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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer 
industry standards consortium that produces and maintains computer industry specifications for interoperable, 
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes 
Information Technology vendors, end users, government agencies and academia. 

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's 
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle 
approach to enterprise integration that covers multiple operating systems, programming languages, middleware and 
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified 
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse 
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG 
Specifications is available from the OMG website at: 

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

Business Modeling Specifications

Middleware Specifications

• CORBA/IIOP

• Data Distribution Services

• Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications

• UML, MOF, CWM, XMI

• UML Profile

Modernization Specifications
 Lightweight Fault Tolerance for Distributed RT Systems, v1.0                                                                                            v        



Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications

• CORBAServices

• CORBAFacilities

OMG Domain Specifications

CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG 
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format, 
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of 
January 16, 2006) at: 

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English. 
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.:  Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold:  Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note – Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document, specification, 
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
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1 Scope

This specification extends the Fault Tolerance CORBA specification with capabilities to support real-time applications by 
providing predictable recovery times and support for application-defined consistency management. Admitting that there is ‘no 
one size fits all’ solution for building highly fault tolerant solutions, applications can now provide their own fault detectors, 
fault analyzers and recovery mechanisms. Application state consistency will be decided and managed by application-supplied 
mechanisms that shall be integrated with FT infrastructures. The FT CORBA specification provided no means for applications 
to provide their own consistency management or to cooperate with middleware ReplicationManagement in order to synthesize 
a workable status for server groups. Extensions to CORBA, FT CORBA are specified to enable interoperability between client 
ORBs and server ORBs in a fault tolerant enabled infrastructure.

2 Conformance

This specification defines 3 conformance levels:

1. Server Replica Management: Support for both cold-passive and warn-passive replication styles regardless of the 
interaction style (C/S, Pub/Sub).

2. Basic Object Group Management: Server Replica Management with support for client/server CORBA interactions 
based on standard IORs.

3. Extended Object Group Management: Basic Object Group Management with support for PortableGroups, 
FTCORBA IOGR’s for enforcing at most once semantics, and support for Fault Detection and Notification.

An implementation claiming compliance to a given level shall also comply with lower levels (if any).

Table 2.1 provides a detailed service to conformance level matrix.

Table 2.1 - Service to Conformance level matrix

Service /Interfaces Server Replica 
Management

Basic Object Group 
Management

Extended Object 
Group Management

ServerManager X X X

ServerRecoveryManager X X X

RecoveryObserver X X X

-ORBFTLocation X X X

Object Group Name X X

Object Group Name Alias X

ClientFaioverSemanticsPolicy X X

ObjectGroupMembershipPolicy X X

ObjectGroupNameResolutionPolicy X

ServiceLocator X X

ForwardServicingLocator X X

Interoperable Object Group 
References

X

Lightweight Fault Tolerance for Distributed RT Systems, v1.0        1



3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this 
specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not apply. 

• [CORBA] Common Object Request Broker Architecture: Core Specification, March 2004 Version 3.0.3 (formal/04 
03-01)

• [FTCORBA] Fault Tolerant CORBA - Chapter 23 from the CORBA Core Specification

• [CCM] CORBA Components, June 2002, Version 3.0 (formal/02-06-65)

• [DDS] Data Distribution Service for Real-Time Systems Specification, December 2005, Version 1.1 (formal/05-12-04)

• [RTCORBA] Real Time - CORBA Specification, November 2003, Version 2.0 (formal/03-11-01)

• [UMLPROFILE] UML Profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms, 
Version 1.0, (formal/06-05-02)

• [DATAPARALLEL] Data Parallel CORBA Specification, Version 1.0 (formal/06-01-03)

• [MIOP] Unreliable Multicast Inter-ORB Protocol Specification

FT_REQUEST ServiceContext X

FT_GROUP_ID ServiceContext X

FTRequestDurationPolicy X

FT Current X

ServerCallback X X

ServerUpdateObserver X X

ServerGroupManager X X

ServerGroupManagerExt X X

RecoverableServer X X

Transport Heartbeats X

FaultNotifier X

ServerCrashFault X

PullMonitorable X

PullMonitorableServer X

TCPProtocolProperties If RT ORB

-ORBKeepAlive X X

GenericFactory X

ObjectGroupManager X

Group Object Adapter X

Table 2.1 - Service to Conformance level matrix
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4 Terms and Definitions

Fault Tolerance Domain

For scalability, large applications are divided into multiple fault tolerance domains each managed by a single 
ReplicationManager. All replicas of process groups and all the members of objects groups hosted by these processes are 
located within a single fault tolerance domain but can invoke, or can be invoked by, objects of other fault tolerance domains. A 
host can support objects from multiple fault tolerance domains.

FT-Enabled Middleware

FT-enabled middleware is responsible for providing the group abstraction needed for a reliable architecture through 
middleware Replication Management and transparent failover. The FT middleware may also rely on some middleware fault 
detectors for monitoring the middleware infrastructure.

FT Infrastructure

The set of hardware and software components and services provided by the FT-enabled middleware and external mechanisms 
in support for applications in a reliable and fault tolerant system. These include replication management, fault management, 
consistency management and recovery management.

Process Group

A process group is a grouping of FT Process replicas managed by the ReplicationManager. Process groups host members of 
object groups in order to ensure replication and failure transparencies to object group users.

FT Process

A node-level POSIX process part of a process group (also referred to as replica) that is considered as a unit of redundancy by 
the ReplicationManager.

Object Group Manager

The Object Group Manager is responsible for handling object group membership operation requests from applications. It 
contains operations for creating a member of an object group at a particular location, adding a member to an object group at a 
particular location, removing a member from an object group at a particular location, getting the locations of the members of 
an object group.

Forwarder

A component of the FT-enabled middleware responsible for locating the latest object group reference and 'forwarding' it to the 
client. In order to act as a fallback object when all known object group members are not reachable by a client, an object group 
reference must contain a profile to a Forwarder.

Object Group Reference

In order to provide replication transparency (client objects not aware that there are several server objects) and failure 
transparency (client objects not aware of faults in the FT Process replicas), server object replicas are managed as an object 
group. An object group reference is an object reference for the object group as a whole. An object group reference is standard 
Interoperable Object Group reference (IOR) that may or may not be an Interoperable Object Group reference (IOGR).
Lightweight Fault Tolerance for Distributed RT Systems, v1.0        3



Server

“A server is a computational context in which the implementation of an object exists. Generally, a server corresponds to a 
process.” In LWFT a Server will always correspond to a Process.

Server ID

“A Server ID must uniquely identify a server to an IMR. This specification only requires unique identification using a string of 
some kind and does not intend to make more specific requirements for the structure of a server ID. The server ID may be 
specified by an ORB_init argument of the form - ORBServerId. The value assigned to this property is a string. All templates 
created in this ORB will return this server ID in the server_id attribute. It is required that all ORBs in the same server share the 
same server ID. Specific environments may choose to implement -ORBServerId in ways that automatically enforce this 
requirement.”

5 Symbols

AMSM Application Management and System Monitoring for CMS Systems

CCM CORBA Component Model

CIF Component Implementation Framework

CIM Common Information Model; a standard for system administration developed by DMTF

CORBA Common Object Request Broker Architecture

DCE ESIOP Environment-Specific Inter-ORB Protocol (ESIOP) for the OSF DCE environment

DCE-CIOP DCE Common Inter-ORB Protocol

DCPS Data-Centric Publish-Subscribe (part of DDS)

DDS Data Distribution Service

DLRL Data Local Reconstruction Layer (part of DDS)

DMTF Distributed Management Task Force (cf. www.dmtf.org)

GIOP General Inter-ORB Protocol

GOA Group Object Adapter

IDL Interface Definition Language
4                 Lightweight Fault Tolerance for Distributed RT Systems, v1.0
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IEEE Institute of Electrical and electronics engineers

IMR Implementation Repository

IOGR Interoperable Object Group reference

IOR Interoperable Object Reference

MIOP Unreliable multicast Inter-ORB Protocol

OMG Object Management Group (cf. www.omg.org)

ORB Object Request Broker

OSF Open Software Foundation

PIM Platform Independent Model

POA Portable Object Adapter

POSIX Portable Operating System Interface for Unix; name of a family of related standards specified by the 
IEEE

PRM Platform Specific Model

QoS Quality of Service

RFP Request for Proposal

RO-MIOP Reliable Ordered Multicast Inter-ORB Protocol

UML Unified Modeling Language

W3C World Wide Web Consortium (cf. www.w3c.org)

WBEM Web-Based Enterprise Management

XML eXtensible Mark-up Language
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6 Additional Information

6.1 Acknowledgments

The following companies submitted this specification:

• Thales

• PrismTech Group Ltd
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7 Overall Design Rationale

7.1 Introduction

The design overcomes shortcomings and complexities of fault tolerant CORBA by introducing the Server Group 
concept (generally a POSIX process group) making a Server a unit of redundancy managed by an FT-enabled 
middleware while maintaining failure and replication transparencies for clients provided by Fault Tolerant 
CORBA object groups.

The consistency of server state is not managed by the FT-enabled middleware but is rather managed by middleware 
independent mechanisms provided/supported by the application. The server state may thus rely on a persistent state service, a 
replicated database, a Data Distribution Service ... etc.

