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About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supporte
over 800 members, including information system vendors, software developers and u
Founded in 1989, the OMG promotes the theory and practice of object-oriented tech
ogy in software development. The organization's charter includes the establishment 
industry guidelines and object management specifications to provide a common fram
work for application development. Primary goals are the reusability, portability, and 
interoperability of object-based software in distributed, heterogeneous environments.
formance to these specifications will make it possible to develop a heterogeneous ap
tions environment across all major hardware platforms and operating systems. 

OMG's objectives are to foster the growth of object technology and influence its direc
by establishing the Object Management Architecture (OMA).  The OMA provides the
conceptual infrastructure upon which all OMG specifications are based. 

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Managem
Group's answer to the need for interoperability among the rapidly proliferating numbe
hardware and software products available today. Simply stated, CORBA allows appli
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group 
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specifi
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in Decem
of 1994, defines true interoperability by specifying how ORBs from different vendors 
interoperate. 
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Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBAservices: Common Object Services Specification contains specifications for 
OMG’s Object Services. 

The OMG collects information for each specification by issuing Requests for Informat
Requests for Proposals, and Requests for Comment and, with its membership, evalu
the responses. Specifications are adopted as standards only when representatives o
OMG membership accept them as such by vote. (The policies and procedures of the
are described in detail in the Object Management Architecture Guide.) 

OMG formal documents are available from our web site in PostScript and PDF forma
obtain print-on-demand books in the documentation set or other OMG publications, 
tact the Object Management Group, Inc. at: 

 
OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org
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What color is a chameleon on a mirror?

-- Steve Wright (attributed)

Contents

The contents of this chapter are not normative. This chapter contains the followin
sections. 

1.1 Introduction

The purpose of this chapter is to describe fundamental design principles express
the actual mapping.

The overall goal of our mapping design was to make a successful Lisp mapping. 
wanted the mapping to be widely used in Lisp applications and to be supported b
multiple vendors.

We began by studying the existing mappings and in particular determining which 
mappings appeared to be successful and which did not, and why. We also tried to
identify characteristics of Lisp that make it well-suited or ill-suited to use in a COR
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environment. We tried to make sure that our mapping could exploit the traits of Li
that were well-suited to a CORBA environment while minimizing the traits that we
not well-suited to a CORBA environment.

1.2 Why is the Lisp Mapping Difficult?

The reason the Lisp mapping is difficult, and the reason that so much effort is 
expended here and in Appendix A to justify the mapping, is precisely that, in som
sense, the mapping is too easy.

Many Lisp programmers will idiomatically begin the development of an application
solution in a domain by tailoring the Lisp language itself to that domain.

Indeed, Lisp offers a plethora, if not a surfeit, of features to support this: reader 
macros, meta-object protocol, macros, compiler macros, code-generation, on-the-
compilation, mutable objects and classes, and so on.

In the particular case of mapping into IDL, however, the constraint is a bit more 
complex, since an IDL mapping should feel idiomatic to Lisp programmers. Thus,
design of a Lisp mapping is invariably driven by the tension between making the 
syntax and semantics as IDL-friendly as possible and making the syntax and sem
as friendly as possible, not so much to the Lisp language per se, but to some com
informal application-independent idioms used by Lisp programmers.

This mapping design thus represents a continual resolution of the tension betwee
these two idioms: the adaptation of Lisp to CORBA, which is one type of Lisp idio
and the adaptation of CORBA to Lisp.

For example, consider the simplest possible mapping: that of identifiers. We revie
at least ten different identifier mappings, many of which were implemented in 
prototype ORBs. For example, some Lisp programmers like to notate identifiers b
separating words with a hyphen, while in IDL, case changes or underscores are 
idiomatic. Of course, Lisp can fully support the IDL style, but should it? Answers va
(We chose to use IDL-style identifiers).

This simple tension was expressed on many levels throughout the mapping. In ord
resolve it satisfactorily but not in an ad hoc way, we formulated a set of design 
principles, and we exhaustively prototyped and commercially implemented the var
recommendations. We eventually were able to distill the mapping principles to a s
set of natural mapping principles which informed and motivated the specific mapp
The UML metamodel has proven extremely useful in expositing these principles.

1.3 Mapping Goals

The five design goals of this mapping are:

1. Ease of use

2. Consistency

3. Flexibility
1-2 Lisp Mapping  V1.0                          May 2000
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4. Performance

5. Adherence to IDL

1.3.1 Ease-of-use

CORBA systems are often cross-platform, cross-language, and cross-vendor. The
development presents certain unavoidable difficulties for the programmer. Our aim
to make the Lisp ORB as simple to use as possible. We strove for a system in wh
common idioms could be expressed concisely and in which common defaults wer
chosen. For example, the skeleton classes automatically generate slots for attribu
operation invocation syntax can be very concise. The any mapping chooses reasonable
defaults for most cases, although means to override the defaults are given.

1.3.2 Consistency

A crucial design goal was that our mapping be as easy to learn to use as possible
for users not expert in Lisp or in CORBA. To achieve this, we aimed for a mappin
consistent as possible. Consistency was achieved by viewing the mapping as a ma
on the UML metamodel underlying the IDL type model.

1.3.3 Flexibility

The mapping should facilitate the production of flexible and dynamically modifiabl
code. CLOS auxiliary methods and smart proxies are supported; run-time code 
modification based on dynamically computed repositories is supported.

1.3.4 Performance

The features described here should not impose undue performance overhead.

1.3.5 Adherence to IDL

We adhere to IDL conventions as much as possible, even when specifying pseud
interfaces.

1.4 Mapping Principles

The key goal in the mapping design was to designate a small set of principles tha
could be uniformly applied to generate the mapping.

Our motivation, thus, was to produce a mapping that is not only useful, but is also
easy-to-learn and aesthetically pleasing.

In specifying and in implementing a language mapping, it is difficult to avoid close
attention to the details of IDL language and target language syntax. Mapping 
documents sometimes loosely speak of mapping from IDL syntactic elements to ta
language syntactic elements.
Lisp Mapping V1.0          Mapping Principles           May 2000 1-3
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We used the UML meta-model informally to express the key concepts in our map
independent of the syntactic specifics of their expression in IDL.

Note – Although the principles underlying the mapping are expressed informally in
UML, familiarity with the UML metamodel is not necessary in order understand th
principles. In fact, it normally suffices simply to keep in mind standard object-orien
terminology and praxis; the UML metamodel serves primarily only as a way to expo
but not necessarily to design, the mapping principles.

1.5 Expressing the Mapping in UML

Our mapping is normatively specified by its action on textual entities: the input ID
and the output Lisp. Although precise, this prescription has the flaw that it obfusc
the underlying principles used to select these textual representations. The mappi
actually more clearly thought of directly as a transformation on UML models. The
mapping on models is much simpler and crisper than the mapping on sources.

Thus, the expression of the underlying principles governing our choice of mapping
be clearly and succinctly expressed using the UML metamodel. (The presentation
is informal and purposely elides some details, of course.)ping. The UML metamo
(The presentation here is informal and purposely elides some details, of course.)

Because the native Lisp object model is farther from the IDL object model than is
case with Java and C++, it is useful in discussing the Lisp mapping to describe m
generally the nature of a language mapping.

1.5.1 UML Metamodel

We now present some salient aspects of the UML 1.3 meta-model that will be use
the description in this section:
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Figure 1-1 Simplified UML 1.3 meta-model

In a static class diagram representing a model of an IDL file, each struct, union, 
interface, exception, and valuetype defined in that file will correspond to a Classifier 
object.

A UML model comprises various model elements.

• A Classifier is a kind of model element that describes behavioral and structural
features. We view typedefs, exceptions, structs, interfaces, and so on as defini
Classifier elements in the model.

• A Feature is a property encapsulated in a Classifier. A StructuralFeature refers to 
static model elements; we consider IDL attribute and member declarations to 
correspond to instances of StructuralFeature. We consider IDL operation 
declarations to correspond to instances of Operation. The Operation and 
StructuralFeature classes have, of course, other attributes for determining data
calling sequence, and so on; these are not shown in this diagram.
Lisp Mapping V1.0          Expressing the Mapping in UML           May 2000 1-5
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• A Namespace holds a collection of model elements; each classifier, but most 
importantly the Package, is a Namespace.

1.5.2 UML Overview of a Mapping

A mapping is fundamentally a transformation of object models: As input it takes a
model representing a set of IDL files; as output it produces a model representing 
of Lisp data types. This is illustrated informally in the figure below.

Figure 1-2 Language mapping from IDL model to Lisp model

Figure 1-2 represents the conceptual entities involved in a Lisp language mapping
Each entity is described below:

1.5.2.1 input.idl

The input.idl file represents a source file in IDL. The goal of the language mapping
to determine how the datatypes defined in this file may be accessed from the targ
language, in this case Lisp.
1-6 Lisp Mapping  V1.0                          May 2000
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1.5.2.2 INPUT

The INPUT system model is intended here to represent a static UML class diagra
which represents the elements defined in input.idl. Because the UML Profile for 
CORBA is not standardized at the time of this writing, some common-sense guess
the appropriate UML representation for IDL elements may be made; these do not
impact the underlying mapping.

For example, we can assume that each IDL data type is a Classifier; that IDL inter
are represented by Class objects, that interface inheritance is represented by a 
Generalization association, that modules are represented by Package, and so on

At any rate, the INPUT model is a static model of the input IDL file: it is a normal
UML class diagram representing each element of the IDL file.

1.5.2.3 OUTPUT

Each model element - packages, classes, associations, and so on - in the input m
which corresponds to the file input.idl, is transformed by the mapping into a set o
model elements in the output model. In fact, for the most part the input and outpu
models are identical. Association maps to Association; Classifier maps to Classifier, 
Package maps to Package, Operation maps to Operation. There is slight complexity 
in that an interface class in the input model maps to several classes in the output m
(stub and skeleton classes); similarly, a Generalization between two interface Cla
objects in the input model is mapped to several Generalizations in the output mo

1.5.2.4 output.lisp

Once output model is generated, the Lisp datatypes, which we here informally 
designate by the source file "output.lisp" is generated. Lisp classes and data type
defined by the mapping whose model is the OUTPUT model.

1.5.3 What a Mapping Needs to Specify

We have seen that a language mapping needs to specify two parameters: Genera
the output model from the input model; and “forward-engineering” of the target 
language from the output model.

There is not much to say about generation of the output model from the input mo
This part of the mapping is essentially language-independent, has been done num
times in other mappings, and is well-understood. It is the code-generation of Lisp 
the OUTPUT model where the design choices become more important, and it is t
point that we now address.

1.5.4 Generation of Lisp from UML

We have reduced the unstructured problem of mapping the multitudinous and 
multifarious elements of IDL syntax and semantics into the more structured proble
mapping (some) UML constructs into Lisp.
Lisp Mapping V1.0          Expressing the Mapping in UML           May 2000 1-7
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Because these UML constructs themselves already represent instances of a simp
clean meta-model, the UML 1.3 meta-model, we are led to the following observat

In order to determine a mapping from IDL to Lisp, it suffices to determine a mapp
for each element of the UML metamodel.

Once phrased in this way, the correct choice of mapping becomes clearer.

For example, both IDL interface and IDL module are namespaces. One early Lisp
mapping mapped both module and interface to the Lisp package—it may not be 
immediately obvious whether interface should map to Package.

On the other hand, it is in fact rather obvious that the UML Package element should 
map to Lisp package. Since it is equally clear that IDL module (and not IDL 
interface) map to UML Package, we infer quite naturally that IDL module maps to 
Lisp package.

In fact, as it turns out the mapping of each UML meta-model element is actually q
natural. The following table outlines this mapping.

1.5.4.1 Mapping for Namespace

A top-level namespace is named by the symbol that is its own name. Otherwise, 
namespace is owned by some parent namespace; the name of the namespace is
case the concatenation of the name of the parent with the mapping for ownedEle
(the ’/’ character) with the name of the namespace.

1.5.4.2 Mapping for Package

The simplest namespace is Package. This is simply mapped to the Lisp package.

When this class diagram is mapped into Lisp, the Classifier objects are unchanged.

Hence, we have reduced the problem of mapping the various disparate IDL datat
with their corresponding disparate syntax into the much more uniform problem of
mapping a Classifier object into Lisp.

Table 1-1 UML metamodel element mapping

UML metamodel element Lisp mapping

Classifier
Namespace

type
naming prefix

Package
Name

package
symbol

Class
generalization

class
inheritance

OwnedElement
StructuralFeature

/
slot

BehavioralFeature method
1-8 Lisp Mapping  V1.0                          May 2000
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Since Classifiers haveFeatures, we also much map the Feature data type.

Our mapping boils down, therefore, to the following rules:

1.5.4.3 Mapping for Feature

• A StructuralFeature is mapped to a slot. This slot has accessors that follow 
standard Lisp conventions. Specifically, each such slot corresponds to an inita
whose name is the name of the slot and whose package is :KEYWORD , and an 
accessor function whose name is the name of the slot.

• A BehavioralFeature is mapped to a method. The first actual parameter of this 
method is the target of the operation.

• The Lisp name of the Lisp entity corresponding to a feature is the symbol who
name is the name of the Feature and whose package is the Feature package.

1.5.4.4 Mapping for Namespace

A Namespace is corresponds to a symbol formed as follows. Concatenate the name
all the namespaces containing the given Namespace, outermost to innermost, sep
by the "/" character. Change the "/" preceding the first Namespace that is not a Pa
to ":". This name the symbol corresponding to that Namespace.

We can think of this mapping as: “elementOwnership” maps to “/” is we like.

1.5.4.5 Mapping for Classifier

A Class is mapped to a Lisp class that inherits directly from the Lisp class 
corresponding to its parents. The root of this inheritance hierarchy is the class 
CORBA :<name> where <name> is one of UNION , STRUCT, VALUETYPE , 
OBJECT, EXCEPTION , ABSTRACTBASE. This Lisp class has slots and methods
corresponding to the Features of theClassifier.

Each such Class has a constructor whose name is the name of the Class and which 
takes keyword initialization arguments given by its StructuralFeatures.

An interface Class has some auxiliary classes generated.

If a Classifier is a not a Class then it is a typedef and there is no inheritance or 
Feature mapping.

