Ne
for Object Services.”

Need for Object Services

To understand how Object Services benefit all computer vendors and users, it is he
to understand their context within OMG’s vision of object management. The key to
understanding the structure of the architecture is the Reference Model, which con
of the following components:

• Object Request Broker, which enables objects to transparently make and rece
requests and responses in a distributed environment. It is the foundation for
building applications from distributed objects and for interoperability between
applications in hetero- and homogeneous environments. The architecture and
specifications of the Object Request Broker are described inCORBA: Common
Object Request Broker Architecture and Specification.

• Object Services, a collection of services (interfaces and objects) that support
basic functions for using and implementing objects. Services are necessary t
construct any distributed application and are always independent of applicatio
domains.

• Common Facilities, a collection of services that many applications may share
but which are not as fundamental as the Object Services. For instance, a sys
management or electronic mail facility could be classified as a common facilit
iv Licensing Service V1.0 April 2000

s, an
antic

en
es,
s
t

the

The
es a

are
des
are

ct-

y

The Object Request Broker, then, is the core of the Reference Model. Nevertheles
Object Request Broker alone cannot enable interoperability at the application sem
level. An ORB is like a telephone exchange: it provides the basic mechanism for
making and receiving calls but does not ensure meaningful communication betwe
subscribers. Meaningful, productive communication depends on additional interfac
protocols, and policies that are agreed upon outside the telephone system, such a
telephones, modems and directory services. This is equivalent to the role of Objec
Services.

What Is an Object Service Specification?

A specification of an Object Service usually consists of a set of interfaces and a
description of the service’s behavior. The syntax used to specify the interfaces is
OMG Interface Definition Language (OMG IDL). The semantics that specify a
services’s behavior are, in general, expressed in terms of the OMG Object Model.
OMG Object Model is based on objects, operations, types, and subtyping. It provid
standard, commonly understood set of terms with which to describe a service’s
behavior.

(For detailed information about the OMG Reference Model and the OMG Object
Model, refer to theObject Management Architecture Guide).

Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guidedefines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also provi
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA Platform Technologies

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language mapping specifications.

• CORBA Services,a collection of specifications for OMG’s Object Services. See
the individual service specifications.

• CORBA Facilities,a collection of specifications for OMG’s Common Facilities.
See the individual facility specifications.

• CORBA Domain Technologies

• CORBA Manufacturing, a collection of specifications that relate to the
manufacturing industry. This group of specifications defines standardized obje
oriented interfaces between related services and functions.

• CORBA Med, a collection of specifications that relate to the healthcare industr
and represents vendors, healthcare providers, payers, and end users.
Licensing Service V1.0 Associated OMG Documents April 2000 v

n

t

d,
dards
(The

ns,

of

P-
.

• CORBA Finance, a collection of specifications that target a vitally important
vertical market: financial services and accounting. These important applicatio
areas are present in virtually all organizations: including all forms of monetary
transactions, payroll, billing, and so forth.

• CORBA Telecoms, a collection of specifications that relate to the OMG-complian
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue, Suite 201

Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org
http://www.omg.org

Service Design Principles

Build on CORBA Concepts

The design of each Object Service uses and builds on CORBA concepts:

• Separation of interface and implementation

• Object references are typed by interfaces

• Clients depend on interfaces, not implementations

• Use of multiple inheritance of interfaces

• Use of subtyping to extend, evolve and specialize functionality

Other related principles that the designs adhere to include:

• Assume good ORB and Object Services implementations. Specifically, it is
assumed that CORBA-compliant ORB implementations are being built that
support efficient local and remote access to “fine-grain” objects and have
performance characteristics that place no major barriers to the pervasive use
distributed objects for virtually all service and application elements.

• Do not build non-type properties into interfaces

A discussion and rationale for the design of object services was included in the H
SunSoft response to the OMG Object Services RFI (OMG TC Document 92.2.10)
vi Licensing Service V1.0 April 2000

ey
y
rful

ay
eal

lient
ent
cally

that
rver
on

es
ple,

ces
rules

ts.

rent
s

Basic, Flexible Services

The services are designed to do one thing well and are only as complicated as th
need to be. Individual services are by themselves relatively simple yet they can, b
virtue of their structuring as objects, be combined together in interesting and powe
ways.

For example, the event and life cycle services, plus a future relationship service, m
play together to support graphs of objects. Object graphs commonly occur in the r
world and must be supported in many applications. A functionally-rich Folder
compound object, for example, may be constructed using the life cycle, naming,
events, and future relationship services as “building blocks.”

Generic Services

Services are designed to be generic in that they do not depend on the type of the c
object nor, in general, on the type of data passed in requests. For example, the ev
channel interfaces accept event data of any type. Clients of the service can dynami
determine the actual data type and handle it appropriately.

Allow Local and Remote Implementations

In general the services are structured as CORBA objects with OMG IDL interfaces
can be accessed locally or remotely and which can have local library or remote se
styles of implementations. This allows considerable flexibility as regards the locati
of participating objects. So, for example, if the performance requirements of a
particular application dictate it, objects can be implemented to work with a Library
Object Adapter that enables their execution in the same process as the client.

Quality of Service is an Implementation Characteristic

Service interfaces are designed to allow a wide range of implementation approach
depending on the quality of service required in a particular environment. For exam
in the Event Service, an event channel can be implemented to provide fast but
unreliable delivery of events or slower but guaranteed delivery. However, the interfa
to the event channel are the same for all implementations and all clients. Because
are not wired into a complex type hierarchy, developers can select particular
implementations as building blocks and easily combine them with other componen

Objects Often Conspire in a Service

Services are typically decomposed into several distinct interfaces that provide diffe
views for different kinds of clients of the service. For example, the Event Service i
composed ofPushConsumer, PullSupplierandEventChannelinterfaces. This
simplifies the way in which a particular client uses a service.
Licensing Service V1.0 Service Design Principles April 2000 vii

gle

to
cts

ents

aces

g
th an

uest
e

ent

a

o a

n

ext.

within
A particular service implementation can support the constituent interfaces as a sin
CORBA object or as a collection of distinct objects. This allows considerable
implementation flexibility. A client of a service may use a different object reference
communicate with each distinct service function. Conceptually, these “internal” obje
conspireto provide the complete service.

As an example, in the Event Service an event channel can provide bothPushConsumer
andEventChannelinterfaces for use by different kinds of client. A particular client
sends a request not to a single “event channel” object but to an object that implem
either thePushConsumerandEventChannelinterface. Hidden to all the clients, these
objects interact to support the service.

The service designs also use distinct objects that implement specific service interf
as the means to distinguish and coordinate different clients without relying on the
existence of an object equality test or some special way of identifying clients. Usin
the event service again as an example, when an event consumer is connected wi
event channel, a new object is created that supports thePullSupplierinterface. An
object reference to this object is returned to the event consumer which can then req
events by invoking the appropriate operation on the new “supplier” object. Becaus
each client uses a different object reference to interact with the event channel, the
event channel can keep track of and manage multiple simultaneous clients. An ev
channel as a collection of objects conspiring to manage multiple simultaneous
consumer clients.

Use of Callback Interfaces

Services often employ callback interfaces. Callback interfaces are interfaces that
client object is required to support to enable a service tocall backto it to invoke some
operation. The callback may be, for example, to pass back data asynchronously t
client.

Callback interfaces have two major benefits:

• They clearly define how a client object participates in a service.

• They allow the use of the standard interface definition (OMG IDL) and operatio
invocation (object reference) mechanisms.

Assume No Global Identifier Spaces

Several services employ identifiers to label and distinguish various elements. The
service designs do not assume or rely on any global identifier service or global id
spaces in order to function. The scope of identifiers is always limited to some cont
For example, in the naming service, the scope of names is the particular naming
context object.

In the case where a service generates ids, clients can assume that an id is unique
its scope but should not make any other assumption.
viii Licensing Service V1.0 April 2000

ices

s

to be

l

tion

eter

de

nts
Finding a Service is Orthogonal to Using It

Finding a service is at a higher level and orthogonal to using a service. These serv
do not dictate a particular approach. They do not, for example, mandate that all
services must be found via the naming service. Because services are structured a
objects there does not need to be a special way of finding objects associated with
services - general purpose finding services can be used. Solutions are anticipated
application and policy specific.