Applications may now perform fault analysis, fault containment and recovery and also provide application-specific fault 
detectors to complement the FT-middleware enabled fault detector.

To provide failure and replication transparencies to clients, the design makes use of location forwarding techniques to locate a 
suitable Server replica that is capable of dealing with their requests.

Servers register themselves with a central registry service (Server Group Manager) which maintains records of the endpoints 
of all Server replicas. The reference advertised to clients contains endpoint information of one or more forwarding components 
or a location service. When a Client attempts to use a Server's object reference it will therefore be directed to a forwarding 
service locator instead, which will return the reference for a suitable Server replica that the Client should use. 

7.2 General Architecture

CORBA Fault Tolerance architecture tackled most of the architectural elements required for a reliable architecture: entity 
redundancy, fault detection, and recovery.

By externalizing fault detection and recovery to enable applications use more efficient mechanisms, the architecture focuses 
on Replication Management and Transparent Failover.
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Figure 7.1 - General Architecture

7.3 FT-enabled Middleware

FT-enabled middleware is responsible for providing the group abstraction needed for our reliable architecture through 
middleware Replication Management and transparent failover. On primary replica failure, the middleware  
ReplicationManager may either elect a new one via some predefined strategies, or involve the middleware-independent FT 
infrastructure or the application for some specific/dedicated election strategy.

The FT middleware may also rely on some middleware fault detectors for monitoring the middleware infrastructure.

A Service Locator architectural component is also introduced to over come a current FT CORBA limitation when all member 
replicas have failed (see 7.3.4).

7.3.1 Middleware-independent FT infrastructure

The FT-enabled middleware relies on external mechanisms for fault detection, fault analysis, and consistency and recovery 
management.

Server process replication done through the ServerGroupManager interface does not make any assumption on the way 
application offer/use services (Client/Server, Data Publish/Subscribe ... etc.).

This specification focuses on the CORBA Client/Server interaction model.
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7.3.1.1 Client-side view / Object groups

The ClientFailoverSemanticsPolicy provides a means for application developers to explicitly control how and if failover 
occurs. This Policy will be effective in the context of any object reference. 

Use of object groups when failure and replication transparencies are required based on standard forwarding mechanisms on 
either standard IORs or Interoperable Object Group references (IOGRs). 

7.3.1.2 Server-side view / Process Groups

ServerGroupManager manages process groups in a fault tolerance domain. Since all objects and components within a process 
group share computing resources, memory ... etc. the unit for ensuring consistency is the server process. In passive replication, 
a server is either primary or backup and as a side effect, all hosted CORBA objects and components are assumed to be 
primaries or backups. 

At start-up, the server registers with the ServerGroupManager of its fault tolerance domain and joins its server group.

Middleware-independent mechanisms may be used for consistency management within the server but these should then advise 
the ServerGroupManager of the completion/readiness of the server.

The ServerGroupManager then, advises the FT-enabled middleware/FT-ORB of the FT status of the server in order to allow/
deny request delivery to the server replica depending on whether it is primary or backup. 

7.3.2 Fault Tolerance Current

It is necessary to retry request invocation in the presence of failure to provide failure transparency to applications with the risk 
of performing a request more than once at the server side. Applications wishing to enforce the at most semantics of CORBA 
invocation can use the FTCurrent object to retrieve invocation identification and detect repetitive request invocations. 

7.3.3 Invocation Timeouts

Invocation timeouts introduced by FTCORBA and CORBA Messaging can still be used with this specification 
(RelativeRoundtripPolicy, RequestDurationPolicy ... etc.).

7.3.4 Location Forwarding

A Service Locator architectural component is responsible for locating/retrieving latest group object reference when all 
previously known profiles have failed. This specification extends the Interoperable Object Group Reference to support 
location mechanisms as in DCE-CIOP Location Mechanism ([CORBA] 16.6.1).

7.3.5 Naming Groups

To ease application bootstrapping and service localization (Location/Forwarding) object groups are named using human 
readable schemes. 
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8 Conceptual Model

8.1 Introduction

This specification is based on proven concepts from the CORBA Fault Tolerance specification and basic forwarding 
techniques used in many ORB vendors’ Implementation Repositories (IMR). 

CORBA Fault Tolerance defines fault tolerance domains containing several hosts (nodes) and many object groups. 

A reliable application within a fault tolerance domain will be made of many local applications running on physical nodes. An 
application offers some services for use by other applications or users. ServiceAccessPoint models the client view/access to 
the service (see AMSM, DMTF/CIM). 

QosPolicy is used to capture main real time properties attached to the application or service access point. 

Figure 8.1 - General overview of a Domain Application

Figure 8.2 reuses concepts from DMTF CIM and models a local application in a platform independent  way 
whether services are CORBA based, data centric, or another. Only the ServiceAccessPoint is to be refined for the 
specific technology.
Lightweight Fault Tolerance for Distributed RT Systems, v1.0        11



Figure 8.2 - General overview of a Node Application

Class SoftwareElement (class CIM_SoftwareElement in DMTF/CIM) is a unit of deployment and represents a collection of 
more files that are individually deployed and managed on a particular platform. This may be useful for tackling fault tolerance 
for CORBA Components. 

Class SoftwareFeature (class CIM_SoftwareFeature in DMTF/CIM) is a unit of component management and represents a 
collection of software elements that perform a particular function (realizes one of more services). 

8.2 Fault Tolerance Domain

CORBA Fault Tolerance [FTCORBA] introduced a fault tolerance domain for improving scalability of large applications 
where a single Replication Manager manages each fault tolerance domain. 

8.3 Redundancy Management

This specification addresses replication at the POSIX process level. So the ProcessGroup concept models a group of 
process replicas (FTProcess). Each FTProcess runs on a Node and hosts local FTApplication local applications (see 
Figure 8.3).
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Figure 8.3 - Process Groups and Replicas

A process group is a grouping of node-level POSIX process replicas. At Software Management level, CIM_RedundancySet 
collection from DMTF/CIM can be used to model this process group concept. 

8.3.1 Process Group

Class ProcessGroup has the following two attributes:

• min_number_of_replicas: The minimum number of FTProcess objects desired by the application. 

• nb_replicas: The current number of FTProcess objects. 

Class specialization for PassiveReplication may provide an additional:

• primary_location: Location of the primary FTProcess. 

The ReplicationManager synthesizes the status of a ProcessGroup.

Figure 8.4: ProcessGroup status lists the status of a ProcessGroup depending on the current number of replicas and the 
minimum number of replicas. 

• Example:

• Ful ly  Redundant : number of replicas >= minimum number of replicas

• Degraded Redundancy : 1 <number of replicas <minimum number of replicas
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Figure 8.4 - ProcessGroup status

Monitoring of ProcessGroup objects and possible notifications on the transitions is left to Application Management 
applications and is thus not in the scope of the FT-enabled middleware.

8.3.2 FTProcess (Process Replica)

The FTProcess class contains the following attribute:

• location: Location of the replica.

FTProcess Status:

• RECOVERING: The server process is performing its recovery/initialization to get ready to service requests in case of a 
primary service, or else to become ready to take over should the primary fail in case of a backup server. It is not yet 
ready to service requests so the FT-enabled middleware will not deliver to it group requests. Non-group requests such 
as administrative requests will however be delivered to the server in order to allow it to perform any required 
initializations.

• READY: The server process has now completed its recovery and it is ready to service requests in case of a primary 
service, or else to become ready to take over should the primary fail in case of a backup server.

FTProcess Replication Role:

• BACKUP: The server process is either backup or recovering to become a backup. Once its status has become ready, the 
server will be eligible to be become a primary once current primary server fails.

• PRIMARY: The server process is either primary or recovering to become a primary. Once its status has become ready, 
the server will be serving group requests. 
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• ACTIVE: In the case of active replication, the server has an active role and will be allowed to service requests once its 
status becomes ready.

Figure 8.5 provides the status of an FTProcess class in the case of PassiveReplication.

Figure 8.5 - FTProcess status in PassiveReplication

The Process Replica registers with the Replication Manager in order to join its group and is told whether it shall be initializing 
as primary or backup. At the end of its initialization/insertion, it shall advise the ReplicationManager of its readiness to be 
allowed to receive requests on the fault tolerant group. See “FaultNotifier” on page 17 for more details on backup insertion.

8.3.3 Replication Management

The ReplicationManager is an important component of the Fault Tolerance Infrastructure that interacts with other components 
of the infrastructure. It is responsible for the creation of process groups, object groups for accessing application services, and 
the handling of all group membership requests.

The use of object group identifiers defined in CORBA Fault Tolerance allows for efficient retrieval of object group 
information. But both process groups and object groups may be named for efficient initialization/bootstrap of middleware 
independent FT infrastructure and clients and servers.

The FT Server registers with the Replication Manager in order to join its process group and then gets its replication role for 
performing its recovery (initializing as primary or backup for example). At the end of its recovery, it shall advise the 
ReplicationManager of its readiness to be allowed to receive requests for the fault tolerant object groups. See “FaultNotifier” 
on page 17 for more details on backup insertion.