1.5.4.6 Example:

Consider the following simple UML diagram:
Lisp Mapping V1.0          Expressing the Mapping in UML           May 2000 1-9
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Figure 1-3 Sample UML diagram to be mapped into Lisp

The pack Package element corresponds to a Lisp package named pack. The A 
Classifier corresponds to a Lisp class. Since pack owns A , A is named, in Lisp, 
pack:A .

Note that if A were defined in the package pack2 which itself was included in pack, 
then A would map to a Lisp class named pack/pack2:A.

A has two Features with names attr1 and oper1. These correspond to elements of th
Feature package in Lisp.

There is a Lisp class named pack:B which inherits from pack:A . It adds an operation 
named oper2.

1.5.5 Invocation and Definition

Implicit in the UML meta-model is that there shall be a way:

• To access a Feature
• To invoke an operation
• To implement a method

The key here is this:
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Feature operations shall be independent, to the extent possible, of the stereotype
associated class.

For example, suppose object x has a feature named “foo” . This rule states:

The value of the feature foo, and the means for accessing this value are independen
whether x happens to be a union, a struct, a valuetype, an abstract interface, an 
exception, an interface, or a valuetype.

In point of fact, in this case, the feature is always accessed via that form:
(foo x)

The value of the feature is always written via form like:
(setf (foo x) 3)

Here, the symbol “foo” is in the Feature package, with nickname :OP, so this coul
written (op:foo x) and so on.

For example, this rule is one of the key reasons we did not force the metaclass o
mapped struct to be instances of Lisp structure-class, which use a different synta
accessing members.

Similarly, if foo were an Operation with parameters a, b, c..., invocation is always 
(op:foo x a b c).

The invocation mapping is summarized in the figure below.

Figure 1-4 Sending message foo is mapped to invocation of method foo with parameters
target object and each of the actual parameters.

1.5.6 Pseudo IDL

A similar system could be drawn for the various PIDL elements. The mapping for
PIDL is similar, in any case, to that for IDL.
Lisp Mapping V1.0          Expressing the Mapping in UML           May 2000 1-11
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1.5.7 Additional information

Appendix A outlines some of the issues involved more specifically, as well as 
discussing thorny but necessary matters such as character sets, name collisions, a
like.
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This section describes the mapping of IDL into the Lisp language.

In most cases examples of the mapping are provided. It should be noted that the
examples are code fragments that try to illustrate only the language construct bei
described.

Contents

This chapter contains the following sections. 
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“Mapping for Basic Types” 2-3
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“Mapping for Interface” 2-10

“Mapping for Operation” 2-12

“Mapping for Attribute” 2-14

“Mapping of Module” 2-15

“Mapping for enum” 2-16

“Mapping for Struct” 2-17
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2.1 Mapping Concepts

By an IDL entity we mean an element defined in some IDL file. For example, consi
the code fragment

module A {
interface B {
void op1(in long bar);
};
}

The IDL entities are the module named A , the interface named B, the operation named 
op1 , the formal parameter named bar , and the primitive data types void  and long .

Our mapping will associate to each IDL entity declared in an IDL specification a 
corresponding Lisp entity.

The Lisp entity corresponding to a given IDL entity will be said to be generated from 
the IDL entity.

If the IDL entity has a name, then the corresponding Lisp entity will also have a na
Whereas IDL entities are named by strings (i.e., identifiers), Lisp entities are name
symbols.

It is the goal of this chapter to specify, for each IDL construct, the Lisp entity, and
name of that entity, generated by the mapping.

2.2 Semantics of Type Mapping

The statement that an IDL type I is mapped to a Lisp type L indicates if V is a Lisp 
value whose corresponding IDL type is I , then the consequences are not specified if
the value of V is not a member of the type L.

“Mapping for Union” 2-18

“Mapping for const” 2-19

“Mapping for array” 2-20

“Mapping for sequence” 2-20

“Mapping for Exception” 2-21

“Mapping for typedef” 2-23

“Mapping for any” 2-24

“Mapping for valuetype” 2-26

“Custom Valuetypes” 2-31
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For example, if V is passed as a parameter to an IDL operation or if V is returned from 
an IDL operation, then a conforming implementation may reasonably perform any
the following actions if V is not of the type L.

• If V may be coerced to L, then V may be replaced by the result of coercing V to the 
type L.

• If V cannot be coerced to L, then an error may be signalled. If the error occurs
during marshalling or unmarshalling, corba:marshal  shall be signaled.

2.3 Mapping for Basic Types

2.3.1 Overview

Table 2-1 shows the basic mapping. The first column contains the IDL name of th
IDL type to be mapped. Each IDL type denotes a set of IDL abstract values.

The set of values denoted by an entry in the first column will be mapped under th
mapping described in this document to a set of Lisp values. That set of Lisp valu
described in two ways:

1. The entry “Name of Lisp type” is a symbol that names the type represented by
set of Lisp values.

2. The entry “Lisp type specifier” is a standard Common Lisp type specifier that 
denotes this set of Lisp values.

Table 2-1 Basic Type Mappings

IDL Type Name of Lisp Type Lisp Type Specifier

boolean corba:boolean generalized boolean

char corba:char character

wchar corba:wchar see text

octet corba:octet (unsigned byte 8)

string corba:string string

wstring corba:wstring see text

short corba:short (signed byte 16)

unsigned short corba:unsigned short (unsigned byte 16)

long corba:long (signed byte 32)

unsigned long corba:unsigned long (unsigned byte 32)

long long corba:longlong (signed byte 64)

unsigned long long corba:ulonglong (unsigned byte 64)

float corba:float see text
Lisp Mapping V1.0            Mapping for Basic Types             May 2000 2-3
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Additional details are described in the following sections.

2.3.1.1   Example

(typep -3 ‘corba:short)
> T
(typep -3 ‘corba:ushort)
> nil
(typep “A string” ‘corba:string)
> T

2.3.2 Boolean

The IDL boolean constants TRUE and FALSE are mapped to the corresponding Lisp
boolean literals T and nil . The type specifier corba:boolean  specifies the type T, 
also called generalized boolean.

2.3.3  Char

IDL char  maps to the Lisp type character . The type specifier corba:char  
specifies this type.

2.3.3.1  Usage example

(typep #\x ‘corba:char)
> T
(typep “x” ‘corba:char)
> nil

2.3.4  Octet

The IDL type octet , an 8-bit quantity, is mapped as an unsigned quantity to the ty
corba:octet . The type specifier corba:octet  denotes the set of integers between 0 
and 255 inclusive. This set can also be denoted by the type specifier (unsigned-byte 
8).

2.3.4.1  Usage example

double corba:double see text

long double corba:longdouble see text

fixed corba:fixed see text

Table 2-1 Basic Type Mappings

IDL Type Name of Lisp Type Lisp Type Specifier
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(typep 255 ‘corba:octet)
> T
(typep -1 ‘corba:octet)
> nil

2.3.5 Wchar, Wstring

The types wchar  and wstring  are mapped to Lisp types named corba:wchar  and 
corba:wstring . The type corba:wstring  shall be a subtype of 
corba:sequence  whose constituents can be elements of type corba:wchar .

2.3.6 string

The IDL string , both bounded and unbounded variants, are mapped to string . 
Range checking for characters in the string  as well as bounds checking of the 
string  shall be done at marshal time. The type specifier corba:string  denotes 
the set of Lisp strings .

2.3.6.1  Usage example

(typep “A string” ‘corba:string)
> T
(typep nil ‘corba:string)
> nil

2.3.7 Integer Types

The integer types each map to the Lisp integer  type. Each IDL integer type has a 
corresponding type specifier that denotes the range of integers to which it corresp
The names of the type specifiers are corba:long , corba:short , corba:ulong , 
corba:ushort , corba:longlong , and corba:ulonglong .

2.3.8 Floating Point Types

The floating point types float , double , and long double  map to Lisp types named 
corba:float , corba:double , and corba:longdouble  respectively. These 
types shall be subtypes of the type real . They shall allow representation of all 
numbers specified by the corresponding CORBA types.

2.3.9 Fixed

The fixed point type is mapped to the Lisp type named corba:fixed . This type shall 
be a subtype of the Lisp type rational .
Lisp Mapping V1.0            Mapping for Basic Types             May 2000 2-5
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2.4 Introduction to Named Types

We now discuss the mapping of types that are named. We begin with a discussio
terminological issues.

2.4.1 Naming Terminology

Notation for naming can be confusing, so some care is needed. Our specification 
formally rigorous, but we have tried to illustrate enough points with examples so t
situations likely to arise in practice can be handled.

2.4.1.1  IDL naming terminology

By the IDL name of an IDL entity we mean the string that is the simple name of th
entity.

An IDL entity can be declared at the top-level or nested inside some other IDL en
We say that the outer IDL entity encloses the inner one.

We will sometimes elide the quotation marks in describing the names of IDL (and
other entities) when no confusion is likely to result.

Example:

module A{
interface B{
struct c {long foo;};};}

The name of the struct  is the string c. The name of the interface  is the string B. The 
name of the module  is the string A . The name of the struct  member is the string foo . 
The innermost enclosing IDL entity of the struct  is the interface  named B. The 
innermost enclosing module  of the struct  is the module  named A.

2.4.1.2  Lisp naming terminology

The name of a symbol is a string used to identify the symbol.

Packages are collections of symbols. A symbol has a home package, which also has a 
name. A package can be named by a symbol or a string. We sometimes loosely 
“the package x” when we mean “the package named by x.” A package may have
nicknames and we will consider that the nicknames of a package name the pack

Unless otherwise stated, we will assume that distinct package names refer to dis
packages.

Symbols are notated by prefixing the name of the home package of the symbol to
character ‘:’ to the name of the symbol. Case is not significant when this notation
used.

Thus, all symbols generated by this mapping are external symbols of their home 
package.
2-6 Lisp Mapping V1.0                 May 2000  
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A symbol can name a function, a package, a class, a type, a slot, or a variable. T
namespaces are disjoint.

All alphabetic characters in the names of symbols used in this document are upper
unless otherwise stated.

Thus, the names notated here are implicitly converted to uppercase when they na
symbol.

For example, when we write

the symbol named hello-goodbye

or

the symbol hello-goodbye

we actually mean the symbol whose name is the string “HELLO-GOODBYE.”

2.5 Distinguished Packages

This document will refer to two kinds of packages:

1. A package that comprises those packages defined explicitly by this specificatio

2. A package that comprises those packages created as a result of compiling use
code.

The first kind of package consists of these three distinct packages: the root package, 
the corba package, and the Feature package.

The names of these packages are described below.

• The name of the root package is the string “OMG.ORG/ROOT”.

• The name of the corba package is “OMG.ORG/CORBA”.

• The name of the Feature package is the string “OMG.ORG/FEATURE”.

The precise semantics of these three packages is described below. Informally, the
package is the package in which Lisp names corresponding to IDL definitions not
contained in a top-level module are interned. The corba package is the package 
which Lisp names corresponding to IDL definitions and pseudo-IDL definitions in 
CORBA module are interned. The Feature package is the package into which nam
Lisp functions corresponding to IDL operations are interned.

In addition, this specification makes use of the standard Common Lisp packages 
named “KEYWORD” and “COMMON-LISP.”

2.5.1 Nicknames for Distinguished Packages

An implementation is expected to support the addition of nicknames for a package
the standard common lisp nicknames facility. An ORB shall support the following 
default nicknames:
Lisp Mapping V1.0            Distinguished Packages             May 2000 2-7
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• For the package “OMG.ORG/CORBA” the default nickname shall be “CORBA.
• For the package “OMG.ORG/FEATURE” the default nickname shall be “OP.”

This document will use these nicknames without comment.

2.6 Scoped Names and Scoped Symbols

Many of the Lisp entities we consider will be named according to the scoped nam
convention described in this section. In particular, the following entities will be 
mapped according to this naming convention:

• interface

• union

• enum

• struct

• exception

• valuetype

• abstract interface

• const

• typedef

A scoped symbol will be associated with the IDL entity, and it is this scoped sym
that will name the Lisp value generated by the given IDL entity.

2.6.1 Definitions

For any named IDL entity I there is a Lisp symbol S called the scoped symbol of I .

The scoping separator is the string “/”.

If I is a top-level module, then the name of S is the name of I .

If I is a module nested within another module J, then the name of S is the 
concatenation of the name of the scoped symbol of J, the scoping separator, and the 
name of I .

The home package of the scoped symbol of a module is :keyword .

Suppose I is a named IDL entity that is not a module. The name of the scoping symbo
S of I is determined as follows.

• If the declaration of I is enclosed inside another IDL entity J that is not a module, 
then the name of S is the concatenation of the name of the scoping symbol for J, the 
scoping separator, and the name of I . Otherwise the name of S is the name of I .

• If I is enclosed in a module M, then the home package of S is named by the scoped
symbol for M . Otherwise the home package for S is the root package.
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2.6.1.1  Examples of scoping symbols

Consider the following IDL:

module a {
interface foo {};}

The scoped symbol of the module is :a. Thus, the home package of this symbol is 
:keyword and the name of the symbol is the string “A.”

The scoped symbol of the interface is the symbol a:foo. Thus, the name of the symbol
is the string “FOO” and the home package of the symbol is the package whose na
the string “A.”

Here is a more complex example of IDL:

module a {
interface outer {
struct inner {
in long member;};};}

Here the scoped symbol for the module  is :a, the scoped symbol for the interface  is 
a:outer , and the scoped symbol for struct  is a:outer/inner .

Finally, another example:

module a{
module b{
interface c{
struct d{
long foo;};};};}

The scoped symbol for the struct  is a/b:c/d . The scoped symbol for the struct  
member is a/b:c/d/foo .

2.7 The package_prefix pragma

A package_prefix pragma has the form:

#pragma package_prefix string

where string is an IDL string literal. For example

#pragma package_prefix “COM.FRANZ-”

A package_prefix  pragma affects the mapping of all top-level modules within its 
scope as follows: the name of the scoping symbol for such a top-level module wi
the scope of a package_prefix pragma is the concatenation of the given 
package_prefix  with the name of the module. The scope of the package_prefix 
pragma follows the same rules as the scope of the prefix pragma defined in The 
Interface Repository chapter of the CORBA Core specification.
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All OMG system IDL files, such as the IDL files for CORBA Services and CORBA
facilities, are considered to have been defined with an implicit package_prefix  of 
“OMG.ORG/”. This name and convention was chosen to be consistent with the wa
which system repository ID specifiers are determined. Packages corresponding to
modules within the scope of such an implicit package_prefix  will have default 
nicknames that are the name of the module without any prefix.