Interface Style Consistency

Use of Exceptions and Return Codes

Throughout the services, exceptions are used exclusively for handling exceptiona
conditions such as error returns. Normal return codes are passed back via output
parameters. An example of this is the use of a DONE return code to indicate itera
completion.

Explicit Versus Implicit Operations

Operations are always explicit rather than implied (e.g., by a flag passed as a param
value to some “umbrella” operation). In other words, there is always a distinct
operation corresponding to each distinct function of a service.

Use of Interface Inheritance

Interface inheritance (subtyping) is used whenever one can imagine that client co
should depend on less functionality than the full interface. Services are often
partitioned into several unrelated interfaces when it is possible to partition the clie
into different roles. For example, an administrative interface is often unrelated and
distinct in the type system from the interface used by “normal” clients.

Acknowledgments

The following companies submitted and/or supported parts of theCORBA Services
specifications:

• Digital Equipment Corporation

• Gradient Technologies, Inc.

• International Business Machines Corporation
Licensing Service V1.0 Interface Style Consistency April 2000 ix

x Licensing Service V1.0 April 2000

ServiceDescription 1
ers
iew
a

most
can

s.
f

Contents

This chapter contains the following topics.

1.1 Background Information

1.1.1 Existing License Management Products

This section, “Background on Existing License Management Products,” is for read
who are unfamiliar with the management of software licenses. It provides an overv
of licensing and addresses issues that must be faced in developing and selecting
license management system.

Application suppliers need methods for controlling the access to and use of their
products. In most cases, this is necessary to ensure fair compensation for use. The
common control method used by software suppliers is licensing, where the license
be provided through technical (software- or hardware-based) or contractual mean
While contractual licensing is a viable option, it does not provide the same level o

Topic Page

“Background Information” 1-1

“Licensing Service Overview” 1-7

“Key Components of a Licensing System” 1-8

“Licensing in the CORBA Environment” 1-11

“Design Principles” 1-12
Licensing Service V1.0 April 2000 1-1

1

nts
al

ng
s

on
e and
ncy.

ent.
ed
ts.

;
l to
e

ons.

tem
, a

tices
 is

nge
.

ers
ge
control as technical licensing, which uses hardware or software tools to control
licensing. Therefore, application suppliers continue to require technical licensing
methods to complement legal contracts.

Along with the expanding need for technical licensing, there are specific requireme
for licensing that must change to reflect today's computing environments. Tradition
licensing methods (nodelocked licensing and site licensing) evolved from computi
environments of the past, specifically timesharing systems and stand-alone system
such as PCs and workstations. These older licensing methods are insufficient for
current environments.

While today’s computing environments provide significant advantages for applicati
suppliers and end users, they also present opportunities. It is apparent that softwar
hardware resources can be managed on a network-wide basis for maximum efficie
However, the resulting requirement for network-wide license sharing is less appar
The traditional licensing methods (expensive site licensing and inflexible nodelock
licensing) do not complement today’s fleixible and efficient computing environmen

Given these realities, sophisticated technical licensing tools are required. These
licensing tools are important to all constituents in the market: application suppliers
hardware vendors; and application users. Software suppliers need a licensing too
support their business and pricing models. Hardware vendors embed and offer th
technology to support software developers and end users, and act themselves as
application suppliers for their internally developed applications. End users interact
with licensing technologies when they use, manage, and pay for software applicati

1.1.2 Business Policy

In the development and selection of software licensing systems, the licensing sys
must not impose its business practices on users. The software license is, in effect
contract between suppliers and customers that establishes a business relationhip
between them. Because a software licensing system plays an important role in
regulating this contract, it must provide mechanisms to implement the flexible
business practices that suppliers need to deal with a diverse customer base.
One danger in developing a licensing system is that it could reflect the business prac
of the developing organization. This is sometimes the case when a licensing system
developed for internal use in a large organization and then offered for general use. A
licensing system may work for one company, but will probably not address a wide ra
of business policies and practices. Often this problem manifests itself in subtle ways

1.1.3 License Types

If not fully considered beforehand, it is possible to construct a software licensing
scheme that forces the software suppliers and end users into a limited model of
software licensing. If a licensing system offers only limited license types and/or off
few options for applying them, software suppliers are limited in the way they mana
business relationships with their software customers.
1-2 Licensing Service V1.0 April 2000

1

er,

g

e
be

s

rs
riate.

be

more

e to

ey
ers

ight

n of
ed to
the

ned
ing

ey are
and
Because software licensing touches many aspects of a relationship with a custom
including upgrades, support, enhancements, and follow-on purchases, a licensing
system must provide a wide range of license options and many options for applyin
them. Software suppliers—not licensing system developers—must choose which
licensing options they want to use.

The options allowed within various license types are also critical to ensure that
application suppliers have all the capabilities necessary to establish the business
relationship they desire with their customers. Capabilities such as allowing a grac
period to provide unlicensed users access to the software for a limited period may
critical in retaining the goodwill of a large and influential customer. Other licensing
features include selective user inclusion or exclusion lists; reserved licensing (to
ensure that a license is always available to high-priority users); and multi-use rule
that allow multiple use of an application with a single license. In addition, different
license types can be used together in a single application. This ensures that the
supplier, not the licensing system, determines business policies.

1.1.4 A History of License Types

Providing a wide-ranging portfolio of license types ensures that application supplie
are able to conduct business and arrange business policies as they deem approp

Nodelocked licenses (which evolved from timesharing) allow a software product to
used at the single node for which the license was created. As the stand-alone
workstation market grew, new licensing models were required. Major workstations
users, such as insurance companies, banks, and industrial corporations, needing a
economical way to purchase software, demanded that application suppliers offer a
business model that would provide unlimited use at a given site. That need gave ris
site licensing.

Site licensing often resulted in dissatisfaction of both suppliers and customers.
Suppliers were asked to assess a price for usage they did not fully understand. Th
often felt they were being asked to discount their future revenue too deeply. Custom
felt that the site license fees were excessive and made them pay for usage that m
not occur in the future.

As networks of computers developed, system vendors began to introduce the notio
a concurrent use license. Concurrent use licenses define the number of users allow
access an application at a given time. These licenses are allowed to “float” around
network, temporarily appropriated by users as applications are invoked, then retur
to the license repository when an application is terminated. Concurrent use licens
allows end users to purchase licenses to match their usage and allows software
providers to be compensated for use of their products. Additionally, end users can
easily add more concurrent licenses as needed.

1.1.5 Asset Management

Licenses protect expensive corporate assets. Since licenses exist only as data th
harder to secure than a server or workstation, but every bit as important to control
manage. Control helps ensure that licenses are used in a manner which supports
Licensing Service V1.0 Background Information April 2000 1-3

1

cts
and

kes

ht
r can
and

nses

past.
ed

er's
se

are
llow

r
ry
ble
tion,

e

d that
oose
d”
es
nse

ider
fixed
gs

ch
t of
corporate goals, such as improving compliance with paper software license contra
and reducing exposure to legal action. This helps keep the corporation out of court
enhances its relationship with its software suppliers. Large corporate software
purchasers want to be treated as equal partners with their suppliers; licensing ma
this easier.

Managing both existing and new licenses maximizes their value. Old licenses mig
need to be redeployed as projects and budgets change. If the license administrato
keep track of software licenses, know which licenses are and are not being used,
can move them to where they are needed, corporate waste will be reduced and
productivity improved.

Similarly, if a corporation has software usage metrics, it has a strong basis for
understanding future needs. These metrics permit a corporation to purchase lice
in bulk at lower prices with the confidence that they are not over or under buying.

A corporation can also measure whether they have over or under purchased in the
An important metric is the "shelfware" measure. How much software was purchas
(perhaps as unused components of "suites" of software) that never leaves the us
bookcase? Reducing such waste is a major incentive for software customers to u
automated software licensing and asset management.

1.1.6 License Usage Practices

Application suppliers can implement one or more of the license types in their softw
products. An application can be programmed to require multiple license types, to a
the supplier to sell the product in different ways to different customers.

An ideal licensing system should be transparent to end users. For example, a use
might invoke an application, which makes calls to a licensing library. Then, the libra
function locates a server with a valid license. Assuming that a valid license is availa
and that person is authorized to use the license, a grant is returned to the applica
allowing the program to execute, all completely transparent to the end user.

