
Lexicon Query Service Specification

New Edition: June 2000
Version 1.0

oyalty-
pies of

inged the
 herein

y
ch a
 of
e users

tails an
ocument

ted
ages,

 above
Copyright 1998, 2AB
Copyright 1998, Ardent Software, Inc.
Copyright 1998, Care Data Systems, Inc.
Copyright 1998, CareFlow/Net, Inc.
Copyright 1998, FUJITSU LIMITED
Copyright 1998, HBO & Company
Copyright 1998, HealthMagic, Inc.
Copyright 1998, HUBlink, Inc.
Copyright 1998, IBM Corporation
Copyright 1998, IDX Systems Corporation
Copyright 1998, INPRISE Corporation
Copyright 1998, IONA Technologies PLC
Copyright 1998, Oacis Healthcare Systems
Copyright 1998, Object Design, Inc.
Copyright 1998, Objectivity, Inc.
Copyright 1998, Oracle Corporation
Copyright 1998, Persistence Software, Inc.
Copyright 1998, Protocol Systems, Inc.
Copyright 1998, Secant Technologies, Inc.
Copyright 1998, Sholink Corporation
Copyright 1998, Sun Microsystems, Inc.
Copyright 1998, Versant Object Technology Corporation

The copyright holders listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, r
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute co
the modified version. Each copyright holder listed above has agreed that no person shall be deemed to have infr
copyright in the included material of any such copyright holder by reason of having used the specification set forth
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This d
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed

 the sole
arks or
 is pro-

used in
ation

orth in

G IDL,
Inc.

readers
 at
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set f
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group,
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form
http://www.omg.org/library/issuerpt.htm.

Contents
1
1

1

2

3

1-1

1-1

1-2
-3

-6
-6

-7
-8

-9

1-9

-11

-12
-12

3
17

8
-19

-21
22
Preface .
About the Object Management Group .

What is CORBA?.

Associated OMG Documents .

Acknowledgments .

1. Service Description .

1.1 Overview .

1.2 Use Scenarios .
1.2.1 Information Acquisition 1

1.2.2 Information Display . 1
1.2.3 Mediation . 1

1.2.4 Indexing and Inference 1
1.2.5 Browsing . 1

1.2.6 Composite Concept Manipulation 1

1.3 Reference Model .

1.4 Model Overview. 1

1.5 Data Type Definitions . 1
1.5.1 Basic Types. 1

1.5.2 Naming Authority. 1-1
1.5.3 Basic Identifiers . 1-

1.5.4 Terminology Identifiers 1-1
1.5.5 Meta Concepts . 1

1.5.6 Composite Types . 1
1.5.7 Collections . 1-
Lexicon Query Service June 2000 i

Contents

-23
-24

-40

-41

-41
1-41

-41

-1

-1

-3
-4

5
-6

2-7
-7

2-7
-7

2-8
-8

2-9
-12

-19
19

24
25

27
28

29
-35

37
38

-39
-44

46

-47
-49

-50
56

-58
1.6 Terminology Service . 1
1.6.1 Coding Schemes . 1

1.6.2 Value Domains . 1

1.7 IDL Interface . 1

1.8 Notation . 1
1.8.1 Sequences and Sets. .

1.8.2 Iterators . 1

2. Modules and Interfaces. 2

2.1 NamingAuthority Module . 2

2.1.1 RegistrationAuthority . 2
2.1.2 NamingEntity . 2

2.1.3 AuthorityId, AuthorityIdStr 2-
2.1.4 LocalName, QualifiedName, QualifiedNameStr 2

2.1.5 Exceptions .
2.1.6 TranslationLibrary Interface 2

2.2 Terminology Service Module .
2.2.1 Type Definitions . 2

2.2.2 Exceptions .
2.2.3 Basic Coding Terms . 2

2.2.4 Meta Types .
2.2.5 Coded Concept and Coding Scheme Terms . . . 2

2.2.6 Advanced Query Terms 2
2.2.7 Systemization Definitions. 2-

2.2.8 Value Domain Terms . 2-
2.2.9 Terminology Exceptions 2-

2.2.10 TranslationLibrary Interface 2-
2.2.11 TerminologyService Interface. 2-

2.2.12 LexExplorer Interface. 2-
2.2.13 CodingSchemeLocator Interface 2

2.2.14 ValueDomainLocator Interface. 2-
2.2.15 CodingSchemeAttributes Interface 2-

2.2.16 CodingSchemeVersion Interface. 2
2.2.17 PresentationAccess Interface 2

2.2.18 LinguisticGroupAccess Interface 2-

2.2.19 AdvancedQueryAccess Interface 2
2.2.20 SystemizationAccess Interface 2

2.2.21 Systemization Interface 2
2.2.22 ValueDomainVersion Interface 2-

2.3 Terminology Service Values Module 2
ii Lexicon Query Service June 2000

Contents

3-1

3-2

3-3
-3

11

-14

3-14

3-14

3-15

-16

3-16

3-17

3-17

-17

3-18

-18

3-18
8

19
20

1

1

-1
3. Terminology .

3.1 Trader Service .

3.2 Meta-Terminology .
3.2.1 Association . 3

3.2.2 Vendor-Defined Associations 3-

3.3 Association Qualifier . 3

3.4 CharacterSet .

3.5 Coding Scheme .

3.6 Language .

3.7 LexicalType . 3

3.8 PresentationFormat .

3.9 Source .

3.10 Source Term Type .

3.11 Syntactic Type. 3

3.12 Usage Context .

3.13 Value Domain . 3

3.14 Conformance Points .
3.14.1 Minimum Implementation 3-1

3.14.2 Additional Conformance Levels 3-
3.14.3 ValueDomainLocator Conformance 3-

Glossary .

Appendix A - OMG IDL . A-1

Appendix B - Diagram Notation. B-

Appendix C - References. C
Lexicon Query Service June 2000 iii

Contents
iv Lexicon Query Service June 2000

Preface
rted
 and
nted

ide a
,
ous
p a

ed.

ted,
ey
bject
nd

ing
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate.
Lexicon Query Service V1.0 June 2000 1

n

 are
ides
 are

aces

nd

d

 so

d,
dards

 (The

mat.
ons,
Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentatio
set includes the following:

• Object Management Architecture Guide defines the OMG’s technical objectives and
terminology and describes the conceptual models upon which OMG standards
based. It defines the umbrella architecture for the OMG standards. It also prov
information about the policies and procedures of OMG, such as how standards
proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains
the architecture and specifications for the Object Request Broker.

• CORBA Languages, a collection of language mapping specifications. See the
individual language emapping specifications.

• CORBAservices: Common Object Services Specification, a collection of OMG’s
Object Services specifications.

• CORBAfacilities: Common Facilities Specification, a collection of OMG’s Common
Facility specifications.

• CORBA Manufacturing: Contains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interf
between related services and functions.

• CORBA Med: Comprised of specifications that relate to the healthcare industry a
represents vendors, healthcare providers, payers, and end users.

• CORBA Finance: Targets a vitally important vertical market: financial services an
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and
forth.

• CORBA Telecoms: Comprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at:
2 Lexicon Query Service V1.0 June 2000

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• 2AB

• 3M Health Information Systems

• Ardent Software, Inc.

• Care Data Systems, Inc.

• CareFlow/Net, Inc.

• FUJITSU LIMITED

• HBO & Company

• HealthMagic, Inc.

• HUBlink, Inc.

• IBM Corporation

• IDX Systems Corporation

• INPRISE Corporation

• IONA Technologies PLC

• Oacis Healthcare Systems

• Object Design, Inc.

• Objectivity, Inc.

• Oracle Corporation

• Persistence Software, Inc.

• Protocol Systems, Inc.

• Secant Technologies, Inc.

• Sholink Corporation

• Sun Microsystems, Inc.

• Versant Object Technology Corporation
LQS V1.0 Acknowledgments June 2000 3

4 Lexicon Query Service V1.0 June 2000

Service Description 1
for
l

 and
tion

y not
oal
useful
Contents

This chapter contains the following topics.

1.1 Overview

The scope of this specification is to specify a set of common, read-only methods
accessing the content of medical terminology systems. What constitutes a medica
terminology system can vary widely, from a simple list consisting of a set of codes
phrases at one extreme, to a dynamic, multi-hierarch classification and categoriza
scheme at the other. The focus was to determine what could be construed to be
“common” elements of terminology systems. By “common,” we mean the set of
elements in which the semantics are fairly widely accepted, even though they ma
be present in all or even many of the terminology systems available today. The g
was to produce a specification that could be used to implement a reasonable and
interface to any of the major medical coding schemes.

Topic Page

“Overview” 1-1

“Use Scenarios” 1-2

“Reference Model” 1-9

“Model Overview” 1-11

“Data Type Definitions” 1-12

“Terminology Service” 1-23

“IDL Interface” 1-41

“Notation” 1-41
Lexicon Query Service V1.0 June 2000 1-1

1

r

type
ept

nted
ue of

 be

her
d

ch
on,
s

s a
ided

nts

rom

s
the
 the

ing

.

A key goal of this specification was to provide a single, agreed-upon way to ask a
question of a terminology system. Terminology systems may vary radically in thei
forms of representation and access. For example, the question “Is penicillin an
antibiotic?” could be presented to one system in the form “Does there exist a sub
relationship in which the concept code for antibiotic is the supertype and the conc
code for penicillin is the subtype?” In another system, the question may be prese
as “Is there a record in the drug database whose key is ‘penicillin’ that has the val
‘Yes’ in the antibiotic column?”

The intention of this specification is to provide only one specific interface that may
used to answer any question, regardless of the underlying implementation.

This specification provides read-only services. Read-only services have been furt
subdivided into two categories: 1) High volume on-line services and 2) Perusal an
browsing services. This specification focuses on the first category of services whi
are services used by an on-line production system. The services include translati
inference, presentation, and the like. The second category was addressed only a
necessary to satisfy specific RFP requirements.

1.2 Use Scenarios

The following scenarios describe some of what are believed to be typical uses of
terminology systems. This list of uses is not exhaustive. However, it has served a
guideline in designing the terminology service interface. The set of uses is subdiv
into six sections:

1. Information Acquisition - Using terminology services to aid in the process of
entering coded data.

2. Information Display - Using terminology services to translate coded data eleme
into human or machine-readable external forms.

3. Mediation - Using terminology services to transform messages or data records f
one form or representation into another.

4. Indexing and Inference - Using terminology services to inquire about association
which may or may not pertain between various data elements and to assist in
location of various data record sets, which may contain information relevant to
specific topic or entity.

5. Browsing - Using the terminology services to determine the structure and mean
of a terminology system.

6. Composite Concept Manipulation - Using the terminology services to aid in the
entry, validation, translation, and simplification of composite concepts.

Each of these sections is dealt with in greater detail in the paragraphs that follow
1-2 Lexicon Query Service V1.0 June 2000

1

rnal
e

pt.
n and

The
27.
27 in

rget
ing

each

t is

 text

pts

epts
e
e that
ain

imate
 other
tion
1.2.1 Information Acquisition

A key factor in coding data is the ability to quickly and precisely translate an exte
term, phrase, or image in the user’s mind into the code or codes that represent th
information to be conveyed. The terminology services provide several means of
assisting in this translation process.

1.2.1.1 Text Lookup

The data-entry application knows the specific code that represents a target conce
The terminology service receives the code and coding scheme from the applicatio
returns the preferred phrase that represents the specific code.

Example: A user wishes to encode the fact that a patient has a mild atrial flutter.
user is familiar with the ICD-9 coding system and wishes to start with the code 4
The terminology service is asked for the phrase that corresponds with the code 4
the ICD-9 coding scheme and returns the text “Cardiac Dysrhythmias.”

1.2.1.2 Phrase Lookup

The user of the data-entry application knows the precise text that represents a ta
code or set of codes. The user supplies the string and the name of the target cod
scheme to the terminology service. The service returns the code or codes whose
presentations match the string, along with a list of the preferred presentations for
code.

The user may constrain the search by supplying a list of contexts in which the tex
used.

Example: An application can be used to locate all concepts that correspond to the
“Cold” in the UMLS coding scheme. It supplies the text “Cold” and the language
indicator for “English” to the terminology services and asks for all matching conce
in the UMLS coding scheme. The terminology system returns two concepts:

C0009443 - Common Cold

C0009264 - Cold <1>

The user can limit the search by supplying the information that the resulting conc
must belong to the domain “Enterovirus Infections,” which would then constrain th
output to the single concept representing the disease. The user could also indicat
the supplied text was used as a short column heading, which might further constr
the results.

1.2.1.3 Phrase Matching

This case is identical to the previous case, except the user knows only an approx
string that represents the target concept(s). The string may contain wild cards and
information to direct the search. With the exception of the string itself, the informa
supplied to the terminology service is identical to the case described above.
LQS V1.0 Use Scenarios June 2000 1-3

1

rase.
first.

 in
 of

nows
e: the
is
riate

ts a
 user
eral,
cept
as

e

e

ding
ta-
The terminology service returns a set of concepts that might match the supplied ph
The set is ordered by match likelihood with the most probable matches supplied

Example: The user could supply the string “Atr* Fibrillation” and the language
indicator for “English” to the terminology service and ask for all matching concepts
the UMLS coding scheme. The terminology service might return the following set
concepts:

1.2.1.4 Keyword Matching

This case is identical to the previous two cases, with the exception that the user k
one or more keywords, which are used to locate the target concept(s). For exampl
user could know the words “heart,” “valve,” and “flutter.” The terminology service
asked for matching concepts in the UMLS coding scheme and returns the approp
set of matching codes.

1.2.1.5 Code Refinement

The user of the services wishes to determine the best possible concept code to
represent a specific situation (e.g., the condition of a patient). The user first selec
starting concept through some other mechanism. Given this starting concept, the
wishes to supply additional words or phrases, along with a relationship (more gen
more specific, synonymous). The terminology service returns an ordered set of con
codes that participates in the supplied relationship with the starting code, as well
contains the additional words or phrases in their external representation. As with
phrase lookup, the order of the set is based on match quality with exact matches
occurring first.

Example: The user may start with the concept for <Cardiac Dysrhythmias> in the
ICD-9 coding system. The terminology services are supplied with this concept, th
words “atrial” and “flutter,” and the relationship “more specific.” The coding system
would return an ordered set of concepts which partially or completely meet these
criteria, and the user could select the concept (and code) which most closely
represented his own image of the situation (which, in this case, would probably b
code 427.32, Atrial Flutter).

1.2.1.6 Possible Value Enumeration

The user wishes to examine a list of the possible codes, along with their correspon
phrases or other external representations that might be supplied for a specific da
entry field.

Code Phrase Weight

C0155709 Atrial fibrillation and flutter 0.9

C0004238 Atrial Fibrillation 0.5
1-4 Lexicon Query Service V1.0 June 2000

1

ntry
text in
f
turn

on.

sing

hort,

cord
oding
for

ine
he
t the
d. It
 “M,”
ogy
fied

input

cific
h of
The terminology service is supplied with the value domain representing the data-e
field, the coding scheme to be used in the field, and the language and usage con
which the selection list is to be presented. The terminology services return a list o
codes and the appropriate presentation for each code in the given context. The re
list may also contain indicators showing which code(s) are defaults for the selecti

Example: The user wishes to encode the patient’s gender into an HL7 message, u
the HL7 Version 2.3 Table 001. The terminology service is given the “domain”
identifier CX0001234, representing the concept Patient Sex Value Set. It is also given
the information the user is interested in as an English selection set for use in a s
textual list.

The terminology services return a list containing the following values:

1.2.1.7 Field Validation

The application needs to determine whether a specific code for a field in a data re
or message is valid. The application passes the code, the value domain, and the c
scheme to the terminology service. The service returns TRUE if the code is valid
the field; FALSE otherwise.

Example: An application has just received an HL7 message and needs to determ
whether it is valid and can be processed further. As the application iterates over t
various coded entries within the message, querying the terminology service abou
validity of the entries, it encounters the field in which the patient gender is encode
passes the concept representing the gender domain “CX0001234,” the code itself
and the identifier of the HL7 Version 2.3 Table 001 coding scheme to the terminol
service. The service returns TRUE indicating that “M” is a valid code for the speci
domain in the coding system.

1.2.1.8 Pick List Generation

The application can present a formatted, ordered list of possible selections for an
field. The specific user, facility, or some other factor may customize this list. The
specific list to be returned may depend upon the application requesting it, the spe
user, and other context-specific information. The list may also need to specify whic
the selections may be considered as default selections.

Table 1-1 Example of a Possible Value List

Code Presentation Text

M Male

F Female

U Unknown

O Other
LQS V1.0 Use Scenarios June 2000 1-5

1

priate
t a
m.
dium
, the

e
ncept,

the

e

rn the

e
The

, and,

e.g.,
ain

ents a
nt
ory
 is
1.2.2 Information Display

It is necessary to be able to translate a code from a coding scheme into the appro
form for presentation to an external viewer. This translation may have as its targe
printout, a video display screen, a sound generation device, or some other mediu
The display will depend upon the application doing the presentation, the target me
(screen, hard copy, etc.), the language spoken by the viewing user, and, possibly
user’s identity and classification.

1.2.2.1 Code Translation

An application wishes to represent the meaning of a specific code from a specific
coding scheme to an end-user. The terminology service is given a code and the
observer’s preferred language, and, possibly, additional context describing how th
concept is to be presented. It returns the most appropriate presentation of the co
given the situation.

Example: An application may have a data record that contains the code “123” in
laboratory test field. The application wishes to display a small (< 30 characters)
textual string representing that particular code to an English-speaking person. Th
terminology service is given the code, its coding scheme, the code for the English
language, and an ordered list of contexts (e.g., 30-character string, heading,
abbreviation, textual name) defining an acceptable presentation. The services retu
most reasonable match, if any.

1.2.3 Mediation

One of the “holy grails” of terminology services is the ability to translate coded
information from one database and/or coding system into another, independently
developed, database and coding system. While the terminology services will not
provide this capability by any stretch of the imagination, they should provide som
building blocks upon which more complete information translation may be based.
use cases below describe some of these building blocks.

1.2.3.1 Code Transformation

Perhaps the simplest situation in mediation is that of two different systems using
different coding schemes to represent identical information. While there may not
necessarily be a 100% mapping in either direction, it is possible to supply the
terminology service with a code, a source coding scheme, a target coding scheme
optionally, a specific value domain and have the service transform the code from the
source code into the target code.

Example: An external system may encode all of the coded values in a message (
gender, location, laboratory test identifier, etc.) as positive integers, with each dom
beginning at the number 1. In this case, each of the specific value domains repres
separate coding scheme. For example, the gender coding scheme might represe
“Male” with a 1, “Female” with a 2, etc. Similarly, the system might encode laborat
tests with “Serum Creatinine” as 1, “Serum Chloride” as 2, etc. In this situation, it
1-6 Lexicon Query Service V1.0 June 2000

1

heme
eme

e to

 of
the
s. A
g
main
e

f
en},
me

esult.

y
ell

ore

re

ay
possible to construct a cross-scheme map which transforms the gender coding sc
above into the HL7 Table 1 coding scheme and transforms the laboratory test sch
above into the LOINC coding scheme.

1.2.3.2 Code Mapping

It is not uncommon for two different systems to use different coding schemes to
represent similar information. In this situation, there may not be exact alignment
between the codes. Also, a code within one system may represent more specific
information than a code in another system. In certain situations, the user may
determine that this imprecision is acceptable and may use the terminology servic
determine the closest match for a given code between systems.

1.2.3.3 Structural Composition/Decomposition

Some terminology systems provide the capability to represent a concept as a set
related concepts within the same coding scheme. This provides the rudiments of
capability to change the structural representation of a concept between database
simple example of this situation might appear in the representation of a urine dru
screen. One system may treat this test as a set of {drug, result} tuples, with the do
of drug being {Amphetamines, Cannabinoids, Cocaine, Methamphetimines} and th
domain of result being {pos, neg}. A second system might treat the test as a set o
domains {AmphetimineUrineScreen, CannabinoidsUrineScreen, CocaineUrineScre
with each domain having a {pos, neg} value set. A third system might treat the sa
test as a set of {drug}, where the presence of a drug in the list implies a positive r

There are countless variations on this theme, and while a terminology service ma
assist in these transformations, the ability to do this sort of transformation is still w
outside the scope of this specification.

See Section 1.2.6, “Composite Concept Manipulation,” on page 1-9 scenario for m
detail.

1.2.3.4 Field Validation

Verify that a specific presentation is a valid value for a specific domain within a
domain usage context. See Section 1.2.1.7, “Field Validation,” on page 1-5 for mo
detail.

1.2.4 Indexing and Inference

The presence of coded information within a computerized system provides an
opportunity to augment the system with “decision support” software. This class of
software examines information entering the system, looking for situations which m
warrant additional action, such as posting alerts, generating additional data. One
example of such a system is a drug/drug interaction monitor that examines all
incoming drug orders looking for potential adverse reactions with current patient
medications.
LQS V1.0 Use Scenarios June 2000 1-7

1

they
, a

y

ce
se is

ase

f a
ort

of

,
ion.
ion of

ich

a

This type of software can use terminology services to make “inferences” about
information in incoming records and to assist in locating information in existing
databases.These cases are described below.

1.2.4.1 Relationship Inquiry

Decision support programs are often written in terms of classes of concepts and
must be able to inquire about associations between various classes. For example
particular module may be written to scan new drug orders looking for drugs that
belong to the class or classes recorded in patient allergy records. A patient allerg
record might contain the fact that the patient is allergic to Penicillin. The decision
support program would supply the code for an ordered drug (e.g., Pen-VK) to the
terminology service, along with its allergy class (e.g., Penicillin) and ask the servi
whether a “hasSubtypes” relationship exists between these entities. If the respon
TRUE, the application would then take appropriate action to warn the patient or
pharmacist of the potential problem.

1.2.4.2 Data Element Location

A decision support application might need to locate existing information in a datab
based on some classification scheme. If we extend the example above, a second
decision support program might be written to examine all patient allergy entries. I
record is entered showing the patient to be allergic to Penicillin, the decision supp
program might wish to scan the database looking for all references to orders for
Penicillin.

1.2.5 Browsing

1.2.5.1 Service Browsing

A user wishes to determine which coding schemes, value domains, and versions
each are supported by the terminology service. For each version of each coding
scheme, the user wishes to determine which languages, sources, usage contexts
presentation formats, and other coded data properties are supported by that vers
The user also wishes to determine what systemizations are supported by that vers
the coding scheme, and what association types are represented within the
systemizations. For each value domain version, the user wishes to determine wh
coding schemes have concepts in that value domain.

1.2.5.2 Concept Attribute Discovery

A user wishes to discover all of the concept codes supported by a specific coding
scheme, and by a particular version of that coding scheme. Within the context of
coding scheme version, the user wishes to discover all presentations, definitions,
comments, and instructions associated with a code.
1-8 Lexicon Query Service V1.0 June 2000

1

s a
ciated

ow
logy
alue

nd a
),

s
on of

s of a
e
o the
pts is

l form.
pts,
cepts.

ose
ion.
uilt.
For a given systemization, the user wishes to determine in which association type
concept code participates, the role that it plays in each, and what entities are asso
with the concept.

1.2.5.3 Association Discovery

In a given systemization, the user wishes to list all of the association types that
participate in the systemization and the behavioral characteristics of each.

1.2.6 Composite Concept Manipulation

1.2.6.1 Concept Attributes Retrieval

The user has selected a specific concept from a coding scheme and needs to kn
which additional attributes and values may be applied to the concept. The termino
service is given the concept and the coding scheme. It returns a set of attribute-v
pairs that further define the characteristics of the concept.

1.2.6.2 Composition

The user has identified a composite concept consisting of two or more concepts a
hierarchy of relationships between them (e.g., <inflammation> hasLocation <liver>
and wishes to translate this concept into a single, closely matching code (e.g.,
<hepatitis>). The terminology service is passed the set of hierarchical relationship
and, ideally, returns a single node - a code that represents the simplified translati
the passed concept.

1.2.6.3 Decomposition

The user has a single, complex concept that he wishes to see represented in term
set of relationships among the concepts that form the underlying composition. Th
composite concept, along with the context of the desired translation, is passed int
terminology services and a hierarchical structure representing the group of conce
returned.

1.2.6.4 Normalization

The user wishes to see a composite concept represented in the simplest canonica
The terminology service is passed the set of hierarchical relationships and conce
and returns another hierarchy that represents the canonical form of the set of con

1.3 Reference Model

This section describes the reference model for the terminology services. The purp
of this model is to define the various entities that appear in the IDL service definit
It is not intended to describe how a terminology system should be structured or b
LQS V1.0 Reference Model June 2000 1-9

1

all
mon
nal

 to

s,
iption
bed

d in
It is highly unlikely that any single terminology system implementation will contain
of the elements described in the following sections. The model represents a “com
union” of the aspects of several different systems. Much of the functionality is optio
and should be implemented only if it makes sense for the particular terminology
system. It is the intention of this model to provide a model that describes a broad
spectrum, from a simple system consisting of a list of codes and phrases to a
significant portion of a sophisticated “third generation” terminology system.8

Be aware that there will not always be an obvious, direct mapping between the
reference model and the IDL itself. This is because the reference model attempts
describe what is being done in the terminology service, where the IDL describes how it
is accomplished. Many factors, including naming conventions, compiler restriction
performance considerations, pre-established styles, etc., may cause the IDL descr
of the interface to look substantially different from the corresponding entity descri
in the model.

Note – Appendix C contains a brief description of the graphic notation encountere
the following sections.
1-10 Lexicon Query Service V1.0 June 2000

1

1.4 Model Overview

Figure 1-1 Model Overview

SourceInfo
(from ConceptDescriptions)

QualifiedCode
(from CodingTerms)

TextualPresentation

(from PresentationTypes)

 BinaryPresentation

(from PresentationTypes)

SetOfTargetElements

(from Systemizations)

0..*

0..*
UsageContext

(from MetaConcepts)

0..*

0..*

PresentationUsage
(from ConceptDescriptions)

0..*

0..*applies in context

0..* 0..1

0..*

0..1

0..*

0..1

Source
(from MetaConcepts)

0..*

0..*

has source

0..*

0..*

1

ValueDomain

(from ValueDomains)

1..*

0..*
1..*

0..*

1..*

0..*

0..*

Instructions

(from ConceptDescriptions)

0..* 0..1has source

0..1

Comment

(from ConceptDescriptions)

0..*

0..1

has source

1
0..*Definition

(from ConceptDescriptions)

0..*

0..1

has source

1

1

TerminologyService

(from TerminologyServices)

0..*

represents

1..*

0..*

ValueDomainVersion

(from ValueDomains)

0..*

1

consists of

0..*

1..*

1..*

ConceptDescription
(from ConceptDescriptions)1..*

0..*
has instructions

1..*

0..*
is annotated by1..*

0..*is defined by

0..*

0..1

1..*0..1

0..*

1

Language

(from MetaConcepts)

0..*

0..1

is written in language

1

is written in language

0..* 1is written in language

1

1..*
1..*

0..*

ValueDomainExtension

(from ValueDomains)

1

CodingScheme
(from CodingSchemes)

1

1..*

represents

0..*0..*

has extension in

1..*

0..*

Presentation

(from ConceptDescriptions)

1..*

1..*

presented as/presentation for

0..*

0..1

has language

1

0..*

LinguisticGroup

(from ConceptDescriptions)
1..*0..1

contains / grouped in

0..*

1

has language

1

0..* 1..*

ConceptCode

(from CodingTerms)

1

1..*

defines/belongs to

1..*

0..*

belongs to/contains

0..*

1

CodingSchemeVersion
(from CodingSchemes)

1

1..*

has version/is version of

0..*

1

defines/defined in

0..*

1

defined/is defined in

0..* 1..*

describes/described in

1

Systemization
(from Systemizations)

0..*

1

defines/defined in

0..*

1

1

TargetEntity

(from Systemizations)

0..*

AssociationInstance
(from Systemizations)

1

0..*

contains

1

1
target

1
ConceptCode

(from CodingTerms)

0..*

1

source

0..*

AssociationQualifier

(from MetaConcepts)

0..*

TargetElement

(from Systemizations)

0..*

0..*

qualified by
LQS V1.0 Model Overview June 2000 1-11

1

at

sed in
the

b
tions.

rings
r of
er’s

s
Figure 1-1 presents a general overview of the entities described in the sections th
follow. It is included to provide a reference point when viewing individual diagram
sections below.

1.5 Data Type Definitions

1.5.1 Basic Types

The classes, as shown in Figure 1-2, represent the data type extensions that are u
this model. These extensions are in addition to the basic data types described in
OMG’s Object Management Architecture (OMA). [8]

Figure 1-2 Basic Types

1.5.1.1 Blob

An opaque stream of bytes which is unaltered by the service or transport. The blo
data type is used to carry non-textual presentations and machine-readable instruc
A typical use of this data type would be to return a sound bite of a spoken word.

1.5.1.2 IntlString

A string which is intended to be presented using the supplied character set. IntlSt
occur in places where the language of the string is not necessarily that of the use
the system, and automatic conversion of the string to the character set of the view
native language would not be useful or desirable.

1.5.1.3 Trinary

A type which represents three possible values. This type is returned by operation
which must be able to indicate that there is insufficient information to answer a
question as well as the more traditional TRUE and FALSE results.

Weight

value : float

Blob

value : sequence<octet>

Trinary

value : enum{FALSE, TRUE, UNKNOWN}

IntlString

charSet : CharacterSet
value : string

Cardinality

minimum : integer
maximum : IntOrUnknown
1-12 Lexicon Query Service V1.0 June 2000

1

ht is
ith

nt in

”

ces

tion)
e to
e same

ble to
 one
1.5.1.4 Weight

A relative measure of the “closeness” of a match. The range of the value of a weig
0.0 ≤ value ≤ 1.0. Weights have no absolute meaning, and may only be compared w
other weights that are returned as a sequence from the same method invocation.

1.5.1.5 Cardinality

An entity representing minimum and maximum possible occurrences of an eleme
an association. The minimum value must be a non-negative integer and maximum
value must be either a positive integer or a special token representing “unknown.

1.5.2 Naming Authority

Figure 1-3 Naming Authority

Naming authorities provide a means of giving globally unique names to name spa
and hence the names within those name spaces.

1.5.2.1 RegistrationAuthority

Identifies the root of the name space authority. An entity (e.g., person or organiza
may be registered with multiple different roots (RegistrationAuthorities) and be abl
assign names and other name spaces within each root. These may be used for th
or for different needs. For this reason there is no guarantee of any equality in the
different name spaces managed by an entity. There are currently no means availa
determine whether a given authority in an ISO hierarchy is the same authority as
specified in a DNS hierarchy.

authority

1

RegistrationAuthority
value : enum {Other, DCE, IR, DNS, ISO}

naming_entity

1

NamingEntity
value : string

authority_id

1
AuthorityId

1 1

QualifiedName

1

local_name
1

LocalName
value : string

1

LQS V1.0 Data Type Definitions June 2000 1-13

1

l or
tee

outside
ibly
, the

y,
ed in
 ISO

ority
ding

lly

tity
ristic
nd

of

E

and
en
s,
space
rrive
e

mes
 for

 each
Other

This form of a naming authority should be used sparingly, and only in experimenta
localized situations. It is the responsibility of the implementing institution to guaran
uniqueness within the names themselves, and there is no uniqueness guarantee
of the source institution. Services that define default naming authorities (and poss
also names) may also use the Other root to forego long AuthorityIds. In this case
specification of the service must name AuthorityIds that may be expected with the
Other root and still maintain name space integrity.

ISO

International Standards Organization. [9] The ISO specifies a registration hierarch
identified by a series of named/numbered nodes. Many of the coding schemes us
the medical environment are or can be registered within the ISO naming tree. The
root form is one of the recommended forms when the naming authority is
internationally recognized, such as international coding schemes, or when the auth
is to be used across two or more different enterprises. ISO provides for the recor
of a responsible person and address for each node in the authority hierarchy.

DNS

Domain Name Services. [10] Internet domains are recorded with a central, global
registration authority. Subhierarchies within the domains are then maintained loca
by the registered organization or person. The DNS form is recommended as an
alternative to the ISO naming tree when the specific naming authority needs iden
and uniqueness, but is not in an ISO registration. By using this common characte
of many organizations it gives the ability to create globally unique name spaces a
names without the need to register as an ISO name authority. It is up to the
organization itself to maintain the integrity of the name space(s) (e.g., not reusing
names or name spaces).

IR

The OMG Interface Repository. [11] The CORBA Architecture specifies a means
uniquely identifying entities within the interface repository, via the use of a
RepositoryId. CORBA repository id’s may be in either the OMG IDL format, the DC
UUID format, or the LOCAL format. Within this specification, the “IR” root refers
only to the IDL format. The DCE format may be represented within the DCE root
the Local format within the Other root. The IDL authority may prove very useful wh
registering CORBA/IDL-specific objects such as value sets, interface specification
etc. It should be noted that OMG does not currently manage the repository name
in any rigorous fashion, and it is quite possible that two different developers may a
at exactly the same repository id for entirely different entities. For this reason som
people give the repository id a prefix that consists of their reverse DNS that is ‘/’
separated instead of ‘.’ separated. This root type may be very useful when the na
within the name space are defined in IDL. For example it could be the RepositoryId
an enumerated type or a module that has constant integers or strings defined for
name within the name space.
1-14 Lexicon Query Service V1.0 June 2000

1

lly
e

t of
tions

tax of
red
ific

/or
use

be

e is
 names
g

 in
DCE

The Distributed Computing Environment. [12] While they don’t actually register
coding schemes or other entities, they do provide a means of generating a globa
unique 128-bit identifier, called a Universally Unique Id (UUID). This UUID may b
used to guarantee the uniqueness of a name space in situations where it is not
necessary for the identity of the authority to be known outside of the specific
implementation.

1.5.2.2 NamingEntity

Identifies a specific name in the syntax and format specified by the corresponding
registration authority. The various naming authorities tend to provide a fair amoun
leeway as far as the actual format of the registered names. As there may be situa
where the full semantics of a specific authority’s name comparison will not be
available to an application, we have chosen to select a specific subset of the syn
each representation. The intention is to be able to determine whether two registe
entities are identical or not solely through the use of string comparison. The spec
name formats are described below:

Other

An arbitrary string, syntax undefined locally by a specific service specification and
by particular implementations and installations. The colon “:” character is illegal to
as it is reserved as a separator of components in the stringified version of AuthorityId
and UniqueName .

