Lexicon Query Service Specification

New Edition: June 2000
Version 1.0

Copyright 1998, 2AB

Copyright 1998, Ardent Software, Inc.
Copyright 1998, Care Data Systems, Inc.
Copyright 1998, CareFlow/Net, Inc.
Copyright 1998, FUJITSU LIMITED
Copyright 1998, HBO & Company
Copyright 1998, HealthMagic, Inc.
Copyright 1998, HUBIink, Inc.

Copyright 1998, IBM Corporation
Copyright 1998, IDX Systems Corporation
Copyright 1998, INPRISE Corporation
Copyright 1998, IONA Technologies PLC
Copyright 1998, Oacis Healthcare Systems
Copyright 1998, Object Design, Inc.
Copyright 1998, Objectivity, Inc.

Copyright 1998, Oracle Corporation
Copyright 1998, Persistence Software, Inc.
Copyright 1998, Protocol Systems, Inc.
Copyright 1998, Secant Technologies, Inc.
Copyright 1998, Sholink Corporation
Copyright 1998, Sun Microsystems, Inc.
Copyright 1998, Versant Object Technology Corporation

The copyright holders listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
free, paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of
the modified version. Each copyright holder listed above has agreed that no person shall be deemed to have infringed the
copyright in the included material of any such copyright holder by reason of having used the specification set forth herein
or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS

OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF

TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies listed
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover damages,
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed above

acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the sole
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or
other special designations to indicate compliance with these materials. This document contains information which is pro-
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information
storage and retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028r@dMG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, and COSS are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form at
http://www.omg.org/library/issuerpt.htm

Contents

Preface 1
About the Object Management Group. 1
Whatis CORBA?. e 1
Associated OMG Documents 2
Acknowledgments. 3
1. Service Description 1-1
1.1 OVEIVIEBW . .o 1-1
1.2 USE SCEeNAriOS. v ittt e 1-2
1.2.1 Information Acquisition. 1-3
1.2.2 InformationDisplay 1-6
1.23 Mediation. i 1-6
1.2.4 Indexing and Inference................... 1-7
1.25 Browsinguiiiii i 1-8
1.2.6 Composite Concept Manipulation 1-9
1.3 ReferenceModel i 1-9
1.4 Model Overview. 1-11
1.5 Data Type Definitions 1-12
151 BasiCTyPeS.t 1-12
1.5.2 Naming Authority. 1-13
1.5.3 Basicldentifiers 1-17
1.5.4 Terminology Identifiers 1-18
155 MetaConcepts 1-19
1.5.6 Composite Types 1-21
157 Collections i 1-22

Lexicon Query Service

June 2000 i

Contents

1.6 Terminology Service 1-23
1.6.1 CodingSchemes........................ 1-24
16.2 ValueDomains..............oiu... 1-40
1.7 IDLInterface 1-41
1.8 Notation............ .. 1-41
1.8.1 SequencesandSets...................... 1-41
1.82 lterators 1-41
2. ModulesandInterfaces. 2-1
2.1 NamingAuthority Module 2-1
2.1.1 RegistrationAuthority. 2-3
2.1.2 NamingEntity............. 2-4
2.1.3 Authorityld, AuthorityldStr 2-5
2.1.4 LocalName, QualifiedName, QualifiedNameStr 2-6
215 EXceptions 2-7
2.1.6 TranslationLibrary Interface............... 2-7
2.2 Terminology Service Module. 2-7
2.2.1 Type Definitions. 2-7
2.2.2 EXceptions 2-8
223 BasicCodingTerms..................... 2-8
224 MetaTypes. 2-9
2.2.5 Coded Concept and Coding Scheme Terms ... 2-12
2.2.6 Advanced QueryTerms 2-19
2.2.7 Systemization Definitions. 2-19
2.2.8 ValueDomainTerms 2-24
2.2.9 Terminology Exceptions. 2-25
2.2.10 TranslationLibrary Interface............... 2-27
2.2.11 TerminologyService Interface. 2-28
2.2.12 LexExplorerinterface.................... 2-29
2.2.13 CodingSchemelocator Interface 2-35
2.2.14 ValueDomainLocator Interface. 2-37
2.2.15 CodingSchemeAttributes Interface.......... 2-38
2.2.16 CodingSchemeVersion Interface. 2-39
2.2.17 PresentationAccess Interface 2-44
2.2.18 LinguisticGroupAccess Interface 2-46
2.2.19 AdvancedQueryAccess Interface 2-47
2.2.20 SystemizationAccess Interface 2-49
2.2.21 Systemization Interface 2-50
2.2.22 ValueDomainVersion Interface. 2-56
2.3 Terminology Service Values Module 2-58

ii Lexicon Query Service June 2000

Contents

3. Terminology 3-1
3.1 Trader Service i 3-2
3.2 Meta-Terminology 3-3

3.2.1 Association............. ... e 3-3
3.2.2 Vendor-Defined Associations. 3-11
3.3 Association Qualifier.......... 3-14
3.4 CharacterSet. i 3-14
3.5 CodingScheme i 3-14
3.6 Languageo 3-15
3.7 LexicalTypeo e 3-16
3.8 PresentationFormat 3-16
3.9 SOUICE . .. e 3-17
3.10 Source Term Typeottt 3-17
3.11 SyntactiC Type. oo 3-17
3.12 UsageContext., 3-18
3.13 ValueDomain e 3-18
3.14 Conformance Points...................... 3-18
3.14.1 Minimum Implementation 3-18
3.14.2 Additional Conformance Levels............ 3-19
3.14.3 ValueDomainLocator Conformance 3-20
GloSsary 1
Appendix A-OMG IDL. A-1
Appendix B - Diagram Notation. B-1
Appendix C - References. C-1

Lexicon Query Service June 2000 iii

Contents

Lexicon Query Service

June 2000

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported
by over 800 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object
Management Group's answer to the need for interoperability among the rapidly
proliferating number of hardware and software products available today. Simply stated,
CORBA allows applications to communicate with one another no matter where they
are located or who has designed them. CORBA 1.1 was introduced in 1991 by Object
Management Group (OMG) and defined the Interface Definition Language (IDL) and
the Application Programming Interfaces (API) that enable client/server object
interaction within a specific implementation of an Object Request Broker (ORB).
CORBA 2.0, adopted in December of 1994, defines true interoperability by specifying
how ORBs from different vendors can interoperate.

Lexicon Query Service V1.0 June 2000 1

Associated OMG Documents

In addition to the CORBA Transportation specifications, the CORBA documentation
set includes the following:

Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

CORBA: Common Object Request Broker Architecture and Specificaiitains
the architecture and specifications for the Object Request Broker.

CORBA Languages collection of language mapping specifications. See the
individual language emapping specifications.

CORBAservices: Common Object Services Specificatiaollection of OMG'’s
Object Services specifications.

CORBAfacilities: Common FacilitieSpecificationa collectionof OMG’s Common
Facility specifications.

CORBA ManufacturingContains specifications that relate to the manufacturing
industry. This group of specifications defines standardized object-oriented interfaces
between related services and functions.

CORBA MedComprised of specifications that relate to the healthcare industry and
represents vendors, healthcare providers, payers, and end users.

CORBA FinanceTargets a vitally important vertical market: financial services and
accounting. These important application areas are present in virtually all
organizations: including all forms of monetary transactions, payroll, billing, and so
forth.

CORBA TelecomsComprised of specifications that relate to the OMG-compliant
interfaces for telecommunication systems.

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail i@iject Management
Architecture Guide

OMG formal documents are available from our web site in PostScript and PDF format.
To obtain print-on-demand books in the documentation set or other OMG publications,
contact the Object Management Group, Inc. at:

2 Lexicon Query Service V1.0 June 2000

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:
* 2AB
¢ 3M Health Information Systems
« Ardent Software, Inc.
e Care Data Systems, Inc.
e CareFlow/Net, Inc.
e FUJITSU LIMITED
e HBO & Company
« HealthMagic, Inc.
* HUBIink, Inc.
« IBM Corporation
¢ IDX Systems Corporation
¢ INPRISE Corporation
* IONA Technologies PLC
¢ Oacis Healthcare Systems
« Object Design, Inc.
« Objectivity, Inc.
¢ Oracle Corporation
» Persistence Software, Inc.
¢ Protocol Systems, Inc.
e Secant Technologies, Inc.
« Sholink Corporation
¢ Sun Microsystems, Inc.
* Versant Object Technology Corporation

LQS V1.0 Acknowledgments June 2000 3

Lexicon Query Service V1.0 June 2000

1.1 Overview

Service Description 1

Contents

This chapter contains the following topics.

Topic Page
“Overview” 1-1
“Use Scenarios” 1-2
“Reference Model” 1-9
“Model Overview” 1-11
“Data Type Definitions” 1-12
“Terminology Service” 1-23
“IDL Interface” 1-41
“Notation” 1-41

The scope of this specification is to specify a set of common, read-only methods for
accessing the content of medical terminology systems. What constitutes a medical
terminology system can vary widely, from a simple list consisting of a set of codes and
phrases at one extreme, to a dynamic, multi-hierarch classification and categorization
scheme at the other. The focus was to determine what could be construed to be
“‘common” elements of terminology systems. By “common,” we mean the set of
elements in which the semantics are fairly widely accepted, even though they may not
be present in all or even many of the terminology systems available today. The goal
was to produce a specification that could be used to implement a reasonable and useful
interface to any of the major medical coding schemes.

Lexicon Query Service V1.0 June 2000 1-1

1-2

1.2 Use Scenarios

A key goal of this specification was to provide a single, agreed-upon way to ask a
guestion of a terminology system. Terminology systems may vary radically in their
forms of representation and access. For example, the question “Is penicillin an
antibiotic?” could be presented to one system in the form “Does there exist a subtype
relationship in which the concept code for antibiotic is the supertype and the concept
code for penicillin is the subtype?” In another system, the question may be presented
as “Is there a record in the drug database whose key is ‘penicillin’ that has the value of
‘Yes’ in the antibiotic column?”

The intention of this specification is to provide only one specific interface that may be
used to answer any question, regardless of the underlying implementation.

This specification provides read-only services. Read-only services have been further
subdivided into two categories: 1) High volume on-line services and 2) Perusal and
browsing services. This specification focuses on the first category of services which
are services used by an on-line production system. The services include translation,
inference, presentation, and the like. The second category was addressed only as
necessary to satisfy specific RFP requirements.

The following scenarios describe some of what are believed to be typical uses of
terminology systems. This list of uses is not exhaustive. However, it has served as a
guideline in designing the terminology service interface. The set of uses is subdivided
into six sections:

1. Information Acquisition - Using terminology services to aid in the process of
entering coded data.

2. Information Display - Using terminology services to translate coded data elements
into human or machine-readable external forms.

3. Mediation - Using terminology services to transform messages or data records from
one form or representation into another.

4. Indexing and Inference -Using terminology services to inquire about associations
which may or may not pertain between various data elements and to assist in the
location of various data record sets, which may contain information relevant to the
specific topic or entity.

5. Browsing - Using the terminology services to determine the structure and meaning
of a terminology system.

6. Composite Concept Manipulation -Using the terminology services to aid in the
entry, validation, translation, and simplification of composite concepts.

Each of these sections is dealt with in greater detail in the paragraphs that follow.

Lexicon Query Service V1.0 June 2000

1.2.1 Information Acquisition

1.21.1

1.2.1.2

1.2.1.3

A key factor in coding data is the ability to quickly and precisely translate an external
term, phrase, or image in the user's mind into the code or codes that represent the
information to be conveyed. The terminology services provide several means of
assisting in this translation process.

Text Lookup

The data-entry application knows the specific code that represents a target concept.
The terminology service receives the code and coding scheme from the application and
returns the preferred phrase that represents the specific code.

Example: A user wishes to encode the fact that a patient has a mild atrial flutter. The
user is familiar with the ICD-9 coding system and wishes to start with the code 427.
The terminology service is asked for the phrase that corresponds with the code 427 in
the ICD-9 coding scheme and returns the text “Cardiac Dysrhythmias.”

Phrase Lookup

The user of the data-entry application knows the precise text that represents a target
code or set of codes. The user supplies the string and the name of the target coding
scheme to the terminology service. The service returns the code or codes whose
presentations match the string, along with a list of the preferred presentations for each
code.

The user may constrain the search by supplying a list of contexts in which the text is
used.

Example: An application can be used to locate all concepts that correspond to the text
“Cold” in the UMLS coding scheme. It supplies the text “Cold” and the language
indicator for “English” to the terminology services and asks for all matching concepts
in the UMLS coding scheme. The terminology system returns two concepts:

C0009443 - Common Cold
C0009264 - Cold <1>

The user can limit the search by supplying the information that the resulting concepts
must belong to the domain “Enterovirus Infections,” which would then constrain the
output to the single concept representing the disease. The user could also indicate that
the supplied text was used as a short column heading, which might further constrain
the results.

Phrase Matching

This case is identical to the previous case, except the user knows only an approximate
string that represents the target concept(s). The string may contain wild cards and other
information to direct the search. With the exception of the string itself, the information
supplied to the terminology service is identical to the case described above.

LQS V1.0 Use Scenarios June 2000 1-3

1-4

1.2.1.4

1.2.1.5

1.2.1.6

The terminology service returns a set of concepts that might match the supplied phrase.
The set is ordered by match likelihood with the most probable matches supplied first.

Example: The user could supply the string “Atr* Fibrillation” and the language
indicator for “English” to the terminology service and ask for all matching concepts in
the UMLS coding scheme. The terminology service might return the following set of
concepts:

Code Phrase Weight
C0155709 Atrial fibrillation and flutter 0.9
C0004238 Atrial Fibrillation 0.5

Keyword Matching

This case is identical to the previous two cases, with the exception that the user knows
one or more keywords, which are used to locate the target concept(s). For example: the
user could know the words “heart,” “valve,” and “flutter.” The terminology service is
asked for matching concepts in the UMLS coding scheme and returns the appropriate
set of matching codes.

Code Refinement

The user of the services wishes to determine the best possible concept code to
represent a specific situation (e.g., the condition of a patient). The user first selects a
starting concept through some other mechanism. Given this starting concept, the user
wishes to supply additional words or phrases, along with a relationship (more general,
more specific, synonymous). The terminology service returns an ordered set of concept
codes that participates in the supplied relationship with the starting code, as well as
contains the additional words or phrases in their external representation. As with
phrase lookup, the order of the set is based on match quality with exact matches
occurring first.

Example: The user may start with the concept for <Cardiac Dysrhythmias> in the
ICD-9 coding system. The terminology services are supplied with this concept, the
words “atrial” and “flutter,” and the relationship “more specific.” The coding system
would return an ordered set of concepts which partially or completely meet these
criteria, and the user could select the concept (and code) which most closely
represented his own image of the situation (which, in this case, would probably be
code 427.32, Atrial Flutter).

Possible Value Enumeration

The user wishes to examine a list of the possible codes, along with their corresponding
phrases or other external representations that might be supplied for a specific data-
entry field.

Lexicon Query Service V1.0 June 2000

1

1.2.1.7

1.2.1.8

The terminology service is supplied with the value domain representing the data-entry
field, the coding scheme to be used in the field, and the language and usage context in
which the selection list is to be presented. The terminology services return a list of
codes and the appropriate presentation for each code in the given context. The return
list may also contain indicators showing which code(s) are defaults for the selection.

Example: The user wishes to encode the patient’s gender into an HL7 message, using
the HL7 Version 2.3 Table 001. The terminology service is given the “domain”
identifier CX0001234, representing the concBptient Sex Value Sdt.is also given

the information the user is interested in as an English selection set for use in a short,
textual list.

The terminology services return a list containing the following values:

Table 1-1 Example of a Possible Value List

Code Presentation Text
M Male

F Female

U Unknown

@) Other

Field Validation

The application needs to determine whether a specific code for a field in a data record
or message is valid. The application passes the code, the value domain, and the codincg
scheme to the terminology service. The service returns TRUE if the code is valid for
the field; FALSE otherwise.

Example: An application has just received an HL7 message and needs to determine
whether it is valid and can be processed further. As the application iterates over the
various coded entries within the message, querying the terminology service about the
validity of the entries, it encounters the field in which the patient gender is encoded. It
passes the concept representing the gender domain “CX0001234,” the code itself “M,”
and the identifier of the HL7 Version 2.3 Table 001 coding scheme to the terminology
service. The service returns TRUE indicating that “M” is a valid code for the specified
domain in the coding system.

Pick List Generation

The application can present a formatted, ordered list of possible selections for an input
field. The specific user, facility, or some other factor may customize this list. The
specific list to be returned may depend upon the application requesting it, the specific
user, and other context-specific information. The list may also need to specify which of
the selections may be considered as default selections.

LQS V1.0 Use Scenarios June 2000 1-5

1-6

1.2.2 Information Display

1.2.2.1

It is necessary to be able to translate a code from a coding scheme into the appropriate
form for presentation to an external viewer. This translation may have as its target a
printout, a video display screen, a sound generation device, or some other medium.
The display will depend upon the application doing the presentation, the target medium
(screen, hard copy, etc.), the language spoken by the viewing user, and, possibly, the
user’s identity and classification.

Code Translation

An application wishes to represent the meaning of a specific code from a specific
coding scheme to an end-user. The terminology service is given a code and the
observer’s preferred language, and, possibly, additional context describing how the
concept is to be presented. It returns the most appropriate presentation of the concept,
given the situation.

Example: An application may have a data record that contains the code “123" in the
laboratory test field. The application wishes to display a small (< 30 characters)
textual string representing that particular code to an English-speaking person. The
terminology service is given the code, its coding scheme, the code for the English
language, and an ordered list of contexts (e.g., 30-character string, heading,
abbreviation, textual name) defining an acceptable presentation. The services return the
most reasonable match, if any.

1.2.3 Mediation

1.2.3.1

One of the “holy grails” of terminology services is the ability to translate coded
information from one database and/or coding system into another, independently
developed, database and coding system. While the terminology services will not
provide this capability by any stretch of the imagination, they should provide some
building blocks upon which more complete information translation may be based. The
use cases below describe some of these building blocks.

Code Transformation

Perhaps the simplest situation in mediation is that of two different systems using
different coding schemes to represent identical information. While there may not
necessarily be a 100% mapping in either direction, it is possible to supply the
terminology service with a code, a source coding scheme, a target coding scheme, and,
optionally, a specific value domain and have the senvaresformthe code from the

source code into the target code.

Example: An external system may encode all of the coded values in a message (e.g.,
gender, location, laboratory test identifier, etc.) as positive integers, with each domain
beginning at the number 1. In this case, each of the specific value domains represents a
separate coding scheme. For example, the gender coding scheme might represent
“Male” with a 1, “Female” with a 2, etc. Similarly, the system might encode laboratory
tests with “Serum Creatinine” as 1, “Serum Chloride” as 2, etc. In this situation, it is

Lexicon Query Service V1.0 June 2000

1

possible to construct a cross-scheme map which transforms the gender coding scheme
above into the HL7 Table 1 coding scheme and transforms the laboratory test scheme
above into the LOINC coding scheme.

1.2.3.2 Code Mapping

It is not uncommon for two different systems to use different coding schemes to
represensimilar information. In this situation, there may not be exact alignment
between the codes. Also, a code within one system may represent more specific
information than a code in another system. In certain situations, the user may
determine that this imprecision is acceptable and may use the terminology service to
determine the closest match for a given code between systems.

1.2.3.3 Structural Composition/Decomposition

Some terminology systems provide the capability to represent a concept as a set of
related concepts within the same coding scheme. This provides the rudiments of the
capability to change the structural representation of a concept between databases. A
simple example of this situation might appear in the representation of a urine drug
screen. One system may treat this test as a set of {drug, result} tuples, with the domain
of drug being {Amphetamines, Cannabinoids, Cocaine, Methamphetimines} and the
domain of resulbeing {pos, neg}. A second system might treat the test as a set of
domains {AmphetimineUrineScreen, CannabinoidsUrineScreen, CocaineUrineScreen},
with each domain having a {pos, neg} value set. A third system might treat the same
test as a set of {drug}, where the presence of a drug in the list implies a positive result.

There are countless variations on this theme, and while a terminology service may
assist in these transformations, the ability to do this sort of transformation is still well
outside the scope of this specification.

See Section 1.2.6, “Composite Concept Manipulation,” on page 1-9 scenario for more
detail.

1.2.3.4 Field Validation

Verify that a specific presentation is a valid value for a specific domain within a
domain usage context. See Section 1.2.1.7, “Field Validation,” on page 1-5 for more
detail.

1.2.4 Indexing and Inference

The presence of coded information within a computerized system provides an
opportunity to augment the system with “decision support” software. This class of
software examines information entering the system, looking for situations which may
warrant additional action, such as posting alerts, generating additional data. One
example of such a system is a drug/drug interaction monitor that examines all
incoming drug orders looking for potential adverse reactions with current patient
medications.

LQS V1.0 Use Scenarios June 2000 1-7

1-8

1.24.1

1.2.4.2

This type of software can use terminology services to make “inferences” about
information in incoming records and to assist in locating information in existing
databases.These cases are described below.

Relationship Inquiry

Decision support programs are often written in terms of classes of concepts and they
must be able to inquire about associations between various classes. For example, a
particular module may be written to scan new drug orders looking for drugs that
belong to the class or classes recorded in patient allergy records. A patient allergy
record might contain the fact that the patient is allergic to Penicillin. The decision
support program would supply the code for an ordered drug (e.g., Pen-VK) to the
terminology service, along with its allergy class (e.g., Penicillin) and ask the service
whether a “hasSubtypes” relationship exists between these entities. If the response is
TRUE, the application would then take appropriate action to warn the patient or
pharmacist of the potential problem.

Data Element Location

A decision support application might need to locate existing information in a database
based on some classification scheme. If we extend the example above, a second
decision support program might be written to examine all patient allergy entries. If a
record is entered showing the patient to be allergic to Penicillin, the decision support
program might wish to scan the database looking for all references to orders for
Penicillin.

1.2.5 Browsing

1.25.1

1.25.2

Service Browsing

A user wishes to determine which coding schemes, value domains, and versions of
each are supported by the terminology service. For each version of each coding
scheme, the user wishes to determine which languages, sources, usage contexts,
presentation formats, and other coded data properties are supported by that version.
The user also wishes to determine what systemizations are supported by that version of
the coding scheme, and what association types are represented within the
systemizations. For each value domain version, the user wishes to determine which
coding schemes have concepts in that value domain.

Concept Attribute Discovery

A user wishes to discover all of the concept codes supported by a specific coding
scheme, and by a particular version of that coding scheme. Within the context of a
coding scheme version, the user wishes to discover all presentations, definitions,
comments, and instructions associated with a code.

Lexicon Query Service V1.0 June 2000

1

For a given systemization, the user wishes to determine in which association types a
concept code participates, the role that it plays in each, and what entities are associatec
with the concept.

1.2.5.3 Association Discovery

In a given systemization, the user wishes to list all of the association types that
participate in the systemization and the behavioral characteristics of each.

1.2.6 Composite Concept Manipulation

1.2.6.1 Concept Attributes Retrieval

The user has selected a specific concept from a coding scheme and needs to know
which additional attributes and values may be applied to the concept. The terminology
service is given the concept and the coding scheme. It returns a set of attribute-value
pairs that further define the characteristics of the concept.

1.2.6.2 Composition

The user has identified a composite concept consisting of two or more concepts and a
hierarchy of relationships between them (e.g., <inflammation> hasLocation <liver>),
and wishes to translate this concept into a single, closely matching code (e.g.,
<hepatitis>). The terminology service is passed the set of hierarchical relationships
and, ideally, returns a single node - a code that represents the simplified translation of
the passed concept.

1.2.6.3 Decomposition

The user has a single, complex concept that he wishes to see represented in terms of :
set of relationships among the concepts that form the underlying composition. The
composite concept, along with the context of the desired translation, is passed into the
terminology services and a hierarchical structure representing the group of concepts is
returned.

1.2.6.4 Normalization

The user wishes to see a composite concept represented in the simplest canonical form
The terminology service is passed the set of hierarchical relationships and concepts,
and returns another hierarchy that represents the canonical form of the set of concepts

1.3 Reference Model

This section describes the reference model for the terminology services. The purpose
of this model is to define the various entities that appear in the IDL service definition.
It is notintended to describe how a terminology system should be structured or built.

LQS V1.0 Reference Model June 2000 1-9

1-10

It is highly unlikely that any single terminology system implementation will contain all
of the elements described in the following sections. The model represents a “common
union” of the aspects of several different systems. Much of the functionality is optional
and should be implemented only if it makes sense for the particular terminology
system. It is the intention of this model to provide a model that describes a broad
spectrum, from a simple system consisting of a list of codes and phrases to a
significant portion of a sophisticated “third generation” terminology sy§tem.

Be aware that there will not always be an obvious, direct mapping between the
reference model and the IDL itself. This is because the reference model attempts to
describewhatis being done in the terminology service, where the IDL deschibest

is accomplished. Many factors, including naming conventions, compiler restrictions,
performance considerations, pre-established styles, etc., may cause the IDL description
of the interface to look substantially different from the corresponding entity described
in the model.

Note —Appendix C contains a brief description of the graphic notation encountered in
the following sections.

Lexicon Query Service V1.0 June 2000

1.4 Model Overview

TerminologyServicel
(from TerminologySeryices)

represents

consjsts of
1.* o
CodingScheme has extension in ValueDomainVersiol
(from CodingScher 3:*; o from ValueDomains)
4 10- .

has version/is version of

1%
CodingSchemeVersio

defiges/belongs to

ValueDomainExtensior)
from ValueDomains)

0.

o/contains

1%
ConceptCode

describes/described il

from CodingSchemes)

from CodingTerms)

D.* 1. i * *
T Instructions.. has source r?..l Source 0.
1y 1. rom Concep{Qgseriptions) from MetaConcepts)
*
— as instructions
ConceptDescriptior Comment
(from ConceptDescriptiares) 75 anmnotated by rom Concep
F 0. 0.1
is defined * - "
defin Definition 0. is written in language S Language
(from ConceptDescriptions) from MetaConcepts)
defineg/defined in ion for
b1
defined/is defined in PresentationUsage has sourge
rom ConceptDescriptions
0.% D\
- 0.* UsageContext
Systemization lies i Rt J
(from Systemizations) 0.* applies in contet{from MetaConcepts) < —
. - ourcelnfo
T LinguisticGroup ¢ontains / groupedin presentation

contains
0.*

AssociationInstanc
rom Systemizations)

(from ConceptDescr'HotE?ns)

1.(ffom ConceptDescriptioral*

BinaryPresentatior]

TextualPresentation
(from PresentationTyp#®)m PresentationTypeis)

has language

has language

(from Concept

TargetEntity
from Systemizations)

TargetElemen

SetOfTargetElem enj

Figure

LQS V1.0

1-1 Model Overview

Model Overview

June 2000

Descriptions)

1-11

Figure 1-1 presents a general overview of the entities described in the sections that
follow. It is included to provide a reference point when viewing individual diagram
sections below.

1.5 Data Type Definitions

1.5.1 Basic Types

The classes, as shown in Figure 1-2, represent the data type extensions that are used i
this model. These extensions are in addition to the basic data types described in the
OMG'’s Object Management Architecture (OMA). [8]

Blob Cardinality

gvalue : sequence<octet> gminimum : integer
gmaximum : IntOrUnknown

IntIString
gcharSet : CharacterSet Weight
gvalue : string gvalue : float
Trinary

gvalue : enum{FALSE, TRUE, UNKNOWN}

Figure 1-2 Basic Types

1.5.1.1 Blob

An opaque stream of bytes which is unaltered by the service or transport. The blob
data type is used to carry non-textual presentations and machine-readable instructions.
A typical use of this data type would be to return a sound bite of a spoken word.

1.5.1.2 IntlString

A string which is intended to be presented using the supplied character set. IntIStrings
occur in places where the language of the string is not necessarily that of the user of
the system, and automatic conversion of the string to the character set of the viewer’s
native language would not be useful or desirable.

1.5.1.3 Trinary

A type which represents three possible values. This type is returned by operations
which must be able to indicate that there is insufficient information to answer a
guestion as well as the more traditional TRUE and FALSE results.

1-12 Lexicon Query Service V1.0 June 2000

1.51.4

1.5.1.5

Weight

A relative measure of the “closeness” of a match. The range of the value of a weight is
0.0« value< 1.0. Weights have no absolute meaning, and may only be compared with
other weights that are returned as a sequence from the same method invocation.

Cardinality

An entity representing minimum and maximum possible occurrences of an element in
an association. The minimum value must be a non-negative integer and maximum
value must be either a positive integer or a special token representing “unknown.”

1.5.2 Naming Authority

QualifiedName

authority_id ame 1
1
Authorityld LocalName
gvalue : string
authority : .
naming_entity
1 1
RegistrationAuthority NamingEntity
gvalue : enum {Other, DCE, IR, DNS, ISOF gvalue : string

1.5.2.1

Figure 1-3 Naming Authority

Naming authorities provide a means of giving globally unique names to name spaces
and hence the names within those name spaces.

RegistrationAuthority

Identifies the root of the name space authority. An entity (e.g., person or organization)
may be registered with multiple different roots (RegistrationAuthorities) and be able to
assign names and other name spaces within each root. These may be used for the sam
or for different needs. For this reason there is no guarantee of any equality in the
different name spaces managed by an entity. There are currently no means available to
determine whether a given authority in an ISO hierarchy is the same authority as one
specified in a DNS hierarchy.

LQS V1.0 Data Type Definitions June 2000 1-13

1-14

Other

This form of a naming authority should be used sparingly, and only in experimental or
localized situations. It is the responsibility of the implementing institution to guarantee
uniqueness within the names themselves, and there is no uniqueness guarantee outsid
of the source institution. Services that define default naming authorities (and possibly
also names) may also use the Other root to forego long Authoritylds. In this case, the
specification of the service must name Authoritylds that may be expected with the
Other root and still maintain name space integrity.

ISO

International Standards Organization. [9] The ISO specifies a registration hierarchy,
identified by a series of named/numbered nodes. Many of the coding schemes used in
the medical environment are or can be registered within the ISO naming tree. The ISO
root form is one of the recommended forms when the naming authority is
internationally recognized, such as international coding schemes, or when the authority
is to be used across two or more different enterprises. ISO provides for the recording
of a responsible person and address for each node in the authority hierarchy.

DNS

Domain Name Services. [10] Internet domains are recorded with a central, global
registration authority. Subhierarchies within the domains are then maintained locally
by the registered organization or person. The DNS form is recommended as an
alternative to the ISO naming tree when the specific naming authority needs identity
and uniqueness, but is not in an ISO registration. By using this common characteristic
of many organizations it gives the ability to create globally unique name spaces and
names without the need to register as an ISO name authority. It is up to the
organization itself to maintain the integrity of the name space(s) (e.g., not reusing
names or name spaces).

IR

The OMG Interface Repository. [11] The CORBA Architecture specifies a means of
uniquely identifying entities within the interface repository, via the use of a
Repositoryld CORBA repository id’s may be in either the OMG IDL format, the DCE
UUID format, or the LOCAL format. Within this specification, the “IR” root refers

only to the IDL format. The DCE format may be represented within the DCE root and
the Local format within the Other root. The IDL authority may prove very useful when
registering CORBA/IDL-specific objects such as value sets, interface specifications,
etc. It should be noted that OMG does not currently manage the repository name space
in any rigorous fashion, and it is quite possible that two different developers may arrive
at exactly the same repository id for entirely different entities. For this reason some
people give the repository id a prefix that consists of their reverse DNS that is ‘/’
separated instead of ‘. separated. This root type may be very useful when the names
within the name space are defined in IDL. For example it could be the Repositoryld for
an enumerated type or a module that has constant integers or strings defined for each
name within the name space.

Lexicon Query Service V1.0 June 2000

1.5.2.2

DCE

The Distributed Computing Environment. [12] While they don’t actually register
coding schemes or other entities, they do provide a means of generating a globally
unique 128-hit identifier, called a Universally Unique Id (UUID). This UUID may be
used to guarantee the uniqueness of a name space in situations where it is not
necessary for the identity of the authority to be known outside of the specific
implementation.

NamingEntity

Identifies a specific name in the syntax and format specified by the corresponding
registration authority. The various naming authorities tend to provide a fair amount of
leeway as far as the actual format of the registered names. As there may be situations
where the full semantics of a specific authority’s name comparison will not be
available to an application, we have chosen to select a specific subset of the syntax of
each representation. The intention is to be able to determine whether two registered
entities are identical or not solely through the use of string comparison. The specific
name formats are described below:

Other

An arbitrary string, syntax undefined locally by a specific service specification and/or
by particular implementations and installations. The colon “:” character is illegal to use
as it is reserved as a separator of components in the stringified vergiathofityld
andUniqueName .

ISO

The nameshould be represented using ti@ameFormof the ObjectldentifierValueas
specified in ISO/IEC Recommendation 8824-1.10 Each name component should be
separated by a single space.

Example: “joint-iso-ccitt specification characterString”

DNS

The domain name and path in the form mandated in RFC 1034.12 The path name is
represented as a dot separated tree which traverses up the hierarchy. Since DNS name
are not case-sensitive, only lower-case letters should be used so that simple string
comparisons can determine equality. However, it is okay to use case-insensitive
comparisons as well.

Example: “pidsserv.slc.mmm.com”

IR

The OMG Repositoryld format specified in the CORBA Architecture V2.0 manual, in
the form: “<node>/<node>/O/<node>". The “IDL:” prefix and the version number
suffix should NOT be used in this format.

Example: “CosNaming/NamingContext/NotFoundReason”

LQS V1.0 Data Type Definitions June 2000 1-15

1-16

1.5.2.3

DCE

The UUID in the external form <nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn>, where

<n> represents one of the digits 0-9 and the characters A-F. The alpha characters
should all be upper case.

Example: 6132A880-9A34-1182-A20A-AF30CF7A0000”

Authorityld, AuthorityldStr

The combination of a Registration Authority and Naming Entity which identifies a
specific naming authority. In situations where a given naming entity may have more
than one naming authority, it should be agreed upon in advance which of the specific
names for the entity is to be used. This specification makes no guarantees about the
ability to recognize, for example, that an authority in the 1SO structure is identical to
an authority within the OMG structure.