8.3.4 Passive Replication

In the Warm-passive replication style, only the primary member is executing the methods invoked on the object group by the 
client objects. The state of the primary is transferred to the backups to be ready for recovery from the primary replica failure.
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8.3.4.1 Backup Insertion

Backup insertion refers to the start-up sequence of a replica and its acquisition of the existing primary replica’s state in order to 
be considered as a backup to the primary. Once a backup has been ‘inserted,’ it is eligible for promotion to primary in case of 
a primary replica failure.

The insertion of a replica may or may not disrupt the functioning of the primary.

The application or any consistency management shall advise the FT-middleware ReplicationManager of the completion of the 
backup insertion/initialization.

Though not part of this specification, middleware independent consistency management mechanisms are advised to perform 
the following:

• Failure of a primary replica while backups are inserting should trigger cancellation of their insertion.

• During a backup insertion, the state transfer should not start until the primary has completed its initialization.

8.3.4.2  Recovery

The Backup server is advised by the ReplicationManager of its promotion to Primary in order to start its recovery. Once all 
state is recovered (responsibility of middleware-independent infrastructure) it shall advise the ReplicationManager of recovery 
completion in order to generate Server transition to Primary and allow request deliveries.

8.3.5 Active Replication

Basic Redundancy Management is intended for both Passive and Active replication styles. However this specification does not 
define some group communication protocol for accessing services offered by the FTApplications.

Only a TCP/IP based protocol suitable for passive replication is addressed by this specification.

8.4 Fault Management

Fault Management provides the following functions:

• Fault detection: detecting the presence of a fault in the system and generating a fault report.

• Fault notification: propagating fault reports to entities that have registered for such notifications.

• Fault analysis/diagnosis: analyzing a (potentially large) number of related fault reports and generating condensed or 
summary reports or any induced fault reports.

• Fault Containment: preventing the propagation of faults from their origin at one point in a system to a point where it 
can have an effect on the service to the user.

8.4.1 Fault Containment

Middleware-independent FT infrastructure is responsible for enforcing fail-stop semantics by aborting/killing any server 
process (FTProcess) that is suspected of being faulty.

Terminating any suspected process will prevent a process considered faulty from sending undesired messages.
16                 Lightweight Fault Tolerance for Distributed RT Systems, v1.0



8.4.2 Fault Detection & Notification

A FaultNotifier is provided by the FT-enabled middleware for notifying applications of any failures reported to it.

Server process may support a PullMonitorable interface to be used by local fault detectors (middleware independent or FT- 
enabled middleware) for monitoring the state of the server replica.

Fault Reports conveyed to the Fault Notifier by the Fault Detectors shall conform to CosNotification: :StructuredEvent with 
event type as specified in the CORBA Fault Tolerance specification.

8.4.2.1 FaultNotifier

The FaultNotifier [FTCORBA] defines operations for use by the fault detectors and fault analyzers to push fault reports for the 
FaultNotifier. The FaultNotifier propagates such fault reports to registered entities such as the ReplicationManager and any 
other fault analyzer or application objects.

8.4.3 Fault Analysis/Diagnosis

Once a server process (FTProcess) has failed, all embedded/hosted applications shall be considered faulty.

8.4.4 Connection Management

Support for transport heartbeats may be provided by the FT-enabled middleware to close connections to failed server hosts or 
with failed communication links.

8.5 QoS Policies

To enforce some real-time properties a set of QoS policies are needed. These apply to different steps/phases of the application.

8.5.1 FTProcess Recovery time

FTProcess recovery (for both Passive and Active replication styles) may only be achieved within this time limit. A failure to 
comply with this time duration may be reported to applications by the middleware independent FT infrastructure.

It is the responsibility of the middleware independent fault analyzer to decide whether this is an application failure or not, in 
which case it should enforce the crash/stop model by terminating the FTProcess.

8.5.2 Maximum Service Localization Time

Locating the service shall not exceed this time duration. FT-enabled middleware shall abort localization of the service when 
this time duration is exceeded.

8.5.3 Service Access Properties

Some QoS properties may be needed for accessing the service (such as CORBA priorities in RT CORBA).
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8.5.4 Invocation Maximum Blocking Time

A client accessing the service cannot be blocked for more than the maximum blocking time.

8.5.5 Transport/Connection Timeouts

Transport-level timeouts for (heartbeating, keepalive) may be provided by the FT-enabled middleware to close connections to 
failed server hosts or with failed communication links.

8.6 Transparent Failover

Failover semantics as defined in the CORBA Fault Tolerance specification proved very efficient and workable. This 
specification relies on currently defined semantics from [FTCORBA].

The Service Locator (cf. 8.5.3) is responsible for supplying the latest working object reference.

8.6.1 At Most Once Semantics

Enforcing at most once semantics by the means of request and reply logging defined in CORBA Fault Tolerance specification 
is not mandatory for the FT-enabled middleware as applications have better knowledge of operation semantics and can thus 
handle this in an efficient manner.

Should a unique request identifier be required by the application in order to detect repetitive requests, the FT Context object 
(cf. 8.5.2) can provide the necessary information.

8.6.2 FT Context

The FT Context object provides access to invocation information for applications requiring this knowledge for consistency 
management or enforcing at most once semantics.

8.6.3 Service Locator

The Service Locator is responsible for providing access to replicated objects/components when direct connection between 
client and server processes is broken. Depending on the kind of reference that is used by the FT-enabled middleware; the 
Service Locator may also be used at startup to open initial connections between client and server processes.

Implementers of the Service Locator are free to access the ReplicationManager, and run any implementation-specific protocol 
as long as they can assure a predictable time for providing a valid reference.
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9 OMG CORBA IDL Platform Specific Model

9.1 Server Group

A ServerId, in the context of LWFT identifies a ServerGroup. All servers with a common ServerId are replicas of each other 
and members of the same ServerGroup.

module LWFT
{

// PortableInterceptor::ServerId is a string
typedef PortableInterceptor: :ServerId ServerId;

};

Server ID, is defined in the CORBA specification (see sub clause 8.5.1.1) located at: http://www.omg.org/spec/CORBA/3.1/ 
This definition is reproduced below:

“A Server ID must uniquely identify a server to an IMR. This specification only requires unique 
identification using a string of some kind and does not intent to make more specific requirements 
for the structure of a server ID. The server ID may be specified by an ORB_init argument of the form  
–ORBServerId. The value assigned to this property is a string. All templates created in this ORB will 
return this server ID in the server_id attribute. It is required that all ORBs in the same server share 
the same server ID. Specific environments may choose to implement -ORBServerId in ways that 
automatically enforce this requirement.”

Sub clause 15.2.1 Model Components of the CORBA specification (formal/2008-01-04) contains the following 
definition:

“Server - A server is a computational context in which the implementation of an object exists. 
 Generally, a server corresponds to a process.” In LWFT, a Server will always correspond to a Process.”

9.2 Server Replica Identity

As in the Fault Tolerant CORBA specification, the Location is used to identify a process instance within a ServerGroup and 
globally. The FT CORBA specification defines an FT::Location as follows:

“The name for a fault containment region, host, device, cluster of hosts, etc., which may be hierarchical .... 
 For each object group and each location, only one member of that object group may exist at that location.”

However, in LWFT Server process based replication following additional constraint applies:

Each LWFT server process must have only one Location and the Location must uniquely identify the server process. For 
example, a LWFT server process Location might well include both the DNS host name or IP address and the process id. This 
way the Location will uniquely identify the server process instance within the fault tolerance domain.

module LWFT
{

typedef PortableGroup: :Name Location;
};
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9.2.1 Server Status

typedef long ServerStatusValue;
const ServerStatusValue SRV_STATUS_UNKNOWN =0;

9.2.1.1 SRV_STATUS_RECOVERING

const ServerStatusValue SRV_STATUS_RECOVERING = 1;

The server process is performing its recovery/initialization to get ready to service requests in the case that it is a primary 
service, or else to become ready to take over should the primary fail in case where it is a backup server.

The server is not yet ready to service requests so the FT-enabled middleware will not deliver group requests to it. Non-group 
requests such as administrative requests will however be delivered to the server in order to allow it to perform any required 
initializations.

9.2.1.2 SRV_STATUS_READY

const ServerStatusValue SRV_STATUS_READY =2;

The server process has now completed its recovery and it is ready to service requests in the case that it is a primary service, or 
else to become ready to take over should the primary fail in case that it is a backup server.

9.2.2 Server Replication Role

typedef long ServerReplicationRoleValue;
const ServerReplicationRoleValue SRV_REPL_UNKNOWN = 0;

9.2.2.1 SRV_REPL_PRIMARY

const ServerReplicationRoleValue SRV_REPL_PRIMARY = 1;

The server process is either primary or recovering to become a primary. Once its status has become ready, the server 
will be serving group requests.

9.2.2.2 SRV_REPL_BACKUP

const ServerReplicationRoleValue SRV_REPL_BACKUP =2;

The server process is either backup or recovering to become a backup. Once its status has become ready, the server will be 
eligible to be become a primary once current primary server fails.

9.2.2.3 SRV_REPL_ACTIVE

const ServerReplicationRoleValue SRV_REPL_ACTIVE = 3;

In the case of active replication, the server has an active role and will be allowed to service requests once its status becomes 
ready. 