ISO

The name should be represented using the NameForm of the ObjectIdentifierValue as
specified in ISO/IEC Recommendation 8824-1.10 Each name component should
separated by a single space.

Example: “joint-iso-ccitt specification characterString”

DNS

The domain name and path in the form mandated in RFC 1034.12 The path nam
represented as a dot separated tree which traverses up the hierarchy. Since DNS
are not case-sensitive, only lower-case letters should be used so that simple strin
comparisons can determine equality. However, it is okay to use case-insensitive
comparisons as well.

Example: “pidsserv.slc.mmm.com”

IR

The OMG RepositoryId format specified in the CORBA Architecture V2.0 manual,
the form: “<node>/<node>/Ö/<node>”. The “IDL:” prefix and the version number
suffix should NOT be used in this format.

Example: “CosNaming/NamingContext/NotFoundReason”
LQS V1.0 Data Type Definitions June 2000 1-15

1

re
s

re
cific
 the
 to

he
DCE

The UUID in the external form <nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn>, whe
<n> represents one of the digits 0-9 and the characters A-F. The alpha character
should all be upper case.

Example: 6132A880-9A34-1182-A20A-AF30CF7A0000”

1.5.2.3 AuthorityId, AuthorityIdStr

The combination of a Registration Authority and Naming Entity which identifies a
specific naming authority. In situations where a given naming entity may have mo
than one naming authority, it should be agreed upon in advance which of the spe
names for the entity is to be used. This specification makes no guarantees about
ability to recognize, for example, that an authority in the ISO structure is identical
an authority within the OMG structure.

The string version (AuthorityIdStr) is useful for situations where unique names are
required in a string format. The string is created as <stringified
RegistrationAuthority >:<NamingEntity >. The stringified
RegistrationAuthority is given by the following:

The names are short to make string comparisons quick.

1.5.2.4 LocalName, UniqueName, UniqueNameStr

A local name is a name within (relative to) a namespace. It is simply a string
representation.

A UniqueName is a globally unique name for an entity by the fact that it carries t
naming AuthorityId of the name space and the LocalName within that name space.

The UniqueNameStr is a stringified UniqueName . The format of the string is
<stringified RegistrationAuthority >:<NamingEntity >:<LocalName >. Notice that
even though the colon character “:” cannot be used for NamingEntity , it can be used
for the LocalName .

Other -> “”

ISO -> “ISO”

DNS -> “DNS”

IR -> “IDL”

DCE -> “DCE”
1-16 Lexicon Query Service V1.0 June 2000

1

ion.

n.

of

 of a
e

here
 of
e or
1.5.3 Basic Identifiers

Figure 1-4 Basic Identifiers

1.5.3.1 LinguisticGroupId

The unique identifier of linguistic group within the context of a coding scheme vers

1.5.3.2 PresentationId

The unique identifier of presentation within the context of a coding scheme versio

1.5.3.3 RoleName

A string which serves as a synonym for either the “source” or the “target” portion
the ordered pair of types in an association. As an example, the hasComponents
association has the RoleName “composite” as a synonym for the source type and
“components” as a synonym for the corresponding target type.

1.5.3.4 SystemizationId

The name of a specific categorization or organization of concepts within a version
coding scheme. A systemization id is unique within the context of a coding schem
version.

1.5.3.5 VersionId

The unique identifier of a specific version of a coding scheme or value domain. T
is no implied ordering on version identifiers. A version identifier may be composed
both letters and digits, and must be unique within the context of the coding schem

PresentationId
value : string

LinguisticGroupId
value : string

RoleName
value : string

SystemizationId
value : string

VersionId
value : string

Characteristic
value : any
LQS V1.0 Data Type Definitions June 2000 1-17

1

se.

ed
de.

ames)
value domain. VersionId has one distinguished value DEFAULT which represents the
“production” or the latest validated version of the specific entity that is ready for u
The DEFAULT version of an entity need not be the most recent.

1.5.3.6 Characteristic

A characteristic represents a non-coded “property” or “attribute” which is associat
with a concept code. A characteristic may be of any type other than a concept co

1.5.4 Terminology Identifiers

Figure 1-5 Terminology Identifiers

1.5.4.1 CodingSchemeId

A CodingSchemeId is a globally unique identifier of a specific coding scheme, a
coding scheme is a naming authority that manages a set of concept codes (local n
within its name space.

ConceptCodeCodingSchemeId ValueDomainId

authority_id

1

AuthorityId
(from NamingAuthorities)

local_name

1

LocalName
(from NamingAuthorities)

QualifiedName
(from NamingAuthorities)

1
1

QualifiedCode
1-18 Lexicon Query Service V1.0 June 2000

1

 field
data

he

e
 that

 are
1.5.4.2 ValueDomainId

A ValueDomainId is a globally unique identifier of a specific value domain. The
identifier consists of a naming authority and the actual domain name. The naming
authority provides a unique name space, while the domain name identifies a given
in a message, a column in a database, an entry field on a screen or some other
value which may contain coded information.

1.5.4.3 QualifiedCode

A globally unique concept code formed by combining the coding scheme id and t
local concept code within that coding scheme.

1.5.4.4 ConceptCode

An arbitrary string that identifies a unique entity within a given coding scheme. Th
coding scheme forms the naming authority and the concept codes is unique within
space.

1.5.5 Meta Concepts

Figure 1-6 Meta Concepts

Figure 1-6 represents the coded entities that are used to access the terminology
services. The semantic details and valid codes for each of these different entities
described in more detail in Section 3.2, “Meta-Terminology,” on page 3-3.

SourceId

AssociationQualifierId

UsageContextId
LanguageId

PresentationFormatId

SyntacticTypeId

QualifiedCode
(from CodingTerms)

CharacterSetId AssociationId

LexicalTypeId

SourceTermUsageId
LQS V1.0 Data Type Definitions June 2000 1-19

1

ame
ing

ven

e

 are

ould

re

rred

 a
s
1.5.5.1 SourceId

A code that identifies a book, publication, person, or other citation. It is used to n
the source from which definitions, presentations and other information within a cod
scheme are drawn.

1.5.5.2 CharacterSetId

A code that identifies an international character set. It is used to specify how a gi
definition, presentation is to be printed or displayed.

1.5.5.3 SourceTermUsageId

A code that identifies a specific way that a string is used within a source. Exampl
source term types include “Adjective,” “Disease Name,” “Language Qualifier.”

1.5.5.4 LexicalTypeId

The code for type which may be assigned to a presentation usage. Lexical types
such things as “abbreviation,” “Acronym,” “Eponym,” “Trade name.”

1.5.5.5 PresentationFormatId

A code that identifies the format that a given presentation is in. Example formats c
include “plain text,” “html,” “.wav,” “word 7.0 document.”

1.5.5.6 LanguageId

A code that identifies a spoken or written language. Example languages include
“English,” “French.”

1.5.5.7 AssociationId

A code that identifies an association type. Association types are described in mo
detail in Section 3.2.1, “Association,” on page 3-3.

1.5.5.8 SyntacticTypeId

A code which identifies a type of variation that a presentation takes from the prefe
form within a specific linguistic group. Example syntactic types include “spelling
variant,” “singular,” “plural,” and “word order.”

1.5.5.9 UsageContextId

A code which identifies a specific context in which a presentation associated with
given context code is to be used. Example usage contexts could be such things a
“column heading,” “ADT application,” “long textual description.”
1-20 Lexicon Query Service V1.0 June 2000

1

here in

tual
e
1.5.5.10 AssociationQualifierId

A code which qualifies or provides further information about a specific association
instance.

1.5.6 Composite Types

Figure 1-7 Composite Types

Figure 1-7 represents several miscellaneous composite types that are used elsew
this specification.

1.5.6.1 PickListEntry

This entity is used to pass a qualified concept code along with an appropriate tex
representation. A PickListEntry also contains a flag to indicate whether it should b
considered “pre-picked” by default. The PickListEntry is used as a return type in
Section 1.6.2, “Value Domains,” on page 1-40.

1.5.6.2 ValidationResult

The result returned by the ValidateConceptExpression method in the Systemization
class. Validation result contains a Boolean result value plus a slot for an additional
qualifier on the result

PickListEntry

concept : QualifiedCode
pickText : IntlString
isDefault : boolean

(from ValueDomains)

ValidationResult
result : boolean
validityLevel : AssociationQualifierId

0..1

Characteristic

0..1

QualifiedCode

AssociatableElement

0..10..1

WeightedResult
concept : ConceptCode
matchText : IntlString
weight : Weight
LQS V1.0 Data Type Definitions June 2000 1-21

1

 may
rty or

 the
ative

n

e

f

is

1.5.6.3 AssociatableElement

A choice of either a qualified code or a characteristic. The target of an association
either be a concept code or a non-coded characteristic which represents a prope
attribute of the concept code being described.

1.5.6.4 WeightedResult

An entry in a weighted result list from a match function. A weighted result includes
matching concept code, the string (if any) which resulted in the match and the rel
weight assigned to the match.

1.5.7 Collections

This model uses two types of collections: sets and sequences. The model uses the name
of the class to distinguish these types. Collections of the form <entity>Set represent an
unordered set of entities of type <entity>. Set collections do not have duplicates. As a
example, the type ConceptCodeSet is returned from the
CodingScheme.GetAllConcepts() method. It contains an unordered list of all the uniqu
concept codes that are managed by the coding scheme.

Collections of the form <entity>Sequence represent an ordered collection of entities o
type <entity>. A sequence collection may contain duplicates when appropriate. An
example sequence would be CodingSchemeVersionSequence, which is returned from the
CodingSchem.GetAllCodingSchemeVersions() operation, and contains a list of all the
supported versions of the coding scheme in reverse chronological order.

Some of the collections defined in this document may well be extremely large. It
anticipated that implementations of the abstract model will need to add additional
semantics to the collections to allow for streaming style and buffered, clustered
retrieval.
1-22 Lexicon Query Service V1.0 June 2000

1

s. In
ts

es

rvice

y the
1.6 Terminology Service

Figure 1-8 Terminology Service

A terminology service represents one or more partial or complete coding scheme
addition it may represent a set of value domains which identify groups of concep
within and across coding schemes.

The terminology service class can return a list of all the supported coding schem
(GetAllCodingSchemes), return a named coding scheme (GetCodingScheme), or the
coding scheme which has been designated the “native” coding scheme by the se
provider, if any (GetNativeCodingScheme).

The terminology service can also list all of the value domains that are supported b
service (GetAllValueDomains) or access a specific value domain by name
(GetValueDomain). In addition, it can return a list of all the value domains which
contain a specified concept code (GetValueDomainsForConcept).

1

1..*
CodingScheme

(from CodingSchemes)

0..*

ValueDomain
(from ValueDomains)

TerminologyService

GetAllCodingSchemes () : CodingSchemeSet
GetCodingScheme (codingSchemeId : CodingSchemeId) : CodingScheme
GetNativeCodingScheme () : CodingScheme
GetAllValueDomains () : ValueDomainSet
GetValueDomain (valueDomainId : ValueDomainId) : ValueDomain
GetValueDomainsForConcept (concept : QualifiedCode) : ValueDomainSet

1

1..*

represents

0..*

represents
LQS V1.0 Terminology Service June 2000 1-23

1

hese
nique

 and
ally

oncept
tired,”
1.6.1 Coding Schemes

1.6.1.1 Coding Scheme

Figure 1-9 Coding Scheme

A coding scheme defines and/or describes a set of one or more concept codes. T
codes are unique within the namespace of the coding scheme, and are globally u
when coupled with the name (codingSchemeId) of the coding scheme itself. The
QualifiedCode class represents this globally unique combination of a concept code
a coding scheme. While not explicitly shown in this model, a qualified code is actu
a subtype of a QualifiedName from the naming authority module.

A coding scheme may consist of more than one revision or version. Each version
represents a consistent, reproducible state of the coding scheme. Because new c
codes may be added to a coding scheme and existing concept codes may be “re

QualifiedCode
(from CodingTerms)

ConceptDescription
(from ConceptDescriptions)

1

1..*

1

CodingScheme

codingSchemeId : CodingSchemeId

GetCodingSchemeVersion (versionId : VersionId) : CodingSchemeVersion
GetDefaultCodingSchemeVersion () : CodingSchemeVersion
GetAllVersions () : CodingSchemeVersionSequence
GetLastValidVersion (conceptCode : ConceptCode) : CodingSchemeVersion

1..*

0..*

CodingSchemeVersion

1

1..*

has version/is version of

1..*

ConceptCode
(from CodingTerms)

1

1..*

defines/belongs to

0..*1..*

describes/described in
1-24 Lexicon Query Service V1.0 June 2000

1

a

p to
le

de
pt

be
ion

iven

y, in
a
r

not all concept codes in a coding scheme may be described in any single coding
scheme version. A vendor implementation may not maintain multiple versions of
coding scheme.

Earlier versions may be removed from the service at the vendor’s discretion. It is u
the vendor to decide whether concept codes that are not described in any availab
coding scheme version are to be retained in the coding scheme itself.

A code can have only one “meaning” within a given coding scheme1. One version of a
coding scheme cannot use concept code “123” to represent the color red while another
version uses the same code to represent the color green. Within this constraint,
definitions, comments, external representations may vary for the same concept co
across the versions of the coding scheme. The definitions, comments for a conce
code in a coding scheme version are represented by the ConceptDescription class,
which will be described in detail later in this section.

The CodingScheme class provides a means (GetAllVersions) of listing all the versions
that are available in a terminology service implementation. This list is provided in
reverse chronological order with the most recent version being returned first. The
CodingScheme class also allows direct access to a specific named version
(GetCodingSchemeVersion). In any coding scheme, exactly one of the versions must
identified as the “default” version. This version does not have to be the latest vers
of the scheme. It designates the version that is preferred for general use at the g
point in time. The GetDefaultVersion method provides direct access to the default
version.

The class also provides a means of locating the chronologically latest version, if an
which a coded concept is considered valid. The intent of this method is to allow
client to locate a coding scheme version that contains presentations, etc., even fo
concept codes that have been rendered obsolete.

1.Coding schemes like ICD-9 fall into a gray area. If we ignore the NOC (not otherwise
classified) issue of the 20,000 some odd codes in ICD-9, a few (10-20) may change in
meaning between revisions. Is ICD-9 1989 a different coding scheme than ICD-9 1997? It is
recommended that terminology service vendors take the pragmatic view in situations like
this and provide the most reasonable solution for the circumstances. In this case it would
probably be representing revisions as versions.
LQS V1.0 Terminology Service June 2000 1-25

1

, and

oding

 is

at can
o

me.
d
1.6.1.2 Coding Scheme Version

Figure 1-10 Coding Scheme Version

A coding scheme version describes or defines one or more of the concept codes
contained in the coding scheme. It associates definitions, comments, instructions
various external representations with a concept code. The ConceptDescription class
represents a concept code as it appears in a given coding scheme version. The c
scheme version class also may provide one or more orderings, classifications, or
categorizations between some or all of the concept codes within the version. This
represented by the Systemization class.

Some coding schemes maintain a separate list of all the unique representations th
be associated with concept codes. This list allows cross-referencing and access t
additional syntactic and linguistic information. The Presentation class represents
members of this list. Some coding schemes may also group syntactically similar
presentations together into uniquely identified “linguistic groups.”

Each CodingSchemeVersion class has its version identifier as an attribute. This
identifier uniquely names the version within the context of the parent coding sche
With the exception of the isDefaultVersion flag, the contents and behavior of a name
coding scheme version must be consistent and reproducible over time.

CodingSchemeVersion
version : VersionId
isDefaultVersion : boolean
isCompleteScheme : boolean

GetParentCodingScheme () : CodingScheme
ListSupportedLanguages () : LanguageIdSet
ListSchemeSources () : SourceIdSet
ListSupportedUsages () : UsageContextIdSeq
ListSupportedPresentationFormats () : PresentationFormatIdSet
ListAllSyntacticTypes () : SyntacticTypeIdSet
ListAllLexicalTypes () : LexicalTypeIdSet
ListSourceTermTypes () : SourceTermTypeIdSet
GetAllConcepts () : ConceptCodeSet
IsValidConceptCode (conceptCode : ConceptCode) : boolean
GetConceptDescription (concept : ConceptCode) : ConceptDescription
GetConceptsByText (text : IntlString, language : LanguageId) : ConceptCodeSet
MatchConceptsByString (matchString : IntlString, language : LanguageId) : WeightedResultSequence
MatchConceptsByKeywords (keywords : IntlStringSet, language : LanguageId) : WeightedResultSequence
GetAllLinguisticGroups () : LinguisticGroupSet
GetLinguisticGroup (linguisticGroupId : LinguisticGroupId) : LinguisticGroup
GetPresentation (presentationId : PresentationId) : Presentation
GetAllSystemizations () : SystemizationSet
GetSystemization (systemizationId : SystemizationId) : Systemization
GetDefaultSystemization () : Systemization

1

0..*
Systemization

(from Systemizations)

0..*

1..*
ConceptCode

(from CodingTerms)

1..*

1..*

ConceptDescription
(from ConceptDescriptions)

0..*

1

1

1

0..*

defines/defined in

0..*

1..*

describes/described in

0..*

1..*

Presentation
(from ConceptDescriptions)

1..*

1..*

presented as/presentation for

0..*

1 defines/defined in

0..1

LinguisticGroup
(from ConceptDescriptions)

1

0..*

defined/is defined in

1..*

0..1

contains / grouped in
1-26 Lexicon Query Service V1.0 June 2000

1

ven

.

ts,

en

ng

The CodingSchemeVersion class contains a flag (isDefaultVersion) that indicates
whether it is considered to be the default version of the coding scheme at that point in
time. The class also contains a second flag (isCompleteScheme) that is used to indicate
whether the specific coding scheme version contains the entire contents of the gi
coding scheme or some subset thereof.

CodingSchemeVersion methods can be divided into four general groups of methods

1. The first group consists of a set of methods with all the discovery of the
characteristics of the coding scheme. GetParentCodingScheme allows backward
traversal to the coding scheme itself. The methods ListSupportedLanguages,
ListSchemeSources, ListSupportedUsages, ListSupportedPresentationFormats,
ListAllSyntacticTypes, ListAllLexicalTypes and ListSourceTermUsages provide the
ability to list all of the languages, sources, usage contexts, presentation forma
syntactic types, lexical types, and source term types which are partially or fully
supported by this version of the coding scheme.

2. The second group provides several ways to access the concept codes that are
described in the coding scheme version. They allow the user to list all of the
concept codes described in the version (GetAllConcepts), get a detailed description
of a given code in the version (GetConceptDescription), and match all of the
concepts which have specific text (GetConceptsByText), text patterns
(MatchConceptsByString) or keywords associated with them
(MatchConceptsByKeywords). There is also a method to determine whether a giv
code is included in this version of the coding scheme (IsValidConceptCode).

3. The third group provides access to all linguistic groups defined within the codi
scheme (GetAllLinguisticGroups), a specific named linguistic group
(GetLinguisticGroup), or presentation (GetPresentation).

4. The fourth group provides the ability to access all systemizations
(GetAllSystemizations), a specific named systemization (GetSystemization), or the
default systemization (GetDefaultSystemization), if any, associated with the specific
coding scheme version.
LQS V1.0 Terminology Service June 2000 1-27

1

ts,
 upon
ge
utes

sion.

ed

age
be
1.6.1.3 ConceptDescription – Part 1

Figure 1-11 Concept Description 1

The description and definition of a concept code may include definitions, commen
presentations, etc. The exact content of each of these entities may be dependent
the version of the coding scheme. While the “meaning” of a concept will not chan
within a coding scheme, it is possible for the definitions, comments and other attrib
of the concept to undergo significant change over time. The entity Concept Description
represents the description of a concept code within a specific coding scheme ver

A concept description may include several definitions, comments, and/or associat
use instructions. In this model a definition is constrained to be a textual, human
readable definition written in a specific language. At most one definition per langu
may be marked as the preferred definition for the concept code. Definitions may
attributed to a source.

Source
(from MetaConcepts)

0..* CodingSchemeVersion
(from CodingSchemes)

1..*ConceptCode
(from CodingTerms)

0..*1..* describes/described in

0..*

0..1

0..1

0..*

1

0..*

1

1..*

0..*Definition
text : IntlString
preferred : boolean

GetLanguage () : Language
GetSource () : Source

1..*

0..*
Comment

text : IntlString

GetLanguage () : Language
GetSource () : Source

0..1

0..*

0..1

has source

0..1

0..*

has source

0..*0..*

0..1Language
(from MetaConcepts)

1

0..*

is written in language

1

is written in language

1..*

ConceptDescription

GetCodingSchemeVersion () : CodingSchemeVersion
GetConceptCode () : ConceptCode
GetDefinitions (preferredOnly : boolean, language : LanguageId) : DefinitionSet
GetComments (language : LanguageId) : CommentSet
GetInstructions (language : LanguageId) : InstructionSet
GetAllPresentations (language : LanguageId) : PresentationUsageSet
GetPreferredPresentation (language : LanguageId, format : PresentationFormatId) : PresentationUsage
GetPresentationForContext (language : LanguageId, format : PresentationFormatId, contexts : UsageContextSequence) : PresentationUsage
GetAllPresentationsForContext (language : LanguageId, format : PresentationFormatId, contexts : UsageContextSeq, sources : SourceIdSet) : PresentationUsage

1..*

0..*

is defined by

1..*

0..*

is annotated by

0..*
Instructions

text : IntlString
formalRules : Blob

GetLanguage () : Language
GetSource () : Source

0..1

0..*

has source

0..*

0..1

is written in language

1..*

0..*

has instructions
1-28 Lexicon Query Service V1.0 June 2000

1

xtual

e is
d.

one

ng
sed to

 than

version
Comments are non-definitional annotations and are associated with a language.
Comments may be attributed to a source as well. An instruction may consist of te
instructions, machine-readable instructions, or both. If the textual portion of an
instruction is present it may have a specific language. Instructions may also be
attributed to sources.

The ConceptDescription methods allow access to the coding scheme version
(GetCodingSchemeVersion) and concept code with which it is associated
(GetConceptCode). The methods also provide a means to access definitions
(GetDefinitions), comments (GetComments), and instructions (GetInstructions). All
three access methods allow the provision of an optional language. If the languag
specified, only entities that are associated with the supplied language are returne
Without a language, all entities are returned. The definition access method also
provides the ability to specify whether the preferred definition(s) (there is at most
preferred definition per language) should be returned or whether all definitions
associated with the concept code should be returned.

The rest of the methods associated with ConceptDescription are described below.

1.6.1.4 ConceptDescription – Part 2

Figure 1-12 Concept Description 2

A ConceptDescription is the description of a concept code within a version of a codi
scheme. This association includes one or more external representations that are u
present the concept code to the outside world. The Presentation class above represents
these external representations. It is possible for a presentation to represent more
one concept code in a version of a coding scheme. The PresentationUsage class
represents a unique association between a presentation and a concept code in a

1..*

ConceptDescription

GetCodingSchemeVersion () : CodingSchemeVersion
GetConceptCode () : ConceptCode
GetDefinitions (preferredOnly : boolean, language : LanguageId) : DefinitionSet
GetComments (language : LanguageId) : CommentSet
GetInstructions (language : LanguageId) : InstructionSet
GetAllPresentations (language : LanguageId) : PresentationUsageSet
GetPreferredPresentation (language : LanguageId, format : PresentationFormatId) : PresentationUsage
GetPresentationForContext (language : LanguageId, format : PresentationFormatId, contexts : UsageContextSequence) : PresentationUsage
GetAllPresentationsForContext (language : LanguageId, format : PresentationFormatId, contexts : UsageContextSeq, sources : SourceIdSet) : PresentationUsage

1..*

0..*

Presentation

1..*

1..*

presented as/presentation for

0..1

Language
(from MetaConcepts)

0..*

0..1

has language

0..*

UsageContext
(from MetaConcepts)

0..*

PresentationUsage

0..*

0..*

applies in context
LQS V1.0 Terminology Service June 2000 1-29

1

ns.

 there

n-

ept

The

 all
et
of a coding scheme. Coding schemes may associate a language with presentatio
Presentations for a given concept code may have additional usage information
associated with them, as represented by the UsageContext class.

In the above model, the presentation “cold” in the English language may be a
presentation for two or more different concept codes. One code could represent a
temperature and the second code represents an upper respiratory infection. While
would be one presentation, there would be two PresentationUsage entities, one for each
presentation/concept association. The UsageContext for the upper respiratory infection
might indicate that the text “cold” is to be used only when presenting the term to no
medical professionals. The UsageContext for the temperature might indicate that the
presentation is to be used for laymen and physicians alike.

The ConceptDescription class allows the user to retrieve all presentations for a conc
code in a coding scheme version (GetAllPresentations). The language parameter allows
the selective retrieval of all concept code presentations for a specified language.
class also has a method that allows the retrieval of the preferred presentation for
concept code in a given language and presentation format (GetPreferredPresentation).

The ConceptDescription class can also be used to retrieve the “best” presentation
associated with a concept code given a set of usage contexts
(GetPresentationsForContext). There is also a method that allows the user to retrieve
possible presentations for a concept code to be retrieved given a usage context s
(GetAllPresentationsForContext).

Details about presentations are described in the following section.

Presentations

Figure 1-13 Presentations

PresentationUsage

preferrredForConcept : boolean
preferredWithinLinguisticGroup : boolean
syntacticTypes : SyntacticTypeIdSet
lexicalTypes : LexicalTypeIdSet

GetPresentation () : Presentation
GetConceptDescription () : ConceptDescription
GetUsageContexts () : UsageContextSet
GetSourceInfos () : SourceInfoSet

1..*

ConceptDescription

1..*

0..11..*

0..*

Presentation

presentationId : PresentationId
presentationFormat : PresentationFormatId

GetAllConcepts () : ConceptCodeSet
GetLanguage () : Language
GetLinguisticGroup () : LinguisticGroup
GetPresentationUsages () : PresentationUsageSet

1..*

1..*

presented as/presentation for

0..1

0..*

LinguisticGroup

linguisticGroupId : LingusticGroupId

GetAllPresentations () : PresentationSet
GetLanguage () : Language

0..11..*

contains / grouped in

1

Language

(from MetaConcepts)

0..*

0..1

has language

0..*

1

has language

SourceInfo

sourceTermType : SourceTermUsageId
sourceCode : QualifiedCode

GetSource () : Source

0..*

UsageContext

(from MetaConcepts)
usageContextId : UsageContextId

0..*

0..*

Source

(from MetaConcepts)

0..*

0..*

0..*

applies in context

0..*

0..*

has source
1-30 Lexicon Query Service V1.0 June 2000

1

ome
n

.

 use

ups.
ion
tic

 and a
tation

p

e
d

 or

priate

l
i, as

itional
ic
A presentation is an external sign or symbol used to represent a concept code. S
coding schemes provide a unique identifier for each unique presentation in a give
language. This identifier is represented by the presentationId.

Each presentation has a format type (presentationFormat) which identifies additional
external processing which may be necessary to properly display the presentation
Possible format types include plain text, html, rtf, .wav sound byte, etc.

The presentation class provides the ability to determine all of the concepts which
the particular presentation (GetAllConcepts), to determine the language of the
presentation, if any (GetLanguage) and to determine which linguistic group that the
concept belongs to, if any (GetLinguisticGroup). The class also provides a means of
accessing all presentation usage entities associated with it (GetPresentationUsages).

Some coding schemes group syntactically similar presentations into linguistic gro
This grouping is independent of how the presentations are used, and a presentat
belongs to at most one linguistic group. If present in the coding scheme, a linguis
group will have an identifier (linguisticGroupId) which is unique within the coding
scheme. The linguistic group class allows the enumeration of all presentations
contained within the group (GetAllPresentations).

The PresentationUsage class represents the association between a concept code
presentation in a given version of a coding scheme. This class allows one presen
to be identified as the preferred presentation for the concept (preferredForConcept). If
the coding scheme includes linguistic groups, one presentation per linguistic grou
may also be identified as the preferred presentation for that concept in that group
(preferredWithinLinguisticGroup). If the coding scheme includes linguistic groups, th
syntacticTypes may specify how non-preferred presentations vary from the preferre
presentation for the concept in the group. Possible types may include plural, spelling,
word order variation, etc. The presentation usage may also be associated with one
more lexical types. Typical lexical types include acronym, eponym, trade name, etc.

A presentation associated with a concept code in a coding scheme may be appro
only in certain situations or contexts. The UsageContext class allows specific contexts,
in which a presentation applies. Typical usage contexts might include short column
heading, single-line text, presentation for physician, presentation for layman, etc. The
GetUsageContexts method provides access to all of the applicable usage contexts.

A given presentation for a concept code may be attributed to one or more externa
sources. Typical sources could include dictionaries, terminology manuals, thesaur
well as different coding schemes. The method GetSourceInfos provides access to the
various source references. Each source reference may be attributed with the add
information about how the presentation for the concept code is used in the specif
source (sourceTermUsage). A typical sourceTermUsage might be adjective, finding
name, machine permutation, etc. Each attribution may also carry a code (sourceCode)
which is associated with that presentation in that source.
LQS V1.0 Terminology Service June 2000 1-31

1

istic
es in a

 to

.

r
Presentation Types

Figure 1-14 Presentation Types

This model shown in Figure 1-14 is restricted to presentations that represent lingu
concepts. A presentation is expected to represent a word, phrase, or set of phras
human language. Presentations may include such things as HyperText Markup
Language (HTML) documents, formatted text such as Rich Text Format (RTF)
documents, .wav files which represent spoken words. This model is not designed
include non-textual pictures, icons, sounds beside spoken words.

Each presentation has a format type (presentationFormat) which identifies additional
external processing which may be necessary to properly display the presentation
Possible format types include plain text, html, rtf, .wav sound byte, etc. A presentation
may be either straight text or may contain binary data. The TextualPresentation subtype
represents textual data and the BinaryPresentation format represents non-textual and/o
binary data. No association should be inferred between presentationFormat and the
type of presentation. It is quite possible that a terminology system may represent plain
text as a BinaryPresentation or some other type as a TextualPresentation.

TextualPresentation
text : IntlString

 BinaryPresentation
binary : Blob

1..*
Presentation

presentationId : PresentationId
presentationFormat : PresentationFormatId

GetAllConcepts()
GetLanguage()
GetLexicalGroup()
GetPresentationUsages()

(from ConceptDescriptions)

1..*

ConceptDescription
(from ConceptDescriptions)

1..*

1..*

presented as/presentation for
1-32 Lexicon Query Service V1.0 June 2000

1

et of
he
ween

n
odes or
1.6.1.5 Systemizations

Figure 1-15 Systemization

A systemization represents an ordering, classification, and/or categorization of a s
concept codes. The purpose of a systemization is to further define and describe t
concept codes within a coding scheme, and possibly to define the relationship bet
these concept codes and concept codes in other coding schemes.

The systemization class references one or more association types, which are the
instantiated as association instances between concept codes and other concept c
characteristics.

Systemization
systemizationId : SystemizationId

GetCodingSchemeVersion () : CodingSchemeVersion
GetAllAssociations () : AssociationSet
GetAllAssociationInstances () : AssociationInstanceSet
AreEntitiesAssociated (source : ConceptCode, target : AssociatableElement, association : AssociationId, directOnly :
boolean) : Trinary
CouldAssociationBeInferred (source : ConceptCode, target : AssociatableElement, association : AssociationId) : Trinary
GetAssociatedTargetEntities (source : ConceptCode, association : AssociationId, directOnly : boolean) : TargetEntitySet
GetAssociatedSourceCodes (target : AssociatableElement, : AssociationId, directOnly : boolean) : ConceptCodeSet
GetAssociationsForSource (source : ConceptCode) : AssociationSet
GetAssociationsForTarget (target : AssociatableElement) : AssociationSet
ValidateConceptExpression (expression : ConceptExpression) : ValidationResult
GetSimplestForm (expression : ConceptExpression) : ConceptExpression
ExpandConcept (concept : QualifiedCode, associationQualifiers : AssociationQualifierSet) : ConceptExpression
AreExpressionsEquivalent (expression1 : ConceptExpression, expression2 : ConceptExpression) : Trinary
ExpressionDifference (expression1 : ConceptExpression, expression2 : conceptExpression) : ConceptExpression
MinimalCommonSupertype (expressions : ConceptExpressionSet) : ConceptExpression

0..*

1..*

1

0..*

1

1

TargetEntity

0..*1

Association
(from MetaConcepts)

associationId : AssociatioinId
baseType : AssociationType
sourceRole : Role
targetRole : Role
targetIsSet : Bolean
nonCodedAllowed : Boolean
sourceCardinality : Cardinality
targetCardinality : Cardinality
transitive : Trinary
symmetric : Trinary
inherited : Trinary
sourceTargetDisjoint : Trinary

0..*

1..*

references

0..*

AssociationInstance

GetAssociation () : Association
GetSourceEntity () : ConceptCode
GetTargetEntity () : TargetEntity

1

0..*

contains

1

1

target

0..*1

is instantiated as

1

ConceptCode
(from CodingTerms)

0..*

1

source

SetOfTargetElements
value : TargetElementSequence

0..*
AssociationQualifier

(from MetaConcepts)

0..*

TargetElement
value : AssociatableElement,

0..*

0..*

qualified by
LQS V1.0 Terminology Service June 2000 1-33

1

ing
either
y

t

t code
e

re

d
)

t

The source of an association instance must be a concept code from the local cod
scheme. The target of an association depends upon the association type. It may
be a single target element or a set of target elements. A single target element ma
either be a qualified code or a characteristic.2

 The systemizationId serves to uniquely identify the systemization within the coding
scheme version. The GetCodingSchemeVersion method serves to access the coding
scheme version in which the systemization is implemented.

GetAllAssociations returns a list of all the association types that participate in the
systemization. See Section 3.2.1, “Association,” on page 3-3 for details on the
Association attributes.

GetAllAssociationInstances returns a (potentially large) list of all the associations tha
are contained within the systemization.

The systemization class has several methods that are used to query specific
associations within the systemization. The first method, AreEntitiesAssociated, asks
whether an instance of the named association exists in which the supplied concep
has the source role and the supplied associatable element has the target role. Th
directOnly flag indicates whether only direct associations are to be considered
(directOnly = TRUE) or whether a transitive paths between the source and target a
also to be taken into account (directOnly = FALSE).

