
Lightweight Log Service Specification

May 2004
Version 1.1

ptc/2004-05-08

An Adopted Specification of the Object Management Group, Inc.

Copyright © 2002, Mercury Computer Systems, Inc.
Copyright © 2003, Object Management Group (OMG)
Copyright © 2002, Rockwell Collins

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification,
and to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the
copyright notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.
IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on
the main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

Contents
0.1 Typographical Conventions 1-v

1. Overview 1-1
1.1 Scope 1-1
1.2 Purpose 1-2
1.3 Relationship to the Realtime, Embedded, and Specialized

Systems (RTESS) Platform Taskforce 1-2
1.4 Relation to Existing OMG Specifications 1-2
1.5 Relation to Pending OMG Specifications 1-3
1.6 Compliance 1-3

2. Platform Independent Model 2-1
2.1 Overview and Architecture 2-1
2.2 Type Definitions 2-4
2.3 Common Interface Operations 2-8
2.4 LogConsumer Interface Operations 2-12
2.5 LogProducer Interface Operations 2-18
2.6 LogAdministrator Interface Operations 2-19

3. Platform Specific Model: Mapping to CORBA IDL 3-1
3.1 Overview 3-1
3.2 Types and Data Structures 3-2
3.3 Logging Interfaces 3-7

4. Complete Logging Service IDL 4-1
4.1 Complete IDL - Single File 4-1
May 2004 Lightweight Log Service, v1.1 i

4.2 Complete IDL - Multiple Files 4-3
ii Lightweight Log Service, v1.1 May 2004

Preface
About This Document
Under the terms of the collaboration between OMG and The Open Group, this
document is a candidate for adoption by The Open Group, as an Open Group Technical
Standard. The collaboration between OMG and The Open Group ensures joint review
and cohesive support for emerging object-based specifications.

Object Management Group
The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The Open Group
The Open Group, a vendor and technology-neutral consortium, is committed to
delivering greater business efficiency by bringing together buyers and suppliers of
information technology to lower the time, cost, and risks associated with integrating
new technology across the enterprise.
May 2004 Lightweight Log Service, v1.1 iii

The mission of The Open Group is to drive the creation of boundaryless information
flow achieved by:

• Working with customers to capture, understand and address current and emerging
requirements, establish policies, and share best practices;

• Working with suppliers, consortia and standards bodies to develop consensus and
facilitate interoperability, to evolve and integrate specifications and open source
technologies;

• Offering a comprehensive set of services to enhance the operational efficiency of
consortia; and

• Developing and operating the industry’s premier certification service and
encouraging procurement of certified products.

The Open Group has over 15 years experience in developing and operating
certification programs and has extensive experience developing and facilitating
industry adoption of test suites used to validate conformance to an open standard or
specification. The Open Group portfolio of test suites includes tests for CORBA, the
Single UNIX Specification, CDE, Motif, Linux, LDAP, POSIX.1, POSIX.2, POSIX
Realtime, Sockets, UNIX, XPG4, XNFS, XTI, and X11. The Open Group test tools are
essential for proper development and maintenance of standards-based products,
ensuring conformance of products to industry-standard APIs, applications portability,
and interoperability. In-depth testing identifies defects at the earliest possible point in
the development cycle, saving costs in development and quality assurance.

More information is available at http://www.opengroup.org/ .

OMG Documents
The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

OMG Middleware Specifications
Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.
iv Lightweight Log Service, v1.1 May 2004

Obtaining OMG Documents
The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
elements.

Courier bold - Programming language elements.

Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

Acknowledgments
The following companies submitted and/or supported parts of this specification:

• 88solutions Corporation
• BAE
• Mercury Computer Systems
• MITRE Corporation
• Raytheon Company
• Rockwell Collins
May 2004 Lightweight Log Service: Acknowledgments v

vi Lightweight Log Service, v1.1 May 2004

Overview 1
Contents

This chapter contains the following sections.