2.7.1 Example

2.7.1.1  IDL

#pragma package_prefix “COM.FRANZ-”
module a{
module b{
interface c{};};};

The scoped symbol for the interface is COM.FRANZ-A/B:C .

2.8 Mapping for Interface

An IDL interface  is mapped to a Lisp class . The name of this class  is the scoped 
symbol for the interface .

The direct superclasses of a generated Lisp class are determined as follows. If th
given IDL interface has no declared base interfaces, the generated class has the
direct superclass named corba:object.

Otherwise, the generated Lisp class has direct superclasses that are the generat
classes corresponding to the declared base interfaces of the given interface.

The Lisp value nil can be passed wherever an object reference is expected.

An IDL interface is also mapped into server side classes. The server classes are 
described in the Server Side mapping chapter of this specification.

2.8.1 Example

2.8.1.1  IDL

module example{
interface foo {};
interface bar {};
interface fum : foo,bar {};}

2.8.1.2  generated Lisp
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(defclass example:foo(corba:object)())
(defclass example:bar(corba:object)())
(defclass example:fum (example:foo example:bar)())

2.8.2 Stub classes

An IDL interface named I generates a stub class whose name is the concatenatio
the name of the scoped symbol for I to the string "-PROXY" and whose package is
package of the scoped symbol for I.

The direct superclasses of the -PROXY class corresponding to an interface I are 
determined as follows. If I has no declared base interfaces, the generated class h
direct superclasses, the Lisp class corresponding to interface I, and the class 
corba:proxy. Otherwise the generated class has as direct superclasses the Lisp c
corresponding to interface I and the-PROXY classes corresponding to each of the
declared base interfaces of I.

2.8.2.1  Example

The stub classes generated for the IDL above are:

(defclass example:foo-proxy (example:foo corba:proxy))
(defclass example:bar-proxy(example:bar corba:object))
(defclass example:fum-proxy(example:fum example:foo-proxy example:bar-proxy))

The IDL and the Lisp in the example is represented non-normatively in UML in th
pair of figures below.

Figure 2-2 Non-normative UML for example 2.8.2.1, IDL
Lisp Mapping V1.0            Mapping for Interface             May 2000 2-11
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Figure 2-3 Non-normative UML for example 2.8.2.1, IDL

2.9 Mapping for Operation

This section discusses only how the user is to invoke mapped operations, not how
user is to implement them. The implementation of operations is discussed in the Server 
Side mapping chapter of this specification. The contents of this section apply to 
operations declared within interfaces, abstract interfaces, and valuetypes.

An IDL operation is mapped to a Lisp function named by the symbol whose print-
name is given by the name of the operation interned in the Feature package.

We will assume that all operation names have been appropriately imported into th
current package in some examples.

Thus, when an example is given in which there is a reference to the symbol namin
mapped function corresponding to an IDL operation, the package of that symbol 
be assumed to be the Feature package.
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2.9.1 Parameter Passing Modes

The function defined by the IDL operation expects actual arguments correspondin
each formal argument that is declared in or inout, in the order in which they are 
declared in the IDL definition of the operation.

2.9.2 Return Values

The function defined by the IDL operation returns multiple values. The first (i.e., t
zeroth) value returned is that value corresponding to the declared return value, un
the declared return value is void. Following the value corresponding to the declared 
return value, if any, the succeeding returned values correspond to the parameters
were declared out and inout, in the order in which those parameters were declared
the IDL declaration.

Note that this implies that generated functions corresponding to operations decla
void which have neither out nor inout formal parameters return zero values.

2.9.3 One-way

Operations declared oneway are mapped according to the above rules.

2.9.4 Efficiency Optimization: Using macros instead of functions

A conforming implementation may map an operation to a macro whose name and
invocation syntax are consistent with the above mapping. For the sake of 
terminological simplicity, however, this document will continue to refer to mapped
operations as “functions.”

2.9.5 Exception

An invocation of a function corresponding to a given IDL operation may result in t
certain conditions being signalled, including the conditions generated by the excep
declared in the raises clause of the operation, if any. Such conditions are signalled 
the dynamic environment of the caller.

An invocation of a function may also result in the signalling of conditions 
corresponding to system exceptions.

2.9.6 Context

For each context name declared by an operation, the operation accepts a single 
additional argument whose type is a first-class context, accessed via the standard
Context accessors.
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2.9.7 Example

2.9.7.1  IDL

module example {
interface face {
long sample_method (in long arg);
void voidmethod();
void voidmethod2(out short arg);
string method3 (out short arg1,inout string arg2,in boolean arg3);
};

2.9.7.2  generated Lisp

(defpackage :example)
(defclass example:face(corba:object)())
;...

2.9.7.3  usage

; Suppose x is bound to a value of class example:face.
(sample_method x 3)
> 24
(voidmethod x)
> ; No values returned
(voidmethod2 x)
> 905 ; This is the value corresponding to the out arg
(method3 x “Argument corresponding to arg2” T)
> “The values returned” -23 “New arg2 value”
; The Lisp construct multiple-value-bind can also be used to 
recover these values.
(multiple-value-bind (result arg1 arg2)
(method3 x “Argument corresponding to arg2” T)
(list result arg1 arg2))
> (“The values returned” -23 “New arg2 value”)

2.10 Mapping for Attribute

attribute is mapped using a naming convention similar to that for operation.

2.10.1 readonly attribute

An attribute that is declared with the readonly modifier is mapped to methods whose
name is the name of the given attribute and whose home package is the Feature 
package.
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This method is specialized on the class corresponding to the IDL interface in which
attribute is defined.

2.10.2 normal attribute

attribute s that are not declared readonly are mapped to a pair of methods that follow
the convention used for default slot accessors generated by defclass.

Specifically, a reader-method is defined whose name follows the convention for 
readonly attributes. A writer is defined whose name is (setf name) where name is the 
name of the defined reader-method.

2.10.3 Example

2.10.3.1  IDL

module example{
interface attributes {
attribute string attr1;
readonly attribute long attr2;};}

2.10.3.2  Usage

;; Assume x is bound to an object of class example:attributes
(attr2 x)
> 40001
(attr1 x)
> “Sample”
(setf (attr1 x) “New value”)
(attr1 x)
> “New value”

2.11 Mapping of Module

An IDL module is mapped to a Lisp package whose name is the name of the scope
symbol for that module.

2.11.1 Example

2.11.1.1   IDL

interface outer_interface {};
module example {
interface inner_interface {};
module nested_inner_example {...
interface nested_inner_interface{};
Lisp Mapping V1.0            Mapping of Module             May 2000 2-15
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module doubly_nested_inner_example{...};
};
}

2.11.1.2  generated Lisp

(defpackage :example)
(defpackage :example/nested_inner_example)
(defpackage :example/nested_inner_example/doubly_nested_inner_example)
(defclass omg.root:outer_interface...)
(defclass example:inner_interface ...)
(defclass example/nested_inner_example:nested_inner_interface ...)

2.12 Mapping for enum

An IDL enum  is mapped to a Lisp type whose name is the corresponding scoped
symbol.

Each member of the enum  is mapped to a symbol with the same name as that mem
whose home package is the keyword package. 

2.12.1 Example

2.12.1.1   IDL

module example{
enum foo {hello, goodbye, farewell};
};

2.12.1.2  generated Lisp

(defpackage :example)
(deftype example:foo ()
‘(member :hello :goodbye :farewell))

2.12.1.3  usage

(typep :goodbye ‘example:foo)
> T
(typep :not-a-member ‘enumexample:foo)
> nil
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2.13 Mapping for Struct

An IDL struct  is mapped to a Lisp class whose name is the corresponding scope
symbol. Each member of the struct  is mapped to an initialization keyword, a reader
and a writer.

The initialization keyword is a symbol whose name is the name of the member an
whose package is the keyword package.

The reader is named by a symbol that follows the conventions for attribute accessors. 
In the case of a reader its package is the Feature package, and its name is the n
the member.

The writer is formed by using setf on the generalized place named by the reader.

The type corba:struct is defined to be the union of all such generated types.

An IDL struct has a corresponding constructor whose name is the same as the na
mapped Lisp type. This constructor takes keyword arguments whose package is 
keyword package and whose name equals the name of the corresponding memb

2.13.1 Example

2.13.1.1  IDL

module structmodule{
struct struct_type {
long field1;
string field2;
};};

2.13.1.2  generated Lisp

(defpackage :structmodule)
(defclass structmodule:struct_type (corba:struct)
((field1 ...)
(field2 ...)))

2.13.1.3  usage

(setq struct (structmodule:struct_type
:field1 100000
:field2 “The value of field2”))
(field1 struct)
> 100000
(setf (field1 struct) -500)
(field1 struct)
> -500
Lisp Mapping V1.0            Mapping for Struct             May 2000 2-17



2

d 
tion 

me of 

mber 
r to 

ion 

he 
 that 

 not 
case 

labels 
n.
2.14 Mapping for Union

An IDL union  is mapped to a Lisp class  named by the corresponding scoped 
symbol. This class inherits from corba:union.

The value of the discriminator can be accessed using the accessor function name
union-discriminator whose home package is the Feature package and an initializa
argument named :union-discriminator .

The value can be accessed using the accessor function named union-value in the 
Feature package with initialization argument :union-value.

An IDL union has a corresponding constructor whose name is the same as the na
the type. This constructor takes two constructors whose names are :union-value and 
:union-discriminator .

2.14.1 Member Accessors

Each union member has an associated constructor and accessor.

The symbol-name of the name of the constructor corresponding to a particular me
is the concatenation of the name of the union constructor to the scoping separato
the name of the member. The home package of the name of the constructor 
corresponding to a particular member is the home package of the name of the un
constructor.

A constructor corresponding to a member takes a single argument, the value of t
union. The discriminator is set to the value of the first case label corresponding to
member.

It is an error if a member reader is invoked on a union whose discriminator value is
legal for that member. The member writer sets the discriminator value to the first 
label corresponding to that member.

The default member is treated as if it were a member named default whose case 
include all legal case labels that are not case labels of other members in the unio

2.14.2 Example

2.14.2.1  IDL

module example {
enum enum_type {first,second,third,fourth,fifth};
union union_type switch (enum_type) {
case first: long win;
case second: short place;
case third:
case fourth: octet show;
default: boolean other;
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}; };

2.14.2.2  generated Lisp

(defpackage :example)
(defclass example:union_type (corba:union)
(...))

2.14.2.3  Usage

(setq union (example:union_type
:union-discriminator :first
:union-value -100000))

(union-value union)
> -100000
(union-discriminator union)
> :FIRST
(setq same-union (example:union_type/win -100000))
(union-discriminator same-union)
> :FIRST
(setf (show same-union) 3)
(union-discriminator same-union)
> :THIRD
(show same-union)
> 3
(setf (default same-union) nil)
(union-discriminator same-union)
> :FIFTH

2.15 Mapping for const

An IDL const  is mapped to a Lisp constant  whose name is the scoped symbol 
corresponding to that const and whose value is the mapped version of the 
corresponding value.

2.15.1 Example

2.15.1.1  IDL

module example {
const long constant = -321;
};
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2.15.1.2  Generated Lisp

(defpackage :example)
(defconstant example:constant -321)

2.16 Mapping for array

An IDL array  is mapped to a Lisp array  of the same rank. The element type of th
mapped array shall be a supertype of the Lisp type into which the element type of 
IDL array is mapped.

Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the sa
dimensions.

2.16.1 Example

2.16.1.1  IDL

module example {
typedef short array1[2][3];
interface array_interface{
array1 op();}}

2.16.1.2  Generated Lisp

(defpackage :example)
(deftype example:array1 () ’(array (2 3)))
;; mapping for the interface...
(defclass example:array_interface...)

2.16.1.3  usage

(setq a2 (op x)) ; Get an array
(aref a2 0 1) ; Access an element
> 3 ; Just an example, could be any value that is a short

2.17 Mapping for sequence

An IDL sequence  is mapped to a Lisp sequence . Bounds checking shall be done 
on bounded sequences when they are marshaled as parameters to IDL operations 
an IDL CORBA::MARSHAL exception shall be raised if necessary.

An implementation is free to specify the type of the mapped list more specifically.

Suppose foo  is an IDL data type and let L be the corresponding Lisp type.
2-20 Lisp Mapping V1.0                 May 2000  



2

 

 

is 

bol 
This means that anywhere a parameter of type sequence<foo> is expected, either a 
vector all of whose elements are of type L or a list all of whose elements are of type
L may be passed.

Conversely, when such a sequence is returned from an operation invocation, this 
document specifies no type restriction on the returned value other than that it is a
sequence all of whose elements are of type L .

Note – In practice, it is likely that an ORB will marshal and unmarshal sequence as 
appropriately specialized vector unless the user provides specific information that th
behavior is not desired.

2.17.1 Example

2.17.1.1  IDL

module example {
typedef sequence< long > unbounded_data;
interface seq{
boolean param_is_valid(in unbounded_data arg);
};
};}

2.17.1.2  Generated Lisp

(defpackage :example)
(defun unbounded_data_p (sequence)
(and (typep sequence ‘sequence)
(every #’(lambda(elt)
(typep elt ‘corba:long)))
(deftype example:unbounded_data()
‘(satisfies unbounded_data-p))
; Let x be an object of type example:seq
(param_is_valid x ‘(-2 3))
> T
(param_is_valid x #(-200 33))
> T

2.18 Mapping for Exception

Each IDL exception is mapped to a Lisp condition whose name is the scoped sym
for that exception. User exceptions inherit from a condition named 
corba:userexception. exception is a subclass of serious-condition.
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System exceptions inherit from a condition named corba:systemexception, which also 
inherits from the condition error .

Both corba:userexception and corba:systemexception inherit from the condition 
corba:exception. corba.systemexception also inherits from the condition error .

2.18.1 User Exception

The reader functions and initialization arguments for a condition generated by an 
exception follow the convention for the mapping of IDL structs.

2.18.1.1  Example

Consider the following IDL:

module example {
exception ex1 { string reason; };
};;

The Lisp corresponding to this fragment might look like the following:
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(defpackage :example)
(define-condition example:ex1 (corba:userexception)
((reason :initarg :reason ...))
; Usage example
(error (example:ex1 :reason “Example of condition”))

2.18.2 System Exception

The standard IDL system exceptions are mapped to Lisp conditions that are 
subclasses of corba:systemexception. Such generated conditions have reader-
functions and initargs consistent with the IDL definition of these exceptions.