As an example, if the following associations were present in a systemization:

<Computer> hasComponents {<MotherBoard>, <Monitor>, <Keyboard>}

<MotherBoard> hasComponents { <ALU>, <Clock>, <Memory>}

the query AreEntitiesRelated(<Computer>, <ALU>, hasComponents, TRUE) would
yield a result of FALSE, as there is no direct association involving <Computer> an
<ALU>. The query AreEntitiesRelated(<Computer>, <ALU>, hasComponents, FALSE
would yield TRUE, as there is an indirect path along the hasComponents association
between <Computer> and <ALU>. Queries on non-transitive or intransitive
associations behave as if the directOnly flag is always TRUE. The AreEntitiesRelated
query may also return “unknown”, indicating that the systemization has insufficien
information to be able to determine whether a given association exists or not.

The AreEntitiesRelated query only returns entities which are directly or indirectly
associated with the input entity using the supplied association. Subtype associations are
not taken into account. For example:

<memory> hasSubtypes (<disk>, <ram>, <rom>)
<Computer> hasComponents {<MotherBoard>, <Monitor>, <Keyboard>}
<MotherBoard> hasComponents { <ALU>, <Clock>, <Memory>}

2.Note that the distinction between a qualified code and characteristic is often imprecise. As
an example, one coding scheme or terminology vendor may choose to represent a color
attribute using a simple string, while another vendor may encode a list of possible colors. A
client should be coded in such a way that it can cope with either situation.
1-34 Lexicon Query Service V1.0 June 2000

1

nd

e

s,

s in

odes,
rve
The query AreEntitiesRelated(<Motherboard>, <ram>, hasComponents, FALSE) would
yield a result of FALSE. The query CouldAssociationBeInferred allows terminology
vendors to expose more sophisticated inferencing capabilities, crossing subtype a
other associations in the process of reaching the result. The query
CouldAssociationBeInferred(<Motherboard>, <ram>, hasComponents) would probably
return a TRUE value. It is anticipated that terminology vendors who implement th
CouldAssociationBeInferred will probably add additional, proprietary methods to
provide inference explanations and other more sophisticated properties.

GetAssociatedTargetEntities returns the set of all target entities that participate in the
named association with the source code. If directOnly is TRUE, only the target entities
directly associated with the source codes are supplied. If FALSE, all of the target
entities in the transitive closure of the association are returned.

As an example, given the following association instances:

<Anti-Infective Agent> hasSubtypes {<Amebacide>, <Anthelmintic>}
<Amebacide> hasSubtypes {<hydroxyquinoline derivatives>,
 <arsenical anti-infectives>}
<Anthelmintic> hasSubtypes <{quinoline derivatives}>

The query GetAssociatedTargetEntities(<Anti-Infective Agent>, hasSubtypes, TRUE)
would return a set consisting of one element (another set):

{{<Amebacide>, <Anthelmintic>}}

while the query GetAssociatedTargetEntities(<Anti-Infective Agent>, hasSubtypes,
FALSE) would return the set consisting of four elements:

 {{<Amebacide>, <Anthelmintic>}, {<hydroxyquinoline derivatives>, <arsenical anti-
infectives>}, <{quinoline derivatives}}.

Similarly, GetAssociatedSourceCodes returns all of the source qualified codes that
participate in the named association with the supplied target element. The query
GetAssociatedSourceCodes(<arsenical anti-infectives>, hasSubtypes, TRUE) would
return the set:

{<Amebacide>}

while the query GetAssociatedSourceCodes(<arsenical anti-infectives>, hasSubtype
FALSE) would yield

 {{<Amebacide> <Anti-Infective Agent>}

The method GetAssociationsForSource returns the set of all associations in which the
supplied qualified code participates in the source role. GetAssociationsForTarget
returns the set of all associations in which the supplied target element participate
the target role.

Concept Expressions

Concept expressions consist of the logical conjunction of a set of base concept c
each of which is optionally qualified by one or more attribute value pairs which se
to further define or constrain the class of entities which the concept code may
represent.
LQS V1.0 Terminology Service June 2000 1-35

1

et of
Figure 1-16 Concept Expression

1.6.1.6 ConceptExpression

A concept expression is the logical conjunction of one or more
ConceptExpressionElements, each of which represents a base concept code and a s
optional, nested qualifiers.

0..*

0..*

AttributeValuePair

elementRole : choice {Source, Target}
association : Association

AttributeValuePair

elementRole : choice {Source, Target}
association : Association

1

0..*

AssociationQualifier

(from MetaConcepts)
RelatedEntityExpression

associatedElement : AssociatableElement

0..*

qualifiedBy

1

0..*

qualified by

ConceptExpressionElement

baseCode : ConceptCode

0..*

qualified by

ConceptExpression

1

1..*

conjunction of

1

1..*
1-36 Lexicon Query Service V1.0 June 2000

1

been
ngle

he

rom
he
1.6.1.7 ConceptExpressionElement

A concept expression represents a concept code whose scope or “meaning” has
further constrained or refined by the addition of qualifiers. It has, as its base, a si
concept code. One or more AttributeValuePairs may further qualify this concept code.
An AttributeValuePair consists of an association, an AssociatableElement, and an
optional set of association qualifiers. Additional AttributeValuePairs may further
qualify the AssociatableElement within an AttributeValuePair. An AssociatableElement
represents a qualified name in the case where the baseRole is Target (when the base
concept occupies the target role and the AssociatableElement the source). It may
represent either a qualified name or a characteristic in the case where the baseRole is
Source.

1.6.1.8 RelatedEntityExpression

An entity expression is identical to a concept expression with the exception that t
“qualified” or base entity can be an AssociatableElement, which may either be a
qualified code or a characteristic.

Expression and simplification

The next seven methods in a systemization expose functionality associated with
concept expressions. The notation for the following examples is borrowed heavily f
the GALEN CORE notation. [13] Given the following example, which represents t
upper lobe of the left lung:

Lobe which <is-part-of (Lung which has-laterality Left)

 has-location “upper”>

this could be expressed as a concept expression as follows:
LQS V1.0 Terminology Service June 2000 1-37

1

mple
cept

ept
Figure 1-17 Concept Expression Example

In Figure 1-17, the text “upper” has been typed as a characteristic to provide a si
example of the representation of characteristics.Typically it would be a coded con
in a real terminology service.

The systemization class provides the methods listed below for manipulating conc
expressions.

EX2 : RelatedEntityExpression
associatedElement : QualifiedCode : <left>

AP2 : AttributeValuePair
elementRole : source
association : hasLaterality

EX1 : RelatedEntityExpression
associatedElement : QualifiedCode : <lung>

has qualifiers

AP1 : AttributeValuePair
elementRole : target
association : hasPart

AP3 :AttributeValuePair
elementRole : Target
association : hasLocation

EX3 :RelatedEntityExpression
associatedElement : Characteristic : "upper"

CEE1 : ConceptExpressionElement
baseCode : <lobe>

has qualifiersqualified by

CE1 : ConceptExpression

conjunction of
1-38 Lexicon Query Service V1.0 June 2000

1

ot
 be

t

orm
bove,

ified

lid
here

to
tion

plied
ValidateConceptExpression – Returns FALSE if the supplied concept expression is n
considered valid. If the return is TRUE, an optional association qualifier may also
returned to further qualify the conditions in which the TRUE return applies. As a
hypothetical example, a systemization might return a qualifier of “sensible.” If the
concept expression described the middle lobe of the left lung, the systemization migh
return a qualifier of “grammatical”, indicating that, while there isn’t a middle lobe of
the left lung, the expression still made grammatical sense.

GetSimplestForm – Returns the concept expression which represents the simplest f
in which the supplied concept expression may be expressed. Using the example a
a terminology system might have a concept code that represented the left lung. The
result of a GetSimplestForm call with the example above might yield:

Lobe which <is-part-of LeftLung

 has-location Upper>

ExpandConcept – Takes the supplied concept and returns the “canonical” concept
expression that serves to define the concept. Were ExpandConcept supplied with the
concept code <LeftLung> in the above scenario, it might return:

Lung which has-laterality Left

AreExpressionsEquivalent – Given two concept expressions, this method determines
whether these two expressions could be considered equivalent.

ExpressionDifference – Determines the “difference” between the two concept
expressions and returns it in the form of a third concept expression.

MinimalCommonSupertype – Returns the concept expression which is the “closest”
valid supertype of the supplied list of concepts expressions. The application is not
if there is no valid minimal common supertype short of the universal type.

MaximalCommonSubtype – Returns the concept expression which is the “closest” va
subtype of the supplied list of concepts expressions. The application is notified if t
is no valid maximal common subtype short of the absurd type.

The association between concept expressions and the systemization

Any concept expression that is deemed “valid” by the systemization is presumed
have a corresponding association within the systemization itself. If the systemiza
does not support the CouldAssociationBeInferred, each valid base code / attribute /
value association in a concept expression should receive a TRUE return when sup
as parameters to the AreEntitiesAssociated operation. If the systemization supports
CouldAssociationBeInferred, it is required that this operation return TRUE given the
same set of input parameters.
LQS V1.0 Terminology Service June 2000 1-39

1

n in
t code.

rd the
n all

he
g
1.6.2 Value Domains

Figure 1-18 Value Domain

A value domain is typically associated with a field on a data-entry screen, a colum
a database, a field in a message, or some other entity that may contain a concep
Each value domain instance is uniquely identified by the valueDomainId, a qualified
code. Each value domain may have more than one version which is used to reco
changing contents of a value domain over time. The ValueDomain class can retur
versions (GetAllVersions), a specific version by identifier (GetVersion), or the default
version (GetDefaultVersion) for the given value domain.

Each value domain version has an “extension” in one or more different coding
schemes. An extension is defined in this context as a list of concept codes from t
given coding scheme. The ValueDomainExtension class represents this extension. Usin
this class, an application may retrieve all extensions for a value domain
(GetAllValueDomainExtensions), or a specific extension for a given coding scheme

ValueDomain
valueDomainId : ValueDomainId

GetVersion (version : VersionId) : ValueDomainVersion
GetAllVersions () : ValueDomainVersionSequence
GetDefaultVersion () : ValueDomainVersion

0..*

1

0..*

0..*

ValueDomainVersion
versionId : VersionId

GetParentValueDomain () : ValueDomain
GetAllValueDomainExtensions () : ValueDomainExtensionSet
GetValueDomainExtension (codingScheme : CodingSchemeId) : ValueDomainExtension
IsConceptInValueDomain (concept : QualifiedCode) : boolean
GetPickList (contexts : UsageContextSet) : PickList
GetPickListForCodingScheme (codingScheme : CodingSchemeId, contexts : UsageContextSet) : PickList

0..*

1

consists of

1
CodingScheme

(from CodingSchemes)

0..*

0..*

has extension in

1..*

0..*

ValueDomainExtension

GetCodingScheme () : CodingScheme
GetExtension () : ConceptCodeSet

1..*

ConceptCode
(from CodingTerms)

1 1..*
defines/belongs to

0..*

1..*

belongs to/contains
1-40 Lexicon Query Service V1.0 June 2000

1

ed

iven
cific
ncept
the
is to
ross

ng
hared

is

es
(GetValueDomainExtension). The application may also query as to whether a specifi
concept code is included in one of the value domain extensions
(IsConceptInValueDomain).

 A pick list is an ordered subset of all the concept codes which are included in a g
value domain version. The order and contents of this list may be tailored for a spe
user or group of users, a given application, or some other usage context. Each co
code in a pick list contains a textual presentation which will be used to represent
concept to the user as well as a flag which indicates whether the particular code
be considered a default selection for the list. Pick lists may be selected either ac
all coding schemes (GetPickList) or from one specific scheme
(GetPickListForCodingScheme).

1.7 IDL Interface

This specification consists of three modules:

• NamingAuthority - A general-purpose module that provides a means of providi
unique names to entities such as concept codes, components. This module is s
with the Patient Identification Services (PIDS) specification.

• Terminology Services -This module defines the services which are the focus of th
document.

• Terminology Service Values - This module defines the codes and coding schem
which are used by the terminology services.

1.8 Notation

1.8.1 Sequences and Sets

Entities which end in the suffix “Seq” are typically not described in the document
below. <Entity>Seq is used to represent both an unordered set of Entity and an
ordered sequence of Entity . Entity is presumed to be an unordered set unless it is
otherwise stated in the accompanying text.

1.8.2 Iterators

Entities which end in the suffix “Iter” are also not further described. <Entity>Iter

represents an iterator for objects of type Entity . All iterator objects contain the
following interface methods:

1.8.2.1 max_left

This returns an approximation of the number of Entity yet to be retrieved. Max_left
will never return a value that is less than the total remaining elements. Client
applications should use this attribute sparingly, as it may be very costly in some
implementations across large databases.
LQS V1.0 IDL Interface June 2000 1-41

1

 the
rator.
1.8.2.2 next_n

This operation returns a sequence of Entity elements. The number of elements in the
returned sequence will never be more than the input value “n.”

1.8.2.3 destroy

This operation should be invoked when the client is finished retrieving entities from
iterator. It is not necessary to iterate to the end of the list before destroying the ite
1-42 Lexicon Query Service V1.0 June 2000

Modules and Interfaces 2
Contents

This chapter contains the following topics.

2.1 NamingAuthority Module

//File: NamingAuthority.idl

#ifndef _NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>

#pragma prefix "omg.org "

module NamingAuthority
{

enum RegistrationAuthority {
OTHER,
ISO,
DNS,
IDL,
DCE };

Topic Page

“NamingAuthority Module” 2-1

“Terminology Service Module” 2-7

“Terminology Service Values Module” 2-58
Lexicon Query Service V1.0 June 2000 2-1

2

to
need is

tities

is not
typedef string NamingEntity;

struct AuthorityId {
RegistrationAuthority authority;
NamingEntity naming_entity;

};
typedef string AuthorityIdStr;

typedef string LocalName;
struct QualifiedName {

AuthorityId authority_id;
LocalName local_name;

};
typedef string QualifiedNameStr;

exception InvalidInput {};

interface translation_library
{

AuthorityIdStr authority_to_str(
in AuthorityId authority)

raises(
InvalidInput);

AuthorityId str_to_authority(
in AuthorityIdStr authority_str)

raises(
InvalidInput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)

raises(
InvalidInput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)

raises(
InvalidInput);

};
};

#endif // _NAMING_AUTHORITY_IDL_

The NamingAuthority module provides a means of giving globally unique names
name spaces and hence the names within those name spaces. The fundamental
the ability to compare two names for equality. If they are equal, they are known to
represent the same entity, concept, or thing. This is needed when independent en
are generating names that may get compared for equality. However, the reverse
guaranteed to be true. That is an entity that may have several names.
2-2 Lexicon Query Service V1.0 June 2000

2

, the
alities

nd
e of

tion)
 to
e same

ble to
 one

l or
g

ult
go
Ids

for

hy,
ed in
 ISO

ority
ding

l
lly

tity
ristic
nd
The authority for the name space may derive from several different types of roots
choice of which depends upon the user requirements as each root has different qu
of management and uniqueness. The various root types are defined below.

#pragma prefix "org.omg"

In order to prevent name pollution and name clashing of IDL types this module (a
all modules defined in this specification) uses the pragma prefix that is the revers
the OMG’s DNS name.

2.1.1 RegistrationAuthority

Identifies the root of the name space authority. An entity (e.g., person or organiza
may be registered with many different roots (RegistrationAuthorities) and be able
assign names and other name spaces within each root. These may be used for th
or for different needs. For this reason there is no guarantee of any equality in the
different name spaces managed by an entity. There are currently no means availa
determine whether a given authority in an ISO hierarchy is the same authority as
specified in a DNS hierarchy.

Other

This form of a naming authority should be used sparingly, and only in experimenta
localized situations or special purposes. It is the responsibility of the implementin
institution to guarantee uniqueness within the names themselves, and there is no
uniqueness guarantee outside of the source institution. Services that define defa
naming authorities (and possibly also names) may also use the Other root to fore
long AuthorityIds. In this case the specification of the service must name Authority
that may be expected with the Other root and still maintain name space integrity
that service.

ISO

International Standards Organization [9] - The ISO specifies a registration hierarc
identified by a series of named/numbered nodes. Many of the coding schemes us
the medical environment are or can be registered within the ISO naming tree. The
root form is one of the recommended forms when the naming authority is
internationally recognized, such as international coding schemes, or when the auth
is to be used across two or more different enterprises. ISO provides for the recor
of a responsible person and address for each node in the authority hierarchy.

DNS

Domain Name Services [10] - Internet domains are recorded with a central, globa
registration authority. Subhierarchies within the domains are then maintained loca
by the registered organization or person. The DNS form is recommended as an
alternative to the ISO naming tree when the specific naming authority needs iden
and uniqueness, but is not in an ISO registration. By using this common characte
of many organizations it gives the ability to create globally unique name spaces a
LQS V1.0 NamingAuthority Module June 2000 2-3

2

 of

E

and
en
s. It
in any
at

mes
yId
 for

lly
to
for the

t of
tions

tax of
red
ific

tion
to
names without the need to register as an ISO name authority. It is up to the
organization itself to maintain the integrity of the name space(s) (e.g., not reusing
names or name spaces).

IDL

The OMG Interface Repository [11] - The CORBA Architecture specifies a means
uniquely identifying entities within the interface repository, via the use of a
RepositoryId. CORBA repository id’s may be in either the OMG IDL format, the DC
UUID format or the LOCAL format. Within this specification, the “IDL” root refers
only to the IDL format. The DCE format may be represented within the DCE root
the Local format within the Other root. The IDL authority may prove very useful wh
registering CORBA/IDL specific objects such as value sets, interface specification
should be noted that OMG does not currently manage the repository name space
rigorous fashion, and it is quite possible that two different developers may arrive
exactly the same repository ID for entirely different entities. For this reason some
people give the repository ID a prefix that consists of their reverse DNS that is ‘/’
separated instead of ‘.’ separated. This root type may be very useful when the na
within the name space are defined in IDL. For example, it could be the Repositor
for an enumerated type or a module that has constant integers or strings defined
each name within the name space.

DCE

The Distributed Computing Environment [12] - While they don’t actually register
coding schemes or other entities, they do provide a means of generating a globa
unique 128-bit ID, called a Universally Unique ID (UUID). This UUID may be used
guarantee the uniqueness of a name space in situations where it is not necessary
identity of the authority to be known outside of the specific implementation.

2.1.2 NamingEntity

Identifies a specific name in the syntax and format specified by the corresponding
registration authority. The various naming authorities tend to provide a fair amoun
leeway as far as the actual format of the registered names. As there may be situa
where the full semantics of a specific authority’s name comparison will not be
available to an application, we have chosen to select a specific subset of the syn
each representation. The intention is to be able to determine whether two registe
entities are identical or not solely through the use of string comparison. The spec
name formats are described below:

OTHER

An arbitrary string, syntax undefined except locally by a specific service specifica
and/or by particular implementations and installations. The “/” character is illegal
use as it is reserved as a separator of components in the stringified version of
QualifiedName.
2-4 Lexicon Query Service V1.0 June 2000

2

s
 names
ng

 in

re
rs

re
cific
 the
 to
ISO

The name should be represented using the NameForm of the ObjectIdentifierValue as
specified in ISO/IEC Recommendation 8824-1. Each name component should be
separated by a single space.

Example: “joint-iso-ccitt specification characterString”

DNS

The domain name and path in the form mandated in RFC 1034. The path name i
represented as a dot separated tree which traverses up the hierarchy. Since DNS
are not case-sensitive only lower-case letter should be used such that simple stri
comparisons can determine equality. However it is OK to use case-insensitive
comparisons as well.

Example: “pidsserv.slc.mmm.com”

IDL

The OMG RepositoryId format specified in the CORBA Architecture V2.0 manual,
the form: “<node>/<node>/Ö/<node>.” The “IDL:” prefix and the version number
suffix should NOT be used for the NamingEntity . The “IDL:” prefix is prepended to
create the AuthorityIdStr .

Example: “CosNaming /NamingContext /NotFoundReason ” is the
NamingEntity for:

module CosNaming {
...
interface NamingContext {
...
enum NotFoundReason { ... };
...
};
};

DCE

The UUID in the external form <nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn>, whe
<n> represents one of the digits 0-9 and the characters A-F. The alpha characte
should all be upper case.

Example: “6132A880-9A34-1182-A20A-AF30CF7A0000”

2.1.3 AuthorityId, AuthorityIdStr

The combination of a Registration Authority and Naming Entity, which identifies a
specific naming authority. In situations where a given naming entity may have mo
than one naming authority, it should be agreed upon in advance which of the spe
names for the entity is to be used. This specification makes no guarantees about
ability to recognize, for example, that an authority in the ISO structure is identical
an authority within the IDL structure.
LQS V1.0 NamingAuthority Module June 2000 2-5

2

s

e

The string version (AuthorityIdStr) is useful for situations where unique names are
required in a string format. The string is created as <stringified
RegistrationAuthority >:<NamingEntity >.

2.1.4 LocalName, QualifiedName, QualifiedNameStr

A local name is a name within (relative to) a namespace. It is simply a string
representation.

A QualifiedName is a globally unique name for an entity by the fact that it carrie
the naming AuthorityId of the name space and the LocalName within that name
space.

The QualifiedNameStr is a stringified version of the QualifiedName . The format
of the string is <stringified
RegistrationAuthority >:<NamingEntity >/<LocalName >. Notice that even
though the character “/” cannot be used within the name of a NamingEntity , it can be
used within the LocalName.

The following table summarizes the format for QualifiedNameStr . Columns 1-3 give
the format for an AuthorityIdStr .

The definitions for type OTHER are defined to allow using a QualifiedNameStr
format in contexts where an IDL ‘string’ is currently used. A normal IDL string is a
QualifiedNameStr with no RegistrationAuthority and no NamingEntity . The
limitation is that any normal IDL strings that start with one of the
RegsitrationAuthority strings cannot be mapped into the QualifiedNameStr since
they would be interpreted by the rules in this module.

The string for the ‘OTHER’ type of RegistrationAuthority being a blank string (“”)
makes it easier for locally defined names to be usable with no requirements on th
format except they cannot start with one of the strings reserved for the other
RegsitrationAuthority types. The ‘:’ delimiter is optional for type OTHER. If the
NamingEntity is “” for type OTHER then the ‘/’ delimiter is also optional.

Table 2-1 Registration Authority Formats

Registration
Authority

(1)
Stringified
Registration
Authority

(2)
RA-NE
Delimiter

(3)
NamingEntity
Format

(4)
NE-LN
Delimiter

(5)
LocalName Format

OTHER “” “:” optional <no ‘/’> “/” optional <no ‘/’>

ISO “ISO” “:” <use ISO rules> “/” <any characters>

DNS “DNS” “:” <use DNS rules> “/” <any characters>

IDL “IDL” “:” <use IDL rules> “/” <no ‘/’>

DCE “DCE” “:” <use DCE rules> “/” <any characters>
2-6 Lexicon Query Service V1.0 June 2000

2

 type
. Only

stract
r
2.1.5 Exceptions

The InvalidInput exception is raised when the input parameter for the
TranslationLibrary interface operations is determined to be of an invalid format.

2.1.6 TranslationLibrary Interface

This interface is meant to be a local library for translating between the structured
version and stringified version of AuthorityIds and QualifiedNames .

authority_to_str, str_to_authority, qualified_name_to_str, str_to_qualified_name

Each of these operations take either a structured version or stringified version of a
and return the opposite. The data content returned is the same as that passed in
the representation of the data is changed.

2.2 Terminology Service Module

//File: TerminologyServices.idl
//
#ifndef _TERMINOLOGY_SERVICES_IDL_
#define _TERMINOLOGY_SERVICES_IDL_
#pragma prefix "omg.org"
#include <orb.idl>
#include <NamingAuthority.idl>

// ***
// module: TerminologyService
// ***

module TerminologyServices {
// . . .

};

#endif /* _TERMINOLOGY_SERVICES_IDL_ */

The TerminologyServices module consists of type and interface definitions. Each
interface represents an object class or some portion of an object class from the ab
model. Separate interface classes have been created in some cases to provide fo
optional implementation conformance points. The body of the TerminologyServices
module is organized as follows:

2.2.1 Type Definitions

• Basic Terms

• Meta Types (The TerminologyServiceValues module contains the type
constants)
LQS V1.0 Terminology Service Module June 2000 2-7

2

• Coding Terms

• Coding Scheme and Coded Concept Terms

• Advanced Query Terms

• Systemization Terms

• Value Domain Terms

2.2.2 Exceptions

Interfaces

• TranslationLibrary

• TerminologyService

• LexExplorer

• CodingSchemeLocator

• ValueDomainLocator

• CodingSchemeVersionAttributes

• CodingSchemeVersion

• PresentationAccess

• LinguisticGroupAccess

• AdvancedQuery

• SystemizationAccess

• Systemization

• ValueDomainVersion

2.2.3 Basic Coding Terms

//***
// Basic Terms
//***

typedef NamingAuthority::LocalName ConceptCode;
typedef sequence<ConceptCode ConceptCodeSeq;

typedef NamingAuthority::AuthorityId CodingSchemeId;
typedef sequence<CodingSchemeId CodingSchemeIdSeq;

struct QualifiedCode {
CodingSchemeId coding_scheme_id;
ConceptCode a_code;

};
typedef sequence <QualifiedCode> QualifiedCodeSeq;
2-8 Lexicon Query Service V1.0 June 2000

2

The
 that

ng
space.

e id

e,

he

er.
typedef string VersionId;
typedef sequence<VersionId> VersionIdSeq;
const VersionId DEFAULT = ““;

struct TerminologyServiceName {
NamingAuthority::QualifiedName the_name;
VersionId the_version;

};

ConceptCode

A string of characters that identifies a unique entity within a given coding scheme.
coding scheme forms the naming authority and the concept code is unique within
space.

CodingSchemeId

A coding scheme is assigned a global, unique name. A coding scheme is a nami
authority that manages the set of concept codes as local names within its name

QualifiedCode

A globally unique concept code, consisting of the combination of the coding schem
and the concept code.

VersionId

The unique identifier of a specific version of a terminology service, coding schem
and value domain. There is no implied ordering on version identifiers. A version
identifier may be composed of both letters and digits and must be unique within t
context of the given service, coding scheme, or value domain. VersionId has a
distinguished value, DEFAULT, which represents the “production” or latest validated
and ready for use version of the specific entity. The DEFAULT version of an entity is
not necessarily the most current.

TerminologyServiceName

The TerminologyServiceName serves to uniquely identify an instance of a
terminology service. It consists of a globally unique name and the version identifi
There is no equivalent to TerminologyServiceName in the model.

2.2.4 Meta Types

//***
// Meta Types
// See the TerminologyServiceValues module for consts
//***
LQS V1.0 Terminology Service Module June 2000 2-9

2

a

If
ore
es

nce
 to
nd

 are
typedef QualifiedCode AssociationQualifierId;
typedef sequence<AssociationQualifierId> AssociationQualifierIdSeq;

typedef QualifiedCode LexicalTypeId;
typedef sequence<LexicalTypeId> LexicalTypeIdSeq;

typedef QualifiedCode SourceId;
typedef sequence<SourceId> SourceIdSeq;

typedef QualifiedCode SourceTermUsageId;
typedef sequence<SourceTermUsageId> SourceTermUsageIdSeq;

typedef QualifiedCode SyntacticTypeId;
typedef sequence<SyntacticTypeId> SyntacticTypeIdSeq;

typedef QualifiedCode UsageContextId;
typedef sequence<UsageContextId> UsageContextIdSeq;

typedef ConceptCode AssociationId;
typedef sequence<AssociationId> AssociationIdSeq;

typedef ConceptCode LanguageId;
typedef sequence<LanguageId> LanguageIdSeq;

typedef ConceptCode PresentationFormatId;
typedef sequence<PresentationFormatId> PresentationFormatIdSeq;

The meta types above are either concept codes or qualified codes. If the type is
concept code, the coding scheme has been pre-determined and codes from that
particular scheme must be used when communicating with the terminology service.
the type is a qualified code, the set of valid values may be derived from one or m
coding schemes at the discretion of the terminology service vendor. All of the typ
named below implement the entities of the same name in the abstract model.

2.2.4.1 Qualified Code Types

AssociationQualifierId

A code which qualifies or otherwise provides further information about the occurre
of a target element within an association instance. Association qualifiers are used
describe element- level optionality and to add additional detail about the validity a
meaning of the given association instance.

LexicalTypeId

The code for type which may be assigned to a presentation usage. Lexical types
such things as "abbreviation," "Acronym," "Eponym," "Trade name."

SourceId
2-10 Lexicon Query Service V1.0 June 2000

2

hin

es

rred
r,"

 a
s
A code that identifies a book, publication, person, or other citation. It is used to
identify the source from which definitions, presentations, and other information wit
a coding scheme are derived.

SourceTermUsageId

A code that identifies a specific way that a string is used within a source. Exampl
include "Adjective," "Disease Name," "Language Qualifier."

SyntacticTypeId

A code which identifies a type of variation that a presentation takes from the prefe
form within a specific linguistic group. Examples include "spelling variant," "singula
"plural," "word order."

UsageContextId

A code which identifies a specific context in which a presentation associated with
given context code is to be used. Example usage contexts could be such things a
“column heading,” “ADT application,” “long textual description.”

2.2.4.2 Coded Concept Types

AssociationId

An identifier of an association type. Base association types are described in
Section 3.2.1, “Association,” on page 3-3.

LanguageId

A code that identifies a spoken or written language. Example languages include
“English,” “French.”

PresentationFormatId

A code that identifies the format that a given presentation is in. Examples could
include “plain text,” “html,” “.wav,” “word 7.0 document.”

Coding Terms

//***
// Coding Terms
//***
interface LexExplorer;
interface CodingSchemeLocator;
interface ValueDomainLocator;
interface CodingSchemeVersion;
interface PresentationAccess;
LQS V1.0 Terminology Service Module June 2000 2-11

2

 also

acter
 that

f its
 the

of

tions.

 from
pt
ervice
 not.
interface LinguisticGroupAccess;
interface SystemizationAccess;
interface AdvancedQueryAccess;
interface Systemization;
interface ValueDomainVersion;

typedef string IntlString;
typedef sequence<IntlString> OrderedIntlStringSeq;
typedef sequence<IntlString> IntlStringSeq;
typedef sequence<octet> Blob;
enum Trinary { IS_FALSE, IS_TRUE, IS_UNKNOWN };
typedef sequence<Trinary> TrinarySeq;
typedef sequence<boolean> BooleanSeq;

This section creates forward references for the interfaces that follow. This section
defines a set of root types that are used throughout the rest of the interfaces.

IntlString

IntlString represents a string of characters and an identifier that states which char
set the string should be presented in. The IDL Extensions Specification [11] states
the character set of string types will be negotiated and converted by the ORBs
themselves. Each ORB will have a character set or set of character sets as part o
context. This should provide a sufficient framework for character set identifiers for
time being. The IntlString type is maintained as a separate type in case further
refinement is needed in a future version.

OrderedIntlStringSeq

This is an ordered list of IntlStrings , which is used as a parameter to the
match_concepts_by_keywords operation. The order determines the importance
each key word in the list.

Blob

The blob is used to carry non-textual presentations and machine-readable instruc
A typical use of this data type might be to return a sound bite of a spoken word.

Trinary

A type which represents one of three possible values. This type is used as a return
several methods that respond to questions about the associations between conce
codes. These methods need to have a third return state which indicates that the s
has insufficient information to know whether the concept codes are associated or

2.2.5 Coded Concept and Coding Scheme Terms

//***
// Coding Scheme and Coded Concept Terms
//***
2-12 Lexicon Query Service V1.0 June 2000

2

typedef string PresentationId;
typedef sequence<PresentationId> PresentationIdSeq;
typedef string LinguisticGroupId;
typedef string SystemizationId;
typedef sequence<SystemizationId> SystemizationIdSeq;

struct CodingSchemeInfo {
CodingSchemeId scheme_id;
VersionId version_id;
LanguageId language_id;

};

struct CodingSchemeVersionRefs {
CodingSchemeId coding_scheme_id;
VersionId version_id;
LanguageId language_id;
boolean is_default_version;
boolean is_complete_scheme;
CodingSchemeVersion coding_scheme_version_if;
PresentationAccess presentation_if;
LinguisticGroupAccess linguistic_group_if;
SystemizationAccess systemization_if;
AdvancedQueryAccess advanced_query_if;

};

struct ConceptInfo {
ConceptCode a_code;
IntlString preferred_text;

};
typedef sequence<ConceptInfo> ConceptInfoSeq;
typedef sequence<ConceptInfoSeq> ConceptInfoSeqSeq;

interface ConceptInfoIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out ConceptInfoSeq concept_info_seq

);
void destroy();

};

struct QualifiedCodeInfo {
QualifiedCode a_qualified_code;
IntlString preferred_text;

};
typedef sequence<QualifiedCodeInfo> QualifiedCodeInfoSeq;

struct Definition {
IntlString text;
boolean preferred;
LanguageId language_id;
LQS V1.0 Terminology Service Module June 2000 2-13

2

SourceId source_id;
};

typedef sequence<Definition> DefinitionSeq;
struct Comment {

IntlString text;
LanguageId language_id;
SourceId source_id;

};
typedef sequence<Comment> CommentSeq;

struct Instruction {
IntlString text;
Blob formal_rules;
LanguageId language_id;
SourceId source_id;

};
typedef sequence<Instruction> InstructionSeq;

struct SourceInfo {
SourceId source_id;
SourceTermUsageId usage_in_source;
QualifiedCode code_in_source;

};
typedef sequence<SourceInfo> SourceInfoSeq;

struct PresentationInfo {
PresentationId presentation_id;
PresentationFormatId presentation_format_id;
LanguageId language_id;
LinguisticGroupId linguistic_group_id;

};
typedef sequence<PresentationInfo> PresentationInfoSeq;

enum PresentationType {TEXT, BINARY};
union PresentationValue switch(PresentationType) {

case TEXT : IntlString the_text;
case BINARY : Blob a_Blob;

};

struct Presentation {
PresentationId presentation_id;
PresentationValue presentation_value;

};
typedef sequence<Presentation> PresentationSeq;

struct PresentationUsage {
ConceptCode concept;
PresentationId presentation_id;
boolean preferred_for_concept;
boolean preferred_for_linguistic_group;
2-14 Lexicon Query Service V1.0 June 2000

2

The

 the
nother

en
SyntacticTypeIdSeq syntactic_type_ids;
UsageContextIdSeq usage_context_ids;
SourceInfoSeq source_infos;
LexicalTypeIdSeq lexical_type_ids;

};
typedef sequence<PresentationUsage> PresentationUsageSeq;

struct LinguisticGroupInfo {
LinguisticGroupId linguistic_group_id;
LanguageId language_id;
PresentationIdSeq presentation_ids;

};

typedef float Weight;

struct WeightedResult {
ConceptInfo the_concept;
IntlString matching_text;
Weight the_weight;

};
typedef sequence<WeightedResult> WeightedResultSeq;

interface WeightedResultsIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out WeightedResultSeq weighted_results

);
void destroy();

};

This section defines entities that are used in the coding scheme interface and its
components. The list below is alphabetized for easier reference.