The string versionAuthorityldStr) is useful for situations where unique names are
required in a string format. The string is created as <stringified
RegistrationAuthority >:<NamingEntity >. The stringified

RegistrationAuthority is given by the following:

Other ->

ISO -> “1SO”
DNS -> “DNS”
IR -> “IDL”
DCE -> “DCE”

The names are short to make string comparisons quick.

1.5.2.4 LocalName, UnigueName, UniqueNameStr

A local name is a name within (relative to) a namespace. It is simply a string
representation.

A UniqueName is a globally unique name for an entity by the fact that it carries the
namingAuthorityld of the name space and thecalName within that name space.

The UniqgueNameStr is a stringifiedUnigueName . The format of the string is
<stringifiedRegistrationAuthority >:<NamingEntity >:<LocalName >. Notice that
even though the colon character “:” cannot be usedNfimingEntity , it can be used
for the LocalName .

Lexicon Query Service V1.0 June 2000

1.5.3 Basic ldentifiers

LinguisticGroupld Systemizationld
gvalue : string gvalue : string
Presentationid Versionld
gvalue : string gvalue : string
RoleName Characteristic
gvalue : string gvalue : any

Figure 1-4 Basic Identifiers

1.5.3.1 LinguisticGroupld

The unique identifier of linguistic group within the context of a coding scheme version.

1.5.3.2 Presentationld

The unique identifier of presentation within the context of a coding scheme version.

1.5.3.3 RoleName

A string which serves as a synonym for either the “source” or the “target” portion of
the ordered pair of types in an association. As an example, the hasComponents
association has thRoleName “composite” as a synonym for the source type and
“components” as a synonym for the corresponding target type.

1.5.3.4 Systemizationid
The name of a specific categorization or organization of concepts within a version of a

coding scheme. A systemization id is unique within the context of a coding scheme
version.

1.5.3.5 Versionld

The unique identifier of a specific version of a coding scheme or value domain. There
is no implied ordering on version identifiers. A version identifier may be composed of
both letters and digits, and must be unique within the context of the coding scheme or

LQS V1.0 Data Type Definitions June 2000 1-17

value domainVersionld has one distinguished vallEFAULT which represents the
“production” or the latest validated version of the specific entity that is ready for use.
The DEFAULT version of an entity need not be the most recent.

1.5.3.6 Characteristic

A characteristic represents a non-coded “property” or “attribute” which is associated
with a concept code. A characteristic may be of any type other than a concept code.

1.5.4 Terminology Identifiers

QualifiedName
from NamingAuthorities

locak.name

LocalName
Authorityld from NamingAuthorities
(from NamingAuthorities

CodingSchemeld ValueDomainld QualifiedCode ConceptCode

Figure 1-5 Terminology Identifiers

1.5.4.1 CodingSchemeld

A CodingSchemeld is a globally unique identifier of a specific coding scheme, a

coding scheme is a naming authority that manages a set of concept codes (local names
within its name space.

1-18 Lexicon Query Service V1.0 June 2000

1.5.4.2 ValueDomainld

A ValueDomainld is a globally unique identifier of a specific value domain. The
identifier consists of a naming authority and the actual domain name. The naming
authority provides a unique name space, while the domain name identifies a given field
in a message, a column in a database, an entry field on a screen or some other data
value which may contain coded information.

1.5.4.3 QualifiedCode

A globally unique concept code formed by combining the coding scheme id and the
local concept code within that coding scheme.

1.5.4.4 ConceptCode

An arbitrary string that identifies a unique entity within a given coding scheme. The

coding scheme forms the naming authority and the concept codes is unique within that
space.

1.5.5 Meta Concepts

QualifiedCode
from CodingTerms)

i

- Languageld
Sourceld LexicalTypeld UsageContextld

PresentationFormatld —
CharacterSetld Associationld

AssociationQualifierld

SyntacticTypeld

Figure 1-6 represents the coded entities that are used to access the terminology
services. The semantic details and valid codes for each of these different entities are
described in more detail in Section 3.2, “Meta-Terminology,” on page 3-3.

SourceTermUsageld

Figure 1-6 Meta Concepts

LQS V1.0 Data Type Definitions June 2000 1-19

1-20

1.5.5.1 Sourceld

A code that identifies a book, publication, person, or other citation. It is used to name
the source from which definitions, presentations and other information within a coding
scheme are drawn.

1.5.5.2 CharacterSetid

A code that identifies an international character set. It is used to specify how a given
definition, presentation is to be printed or displayed.

1.5.5.3 SourceTermUsageld

A code that identifies a specific way that a string is used within a source. Example
source term types include “Adjective,” “Disease Name,” “Language Qualifier.”

1.5.5.4 LexicalTypeld

The code for type which may be assigned to a presentation usage. Lexical types are
such things as “abbreviation,” “Acronym,” “Eponym,” “Trade name.”

1.5.5.5 PresentationFormatld

A code that identifies the format that a given presentation is in. Example formats could
include “plain text,” “html,” “.wav,” “word 7.0 document.”

1.5.5.6 Languageld

A code that identifies a spoken or written language. Example languages include
“English,” “French.”

1.5.5.7 Associationld

A code that identifies an association type. Association types are described in more
detail in Section 3.2.1, “Association,” on page 3-3.

1.5.5.8 SyntacticTypeld

A code which identifies a type of variation that a presentation takes from the preferred
form within a specific linguistic group. Example syntactic types include “spelling
variant,” “singular,” “plural,” and “word order.”

1.5.5.9 UsageContextld

A code which identifies a specific context in which a presentation associated with a
given context code is to be used. Example usage contexts could be such things as
“column heading,” “ADT application,” “long textual description.”

Lexicon Query Service V1.0 June 2000

1.5.5.10 AssociationQualifierld

A code which qualifies or provides further information about a specific association
instance.

1.5.6 Composite Types

PickListEntry ValidationResult
(from ValueDomains) c}res_ul_t: boolean o 3
gconcept : QualifiedCode gvalidityLevel : AssociationQualifierld
gpickText : IntlString

gisDefault : boolean

AssociatableElement
WeightedResult
gconcept : ConceptCode
gmatchText : IntIString
gweight : Weight
0.1 0.1

QualifiedCode Characteristic

Figure 1-7 Composite Types

Figure 1-7 represents several miscellaneous composite types that are used elsewhere i
this specification.

1.5.6.1 PickListEntry

This entity is used to pass a qualified concept code along with an appropriate textual
representation. ARickListEntry also contains a flag to indicate whether it should be
considered “pre-picked” by default. TckListEntry is used as a return type in
Section 1.6.2, “Value Domains,” on page 1-40.

1.5.6.2 ValidationResult

The result returned by théalidateConceptExpressianethod in theSystemization
class. Validation result containsBmolean result value plus a slot for an additional
qualifier on the result

LQS V1.0 Data Type Definitions June 2000 1-21

1.5.6.3 AssociatableElement

A choice of either a qualified code or a characteristic. The target of an association may
either be a concept code or a non-coded characteristic which represents a property or
attribute of the concept code being described.

1.5.6.4 WeightedResult

An entry in a weighted result list from a match function. A weighted result includes the
matching concept code, the string (if any) which resulted in the match and the relative
weight assigned to the match.

1.5.7 Collections

This model uses two types of collectiossetsandsequencesThe model uses the name
of the class to distinguish these types. Collections of the famiity>Setrepresent an
unordered set of entities of tygentity>. Set collections do not have duplicates. As an
example, the typ€onceptCodeSeés returned from the
CodingScheme.GetAllConceptsafethod. It contains an unordered list of all the unique
concept codes that are managed by the coding scheme.

Collections of the fornxentity>Sequenceepresent an ordered collection of entities of
type <entity>. A sequence collection may contain duplicates when appropriate. An
example sequence would BedingSchemeVersionSequenabich is returned from the
CodingSchem.GetAllCodingSchemeVersiong@ration, and contains a list of all the
supported versions of the coding scheme in reverse chronological order.

Some of the collections defined in this document may well be extremely large. It is
anticipated that implementations of the abstract model will need to add additional
semantics to the collections to allow for streaming style and buffered, clustered
retrieval.

1-22 Lexicon Query Service V1.0 June 2000

1.6 Terminology Service

TerminologyService

. %GetAllCodingSchemes () : CodingSchemeSet

. %GetCodingScheme (codingSchemeld : CodingSchemeld) : CodingSchem
%GetNativeCodingScheme () : CodingScheme

. %GetAllValueDomains () : ValueDomainSet

. 8GetValueDomain (valueDomainld : ValueDomainld) : ValueDomain
%¥GetValueDomainsForConcept (concept : QualifiedCode) : ValueDomainSet

D

1
represents represents
1 0.*
CodingScheme ValueDomain
(from CodingSchemegs) (from ValueDomains)

Figure 1-8 Terminology Service

A terminology service represents one or more partial or complete coding schemes. In
addition it may represent a set of value domains which identify groups of concepts
within and across coding schemes.

The terminology service class can return a list of all the supported coding schemes
(GetAllCodingSchemgsreturn a named coding schent&e(CodingSchemeor the

coding scheme which has been designated the “native” coding scheme by the service
provider, if any GetNativeCodingScheme

The terminology service can also list all of the value domains that are supported by the
service GetAllValueDomainsor access a specific value domain by name
(GetValueDomaih In addition, it can return a list of all the value domains which
contain a specified concept codeetValueDomainsForConcept

LQS V1.0 Terminology Service June 2000 1-23

1-24

1.6.1 Coding Schemes

1.6.1.1 Coding Scheme

CodingScheme

gcodingSchemeld : CodingSchemeld

. 8GetCodingSchemeVersion (versionld : Versionld) : CodingSchemeVersion
. 8GetDefaultCodingSchemeVersion () : CodingSchemeVersion

. %GetAllVersions () : CodingSchemeVersionSequence

. %GetLastValidVersion (conceptCode : ConceptCode) : CodingSchemeVersion

QualifiedCode
from CodingTerms)

1.*

defings/belongs to

ConceptCode

describes/described in

has version/is version of

1.*

from CodingTer ‘sl .

ConceptDescription
(from ConceptDescriptions)

Figure 1-9 Coding Scheme

CodingSchemeVersion

A coding scheme defines and/or describes a set of one or more concept codes. These
codes are unique within the namespace of the coding scheme, and are globally unique
when coupled with the nameqgdingScheme)dof the coding scheme itself. The
QualifiedCodeclass represents this globally unigue combination of a concept code and
a coding scheme. While not explicitly shown in this model, a qualified code is actually

a subtype of ualifiedNamefrom the naming authority module.

A coding scheme may consist of more than one revisiorexwion Each version
represents a consistent, reproducible state of the coding scheme. Because new concef
codes may be added to a coding scheme and existing concept codes may be “retired,”

Lexicon Query Service V1.0

June 2000

1

not all concept codes in a coding scheme may be described in any single coding
scheme version. A vendor implementation may not maintain multiple versions of a
coding scheme.

Earlier versions may be removed from the service at the vendor’s discretion. Itis up to
the vendor to decide whether concept codes that are not described in any available
coding scheme version are to be retained in the coding scheme itself.

A code can have only one “meaning” within a given coding sche®ee version of a
coding scheme cannot use concept code “123” to represent theemlehile another
version uses the same code to represent the gmden.Within this constraint,

definitions, comments, external representations may vary for the same concept code
across the versions of the coding scheme. The definitions, comments for a concept
code in a coding scheme version are represented bg§dheeptDescriptiortiass,

which will be described in detail later in this section.

The CodingScheme class provides a me&wetAllVersion} of listing all the versions

that are available in a terminology service implementation. This list is provided in
reverse chronological order with the most recent version being returned first. The
CodingSchemelass also allows direct access to a specific named version
(GetCodingSchemeVersiprn any coding scheme, exactly one of the versions must be
identified as the “default” version. This version does not have to be the latest version
of the scheme. It designates the version that is preferred for general use at the given
point in time. TheGetDefaultVersiormethod provides direct access to the default
version.

The class also provides a means of locating the chronologically latest version, if any, in
which a coded concept is considered valid. The intent of this method is to allow a
client to locate a coding scheme version that contains presentations, etc., even for
concept codes that have been rendered obsolete.

1.Coding schemes like ICD-9 fall into a gray area. If we ignore the NOC (not otherwise
classified) issue of the 20,000 some odd codes in ICD-9, a few (10-20) may change in
meaning between revisions. Is ICD-9 1989 a different coding scheme than ICD-9 19977 ltis
recommended that terminology service vendors take the pragmatic view in situations like
this and provide the most reasonable solution for the circumstances. In this case it would
probably be representing revisions as versions.

LQS V1.0 Terminology Service June 2000 1-25

1.6.1.2 Coding Scheme Version

CodingSchemeVersion

gversion : Versionld
gisDefaultVersion : boolean
gisCompleteScheme : boolean

&GetParentCodingScheme () : CodingScheme 0.# LinguisticGroup
#_istSupportedLanguages () : LanguageldSet (from ConceptDescriptjons)
% istSchemeSources () : SourceldSet 1 . -

% istSupportedUsages () : UsageContextldSeq W’: o1
%_istSupportedPresentationFormats () : PresentationFormatidSet o
#ListAllSyntacticTypes () : SyntacticTypeldSet

%L istAllLexicalTypes () : LexicalTypeldSet
SListSourceTermTypes () : SourceTermTypeldSet
%GetAllConcepts () : ConceptCodeSet contains /grouped in
%sValidConceptCode (conceptCode : ConceptCode) : boolean

%GetConceptDescription (concept : ConceptCode) : ConceptDescription

%GetConceptsByText (text : IntlString, language : Languageld) : ConceptCodeSet

®MatchConceptsByString (matchString : IntlString, language : Languageld) : WeightedResultSequence
%MatchConceptsByKeywords (keywords : IntIStringSet, language : Languageld) : WeightedResultSequence
#GetAllLinguisticGroups () : LinguisticGroupSet

%GetLinguisticGroup (linguisticGroupld : LinguisticGroupld) : LinguisticGroup

ines/defined in

#GetPresentation (presentationid : Presentationid) : Presentation 0. Presentation
%GetAllSystemizations () : SystemizationSet --(rom ConceptDescriptjons)
%GetSystemization (systemizationld : Systemizationld) : Systemization P P
&GetDefaultSystemization () : Systemization 1x
T
0..* presented as/presentation for
describes/gescribed in ConceptDescription
defines/tlefined in {from ConceptDescript[ons
fh.*
1
0.4 S
ConceptCode

Systemization

- from CodingTerms
(from Systemizations)

Figure 1-10 Coding Scheme Version

A coding scheme version describes or defines one or more of the concept codes
contained in the coding scheme. It associates definitions, comments, instructions, and
various external representations with a concept code CbhineeptDescriptiortlass
represents a concept code as it appears in a given coding scheme version. The coding
scheme version class also may provide one or more orderings, classifications, or
categorizations between some or all of the concept codes within the version. This is
represented by th8ystemizatiortlass.

Some coding schemes maintain a separate list of all the unique representations that car
be associated with concept codes. This list allows cross-referencing and access to
additional syntactic and linguistic information. TReesentationclass represents

members of this list. Some coding schemes may also group syntactically similar
presentations together into uniquely identified “linguistic groups.”

EachCodingSchemeVersiatiass has its version identifier as an attribute. This
identifier uniquely names the version within the context of the parent coding scheme.
With the exception of thesDefaultVersiorflag, the contents and behavior of a named
coding scheme version must be consistent and reproducible over time.

1-26 Lexicon Query Service V1.0 June 2000

The CodingSchemeVersiatlass contains a flaisDefaultVersion)that indicates

whether it is considered to be the default version of the coding scetingt point in

time. The class also contains a second fiagompleteSchem#)at is used to indicate
whether the specific coding scheme version contains the entire contents of the given
coding scheme or some subset thereof.

CodingSchemeVersianethods can be divided into four general groups of methods.

1. The first group consists of a set of methods with all the discovery of the
characteristics of the coding scher@etParentCodingSchenadlows backward
traversal to the coding scheme itself. The metHdgtSupportedLanguages,
ListSchemeSources, ListSupportedUsages, ListSupportedPresentationFormats,
ListAllSyntacticTypes, ListAllLexicalTypasad ListSourceTermUsaggwovide the
ability to list all of the languages, sources, usage contexts, presentation formats,
syntactic types, lexical types, and source term types which are partially or fully
supported by this version of the coding scheme.

2. The second group provides several ways to access the concept codes that are
described in the coding scheme version. They allow the user to list all of the
concept codes described in the versiGetAllConcepts get a detailed description
of a given code in the versioGétConceptDescription and match all of the
concepts which have specific tex@€tConceptsByTexttext patterns
(MatchConceptsByStringr keywords associated with them
(MatchConceptsByKeywordsThere is also a method to determine whether a given
code is included in this version of the coding schels¥a(idConceptCode

3. The third group provides access to all linguistic groups defined within the coding
scheme GetAllLinguisticGroup}y a specific named linguistic group
(GetLinguisticGroup, or presentationGetPresentation

4. The fourth group provides the ability to access all systemizations
(GetAllSystemizatiofsa specific named systemizatidBgtSystemizatignor the
default systemization@etDefaultSystemizatipnif any, associated with the specific
coding scheme version.

LQS V1.0 Terminology Service June 2000 1-27

1-28

1.6.1.3 ConceptDescription — Part 1

ConceptCode | 1.* describes/described in 0.*| CodingSchemeVersion

from Codin ?Termsp (from CodingSchemes)

ConceptDescription

#GetCodingSchemeVersion () : CodingSchemeVersion
#GetConceptCode () : ConceptCode
#GetDefinitions (preferredOnly : boolean, language : Languageld) : DefinitionSet
#GetComments (language : Languageld) : CommentSet
#Getinstructions (language : Languageld) : InstructionSet
etAllPresentations (language : Languageld) : PresentationUsageSet
#GetPreferredPresentation (language : Languageld, format : PresentationFormatld) : PresentationUsage
etPresentationForContext (language : Languageld, format : PresentationFormatld, contexts : UsageContextSequence) : PresentationUsage
#GetAllPresentationsForContext (language : Languageld, format : PresentationFormatld, contexts : UsageContextSeq, sources : SourceldSet) : PresentationUsage

1.*
1.*
is defineg'by
is annoftated by
0.*
- 0.7 -
Definition B Comment Instructions
4text : IntlString ftext : IntString 4text : IntlString
gpreferred : boolean gformalRules : Blob
l‘GetLanguage () : Language
“GetLanguage () : Language #GetSource () : Source “GetLanguage () : Language
4GetSource () : Source 0.F 4GetSource () : Source

is written\n language s written iry/langu

[
o

41 Source
(from MetaConcepts) (from MetaConcepts)

Language G-

Figure 1-11 Concept Description 1

The description and definition of a concept code may include definitions, comments,
presentations, etc. The exact content of each of these entities may be dependent upon
the version of the coding scheme. While the “meaning” of a concept will not change
within a coding scheme, it is possible for the definitions, comments and other attributes
of the concept to undergo significant change over time. The &itgept Description
represents the description of a concept code within a specific coding scheme version.

A concept description may include several definitions, comments, and/or associated
use instructions. In this model a definition is constrained to be a textual, human
readable definition written in a specific language. At most one definition per language
may be marked as the preferred definition for the concept code. Definitions may be
attributed to a source.

Lexicon Query Service V1.0 June 2000

1

Comments are non-definitional annotations and are associated with a language.
Comments may be attributed to a source as well. An instruction may consist of textual
instructions, machine-readable instructions, or both. If the textual portion of an
instruction is present it may have a specific language. Instructions may also be
attributed to sources.

The ConceptDescriptioomethods allow access to the coding scheme version
(GetCodingSchemeVersipand concept code with which it is associated
(GetConceptCode The methods also provide a means to access definitions
(GetDefinition$, comments GetCommen)s and instructionsGetinstructiony. All

three access methods allow the provision of an optional language. If the language is
specified, only entities that are associated with the supplied language are returned.
Without a language, all entities are returned. The definition access method also
provides the ability to specify whether the preferred definition(s) (there is at most one
preferred definitiorper languagg should be returned or whether all definitions
associated with the concept code should be returned.

The rest of the methods associated vidtinceptDescriptiorare described below.

1.6.1.4 ConceptDescription — Part 2

ConceptDescription

“GetCodingSchemeVersion () : CodingSchemeVersion
l‘GetConceptCode () : ConceptCode
#GetDefinitions (preferredOnly : boolean, language : Languageld) : DefinitionSet
etComments (language : Languageld) : CommentSet
#Getinstructions (language : Languageld) : InstructionSet
etAllPresentations (language : Languageld) : PresentationUsageSet
#GetPreferredPresentation (language : Languageld, format : PresentationFormatld) : PresentationUsage
#GetPresentationForContext (language : Languageld, format : PresentationFormatld, contexts : UsageContextSequence) : PresentationUsage

#GetAllPresentationsForContext (language : Languageld, format : PresentationFormatid, contexts : UsageContextSeq, sources : SourceldSet) : PresentationUsage

PresentationUsage

1.x

0.*

applies in|context

0.*

UsageContext
from MetaConcepts)

presented as/ppresentation for

1.x

Presentation

0.*
has language
0.1

Language
from MetaConcepts)

Figure 1-12 Concept Description 2

A ConceptDescriptionis the description of a concept code within a version of a coding
scheme. This association includes one or more external representations that are used t
present the concept code to the outside world. Hiesentatiorclass above represents
these external representations. It is possible for a presentation to represent more than
one concept code in a version of a coding scheme PréngentationUsagelass

represents a unique association between a presentation and a concept code in a versio

LQS V1.0 Terminology Service June 2000 1-29

of a coding scheme. Coding schemes may associate a language with presentations.
Presentations for a given concept code may have additional usage information
associated with them, as represented bylikageContextlass.

In the above model, the presentatfaold” in the English language may be a
presentation for two or more different concept codes. One code could represent a
temperature and the second code represents an upper respiratory infection. While there
would be one presentation, there would be RwsentationUsagentities, one for each
presentation/concept association. TheageContexfor the upper respiratory infection

might indicate that the textold” is to be used only when presenting the term to non-
medical professionals. THaésageContexfor the temperature might indicate that the
presentation is to be used for laymen and physicians alike.

The ConceptDescriptiortlass allows the user to retrieve all presentations for a concept
code in a coding scheme versidgbefAllPresentations Thelanguageparameter allows

the selective retrieval of all concept code presentations for a specified language. The
class also has a method that allows the retrieval of the preferred presentation for
concept code in a given language and presentation foeaP(eferredPresentation

The ConceptDescriptiortlass can also be used to retrieve the “best” presentation
associated with a concept code given a set of usage contexts
(GetPresentationsForContgx(There is also a method that allows the user to retrieve all
possible presentations for a concept code to be retrieved given a usage context set
(GetAllPresentationsForContegxt

Details about presentations are described in the following section.

Presentations

ConceptDescription
PresentationUsage

gpreferrredForConcept : boolean 1>
gpreferredwithinLinguisticGroup : boolean
gsyntacticTypes : SyntacticTypeldSet
glexicalTypes : LexicalTypeldSet

presented as/ ion for
#GetPresentation () : Presentation
#GetConceptDescription () : ConceptDescription 1%
&GetUsageContexts () : UsageContextSet "
#GetSourcelnfos () : SourcelnfoSet

Presentation

o O gbresentationld : Presentationld LinguisticGroup
gbresentationFormat : PresentationFormatid dontains / grouped in

glinguisticGroupld : LingusticGroupld

applies in context

#GetAllConcepts () : ConceptCodeSet
#GetLanguage () : Language
®GetLinguisticGroup () : LinguisticGroup
hassource #GetPresentationUsages () : PresentationUsageSet
UsageContext 0.*
(from MetaConcepts) 0..*
gusageContextld : UsageContextld

*

1 ®GetAllPresentations () : PresentationSet
#Getlanguage () : Language

N
o

0.*

has lapguage

has language

Sourcelnfo 0.*
gisourceTermType : SourceTermUsageld 0.1

gsourceCode : QualifiedCode Source
rom MetaConcepts) Language
rom MetaConcepts)

Figure 1-13 Presentations

1

[

#GetSource () : Source

1-30 Lexicon Query Service V1.0 June 2000

1

A presentation is an external sign or symbol used to represent a concept code. Some
coding schemes provide a unique identifier for each unique presentation in a given
language. This identifier is represented by phesentationid

Each presentation has a format typeegentationFormatwhich identifies additional
external processing which may be necessary to properly display the presentation.
Possible format types inclugsain text, html, rtf, .wav sound bytetc.

The presentation class provides the ability to determine all of the concepts which use
the particular presentatio®€tAllConcepts to determine the language of the
presentation, if anyGetLanguaggeand to determine which linguistic group that the
concept belongs to, if anysetLinguisticGroup. The class also provides a means of
accessing all presentation usage entities associated wletPfesentationUsages).

Some coding schemes group syntactically similar presentations into linguistic groups.
This grouping is independent of how the presentations are used, and a presentation
belongs to at most one linguistic group. If present in the coding scheme, a linguistic
group will have an identifiedi6guisticGroupld which is unique within the coding
scheme. The linguistic group class allows the enumeration of all presentations
contained within the groupGetAllPresentations

The PresentationUsage class represents the association between a concept code and
presentation in a given version of a coding scheme. This class allows one presentation
to be identified as the preferred presentation for the conpegfefredForConcept If

the coding scheme includes linguistic groups, one presentation per linguistic group
may also be identified as the preferred presentation for that concept in that group
(preferredWithinLinguisticGroup If the coding scheme includes linguistic groups, the
syntacticTypesnay specify how non-preferred presentations vary from the preferred
presentation for the concept in the group. Possible types may ingluadé spelling,

word order variation,etc. The presentation usage may also be associated with one or
more lexical types. Typical lexical types includeronym, eponym, trade nametc.

A presentation associated with a concept code in a coding scheme may be appropriate
only in certain situations or contexts. TsageContextlass allows specific contexts,

in which a presentation applies. Typical usage contexts might inshui® column

heading, single-line text, presentation for physician, presentation for layst@nThe
GetUsageContextsiethod provides access to all of the applicable usage contexts.

A given presentation for a concept code may be attributed to one or more external
sources. Typical sources could include dictionaries, terminology manuals, thesauri, as
well as different coding schemes. The metl@etSourcelnfoprovides access to the
various source references. Each source reference may be attributed with the additional
information about how the presentation for the concept code is used in the specific
source gourceTermUsage A typical sourceTermUsagmight beadjective, finding

name, machine permutation, each attribution may also carry a codeyrceCodg

which is associated with that presentation in that source.

LQS V1.0 Terminology Service June 2000 1-31

1-32

Presentation Types

ConceptDescription
(from ConceptDescriptions)

1.7

presented as/presentation for

1 *
Presentation
from ConceptDescriptions)

gpresentationld : Presentationld
gpresentationFormat : PresentationFormatld

. 9GetAllConcepts()

. %GetLanguage()

$GetLexicalGroup()
TextualPresentation BinaryPresentation
gtext : IntIString gbinary : Blob

Figure 1-14 Presentation Types

This model shown in Figure 1-14 is restricted to presentations that represent linguistic
concepts. A presentation is expected to represent a word, phrase, or set of phrases in :
human language. Presentations may include such things as HyperText Markup
Language (HTML) documents, formatted text such as Rich Text Format (RTF)
documents, .wav files which represent spoken words. This model is not designed to
include non-textual pictures, icons, sounds beside spoken words.

Each presentation has a format tyg@egéentationFormatwhich identifies additional
external processing which may be necessary to properly display the presentation.
Possible format types inclugdain text, html, rtf, .wav sound byttc. A presentation
may be either straight text or may contain binary data.TElx@alPresentatiosubtype
represents textual data and BiearyPresentatiofiormat represents non-textual and/or
binary data. No association should be inferred betweesentationFormaand the
type of presentation. It is quite possible that a terminology system may repsksent
text as a BinaryPresentatioor some other type asTaxtualPresentation.

Lexicon Query Service V1.0 June 2000

1.6.1.5 Systemizations

Systemization

ssystemizationld : Systemizationld

#GetCodingSchemeVersion () : CodingSchemeVersion

#GetAllAssociations () : AssociationSet

#GetAllAssociationInstances () : AssociationinstanceSet

%AreEntitiesAssociated (source : ConceptCode, target : AssociatableElement, association : Associationld, directOnly :
#hoolean) : Trinary

#CouldAssociationBelnferred (source : ConceptCode, target : AssociatableElement, association : Associationld) : Trinary
#GetAssociatedTargetEntities (source : ConceptCode, association : Associationld, directOnly : boolean) : TargetEntitySet
#GetAssociatedSourceCodes (target : AssociatableElement, : Associationld, directOnly : boolean) : ConceptCodeSet
#GetAssociationsForSource (source : ConceptCode) : AssociationSet

#GetAssociationsForTarget (target : AssociatableElement) : AssociationSet

%V alidateConceptExpression (expression : ConceptExpression) : ValidationResult

#GetSimplestForm (expression : ConceptExpression) : ConceptExpression

%ExpandConcept (concept : QualifiedCode, associationQuialifiers : AssociationQualifierSet) : ConceptE xpression
#AreExpressionsEquivalent (expressiond : ConceptExpression, expression2 : ConceptExpression) : Trinary
#ExpressionDifference (expressionl : ConceptExpression, expression2 : conceptExpression) : ConceptExpression
#MinimalCommonSupertype (expressions : ConceptExpressionSet) : ConceptExpression

0.* 1
refergnces
/ coRtains
Association 1.*
from MetaConcepts)
gassociationld : Associatioinld
gbaseType : AssociationType 0.%
gsourceRole : Role
gtargetRole : Role o . AssociationInstance
atargetisSet : Bolean is instantiated as
-..-nOﬂCOdEdAHOV_/t‘d : Boo!eal? #GetAssociation () : Association
asourceCardinality : Cardinality | 1 0..*|. #GetSourceEntity () : ConceptCode
gtargetCardinality : Cardinality #GetTargetEntity () : TargetEntity
transitive : Trinal
@ - nnary 0.* 1
gsymmetric : Trinary sourgé
gginherited : Trinary target
gsourceTargetDisjoint : Trinary 1 1
ConceptCode TargetEntity
(from CodingTerms)
TargetElement SetOfTargetElements
gvalue : AssociatableElement, gvalue : TargetElementSequence
0"
qualified by
0.*

AssociationQualifier
from MetaConcepts)

Figure 1-15 Systemization

A systemization represents an ordering, classification, and/or categorization of a set of
concept codes. The purpose of a systemization is to further define and describe the
concept codes within a coding scheme, and possibly to define the relationship between
these concept codes and concept codes in other coding schemes.

The systemization class references one or more association types, which are then
instantiated as association instances between concept codes and other concept codes ¢
characteristics.

LQS V1.0 Terminology Service June 2000 1-33

1-34

The source of an association instance must be a concept code from the local coding
scheme. The target of an association depends upon the association type. It may either
be a single target element or a set of target elements. A single target element may
either be a qualified code or a characteridtic.

The systemizationlderves to uniquely identify the systemization within the coding
scheme version. Th8etCodingSchemeVersionethod serves to access the coding
scheme version in which the systemization is implemented.

GetAllAssociationseturns a list of all the association types that participate in the
systemization. See Section 3.2.1, “Association,” on page 3-3 for details on the
Associationattributes.

GetAllAssociationinstancegturns a (potentially large) list of all the associations that
are contained within the systemization.

The systemization class has several methods that are used to query specific
associations within the systemization. The first methkrdEntitiesAssociatedisks

whether an instance of the named association exists in which the supplied concept code
has the source role and the supplied associatable element has the target role. The
directOnlyflag indicates whether only direct associations are to be considered
(directOnly = TRUB or whether a transitive paths between the source and target are
also to be taken into accourdirectOnly = FALSE.

As an example, if the following associations were present in a systemization:
<Computer> hasComponents {<MotherBoard>, <Monitor>, <Keyboard>}
<MotherBoard> hasComponents { <ALU>, <Clock>, <Memory>}

the queryAreEntitiesRelated(<Computer>, <ALU>, hasComponents, TRW&ild

yield a result of FALSE, as there is no direct association involving <Computer> and
<ALU>. The queryAreEntitiesRelated(<Computer>, <ALU>, hasComponents, FALSE)
would yield TRUE, as theris an indirect path along theasComponentassociation
between <Computer> and <ALU>. Queries on non-transitive or intransitive
associations behave as if tigectOnlyflag is always TRUE. ThéreEntitiesRelated
guery may also return “unknown”, indicating that the systemization has insufficient
information to be able to determine whether a given association exists or not.

The AreEntitiesRelatedjuery only returns entities which are directly or indirectly
associated with the input entity using theplied associatiarSubtype associations are
not taken into account. For example:

<memory> hasSubtypes (<disk>, <ram>, <rom>)
<Computer> hasComponents {<MotherBoard>, <Monitor>, <Keyboard>}
<MotherBoard> hasComponents { <ALU>, <Clock>, <Memory>}

2.Note that the distinction between a qualified code and characteristic is often imprecise. As
an example, one coding scheme or terminology vendor may choose to represent a color
attribute using a simple string, while another vendor may encode a list of possible colors. A
client should be coded in such a way that it can cope with either situation.

Lexicon Query Service V1.0 June 2000

1

The queryAreEntitiesRelated(<Motherboard>, <ram>, hasComponents, FALS&)Id

yield a result of FALSE. The que@ouldAssociationBelnferredllows terminology
vendors to expose more sophisticated inferencing capabilities, crossing subtype and
other associations in the process of reaching the result. The query
CouldAssociationBelnferred(<Motherboard>, <ram>, hasComponewt)id probably
return a TRUE value. It is anticipated that terminology vendors who implement the
CouldAssociationBelnferredill probably add additional, proprietary methods to
provide inference explanations and other more sophisticated properties.

GetAssociatedTargetEntitigsturns the set of all target entities that participate in the
named association with the source codelitéctOnlyis TRUE, only the target entities

directly associated with the source codes are supplied. If FALSE, all of the target

entities in the transitive closure of the association are returned.