2.19 Mapping for typedef

IDL typedef  is mapped to a Lisp type whose name is the scoped symbol 
corresponding to that typedef .

This name of this type denotes the set of Lisp values that correspond to the Lisp
that is generated by the mapping of the IDL type to which the typedef corresponds.

However, it is not required to perform recursive checking of the contents of constru
types like array, sequence, and struct.

2.19.1 Example

2.19.1.1  IDL

module example{
typedef unsigned long foo;
typedef string bar;

2.19.1.2  generated Lisp

(defpackage :example)
(deftype example:foo () ‘corba:unsigned-long)
(deftype example:bar() ‘string)

2.19.1.3  Usage example

(typep -3 ‘example:foo)
> nil
(typep 6000 ‘example:bar)
> nil
(typep “hello” ‘example:bar)
> T
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2.20 Mapping for any

The IDL type any  represents an IDL entity with an associated typecode and value. 
mapped to the type corba:any , which encompasses all Lisp values with a 
corresponding typecode.

2.20.1 Constructors

The constructor corba:any takes two keyword arguments named any-value and any-
typecode. If any-typecode is specified, then any-value shall be specified. If any-value 
and any-typecode are each specified, then any-value shall be a member of the type 
denoted by any-typecode.

An any may also be created via the invocation:

(corba:any :any-typecode val :any-value type).

2.20.2 Typecode accessor

The actual typecode of a Lisp value v is defined as follows.

IF ..... THEN ....

v is a valuetype the default coercion rules specified below may
be overridden by the ORB.

v was created by an invocation of 
corba:any

the actual typecode of v is the any-typecode 
argument supplied to corba:any.

v is an integer the actual typecode of v is the typecode of the 
smallest integer type that of which v is an 
instance. Specifically if v is of type 
corba:unsignedlonglong or corba:longlong, 
then the actual typecode of v is the typecode 
that describes the first Lisp type among 
(corba:short, corba:ushort, corba:long, 
corba:ulong, corba:longlong, 
corba:ulonglong) of which v is a member.

Otherwise if v is a member of corba:float , 
corba:double, or corba:longdouble then the 
actual typecode of v is corba:tc_float 
orcorba:tc_double or corba:tc_longdouble 
respectively.

Otherwise if v is a char then the actual 
typecode of v is corba:tc_char.

Otherwise if v is a string designator then the 
actual typecode of v is corba:tc_string.

Otherwise if v is a boolean then the actual 
typecode of v is corba:tc_boolean.
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(corba:any-typecode v) is defined to resolve to the actual typecode of v.

2.20.3 value accessor

If v is a number, a string, a sequence, a boolean, or an instance of corba:enum, 
corba:object, corba:valuetype, corba:struct, or valuetype, then (corba:any-value v) 
evaluates to a value that is eql to v.

Otherwise, if v is an any created via a call to the corba:any constructor, then 
(corba:any-value v) resolves to the any-value specified in that call.

Otherwise the ORB may signal a CORBA:BAD_PARAM exception. This might be 
necessary, for example, if the ORB received an any containing an instance of a struct 
type for which it does not have enough static information to construct a value of t
type. In this case, the value of the any can be accessed through the DynAny pseudo 
interface.

2.20.4 Interaction with GIOP

For the purpose of GIOP marshalling, a Lisp entity is considered to have the type
and value corresponding to its actual typecode and actual value.

For example, consider the following IDL:

module example{
interface any_example{
void foo (in any val);};}

Now suppose that x is bound to a proxy for a remote implementation of the 
example::any_example interface and suppose requests are forwarded over GIOP t
the remote object.

An invocation

(op:foo x 3)

Otherwise if v is an array then then the actual 
typecode of v a typecode describing an array 
compatible with the contents of v.

Otherwise if v is a list then the actual typecode 
of v is a typecode describing a sequence 
compatible with the contents of v.

Otherwise if v is an instance of corba:object, 
corba:struct, corba:valuebase,or 
corba:union, then the actual typecode is the 
typecode describing the interface, struct, 
valuetype,or union of which v is an instance. 
(Such a v is said to be self-typing).
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will forward to the remote implementation a request to invoke the “foo” method w
single parameter an any whose typecode is the typecode for octet and whose value
the integer 3.

However, an invocation

(op:foo x (corba:any :any-typecode corba:tc_longlong :any-
value 3))

will forward to the remote implementation a request to invoke the “foo” method w
single parameter an any whose typecode is the typecode for long long and whose 
value the integer 3.

Thus, the default coercion rules for any may be overridden as necessary.

Furthermore, the DynAny pseudo interface provides an alternative way to access th
values in an any.

2.20.5 Additional examples of any usage

(corba:any-typecode 3)
> <octet typecode>
(corba:any-typecode -1)
> <short typecode>
(corba:any-typecode “foo”)
> <string typecode> ; could also be typecode for an array.
(corba:any-value “foo”)
> “foo”

2.21 Mapping for valuetype

An IDL valuetype  is mapped to a Lisp class whose name is the scoped symbol f
that type.

2.21.1 Inheritance of valuteype

If a valuetype A inherits from a valuetype B, the generated Lisp class for A shall be a 
subclass of the generated Lisp class for B. 

2.21.1.1  Example

The IDL

module example{
valuetype b {};
valuetype a : b {};
};

corresponds to the Lisp classes:
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(defclass example:b(corba:ValueBase)())
(defclass example:a (example:b)())

2.21.2 Valuetypes supporting interfaces

If a valuetype A supports an interface (or abstract interface) B, then the generated Lisp 
class for A shall be a subclass of the generated Lisp class for B.

2.21.2.1  Example

The IDL

module example {
interface I {};
valuetype a supports I {};};

corresponds to the Lisp:

(defclass example:I (corba:Object)())
(defclass a (corba:ValueBase example:I)())

2.21.3 Base class for valuetype

If a valuetype A is not declared to inherit from any other valuetype B, then the 
generated Lisp class corresponding to A shall be a subtype of the Lisp class named 
corba:ValueBase .

2.21.3.1  Example

The IDL:

module example {
valuetype foo (){};
};

corresponds to the Lisp:

(defclass example:foo (corba:ValueBase)())

2.21.4 Valuetype members

The mapping for valuetype members is based on the mapping for StructuralFeatu

Each member of the given valuetype is mapped to a slot whose name is the sym
whose print-name is the uppercased name of the member and whose package is
Feature package. This slot has an associated initializer keyword whose name is t
uppercased name of the member and whose package is the keyword package.
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Each member of the valuetype is in addition mapped to a pair of accessors of the 
generated class using the same naming convention as for struct members: a read
whose name is the name of the associated slot and whose package is the Featur
package and a writer whose name is the list whose car is the symbol setf and whose 
cdr is the symbol that names the associated slot.

2.21.4.1  Example

Consider the IDL:

module example {
valuetype A {
long long b;
short c;
private string d;};};

If x is bound to an instance of example:a, then an invocation sequence might be:

(op:b x)
---> -400000000
(setf (op:b x) 500000000000000)
(op:b x )
---> 500000000000000
(op:c x)
---> -100
(slot-value x ’op:x)
--->-100
(slot-value x ’op:d)
"Sample private member value"

2.21.5 Valuetype operations

An operation declared within a valuetype is mapped to a Lisp function using the s
naming convention as for operations declared on interfaces.

An operation may be implemented using the corba:define-method macro.

2.21.5.1  Example

Consider the following IDL:

module M {
valuetype A {
long foo (in string s);};

If x is bound to an instance of class M:A, then the following is a sample invocatio
sequence:
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(op:foo x "input")
---> -200

2.21.6 Boxed values

Suppose B is the name of an IDL valuetype that is a boxed value for an IDL type M . 
If M is a primitive type, then B corresponds to a Lisp type whose name is the scop
symbol for B and which holds a single member named data. Otherwise B is mapped to 
the type whose name is the scoped symbol for B and which denotes the type of the 
Lisp type corresponding to M .

2.21.7 Value factory

The IDL native type CORBA::ValueFactory maps to the Lisp class class.

Each implementation of a valuetype is associated with a keyword defined on the 
shared-initialize method for that class:

• If the value of the :create-for-unmarshal keyword is non-nil , the shared-initialize 
method is to be executed in the context of unmarshalling an instance of that typ
the ORB; this corresponds to the create_for_unmarshal pseudo-operation. The 
value of this keyword shall be set to non-nil only by the ORB: users may not 
portably invoke shared-initialize with non-nil value of this keyword parameter.

• Otherwise, if the value of the :factory keyword is non-nil it shall be a symbol 
whose print-name is the (uppercased) name of an initializer for that valuetype.
parameters of the initializer are specified as the values of the keyword parame
whose print-names correspond to the uppercased names of the names of thos
parameters.

• Otherwise, if the value of the :factory keyword is nil or if it is unbound, then the 
remaining keyword initializers are treated as slot initializers (which are defined
the mapping for the valuetype’s declaration) or as other user-defined keyword 
initializers.

Each non-abstract valuetype is associated with a default constructor whose name 
the name of that symbol and which signals an error if the value of the :factory 
keyword parameter is non-nil .

2.21.7.1  Examples

Consider the following IDL:

module example {
valuetype A {
string bar;
boolean fum;
factory c (in long x);
};};

An instance of this valuetype may be created via the call
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(make-instance ’example:A :bar "hello" :fum T)

A user class B can provide a factory implementation by specifying the behavior o
forms like:

(make-instance ’B :factory ’c :x 898)

2.21.8 Unmarshalling Issues

When the ORB unmarshals a valuetype for a request, it tries to find the class tha
corresponds to that valuetype via the ORB::lookup_value_factory operation. If the 
factory lookup succeeds, the instance is instantiated by invoking the constructor 
associated with that factory.

If the factory lookup fails, then if the repository ID begins with string IDL: , the 
associated factory is that corresponding to the symbol that names the valuetype w
generated repository ID is the same as that repository ID. If such a valuetype cla
exists and is not abstract, an instance of that class is unmarshalled using the defau
factory for that valuetype class.

Otherwise the CORBA::MARSHAL exception is signalled back to the client.

2.21.9 Mapping for Abstract Valuetypes

The Lisp class corresponding to an abstract valuetype B is the class corresponding to 
the valuetype B’ in the IDL formed from the original IDL definition of B by removing
the abstract specifier. It is an error if the user directly instantiates such a class.

2.21.9.1  Mapping for abstract interface

The mapping for abstract interface is the same as the mapping for interface except 
that each abstract interface inherits from the class corba:abstractbase, the mapping 
for the native type CORBA::AbstractBase. Neither generated servant nor proxy 
classes inherit from CORBA:AbstractBase however. The class corba:abstractbase 
inherits from corba:Object.

When used as the declared base class of an interface declaration, the mapping f
interface is treated exactly as if the abstract interface were an interface.

Similarly, when a valuetype is declared to support an abstract interface, the abstr
interface is treated as an interface.

It is an error if the user directly instantiates such a class.
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2.21.10 Example

2.21.10.1  IDL

module example{
abstract interface foo{};
abstract interface bar {};
abstract interface fum : foo, bar {};
interface c :fum {};
valuetype d supports fum{};

2.21.10.2  Generated Lisp

(defclass example:foo(CORBA:AbstractBase)())
(defclass example:bar(CORBA:AbstractBase)())
(defclass example:fum (example:foo example:bar)())
(defclass example:c (example:fum))
(defclass example:d (corba:valuebase example:fum-servant))

2.22 Custom Valuetypes

Valuetypes declared as custom shall inherit from the class CORBA:customMarshal. 
This class, and the associated DataOutputStream and DataInputStream classes, are 
mapped according to their definition in OMG IDL. The user implementation shall 
implement the op:marshal and op:unmarshal operations declared in 
CORBA:customMarshal in order to implement custom marshalling and 
unmarshalling.
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3.1 Introduction

Pseudo-objects are constructs whose definition is usually specified in “IDL,” but whose
mapping is language specified. A pseudo-object is not (usually) a regular CORBA ob

For each of the standard IDL pseudo-objects we either specify a specific Lisp langua
construct or we specify it as a pseudo interface.

This mapping of the pseudo objects was modeled after that in the Java mapping.

3.1.1 Pseudo Interface

The use of pseudo interface is a convenient device, which means that most of the stan
dard language mapping rules defined in this specification may be mechanically used
generate the corresponding Lisp values. However, in general the resulting construct 
a CORBA object. Specifically:

• It is not represented in the Interface Repository.

• It may not be passed as a parameter to an operation expecting a CORBA Obje

• It may not be returned as a CORBA Object.

• It may not be stored in an any.

• It may not be portably subclassed by user code, if it is represented as a class.

Note – The specific definition given for each piece of PIDL may override the gene
guidelines above. In such a case, the specific definition takes precedence.

3.2 Rules for Mapping Pseudo-objects

Unless otherwise indicated below, an OMG-defined pseudo-object defined by pseudo
corresponds by default mapped to a Lisp class whose name is given by the scoped s
corresponding to that pseudo-interface. Each pseudo-operation is mapped to a func
whose name follows the corresponding rules for mapping of operations of interface.

3.2.1 Example

Considering the following pseudo-IDL:

module fum {
pseudo interface foo {
long bar (in string x);
};
};

The FOO pseudo-interface would correspond to a Lisp type named fum:foo. Evaluation of 
the form (bar x "hello") would return a value of type corba:long if x is of type fum:foo.
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3.3 Certain Exceptions

The standard CORBA PIDL uses several exceptions: Bounds, BadKind, and Invalid-
Name.

These are mapped as if they were standard user exceptions and inherit from corba:userex-
ception.

The Bounds and BadKind exceptions map to conditions named corba:type-
code/bounds and corba:typecode/BadKind. The Bounds exception is named 
corba:Bounds. This follows the usual mapping for the IDL defined in the CORBA core
specification.

3.4 Environment

The Environment is used in request operations to make exception information available.

Since conditions in Lisp are first class objects, we define Environment simply as an 
exception:

(deftype corba:environment() ‘corba:exception)

3.5 NamedValue

A NamedValue describes a name, value pair. It is used in the DII to describe argume
and return values, and in the context routines to pass property, value pairs.