If no licenses are immediately available, the application developer can program th
software to respond in a variety of ways. The application can automatically put the
user on a wait queue, query the user as to the course of action to take, recommen
the user try again later, or grant permission to run anyway. (The developer can ch
to grant permission to run without a license if, for example, there is a “grace perio
instituted to allow for a smooth transition to a network licensing model.) If all licens
are temporarily checked out and users go on a wait queue, the next available lice
can be granted according to user priority settings defined at the end user site.

These choices and how they are implemented comprise the policy a software prov
chooses as a business model. Policy can be further broken into two components:
and variable. Fixed components are coded into the application and determine thin
such as what license types are permitted; whether multiple use rules apply to the
application; or if a grace period will be extended when a license is not available.
Variable components are defined externally to the client application and include su
things as external definition of the hours a product may be used, or an external lis
people allowed to use it. Either list may be producer- or end user-created.
1-4 Licensing Service V1.0 April 2000

1

nd
ime

s it.
d to

e
tions

een
ct

eck-

s
lly
of a

high
d
ic.

rver
by

w

ns.

he
oose
llow
1.1.7 Scalability

Some networks are small, consisting of just a few nodes, while others grow to
thousands of machines. Typically, large user communities on large networks dema
licensed applications from many different vendors. A licensing system and its runt
environment must, therefore, scale well to the network and all its software.

1.1.8 Reliability

Sometimes, an application obtains a license from a license server and never return
A licensing system must be designed to prevent licenses from being stranded an
prevent other client-server breakdowns.

Breakdowns occur for several reasons. The application or server could abort, or th
network could become partitioned between the application and server. These situa
could arise unintentionally or maliciously (for example, in an attempt to gain
unauthorized use of an application). Any design must make careful trade-offs betw
license availability and security enforcement. All designs require a scheme to dete
breakdowns.

Generally, there are two detection methods: continuous detection or occasional ch
in. Continuous detection methods ensure that while a license is in use by an
application, the application and server are both continuously aware of each other'
existence and are immediately notified of a breakdown. These schemes are typica
implemented by using a connection protocol such as a port. The main advantages
continuous scheme are its directness, immediacy, and simplicity. The main
disadvantage is its negative impact on network performance. If a redundant server
availability model is employed, then continuous connections need to be maintaine
between the application and each of the servers, thereby multiplying network traff

Occasional detection provides a method for the application to check in with the se
periodically before some time out has occurred. The breakdown is identified either
the server (if the time out occurs), or by the application (if the check-in is
unsuccessful). This method is very scalable and has a negligible impact on
performance. The application supplier should be able to adjust the time-out to allo
trade-offs between higher security and higher availability.

Additionally, the occasional detection model is very tolerant of momentary
interruptions on the network. Continuous detection is not tolerant of such interruptio
Lost connections between the client and the server in a system using continuous
detection causes a breakdown or program termination.

Application suppliers will want to determine for themselves which action to take in t
case of a client-server breakdown. Some may want more strict enforcement and ch
to terminate an application; others might choose to display a polite message and a
the application to continue.
Licensing Service V1.0 Background Information April 2000 1-5

1

to
tem.

e
code

ll
sed
e-
e

tem

es);

f

used.

rom

l of
iate

o
thout

uld
nse
till
1.1.9 Legacy Applications

Managing a business relationship with a minimum of disruption includes the ability
accommodate existing customer applications within the scope of the licensing sys
This must be done without requiring access to or modification of the application's
source code, as the apparently simple solution of modifying source code may not
always be available. Consider the personal computer, for which there are tens of
thousands of small and inexpensive applications. Modifying the sources of all thes
applications would be an economically unacceptable approach even if the source
were available.

Software suppliers are eagerly awaiting an integrated licensing technology that wi
take existing “shrink-wrapped” applications and enhance them to function in a licen
environment. It may not be possible to provide a security fence as high as a sourc
modified application, but the level of license security could be made commensurat
with the value of the application and well beyond the economic justification for
attempting to defeat the security.

1.1.10 Security

Until recently, licensing systems were required to enforce only simple, single-sys
application use. Security infractions caused few implications. Today, security
requirements must be designed to operate in more complex networks.

The distributed computing networks in use today are designed for easy resource
sharing; demand more complex licensing models (presenting new security challeng
and must support mass distribution of software (on compact disk, for example). A
supplier's ability to ship trial copies of applications relies heavily on the security o
the licensing system to ensure that prospective customers do not transgress the
intended use permissions. An application supplier must also rely on the licensing
system’s security when it ships a complete set of applications to its entire installed
base: the licensing system must ensure that only the purchased applications are

Each application supplier has a different security need. Each will want to choose f
a spectrum of trade-offs, such as security versus availability, and effect of breach
versus development effort. A licensing system should not dictate one particular leve
security, but should allow application suppliers to choose the security level appropr
for their business needs.

1.1.11 Client/Server Authentication

A secure licensing system should address the possibility of someone attempting t
create an impostor license server (an imposter server always grants licenses). Wi
security, an impostor could be established by eavesdropping on valid client-server
communication and then mimicking the license grant protocol. Impostor clients sho
also be addressed, since a successful impostor client could disrupt legitimate lice
activities by artificially returning a license to the license server when it is actually s
in use, thereby making the returned license available for other users.
1-6 Licensing Service V1.0 April 2000

1

nse

the

s see
y
e
nd
to

time
n as
rk,

erver

rs,

of
or its
of
1.1.12 Example: Application Acquiring and Releasing a Concurrent Lice

This section contains an example of how an application might interact with one of
various license management products that exist today.

In a system that uses concurrenct licensing, end users at their workstations and PC
no change in their normal working routine. They start applications as they normall
would. The application has calls to the license library that transparently go over th
network to request a license for the application. Using transport-specific naming a
location facilities, a server holding a valid license is located and a “yes” is returned
the requesting application.

The application need not be downloaded over the network to the workstation each
the application is invoked. The application, once loaded, remains at the workstatio
it normally would. Only a request for a license and a return grant go over the netwo
thereby providing a rapid response time that is virtually unnoticed by users.

When end users close an application, the license is “returned” to the server. The s
then can make this license available for other requests as they come in.

Administration and reporting tools act as clients to the license server, tapping into
server databases and log files to access the stored information. The license serve
though implemented as multiple physical servers, operate as a single repository
managing all license activity for the network. This single, “logical” server handles
licenses for any number of vendors, for any number of products, with any number
product versions. The server also handles any number of clients making requests f
facilities, thereby automatically scaling to accommodate increases in the number
users, machines, applications, and licenses.

1.2 Licensing Service Overview

Licensing Service terms are defined in Appendix A.
Licensing Service V1.0 Licensing Service Overview April 2000 1-7

1

heir
s. In

the

. A
Figure 1-1 Licensing Service Relationships

The Licensing Service provides a mechanism for producers to control the use of t
intellectual property in a manner determined by their business and customer need
Figure 1-1, the Licensing Service Manager, Producer Licensing Service, and the
Licensing System are shown as three distinct objects. Implementations of the
Licensing Service may differ. The dotted line indicates components that depend on
implementation design and are addressed in terms of an example solution.
Components outside the dotted line are addressed in this specification.

1.3 Key Components of a Licensing System

1.3.1 License Attributes

To implement controls, the Licensing Service needs a set of fundamental attributes
license can be thought of as having three dimensions of attributes:

Time includes, but is not limited to the attribute of Expiration/Duration. All licenses
should be able to have start/duration and expiration dates.

Value Mapping includes, but is not limited to, the following attributes:

• A unit is a quantity that can be used by policy mechanisms.

Implementation

Licensing
System

Cos Producer

Service

Service
Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

License
1-8 Licensing Service V1.0 April 2000

1

ol

ds
to
m

ion

em

to
ate,
st.

used

he

al
use

rol
the
of

cific
any
• Allocative. Use of an license with an allocative attribute removes it from the po
of available allocative licenses for a given product until it is returned. This is
traditionally known as concurrent use licensing.