CodingSchemeInfo

The IDL specification deviates slightly from the model when it comes to language.
model shows language as a parameter to operations that require it. The IDL
specification requires that a language be selected when a coding scheme version
interface object is initially referenced. This language is the hidden default for all of
operations that have language as an input parameter. It is necessary to acquire a
coding scheme version interface reference if interactions are required in another
language.

Note – The previous paragraph does not imply that coding scheme versions are
language-dependent. There is only one underlying coding scheme version. A giv
reference acts as a filter, presenting a view of the underlying scheme.
LQS V1.0 Terminology Service Module June 2000 2-15

2

rce

d by
ents.

n.

nce
 for

nce to

ion.
The CodingSchemeInfo structure represents a coding scheme identifier, coding
scheme version, and language. The CodingSchemeInfo uniquely identifies a coding
scheme version in the implementation.

CodingSchemeVersionRefs

This structure is returned from the CodingSchemeLocator methods
get_coding_scheme_version and get_native_coding_scheme_version . The
structure carries common identity information and references to a set of optional
interfaces that implement various facets of a coding scheme version object. The
content of this structure is identical to the CodingSchemeVersionAttributes
interface.

Comment

This structure implements the Comment class in the abstract model. It includes the
comment text, the language in which the comment is written, and an optional sou
reference.

ConceptInfo

Some of the operations on the following pages return concept codes accompanie
their preferred textual representation. This structure represents one of these elem

ConceptInfoSeqSeq

This represents a sequence of sequences of ConceptInfo . It is used as a return type
from batch methods, which perform more than one lookup operation per invocatio

Definition

This structure implements the Definition class in the abstract model. It includes the
definition text, the language in which the text is written, an optional source refere
for the definition, and a flag which indicates whether this is the preferred definition
a concept code in the specified language.

Instruction

This structure implements the Instructions class in the abstract model. It includes
instruction text and/or the formal binary instruction rules. If text is included, the
language of the text should be supplied. There is also space for an optional refere
the source of the instructions.

LinguisticGroupId

A unique identifier of a linguistic group within the context of a coding scheme vers

LinguisticGroupInfo
2-16 Lexicon Query Service V1.0 June 2000

2

ts
d

des

n.

 to

nctly

.

ed

 the
le

tain

ts
t. It
This structure implements the LinguisticGroup class in the abstract model. It represen
a grouping of syntactically similar presentations. It contains the group identifier an
the associated language.

Presentation

This entity implements one portion of the Presentation class in the model. It inclu
the presentation identifier and the value. The rest of the Presentation class is
implemented in the PresentationInfo structure

PresentationId

A unique identifier of a presentation within the context of a coding scheme versio

PresentationInfo

This structure implements a portion of the Presentation class in the model. The other
part of the Presentation class is implemented in the Presentation structure below. It
contains the identifier of the presentation and the format. It also contains the
presentation language of the presentation and the identifier of the linguistic group
which the presentation belongs, if any.

Note – The model states the presentation identifier is optional. Because some
presentations have the potential of being extremely large, it is necessary to succi
identify each unique presentation in the implementation of this specification.
Terminology vendors must supply a unique identifier for each unique presentation
This identifier could potentially be the presentation text itself if it is short. The
presentation identifier should not be stored externally. Different vendors may use
different identifiers for identical presentations. Presentation identifiers are to be us
strictly as local names of objects for interfacing with an implementation of this
specification.

PresentationType, PresentationValue

These entities implement the TextualPresentation and BinaryPresentation classes in the
model. The TEXT/BINARY types should be viewed and used in the same way as
ASCII/BINARY transfer modes of FTP. A TEXT presentation is restricted to printab
characters, and should be usable even if it undergoes character set and other
representational transformations between ORBS. A BINARY presentation may con
any information and is guaranteed to be transferred between server and client
unaltered.

Note – The PresentationType is not dependent upon the presentation format. Clien
should be able to handle BINARY or TEXT presentations regardless of the forma
will be possible that a “plain text” format may arrive in a BINARY presentation.

QualifiedCodeInfo
LQS V1.0 Terminology Service Module June 2000 2-17

2

ng
e of

d
n is
er the
c
s
e
 to
 or

de and
al

n
that
ion

odes

a

uence
Some of the operations on the following pages return a list of qualified codes alo
with their preferred or primary textual representation. This structure represents on
these elements.

PresentationUsage

This entity implements the PresentationUsage class in the model. It represents the
association between a presentation and a concept code. It contains the associate
concept code and presentation identifier. It also indicates whether the presentatio
the preferred presentation for the concept code in the default language, and wheth
presentation is the preferred presentation for the concept code within the linguisti
group, if present. The syntactic type identifier(s) state how this presentation varie
from the preferred presentation for this concept within the same lexical group. Th
optional usage context identifier lists the set of contexts in which it is appropriate
use this presentation for this concept code. It also includes an optional set of one
more lexical types which serve to indicate that the terms are “not appropriate for
stemming and other natural language techniques.” [5]

The optional SourceInfo structure set lists all of the sources for this
presentation/concept code association.

SourceInfo

This structure implements the SourceInfo class in the abstract model. The SourceInfo
class represents the association between a presentation for a specific concept co
a source of that presentation. It contains the identifier of the source and an option
identifier indicating how the presentation is used in the source. It also may contai
qualified code associated with the specific presentation in the source itself. Note
no synonym associations should be inferred between this code and the presentat
concept code.

SystemizationId

The name of a specific categorization, classification, or organization of concept c
within a coding scheme.

Weight

This implements Weight in the model. It is a relative measure of the “closeness” of
match. The range of the value of a weight is 0.0 ≤ value ≤ 1.0. Weights have no absolute
meaning, and may only be compared with other weights that are returned as a seq
from the same method invocation.

WeightedResult
2-18 Lexicon Query Service V1.0 June 2000

2

e
es in

anced
This implements WeightedResult in the model, a list entry returned from a match
function. It contains a ConceptInfo structure, which carries the concept code and
preferred text. It also has text of the presentation which was used to determine th
match (if any), and the relative weight of this match as compared to the other entri
the return list.

2.2.6 Advanced Query Terms

//***
// Advanced Query Terms
//***

typedef string Constraint;
typedef NamingAuthority::QualifiedNameStr ConstraintLanguageId;
typedef sequence<ConstraintLanguageId> ConstraintLanguageIdSeq;
typedef NamingAuthority::QualifiedNameStr PolicyName;
typedef sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;

struct Policy {
PolicyName name;
PolicyValue value;

};
typedef sequence<Policy> PolicySeq;

The advanced query terms represent the various entities that are used in the adv
query interface. They are described along with the interface in Section 2.2.19,
“AdvancedQueryAccess Interface.

2.2.7 Systemization Definitions

//**
//* Systemization Terms
//**

typedef string RoleName;
typedef string Characteristic;
enum AssociationRole {SOURCE_ROLE, TARGET_ROLE};
enum MinimumCardinality {OPTIONAL, MANDATORY};
enum MaximumCardinality {SINGLE, MULTIPLE};
struct Cardinality {

MinimumCardinality minimum;
MaximumCardinality maximum;

};

enum ElementType {
EXTERNAL_CODE_TYPE,
LQS V1.0 Terminology Service Module June 2000 2-19

2

LOCAL_CODE_TYPE,
CHARACTERISTIC_TYPE

};

union RestrictedTargetElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case CHARACTERISTIC_TYPE:Characteristic the_characteristic;

};

union AssociatableElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case LOCAL_CODE_T YPE:ConceptCode a_local_code;
case CHARACTERISTIC_TYPE:Characteristic the_characteristic;

};

struct TargetElement {
AssociatableElement target_element;
AssociationQualifierIdSeq association_qualifiers;

};
typedef sequence<TargetElement> TargetElementSeq;
typedef sequence<TargetElementSeq> TargetElementSeqSeq;
interface TargetElementSeqIter {

unsigned long max_left();
boolean next_n(

in unsigned long n,
out TargetElementSeqSeq an_element_seq

);
void destroy();

};

typedef ConceptCodeAssociationBaseTypeId;

typedef sequence<unsigned long> IndexList;
struct GraphEntry {

TargetElement an_entity;
IndexList associated_nodes;

};
typedef sequence<GraphEntry> EntityGraph;

struct AssociationDef {
AssociationId association_id;
AssociationBaseTypeId base_type;
RoleName source_role;
Cardinality source_cardinality;
RoleName target_role;
Cardinality target_cardinality;
boolean target_is_set;
boolean non_coded_allowed;
Trinary transitive;
Trinary symmetric;
Trinary inherited;
2-20 Lexicon Query Service V1.0 June 2000

2

Trinary source_target_disjoint;

struct AssociationInstance {
AssociationId association_id;
ConceptCode source_concept;
TargetElementSeq target_element_seq;

};
typedef sequence<AssociationInstance> AssociationInstanceSeq;

interface AssociationInstanceIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out AssociationInstanceSeq association_instance_seq

);
void destroy();

};

struct ValidationResult {
boolean is_valid;
AssociationQualifierId validity_level;

};

// Constraint - the "any" below must be of type AttributeValuePair. It
// is "any" because IDL won't allow recursive struct definitions
struct RelatedEntityExpression {

AssociatableElement associated_element;
AssociationQualifierIdSeq association_qualifiers;
any base_qualifiers;

};

struct AttributeValuePair {
AssociationRole element_role;
AssociationId the_association_id;
RelatedEntityExpression the_entity_expression;

};
typedef sequence<AttributeValuePair AttributeValuePairSeq;

struct ConceptExpressionElement {
ConceptCode base_code;
AttributeValuePairSeq base_qualifiers;

};
typedef sequence<ConceptExpressionElement> conceptExpression;
typedef sequence<ConceptExpression> conceptExpressionSeq;

RoleName

A string that serves as a synonym for either the source or the target portion of an
ordered pair of entities in an association type.

Characteristic
LQS V1.0 Terminology Service Module June 2000 2-21

2

L
arry

n
 to
 still

e
l

2.1,
e

 target

 an
t

d in

iation

al
Any non-coded “property” or “attribute” associated with a concept code. In the ID
specification, characteristic has been further constrained from the model to only c
string entities.

AssociatableElement

This is a second implementation of the AssociatableElement in the abstract model. The
LOCAL_CODE_TYPE case is used when the QualifiedCode belongs to the coding
scheme of which the questions are being asked. The EXTERNAL_CODE_TYPE case
is used when the QualifiedCode belongs to a different coding scheme. This distinctio
serves two purposes. The first is to simplify the interface. The second purpose is
allow the client application to readily determine whether the target concept code is
in the scope of the systemization being queried.

AssociationDef

This structure implements the Association class defined in the model. It consists of th
association identifier, which uniquely names the association along with an optiona
base type. There are five possible base types, which are described in Section 3.
“Association,” on page 3-3. AssociationDef also includes the source and target rol
name, whether the target is a set of an individual element, whether the target can
include only concept codes or concept codes and characteristics, the source and
cardinality, as well as additional information about the given association.

AssociationInstance

This implements the class by the same name in the abstract model. It consists of
association id identifier, the concept code that is in the source role, and the targe
element that is in the target role in this instance.

AssociationRole

A tag which is used to determine which role an entity plays in an association. Use
the construction of ConceptExpressions.

AttributeValuePair

This implements the class by the same name in the model. It consists of an assoc
role, which defines the role which the qualified ConceptExpression or
RelatedEntityExpression plays in the contained association. It also contains the
identifier of the association as well as the entity that serves the other role in the
association.

ConceptExpression

This implements the class by the same name in the model. It represents the logic
conjunction of one or more ConceptExpressionElements .

ConceptExpressionElement
2-22 Lexicon Query Service V1.0 June 2000

2

ers. It

ust
tions

f an

sed

e
 role

in the

e

 no
If the
This represents a base concept code and an optional set of attribute/value qualifi
is identical to a RelatedEntityExpression with the exception that it may only be a
concept code. This reflects the fact that the root node of a concept expression m
always be a concept code that is defined in the coding scheme of which the ques
are being asked.

EntityGraph

The EntityGraph structure provides a mechanism to represent a directed graph o
association. Each node in the graph contains a TargetElement and any association
qualifiers which may apply to that node. Each node also contains a set of zero-ba
subscripts into other nodes in the EntityGraph . Each index represents a vertex in an
association hierarchy.

MinimumCardinality, MaximumCardinality, Cardinality

A partial implementation of Cardinality in the abstract model. The following four
cardinalities may be represented in this interface: 0..1, 1..1, 0..N, 1..N, which are
represented as {OPTIONAL, SINGLE}, {MANDATORY, SINGLE}, {OPTIONAL,
MULTIPLE} and {MANDATORY, MULTIPLE} respectively.

RelatedEntityExpression

This implements the class by the same name in the abstract model. It contains th
associated element, which may be a qualified code when the entity is in the source
and either a qualified code, a concept code, or a characteristic when the entity is
target role. It also carries any qualifiers that apply to that particular association
instance. Additional AttributeValuePairs may further qualify a
RelatedEntityExpression . As IDL does not allow recursive structure definitions, th
“any” node is used to represent the AttributeValuePair .

RestrictedTargetElement

This is one implementation of the AssociatableElement in the abstract model. It is used
as an input in the LexExplorer list_associated_source_codes interface.

TargetElement

This implements both the TargetEntity and the TargetElement classes as defined in the
abstract model. TargetEntity is defined as being a set of TargetElements, while
TargetElement is defined as being a single element. In this implementation, there is
way to distinguish a single target element from a set that consists of one element.
distinction is required, it is necessary to refer to the target_type of the corresponding
AssociationDef .

A target element represents the target of an association instance. It contains a
QualifiedCode , a ConceptCode, or a Characteristic . It also carries an optional
list of association qualifiers.

ValidationResult
LQS V1.0 Terminology Service Module June 2000 2-23

2

y the

the
ple

 in an
e to
 be
t
This implements the class by the same name in the abstract model. It is returned b
Systemization interface operation validate_concept_expression . If the
expression is considered valid, additional qualifiers may be returned which allow
service to further supply the circumstances in which this would be the case. Exam
circumstances could include “syntactically valid,” “semantically valid.

2.2.8 Value Domain Terms

//***
// Value Domain Terms
//***

typedef QualifiedCode ValueDomainId;
typedef sequence<ValueDomainId> ValueDomainIdSeq;

interface ValueDomainIdIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out ValueDomainIdSeq value_domain_id_seq

);
void destroy();

};

struct PickListEntry {
QualifiedCode a_qualified_code;
IntlString pick_text;
boolean is_default;

};
typedef sequence<PickListEntry> PickListSeq; // Ordered

interface PickListIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out PickListSeq pick_list

);
void destroy();

};

ValueDomainId

The value domain identifier is a code that names a field on a screen, a parameter
interface, a row in a database, or some other external entity in which it is possibl
enter coded data. It serves to identify the set of possible concept codes that may
entered into this field. These concept codes may come from one or more differen
coding schemes.

PickListEntry
2-24 Lexicon Query Service V1.0 June 2000

2

e
tains
ed.”
This represents a single entry in a PickList. It carries a fully qualified concept cod
along with a string of text that represents the concept code externally. It also con
a flag to indicate whether the given entry should be presented as being “pre-pick

2.2.9 Terminology Exceptions

//**
// TerminologyService Exceptions
//**
// Used in Multiple Interfaces
// typically LexExplorer ++

exception NotImplemented{
};
exception UnknownCode {

ConceptCode bad_code;
};
exception UnknownCodingScheme{

CodingSchemeId bad_coding_scheme_id;
};
exception UnknownVersion{

VersionId bad_version_id;
};
exception UnknownValueDomain{

ValueDomainId bad_value_domain_id;
};
exception NoNativeCodingScheme {
};

exception TranslationNotAvailable {
};
exception TooManyToList {
};
exception NoPickListAvailable {
};
exception AssociationNotInSystemization{

AssociationId bad_association_id;
};
exception NoSystemizationForCodingScheme {
};
exception ParameterAlignmentError {
};

// CodingSchemeLocator Exceptions

exception LanguageNotSupported {
LanguageId bad_language_id;

};
LQS V1.0 Terminology Service Module June 2000 2-25

2

// CodingSchemeVersion exceptions

exception NoPreferredText {
};
exception NoTextLocated {
};

// PresentationAccess exceptions

exception PresentationNotInCodingSchemeVersion{
PresentationId bad_presentation_id;

};
exception NoPreferredPresentation{
};
exception UnknownPresentationFormat{

PresentationFormatId bad_presentation_format_id;
};
exception NoPresentationLocated{
};

// LinguisticGroupAccess exceptions

exception LinguisticGroupNotInCodingSchemeVersion{
LinguisticGroupId bad_linguistic_group_id;

};

// AdvancedQueryAccess exceptions
exception IllegalConstraint {

Constraint bad_constraint;
};
exception IllegalPolicyName {

PolicyName name;
};
exception DuplicatePolicyName {

PolicyName name;
};
exception PolicyTypeMismatch {

Policy bad_policy;
};
// SystemizationAccess exceptions

exception NoDefaultSystemization{
};
exception UnknownSystemization {

SystemizationId systemization_id;
};

// Systemization Exceptions

exception ConceptNotExpandable {
ConceptCode the_concept;
2-26 Lexicon Query Service V1.0 June 2000

2

ed on
 in

e

g

g.
};
exception NoCommonSubtype {
};
exception NoCommonSupertype {
};
exception InvalidExpression {

ConceptExpression the_expression;
};
exception UnabletoEvaluate {

ConceptExpression the_expression;
};

These are the possible exceptions that might be raised by the operations describ
the following pages. The significance of the individual exceptions will be explained
the context of the operation(s) that may raise them.

2.2.10 TranslationLibrary Interface

// ***
// Translation Library
// ***

interface TranslationLibrary{

exception InvalidQualifiedName {
};
QualifiedCodestr_to_qualified_code(

in NamingAuthority::QualifiedNameStr qualified_name_str
) raises (

InvalidQualifiedName
);

NamingAuthority::QualifiedNameStr qualified_code_to_name_str(
in QualifiedCode qualified_code

);
};

The TranslationLibrary interface describes a set of functions which will typically b
locally implemented.

str_to_qualified_code

This function takes a qualified name string and translates it into the correspondin
qualified code structure. The InvalidQualifiedName exception is thrown if the string
format is unrecognizable or invalid.

qualified_code_to_name_str

This function converts a qualified code into the corresponding qualified name strin
LQS V1.0 Terminology Service Module June 2000 2-27

2

MG
e to

s for
nded

rent
the
ingle

akes it

e

st be

re.
2.2.11 TerminologyService Interface

// ***
// TerminologyService
// ***

interface TerminologyService{

readonly attribute TerminologyServiceNameterminology_service_name;

readonly attribute LexExplorer lex_explorer;
readonly attribute CodingSchemeLocator coding_scheme_locator;
readonly attribute ValueDomainLocator value_domain_locator;

CodingSchemeId Seq get_coding_scheme_ids();

CodingSchemeInfo get_native_coding_scheme_info(
) raises (

NoNativeCodingScheme
);

};

The Lexicon Query Service is based on a component model patterned after the O
Trader Service. [2] This pattern makes it possible for a client to obtain a referenc
any of the primary terminology service interfaces and easily discover which other
interfaces have been implemented. It is expected that as possible future interface
Terminology Services are defined (such as authoring), the component will be expa
to accommodate those interfaces.

A terminology service has one mandatory and two optional interfaces that it may
implement. There are a variety of systems and applications that may require diffe
functionality from a terminology service. If multiple objects are used to implement
component they must all maintain consistency so the client can treat them as a s
terminology service. That is, all the attributes on the TerminologyService must
return identical results.

terminology_service_name

Each implementation instance of TerminologyService must have a unique name.
The chosen name does not necessarily need to have any meaning. The name m
possible for clients traversing a graph of TerminologyServices to recognize services
they have encountered before. The name is static over time. The version within th
name can change over time to represent different revisions of the same service.

If there are two or more objects with the same terminology service name they mu
replicas of each other. The mechanism used to maintain consistency between the
replicas is implementation-dependent and is not exposed as standard interfaces a

lex_explorer
2-28 Lexicon Query Service V1.0 June 2000

2

ful
 to
ce.

e

al
 this

ed

e
 and
e has
The LexExplorer interface provides a subset of terminology services which are use
for many of the common use cases in a single interface that is (hopefully) simple
understand and use. All terminology service vendors must implement this interfa

coding_scheme_locator

The CodingSchemeLocator allows exploration of the functionality supported by
the various coding schemes and navigation to a CodingSchemeVersion that meets
the criteria of the client. This interface is optional and may not be present in all
terminology service implementations. If not present, this attribute should return th
NULL object reference.

value_domain_locator

The ValueDomainLocator interface allows discovery of the value domains which
are implemented by the TerminologyService , and navigation to a
ValueDomainVersion that meets the criteria of the client. This interface is option
and may not be present in all terminology service implementations. If not present,
attribute should return the NULL object reference.

get_coding_scheme_ids

This provides an unordered list of all the coding scheme identifiers that are provid
by this terminology service. This implements the
TerminologyService.GetAllCodingSchemes from the abstract model.

get_native_coding_scheme_info

Returns information about the coding scheme that is designated as “native” by th
terminology service vendor, along with the current default version of that scheme
the preferred language used by that coding scheme. An exception is thrown if ther
been no coding scheme designated as native by the service provider.

2.2.12 LexExplorer Interface

// ***
// LexExplorer
// ***

interface LexExplorer : TerminologyService{

IntlString get_preferred_text(
in QualifiedCode a_qualified_code,
in UsageContextId Seq context_ids

) raises (
UnknownCodingScheme,
UnknownCode

);

IntlStringSeq get_preferred_text_for_concepts(
LQS V1.0 Terminology Service Module June 2000 2-29

2

in QualifiedCodeSeq qualified_codes,
in UsageContextIdSeq context_ids

);

Definition get_preferred_definition(
in QualifiedCode qualified_code

) raises (
UnknownCodingScheme,
UnknownCode

);

ConceptInfoSeq translate_code(
in QualifiedCode from_qualified_code,
in CodingSchemeId to_coding_schemeId

) raises (
UnknownCode,
UnknownCodingScheme,
TranslationNotAvailable

);

ConceptInfoSeqSeq translate_codes(
in QualifiedCodeSeq from_qualified_codes,
in CodingSchemeId to_coding_scheme_id

) raises (
UnknownCodingScheme

);

void list_concepts(in CodingSchemeId coding_scheme_id,
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

) raises (
UnknownCodingScheme,
TooManyToList

);

void list_value_domain_ids (
in unsigned long how_many,
out ValueDomainIdSeq value_domain_ids,
out ValueDomainIdIter value_domain_id_iter

) raises (
TooManytoList

);

boolean is_concept_in_value_domain (
in QualifiedCode qualified_code,
in ValueDomainId value_domain_id

) raises (
UnknownValueDomain

);
2-30 Lexicon Query Service V1.0 June 2000

2

TrinarySeq are_concepts_in_value_domains (
in QualifiedCodeSeq qualified_codes,
in ValueDomainIdSeq value_domains

) raises (
ParameterAlignmentError

);

void get_pick_list(
in ValueDomainId value_domain_id,
in UsageContextIdSeq context_ids,
out PickListSeq pick_list,
out PickListIter pick_list_iter

) raises (
TooManyToList,
UnknownValueDomain,
NoPickListAvailable

);

Trinary association_exists(
in QualifiedCode source_code,
in TargetElement target_element,
in AssociationId association_id,
in boolean direct_only

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);

TrinarySeq associations_exist(
in QualifiedCodeSeq source_codes,
in TargetElementSeq target_elements,
in AssociationIdSeq association_ids,
in boolean direct_only

) raises (
ParameterAlignmentError

);

void list_associated_target_elements (
in QualifiedCode qualified_code,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out TargetElementSeqSeq related_target_seq,
out TargetElementSeqIter related_target_iter

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);
LQS V1.0 Terminology Service Module June 2000 2-31

2

sist

 that

e

e

o

 of
void list_associated_source_codes (
in RestrictedTargetElement target_element,
in CodingSchemeId source_coding_scheme_id,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);
};

The LexExplorer interface provides a simplified or “flattened” interface to some of
the more common terminology service functions. A terminology service may con
solely of the LexExplorer interface if appropriate. When other interfaces are
implemented within the terminology service, a functionally equivalent operation in
LexExplorer and the more complete CodingSchemeVersion or
ValueDomainVersion must return identical results.

get_preferred_text

This operation returns the preferred text associated with the QualifiedCode when
supplied with an ordered list of contexts. This operation must ignore any contexts
it does not recognize. The language is established outside of the scope of this
specification. The result will be identical to what would be returned by the
get_preferred_text operation on the default CodingSchemeVersion whose
CodingSchemeId matches the one in the Qualified Code where the concept is
defined. An exception is thrown if the coding scheme of the qualified code is not
supported or recognized by the terminology service, or if the concept code is not
included in the particular version of the coding scheme supported by the service.

get_preferred_text_for_concepts

This is a batch equivalent of the get_preferred_text operation above. A list of
qualified codes is supplied and a corresponding list of text strings is returned. Th
single list of contexts applies to all of the supplied contexts. A null string (“”) in a
return slot indicates that a problem has occurred and the text was not located. Th
get_preferred_text operation may then be invoked to determine exactly what the
problem was.

get_preferred_definition

This operation returns the preferred definition of the QualifiedCode . The language is
established outside of the scope of this specification. The result will be identical t
what would be returned by the get_preferred_definition operation if the default
CodingSchemeVersion whose CodingSchemeId matches the one in the Qualified
Code where the concept is defined. An exception is thrown if the coding scheme
2-32 Lexicon Query Service V1.0 June 2000

2

 the
e

m
be

t
ngth

ld

g

ding
 will

ng

ogy

he

the qualified code is not supported or recognized by the terminology service, or if
concept code is not included in the version of the coding scheme supported by th
service.

translate_code

This operation will translate the supplied code into a list of synonymous codes fro
the target coding scheme. If a translation cannot be performed, the result should
returned as follows:

• If the terminology service knows about the code to be translated and the targe
coding scheme, it should assert that no translation exists by returning a zero le
list.

• If the coding scheme in the qualified code or the to_coding_schemeId is not
recognized, the operation should throw the UnknownCodingScheme exception.

• If the concept code in the qualified code is not recognized, the operation shou
throw the UnknownCode exception.

• If the translation function is not supported for the supplied code or target codin
scheme, the operation should throw the TranslationNotAvailable exception.

translate_codes

This operation is the batch equivalent of the translate_code operation above. It is
supplied with a list of concept codes which are to be translated into the target co
scheme and then it returns a corresponding list of translation results. This method
throw the UnknownCodingScheme exception if the to_coding_scheme_id
parameter is not recognized. All other problems will be reflected by a zero length
sequence in the corresponding slot. The client will need to use the translate_code
operation to determine exactly why the translation did not occur.

list_concepts

This provides the ability to list all of the concept codes supported by a given codi
scheme. The intended purpose of this LexExplorer interface is to provide list access
to relatively small coding schemes. If the number of concept codes in the coding
scheme exceeds the how_many parameter, the terminology vendor may choose the
TooManyToList exception rather than return the list. The UnknownCodingScheme
exception is thrown if the supplied coding scheme id is not supported and/or
recognized.

list_value_domain_ids

This provides the ability to list all of the value domains supported by the terminol
service. The intended purpose of this interface as specified within the LexExplorer is
to provide list access to a relatively small set. If the number of value domains in t
terminology service exceeds the how_many parameter, the terminology vendor may
choose the TooManyToList exception rather than return the list.

is_concept_in_value_domain
LQS V1.0 Terminology Service Module June 2000 2-33

2

urn
N

r of

ered

or if

ted in
e. If

SE),
ion

g to

 a list
 The
or a

fied
e
ult

e
This returns TRUE if the supplied concept belongs to the supplied value domain,
FALSE otherwise. An exception is thrown if the supplied value domain is not
recognized.

are_concepts_in_value_domains

This is a batch equivalent of the previous operation. A list of qualified codes is
supplied along with a corresponding list of value domains. The corresponding ret
sequence returns TRUE if the concept belongs, FALSE if it doesn’t, and UNKNOW
if the corresponding value domain is not recognized. The ParameterAlignmentError
exception is thrown if the number of value domains is not the same as the numbe
qualified codes.

get_pick_list

This returns an appropriate pick list, if any, for the supplied value domain and ord
set of usage context identifiers. An exception is thrown if the value domain is
unrecognized, if the service is unable to provide a pick list for the value domain,
the pick list is deemed too large in the opinion of the terminology service vendor.

association_exists

This operation returns true if an association instance of the supplied type exists
between the qualified source code and the target element. The association is tes
terms of the default systemization of the coding scheme named in the source cod
the coding scheme does not have a default systemization, the
NoSystemizationForCodingScheme exception is thrown. The direct_only flag
indicates whether the transitive closure of the association is to be considered (FAL
or only immediate children (TRUE). An exception is thrown if the named associat
is not included in the systemization, if the coding scheme of the source or target
element is not recognized, or if the source or target concept code does not belon
the supplied coding scheme.

associations_exist

This is the batch equivalent of the above operation. It takes a list of source codes,
of target elements and a list of association identifiers, and returns a list of results.
direct_only flag applies to all of the elements. If an association is not recognized
code is not recognized, an UNKNOWN value is returned. The client may use the
association_exists function to determine what went wrong. The
ParameterAlignmentError exception is thrown if there isn’t the same number of
source, target, and association elements.

list_associated_target_elements

This operation returns a list of target elements associated with the supplied quali
code via the supplied association. The default systemization for the coding schem
supplied in the qualified code is used. If the coding scheme does not have a defa
systemization, the NoSystemizationForCodingScheme exception is thrown. The
direct_only flag indicates whether the transitive closure of the association is to b
2-34 Lexicon Query Service V1.0 June 2000

2

if
f the
to the

et
ding

SE),
ion
 not
d
considered (FALSE), or only immediate children (TRUE). An exception is thrown
the named association is not included in the systemization, if the coding scheme o
source element is not recognized, or if the source concept code does not belong
supplied coding scheme.

list_associated_source_elements

This operation returns a list of source elements associated with the supplied targ
element via the supplied association. The default systemization for the supplied co
scheme is used. If the coding scheme does not have a default systemization, the
NoSystemizationForCodingScheme exception is thrown. The direct_only flag
indicates whether the transitive closure of the association is to be considered (FAL
or only immediate children (TRUE). An exception is thrown if the named associat
is not included in the systemization, if the coding scheme of the target element is
recognized, or if the source or target concept code does not belong to the supplie
coding scheme.

2.2.13 CodingSchemeLocator Interface

// ***
// CodingSchemeLocator
// ***
interface CodingSchemeLocator:TerminologyService{

VersionIdSeq get_version_ids(
in CodingSchemeId coding_scheme_id

) raises (
UnknownCodingScheme

);

LanguageIdSeq get_supported_languages(
in CodingSchemeId coding_scheme_id

) raises (
UnknownCodingScheme

);

CodingSchemeVersionRefs get_coding_scheme_version(
in CodingSchemeId coding_scheme_id,
in VersionId version_id,
in LanguageId language_id

) raises (
UnknownCodingScheme,
UnknownVersion,
LanguageNotSupported

);

CodingSchemeVersionRefs get_native_coding_scheme_version(
) raises(

NoNativeCodingScheme
LQS V1.0 Terminology Service Module June 2000 2-35

2

ding

gy

the

ns of

rsion

r the
e

o
);

VersionId get_last_valid_versions (
in ConceptCode a_code

) raises (
UnknownCode

);
};

The CodingSchemeLocator component provides navigational capabilities to
enumerate and access the CodingScheme and CodingSchemeVersion objects as
defined in the abstract model. The CodingScheme object and methods have been
flattened into the CodingSchemeLocater interface.

get_version_ids

Returns an ordered list of all of the version identifiers supported in the named co
scheme. The list is ordered chronologically from latest to earliest. An exception is
thrown if the supplied coding scheme identifier is not recognized by the terminolo
service. This implements CodingScheme.GetAllVersions from the abstract model.

get_supported_languages

Returns a list of all the languages supported by the named coding scheme. An
exception is thrown if the supplied coding scheme identifier is not recognized by
terminology service. This indirectly implements
CodingSchemeVersion.ListSupportedLanguages from the abstract model. Note that
some of the languages returned by this method may not be supported by all versio
the coding scheme.

get_coding_scheme_version

Returns a reference to the named CodingSchemeVersion object, given the name of
the coding scheme, the name of the desired version and language in which the ve
object is to communicate. The version identifier may be set to DEFAULT, which
specifies that the current production version is desired. This method will throw an
exception if the coding scheme is not recognized, the version is not recognized, o
language is not supported in the coding scheme version. This implements both th
GetCodingSchemeVersion and GetDefaultCodingSchemeVersion methods. It
also serves to validate and establish the language identifier that will be used in
language-dependent operations.

get_native_coding_scheme_version

Returns a reference to the default version of the native coding scheme using the
preferred language. The service provider throws an exception if there has been n
coding scheme designated as native. This implements the
TerminologyService.GetNativeCodingScheme method.

get_last_valid_version
2-36 Lexicon Query Service V1.0 June 2000

2

at
the
ll

ng to

to
Returns the identifier of the chronologically most recent coding scheme version th
contains the supplied concept code. Typically the version identifier will be that of
latest version except in cases where concept codes have become obsolete. A nu
version identifier is returned if there is no longer any version which contains the
supplied concept code. An exception is thrown if the concept code does not belo
the coding scheme.