9.3 Naming Object Groups

The ObjectGroupName is a hierarchic CosNaming::Name. Name Components within the name must be ordered according to 
the following schema:
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<server_id>.SRV/<orb_id>.ORB/<poa_id>.POA[/<sub_poa_id>.POA*]/<object_id>.OBJ

where poa_id is the first named POA below RootPOA and sub_poa values are in order of occurrence beneath that POA.

A shorthand notation may be supported when there is no ambiguity:

<server_id>/<object_id>

9.3.1 Support for Aliases

Applications should be able to provide aliases for object group names to allow for more application-oriented naming schemes. 
The object group name (alias) is unique within the context of the Fault tolerance domain. 

One way to define this alias when the object group is created via a PortableGroup::GenericFactory interface is to define a new 
ft property such as ‘org.omg.ft.alias’ to be provided in the criteria parameter of create_object operation. The following default 
alias should be made available within the fault tolerance domain with an ObjectGroupManager:

<object_group_id>.GID

Administrative tools may also be used for naming the object groups via implementation-specific interfaces.

module LWFT {
const string FT_ALIAS = "org.omg.ft.Alias";

};

9.4 ClientFailoverSemanticsPolicy

The ClientFailoverSemanticsPolicy provides a means for application developers to explicitly control how and if failover 
occurs. This Policy will be effective in the context of any object reference. 

module LWFT {
enum ClientFailoverSemanticsPolicyValue {

ORB_DEFAULT,
BEST_EFFORT,
AT_LEAST_ONCE,
AT_MOST_ONCE

};
local interface ClientFailoverSemanticsPolicy : CORBA::Policy {

readonly attribute ClientFailoverSemanticsPolicyValue value;
};

};

The four values of this Policy modify the client ORB behavior as follows:

1. ORB_DEFAULT - The ORB behavior is unmodified from its default.

2. BEST_EFFORT - This value of the Policy provides the client application with a guaranteed ‘best effort’ delivery 
attempt. Normal CORBA invocation semantics do not require that a compliant ORB must reinvoke requests on 
COMPLETED_NO retryable exception conditions or exhaust all available addresses in an IOR. Compliant client 
ORBs must provide the following behavior under the influence of this Policy value: Each time a client ORB attempts 
to invoke a method, it must not abandon the invocation and raise an exception to the client application until it has 
tried to invoke the server using all of the alternative addresses in the IOR, or has received a “non-failover” condition, 
or the request duration has expired. 
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3. AT_LEAST_ONCE - This value behaves as BEST_EFFORT; however, retryable exception conditions with states 
COMPLETED_MAYBE must also be reinvoked. 

4. AT_MOST_ONCE - This value behaves as AT_LEAST_ONCE but the client ORB must transmit an FT_REQUEST 
service context (FTRequestServiceContext) with the request. 

9.5 ObjectGroupMembershipPolicy

The ObjectGroupMembershipPolicy POA policy is to be used on the server side to control object group management 
in a portable way.

Application developers can specify this policy on POA creation to indicate to the FT enabled ORB that Objects 
created on that POA should automatically be members of replicated Object Groups and that the references returned 
from POA operations should be ObjectGroup references.

module LWFT {
enum ObjectGroupMembershipPolicyValue
{

AUTO_ORB_CTRL,
AUTO_OBJ_GRP_MNGR,
USER_CTRL_OBJ_GRP_MNGR

};
local interface ObjectGroupMembershipPolicy : CORBA: :Policy
{

readonly attribute ObjectGroupMembershipPolicyValue value;
};

};

The three ordered values of ObjectGroupMembershipPolicy represent increasing levels of user control over the 
mechanisms used to provide fault tolerance and corresponding decreasing user application transparency.

ObjectGroupMembershipPolicy values are discussed in the following sub clauses.

9.5.1 AUTO_ORB_CTRL

The object references created on the POA will be automatically FT replicated across all similar server processes 
(i.e., that have a matching FT POA hierarchy). Every object reference created on such a POA will be made a 
member of the ObjectGroup named as per the naming scheme defined in sub clause 2.4.3 Naming Object Groups. 

<server_id>.SRV/<orb_id>.ORB/<poa_id>.POA[/<sub_poa_id>.POA*]/<object_id>.OBJ

The behavior from the user’s perspective is ‘AUTO_OBJ_GRP_MNGR’ (see below) but the mechanism used by the 
server side ORB to ensure this is left to the ORB implementation.

Note – This policy value is only valid on POAs with LifespanPolicy ‘PERSISTENT’ and IdAssignmentPolicy 
‘USER_ID.’  All POA operations that create object references will return references that refer to the whole object 
group rather than to this individual  member.
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9.5.2 AUTO_OBJ_GRP_MNGR

The objects created on the POA will be automatically FT replicated as above and as per the behavior below. The POA will 
transparently use the relevant ObjectGroupManager operations to ensure that this is achieved. At the point that a reference is 
created on a POA with this Policy value (and before the reference is returned to the user code) the POA should make use of 
appropriate GOA / ObjectGroupManager operations to:

1. Get the group to which this object should belong.

2. Add the member to it.

3. Return the new IOGR to the caller of the POA operation.

Note – Only valid on POAs with IdAssignmentPolicy USER_ID. All POA operations that create object references will return 
references that refer to the whole object group rather than to this individual member.

To retrieve the object group reference, compliant POAs should first use the object group ServiceLocator, and if no 
ServiceLocator is present, it shall attempt to use the NameService.

Compliant ORBs / FT implementations should make the ServiceLocator available to the POA by 
ORB: :resolv_initial_references (“FTServiceLocator”).

9.5.3 USER_CTRL_OBJ_GRP_MNGR

The POA created with this policy will be a GOA. This will make the GOA object group management operations available to 
the application developer. The interaction with the FT infrastructure will be via the ObjectGroupManager as per the already 
existing FT CORBA specification. 

Compliant ORBs / FT implementations should make the ObjectGroupManager available to the Object Adapter by  
ORB::resolve_initial_references (“FTObjectGroupManager”).

9.6 ObjectGroupNameResolutionPolicy

The ObjectGroupNameResolutionPolicy POA policy is needed in conjunction with AUTO_OBJ_GRP_MNGR value of 
ObjectGroupMembershipPolicy policy to select a fully qualified naming scheme or a shorthand notation. 

module LWFT {
enum ObjectGroupNameResolutionPolicyValue
{

USE_FULLY_QUALIFIED_NAME,
USE_SHORTHAND_NOTATION

};
local interface ObjectGroupNameResolutionPolicy : CORBA: :Policy
{

readonly attribute ObjectGroupNameResolutionPolicyValue value;
};

};

In the absence of a specified Policy value being defined on the POA the LWFT ORB will assume a default of 
USE_FULLY_QUALIFIED_NAME.
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9.7 FT_REQUEST Service Context

The FT_REQUEST service context (FTRequestServiceContext) is defined in CORBA Fault Tolerance to ensure that a request 
is not executed more than once under fault conditions. 

When AT_MOST_ONCE is used for the ClientFailoverSemanticsPolicy, the FT-enabled middleware shall encode a CDR 
encapsulation of the FTRequestServiceContext struct in the context_data of the ServiceContext struct of a request message 
header. 

module IOP {
const ServiceId FT_REQUEST = 13;
};

module FT {
struct FTRequestServiceContext {// context_id = FT_REQUEST;

string client_id;
long retention_id;
TimeBase::TimeT expiration_time;

};
};

The FT_REQUEST service context contains a unique client_id for the client, a retention_id for the request, and an 
expiration_time for the request. The client_id and retention_id serve as a unique identifier for the client’s request and allow the 
server application to recognize that the request is a repetition of a previous request. A server application willing to enforce at 
most once semantics on its incoming requests may choose to return a previously generated reply in case of repetition of 
previous requests. 

The expiration_time serves as a garbage collection mechanism. It provides a lower bound on the time until which the server 
application must honor the request and, therefore, retain the request and corresponding reply (if any) in its log.

9.8 FTRequestDurationPolicy

The Request Duration Policy is defined in CORBA Fault Tolerance. It determines how long a request, and the corresponding 
reply, should be retained by a server to handle reinvocation of the request under fault conditions. 

module FT {
const CORBA::PolicyType REQUEST_DURATION_POLICY = 47;
interface RequestDurationPolicy : CORBA: :Policy {

readonly attribute TimeBase: :TimeT request_duration_policy_value;
};

};

The Request Duration Policy, applied at the client, defines the time interval over which a client’s request to a server remains 
valid and must be retained by the server application to detect repeated requests. 

The request_duration policy_value is added to the client ORB’s current clock value to obtain the expiration_time that is 
included in the FT_REQUEST service context for the request.  
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9.9 Transport Heartbeats

The CORBA specification defines TAG_FT_HEARTBEAT_ENABLED component of the TAG_INTERNET_IOP profile, 
and two policies: Heartbeat and HeartbeatEnabled to solve the problem of host and/or link failures in IIOP (TCP/IP).

This specification reuses those mechanisms. Fully compliant Server ORBs should be able to respond to the FT_HB pseudo 
operation as defined in the CORBA specification. In the case of Server ORBs that are not compliant, users may choose to 
implement this operation at the application level. Alternatively, components of the LWFT middleware can identify Servers 
that are not fully compliant by a BAD_OPERATION.