• Consumptive. Use of a license with a consumptive attribute permanently recor
its use. This can be used to provide metering capability. It can also be used
implement a “grace period” via the use of overflow licenses when the maximu
number of allowed concurrent licenses has been met.

Consumer includes, but is not limited to, the following attributes:

• Assignment or Reservation.All licenses should be able to be assigned to or
reserved for a specific entity or collection of entities. The definition of what an
entity may be is implementation-specific. One example is where an entity is
defined to be a specific user and a collection of entities is a specific organizat
comprised of a collection of specific users. Other examples of what an entity
might be include a specific machine or collection of machines, a specific syst
resource or resource collection, such as printers and adapters.

1.3.2 Licensing Policy

The Licensing Service allows the license attributes to be combined and derived from
form any policy deemed necessary. This allows the producer and, where appropri
the end user administrators to control product use to fit their business environmen

The following derived attributes are representative examples of those that can be
for a flexible policy implementation:

• Time windows

• Value

• Use by a collection of related objects

• Postage meter

• Gas meter

Time Windows

It may be necessary for some policies to constrain the time periods within which a
particular license unit may be used. A time window attribute can be derived from t
expiration/duration attribute.

Value

A Producer can define, as part of their Producer Policy, the mapping between actu
use of their intellectual property and the way license units are associated with that
in the Licensing System. A simplistic example might be where a single unit of cont
represents a single active implementation of a given object with no constraints on
number of instances. A more complex example may be where the number of units
control required may be calculated to satisfy a combination of requirements: a spe
machine size where an implementation is active, how many instances, and how m
method activations are allowed in parallel.
Licensing Service V1.0 Key Components of a Licensing System April 2000 1-9

1

e
ent

ture
he

ntly
er

pool

in

.

ce

is

ar
e

hat
a

n.

s the
y

Use By a Collection of Related Objects

The definition of granularity is very broad. In an OMA-compliant system, the
Licensing Service will allow control from the fine grain of a method activation to th
coarse grain control of a suite of objects acting together in a relationship to repres
an application. The relationship may be defined with the Relationship Service, a fu
Collection Service or any other Service providing relational capability for objects. T
Producer Policy can discover all theseobjects according to the implementation.

Postage Meter

Derived from consumptive, use of a license with a postage meter attribute permane
removes it from the pool of available licenses. The total number of licenses is nev
less than zero (0) for any product.

Gas Meter

Derived from consumptive, use of a license with a gas meter attribute adds to the
of consumed licenses. The total number of licenses is initialized to 0.
Examples of how these attributes can be used in license policy are as follows:

• An end user administrator could be empowered by the Licensing Service to
combine assignment and time constraints on installed license units to constra
the use of certain products to a set of individuals outside of the normal work
week.

• A producer could provide a personal use license by combining an allocative
attribute with an assignment attribute to an individual with a unit attribute of 1

• A producer could enhance the previous example by allowing end user
administrators to reassign the license to a particular group.

1.3.3 Interfaces Isolated From Business Policies

The Licensing Service interfaces are isolated from policy issues. The client interfa
only delivers notification that a producer wants some or all of the producer’s
intellectual property to be controlled reliably and securely. Once the notification
made, the Licensing Service can identify the appropriate policy.

For example, consider a producer who wants to restrict the activation of a particul
method to a certain simultaneous number of users. The producer need only tell th
Licensing Service interface to indicate that a method has been activated and who
activated it. When the method activation is complete, an indication must be sent t
the use is done. The LS can then, in an implementation-specific way, determine if
producer-defined limit has been met. The Licensing Service can notify the object,
telling it what to do if a producer policy is activated from overuse or another conditio
The Producer can still override a generic policy with an alternate behavior for a
particular Producer Client , since policy responses are inside the Client
implementation.

A Producer Policy implementation requires the use of other object services such a
Relationship and Property Services. As other services are defined, producer polic
implementations will broaden to use them. The producer client might change to
1-10 Licensing Service V1.0 April 2000

1

ill
f the

ip
ing
bout
he
by

this
ct
nt

: it

f

l
es
int,

ion
trict

it.

llows
the
ade

.

with
at
m a
y
be

of
sage
address any new producer policy, but the underlying Licensing Service interface w
not require change. These services can be used to find out about objects outside o
objects themselves.

For example, consider the Relationship Service. If producers choose to license a
particular set of their objects that are related in a manner defined by the relationsh
service, the producer policy implementation can obtain relationship information us
the relationship service. The objects involved need to have no special knowledge a
their relationships to one another other than that required to conspire together in t
relation to achieve their desired functionality. Mechanisms provided to support this
an particular implementation will vary. One implementation may choose to support
using a document style of policy delivery, others may support producer policy obje
implementation. This can not be defined or restricted by the Licensing Service clie
interface.

A mechanism for license document delivery is not defined in the Licensing Service
is implementation-specific.

1.4 Licensing in the CORBA Environment

Licensing in the CORBA world faces many issues. The provision of services by
objects in the ORB environment must allow for service producers to control use o
their intellectual property according to their business models.

Constraint of use must range from strict control to benign monitoring of intellectua
property. Strict control might allow only a specific number or combination of servic
to be used. Benign monitoring mechanisms might allow service use without constra
but would track usage for later examination.

If producers require strict control, they will also require assurance that the informat
provided by their licensing mechanism is secure. It would be pointless to choose s
control if it were a trivial matter to replace some component within the ORB which
nullified strict control enforcement without the producers’ services being aware of
The level of trust in the Licensing Service must meet the producer’s chosen
enforcement policy. For example, suppose a producer has selected a policy that a
use of his object service by an end user without constraint, but the policy requires
Licensing Service to log all service usage so a monthly post-facto charge can be m
for use of the service. This capability is of limited use if the Licensing Service’s
logging mechanism allows end users to illicitly modify the logs to show low usage

To enable usage control, there must be a mechanism that provides the end user
appropriate authorization. This authorization is usually conveyed as a text string th
can be thought of as a License Document. The size of this document may vary fro
few tens of characters to a few thousand characters depending on the functionalit
provided by the underlying Licensing Service. The content of the document must
protected by an implementation-specific mechanism.

To support a wide variety of business models, producers require usage constraint
policies (producer policies) that can vary for end user conditions. For example, a
producer might deliver a demonstration of a client service that allows unlimited use
the service during the demonstration period, but upon purchase requires a strict u
Licensing Service V1.0 Licensing in the CORBA Environment April 2000 1-11

1

is of

er is
ss

e
rate
w

to
a
ed by

d

ice
wn
to
vary

a
LS

the
e is

cts

e

enforcement policy. The enforcement policy may need to be varied depending on
customer needs. A large customer may negotiate a post-sale period where analys
use is supported by benign monitoring and later moved to strict enforcement.
Interfaces to the Licensing Service allow this and many other varieties of usage
controls without requiring changes to the producer’s fundamental product.

The ability for an end user to apply constraints beyond those specified by a produc
a well-recognized benefit to the end user. The capability in this area will vary acro
implementations of the Licensing Service.

Because we live in a dynamic economic environment, a producer’s policies must b
easily changed. The best approach for a Licensing Service specification is to sepa
the “I want to be controlled!” requirements of the application or service from the “ho
am I to be controlled?” requirements of the policy that have to deal with all of the
exceptions and producer business practices. This separation enables a producer
choose a Licensing Service implementation based on considerations of how well
specific Licensing Service supports the producer’s business practices, as instantiat
the producer policies.

The interface to the Licensing Service accomplishes this by allowing the controlle
applications or services to notify the Licensing Service of its wish to be controlled
specifying how the enforcement is to be performed.

Administration and policy issues are not addressed in detail by the Licensing Serv
interface; instead, they are left to implementors. End users need to control their o
interface and reporting capabilities. The ability of the underlying Licensing Service
generate management reports, both of historical and snapshot-of-time usage, will
widely depending on the implementation. The administrative interfaces for the
Licensing Services include command line only, GUI only, and combined GUI and
command line. An administrative interface would affect the ability of end users to
manage their environments as they choose, so it is not defined by the Licensing
Service.