We map this to a class named CORBA:NamedValue  via the following PIDL in module 
CORBA:

typedef unsigned long Flags;
typedef string Identifier;
const Flags ARG_IN =1;
const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const FLAGS CTX_RESTRICT_SCOPE = 15;
pseudo interface NamedValue{
attribute Identifier name;
attribute any argument;
attribute long len;
attribute Flags arg_modes;};

There is a corresponding constructor named CORBA:NamedValue that takes keyword 
initializers name, argument, and Flags. The default value of the Flags keyword initializer 
is corba:ARG_IN . The default value of the name keyword is the empty string 
"" .ForOUT parameter, portable applications shall set the argument attribute of a 
NamedValue to nil  (i.e., the functionality in which an OUT argument parameter is set to
point to a non-null storage pointer is not supported in this mapping).
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3.6 NVList

An NVList is used in the DII to describe arguments and in the context routines to des
context values. An NVList is mapped to the type CORBA:NVList , which denotes the 
type of proper lists each of whose elements are of type CORBA:NamedValue. The stan-
dard list manipulation routines may be used to create such a list. The create_list, 
get_count, and add_item pseudo-operations are not mapped (this functionality is pro-
vided implicitly by Lisp list operations).

3.6.1 Example

(setq x
(list
(corba:NamedValue :name "test" :argument nil)
(corba:NamedValue :name "test2" :argument
(corba:any :any-value 4 :any-typecode corba:tc_long)
:flags corba:ARGS_INOUT))
(typep x ’corba:NamedValue)
----> T

3.7 Context

A Context is used in the DII to specify a context in which context strings shall be 
resolved before being sent along with the request invocation.

It is mapped to a class corba:context whose operations are as specified in the PIDL for
this class.

pseudo interface Context {
readonly attribute Identifier context_name;
readonly attribute Context parent;
Context create_child (in Identifier child_ctx_name);
void set_one_value (in Identifier propname, in any propvalue);
void set_values (in NVList values);
void delete_values (in Identifier propname);
NVList get_values (in Identifier start_scope,
in Flags op_flags,
in Identifier pattern);

3.8 Request

A Request is mapped to an instance of class CORBA:request according to the IDL:

pseudo interface Request {
readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;
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attribute Context ctx;
any add_in_arg();
any add_named_in_arg (in string name);
any add_inout_arg();
any add_named_inout_arg(in string name);
any add_out_arg(in string name);
any add_named_out_arg(in string name);
void set_return_type(in TypeCode tc);
any return_value();
void invoke();
void send_oneway();
void send_deferred();
void get_response();
boolean poll_response();

The corresponding constructor is named corba:request and takes keyword initializers 
target, operation, arguments, and ctx. The value of the ctx attribute defaults to the cur-
rent context.

3.8.1 Example

Suppose (typep x ’corba:Request). 

Then the invocation:

(op:target x);

shall return the instance of corba:Object that is the target of the request, and (operation 
x) shall return the string that is the value of the operation attribute of x.

3.9 Dynamic Invocation Interface 

3.9.1 Dynamic Invocation Interface Convenience Function

The following function is provided as a convenience interface to the DII.

The function corba:funcall with syntax:

corba:funcall operation-designator target &rest params

invokes the operation named by the operation-designator on the object denoted by the ta 
get parameter with parameters the params.

target should be an instance of corba:Object.

Operation-designator should be a symbol or a string.

An operation-designator denotes a particular declared IDL operation. If it is a string, it 
must be either the name of the operation or the fully scoped IDL name of the operati

If it is a symbol in the OP package or the keyword package, it denotes the operation whos
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uppercased name is the print-name of that symbol. Otherwise, the operation-designator is 
interpreted as the "full scoping symbol" for the operation.The module in which the op
tion is declared corresponds to the name of the package of the symbol, and the nam
the form interface-name/operation-name, where interface-name is the uppercased-n
the interface (or abstract interface) in which the operation is declared and operation-name 
is the uppercased-name of the operation.

If target is not local and if corba:funcall is unable to determine the actual signature of th
operation in sufficient detail to marshal the arguments, the condition 
CORBA:FUNCALL_MARSHAL shall be thrown. This exception shall inherit from 
CORBA:MARSHAL.

The values returned and the exceptions signalled by corba:funcall shall be consistent with 
the standard mapping for operation: if the operation completed successfully, the resu
all out or inout parameters are returned in order of their declaration; otherwise, the e
tion signalled by the operation is returned.

3.9.2 Example

Consider the following IDL:

module outer {
module inner {
interface A {
exception tt {string x;}
void foo();
string fum (in long long bar) raises (tt);
short st(in char s, inout boolean y, out float z)
};

Suppose target is bound to an instance of outer:inner/a.

Then sample invocations might look like this:

(corba:invoke "foo" target)
--->[no values returned]

(corba:invoke "outer::inner::A::fum" target -31415926)
--->"PI"

(corba:invoke ’op:fum target -100)
---->[condition of type outer:inner/tt]

(corba:invoke ’outer/inner:a/st #\B nil)
---->134 T 1.34

3.10 ServerRequest

ServerRequest is used in the DSI. It is to be mapped according to the IDL to the Lisp
class named CORBA:ServerRequest.
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pseudo interface ServerRequest{
readonly attribute Identifier operation;
Context ctx();
void arguments(inout NVList nv);
void set_result (in any val);
void set_exception (in any ex);

3.10.1 Example

Suppose x is bound to an object of class CORBA:ServerRequest. Then the invocation 
(op:operation x) returns the string representing the operation corresponding to the 
request.

Additional detail on the use of ServerRequest  is given in the “Server-Side” chapter of 
this document. 

3.10.2 TypeCode

A TypeCode is an instance of the class named CORBA:TypeCode. It follows the pseudo 
IDL below.

module CORBA{
enum TCKind{
tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double,
tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string, tk_sequence, tk_array, tk_alias, 
tk_except,
tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar, tk_wstring, tk_fixed,
tk_value,tk_value_box,tk_native,tk_abstract_interface};

typedef short ValueModifier;
const ValueModifier VM_NONE=0;
const ValueModifier VM_CUSTOM=1;
const ValueModifier VM_ABSTRACT=2;
const ValueModifier VM_TRUNCATABLE=3;

typedef short Visibility;
const Visibility PRIVATE_MEMBER=0;
const Visibility PUBLIC_MEMBER=1;
};
pseudo interface TypeCode {
exception Bounds{};
exception BadKind{};
boolean equal (in TypeCode tc);
boolean equivalent (in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind();
RepositoryId id() raises (BadKind);
Identifier name() raises (BadKind);
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//for struct, union, enum, value, value_box, and except
unsigned long member_count() raises (BadKind);
Identifier member_name(in unsigned long index) raises (BadKind, Bounds);

//for struct, union, value, value_box, and except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

//for union
any member_label(in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type() raises (BadKind);
long default_index() raises (BadKind);

//for string, sequence, and array
unsigned long length() raises (BadKind);
TypeCode content_type() raises (BadKind);

//for fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_Scale() raises (BadKind);

//for value
Visibility member_visibility (in unsigned long index) raises (BadKind, 
Bounds);
ValueModifier type_modifier() raises (BadKind);
TypeCode concrete_base_type() raises (BadKind);
}; };

The TypeCode pseudointerface maps to the lisp class named corba:TypeCode. The oper-
ations defined on this class follow the pseudo-IDL above.

3.10.3 Example

Suppose tc is bound to a typecode representing a struct with the three members.

(op:member_count tc)
---> 3
CORBA:VM_CUSTOM
---->1

3.11 ORB

3.11.1 ORB initialization

The pseudo-IDL for ORB initialization is:

module CORBA {
typedef string ORBid;
typdef sequence<string> arg_list;
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ORB ORB_init(inout arg_list argv, in ORBid orb_identifier);
};

The ORB_init pseudo-operation is mapped to a function named CORBA:ORB_init . 
Evaluation of (corba:orb_init argv orb_identifier) returns an instance of the 
CORBA:ORB class and a sequence of strings when argv is a sequence of strings and 
orb_identifier is a string. The semantics of the arguments argv, orb_identifier , and the 
returned values follow the definitions of these values in the CORBA specification.

Evaluation of (corba:orb_init) returns the ORB object that would be returned by invokin
(corba:orb_init nil "") .

3.11.2 Example

(CORBA:ORB_init :orb_identifier "My ORB" :vendor-extension-key "Vendor-extension")

(CORBA:ORB_init)

3.11.3 ORB pseudo-object

The ORB pseudo-interface is mapped to a class named CORBA:ORB . The operations 
defined on the class follow the rules for mapping pseudo-IDL. The pseudo-IDL below
intended to follow the pseudo IDL given in the CORBA specification.

module CORBA{
exception PolicyError{PolicyErrorCode reason;};

typedef string RepositoryId;
typedef string Identifier;

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail{
ServiceDetailType service_detail_type;
sequence<octet> service_detail;
};

struct ServiceInformation{
sequence<ServiceOption> service_options;
sequence<ServiceDetail> service_details;
};
pseudo interface ORB {
typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
Lisp Mapping V1.0            ORB             May 2000 3-9



3

exception InvalidName {};

string object_to_string(
in Object obj
);

Object string_to_object(
in string str;
);

//Dynamic Invocation related operations
void create_list(
in long count;
out NVList new_list
);

void create_operation_list(
in OperationDef oper,
out NVList new_list
);

void get_default_context(
out Context ctx
);

void send_multiple_requests_oneway(
in RequestSeq req
);
void send_multiple_requests_deferred(
in RequestSeq req
);

boolean poll_next_response();

void get_next_response(
out Request req
);

//Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information
);

ObjectIdList list_initial_services();

//Initial reference operation

Object resolve_initial_references(
in ObjectId identifier
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) raises (InvalidName);

//Type code creation operations

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members
);
TypeCode create_union_tc(
in RepositoryId Id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members
);

... [The other Typecode creation operations exactly follow the pseudo IDL given in th
CORBA specification and are elided here].

//Thread related operations

boolean work_pending();
void perform_work();
void run();
void shutdown(in boolean wait_for_completion);
void destroy();

//Policy related operations
Policy create_policy(
in PolicyType type,
in any val) raises (PolicyError);

//Value factory operations
ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory factory
);

void unregister_value_factory(in RepositoryId id);
ValueFactory lookup_value_factory(in RepositoryId id);

3.11.4 Example

Suppose (typep orb ’CORBA:ORB) is T. Then the following invocations may be made

 (work_pending  orb)
Lisp Mapping V1.0            ORB             May 2000 3-11



3

 

der-

 are 
(run orb)

3.12 Object

The IDL Object type is mapped to the class CORBA:Object . It supports the operations 
defined in the pseudo-IDL below. The semantics of a pseudo-operation defined in the
pseudo IDL below follow the semantics defined in the CORBA specification for the 
pseudo-operation whose name is the given pseudo-operation with the prepended un
score elided.

The _is_nil pseudo operation is mapped to the standard Common Lisp function null .

The duplicate and release pseudo-operations are unnecessary in the Lisp mapping and
not mapped.

module CORBA{
interface DomainManager; //forward declaration
typedef sequence<DomainManager> DomainManagersList;
interface Policy //forward declaration
typedef unsigned long PolicyType;

interface Context; //forward declaration
typedef string Identifier;
interface Request; //forward declaration;
interface NVList; //forward declaration;
struct NamedValue{}; //an implicitly well-known type
typedef unsigned long Flags;
interface InterfaceDef; //forward declaration
enum SetOverrideType{SET_OVERRIDE, ADD_OVERRIDE};

pseudo interface Object{
InterfaceDef get_interface();
boolean _is_nil();
boolean _is_a( in string logical_type_id);
boolean _non_existent();
boolean _is_equivalent(in Object other_object);
unsigned long _hash (in unsigned long maximum);
void _create_request(
in Context ctx,
in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flags);
Policy _get_policy(in PolicyType policy_type);
DomainMangersList _get_domain_managers();
Object _set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add);
};
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};

3.12.1 Examples

Suppose the variable x is bound to an instance of class CORBA:Object. Then the fo
ing are legal invocations: (_is_equivalent x x) (_hash x 8777777).

3.12.2  Principal

The Principal interface is deprecated and is not mapped.

3.13 DynAny

The DynAny data type is mapped to a class named DynamicAny:DynAny  (equivalently, 
the class named OMG.ORG/DynamicAny:DynAny ). The DynAnyFactory interface is 
mapped to a class named DynamicAny:DynAnyFactory. The definitions to these inter-
faces is given in IDL and follows the standard IDL mapping, except that the CORBA s
ification defines additional locality restrictions on their use. The usage of these class
thus follows the standard mapping.

3.13.1 Example

Suppose x is bound to an instance of DynamicAny:DynAny. The string "foo" may be 
inserted into x either via:

(insert_string x "foo")

or

(insert_any x "foo")

If y is bound to an instance of the class DynamicAny:DynAnyFactory, then a Dynami-
cAny may be created via:

(create_dyn_any x "foo" )

3.14 The IDL Compiler

The function CORBA:IDL  when applied to a single argument that is a pathname desi
tor defines within the Lisp world in which it is invoked all data types, packages, class
functions, and constants defined by the denoted IDL file. This may entail redefining 
classes or types.

Note – Pathname designator is defined in the ANS Specification (p. 26-35). Loose
speaking, it is a string that names a file, a "pathname object" that represents the 
of that file, or a stream associated with that file.
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If the Lisp mapping requires that package named P be created, and there is already a pac
age Q with P as one of its names or nicknames in the current Lisp world, then the pac
Q is used everywhere the package named P is required. Previously existing symbols 
interned in Q, or other attributes of Q such as the packages it uses, are not affected. Ho
ever, if a symbol is interned in, but not exported by Q, and if the mapping requires this 
symbol be external, its visibility is appropriately modified as a result of the CORBA:IDL 
mapping.

The value returned is an object of type CORBA:Repository and represents an Interface 
Repository representing the IDL file given as input. The returned object shall contain
resentation of the datatypes defined by the IDL file or shall be nil.

3.14.1 Example

Suppose the file named "foo.idl" contains:

module example {
struct y {long long zz;};
const long long c = 1000000000000000;
};

then the invocations

(CORBA:IDL "foo.idl")
(setq ex (example:y :zz example:c))

will bind the variable ex to an instance of CORBA:struct whose lone zz field has value 
equal to 1000000000000000.
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This chapter discusses how implementations create and register objects with the OR
runtime.

Contents

This chapter contains the following sections. 