As an example, given the following association instances:

<Anti-Infective Agent> hasSubtypes {<Amebacide>, <Anthelmintic>}
<Amebacide> hasSubtypes {<hydroxyquinoline derivatives>,
<arsenical anti-infectives>}

<Anthelmintic> hasSubtypes <{quinoline derivatives}>

The queryGetAssociatedTargetEntities(<Anti-Infective Agent>, hasSubtypes, TRUE)
would return a set consisting of one element (another set):

{{<Amebacide>, <Anthelmintic>}}

while the queryGetAssociatedTargetEntities(<Anti-Infective Agent>, hasSubtypes,
FALSE)would return the set consisting of four elements:

{{<Amebacide>, <Anthelmintic>}, {<hydroxyquinoline derivatives>, <arsenical anti-
infectives>}, <{quinoline derivatives}}.

Similarly, GetAssociatedSourceCodegurns all of the source qualified codes that
participate in the named association with the supplied target element. The query
GetAssociatedSourceCodes(<arsenical anti-infectives>, hasSubtypes, TRWUI)
return the set:

{<Amebacide>}

while the queryGetAssociatedSourceCodes(<arsenical anti-infectives>, hasSubtypes,
FALSE)would yield

{{<Amebacide> <Anti-Infective Agent>}

The methodGetAssociationsForSouraeturns the set of all associations in which the
supplied qualified code participates in the source i@ktAssociationsForTarget

returns the set of all associations in which the supplied target element participates in
the target role.

Concept Expressions

Concept expressions consist of the logical conjunction of a set of base concept codes,
each of which is optionally qualified by one or more attribute value pairs which serve
to further define or constrain the class of entities which the concept code may
represent.

LQS V1.0 Terminology Service June 2000 1-35

ConceptExpression

‘.
conjunction of
1.*

ConceptExpressionElement

~C;;baseCode : ConceptCode

qualified by

0..*

AttributeValuePair

elementRole : choice {Source, Target}
~c;;association : Association

1

qualified by AssociationQualifier

(from MetaConcepts)

RelatedEntityExpression

~C;;associatedElement : AssociatableElement

qualifiedBy

0..*

AttributeValuePair

elementRole : choice {Source, Target}
~c;;association : Association

Figure 1-16 Concept Expression

1.6.1.6 ConceptExpression

A concept expression is the logical conjunction of one or more
ConceptExpressionElemenesach of which represents a base concept code and a set of
optional, nested qualifiers.

1-36 Lexicon Query Service V1.0 June 2000

1.6.1.7 ConceptExpressionElement

A concept expression represents a concept code whose scope or “meaning” has been
further constrained or refined by the addition of qualifiers. It has, as its base, a single
concept code. One or moddtributeValuePairamay further qualify this concept code.

An AttributeValuePairconsists of an association, AssociatableElemenand an

optional set of association qualifiers. AdditiomdtributeValuePairsmay further

qualify the AssociatableElementithin anAttributeValuePair An AssociatableElement
represents a qualified name in the case wherdakeRoles Target (when the base
concept occupies the target role and AlssociatableElemenhe source). It may

represent either a qualified name or a characteristic in the case whégs#iolds

Source

1.6.1.8 RelatedEntityExpression

An entity expression is identical to a concept expression with the exception that the
“qualified” or base entity can be a&ssociatableElemenwhich may either be a
gualified code or a characteristic.

Expression and simplification

The next seven methods in a systemization expose functionality associated with
concept expressions. The notation for the following examples is borrowed heavily from
the GALEN CORE notation. [13] Given the following example, which represents the
upper lobe of the left lung:

Lobewhich <s-part-of(Lungwhich has-lateralityl_eft)
has-locatiorfupper”>

this could be expressed as a concept expression as follows:

LQS V1.0 Terminology Service June 2000 1-37

CEZ1 : ConceptExpression

cor lju:TL‘iuu of

CEEZ1 : ConceptExpressionElement
&baseCode : <lobe>

qualified by has qualifiers

AP1 : AttributeValuePair

gelementRole : target
gassociation : hasPart

AP3 :AttributeValuePair

gelementRole : Target
gassociation : hasLocation

EX3 :RelatedEntityExpression EX1 : RelatedEntityExpression
gassociatedElement : Characteristic : "upper"| | gassociatedElement : QualifiedCode : <lung>

has qd(aliﬁers

AP2 : AttributeValuePair

&elementRole : source
gassociation : hasLaterality

EX2 : RelatedEntityExpression
gassociatedElement : QualifiedCode : <left>

Figure 1-17 Concept Expression Example

In Figure 1-17, the text “upper” has been typed as a characteristic to provide a simple
example of the representation of characteristics.Typically it would be a coded concept
in a real terminology service.

The systemization class provides the methods listed below for manipulating concept
expressions.

1-38 Lexicon Query Service V1.0 June 2000

1

ValidateConceptExpression Returns FALSE if the supplied concept expression is not
considered valid. If the return is TRUE, an optional association qualifier may also be
returned to further qualify the conditions in which the TRUE return applies. As a
hypothetical example, a systemization might return a qualifier of “sensible.” If the
concept expression described th&ldle lobe of the left lung, the systemization might
return a qualifier of “grammatical”, indicating that, while thése’t a middle lobe of

the left lung, the expression still made grammatical sense.

GetSimplestForm Returns the concept expression which represents the simplest form
in which the supplied concept expression may be expressed. Using the example above,
a terminology system might have a concept code that represented the leffheng

result of aGetSimplestForneall with the example above might yield:

Lobewhich <s-part-ofLeftLung
has-locatiorlUpper>

ExpandConcept Takes the supplied concept and returns the “canonical” concept
expression that serves to define the concept. \BgpandConcepsupplied with the
concept code <LeftLung> in the above scenario, it might return:

Lung which has-laterality Left

AreExpressionsEquivalert Given two concept expressions, this method determines
whether these two expressions could be considered equivalent.

ExpressionDifference Determines the “difference” between the two concept
expressions and returns it in the form of a third concept expression.

MinimalCommonSupertype Returns the concept expression which is the “closest”
valid supertype of the supplied list of concepts expressions. The application is notified
if there is no valid minimal common supertype short of uhi&ersal type.

MaximalCommonSubtypeReturns the concept expression which is the “closest” valid
subtype of the supplied list of concepts expressions. The application is notified if there
is no valid maximal common subtype short of #iesurd type.

The association between concept expressions and the systemization

Any concept expression that is deemed “valid” by the systemization is presumed to
have a corresponding association within the systemization itself. If the systemization
does not support theouldAssociationBelnferredach_validbase code / attribute /

value association in a concept expression should receive a TRUE return when supplied
as parameters to thlgeEntitiesAssociatedperation. If the systemization supports
CouldAssociationBelnferredt is required that this operation return TRUE given the
same set of input parameters.

LQS V1.0 Terminology Service June 2000 1-39

1-40

1.6.2 Value Domains

ValueDomain

gvalueDomainld : ValueDomainld

- %GetVersion (version : Versionld) : ValueDomainVersipon
GetAllVersions () : ValueDomainVersionSequence
- %GetDefaultVersion () : ValueDomainVersion

T

consists of

o“*

ValueDomainVersion

gversionld : Versionld

- %GetParentValueDomain () : ValueDomain
GetAllValueDomainExtensions () : ValueDomainExtensionSet
- %GetValueDomainExtension (codingScheme : CodingSchemeld) : ValueDomainExtension
: ‘IsConceptInValueDomain (concept : QualifiedCode) : boolean
- %GetPickList (contexts : UsageContextSet) : PickList
: ‘GetPickListForCodingScheme (codingScheme : CodingSchemeld, contexts : UsageContextSet) : PickList

o“*

ValueDomainExtension

has extension in

| %GetCodingScheme () : CodingSchem
. %GetExtension () : ConceptCodeSet

0*
belongs to/contains

[0

1..%

O“*
CodingScheme 1) 1.7 ConceptCode
@& —defines/belongsto—(from CodingTerms)

(from CodingSchemes)

Figure 1-18 Value Domain

A value domain is typically associated with a field on a data-entry screen, a column in
a database, a field in a message, or some other entity that may contain a concept code
Each value domain instance is uniquely identified bywhleeDomainld a qualified

code. Each value domain may have more than one version which is used to record the
changing contents of a value domain over time. The ValueDomain class can return all
versions GetAllVersion}, a specific version by identifieGetVersion, or the default
version(GetDefaultVersiopfor the given value domain.

Each value domain version has an “extension” in one or more different coding
schemes. An extension is defined in this context as a list of concept codes from the
given coding scheme. Th&alueDomainExtensioalass represents this extension. Using
this class, an application may retrieve all extensions for a value domain
(GetAllValueDomainExtensiopsor a specific extension for a given coding scheme

Lexicon Query Service V1.0 June 2000

1

1.7 IDL Interface

1.8 Notation

(GetValueDomainExtensipnThe application may also query as to whether a specified
concept code is included in one of the value domain extensions
(IsConceptinValueDomajn

A pick list is an ordered subset of all the concept codes which are included in a given
value domain version. The order and contents of this list may be tailored for a specific
user or group of users, a given application, or some other usage context. Each concept
code in a pick list contains a textual presentation which will be used to represent the
concept to the user as well as a flag which indicates whether the particular code is to
be considered a default selection for the list. Pick lists may be selected either across
all coding schemedGetPickLisj or from one specific scheme
(GetPickListForCodingScherpe

This specification consists of three modules:

® NamingAuthority - A general-purpose module that provides a means of providing
unigue names to entities such as concept codes, components. This module is sharec
with the Patient Identification Services (PIDS) specification.

® Terminology Services-This module defines the services which are the focus of this
document.

® Terminology Service Values- This module defines the codes and coding schemes
which are used by the terminology services.

1.8.1 Sequences and Sets

Entities which end in the suffixSeq” are typically not described in the document
below. <Entity>Seq is used to represent both an unordered s&ntity and an
ordered sequence &tity . Entity is presumed to be an unordered set unless it is
otherwise stated in the accompanying text.

1.8.2 lIterators

Entities which end in the suffix “Iter” are also not further describ&htity>Iter
represents an iterator for objects of tyfpatity . All iterator objects contain the
following interface methods:

1.8.2.1 max_left

This returns an approximation of the numberEaftity yet to be retrievedviax_left
will never return a value that is less than the total remaining elements. Client
applications should use this attribute sparingly, as it may be very costly in some
implementations across large databases.

LQS V1.0 IDL Interface June 2000 1-41

1.8.2.2 next_n

This operation returns a sequenceEotity elements. The number of elements in the
returned sequence will never be more than the input value “

1.8.2.3 destroy

This operation should be invoked when the client is finished retrieving entities from the
iterator. It is not necessary to iterate to the end of the list before destroying the iterator.

1-42 Lexicon Query Service V1.0 June 2000

Modules and Interfaces

Contents

This chapter contains the following topics.

Topic Page
“NamingAuthority Module” 2-1
“Terminology Service Module” 2-7
“Terminology Service Values Module” 2-58

2.1 NamingAuthority Module

/[File: NamingAuthority.idl

#ifndef NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY_IDL_

#include <orb.idl>
#pragma prefix "omg.org "

module NamingAuthority
{
enum RegistrationAuthority {
OTHER,
ISO,
DNS,
IDL,
DCE };

Lexicon Query Service V1.0 June 2000

2-1

2-2

typedef string NamingEntity;

struct Authorityld {
RegistrationAuthority authority;
NamingEntity naming_entity;

h

typedef string AuthorityldStr;

typedef string LocalName;

struct QualifiedName {
Authorityld authority _id;
LocalName local_name;

h

typedef string QualifiedNameStr;

exception Invalidinput {};

interface translation_library

{
AuthorityldStr authority to_str(
in Authorityld authority)
raises(
Invalidinput);
Authorityld str_to_authority(
in AuthorityldStr authority_str)
raises(
Invalidinput);
QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)
raises(
Invalidinput);
QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)
raises(
Invalidinput);
h

k
#endif // _NAMING_AUTHORITY_IDL_

The NamingAuthority module provides a means of giving globally unique names to
name spaces and hence the names within those name spaces. The fundamental need
the ability to compare two names for equality. If they are equal, they are known to
represent the same entity, concept, or thing. This is needed when independent entities
are generating names that may get compared for equality. However, the reverse is not
guaranteed to be true. That is an entity that may have several names.

Lexicon Query Service V1.0 June 2000

2

The authority for the name space may derive from several different types of roots, the
choice of which depends upon the user requirements as each root has different qualities
of management and uniqueness. The various root types are defined below.

#pragma prefix "org.omg"

In order to prevent name pollution and name clashing of IDL types this module (and
all modules defined in this specification) uses the pragma prefix that is the reverse of
the OMG’s DNS name.

2.1.1 RegistrationAuthority

Identifies the root of the name space authority. An entity (e.g., person or organization)
may be registered with many different roots (RegistrationAuthorities) and be able to
assign names and other name spaces within each root. These may be used for the sam
or for different needs. For this reason there is no guarantee of any equality in the
different name spaces managed by an entity. There are currently no means available to
determine whether a given authority in an ISO hierarchy is the same authority as one
specified in a DNS hierarchy.

Other

This form of a naming authority should be used sparingly, and only in experimental or
localized situations or special purposes. It is the responsibility of the implementing
institution to guarantee uniqueness within the names themselves, and there is no
uniqueness guarantee outside of the source institution. Services that define default
naming authorities (and possibly also names) may also use the Other root to forego
long Authoritylds. In this case the specification of the service must name Authoritylds
that may be expected with the Other root and still maintain name space integrity for
that service.

ISO

International Standards Organization [9] - The ISO specifies a registration hierarchy,
identified by a series of named/numbered nodes. Many of the coding schemes used in
the medical environment are or can be registered within the ISO naming tree. The ISO
root form is one of the recommended forms when the naming authority is
internationally recognized, such as international coding schemes, or when the authority
is to be used across two or more different enterprises. ISO provides for the recording
of a responsible person and address for each node in the authority hierarchy.

DNS

Domain Name Services [10] - Internet domains are recorded with a central, global
registration authority. Subhierarchies within the domains are then maintained locally
by the registered organization or person. The DNS form is recommended as an
alternative to the ISO naming tree when the specific naming authority needs identity
and uniqueness, but is not in an ISO registration. By using this common characteristic
of many organizations it gives the ability to create globally unique name spaces and

LQS V1.0 NamingAuthority Module June 2000 2-3

names without the need to register as an ISO name authority. It is up to the
organization itself to maintain the integrity of the name space(s) (e.g., not reusing
names or name spaces).

IDL

The OMG Interface Repository [11] - The CORBA Architecture specifies a means of
uniquely identifying entities within the interface repository, via the use of a
Repositoryld CORBA repository id’s may be in either the OMG IDL format, the DCE
UUID format or the LOCAL format. Within this specification, the “IDL” root refers

only to the IDL format. The DCE format may be represented within the DCE root and
the Local format within the Other root. The IDL authority may prove very useful when
registering CORBA/IDL specific objects such as value sets, interface specifications. It
should be noted that OMG does not currently manage the repository name space in any
rigorous fashion, and it is quite possible that two different developers may arrive at
exactly the same repository ID for entirely different entities. For this reason some
people give the repository ID a prefix that consists of their reverse DNS that is /'
separated instead of ‘. separated. This root type may be very useful when the names
within the name space are defined in IDL. For example, it could be the Repositoryld
for an enumerated type or a module that has constant integers or strings defined for
each name within the name space.

DCE

The Distributed Computing Environment [12] - While they don’t actually register

coding schemes or other entities, they do provide a means of generating a globally
unique 128-bit ID, called a Universally Unique ID (UUID). This UUID may be used to
guarantee the uniqueness of a name space in situations where it is not necessary for the
identity of the authority to be known outside of the specific implementation.

2.1.2 NamingEntity

Identifies a specific name in the syntax and format specified by the corresponding
registration authority. The various naming authorities tend to provide a fair amount of
leeway as far as the actual format of the registered names. As there may be situations
where the full semantics of a specific authority’s name comparison will not be
available to an application, we have chosen to select a specific subset of the syntax of
each representation. The intention is to be able to determine whether two registered
entities are identical or not solely through the use of string comparison. The specific
name formats are described below:

OTHER

An arbitrary string, syntax undefined except locally by a specific service specification
and/or by particular implementations and installations. The “/” character is illegal to
use as it is reserved as a separator of components in the stringified version of
QualifiedName.

Lexicon Query Service V1.0 June 2000

ISO

The nameshould be represented using ti@ameFormof the ObjectldentifierValueas
specified in ISO/IEC Recommendation 8824-1. Each name component should be
separated by a single space.

Example: “joint-iso-ccitt specification characterString”

DNS

The domain name and path in the form mandated in RFC 1034. The path name is
represented as a dot separated tree which traverses up the hierarchy. Since DNS name
are not case-sensitive only lower-case letter should be used such that simple string
comparisons can determine equality. However it is OK to use case-insensitive
comparisons as well.

Example: “pidsserv.slc.mmm.com”

IDL

The OMG Repositoryld format specified in the CORBA Architecture V2.0 manual, in
the form: “<node>/<node>/O/<node>." The “IDL:” prefix and the version number
suffix should NOT be used for ti¢amingEntity . The “IDL:” prefix is prepended to
create theAuthorityldStr .

Example: “CosNaming /NamingContext /NotFoundReason " is the
NamingEntity for:
module CosNaming {

interface NamingContext {

enum NotFoundReason { ... };

),
J3

DCE

The UUID in the external form <nnnnnnnn-nnnn-nnnn-nnnn-nnnnnnnnnnnn>, where
<n> represents one of the digits 0-9 and the characters A-F. The alpha characters
should all be upper case.

Example: “6132A880-9A34-1182-A20A-AF30CF7A0000"

2.1.3 Authorityld, AuthorityldStr

The combination of a Registration Authority and Naming Entity, which identifies a
specific naming authority. In situations where a given naming entity may have more
than one naming authority, it should be agreed upon in advance which of the specific
names for the entity is to be used. This specification makes no guarantees about the
ability to recognize, for example, that an authority in the ISO structure is identical to
an authority within the IDL structure.

LQS V1.0 NamingAuthority Module June 2000 2-5

The string versionAuthorityldStr) is useful for situations where unique names are
required in a string format. The string is created as <stringified
RegistrationAuthority >:<NamingEntity >.

2.1.4 LocalName, QualifiedName, QualifiedNameStr

A local name is a name within (relative to) a namespace. It is simply a string
representation.

A QualifiedName is a globally unique name for an entity by the fact that it carries
the namingAuthorityld of the name space and thecalName within that name
space.

The QualifiedNameStr is a stringified version of th@ualifiedName . The format
of the string is <stringified

RegistrationAuthority >:<NamingEntity >/<LocalName >. Notice that even
though the character “/” cannot be used within the nameNzfraingEntity , it can be
used within the LocalName.

The following table summarizes the format f@ualifiedNameStr . Columns 1-3 give
the format for arAuthorityldStr .

Table 2-1 Registration Authority Formats

Registration (1) (2) ?3) 4) (5)
Authority Stringified RA-NE NamingEntity NE-LN LocalName Format
Registration Delimiter Format Delimiter
Authority

OTHER “" optional <no ‘/'> “I" optional <no ‘/'>

ISO “1SO” <use ISO rules> “r <any characters>

DNS “DNS” <use DNS rules> “ <any characters>

IDL “IDL” <use IDL rules> “ <no ‘/'>

DCE “DCE” <use DCE rules> “ <any characters>
The definitions for type OTHER are defined to allow usinQualifiedNameStr
format in contexts where an IDL ‘string’ is currently used. A normal IDL string is a
QualifiedNameStr with noRegistrationAuthority and noNamingEntity . The
limitation is that any normal IDL strings that start with one of the
RegsitrationAuthority strings cannot be mapped into QealifiedNameStr since
they would be interpreted by the rules in this module.
The string for the ‘'OTHER’ type dRegistrationAuthority being a blank string (*”)
makes it easier for locally defined names to be usable with no requirements on the
format except they cannot start with one of the strings reserved for the other
RegsitrationAuthority types. The “’ delimiter is optional for type OTHER. If the
NamingEntity is “” for type OTHER then the '/’ delimiter is also optional.

2-6 Lexicon Query Service V1.0 June 2000

2.1.5 Exceptions

The Invalidinput exception is raised when the input parameter for the
TranslationLibrary interface operations is determined to be of an invalid format.

2.1.6 TranslationLibrary Interface

This interface is meant to be a local library for translating between the structured
version and stringified version @futhoritylds andQualifiedNames .

authority to_str, str_to_authority, qualified_name_to_str, str_to_qualified_name

Each of these operations take either a structured version or stringified version of a type
and return the opposite. The data content returned is the same as that passed in. Only
the representation of the data is changed.

2.2 Terminology Service Module

2.2.1 Type

/IFile: TerminologyServices.idl

)

#ifndef _TERMINOLOGY_SERVICES_IDL_
#define _TERMINOLOGY_SERVICES_IDL_
#pragma prefix "omg.org"

#include <orb.idI>

#include <NamingAuthority.idl>

I
I module: TerminologyService
I

module TerminologyServices {
...

k
#endif /* _TERMINOLOGY_SERVICES_IDL_ */

The TerminologyServices module consists of type and interface definitions. Each
interface represents an object class or some portion of an object class from the abstract
model. Separate interface classes have been created in some cases to provide for
optional implementation conformance points. The body offdreninologyServices

module is organized as follows:

Definitions
® Basic Terms

®* Meta Types (Th&erminologyServiceValues module contains the type
constants)

LQS V1.0 Terminology Service Module June 2000 2-7

® Coding Terms

® Coding Scheme and Coded Concept Terms
® Advanced Query Terms

® Systemization Terms

® Value Domain Terms

2.2.2 Exceptions

Interfaces
® TranslationLibrary

® TerminologyService

® LexExplorer

® CodingSchemelocator
® ValueDomainLocator
® CodingSchemeVersionAttributes
® CodingSchemeVersion
® PresentationAccess

® LinguisticGroupAccess
® AdvancedQuery

® SystemizationAccess
® Systemization

® ValueDomainVersion

2.2.3 Basic Coding Terms

/i
/I Basic Terms
i

typedef NamingAuthority::LocalName ConceptCode;
typedef sequence<ConceptCode ConceptCodeSeq;

typedef NamingAuthority::Authorityld CodingSchemeld;
typedef sequence<CodingSchemeld CodingSchemeldSeq;

struct QualifiedCode {
CodingSchemeld coding_scheme_id;
ConceptCode a_code;

h

typedef sequence <QualifiedCode> QualifiedCodeSeq;

Lexicon Query Service V1.0 June 2000

typedef string Versionid;
typedef sequence<Versionld> VersionldSeq;
const Versionld DEFAULT = *;

struct TerminologyServiceName {
NamingAuthority::QualifiedName the_name;
Versionld the_version;

h

ConceptCode

A string of characters that identifies a unique entity within a given coding scheme. The
coding scheme forms the naming authority and the concept code is unique within that
space.

CodingSchemeld

A coding scheme is assigned a global, unique name. A coding scheme is a naming
authority that manages the set of concept codes as local names within its name space

QualifiedCode

A globally unique concept code, consisting of the combination of the coding scheme id
and the concept code.

Versionld

The unique identifier of a specific version of a terminology service, coding scheme,
and value domain. There is no implied ordering on version identifiers. A version
identifier may be composed of both letters and digits and must be unique within the
context of the given service, coding scheme, or value dorWeisionld has a
distinguished value, DEFAULWhich represents the “production” or latest validated
and ready for use version of the specific entity. The DEFAU&Sion of an entity is

not necessarily the most current.

TerminologyServiceName

The TerminologyServiceName serves to uniquely identify an instance of a
terminology service. It consists of a globally unique name and the version identifier.
There is no equivalent téerminologyServiceName in the model.

2.2.4 Meta Types

I
/I Meta Types

/I See the TerminologyServiceValues module for consts
I

LQS V1.0 Terminology Service Module June 2000 2-9

2-10

typedef QualifiedCode AssociationQualifierld;
typedef sequence<AssociationQualifierld> AssociationQualifierldSeq;

typedef QualifiedCode LexicalTypeld;
typedef sequence<LexicalTypeld> LexicalTypeldSeq;

typedef QualifiedCode Sourceld;
typedef sequence<Sourceld> SourceldSeq;

typedef QualifiedCode SourceTermUsageld;
typedef sequence<SourceTermUsageld> SourceTermUsageldSeq;

typedef QualifiedCode SyntacticTypeld;
typedef sequence<SyntacticTypeld> SyntacticTypeldSeq;

typedef QualifiedCode UsageContextld;
typedef sequence<UsageContextld> UsageContextldSeq;

typedef ConceptCode Associationid;
typedef sequence<Associationld> AssociationldSeq;

typedef ConceptCode Languageld;
typedef sequence<Languageld> LanguageldSeq;

typedef ConceptCode PresentationFormatlid;
typedef sequence<PresentationFormatld> PresentationFormatldSeq;

The meta types above are either concept codes or qualified codes. If the type is a
concept code, the coding scheme has been pre-determined and codes from that
particular schemenustbe used when communicating with the terminology service. If
the type is a qualified code, the set of valid values may be derived from one or more
coding schemes at the discretion of the terminology service vendor. All of the types
named below implement the entities of the same name in the abstract model.

2.2.4.1 Qualified Code Types

AssociationQualifierld

A code which qualifies or otherwise provides further information about the occurrence
of a target element within an association instance. Association qualifiers are used to
describe element- level optionality and to add additional detail about the validity and
meaning of the given association instance.

LexicalTypeld

The code for type which may be assigned to a presentation usage. Lexical types are
such things as "abbreviation," "Acronym," "Eponym," "Trade name."

Sourceld

Lexicon Query Service V1.0 June 2000

2

A code that identifies a book, publication, person, or other citation. It is used to
identify the source from which definitions, presentations, and other information within
a coding scheme are derived.

SourceTermUsageld

A code that identifies a specific way that a string is used within a source. Examples
include "Adjective," "Disease Name," "Language Qualifier."

SyntacticTypeld

A code which identifies a type of variation that a presentation takes from the preferred
form within a specific linguistic group. Examples include "spelling variant,” "singular,"
"plural," "word order."

UsageContextld

A code which identifies a specific context in which a presentation associated with a
given context code is to be used. Example usage contexts could be such things as
“column heading,” “ADT application,” “long textual description.”

2.2.4.2 Coded Concept Types

Associationld

An identifier of an association type. Base association types are described in
Section 3.2.1, “Association,” on page 3-3.

Languageld

A code that identifies a spoken or written language. Example languages include
“English,” “French.”

PresentationFormatld

A code that identifies the format that a given presentation is in. Examples could
include “plain text,” “html,” “.wav,” “word 7.0 document.”

Coding Terms

1
/I Coding Terms
1
interface LexExplorer;

interface CodingSchemeLocator;
interface ValueDomainLocator;
interface CodingSchemeVersion;
interface PresentationAccess;

LQS V1.0 Terminology Service Module June 2000 2-11

2-12

interface LinguisticGroupAccess;
interface SystemizationAccess;
interface AdvancedQueryAccess;
interface Systemization;
interface ValueDomainVersion;

typedef string IntlString;

typedef sequence<IntlString> OrderedIntlStringSeq;
typedef sequence<IntlString> IntlStringSeq;

typedef sequence<octet> Blob;

enum Trinary { IS_FALSE, IS_TRUE, IS_UNKNOWN }
typedef sequence<Trinary> TrinarySeq;

typedef sequence<boolean> BooleanSeq;

This section creates forward references for the interfaces that follow. This section also
defines a set of root types that are used throughout the rest of the interfaces.

IntIString

IntIString represents a string of characters and an identifier that states which character
set the string should be presented in. The IDL Extensions Specification [11] states that
the character set of string types will be negotiated and converted by the ORBs
themselves. Each ORB will have a character set or set of character sets as part of its
context. This should provide a sufficient framework for character set identifiers for the
time being. ThdntlString type is maintained as a separate type in case further
refinement is needed in a future version.

OrderedIntlStringSeq

This is an ordered list dhtIStrings , which is used as a parameter to the
match_concepts_by keywords operation. The order determines the importance of
each key word in the list.

Blob

The blob is used to carry non-textual presentations and machine-readable instructions.
A typical use of this data type might be to return a sound bite of a spoken word.

Trinary

A type which represents one of three possible values. This type is used as a return from
several methods that respond to questions about the associations between concept
codes. These methods need to have a third return state which indicates that the service
has insufficient information to know whether the concept codes are associated or not.

2.2.5 Coded Concept and Coding Scheme Terms

)
/I Coding Scheme and Coded Concept Terms
I

Lexicon Query Service V1.0 June 2000

typedef string Presentationld;

typedef sequence<Presentationld> PresentationldSeq;
typedef string LinguisticGroupld;

typedef string Systemizationlid;

typedef sequence<Systemizationld> SystemizationldSeq;

struct CodingSchemelnfo {
CodingSchemeld scheme_id;
Versionld version_id;
Languageld language_id;

h

struct CodingSchemeVersionRefs {
CodingSchemeld coding_scheme_id;
Versionld version_id;
Languageld language_id;
boolean is_default_version;
boolean is_complete_scheme;
CodingSchemeVersion coding_scheme_version_if;
PresentationAccess presentation_if;
LinguisticGroupAccess linguistic_group_if;
SystemizationAccess systemization_if;
AdvancedQueryAccess advanced_query_if;

J3

struct Conceptinfo {
ConceptCode a_code;
IntIString preferred_text;
h
typedef sequence<Conceptinfo> ConceptinfoSeq;
typedef sequence<ConceptinfoSeq> ConceptinfoSeqSeq;

interface Conceptinfolter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out ConceptinfoSeq concept_info_seq
)i
void destroy();
h

struct QualifiedCodelnfo {
QualifiedCode a_qualified_code;
IntIString preferred_text;
3
typedef sequence<QualifiedCodelnfo> QualifiedCodelnfoSeq;

struct Definition {
IntIString text;
boolean preferred,;
Languageld language_id;

LQS V1.0 Terminology Service Module June 2000 2-13

2-14

Sourceld source_id;

h

typedef sequence<Definition> DefinitionSeq;
struct Comment {

IntIString text;

Languageld language _id;

Sourceld source_id;
h

typedef sequence<Comment> CommentSeq;

struct Instruction {
IntIString text;
Blob formal_rules;
Languageld language_id;
Sourceld source _id;

h

typedef sequence<Instruction> InstructionSeq;

struct Sourcelnfo {
Sourceld source_id;
SourceTermUsageld usage_in_source;
QualifiedCode code_in_source;

h

typedef sequence<Sourcelnfo> SourcelnfoSeq;

struct Presentationinfo {
Presentationld presentation_id;
PresentationFormatld presentation_format_id;
Languageld language_id;
LinguisticGroupld linguistic_group_id;

h

typedef sequence<Presentationinfo> PresentationinfoSeq;

enum PresentationType {TEXT, BINARY};

union PresentationValue switch(PresentationType) {
case TEXT : IntIString the_text;
case BINARY : Blob a_Blob;

3

struct Presentation {
Presentationld presentation_id;
PresentationValue presentation_value;
h

typedef sequence<Presentation> PresentationSeq;

struct PresentationUsage {
ConceptCode concept;
Presentationld presentation_id;
boolean preferred_for_concept;
boolean preferred_for_linguistic_group;

Lexicon Query Service V1.0 June 2000

SyntacticTypeldSeq syntactic_type_ids;
UsageContextldSeq usage_context_ids;
SourcelnfoSeq source_infos;
LexicalTypeldSeq lexical_type_ids;

h

typedef sequence<PresentationUsage> PresentationUsageSeq;

struct LinguisticGrouplnfo {
LinguisticGroupld linguistic_group_id;
Languageld language _id;
PresentationldSeq presentation_ids;

h
typedef float Weight;

struct WeightedResult {
Conceptinfo the_concept;
IntIString matching_text;
Weight the_weight;
h
typedef sequence<WeightedResult> WeightedResultSeq;

interface WeightedResultslter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out WeightedResultSeq weighted_results
);
void destroy();
8

This section defines entities that are used in the coding scheme interface and its
components. The list below is alphabetized for easier reference.

CodingSchemelnfo

The IDL specification deviates slightly from the model when it comes to language. The
model shows language as a parameter to operations that require it. The IDL
specification requires that a language be selected when a coding scheme version
interface object is initially referenced. This language is the hidden default for all of the
operations that have language as an input parameter. It is necessary to acquire anothe
coding scheme version interfaceferencef interactions are required in another

language.

Note —The previous paragraph does not imply that coding scheme versions are
language-dependent. There is only one underlying coding scheme version. A given
reference acts as a filter, presenting a view of the underlying scheme.

LQS V1.0 Terminology Service Module June 2000 2-15

2-16

The CodingSchemelnfo structure represents a coding scheme identifier, coding
scheme version, and language. TwingSchemelnfo uniquely identifies a coding
scheme version in the implementation.

CodingSchemeVersionRefs

This structure is returned from tl@odingSchemeLocator methods
get_coding_scheme_version andget_native_coding_scheme_version . The
structure carries common identity information and references to a set of optional
interfaces that implement various facets of a coding scheme version object. The
content of this structure is identical to tBedingSchemeVersionAttributes
interface.

Comment

This structure implements tt@ommentclass in the abstract model. It includes the
comment text, the language in which the comment is written, and an optional source
reference.

Conceptinfo

Some of the operations on the following pages return concept codes accompanied by
their preferred textual representation. This structure represents one of these elements.

ConceptinfoSeqSeq

This represents sequence a$equencesf Conceptinfo . It is used as a return type
from batch methods, which perform more than one lookup operation per invocation.

Definition

This structure implements tHgefinition class in the abstract model. It includes the
definition text, the language in which the text is written, an optional source reference
for the definition, and a flag which indicates whether this is the preferred definition for
a concept code in the specified language.

Instruction

This structure implements thestructionsclass in the abstract model. It includes
instruction text and/or the formal binary instruction rules. If text is included, the
language of the text should be supplied. There is also space for an optional reference to
the source of the instructions.

LinguisticGroupld

A unique identifier of a linguistic group within the context of a coding scheme version.