9.9.1 TAG_ FT_HEARTBEAT_ENABLED Component

“The TAG_FT_HEARTBEAT_ENABLED component in a TAG_INTERNET_IOP profile indicates that the addressed 
e n d p o i n t  s u p p o r t s  h e a r t b e a t i n g . ”

module IOP {
const ComponentId TAG_FT_HEARTBEAT_ENABLED = 29;
};

module FT {
struct TagFTHeartbeatEnabledTaggedComponent {

// tag =TAG_FT_HEARTBEAT_ENABLED
boolean heartbeat_enabled;

};
};

9.9.2 Heartbeat Policy

“The Heartbeat Policy, applied at the client, allows the client to request heartbeating of its connections to servers, using the 
h e a r t b e a t _ i n t e r v a l  a n d  h e a r t b e a t _ t i m e o u t . ”

module FT {
const CORBA::PolicyType HEARTBEAT_POLICY = 48;
struct HeartbeatPolicyValue {

boolean heartbeat;
TimeBase::TimeT heartbeat_interval;
TimeBase::TimeT heartbeat_timeout;

};
interface HeartbeatPolicy : CORBA::Policy {

readonly attribute HeartbeatPolicyValue heartbeat_policy_value;
};

};

“When the Heartbeat Policy is applied at a client ORB, the ORB is responsible for taking the following steps. While a 
connect ion  ex is t s  to  a  remote  server ,  the  ORB sends  a  reques t  message  over  the  connect ion at  leas t  
as  o f ten as  was  requested by  the  h ear tb ea t_ in t e rva l  o f  t he  Hea r tbea t  Po l i cy  o f  a ny  c l i en t  
c on ne c te d  to  a  se rver  ov e r  tha t  c o nn ec t ion .  T he  requ es t  m es sa g e  i s  e q u iv a l en t  t o  a n  in v o c a t io n  o f  
t h e  me th o d :

void FT _HB ();

on any one of the server objects accessed by the connection...”
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9.9.3 Heartbeat Enabled Policy

“Because heartbeating can generate significant network traffic, and can use significant server resources, the heartbeating 
c a p a b i l i t y  i s  e x p l i c i t l y  e n a b l e d  o r  d i s a b l e d  u s i n g  t h e  H e a r t b ea t  E n a b l e d  P o l i c y . ”

module FT {
const CORBA::PolicyType HEARTBEAT_ENABLED_POLICY = 49;
interface HeartbeatEnabledPolicy: Policy {

readonly attribute boolean heartbeat_enabled_policy_value;
};

};

“The Heartbeat Enabled Policy allows the heartbeating of a server endpoint. If the Heartbeat Enabled Policy is enabled for a 
server endpoint, the TAG_INTERNET_IOP profile for that endpoint contains the TAG_FT_HEARTBEAT_ENABLED 
component to indicate to the client that the server endpoint is heartbeat_enabled.”

9.10 Interoperable Object Group References

The object group abstraction is very powerful and allows for the provision of both failure and replication transparencies for 
clients. This specification extends the existing FT CORBA definition of Interoperable Object Groups with the support for 
Location agents.

Use of FT_REQUEST service context allows applications that require enforcing at most once semantics to access (via FT 
Current interface) request information. 

Use of FT_GROUP_VERSION service context allows a server to determine whether a client is using an obsolete object group 
reference and, if so, to respond with the most recent object group reference to update the client’s object reference. 

This specification introduces a new FT_GROUP_ID service context to allow for more efficient lookup of latest IOGR in case 
of requests with older versions coming to the process as the object group identifier may not necessarily be obtained from the 
object key. This avoids comparison of IORs as it is more likely to have more than one object group with a local member. 

9.10.1 Support for Location Agents

Current FT CORBA states the following in sub clause “Modes of Profile Addressing.”

“The interoperable object group references contain profiles that address server object groups. This sub clause illustrates the 
use of these profiles according to one of two modes:

• Profiles that address object group members.

• Profiles that address gateways (technically generic in-line bridges of the type described in the Building Inter-ORB 
Bridges chapter of the CORBA specification).”

To allow for the support of Location services as in FT CORBA sub clause 16.6.1 Location Mechanism Overview, the 
following shall be added:

• Profiles for agents that may not be able to accept direct requests for any objects, but acts instead as a location service.

Any request messages sent to the agent would result in either exceptions or replies with 
LOCATION_FORWARD status, providing new addresses to which requests may be sent. Such agents 
would also respond to locate request messages with appropriate locate response messages. 
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• Profiles for agents that may directly respond to some requests (for certain objects) and provide forwarding 
locations for other objects.

9.10.2 FT_GROUP_ID Service Context

The FTGroupIdServiceContext struct contains the version of the identifier of the server object group, to assist the server in 
getting the object group identifier when not encoded within the object key. When encoded in a request or reply message 
header, the context_data component of the ServiceContext struct shall contain a CDR encapsulation of the 
FTGroupIdServiceContext struct, which is defined below. 

module IOP {
const ServiceId FT_GROUP_ID = 17;

};
module FT {

struct FTGroupIdServiceContext { //context _id = FT_GROUP_ID;
ObjectGroupId object_group_id;

};
};

If the server determines from the FT_GROUP_VERSION service context that the client is using an obsolete object group 
reference, the server may use the object_group_id value to get the most recent object group reference for the server group and 
then return it in a LOCATION_FORWARD_PERM response. 

const ServiceId FT_GROUP_ID = 17;

A constant that designates the FT_GROUP_ID service context.

struct FTGroupIdServiceContext { //context_id = FT_GROUP_ID;
ObjectGroupId object_group_id;

};

A structure that contains the same object_group_id that is in the TAG_FT_GROUP component of each of the 
TAG_INTERNET_IOP profiles of the object group reference for the server object group, to be used, if necessary, by the 
server ORB to obtain the most recent object group reference of the server object group. 

A server ORB that is capable of obtaining the most recent object group reference of the server object group without the help of 
the FT_GROUP_ID service context should ignore this context. On the other hand, should the FT_GROUP_ID service context 
be required by the server ORB but not present in the client’s request, the server ORB shall return an INV_OBJREF exception 
to the client. 

9.10.3 Persistent vs. Transient IOR

Depending on the technique used by the FT-enabled middleware for providing middleware transparent failover (between the 
ReplicationManager and its Gateways), server-side FT-enabled middleware may choose to create transient references only to 
avoid backup replicas (previously started as primary then restarted) receiving client requests in case that only a primary object 
reference is used within the object group reference.

Object Group membership operations initiated by the Group Object Adapter (sub clause “Group Object Adapter” 
on page 38) will rely on the LifeSpan policy used at the object adapter’s creation.
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9.10.4 Gateway

CORBA Fault Tolerance specification defines a Gateway for non-FT aware ORBs. This gateway may be extended 
to provide Service Location capabilities as defined in this specification’s sub clause “Service Access Properties” on 
page 17.

The gateway may rely on LOCATION FORWARDING techniques such as those used in IMRs.Within a Fault 
Tolerance domain (managed by a single Replication Manager), the Gateway shall not make any assumption about 
the client’s ORB’s ability to assure portability and keep any constraint that may be imposed by the FT-enabled 
middleware within the ‘Server-scope.’

9.11 GenericFactory

FT-enabled middleware relying on PortableGroup::GenericFactory interface for the creation of object groups may 
support naming (also named aliasing in this specification) of object groups in order to ease bootstrapping to 
applications.

module PortableGroup
{

interface GenericFactory
{

typedef any FactoryCreationId;
Object create_object

(in _TypeId type_id,
in Criteria the_criteria,
out FactoryCreationId factory_creation_id)

raises (NoFactory, ObjectNotCreated, InvalidCriteria,
InvalidProperty, CannotMeetCriteria);

void delete_object
(in FactoryCreationId factory_creation_id)

raises (ObjectNotFound);
}; // end GenericFactory

};

Add a new criteria for use by the GenericFactory::create_object() operation to hold the Alias property.

9.11.1 Alias property

FT_ALIAS property name = ‘org.omg.f t .Alias .’ When no Alias property is provided at the object group creation a 
default name will be supplied by the GenericFactory: “<<object  group id>>.gid.”

9.12 ServerCallback interface

interface ServerCallback {};

The ServerCallback interface is the base for specific callback specializations. Servers can pass callback references to the FT 
Middleware to enable the middleware, and actors external to the middleware that are observing the ServerGroup, to interact 
with the individual ServerGroup process members. 
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9.13 GroupUpdateObserver interface

GroupUpdateObserver is a specialization of ServerCallback interface for use when it is necessary to be updated whenever the 
list of process group members changes. Each process group entry contains the location of the member, its callback object, and 
the list of process-specific properties passed to the ServerGroupAdmin object during the process registration. 

struct ServerGroupMember
{

Location server_location;
ServerCallback server_callback;
Properties props;

};
typedef sequence<ServerGroupMember> ServerGroupMembers;
interface GroupUpdateObserver : ServerCallback
{

void on_update_group(in ServerGroupMembers members);
};

9.13.1 on_ update_group operation

void on_update_group(in ServerGroupMembers members);

The ServerGroupManager (or other part of the FT infrastructure) can notify the process of a change of the list of process group 
members.