2.2.14 ValueDomainLocator Interface

// ***
// ValueDomainLocator
// ***
interface ValueDomainLocator:TerminologyService {

void list_value_domain_ids(
in unsigned long how_many,
out ValueDomainIdSeq value_domain_ids,
out ValueDomainIdIter value_domain_id_iter

);

VersionIdSeq get_version_ids(
in ValueDomainId value_domain_id

) raises(
UnknownValueDomain

);

ValueDomainVersion get_value_domain_version(
in ValueDomainId value_domain_id,
in VersionId version_id

) raises(
UnknownValueDomain,
UnknownVersion

);

ValueDomainIdSeq get_value_domain_ids_for_concept (
in QualifiedCode qualified_code

);
};

The ValueDomainLocator component provides the navigational capabilities
necessary to enumerate and access the ValueDomain and ValueDomainVersion objects
as defined in the model. The ValueDomain object and methods have been flattened in
the ValueDomainLocater interface.

get_version_ids
LQS V1.0 Terminology Service Module June 2000 2-37

2

alue

d by

ier
red.

This operation returns an ordered list of all of the supported versions in a specific v
domain. The list is ordered chronologically from latest to earliest. An exception is
thrown if the supplied coding scheme identifier is not recognized and/or supporte
the terminology service. This implements the ValueDomain.GetAllVersions method in
the model.

get_value_domain_version

This operation returns a reference to the named ValueDomainVersion object, given
the identification of the value domain and the desired version. The version identif
may be set to DEFAULT, which specifies that the current production version is desi
This implements both the ValueDomain.GetValueDomainVersion and
ValueDomain.GetDefaultVersion methods.

get_value_domain_ids_for_concept

This operation will return the list of value domain ids which include this concept in
their current default version.

2.2.15 CodingSchemeAttributes Interface

//***
// CodingScheme interfaces
//***

//***
// A coding scheme consists of the following interfaces
// interface CodingSchemeVersion:CodingSchemeVersionAttributes
// interface PresentationAccess:CodingSchemeVersionAttributes
// interface LinguisticGroupAccess:CodingSchemeVersionAttributes
// interface SystemizationAccess:CodingSchemeVersionAttributes
/ interface AdvancedQuery:CodingSchemeVersionAttributes
//***
//***
// interface CodingSchemeVersionAttributes
//***
interface CodingSchemeVersionAttributes {

readonly attribute CodingSchemeId coding_scheme_id;
readonly attribute VersionId version_id;
readonly attribute LanguageId language_id;
readonly attribute boolean is_default_version;
readonly attribute boolean is_complete_scheme;
readonly attribute CodingSchemeVersion coding_scheme_version_if;
readonly attribute PresentationAccess presentation_if;
readonly attribute LinguisticGroupAccess linguistic_group_if;
readonly attribute SystemizationAccess systemization_if;
readonly attribute AdvancedQueryAccess advanced_query_if;

};
2-38 Lexicon Query Service V1.0 June 2000

2

ese

e

bset

se
ing
CodingSchemeVersionAttributes is an abstract interface that is inherited by the
CodingSchemeVersion , PresentationAccess , LinguisticGroupAccess ,
SystemizationAccess , and AdvancedQuery interfaces. All of these interfaces are
tightly coupled in the component model and must all return identical values for th
attributes. Each of the attributes is defined below:

coding_scheme_id

The identifier of the coding scheme represented by any of these interfaces.

version_id

The version of the coding scheme represented by any of these interfaces.

language_id

The language which is represented by any of these interfaces.

is_default_version

A flag that indicates whether this version was considered the default version for th
coding scheme at the time that the interface was acquired.

is_complete_scheme

A flag that indicates whether the version of the coding scheme is considered
“complete” or exhaustive by the terminology vendor or whether it represents a su
of the total named scheme.

CodingSchemeVersion,
PresentationAccess,
LinguisticGroupAccess,
SystemizationAccess,
AdvancedQuery

All of these interfaces are optional. If not supplied by the terminology vendor, the
attributes return a reference to the NULL object. They are described in the follow
pages.

2.2.16 CodingSchemeVersion Interface

//***
// interface CodingSchemeVersion
//***

interface CodingSchemeVersion : CodingSchemeVersionAttributes {

SyntacticTypeIdSeq get_syntactic_types();
SourceTermUsageIdSeq get_source_term_usages();
SourceIdSeq get_scheme_source_ids();
UsageContextIdSeq get_usage_contexts();
LQS V1.0 Terminology Service Module June 2000 2-39

2

void list_concepts(
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

);

boolean is_valid_concept(
in ConceptCode a_code

);

DefinitionSeq get_definitions(
in ConceptCode a_code

) raises(
UnknownCode

);
Definition get_preferred_definition(

in ConceptCode a_code
) raises(

UnknownCode
);

CommentSeq get_comments(
in ConceptCode a_code

) raises (
NotImplemented,

 UnknownCode
);

InstructionSeq get_instructions(
in ConceptCode a_code

) raises (
NotImplemented,
UnknownCode

);

IntlStringSeq get_all_text(
in ConceptCode a_code

) raises (
UnknownCode

);

IntlString get_preferred_text (
in ConceptCode a_code

) raises (
UnknownCode
NoPreferredText

);

IntlString get_text_for_context(
in ConceptCode a_code,
2-40 Lexicon Query Service V1.0 June 2000

2

t
to

s,

both
in UsageContextIdSeq context_ids
) raises (

UnknownCode,
NoTextLocated

);

ConceptCodeSeq get_concepts_by_text(
in string text

);

void match_concepts_by_string(
in IntlString match_string,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultsIter weighted_result_iter

) raises (
NotImplemented

);

void match_concepts_by_keywords(
in OrderedIntlStringSeq keywords,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultsIter weighted_results_iter

) raises(
NotImplemented

);
};

The CodingSchemeVersion interface implements portions of both the
CodingSchemeVersion and the ConceptDescription interface as described in the abstrac
model. Presentations, linguistic groups, and systemizations have been factored in
separate interfaces.

get_syntactic_types,
get_source_term_usages,
get_scheme_source_ids,
get_usage_contexts

These operations implement the methods ListAllSyntacticTypes, ListSourceTermUsage
ListSchemeSources, and ListSupportedUsages respectively. They allow run-time
discovery of the entities supported by this version of the coding scheme.

list_concepts

This implements the GetAllConcepts method. It returns an iterator of all the concept
codes defined in this version of the coding scheme. Note that the iterator returns
the concept code and the preferred presentation.

is_valid_concept
LQS V1.0 Terminology Service Module June 2000 2-41

2

e

ied
zed.

n is

d for
t

d. An

ode.

ge,

.

 An
 to
Returns TRUE if the supplied concept code is valid for this particular version of th
coding scheme, FALSE otherwise. This implements the IsValidConcept method in the
model.

get_definitions

Returns all of the definitions for the supplied concept code in the language specif
for this object reference. An exception is thrown if the concept code is not recogni
This implements the ConceptDescription.GetDefinitions(FALSE) method in the model.

get_preferred_definition

Returns the preferred definition for the supplied concept code, if any. An exceptio
thrown if the concept code is not recognized. This implements the
ConceptDescription.GetDefinitions(FALSE) method in the model.

get_comments

Returns any comments associated with the concept code in the language specifie
the CodingSchemeVersion object reference. An exception is thrown if the concep
code is not recognized. This implements the ConceptDescription.Comments method in
the model.

get_instructions

Returns any instructions associated with the concept code. The language is ignore
exception is thrown if the concept code is not recognized. This implements the
ConceptDescription.GetInstructions method in the model.

get_all_text

Returns all plain text ASCII presentations associated with the supplied concept c
An exception is thrown if the concept code is not recognized. This partially
implements the ConceptDescription.GetAllPresentations method in the model.

get_preferred_text

Returns the preferred text in the language specified for the CodingSchemeVersion
object reference. An exception is thrown if no text is preferred in the given langua
or the concept code is not recognized. This partially implements the
ConceptDescription.GetPreferredPresentation method in the model.

get_text_for_context

Returns the appropriate text in the language specified for the
CodingSchemeVersion object reference for the supplied list of context identifiers
The list of context identifiers should be ordered from most to least important. The
service ignores unknown context identifiers when searching for the matching text.
exception is thrown if the concept code is not recognized or the service is unable
come up with the appropriate text. This partially implements the
ConceptDescription.GetPresentation method in the model.
2-42 Lexicon Query Service V1.0 June 2000

2

e
e

ed
es

back
s,
nored
ual

ith

g the
re

t is
rds

one
 or

n

get_concepts_by_text

Returns a list of all concept codes that have a textual presentation in the languag
specified for the CodingSchemeVersion object reference which matches exactly th
supplied text. This implements the CodingSchemeVersion.GetConceptsByText method in
the model.

match_concepts_by_string

Returns a weighted list of concept codes which have text that matches the suppli
string. The weighted list is ordered by match likelihood with the most likely match
occurring first in the list. The returned list contains the concept code, the relative
likelihood of match (0.0 < likelihood ≤ 1.0) along with the textual string which
matched, and the preferred presentation for the matching concept code.

The default matching algorithm recognizes the asterisk (*), question mark (?) and
slash (\) as special characters, which represent zero or more matching character
exactly one matching character and the escape character respectively. Case is ig
during the matching process. Thus the match string “Card*ly” would match all text
presentations which began with “card” regardless of case and ended with “ly.”
Similarly, the string “wid??et” would match all seven character strings beginning w
“wid” and ending with “et.” This implements MatchConceptsByString from the abstract
model. This operation is optional and the NotImplemented exception should be thrown
if it is not implemented.

Note – It is anticipated that terminology vendors may extend this algorithm
substantially. For this reason, there are no conformance points specified regardin
set of elements to be returned. The set of concept codes and weights returned a
entirely at the discretion of the terminology vendor.

match_concepts_by_keywords

This is identical to the match_concepts_by_string with the exception that a list of
“keywords” is provided instead of a single match string. The supplied keyword lis
ordered, with the highest priority being assigned to the first word in the list. Keywo
may have the “*” and “?” wild cards embedded. A keyword may not have a white
space character embedded (e.g., tab, “ “, etc.), as it is intended to match exactly
word. The terminology services return concept codes that have text matching one
more of the supplied keywords. This implements MatchConceptsByKeywords from the
abstract model. This operation is optional and the NotImplemented exception should be
thrown if it is not implemented.

Note – As with the proceeding match function, it is the intention of this specificatio
to give the terminology service provider a fair amount of leeway in how the match
strings are interpreted.
LQS V1.0 Terminology Service Module June 2000 2-43

2

2.2.17 PresentationAccess Interface

//**
// PresentationAccess
//**
interface PresentationAccess : CodingSchemeVersionAttributes {

PresentationFormatIdSeq get_presentation_format_ids();

Presentation get_presentation(
in PresentationId presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationInfo get_presentation_info(
in PresentationId presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_presentation_usages(
in PresentationId presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_all_presentations_for_concept(
in ConceptCode a_code

) raises(
UnknownCode

);

PresentationUsage get_preferred_presentation(
in ConceptCode a_code,
in PresentationFormatId presentation_format_id

) raises(
UnknownPresentationFormat,
UnknownCode,
NoPreferredPresentation

);

PresentationUsage get_presentation_for_context(
in ConceptCode a_code,
in UsageContextIdSeq context_ids,
in PresentationFormatId presentation_format_id

) raises (
UnknownPresentationFormat,
UnknownCode,
NoPresentationLocated
2-44 Lexicon Query Service V1.0 June 2000

2

or. It
ted

own
n of

 is
a

about
code
);

PresentationUsage get_all_presentations_for_context (
in ConceptCode a_code,
in UsageContextIdSeq context_ids,
in PresentationFormatId presentation_format_id

) raises (
UnknownPresentationFormat,
UnknownCode,
NoPresentationLocated

);
};

The PresentationAccess component is optional and may or may not be
implemented depending upon the needs of the client and terminology service vend
provides a more “sophisticated” level of access to presentations and their associa
entities. The various operations are described below.

get_presentation_format_ids

Returns a list of all the presentation formats supported by this module. This
implements CodingSchemeVersion.ListSupportedPresentationFormats from the abstract
model.

get_presentation

Returns the actual presentation given a presentation identifier. An exception is thr
if the presentation identifier is not in the coding scheme. This implements a portio
CodingSchemeVersion.GetPresentation from the abstract model.

get_presentation_info

Returns a presentation info structure given a presentation identifier. An exception
thrown if the presentation identifier is not in the coding scheme. This implements
portion of CodingSchemeVersion.GetPresentation from the abstract model. This
operation and get_presentation above fully implement GetPresentation.

get_presentation_usages

Returns a list of all the PresentationUsage structures that reference the supplied
presentation identifier. An exception is thrown if the presentation id is not in the
coding scheme version. This implements Presentation.GetPresentationUsages from the
abstract model.

get_all_presentations_for_concept

Returns a list of all the PresentationUsage structures that contain the supplied
concept code. These structures may then be used to acquire further information
the associations and the presentation itself. An exception is thrown if the concept
is not valid in the coding scheme. This implements
ConceptDescription.GetAllPresentations from the abstract model.
LQS V1.0 Terminology Service Module June 2000 2-45

2

e
zed,
rred

pt

tion
alid
at.

urns

vides
get_preferred_presentation

Returns the PresentationUsage structure that represents the concept
code/presentation association that is preferred for the supplied concept code in th
default language. An exception is thrown if the presentation format is not recogni
if the concept code is not valid in the coding scheme version, or if there is no prefe
presentation in this format and/or language. This implements
ConceptDescription.GetPreferredPresentation from the abstract model.

get_presentation_for_context

Returns the PresentationUsage structure that represents the code/presentation
association that is most appropriate for ordered context list for the supplied conce
code and format. The list of contexts is ordered by the relative importance to the
calling application. The service ignores unrecognized contexts in the list. An excep
is thrown if the presentation format is not recognized, if the concept code is not v
in the coding scheme version, or if there is no preferred presentation in this form
This implements ConceptDescription.GetPresentationForContext from the abstract
model.

get_all_presentations_for_context

This operation is identical to the preceding operation with the exception that it ret
all of the PresentationUsage structures that could be appropriate. It implements
ConceptDescription.GetAllPresentationsForContext from the model.

2.2.18 LinguisticGroupAccess Interface

//**
// LinguisticGroupAccess
//**
interface LinguisticGroupAccess : CodingSchemeVersionAttributes {

LexicalTypeIdSeq get_lexical_types();

LexicalGroupInfo get_lexical_group(
in LexicalGroupId lexical_group_id

) raises(
LexicalGroupNotInCodingSchemeVersion

);
}

The LinguisticGroupAccess component is an optional component. A linguistic
group associates one or more syntactically similar presentations. The interface pro
the two operations listed below. (The method
CodingSchemeVersion.GetAllLinguisticGroups is implemented in the
TerminologyService base module.)

get_linguistic_group
2-46 Lexicon Query Service V1.0 June 2000

2

rown

s.

 If
 an

t
ogy

es

Returns a structure which represents the named lexical group. An exception is th
if the group is not recognized. This implements the
CodingSchemeVersion.GetLinguisticGroup method.

2.2.19 AdvancedQueryAccess Interface

//**
// AdvancedQueryAccess
//**

interface AdvancedQueryAccess : CodingSchemeVersionAttributes {
readonly attribute PolicyNameSeq supported_policies;
readonly attribute ConstraintLanguageIdSeq

supported_constraint_languages;

struct query_policies {
unsigned long return_maximum;
boolean concept_as_source;
boolean concept_as_target;
boolean current_scheme_only;
boolean direct_associations_only;

};

void query (
in Constraint constr,
in PolicySeq search_policy,
in unsigned long how_many,
out WeightedResultSeq results,
out WeightedResultsIter results_iter

) raises (
IllegalConstraint,
IllegalPolicyName,
PolicyTypeMismatch,
DuplicatePolicyName

);
}

The AdvancedQueryAccess interface is an optional interface which provides a
means by which a client can enumerate concepts that satisfy multiple association

The constraint “constr ” is the means by which the client states the requirements.
the “constr ” does not obey the syntax rules for a legal constraint expression, then
IllegalConstraint exception is raised.

The OMG Trader Specification, appendix B [2] defines the OMG Trader constrain
language. This document should be considered the specification for the Terminol
Service query constraint. The information provided here defines the Property Nam
that may be used, as well as a summary of the constraint language as applied to
terminology services.
LQS V1.0 Terminology Service Module June 2000 2-47

2

y be
age
r

ed in
s
eries.

in
hese

 is a
ue

ider

s
e

Trader

 can

.

obey

in

hen
A statement in the constraint language is a string. Other constraint languages ma
supported by a particular terminology service implementation; the constraint langu
used by a client of the terminology service is indicated by embedding “<<Identifie
major.minor>>” at the beginning of the string. If such an escape is not used, it is
equivalent to embedding “<<OMG 1.0>>”.

The constraint expressions in a query can be constructed from the Properties defin
this specification. The TerminologyService Values Module includes standard name
that can be used as Property values to construct terminology service constraint qu
[2] These property names are defined to searches via AssociationId in combination
with text and keyword search under control of the client.The constraint language
which these expressions are written consists of the following items (examples of t
expressions are shown in square brackets below each bulleted item):

• Comparative functions: == (equality),! = (inequality), >, >=, <, <=, ~ (substring
match), in (element in sequence); the result of applying a comparative function
boolean value [“Cost < 5” implies only consider offers with a Cost property val
less than 5; “’Visa’ in CreditCards” implies only consider offers in which the
CreditCards property, consisting of a set of strings, contains the string ’Visa’]

• Boolean connectives: and, or, not [“Cost >= 2 and Cost <= 5” implies only cons
offers where the value of the Cost property is in the range 2 <= Cost <= 5]

• Property existence: exist

• Property names

• Numeric and string constants

• Mathematical operators: +, -, *, / [“10 < 12.3 * MemSize + 4.6 * FileSize” implie
only consider offers for which the arithmetic function in terms of the value of th
MemSize and FileSize properties exceeds 10]

• Grouping operators: (,)

Note that the keywords in the language are case-sensitive. Please see the OMG
specification for a complete definition of the constraint language.

The “policies” parameter allows the importer to specify how the search should be
performed as opposed to what criteria should be used to determine a match. This
be viewed as parameterizing the algorithms within the terminology service
implementation. The “policies” are a sequence of name-value pairs. The names
available to an importer depend on the implementation of the terminology service
However, some names are standardized where they represent policies that all
terminology services should support. If a policy name in this parameter does not
the syntactic rules for legal PolicyName ’s, then an IllegalPolicyName exception is
raised. If the type of the value associated with a policy differs from that specified
this specification, then a PolicyTypeMismatch exception is raised. If subsequent
processing of a PolicyValue yields any errors (e.g., the terminology service
determines a policy value is malformed), then an InvalidPolicyValue exception is
raised. If the same policy name is included two or more times in this parameter, t
the DuplicatePolicyName exception is raised.
2-48 Lexicon Query Service V1.0 June 2000

2

ation.

ion

ding
the

ia
pts

ed.

he
The returned concept codes are passed back via a WeightedResultSeq which has
iterator access provided.

The following standard policies are defined for the terminology service query
operation:

concept_as_source

Specifies whether to include concepts that participate as the source in the associ

concept_as_target

Specifies whether to include concepts that participate as the target in an associat
named in the query.

current_scheme_only

Specifies whether to include concepts that may be defined as synonyms in this co
scheme, but are not a part of the coding scheme. Setting this to TRUE will limit
concepts returned to those that are a part of the current coding scheme.

direct_associations_only

Specifies whether or not to include concepts which participate in an association v
inheritance rather than directly. Setting this to TRUE would limit the returned conce
to those that are directly involved in the named association. Setting this to FALSE
would allow the transitive closure of the particular named association to be includ
Behavior would be identical to that in the are_concepts_related operation of the
systemization. Specifically, subtypes and other associations are not included in t
results of the query.

2.2.20 SystemizationAccess Interface

//**
// SystemizationAccess
//**
interface SystemizationAccess : CodingSchemeVersionAttributes {

SystemizationIdSeq get_systemization_ids();

Systemization get_systemization(
in SystemizationId systemization_id

) raises(
UnknownSystemization

);

Systemization get_default_systemization(
) raises(

NoDefaultSystemization
);

}

LQS V1.0 Terminology Service Module June 2000 2-49

2

 to

g

This

. An
The SystemizationAccess interface is an optional component. It provides access
Systemizations associated with a coding scheme version.

get_systemization_ids

Returns a list of all the identifiers of all the systemizations supported in the codin
scheme version. This implements CodingSchemeVersion.GetAllSystemizations from the
abstract model.

get_systemization

Returns a reference to the systemization object that implements the named
systemization. An exception is thrown if the systemization name is unrecognized.
implements CodingSchemeVersion.GetSystemization from the abstract model.

get_default_systemization

Returns a reference to the “default” systemization for the coding scheme version
exception is thrown if the terminology vendor has not specified a default. This
implements CodingSchemeVersion.GetDefaultSystemization from the abstract model.

2.2.21 Systemization Interface

//**
// Systemization
//**
interface Systemization {

readonly attribute SystemizationId systemization_id;
readonly attribute CodingSchemeVersion coding_scheme_version;

AssociationIdSeq get_association_ids();

AssociationDef get_association_definition(
in AssociationId association_id

)raises (
AssociationNotInSystemization

);

void list_all_association_instances(
in unsigned long how_many,
out AssociationInstanceSeq association_instance_seq,
out AssociationInstanceIter association_instance_iter

);

Trinary are_entities_associated(
in ConceptCode source_code,
in AssociatableElement target_element,
in AssociationId association_id,
in boolean direct_only
2-50 Lexicon Query Service V1.0 June 2000

2

) raises (
AssociationNotInSystemization

);

Trinary could_association_be_inferred(
in ConceptCode source_code,
in AssociatableElement target_element,
in AssociationId association_id

) raises (
AssociationNotInSystemization,
NotImplemented

);

void list_associated_target_entities (
in ConceptCode source_code,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out TargetElementSeqSeq related_elements,
out TargetElementSeqIter related_elements_iter

) raises (
AssociationNotInSystemization

);

void list_associated_source_codes (
in AssociatableElement target_element,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

) raises (
AssociationNotInSystemization

);
EntityGraph get_entity_graph (

in AssociatableElement root_node,
in AssociationId association_id,
in AssociationRole node_one_role,
in boolean direct_only

) raises (
AssociationNotInSystemization,
NotImplemented,
TooManyToList

);
AssociationIdSeqget_associations_for_source (

in ConceptCodesource_code
);
AssociationIdSeqget_associations_for_target (

in AssociatableElement target_element
);
LQS V1.0 Terminology Service Module June 2000 2-51

2

ValidationResult validate_concept_expression (
in ConceptExpression expression

) raises (
InvalidExpression,
NotImplemented,
AssociationNotInSystemization

);

ConceptExpression get_simplest_form (
in ConceptExpression expression

) raises (
InvalidExpression,
NotImplemented,
AssociationNotInSystemization

);

ConceptExpression expand_concept (
in ConceptCode concept,
in AssociationQualifierIdSeq association_qualifier_seq

) raises (
ConceptNotExpandable,
UnknownCodingScheme,
NotImplemented,
AssociationNotInSystemization

);

Trinary are_expressions_equivalent (
in ConceptExpression expression1,
in ConceptExpression expression2

) raises (
InvalidExpression,
UnknownCodingScheme,
AssociationNorInSystemization,
NotImplemented,
UnableToEvaluate

);
ConceptExpression expression_difference(

in ConceptExpression expression1,
in ConceptExpression expression2

) raises (
InvalidExpression,
UnknownCodingScheme,
AssociationNotInSystemization,
NotImplemented,
UnableToEvaluate

);

ConceptExpression minimal_common_supertype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
2-52 Lexicon Query Service V1.0 June 2000

2

et of
he
een
ing

f
f the

rsion.

ents.

et
AssociationNotInSystemization,
NotImplemented,
NoCommonSupertype

);

ConceptExpression maximal_common_subtype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
AssociationNotInSystemization,
NotImplemented,
NoCommonSubtype

);
};

A systemization represents an ordering, classification and/or categorization of a s
concept codes. The purpose of a systemization is to further define and describe t
concept codes within a coding scheme, as well as to define the relationship betw
these concept codes and other concept codes and/or characteristics in other cod
schemes.

The systemization references one or more association types and contains a set o
association instances between various concept codes and characteristics. Each o
individual systemization entities is described below.

systemization_id

The unique name of the systemization within the context of the coding scheme ve

coding_scheme_version

A reference to the coding scheme version object in which this systemization is
implemented.This implements GetCodingSchemeVersion from the abstract model.

get_association_ids

Returns a list of all the association type identifiers that are referenced by this
systemization. The ability to retrieve the ids without the overhead of retrieving the
association definitions is provided as a performance enhancement for browser cli
This could be used in conjunction with the get_association_definition to
implements the semantics of the GetAllAssociations method of the model.

get_association_definition

Returns an AssociationDef that includes the formal definition of an association as
documented in the model. This includes the association identifier, source and targ
roles and cardinality, target types and flags that describe the semantics of the
association.

list_all_association_instances
LQS V1.0 Terminology Service Module June 2000 2-53

2

he

tion
n is

on
sn’t
the

ed
dered
the
re

vious

ether

te in

e
ents

ipate

the
ents

the

ed
This operation provides iterator access to all of the association instances within t
systemization. This implements the GetAllAssociationInstances method defined in the
model.

are_entities_associated

This operation determines whether an association instance of the named associa
exists in which the source concept code is associated with the target. An exceptio
thrown if the association identifier is not defined in the systemization. The operati
returns TRUE if the association exists, FALSE if the service can assert that it doe
exist, and UNKNOWN if the service has insufficient information to say one way or
other.

The direct_only flag indicates whether only direct associations are to be consider
(TRUE) or whether a transitive path between the source and target are also consi
(FALSE). This flag is ignored in the case of non-transitive associations. Note that
direct_only flag applies only to the named association. Subtyping associations a
not considered by the are_entities_associated operation. This implements the
AreEntitiesAssociated method of the Systemization model.

could_association_be_inferred

This operation extends the are_entities_associated above to include subtyping and
other associations where appropriate. The input parameters are identical to the pre
operation, with the exception that the direct_only flag is presumed to be FALSE. A
service implementation may use additional means at its disposal to determine wh
there is some finite probability of an association existing.

list_associated_target_entities

This operation returns iterator access to the set of all target entities that participa
the named association with the source code. If directOnly is TRUE, only the target
entities directly associated with the source codes are supplied. If FALSE, all of th
target entities in the transitive closure of the association are returned.This implem
the GetAssociatedTargetEntities method of the model.

list_associated_source_concepts

This operation returns iterated access to the set of all source concepts that partic
in the named association with the target entity. If directOnly is TRUE, only the source
concepts directly associated with the source codes are supplied. If FALSE, all of
target entities in the transitive closure of the association are returned. This implem
the GetAssociatedSourceCodes method of the model. The directOnly flag is ignored
and presumed to be TRUE when the supplied association is not transitive.

get_entity_graph

This operation returns a graph of instances of the supplied association rooted at
supplied root node and based on the supplied association type. If the root_node_role
is SOURCE, the directed graph traverses from source to target. If the
root_node_role is TARGET, the graph traverses from target to source. The return
2-54 Lexicon Query Service V1.0 June 2000

2

n in

ode

ment

ions
the

t
 is

of

hich
graph may either carry direct associations (directOnly = TRUE) or the transitive
closure of the associations, (directOnly = FALSE). An exception is thrown if the
association is unrecognized or the returned graph is too large to reasonably retur
simple structure.

get_associations_for_source

This operation returns the set of all associations in which the supplied qualified c
participates in the source role. This implements the GetAssociationsForSource method
of the model.

get_association_for_target

This operation returns the set of all associations in which the supplied target ele
participates in the target role. This implements the GetAssociationsForTarget method of
the model.

validate_concept_expression

A concept expression consists of a base concept code and one or more associat
which apply to that code. The notation for the following example is borrowed from
GALEN CORE notation [13]. One representation of the upper lobe of the left lung
could be:

Lobe which <is-part-of (Lung which has-laterality Left) has-location Upper>

The validate_concept_expression operation returns FALSE if the supplied concep
expression is not semantically valid according to the coding scheme. If the return
TRUE, an optional association qualifier may also be returned to further qualify the
conditions in which the TRUE return applies. As a hypothetical example, a
systemization might return a qualifier of “sensible.” If the concept expression
described the middle lobe of the left lung, the systemization might return a qualifier
“grammatical”, indicating that, while there isn’t a middle lobe of the left lung, the
expression still made grammatical sense. This implements the
ValidateConceptExpression method of the Systemization model.

get_simplest_form

This operation returns a concept expression that represents the simplest form in w
the supplied concept expression may be expressed. Using the example above, a
terminology system might have a concept code which represented the left lung. The
result of a get_simplest_form call with the example above might yield:

Lobe which <is-part-of LeftLung has-location Upper>

This implements the GetSimplestForm method of the Systemization model.

expand_concept
LQS V1.0 Terminology Service Module June 2000 2-55

2

urns

ario,

ese

en
cept

ncept

e

ncept
sions.

This operation takes the supplied concept code and association qualifiers and ret
the “canonical” concept expression that serves to define the concept. If expand_concept
is supplied with the concept code <LeftLung> and no qualifiers in the above scen
it might return:

Lung which has-laterality Left

This implements the ExpandConcept method in the Systemization model.

are_expressions_equivalent

This operation is supplied with two concept expressions. It determines whether th
two expressions could be considered equivalent. This implements the
AreExpressionsEquivalent method of the model.

expression_difference

This operation, given two concept expressions, determines the “difference” betwe
the two concept expressions and returns this difference in the form of a third con
expression. This implements the ExpressionDifference method of the model.

minimal_common_supertype

This operation, given a sequence of two or more concept expressions, returns a co
expression that is the “closest” valid supertype based on the concepts in the
expressions. An exception is thrown if there is no valid minimal common supertyp
short of the universal type. This implements the MinimalCommonSupertype method of
the model.

maximal_common_subtype

This operation, given a sequence of two or more concept expressions, returns a co
expression that is the “closest” valid subtype based on the concepts in the expres
An exception is thrown if there is no valid maximum common subtype short of the
absurd type. This implements the MaximalCommonSubtype method of the model.

2.2.22 ValueDomainVersion Interface

//***
// Value Domain Version
//***

interface ValueDomainVersion {
readonly attribute ValueDomainId value_domain_id;
readonly attribute VersionId value_domain_version_id;
readonly attribute boolean is_default_version;

CodingSchemeIdSeq get_schemes_with_extensions();

QualifiedCodeInfoSeq get_all_extensions();
2-56 Lexicon Query Service V1.0 June 2000

2

ly
ase,
ain is

his

f
ConceptInfoSeq get_extension_for_scheme(
in CodingSchemeId coding_scheme_id

) raises (
UnknownCodingScheme

);

boolean is_code_in_domain(
in QualifiedCode qualified_code

);

void get_pick_list(
in UsageContextIdSeq context_ids,
out PickListSeq pick_list,
out PickListIter pick_list_iter

) raises (
TooManyToList,
NoPickListAvailable

);

void get_pick_list_for_scheme(
in CodingSchemeId coding_scheme_id,
in UsageContextIdSeq usage_context_ids,
out PickListSeq pick_list,
outPickListIter pick_list_iter

) raises(
TooManyToList,
UnknownCodingScheme,
NoPickListAvailable

);
};

The ValueDomainVersion interface represents a snapshot of a value domain at a
point in time. Terminology services which provide the value domain interface may
implement a set of value domain versions for a given value domain, or may simp
choose to maintain only the latest version of a given value domain. In the latter c
the vendor is encouraged to change the version number every time the value dom
modified. The value domain version interface exposes the following attributes and
operations:

value_domain_id

The globally unique name of the value domain represented as a qualified code. T
implements the GetParentValueDomain method in the model.

value_domain_version_id

An identifier that uniquely identifies the version of the domain within the context o
the domain itself. This corresponds to the versionId attribute in the model.

is_default_version
LQS V1.0 Terminology Service Module June 2000 2-57

2

 to

 in

t
This

d in

ise.

ption
.

ding
ot

TRUE indicates that this version is the recommended version of the value domain
use at this point in time. This corresponds to the isDefaultVersion attribute in the
model.

get_schemes_with_extensions

Returns a list of all coding schemes which have one or more concept codes listed
this value domain.

get_all_extensions

Returns a list of all concept codes that are included in this value domain. This lis
includes the qualified code and the preferred textual presentation for each code.
implements the GetAllValueDomainExtensions method in the model.

get_extension_for_scheme

Returns a list of all concept codes from a given coding scheme which are include
this value domain. This list includes the concept code and its preferred textual
presentation.

An exception is thrown if the coding scheme is not recognized by the terminology
service. This implements the GetValueDomainExtension method in the model.

is_code_in_domain

Returns TRUE if the qualified code is included in the value domain, FALSE otherw
This implements the IsCodeInValueDomain method in the model.

get_pick_list

Returns the appropriate pick list given an ordered set of usage contexts. An exce
is raised if no pick list is available or the pick list is considered too large to return
Unrecognized usage contexts are ignored. This implements the GetPickList method in
the model.

get_pick_list_for_scheme

Returns the appropriate pick list consisting of concept codes from the supplied co
scheme. An exception is raised if no pick list is available, the coding scheme is n
recognized, or the pick list is considered too large to return. Unrecognized usage
contexts are ignored. This implements the GetPickListForCodingScheme method in the
model.