1.1 Scope
The Software Communications Architecture (SCA) is an open architecture defined by the
Joint Tactical Radio Systems (JTRS) Joint Program Office (JPO). The SCA defines a
framework based on CORBA middleware layered on top of a real-time operating system.
The framework provides the common infrastructure for the software defining the
characteristics of the software-defined radio system. One component of this framework is
a central logging facility, enabling the asynchronous collection of informational
messages from any component connected to the framework; and the controlled read
access to this information. The transition of the particular section of the SCA
specification defining the CORBA-based logging facility into an OMG specification is
the scope of this document.

Section Title Page

“Scope” 1-1

“Purpose” 1-2

“Relationship to the Realtime, Embedded, and Specialized
Systems (RTESS) Platform Taskforce”

1-2

“Relation to Existing OMG Specifications” 1-2

“Relation to Pending OMG Specifications” 1-3

“Compliance” 1-3
May 2004 Lightweight Log Service, v1.1 1-1

1

In addition, the CORBA-based specification, proven by several implementations, has
been abstracted into Platform Independent Model, expressed in UML, to make this
service available to a wider audience. Intended are primarily embedded and/or real-time
usages. However, other areas might equally benefit from using this service.

1.2 Purpose
The Lightweight Logging Service specification contained in this document is primarily
intended as an efficient, central facility inside an embedded or real-time environment to
accept and manage logging records. These records are emitted from applications residing
in the same environment and stored in a memory-only storage area owned and managed
by the Lightweight Logging Service. The service was designed to be a mostly compatible
subset of the Telecom Log Service, however, it differs in the way logging records are
written to the log; or looked up and retrieved from the log.

This service has a much wider application than just the software-defined radio domain. It
will find its way into all areas of embedded systems, like machine control, onboard
vehicle systems, etc., but also into ubiquitous computing devices like pocket computer
and electronic organizers. But also "regular" application areas will benefit, if just a small,
memory-only logging facility is required.

1.3 Relationship to the Realtime, Embedded, and Specialized Systems (RTESS)
Platform Taskforce

The Lightweight Logging Service RFC fits the plans of the Realtime, Embedded, and
Specialized Systems (RTESS) Platform Taskforce by filling the first slot in a planned
series of lightweight service specifications.

1.4 Relation to Existing OMG Specifications
The Lightweight Logging Service described in this document was in principle designed
as a subset of the Telecom Log Service targeted for embedded and/or real-time systems.
However, the severe resource constraints typically present in those systems required
several deviations from the Telecom Log Service specification. The following list shows
the major deviations:

• Only simple logging is supported. The Lightweight Logging Service is a stand-
alone service targeted for use in resource constraint embedded and/or real-time
environemts. The Lightweight Logging Service does not inherit from the Event- or
Notification Service.

• The Lightweight Logging Service provides no connection to event cannels of any
kind. Instead log producer and consumer interfaces are provided.

• The Lightweight Logging Service does not support any federation of logging
services. In particular, the Lightweight Logging Service does not support
forwarding of log records to another Log object implementation

• Logging information is only stored in memory. No persistent log record store is
supported.
1-2 Lightweight Log Service, v1.1 May 2004

1

• No filters are supported.

• Due to the constraints of an embedded environment, the Lightweight Logging
Service uses a dedicated structure to hold logging records, instead of type any in the
Telecom Log Service. Combined with a list of "well known" typecodes, this
structure provides the restrictive control on type variety necessary in an embedded
system. Further, an "any-less" structure simplifies the use of embedded ORBs,
which frequently impose restrictions on type any.

• The only query-like operation is a lookup by time for a single record; otherwise
read access to a record is only via its record ID.

• The Lightweight Logging Service provides the service to read logging records in a
series of small consecutive chunks, very similar to the use of an iterator.

• Write operations to the Log are strictly asynchronous. The log provides no feedback
or exceptions; this would interfere with the timing constraints of the log producer.

1.5 Relation to Pending OMG Specifications
The Lightweight Logging Service addresses primarily the logging needs of embedded
systems, which may or may not have real-time behavior. Therefore it relies only on a
minimum set of system resources. A platform specific CORBA-based implementation
would only require capabilities slightly above the Minimum CORBA Profile, a capability
set currently under discussion as "Embedded CORBA Profile" in the RTESS Platform
Taskforce.