LinguisticGroupinfo

Lexicon Query Service V1.0 June 2000

2

This structure implements thénguisticGroupclass in the abstract model. It represents
a grouping of syntactically similar presentations. It contains the group identifier and
the associated language.

Presentation

This entity implements one portion of the Presentation class in the model. It includes
the presentation identifier and the value. The rest of the Presentation class is
implemented in the Presentationinfo structure

Presentationld

A unique identifier of a presentation within the context of a coding scheme version.

Presentationinfo

This structure implements a portion of theesentatiorclass in the model. The other
part of thePresentatiorclass is implemented in the Presentation structure below. It
contains the identifier of the presentation and the format. It also contains the
presentation language of the presentation and the identifier of the linguistic group to
which the presentation belongs, if any.

Note — The model states the presentation identifier is optional. Because some
presentations have the potential of being extremely large, it is necessary to succinctly
identify each unique presentation in the implementation of this specification.
Terminology vendors must supply a unique identifier for each unique presentation.
This identifier could potentially be the presentation text itself if it is sidre

presentation identifier should not be stored externally. Different vendors may use
different identifiers for identical presentations. Presentation identifiers are to be used
strictly as local names of objects for interfacing with an implementation of this
specification.

PresentationType, PresentationValue

These entities implement tfiextualPresentatioand BinaryPresentatiorclasses in the
model. The TEXT/BINARY types should be viewed and used in the same way as the
ASCII/BINARY transfer modes of FTP. A TEXT presentation is restricted to printable
characters, and should be usable even if it undergoes character set and other
representational transformations between ORBS. A BINARY presentation may contain
any information and is guaranteed to be transferred between server and client
unaltered.

Note —ThePresentationType is not dependent upon the presentation format. Clients
should be able to handle BINARY or TEXT presentations regardless of the format. It
will be possible that a “plain text” format may arrive in a BINARY presentation.

QualifiedCodelnfo

LQS V1.0 Terminology Service Module June 2000 2-17

2-18

Some of the operations on the following pages return a list of qualified codes along
with their preferred or primary textual representation. This structure represents one of
these elements.

PresentationUsage

This entity implements thBresentationUsagelass in the model. It represents the
association between a presentation and a concept code. It contains the associated
concept code and presentation identifier. It also indicates whether the presentation is
the preferred presentation for the concept code in the default language, and whether the
presentation is the preferred presentation for the concept code within the linguistic
group, if present. The syntactic type identifier(s) state how this presentation varies
from the preferred presentation for this concept within the same lexical group. The
optional usage context identifier lists the set of contexts in which it is appropriate to
use this presentation for this concept code. It also includes an optional set of one or
more lexical types which serve to indicate that the terms are “not appropriate for
stemming and other natural language techniques.” [5]

The optionalSourcelnfo structure set lists all of the sources for this
presentation/concept code association.

Sourcelnfo

This structure implements ttgourcelnfoclass in the abstract model. T8eurcelnfo

class represents the association between a presentation for a specific concept code an
a source of that presentation. It contains the identifier of the source and an optional
identifier indicating how the presentation is used in the source. It also may contain
qualified code associated with the specific presentation in the source itself. Note that
no synonym associations should be inferred between this code and the presentation
concept code.

Systemizationld

The name of a specific categorization, classification, or organization of concept codes
within a coding scheme.

Weight

This implementdMeightin the model. It is a relative measure of the “closeness” of a
match. The range of the value of a weight is{Ou@llue< 1.0. Weights have no absolute
meaning, and may only be compared with other weights that are returned as a sequence
from the same method invocation.

WeightedResult

Lexicon Query Service V1.0 June 2000

2

This implementaMeightedResuln the model, a list entry returned from a match
function. It contains &onceptinfo structure, which carries the concept code and
preferred text. It also has text of the presentation which was used to determine the
match (if any), and the relative weight of this match as compared to the other entries in
the return list.

2.2.6 Advanced Query Terms

)
1 Advanced Query Terms
I

typedef string Constraint;

typedef NamingAuthority::QualifiedNameStr ConstraintLanguageld;
typedef sequence<ConstraintLanguageld> ConstraintLanguageldSeq;
typedef NamingAuthority::QualifiedNameStr PolicyName;

typedef sequence<PolicyName> PolicyNameSeq;

typedef any PolicyValue;

struct Policy {
PolicyName name;
PolicyValue value;
h

typedef sequence<Policy> PolicySeq;

The advanced query terms represent the various entities that are used in the advancec
qguery interface. They are described along with the interface in Section 2.2.19,
“AdvancedQueryAccess Interface.

2.2.7 Systemization Definitions

I
I* Systemization Terms
I

typedef string RoleName;

typedef string Characteristic;

enum AssociationRole {SOURCE_ROLE, TARGET_ROLE};
enum MinimumCardinality {OPTIONAL, MANDATORY?,
enum MaximumcCardinality {SINGLE, MULTIPLE},

struct Cardinality {

MinimumCardinality minimum;
MaximumcCardinality maximum;

J3

enum ElementType {
EXTERNAL_CODE_TYPE,

LQS V1.0 Terminology Service Module June 2000 2-19

LOCAL_CODE_TYPE,
CHARACTERISTIC_TYPE

h

union RestrictedTargetElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case CHARACTERISTIC_TYPE:Characteristic the characteristic;

J3

union AssociatableElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case LOCAL_CODE_T YPE:ConceptCode a_local_code;
case CHARACTERISTIC_TYPE:Characteristic the characteristic;

3

struct TargetElement {
AssociatableElement target element;
AssociationQualifierldSeq association_qualifiers;
h
typedef sequence<TargetElement> TargetElementSeq;
typedef sequence<TargetElementSeq> TargetElementSeqSeq;
interface TargetElementSeqlter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out TargetElementSeqSeq an_element_seq
)i
void destroy();
h

typedef ConceptCodeAssociationBaseTypeld;

typedef sequence<unsigned long> IndexList;
struct GraphEntry {
TargetElement an_entity;
IndexList associated_nodes;
h
typedef sequence<GraphEntry> EntityGraph;

struct AssociationDef {

Associationld association_id;
AssociationBaseTypeld base_type;
RoleName source_role;
Cardinality source_cardinality;
RoleName target_role;
Cardinality target_cardinality;
boolean target_is_set;
boolean non_coded_allowed;
Trinary transitive;

Trinary symmetric;

Trinary inherited;

2-20 Lexicon Query Service V1.0 June 2000

Trinary source_target_disjoint;

struct Associationinstance {

Associationld association_id;
ConceptCode source_concept;
TargetElementSeq target_element_seq;

h

typedef sequence<Associationinstance> AssociationlnstanceSeq;

interface Associationinstancelter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out AssociationlnstanceSeq association_instance_seq
);
void destroy();
h

struct ValidationResult {
boolean is_valid;
AssociationQualifierld validity_level;

3

/I Constraint - the "any" below must be of type AttributeValuePair. It
/l'is "any" because IDL won't allow recursive struct definitions
struct RelatedEntityExpression {

AssociatableElement associated_element;
AssociationQualifierldSeq association_qualifiers;
any base_qualifiers;
h
struct AttributeValuePair {
AssociationRole element_role;
Associationld the_association_id;
RelatedEntityExpression the_entity_expression;
h

typedef sequence<AttributeValuePair AttributeValuePairSeq;

struct ConceptExpressionElement {
ConceptCode base_code;
AttributeValuePairSeq base_qualifiers;
h
typedef sequence<ConceptExpressionElement> conceptExpression;
typedef sequence<ConceptExpression> conceptExpressionSeq;

RoleName

A string that serves as a synonym for eithergbaerceor thetarget portion of an
ordered pair of entities in an association type.

Characteristic

LQS V1.0 Terminology Service Module June 2000 2-21

2-22

Any non-coded “property” or “attribute” associated with a concept code. In the IDL
specification, characteristic has been further constrained from the model to only carry
string entities.

AssociatableElement

This is a second implementation of thesociatableElemeni the abstract model. The
LOCAL_CODE_TYPE case is used when tiggualifiedCodebelongs to the coding
scheme of which the questions are being asked EXTEERNAL_CODE_TYPE case

is used when th@ualifiedCodebelongs to a different coding scheme. This distinction
serves two purposes. The first is to simplify the interface. The second purpose is to
allow the client application to readily determine whether the target concept code is still
in the scope of the systemization being queried.

AssociationDef

This structure implements thessociationclass defined in the model. It consists of the
association identifier, which uniquely names the association along with an optional
base type. There are five possible base types, which are described in Section 3.2.1,
“Association,” on page 3-3AssociationDef also includes the source and target role
name, whether the target is a set of an individual element, whether the target can
include only concept codes or concept codes and characteristics, the source and targe
cardinality, as well as additional information about the given association.

Associationlnstance

This implements the class by the same name in the abstract model. It consists of an
association id identifier, the concept code that is in the source role, and the target
element that is in the target role in this instance.

AssociationRole

A tag which is used to determine which role an entity plays in an association. Used in
the construction of ConceptExpressions.

AttributeValuePair

This implements the class by the same name in the model. It consists of an association
role, which defines the role which the qualifi€dnceptExpression or
RelatedEntityExpression plays in the contained association. It also contains the
identifier of the association as well as the entity that serves the other role in the
association.

ConceptExpression

This implements the class by the same name in the model. It represents the logical
conjunction of one or mor€onceptExpressionElements

ConceptExpressionElement

Lexicon Query Service V1.0 June 2000

2

This represents a base concept code and an optional set of attribute/value qualifiers. It
is identical to aRelatedEntityExpression with the exception that it may only be a
concept code. This reflects the fact that the root node of a concept expression must
always be a concept code that is defined in the coding scheme of which the questions
are being asked.

EntityGraph

The EntityGraph structure provides a mechanism to represent a directed graph of an
association. Each node in the graph contailargetElement and any association
qualifiers which may apply to that node. Each node also contains a set of zero-based
subscripts into other nodes in tBatityGraph . Each index represents a vertex in an
association hierarchy.

MinimumCardinality, MaximumCardinality, Cardinality

A partial implementation o€ardinality in the abstract model. The following four
cardinalities may be represented in this interface: 0..1, 1..1, 0..N, 1..N, which are
represented as {OPTIONAL, SINGLE}, {MANDATORY, SINGLE}, {OPTIONAL,
MULTIPLE} and {MANDATORY, MULTIPLE} respectively.

RelatedEntityExpression

This implements the class by the same name in the abstract model. It contains the
associated element, which may be a qualified code when the entity is in the source role
and either a qualified code, a concept code, or a characteristic when the entity is in the
target role. It also carries any qualifiers that apply to that particular association
instance. AdditionaAttributeValuePairs may further qualify a

RelatedEntityExpression . As IDL does not allow recursive structure definitions, the
“any” node is used to represent tAgributeValuePair .

RestrictedTargetElement

This is one implementation of thessociatableElemeri the abstract model. It is used
as an input in théexExplorer list_associated_source_codes interface.

TargetElement

This implements both th@rgetEntityand theTargetElementlasses as defined in the
abstract modelTargetEntityis defined as being a set TdrgetElementswhile
TargetElements defined as being a single element. In this implementation, there is no
way to distinguish a single target element from a set that consists of one element. If the
distinction is required, it is necessary to refer totdrget _type of the corresponding
AssociationDef .

A target element represents the target of an association instance. It contains a
QualifiedCode , aConceptCode, or aCharacteristic . It also carries an optional
list of association qualifiers.

ValidationResult

LQS V1.0 Terminology Service Module June 2000 2-23

2-24

This implements the class by the same name in the abstract model. It is returned by the
Systemization interface operatiomalidate_concept_expression . If the

expression is considered valid, additional qualifiers may be returned which allow the
service to further supply the circumstances in which this would be the case. Example
circumstances could include “syntactically valid,” “semantically valid.

2.2.8 Value Domain Terms

/i
I Value Domain Terms
i

typedef QualifiedCode ValueDomainld;
typedef sequence<ValueDomainld> ValueDomainldSeq;

interface ValueDomainldlter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out ValueDomainldSeq value_domain_id_seq
)i
void destroy();
h

struct PickListEntry {
QualifiedCode a_qualified_code;
IntIString pick_text;
boolean is_default;
3
typedef sequence<PickListEntry> PickListSeq; // Ordered

interface PickListlter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out PickListSeq pick_list

h

void destroy();

ValueDomainld

The value domain identifier is a code that names a field on a screen, a parameter in an
interface, a row in a database, or some other external entity in which it is possible to
enter coded data. It serves to identify the set of possible concept codes that may be
entered into this field. These concept codes may come from one or more different
coding schemes.

PickListEntry

Lexicon Query Service V1.0 June 2000

2

This represents a single entry in a PickList. It carries a fully qualified concept code
along with a string of text that represents the concept code externally. It also contains
a flag to indicate whether the given entry should be presented as being “pre-picked.”

2.2.9 Terminology Exceptions

)
1 TerminologyService Exceptions
I
/I Used in Multiple Interfaces
/ typically LexExplorer ++

ey

exception Notimplemented{

h

exception UnknownCode {
ConceptCode bad_code;

h

exception UnknownCodingScheme{
CodingSchemeld bad_coding_scheme_id;

J3

exception UnknownVersion{

Versionld bad_version_id;
h
exception UnknownValueDomain{
ValueDomainld bad_value_domain_id;
h
exception NoNativeCodingScheme {

I3

exception TranslationNotAvailable {

2xception TooManyTolList {

2xception NoPickListAvailable {

2xception AssociationNotInSystemization{
Associationld bad_association_id;

},xception NoSystemizationForCodingScheme {

2xception ParameterAlignmentError {

h
/I CodingSchemeLocator Exceptions
exception LanguageNotSupported {

Languageld bad_language _id;
h

LQS V1.0 Terminology Service Module June 2000 2-25

2-26

/I CodingSchemeVersion exceptions

exception NoPreferredText {
h
exception NoTextLocated {

h
/I PresentationAccess exceptions

exception PresentationNotlnCodingSchemeVersion{
Presentationld bad_presentation_id;

h

exception NoPreferredPresentation{

h

exception UnknownPresentationFormat{
PresentationFormatld bad_presentation_format _id;

h

exception NoPresentationLocated{

h
/I LinguisticGroupAccess exceptions

exception LinguisticGroupNotinCodingSchemeVersion{
LinguisticGroupld bad_linguistic_group_id;
h

/I AdvancedQueryAccess exceptions

exception lllegalConstraint {
Constraint bad_constraint;

h

exception lllegalPolicyName {
PolicyName name;

h

exception DuplicatePolicyName {
PolicyName name;

h

exception PolicyTypeMismatch {
Policy bad_policy;

h

/I SystemizationAccess exceptions

exception NoDefaultSystemization{

h

exception UnknownSystemization {
Systemizationld systemization_id;

h
/I Systemization Exceptions

exception ConceptNotExpandable {
ConceptCode the_concept;

Lexicon Query Service V1.0 June 2000

h

xception NoCommonSubtype {

h

exception NoCommonSupertype {

h

exception InvalidExpression {
ConceptExpression the_expression;

h

exception UnabletoEvaluate {
ConceptExpression the_expression;

h

These are the possible exceptions that might be raised by the operations described on
the following pages. The significance of the individual exceptions will be explained in
the context of the operation(s) that may raise them.

2.2.10 TranslationLibrary Interface

)
1 Translation Library
I

interface TranslationLibrary{

exception InvalidQualifiedName {
h
QualifiedCodestr_to_qualified_code(

in NamingAuthority::QualifiedNameStr qualified_name_str
) raises (

InvalidQualifiedName

);

NamingAuthority::QualifiedNameStr qualified_code_to_name_str(
in QualifiedCode qualified_code

);
I3

The TranslationLibrary interface describes a set of functions which will typically be
locally implemented.

str_to_qualified_code

This function takes a qualified name string and translates it into the corresponding
qualified code structure. THavalidQualifiedName exception is thrown if the string
format is unrecognizable or invalid.

gualified_code_to_name_str

This function converts a qualified code into the corresponding qualified name string.

LQS V1.0 Terminology Service Module June 2000 2-27

2.2.11 TerminologyService Interface

I
I TerminologyService
I

interface TerminologyService{
readonly attribute TerminologyServiceNameterminology service_name;

readonly attribute LexExplorer lex_explorer;
readonly attribute CodingSchemelLocator coding_scheme_locator;
readonly attribute ValueDomainLocator value_domain_locator;

CodingSchemeld Seq get coding_scheme_ids();

CodingSchemelnfo get_native_coding_scheme_info(
) raises (
NoNativeCodingScheme
)i
h

The Lexicon Query Service is based on a component model patterned after the OMG
Trader Service. [2] This pattern makes it possible for a client to obtain a reference to
any of the primary terminology service interfaces and easily discover which other
interfaces have been implemented. It is expected that as possible future interfaces for
Terminology Services are defined (such as authoring), the component will be expanded
to accommodate those interfaces.

A terminology service has one mandatory and two optional interfaces that it may
implement. There are a variety of systems and applications that may require different
functionality from a terminology service. If multiple objects are used to implement the
component they must all maintain consistency so the client can treat them as a single
terminology service. That is, all the attributes on TeeminologyService must

return identical results.

terminology_service_name

Each implementation instance BérminologyService must have a unique name.

The chosen name does not necessarily need to have any meaning. The name makes i
possible for clients traversing a graphTefminologyServices to recognize services

they have encountered before. The name is static over time. The version within the
name can change over time to represent different revisions of the same service.

If there are two or more objects with the same terminology service hame they must be
replicas of each other. The mechanism used to maintain consistency between the
replicas is implementation-dependent and is not exposed as standard interfaces are.

lex_explorer

2-28 Lexicon Query Service V1.0 June 2000

2

TheLexExplorer interface provides a subset of terminology services which are useful
for many of the common use cases in a single interface that is (hopefully) simple to
understand and use. All terminology service vendors must implement this interface.

coding_scheme_locator

The CodingSchemelLocator allows exploration of the functionality supported by
the various coding schemes and navigation @odingSchemeVersion that meets
the criteria of the client. This interface is optional and may not be present in all
terminology service implementations. If not present, this attribute should return the
NULL object reference.

value_domain_locator

The ValueDomainLocator interface allows discovery of the value domains which

are implemented by thEerminologyService , and navigation to a
ValueDomainVersion that meets the criteria of the client. This interface is optional
and may not be present in all terminology service implementations. If not present, this
attribute should return the NULL object reference.

get_coding_scheme_ids

This provides an unordered list of all the coding scheme identifiers that are provided
by this terminology service. This implements the
TerminologyService.GetAllCodingSchenfiesn the abstract model.

get_native_coding_scheme_info

Returns information about the coding scheme that is designated as “native” by the
terminology service vendor, along with the current default version of that scheme and
the preferred language used by that coding scheme. An exception is thrown if there has
been no coding scheme designated as native by the service provider.

2.2.12 LexExplorer Interface

)
1 LexExplorer
I

interface LexExplorer : TerminologyService{

IntIString get_preferred_text(
in QualifiedCode a_qualified_code,
in UsageContextld Seq context_ids

) raises (
UnknownCodingScheme,
UnknownCode

)i

IntIStringSeq get_preferred_text_for_concepts(

LQS V1.0 Terminology Service Module June 2000 2-29

in QualifiedCodeSeq qualified_codes,
in UsageContextldSeq context_ids

);

Definition get_preferred_definition(
in QualifiedCode qualified_code

) raises (
UnknownCodingScheme,
UnknownCode

);

ConceptinfoSeq translate_code(
in QualifiedCode from_qualified_code,
in CodingSchemeld to_coding_schemeld
) raises (
UnknownCode,
UnknownCodingScheme,
TranslationNotAvailable

);

ConceptinfoSegSeq translate_codes(
in QualifiedCodeSeq from_qualified_codes,
in CodingSchemeld to_coding_scheme_id
) raises (
UnknownCodingScheme

);

void list_concepts(in CodingSchemeld coding_scheme _id,
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter

) raises (
UnknownCodingScheme,
TooManyTolList

);

void list_value_domain_ids (
in unsigned long how_many,
out ValueDomainldSeq value_domain_ids,
out ValueDomainlditer value_domain_id_iter
) raises (
TooManytoList
)i

boolean is_concept_in_value _domain (
in QualifiedCode qualified_code,
in ValueDomainld value_domain_id
) raises (
UnknownValueDomain

);

2-30 Lexicon Query Service V1.0 June 2000

TrinarySeq are_concepts_in_value_domains (
in QualifiedCodeSeq qualified_codes,
in ValueDomainldSeq value_domains

) raises (
ParameterAlignmentError

);

void get_pick_list(
in ValueDomainld value_domain_id,
in UsageContextldSeq context_ids,
out PickListSeq pick_list,
out PickListlter pick_list_iter

) raises (
TooManyTolist,
UnknownValueDomain,
NoPickListAvailable

);

Trinary association_exists(
in QualifiedCode source_code,
in TargetElement target_element,
in Associationld association_id,
in boolean direct_only

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

);

TrinarySeq associations_exist(
in QualifiedCodeSeq source_codes,
in TargetElementSeq target_elements,
in AssociationldSeq association_ids,
in boolean direct_only

) raises (
ParameterAlignmentError

);

void list_associated_target_elements (
in QualifiedCode qualified_code,
in Associationld association_id,
in boolean direct_only,
in unsigned long how_many,
out TargetElementSeqSeq related_target_seq,
out TargetElementSeqlter related_target_iter
) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

LQS V1.0 Terminology Service Module June 2000 2-31

2-32

void list_associated_source_codes (
in RestrictedTargetElement target_element,
in CodingSchemeld source_coding_scheme _id,
in Associationld association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter

) raises (
AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

)i

h

The LexExplorer interface provides a simplified or “flattened” interface to some of
the more common terminology service functions. A terminology service may consist
solely of theLexExplorer interface if appropriate. When other interfaces are
implemented within the terminology service, a functionally equivalent operation in
LexExplorer and the more completeodingSchemeVersion or

ValueDomainVersion must return identical results.

get_preferred_text

This operation returns the preferred text associated witlQtradifiedCode when

supplied with an ordered list of contexts. This operation must ignore any contexts that
it does not recognize. The language is established outside of the scope of this
specification. The result will be identical to what would be returned by the
get_preferred_text operation on the defautodingSchemeVersion whose
CodingSchemeld matches the one in the Qualified Code where the concept is
defined. An exception is thrown if the coding scheme of the qualified code is not
supported or recognized by the terminology service, or if the concept code is not
included in the particular version of the coding scheme supported by the service.

get_preferred_text_for_concepts

This is a batch equivalent of tlyet preferred_text operation above. A list of
gualified codes is supplied and a corresponding list of text strings is returned. The
single list of contexts applies to all of the supplied contexts. A null string (*”) in a
return slot indicates that a problem has occurred and the text was not located. The
get _preferred_text operation may then be invoked to determine exactly what the
problem was.

get_preferred_definition

This operation returns the preferred definition of ghealifiedCode . The language is
established outside of the scope of this specification. The result will be identical to
what would be returned by tlget_preferred_definition operation if the default
CodingSchemeVersion whoseCodingSchemeld matches the one in the Qualified
Code where the concept is defined. An exception is thrown if the coding scheme of

Lexicon Query Service V1.0 June 2000

2

the qualified code is not supported or recognized by the terminology service, or if the
concept code is not included in the version of the coding scheme supported by the
service.

translate_code

This operation will translate the supplied code into a list of synonymous codes from
the target coding scheme. If a translation cannot be performed, the result should be
returned as follows:

® |f the terminology service knows about the code to be translated and the target
coding scheme, it should assert that no translation exists by returning a zero length
list.

® |If the coding scheme in the qualified code or tthecoding_schemeld is not
recognized, the operation should throw theknownCodingScheme exception.

® |f the concept code in the qualified code is not recognized, the operation should
throw theUnknownCode exception.

® |f the translation function is not supported for the supplied code or target coding
scheme, the operation should throw Tin@nslationNotAvailable exception.

translate_codes

This operation is the batch equivalent of ttenslate_code operation above. It is
supplied with a list of concept codes which are to be translated into the target coding
scheme and then it returns a corresponding list of translation results. This method will
throw theUnknownCodingScheme exception if theo_coding_scheme_id

parameter is not recognized. All other problems will be reflected by a zero length
sequence in the corresponding slot. The client will need to udeathsate code
operation to determine exactly why the translation did not occur.

list_concepts

This provides the ability to list all of the concept codes supported by a given coding
scheme. The intended purpose of théxExplorer interface is to provide list access
to relatively small coding schemes. If the number of concept codes in the coding
scheme exceeds th®w_many parameter, the terminology vendor may choose the
TooManyToList exception rather than return the list. TheknownCodingScheme
exception is thrown if the supplied coding scheme id is not supported and/or
recognized.

list_value_domain_ids

This provides the ability to list all of the value domains supported by the terminology
service. The intended purpose of this interface as specified withireiexplorer is

to provide list access to a relatively small set. If the number of value domains in the
terminology service exceeds thew_many parameter, the terminology vendor may
choose théfooManyToList exception rather than return the list.

is_concept_in_value_domain

LQS V1.0 Terminology Service Module June 2000 2-33

2-34

This returns TRUE if the supplied concept belongs to the supplied value domain,
FALSE otherwise. An exception is thrown if the supplied value domain is not
recognized.

are_concepts_in_value_domains

This is a batch equivalent of the previous operation. A list of qualified codes is
supplied along with a corresponding list of value domains. The corresponding return
sequence returns TRUE if the concept belongs, FALSE if it doesn’t, and UNKNOWN
if the corresponding value domain is not recognized. FdmameterAlignmentError
exception is thrown if the number of value domains is not the same as the number of
qualified codes.

get_pick_list

This returns an appropriate pick list, if any, for the supplied value domain and ordered
set of usage context identifiers. An exception is thrown if the value domain is
unrecognized, if the service is unable to provide a pick list for the value domain, or if
the pick list is deemed too large in the opinion of the terminology service vendor.

association_exists

This operation returns true if an association instance of the supplied type exists
between the qualified source code and the target element. The association is tested in
terms of the default systemization of the coding scheme named in the source code. If
the coding scheme does not have a default systemization, the
NoSystemizationForCodingScheme exception is thrown. Thdirect_only flag

indicates whether the transitive closure of the association is to be considered (FALSE),
or only immediate children (TRUE). An exception is thrown if the named association

is not included in the systemization, if the coding scheme of the source or target
element is not recognized, or if the source or target concept code does not belong to
the supplied coding scheme.

associations_exist

This is the batch equivalent of the above operation. It takes a list of source codes, a list
of target elements and a list of association identifiers, and returns a list of results. The
direct_only flag applies to all of the elements. If an association is not recognized or a
code is not recognized, &aINKNOWN value is returned. The client may use the
association_exists function to determine what went wrong. The
ParameterAlignmentError exception is thrown if there isn’t the same number of

source, target, and association elements.

list_associated_target_elements

This operation returns a list of target elements associated with the supplied qualified
code via the supplied association. The default systemization for the coding scheme
supplied in the qualified code is used. If the coding scheme does not have a default
systemization, th&loSystemizationForCodingScheme exception is thrown. The
direct_only flag indicates whether the transitive closure of the association is to be

Lexicon Query Service V1.0 June 2000

2

considered (FALSE), or only immediate children (TRUE). An exception is thrown if

the named association is not included in the systemization, if the coding scheme of the
source element is not recognized, or if the source concept code does not belong to the
supplied coding scheme.

list_associated_source_elements

This operation returns a list of source elements associated with the supplied target
element via the supplied association. The default systemization for the supplied coding
scheme is used. If the coding scheme does not have a default systemization, the
NoSystemizationForCodingScheme exception is thrown. Thdirect_only flag

indicates whether the transitive closure of the association is to be considered (FALSE),
or only immediate children (TRUE). An exception is thrown if the named association
is not included in the systemization, if the coding scheme of the target element is not
recognized, or if the source or target concept code does not belong to the supplied
coding scheme.

2.2.13 CodingSchemelocator Interface

I
I CodingSchemeLocator
I
interface CodingSchemelLocator:TerminologyService{

VersionldSeq get_version_ids(

in CodingSchemeld coding_scheme_id
) raises (

UnknownCodingScheme

);

LanguageldSeq get_supported_languages(
in CodingSchemeld coding_scheme_id
) raises (
UnknownCodingScheme

);

CodingSchemeVersionRefs get_coding_scheme_version(
in CodingSchemeld coding_scheme _id,
in Versionld version_id,
in Languageld language_id
) raises (
UnknownCodingScheme,
UnknownVersion,
LanguageNotSupported

)i
CodingSchemeVersionRefs get_native_coding_scheme_version(

) raises(
NoNativeCodingScheme

LQS V1.0 Terminology Service Module June 2000 2-35

2-36

);

Versionld get_last_valid_versions (
in ConceptCode a_code
) raises (
UnknownCode
)i
h

The CodingSchemelLocator component provides navigational capabilities to
enumerate and access BiedingScheme andCodingSchemeVersion objects as
defined in the abstract model. T@B®dingScheme object and methods have been
flattened into theCodingSchemelLocater interface.

get_version_ids

Returns an ordered list of all of the version identifiers supported in the named coding
scheme. The list is ordered chronologically from latest to earliest. An exception is
thrown if the supplied coding scheme identifier is not recognized by the terminology
service. This implementSodingScheme.GetAllVersiofrem the abstract model.

get_supported_languages

Returns a list of all the languages supported by the named coding scheme. An
exception is thrown if the supplied coding scheme identifier is not recognized by the
terminology service. This indirectly implements
CodingSchemeVersion.ListSupportedLangudgae® the abstract model. Note that

some of the languages returned by this method may not be supported by all versions of
the coding scheme.

get_coding_scheme_version

Returns a reference to the nan@adingSchemeVersion object, given the name of

the coding scheme, the name of the desired version and language in which the version
object is to communicate. The version identifier may be set to DEFAULT, which
specifies that the current production version is desired. This method will throw an
exception if the coding scheme is not recognized, the version is not recognized, or the
language is not supported in the coding scheme version. This implements both the
GetCodingSchemeVersion andGetDefaultCodingSchemeVersion methods. It

also serves to validate and establish the language identifier that will be used in
language-dependent operations.

get_native_coding_scheme_version

Returns a reference to the default version of the native coding scheme using the
preferred language. The service provider throws an exception if there has been no
coding scheme designated as native. This implements the
TerminologyService.GetNativeCodingSchenethod.

get_last_valid_version

Lexicon Query Service V1.0 June 2000

2

Returns the identifier of the chronologically most recent coding scheme version that
contains the supplied concept code. Typically the version identifier will be that of the
latest version except in cases where concept codes have become obsolete. A null
version identifier is returned if there is no longer any version which contains the
supplied concept code. An exception is thrown if the concept code does not belong to
the coding scheme.

2.2.14 ValueDomainLocator Interface

I
I ValueDomainLocator
I
interface ValueDomainLocator:TerminologyService {

void list_value_domain_ids(
in unsigned long how_many,
out ValueDomainldSeq value_domain_ids,
out ValueDomainlditer value_domain_id_iter

);

VersionldSeq get_version_ids(

in ValueDomainld value_domain_id
) raises(

UnknownValueDomain

);

ValueDomainVersion get_value_domain_version(
in ValueDomainld value_domain_id,
in Versionld version_id
) raises(
UnknownValueDomain,
UnknownVersion

);

ValueDomainldSeq get_value_domain_ids_for_concept (
in QualifiedCode qualified_code
);
8

The ValueDomainLocator component provides the navigational capabilities
necessary to enumerate and accesd/gheeDomainandValueDomainVersiombjects

as defined in the model. Th&alueDomainobject and methods have been flattened into
the ValueDomainLocater interface.

get_version_ids

LQS V1.0 Terminology Service Module June 2000 2-37

This operation returns an ordered list of all of the supported versions in a specific value
domain. The list is ordered chronologically from latest to earliest. An exception is
thrown if the supplied coding scheme identifier is not recognized and/or supported by
the terminology service. This implements ¥dueDomain.GetAllVersionmethod in

the model.

get_value_domain_version

This operation returns a reference to the naieddeDomainVersion object, given

the identification of the value domain and the desired version. The version identifier
may be set to DEFAULT, which specifies that the current production version is desired.
This implements both th#alueDomain.GetValueDomainVersiand
ValueDomain.GetDefaultVersiomethods.

get_value_domain_ids_for_concept

This operation will return the list of value domain ids which include this concept in
their current default version.

2.2.15 CodingSchemeAttributes Interface

I
I CodingScheme interfaces
I

I
/I A coding scheme consists of the following interfaces

1 interface CodingSchemeVersion:CodingSchemeVersionAttributes
I interface PresentationAccess:CodingSchemeVersionAttributes

1 interface LinguisticGroupAccess:CodingSchemeVersionAttributes
1 interface SystemizationAccess:CodingSchemeVersionAttributes

/ interface AdvancedQuery:CodingSchemeVersionAttributes

I

I

I interface CodingSchemeVersionAttributes

I
interface CodingSchemeVersionAttributes {
readonly attribute CodingSchemeld coding_scheme _id;
readonly attribute Versionld version_id;
readonly attribute Languageld language _id;
readonly attribute boolean is_default_version;
readonly attribute boolean is_complete_scheme;
readonly attribute CodingSchemeVersion coding_scheme_version_if;
readonly attribute PresentationAccess presentation_if;
readonly attribute LinguisticGroupAccess linguistic_group_if;
readonly attribute SystemizationAccess systemization_if;
readonly attribute AdvancedQueryAccess advanced_query_if;

2-38 Lexicon Query Service V1.0 June 2000

2

CodingSchemeVersionAttributes is an abstract interface that is inherited by the
CodingSchemeVersion , PresentationAccess , LinguisticGroupAccess
SystemizationAccess , andAdvancedQuery interfaces. All of these interfaces are
tightly coupled in the component model and must all return identical values for these
attributes. Each of the attributes is defined below:

coding_scheme_id

The identifier of the coding scheme represented by any of these interfaces.

version_id

The version of the coding scheme represented by any of these interfaces.

language_id

The language which is represented by any of these interfaces.

is_default_version

A flag that indicates whether this version was considered the default version for the
coding scheme at the time that the interface was acquired.

is_complete_scheme

A flag that indicates whether the version of the coding scheme is considered
“complete” or exhaustive by the terminology vendor or whether it represents a subset
of the total named scheme.