1.5 Design Principles

The design of the Licensing Service interface satisfies the following principles:

Neutrality . The Licensing Service should not introduce any constraint on the way
Producer can use the interfaces because of some underlying dependency on the
implementation. Producers need to be able to choose Licensing Service
implementations that allow them to deliver their products in a manner best suited to
individual Producer's business needs without requirements on the way the interfac
used. It is expected that LS implementations will allow many Producer Client obje
to reference a single instance of the associatedProducerSpecificLicenseService
interface to reduce the overhead of object creation.

Extensibility. The Licensing Service allows for extensions to support styles of
Producer Policies that are not currently obvious. The Licensing Service provides
extensibility in its object reference in the returned Action structure in the check-us
1-12 Licensing Service V1.0 April 2000

1

nd/or

can
ing
nce,
ent.

he

m.

are
of a

us
very

s, to

d

sing
nse

ction-

hosen
operation. This allows implementation-specific extensions to the notification
mechanism. The interface can also be extended by adding additional arguments a
operations; for example, in support of the Security Service.

Security. The Licensing Service provides a mechanism such that a degree of trust
be established between the users of the interface (the Producers) and the underly
license management system. This is different from a typical secure environment si
the Producer does not usually trust the end user or the end user security environm
A mechanism is provided to allow the Producer to authenticate, in real time, that t
underlying license management system is a legitimate provider of the Licensing
Service. End user administration can not circumvent this authenticating mechanis

Performance. Implementations of the Licensing Service may choose to optimize
performance by the manner in which Producer Specific Licensing Service objects
managed. For example, an implementation could choose to allow multiple copies
Producer Specific Licensing Service to distribute client operations.

The Licensing Service mechanisms must allow both synchronous and asynchrono
messages so a producer can decide what is best for its application. For example, a
short duration method activation may well be best suited, for performance reason
using asynchronous meechanisms. On the other hand, if producers want to be
extremely strict, they might choose synchronous messages to prevent misuse an
accept the resulting loss of performance.

The Licensing Service provides mechanisms so that an application using the Licen
Service cannot accidentally orphan a license by acquiring an allocative style of lice
and never releasing when an application fails. Current mechanisms include conne
oriented, client-server communications; client-server heartbeat mechanisms; and
server-based, client status query mechanisms. Keep in mind that the mechanism c
may place a performance burden on the producer client.
Licensing Service V1.0 Design Principles April 2000 1-13

1

1-14 Licensing Service V1.0 April 2000

LicensingService Interfaces 2
eir
ces

re
ing
stem
Contents

This chapter contains the following topics.

2.1 Licensing Service Interfaces

The Licensing Service defines the interface between the Producer Client and the
Licensing Service Manager (LicenseServiceManager interface) and the interface
between the Producer Client and the Producer Licensing Service
(ProducerSpecificLicenseService interface). The interfaces enable Producers to
control use of their intellectual property in any manner they deem appropriate for th
business model. The isolation of policy from the Licensing Service interfaces enhan
Producer flexibility. The interfaces for administration, policy creation, and license
document creation are not addressed, because they are implementation-specific.

The LicenseServiceManager interface provides a mechanism for the Producer to
locate an object supporting the second interface,ProducerSpecificLicenseService .
All of the operations required to constrain use of producers’ intellectual property a
supported by the second interface. This design allows the implementors of Licens
Services to make trade-offs such as those between client performance, licensing sy
performance, and ease of administration.

Once a Producer Client implementation has obtained a
ProducerSpecificLicenseService object reference, the three operations
(start_use , end_use , check_use) can be performed on this interface within the

Topic Page

“Licensing Service Interfaces” 2-1

“The CosLicensing Module” 2-4
Licensing Service V1.0 April 2000 2-1

2

aint

in

ce

ices

of
ucer
Client where the Producer deems it correct. The information returned from these
operations provides the basis for the Producer to enforce its chosen usage constr
policy.

2.1.1 Interfaces are Mandatory

All the interfaces are mandatory for all implementations. Optional arguments exist
the LicenseServiceManager interface. For thecheck_use operation the
ProducerNotification component of the returned Action can be a nil object referen
indicating that the implementation does not support this kind of notification
mechanism. In thestart_use operation thecall_back argument can be a nil object
reference indicating that the Producer client implementation is not using event serv
and is designed to operate in a poll only mode. The properties argument tostart_use ,
check_use , andend_use can be nil.

2.1.2 Constraints on Object Behavior

The Licensing Service interface assumes the provision of an Event Service. If an
Event Service implementation supports true asynchronous events—where delivery
an event can interrupt an object’s task to invoke the push operation—then the Prod
Client implementation must manage its internal state in a re-entrant world.

Figure 2-1 Licensing Service Instance Diagram

Licensing
System

Cos Producer

 Service

 Service
 Manager

Producer
Client

Cos License

Producer
Policy

License
Doc

1

4

6
5

3

2
 License
2-2 Licensing Service V1.0 April 2000

2

ect

Step

the

cts

rvice.

the

asks
by
In Figure 2-1, the Producer Client performs the operation
obtain_producer_specific_license_service on theLicenseServiceManager
interface (Step 1). The Licensing Service Manager implementation creates an obj
(Steps 2 and 3) or locates an object reference to an object who has an interface
ProducerSpecificLicenseService and who is capable of responding to the
particular producer challenge. It then returns the reference to the Producer Client (
4). The producer client now uses the reference to perform the operationsstart_use ,
check_use , andend_use (Steps 5 & 6). In implementations that support true
asynchronous events, theProducerSpecificLicenseService object can
asynchronously perform the push operation using the reference to the interface in
Producer Client provided as one of the arguments to thestart_use operation in a
previous step (in Step 5).

2.1.3 Licensing Event Trace Diagram

Figure 2-2 on page 2-4 represents the flow of events through Producer Client obje
and a Licensing Service implementation. The steps below are illustrated in the
diagram.

1. Producer Client gets an object reference to the Producer Specific Licensing Se

2. Producer Client determines that usage control is required and performs the
start_use operation.

3. Producer Client does an intialcheck_use call to retrieve the initial
recommended_check_interval .

4. Producer Specific Licensing Service instance interprets policy and interacts with
Licensing System as necessary.

5. If asynchronous events are supported, the Producer Specific Licensing Service
for event notification to the particular Producer Client at an interval determined
Policy.

6. Event Service delivers the event to the Producer Client.

7. Producer Client responds to the event by performing thecheck_use operation.

Steps 4,5,6,7 are repeated until the Producer Client instance indicates that usage
control is no longer necessary.

Producer Client performs theend_use operation when usage control is to be
terminated.

If asynchronous events are not supported, the Client implementation will need to
“poll” the Producer Specific Licensing Service with thecheck_use operation at an
interval defined by thecheck_interval argument to thecheck_use operation. To
initially retrieve thischeck_interval value, the Client will need to invoke a
check_use immediately after thestart_use call.
Licensing Service V1.0 Licensing Service Interfaces April 2000 2-3

2

Figure 2-2 Licensing Event Trace Diagram

2.2 The CosLicensing Module

The CosLicensing module is a collection of interfaces that together define the
Licensing Service. The module contains two interfaces:

The LicenseServiceManager interface consisting of the following operation:

• obtain_producer_specific_license_service

Client License Producer
Specific

License
Manager

Event
Service

1

2

5
6

7

4

5
6

8

1-obtain_producer_specific_license_service
2.start_use

4.inquiry to the Licensing System
5.ask for event notification
6.event notification
7.check_use
8.end_use

License
Service

Service
Manager

4

3

3.Initial check_use
2-4 Licensing Service V1.0 April 2000

2

The ProducerSpecificLicenseService interface consisting of the following
operations:

• start_use
• check_use
• end_use

This section describes theLicenseServiceManager and
ProducerSpecificLicenseService interfaces and their operations.

The CosLicensing module is shown below. Note that this module definition uses
some definitions from theCosEventComm module (in the Event Service) and the
CosPropertyService module (in the Property Service).