This specification is also fully aligned with the current planning of the RTESS Platform
Taskforce to create a set of lightweight services targeted for the embedded CORBA
market.

1.6 Compliance
This specification consists of two parts, a Platform Independent Model (PIM) and a
Platform Specific Model (PSM), specifying a realization of the PIM in the terms of
CORBA IDL. Both parts each represent indivisible pieces of work. Conformant
implementations must either provide an implementation which represents a complete
mapping of the PIM into the selected target technology; or it must provide a complete
implementation of the CORBA IDL PSM described in this document.

No partial implementation of either the PIM or the PSM is deemed conformant.
May 2004 Lightweight Log Service: Relation to Pending OMG Specifications 1-3

1

1-4 Lightweight Log Service, v1.1 May 2004

Platform Independent Model 2
Contents

This chapter contains the following sections.

2.1 Overview and Architecture
In consideration of the resource constraints imposed by the embedded system
environment, the Lightweight Logging Service is a free-standing, self-contained service,
and not connected to an event channel or similar infrastructure. The core of the
Lightweight Logging Service is represented by the class Log, which encapsulates the
storage area for logging records and provides the methods comprising the logging
functionality. However, the class Log does not communicate directly with the rest of the
environment. Communication with the surrounding environment is handled through three
distinct interfaces.

Section Title Page

“Overview and Architecture” 2-1

“Type Definitions” 2-4

“Common Interface Operations” 2-8

“LogConsumer Interface Operations” 2-12

“LogProducer Interface Operations” 2-18

“LogAdministrator Interface Operations” 2-19
May 2004 Lightweight Log Service, v1.1 2-1

2

The above three interfaces are derived from an abstract super interface LogStatus,
which provides informational functionality common to all three interfaces.

LogProducer This interface allows the insertion of new log records
into the logging storage area encapsulated by the Log
class. In favor of preserving the overall operational
integrity of the system, no guarantee is made that a
logging record is accepted and stored if the logging
service is unable to process and /or store it.

LogConsumer This interface allows the retrieval of logging records
from the storage area encapsulated by the Log class.

LogAdmin This interface provides the management functionality to
operate and manage the logging service.
2-2 Lightweight Log Service, v1.1 May 2004

2

Figure 2-1 Lightweight Logging Service PIM

LogConsumer

getRecordIdFromTime()
retrieveRecords()
retrieveRecordsByLevel()
retrieveRecordsByProducerName()
retrieveRecordsByProducerId()

<<interface>>
LogProducer

writeRecords()
writeRecord()

<<interface>>

LogStatus

getMaxSize()
getCurrentSize()
getNumRecords()
getLogFullAction()
getAdministrativeState()
getAvailabilityStatus()
getOperationalState()

<<interface>>

LogAdministrator

setMaxSize()
setLogFullAction()
setAdministrativeState()
clearLog()
destroy()

<<interface>>

Log

LogRecord
id : RecordId
time : LogTime

0..*0..*

ProducerLogRecord
producerId : String
producerName : String
level : LogLevel
logData : StringLogTime

nanoseconds : long
seconds : long

RecordId
<<Integer>>

LogLevel
<<Integer>>

* Currently Assigned Log Levels *

SECURITY_ALARM = 1
FAILURE_ALARM = 2
DEGRADED_ALARM = 3
EXCEPTION_ERROR = 4
FLOW_CONTROL_ERROR = 5
RANGE_ERROR = 6
USAGE_ERROR = 7
ADMINISTRATIVE_EVENT = 8
STATISTIC_REPORT = 9

Level 0 is invalid and the 16 levels
from Level 10 to 26 are reserved
for use in program debugging.