9.14 ServerGroupNotFound exception

exception ServerGroupNotFound {};

The server group with the given identifier is not found by the ServerGroupManager. This exception may be raised if the 
ServerGroupManager can only register known ServerGroups. 

9.15 ServerGroupNotFound exception

exception ServerNotFound {};

No server process known by the ServerGroupManager exists for the given location value.

9.16 WrongStatus exception

exception WrongStatus {};

Operation incompatible with current process status.

9.17 AlreadyRegistered exception

exception AlreadyRegistered {};

The Server Location value has already been registered.
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9.18 UnsupportedCallback exception

exception UnsupportedCallback {};

The ServerGroupManager does not support provided ServerCallback type.

9.19 Server Group Manager

Compliant FT implementations should register an instance to be accessible to the server ORB via  
ORB: :resolve_initial_references (“FTServerGroupManager”).

interface ServerGroupManager
{

void register_server(inout Location the_location,
in ServerId the_server_id,
in Properties props,
in ServerCallback  callback)

raises (ServerGroupNotFound, AlreadyRegistered,
UnsupportedCallback);

void unregister_server(in Location location)
raises (ServerNotFound);

void server_ready(in Location the_location)
raises (ServerNotFound,

WrongStatus);
};

9.19.1 register_server operation

void register_server(inout Locationthe_location,
in ServerId the_server_id,
in Properties props,
in ServerCallback callback)

raises (ServerGroupNotFound, AlreadyRegistered, UnsupportedCallback);

The register_server operation is used to notify the LWFT infrastructure about the existence of a Server and the ServerGroup 
that it belongs to. 

The the_location argument denotes the location of the server replica. It is expected that the location will contain host and 
process or process identification. If (and only if) the process provides an empty location, then the infrastructure could provide 
a value. 

The the_server_id argument identifies the Server (Process) group. It is expected to contain “-ORBServerId” value of ORB init.

The props parameter allows for infrastructure-specific properties that may be required for correct functioning of the 
application. Some implementations may require, for example, process endpoints as provided by -ORBListenEndpoints. 

The callback argument allows the LWFT infrastructure to optionally provide additional control or monitoring over the 
process. The infrastructure can narrow it to specific subcategories. 

The ServerGroupManager will raise ServerGroupNotFound exception when the_server_id does not denote an existing process 
group. When location has already been registered, AlreadyRegistered exception will be raised. 
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9.19.2 unregister_server operation

void unregister_server(in Location the_location)
raises (ServerNotFound);

The unregister_server operation is used to notify the LWFT of deliberate deregistration of a server from its server group. This 
may occur during graceful stop of the application. The location argument identifies the location of the server that is to be 
unregistered. ServerNotFound exception is raised when location does not denote an already registered server. 

9.19.3 server_ready operation

void server_ready(in Location the_location)
raises (ServerNotFound,

WrongStatus);

The server_ready operation is used to notify the LWFT infrastructure that server recovery has completed and that the 
application is ready to service incoming requests. 

The location argument identifies the location of the server ready to service FT requests.

ServerNotFound exception is raised when location does not denote an already registered server.

WrongStatus exception is raised when the server is in a status that does not expect calls to the server ready operation (this may 
occur when the server calls server_ready multiple times).

9.20 ServerGroupObserver

ServerGroupObserver interface is an interface actors external to the middleware should implement to be made aware of server 
registration (i.e., creation); unregistration (i.e., destruction / failure); and server readiness and un-readiness. 

interface ServerGroupObserver
{

void on_register_server (in Location the_location,
in ServerId the_server_id,
in Properties props,
in ServerCallback callback);

void on_unregister_server (in Location the_location);
void on_server_ready (in Location the_location);

};

9.20.1 on_ register_server operation

void on_register_server (in Location the_location,
in ServerId the_server_id,
in Properties props,
in ServerCallback  callback);

This operation is called whenever a server at location ‘the_location’ is registering at the ServerGroupManager joining the 
server group ‘the_server_id.’
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9.20.2 on_ unregister_server operation

void on_unregister_server (in Location the_location);

This operation is called whenever a server at location ‘the_location’ is unregistering from its server group at the 
ServerGroupManager. 

void on_server_ready (in Location the_location);

This operation is called whenever a server at location ‘the_location’ is calling server_ready operation of the 
ServerGroupManager. 

9.21 Server Group Manager Ext

This extension to ServerGroupManager allows actors external to the middleware to be made aware of server registration (i.e., 
creation); unregistration (i.e., destruction / failure); and server readiness and un-readiness. By registering a reference to an 
implementation of ServerGroupObserver.

The FT middleware ServerGroupManagerExt will notify all registered observer instances of the ServerGroupObserver 
interface, in order of registration, when one of its own ServerGroupManager operations have been invoked, by calling the 
same method on all listeners and passing on the values that it received itself. 

module LWFT
{

interface ServerGroupManagerExt : ServerGroupManager
{

// Empty sequence means all
void register_observer (in ServerIdSeq server_groups,

    in ServerGroupObserver observer);
void unregister_observer (in ServerIdSeq server_groups);

};
};

9.21.1 Implicit operation register_server

Upon an invocation register_server from a client the ServerGroupManagerExt should call on_register_server on all registered 
observers. This should be done prior to returning a response to register_server to the client. 

If an exception is encountered on any listener register_server invocation, then the ServerGroupManagerExt should call 
on_unregister_server on all observers that the call succeeded on (ignoring any exceptions generated from these 
on_register_server calls) before propagating the exception back to the client. 

9.21.2 Implicit operation unregister_server

Upon an invocation of unregister_server from a client the ServerGroupManagerExt should call on_unregister_server on all 
registered observers. This should be done prior to returning a response to register_server to the client. 

If an exception is encountered on any observer on_unregister_server  invocation, then the ServerGroupManagerExt should call 
on_unregister_server on all remaining observers (ignoring any further exceptions generated from those on_unregister_server 
calls) before propagating the original exception back to the client. 
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9.21.3 Implicit operation server_ready

Upon an invocation of server_ready the ServerGroupManagerExt should call the corresponding call to all registered observers. 

9.22 RecoverableServer Interface

Observer interface for being notified whenever recovery is in progress in the case of primary/backup passive replication, i.e., a 
backup is being promoted to become a primary.

module LWFT
{

interface RecoverableServer : ServerCallback
{

void start_recovery (in Properties props);
};

};

9.22.1 start_ recovery operation

This callback operation instructs the backup replica that recovery is starting. The infrastructure can call this method to notify 
the server that it should perform the actions needed to make it ready to accept requests as a primary, for 
example.

When the server is ready to accept requests it should signal the infrastructure by calling 
ServerManager: :server_ready().

9.23 ServerRecoveryManager interface

module LWFT
{

local interface ServerRecoveryManager : ServerManager
{

boolean register_recovery_observer (in RecoveryObserver rec);
boolean unregister_recovery_observer (in RecoveryObserver rec);

readonly attribute ServerStatusValue     replica_status;
readonly attribute ServerReplicationRoleValue replica_role;

};
};

9.24 ServerManager

ServerManager is a local interface that lets the application manage its ServerGroup registration, de-registration, and 
notify the FT infrastructure of its readiness to receive requests.

Compliant ORBs / FT implementations should make this available to the application developer by  
ORB: :resolve_initial_references (“FTServerManager”).
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local interface ServerManager
{

attribute Location the_location;
void register_server ();
void server_ready ();
void unregister_server ();

};

9.24.1 the_ location attribute

attribute Location the_location;

This value will default to -ORBFTLocation if specified. Attempting to set an alternate-ORBFTLocation value on more than 
one ORB initialization in process is a user error and the behavior is undefined. The value of the_location attribute  
may not be changed after the operation register_server has been called.

9.24.2 register_server operation

void register_server ();

This call prompts the ServerManager to register the server with the LWFT ServerGroupManager.

9.24.3 server_ ready operation

void server_ready ();

This call will notify the LWFT ServerGroupManager that this server is now fully initialized and ready to receive requests.

9.24.4 unregister_server operation

void unregister_server ();

The application may call this to prompt the call to unregister_server on the ServerGroupManager.

9.25 FT Current

This local interface provides access to request context information (client_id, retention_id, and expiration_time).  Applications 
can retrieve its object reference by calling ORB::resolve_initial_references(“FTCurrent”). Server implementations can use 
this information to identify a re-invocation of a request when at most once semantics need to be ensured. 

module FT {
// resolve_initial_references("FTCurrent");
local interface Current : CORBA::Current{

exception NoContext { };

string get_client_id()
raises(NoContext);

long get_retention_id()
raises(NoContext);

TimeBase::TimeT get_expiration_time()
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raises(NoContext);
};

};

9.25.1 NoContext exception

exception NoContext { };

Exception that indicates a Current operation was invoked outside of an FT invocation.

9.25.2 get_client_id operation

string get_client_id() raises(NoContext);

Returns the client ID extracted from FT_REQUEST service context. NoContext exception will be raised if the operation is 
called outside of an FT operation. 