#include “CosEventComm.idl”
#include “CosPropertyService.idl”

Module CosLicensingManager {
exception InvalidProducer{};
exception InvalidParameter{};
exception ComponentNotRegistered{};

typedef Object ProducerSpecificNotification;

enum ActionRequired { continue, terminate};

enum Answer { yes, no };

struct Action {
ActionRequired action ;
Answer notification_required ;
Answer wait_for_user_confirmation_after_notification ;
unsigned long notification_duration;
ProducerSpecificNotification producer_notification;
string notification_text;

};

struct ChallengeData {
unsigned long challenge_index;
unsigned long random_number;
string digest;

};

struct Challenge {
enum challenge_protocol { default, producer_defined };
unsigned long challenge_data_size;
any challenge_data;

};

typedef any LicenseHandle;
Licensing Service V1.0 The CosLicensing Module April 2000 2-5

2

interface ProducerSpecificLicenseService {

 readonly attribute string producer_contact_info
 readonly attribute string producer_specific_license_service_info

LicenseHandle start_use (
in Principle principle,
in string component_name,
in string component_version,

inProperty::PropertySet license_use_context,
CosEventComm::PushConsumer call_back,
inout Challenge challenge

)

 raises (InvalidParameter, ComponentNotRegistered);

void check_use (
in LicenseHandle handle,

in Property::PropertySet license_use_context,
out unsigned long recommended_check_interval,
out Action action_to_be_taken,
inout Challenge challenge

)

 raises (InvalidParameter);

void end_use (
in LicenseHandle handle,

 Property::PropertySet license_use_context,
inout Challenge challenge

)

 raises (InvalidParameter);

};

interface LicenseServiceManager {
ProducerSpecificLicenseService

obtain_producer_specific_license_service (
in string producer_name,
inout Challenge challenge

)

raises (InvalidProducer, InvalidParameter };
 };
};
2-6 Licensing Service V1.0 April 2000

2

ir

f the

iring
2.2.1 LicenseServiceManager Interface

The LicenseServiceManager interface defines a single operation: obtaining the
producer specific Licensing Service object.

The LicenseServiceManager interface allows a producer to control the use of the
intellectual property. Theobtain_producer_specific_license_service operation
returns an object reference that supports theProducerSpecificLicenseService
interface. This operation is protected by the use of a producer challenge.

It is likely that implementations of theLicense ServiceManager will make use of
other Object Services, such as Life Cycle, to create a producer-specific instance o
Licensing Service. The Life Cycle Service is not used directly in order to allow the
service implementation to cache object references for performance reasons. Requ
instance creation on every use of theobtain_producer_specific_license_service
operation is not desirable, but can be allowed in a particular implementation.

The operation obtain_producer_specific_license_service raises the
InvalidProducer and InvalidParameter exceptions.

2.2.2 ProducerSpecificLicenseService Interface

The ProducerSpecificLicenseService interface defines three operations:

1. notification that a product has started to be used,

2. notification that a product is still in use, and

3. notification that a product has finished being used.

Table 2-1 Exceptions Raised by Licensing Service Operations

Exception Raised Description

InvalidProducer Indicates that the producer argument is not
correct or that an appropriate producer cannot
be found.

InvalidParameter Indicates that one of the parameters is invalid.
No additional detail is provided in this
document since this will include a failed
challenge. Additional information could assist if
someone wanted to make a deliberate attempt to
work out the challenge of a producer.

ComponentNotRegistered Indicates that the specific component has not
been registered with the Licensing System.
Licensing Service V1.0 The CosLicensing Module April 2000 2-7

2

d by

ing

e

llow

r

’s

t

e,

r to

mail

st
l.
f

the
Any object that possesses an object reference that supports the
ProducerSpecificLicenseService interface and is capable of satisfying the
challenge for that particular instance of theProducerSpecificLicenseService
interface can perform the following operations:

• The start_use operation which allows producers to notify the License Service
that some aspect of their product has started to be used and is to be controlle
the service.

• The check_use operation which allows the producers to notify the Licensing
Service that some aspect of their product that previously notified the service us
a start_use operation is still in use.

• The end_use operation which allows the producers to notify the Licensing
Service that an aspect of their product, previously notified to the service in th
start_use operation, has completed its use.

All of the previously listed operations are protected by a challenge mechanism to a
a producer to be satisfied that the instance of the Licensing ServiceManager is a
legitimate one to control the producer’s intellectual property.

The attributeproducer_contact_info may be used to provide information that can
be displayed to an end user. The attribute
producer_specific_license_service_info can be used, if necessary, for a Produce
Client to alter the way it interacts with differentProducerSpecificLicenseService
objects. These attributes are defined at creation of the
ProducerSpecificLicenseService instance and do not change during the instance
life.

The start_use , check_use , andend_use capture and propagate information abou
the user's runtime context to the Licensing Service via thelicense_use_context
parameter. This information will typically include the user's name, their node's nam
network address, local time, and so on. This information can then be used by the
License System for a variety of purposes:

• In an access control mechanism to determine whether or not to allow the use
continue.

• In a private, possibly secure, usage logging mechanism.

• To provide data for peripheral management functions, such as triggering an e-
message to the network administrator when resources run out.

The operationsstart_use , check_use , andend_use raise the
InvalidParameter exception.

The action_to_be_taken output parameter in thecheck_use operation is used to
give theProducerClient information on actions to be taken as a result of its reque
to be active or running. The following describes the Action structure in more detai
Note that only theaction field must be specified. All other fields can return a value o
NULL in which case behavior is determined by the coded policy defined within the
ProducerClient implementation.

• action : This field indicates if theProducerClient should continue or terminate
its processing depending on whether the requested license is available from
Licensing System.
2-8 Licensing Service V1.0 April 2000

2

ate

if

ons

e
e

the

r

s.
tion
anism

ill
ly on

xits,
ould
• notification_required : Indicates whether or not theProducerClient needs to
prompt the local user with a message indicating the results of the licensing
request.

• wait_for_user_confirmation_after_notification : Indicates whether the
ProducerClient needs to wait for a confirmation before continuing its
processing. This is applicable only if a notification has been requested.

• notification_duration : If the user notification is required without confirmation,
this indicates how long theProducerClient needs to wait before continuing with
its processing.

• producer_notification : This provides a reference to an object used by a
Licensing System to return implementation specific results and control
information to theProducerClient . For example, producer policy instructions
can be part of this object interface. It could also communicate the expiration d
and time.

• notification_text : This provides the text to be communicated to the local user
required.

The check_use operation thus collects into a single clientaction the ability to
address the following requirements:

• Give the capability to the producer client to get both the results from and the acti
to be performed following a request for permission to be active and/or running.

• Give the capability to the producer client to periodically verify the right to be activ
and/or running in the case of 'time dependent' licensing policy (for example, tim
based consumable licenses, expiration times, and so forth). The
recommended_check_interval is the parameter strictly tied to this verification.

• Give the capability to both the producer client and the Licensing Service
implementation to detect the followingunexpectedconditions and then either
release the related active license and/or stop the usage accounting:

• Abnormal termination of either the producer client or the Licensing Service.

• Unrecoverable breakdown in communication between the Producer Client and
Licensing Service.

• The indirect detection of these conditions is performed by forcing the produce
client to issue a check request within the check interval.

The check request concept is left to the specific Licensing System implementation
However, that does not prevent the Licensing Service from using the check opera
as the heartbeat mechanism. The heartbeat mechanism is a general purpose mech
required inside a client/server based application to determine if the other end is st
active. Some applications dedicate a specific process or task to this purpose and re
event detection, others use a polling mechanism, others use system notification e
and so on. Furthermore, because of the different concepts, the polling and exits c
not be fully satisfied by a single checking rate.
Licensing Service V1.0 The CosLicensing Module April 2000 2-9

2

2-10 Licensing Service V1.0 April 2000

Glossary
ual
w

er

of
use

ing

tal

ers.

es

ge

ed
f a

f a
License Document: Represents the fundamental element of control. It provides a
secure delivery vehicle describing such things as how many copies of the intellect
property are allowed, how long each copy may be used, and other elements of ho
producers wish to constrain usage of their intellectual property.

Licensing Service: The general term for the complete service, it consists of three
components: Producer Client; Producer Licensing Service; and Licensing Service
Manager.

Licensing Service Manager: The Common Object Service Licensing Service Manag
is responsible for managing and creating the Producer Licensing Service objects.

License Unit: License documents may contain the concept oflicenseunits that are
interpreted in a producer-specific manner by the producer policy. A typical example
a license unit could be one where a single unit is to represent a single concurrent
of a producer’s intellectual property by an individual user. The termlicense can be
used to refer to the smallest indivisible quantity of license units that a given Licens
System implementation supports.