The Log class
must ensure that
Record IDs are
unique within a
particular Log.
May 2004 Lightweight Log Service: Overview and Architecture 2-3

2

As shown in Figure 2-1, the central piece of the Lightweight Logging Service is the class
Log, which encapsulates the storage area for logging records and provides all necessary
operations to manage and operate the Lightweight Logging Service. Note, however, that
the operations should not be directly accessible to any clients of the logging service.
Instead, a set of interfaces is provided to give controlled access to each kind of clients.
This is kind of a “poor man’s” protection system, which provides sufficient protection
against accidental misuse, while, at the same time, giving tribute to the severe resource
constraints common in embedded devices.

2.2 Type Definitions

2.2.1 InvalidParam Exception
The InvalidParam exception indicates that a provided parameter was invalid. Details
about the cause for this exception are delivered in the string attribute details.

2.2.2 LogLevel
The LogLevel allows a classification of the logging record. The value provided is
recorded in the logging record and provided to the consumer at retrieval, but it has no
particular meaning or side effects during storage of the record in the Log.

The implementation of the LogLevel type should provide a mechanism to assign the
following values, or an equivalent implementation thereof, to an instance of the
LogLevel type.

SECURITY_ALARM = 1
FAILURE_ALARM = 2
DEGRADED_ALARM = 3
EXCEPTION_ERROR = 4
FLOW_CONTROL_ERROR = 5
RANGE_ERROR = 6
USAGE_ERROR = 7
ADMINISTRATIVE_EVENT = 8
STATISTIC_REPORT = 9

InvalidParam
details : s tring

<<ex ception>>

LogLevel
<< Integer>>
2-4 Lightweight Log Service, v1.1 May 2004

2

Further, an implementation should reserve the codes 10-26, or their equivalent, to denote
program debugging messages.

2.2.3 OperationalState
The enumeration OperationalState defines the Log states of operation. When the Log
is ENABLED it is fully functional and available for use by log producer and log
consumer clients. A Log that is DISABLED has encountered a runtime problem and is
not available for use by log producers or log consumers. The internal error conditions
that cause the Log to go into DISABLED state are implementation specific.

2.2.4 AdministrativeState
The AdministrativeState denotes the active logging state of an operational Log. When
set to UNLOCKED the Log will accept records for storage, per its operational
parameters. When set to LOCKED the Log will not accept new log records and records
can be read or deleted only.

OperationalS tate
DISABLED
ENABLED

<<enumeration>>

ENABLED DISABLED

Administrat iveS tate
LOCKED
UNLOCKED

<<enumeration>>

UNLOCKED LOCKED
May 2004 Lightweight Log Service: Type Definitions 2-5

2

2.2.5 AvailabilityStatus
The AvailabilityStatus denotes whether or not the Log is available for use. When true,
offDuty indicates the Log is LOCKED (administrative state) or DISABLED
(operational state). When true, logFull indicates the Log storage is full.

2.2.6 LogFullAction
This type specifies the action that the Log should take when its internal buffers become
full of data, leaving no room for new records to be written. WRAP indicates that the Log
will overwrite the oldest LogRecords with the newest records, as they are written to the
Log. The Log will overwrite as many of the oldest LogRecords as needed to
accommodate the newest records. HALT indicates that the Log will stop logging when
full.

2.2.7 RecordId
This type provides the record ID that is assigned to a LogRecord by the Log; the
RecordId must be unique.

This type should be able to hold a 64 bit integer quantity or equivalent

Availabil ity Status
offDuty : boolean
logFull : boolean

LogFullAc tion
W RAP
HALT

<<enumeration>>

HA LT W RAP

RecordID
<< Integer>>
2-6 Lightweight Log Service, v1.1 May 2004

2

2.2.8 LogTime
This type provides the time format used by the Log to time stamp LogRecords. The
fields of this type are intentionally designed to map directly to the POSIX timespec
structure.

2.2.9 LogRecord
The LogRecord type defines the format of the LogRecords as stored in the Log. It
represents an encapsulation of the ProducerLogRecord, supplied by the log producer,
and adds the time stamp (via the LogTime structure) and a unique record identification
(via the RecordId field). Refer to Figure 2-2.