CodingSchemeVersion,
PresentationAccess,
LinguisticGroupAccess,
SystemizationAccess,
AdvancedQuery

All of these interfaces are optional. If not supplied by the terminology vendor, these
attributes return a reference to the NULL object. They are described in the following
pages.

2.2.16 CodingSchemeVersion Interface

I
I interface CodingSchemeVersion
I

interface CodingSchemeVersion : CodingSchemeVersionAttributes {

SyntacticTypeldSeq get_syntactic_types();
SourceTermUsageldSeq get_source_term_usages();
SourceldSeq get_scheme_source_ids();
UsageContextldSeq get_usage_contexts();

LQS V1.0 Terminology Service Module June 2000 2-39

void list_concepts(
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter

);

boolean is_valid_concept(
in ConceptCode a_code

);

DefinitionSeq get_definitions(
in ConceptCode a_code
) raises(
UnknownCode
);
Definition get_preferred_definition(
in ConceptCode a_code
) raises(
UnknownCode

);

CommentSeq get_comments(
in ConceptCode a_code

) raises (
Notimplemented,
UnknownCode

);

InstructionSeq get_instructions(
in ConceptCode a_code

) raises (
Notlmplemented,
UnknownCode

);

IntIStringSeq get_all_text(

in ConceptCode a_code
) raises (

UnknownCode

);

IntIString get_preferred_text (
in ConceptCode a_code
) raises (
UnknownCode
NoPreferredText

);

IntIString get_text_for_context(
in ConceptCode a_code,

2-40 Lexicon Query Service V1.0 June 2000

in UsageContextldSeq context_ids

) raises (
UnknownCode,
NoTextLocated

);

ConceptCodeSeq get_concepts_by _text(
in string text

);

void match_concepts_by_string(
in IntIString match_string,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultslter weighted_result_iter
) raises (
Notimplemented

);

void match_concepts_by_keywords(
in OrderedIntlStringSeq keywords,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultslter weighted_results_iter
) raises(
Notimplemented
)i
h

The CodingSchemeVersion interface implements portions of both the
CodingSchemeVersiand theConceptDescriptioninterface as described in the abstract
model. Presentations, linguistic groups, and systemizations have been factored into
separate interfaces.

get_syntactic_types,
get_source_term_usages,
get_scheme_source_ids,
get_usage_contexts

These operations implement the methbasAllSyntacticTypes, ListSourceTermUsages,
ListSchemeSourceandListSupportedUsagesspectively. They allow run-time
discovery of the entities supported by this version of the coding scheme.

list_concepts

This implements th&etAllConceptsnethod. It returns an iterator of all the concept
codes defined in this version of the coding scheme. Note that the iterator returns both
the concept code and the preferred presentation.

is_valid_concept

LQS V1.0 Terminology Service Module June 2000 2-41

Returns TRUE if the supplied concept code is valid for this particular version of the
coding scheme, FALSE otherwise. This implementsisMalidConceptmethod in the
model.

get_definitions

Returns all of the definitions for the supplied concept code in the language specified
for this object reference. An exception is thrown if the concept code is not recognized.
This implements th€onceptDescription.GetDefinitions(FALSEgethod in the model.

get_preferred_definition

Returns the preferred definition for the supplied concept code, if any. An exception is
thrown if the concept code is not recognized. This implements the
ConceptDescription.GetDefinitions(FALSHEgethod in the model.

get_comments

Returns any comments associated with the concept code in the language specified for
the CodingSchemeVersion object reference. An exception is thrown if the concept
code is not recognized. This implements @enceptDescription.Commentgethod in

the model.

get_instructions

Returns any instructions associated with the concept code. The language is ignored. An
exception is thrown if the concept code is not recognized. This implements the
ConceptDescription.Getlnstructiomsethod in the model.

get_all_text

Returns all plain text ASCII presentations associated with the supplied concept code.
An exception is thrown if the concept code is not recognized. This partially
implements the&ConceptDescription.GetAllPresentationsethod in the model.

get_preferred_text

Returns the preferred text in the language specified fo€CtitingSchemeVersion

object reference. An exception is thrown if no text is preferred in the given language,
or the concept code is not recognized. This partially implements the
ConceptDescription.GetPreferredPresentatioethod in the model.

get_text_for_context

Returns the appropriate text in the language specified for the

CodingSchemeVersion object reference for the supplied list of context identifiers.
The list of context identifiers should be ordered from most to least important. The
service ignores unknown context identifiers when searching for the matching text. An
exception is thrown if the concept code is not recognized or the service is unable to
come up with the appropriate text. This partially implements the
ConceptDescription.GetPresentatiomethod in the model.

2-42 Lexicon Query Service V1.0 June 2000

get_concepts_by_text

Returns a list of all concept codes that have a textual presentation in the language
specified for theCodingSchemeVersion object reference which matches exactly the
supplied text. This implements tltmdingSchemeVersion.GetConceptsByifeathod in
the model.

match_concepts_by_string

Returns a weighted list of concept codes which have text that matches the supplied
string. The weighted list is ordered by match likelihood with the most likely matches
occurring first in the list. The returned list contains the concept code, the relative
likelihood of match (0.0 < likelihood 1.0) along with the textual string which
matched, and the preferred presentation for the matching concept code.

The default matching algorithm recognizes the asterisk (*), question mark (?) and back
slash (\) as special characters, which represent zero or more matching characters,
exactly one matching character and the escape character respectively. Case is ignored
during the matching process. Thus the match string “Card*ly” would match all textual
presentations which began with “card” regardless of case and ended with “ly.”
Similarly, the string “wid??et” would match all seven character strings beginning with
“wid” and ending with “et.” This implementslatchConceptsByStrinfjom the abstract
model. This operation is optional and tRetimplemente@xception should be thrown

if it is not implemented.

Note —It is anticipated that terminology vendors may extend this algorithm
substantially. For this reason, there are no conformance points specified regarding the
set of elements to be returned. The set of concept codes and weights returned are
entirely at the discretion of the terminology vendor.

match_concepts_by keywords

This is identical to thenatch_concepts_by string with the exception that a list of
“keywords” is provided instead of a single match string. The supplied keyword list is
ordered, with the highest priority being assigned to the first word in the list. Keywords
may have the “*” and “?” wild cards embedded. A keyword may not have a white
space character embedded (e.g., tab, “ “, etc.), as it is intended to match exactly one
word. The terminology services return concept codes that have text matching one or
more of the supplied keywords. This implemekfstchConceptsByKeywordsom the
abstract model. This operation is optional andNb&dmplemente@xception should be
thrown if it is not implemented.

Note —As with the proceeding match function, it is the intention of this specification
to give the terminology service provider a fair amount of leeway in how the match
strings are interpreted.

LQS V1.0 Terminology Service Module June 2000 2-43

2.2.17 PresentationAccess Interface

I
I PresentationAccess
I
interface PresentationAccess : CodingSchemeVersionAttributes {

PresentationFormatldSeq get_presentation_format_ids();

Presentation get_presentation(
in Presentationld presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

Presentationinfo get_presentation_info(
in Presentationld presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_presentation_usages(
in Presentationld presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_all_presentations_for_concept(
in ConceptCode a_code

) raises(
UnknownCode

);

PresentationUsage get_preferred_presentation(

in ConceptCode a_code,

in PresentationFormatld presentation_format_id
) raises(

UnknownPresentationFormat,

UnknownCode,

NoPreferredPresentation

);

PresentationUsage get_presentation_for_context(

in ConceptCode a_code,

in UsageContextldSeq context_ids,

in PresentationFormatld presentation_format_id
) raises (

UnknownPresentationFormat,

UnknownCode,

NoPresentationLocated

2-44 Lexicon Query Service V1.0 June 2000

);

PresentationUsage get_all_presentations_for_context (
in ConceptCode a_code,
in UsageContextldSeq context_ids,
in PresentationFormatld presentation_format_id
) raises (
UnknownPresentationFormat,
UnknownCode,
NoPresentationLocated

I3

The PresentationAccess component is optional and may or may not be

implemented depending upon the needs of the client and terminology service vendor. It
provides a more “sophisticated” level of access to presentations and their associated
entities. The various operations are described below.

get_presentation_format_ids

Returns a list of all the presentation formats supported by this module. This
implementsCodingSchemeVersion.ListSupportedPresentationForfnains the abstract
model.

get_presentation

Returns the actual presentation given a presentation identifier. An exception is thrown
if the presentation identifier is not in the coding scheme. This implements a portion of
CodingSchemeVersion.GetPresentatioom the abstract model.

get_presentation_info

Returns a presentation info structure given a presentation identifier. An exception is
thrown if the presentation identifier is not in the coding scheme. This implements a
portion of CodingSchemeVersion.GetPresentatitom the abstract model. This
operation andjet_presentation above fully implemenGetPresentation

get_presentation_usages

Returns a list of all th@®resentationUsage structures that reference the supplied
presentation identifier. An exception is thrown if the presentation id is not in the
coding scheme version. This implemeBRtesentation.GetPresentationUsadgesm the
abstract model.

get_all_presentations_for_concept

Returns a list of all th@resentationUsage structures that contain the supplied

concept code. These structures may then be used to acquire further information about
the associations and the presentation itself. An exception is thrown if the concept code
is not valid in the coding scheme. This implements
ConceptDescription.GetAllPresentatiofiem the abstract model.

LQS V1.0 Terminology Service Module June 2000 2-45

get_preferred_presentation

Returns theéPresentationUsage structure that represents the concept
code/presentation association that is preferred for the supplied concept code in the
default language. An exception is thrown if the presentation format is not recognized,
if the concept code is not valid in the coding scheme version, or if there is no preferred
presentation in this format and/or language. This implements
ConceptDescription.GetPreferredPresentatfoom the abstract model.

get_presentation_for_context

Returns thé’resentationUsage structure that represents the code/presentation
association that is most appropriate for ordered context list for the supplied concept
code and format. The list of contexts is ordered by the relative importance to the
calling application. The service ignores unrecognized contexts in the list. An exception
is thrown if the presentation format is not recognized, if the concept code is not valid
in the coding scheme version, or if there is no preferred presentation in this format.
This implementLonceptDescription.GetPresentationForContexim the abstract

model.

get_all_presentations_for_context

This operation is identical to the preceding operation with the exception that it returns
all of the PresentationUsage structures that could be appropriate. It implements
ConceptDescription.GetAllPresentationsForContizgim the model.

2.2.18 LinguisticGroupAccess Interface

)
1 LinguisticGroupAccess
I
interface LinguisticGroupAccess : CodingSchemeVersionAttributes {

LexicalTypeldSeq get_lexical types();

LexicalGrouplinfo get_lexical_group(
in LexicalGroupld lexical_group_id
) raises(
LexicalGroupNotinCodingSchemeVersion
)i
}

The LinguisticGroupAccess component is an optional component. A linguistic

group associates one or more syntactically similar presentations. The interface provides
the two operations listed below. (The method
CodingSchemeVersion.GetAllLinguisticGroupsmplemented in the

TerminologyService base module.)

get_linguistic_group

2-46 Lexicon Query Service V1.0 June 2000

2

Returns a structure which represents the named lexical group. An exception is thrown
if the group is not recognized. This implements the
CodingSchemeVersion.GetLinguisticGromgthod.

2.2.19 AdvancedQueryAccess Interface

I
I AdvancedQueryAccess
I

interface AdvancedQueryAccess : CodingSchemeVersionAttributes {
readonly attribute PolicyNameSeq supported_policies;
readonly attribute ConstraintLanguageldSeq
supported_constraint_languages;

struct query_policies {
unsigned long return_maximum;
boolean concept_as_source;
boolean concept_as_target;
boolean current_scheme_only;
boolean direct_associations_only;

I3

void query (
in Constraint constr,
in PolicySeq search_policy,
in unsigned long how_many,
out WeightedResultSeq results,
out WeightedResultslter results_iter

) raises (
lllegalConstraint,
lllegalPolicyName,
PolicyTypeMismatch,
DuplicatePolicyName

)i

}

The AdvancedQueryAccess interface is an optional interface which provides a
means by which a client can enumerate concepts that satisfy multiple associations.

The constraint ¢onstr ” is the means by which the client states the requirements. If
the “constr " does not obey the syntax rules for a legal constraint expression, then an
lllegalConstraint exception is raised.

The OMG Trader Specification, appendix B [2] defines the OMG Trader constraint
language. This document should be considered the specification for the Terminology
Service query constraint. The information provided here defines the Property Names
that may be used, as well as a summary of the constraint language as applied to
terminology services.

LQS V1.0 Terminology Service Module June 2000 2-47

2-48

A statement in the constraint language is a string. Other constraint languages may be
supported by a particular terminology service implementation; the constraint language
used by a client of the terminology service is indicated by embedding “<<ldentifier
major.minor>>" at the beginning of the string. If such an escape is not used, it is
equivalent to embedding “<<OMG 1.0>>".

The constraint expressions in a query can be constructed from the Properties defined in
this specification. The TerminologyService Values Module includes standard names
that can be used as Property values to construct terminology service constraint queries.
[2] These property names are defined to searche&ssgaciationld in combination

with text and keyword search under control of the client.The constraint language in
which these expressions are written consists of the following items (examples of these
expressions are shown in square brackets below each bulleted item):

® Comparative functions: == (equality),! = (inequality), >, >=, <, <=, ~ (substring
match), in (element in sequence); the result of applying a comparative function is a
boolean value [“Cost < 5” implies only consider offers with a Cost property value
less than 5; “Visa’' in CreditCards” implies only consider offers in which the
CreditCards property, consisting of a set of strings, contains the string 'Visa’]

® Boolean connectives: and, or, not [‘Cost >= 2 and Cost <= 5" implies only consider
offers where the value of the Cost property is in the range 2 <= Cost <= 5]

® Property existence: exist
® Property names
® Numeric and string constants

® Mathematical operators: +, -, *, / [“10 < 12.3 * MemSize + 4.6 * FileSize” implies
only consider offers for which the arithmetic function in terms of the value of the
MemSize and FileSize properties exceeds 10]

® Grouping operators: (,)

Note that the keywords in the language are case-sensitive. Please see the OMG Trade
specification for a complete definition of the constraint language.

The “policies” parameter allows the importer to specify how the search should be
performed as opposed to what criteria should be used to determine a match. This can
be viewed as parameterizing the algorithms within the terminology service
implementation. The “policies” are a sequence of hame-value pairs. The names
available to an importer depend on the implementation of the terminology service.
However, some names are standardized where they represent policies that all
terminology services should support. If a policy name in this parameter does not obey
the syntactic rules for leg&olicyName 's, then anlllegalPolicyName exception is

raised. If the type of the value associated with a policy differs from that specified in
this specification, then BolicyTypeMismatch exception is raised. If subsequent
processing of #@olicyValue yields any errors (e.g., the terminology service

determines a policy value is malformed), thenlmralidPolicyValue exception is

raised. If the same policy name is included two or more times in this parameter, then
the DuplicatePolicyName exception is raised.

Lexicon Query Service V1.0 June 2000

2

The returned concept codes are passed back WaightedResultSeq which has
iterator access provided.

The following standard policies are defined for the terminology service query
operation:

concept_as_source

Specifies whether to include concepts that participate as the source in the association.

concept_as_target

Specifies whether to include concepts that participate as the target in an association
named in the query.

current_scheme_only

Specifies whether to include concepts that may be defined as synonyms in this coding
scheme, but are not a part of the coding scheme. Setting this to TRUE will limit the
concepts returned to those that are a part of the current coding scheme.

direct_associations_only

Specifies whether or not to include concepts which participate in an association via
inheritance rather than directly. Setting this to TRUE would limit the returned concepts
to those that are directly involved in the named association. Setting this to FALSE
would allow the transitive closure of the particular named association to be included.
Behavior would be identical to that in thee concepts_related operation of the
systemization. Specifically, subtypes and other associations are not included in the
results of the query.

2.2.20 SystemizationAccess Interface

I
I SystemizationAccess
I
interface SystemizationAccess : CodingSchemeVersionAttributes {
SystemizationldSeq get_systemization_ids();

Systemization get_systemization(

in Systemizationld systemization_.id
) raises(

UnknownSystemization

);

Systemization get_default_systemization(
) raises(
NoDefaultSystemization

);

LQS V1.0 Terminology Service Module June 2000 2-49

2-50

The SystemizationAccess interface is an optional component. It provides access to
Systemizations associated with a coding scheme version.

get_systemization_ids

Returns a list of all the identifiers of all the systemizations supported in the coding
scheme version. This implemer@®dingSchemeVersion.GetAllSystemizativom the
abstract model.

get_systemization

Returns a reference to the systemization object that implements the named
systemization. An exception is thrown if the systemization name is unrecognized. This
implementsCodingSchemeVersion.GetSystemizatiom the abstract model.

get_default_systemization

Returns a reference to the “default” systemization for the coding scheme version. An
exception is thrown if the terminology vendor has not specified a default. This
implementsCodingSchemeVersion.GetDefaultSystemizdtiom the abstract model.

2.2.21 Systemization Interface

I
1 Systemization
I
interface Systemization {

readonly attribute Systemizationld systemization_id;
readonly attribute CodingSchemeVersion coding_scheme_version;

AssociationldSeq get_association_ids();

AssociationDef get_association_definition(
in Associationld association_id

Jraises (
AssociationNotInSystemization

);

void list_all_association_instances(
in unsigned long how_many,
out AssociationinstanceSeq association_instance_seq,
out Associationinstancelter association_instance_iter

);

Trinary are_entities_associated(
in ConceptCode source_code,
in AssociatableElement target _element,
in Associationld association_id,
in boolean direct_only

Lexicon Query Service V1.0 June 2000

) raises (
AssociationNotInSystemization

);

Trinary could_association_be_inferred(
in ConceptCode source_code,
in AssociatableElement target _element,
in Associationld association_id

) raises (
AssociationNotInSystemization,
Notimplemented

);

void list_associated_target_entities (

in ConceptCode source_code,

in Associationld association_id,

in boolean direct_only,

in unsigned long how_many,

out TargetElementSeqSeq related_elements,

out TargetElementSeqlter related_elements_iter
) raises (

AssociationNotInSystemization

);

void list_associated_source_codes (
in AssociatableElement target _element,
in Associationld association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter
) raises (
AssociationNotInSystemization
)i
EntityGraph get_entity_graph (
in AssociatableElement root_node,
in Associationld association_id,
in AssociationRole node_one_role,
in boolean direct_only
) raises (
AssociationNotInSystemization,
Notimplemented,
TooManyTolList
);
AssociationldSeqget_associations_for_source (
in ConceptCodesource_code
)i
AssociationldSeqget_associations_for_target (
in AssociatableElement target element

);

LQS V1.0 Terminology Service Module June 2000 2-51

ValidationResult validate_concept_expression (
in ConceptExpression expression

) raises (
InvalidExpression,
Notimplemented,
AssociationNotInSystemization

);

ConceptExpression get_simplest_form (
in ConceptExpression expression

) raises (
InvalidExpression,
Notimplemented,
AssociationNotInSystemization

);

ConceptExpression expand_concept (

in ConceptCode concept,

in AssociationQualifierldSeq association_qualifier_seq
) raises (

ConceptNotExpandable,

UnknownCodingScheme,

Notimplemented,

AssociationNotInSystemization

);

Trinary are_expressions_equivalent (
in ConceptExpression expressionl,
in ConceptExpression expression2

) raises (

InvalidExpression,
UnknownCodingScheme,
AssociationNorInSystemization,
NotImplemented,
UnableToEvaluate

);

ConceptExpression expression_difference(
in ConceptExpression expressionl,
in ConceptExpression expression2

) raises (

InvalidExpression,
UnknownCodingScheme,
AssociationNotInSystemization,
Notimplemented,
UnableToEvaluate

);

ConceptExpression minimal_common_supertype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,

2-52 Lexicon Query Service V1.0 June 2000

AssociationNotInSystemization,
Notimplemented,
NoCommonSupertype

);

ConceptExpression maximal_common_subtype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
AssociationNotInSystemization,
Notimplemented,
NoCommonSubtype

3

A systemization represents an ordering, classification and/or categorization of a set of
concept codes. The purpose of a systemization is to further define and describe the
concept codes within a coding scheme, as well as to define the relationship between
these concept codes and other concept codes and/or characteristics in other coding
schemes.

The systemization references one or more association types and contains a set of
association instances between various concept codes and characteristics. Each of the
individual systemization entities is described below.

systemization_id

The unique name of the systemization within the context of the coding scheme version.

coding_scheme_version

A reference to the coding scheme version object in which this systemization is
implemented.This implementetCodingSchemeVersidrom the abstract model.

get_association_ids

Returns a list of all the association type identifiers that are referenced by this
systemization. The ability to retrieve the ids without the overhead of retrieving the
association definitions is provided as a performance enhancement for browser clients.
This could be used in conjunction with thet_association_definition to

implements the semantics of tBetAllAssociationsnethod of the model.

get_association_definition

Returns amssociationDef that includes the formal definition of an association as
documented in the model. This includes the association identifier, source and target
roles and cardinality, target types and flags that describe the semantics of the
association.

list_all_association_instances

LQS V1.0 Terminology Service Module June 2000 2-53

2-54

This operation provides iterator access to all of the association instances within the
systemization. This implements tkBetAllAssociationinstancesethod defined in the
model.

are_entities_associated

This operation determines whether an association instance of the named association
exists in which the source concept code is associated with the target. An exception is
thrown if the association identifier is not defined in the systemization. The operation
returns TRUE if the association exists, FALSE if the service can assert that it doesn’t
exist, and UNKNOWN if the service has insufficient information to say one way or the
other.

Thedirect_only flag indicates whether only direct associations are to be considered
(TRUB) or whether a transitive path between the source and target are also considered
(FALSE).This flag is ignored in the case of non-transitive associations. Note that the
direct_only flag applies only to the named association. Subtyping associations are
not considered by thare_entities_associated operation. This implements the
AreEntitiesAssociatethethod of the Systemization model.

could_association_benferred

This operation extends ttage_entities_associated above to include subtyping and
other associations where appropriate. The input parameters are identical to the previous
operation, with the exception that tbeect_only flag is presumed to be FALSE. A
service implementation may use additional means at its disposal to determine whether
there is some finite probability of an association existing.

list_associated_target_entities

This operation returns iterator access to the set of all target entities that participate in
the named association with the source codeditéctOnlyis TRUE, only the target

entities directly associated with the source codes are supplied. If FALSE, all of the
target entities in the transitive closure of the association are returned.This implements
the GetAssociatedTargetEntitiesethod of the model.

list_associated_source_concepts

This operation returns iterated access to the set of all source concepts that participate
in the named association with the target entitydifectOnlyis TRUE, only the source
concepts directly associated with the source codes are supplied. If FALSE, all of the
target entities in the transitive closure of the association are returned. This implements
the GetAssociatedSourceCode®thod of the model. ThairectOnlyflag is ignored

and presumed to be TRUE when the supplied association is not transitive.

get_entity_graph

This operation returns a graph of instances of the supplied association rooted at the
supplied root node and based on the supplied association typerdbtheode_role

is SOURCE, the directed graph traverses from source to target. If the
root_node_role is TARGET, the graph traverses from target to source. The returned

Lexicon Query Service V1.0 June 2000

graph may either carry direct associatiodsgctOnly = TRUE) or the transitive

closure of the associationglifectOnly = FALSE). An exception is thrown if the
association is unrecognized or the returned graph is too large to reasonably return in
simple structure.

get_associations_for_source

This operation returns the set of all associations in which the supplied qualified code
participates in the source role. This implementsGleeAssociationsForSouraaethod
of the model.

get_association_for_target

This operation returns the set of all associations in which the supplied target element
participates in the target rol€his implements th&etAssociationsForTargebethod of
the model.

validate_concept_expression

A concept expression consists of a base concept code and one or more associations
which apply to that code. The notation for the following example is borrowed from the
GALEN CORE notation [13]. One representation of the upper lobe of the left lung
could be:

Lobewhich <s-part-of (Lungwhich has-lateralityLeft) has-locationUpper>

Thevalidate_concept_expression operation returns FALSE if the supplied concept
expression is not semantically valid according to the coding scheme. If the return is
TRUE, an optional association qualifier may also be returned to further qualify the
conditions in which the TRUE return applies. As a hypothetical example, a
systemization might return a qualifier of “sensible.” If the concept expression
described theniddlelobe of the left lung, the systemization might return a qualifier of
“grammatical”, indicating that, while theien’t a middle lobe of the left lung, the
expression still made grammatical sense. This implements the
ValidateConceptExpressianethod of the Systemization model.

get_simplest_form

This operation returns a concept expression that represents the simplest form in which
the supplied concept expression may be expressed. Using the example above, a
terminology system might have a concept code which represented the lefTheng

result of aget_simplest_fornsall with the example above might yield:

Lobewhich <s-part-of LeftLung has-locationUpper>

This implements th&etSimplestFornmethod of the Systemization model.

expand_concept

LQS V1.0 Terminology Service Module June 2000 2-55

2-56

This operation takes the supplied concept code and association qualifiers and returns
the “canonical” concept expression that serves to define the concegpalid_concept

is supplied with the concept code <LeftLung> and no qualifiers in the above scenario,
it might return:

Lungwhich has-laterality Left

This implements th&xpandConcepinethod in the Systemization model.

are_expressions_equivalent

This operation is supplied with two concept expressions. It determines whether these
two expressions could be considered equivalent. This implements the
AreExpressionsEquivalenmnethod of the model.

expression_difference

This operation, given two concept expressions, determines the “difference” between
the two concept expressions and returns this difference in the form of a third concept
expression. This implements tixpressionDifferencenethod of the model.

minimal_common_supertype

This operation, given a sequence of two or more concept expressions, returns a concept
expression that is the “closest” valid supertype based on the concepts in the
expressions. An exception is thrown if there is no valid minimal common supertype
short of theuniversal type This implements th&linimalCommonSupertypaethod of

the model.

maximal_common_subtype

This operation, given a sequence of two or more concept expressions, returns a concept
expression that is the “closest” valid subtype based on the concepts in the expressions.
An exception is thrown if there is no valid maximum common subtype short of the
absurd typeThis implements théMaximalCommonSubtypeethod of the model.

2.2.22 ValueDomainVersion Interface

/i
/I Value Domain Version
i

interface ValueDomainVersion {
readonly attribute ValueDomainld value_domain_id;
readonly attribute Versionld value_domain_version_id;
readonly attribute boolean is_default_version;
CodingSchemeldSeq get_schemes_with_extensions();

QualifiedCodelnfoSeq get_all_extensions();

Lexicon Query Service V1.0 June 2000

ConceptinfoSeq get_extension_for_scheme(
in CodingSchemeld coding_scheme_id
) raises (
UnknownCodingScheme

);

boolean is_code_in_domain(
in QualifiedCode qualified_code

);

void get_pick_list(
in UsageContextldSeq context_ids,
out PickListSeq pick_list,
out PickListlter pick_list_iter

) raises (
TooManyTolist,
NoPickListAvailable

);

void get_pick_list_for_scheme(
in CodingSchemeld coding_scheme_id,
in UsageContextldSeq usage_context_ids,
out PickListSeq pick_list,
outPickListlter pick_list_iter
) raises(
TooManyTolist,
UnknownCodingScheme,
NoPickListAvailable

h

The ValueDomainVersion interface represents a snapshot of a value domain at a
point in time. Terminology services which provide the value domain interface may
implement a set of value domain versions for a given value domain, or may simply
choose to maintain only the latest version of a given value domain. In the latter case,
the vendor is encouraged to change the version number every time the value domain is
modified. The value domain version interface exposes the following attributes and
operations:

value_domain_id

The globally unigue name of the value domain represented as a qualified code. This
implements th&etParentValueDomaimethod in the model.

value_domain_version_id

An identifier that uniquely identifies the version of the domain within the context of
the domain itself. This corresponds to thersionldattribute in the model.

is_default_version

LQS V1.0 Terminology Service Module June 2000 2-57

TRUE indicates that this version is the recommended version of the value domain to
use at this point in time. This corresponds toiiiefaultVersiorattribute in the
model.

get_schemes_with_extensions

Returns a list of all coding schemes which have one or more concept codes listed in
this value domain.

get_all_extensions

Returns a list of all concept codes that are included in this value domain. This list
includes the qualified code and the preferred textual presentation for each code. This
implements th&setAllValueDomainExtensiomaethod in the model.

get_extension_for_scheme

Returns a list of all concept codes from a given coding scheme which are included in
this value domain. This list includes the concept code and its preferred textual
presentation.

An exception is thrown if the coding scheme is not recognized by the terminology
service. This implements th@etValueDomainExtensiamethod in the model.

is_code_in_domain

Returns TRUE if the qualified code is included in the value domain, FALSE otherwise.
This implements thésCodelnValueDomaimethod in the model.

get_pick_list

Returns the appropriate pick list given an ordered set of usage contexts. An exception
is raised if no pick list is available or the pick list is considered too large to return.
Unrecognized usage contexts are ignored. This implementSdtitickListmethod in

the model.

get_pick_list_for_sheme

Returns the appropriate pick list consisting of concept codes from the supplied coding
scheme. An exception is raised if no pick list is available, the coding scheme is not
recognized, or the pick list is considered too large to return. Unrecognized usage
contexts are ignored. This implements @GetPickListForCodingSchenmaethod in the
model.

2.3 Terminology Service Values Module

2-58

/IFile: TerminologyServiceValues.idl

I

#ifndef TERMINOLOGY_SERVICE_VALUES_IDL_
#define TERMINOLOGY_SERVICE_VALUES_IDL_

Lexicon Query Service V1.0 June 2000

#pragma prefix "omg.org"
#include <orb.idI>

#include <NamingAuthority.idl>
#include "TerminologyServices.idl"

I
I module: TerminologyServiceValues
I

module TerminologyServiceValues {

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedNameStr;
typedef NamingAuthority::AuthorityldStr AuthorityldStr;

I
1 ValueDomainld Strings
I
typedef QualifiedNameStr ValueDomainldStr;

const ValueDomainldStr ASSOCIATION_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Associationld";

const ValueDomainldStr ASSOCIATION_QUALIFIER_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationQualifierld";

const ValueDomainldStr ASSOCIATION_BASE_TYPE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationBaseTypeld";

const ValueDomainldStr LANGUAGE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Languageld"”;

const ValueDomainldStr LEXICAL_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Lexical Typeld";

const ValueDomainldStr PRESENTATION_FORMAT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/PresentationFormatid";

const ValueDomainldStr SOURCE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Sourceld";

const ValueDomainldStr SOURCE_USAGE_DOMAIN =
"IDL:omg.org/TerminologyService/SourceUsageld";

const ValueDomainldStr SYNTACTIC_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/SyntacticTypeld";

const ValueDomainldStr USAGE_CONTEXT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/UsageContextld";

)

) Associationld

I

typedef ConceptCode Associationid;

const NamingAuthority::AuthorityldStr

ASSOCIATION_ID_AUTHORITY_STRING =
"IDL:org.omg/TerminologyService/Association/";

const AssociationldlS_ COMPOSED_OF =

LQS V1.0 Terminology Service Values Module June 2000 2-59

2-60

“isComposedOf”;

const AssociationldHAS SUBTYPES =
“hasSubtypes”;

const AssociationldREFERENCES =
“references”;

const AssociationldHAS ATTRIBUTES =
“hasAttributes™;

I

I AssociationBaseTypeld

I

typedef ConceptCode AssociationBaseTypeld;

const NamingAuthority::AuthorityldStr

ASSOCIATION_BASE_TYPE_ID_AUTHORITY_STRING =
"IDL:org.omg/TerminologyService/AssociationBaseType/";

const AssociationldWHOLE_PART =
"wholepart";

const AssociationldSUBTYPE =
"subtype";

const AssociationldREFERENCE =
"reference";

const AssociationldNON_SEMANTIC =
"nonSemantic”;

I
1 AssociationQualifierld Strings
I
typedef QualifiedNameStr AssociationQualifierldStr;

const AssociationQualifierldStr MANDATORY =
"IDL:omg.org/TerminologyService/AssociationQualifier/MAND";
const AssociationQualifierldStr OPTIONAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/OPT";
const AssociationQualifierldStr SINGLE =
"IDL:omg.org/TerminologyService/AssociationQualifier/SING";
const AssociationQualifierldStr PLURAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/PLUR";

I
I Languagelds
I
typedef ConceptCode Languageld;

const NamingAuthority::AuthorityldStr
LANGUAGE_ID_AUTHORITY_STRING =
"DNS:usmarc.omg.org/041/";

const Languageld DANISH ="DAN";

Lexicon Query Service V1.0 June 2000

const Languageld ENGLISH ="ENG";
const Languageld FRENCH ="FRE";
const Languageld GERMAN ="GER";
const Languageld ITALIAN ="ITA";
const Languageld SPANISH ="SPA";

I
I LexicalTypelds
I

typedef QualifiedNameStr LexicalTypeldStr;

const LexicalTypeldStr ABBREVIATION = “DNS:umls.hl7.omg.org/LT/ABB”;
const LexicalTypeldStr EMBEDDED_ABBREVIATION =
“DNS:umls.hl7.omg.org/LT/ABX”;

const LexicalTypeldStr ACRONYM = “DNS:umls.hl7.omg.org/LT/ACR”;
const LexicalTypeldStr EMBEDDED_ACRONYM =
“DNS:umls.hl7.omg.org/LT/ACX";

const LexicalTypeldStr EPONYM = “DNS:umls.hl7.omg.org/LT/EPQO”;

const LexicalTypeldStr LAB_NUMBER = “DNS:umis.hl7.omg.org/LT/LAB”;
const LexicalTypeldStr PROPER_NAME = “DNS:umls.hl7.omg.org/LT/NAM”;
const LexicalTypeldStr SPECIAL_TAG = “DNS:umls.hl7.omg.org/LT/NON
NO™;

const LexicalTypeldStr TRADE_NAME = “DNS:umls.hl7.omg.org/LT/TRD”;

I
I PresentationFormatlds
I
typedef ConceptCode PresentationFormatlid;

const NamingAuthority::AuthorityldStr
PRESENTATION_FORMAT_AUTHORITY_STRING =
"DNS:omg.org/MIME/";

const PresentationFormatld PLAIN_TEXT = "text/plain”;
const PresentationFormatld RTF = "application/rtf";

const PresentationFormatld ZIP = "application/zip";

const PresentationFormatld PDF = "application/pdf";

const PresentationFormatld GIF_IMAGE = "image/gif";
const PresentationFormatld BASIC_AUDIO = "audio/basic";

i
I Sourcelds
i

typedef QualifiedNameStr SourceldStr;

I
1 SourceUsageTypeld
I

LQS V1.0 Terminology Service Values Module June 2000 2-61

2-62

typedef QualifiedNameStr SourceUsageTypeldStr;

I
I SyntacticType
I

typedef ConceptCode SyntacticTypeld;

const NamingAuthority::AuthorityldStr

SYNTACTIC_TYPE_AUTHORITY_STRING =
"DNS:umls.hl7.omg.org/STT";

const SyntacticTypeld CASE_DIFFERENCE = "C";

const SyntacticTypeld WORD_ORDER = "W";

const SyntacticTypeld SINGULAR_FORM = "S";

const SyntacticTypeld PLURAL_FORM = "P";

I
I Query Property Types
I

typedef string TerminologyServiceProperty;

const TerminologyServiceProperty LexicalTypeProperty = “Lexicaltypeld”;
const TerminologyServiceProperty AssociationProperty = “Associationld”;
const TerminologyServiceProperty PreferredTextProperty = “Preferred-
Text”;

const TerminologyServiceProperty DefinitionProperty = “Definition”;
const TerminologyServiceProperty PresentationProperty = “Presenta-
tionld”;

k
#endif /* TERMINOLOGY_SERVICE_VALUED IDL_ */

The above module provides the literal codes that can be used to access the terminology
services. The first section contains string literals which name each value domain
included in the terminology services interface specification. With the exception of the
version suffix, these literals should match the interface repository (IR) identifier of

each of the named entities exactly. As an example, the IDL code:

#pragma prefix "omg.org"
#include <orb.idI>
#include <NamingAuthority.idl>

I
I module: TerminologyService
I
module TerminologyServices {

TYPEDEF cONCEPTcODE IANGUAGEID;

Lexicon Query Service V1.0 June 2000

...
h

should produce an entry in the interface repository in the form:
"IDL:omg.org/TerminologyService/Languageld”;

The literals described in the value domains section are not used directly in the
terminology services, but would be the value domains that would be used when
referencing the domains in a “terminology of terminology.”