Licensing System: The implementation-specific component that provides fundamen
usage control that, in conjunction with the Producer Licensing Service, provides
sophisticated producer policies. The Licensing System is responsible for securely
managing the fundamental units of control - the License Documents for all Produc

Producer: The company or individual who owns the intellectual property that requir
usage control.

Producer Client: Any object, or component of an object, that wants to have its usa
controlled or metered via a Licensing Service.

Producer Policy: A Producer Policy is a collection of data that describes the detail
terms and conditions, or business policies, which govern control and monitoring o
producer’s intellectual property wherever the property can be used. The
implementation of producers’ policies is very specific to the Producer’s selection o
Licensing Service V1.0 April 2000 1

n a
des

ved
licy,

cific
er-

e.
Licensing System. There are two components to business policy implementation i
licensing system. One component is contained in the License Document and inclu
fundamental things like expiration date and quantities. The other component, the
Producer Policy, includes the broader aspects of business policy and may be deri
from the License Document. As an example of the broader issues that require Po
the Producer Policy deals with all possible licensing exceptions such as when no
license is found.

Producer-Specific Licensing Service: A producer-specific implementation that
interacts with and selects the particular Licensing System and Policy used by a spe
Producer to control the Producer’s intellectual property. In this chapter, the Produc
Specific Licensing Service is is also referred to as the Producer Licensing Servic
2 Licensing Service V1.0 April 2000

References A
Object Management Group.Object Services RFP 4, OMG Document Number 94.4.18,
May, 1994.
Licensing Service V1.0 April 2000 A-1

A

A-2 Licensing Service V1.0 April 2000

UseofOtherServices B
ing

to
od)

ore

f

n
hat

, in
This appendix describes the relationship between the Licensing Service and these
Object Services: Property; Relationship; and Security.

B.1 Property Service

The properties argument to thestart_use , check_use andend_use operations
enables implementations to choose between using the Property Service or provid
name value pairs directly to the Licensing Service. This decision can be based on
performance considerations or other practical concerns. For example, the inability
differentiate ownership where a single property is used in a single operation (meth
but has differing values (as far as the Licensing Service is concerned) because m
than one principal is using the particular instance’s method at one time.

Examples of properties that are useful:

• UNITS_TO_RESERVE provides a hint to the producer policy implementation
indicating that the currently controlled aspect of the producers intellectual
property has some idea about what it is going to ‘use’ over the next amount o
time.

• VALUE_TO_CONSUMER provides a hint to the producer policy implementatio
indicating that the currently controlled aspect has some idea of the value of w
it is currently doing.

• NODE_NAME provides a hint to the producer policy implementation about
where the currently being controlled object is executing.

These are currently always producer-specific. The Licensing Service places no
semantic or syntactic interpretation on these properties but makes them available
an implementation-specific way, to the producers policy.
Licensing Service V1.0 April 2000 B-1

B

le to

of

ing

e
er
ject

o,
B.1.1 License_Use_Context

There will need to be a set of information about each producer client made availab
the ProducerSpecificLicenseServiceas a "PropertySet" as specified by the Property
Service. The PropertySet is a dynamic equivalent of CORBA attributes. This set
information is made available to thestart_use, check_useandend_useoperations for
the Licensing System to use in determining various aspects of policy. As one
example, this data structure could contain:

• All data from theprincipal, as retrieved through the new context information
provided by theCORBA 2.0specification and as used, for example, by the
Transaction Service.

• Any data the producer client may need, either in the present or the future. Be
all inclusive early on reduces the need to re-deploy the licensed software if
subsequent licenses need additional data.

• Fields from the example list of licensing attributes (provided below.)

The example list is useful to allow people other than the original producer to creat
license documents for an object implementation. This happens in the case of eith
acquisitions or distribution agreements. The example list makes it easier for one ob
implementation to be licensed by multiple license systems depending on the
environment in which it finds itself.

The list items are suggestions. Currently, no central registry of names exists; als
many items are not clearly defined. The list is a starting point and can serve as a
check list for Producers.

Canonical List of user_context Properties:

• DATE_TODAY

• Today's date and time.

• GROUP_ID

• Integer group

• ID GROUP_NAME

• Name of group of users

• HARDWARE_FAMILY

• String of compatible hardware family

• HARDWARE_MODEL

• Hardware model

• HARDWARE_PRODUCER

• Manufacturer name

• NETWORK_ID

• Integer network identifier

• NETWORK_NAME

• String network identifier

• NETWORK_PROTOCOL

• String protocol name, for example, "TCP/IP" or "DECnet"

• NETWORK_STYLE
B-2 Licensing Service V1.0 April 2000

B

cted

s
do

ntrol.
• 1 is local, 2 is LAN, 3 is WAN.

• NODE_ID

• Integer node identifier

• NODE_NAME

• Name of computer

• OPERATING_SYSTEM

• String identifying the OS

• OS_VERSION

• String identifying the OS version

• PROCESS_FAMILY

• String identifying a group of related processes

• PROCESS_ID

• Integer identifying a process number

• PROCESS_NAME

• String identifying the name of the process

• PROCESS_TYPE

• 1 is batch, 2 is interactive, 3 is other

• PRODUCT_NAME

• Name of intellectual property being protected

• PRODUCT_PUBLISHER

• Owner of intellectual property being protected

• PRODUCT_VERSION

• Version string of intellectual property

• PUBLIC_KEY

• String containing public key to test against Product

• RELEASE_DATE

• Integer indicating the date the software was released

• USER_ID

• Integer indicating user

• USER_NAME

• String containing user name

B.1.2 Dependent Licenses

The Licensing Service can examine not only the most recent set of user runtime
environment data but it can also examine data from previous runtime contexts colle
along a particular thread of control. For example, a user may log in as "Fred" and
begin some action under that name. This action may include an operation being
dispatched to an object implementation logged in as "root". If this second proces
needs to obtain a license which was reserved for "Fred" then it ought to be able to
so. The user should be known by all the names associated with that thread of co
Licensing Service V1.0 April 2000 B-3

B

nse
f
in,
nsed
e

ade
It is
ke

not a

exists

or.

e

ot

re

t

Another example of a recursive license right is the "embedded" license. Such a lice
is not valid unless another object implementation was used earlier on the thread o
control. A database software vendor might issue License Documents for use with
say, an accounting package. Other uses which might be worth more must be lice
separately. An example of an interface which would support a stack of License Us
Context is as follows:

interface UserContext {
Property::PropertySet License_Use_Context create ();
void push(in Property::PropertySet License_Use_Context);
void pop ();
unsigned long getDepth ();
Property::PropertySet License_Use_Context top ();
Property::PropertySet License_Use_Context get (in unsigned long

which_frame);

void clear ();
void remove ();
}

B.2 Relationship Service

Support for collections and relationships will be determined by the mechanisms m
available to producers by the particular implementations of the Licensing Service.
expected that the preferred mechanisms will be to allow the Producer Policy to ma
use of Object Services such as the Relationship and Property Services, but this is
requirement of the Licensing Service.

Each implementation of the Licensing Service can address the problem of how to
manage the relationships among licenses. The types of relations one can assume
among licenses can be generically classified as follows:

• Prerequisite licenses, for example. the previous example of a database vend

• Corequisite licenses, that is, a set of licenses which must all coexist to give th
producer client the right to be running.

• Exrequisite licenses, that is, a set of licenses that can run only if others are n
active.

• Generic dependent licenses, that is, a set of licenses whose dependencies a
described through a specific constraint expression.

B.3 Security Service

The Security Service will probably replace the logic in each Licensing System tha
deals with producer client authentication and access control.
B-4 Licensing Service V1.0 April 2000

Implementation Issues C
s

ds to

e
se the

ose
sed

rties
tion,
C.1 Producer Client Implementation Issues

C.1.1 Client Implementation

In this example, a Producer decides to control method activation. In the Producer’
object activation, the implementation performs the
obtain_producer_specific_license_service operation on theLicenseServiceManager
interface and stores the resultant object reference. In the implementation of each
method that is to be controlled, the start_use operation is performed on the stored
object reference.

Depending on whether asynchronous events are supported, the Producer
implementation will vary as follows:

• If true asynchronous events are supported, the Producer implementation nee
provide an interface inherited from CosEventComm, thePushConsumerinterface.