2.2.10 LogRecordSequence
The LogRecordSequence type defines an unbounded sequence of LogRecords.
Refer to Figure 2-2.

2.2.11 ProducerLogRecord
The ProducerLogRecord represents the log record written by the log producer client
to the log. It will be encapsulated by in a LogRecord object before it is stored in the log
storage area. Refer to Figure 2-2.

LogTime
s econds : long
nanos econds : long
May 2004 Lightweight Log Service: Type Definitions 2-7

2

Figure 2-2 LogRecordSequence, LogRecord, and ProducerLogRecord

2.3 Common Interface Operations
Interface LogStatus shall provide access to operations of common interest, which are
through inheritance available in all interfaces of the logging service.

2.3.1 getMaxSize
Returns the size of the logging storage area.

Synopsis
+ getMaxSize () : unsigned long long

ProducerLogRecord
producerId : s tring
producerName : s tring
level : LogLevel
logData : st ring

LogRec ord
id : RecordID
tim e : LogTime

11

LogRecordSequenc e

0. .*0. .*
2-8 Lightweight Log Service, v1.1 May 2004

2

Parameters and Return

Exceptions
This function raises no exceptions.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
available space in this storage area is finite. This operation shall return the maximum
capacity in bytes of the storage area.

2.3.2 getCurrentSize
Returns the amount of log storage area currently occupied by logging records.

Synopsis

+ getCurrentSize () : unsigned long long

Parameters and Return

Exceptions
This function raises no exceptions.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
getCurrentSize operation shall return the size in bytes of the log storage area
currently occupied by logging records. This value is less or equal to the total storage area
size returned by the getMaxSize operation.

2.3.3 getNumRecords
Returns the number of records presently stored in the Log.

Parameter Type Description

<return> unsigned long long The maximum size of the log
storage area in bytes

Parameter Type Description

<return> unsigned long long The size of the currently used
log storage area in bytes
May 2004 Lightweight Log Service: Common Interface Operations 2-9

2

Synopsis

+ getNumRecords () : unsigned long long

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
getNumRecords operation shall return the number of logging records currently stored
in the log storage area.

2.3.4 getLogFullAction
Returns the action to be taken when the storage area becomes full.

Synopsis

+ getLogFullAction () : LogFullAction

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
Since the storage space of the Log storage area is finite, the Logging Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. The getLogFullAction operation shall return the information
about the action that the Logging Service shall take when the storage area becomes full.
The possible values are HALT, which means no further logging records shall be accepted
and stored; or WRAP, which means the log shall continue by overwriting the oldest
records in the storage area.

Parameter Type Description

<return> unsigned long long The number of logging records
currently stored in the storage area.

Parameter Type Description

<return> LogFullAction The selected alternative of the
LogFullAction enumeration.
2-10 Lightweight Log Service, v1.1 May 2004

2

2.3.5 getAvailabilityStatus
Returns the availability status of the Log.

Synopsis

+ getAvailabilityStatus () : AvailabilityStatus

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The ability of the Log to accept and store logging records might become impaired. The
getAvailabilityStatus operation is used to check the availability status of the
Log. The returned instance of the AvailibilityStatus type shall contain two Boolean
values: offDuty, which shall indicate that the log is disabled when true, and logFull,
which shall indicate that all free space is depleted in the log storage area.

2.3.6 getAdministrativeState
Returns the administrative state of the Log.

Synopsis

+ getAdministrativeState () : AdministrativeState

Parameters and Return

Exceptions
This operation raises no exceptions.

Parameter Type Description

<return> AvailabilityStatus An instance of the
AvailabilityStatus representing
the actual status of the log.

Parameter Type Description

<return> AdministrativeState The actually selected alternative
of the AdministrativeState
enumeration.
May 2004 Lightweight Log Service: Common Interface Operations 2-11

2

Description
The ability of the logging service to accept and store new logging records can be affected
by administrative action. The getAdministrativeState shall return the current
adminstrative state of the Log. The possible states are LOCKED and UNLOCKED. If
the state is LOCKED, no new records shall be accepted. Reading of already stored
records is not affected.