4.1 Mapping of Native Types

Specifically, the native type PortableServer::Servant is mapped to the Lisp class named
PortableServer:Servant. The native type PortableServer::ServantLocator::Cookie is 
mapped to the Lisp type PortableServer:ServantLocator/Cookie. Note that the full 
name of the PortableServer package is OMG.ORG/PortableServer, so that the types 
named here can also be specified as OMG.ORG/PortableServer:Servant, 
OMG.ORG/PortableServer:ServantLocator/Cookie.

The class PortableServer:Servant supports several operations designed for convenien
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Application of the function named by op:_this to an instance of class Porta-
bleServer:Servant behaves as follows:

• Within the context of a request invocation on the target object represented by t
servant, it allows the servant to obtain the object reference for the target COR
object it is incarnating for that request.

• Outside the context of a request invocation on the target object represented by
servant, it allows a servant to be implicitly activated if its POA allows implicit 
activation. This requires the activating POA to have been created with the 
IMPLICIT_ACTIVATION policy. If the POA was not created with the 
IMPLICIT_ACTIVATION policy, the PortableServer::WrongPolicy exception is 
thrown. The POA used for implicit activation is gotten by invoking 
op:_default_POA on the servant.

• Outside the context of a request invocation on the target object represented by
servant, it will return the object reference for a servant that has already been 
activated, as long as the servant is not incarnating multiple CORBA objects. Th
requires the POA with which the servant was activated to have been created wit
UNIQUE_ID and RETAIN policies. If the POA was created with the 
MULTIPLE_ID or NON_RETAIN policies, the PortableServer::WrongPolicy 
exception is signalled. the POA is generated by invoking op:_default_POA on the 
servant.

4.2 Dynamic Implementation

DSI servants shall inherit from the class PortableServer:DynamicImplementation, 
which in turn inherits from PortableServer:Servant. This class is defined via the follow-
ing pseudo IDL:

module PortableServer{
pseudo interface DynamicImplementation(servant) {
void invoke (in ServerRequest request);
RepositoryId primary_interface(in ObjectId oid, in POA poa);
};

The class PortableServer:DynamicImplementation inherits the op:_this method from 
the PortableServer:servant class.

The op:invoke method, whose signature is specified in pseudo IDL above, receives 
requests issued to any CORBA object incarnated by the DSI servant and performs th
cessing necessary to execute the request.

The op:primary_interface method receives an ObjectId value and a POA as input 
parameters and returns a valid RepositoryId representing the most derived interface for 
that oid.
4-2 Lisp Mapping V1.0              May 2000 
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4.3 PortableServer Functions

Convenience functions are provided for conversion of ObjectIds  to and from strings:

 (PortableServer:Oid-to-string oid) (PortableServer:string-to-oid string)

These functions take respectively an ObjectID and a string and return the corresponding
string or ObjectID .

4.4 Implementation objects

An implementation of an IDL interface I corresponding to a Lisp class named I shall 
inherit, directly or indirectly, from the classes named I and PortableServer:Servant.

4.5 Servant classes

An interface corresponding to a class named by a Lisp symbol s with package p and name 
n may be implemented by extending the class named by the symbol whose packagep 
and whose name is the concatenation of n to the string “-SERVANT”.

For each attribute in the interface, the associated servant class has a slot whose nam
the name of the attribute and whose home package is the Feature package.

If the interface has no base interfaces, then the associated skeleton class has as dir
superclasses the class corresponding to the given interface and the class named porta-
bleServer:servant .

Otherwise, if the interface has base interfaces named A, B, C, etc., then its associated ser
vant class has as direct superclasses the class corresponding to the given interface 
servant classes corresponding to A, B, C, etc.

4.5.1 Example

Consider the following IDL:

module example{
interface foo {};
interface bar {};
interface fum : foo,bar {};}

The corresponding Lisp hierarchy could look like this:

(defclass example:foo-servant(example:foo portableserver:servant)(..))
(defclass example:bar-servant(example:bar portableserver:servant)(..))
(defclass example:fum-servant (example:fum example:foo-servant example:bar-servant)(...))

The class diagram of the IDL is pictured in the section Mapping for Interface (see 
Section 2.8, “Mapping for Interface,” on page 2-10). The class diagram for the gener
Lisp is pictured below.
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Figure 4-1 Lisp hierarchy corresponding to example 4.6.1

4.6 Defining Methods

The only portable way to implement an operation on a servant class is by use of the 
corba:define-method macro.

The syntax of corba:define-method is intended to follow as closely as possibly the synta
of the Lisp defmethod macro.

4.6.1 Syntax of corba:define-method

corba:define-method function-name {method-qualifier}* corba-specialized-lambda-list form*

function-name::= {operation-name | (setf operation-name)}
operation-name:: symbol
method-qualifier::={:before | :after | :around}
corba-specialized-lambda-list ::= setf-lambda-list | normal-lambda-list
setf-lambda-list ::= (argument-specifier receiver-specifier)
normal-lambda-list ::= (receiver-specifier {parameter-specifer}* context-list)
context-list ::= {} | {&key {context-identifier}+}
context-identifier ::= symbol
4-4 Lisp Mapping V1.0              May 2000 
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receiver-specifer ::= (receiver-name receiver-class)
receiver-name ::= symbol
receiver-class ::= symbol
parameter-specifier ::= symbol

4.6.2 Description

This corba:define-method macro is used to implement an operation on an interface.

operation-name is a symbol whose name is the name either of an operation or an attr
declared in an IDL interface implemented by the class named by the symbol receiver-
class.

The number of parameter-specifiers listed in the normal-lambda-list shall equal the 
combined number of in and inout parameters declared in the signature of the operation
denoted by the function-name, or 0 if the operation is an attribute. If the function-name 
is a list whose car is setf, the corresponding operation-name shall name an attribute that
is not readonly.

If function-name denotes an operation, then the effect of corba:define-method is to 
inform the ORB that requests for the operation on instances of the class receiver-class 
shall return the value or values returned by the body forms of the define-method macro, 
executed in a new lexical environment in which each parameter-specifier is bound to the 
actual parameters and in which each context-identifier is bound to the value of the corre
sponding context variable.

The operation of corba:define-method in the case in which function-name names an 
attribute is analogous.

The behavior of auxiliary specifiers and of dispatch is the same as their correspondin
action under defmethod.

Note that the syntax of corba:define-method is a strict subset of that of defmethod: every 
legal corba:define-method invocation is also a legal defmethod invocation. The main 
difference between them is that corba:define-method only allows specialization on the 
first argument.

It is not required that the invocations of corba:define-method that do not conform to the 
above syntax signal an error, although an implementation may so signal.

4.7 Examples

4.7.1 Example: A Named Grid

The first example shows how one might encapsulate a “named-grid,” which is a grid 
strings.

4.7.1.1  IDL

This is the IDL of the interface to a named grid of strings.
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module example{
interface named_grid{
readonly attribute string name;
string get_value ( in unsigned short row,
in unsigned short column);
void set_value ( in unsigned short row,
in unsigned short column,
in string value);
}

4.7.1.2  Generated Lisp code

The IDL compiler might generate a class corresponding to the example::named_grid 
interface using code something like this:

(defpackage :example)
(defclass example:named_grid(corba:object)())

4.7.1.3  Servant class

In order to implement the IDL interface, the user would extend the class exam-
ple:named_grid-servant.

;;Sample implementation of named_grid
(defclass grid-implementation (example:named_grid-servant)
(
(grid :initarg :grid
:initform (make-array ‘(2 3) :initial-element “Init”)))

4.7.1.4  Implementation of the IDL operations

The corba:define-method macro is used to define the methods that implement each of
operations defined in the IDL interface. Note that the reader method and initarg corre
spond to the attribute name that was already defined by the servant.

These implementations do not perform any argument or range checking, which a pro
tion system would, of course, perform.

The implementation is free to define other methods on the class, including print-object 
methods and auxiliary methods for initialize-instance.
4-6 Lisp Mapping V1.0              May 2000 



4

ted as 
ervers, 

an 
ented 
(corba:define-method get_value ((the-grid grid-implementation)
row
column)
(aref (slot-value the-grid ‘grid) row column))

(corba:define-method set_value ( (the-grid grid-implementation)
row
column
value))
(setf (aref the-grid row column) value))

4.7.1.5  Usage example

Once the implementation class is defined, it can be instantiated and its instances trea
a normal CLOS object. In particular, such instances can be passed to remote ORB s
which expect an object implementing the IDL named_grid interface. The invocation of 
the methods corresponding to IDL operations does not depend on whether the object is 
instance of the servant class or is simply a proxy for another object (perhaps implem
in another language). 

This usage example does not discuss registration of the object with the ORB.

; create a named grid

(setq grid (make-instance ‘example:grid-implementation :name 
“Example of a grid”)

(name grid)

> “Example of a grid”

(set_value grid 0 1 “Hello”)
> ; No values returned

(get_value grid 0 1 )
> “Hello”
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This chapter is a detailed description of the choices involved in selecting the map
for each particular IDL element.

The design decisions in this chapter are subordinate to the general design princip
discussed in Chapter 3.

The contents of this chapter are not normative and are not referred to by any norm
section of this document.

A.1 Mapping for Feature

Several alternative mappings for the Feature meta-class were possible.

A.1.1 MM Naming Features

The question of the name to assign to the Lisp correspondent for an instance of 
Feature metaclass proved to be the most difficult and controversial of the design 
decisions.

One obvious alternative would be to name Feature in the same way that Classifier
named.

But Feature is explicitly not a subclass of Classifier, and for good reason: a Featu
only used in conjunction (indeed, in juxtaposition) with the Classifier that is its own
Thus, explicit disambiguation of the Feature owner is not necessary in the curren
CORBA/UML object model. When and if this metamodel is extended to require su
disambiguation, it would be entirely reasonable to provide addition functions for 
selecting the Feature from its name and the explicit name of its owner Classifier. 
Indeed, we have chosen to support this paradigm in one the DII invocation mode

In this way, our naming convention follows the Java mapping paradigm, rather than
C mapping paradigm.
Lisp Mapping  V1.0                 May 2000 A-1
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Given that theoretical considerations perhaps could not entirely determine whethe
require explicit naming of the Classifier of which a Feature is a feature, it is temp
to rely upon the wide body of praxis amongst two commercial ORB vendors, thre
ORBs, and many commercial users of these ORBs in disparate industries which 
seemed to us to indicate a strong preference, albeit informally reported, among u
for the Java-style Feature mapping. Nevertheless, this fact in itself is not persuas
due to the manifest influence of self-selection bias: those users who prefer the C-
Feature mapping may either have eschewed use of the commercial ORBs suppo
the Java-style Feature mapping entirely, or they may have simply declined to repo
their opinions of the mapping. In any case, an ORB implementation is not proscri
from supporting C-style naming for Feature by this specification.

A.1.2 Feature Package

In any case, our decision not to require explicit naming of the Classifier that owns
Feature in using the Feature forces us to determine a particular package in which
symbol corresponding to the name of such a Feature shall reside. Long names a
difficult to use; short names may conflict with existing usages. We chose a long n
for disambiguation and a short nickname.

The minimal usage would have been to map to KEYWORD, as symbols in this 
package are simpler to use in certain ways than symbols in other packages when
symbol-value need not be set. Again, this usage could conflict with existing user c
because of CORBA’s common usage scenario of integration of legacy systems, w
wanted to avoid any such legacy problems. Keywords are also not acceptable as
names.

We also considered for some time various sophisticated tricks with the Lisp packa
import and package using functions. Our experience in practice is that the small s
savings are rarely if ever worth the non-transparency of the resulting code.

We also considered mapping to keyword package together with prefixing the nam
the Feature with a character such as "." or "/".

A.1.3 BehavioralFeature

The mapping of invocation of BehavioralFeature  might seem to require overhead a
invocation time due to the mismatch in lambda-lists between the declared IDL 
operation and the actual generic function named by that BehavioralFeature . 
Fortunately, compiler macro can solve this problem, if it does prove to be a probl
without affecting portability.

A.1.4 Feature visibility

The question of the mapping for StructuralFeature visibility arose only in valuetype 
mapping. We initially considered inhibiting accessor generation for private 
StructuralFeatures . We rejected this however and map visibility in the same way 
we map the isAbstract  attribute of GeneralizableElement : as a restriction on 
portable user code.
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A.2 Names

There are several differences between the IDL and the Lisp namespaces.

A.2.1 Capitalization

IDL identifiers are case-sensitive, but two identifiers differing only in case are not
allowed to occupy the same namespace.

Although Lisp symbols are also case-sensitive, in practise it is often inconvenient
notate in a Lisp program symbols whose names contain lower-case alphabetic 
characters, since the Lisp reader by default converts lower-case characters to up
case characters in symbol names.

Therefore, we have chosen to convert implicitly all IDL identifiers to upper-case.

However, we follow the customary usage of X3J13 in notating symbols using mix
case—typically lower-case—characters.

A.2.2 Nesting

The IDL namespace is deeply nested, although there is only a single “root” names

There are many disjointed Lisp namespaces, each of which is essentially bilevel.
chose to partition the IDL namespaces into a module portion and a non-module 
portion.

A.2.3 Character set

Lisp symbols typically have names comprising 8-bit characters. However, certain 
characters, such as the space character, are difficult to work with in practice since
shall be escaped for the default Lisp reader.

The situation for IDL identifier is not as clear for the following reasons:

International characters

The CORBA 2.1 specification, as have previous CORBA specs, explicitly allows a
number of ISO-Latin characters that are not standard ASCII alphabetic characters,
as ß, AE, and È.

However, no other mapping of which we are aware has provision for mapping sym
containing such characters. In order to remain compatible with existing ORBs, we
chose to allow only standard alphanumeric characters and the underscore charac
IDL identifiers.

CORBA 2.3 eliminates this issue.
Lisp Mapping V1.0           Names             May 2000 A-3
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Other special characters

Lisp allows punctuation characters such as “/”, “-” and “.” to be part of the charac
name, while IDL does not. We exploit this fact in a number of instances to avoid 
possibility of name clashes.

Keywords

Lisp does not have reserved words in the usual sense (although the bindings of c
symbols may not be changed). Therefore, we did not require rules for avoiding cla
with reserved keywords. On the other hand, we did not consider here the issue o
generated Lisp package names conflicting with user or system package names. W
expect that options may be provided to the compiler to avoid this problem.

A.2.4 Alternative mappings

It would have been possible to choose a name mapping that produced names mo
familiar to Lisp users. For example, hyphens could have been inserted at case 
transitions, or underscores could have been converted to hyphens.