9.25.3 get_retention_id operation

long get_retention_id() raises(NoContext);

Returns the retention ID extracted from FT_REQUEST service context. NoContext exception will be raised if the operation is 
called outside of an FT operation. 

9.25.4 get_expiration_time operation

TimeBase: :TimeT get_expiration_time() raises(NoContext);

Returns the expiration time extracted from FT_REQUEST service context. NoContext exception will be raised if the operation 
is called outside of an FT operation. 

9.26 FaultNotifier

This specification uses the CORBA Fault Tolerance definition of FaultNotifier (see [FTCORBA]). 

Failure reports are conveyed to the Fault Notifier by the middleware independent Fault Detectors and by the Fault Notifier to 
the entities that have been registered for such notifications. The Fault Detectors and Fault Notifier use a well-defined event 
type to convey a given failure event. 

This specification defines an event type that is understood by the FT-enabled fault tolerance middleware. Vendors or the OMG 
may extend this to convey other failure or fault event types; but only the following failure event type will guarantee portability 
over FT-enabled infrastructures. 

Middleware-independent mechanisms are responsible for enforcing the fail-stop semantics for the failed location.

9.27 ServerCrashFault

The ServerCrashFault event type reports that a given process at a given location has crashed. The definition for the event type 
is as follows:
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CosNotification::StructuredEvent fault_event;
fault_event.header.fixed_header.event_type.domain_name = "FT_CORBA";
fault_event.header.fixed_header.event_type.type_name = "ServerCrashFault";
fault_event.filterable_datajength(2);
fault_event.filterable_data[0].name = "FTDomainId";
fault_event.filterable_data[0].value = /* Value of FTDomainId bundled into any */; 
fault_event.filterable_data[1].name = “Location”;
fault_event.filterable_data[1].value = /* Value of Location bundled into any */;

The filterable_data part of the event body contains the identity of the crashed process as a pair of name-values: the 
fault tolerance domain identifier and the process’s location identifier.

9.28 RecoveryObserver

Observer interface for being notified whenever recovery is in progress in the case of primary/backup passive replication,. i.e., 
a backup is being promoted to become a primary.

module LWFT {
local interface RecoveryObserver
{

/**
* Instructs the backup replica that recovery is starting. */
void on_recovery();

};
};

9.29 Fault Detection

9.29.1 PullMonitorable interface

CORBA Fault Tolerance [FTCORBA] defines a PullMonitorable interface for use by pull-based Fault Detectors. 
FT-enabled middleware Fault Detectors may ping periodically process callback objects supporting the 
PullMonitorable interface by invoking the is_alive() operation.

module FT {
interface PullMonitorable

boolean is_alive();
};

};

9.29.1.1 is_alive operation

boolean is_alive();

“Thi s  o pera t io n  in fo rms  the  pu l l - ba sed  Fau l t  De tec to r  whe th er  th e  ob jec t  i s  ab le  t o  a ccep t  
requ es t s  a nd  p ro duc e  rep l i e s .  Th e  mo n i to r e d  o b je c t  ma y  r e t u rn  t r u e  d i r e c t l y  t o  i n d ic a t e  i t s  
l i v en es s ,  o r  i t  ma y  p er fo r m an  a pp l i c a t io n - s p ec i f i c  “ h ea l th ”  ch eck  ( for  example ,  asser t ion  check)  
wi th in  the  operat ion  and  re turn  fa lse  i f  the tes t  shows that  the  objec t  i s  in  an  incons is tent  s tate .  
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Return Value

Returns true if the object is alive and ready to take further requests, and false otherwise.”

9.29.2 PullMonitorableServer interface

A ServerCallback specialization for monitoring the health of the FT process by the FT-enabled middleware.

module LWFT
{

interface PullMonitorableServer : FT: :PullMonitorable,
ServerCallback

{
};

};

9.30 ObjectGroupManager

The Portable Object Adapter may use the PortableGroup::ObjectGroupManager for group membership operations as specified in the 
Fault Tolerant CORBA when created with AUTO_OBJ_GRP_MNGR or USER_CTRL_OBJ_GRP_MNGR values for 
ObjectGroupMembershipPolicy.

When AUTO_OBJ_GRP_MNGR is used for POA creation, the POA should first resolve the object group name using the Locator 
interface or from the NameService when no Locator is available.

module PortableGroup {
// Specification of ObjectGroupManager Interface
interface ObjectGroupManager {

ObjectGroup create_member
(in ObjectGroup object_group,
in Location the_location,
in _TypeId type_id,
in Criteria the_criteria)

raises (ObjectGroupNotFound,
MemberAlreadyPresent,
NoFactory,
ObjectNotCreated,
InvalidCriteria,
CannotMeetCriteria);

ObjectGroup add_member
(in ObjectGroup object_group,
in Location the_location,
in Object member)

raises (ObjectGroupNotFound,
MemberAlreadyPresent,
ObjectNotAdded);

ObjectGroup remove_member
(in ObjectGroup object_group,
in Location the_location)

raises (ObjectGroupNotFound, MemberNotFound);
Locations locations_of_members
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(in ObjectGroup object_group) raises(ObjectGroupNotFound);
ObjectGroupId get_object_group_id

(in ObjectGroup object_group) raises(ObjectGroupNotFound); 
ObjectGroup get_object_group_ref

(in ObjectGroup object_group) raises(ObjectGroupNotFound);
Object get_member_ref

(in ObjectGroup object_group,
in Location loc)

raises(ObjectGroupNotFound, MemberNotFound);
}; // end ObjectGroupManager

}; //end of PortableGroup

9.31 Group Object Adapter

The Group Object Adapter (GOA) specified in the MIOP specification may also be used for encapsulating group membership 
for CORBA objects/components. Use of AUTO_OBJ_GRP_MNGR POA policy at POA creation shall create a Group 
Object Adapter. The GOA may perform automatic calls to add_member() and remove_member() on the 
ObjectGroupManager.

The ObjectGroupManager may be obtained using ORB.resolve_initial_references(“FTObjectGroupManager”);

module PortableServer {

exception NotAGroupObject {};
typedef sequence <PortableServer: :ObjectId> IDs;

interface GOA: ::PortableServer::POA { 
PortableServer: :ObjectId
create_id_for_reference(in Object the_ref) 

raises (NotAGroupObject);
IDs
reference_to_ids (in Object the_ref) 

raises (NotAGroupObject); 
void
associate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

void
disassociate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject); 

}; // end interface GOA
};

9.31.1 create_id_for_reference operation

PortableServer: :ObjectId
create_id_for_reference(in Object the_ref) 

raises (NotAGroupObject);

The operation create_id_for_reference() takes as an argument a widened Group IOR and generates a unique ObjectId 
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for that reference. This returned ObjectId is later associated with a servant via the standard API in the POA; that is, 
activate_object_with_id().

9.31.2 reference_ to_ids operation

typedef sequence <PortableServer::ObjectId> IDs;
IDs reference_to_ids (in Object the_ref)

raises (NotAGroupObject);

The operation reference_to_ids() takes as an argument a widened Group IOR and returns a sequence of ObjectIds that are currently 
associated with the Group IOR. To be resilient to hardware failures only one ObjectID is allowed.

9.31.3 associate_reference_with_id operation

void
associate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

The operation takes a previously generated ObjectId and associates it with a group reference. Servants activated using this ObjectId 
will be candidates for receiving FT group requests via the group information provided in the IOR. To be resilient to hardware failures 
only one ObjectId is allowed. The operation silently ignores repeat/duplicate associations of a POA/ObjectId pair with the provided 
object reference. 

This operation performs an automatic call to add_member() operation on the ObjectGroupManager. Compliant ORBs / FT 
implementations should make the ObjectGroupManager available to the Object Adapter by ORB::resolve_initial_references 
(“FTObjectGroupManager”).

9.31.4 disassociate_reference_with_id operation

void
disassociate_reference_with_id

(in Object ref, in PortableServer::ObjectId oid)
raises(NotAGroupObject);

The operation takes a previously generated ObjectId and removes the association it had with a group reference. Servants activated 
using this ObjectId will no longer receive FT group requests via the group information provided in the IOR. The operation silently 
ignores disassociations that no longer or never existed. 

9.32 FT CCM Component

Use of object group for components provider ports (facets, supported interface, and push consumer ports). The Container shall 
handle group membership operations. 

9.32.1 Navigation/Introspection

Used to retrieve and connect ports. To be able to connect a group of components, those navigation and events interfaces have 
to return group references (IOGR) when required, but also individual port references (IOR). 

If a group reference to a navigation or event interface is used, a group reference to the port should be returned.
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If an individual/non-group reference to a navigation or event interface is used, an individual reference to the port should be 
returned. 

Selecting whether a group reference or an individual reference is used, CORBA Component Containers may rely on the 
FTCurrent object. 

9.32.2 Component Activation

Components that are required to be notified upon promotion of their hosting server process from backup to primary shall 
support a Recoverable interface. 

9.33 At most once semantics

Cf. 8.5.1

FT-aware CCM containers shall provide access to the FTCurrent object through standard 
CCM2Context::resolve_service_reference(“FTCurrent”) operation.