2.3.7 getOperationalState
Returns the operational state of the Log.

Synopsis

+ getOperationalState () : OperationalState

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The getOperationalState operation shall return the actual operational state of the
log. Possible values are ENABLED, which shall indicate that the log is fully functional
and available to log producer and log consumer clients; or DISABLED, which shall
indicate that the log has encountered a runtime problem and is not available for use by
log producers or log consumers.

2.4 LogConsumer Interface Operations

2.4.1 getRecordIdFromTime
Identify a record in the log based on its time stamp.

Synopsis

+ getRecordIdFromTime (in fromTime : LogTime)
: RecordId

Parameter Type Description

<return> OperationalState The actually selected alternative of
the OperationalState enumeration.
2-12 Lightweight Log Service, v1.1 May 2004

2

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The getRecordIdFromTime operation shall return the record Id of the first record in
the Log with a time stamp that is greater than, or equal to, the time specified in the
fromTime parameter. If the Log does not contain a record that meets the criteria
provided, then the RecordId returned shall correspond to the next record that will be
recorded in the future. In this way, if this “future” recordId is passed to a retrieval
operation, an empty record will be returned unless records have been recorded since the
time specified. Note that if the time specified in the fromTime parameter is in the
future, there is no guarantee that the resulting records returned by a retrieval operation
will have a time stamp after the fromTime parameter if the returned recordId from
this invocation of the getRecordIdFromTime operation is subsequently used as
input to the retrieveById operation.

2.4.2 retrieveRecords
Retrieves a specified number of records from the Log.

Synopsis

+ retrieveRecords (inout currentId : RecordId,
 inout howMany : unsigned long)
 : LogRecordSequence

Parameter Type Description

fromTime LogTime The timestamp to start the search with

<return> RecordId Record ID of the first record matching
the timestamp.
May 2004 Lightweight Log Service: LogConsumer Interface Operations 2-13

2

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieveRecords operation shall return a LogRecordSequence that begins
with the record specified by the currentId parameter. The number of records in the
LogRecordSequence returned by the retrieveRecords operation shall be equal
to the number of records specified by the howMany parameter, or the number of records
available if the number of records specified by the howMany parameter cannot be met.
The log shall update howMany to indicate the number of records returned and set
currentId to either the id of the record following the last examined record or the next
record that will be recorded in the future if there are no further records available. If the
record specified by currentId does not exist, but corresponds to the next record that
will be recorded in the future, the retrieveRecords operation shall return an empty
list of LogRecords, set howMany to zero, and leave the value of currentId
unchanged. If the record specified by currentId does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
the retrieveRecords operation shall return an empty list of LogRecords, and set
both, currentId and howMany to zero. Note that this operation does not guarantee a
return of sequential records in Log and modifies the currentId value. Consequently,
subsequent invocations of this operation with a different valueList or the other
retrieval operations before reestablishing a record ID with the
getRecordIdFromTime operation may result in the Log consumer not being able to
obtain some of the records.

2.4.3 retrieveRecordsByLevel
Retrieves a specified number of records from the Log that correspond to the provided log
levels.

+ retrieveRecordsByLevel (inout currentId : RecordId,
 inout howMany : unsigned long,
 in valueList : LogLevelSequence,

: LogRecordSequence

Parameter Type Description

currentId RecordId The ID of the starting record

howMany unsigned long The number of records to retrieve,
will be updated to the number of
records actually retrieved.