• If asynchronous events are not supported, or the Producer chooses to not us
events, then each implementation that uses the start_use operation needs to u
check_use operation no less frequently than the period specified in the
recommended_check_interval argument until the implementation performs an
end_use operation. If, within the recommended check interval, the Producer
Client does not perform the check_use operation, the Producer Policy may cho
to release the associated licenses assuming that the Producer Client has cea
functioning.

Producers must decide how they want to use the Property Service to provide prope
to the start_use, check_use and end_use operations. In the Producer implementa
the returned argument action_to_be_taken from the check_use operation needs to
influence how the object continues after each check_use operation.
Licensing Service V1.0 April 2000 C-1

C

for

is

sion
t

h the
The Producer needs to determine the name for each component and the version
each component. The Producer will then need to produce the Licensing System
implementation dependant policy and license document for the Producer's chosen
policy.

When a particular use of the Producer object is completed the end_use operation
used to let the Licensing Service know that control is no longer required for that
component.

C.2 Asynchronous Events

In CORBA implementations where true asynchronous events are supported, provi
is made in the start_use operation to provide the Licensing Service with the objec
reference that corresponds to a clientPushConsumerinterface. This will allow the
license service to asynchronously send a push event to the specified interface wit
arguments defined in the following pseudocode:

C.3 Pseudocode

struct AsyncLicenseData{

ProducersSpecificLicenseService service;

LicenseHandle handle;

Challenge challenge;

};

/* Producer client implements an interface for the 'push' operation:
*/

void xxxx_push(Object o, Environment *e, any data)

{

struct AsyncLicenseData *check;

/* get the actual information that is needed to proceed */

check = (struct AsyncLicenseData *)(data->_value);

/*

perform producer specific testing and lookup on:
C-2 Licensing Service V1.0 April 2000

C

mine
n
o the
ted
e
tion

ld
 check->handle

 check->challenge

need to make sure that the component of this instance

that handle refers to is still active and that the

challenge is valid.

 */

 /*

 providing all is well, cause a check_use operation for

 the handle. Have to assemble the challenge, decide which

 properties are important for this handle and so forth.

 */

check->service->check_use(ev,

 check->handle,

 properties,

 interval,

 action,

 challenge);

/* test the challenge returned and so forth */

}

When the Producer Client has the push operation invoked, activating the routine
xxxx_push in the pseudocode example, the producer implementation should deter
which aspect of the implementation is referenced by the handle argument and the
invoke the check_use operation on the handle provided as one of the arguments t
push operation. At thar point, the implementation should determine if the object rela
to the handle is still active; determine if the challenge is valid; and then perform th
check_use operation on the provided object reference. The results from this opera
will indicate whether any action is to be taken and, if so, the implementation shou
proceed according to the Producer Policy.
Licensing Service V1.0 April 2000 C-3

C

C-4 Licensing Service V1.0 April 2000

ChallengeMechanism D
pear
e

g

a
ters.
, a

by

ted
e
cture

is
D.1 Default

For a producer to verify that a particular instance of theLicenseServiceManageris
legitimate, a challenge mechanism is required. This requirement may either disap
or be reduced if the Security Service delivers a similar mechanism that can then b
inherited by theLicenseServiceManager.

The mechanism proposed, by default, assumes the use ofshared secretsin the
producer implementations of their objects and the specific instance of the Licensin
Service that is involved to control the producer’s intellectual property.

The challenge mechanism is straightforward. When any operation is requested by
producer’s instance a challenge structure is provided along with the normal parame
This challenge structure consists of the MD5 of all the arguments to the operation
random number, and aforward secret valueknown only to the producer. The Licensing
Service instance for this producer can confirm that the client instance is legitimate
verifying that the challenge is correct. In return the instance of the license system
sends back the MD5 of the same random number and areverse secret valueagain
known only to the producer. The instance invoking the operation on the Licensing
Service can verify that the Licensing Service is legitimate by validating the genera
MD5.1 The challenge mechanism defined in the proposed interfaces supports mor
than one set of shared forward/reverse secrets. As part of the ChallengeData stru

1. MD5 is a message digest algorithm defined by R. Rivest in the Internet RFC 1321. It is in
the public domain and provides a mechanism to generate a 128-bit “fingerprint” of messages
of arbitrary length. It is conjectured that the difficulty of coming up with two messages that
have the same digest is 2^64 operations and that generating a specific digest for a message
2^128 operations, making it suitable for the basis of the challenge protocol described in this
specification.
Licensing Service V1.0 April 2000 D-1

D

ed
eds

t
.

n

ents
his

s
e is

n one

ble

e

int,

cer
an index is provided, challenge_index, that allows the client to choose which shar
secret set is to be used in the challenge. A conforming implementation of the LS ne
to support at least four sets of shared secrets whose indices are 0 through 3.

This mechanism is not intended to be completely secure. Instead, it provides trus
between the producer and the producer-specific instance of the Licensing Service
Eventually, the Security Service will probably replace the need for the challenge
mechanism.

D.2 Alternative

As an alternative to the default challenge, a Producer can choose to define its ow
challenge protocol. By setting the challenge_protocol enumerated element of a
challenge to 'producer_defined' the definition of what the challenge element repres
becomes the responsibility of the producer and not the Licensing Service directly. T
will depend on the implementation of the Licensing Service, since the mechanism
available to the producer to support this are defined by the way a Licensing Servic
implemented.

Note

If the object producer so chooses, the same program can be licensed by more tha
Licensing System. It is simply a matter of who satisfies the challenge. In fact, the
challenge mechanism supports as many Licensing Service providers as an object
producer chooses to pick up. They can choose sets of challenge data to deal with
particular providers and use a standard set of challenge data to get the first availa
service provider.

It is not guaranteed to be true that all object producers will use the same challeng
mechanism. However, as long as the object producer chooses to use the default
challenge, this will be the case. As soon as an object producer decides to use an
alternate challenge, that will be defined by the license system provider. At that po
only that implementation of the Licensing Service can satisfy the challenge and
remove the multiple service provider capability. Default challenge mechanismsmust
be supported; however, if licensing system providers offer an alternative, a produ
need not use the default.
D-2 Licensing Service V1.0 April 2000

	Preface
	About This Document
	Object Management Group
	What is CORBA?
	X/Open

	Intended Audience
	Need for Object Services
	What Is an Object Service Specification?

	Associated OMG Documents
	Service Design Principles
	Build on CORBA Concepts
	Basic, Flexible Services
	Generic Services
	Allow Local and Remote Implementations
	Quality of Service is an Implementation Characteristic
	Objects Often Conspire in a Service
	Use of Callback Interfaces
	Assume No Global Identifier Spaces
	Finding a Service is Orthogonal to Using It

	Interface Style Consistency
	Use of Exceptions and Return Codes
	Explicit Versus Implicit Operations
	Use of Interface Inheritance

	Acknowledgments

	1. Service Description
	1.1 Background Information
	1.1.1 Existing License Management Products
	1.1.2 Business Policy
	1.1.3 License Types
	1.1.4 A History of License Types
	1.1.5 Asset Management
	1.1.6 License Usage Practices
	1.1.7 Scalability
	1.1.8 Reliability
	1.1.9 Legacy Applications
	1.1.10 Security
	1.1.11 Client/Server Authentication
	1.1.12 Example: Application Acquiring and Releasing a Concurrent License

	1.2 Licensing Service Overview
	1.3 Key Components of a Licensing System
	1.3.1 License Attributes
	1.3.2 Licensing Policy
	1.3.3 Interfaces Isolated From Business Policies

	1.4 Licensing in the CORBA Environment
	1.5 Design Principles

	2. Licensing Service Interfaces
	2.1 Licensing Service Interfaces
	2.1.1 Interfaces are Mandatory
	2.1.2 Constraints on Object Behavior
	2.1.3 Licensing Event Trace Diagram

	2.2 The CosLicensing Module
	2.2.1 LicenseServiceManager Interface
	2.2.2 ProducerSpecificLicenseService Interface

	Glossary
	Appendix A - References
	Appendix B - Use of Other Services
	Appendix C - Implementation Issues
	Appendix D - Challenge Mechanism