A.2.5 Prefixes

We provided a package_prefix pragma in order to avoid clashes between IDL modu
names and generated Lisp package names.

An alternative is to use lisp_package_prefix in order not to conflict with future usages
of this term by other languages. On the other hand, perhaps this usage will beco
standard and desirable.

A.3 Mapping of basic types

The mapping for most of the basic types is fairly straightforward, although charac
set issues are discussed above.

Each basic type is implicitly viewed as a classifier in the CORBA package, and is 
mapped to a Lisp type specifier in the CORBA package, following the standard 
mapping principles, regardless of whether an equivalent Lisp type already exists.

A.3.1 boolean

We considered mapping this type to the Lisp values defined by generalized boolean, 
which is easier to use in certain cases, or mapping to boolean, which may be simpler. 
The original implementation of this type was in fact to boolean, but it became clear 
that in practice the mapping to generalized boolean was simpler to use because so 
many standard Common Lisp predicates return generalized boolean.
A-4 Lisp Mapping  V1.0                 May 2000 
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A.3.2 float and double

In practice Lisp vendors use IEEE format to represent floating point numbers, but 
because this representation is not required by the ANSI standard, we chose our 
mapping to be independent of this.

A.3.3 long double

ANSI Lisp does not require support for long double; and some Lisp vendors also do 
not support it on some platforms. However, rational can always be used as a stopgap
and our mapping is thus implementable on any Lisp.

A.4 Mapping for struct

The mapping for struct we chose is consistent with the standard mapping for 
Classifier. Each member of the struct is viewed as a StructuralFeature of the same 
Name with the standard naming convention and accessors for these.

An alternative mapping would map an IDL struct directly into a structure-object, an 
object created by the macro defstruct. Another reasonable mapping would have bee
to map a struct into a class whose slot accessors obeyed the naming rules for defstruct 
accessors.

However, we have chosen our mapping so that a structure-class implementation would 
not be precluded; we do not insist that corba:struct be a subclass of standard-class, 
since for some compilers it could be the case that implementing a corba:struct as a 
structure-object would allow a performance improvement.

A.5 Mapping for exception

From the point of view of UML, an exception class is viewed as a Classifier whos
members correspond to StructuralFeatures  of the same name.

User exception classes and system exception classes are considered to inherit (a
Classifier elements) from the UserException  and SystemException  Class elements 
in the CORBA package.

The mapping of exception then follows directly from our standard mapping for 
Classifier.

The only question is the superclasses of CORBA:Exception, CORBA:UserException 
and CORBA:SystemException not determined by this mapping. Some amount of 
experience was needed to choose the current mapping.

A.5.1 condition hierarchy

Certainly corba:exception, the base class that arises from the UML mapping, must
inherit from condition.
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However, it is not clear from which of the standard Lisp condition classes the 
corba:exception class would most appropriately derive directly.

We considered these options as candidates for the direct superclass of 
corba:exception:

• condition, the base class for the Lisp condition system
• error , the base class for errors.
• serious-condition.

We quickly rejected simple-error, simple-condition, and warning as candidates.

The most familiar condition to signal for Lisp programmers would probably be error , 
but the specification does not support this usage.

In particular, the ANSI spec [p. 9-11] states that “The type error consists of all 
conditions that represent errors” where an “error” as used in the last word refers 
situation in which the semantics of a program are not specified, and in which the 
consequences are undefined.” We felt that this was too strong a usage for the ce
cases of exceptions that are raised.

On the other hand, a serious-condition is one which is “serious enough to require 
interactive intervention if not handled [X3J13 p. 9-10].” This seems like a more 
appropriate match, and it is the one we initially chose.

Experience with the way CORBA system exceptions are used in practice led us to th
current mapping, in which system exceptions are mapped to subclasses of error . This 
allows macros like ignore-error to be used more easily with CORBA code. Howeve
we retain the "old" mapping for user exceptions, as in practice some of these are 
clearly outside the specification for error.

It would certainly be a reasonable mapping for corba:exception to inherit directly 
from condition. However, we think that exceptions should be signaled using the L
error function and not the signal function.

The question of the direct superclass of corba:exception affects the behavior of 
condition handlers in whose scope such a condition is signalled, hence the impor
of specifying carefully this class.

There is a theoretical backwards incompatibility problem with existing CORBA 2.2
ORBs whose handlers rely on CORBA:SystemException not inheriting from error . 
We would be extremely surprised if this problem affects any real code; and when
does, the problem is trivial to find and to correct.

A.5.2 Naming exception classes

We chose to name the classes corresponding to system and user exceptions 
corba:systemexception and corba:userexception respectively. This naming 
convention is consistent with the mapping of Java and of C++.
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However, the IDL for the enum types corresponding to exception used in the IDL for 
the GIOP uses an underscore to separate the words: corba_exception and 
user_exception, and so corba:system_exception and corba:user_exception would be 
an appropriate alternative mappings.

A.6 Mapping for enum

An enum type is considered as a Classifier; the mapping of the name follows the u
rule for Classier mapping.

A Lisp symbol in the :keyword package usually fill the role of enum in C-like 
languages. This mapping has the disadvantage, however, that such values are no
typing in the sense that they do not encode the name of the enum of which they 
member.

We could have chosen a self-typing mapping as well—languages like Java have t
mappings for enum, for example—but we chose not to do so.

A.7 Mapping for union

A union is viewed as a Classifier  with StructuralFeatures  corresponding to each 
branch. Obviously since only one such branch is needed, only one slot need be 
physically represented. Otherwise our mapping follows our customary Classifier  
mapping.

An alternative mapping would map the union to a base class and each of the branch
to concrete subclasses.

We eventually decided to follow closely the Java union mapping, again to shorten
learning curve.

A simpler alternative would have been to map a union to a cons whose car holds the 
discriminator and whose cdr holds the value.

We considered the issue of automatic coercion of values to a union. We will cons
this at a later version; there is not a pressing need for this convenience feature, a
has some semantic subtleties in the cases of ambiguous coercions.

A.8 Mapping for module

The mapping for module follows the standard UML mapping for the Classifier 
Package. All elements owned by the Package are named by symbols whose name
name of that Package.

The IDL module is a name-scoping mechanism in IDL whose corresponding Lisp 
equivalent is the package. Some separators need to be used between namespac
identifiers, since the Lisp package system is not nested.
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We chose not to rely on automatic importing of symbols in a package corresponding to 
an outer module into the package corresponding to the inner module, as we felt the 
potential for confusion outweighed the gain in concision.

The “/” separator was chosen instead of the “.” separator because that is the sep
used by IDL as a scoping separator in repository IDs. However, the “.” is more fam
in this context, since it is used as a scoping separator in the Java mapping, and w
considering modifying the mapping to use “.” as the scoping separator character. 

A.9 Mapping for array

An IDL array is mapped to a Lisp array. It would be reasonable to specify formally 
the declared :element-type of the mapped Lisp array, but for simplicity we chose no
to in this document.

There is a potential ambiguity in dealing with nested arrays. Consider the followin
IDL definitions

// IDL
typedef short a [2];
typedef a b[3];
typedef short c[2][3];

In the mapping, c would be mapped to a 2-dimensional array,but b would be mapped 
to a one-dimensional array of arrays. These data structures are disjointed in Lisp an
are not accessed using the same syntax.

The problem is that the definition of ArrayDef  in the interface repository only allows
one-dimensional arrays (although the element type can be array). Thus, it might b
necessary to map b into a Lisp two-dimensional array of integers as well, so as t
interoperate unambiguously with other interface repositories.

Because there are known problems with the treatment of interface repositories in
CORBA, we chose not to consider the impact of this problem at this time.

A.10 Mapping for sequence

We map IDL sequence to the Lisp type sequence.

There are several possible alternative mappings.

A.10.1 sequence-to-list

The simplest mapping to use and to explain is probably the mapping that maps 
sequence to list . Unfortunately, such a mapping has substantial performance overh
for cases where the element types are small, such as in the ubiquitous 
sequence<octet>. More important, the list data type simply fails to capture gracefully
the intended use of sequence in certain applications.
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A.10.2 sequence-to-vector

Another natural mapping is for sequence to go to vector. Although this is an 
appropriate mapping in cases where the sequence elements are small and the sequenc
size does not change often, it is less appropriate to use when the sequence is intended 
to be modified in size or constructed dynamically.

Of course it would be possible in such cases to map sequence to adjustable array with 
fill pointers. These are a subtype of array which permit run-time size modification. 
Although such arrays are useful in certain applications, they are nevertheless les
flexible and are more difficult to use than the list datatype for many purposes.

A.10.3 Hybrids

Some proposed mappings have generally mapped sequence to list, but have mapped to 
array in certain special cases, (e.g., when the elements are small).

A.10.4 Advantages of our proposal

• Our proposal is the simplest to use of all the proposals in the common case w
the user is writing a client that passes a parameter for which the correspondin
parameter was declared as a sequence. Indeed, the client can simply use lists or 
arrays in the application code, whichever is more convenient.

• Our proposal is more efficient than the sequence-to-list in cases where the element
types are small or where vector is the better data type.

• Our proposal is simpler and more flexible than the hybrid proposal, since there i
artificial demarcation that the user shall remember between the mapping 
conventions.

• Our mapping is simpler and crisper in certain ways, according to some users.

A.10.5 Disadvantages of our proposal

• Our proposal is more difficult to use than the other possibilities in the case whe
sequence is a return parameter of an operation, since the client does not know the
type of the sequence.

• Our proposal is slightly more complicated for the implementor of a method, sin
the method body shall be prepared to expect an arbitrary sequence (or a syntax in 
the method definition shall allow this conversion to be done automatically).

• Our proposal can lead to problems in verifying the correctness of code that doe
correctly handle sequences passed to it; code might fail to work only on certai
types of sequences.

• Our proposal imposes a small run-time overhead associated with type-checkin
the passed value.
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A.10.6 Conclusion

It is certainly tempting to fix the mapping of sequence either to vector or to list. 
However, we believe that the availability of both vector and list data-types in Lisp
quite useful; fixing on either one would constrain functions for which the other wo
be better suited.

A.11 Mapping for any

In the case of any, there are several issues to consider: convenience, generality, an
accessors.

The any mapping was chosen so that Lisp values can be passed back and forth f
operations expecting an any without undue manual coercions, particularly in the 
common cases where a primitive type is passed.

The special handling of string designators was chosen to avoid ambiguity in pass
enum values.

The coercions were chosen so that the typecode would denote the “smallest” 
containing type in some sense. However, for the sake of implementation simplicit
list can be passed as sequence<any> rather than sequence<type> where type is some 
smaller superset of the types of the contents of the list.

This semantics was chosen particularly to facilitate passing nested lists of primitiv

The integral typecode chosen in the case of integer operands is the smallest (fro
CDR point of view) that it can hold. This is clearly consistent with well-known 
heuristics in Bayesian classification theory such as Minimum Description Length 
encoding.

A.12 Mapping for typedef

A typedef is considered a Classifier with no Features. The mapping follows the 
standard Classifier mapping rules.

It seems clear that a typedef should map to a Lisp type that contains at least all the
values that could be in the range of the mapping of the original IDL type aliased by
given typedef. However, whether these sets should coincide—whether a value not
the range mapping should not be in the appropriate type—is problematic for 
constructed types: how far should the type specifier peer into the object?

These cases arise particularly in handling the mapping for array, sequence, struct , 
and union. It is particularly problematic in the latter two cases since the type speci
is defined automatically from the name of the class defining the struct or union.

In order to simplify the exposition, we do not mandate special type-checking beyo
checking at the top-level.
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A.13 Mapping for interface

Our naming followed the standard naming conventions: an interface is viewed as 
Classifier; attributes correspond to StructuralFeatures , operation to 
BehavioralFeature .

The interface mapping comprises several parts: Mapping from IDL for interface C
in UML model of IDL into mapped model (i.e., generation of auxiliary classes); 
Mapping of UML for interface into Lisp; implementation on server-side.

Mapping of the UML into Lisp is straightforward. Server-side mapping issues are 
discussed below.

A.13.1 Generation of auxiliary classes

We followed the Java mapping on generation of stub and skeleton classes 
corresponding to a given interface. We used as suffixes for these generated class
proxy and -servant. It would be equally reasonable to use -stub and -skeleton; in 
case this does not affect the semantics and we chose to be consistent with the la
base of vendor code using the current prefixes.

Our mapping here avoided the aspect of the Java/C++ mappings in which certain
classes or IDL interfaces can nameclash with generated classes.

A.14 Mapping of valuetype

Valuetype is viewed in the standard way as a Classifier. Valuetype members are 
mapped to StructuralFeatures ; operations are mapped to Operation .

Mapping valuetype must be done with great care because of interactions with PO
abstract, abstract interface, factory, GIOP, RMI Repository IDs, and custom mars
Because the design goal of the Lisp mapping was to make the mapping as easy-
as possible, we require a lot of real-world use-cases to design the right mapping 
make the right tradeoffs.

Therefore, our design decision was simply to retain consistency with our standard
mapping principles and to defer to the extent consistent with minimal required 
portability the ease-of-use features to tool vendors. Although this design decision c
theoretically have the consequence of engendering a proliferation of incompatible 
of-use features (mostly macros), we felt the danger of this was outweighed in mo
cases by the danger of overspecifying features that turned out not to be widely us
practice but whose inclusion complicated exposition of the standard.

A.14.1 supports

The <<supports>> association from a Valuetype to its supported interfaces could 
been implemented without inheritance, which could be more efficient in certain ca
We felt that mapping the <<supports>> association to inheritance was simpler.
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Note that this diverges from the C++ 2.3 design decision which does not map supports 
into inheritance. The Java 2.3 mapping does map <<supports>> to inheritance, bu
the specific Operations interface associated with an interface, which for the Lisp 
mapping is implicit in the interface. We felt our mapping was possibly simpler to 
explain and we felt that at this time there was insufficient usage data to determin
whether the concerns in the C++ supports mapping would in fact obtain in Lisp re
world usage scenarios, with its inherently looser typing.

A.14.2 unmarshalling and custom unmarshalling

We followed the C++ unmarshalling semantics, rather than the Java ones. The m
difference here is that the C++ does not explicitly address unmarshalling of RMI 
repository ID’s.

For custom classes we do choose to have generated classes inherit from 
CustomMarshal .