<return> LogRecordSequence The sequence of retrieved records
2-14 Lightweight Log Service, v1.1 May 2004

2

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieveRecordsByLevel operation shall return a LogRecordSequence of
records that correspond to the supplied LogLevels. Refer to section 2.2.2. The
valueList parameter is composed of an undefined number of LogLevels.
Candidate records for the LogRecordSequence shall begin with the record specified
by the currentId parameter. The number of records in the LogRecordSequence
returned by the retrieveRecordsByLevel operation shall be equal to the number
of records specified by the howMany parameter, or the number of records available if
the number of records specified by the howMany parameter cannot be met. The log shall
update howMany to indicate the number of records returned and set currentId to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by currentId does not exist, but corresponds to the next record that will be recorded
in the future, the retrieveRecordsByLevel operation shall return an empty list of
LogRecords, set howMany to zero, and leave the value of currentId unchanged. If
the record specified by currentId does not exist and does not correspond to the next
record that will be recorded in the future, or if the Log is empty, the
retrieveRecordsByLevel operation shall return an empty list of LogRecords,
and set both, currentId and howMany to zero. Note that this operation does not
guarantee a return of sequential records in Log and modifies the currentId value.
Consequently, subsequent invocations of this operation with a different valueList or
the other retrieval operations before reestablishing a record ID with the
getRecordIdFromTime operation may result in the Log consumer not being able to
obtain some of the records.

2.4.4 retrieveRecordsByProducerId
Retrieves a specified number of records from the Log that correspond to the provided
producer IDs.

Parameter Type Description

currentId RecordId The ID of the starting record

howMany unsigned long The number of records to retrieve,
will be updated to the number of
records actually retrieved.

valueList LogLevelSequence The sequence of log levels that will
be sought.

<return> LogRecordSequence The sequence of retrieved records
May 2004 Lightweight Log Service: LogConsumer Interface Operations 2-15

2

+ retrieveRecordsByProducerId (inout currentId : RecordId,
 inout howMany : unsigned long,
 in valueList : StringSequence,

: LogRecordSequence

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieveRecordsByProducerId operation shall return a
LogRecordSequence of records that correspond to the supplied producerIds.
Refer to section 2.2.11. The valueList parameter is composed of an undefined
number of producerIds. Candidate records for the LogRecordSequence shall
begin with the record specified by the currentId parameter. The number of records in
the LogRecordSequence returned by the retrieveRecordsByProducerId
operation shall be equal to the number of records specified by the howMany parameter,
or the number of records available if the number of records specified by the howMany
parameter cannot be met. The log shall update howMany to indicate the number of
records returned and set currentId to either the id of the record following the last
examined record or the next record that will be recorded in the future if there are no
further records available. If the record specified by currentId does not exist, but
corresponds to the next record that will be recorded in the future, the
retrieveRecordsByProducerId operation shall return an empty list of
LogRecords, set howMany to zero, and leave the value of currentId unchanged. If
the record specified by currentId does not exist and does not correspond to the next
record that will be recorded in the future, or if the Log is empty, the
retrieveRecordsByProducerId operation shall return an empty list of
LogRecords, and set both, currentId and howMany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
currentId value. Consequently, subsequent invocations of this operation with a
different valueList or the other retrieval operations before reestablishing a record ID
with the getRecordIdFromTime operation may result in the Log consumer not being
able to obtain some of the records.

Parameter Type Description

currentId RecordId The ID of the starting record

howMany unsigned long The number of records to retrieve,
will be updated to the number of
records actually retrieved.

valueList StringSequence The sequence of producer IDs that
will be sought.

<return> LogRecordSequence The sequence of retrieved records
2-16 Lightweight Log Service, v1.1 May 2004

2

2.4.5 retrieveRecordsByProducerName
Retrieves a specified number of records from the Log that correspond to the provided
producer names.

+ retrieveRecordsByProducerId (inout currentId : RecordId,
 inout howMany : unsigned long,
 in valueList : StringSequence,

: LogRecordSequence

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieveRecordsByProducerName operation shall return a
LogRecordSequence of records that correspond to the supplied producerNames.
Refer to section 2.2.11. The valueList parameter is composed of an undefined
number of producerNames. Candidate records for the LogRecordSequence shall
begin with the record specified by the currentId parameter. The number of records in
the LogRecordSequence returned by the retrieveRecordsByProducerName
operation shall be equal to the number of records specified by the howMany parameter,
or the number of records available if the number of records specified by the howMany
parameter cannot be met. The log shall update howMany to indicate the number of
records returned and set currentId to either the id of the record following the last
examined record or the next record that will be recorded in the future if there are no
further records available. If the record specified by currentId does not exist, but
corresponds to the next record that will be recorded in the future, the
retrieveRecordsByProducerName operation shall return an empty list of
LogRecords, set howMany to zero, and leave the value of currentId unchanged. If
the record specified by currentId does not exist and does not correspond to the next
record that will be recorded in the future, or if the Log is empty, the
retrieveRecordsByProducerName operation shall return an empty list of
LogRecords, and set both, currentId and howMany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the