The value domains section is followed by string literals for all of the pre-defined codes
that are used in the terminology services itSetinceptCode type literals may be

used directly to access the appropriate methods. Literals oiQyp#fiedNameStr

must first be converted into a qualified code before being used in the interface. This
conversion may be accomplished by using TrenslationLibrary interface.

LQS V1.0 Terminology Service Values Module June 2000 2-63

2-64 Lexicon Query Service V1.0 June 2000

Terminology

Contents

This chapter contains the following topics.

Topic Page
“Trader Service” 3-2
“Meta-Terminology” 3-3
“Association Qualifier” 3-14
“CharacterSet” 3-14
“Coding Scheme” 3-14
“Language” 3-15
“LexicalType” 3-16
“PresentationFormat” 3-16
“Source” 3-17
“Source Term Type” 3-17
“Syntactic Type” 3-17
“Usage Context” 3-18
“Value Domain” 3-18
“Conformance Points” 3-18

Lexicon Query Service V1.0 June 2000

3-1

3-2

3.1 Trader Service

The following definitions are Service Types defined TerminologyServices
components for use by the OMG Trader Service.

interface TerminologyService {
interface TerminologyService;
mandatory readonly property string terninology_service_name;
mandatory readonly property StringSeq interfaces_implemented,;
mandatory readonly property StringSeq conformance_classes;
mandatory readonly property StringSeq supported_coding_schemes;
mandatory readonly property StringSeq default _coding_scheme;
mandatory readonly property StringSeq supported_languages

h

Since all TerminologyServices implement fherminologyService interface, only

one Trader Service type is needed, which is also called ‘TerminologyService.” The
TerminologyService interface has attributes for the common characteristics for all
TerminologyServices. These are used as properties for the service type. Additional
properties are specified which are attribute€otlingSchemeVersions (a derived
interface). The stringified versions of the attributes are used for properties since the
standard Trader constraint language does not provide a way to filter on user-defined

types.

The interface type returned from the Trader Service for this service type is a
TerminologyService . All properties are mandatory. These are common to all
implementations.

terminology_service_name

The terminology_service_name property contains the information from the
terminology_service_name attribute of thelerminologyService interface. It is
formatted as specified fadamingAuthority::AuthorityldStr

interfaces_implemented

This sequence contains the names of the interfaces the component has references to.
The names are fully qualified names which include the module name.

conformance_classes

This sequence contains the conformance classes the implementation supports. The
strings are identical to the way they are spelled and capitalized in the definition of the
conformance classes for TerminologyServices.

supported_coding_schemes

This sequence contains the Coding Schemes which are supported by this terminology
service. This is a sequence of all the stringifatlingSchemeld in this
terminologyService. It is formatted adNamingAuthority::AuthorityldStr

Lexicon Query Service V1.0 June 2000

supported_languages

This sequence contains the supported languages fdretineinologyService . It is
formatted as shown in thEerminologyServiceValues module.

default_coding_sheme

This is the defaulCodingSchemeld for this TerminologyService . It is formatted
as aNamingAuthority::AuthorityldStr

3.2 Meta-Terminology

3.2.1 Association

Most terminology services deal with complex associations between coded concepts
and, optionally, coded concepts and non-coded information. The terminology used to
describe these associations varies from vendor to vendor. One vendor may use the term
“relationship,” another the term “facet,” and a third the term “attribute.”

Each terminology system typically has its own set of codes for individual associations.
One system may use the code “hasMember” to indicate subtyping, while another may
use “isA" and a third may use “hasSubtypes.” To further complicate matters, one
system may use the code “isA" to represent subtyping while a second system uses
“iIsA" to represent a type of whole-part association. Regardless of the terminology
used it is very important that the user of the service be able to determine the
underlying intent behind a given association (relationship, facet, attribute) code.

This section defines some of the basic distinguishing characteristics of different types
of associations. These associations are arranged within an arbitrary, pragmatic
taxonomy. Each node in the taxonomy has an identifier that serves a code for the
specific combination of characteristics. The set of codes then provides a base set of
types which serve to distinguish the characteristics of vendor-specific associations.

As an example, a terminology vendor may provide an association named “broader
than.” While one can infer possible intent from the association name itself, a generic
client would not be able to utilize this association without further information. If,
however, the generic client were able to determine that “broader than” was a type of
subtypingassociation (or whole-paor whatever else), it could make certain
assumptions about the characteristics of the “broader than” which would allow it to
perform useful operations.

Please note that the taxonomy described below is intended solely as pragmatic ordering
based on useful characteristics. Thisigd taxonomy of meaning, and one cannot
presume that any of the characteristics are inherited through a classification of
association based on terminologicaéaning.

As an example, take the classification:

LQS V1.0 Meta-Terminology June 2000 3-3

3-4

3.2.11

hasFamilyReleation

!

hasDescendent

|

hasChild

Figure 3-1 Sample Classification by Meaning

In Figure 3-1, the associatidrasChildis a type othasDescendentvhich in turn is a
type ofhasFamilyRelationThehasChildassociation is intransitive and anti-symmetric,
while thehasDescendens transitiveand anti-symmetric and theasFamilyRelatioris
both transitive and symmetric.

The discussions in the sections that follow are based heavily on Kilov and Ross,
Information Modeling, An Object-Oriented Approgdd] with additional guidance and
input from Dr. Alan Rector of the University of Manchester.

Association Characteristics

Formally, an association can be defined as a binary, asymmetric relation defined across
the cross-product of a set of types. An association type — a relation type - relates a
source type to a target type. [14] A target type may either be a single element or a set
of elements. Annstanceof a relation exists if and only if there exists an instance of its
source type and an instance of its appropriate target type. (There is an exception to this
rule, the Composition-Packatyge, but this type is not used in this specification). The
following diagram represents the set of characteristics used to distinguish associations
within this specification:

Lexicon Query Service V1.0 June 2000

Association

gassociationld ; Associatioinld
ghaseType | Association Type
SsourceRole : Role
StargetRole . Role
gtargetls=et - Boolean
snonCodedillowed - Boolean
gszource Cardinality - Cardinality
gtargetCardinality - Cardinality
gtransiti~e . Trinary
gsEvimmetric - Trinary
ginherited . Trinary

gsource TargetDisjoint @ Trinary

Figure 3-2 Association Characteristics

associationld

A unique identifier for the particular association.

baseType

An identifier for the general class of association. This identifier must be one reference
one of the general classes described within this section.

sourceRole, targetRole

A synonym for the source and target portion of the association respectively. These
synonyms are only unique within the particular association. As an example, the
WholePart association has sourceRole of “whole” and atargetRole of “parts,”
which serve as synonyms for the source and target of the association respectively.

targetisSet

For a given association type, the target is either a single type or a set of different types.
As an example, thReference association associates a source concept code with a
single target concept code, while tholePart association associates a source

concept code with aetof target concept codes.

nonCodedAllowed

A FALSE value indicates that the target must either be composed of a single concept
code or a set of concept codes, depending upotatbetisSet setting. A TRUE

value indicates that the target maydthera concept code or a string (Characteristic)
representing some non-coded attribute value.

LQS V1.0 Meta-Terminology June 2000 3-5

3-6

sourceCardinality

The minimum and maximum number of instances of an association in which an
instance of an entity represented by the sourag/must participate.

A minimum sourceCardinality of 0 indicates that an instance of the entity

represented by the source code may exist without being associated with an instance of
the corresponding target. An example of a source cardinality of 0 would be an optional
reference association, where an instance of the entity represented by the source code
may or may not reference an instance of the entity represented by the target code.

A minimum sourceCardinality of 1 or more indicates that an instance of the entity
represented by the source cadeaysco-occurs with an instance of the entity
represented by the target. An example of a mininsonrceCardinality of 1 or more

is exhaustive subtyping—subtyping in whieberyinstance of the super type (source)

is always associated with at least one instance of one of the associated target types.

A maximumsourceCardinality of 1 indicates that an instance of the entity

represented by the source code may be associated with at most one target entity, while
> 1 indicates that it may be associated with several different instances of the target
entity.

targetCardinality

The minimum and maximum number of instances of association of a given type in
which an instance of the entity represented by the target may/must participate.

A minimum targetCardinality of O indicates that an instance of the entity

represented by the target code may exist without being associated with an instance of
the corresponding source code. A Reference association is an example of this sort of
association, where a target entity may or may not be referenced by an instance of the
source.

A minimum targetCardinality of 1 or more indicates that an instance of the target
entity mustbe associated with at least one instance of the source entity.

Note — The source and target cardinality does NOT make assertions about databases or
other representation mediums. They astarisabout “real life” associations. The fact,

for instance, that every person has a parent is a fact independent of whether or not
tokens representing persons in a database are or are not associated with each other.

transitive

TRUE indicates that the given association is transitive. If the associations of “A rel B”
and “B rel C” exist, the association “A rel C” may also be inferred to exist. No
statement is made in this specification about whether “A rel C” is represented
explicitly or solely by implication within a vendor implementation. An example
transitive association may be an “is contained in” type of association.

UNKNOWN indicates that one may not infer “A rel C” from the first two associations.
One may not infer “NOT (A rel C)” either.

Lexicon Query Service V1.0 June 2000

3

3.2.1.2

FALSE indicates that the given association is intransitive, and the associations “A rel
B” and “B rel C" may be used to infer “NOT (A rel C).”

symmetric

TRUE indicates that the association is symmetric, and the existence of the symmetric
association “A rel B” implies that the association “B rel A” exists as well.

UNKNOWN indicates that the association is not symmetric, and the existence of the
association “A rel B” may neither be used to infer “B rel A” or “NOT(B rel A).”

FALSE indicates that the association is anti-symmetric and one may infer “NOT(B rel
A)” from “A rel B.”

inherited

If this is TRUE, any subtypes of the source type and/or target type(s) involved in this
association inherit their participation in the association. If FALSE, only entities of the
specified type participate in the association while the subtypes do not. UNKNOWN
indicates that inheritance has not been determined one way or the other.

sourceTargetDisjoint

In most associations, for any association instance (and its transitive closure), the set of
instances of its source and elementary target types have an empty intersection. As an
example, in th&Composition association, an entity may not be directly or indirectly
composed of itself. Th8ubtyping association, however, requires that any instance of
the target type also be an instance of the associated source. TRUE indicates that the
intersection of the set of instances of the source and elementary target types are
disjoint. FALSE indicates that they are NOT disjoint and UNKNOWN states that they
may or may not be.

Note that this usually applies to instances, not to categories. It is perfectly reasonable
to say that, for example, body parts are composed of body parts, recursively. In fact
recursive part-whole relations are the norm rather than the exception. It is true that no
one body part can be a member of itself, but at the level of the attribute definitions, this
does prevent us, for example, from formulating the concept of “A building which
contains (another) building.”

Specific Association Types

The sections below describe the characteristics of several common association types, as
identified by a collection of characteristics. Please note that while the names given to
each type are intended to be descriptive of their characteristic type use, one should not
infer anything more into the name than what is contained in the description. Each name
is an arbitrary code for a specific collection of characteristics and implies no more than
that.

LQS V1.0 Meta-Terminology June 2000 3-7

3-8

Reference Association

Reference

Sassociationld ; references
shaseType : reference
gzourceHole . maintained
gtargetRole : reference
stargetlsZet | FALSE
snonCoded&llowed - FALSE
gzourceCardinality - 0.1
gtargetCardinality - 0.1
gtransitive : FALSE
gsymmetric o LINEMN OV
ginherited © LIMNKMNOWM
gsource TargetDisjoint © TRLUE

Figure 3-3 Reference Association

Any association that haskeseType of “reference” must have the following
characteristics, and any association which has the following characteristics must have a
baseType of “reference:”

® targetlsSet = FALSE - A parent concept code is associated with a single target
concept code, not a set of codes.

®* nonCodedAllowed = FALSE - The target must be a concept code, not a
characteristic.

* transitive = UNKNOWN - A reference association is not transitive. Just because
A references B and B references C, it may not be inferred that A references C.

® sourceTargetDisjoint = TRUE - An instance of a source code may not directly
or indirectly imply the existence of itself.

Note —An additional (and important) invariant on a reference association is that some
of the properties of the maintained instance are determined by the properties of its
reference instance in this reference association.

An association that haskmseType of “reference” may vary the following
characteristics:

® sourceRole , targetRole - These roles may be renamed to be more applicable if
desired.

® sourceCardinality - The minimum cardinality of the source may be greater than
or equal to zero. If greater than zero, one is asserting all instances of the source
code must be associated with a (perhaps implicit) set of target instances. The

Lexicon Query Service V1.0 June 2000

3

maximum cardinality may also be constrained to a finite number. As an example,
the source cardinality may be set to 1..1, indicating that every source
instance(maintained) must reference exactly one target (referenced) instance.

® targetCardinality - The minimum and maximum target cardinality may be varied,
requiring and/or restricting the number of references from each source.

® symmetric - This may be TRUE, UNKNOWN, or FALSE.
® inherited - This may be TRUE, UNKNOWN, or FALSE.

Subtyping Association

Subtype

grassociationld - hasSubtypes
ShaszeType : subtype
gsourceRole supertype
gtargetFole : subtypes
gtargetlsset: TRUE
SnonCodedAllowed : FALSE
Gzource Cardinality : 0N
gtargetCardinality © 0..M
gtransitive | TRELIE
gsymmetric: FALSE
ginherited : TRUE

gsource TargetDisjoint : FALSH

Figure 3-4 Subtyping Association

Any association which haskmseType of “subtype” must have the following
characteristics, and any association which has the following characteristics must have a
baseType of “subtype”:

® targetlsSet = TRUE - A parent concept code is associated with a set of one or
more target concept codes.

®* nonCodedAllowed = FALSE - The target must be a concept code, not a
characteristic

® transitive = TRUE - The association is transitive. If A has Subtypes {B, C} and B
has subtypes {D, E} then A has Subtypes {D, E, C}.

® symmetric = FALSE - If A is a subtype of B, B cannot be a subtype of A.

® inherited = TRUE - Subtypes of both the source or elementary target instances
inherit theSubtypingassociation.

® sourceTargetDisjoint = FALSE - An instance of a subtype which participates in
a Subtyping association must also be an instance of the associated supertype. The
two sets are not disjoint. The instance of the subtype must have all of the inherited
associations and properties of its supertype.

LQS V1.0 Meta-Terminology June 2000 3-9

3-10

An association which haskmseType of “subtype” may vary the following
characteristics:

® sourceRole , targetRole - These roles may be renamed to be more applicable if

desired.

sourceCardinality - The minimum cardinality of the source may be greater than

or equal to 0. If the minimum cardinality is set to 1, one is asserting that this is an
exhaustive subtype that every instance of the supertype has a corresponding
instance of the subtype. The maximum cardinality may be constrained to a finite
integer to limit the number of possible ways that a source may be decomposed using
the given association

targetCardinality - Setting the minimum target cardinality to “1” identifies a

static subtype-a subtype association that is inherent in the target. Static subtyping
is the classic decompositional subtyping where all instances of a given target type
are also instances of the given source type. An example of a static subtype might be
the assertion that <bodyOrgan> hasStaticSubtypes <lung, liver, heart>. Any instance
of the entity <lung> is also an instance of a body organ.

If the minimum target cardinality is “0”, it is possible for an instance of a target
type to exiswithout being a subtype of the source typhis is often referred to as
“dynamic” or role-based subtyping. An example of role-based subtyping might be
that of <person>, <company>, and <customer>. One could assert that <customer>
hasDynamicSubtypes {<person>, <company>}. An instance of <person> might or
might not be a subtype of <customer> depending upon the circumstances.

The maximum target cardinality may also be constrained to a finite number. Setting
the maximum target cardinality to one would restrict multiple inheritence using the
particular subtyping association.

Non-Semantic Association

MonSemantic

gassociationld ; hasAttributes
ghaszeType : nonSemantic
gsourceRole : entity
gtargetFole © attributes
gtargetisSet: FALSE
gnonCodedAllowed : TRUE
gsourceCardinality : 0.1
gtargetCardinality - 0..M
gtransitive | FALSE
gsymmetric . FALSE
Sinherited ; UMNEMNOWMN
gsourceTargetDigjoint : TRUH

Figure 3-5 Non-Semantic Association

Lexicon Query Service V1.0 June 2000

3

Any association which haskamseType of “nonSemantic” must have the following
characteristics, and any association which has the following characteristics must have a
baseType of “nonSemantic”™:

® targetlsSet = FALSE - A parent concept code is associated with exactly one target
entity.

®* nonCodedAllowed = TRUE - The target may be either a concept code or a string
representing a non-coded characteristic.

® transitive = FALSE - The range (coded concepts and non-coded strings) is not the
same as the domain (coded concepts), this association is not transitive.

® symmetric = FALSE - The range (coded concepts and non-coded strings) is not
the same as the domain (coded concepts), this association is not transitive.

® sourceTargetDisjoint = TRUE. An instance of a source code may not directly
have a non-semantic association with itself.

An association which has a baseType of “nonSemantic” may vary in the following
characteristics:

® sourceRole , targetRole - These roles may be renamed to be more applicable if
desired.

® sourceCardinality - The minimum and maximum number of associations that an
instance of a given source code may participate may vary. Setting the minimum
source cardinality to a positive number indicates that all instances of the type
indicated by the source concept code must have the particular property or
characteristic indicated by the association.

® targetCardinality - The minimum and maximum number of associations that an
instance of a given target entity may/must participate in. Non-coded targets are
considered immutable and always participate in exactly one association. If the non-
coded target “2.0” participates in two different associations, it is viewed as two
separate instances.

® inherited - Non-semantic associations may either be inherited or not.

3.2.2 VVendor-Defined Associations

The association classes described above may be used directly in a terminology service.
A terminology vendor typically has a pre-defined set of associations supplied with the
terminology. To be generally useful, the terminology vendor is encouraged to provide
the set of characteristics described above for each individual association type. In
addition, if the set of characteristics for an association match any of the association
types described above, the identifier of the matching type (wholepart, reference,
subtype, nonSemantic) should be included inlthseType attribute of the

association itself.

Example: The terminology vendor has an association called “isA”, which supplies a
non-exclusive, non-disjunctive subtyping type of association. It is determined to have
the following characteristics:

LQS V1.0 Meta-Terminology June 2000 3-11

3-12

targetlsSet : TRUE
nonCodedAllowed:FALSE
sourceCardinality:0..N
targetCardinality:0..N
transitive: TRUE
symmetric:FALSE

inherited: TRUE
sourceTargetDisjoint:FALSE

Note —Used grammatically, the term “isA” is preceded by a single target entity and
succeeded by the source (automobile isA vehicle). This is one of the reasons that the
source and target roles are very important, as they serve to clarify the direction implied
by the association name. (subtype isA supertype — where subtype is a member of a
target set and supertype is the source concept)

Because this matches the characteristics of the subtyping associatgeti§Set ,
nonCodedAllowed , transitive , symmetric , inherited , sourceTargetDisjoint),
this would have a base type of “subtype”. The Association class for “isA” follows:

58 . Association

@associationld ; isA
ghazeType : subtype
@sourceFole | supertype
gtargetFole : subtypes
gtargetlsSet: TRUE
snonCodedAllowed : FALSE
Gsource Zardinality - 0.0
gtargetCardinality © 0..M
gtransitive - TRUE
gsymmetric : FALSE
ginherited : TRUE
gsourceTargetDigjoint : FALSH

Figure 3-6 Sample Vendor Association

The set of characteristics shown in Figure 3-6 would be returned in the
AssociationDef structure from the Systemizatiget_association_definition
method.

Associations may be less precisely defined in some terminology systems. As a worse
case, a terminology vendor must supply the association identifier, a source role (which
could be “source”), a target role (which could be “target”) whether the target is a set or
element and whether non-coded targets are allowed. As an example suppose a
terminology has an association called “is associated with.” It would not have a
baseType as it would not match any of the types above. The description shown in
Figure 3-7 might be returned for this generic association:

Lexicon Query Service V1.0 June 2000

is associated with - Association

gassociationld | is associated with
ghaseType

gsourceFole | source
gtargetRole : target
gtargetlsSet: FALSE
gnonCodedAllowed ' TRUE
gsource Cardinality - 0N
gtargetCardinality - 0N
gtransitive | UNEMNOWN
geymmetric: LINKNCOWN
ginherited ; URKNOWN
gsourceTargetDigjoint ;. UMERNCW

Figure 3-7 Sample Generic Association

3.2.2.1 Predefined Association Codes

Table 3-1 contains the association codes described in the preceding sections. These
association codes may be used directly in an implementation. Thesentostesturn

the AssociationDef structures which correspond to their descriptions in the above
sections. (i.e., “References” must rettangetisSet : FALSE , nonCodedAllowed

: FALSE, inherited : UNKNOWN , etc.). Any change in the characteristics (e.qg.,
inherited : TRUE for References) results in a new association which must be given a
new, unique code.

Table 3-1 Association Codes

Characteristic Class Code QualifiedName

WholePart isComposedOf IDL:org.omg/TerminologyService/Association
/lisComposedOf

Reference references IDL:org.omg/TerminologyService/Association
/ references

Subtype hasSubtypes IDL:org.omg/TerminologyService/Association
/hasSubtypes

NonSemantic hasAttributes IDL:org.omg/TerminologyService/Association
/hasAttributes

LQS V1.0

Meta-Terminology

June 2000

3-13

3.3 Association Qualifier

Table 3-2 shows the four association qualifiers that are predefined in this specification
which may be used to identify optionality and plurality qualifiers. All other association
qualifiers are to be established by the terminology vendor. If not supplied, the default
is that the association is optional and plural.

Table 3-2 Association Qualifier Codes

Qualifier

Meaning

Code Qualified Code String

Optional

Association between source| OPT IDL:omg.org/TerminologyService/AssociationQualifier/OPT
and target element is optiona

Mandatory

Association between sourceg MAND | IDL:omg.org/TerminologyService/AssociationQualifier/MANI
and target element is

mandatory

|

Single

At most one target element | SING IDL:omg.org/TerminologyService/AssociationQualifier/SING
may be associated with the

source

Plural

More than one target elementPLUR | IDL:omg.org/TerminologyService/AssociationQualifier/PLUR
may be associated with the

source

3.4 CharacterSet

The implementation of this specification always assumes that a coding scheme version
will have a specific language associated with it. In the CORBA specification, character
set negotiation occurs between ORBs and is outside of the control of the application.
For the time being we will presume that the language identifier determines an
appropriate character set (or sets) and the negotiation is all covered by the ORBs
themselves. As a consequence we won't explicitly expose character set codes in this
document.

3.5 Coding Scheme

3-14

When this document was produced, we had high hopes that the ISO/IEC Standard on
the Registration of Coding Schemes, [16] and [17], would serve the purpose of a
central registry for the names of coding schemes. Unfortunately, this standard has not
been heavily used and few coding schemes have been registered with this body to date

It is critical to the success of this specification that applications be able to access a
coding scheme by name without knowing the terminology services supplier in advance.
To this end, we are proposing the following “stop-gap” measure which will be used
until a more permanent solution comes into play.

1. The OMG DNS be used as the “registration authority” for the various coding
schemes below, and that they then be subdivided according to their primary owner.
(“DNS:omg.org”).

Lexicon Query Service V1.0 June 2000

3

3.6 Language

2. ASTM Committee E31 on Computerized Systems, [18], and HL7, [19], jointly
maintain registry of medical coding schemes which are used in the HL7 chapters 4
and 7 (Orders and Results). Section 7.1.4, Coding schemes, in the HL7 provides a
fairly extensive list of coding scheme codes. We propose that the set of coding
scheme codes in Figures 7-2 and 7-3 in the HL7 manual be used as the primary
designation when available. Local coding schemes such as “99zzz,” “L,” and “LB”
should be coded using thRegistrationAuthority “Other” or the DNS of the
owning facility, rather than using the HL7 reference. As an example, the ICD-9-CM
coding scheme, [20], would be represented as:

DNS:hl7.omg.org/I9C”

Internal HL7 tables would be coded in the form “HL7xxx.”

“DNS:hl7.omg.org/HL7001”

As mentioned above, a local table would be represented in the form:

“OTHER:myprivatedomain/99173”

or, if possible:

“DNS:mycompany.com/99173”

3. Coding schemes that are not in the HL7 specification should be prefixed by the
common name of the appropriate authority. It may be necessary to periodically
publish the names of these other authorities until a more permanent scheme is
arrived at. One that is used elsewhere in the document is the USMARC (U. S.
Machine Readable Cataloging) codes which will be represented as:

“DNS:usmarc.omg.org/xxx”

where “xxx” represents the appropriate MARC Tag. The coding scheme for language
would then be:

“DNS:usmarc.omg.org/041”

It is anticipated that this solution is temporary and that we can move to a central
registry of coding schemes as soon as one becomes generally available.

It is recommended that the set of language codes be supplied by the USMARC
(Machine-Readable Cataloging) system. We will need to create the appropriate coding
scheme identifier for USMARC. The codes themselves will all be represented in upper
case. A list of current codes may be found at:

gopher://Imarvel.loc.gov:70/00/ listarch/usmarc/language

LQS V1.0 Language June 2000 3-15

3.7 LexicalType

Table 3-3 contains the frequently used language codes along with the string form of

their qualified name.

Table 3-3 Language Codes

Language Code Qualified Code String

Danish DAN DNS:usmarc.omg.org/041/DAN
English ENG DNS:usmarc.omg.org/041/ENG
French FRE DNS:usmarc.omg.org/041/FRE
German GER DNS:usmarc.omg.org/041/GER
Italian ITA DNS:usmarc.omg.org/041/ITA
Spanish SPA DNS:usmarc.omg.org/041/SPA

Table 3-4,The Unified Medical Language System (UMLS) Lexical Tag table will be

used as the default lexical type. The types as extracted from the 1997 edition follow,

although the most current edition should be referenced for the definitive set.

Table 3-4 Lexical Type Codes

Type Code Qualified Code String

Abbreviation ABB DNS:umls.hl7.omg.org/LT/ABB
Embedded abbreviation ABX DNS:umls.hl7.omg.org/LT/ABX
Acronym ACR DNS:umls.hl7.omg.org/LT/ACR
Embedded acronym ACX DNS:umls.hl7.omg.org/LT/ACX
Eponym EPO DNS:umls.hl7.omg.org/LT/EPO
Lab number LAB DNS:umls.hl7.omg.org/LT/LAB
Proper name NAM DNS:umls.hl7.omg.org/LT/NAM
Special tag NON NO DNS:umls.hl7.omg.org/LT/NON NO
Trade name TRD DNS:umls.hl7.omg.org/LT/TRD

3.8 PresentationFormat

The MIME [20], [21] format was selected to identify the format of a presentation.
Table 3-5 presents some of the more common formats.

Table 3-5 MIME Codes

Type Code Qualified Code String

Plain text text/plain DNS:omg.org/MIME/text/plain

Rtf application/rtf DNS: omg.org /MIME/application/rtf

Zip application/zip DNS: omg.org
/IMIME/application/zip

3-16 Lexicon Query Service V1.0 June 2000

Table 3-5 MIME Codes

Type Code Qualified Code String

pdf application/pdf DNS:
omg.org/MIME/application/pdf

Gif image image/gif DNS: omg.org /MIME/ image/gif

Audia audio/basic DNS: omg.org /MIME/audio/basic

MIME formats are rich enough to allow exotic formats, Internet links, etc.

3.9 Source

A source is a code of any form of bibliographic reference. At the time this document
was published a definitive coding scheme which could be used for sources had not
been located.

3.10 Source Term Type

The source term type is a code that identifies how a given presentation is used in the
relevant source vocabulary. The best (and probably only) list of source term types may
be found under the heading Bf4 Concept Name Typ&s the1997 UMLS reference
manual [5] Some samples are included in Table 3-6, although the user is referred to
the source for an exhaustive set of codes.

Table 3-6 Sample Source Term Type Codes

Type Code | Qualified Code String

Attribute type abbreviation AA DNS:umls.hl7.omg.org/TTY/AA
Abbreviation in any source vocabulaty AB DNS:umls.hl7.omg.org/TTY/AB
Adjective AD DNS:umls.hl7.omg.org/TTY/AD

3.11 Syntactic Type

The UMLS is used as the reference for the base set of syntactic types. Table 3-7 lists
the set of syntactic types in the UMLS. Note that the “Other” variant is not listed, as it

is a code that could potentially change meaning as other syntactic types are added. If
the syntactic type is not available, the terminology service should simply not supply it.

Table 3-7 Syntactic Type Codes

SyntacticType Code | Qualified Code String

Varies from preferred presentation | C DNS:umls.hl7.omg.org /STT/C
only in upper-lower case

LQS V1.0 Source June 2000 3-17

Table 3-7 Syntactic Type Codes

SyntacticType Code | Qualified Code String

Contains same words as preferred | W DNS:umls.hl7.omg.org /STT/W
form, disregarding order and
punctuation

Singular of the preferred form S DNS:umls.hl7.omg.org /STT/S
Plural of the preferred form P DNS:umls.hl7.omg.org /STT/P

3.12 Usage Context

This specification does not specify any usage context codes.

3.13 Value Domain

This specification defines a set of value domains that are used by the specification
itself. This set of domains is defined in the “meta” coding scheme, identified by the
MetaSchemeld option of theschemeldSource in theSchemeld. The codes in
Table 3-8 identify value domains within the meta schema:

Table 3-8 Value Domain Codes

Value Domain Value Domain ID

Language IDL:org.omg/TerminologyService/Language

Lexical Type IDL:org.omg/TerminologyService/LexicalType
Presentation Format IDL:org.omg/TerminologyService/PresentationFormat
Relation IDL:org.omg/TerminologyService/Relation

Relationship Qualifier IDL:org.omg/TerminologyService/RelationshipQualifier
Source IDL:org.omg/TerminologyService/Source

Source Term Usage IDL:org.omg/TerminologyService/SourceTermUsage
Syntactic Type IDL:org.omg/TerminologyService/SyntacticType

Usage Context IDL:org.omg/TerminologyService/UsageConctext

3.14 Conformance Points

This section describes the various conformance levels possible for an LQS-compliant
terminology service provider.

3.14.1 Minimum Implementation

The minimum implementation which may still be deemed “LQS-compliant” must
include two interfaces:

® TerminologyService

® LexExplorer

3-18 Lexicon Query Service V1.0 June 2000

3

The TerminologyService
both theCodingSchemeLocator

andValueDomainLocator attributes. It must

interface may return a NULL object reference for either or

return a valid reference for theexExplorer attribute. The interface must support at
least one coding scheme, meaning that it may not return a zero length list from the

get_coding_scheme_ids

the get_native_coding_scheme_info

Each interface of theexExplorer is described in the next table.

get_preferred_text

Must be implemented for at least one qualified code.

The context_ids may be ignored.

get_preferred_text_
for_concepts

Must be implemented for at least one qualified code.

The context_ids may be ignored.

get_preferred_definition

May return an empty structure or a definition.

translate _code

May throw TranslationNotAvailable in all cases.

translate codes

May return a sequence of NULL pointers.

list_concepts

Must return a valid concept iterator if there is less th
1000 concepts in the scheme; otherwise, it may th
TooManyTolList if it so chooses.

list_value_domain_ids

May return an empty iterator in all cases.

is_concept_in_value_domain

May throw UnknownValueDomain in all cases.

are_concepts_in_value_domains

May return a sequence of UNKNOWN of the same
size as the number of passed codes. Does not hav
validate parameter alignment if not implemented.

get_pick_list

May throw NoPickListAvailable in all cases.

association_exists

May throw NoSystemizationForCodingScheme in a
cases.

associations_exist

May return a sequence of UNKNOWN of the same
size as the number of passed codes. Does not hav
validate parameter alignment if not implemented.

list_associated_target_elements

May throw NoSystemizationForCodingScheme in a
cases.

list_associated source_codes

May throw NoSystemizationForCodingScheme in a
cases.