A.15 abstract valuetype

Abstract is not supported directly by Lisp, so we essentially only support this as a
constraint on user code.

A.15.1 abstract interface

An abstract interface is mapped according to the normal Classifier mapping.

The key question in abstract interface was simply whether to inherit from Object. 
original mapping left this up to tool vendors, but for specificity we now require it. 
Because of our of our mapping for <<supports>>, it is the case that any usage of
abstract interface must inherit from Object (indirectly).

A.15.2 Lisp-to-IDL

It is natural to assess the impact of our mapping on future Lisp-to-IDL mappings.
determined not to assess this question in the current mapping in order to simplify
job of creating our OBV mapping. As additional experience is gained this question
be readdressed.

A.15.3 Value box

We chose our mapping based on the fact that the non-primitives are passed by 
reference anyway in Lisp and can be checked for eq-ness by the compiler. Arguab
could have done the same for primitive types, but we decided it was simpler to us
C++-style mapping for these boxes.
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A.16 Compiler mapping

Languages which lack first-class access to their compiler typically standardize only
run-time environment and leave the IDL compilation unstandardized. The IDL 
compiler is usually implemented as a separate program whose interface is define
the ORB vendor.

We considered two compiler interfaces: the current one and an interface that deco
the parsing and the compilation. The parse interface would simply build an interfa
repository from the source file; the compilation interface would compile from an 
interface repository. However, we the current mapping is much simpler.

It would be desirable at some future time to allow URL’s as pathname designator
However, this is quite complex to describe (i.e., #include must be described, and 
exact space of accepted URLs must be described) so we decided not to do so.

A.17 Pseudo Interface Mapping

The main question in mapping the pseudo-interfaces was whether to use Lisp 
conventions throughout or simply translate the pseudo-IDL in “brute-force” fashion

We chose the latter approach for two reasons:

Our pseudo-interface mapping is quite straightforward.

Our is_nil mapping was chosen to assure that pseudo-operations were not invoke
nil , which could theoretically cause some future problems with future op: generic 
function implementation.

In the case of the DII, we added several convenience features so that users do no
to specify the typecodes and return types of the calls.

Our original mapping followed the Java mapping, but we felt the ORB can get the
typecodes just as well as the user.

In practice, many non-Lisp ORBs do not support _interface, so the exception signalled
when the ORB is unable to infer the typecodes in using the DII is significant. We ch
a subclass of CORBA::MARSHAL ; an alternative would have been a new top-level
CORBA system exception. However, since this invocation is local, we saw no need
to inherit from the existing exceptions.

We considered _invoke as a pseudo-operation on Object, and a top-level 
corba:invoke.We also considered putting the target first in corba:funcall.

For simplicity we followed the familiar "_" prefix in Object pseudo-operations. 
Although more elegant solutions were certainly possible, they were deemed not 
necessary in this case.
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A.18 Server side mapping

One of the most interesting issues here was whether to allocate slots automatica
based on interface attributes. On the positive side, doing so significantly simplifie
common usages and examples. On the negative side, it is unnecessary in certain

We also considered a particular define-class macro, analogous to the define-meth
macro.

Since specification of the metaclass of implementation classes is unnecessary in 
cases, we could simply follow the standard defclass syntax, replacing the metacla
specifiers by method specifiers. Attribute specifiers are mapped using expected s

An example might clarify. Consider

module ex {
interface foo {
string foo ();
long fum(in long arg);
};};

A user implementation of this class could be defined via:

(corba:define-method my-foo (ex:foo-servant)
((my-slot :accessor my-slot))
(method foo () ("hello from method foo"))
(method fum (arg) (+ (my-slot this) arg))
(method foo :before (format t "Calling method foo 
now...~%")))

Note that "this" is bound to the target in execution of each method body.

A similar compatible syntax is used for attribute specifiers. We eventually rejected
proposal for inclusion in this version of the mapping. In any case, it is easy for the 
to provide such a macro if desired.
A-14 Lisp Mapping  V1.0                 May 2000 



Lisp Concepts B
is 
ed is 
y 

S 

sp 

lues.

lly 
y 
he 

 the 
rwise, 
This chapter presents a simplified overview of some key Lisp concepts used in th
mapping document. Since the ANS Lisp standard, on which this document is bas
approximately one thousand pages long, it seemed useful to limn some of the ke
concepts.

Note – This appendix, of course, is non-normative, and in some cases is oversimplified 
or inaccurate. This appendix is not intended to serve as a Lisp reference. The AN
specification should be referred to for normative definitions.

B.1 Lisp evaluation

The life of a Lisp form typically comprises three phases:

1. read: A character representation of the form is read by the invocation of the Li
function read on that string. This returns some Lisp value.

2. eval: This Lisp value is then evaluated, producing zero or more Lisp value or va

3. print: These values are printed

Of course, the actual work is done in the evaluation phase. In examples we typica
show the input and output of the forms to a simple Lisp listener that indeed simpl
reads, evaluates, and prints. In these examples in this specification, we preface t
output of the listener with string "--->".

The evaluation of a form (a value) is simple enough. If the form is a list, the first 
element should be a function or the name of the function; that function is applied to
arguments that result when the remaining elements of the list are evaluated. Othe
the form itself is returned.
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B.1.1 Example

(+2 3 (*1100000))

---> 100005

Here, the user has input the string "(+2 3 (*1100000))" to the listener, which has 
printed 100005. The result of evaluating the list (* 1 100000) is 100000, and the re
of evaluating (+ 2 3 100000) is 100005.

This is often informally referred to as "The result of evaluating the form (+2 3 
(*1100000))) is the number 100005", or "Applying the function named by the sym
+ to the arguments 2, 5 and the result of applying the function * to the aguments 1
100000 is 100005.

B.2 Lisp values

A Lisp entity can be, among others, one of the following: number, cons, symbol, 
object, type, class, function.

A number is either an (arbitrary size) integer, an arbitrary-size rational, a floating point 
number, or a complex number.

B.3 Cons

A cons is basically a structure with two fields, the car and the cdr, each of which can 
hold any other Lisp object. A cons is notated by writing the ’(’ character, the 
representation for the car, the "." character, the representation for the cdr, and the ’)’ 
character. If the cdr is itself a cons then the "." and the parentheses that would 
normally surround that cons are elided. If the cdr has the value nil then the ’.’ 
character is omitted and that cdr is not printed.

A list is either a cons or nil .

Lisp has numerous built-in functions for manipulating lists. Some of the most 
common: car returns the car of a list, cdr returns the cdr, list constructs a list from its 
arguments, append splices together lists, mapcar maps a function over a list, and so 
on.

B.3.1 Example

(2 .3)

denotes the cons whose car is 2 and whose cdr is 3.

(2 3 4) denotes the list with three elements, 2, 3, and 4; equivalently, it is the cons 
whose car is 2 and whose cdr is the cons whose car is 3 and whose cdr is the cons 
whose car is 4 and whose cdr is nil : (2 .(3 .(4 .nil))) .
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B.4 Arrays

Arrays are created with make-array and accessed with the aref function.

(setq a (make-array 5)) ; creates a 5-element 1-dimensional array

(setf (aref a 3) "hello") ; Sets the third element of a to the string "hello" .

(aref a 3) ; get the third element of the array

---> "hello"

Multidimensional arrays are created using calls like (make-array ’(2 3)) for a 2 by 3 
array and elements are accessed via (aref a 1 2) for the element at index (1 2) (all 
indices are 0-based).

A 1-dimensional array is called a vector.A string is a vector of character.

Various arguments to make-array can constrain the type of each element, change t
base of the indices, align the array with another array, or allow the array to be 
extensible.

B.5 Types

A type is a set of objects. A type specifier is the name of the type. For example integer 
names the type of all integers, while the list (integer 0 43) names the type of integers
from 0 to 43.

If p is a type specifier then (typep x p) is T if and only if x is a member of the type 
denoted by p.

The type generalized boolean denotes all Lisp values, in which nil signifies false and 
non-nil values denote truth. Many Lisp built-in predicates return generalized boolea

B.6 Symbols

A symbol has a package and a name. The package is essentially a named collection
symbols, and the name is a string. Packages have a package-name and any number of 
nicknames; any of these are said to name the package. A symbol is notated via 
<package>:<name> where <package> is a name of the package and <symbol> is the 
name of the symbol. The package specifier is omitted if it is understood.

A symbol can be external or internal in a package. In the latter case, two colons,
one, must be used in notating it. It is possible, although it can be complicated, to
specify in certain lexical contexts that a symbol can be accessed without its pack
designator. All the symbols used in this mapping are external.

Symbols in the keyword package, also called keywords, are particularly convenie
use because they always have themselves as values and they can be notated sim
strings like ":foo" for the symbol named "foo" in the keyword package. Keywords are
typically used to specify optional named parameters to functions.
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A symbol has a value (which can be any object) and a function value. It can also n
a type or a class; these namespaces are disjoint.

When a symbol is evaluated, its value is returned. The value of a symbol is set u
the setq macro.

(setq a -1)
---> -1
a
---> -1
(defun a (x y) (+ x y))
a
-1
(a 3 1)
---> 4

B.7 Functions

A function is applied to its arguments:

(+2 3 4)

---> 9

Here + is not a function. Rather, + is shorthand for the symbol "common-lisp:+" 
whose function-value is the addition function.

The actual addition function can be obtained from its name via:

(function ’+)

A shorthand for this is

#’+

Functions can be defined by the defun macro.

(defun my-splice (a b)
(cons a b))
(my-splice 2 3)
(2 . 3)
(my-splice "foo" ’(x y z))
("foo" x y z)

The defun macro takes certain standard Lisp syntactic markers to specify the form
the argument list: whether keywords are used and if so which ones and the defau
value of their corresponding arguments; whether optional arguments are used; wh
an arbitrary number of arguments may be passed.

B.8 Example

(defun keyword-example (x &key y z (foo "hello")))
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(list x y z foo))
(keyword-example 3)
---> (3 nil nil "hello")

(keyword-example 1 :y 6 :z ’(1 1) :foo "goodbye")
---> (1 6 (1 1) "goodbye")
(keyword-example 1 :z ’(1 1) :foo "goodbye" :y 6)
---> (1 6 (1 1) "goodbye")

Functions are first class objects. They can be explicitly applied to lists of argumen
various ways. Functions may be redefined. Functions may be, and usually are, 
compiled.

B.9 Classes

A class object controls the behavior of its instances. The metaclass of an instance is 
the class of its class. Lisp defines various built-in meta-classes, but most user cla
are instances of the standard metaclass standard-class. Classes multiply inherit a
have slots that hold state.

(defclass furniture ()
(price :initform 0 :accessor get-price :initarg :price)
(id))
(defclass wooden ()
(kind :initform :oak :accessor get-kind :initarg :kind))
(defclass wooden-table (furniture wooden)
(legs :accessor get-legs :initarg :legs))

This defines three classes, a base-class furniture which inherits from standard-object, 
a class wooden that has a single slot holding the type of wood, and a subclass wooden-
table that inherits from furniture and wooden.

An oak table with 3 legs and costing 10 dollars can be created via

(make-instance ’wooden-table :price "10 dollars" :kind :oak :legs 3)

The class-of function returns the class of its argument. The class of a value can be 
changed by the change-class function.

The definition of a class can be changed. The slots in its instances have the natu
default behavior when the new class has a different set of slots, but the behavior 
instance whose class has changed definition can be modifed by specializing the ge
function update-instance- for-redefined-class.

Similarly, if the class of an instance is changed, its behavior can be customized b
using the function update-instance-for-different-class." 
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B.10 Methods

Methods are similar to functions except that they may dispatch on zero or more of 
parameters. Methods belong to a generic function, which determines, when it is 
applied to arguments, the correct method to call.

For example, here is a method to print an invoice for a wooden table:

(defmethod print-invoice ((this wooden-table) &key note)
(print "Congratulations on purchasing this beautiful wooden table")
(print the price is: (get-price this))
(if note (print note)))

Now if x is an instance of a wooden table, an invoice is printed via

(print-invoice x)

or

 (print-invoice x :note "Net due in 90 days")

B.10.1 Auxiliary methods

A method may have associated auxiliary methods. Common types of auxiliary 
methods are before methods, which are always executed before the primary metho
run; after methods, which are evaluated after the method is run; and around methods, 
which conditionally control the behavior of the primary behavior (an around metho
can call its associated primary method by using the call-next-method function.

For example, we can define an around method on print-invoice via:

(defmethod print-invoice :around ((this wooden-table) &key note)
(if
(equal note "Reserved")
(print "Warning: invoice should not be printed")
(call-next-method)))

If the passed in note keyword is the string "Reserved", then a warning is printed and
the invoice is not printed. Otherwise, the primary method is invoked as usual.

Around methods are common in distributed systems to obtain the functionality of 
smart proxies.

B.11 Macros

There are three types of macros in Lisp: reader macros, macros, and compiler m

A reader macro is used to lexically rewrite code before it has left the reader. For 
example, reader macros are used to give some characters special significance.
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Normal macros transform forms before they are evaluated. They can perform 
arbitrarily complex manipulations on forms.

Compiler macros are only evaluated when a form is compiled. They are most ofte
used for optimization reasons.

Macros are commonly used in Lisp programs to tailor the application language to
domain. For example, corba:define-method is a (very simple) macro.

B.12 Compilation

In examples Lisp forms are usually interpreted, but in real life they are normally 
compiled. Typically this produces an intermediate form, and optionally a file, that 
be loaded and executed more quickly than the original form. The compiler is acce
via the functions compile and compile-file.

A form can be evaluated only when loaded time, when evaluated, or when compi
time. The eval-when construct is used for this.

(eval-when (compile) (form-to-be-executed-only-during-compile))

A form can also be executed at read time by prefacing it with the string "#."

B.13 Conditions

Lisp has a multiply inherited condition system. Conditions can be signalled with t
signal function. They can be caught via the handler-case form:

(handler-case
(stuff-to-evaluate)
(error-type-1 (condition-signalled) (stuff-to-do condition-signalled))
((error-type-2) (condition-signalled (stuff-to-do condition-signalled))

Lisp also supports facilities for recovering from signalled conditions. Although this
important in using CORBA, as it is often convenient to provide the developer the 
option to reinvoke server-side operations if they’ve signalled an unexpected error,
in practice unusual for the small-scale applications builder to need to implement 
systems that do this, and we will not discuss this here.
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