2.3 Terminology Service Values Module

//File: TerminologyServiceValues.idl
//
#ifndef _TERMINOLOGY_SERVICE_VALUES_IDL_
#define _TERMINOLOGY_SERVICE_VALUES_IDL_
2-58 Lexicon Query Service V1.0 June 2000

2

#pragma prefix "omg.org"
#include <orb.idl>
#include <NamingAuthority.idl>
#include "TerminologyServices.idl"

// ***
// module: TerminologyServiceValues
// ***

module TerminologyServiceValues {

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedNameStr;
typedef NamingAuthority::AuthorityIdStr AuthorityIdStr;

//**
// ValueDomainId Strings
//***
typedef QualifiedNameStr ValueDomainIdStr;

const ValueDomainIdStr ASSOCIATION_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationId";

const ValueDomainIdStr ASSOCIATION_QUALIFIER_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationQualifierId";

const ValueDomainIdStr ASSOCIATION_BASE_TYPE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationBaseTypeId";

const ValueDomainIdStr LANGUAGE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/LanguageId";

const ValueDomainIdStr LEXICAL_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/LexicalTypeId";

const ValueDomainIdStr PRESENTATION_FORMAT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/PresentationFormatId";

const ValueDomainIdStr SOURCE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/SourceId";

const ValueDomainIdStr SOURCE_USAGE_DOMAIN =
"IDL:omg.org/TerminologyService/SourceUsageId";

const ValueDomainIdStr SYNTACTIC_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/SyntacticTypeId";

const ValueDomainIdStr USAGE_CONTEXT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/UsageContextId";

//**
// AssociationId
//**
typedef ConceptCode AssociationId;
const NamingAuthority::AuthorityIdStr
ASSOCIATION_ID_AUTHORITY_STRING =

"IDL:org.omg/TerminologyService/Association/";

const AssociationIdIS_COMPOSED_OF =
LQS V1.0 Terminology Service Values Module June 2000 2-59

2

“isComposedOf”;
const AssociationIdHAS_SUBTYPES =

“hasSubtypes”;
const AssociationIdREFERENCES =

“references”;
const AssociationIdHAS_ATTRIBUTES =

“hasAttributes”;

//**
// AssociationBaseTypeId
//**
typedef ConceptCode AssociationBaseTypeId;
const NamingAuthority::AuthorityIdStr
ASSOCIATION_BASE_TYPE_ID_AUTHORITY_STRING =

"IDL:org.omg/TerminologyService/AssociationBaseType/";

const AssociationIdWHOLE_PART =
"wholepart";

const AssociationIdSUBTYPE =
"subtype";

const AssociationIdREFERENCE =
"reference";

const AssociationIdNON_SEMANTIC =
"nonSemantic";

//**
// AssociationQualifierId Strings
//***
typedef QualifiedNameStr AssociationQualifierIdStr;

const AssociationQualifierIdStr MANDATORY =
"IDL:omg.org/TerminologyService/AssociationQualifier/MAND";

const AssociationQualifierIdStr OPTIONAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/OPT";

const AssociationQualifierIdStr SINGLE =
"IDL:omg.org/TerminologyService/AssociationQualifier/SING";

const AssociationQualifierIdStr PLURAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/PLUR";

//**
// LanguageIds
//***
typedef ConceptCode LanguageId;

const NamingAuthority::AuthorityIdStr
LANGUAGE_ID_AUTHORITY_STRING =

"DNS:usmarc.omg.org/041/";

const LanguageId DANISH ="DAN";
2-60 Lexicon Query Service V1.0 June 2000

2

const LanguageId ENGLISH ="ENG";
const LanguageId FRENCH ="FRE";
const LanguageId GERMAN ="GER";
const LanguageId ITALIAN ="ITA";
const LanguageId SPANISH ="SPA";

//**
// LexicalTypeIds
//***

typedef QualifiedNameStr LexicalTypeIdStr;

const LexicalTypeIdStr ABBREVIATION = “DNS:umls.hl7.omg.org/LT/ABB”;
const LexicalTypeIdStr EMBEDDED_ABBREVIATION =
“DNS:umls.hl7.omg.org/LT/ABX”;
const LexicalTypeIdStr ACRONYM = “DNS:umls.hl7.omg.org/LT/ACR”;
const LexicalTypeIdStr EMBEDDED_ACRONYM =
“DNS:umls.hl7.omg.org/LT/ACX”;
const LexicalTypeIdStr EPONYM = “DNS:umls.hl7.omg.org/LT/EPO”;
const LexicalTypeIdStr LAB_NUMBER = “DNS:umls.hl7.omg.org/LT/LAB”;
const LexicalTypeIdStr PROPER_NAME = “DNS:umls.hl7.omg.org/LT/NAM”;
const LexicalTypeIdStr SPECIAL_TAG = “DNS:umls.hl7.omg.org/LT/NON
NO”;
const LexicalTypeIdStr TRADE_NAME = “DNS:umls.hl7.omg.org/LT/TRD”;

//**
// PresentationFormatIds
//***
typedef ConceptCode PresentationFormatId;

const NamingAuthority::AuthorityIdStr
PRESENTATION_FORMAT_AUTHORITY_STRING =
"DNS:omg.org/MIME/";

const PresentationFormatId PLAIN_TEXT = "text/plain";
const PresentationFormatId RTF = "application/rtf";
const PresentationFormatId ZIP = "application/zip";
const PresentationFormatId PDF = "application/pdf";
const PresentationFormatId GIF_IMAGE = "image/gif";
const PresentationFormatId BASIC_AUDIO = "audio/basic";

//**
// SourceIds
//**

typedef QualifiedNameStr SourceIdStr;

//**
// SourceUsageTypeId
//**
LQS V1.0 Terminology Service Values Module June 2000 2-61

2

ology

the

typedef QualifiedNameStr SourceUsageTypeIdStr;

//**
// SyntacticType
//**

typedef ConceptCode SyntacticTypeId;

const NamingAuthority::AuthorityIdStr
SYNTACTIC_TYPE_AUTHORITY_STRING =

"DNS:umls.hl7.omg.org/STT";
const SyntacticTypeId CASE_DIFFERENCE = "C";
const SyntacticTypeId WORD_ORDER = "W";
const SyntacticTypeId SINGULAR_FORM = "S";
const SyntacticTypeId PLURAL_FORM = "P";

//**
// Query Property Types
//**

typedef string TerminologyServiceProperty;

const TerminologyServiceProperty LexicalTypeProperty = “LexicaltypeId”;
const TerminologyServiceProperty AssociationProperty = “AssociationId”;
const TerminologyServiceProperty PreferredTextProperty = “Preferred-
Text”;
const TerminologyServiceProperty DefinitionProperty = “Definition”;
const TerminologyServiceProperty PresentationProperty = “Presenta-
tionId”;

};

#endif /* _TERMINOLOGY_SERVICE_VALUED_IDL_ */

The above module provides the literal codes that can be used to access the termin
services. The first section contains string literals which name each value domain
included in the terminology services interface specification. With the exception of
version suffix, these literals should match the interface repository (IR) identifier of
each of the named entities exactly. As an example, the IDL code:

#pragma prefix "omg.org"
#include <orb.idl>
#include <NamingAuthority.idl>

// ***
// module: TerminologyService
// ***
module TerminologyServices {
 ...
TYPEDEF cONCEPTcODE lANGUAGEiD;
...
2-62 Lexicon Query Service V1.0 June 2000

2

des

his
];

// ...
};

should produce an entry in the interface repository in the form:

"IDL:omg.org/TerminologyService/LanguageId";

The literals described in the value domains section are not used directly in the
terminology services, but would be the value domains that would be used when
referencing the domains in a “terminology of terminology.”

The value domains section is followed by string literals for all of the pre-defined co
that are used in the terminology services itself. ConceptCode type literals may be
used directly to access the appropriate methods. Literals of type QualifiedNameStr
must first be converted into a qualified code before being used in the interface. T
conversion may be accomplished by using the TranslationLibrary interface.
LQS V1.0 Terminology Service Values Module June 2000 2-63

2

2-64 Lexicon Query Service V1.0 June 2000

Terminology 3
Contents

This chapter contains the following topics.

Topic Page

“Trader Service” 3-2

“Meta-Terminology” 3-3

“Association Qualifier” 3-14

“CharacterSet” 3-14

“Coding Scheme” 3-14

“Language” 3-15

“LexicalType” 3-16

“PresentationFormat” 3-16

“Source” 3-17

“Source Term Type” 3-17

“Syntactic Type” 3-17

“Usage Context” 3-18

“Value Domain” 3-18

“Conformance Points” 3-18
Lexicon Query Service V1.0 June 2000 3-1

3

ll
al

he
ed

s to.

he
f the

logy
3.1 Trader Service

The following definitions are Service Types defined for TerminologyServices
components for use by the OMG Trader Service.

interface TerminologyService {
interface TerminologyService;
mandatory readonly property string terninology_service_name;
mandatory readonly property StringSeq interfaces_implemented;
mandatory readonly property StringSeq conformance_classes;
mandatory readonly property StringSeq supported_coding_schemes;
mandatory readonly property StringSeq default_coding_scheme;
mandatory readonly property StringSeq supported_languages

};

Since all TerminologyServices implement the TerminologyService interface, only
one Trader Service type is needed, which is also called ‘TerminologyService.’ The
TerminologyService interface has attributes for the common characteristics for a
TerminologyServices. These are used as properties for the service type. Addition
properties are specified which are attributes of CodingSchemeVersions (a derived
interface). The stringified versions of the attributes are used for properties since t
standard Trader constraint language does not provide a way to filter on user-defin
types.

The interface type returned from the Trader Service for this service type is a
TerminologyService . All properties are mandatory. These are common to all
implementations.

terminology_service_name

The terminology_service_name property contains the information from the
terminology_service_name attribute of the TerminologyService interface. It is
formatted as specified for NamingAuthority::AuthorityIdStr .

interfaces_implemented

This sequence contains the names of the interfaces the component has reference
The names are fully qualified names which include the module name.

conformance_classes

This sequence contains the conformance classes the implementation supports. T
strings are identical to the way they are spelled and capitalized in the definition o
conformance classes for TerminologyServices.

supported_coding_schemes

This sequence contains the Coding Schemes which are supported by this termino
service. This is a sequence of all the stringified CodingSchemeId in this
terminologyService. It is formatted as a NamingAuthority::AuthorityIdStr .
3-2 Lexicon Query Service V1.0 June 2000

3

ts
d to
e term

ons.
 may

es
y

pes

t of
s.

r
eric

 of

o

ering
supported_languages

This sequence contains the supported languages for the TerminologyService . It is
formatted as shown in the TerminologyServiceValues module.

default_coding_scheme

This is the default CodingSchemeId for this TerminologyService . It is formatted
as a NamingAuthority::AuthorityIdStr .

3.2 Meta-Terminology

3.2.1 Association

Most terminology services deal with complex associations between coded concep
and, optionally, coded concepts and non-coded information. The terminology use
describe these associations varies from vendor to vendor. One vendor may use th
“relationship,” another the term “facet,” and a third the term “attribute.”

Each terminology system typically has its own set of codes for individual associati
One system may use the code “hasMember” to indicate subtyping, while another
use “isA" and a third may use “hasSubtypes.” To further complicate matters, one
system may use the code “isA" to represent subtyping while a second system us
“isA" to represent a type of whole-part association. Regardless of the terminolog
used it is very important that the user of the service be able to determine the
underlying intent behind a given association (relationship, facet, attribute) code.

This section defines some of the basic distinguishing characteristics of different ty
of associations. These associations are arranged within an arbitrary, pragmatic
taxonomy. Each node in the taxonomy has an identifier that serves a code for the
specific combination of characteristics. The set of codes then provides a base se
types which serve to distinguish the characteristics of vendor-specific association

As an example, a terminology vendor may provide an association named “broade
than.” While one can infer possible intent from the association name itself, a gen
client would not be able to utilize this association without further information. If,
however, the generic client were able to determine that “broader than” was a type
subtyping association (or whole-part or whatever else), it could make certain
assumptions about the characteristics of the “broader than” which would allow it t
perform useful operations.

Please note that the taxonomy described below is intended solely as pragmatic ord
based on useful characteristics. This is not taxonomy of meaning, and one cannot
presume that any of the characteristics are inherited through a classification of
association based on terminological meaning.

As an example, take the classification:
LQS V1.0 Meta-Terminology June 2000 3-3

3

,

cross
 a
a set
its
o this
e
tions
Figure 3-1 Sample Classification by Meaning

In Figure 3-1, the association hasChild is a type of hasDescendent, which in turn is a
type of hasFamilyRelation. The hasChild association is intransitive and anti-symmetric
while the hasDescendent is transitive and anti-symmetric and the hasFamilyRelation is
both transitive and symmetric.

The discussions in the sections that follow are based heavily on Kilov and Ross,
Information Modeling, An Object-Oriented Approach [14] with additional guidance and
input from Dr. Alan Rector of the University of Manchester.

3.2.1.1 Association Characteristics

Formally, an association can be defined as a binary, asymmetric relation defined a
the cross-product of a set of types. An association type – a relation type - relates
source type to a target type. [14] A target type may either be a single element or
of elements. An instance of a relation exists if and only if there exists an instance of
source type and an instance of its appropriate target type. (There is an exception t
rule, the Composition-Package type, but this type is not used in this specification). Th
following diagram represents the set of characteristics used to distinguish associa
within this specification:

hasFamilyReleation

hasDescendent

hasChild
3-4 Lexicon Query Service V1.0 June 2000

3

nce

e

y.

ypes.
a

cept

)
Figure 3-2 Association Characteristics

associationId

A unique identifier for the particular association.

baseType

An identifier for the general class of association. This identifier must be one refere
one of the general classes described within this section.

sourceRole, targetRole

A synonym for the source and target portion of the association respectively. Thes
synonyms are only unique within the particular association. As an example, the
WholePart association has a sourceRole of “whole” and a targetRole of “parts,”
which serve as synonyms for the source and target of the association respectivel

targetIsSet

For a given association type, the target is either a single type or a set of different t
As an example, the Reference association associates a source concept code with
single target concept code, while the WholePart association associates a source
concept code with a set of target concept codes.

nonCodedAllowed

A FALSE value indicates that the target must either be composed of a single con
code or a set of concept codes, depending upon the targetIsSet setting. A TRUE
value indicates that the target may be either a concept code or a string (Characteristic
representing some non-coded attribute value.
LQS V1.0 Meta-Terminology June 2000 3-5

3

ce of
onal
code
e.

y

)
es.

 while
et

ce of
rt of
f the

t

ses or

ot
ther.

l B”

s.
sourceCardinality

The minimum and maximum number of instances of an association in which an
instance of an entity represented by the source may/must participate.

A minimum sourceCardinality of 0 indicates that an instance of the entity
represented by the source code may exist without being associated with an instan
the corresponding target. An example of a source cardinality of 0 would be an opti
reference association, where an instance of the entity represented by the source
may or may not reference an instance of the entity represented by the target cod

A minimum sourceCardinality of 1 or more indicates that an instance of the entit
represented by the source code always co-occurs with an instance of the entity
represented by the target. An example of a minimum sourceCardinality of 1 or more
is exhaustive subtyping—subtyping in which every instance of the super type (source
is always associated with at least one instance of one of the associated target typ

A maximum sourceCardinality of 1 indicates that an instance of the entity
represented by the source code may be associated with at most one target entity,
> 1 indicates that it may be associated with several different instances of the targ
entity.

targetCardinality

The minimum and maximum number of instances of association of a given type in
which an instance of the entity represented by the target may/must participate.

A minimum targetCardinality of 0 indicates that an instance of the entity
represented by the target code may exist without being associated with an instan
the corresponding source code. A Reference association is an example of this so
association, where a target entity may or may not be referenced by an instance o
source.

A minimum targetCardinality of 1 or more indicates that an instance of the targe
entity must be associated with at least one instance of the source entity.

Note – The source and target cardinality does NOT make assertions about databa
other representation mediums. They assert facts about “real life” associations. The fact,
for instance, that every person has a parent is a fact independent of whether or n
tokens representing persons in a database are or are not associated with each o

transitive

TRUE indicates that the given association is transitive. If the associations of “A re
and “B rel C” exist, the association “A rel C” may also be inferred to exist. No
statement is made in this specification about whether “A rel C” is represented
explicitly or solely by implication within a vendor implementation. An example
transitive association may be an “is contained in” type of association.

UNKNOWN indicates that one may not infer “A rel C” from the first two association
One may not infer “NOT (A rel C)” either.
3-6 Lexicon Query Service V1.0 June 2000

3

 rel

etric

the

 rel

this
the
N

set of
s an

y
of
t the

ey

able
fact
at no
, this

es, as
n to
ld not
ame

than
FALSE indicates that the given association is intransitive, and the associations “A
B” and “B rel C” may be used to infer “NOT (A rel C).”

symmetric

TRUE indicates that the association is symmetric, and the existence of the symm
association “A rel B” implies that the association “B rel A” exists as well.
UNKNOWN indicates that the association is not symmetric, and the existence of
association “A rel B” may neither be used to infer “B rel A” or “NOT(B rel A).”
FALSE indicates that the association is anti-symmetric and one may infer “NOT(B
A)” from “A rel B.”

inherited

If this is TRUE, any subtypes of the source type and/or target type(s) involved in
association inherit their participation in the association. If FALSE, only entities of
specified type participate in the association while the subtypes do not. UNKNOW
indicates that inheritance has not been determined one way or the other.

sourceTargetDisjoint

In most associations, for any association instance (and its transitive closure), the
instances of its source and elementary target types have an empty intersection. A
example, in the Composition association, an entity may not be directly or indirectl
composed of itself. The Subtyping association, however, requires that any instance
the target type also be an instance of the associated source. TRUE indicates tha
intersection of the set of instances of the source and elementary target types are
disjoint. FALSE indicates that they are NOT disjoint and UNKNOWN states that th
may or may not be.

Note that this usually applies to instances, not to categories. It is perfectly reason
to say that, for example, body parts are composed of body parts, recursively. In
recursive part-whole relations are the norm rather than the exception. It is true th
one body part can be a member of itself, but at the level of the attribute definitions
does prevent us, for example, from formulating the concept of “A building which
contains (another) building.”

3.2.1.2 Specific Association Types

The sections below describe the characteristics of several common association typ
identified by a collection of characteristics. Please note that while the names give
each type are intended to be descriptive of their characteristic type use, one shou
infer anything more into the name than what is contained in the description. Each n
is an arbitrary code for a specific collection of characteristics and implies no more
that.
LQS V1.0 Meta-Terminology June 2000 3-7

3

ave a

t

se
.

me
ts

 if

n
ce
Reference Association

Figure 3-3 Reference Association

Any association that has a baseType of “reference” must have the following
characteristics, and any association which has the following characteristics must h
baseType of “reference:”

• targetIsSet = FALSE - A parent concept code is associated with a single targe
concept code, not a set of codes.

• nonCodedAllowed = FALSE - The target must be a concept code, not a
characteristic.

• transitive = UNKNOWN - A reference association is not transitive. Just becau
A references B and B references C, it may not be inferred that A references C

• sourceTargetDisjoint = TRUE - An instance of a source code may not directly
or indirectly imply the existence of itself.

Note – An additional (and important) invariant on a reference association is that so
of the properties of the maintained instance are determined by the properties of i
reference instance in this reference association.

An association that has a baseType of “reference” may vary the following
characteristics:

• sourceRole , targetRole - These roles may be renamed to be more applicable
desired.

• sourceCardinality - The minimum cardinality of the source may be greater tha
or equal to zero. If greater than zero, one is asserting all instances of the sour
code must be associated with a (perhaps implicit) set of target instances. The
3-8 Lexicon Query Service V1.0 June 2000

3

le,

d,

ave a

r

B

s

n
. The
rited
maximum cardinality may also be constrained to a finite number. As an examp
the source cardinality may be set to 1..1, indicating that every source
instance(maintained) must reference exactly one target (referenced) instance.

• targetCardinality - The minimum and maximum target cardinality may be varie
requiring and/or restricting the number of references from each source.

• symmetric - This may be TRUE, UNKNOWN, or FALSE.

• inherited - This may be TRUE, UNKNOWN, or FALSE.

Subtyping Association

Figure 3-4 Subtyping Association

Any association which has a baseType of “subtype” must have the following
characteristics, and any association which has the following characteristics must h
baseType of “subtype”:

• targetIsSet = TRUE - A parent concept code is associated with a set of one o
more target concept codes.

• nonCodedAllowed = FALSE - The target must be a concept code, not a
characteristic

• transitive = TRUE - The association is transitive. If A has Subtypes {B, C} and
has subtypes {D, E} then A has Subtypes {D, E, C}.

• symmetric = FALSE - If A is a subtype of B, B cannot be a subtype of A.

• inherited = TRUE - Subtypes of both the source or elementary target instance
inherit the Subtyping association.

• sourceTargetDisjoint = FALSE - An instance of a subtype which participates i
a Subtyping association must also be an instance of the associated supertype
two sets are not disjoint. The instance of the subtype must have all of the inhe
associations and properties of its supertype.
LQS V1.0 Meta-Terminology June 2000 3-9

3

 if

n
 an

te
using

ing
ype
ht be
ance

be
er>

 or

tting
the
An association which has a baseType of “subtype” may vary the following
characteristics:

• sourceRole , targetRole - These roles may be renamed to be more applicable
desired.

• sourceCardinality - The minimum cardinality of the source may be greater tha
or equal to 0. If the minimum cardinality is set to 1, one is asserting that this is
exhaustive subtype – that every instance of the supertype has a corresponding
instance of the subtype. The maximum cardinality may be constrained to a fini
integer to limit the number of possible ways that a source may be decomposed
the given association.

• targetCardinality - Setting the minimum target cardinality to “1” identifies a
static subtype—a subtype association that is inherent in the target. Static subtyp
is the classic decompositional subtyping where all instances of a given target t
are also instances of the given source type. An example of a static subtype mig
the assertion that <bodyOrgan> hasStaticSubtypes <lung, liver, heart>. Any inst
of the entity <lung> is also an instance of a body organ.

If the minimum target cardinality is “0”, it is possible for an instance of a target
type to exist without being a subtype of the source type. This is often referred to as
“dynamic” or role-based subtyping. An example of role-based subtyping might
that of <person>, <company>, and <customer>. One could assert that <custom
hasDynamicSubtypes {<person>, <company>}. An instance of <person> might
might not be a subtype of <customer> depending upon the circumstances.

The maximum target cardinality may also be constrained to a finite number. Se
the maximum target cardinality to one would restrict multiple inheritence using
particular subtyping association.

Non-Semantic Association

Figure 3-5 Non-Semantic Association
3-10 Lexicon Query Service V1.0 June 2000

3

ave a

get

ng

 the

ot

 if

an

n

non-

rvice.
 the
ide

on

 a
ave
Any association which has a baseType of “nonSemantic” must have the following
characteristics, and any association which has the following characteristics must h
baseType of “nonSemantic”:

• targetIsSet = FALSE - A parent concept code is associated with exactly one tar
entity.

• nonCodedAllowed = TRUE - The target may be either a concept code or a stri
representing a non-coded characteristic.

• transitive = FALSE - The range (coded concepts and non-coded strings) is not
same as the domain (coded concepts), this association is not transitive.

• symmetric = FALSE - The range (coded concepts and non-coded strings) is n
the same as the domain (coded concepts), this association is not transitive.

• sourceTargetDisjoint = TRUE. An instance of a source code may not directly
have a non-semantic association with itself.

An association which has a baseType of “nonSemantic” may vary in the following
characteristics:

• sourceRole , targetRole - These roles may be renamed to be more applicable
desired.

• sourceCardinality - The minimum and maximum number of associations that
instance of a given source code may participate may vary. Setting the minimum
source cardinality to a positive number indicates that all instances of the type
indicated by the source concept code must have the particular property or
characteristic indicated by the association.

• targetCardinality - The minimum and maximum number of associations that a
instance of a given target entity may/must participate in. Non-coded targets are
considered immutable and always participate in exactly one association. If the
coded target “2.0” participates in two different associations, it is viewed as two
separate instances.

• inherited - Non-semantic associations may either be inherited or not.

3.2.2 Vendor-Defined Associations

The association classes described above may be used directly in a terminology se
A terminology vendor typically has a pre-defined set of associations supplied with
terminology. To be generally useful, the terminology vendor is encouraged to prov
the set of characteristics described above for each individual association type. In
addition, if the set of characteristics for an association match any of the associati
types described above, the identifier of the matching type (wholepart, reference,
subtype, nonSemantic) should be included in the baseType attribute of the
association itself.

Example: The terminology vendor has an association called “isA”, which supplies
non-exclusive, non-disjunctive subtyping type of association. It is determined to h
the following characteristics:
LQS V1.0 Meta-Terminology June 2000 3-11

3

d
t the

plied
f a

:

orse
hich
t or

n
targetIsSet : TRUE
nonCodedAllowed:FALSE
sourceCardinality:0..N
targetCardinality:0..N
transitive:TRUE
symmetric:FALSE
inherited:TRUE
sourceTargetDisjoint:FALSE

Note – Used grammatically, the term “isA” is preceded by a single target entity an
succeeded by the source (automobile isA vehicle). This is one of the reasons tha
source and target roles are very important, as they serve to clarify the direction im
by the association name. (subtype isA supertype – where subtype is a member o
target set and supertype is the source concept)

Because this matches the characteristics of the subtyping association (targetIsSet ,
nonCodedAllowed , transitive , symmetric , inherited , sourceTargetDisjoint),
this would have a base type of “subtype”. The Association class for “isA” follows

Figure 3-6 Sample Vendor Association

The set of characteristics shown in Figure 3-6 would be returned in the
AssociationDef structure from the Systemization.get_association_definition
method.

Associations may be less precisely defined in some terminology systems. As a w
case, a terminology vendor must supply the association identifier, a source role (w
could be “source”), a target role (which could be “target”) whether the target is a se
element and whether non-coded targets are allowed. As an example suppose a
terminology has an association called “is associated with.” It would not have a
baseType as it would not match any of the types above. The description shown i
Figure 3-7 might be returned for this generic association:
3-12 Lexicon Query Service V1.0 June 2000

3

ese

n a
Figure 3-7 Sample Generic Association

3.2.2.1 Predefined Association Codes

Table 3-1 contains the association codes described in the preceding sections. Th
association codes may be used directly in an implementation. These codes must return
the AssociationDef structures which correspond to their descriptions in the above
sections. (i.e., “References” must return targetIsSet : FALSE , nonCodedAllowed
: FALSE , inherited : UNKNOWN , etc.). Any change in the characteristics (e.g.,
inherited : TRUE for References) results in a new association which must be give
new, unique code.

Table 3-1 Association Codes

Characteristic Class Code QualifiedName

WholePart isComposedOf IDL:org.omg/TerminologyService/Association
//isComposedOf

Reference references IDL:org.omg/TerminologyService/Association
/ references

Subtype hasSubtypes IDL:org.omg/TerminologyService/Association
/hasSubtypes

NonSemantic hasAttributes IDL:org.omg/TerminologyService/Association
/hasAttributes
LQS V1.0 Meta-Terminology June 2000 3-13

3

tion
ion
ault

rsion
cter
ion.

this

d on

s not
o date.

 a
nce.
d

ner.
3.3 Association Qualifier

Table 3-2 shows the four association qualifiers that are predefined in this specifica
which may be used to identify optionality and plurality qualifiers. All other associat
qualifiers are to be established by the terminology vendor. If not supplied, the def
is that the association is optional and plural.

3.4 CharacterSet

The implementation of this specification always assumes that a coding scheme ve
will have a specific language associated with it. In the CORBA specification, chara
set negotiation occurs between ORBs and is outside of the control of the applicat
For the time being we will presume that the language identifier determines an
appropriate character set (or sets) and the negotiation is all covered by the ORBs
themselves. As a consequence we won’t explicitly expose character set codes in
document.

3.5 Coding Scheme

When this document was produced, we had high hopes that the ISO/IEC Standar
the Registration of Coding Schemes, [16] and [17], would serve the purpose of a
central registry for the names of coding schemes. Unfortunately, this standard ha
been heavily used and few coding schemes have been registered with this body t

It is critical to the success of this specification that applications be able to access
coding scheme by name without knowing the terminology services supplier in adva
To this end, we are proposing the following “stop-gap” measure which will be use
until a more permanent solution comes into play.

1. The OMG DNS be used as the “registration authority” for the various coding
schemes below, and that they then be subdivided according to their primary ow
(“DNS:omg.org”).

Table 3-2 Association Qualifier Codes

Qualifier Meaning Code Qualified Code String

Optional Association between source
and target element is optional

OPT IDL:omg.org/TerminologyService/AssociationQualifier/OPT

Mandatory Association between source
and target element is
mandatory

MAND IDL:omg.org/TerminologyService/AssociationQualifier/MAND

Single At most one target element
may be associated with the
source

SING IDL:omg.org/TerminologyService/AssociationQualifier/SING

Plural More than one target element
may be associated with the
source

PLUR IDL:omg.org/TerminologyService/AssociationQualifier/PLUR
3-14 Lexicon Query Service V1.0 June 2000

3

rs 4
es a

ry
B”

CM

e

age

ding
pper
2. ASTM Committee E31 on Computerized Systems, [18], and HL7, [19], jointly
maintain registry of medical coding schemes which are used in the HL7 chapte
and 7 (Orders and Results). Section 7.1.4, Coding schemes, in the HL7 provid
fairly extensive list of coding scheme codes. We propose that the set of coding
scheme codes in Figures 7-2 and 7-3 in the HL7 manual be used as the prima
designation when available. Local coding schemes such as “99zzz,” “L,” and “L
should be coded using the RegistrationAuthority “Other” or the DNS of the
owning facility, rather than using the HL7 reference. As an example, the ICD-9-
coding scheme, [20], would be represented as:

DNS:hl7.omg.org/I9C”

Internal HL7 tables would be coded in the form “HL7xxx.”

“DNS:hl7.omg.org/HL7001”

As mentioned above, a local table would be represented in the form:

“OTHER:myprivatedomain/99173”

or, if possible:

 “DNS:mycompany.com/99173”

3. Coding schemes that are not in the HL7 specification should be prefixed by th
common name of the appropriate authority. It may be necessary to periodically
publish the names of these other authorities until a more permanent scheme is
arrived at. One that is used elsewhere in the document is the USMARC (U. S.
Machine Readable Cataloging) codes which will be represented as:

“DNS:usmarc.omg.org/xxx”

where “xxx” represents the appropriate MARC Tag. The coding scheme for langu
would then be:

“DNS:usmarc.omg.org/041”

It is anticipated that this solution is temporary and that we can move to a central
registry of coding schemes as soon as one becomes generally available.

3.6 Language

It is recommended that the set of language codes be supplied by the USMARC
(Machine-Readable Cataloging) system. We will need to create the appropriate co
scheme identifier for USMARC. The codes themselves will all be represented in u
case. A list of current codes may be found at:

gopher://marvel.loc.gov:70/00/.listarch/usmarc/language
LQS V1.0 Language June 2000 3-15

3

 of

ow,
Table 3-3 contains the frequently used language codes along with the string form
their qualified name.

3.7 LexicalType

Table 3-4,The Unified Medical Language System (UMLS) Lexical Tag table will be
used as the default lexical type. The types as extracted from the 1997 edition foll
although the most current edition should be referenced for the definitive set.

3.8 PresentationFormat

The MIME [20], [21] format was selected to identify the format of a presentation.
Table 3-5 presents some of the more common formats.

Table 3-3 Language Codes

Language Code Qualified Code String

Danish DAN DNS:usmarc.omg.org/041/DAN

English ENG DNS:usmarc.omg.org/041/ENG

French FRE DNS:usmarc.omg.org/041/FRE

German GER DNS:usmarc.omg.org/041/GER

Italian ITA DNS:usmarc.omg.org/041/ITA

Spanish SPA DNS:usmarc.omg.org/041/SPA

Table 3-4 Lexical Type Codes

Type Code Qualified Code String

Abbreviation ABB DNS:umls.hl7.omg.org/LT/ABB

Embedded abbreviation ABX DNS:umls.hl7.omg.org/LT/ABX

Acronym ACR DNS:umls.hl7.omg.org/LT/ACR

Embedded acronym ACX DNS:umls.hl7.omg.org/LT/ACX

Eponym EPO DNS:umls.hl7.omg.org/LT/EPO

Lab number LAB DNS:umls.hl7.omg.org/LT/LAB

Proper name NAM DNS:umls.hl7.omg.org/LT/NAM

Special tag NON NO DNS:umls.hl7.omg.org/LT/NON NO

Trade name TRD DNS:umls.hl7.omg.org/LT/TRD

Table 3-5 MIME Codes

Type Code Qualified Code String

Plain text text/plain DNS:omg.org/MIME/text/plain

Rtf application/rtf DNS: omg.org /MIME/application/rtf

zip application/zip DNS: omg.org
/MIME/application/zip
3-16 Lexicon Query Service V1.0 June 2000

3

ent
ot

 the
 may

 to

 lists
s it
d. If

ly it.
MIME formats are rich enough to allow exotic formats, Internet links, etc.

3.9 Source

A source is a code of any form of bibliographic reference. At the time this docum
was published a definitive coding scheme which could be used for sources had n
been located.

3.10 Source Term Type

The source term type is a code that identifies how a given presentation is used in
relevant source vocabulary. The best (and probably only) list of source term types
be found under the heading of B.4 Concept Name Types in the 1997 UMLS reference
manual. [5] Some samples are included in Table 3-6, although the user is referred
the source for an exhaustive set of codes.

3.11 Syntactic Type

The UMLS is used as the reference for the base set of syntactic types. Table 3-7
the set of syntactic types in the UMLS. Note that the “Other” variant is not listed, a
is a code that could potentially change meaning as other syntactic types are adde
the syntactic type is not available, the terminology service should simply not supp

pdf application/pdf DNS:
omg.org/MIME/application/pdf

Gif image image/gif DNS: omg.org /MIME/ image/gif

Audia audio/basic DNS: omg.org /MIME/audio/basic

Table 3-6 Sample Source Term Type Codes

Type Code Qualified Code String

Attribute type abbreviation AA DNS:umls.hl7.omg.org/TTY/AA

Abbreviation in any source vocabulary AB DNS:umls.hl7.omg.org/TTY/AB

Adjective AD DNS:umls.hl7.omg.org/TTY/AD

Table 3-7 Syntactic Type Codes

SyntacticType Code Qualified Code String

Varies from preferred presentation
only in upper-lower case

C DNS:umls.hl7.omg.org /STT/C

Table 3-5 MIME Codes

Type Code Qualified Code String
LQS V1.0 Source June 2000 3-17

3

n
e

liant
3.12 Usage Context

This specification does not specify any usage context codes.

3.13 Value Domain

This specification defines a set of value domains that are used by the specificatio
itself. This set of domains is defined in the “meta” coding scheme, identified by th
MetaSchemeId option of the schemeIdSource in the SchemeId . The codes in
Table 3-8 identify value domains within the meta schema:

3.14 Conformance Points

This section describes the various conformance levels possible for an LQS-comp
terminology service provider.