9.34 TransportProperties

To allow for a predictable recovery time, applications may require some control on transport protocol parameters. Real Time 
CORBA [RTCORBA] specifies a TCPProtocolProperties interface to allow the configuration of TCP protocol specific 
configurable parameters. 

local interface TCPProtocolProperties : ProtocolProperties {
attribute long send_buffer_size;
attribute long recv_buffer_size;
attribute boolean keep_alive;
attribute boolean dont_route;
attribute boolean no_delay;

};

Non-RT CORBA ORBs however shall provide a means to enable use of keepalive property on TCP transport. The      
–ORBKeepAlive option to ORB_Init() shall activate the keepalive on open TCP connections. ORB implementers are free to 
enable keepalive on TCP connections by default. 

9.35 ServiceLocator interface

The ServiceLocator interface enables an ObjectGroup to be obtained from the ObjectGroupName that identifies the 
ObjectGroup. 

module LWFT
{

interface ServiceLocator
{

PortableGroup::ObjectGroup locate (in ObjectGroupName group)
raises (PortableGroup: :ObjectGroupNotFound);

attribute ServiceLocator fallback;
};

};
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The ServiceLocator interface may also be used by the POA (in the case when local interface for use by the POA (in the case of 
AUTO_OBJ_GRP_MNGR ObjectGroupMembershipPolicy) to locate the ObjectGroup reference needed for group 
membership via the PortableGroup::ObjectGroupManager interface.  

Compliant ORBs / FT implementations should make this available to the Object Adapter by 
ORB::resolve_initial_references(“FTServiceLocator”).

9.35.1 locate operation

PortableGroup: :ObjectGroup locate (in ObjectGroupName group)
raises (PortableGroup: :ObjectGroupNotFound);

This operation will return the object group reference of the ObjectGroup named by the ObjectGroupName or throw an  
ObjectGroupNotFound exception if the name is not recognized.

9.35.2 fallback attribute

attribute Locator fallback;

If this attribute is not nil, then the Locator will try the locate() on this Locator instead of raising ObjectGroupNotFound.

9.36 ForwardingServiceLocator

The ForwardingServiceLocator is an interface that extends the behavior of Service Locator with two pseudo operations as 
follows:

module LWFT
{

interface ForwardingServiceLocator: Locator
{

// Pseudo operations
// FT::ObjectGroup FT_Locate ();
// Requests made to FT_Locate should invoke any
// registered RequestDecoders and will then call
// ::locate returning the located object to
//the caller.

// <any other request>
// Will invoke any registered RequestDecoders and will
// then call ::locate returning a LOCATION_FORWARD
// response to the located object to the caller.

};
};

The mechanism makes use of location forwarding techniques to locate and return the latest ObjectGroup reference for  
a  Client .

Object group references created by the FT-enabled middleware should at minimum contain a profile with a 
ForwardingServiceLocator endpoint information.

Fully compatible ORBs may contact the ForwardingServiceLocator component by and send a request message 
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using the reserved operation name ‘FT_Locate.’ FT_Locate is a new reserved operation name to use in request 
messages, the expected response to which is a reply with a LOCATION_FORWARD status value and an encoded 
IOR in the message body or an Object reference return value with a normal success return status.

A transport connection opened with the endpoint information of a ForwardingServiceLocator can be used to locate 
ObjectGroups by dispatching CORBA requests to it as though the objects were located there. The behavior of the 
ForwardingServiceLocator endpoint when it receives a request for an object_key that would normally not exist there 
is the following:

1. Utilize whatever RequestDecoders it has registered to extract an ObjectGroupName.

2. If not successful, then the ForwardingServiceLocator will return OBJECT_NOT_EXIST system 
exception with  COMPLETED_NO completion status.

3. If an ObjectGroupName is decoded, then the value will be passed to Locator: :locate.

4. If the locate call returns an ObjectGroup, the behavior depends upon the request_id of the request. If the 
request id was FT_Locate, then the ObjectGroup should be returned to the client. Any other request to the 
ObjectGroup should be returned as a LOCATION_FORWARD response.

9.37 RequestDecoder

A request decoder provides a portable way to provide a mechanism to extract the ObjectGroupName from a CORBA Request. 
These can be plugged in at any PI request interception point to provide ObjectGroup location capabilities. It is 
envisaged that ORB / service implementers will provide a mechanism for application developers to register an 
ordered list of these to provide location capabilities (see “ServiceLocator interface” on page 40).

module LWFT
{

local interface RequestDecoder
{

// From the given request extract the ObjectGroupName
boolean get_name_from_request

(in PortableInterceptor: : RequestInfo request,
out ObjectGroupName group_name);

};
};

9.38 Necessary ORB modifications

Fully compliant ORBs must be capable of accepting and correctly responding to GIOP request messages using a new reserved 
operation name FT_Locate. In this sub clause we will explain why there is a need for this. The details of how ORBs that do not 
implement this message type can still interact with the service will be covered in sub clause 9.39.

The key principle behind the correct functioning of the LWFT mechanism described here is the notion of 
forwarding references between a Client and a suitable Server replica. Some aspects of the RT CORBA 
specification require that information regarding individual objects be provided in the IOR. To support this, while it 
is not required that all objects be registered at the point that they are created, it is necessary for the Forwarder to be 
capable of querying a particular object for its full direct (i.e., not redirected via the Forwarder) IOR. The LWFT 
mechanism therefore requires that the response given to any request message is a LOCATION _FORWARD one. 
This differs to the standard GIOP LocateRequest message type.
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As defined in Chapter 15 of the CORBA 3.0.3 Specification (‘General Inter-ORB Protocol’), there are two possible 
request message types that can be used by standard ORBs: Request and LocateRequest. The standard GIOP response 
types for these request types are Reply and LocateReply respectively. Provided that no exception occurs there are two 
valid status values that can be carried in the header of a Reply message, and three in a LocateReply message.

Both Reply and LocateReply have a status header value that enables them to forward Clients IORs in their message 
body. The problem with LocateReply is that the CORBA specification does not dictate that all ORBs must 
implement location forwarding behavior at the Server’s side. ORBs that do not implement location forwarding will 
therefore only ever respond to LocateRequest messages using OBJECT_HERE or UNKNOWN_OBJECT status 
values. There may also be ORB implementations that do not always choose to return forwarding type responses to 
requests.

This is clearly a problem for object group references created by a POA with ObjectGroupMembershipPolicy 
value of AUTO_ORB_CTRL as it relies entirely on the status of a response message being a reference forwarding 
type every time.

The solution to this problem is to implement a new reserved request operation, FT_Locate, to which the only 
possible (non-exceptional) response is either a LOCATION_FORWARD or a normal return of an object 
reference.

9.39 Providing LWFT to unmodified ORBs

An important requirement of this LWFT design is that it can still provide a limited service to ORBs that do not 
implement the new FT_Locate reserved operation name described above in sub clause 
“ForwardingServiceLocator” on page 41. If a Server ORB with POAs using ObjectGroupMembershipPolicy value 
of AUTO_ORB_CTRL does not support requests using FT_Locate, it is not possible  for the Forwarder to obtain 
an IOR for an individual object from the Server. As a result of this, any IOR that is forwarded to the Client (the 
CORBA standards state that any ORB must be able to process a LOCATION_FORWARD on the Client’s  side) 
must come from the Forwarder alone. In this situation it is possible for the Forwarder to generate an IOR for the 
Client using the endpoint information that it usually uses to contact the Server. Forwarders should interpret a 
BAD_OPERATION exception response to a request using FT_Locate as indicating that a Server replica object does 
exist, but that the Server ORB does not support this reserved operation name. It will be possible to control which 
Server replicas will be contacted using the FT_Locate operation name by using a suitable policy.

While it may initially sound like there are no negative effects produced by applications using the LWFT 
Middleware in this  manner, there unfortunately is one key problem: any application not using location forwarding 

Table 9.1 - The GIOP response types and their possible status header values

Request Type Response Type Possible non-exceptional 
header status values

Meaning

Request Reply NO_EXCEPTION The message body contains the result of 
an operation invocation.

LOCATION_FORWARD The message body contains an IOR.

LocateRequest LocateReply OBJECT_HERE The server returning this message can 
accept requests for the object specified in 
the LocateRequest message.

OBJECT_FORWARD The message body contains an IOR.

UNKNOWN_OBJECT The object specified in the LocateRequest 
message is not known at this server.
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on the Server’s side will not be fully compatible with RT CORBA or any other services that require the use of IOR 
Tagged Components on a per object (rather than per ORB or per POA) basis. In the normal approach, the IOR 
forwarded back from the Server can contain additional pieces of information, in the form of IOR Tagged 
Components, which are required to provide protocol support for applications implementing the Real-time CORBA 
specification. For Servers not implementing location forwarding the Forwarder must build an IOR using the 
information that the Server registered itself with. As these registered details might contain out of date tagged 
information, if any at all, the IORs generated from this data will not be suitable for use by Real-time applications.

Although Server ORBs not implementing FT_Locate will not be fully compatible with RT CORBA, or any other 
service  requiring the presence of up to date additional information in IORs, they will still be able to use the basic 
LWFT service. This ensures that unmodified ORBs will be able to gain some advantage from the LWFT service, and 
that as high a level of interoperability as possible is provided.
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