3.14.2 Additional Conformance Levels

3.14.2.1 CodingSchemelLocator Conformance

If the coding scheme locator interface is supported, all of the properties and methods in

the interface must be implemented. The return structure,

CodingSchemeVersionRefs

LQS V1.0

Conformance Points

, must haveat least oneof the

operation. It may either throw an exception or implement

an
ow

eto

June 2000 3-19

CodingSchemeVersionAccess , PresentationAccess
LinguisticGroupAccess , AdvancedQueryAccess , andSystemizationAccess
interfaces implemented.

3.14.2.2 CodingSchemeVersion Conformance

If implemented, theCodingSchemeVersion interface must support all of the
specified methods with the exception gét_comments , get_instructions ,
match_concepts_by_string , andmatch_concepts_by keyword

3.14.2.3 PresentationAccess Conformance

If present, théPresentationAccess interface must be implemented completely.

3.14.2.4 LinguisticGroupAccess Conformance

If present, the.inguisticGroupAccess interface must be implemented completely.

3.14.2.5 AdvancedQueryAccess Conformance

If present, theAdvancedQueryAccess interface must be implemented completely.

3.14.2.6 SystemizationAccess Conformance

If present, theSystemizationAccess interface must be implemented completely.
This includes implementing th@ystemization interface.

3.14.2.7 Systemization Conformance

All of the systemization interface must be implemented, with the exception of the
operations, which may throw the Notimplemented Exception. These operations
(could_association_be_inferred , get_entity_graph , and all of the operations
associated with concept expressions) are not required.

3.14.3 ValueDomainLocator Conformance
If present, all of the&/alueDomainLocator interfaces must be implemented. It is
only necessary to support one (the default) version of any given value domain.
3.14.3.1 ValueDomainVersion Conformance

If present, all of th&/alueDomainVersion interfaces must be implemented, with the
exception of the two pick list operations, which may always throw
PickListNotAvailable.

3-20 Lexicon Query Service V1.0 June 2000

Lexicon Query Glossary

Glossary Terms

The definitions below are specific to this document. While attempts have been made to
align the terminology of this document with accepted general definitions, there will be
cases where the words used in this document will have a significantly different
meaning than they have in general usage. Terms appeafiuddiace type below are
defined elsewhere within this glossary.

Association An association is a binary predicate applied to an ordered pair of types.
The first type is referred to as tkeurce typeand the second is the
target type. In this specification, theource typemust be aoncept
codeand thetarget type must be either a singtarget elementor a set
of target elemens.

Association Instance An instance of an association; a binary predicate applied to a specific
ordered pair of entities, which must be of #murce typeandtarget
type specified in the association itself. The first entity in the ordered pair
is referred to as thgource entity (not to be confused witBource,as
defined beloy and the second is tharget entity.

Association Qualifier A qualified codethat may be attached totarget elementto provide
additional information about the nature of the particular association.
With the exception of cardinalities, association qualifiers are left
undefined in this specification.

Blob Acronym for Bnary Large_Olject; used in this document to represent an
opaque string of bytes that is passed unchanged between the service and
the client.

Characteristic A non-coded property or attribute associated with a concept code. As

defined in this specification, a characteristic provides non-semantic
attributes for a concept code.

Lexicon Query Service v1.0 June 2000 Glossary-1

Glossary-2

Coding Scheme

Coding Scheme
Version

Comment

Concept Code

Concept Description

Concept Expression

Definition

Implementation
Vendor

Instruction

Language

A relation between a set abncept codesand a set opresentations,
definitions, comments,andinstructions, which serves to designate the
intended meaning behind the codes. A coding scheme may also have one
or moresystemizationsdefined across a subset of the concept codes
within the scheme. Coding schemes are evolutionary in nature, with
codes being added, deleted, and modified. The intended meaning behind
a concept codemust not change within a given coding scheme.

A specific release or version ofcading schemeA coding scheme
version represents a consistent, fixed image of a coding scheme at a
point in time. Therefore, it may define and/or describe only a subset of
the concept codesontained within the coding scheme itself. Each
coding scheme version may also associate a different set of
presentations, definitions,etc., with a giverconcept codeso long as

this association does not change the intended meaning of the code.

A non-defining text string, which is used to annotate or provide remarks
about aconcept codewithin acoding scheme version

A local name,consisting of a fixed sequence of alphanumeric
characters, that is used to designate one or m@®entations
definitions, comments instructions, etc., within acoding scheme

The set ofdefinitions, comments, instructions, andpresentations
associated with aoncept codein a givencoding scheme version

A base concept qualified by one or more optional “attribute-value” pairs
that serve to further define the total concept. An attribute-value pair
consists of arassociationwhich serves to identify the “attribute” and
either aconcept codeor acharacteristic which serves to identify the
value portion of the attribute. An attribute-value pair may also reference
an optional list ofassociation qualifiers.

A statement that describes a concept in order to permit its differentiation
from related concepts. [4] In this document, definitionspaose
descriptions, which describe the intended meaningafrecept code,
permitting its differentiation from the meaning associated with other
relatedconcept codes

A company or other organization providing terminology software which
presents itself through the interface specification provided in this
document.

Additional information in either machine- or human- readable form that
describes when, where, and/or howamcept codeshould be used.

A “natural language”—any spoken or written language, such as French,
English, German, etc.,—as opposed to a formal language, such as
Fortran, C, or FOPL.

Lexicon Query Service v1.0 June 2000

Lexical Type

Linguistic Group

Local Name

Naming Authority

Native Coding
Scheme

Pick List

Presentation

Presentation Format

Presentation Usage

Qualified Code

Qualified Name

LQS v1.0

A tag indicating whether a presentation falls into any of several special
types. The purpose of this tag is to indicate terms that are not generally
appropriate for stemming and other natural language techniques. [5]
Example: lexical types include “abbreviation,” “acronym,” “eponym,”
“trade name,” etc.

A group of presentations which are lexical or syntactic variants of each
other. As an example, the textual presentations “Atrial Fibrillation”,
“Atrial Fibrillations”, “Fibrillation, Atrial” would all belong to the same
lexical group, while the textual presentations “Auricular Fibrillation” and
“Auricular Fibrillations” would belong to another.

An identifier which is unique within the context ohaming authority.

In this document, aoncept codeis a local name within the context of a
coding schemewhich is a naming authority. See Section 2.1,
“NamingAuthority Module,” on page 2-1 for further details.

A registered authority which is responsible for managing a sketcaf
names all of which must be unique within the name space of the
authority. In this document, @oding schemes a type of naming
authority that manages a setawfncept codesSee Section 2.1,
“NamingAuthority Module,” on page 2-1 for further details.

The primarycoding schemesupported and provided by a terminology
service. Although it is not formally required, the native coding scheme
typically will have exact synonyms faill of the concepts contained in
all of the non-native coding schemes supported by the terminology
service.

An ordered list of one or mommncept codeswlong with apresentation
deemed appropriate to represent the concept code in an external list or
other selection mechanism.

A sign or symbol used to represent@cept codeexternally.

A code which identifies the type of external processing necessary to
correctly present presentation Example: presentation formats include
“plain text,” “HTML,” “Rich Text Format,” etc. The Internet MIME

codes are the proposed way of representing presentation formats within
this document.

The association of presentation with aconcept codeThis association
carries additional attributes about how the presentation is used in the
context of the concept codes, references, etc.

A qualified name which identifies a coded concept within the context of
a coding scheme. A qualified name consists ofcthding scheme
identifier (thenaming authority) and aconcept code(thelocal namé.

A globally unique name for an entity. A qualified name consists of the
combination of enaming authority and alocal name See Section 2.1,
“NamingAuthority Module,” on page 2-1 for further details.

June 2000 Glossary-3

Glossary-4

Registration
Authority

Role

Source

Source Term Type

Syntactic Type

Systemization

Target Element

Terminology

Terminology Service

Usage Context

Value Domain

Lexicon Query Service v1.0

An organization authorized to register and iseaeing authority
identifiers.

A name which serves as a synonym for either the “source” position or
“target” position within a specific association. As an example, a
subtypingassociation places the supertype in the source position and the
set of subtypes in the target position. Within this specific association, the
role “supertype” would be a synonym for the source and the role
“subtype” would be a synonym for the target.

The document, book, person, or other reference from whégfiaition,
comment, instruction, or presentation was drawn.

The code for the use to which a specfresentation is put within a
source Example:source term types include “Disease Name,” “Language
Qualifier,” “Adjective,” etc.

A syntactic form that a givephrase has within ainguistic group.

Typical syntactic types may include “plural”, “different spelling”,
“different word order”, etc.

A structure applied across a setopfalified codesand, optionally,
characteristics, which represents an organization, categorization,
classification, or other structuring of the various entities.

A choice ofconcept code, qualified codegr characteristic that appears
in thetarget end of anassociation.

A set of terms representing the system of concepts of a particular subject
field. [6]

An implementation of this specification, providing an interface to one or
morecoding schemesas well as an optional set wflue domains

which serve to correlate the coding schemes with external screens,
messages, databases, etc. A terminology service serves to present the
contents of derminology externally.

A qualified code that represents a context in whighesentationwould

be deemed appropriate. Usage contexts may include the type of
application, user, display device, and other information that is used by
the terminology service to pick the most appropriasentation for a
concept codeor set ofconcept codes.

A value domain represents a set of values which may be used to fill a
field on a data-entry screen, a column in a database, a field in a message,
or some other external entity in which it is possible to record or transfer
concept codesA terminology servicemay be used to return a list of
qualified codes,which are possible values for a field, etc., as

represented by a value domain.

June 2000

A.1 FullIDL

OMG IDL

The following is the full IDL for this specification.
/[File: NamingAuthority.idl

#ifndef NAMING_AUTHORITY_IDL_
#define _NAMING_AUTHORITY _IDL_

#include <orb.idI>
#pragma prefix "omg.org "

module NamingAuthority
{
enum RegistrationAuthority {

OTHER,
ISO,
DNS,
IDL,
DCE };

typedef string NamingEntity;

struct Authorityld {
RegistrationAuthority authority;
NamingEntity naming_entity;
h
typedef string AuthorityldStr;

typedef string LocalName;
struct QualifiedName {

Lexicon Query Service V1.0 June 2000

A-1

A-2

Authorityld authority_id;
LocalName local_name;

h

typedef string QualifiedNameStr;

exception Invalidinput {};

interface translation_library

{

AuthorityldStr authority to_str(
in Authorityld authority)
raises(
Invalidinput);

Authorityld str_to_authority(

in AuthorityldStr authority _str)
raises(

Invalidinput);

QualifiedNameStr qualified_name_to_str(
in QualifiedName qualified_name)
raises(
Invalidinput);

QualifiedName str_to_qualified_name(
in QualifiedNameStr qualified_name_str)
raises(
Invalidinput);

k
#endif // _NAMING_AUTHORITY_IDL_

/IFile: TerminologyServices.idl

)

#ifndef TERMINOLOGY_SERVICES_IDL_
#define _ TERMINOLOGY_SERVICES_IDL_
#pragma prefix "omg.org"

#include <orb.idI>

#include <NamingAuthority.idl>

I
I module: TerminologyService

I
module TerminologyServices {
...
h
#endif /* TERMINOLOGY_SERVICES IDL_*/

I

Lexicon Query Service V1.0 June 2000

/I Basic Terms
/i

typedef NamingAuthority::LocalName ConceptCode;
typedef sequence<ConceptCode ConceptCodeSeq;

typedef NamingAuthority::Authorityld CodingSchemeld;
typedef sequence<CodingSchemeld CodingSchemeldSeq;

struct QualifiedCode {
CodingSchemeld coding_scheme_id;
ConceptCode a_code;

h

typedef sequence <QualifiedCode> QualifiedCodeSeq;

typedef string Versionlid;
typedef sequence<Versionld> VersionldSeq;
const Versionld DEFAULT ="";

struct TerminologyServiceName {
NamingAuthority::QualifiedName the_name;
Versionld the_version;

/I Meta Types
/I See the TerminologyServiceValues module for consts

typedef QualifiedCode AssociationQualifierld;
typedef sequence<AssociationQualifierld> AssociationQualifierldSeq;

typedef QualifiedCode LexicalTypeld;
typedef sequence<LexicalTypeld> LexicalTypeldSeq;

typedef QualifiedCode Sourceld;
typedef sequence<Sourceld> SourceldSeq;

typedef QualifiedCode SourceTermUsageld;
typedef sequence<SourceTermUsageld> SourceTermUsageldSeq;

typedef QualifiedCode SyntacticTypeld;
typedef sequence<SyntacticTypeld> SyntacticTypeldSeq;

typedef QualifiedCode UsageContextld;
typedef sequence<UsageContextld> UsageContextldSeq;

typedef ConceptCode Associationld;
typedef sequence<Associationld> AssociationldSeq;

typedef ConceptCode Languageld;

LQS V1.0 June 2000 A-3

typedef sequence<Languageld> LanguageldSeq;

typedef ConceptCode PresentationFormatlid;
typedef sequence<PresentationFormatld> PresentationFormatldSeq;

1
/I Coding Terms
1
interface LexExplorer;

interface CodingSchemeLocator;
interface ValueDomainLocator;
interface CodingSchemeVersion;
interface PresentationAccess;
interface LinguisticGroupAccess;
interface SystemizationAccess;
interface AdvancedQueryAccess;
interface Systemization;

interface ValueDomainVersion;

typedef string IntlString;

typedef sequence<IntlString> OrderedIntlStringSeq;
typedef sequence<IntlString> IntlStringSeq;

typedef sequence<octet> Blob;

enum Trinary { IS_FALSE, IS_TRUE, IS_UNKNOWN },
typedef sequence<Trinary> TrinarySeq;

typedef sequence<boolean> BooleanSeq;

I
/I Coding Scheme and Coded Concept Terms
I
typedef string Presentationld;

typedef sequence<Presentationld> PresentationldSeq;
typedef string LinguisticGroupld;

typedef string Systemizationlid;

typedef sequence<Systemizationld> SystemizationldSeq;

struct CodingSchemelnfo {
CodingSchemeld scheme_id;
Versionld version_id;
Languageld language_id;

h

struct CodingSchemeVersionRefs {
CodingSchemeld coding_scheme_id;
Versionld version_id;
Languageld language_id;
boolean is_default_version;
boolean is_complete_scheme;
CodingSchemeVersion coding_scheme_version_if;
PresentationAccess presentation_if;
LinguisticGroupAccess linguistic_group_if;

Lexicon Query Service V1.0 June 2000

SystemizationAccess systemization_if;
AdvancedQueryAccess advanced_query_if;

h

struct Conceptinfo {
ConceptCode a_code;
IntIString preferred_text;
h
typedef sequence<Conceptinfo> ConceptinfoSeq;
typedef sequence<ConceptinfoSeq> ConceptinfoSeqSeq;

interface Conceptinfolter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out ConceptinfoSeq concept_info_seq
)i
void destroy();
h

struct QualifiedCodelnfo {
QualifiedCode a_qualified_code;
IntIString preferred_text;
h
typedef sequence<QualifiedCodelnfo> QualifiedCodelnfoSeq;

struct Definition {
IntIString text;
boolean preferred;
Languageld language_id;
Sourceld source _id;

h

typedef sequence<Definition> DefinitionSeq;

struct Comment {
IntIString text;
Languageld language_id;
Sourceld source _id;

h

typedef sequence<Comment> CommentSeq;

struct Instruction {
IntIString text;
Blob formal_rules;
Languageld language_id;
Sourceld source _id;

h

typedef sequence<Instruction> InstructionSeq;

struct Sourcelnfo {
Sourceld source_id;

LQS V1.0 June 2000 A-5

SourceTermUsageld usage_in_source;
QualifiedCode code_in_source;
h

typedef sequence<Sourcelnfo> SourcelnfoSeq;

struct Presentationinfo {
Presentationld presentation_id;
PresentationFormatld presentation_format_id;
Languageld language_id;
LinguisticGroupld linguistic_group_id;

h

typedef sequence<Presentationinfo> PresentationinfoSeq;

enum PresentationType {TEXT, BINARY};

union PresentationValue switch(PresentationType) {
case TEXT : IntIString the_text;
case BINARY : Blob a_Blob;

J3

struct Presentation {
Presentationld presentation_id;
PresentationValue presentation_value;
h

typedef sequence<Presentation> PresentationSeq;

struct PresentationUsage {
ConceptCode concept;
Presentationld presentation_id;
boolean preferred_for_concept;
boolean preferred_for_linguistic_group;
SyntacticTypeldSeq syntactic_type_ids;
UsageContextldSeq usage_context_ids;
SourcelnfoSeq source_infos;
LexicalTypeldSeq lexical_type_ids;

h

typedef sequence<PresentationUsage> PresentationUsageSeq;

struct LinguisticGrouplnfo {
LinguisticGroupld Linguistic_group_id;
Languageld language_id;
PresentationldSeq presentation_ids;

h
typedef float Weight;

struct WeightedResult {
Conceptinfo the_concept;
IntIString matching_text;
Weight the_weight;
h
typedef sequence<WeightedResult> WeightedResultSeq;

Lexicon Query Service V1.0 June 2000

interface WeightedResultslter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out WeightedResultSeq weighted_results
)i
void destroy();

1 Advanced Query Terms

typedef string Constraint;

typedef NamingAuthority::QualifiedNameStr ConstraintLanguageld;
typedef sequence<ConstraintLanguageld> ConstraintLanguageldSeq;
typedef NamingAuthority::QualifiedNameStr PolicyName;

typedef sequence<PolicyName> PolicyNameSeq;

typedef any PolicyValue;

struct Policy {
PolicyName name;
PolicyValue value;
h

typedef sequence<Policy> PolicySeq;

I
I* Systemization Terms
I

typedef string RoleName;
typedef string Characteristic;
enum AssociationRole {SOURCE_ROLE, TARGET_ROLE};
enum MinimumCardinality {OPTIONAL, MANDATORY?,
enum MaximumcCardinality {SINGLE, MULTIPLE},
struct Cardinality {

MinimumCardinality minimum;

MaximumcCardinality maximum;

h

enum ElementType {
EXTERNAL_CODE_TYPE,
LOCAL_CODE_TYPE,
CHARACTERISTIC_TYPE

I3

union RestrictedTargetElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case CHARACTERISTIC_TYPE:Characteristic the characteristic;

I3

LQS V1.0 June 2000

A-7

A-8

union AssociatableElement switch(ElementType) {
case EXTERNAL_CODE_T YPE:QualifiedCode a_qualified_code;
case LOCAL_CODE_T YPE:ConceptCode a_local_code;
case CHARACTERISTIC_TYPE:Characteristic the characteristic;

I3

struct TargetElement {
AssociatableElement target element;
AssociationQualifierldSeq association_qualifiers;
8
typedef sequence<TargetElement> TargetElementSeq;
typedef sequence<TargetElementSeq> TargetElementSeqSeq;
interface TargetElementSeqlter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out TargetElementSeqSeq an_element_seq
);
void destroy();
8

typedef ConceptCodeAssociationBaseTypeld;

typedef sequence<unsigned long> IndexList;
struct GraphEntry {
TargetElement an_entity;
IndexList associated nodes;
h
typedef sequence<GraphEntry> EntityGraph;

struct AssociationDef {

Associationld association_id;
AssociationBaseTypeld base_type;
RoleName source_role;
Cardinality source_cardinality;
RoleName target_role;
Cardinality target_cardinality;
boolean target_is_set;
boolean non_coded_allowed;
Trinary transitive;

Trinary symmetric;

Trinary inherited;

Trinary source_target_disjoint;

3

struct Associationinstance {

Associationld
ConceptCode
TargetElementSeq

I3

Lexicon Query Service V1.0

association_id;
source_concept;
target_element_seq;

June 2000

typedef sequence<Associationinstance> AssociationlnstanceSeq;

interface Associationinstancelter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out AssociationlnstanceSeq association_instance_seq
);
void destroy();
h

struct ValidationResult {
boolean is_valid;
AssociationQualifierld validity_level;

h

/I Constraint - the "any" below must be of type AttributeValuePair. It
/l'is "any" because IDL won't allow recursive struct definitions
struct RelatedEntityExpression {

AssociatableElement associated_element;
AssociationQualifierldSeq association_qualifiers;
any base_qualifiers;

8

struct AttributeValuePair {
AssociationRole element_role;
Associationld the_association_id;
RelatedEntityExpression the_entity_expression;

3

typedef sequence<AttributeValuePair AttributeValuePairSeq;

struct ConceptExpressionElement {
ConceptCode base_code;
AttributeValuePairSeq base_qualifiers;
h
typedef sequence<ConceptExpressionElement ConceptExpression;
typedef sequence<ConceptExpression ConceptExpressionSeq;

i
I Value Domain Terms
i

typedef QualifiedCode ValueDomainld;
typedef sequence<ValueDomainld> ValueDomainldSeq;

interface ValueDomainldlter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out ValueDomainldSeq value_domain_id_seq

);

LQS V1.0 June 2000 A-9

void destroy();
h

struct PickListEntry {
QualifiedCode a_qualified_code;
IntIString pick_text;
boolean is_default;
3
typedef sequence<PickListEntry> PickListSeq; // Ordered

interface PickListlter {
unsigned long max_left();
boolean next_n(
in unsigned long n,
out PickListSeq pick_list
);
void destroy();
h

I
1 TerminologyService Exceptions
I

/I Used in Multiple Interfaces

/ typically LexExplorer ++

exception Notimplemented{

h

exception UnknownCode {
ConceptCode bad_code;

ey

h

exception UnknownCodingScheme{
CodingSchemeld bad_coding_scheme_id;

h

exception UnknownVersion{
Versionld bad_version_id;

h

exception UnknownValueDomain{
ValueDomainld bad_value_domain_id;

h

exception NoNativeCodingScheme {

h

exception TranslationNotAvailable {

h

exception TooManyTolList {

h

exception NoPickListAvailable {

h

exception AssociationNotInSystemization{
Associationld bad_association_id;

h

exception NoSystemizationForCodingScheme {

A-10 Lexicon Query Service V1.0 June 2000

h
exception ParameterAlignmentError {

h
/I CodingSchemeLocator Exceptions

exception LanguageNotSupported {
Languageld bad_language _id;
h

/I CodingSchemeVersion exceptions

exception NoPreferredText{
h

exception NoTextLocated{
h

/I PresentationAccess exceptions

exception PresentationNotlnCodingSchemeVersion{
Presentationld bad_presentation_id;

h
exception NoPreferredPresentation{

I3

exception UnknownPresentationFormat{
PresentationFormatld bad_presentation_format _id;

h
exception NoPresentationLocated{
h

/I LinguisticGroupAccess exceptions

exception LinguisticGroupNotinCodingSchemeVersion{
LinguisticGroupld bad_linguistic_group_id;

h

/I AdvancedQueryAccess exceptions

exception lllegalConstraint {
Constraint bad_constraint;

h

exception lllegalPolicyName {
PolicyName name;

h

exception DuplicatePolicyName {
PolicyName name;

h

exception Policy TypeMismatch {
Policy bad_policy;

h

/I SystemizationAccess exceptions

exception NoDefaultSystemization{

LQS V1.0 June 2000

A-11

A-12

h
exception UnknownSystemization {
Systemizationld systemization_id;

h
/I Systemization Exceptions

exception ConceptNotExpandable {
ConceptCode the_concept;

h

xception NoCommonSubtype{

h

exception NoCommonSupertype{

h

exception InvalidExpression {
ConceptExpression the_expression;

h

exception UnableToEvaluate {
ConceptExpression the_expression;

h

1
1 Translation Library
)

interface TranslationLibrary{

exception InvalidQualifiedName {

I3

QualifiedCode str_to_qualified_code(

in NamingAuthority::QualifiedNameStr qualified_name_str
) raises (

InvalidQualifiedName

);

NamingAuthority::QualifiedNameStr qualified_code_to_name_str(
in QualifiedCode qualified_code
);
8

I
I TerminologyService
I

interface TerminologyService{

readonly attribute TerminologyServiceNameterminology service_name;
readonly attribute LexExplorer lex_explorer;

readonly attribute CodingSchemelLocator coding_scheme_locator;
readonly attribute ValueDomainLocator value_domain_locator;

Lexicon Query Service V1.0 June 2000

CodingSchemeld Seq get coding_scheme_ids();

CodingSchemelnfo get_native_coding_scheme_info(
) raises(

NoNativeCodingScheme
)i

h

)
I LexExplorer
I

interface LexExplorer : TerminologyService{

IntIString get_preferred_text(
in QualifiedCode a_qualified_code,
in UsageContextld Seq context_ids

) raises (
UnknownCodingScheme,
UnknownCode

)i

IntIStringSeq get_preferred_text_for_concepts(
in QualifiedCodeSeq qualified_codes,
in UsageContextldSeq context_ids

);

Definition get_preferred_definition(
in QualifiedCode qualified_code

) raises (
UnknownCodingScheme,
UnknownCode

);

ConceptinfoSeq translate_code(
in QualifiedCode from_qualified_code,
in CodingSchemeld to_coding_schemeld
) raises (
UnknownCode,
UnknownCodingScheme,
TranslationNotAvailable

);

ConceptinfoSeqSeq translate_codes(
in QualifiedCodeSeq from_qualified_codes,
in CodingSchemeld to_coding_scheme_id
) raises (
UnknownCodingScheme
)i

LQS V1.0 June 2000

A-13

void list_concepts(in CodingSchemeld coding_scheme_id,
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter

) raises (
UnknownCodingScheme,
TooManyTolList

)i

void list_value_domain_ids(
in unsigned long how_many,
out ValueDomainldSeq value_domain_ids,
out ValueDomainlditer value_domain_id_iter
) raises (
TooManyTolList
)i
boolean is_concept_in_value_domain (
in QualifiedCode qualified_code,
in ValueDomainld value_domain_id
) raises (
UnknownValueDomain

);

TrinarySeq are_concepts_in_value_domains (
in QualifiedCodeSeq qualified_codes,
in ValueDomainldSeq value_domains

) raises (

ParameterAlignmentError

);

void get_pick_list(
in ValueDomainld value_domain_id,
in UsageContextldSeq context_ids,
out PickListSeq pick_list,
out PickListlter pick_list_iter

) raises (
TooManyTolist,
UnknownValueDomain,
NoPickListAvailable

)i

Trinary association_exists(
in QualifiedCode source_code,
in TargetElement target_element,
in Associationld association_id,
in boolean direct_only

) raises (

AssociationNotInSystemization,
NoSystemizationForCodingScheme,
UnknownCode

A-14 Lexicon Query Service V1.0 June 2000

TrinarySeq associations_exist(
in QualifiedCodeSeq source_codes,

in TargetElementSeq target_elements,
in AssociationldSeq association_ids,
in boolean direct_only

) raises (
ParameterAlignmentError

);

void list_associated_target_elements (
in QualifiedCode qualified_code,
in Associationld association_id,
in boolean direct_only,
in unsigned long how_many,

out TargetElementSeqSeq related_target_seq,

out TargetElementSeqlter related_target_iter
) raises (

AssociationNotInSystemization,

NoSystemizationForCodingScheme,

UnknownCode
);
h
void list_associated_source_codes (
in RestrictedTargetElement target_element,
in CodingSchemeld source_coding_scheme_id,
in Associationld association_id,
in boolean direct_only,
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter
) raises (

AssociationNotInSystemization,
NoSystemizationForCodingScheme,

UnknownCode
);
h
I
I CodingSchemeLocator
1

interface CodingSchemelLocator:TerminologyService{
VersionldSeq get_version_ids(
in CodingSchemeld coding_scheme_id

) raises (
UnknownCodingScheme

LanguageldSeq get_supported_languages(

LQS V1.0 June 2000 A-15

A-16

J3

"
"
"

in CodingSchemeld coding_scheme_id
) raises (
UnknownCodingScheme

);

CodingSchemeVersionRefs get_coding_scheme_version(
in CodingSchemeld coding_scheme _id,
in Versionld version_id,
in Languageld language_id
) raises (
UnknownCodingScheme,
UnknownVersion,
LanguageNotSupported

);

CodingSchemeVersionRefs get_native_coding_scheme_version(
) raises(
NoNativeCodingScheme

);

Versionld get_last_valid_version(
in ConceptCode a_code

) raises (
UnknownCode

);

ValueDomainLocator

interface ValueDomainLocator:TerminologyService {

void list_value_domain_ids(
in unsigned long how_many,
out ValueDomainldSeq value_domain_ids,
out ValueDomainlditer value_domain_id_iter

);

VersionldSeq get_version_ids(

in ValueDomainld value_domain_id
) raises(

UnknownValueDomain

);

ValueDomainVersion get_value_domain_version(
in ValueDomainld value_domain_id,
in Versionld version_id

) raises(

UnknownValueDomain,
UnknownVersion

);

Lexicon Query Service V1.0 June 2000

ValueDomainldSeq get_value_domain_ids_for_concept(
in QualifiedCode qualified_code
);
8

I
I CodingScheme interfaces
I

I
/I A coding scheme consists of the following interfaces
/I interface CodingSchemeVersion:CodingSchemeVersionAttributes
/I interface PresentationAccess:CodingSchemeVersionAttributes
/I interface LinguisticGroupAccess:CodingSchemeVersionAttributes
/I interface SystemizationAccess:CodingSchemeVersionAttributes
/I interface AdvancedQuery:CodingSchemeVersionAttributes
I
I
I interface CodingSchemeVersionAttributes
I
interface CodingSchemeVersionAttributes {

readonly attribute CodingSchemeld coding_scheme _id;

readonly attribute Versionld version_id;

readonly attribute Languageld language _id;

readonly attribute boolean is_default_version;

readonly attribute boolean is_complete_scheme;

readonly attribute CodingSchemeVersion coding_scheme_version_if;

readonly attribute PresentationAccess presentation_if;

readonly attribute LinguisticGroupAccess linguistic_group_if;

readonly attribute SystemizationAccess systemization_if;

readonly attribute AdvancedQueryAccess advanced_query_if;

h

I
I interface CodingSchemeVersion
I

interface CodingSchemeVersion : CodingSchemeVersionAttributes {

SyntacticTypeldSeq get_syntactic_types();
SourceTermUsageldSeq get_source_term_usages();
SourceldSeq get_scheme_source_ids();
UsageContextldSeq get_usage_contexts();

void list_concepts(
in unsigned long how_many,
out ConceptinfoSeq concept_info_seq,
out Conceptinfolter concept_info_iter

);

LQS V1.0 June 2000 A-17

boolean is_valid_concept(
in ConceptCode a_code

);

DefinitionSeq get_definitions(
in ConceptCode a_code
) raises(
UnknownCode

);

Definition get_preferred_definition(
in ConceptCode a_code

) raises(
UnknownCode

);

CommentSeq get_comments(
in ConceptCode a_code

) raises (
Notimplemented,
UnknownCode

);

InstructionSeq get_instructions(
in ConceptCode a_code

) raises (
NotImplemented,
UnknownCode

);

IntIStringSeq get_all_text(

in ConceptCode a_code
) raises (

UnknownCode

);

IntIString get_preferred_text(
in ConceptCode a_code
) raises (
UnknownCode,
NoPreferredText

);

IntIString get_text_for_context(

in ConceptCode a_code,

in UsageContextldSeq context_ids
) raises (

UnknownCode,

NoTextLocated

A-18 Lexicon Query Service V1.0 June 2000

3

ConceptCodeSeq get_concepts_by _text(
in string text

);

void match_concepts_by_string(
in IntIString match_string,
in unsigned long how_many,
out WeightedResultSeq weighted_results,
out WeightedResultslter weighted_result_iter
) raises (
Notimplemented

);

void match_concepts_by keywords(

in OrderedIntlStringSeq keywords,

in unsigned long how_many,

out WeightedResultSeq weighted_results,

out WeightedResultslter weighted_results_iter
) raises(

Notimplemented

);

I
"

PresentationAccess

I

interface PresentationAccess : CodingSchemeVersionAttributes {

PresentationFormatldSeq get_presentation_format_ids();

Presentation get_presentation(
in Presentationld presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

Presentationinfo get_presentation_info(
in Presentationld presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_presentation_usages(
in Presentationld presentation_id

) raises(
PresentationNotInCodingSchemeVersion

);

PresentationUsageSeq get_all_presentations_for_concept(
in ConceptCode a_code
) raises(

LQS V1.0 June 2000

A-19

UnknownCode

);

PresentationUsage get_preferred_presentation(

in ConceptCode a_code,

in PresentationFormatld presentation_format_id
) raises(

UnknownPresentationFormat,

UnknownCode,

NoPreferredPresentation

);

PresentationUsage get_presentation_for_context(

in ConceptCode a_code,

in UsageContextldSeq context_ids,

in PresentationFormatld presentation_format_id
) raises (

UnknownPresentationFormat,

UnknownCode,

NoPresentationLocated

);

PresentationUsage get_all_presentations_for_context(
in ConceptCode a_code,
in UsageContextldSeq context_ids,
in PresentationFormatld presentation_format_id
) raises (
UnknownPresentationFormat,
UnknownCode,
NoPresentationLocated

I3

I
1 LinguisticGroupAccess
I
interface LinguisticGroupAccess : CodingSchemeVersionAttributes {

LexicalTypeldSeq get_lexical types();
LexicalGrouplinfo get_lexical_group(
in LexicalGroupld lexical_group_id
) raises(
LexicalGroupNotinCodingSchemeVersion
);
h

I
I AdvancedQueryAccess
I

interface AdvancedQueryAccess : CodingSchemeVersionAttributes {

A-20 Lexicon Query Service V1.0 June 2000

readonly attribute PolicyNameSeq supported_policies;
readonly attribute ConstraintLanguageldSeq
supported_constraint_languages;

struct query_policies {
unsigned long return_maximum;
boolean concept_as_source;
boolean concept_as_target;
boolean current_scheme_only;
boolean direct_associations_only;

h

void query (
in Constraint constr,
in PolicySeq search_policy,
in unsigned long how_many,
out WeightedResultSeq results,
out WeightedResultslter results_iter
) raises (
lllegalConstraint,
lllegalPolicyName,
PolicyTypeMismatch,
DuplicatePolicyName