3.14.1 Minimum Implementation

The minimum implementation which may still be deemed “LQS-compliant” must
include two interfaces:

• TerminologyService

• LexExplorer

Contains same words as preferred
form, disregarding order and
punctuation

W DNS:umls.hl7.omg.org /STT/W

Singular of the preferred form S DNS:umls.hl7.omg.org /STT/S

Plural of the preferred form P DNS:umls.hl7.omg.org /STT/P

Table 3-8 Value Domain Codes

Value Domain Value Domain ID

Language IDL:org.omg/TerminologyService/Language

Lexical Type IDL:org.omg/TerminologyService/LexicalType

Presentation Format IDL:org.omg/TerminologyService/PresentationFormat

Relation IDL:org.omg/TerminologyService/Relation

Relationship Qualifier IDL:org.omg/TerminologyService/RelationshipQualifier

Source IDL:org.omg/TerminologyService/Source

Source Term Usage IDL:org.omg/TerminologyService/SourceTermUsage

Syntactic Type IDL:org.omg/TerminologyService/SyntacticType

Usage Context IDL:org.omg/TerminologyService/UsageConctext

Table 3-7 Syntactic Type Codes

SyntacticType Code Qualified Code String
3-18 Lexicon Query Service V1.0 June 2000

3

r

e

nt

ds in

o

o
The TerminologyService interface may return a NULL object reference for either o
both the CodingSchemeLocator and ValueDomainLocator attributes. It must
return a valid reference for the LexExplorer attribute. The interface must support at
least one coding scheme, meaning that it may not return a zero length list from th
get_coding_scheme_ids operation. It may either throw an exception or impleme
the get_native_coding_scheme_info .

Each interface of the LexExplorer is described in the next table.

3.14.2 Additional Conformance Levels

3.14.2.1 CodingSchemeLocator Conformance

If the coding scheme locator interface is supported, all of the properties and metho
the interface must be implemented. The return structure,
CodingSchemeVersionRefs , must have at least one of the

get_preferred_text Must be implemented for at least one qualified code.
The context_ids may be ignored.

get_preferred_text_
for_concepts

Must be implemented for at least one qualified code.
The context_ids may be ignored.

get_preferred_definition May return an empty structure or a definition.

translate_code May throw TranslationNotAvailable in all cases.

translate_codes May return a sequence of NULL pointers.

list_concepts Must return a valid concept iterator if there is less than
1000 concepts in the scheme; otherwise, it may throw
TooManyToList if it so chooses.

list_value_domain_ids May return an empty iterator in all cases.

is_concept_in_value_domain May throw UnknownValueDomain in all cases.

are_concepts_in_value_domains May return a sequence of UNKNOWN of the same
size as the number of passed codes. Does not have t
validate parameter alignment if not implemented.

get_pick_list May throw NoPickListAvailable in all cases.

association_exists May throw NoSystemizationForCodingScheme in all
cases.

associations_exist May return a sequence of UNKNOWN of the same
size as the number of passed codes. Does not have t
validate parameter alignment if not implemented.

list_associated_target_elements May throw NoSystemizationForCodingScheme in all
cases.

list_associated_source_codes May throw NoSystemizationForCodingScheme in all
cases.
LQS V1.0 Conformance Points June 2000 3-19

3

.

.

CodingSchemeVersionAccess , PresentationAccess ,
LinguisticGroupAccess , AdvancedQueryAccess , and SystemizationAccess
interfaces implemented.

3.14.2.2 CodingSchemeVersion Conformance

If implemented, the CodingSchemeVersion interface must support all of the
specified methods with the exception of get_comments , get_instructions ,
match_concepts_by_string , and match_concepts_by_keyword .

3.14.2.3 PresentationAccess Conformance

If present, the PresentationAccess interface must be implemented completely.

3.14.2.4 LinguisticGroupAccess Conformance

If present, the LinguisticGroupAccess interface must be implemented completely

3.14.2.5 AdvancedQueryAccess Conformance

If present, the AdvancedQueryAccess interface must be implemented completely

3.14.2.6 SystemizationAccess Conformance

If present, the SystemizationAccess interface must be implemented completely.
This includes implementing the Systemization interface.

3.14.2.7 Systemization Conformance

All of the systemization interface must be implemented, with the exception of the
operations, which may throw the NotImplemented Exception. These operations
(could_association_be_inferred , get_entity_graph , and all of the operations
associated with concept expressions) are not required.

3.14.3 ValueDomainLocator Conformance

If present, all of the ValueDomainLocator interfaces must be implemented. It is
only necessary to support one (the default) version of any given value domain.

3.14.3.1 ValueDomainVersion Conformance

If present, all of the ValueDomainVersion interfaces must be implemented, with the
exception of the two pick list operations, which may always throw
PickListNotAvailable.
3-20 Lexicon Query Service V1.0 June 2000

Lexicon Query Glossary
de to
l be

s.

r

nd
Glossary Terms

The definitions below are specific to this document. While attempts have been ma
align the terminology of this document with accepted general definitions, there wil
cases where the words used in this document will have a significantly different
meaning than they have in general usage. Terms appearing in boldface type below are
defined elsewhere within this glossary.

Association An association is a binary predicate applied to an ordered pair of type
The first type is referred to as the source type and the second is the
target type. In this specification, the source type must be a concept
code and the target type must be either a single target element or a set
of target elements.

Association Instance An instance of an association; a binary predicate applied to a specific
ordered pair of entities, which must be of the source type and target
type specified in the association itself. The first entity in the ordered pai
is referred to as the source entity. (not to be confused with Source, as
defined below), and the second is the target entity.

Association Qualifier A qualified code that may be attached to a target element to provide
additional information about the nature of the particular association.
With the exception of cardinalities, association qualifiers are left
undefined in this specification.

Blob Acronym for Binary Large Object; used in this document to represent an
opaque string of bytes that is passed unchanged between the service a
the client.

Characteristic A non-coded property or attribute associated with a concept code. As
defined in this specification, a characteristic provides non-semantic
attributes for a concept code.
Lexicon Query Service v1.0 June 2000 Glossary-1

ne

nd

f

s

e

n

,
Coding Scheme A relation between a set of concept codes and a set of presentations,
definitions, comments, and instructions, which serves to designate the
intended meaning behind the codes. A coding scheme may also have o
or more systemizations defined across a subset of the concept codes
within the scheme. Coding schemes are evolutionary in nature, with
codes being added, deleted, and modified. The intended meaning behi
a concept code must not change within a given coding scheme.

Coding Scheme
Version

A specific release or version of a coding scheme. A coding scheme
version represents a consistent, fixed image of a coding scheme at a
point in time. Therefore, it may define and/or describe only a subset o
the concept codes contained within the coding scheme itself. Each
coding scheme version may also associate a different set of
presentations, definitions, etc., with a given concept code so long as
this association does not change the intended meaning of the code.

Comment A non-defining text string, which is used to annotate or provide remark
about a concept code within a coding scheme version.

Concept Code A local name, consisting of a fixed sequence of alphanumeric
characters, that is used to designate one or more presentations,
definitions, comments, instructions, etc., within a coding scheme.

Concept Description The set of definitions, comments, instruction s, and presentations
associated with a concept code in a given coding scheme version.

Concept Expression A base concept qualified by one or more optional “attribute-value” pairs
that serve to further define the total concept. An attribute-value pair
consists of an association which serves to identify the “attribute” and
either a concept code or a characteristic which serves to identify the
value portion of the attribute. An attribute-value pair may also referenc
an optional list of association qualifiers.

Definition A statement that describes a concept in order to permit its differentiatio
from related concepts. [4] In this document, definitions are prose
descriptions, which describe the intended meaning of a concept code,
permitting its differentiation from the meaning associated with other
related concept codes.

Implementation
Vendor

A company or other organization providing terminology software which
presents itself through the interface specification provided in this
document.

Instruction Additional information in either machine- or human- readable form that
describes when, where, and/or how a concept code should be used.

Language A “natural language”—any spoken or written language, such as French
English, German, etc.,—as opposed to a formal language, such as
Fortran, C, or FOPL.
Glossary-2 Lexicon Query Service v1.0 June 2000

l
ly

r

in
Lexical Type A tag indicating whether a presentation falls into any of several specia
types. The purpose of this tag is to indicate terms that are not general
appropriate for stemming and other natural language techniques. [5]
Example: lexical types include “abbreviation,” “acronym,” “eponym,”
“trade name,” etc.

Linguistic Group A group of presentations which are lexical or syntactic variants of each
other. As an example, the textual presentations “Atrial Fibrillation”,
“Atrial Fibrillations”, “Fibrillation, Atrial” would all belong to the same
lexical group, while the textual presentations “Auricular Fibrillation” and
“Auricular Fibrillations” would belong to another.

Local Name An identifier which is unique within the context of a naming authority.
In this document, a concept code is a local name within the context of a
coding scheme, which is a naming authority. See Section 2.1,
“NamingAuthority Module,” on page 2-1 for further details.

Naming Authority A registered authority which is responsible for managing a set of local
names, all of which must be unique within the name space of the
authority. In this document, a coding scheme is a type of naming
authority that manages a set of concept codes. See Section 2.1,
“NamingAuthority Module,” on page 2-1 for further details.

Native Coding
Scheme

The primary coding scheme supported and provided by a terminology
service. Although it is not formally required, the native coding scheme
typically will have exact synonyms for all of the concepts contained in
all of the non-native coding schemes supported by the terminology
service.

Pick List An ordered list of one or more concept codes along with a presentation
deemed appropriate to represent the concept code in an external list o
other selection mechanism.

Presentation A sign or symbol used to represent a concept code externally.

Presentation Format A code which identifies the type of external processing necessary to
correctly present a presentation. Example: presentation formats include
“plain text,” “HTML,” “Rich Text Format,” etc. The Internet MIME
codes are the proposed way of representing presentation formats with
this document.

Presentation Usage The association of a presentation with a concept code.This association
carries additional attributes about how the presentation is used in the
context of the concept codes, references, etc.

Qualified Code A qualified name which identifies a coded concept within the context of
a coding scheme. A qualified name consists of the coding scheme
identifier (the naming authority) and a concept code (the local name).

Qualified Name A globally unique name for an entity. A qualified name consists of the
combination of a naming authority and a local name. See Section 2.1,
“NamingAuthority Module,” on page 2-1 for further details.
LQS v1.0 June 2000 Glossary-3

e
e

ct

ge,
r
Registration
Authority

An organization authorized to register and issue naming authority
identifiers.

Role A name which serves as a synonym for either the “source” position or
“target” position within a specific association. As an example, a
subtyping association places the supertype in the source position and th
set of subtypes in the target position. Within this specific association, th
role “supertype” would be a synonym for the source and the role
“subtype” would be a synonym for the target.

Source The document, book, person, or other reference from which a definition ,
comment, instruction, or presentation was drawn.

Source Term Type The code for the use to which a specific presentation is put within a
source. Example:source term types include “Disease Name,” “Language
Qualifier,” “Adjective,” etc.

Syntactic Type A syntactic form that a given phrase has within a linguistic group.
Typical syntactic types may include “plural”, “different spelling”,
“different word order”, etc.

Systemization A structure applied across a set of qualified codes and, optionally,
characteristics, which represents an organization, categorization,
classification, or other structuring of the various entities.

Target Element A choice of concept code, qualified code, or characteristic that appears
in the target end of an association.

Terminology A set of terms representing the system of concepts of a particular subje
field. [6]

Terminology Service An implementation of this specification, providing an interface to one or
more coding schemes, as well as an optional set of value domains
which serve to correlate the coding schemes with external screens,
messages, databases, etc. A terminology service serves to present the
contents of a terminology externally.

Usage Context A qualified code that represents a context in which a presentation would
be deemed appropriate. Usage contexts may include the type of
application, user, display device, and other information that is used by
the terminology service to pick the most appropriate presentation for a
concept code or set of concept codes.

Value Domain A value domain represents a set of values which may be used to fill a
field on a data-entry screen, a column in a database, a field in a messa
or some other external entity in which it is possible to record or transfe
concept codes. A terminology service may be used to return a list of
qualified codes, which are possible values for a field, etc., as
represented by a value domain.
Glossary-4 Lexicon Query Service v1.0 June 2000

OMG IDL A
A.1 Full IDL

The following is the full IDL for this specification.

//File: NamingAuthority.idl

#ifndef _NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>

#pragma prefix "omg.org "

module NamingAuthority
{

enum RegistrationAuthority {
OTHER,
ISO,
DNS,
IDL,
DCE };

typedef string NamingEntity;

struct AuthorityId {
RegistrationAuthority authority;
NamingEntity naming_entity;

};
typedef string AuthorityIdStr;

typedef string LocalName;
struct QualifiedName {
Lexicon Query Service V1.0 June 2000 A-1

AuthorityId authority_id;
LocalName local_name;

};
typedef string QualifiedNameStr;

exception InvalidInput {};

interface translation_library
{

AuthorityIdStr authority_to_str(
in AuthorityId authority)

raises(
InvalidInput);

AuthorityId str_to_authority(
in AuthorityIdStr authority_str)

raises(
InvalidInput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)

raises(
InvalidInput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)

raises(
InvalidInput);

};
};

#endif // _NAMING_AUTHORITY_IDL_

//File: TerminologyServices.idl
//
#ifndef _TERMINOLOGY_SERVICES_IDL_
#define _TERMINOLOGY_SERVICES_IDL_
#pragma prefix "omg.org"
#include <orb.idl>
#include <NamingAuthority.idl>

// ***
// module: TerminologyService
// ***
module TerminologyServices {

// . . .
};
#endif /* _TERMINOLOGY_SERVICES_IDL_ */

//***
A-2 Lexicon Query Service V1.0 June 2000

// Basic Terms
//***

typedef NamingAuthority::LocalName ConceptCode;
typedef sequence<ConceptCode ConceptCodeSeq;

typedef NamingAuthority::AuthorityId CodingSchemeId;
typedef sequence<CodingSchemeId CodingSchemeIdSeq;

struct QualifiedCode {
CodingSchemeId coding_scheme_id;
ConceptCode a_code;

};
typedef sequence <QualifiedCode> QualifiedCodeSeq;

typedef string VersionId;
typedef sequence<VersionId> VersionIdSeq;
const VersionId DEFAULT = "";

struct TerminologyServiceName {
NamingAuthority::QualifiedName the_name;
VersionId the_version;

};

//***
// Meta Types
// See the TerminologyServiceValues module for consts
//***

typedef QualifiedCode AssociationQualifierId;
typedef sequence<AssociationQualifierId> AssociationQualifierIdSeq;

typedef QualifiedCode LexicalTypeId;
typedef sequence<LexicalTypeId> LexicalTypeIdSeq;

typedef QualifiedCode SourceId;
typedef sequence<SourceId> SourceIdSeq;

typedef QualifiedCode SourceTermUsageId;
typedef sequence<SourceTermUsageId> SourceTermUsageIdSeq;

typedef QualifiedCode SyntacticTypeId;
typedef sequence<SyntacticTypeId> SyntacticTypeIdSeq;

typedef QualifiedCode UsageContextId;
typedef sequence<UsageContextId> UsageContextIdSeq;

typedef ConceptCode AssociationId;
typedef sequence<AssociationId> AssociationIdSeq;

typedef ConceptCode LanguageId;
LQS V1.0 June 2000 A-3

typedef sequence<LanguageId> LanguageIdSeq;

typedef ConceptCode PresentationFormatId;
typedef sequence<PresentationFormatId> PresentationFormatIdSeq;

//***
// Coding Terms
//***
interface LexExplorer;
interface CodingSchemeLocator;
interface ValueDomainLocator;
interface CodingSchemeVersion;
interface PresentationAccess;
interface LinguisticGroupAccess;
interface SystemizationAccess;
interface AdvancedQueryAccess;
interface Systemization;
interface ValueDomainVersion;

typedef string IntlString;
typedef sequence<IntlString> OrderedIntlStringSeq;
typedef sequence<IntlString> IntlStringSeq;
typedef sequence<octet> Blob;
enum Trinary { IS_FALSE, IS_TRUE, IS_UNKNOWN };
typedef sequence<Trinary> TrinarySeq;
typedef sequence<boolean> BooleanSeq;

//***
// Coding Scheme and Coded Concept Terms
//***
typedef string PresentationId;
typedef sequence<PresentationId> PresentationIdSeq;
typedef string LinguisticGroupId;
typedef string SystemizationId;
typedef sequence<SystemizationId> SystemizationIdSeq;

struct CodingSchemeInfo {
CodingSchemeId scheme_id;
VersionId version_id;
LanguageId language_id;

};

struct CodingSchemeVersionRefs {
CodingSchemeId coding_scheme_id;
VersionId version_id;
LanguageId language_id;
boolean is_default_version;
boolean is_complete_scheme;
CodingSchemeVersion coding_scheme_version_if;
PresentationAccess presentation_if;
LinguisticGroupAccess linguistic_group_if;
A-4 Lexicon Query Service V1.0 June 2000

SystemizationAccess systemization_if;
AdvancedQueryAccess advanced_query_if;

};

struct ConceptInfo {
ConceptCode a_code;
IntlString preferred_text;

};
typedef sequence<ConceptInfo> ConceptInfoSeq;
typedef sequence<ConceptInfoSeq> ConceptInfoSeqSeq;

interface ConceptInfoIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out ConceptInfoSeq concept_info_seq

);
void destroy();

};

struct QualifiedCodeInfo {
QualifiedCode a_qualified_code;
IntlString preferred_text;

};
typedef sequence<QualifiedCodeInfo> QualifiedCodeInfoSeq;

struct Definition {
IntlString text;
boolean preferred;
LanguageId language_id;
SourceId source_id;

};
typedef sequence<Definition> DefinitionSeq;

struct Comment {
IntlString text;
LanguageId language_id;
SourceId source_id;

};
typedef sequence<Comment> CommentSeq;

struct Instruction {
IntlString text;
Blob formal_rules;
LanguageId language_id;
SourceId source_id;

};
typedef sequence<Instruction> InstructionSeq;

struct SourceInfo {
SourceId source_id;
LQS V1.0 June 2000 A-5

SourceTermUsageId usage_in_source;
QualifiedCode code_in_source;

};
typedef sequence<SourceInfo> SourceInfoSeq;

struct PresentationInfo {
PresentationId presentation_id;
PresentationFormatId presentation_format_id;
LanguageId language_id;
LinguisticGroupId linguistic_group_id;

};
typedef sequence<PresentationInfo> PresentationInfoSeq;

enum PresentationType {TEXT, BINARY};
union PresentationValue switch(PresentationType) {

case TEXT : IntlString the_text;
case BINARY : Blob a_Blob;

};

struct Presentation {
PresentationId presentation_id;
PresentationValue presentation_value;

};
typedef sequence<Presentation> PresentationSeq;

struct PresentationUsage {
ConceptCode concept;
PresentationId presentation_id;
boolean preferred_for_concept;
boolean preferred_for_linguistic_group;
SyntacticTypeIdSeq syntactic_type_ids;
UsageContextIdSeq usage_context_ids;
SourceInfoSeq source_infos;
LexicalTypeIdSeq lexical_type_ids;

};
typedef sequence<PresentationUsage> PresentationUsageSeq;

struct LinguisticGroupInfo {
LinguisticGroupId Linguistic_group_id;
LanguageId language_id;
PresentationIdSeq presentation_ids;

};

typedef float Weight;

struct WeightedResult {
ConceptInfo the_concept;
IntlString matching_text;
Weight the_weight;

};
typedef sequence<WeightedResult> WeightedResultSeq;
A-6 Lexicon Query Service V1.0 June 2000

interface WeightedResultsIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out WeightedResultSeq weighted_results

);
void destroy();

};

//***
// Advanced Query Terms
//***

typedef string Constraint;
typedef NamingAuthority::QualifiedNameStr ConstraintLanguageId;
typedef sequence<ConstraintLanguageId> ConstraintLanguageIdSeq;
typedef NamingAuthority::QualifiedNameStr PolicyName;
typedef sequence<PolicyName> PolicyNameSeq;
typedef any PolicyValue;

struct Policy {
PolicyName name;
PolicyValue value;

};
typedef sequence<Policy> PolicySeq;

//**
//* Systemization Terms
//**

typedef string RoleName;
typedef string Characteristic;
enum AssociationRole {SOURCE_ROLE, TARGET_ROLE};
enum MinimumCardinality {OPTIONAL, MANDATORY};
enum MaximumCardinality {SINGLE, MULTIPLE};
struct Cardinality {

MinimumCardinality minimum;
MaximumCardinality maximum;

};

enum ElementType {
EXTERNAL_CODE_TYPE,
LOCAL_CODE_TYPE,
CHARACTERISTIC_TYPE

};

union RestrictedTargetElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case CHARACTERISTIC_TYPE:Characteristic the_characteristic;

};
LQS V1.0 June 2000 A-7

union AssociatableElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case LOCAL_CODE_T YPE:ConceptCode a_local_code;
case CHARACTERISTIC_TYPE:Characteristic the_characteristic;

};

struct TargetElement {
AssociatableElement target_element;
AssociationQualifierIdSeq association_qualifiers;

};
typedef sequence<TargetElement> TargetElementSeq;
typedef sequence<TargetElementSeq> TargetElementSeqSeq;
interface TargetElementSeqIter {

unsigned long max_left();
boolean next_n(

in unsigned long n,
out TargetElementSeqSeq an_element_seq

);
void destroy();

};

typedef ConceptCodeAssociationBaseTypeId;

typedef sequence<unsigned long> IndexList;
struct GraphEntry {

TargetElement an_entity;
IndexList associated_nodes;

};
typedef sequence<GraphEntry> EntityGraph;

struct AssociationDef {
AssociationId association_id;
AssociationBaseTypeId base_type;
RoleName source_role;
Cardinality source_cardinality;
RoleName target_role;
Cardinality target_cardinality;
boolean target_is_set;
boolean non_coded_allowed;
Trinary transitive;
Trinary symmetric;
Trinary inherited;
Trinary source_target_disjoint;

};

struct AssociationInstance {
AssociationId association_id;
ConceptCode source_concept;
TargetElementSeq target_element_seq;

};
A-8 Lexicon Query Service V1.0 June 2000

typedef sequence<AssociationInstance> AssociationInstanceSeq;

interface AssociationInstanceIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out AssociationInstanceSeq association_instance_seq

);
void destroy();

};

struct ValidationResult {
boolean is_valid;
AssociationQualifierId validity_level;

};

// Constraint - the "any" below must be of type AttributeValuePair. It
// is "any" because IDL won't allow recursive struct definitions
struct RelatedEntityExpression {

AssociatableElement associated_element;
AssociationQualifierIdSeq association_qualifiers;
any base_qualifiers;

};

struct AttributeValuePair {
AssociationRole element_role;
AssociationId the_association_id;
RelatedEntityExpression the_entity_expression;

};
typedef sequence<AttributeValuePair AttributeValuePairSeq;

struct ConceptExpressionElement {
ConceptCode base_code;
AttributeValuePairSeq base_qualifiers;

};
typedef sequence<ConceptExpressionElement ConceptExpression;
typedef sequence<ConceptExpression ConceptExpressionSeq;

//***
// Value Domain Terms
//***

typedef QualifiedCode ValueDomainId;
typedef sequence<ValueDomainId> ValueDomainIdSeq;

interface ValueDomainIdIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out ValueDomainIdSeq value_domain_id_seq

);
LQS V1.0 June 2000 A-9

void destroy();
};

struct PickListEntry {
QualifiedCode a_qualified_code;
IntlString pick_text;
boolean is_default;

};
typedef sequence<PickListEntry> PickListSeq; // Ordered

interface PickListIter {
unsigned long max_left();
boolean next_n(

in unsigned long n,
out PickListSeq pick_list

);
void destroy();

};

//**
// TerminologyService Exceptions
//**

// Used in Multiple Interfaces
// typically LexExplorer ++
exception NotImplemented{
};
exception UnknownCode {

ConceptCode bad_code;
};
exception UnknownCodingScheme{

CodingSchemeId bad_coding_scheme_id;
};
exception UnknownVersion{

VersionId bad_version_id;
};
exception UnknownValueDomain{

ValueDomainId bad_value_domain_id;
};
exception NoNativeCodingScheme {
};
exception TranslationNotAvailable {
};
exception TooManyToList {
};
exception NoPickListAvailable {
};
exception AssociationNotInSystemization{

AssociationId bad_association_id;
};
exception NoSystemizationForCodingScheme {
A-10 Lexicon Query Service V1.0 June 2000

};
exception ParameterAlignmentError {
};

// CodingSchemeLocator Exceptions

exception LanguageNotSupported {
LanguageId bad_language_id;

};

// CodingSchemeVersion exceptions

exception NoPreferredText{
};
exception NoTextLocated{
};
// PresentationAccess exceptions

exception PresentationNotInCodingSchemeVersion{
PresentationId bad_presentation_id;

};
exception NoPreferredPresentation{
};
exception UnknownPresentationFormat{

PresentationFormatId bad_presentation_format_id;
};
exception NoPresentationLocated{
};
// LinguisticGroupAccess exceptions

exception LinguisticGroupNotInCodingSchemeVersion{
LinguisticGroupId bad_linguistic_group_id;

};

// AdvancedQueryAccess exceptions
exception IllegalConstraint {

Constraint bad_constraint;
};
exception IllegalPolicyName {

PolicyName name;
};
exception DuplicatePolicyName {

PolicyName name;
};
exception PolicyTypeMismatch {

Policy bad_policy;
};

// SystemizationAccess exceptions

exception NoDefaultSystemization{
LQS V1.0 June 2000 A-11

};
exception UnknownSystemization {

SystemizationId systemization_id;
};

// Systemization Exceptions

exception ConceptNotExpandable {
ConceptCode the_concept;

};
exception NoCommonSubtype{
};
exception NoCommonSupertype{
};
exception InvalidExpression {

ConceptExpression the_expression;
};
exception UnableToEvaluate {

ConceptExpression the_expression;
};

// ***
// Translation Library
// ***

interface TranslationLibrary{

exception InvalidQualifiedName {
};

QualifiedCode str_to_qualified_code(
in NamingAuthority::QualifiedNameStr qualified_name_str

) raises (
InvalidQualifiedName

);

NamingAuthority::QualifiedNameStr qualified_code_to_name_str(
in QualifiedCode qualified_code

);
};

// ***
// TerminologyService
// ***

interface TerminologyService{

readonly attribute TerminologyServiceNameterminology_service_name;
readonly attribute LexExplorer lex_explorer;
readonly attribute CodingSchemeLocator coding_scheme_locator;
readonly attribute ValueDomainLocator value_domain_locator;
A-12 Lexicon Query Service V1.0 June 2000

CodingSchemeId Seq get_coding_scheme_ids();

CodingSchemeInfo get_native_coding_scheme_info(
) raises(

NoNativeCodingScheme
);

};

// ***
// LexExplorer
// ***

interface LexExplorer : TerminologyService{

IntlString get_preferred_text(
in QualifiedCode a_qualified_code,
in UsageContextId Seq context_ids

) raises (
UnknownCodingScheme,
UnknownCode

);

IntlStringSeq get_preferred_text_for_concepts(
in QualifiedCodeSeq qualified_codes,
in UsageContextIdSeq context_ids

);

Definition get_preferred_definition(
in QualifiedCode qualified_code

) raises (
UnknownCodingScheme,
UnknownCode

);

ConceptInfoSeq translate_code(
in QualifiedCode from_qualified_code,
in CodingSchemeId to_coding_schemeId

) raises (
UnknownCode,
UnknownCodingScheme,
TranslationNotAvailable

);

ConceptInfoSeqSeq translate_codes(
in QualifiedCodeSeq from_qualified_codes,
in CodingSchemeId to_coding_scheme_id

) raises (
UnknownCodingScheme

);
LQS V1.0 June 2000 A-13

void list_concepts(in CodingSchemeId coding_scheme_id,
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

) raises (
UnknownCodingScheme,
TooManyToList

);

void list_value_domain_ids(
in unsigned long how_many,
out ValueDomainIdSeq value_domain_ids,
out ValueDomainIdIter value_domain_id_iter

) raises (
TooManyToList

);
boolean is_concept_in_value_domain (

in QualifiedCode qualified_code,
in ValueDomainId value_domain_id

) raises (
UnknownValueDomain

);

TrinarySeq are_concepts_in_value_domains (
in QualifiedCodeSeq qualified_codes,
in ValueDomainIdSeq value_domains

) raises (
ParameterAlignmentError

);

void get_pick_list(
in ValueDomainId value_domain_id,
in UsageContextIdSeq context_ids,
out PickListSeq pick_list,
out PickListIter pick_list_iter

) raises (
TooManyToList,
UnknownValueDomain,
NoPickListAvailable

);

Trinary association_exists(
in QualifiedCode source_code,
in TargetElement target_element,
in AssociationId association_id,
in boolean direct_only

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);
A-14 Lexicon Query Service V1.0 June 2000

TrinarySeq associations_exist(
in QualifiedCodeSeq source_codes,
in TargetElementSeq target_elements,
in AssociationIdSeq association_ids,
in boolean direct_only

) raises (
ParameterAlignmentError

);

void list_associated_target_elements (
in QualifiedCode qualified_code,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out TargetElementSeqSeq related_target_seq,
out TargetElementSeqIter related_target_iter

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);
};

void list_associated_source_codes (
in RestrictedTargetElement target_element,
in CodingSchemeId source_coding_scheme_id,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);
};

// ***
// CodingSchemeLocator
// ***
interface CodingSchemeLocator:TerminologyService{

VersionIdSeq get_version_ids(
in CodingSchemeId coding_scheme_id

) raises (
UnknownCodingScheme

);

LanguageIdSeq get_supported_languages(
LQS V1.0 June 2000 A-15

in CodingSchemeId coding_scheme_id
) raises (

UnknownCodingScheme
);

CodingSchemeVersionRefs get_coding_scheme_version(
in CodingSchemeId coding_scheme_id,
in VersionId version_id,
in LanguageId language_id

) raises (
UnknownCodingScheme,
UnknownVersion,
LanguageNotSupported

);

CodingSchemeVersionRefs get_native_coding_scheme_version(
) raises(

NoNativeCodingScheme
);

VersionId get_last_valid_version(
in ConceptCode a_code

) raises (
UnknownCode

);
};

// ***
// ValueDomainLocator
// ***
interface ValueDomainLocator:TerminologyService {

void list_value_domain_ids(
in unsigned long how_many,
out ValueDomainIdSeq value_domain_ids,
out ValueDomainIdIter value_domain_id_iter

);

VersionIdSeq get_version_ids(
in ValueDomainId value_domain_id

) raises(
UnknownValueDomain

);

ValueDomainVersion get_value_domain_version(
in ValueDomainId value_domain_id,
in VersionId version_id

) raises(
UnknownValueDomain,

UnknownVersion
);
A-16 Lexicon Query Service V1.0 June 2000

ValueDomainIdSeq get_value_domain_ids_for_concept(
in QualifiedCode qualified_code

);
};

//***
// CodingScheme interfaces
//***

//***
// A coding scheme consists of the following interfaces
// interface CodingSchemeVersion:CodingSchemeVersionAttributes
// interface PresentationAccess:CodingSchemeVersionAttributes
// interface LinguisticGroupAccess:CodingSchemeVersionAttributes
// interface SystemizationAccess:CodingSchemeVersionAttributes
// interface AdvancedQuery:CodingSchemeVersionAttributes
//***
//***
// interface CodingSchemeVersionAttributes
//***
interface CodingSchemeVersionAttributes {

readonly attribute CodingSchemeId coding_scheme_id;
readonly attribute VersionId version_id;
readonly attribute LanguageId language_id;
readonly attribute boolean is_default_version;
readonly attribute boolean is_complete_scheme;
readonly attribute CodingSchemeVersion coding_scheme_version_if;
readonly attribute PresentationAccess presentation_if;
readonly attribute LinguisticGroupAccess linguistic_group_if;
readonly attribute SystemizationAccess systemization_if;
readonly attribute AdvancedQueryAccess advanced_query_if;

};

//***
// interface CodingSchemeVersion
//***

interface CodingSchemeVersion : CodingSchemeVersionAttributes {

SyntacticTypeIdSeq get_syntactic_types();
SourceTermUsageIdSeq get_source_term_usages();
SourceIdSeq get_scheme_source_ids();
UsageContextIdSeq get_usage_contexts();

void list_concepts(
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

);
LQS V1.0 June 2000 A-17

boolean is_valid_concept(
in ConceptCode a_code

);

DefinitionSeq get_definitions(
in ConceptCode a_code

) raises(
UnknownCode

);

Definition get_preferred_definition(
in ConceptCode a_code

) raises(
UnknownCode

);

CommentSeq get_comments(
in ConceptCode a_code

) raises (
NotImplemented,

 UnknownCode
);

InstructionSeq get_instructions(
in ConceptCode a_code

) raises (
NotImplemented,
UnknownCode

);

IntlStringSeq get_all_text(
in ConceptCode a_code

) raises (
UnknownCode

);

IntlString get_preferred_text(
in ConceptCode a_code

) raises (
UnknownCode,
NoPreferredText

);

IntlString get_text_for_context(
in ConceptCode a_code,
in UsageContextIdSeq context_ids

) raises (
UnknownCode,
NoTextLocated

);
A-18 Lexicon Query Service V1.0 June 2000

ConceptCodeSeq get_concepts_by_text(
in string text

);

void match_concepts_by_string(
in IntlString match_string,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultsIter weighted_result_iter

) raises (
NotImplemented

);

void match_concepts_by_keywords(
in OrderedIntlStringSeq keywords,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultsIter weighted_results_iter

) raises(
NotImplemented

);
};

//**
// PresentationAccess
//**
interface PresentationAccess : CodingSchemeVersionAttributes {

PresentationFormatIdSeq get_presentation_format_ids();

Presentation get_presentation(
in PresentationId presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationInfo get_presentation_info(
in PresentationId presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_presentation_usages(
in PresentationId presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_all_presentations_for_concept(
in ConceptCode a_code

) raises(
LQS V1.0 June 2000 A-19

UnknownCode
);

PresentationUsage get_preferred_presentation(
in ConceptCode a_code,
in PresentationFormatId presentation_format_id

) raises(
UnknownPresentationFormat,
UnknownCode,
NoPreferredPresentation

);

PresentationUsage get_presentation_for_context(
in ConceptCode a_code,
in UsageContextIdSeq context_ids,
in PresentationFormatId presentation_format_id

) raises (
UnknownPresentationFormat,
UnknownCode,
NoPresentationLocated

);

PresentationUsage get_all_presentations_for_context(
in ConceptCode a_code,
in UsageContextIdSeq context_ids,
in PresentationFormatId presentation_format_id

) raises (
UnknownPresentationFormat,
UnknownCode,
NoPresentationLocated

);
};

//**
// LinguisticGroupAccess
//**
interface LinguisticGroupAccess : CodingSchemeVersionAttributes {

LexicalTypeIdSeq get_lexical_types();
LexicalGroupInfo get_lexical_group(

in LexicalGroupId lexical_group_id
) raises(

LexicalGroupNotInCodingSchemeVersion
);