I3

I
I SystemizationAccess
I
interface SystemizationAccess : CodingSchemeVersionAttributes {

SystemizationldSeq get_systemization_ids();
Systemization get_systemization(

in Systemizationld systemization_id
) raises(

UnknownSystemization

)i
Systemization get_default_systemization(
) raises(
NoDefaultSystemization
)i
h
I
1 Systemization

1
interface Systemization {

readonly attribute Systemizationld systemization_id;
readonly attribute CodingSchemeVersion coding_scheme_version;

LQS V1.0 June 2000 A-21

AssociationldSeq get_association_ids();

AssociationDef get_association_definition(
in Associationld association_id

Jraises (
AssociationNotInSystemization

);

void list_all_association_instances(
in unsigned long how_many,
out AssociationinstanceSeq association_instance_seq,
out Associationinstancelter association_instance_iter

);

Trinary are_entities_associated(
in ConceptCode source_code,
in AssociatableElement target _element,
in Associationld association_id,
in boolean direct_only

) raises (
AssociationNotInSystemization

);

Trinary could_association_be_inferred(
in ConceptCode source_code,
in AssociatableElement target _element,
in Associationld association_id

) raises (

AssociationNotInSystemization,
Notimplemented

)i

void list_associated_target_entities (
in ConceptCode source_code,
in Associationld association_id,
in boolean direct_only,
in unsigned long how_many,

out TargetElementSeqSeq related_elements,

out TargetElementSeqlter related_elements_iter
) raises (

AssociationNotInSystemization

);

void list_associated_source_codes (
in AssociatableElement target_element,

in Associationld association_id,

in boolean direct_only,

in unsigned long how_many,

out ConceptinfoSeq concept_info_seq,

out Conceptinfolter concept_info_iter
) raises (

A-22 Lexicon Query Service V1.0 June 2000

AssociationNotInSystemization

);

EntityGraph get_entity_graph (
in AssociatableElement root_node,

in Associationld association_id,
in AssociationRole node _one_role,
in boolean direct_only

) raises (

AssociationNotInSystemization,
Notimplemented,

TooManyTolList

)i

AssociationldSeq get_associations_for_source (
in ConceptCode source_code

);

AssociationldSeq get_associations_for_target (
in AssociatableElement target_element

);

ValidationResult validate_concept_expression (
in ConceptExpression expression

) raises (
InvalidExpression,
Notimplemented,
AssociationNotInSystemization

);

ConceptExpression get_simplest_form (
in ConceptExpression expression

) raises (
InvalidExpression,
Notimplemented,
AssociationNotInSystemization

);

ConceptExpression expand_concept (

in ConceptCode concept,

in AssociationQualifierldSeq association_qualifier_seq
) raises (

ConceptNotExpandable,

UnknownCodingScheme,

Notimplemented,

AssociationNotInSystemization

Trinary are_expressions_equivalent (

in ConceptExpression expressionl,
in ConceptExpression expression2

LQS V1.0 June 2000 A-23

A-24

) raises (
InvalidExpression,
UnknownCodingScheme,
AssociationNotInSystemization,
Notlmplemented,
UnableToEvaluate

);

ConceptExpression expression_difference(
in ConceptExpression expressionl,
in ConceptExpression expression2

) raises (
InvalidExpression,
UnknownCodingScheme,
AssociationNotInSystemization,
NotImplemented,
UnableToEvaluate

);

ConceptExpression minimal_common_supertype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
AssociationNotInSystemization,
Notimplemented,
NoCommonSupertype

);

ConceptExpression maximal_common_subtype (
in ConceptExpressionSeq expressions

) raises (
InvalidExpression,
AssociationNotInSystemization,
Notimplemented,
NoCommonSubtype

I
/I Value Domain Version
i

interface ValueDomainVersion {
readonly attribute ValueDomainld value_domain_id;
readonly attribute Versionld value_domain_version_id;
readonly attribute boolean is_default_version;
CodingSchemeldSeq get_schemes_with_extensions();

QualifiedCodelnfoSeq get_all_extensions();

Lexicon Query Service V1.0 June 2000

ConceptinfoSeq get_extension_for_scheme(
in CodingSchemeld coding_scheme_id
) raises (
UnknownCodingScheme

);

boolean is_code_in_domain(
in QualifiedCode qualified_code

);

void get_pick_list(
in UsageContextldSeq context_ids,
out PickListSeq pick_list,
out PickListlter pick_list_iter

) raises (
TooManyTolist,
NoPickListAvailable

);

void get_pick_list_for_scheme(
in CodingSchemeld coding_scheme_id,
in UsageContextldSeq usage_context_ids,
out PickListSeq pick_list,
out PickListlter pick_list_iter
) raises(
TooManyTolist,
UnknownCodingScheme,
NoPickListAvailable
);
h
h
#endif /* TERMINOLOGY_SERVICES IDL_*/

/IFile: TerminologyServiceValues.idl

"

#ifndef TERMINOLOGY_SERVICE_VALUES_IDL_
#define TERMINOLOGY_SERVICE_VALUES_IDL_

#pragma prefix "omg.org"
#include <orb.idI>

#include <NamingAuthority.idl>
#include "TerminologyServices.idl"

I
I module: TerminologyServiceValues
I

module TerminologyServiceValues {

typedef TerminologyServices::ConceptCode ConceptCode;
typedef NamingAuthority::QualifiedNameStr QualifiedNameStr;

LQS V1.0 June 2000 A-25

typedef NamingAuthority::AuthorityldStr AuthorityldStr;

I
1 ValueDomainld Strings
I
typedef QualifiedNameStr ValueDomainldStr;

const ValueDomainldStr ASSOCIATION_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Associationld";

const ValueDomainldStr ASSOCIATION_QUALIFIER_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationQualifierld”;

const ValueDomainldStr ASSOCIATION_BASE_TYPE_DOMAIN =
"IDL:omg.org/TerminologyService/AssociationBaseTypeld";

const ValueDomainldStr LANGUAGE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Languageld"”;

const ValueDomainldStr LEXICAL_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Lexical Typeld";

const ValueDomainldStr PRESENTATION_FORMAT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/PresentationFormatld";

const ValueDomainldStr SOURCE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/Sourceld";

const ValueDomainldStr SOURCE_USAGE_DOMAIN =
"IDL:omg.org/TerminologyService/SourceUsageld";

const ValueDomainldStr SYNTACTIC_TYPE_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/SyntacticTypeld";

const ValueDomainldStr USAGE_CONTEXT_VALUE_DOMAIN =
"IDL:omg.org/TerminologyService/UsageContextld";

I

1 Associationld

I

typedef ConceptCode Associationid;

const NamingAuthority::AuthorityldStr

ASSOCIATION_ID_AUTHORITY_STRING =
"IDL:org.omg/TerminologyService/Association/";

const AssociationldlS_COMPOSED_OF =
"isComposedOf";

const AssociationldHAS SUBTYPES =
"hasSubtypes";

const AssociationldREFERENCES =
"references";

const AssociationldHAS ATTRITUTES =
"hasAttributes"”;

I
1 AssociationBaseTypeld
)
typedef ConceptCode AssociationBaseTypeld;

const NamingAuthority::AuthorityldStr
ASSOCIATION_BASE_TYPE_ID_AUTHORITY_STRING =

A-26 Lexicon Query Service V1.0 June 2000

"IDL:org.omg/TerminologyService/AssociationBaseType/";

const AssociationldWHOLE_PART =
"wholepart";

const AssociationldSUBTYPE =
"subtype";

const AssociationldREFERENCE =
"reference";

const AssociationldNON_SEMANTIC =
"nonSemantic”;

I
1 AssociationQualifierld Strings
I
typedef QualifiedNameStr AssociationQualifierldStr;

const AssociationQualifierldStr MANDATORY =
"IDL:omg.org/TerminologyService/AssociationQualifier/MAND";
const AssociationQualifierldStr OPTIONAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/OPT";
const AssociationQualifierldStr SINGLE =
"IDL:omg.org/TerminologyService/AssociationQualifier/SING";
const AssociationQualifierldStr PLURAL =
"IDL:omg.org/TerminologyService/AssociationQualifier/PLUR";

I
I Languagelds
I
typedef ConceptCode Languageld;

const NamingAuthority::AuthorityldStr
LANGUAGE_ID_AUTHORITY_STRING =
"DNS:usmarc.omg.org/041/";

const Languageld DANISH ="DAN";
const Languageld ENGLISH ="ENG";
const Languageld FRENCH ="FRE";
const Languageld GERMAN ="GER";
const Languageld ITALIAN ="ITA";
const Languageld SPANISH ="SPA";

I
I LexicalTypelds
I

typedef QualifiedNameStr LexicalTypeldStr;

const LexicalTypeldStr ABBREVIATION = "DNS:umls.hl7.omg.org/LT/ABB";
const LexicalTypeldStr EMBEDDED_ABBREVIATION =
"DNS:umls.hl7.omg.org/LT/ABX";

const LexicalTypeldStr ACRONYM = "DNS:umls.hl7.omg.org/LT/ACR";

LQS V1.0 June 2000 A-27

A-28

const LexicalTypeldStr EMBEDDED_ACRONYM =
"DNS:umls.hl7.omg.org/LT/ACX";

const LexicalTypeldStr EPONYM = "DNS:umls.hl7.omg.org/LT/EPQO",
const LexicalTypeldStr LAB_NUMBER = DNS:umls.hl7.omg.org/LT/LAB";
const LexicalTypeldStr PROPER_NAME =
"DNS:umls.hl7.omg.org/LT/NAM";

const LexicalTypeldStr SPECIAL_TAG = "DNS:umls.hl7.omg.org/LT/NON
NO";

const LexicalTypeldStr TRADE_NAME = "DNS:umls.hl7.omg.org/LT/TRD";

I
1 PresentationFormatlds
I
typedef ConceptCode PresentationFormatlid;

const NamingAuthority::AuthorityldStr
PRESENTATION_FORMAT_AUTHORITY_STRING =
"DNS:omg.org/MIME/";

const PresentationFormatld PLAIN_TEXT = "text/plain”;
const PresentationFormatld RTF = "application/rtf";

const PresentationFormatld ZIP = "application/zip";

const PresentationFormatld PDF = "application/pdf";

const PresentationFormatld GIF_IMAGE = "image/gif";
const PresentationFormatld BASIC_AUDIO = "audio/basic";

i
I Sourcelds
i

typedef QualifiedNameStr SourceldStr;

I
1 SourceUsageTypeld
I

typedef QualifiedNameStr SourceUsageTypeldStr;
I
I SyntacticType
I

typedef ConceptCode SyntacticTypeld;

const NamingAuthority::AuthorityldStr
SYNTACTIC_TYPE_AUTHORITY_STRING =
"DNS:umls.hl7.omg.org/STT";

const SyntacticTypeld CASE_DIFFERENCE = "C";
const SyntacticTypeld WORD_ORDER = "W";
const SyntacticTypeld SINGULAR_FORM = "S";
const SyntacticTypeld PLURAL_FORM = "P";

I

Lexicon Query Service V1.0 June 2000

Il Query Property Types
I
typedef string TerminologyServiceProperty;

const TerminologyServiceProperty LexicalTypeProperty = "LexicalTypeld";
const TerminologyServiceProperty AssociationProperty = "Associationld”;
const TerminologyServiceProperty PreferredTextProperty = "Preferred-
Text"

const TerminologyServiceProperty DefinitionProperty = "Definition";

const TerminologyServiceProperty PresentationProperty = "Presenta-
tionld";

k
#endif /* _TERMINOLOGY_SERVICE_VALUES_IDL_ */

LQS V1.0 June 2000 A-29

A-30 Lexicon Query Service V1.0 June 2000

B.1 Class

Diagram Notation B

The notation used in this chapter is the authors’ interpretation of a subset of the
Unified Modeling Language (UML) notation [23]. It is described briefly below:

Student
gstudentld : string

. %GetLockerNumber () : long

The above diagram represents a class. The name ofatge Student is in the top

segment of the diagram. The middle segment contains the attributes of the class in the
form of <attribute : type>. In this diagram, instances of c&tsslentare defined as

having one attribute, namestiudentld,and having a data type twhg. The icon to the

left of the attribute indicates that it is publicly available outside of the class. The
bottom segment contains the methods which the class implements in the form of
<Method(arg list) : return type>. TH&tudentclass will have one method,
GetLockerNumbemvhich returns a data element of tyipag. The icon to the left of the
method also indicates that it is publicly available.

All of the attributes and methods described in the specification are defined as publicly
available. All of the attributes described in this specification are also implicitly read-
only, as the specification is constrained to read-only service access.

Class diagrams may have their attributes and methods hidden if it helps with the clarity
of the overall diagram:

Lexicon Query Service V1.0 June 2000 B-1

B.2 Association

B-2

Student

Class names may also have an annotation in parentheses. This annotation indicates the
package from which the class is imported. These annotations are not of significance in
this document.

Student
(from AnotherPackage)

Student
gstudentld : string

- %GetLockerNumber () : long

1.*

enrolled infattended by

0.*

Course

&scourseNumber : string
&ssemester : string

Two classes may be associated. A solid line between the classes represents this
association. The name on the association (ergalled in/attended Byprovides a

textual description of the specific association. The name before the slash in the
association is usually the description of the role the upper or leftmost class takes with
respect to the lower or rightmost class. The name after the slash, if any, describes the
reverse. The numeric annotations represent the instance cardinality of the class. The
above example can be read as:

“A student may be enrolled in zero or more courses.” and “A course must be attended
by one or more students.”

Lexicon Query Service V1.0 June 2000

B.2.1 Association Adornments

Document
1 1.*
.*
contains references
*
1. references o
Text
0.* Table
Picture

A diamond on one end of an association represents a whole/part association, with the
diamond end representing the whole. In the above diagram, the document is the whole
and it may consist of the patisxts, picturesandtables If the diamond is solid, the
existence of the parts depends upon the existence of the {(hasla) If the diamond

is hollow, the part may exist outside of the wh(iields-a) These are conventions of

this document and not necessarily of UML. In the above diagram, an instance of the
Textclass may not exist if the corresponding instance oDibeumentclass does not

exist, while an instance of thHeicture class may exist even when the referencing
document is destroyed.

An open arrow indicates one-way navigability. In the above diagram, one would be
able to locate all of thBocumentsn which an instance of theicture class exists, but
one would not be able to locate all of thecumentghat reference a giverable

B.2.2 Association Classes

An association may have a class associated with it as well. The properties and methods
of this class apply to instances of associations. An association class is marked with a
dashed line between the class and the association:

Student

1. * Grade
gletterGrade : char

. . SpassingGrade () : boolean
enrolled) in/attended by e etStu?:l ent () :()Student

0.* . %GetClass () : Class

LQS V1.0 June 2000 B-3

B-4

B.3

Inheritence

In the above diagram, the claGsade applies to theenrolled inassociation. For each
Student/Clasgssociation instance, there will be an instance ofataele class which

will have aletterGradeattribute as well as methods to determine whether the grade is
passing or not. As a convention in this document, navigation between the association
class and the associated classes is explicitly provided if ne€d¢8tudenand
GetClassprovide the means of accessing both ends of the specific association instance.

Employee
gidentifier : long

. %GetName () : string

Manager

. %GetDepartment () : string

The hollow arrow indicates that one class is a subclass of an@ter The arrow

points in the direction of the superclass. A subclass inherits all of the attributes and
methods of the superclass. An instance of a subclass will always be an instance of the
superclass as well. The converse of this not necessarily true.

In the above example, the cldganageris a subclass of the claBsployee This

means that an instance of the clb&snageris also an instance of the cléssiployee

(All managers are employees). This does not imply, however, that all employees are
managers. Th#anagerclass includes the attributdentifier and the methods
GetNameand GetDepartment

Lexicon Query Service V1.0 June 2000

References C

[1] CORBAmed Lexicon Query Services RFP, January 1997. OMG CORBAmed
Document 97-01-04http://www.omg.org/docs/corbamed/97-01-04.rtf

[2] CORBAServices: Common Object Services Specification. OMG, November 1997.
http://www.omg.org/corba/csindx.htm

[3] Telecommunications Topology Service RFP, January 1997. OMG Telecom
Document 97-01-02attp://www.omg.org/docs/telecom/97-01-02.pdf

[4] CEN ENV 12264: 1995 (MoSe). Medical informatics — Categorial structures of
systems of concepts — Model for representation of semantics. Brussels:CEN, 1995.

[5] Unified Medical Language System. 8th Edition. National Library of Medicine.
January 1997http://www.nlm.nih.gov/pubs/factsheets/umls.html

[6] ISO 1087:1990 — Terminology — Vocabulary.

[7] A. Rossi Mori, “ICNP: towards second and third generation of Terminology
Systems.”. IMIA WG6 Conference on Natural Language and Medical Concept
Representation. 1997.

[8]] Object Management Architecture Guide. Revision 3.0. Richard Soley, Christopher
Stone. OMG, June 199Http://www.omg.org/library/omaindx.htm

[9] ISO/IEC 8824-1 (1994) Information Technology—Abstract syntax Notation One
(ASN.1)—specification of Basic Notation.

[10] P. Mockapetris, " Domain Names - Concepts and Facilities", RFC 1034,
Information Sciences Institute, November 1987.
http://andrew2.andrew.cmu.edu/rfc/rfc1034.html

[11] The Common Object Request Broker: Architecture and Specification. Revision
2.1. OMG, August 1997http://www.omg.org/corba/c2indx.htm

Lexicon Query Service V1.0 June 2000 C-1

C-2

[12] DCE 1.1: Remote Procedure Call. OpenGroup Document Number C706, August
1997. First access pagettp://www.opengroup.org/public/pubs/catalog/c706.ikr@n
link to http://www.rdg.opengroup.org/onlinepubs/9629399/apdxa.htm#tagcjh_20.

[13] AL Rector, A Gangemi, E Galeazzi, AJ Glowinski, A Rossi-Mori, “The GALEN
CORE Model Schemata for Anatomy: Towards a Re-usable Application-Independent
Model of Medical Concepts. MIE Proceedings, 1994.

[14] H. Kilov, J. RossInformation Modeling — An Object-Oriented Approach.
Prentice Hall, 1994.

[15] B. Potter, J. Sinclair and D. TilAn Introduction to Formal Specification and Z.
International Series in Computer Science, Hemel Hempstead, UK: Prentice Hall, 1991.
As quoted in Kilov.16

[16] ISO/IEC 7826-1 : 1994 Information technology - General Structure for the
Interchange of Code Values, Part 1 - Identification of Coding Schemes.

[17] ISO/IEC 7826-2 : 1994 General Structure for the Interchange of Code Values,
Part 2 - Registration of Coding Schemes.

[18] American Society of Testing Material$ittp://www.astm.org/COMMIT/e-31.htm

[19] Health Level Seven (HL7) Version 2.3. Final Standard. 1997.
http://www.mcis.duke.edu/standards/HL7/pubs/version2.3/html/httoc.htm

[20] Generic ICD-9-CM. US Department of Health and Human Services, 1997.

[21] RFC 1521, MIME Mechanisms for Specifying and Describing the Format of
Internet Message Bodies

[22] Moore, K., "Representation of Non-Ascii Text in Internet Message Headers" RFC
1522, University of Tennessee, September 1993.

[23] UML Notation Guide, Version 1.1. Rational Software, September 1997.
http://www.rational.com/uml/html/notation/

Lexicon Query Service V1.0 June 2000

Index

A

Advanced Query Terms 2-19
AdvancedQuery 2-39
AdvancedQueryAccess Conformance 3-20
AdvancedQueryAccess Interface 2-47
are_concepts_in_value_domains 2-34, 3-19
are_entities_associated 2-54
are_expressions_equivalent 2-56
AssociatableElement 1-22, 2-22
Association 3-3, 1

Association Characteristics 3-4
Association Discovery 1-9
Association Instance 1

Association Qualifier 3-14, 1
association_exists 2-34
AssociationDef 2-22

Associationld 1-20, 2-11
associationld 3-5
Associationlnstance 2-22
AssociationQuialifierld 1-21, 2-10
AssociationRole 2-22
associations_exist 2-34, 3-19
AttributeValuePair 2-22
authority_to_str 2-7

Authorityld 1-16, 2-5

AuthorityldStr 1-16, 2-5

B

baseType 3-5

Basic Coding Terms 2-8
Basic Identifiers 1-17
Basic Types 1-12

Blob 1-12,2-12,1
Browsing 1-8

C

Cardinality 1-13, 2-23

Characteristic 1-18, 2-21, 1

CharacterSet 3-14

CharacterSetld 1-20

Code Mapping 1-7

Code Refinement 1-4

Code Transformation 1-6

Code Translation 1-6

Coded Concept and Coding Scheme Terms 2-12
Coded Concept Types 2-11

Coding Scheme 3-14, 2

Coding Scheme Terms 2-12

Coding Scheme Version 1-26, 2

Coding Schemes 1-24

Coding Terms 2-11

coding_scheme_id 2-39
coding_scheme_locator 2-29
coding_scheme_version 2-53
CodingSchemeAttributes Interface 2-38
CodingSchemeld 1-18, 2-9
CodingSchemelnfo 2-15
CodingSchemeLocator Conformance 3-19
CodingSchemeLocator Interface 2-35
CodingSchemeVersion 2-39
CodingSchemeVersion Conformance 3-20

CodingSchemeVersion Interface 2-39
CodingSchemeVersionRefs 2-16
Collections 1-22
Comment 2-16, 2
Composite Concept Manipulation 1-9
Composite Types 1-21
Composition 1-9
Concept Attribute Discovery 1-8
Concept Attributes Retrieval 1-9
Concept Code 2
Concept Description 2
Concept Expression 2
Concept Expressions 1-35
concept_as_source 2-49
concept_as_target 2-49
ConceptCode 1-19, 2-9
ConceptDescription — Part 1 1-28
ConceptDescription — Part 2 1-29
ConceptExpression 1-36, 2-22
ConceptExpressionElement 1-37, 2-22
Conceptinfo 2-16
ConceptinfoSeqSeq 2-16
Conformance Points 3-18
conformance_classes 3-2
CORBA

contributors 3

documentation set 2
could_association_be_inferred 2-54
current_scheme_only 2-49

D

Data Element Location 1-8
Data Type Definitions 1-12
DCE 1-15, 1-16, 2-4, 2-5
Decomposition 1-9

Definition 2-16, 2

destroy 1-42
direct_associations_only 2-49
DNS 1-14, 1-15, 2-3, 2-5

E

EntityGraph 2-23
Exceptions 2-7, 2-8
expand_concept 2-55
expression_difference 2-56

F

Field Validation 1-5, 1-7
Full IDL A-1

G

get_all_extensions 2-58
get_all_presentations_for_concept 2-45
get_all_presentations_for_context 2-46
get_all_text 2-42
get_association_definition 2-53
get_association_for_target 2-55
get_association_ids 2-53
get_associations_for_source 2-55
get_coding_scheme_ids 2-29
get_coding_scheme_version 2-36
get_comments 2-42

Lexicon Query Service June 2000

Index-1

Index

get_concepts_by_text 2-43
get_default_systemization 2-50
get_definitions 2-42

get_entity_graph 2-54
get_extension_for_scheme 2-58
get_instructions 2-42
get_last_valid_version 2-36
get_linguistic_group 2-46
get_native_coding_scheme_info 2-29
get_native_coding_scheme_version 2-36
get_pick_list 2-34, 2-58
get_pick_list_for_scheme 2-58
get_preferred_definition 2-32, 2-42, 3-19
get_preferred_presentation 2-46
get_preferred_text 2-32, 2-42
get_preferred_text_for_concepts 2-32, 3-19
get_presentation 2-45
get_presentation_for_context 2-46
get_presentation_format_ids 2-45
get_presentation_info 2-45
get_presentation_usages 2-45
get_scheme_source_ids 2-41
get_schemes_with_extensions 2-58
get_simplest_form 2-55
get_source_term_usages 2-41
get_supported_languages 2-36
get_syntactic_types 2-41
get_systemization 2-50
get_systemization_ids 2-50
get_text_for_context 2-42
get_usage_contexts 2-41
get_value_domain_ids_for_concept 2-38
get_value_domain_version 2-38
get_version_ids 2-36, 2-37

|

IDL 2-4, 2-5

IDL Interface 1-41
Implementation Vendor 2
Indexing 1-7

Inference 1-7

Information Acquisition 1-3
Information Display 1-6
inherited 3-7, 3-9, 3-11
inherited = TRUE 3-9
Instruction 2-16, 2
interfaces_implemented 3-2
IntIString 1-12, 2-12

IR 1-14, 1-15
is_code_in_domain 2-58
is_complete_scheme 2-39
is_concept_in_value_domain 2-33, 3-19
is_default_version 2-39, 2-57
is_valid_concept 2-41

ISO 1-14, 1-15, 2-3, 2-5
Iterators 1-41

K
Keyword Matching 1-4

Index-2 Lexicon Query Service

L

Language 3-15, 2

language_id 2-39

Languageld 1-20, 2-11

lex_explorer 2-28

LexExplorer Interface 2-29

Lexical Type 3

LexicalType 3-16

LexicalTypeld 1-20, 2-10

Linguistic Group 3
LinguisticGroupAccess 2-39
LinguisticGroupAccess Conformance 3-20
LinguisticGroupAccess Interface 2-46
LinguisticGroupld 1-17, 2-16
LinguisticGrouplinfo 2-16
list_all_association_instances 2-53
list_associated_source_concepts 2-54
list_associated_source_elements 2-35
list_associated_target_elements 2-34, 3-19
list_associated_target_entities 2-54
list_concepts 2-33, 2-41, 3-19
list_value_domain_ids 2-33, 3-19
Local Name 3

LocalName 1-16, 2-6

M

MAF IDL Interfaces A-1, B-1, C-1
match_concepts_by_keywords 2-43
match_concepts_by_string 2-43
max_left 1-41
maximal_common_subtype 2-56
MaximumCardinality 2-23
Mediation 1-6

Meta Concepts 1-19

Meta Types 2-9
Meta-Terminology 3-3
minimal_common_supertype 2-56
MinimumCardinality 2-23

Model Overview 1-11

N

Naming Authority 1-13, 3
NamingAuthority Module 2-1
NamingEntity 1-15, 2-4

Native Coding Scheme 3
next_n 1-42

nonCodedAllowed 3-5
nonCodedAllowed = FALSE 3-8, 3-9
nonCodedAllowed = TRUE 3-11
Non-Semantic Association 3-10
Normalization 1-9

Notation 1-41

)

Object Management Group 1
address of 2

OrderedintlStringSeq 2-12

OTHER 2-4

Other 1-14, 1-15, 2-3

P
Phrase Lookup 1-3

June 2000

Index

Phrase Matching 1-3

Pick List 3

Pick List Generation 1-5
PickListEntry 1-21, 2-24

Possible Value Enumeration 1-4
pragma prefix 2-3

Predefined Association Codes 3-13
Presentation 2-17, 3

Presentation Format 3
Presentation Types 1-32
Presentation Usage 3
PresentationAccess 2-39
PresentationAccess Conformance 3-20
PresentationAccess Interface 2-44
PresentationFormat 3-16
PresentationFormatld 1-20, 2-11
Presentationld 1-17, 2-17
Presentationinfo 2-17
Presentations 1-30
PresentationType 2-17
PresentationUsage 2-18
PresentationValue 2-17

Q

Qualified Code 3

Qualified Code Types 2-10
Qualified Name 3
qualified_code_to_name_str 2-27
qualified_name_to_str 2-7
QualifiedCode 1-19, 2-9
QualifiedCodelnfo 2-17
QualifiedName 2-6
QualifiedNameStr 2-6

R

Reference Association 3-8
Reference Model 1-9

Registration Authority 4
RegistrationAuthority 1-13, 2-3
RelatedEntityExpression 1-37, 2-23
Relationship Inquiry 1-8
RestrictedTargetElement 2-23
Role 4

RoleName 1-17, 2-21

S

Sequences and Sets 1-41

Service Browsing 1-8

Source 3-17,4

Source Term Type 3-17, 4
sourceCardinality 3-6, 3-8, 3-10, 3-11
Sourceld 1-20, 2-10

Sourcelnfo 2-18

sourceRole 3-5, 3-8, 3-10, 3-11
sourceTargetDisjoint 3-7
sourceTargetDisjoint = FALSE 3-9
sourceTargetDisjoint = TRUE 3-8, 3-11
SourceTermUsageld 1-20, 2-11
Specific Association Types 3-7
str_to_authority 2-7
str_to_qualified_code 2-27

str_to_qualified_name 2-7

Structural Composition/Decomposition 1-7
Subtyping Association 3-9
supported_coding_schemes 3-2
supported_languages 3-3

symmetric 3-7, 3-9

symmetric = FALSE 3-9, 3-11

Syntactic Type 3-17, 4

SyntacticTypeld 1-20, 2-11
Systemization 4

Systemization Conformance 3-20
Systemization Definitions 2-19
Systemization Interface 2-50
systemization_id 2-53
SystemizationAccess 2-39
SystemizationAccess Conformance 3-20
SystemizationAccess Interface 2-49
Systemizationld 1-17, 2-18
Systemizations 1-33

T
Target Element 4

targetCardinality 3-6, 3-9, 3-10, 3-11
TargetElement 2-23

targetlsSet 3-5

targetlsSet = FALSE 3-8, 3-11
targetlsSet = TRUE 3-9

targetRole 3-5, 3-8, 3-10, 3-11
Terminology 4

Terminology Exceptions 2-25
Terminology Identifiers 1-18
Terminology Service 1-23, 4
Terminology Service Module 2-7
Terminology Service Values Module 2-58
terminology_service_name 2-28, 3-2
TerminologyService Interface 2-28
TerminologyServiceName 2-9

Text Lookup 1-3

Trader Service 3-2

transitive 3-6

transitive = FALSE 3-11

transitive = TRUE 3-9

transitive = UNKNOWN 3-8
translate_code 2-33
translate_codes 2-33, 3-19
TranslationLibrary Interface 2-27
TranslationLibrary interface 2-7
Trinary 1-12, 2-12

Type Definitions 2-7

U

UniqueName 1-16
UniqueNameStr 1-16
Usage Context 3-18, 4
UsageContextld 1-20, 2-11
Use Scenarios 1-2

\Y

validate_concept_expression 2-55
ValidationResult 1-21, 2-23

Value Domain 3-18, 4

Lexicon Query Service June 2000

Index-3

Index

Value Domain Terms 2-24 ValueDomainVersion Interface 2-56
Value Domains 1-40 Vendor-Defined Associations 3-11
value_domain_id 2-57 version_id 2-39
value_domain_locator 2-29 Versionld 1-17, 2-9
value_domain_version_id 2-57

ValueDomainld 1-19, 2-24 W

ValueDomainLocator Conformance 3-20 Weight 1-13, 2-18
ValueDomainLocator Interface 2-37 WeightedResult 1-22, 2-18

ValueDomainVersion Conformance 3-20

Index-4 Lexicon Query Service June 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Service Description
	1.1 Overview
	1.2 Use Scenarios
	1.2.1 Information Acquisition
	1.2.2 Information Display
	1.2.3 Mediation
	1.2.4 Indexing and Inference
	1.2.5 Browsing
	1.2.6 Composite Concept Manipulation

	1.3 Reference Model
	1.4 Model Overview
	1.5 Data Type Definitions
	1.5.1 Basic Types
	1.5.2 Naming Authority
	1.5.3 Basic Identifiers
	1.5.4 Terminology Identifiers
	1.5.5 Meta Concepts
	1.5.6 Composite Types
	1.5.7 Collections

	1.6 Terminology Service
	1.6.1 Coding Schemes
	1.6.2 Value Domains

	1.7 IDL Interface
	1.8 Notation
	1.8.1 Sequences and Sets
	1.8.2 Iterators

	2. Modules and Interfaces
	2.1 NamingAuthority Module
	2.1.1 RegistrationAuthority
	2.1.2 NamingEntity
	2.1.3 AuthorityId, AuthorityIdStr
	2.1.4 LocalName, QualifiedName, QualifiedNameStr
	2.1.5 Exceptions
	2.1.6 TranslationLibrary Interface

	2.2 Terminology Service Module
	2.2.1 Type Definitions
	2.2.2 Exceptions
	2.2.3 Basic Coding Terms
	2.2.4 Meta Types
	2.2.5 Coded Concept and Coding Scheme Terms
	2.2.6 Advanced Query Terms
	2.2.7 Systemization Definitions
	2.2.8 Value Domain Terms
	2.2.9 Terminology Exceptions
	2.2.10 TranslationLibrary Interface
	2.2.11 TerminologyService Interface
	2.2.12 LexExplorer Interface
	2.2.13 CodingSchemeLocator Interface
	2.2.14 ValueDomainLocator Interface
	2.2.15 CodingSchemeAttributes Interface
	2.2.16 CodingSchemeVersion Interface
	2.2.17 PresentationAccess Interface
	2.2.18 LinguisticGroupAccess Interface
	2.2.19 AdvancedQueryAccess Interface
	2.2.20 SystemizationAccess Interface
	2.2.21 Systemization Interface
	2.2.22 ValueDomainVersion Interface

	2.3 Terminology Service Values Module

	3. Terminology
	3.1 Trader Service
	3.2 Meta-Terminology
	3.2.1 Association
	3.2.2 Vendor-Defined Associations

	3.3 Association Qualifier
	3.4 CharacterSet
	3.5 Coding Scheme
	3.6 Language
	3.7 LexicalType
	3.8 PresentationFormat
	3.9 Source
	3.10 Source Term Type
	3.11 Syntactic Type
	3.12 Usage Context
	3.13 Value Domain
	3.14 Conformance Points
	3.14.1 Minimum Implementation
	3.14.2 Additional Conformance Levels
	3.14.3 ValueDomainLocator Conformance

	Lexicon Query Glossary
	Appendix A - OMG IDL
	Appendix B - Diagram Notation
	Appendix C - References
	Index