};

//**
// AdvancedQueryAccess
//**

interface AdvancedQueryAccess : CodingSchemeVersionAttributes {
A-20 Lexicon Query Service V1.0 June 2000

readonly attribute PolicyNameSeq supported_policies;
readonly attribute ConstraintLanguageIdSeq
supported_constraint_languages;

struct query_policies {
unsigned long return_maximum;
boolean concept_as_source;
boolean concept_as_target;
boolean current_scheme_only;
boolean direct_associations_only;

};

void query (
in Constraint constr,
in PolicySeq search_policy,
in unsigned long how_many,
out WeightedResultSeq results,
out WeightedResultsIter results_iter

) raises (
IllegalConstraint,
IllegalPolicyName,
PolicyTypeMismatch,
DuplicatePolicyName

);
};

//**
// SystemizationAccess
//**
interface SystemizationAccess : CodingSchemeVersionAttributes {

SystemizationIdSeq get_systemization_ids();
Systemization get_systemization(

in SystemizationId systemization_id
) raises(

UnknownSystemization
);
Systemization get_default_systemization(
) raises(

NoDefaultSystemization
);

};

//**
// Systemization
//**
interface Systemization {

readonly attribute SystemizationId systemization_id;
readonly attribute CodingSchemeVersion coding_scheme_version;
LQS V1.0 June 2000 A-21

AssociationIdSeq get_association_ids();

AssociationDef get_association_definition(
in AssociationId association_id

)raises (
AssociationNotInSystemization

);

void list_all_association_instances(
in unsigned long how_many,
out AssociationInstanceSeq association_instance_seq,
out AssociationInstanceIter association_instance_iter

);

Trinary are_entities_associated(
in ConceptCode source_code,
in AssociatableElement target_element,
in AssociationId association_id,
in boolean direct_only

) raises (
AssociationNotInSystemization

);

Trinary could_association_be_inferred(
in ConceptCode source_code,
in AssociatableElement target_element,
in AssociationId association_id

) raises (
AssociationNotInSystemization,
NotImplemented

);

void list_associated_target_entities (
in ConceptCode source_code,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out TargetElementSeqSeq related_elements,
out TargetElementSeqIter related_elements_iter

) raises (
AssociationNotInSystemization

);

void list_associated_source_codes (
in AssociatableElement target_element,
in AssociationId association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptInfoSeq concept_info_seq,
out ConceptInfoIter concept_info_iter

) raises (
A-22 Lexicon Query Service V1.0 June 2000

AssociationNotInSystemization
);

EntityGraph get_entity_graph (
in AssociatableElement root_node,
in AssociationId association_id,
in AssociationRole node_one_role,
in boolean direct_only

) raises (
AssociationNotInSystemization,
NotImplemented,
TooManyToList

);

AssociationIdSeq get_associations_for_source (
in ConceptCode source_code

);

AssociationIdSeq get_associations_for_target (
in AssociatableElement target_element

);

ValidationResult validate_concept_expression (
in ConceptExpression expression

) raises (
InvalidExpression,
NotImplemented,
AssociationNotInSystemization

);

ConceptExpression get_simplest_form (
in ConceptExpression expression

) raises (
InvalidExpression,
NotImplemented,
AssociationNotInSystemization

);

ConceptExpression expand_concept (
in ConceptCode concept,
in AssociationQualifierIdSeq association_qualifier_seq

) raises (
ConceptNotExpandable,
UnknownCodingScheme,
NotImplemented,
AssociationNotInSystemization

);

Trinary are_expressions_equivalent (
in ConceptExpression expression1,
in ConceptExpression expression2
LQS V1.0 June 2000 A-23

) raises (
InvalidExpression,
UnknownCodingScheme,
AssociationNotInSystemization,
NotImplemented,
UnableToEvaluate

);

ConceptExpression expression_difference(
in ConceptExpression expression1,
in ConceptExpression expression2

) raises (
InvalidExpression,
UnknownCodingScheme,
AssociationNotInSystemization,
NotImplemented,
UnableToEvaluate

);

ConceptExpression minimal_common_supertype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
AssociationNotInSystemization,
NotImplemented,
NoCommonSupertype

);

ConceptExpression maximal_common_subtype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
AssociationNotInSystemization,
NotImplemented,
NoCommonSubtype

);
};

//***
// Value Domain Version
//***

interface ValueDomainVersion {
readonly attribute ValueDomainId value_domain_id;
readonly attribute VersionId value_domain_version_id;
readonly attribute boolean is_default_version;

CodingSchemeIdSeq get_schemes_with_extensions();

QualifiedCodeInfoSeq get_all_extensions();
A-24 Lexicon Query Service V1.0 June 2000

ConceptInfoSeq get_extension_for_scheme(
in CodingSchemeId coding_scheme_id

) raises (
UnknownCodingScheme

);

boolean is_code_in_domain(
in QualifiedCode qualified_code

);

void get_pick_list(
in UsageContextIdSeq context_ids,
out PickListSeq pick_list,
out PickListIter pick_list_iter

) raises (
TooManyToList,
NoPickListAvailable

);

void get_pick_list_for_scheme(
in CodingSchemeId coding_scheme_id,
in UsageContextIdSeq usage_context_ids,
out PickListSeq pick_list,
out PickListIter pick_list_iter

) raises(
TooManyToList,
UnknownCodingScheme,
NoPickListAvailable

);
};
};
#endif /* _TERMINOLOGY_SERVICES_IDL_ */

//File: TerminologyServiceValues.idl
//
#ifndef _TERMINOLOGY_SERVICE_VALUES_IDL_
#define _TERMINOLOGY_SERVICE_VALUES_IDL_

#pragma prefix "omg.org"
#include <orb.idl>
#include <NamingAuthority.idl>
#include "TerminologyServices.idl"

// ***
// module: TerminologyServiceValues
// ***

module TerminologyServiceValues {

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedNameStr;
LQS V1.0 June 2000 A-25

typedef NamingAuthority::AuthorityIdStr AuthorityIdStr;

//**
// ValueDomainId Strings
//***
typedef QualifiedNameStr ValueDomainIdStr;

const ValueDomainIdStr ASSOCIATION_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationId";

const ValueDomainIdStr ASSOCIATION_QUALIFIER_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationQualifierId";

const ValueDomainIdStr ASSOCIATION_BASE_TYPE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationBaseTypeId";

const ValueDomainIdStr LANGUAGE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/LanguageId";

const ValueDomainIdStr LEXICAL_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/LexicalTypeId";

const ValueDomainIdStr PRESENTATION_FORMAT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/PresentationFormatId";

const ValueDomainIdStr SOURCE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/SourceId";

const ValueDomainIdStr SOURCE_USAGE_DOMAIN =
"IDL:omg.org/TerminologyService/SourceUsageId";

const ValueDomainIdStr SYNTACTIC_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/SyntacticTypeId";

const ValueDomainIdStr USAGE_CONTEXT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/UsageContextId";

//**
// AssociationId
//**
typedef ConceptCode AssociationId;
const NamingAuthority::AuthorityIdStr
ASSOCIATION_ID_AUTHORITY_STRING =

"IDL:org.omg/TerminologyService/Association/";

const AssociationIdIS_COMPOSED_OF =
"isComposedOf";

const AssociationIdHAS_SUBTYPES =
"hasSubtypes";

const AssociationIdREFERENCES =
"references";

const AssociationIdHAS_ATTRITUTES =
"hasAttributes";

//**
// AssociationBaseTypeId
//**
typedef ConceptCode AssociationBaseTypeId;
const NamingAuthority::AuthorityIdStr
ASSOCIATION_BASE_TYPE_ID_AUTHORITY_STRING =
A-26 Lexicon Query Service V1.0 June 2000

"IDL:org.omg/TerminologyService/AssociationBaseType/";

const AssociationIdWHOLE_PART =
"wholepart";

const AssociationIdSUBTYPE =
"subtype";

const AssociationIdREFERENCE =
"reference";

const AssociationIdNON_SEMANTIC =
"nonSemantic";

//**
// AssociationQualifierId Strings
//***
typedef QualifiedNameStr AssociationQualifierIdStr;

const AssociationQualifierIdStr MANDATORY =
"IDL:omg.org/TerminologyService/AssociationQualifier/MAND";

const AssociationQualifierIdStr OPTIONAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/OPT";

const AssociationQualifierIdStr SINGLE =
"IDL:omg.org/TerminologyService/AssociationQualifier/SING";

const AssociationQualifierIdStr PLURAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/PLUR";

//**
// LanguageIds
//***
typedef ConceptCode LanguageId;

const NamingAuthority::AuthorityIdStr
LANGUAGE_ID_AUTHORITY_STRING =

"DNS:usmarc.omg.org/041/";

const LanguageId DANISH ="DAN";
const LanguageId ENGLISH ="ENG";
const LanguageId FRENCH ="FRE";
const LanguageId GERMAN ="GER";
const LanguageId ITALIAN ="ITA";
const LanguageId SPANISH ="SPA";

//**
// LexicalTypeIds
//***

typedef QualifiedNameStr LexicalTypeIdStr;

const LexicalTypeIdStr ABBREVIATION = "DNS:umls.hl7.omg.org/LT/ABB";
const LexicalTypeIdStr EMBEDDED_ABBREVIATION =
"DNS:umls.hl7.omg.org/LT/ABX";
const LexicalTypeIdStr ACRONYM = "DNS:umls.hl7.omg.org/LT/ACR";
LQS V1.0 June 2000 A-27

const LexicalTypeIdStr EMBEDDED_ACRONYM =
"DNS:umls.hl7.omg.org/LT/ACX";
const LexicalTypeIdStr EPONYM = "DNS:umls.hl7.omg.org/LT/EPO";
const LexicalTypeIdStr LAB_NUMBER = DNS:umls.hl7.omg.org/LT/LAB";
const LexicalTypeIdStr PROPER_NAME =
"DNS:umls.hl7.omg.org/LT/NAM";
const LexicalTypeIdStr SPECIAL_TAG = "DNS:umls.hl7.omg.org/LT/NON
NO";
const LexicalTypeIdStr TRADE_NAME = "DNS:umls.hl7.omg.org/LT/TRD";

//**
// PresentationFormatIds
//***
typedef ConceptCode PresentationFormatId;
const NamingAuthority::AuthorityIdStr
PRESENTATION_FORMAT_AUTHORITY_STRING =
"DNS:omg.org/MIME/";
const PresentationFormatId PLAIN_TEXT = "text/plain";
const PresentationFormatId RTF = "application/rtf";
const PresentationFormatId ZIP = "application/zip";
const PresentationFormatId PDF = "application/pdf";
const PresentationFormatId GIF_IMAGE = "image/gif";
const PresentationFormatId BASIC_AUDIO = "audio/basic";

//**
// SourceIds
//**

typedef QualifiedNameStr SourceIdStr;

//**
// SourceUsageTypeId
//**

typedef QualifiedNameStr SourceUsageTypeIdStr;
//**
// SyntacticType
//**

typedef ConceptCode SyntacticTypeId;

const NamingAuthority::AuthorityIdStr
SYNTACTIC_TYPE_AUTHORITY_STRING =
"DNS:umls.hl7.omg.org/STT";

const SyntacticTypeId CASE_DIFFERENCE = "C";
const SyntacticTypeId WORD_ORDER = "W";
const SyntacticTypeId SINGULAR_FORM = "S";
const SyntacticTypeId PLURAL_FORM = "P";

//**
A-28 Lexicon Query Service V1.0 June 2000

// Query Property Types
//***
typedef string TerminologyServiceProperty;

const TerminologyServiceProperty LexicalTypeProperty = "LexicalTypeId";
const TerminologyServiceProperty AssociationProperty = "AssociationId";
const TerminologyServiceProperty PreferredTextProperty = "Preferred-
Text";
const TerminologyServiceProperty DefinitionProperty = "Definition";
const TerminologyServiceProperty PresentationProperty = "Presenta-
tionId";

};
#endif /* _TERMINOLOGY_SERVICE_VALUES_IDL_ */

LQS V1.0 June 2000 A-29

A-30 Lexicon Query Service V1.0 June 2000

Diagram Notation B
in the

licly
d-

larity
The notation used in this chapter is the authors’ interpretation of a subset of the
Unified Modeling Language (UML) notation [23]. It is described briefly below:

B.1 Class

The above diagram represents a class. The name of the class, Student, is in the top
segment of the diagram. The middle segment contains the attributes of the class
form of <attribute : type>. In this diagram, instances of class Student are defined as
having one attribute, named studentId, and having a data type of long. The icon to the
left of the attribute indicates that it is publicly available outside of the class. The
bottom segment contains the methods which the class implements in the form of
<Method(arg list) : return type>. The Student class will have one method,
GetLockerNumber, which returns a data element of type long. The icon to the left of the
method also indicates that it is publicly available.

All of the attributes and methods described in the specification are defined as pub
available. All of the attributes described in this specification are also implicitly rea
only, as the specification is constrained to read-only service access.

Class diagrams may have their attributes and methods hidden if it helps with the c
of the overall diagram:

Student
studentId : string

GetLockerNumber () : long
Lexicon Query Service V1.0 June 2000 B-1

tes the
ce in

 with
s the
 The

nded
Class names may also have an annotation in parentheses. This annotation indica
package from which the class is imported. These annotations are not of significan
this document.

B.2 Association

Two classes may be associated. A solid line between the classes represents this
association. The name on the association (e.g., enrolled in/attended by) provides a
textual description of the specific association. The name before the slash in the
association is usually the description of the role the upper or leftmost class takes
respect to the lower or rightmost class. The name after the slash, if any, describe
reverse. The numeric annotations represent the instance cardinality of the class.
above example can be read as:

“A student may be enrolled in zero or more courses.” and “A course must be atte
by one or more students.”

Student

Student
(from AnotherPackage)

Student
studentId : string

GetLockerNumber () : long

Course
courseNumber : string
semester : string

0..*

1..*

enrolled in/attended by

0..*

1..*
B-2 Lexicon Query Service V1.0 June 2000

h the
hole

the

e

thods
ith a
B.2.1 Association Adornments

A diamond on one end of an association represents a whole/part association, wit
diamond end representing the whole. In the above diagram, the document is the w
and it may consist of the parts texts, pictures and tables. If the diamond is solid, the
existence of the parts depends upon the existence of the whole (has-a). If the diamond
is hollow, the part may exist outside of the whole (holds-a). These are conventions of
this document and not necessarily of UML. In the above diagram, an instance of
Text class may not exist if the corresponding instance of the Document class does not
exist, while an instance of the Picture class may exist even when the referencing
document is destroyed.

An open arrow indicates one-way navigability. In the above diagram, one would b
able to locate all of the Documents in which an instance of the Picture class exists, but
one would not be able to locate all of the Documents that reference a given Table.

B.2.2 Association Classes

An association may have a class associated with it as well. The properties and me
of this class apply to instances of associations. An association class is marked w
dashed line between the class and the association:

Table
Text

Picture

Document

1

1..*

0..*

0..*

1..*

0..*
1..*

0..*

0..*

1..*
0..*

1

contains references

references

Student

Class
0..*

1..*1..*

0..*

Grade
letterGrade : char

PassingGrade () : boolean
GetStudent () : Student
GetClass () : Class

enrolled in/attended by
LQS V1.0 June 2000 B-3

e is
tion

tance.

nd
of the

are
In the above diagram, the class Grade applies to the enrolled in association. For each
Student/Class association instance, there will be an instance of the Grade class which
will have a letterGrade attribute as well as methods to determine whether the grad
passing or not. As a convention in this document, navigation between the associa
class and the associated classes is explicitly provided if needed. GetStudent and
GetClass provide the means of accessing both ends of the specific association ins

B.3 Inheritence

The hollow arrow indicates that one class is a subclass of another (is-a). The arrow
points in the direction of the superclass. A subclass inherits all of the attributes a
methods of the superclass. An instance of a subclass will always be an instance
superclass as well. The converse of this not necessarily true.

In the above example, the class Manager is a subclass of the class Employee. This
means that an instance of the class Manager is also an instance of the class Employee.
(All managers are employees). This does not imply, however, that all employees
managers. The Manager class includes the attribute identifier and the methods
GetName and GetDepartment.

Employee
identifier : long

GetName () : string

Manager

GetDepartment () : string
B-4 Lexicon Query Service V1.0 June 2000

References C
97.

f
95.

her

e

on
[1] CORBAmed Lexicon Query Services RFP, January 1997. OMG CORBAmed
Document 97-01-04. http://www.omg.org/docs/corbamed/97-01-04.rtf

[2] CORBAServices: Common Object Services Specification. OMG, November 19
http://www.omg.org/corba/csindx.htm

[3] Telecommunications Topology Service RFP, January 1997. OMG Telecom
Document 97-01-02. http://www.omg.org/docs/telecom/97-01-02.pdf

[4] CEN ENV 12264: 1995 (MoSe). Medical informatics – Categorial structures o
systems of concepts – Model for representation of semantics. Brussels:CEN, 19

[5] Unified Medical Language System. 8th Edition. National Library of Medicine.
January 1997. http://www.nlm.nih.gov/pubs/factsheets/umls.html

[6] ISO 1087:1990 – Terminology – Vocabulary.

[7] A. Rossi Mori, “ICNP: towards second and third generation of Terminology
Systems.”. IMIA WG6 Conference on Natural Language and Medical Concept
Representation. 1997.

[8]] Object Management Architecture Guide. Revision 3.0. Richard Soley, Christop
Stone. OMG, June 1997. http://www.omg.org/library/omaindx.htm

[9] ISO/IEC 8824-1 (1994) Information Technology—Abstract syntax Notation On
(ASN.1)—specification of Basic Notation.

[10] P. Mockapetris, " Domain Names - Concepts and Facilities", RFC 1034,
Information Sciences Institute, November 1987.
http://andrew2.andrew.cmu.edu/rfc/rfc1034.html

[11] The Common Object Request Broker: Architecture and Specification. Revisi
2.1. OMG, August 1997. http://www.omg.org/corba/c2indx.htm
Lexicon Query Service V1.0 June 2000 C-1

gust

ent

991.

s,

FC
[12] DCE 1.1: Remote Procedure Call. OpenGroup Document Number C706, Au
1997. First access page: http://www.opengroup.org/public/pubs/catalog/c706.htm then
link to http://www.rdg.opengroup.org/onlinepubs/9629399/apdxa.htm#tagcjh_20.

[13] AL Rector, A Gangemi, E Galeazzi, AJ Glowinski, A Rossi-Mori, “The GALEN
CORE Model Schemata for Anatomy: Towards a Re-usable Application-Independ
Model of Medical Concepts. MIE Proceedings, 1994.

[14] H. Kilov, J. Ross. Information Modeling – An Object-Oriented Approach.
Prentice Hall, 1994.

[15] B. Potter, J. Sinclair and D. Till. An Introduction to Formal Specification and Z.
International Series in Computer Science, Hemel Hempstead, UK: Prentice Hall, 1
As quoted in Kilov.16

[16] ISO/IEC 7826-1 : 1994 Information technology - General Structure for the
Interchange of Code Values, Part 1 - Identification of Coding Schemes.

[17] ISO/IEC 7826-2 : 1994 General Structure for the Interchange of Code Value
Part 2 - Registration of Coding Schemes.

[18] American Society of Testing Materials. http://www.astm.org/COMMIT/e-31.htm

[19] Health Level Seven (HL7) Version 2.3. Final Standard. 1997.
http://www.mcis.duke.edu/standards/HL7/pubs/version2.3/html/httoc.htm

[20] Generic ICD-9-CM. US Department of Health and Human Services, 1997.

[21] RFC 1521, MIME Mechanisms for Specifying and Describing the Format of
Internet Message Bodies

[22] Moore, K., "Representation of Non-Ascii Text in Internet Message Headers" R
1522, University of Tennessee, September 1993.

[23] UML Notation Guide, Version 1.1. Rational Software, September 1997.
http://www.rational.com/uml/html/notation/
C-2 Lexicon Query Service V1.0 June 2000

Index
A
Advanced Query Terms 2-19
AdvancedQuery 2-39
AdvancedQueryAccess Conformance 3-20
AdvancedQueryAccess Interface 2-47
are_concepts_in_value_domains 2-34, 3-19
are_entities_associated 2-54
are_expressions_equivalent 2-56
AssociatableElement 1-22, 2-22
Association 3-3, 1
Association Characteristics 3-4
Association Discovery 1-9
Association Instance 1
Association Qualifier 3-14, 1
association_exists 2-34
AssociationDef 2-22
AssociationId 1-20, 2-11
associationId 3-5
AssociationInstance 2-22
AssociationQualifierId 1-21, 2-10
AssociationRole 2-22
associations_exist 2-34, 3-19
AttributeValuePair 2-22
authority_to_str 2-7
AuthorityId 1-16, 2-5
AuthorityIdStr 1-16, 2-5

B
baseType 3-5
Basic Coding Terms 2-8
Basic Identifiers 1-17
Basic Types 1-12
Blob 1-12, 2-12, 1
Browsing 1-8

C
Cardinality 1-13, 2-23
Characteristic 1-18, 2-21, 1
CharacterSet 3-14
CharacterSetId 1-20
Code Mapping 1-7
Code Refinement 1-4
Code Transformation 1-6
Code Translation 1-6
Coded Concept and Coding Scheme Terms 2-12
Coded Concept Types 2-11
Coding Scheme 3-14, 2
Coding Scheme Terms 2-12
Coding Scheme Version 1-26, 2
Coding Schemes 1-24
Coding Terms 2-11
coding_scheme_id 2-39
coding_scheme_locator 2-29
coding_scheme_version 2-53
CodingSchemeAttributes Interface 2-38
CodingSchemeId 1-18, 2-9
CodingSchemeInfo 2-15
CodingSchemeLocator Conformance 3-19
CodingSchemeLocator Interface 2-35
CodingSchemeVersion 2-39
CodingSchemeVersion Conformance 3-20

CodingSchemeVersion Interface 2-39
CodingSchemeVersionRefs 2-16
Collections 1-22
Comment 2-16, 2
Composite Concept Manipulation 1-9
Composite Types 1-21
Composition 1-9
Concept Attribute Discovery 1-8
Concept Attributes Retrieval 1-9
Concept Code 2
Concept Description 2
Concept Expression 2
Concept Expressions 1-35
concept_as_source 2-49
concept_as_target 2-49
ConceptCode 1-19, 2-9
ConceptDescription – Part 1 1-28
ConceptDescription – Part 2 1-29
ConceptExpression 1-36, 2-22
ConceptExpressionElement 1-37, 2-22
ConceptInfo 2-16
ConceptInfoSeqSeq 2-16
Conformance Points 3-18
conformance_classes 3-2
CORBA

contributors 3
documentation set 2

could_association_be_inferred 2-54
current_scheme_only 2-49

D
Data Element Location 1-8
Data Type Definitions 1-12
DCE 1-15, 1-16, 2-4, 2-5
Decomposition 1-9
Definition 2-16, 2
destroy 1-42
direct_associations_only 2-49
DNS 1-14, 1-15, 2-3, 2-5

E
EntityGraph 2-23
Exceptions 2-7, 2-8
expand_concept 2-55
expression_difference 2-56

F
Field Validation 1-5, 1-7
Full IDL A-1

G
get_all_extensions 2-58
get_all_presentations_for_concept 2-45
get_all_presentations_for_context 2-46
get_all_text 2-42
get_association_definition 2-53
get_association_for_target 2-55
get_association_ids 2-53
get_associations_for_source 2-55
get_coding_scheme_ids 2-29
get_coding_scheme_version 2-36
get_comments 2-42
Lexicon Query Service June 2000 Index-1

Index
get_concepts_by_text 2-43
get_default_systemization 2-50
get_definitions 2-42
get_entity_graph 2-54
get_extension_for_scheme 2-58
get_instructions 2-42
get_last_valid_version 2-36
get_linguistic_group 2-46
get_native_coding_scheme_info 2-29
get_native_coding_scheme_version 2-36
get_pick_list 2-34, 2-58
get_pick_list_for_scheme 2-58
get_preferred_definition 2-32, 2-42, 3-19
get_preferred_presentation 2-46
get_preferred_text 2-32, 2-42
get_preferred_text_for_concepts 2-32, 3-19
get_presentation 2-45
get_presentation_for_context 2-46
get_presentation_format_ids 2-45
get_presentation_info 2-45
get_presentation_usages 2-45
get_scheme_source_ids 2-41
get_schemes_with_extensions 2-58
get_simplest_form 2-55
get_source_term_usages 2-41
get_supported_languages 2-36
get_syntactic_types 2-41
get_systemization 2-50
get_systemization_ids 2-50
get_text_for_context 2-42
get_usage_contexts 2-41
get_value_domain_ids_for_concept 2-38
get_value_domain_version 2-38
get_version_ids 2-36, 2-37

I
IDL 2-4, 2-5
IDL Interface 1-41
Implementation Vendor 2
Indexing 1-7
Inference 1-7
Information Acquisition 1-3
Information Display 1-6
inherited 3-7, 3-9, 3-11
inherited = TRUE 3-9
Instruction 2-16, 2
interfaces_implemented 3-2
IntlString 1-12, 2-12
IR 1-14, 1-15
is_code_in_domain 2-58
is_complete_scheme 2-39
is_concept_in_value_domain 2-33, 3-19
is_default_version 2-39, 2-57
is_valid_concept 2-41
ISO 1-14, 1-15, 2-3, 2-5
Iterators 1-41

K
Keyword Matching 1-4

L
Language 3-15, 2
language_id 2-39
LanguageId 1-20, 2-11
lex_explorer 2-28
LexExplorer Interface 2-29
Lexical Type 3
LexicalType 3-16
LexicalTypeId 1-20, 2-10
Linguistic Group 3
LinguisticGroupAccess 2-39
LinguisticGroupAccess Conformance 3-20
LinguisticGroupAccess Interface 2-46
LinguisticGroupId 1-17, 2-16
LinguisticGroupInfo 2-16
list_all_association_instances 2-53
list_associated_source_concepts 2-54
list_associated_source_elements 2-35
list_associated_target_elements 2-34, 3-19
list_associated_target_entities 2-54
list_concepts 2-33, 2-41, 3-19
list_value_domain_ids 2-33, 3-19
Local Name 3
LocalName 1-16, 2-6

M
MAF IDL Interfaces A-1, B-1, C-1
match_concepts_by_keywords 2-43
match_concepts_by_string 2-43
max_left 1-41
maximal_common_subtype 2-56
MaximumCardinality 2-23
Mediation 1-6
Meta Concepts 1-19
Meta Types 2-9
Meta-Terminology 3-3
minimal_common_supertype 2-56
MinimumCardinality 2-23
Model Overview 1-11

N
Naming Authority 1-13, 3
NamingAuthority Module 2-1
NamingEntity 1-15, 2-4
Native Coding Scheme 3
next_n 1-42
nonCodedAllowed 3-5
nonCodedAllowed = FALSE 3-8, 3-9
nonCodedAllowed = TRUE 3-11
Non-Semantic Association 3-10
Normalization 1-9
Notation 1-41

O
Object Management Group 1

address of 2
OrderedIntlStringSeq 2-12
OTHER 2-4
Other 1-14, 1-15, 2-3

P
Phrase Lookup 1-3
Index-2 Lexicon Query Service June 2000

Index
Phrase Matching 1-3
Pick List 3
Pick List Generation 1-5
PickListEntry 1-21, 2-24
Possible Value Enumeration 1-4
pragma prefix 2-3
Predefined Association Codes 3-13
Presentation 2-17, 3
Presentation Format 3
Presentation Types 1-32
Presentation Usage 3
PresentationAccess 2-39
PresentationAccess Conformance 3-20
PresentationAccess Interface 2-44
PresentationFormat 3-16
PresentationFormatId 1-20, 2-11
PresentationId 1-17, 2-17
PresentationInfo 2-17
Presentations 1-30
PresentationType 2-17
PresentationUsage 2-18
PresentationValue 2-17

Q
Qualified Code 3
Qualified Code Types 2-10
Qualified Name 3
qualified_code_to_name_str 2-27
qualified_name_to_str 2-7
QualifiedCode 1-19, 2-9
QualifiedCodeInfo 2-17
QualifiedName 2-6
QualifiedNameStr 2-6

R
Reference Association 3-8
Reference Model 1-9
Registration Authority 4
RegistrationAuthority 1-13, 2-3
RelatedEntityExpression 1-37, 2-23
Relationship Inquiry 1-8
RestrictedTargetElement 2-23
Role 4
RoleName 1-17, 2-21

S
Sequences and Sets 1-41
Service Browsing 1-8
Source 3-17, 4
Source Term Type 3-17, 4
sourceCardinality 3-6, 3-8, 3-10, 3-11
SourceId 1-20, 2-10
SourceInfo 2-18
sourceRole 3-5, 3-8, 3-10, 3-11
sourceTargetDisjoint 3-7
sourceTargetDisjoint = FALSE 3-9
sourceTargetDisjoint = TRUE 3-8, 3-11
SourceTermUsageId 1-20, 2-11
Specific Association Types 3-7
str_to_authority 2-7
str_to_qualified_code 2-27

str_to_qualified_name 2-7
Structural Composition/Decomposition 1-7
Subtyping Association 3-9
supported_coding_schemes 3-2
supported_languages 3-3
symmetric 3-7, 3-9
symmetric = FALSE 3-9, 3-11
Syntactic Type 3-17, 4
SyntacticTypeId 1-20, 2-11
Systemization 4
Systemization Conformance 3-20
Systemization Definitions 2-19
Systemization Interface 2-50
systemization_id 2-53
SystemizationAccess 2-39
SystemizationAccess Conformance 3-20
SystemizationAccess Interface 2-49
SystemizationId 1-17, 2-18
Systemizations 1-33

T
Target Element 4
targetCardinality 3-6, 3-9, 3-10, 3-11
TargetElement 2-23
targetIsSet 3-5
targetIsSet = FALSE 3-8, 3-11
targetIsSet = TRUE 3-9
targetRole 3-5, 3-8, 3-10, 3-11
Terminology 4
Terminology Exceptions 2-25
Terminology Identifiers 1-18
Terminology Service 1-23, 4
Terminology Service Module 2-7
Terminology Service Values Module 2-58
terminology_service_name 2-28, 3-2
TerminologyService Interface 2-28
TerminologyServiceName 2-9
Text Lookup 1-3
Trader Service 3-2
transitive 3-6
transitive = FALSE 3-11
transitive = TRUE 3-9
transitive = UNKNOWN 3-8
translate_code 2-33
translate_codes 2-33, 3-19
TranslationLibrary Interface 2-27
TranslationLibrary interface 2-7
Trinary 1-12, 2-12
Type Definitions 2-7

U
UniqueName 1-16
UniqueNameStr 1-16
Usage Context 3-18, 4
UsageContextId 1-20, 2-11
Use Scenarios 1-2

V
validate_concept_expression 2-55
ValidationResult 1-21, 2-23
Value Domain 3-18, 4
Lexicon Query Service June 2000 Index-3

Index
Value Domain Terms 2-24
Value Domains 1-40
value_domain_id 2-57
value_domain_locator 2-29
value_domain_version_id 2-57
ValueDomainId 1-19, 2-24
ValueDomainLocator Conformance 3-20
ValueDomainLocator Interface 2-37
ValueDomainVersion Conformance 3-20

ValueDomainVersion Interface 2-56
Vendor-Defined Associations 3-11
version_id 2-39
VersionId 1-17, 2-9

W
Weight 1-13, 2-18
WeightedResult 1-22, 2-18
Index-4 Lexicon Query Service June 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Use Scenarios
	1.2.1 Information Acquisition
	1.2.2 Information Display
	1.2.3 Mediation
	1.2.4 Indexing and Inference
	1.2.5 Browsing
	1.2.6 Composite Concept Manipulation

	1.3 Reference Model
	1.4 Model Overview
	1.5 Data Type Definitions
	1.5.1 Basic Types
	1.5.2 Naming Authority
	1.5.3 Basic Identifiers
	1.5.4 Terminology Identifiers
	1.5.5 Meta Concepts
	1.5.6 Composite Types
	1.5.7 Collections

	1.6 Terminology Service
	1.6.1 Coding Schemes
	1.6.2 Value Domains

	1.7 IDL Interface
	1.8 Notation
	1.8.1 Sequences and Sets
	1.8.2 Iterators

	2. Modules and Interfaces
	2.1 NamingAuthority Module
	2.1.1 RegistrationAuthority
	2.1.2 NamingEntity
	2.1.3 AuthorityId, AuthorityIdStr
	2.1.4 LocalName, QualifiedName, QualifiedNameStr
	2.1.5 Exceptions
	2.1.6 TranslationLibrary Interface

	2.2 Terminology Service Module
	2.2.1 Type Definitions
	2.2.2 Exceptions
	2.2.3 Basic Coding Terms
	2.2.4 Meta Types
	2.2.5 Coded Concept and Coding Scheme Terms
	2.2.6 Advanced Query Terms
	2.2.7 Systemization Definitions
	2.2.8 Value Domain Terms
	2.2.9 Terminology Exceptions
	2.2.10 TranslationLibrary Interface
	2.2.11 TerminologyService Interface
	2.2.12 LexExplorer Interface
	2.2.13 CodingSchemeLocator Interface
	2.2.14 ValueDomainLocator Interface
	2.2.15 CodingSchemeAttributes Interface
	2.2.16 CodingSchemeVersion Interface
	2.2.17 PresentationAccess Interface
	2.2.18 LinguisticGroupAccess Interface
	2.2.19 AdvancedQueryAccess Interface
	2.2.20 SystemizationAccess Interface
	2.2.21 Systemization Interface
	2.2.22 ValueDomainVersion Interface

	2.3 Terminology Service Values Module

	3. Terminology
	3.1 Trader Service
	3.2 Meta-Terminology
	3.2.1 Association
	3.2.2 Vendor-Defined Associations

	3.3 Association Qualifier
	3.4 CharacterSet
	3.5 Coding Scheme
	3.6 Language
	3.7 LexicalType
	3.8 PresentationFormat
	3.9 Source
	3.10 Source Term Type
	3.11 Syntactic Type
	3.12 Usage Context
	3.13 Value Domain
	3.14 Conformance Points
	3.14.1 Minimum Implementation
	3.14.2 Additional Conformance Levels
	3.14.3 ValueDomainLocator Conformance

	Lexicon Query Glossary
	Appendix A - OMG IDL
	Appendix B - Diagram Notation
	Appendix C - References
	Index