Parameter Type Description

currentId RecordId The ID of the starting record

howMany unsigned long The number of records to retrieve,
will be updated to the number of
records actually retrieved.

valueList StringSequence The sequence of producer names
that will be sought.

<return> LogRecordSequence The sequence of retrieved records
May 2004 Lightweight Log Service: LogConsumer Interface Operations 2-17

2

currentId value. Consequently, subsequent invocations of this operation with a
different valueList or the other retrieval operations before reestablishing a record ID
with the getRecordIdFromTime operation may result in the Log consumer not being
able to obtain some of the records.

2.5 LogProducer Interface Operations

2.5.1 writeRecords
Writes records to the Log.

Synopsis

+ writeRecords (in records : ProducerLogRecordSequence)

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The writeRecords operation shall add the log records supplied in the records
parameter to the Log. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to HALT, the writeRecords
operation shall set the availability status logFull state to true. For example, if 3 records
are provided in the records parameter, and while trying to write the second record to the
log, the record will not fit, then the log is considered to be full. Therefore, the second and
third records will not be stored in the log but the first record would have been
successfully stored. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to WRAP, the writeRecords
operation shall overwrite the oldest LogRecords with the newest records, as they are
written to the Log, and leave the availability status logFull state unchanged.

The writeRecords operation shall insert the current UTC time to the time field of
each record written to the Log, and shall assign a unique record ID to the id field of the
LogRecord.

Log records accepted for storage by the writeRecords shall be available for retrieval
in the order received.

Parameter Type Description

records ProducerLogRecordSequence The records to be
written to the log.

<return> This operation does not
return a value.
2-18 Lightweight Log Service, v1.1 May 2004

2

2.5.2 writeRecord
Writes a single record to the Log.

Synopsis

+ writeRecord (in record : ProducerLogRecord)

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The writeRecord operation shall add the log record supplied in the record
parameter to the Log. When there is insufficient storage to add the supplied log record
to the Log, and the LogFullAction is set to HALT, the writeRecord operation shall
set the availability status logFull state to true. When there is insufficient storage to add
the supplied log record to the Log, and the LogFullAction is set to WRAP, the
writeRecord operation shall overwrite the oldest LogRecords with the new record,
and leave the availability status logFull state unchanged.

The writeRecord operation shall insert the current UTC time to the time field of
each record written to the Log, and shall assign a unique record ID to the id field of the
LogRecord.

Log records accepted for storage by writeRecord shall be available for retrieval in
the order received.

2.6 LogAdministrator Interface Operations

2.6.1 setMaxSize
Sets the maximum size the Log storage area.

Synopsis

+ setMaxSize(in size : unsigned long long)

Parameter Type Description

record ProducerLogRecord The record to be written
to the log.

<return> This operation does not
return a value.
May 2004 Lightweight Log Service: LogAdministrator Interface Operations 2-19

2

Parameters and Return

Exceptions
This operation shall raise the InvalidParam exception if the supplied parameter is
invalid.

Description
Log records are stored in a storage area encapsulated by the Log class. The available
space in this storage area is finite. This operation shall allow the maximum capacity, in
bytes, of the storage area to be set. Note, however, that this operation might be
constrained by the underlying operation (you can’t assign more memory than is
physically present), or a platform specific implementation might decide to render this
operation as a no-op and provide a fixed maximum size instead.

2.6.2 setLogFullAction
Configure the action to be taken if the log storage area becomes full.

Synopsis

+ setLogFullAction (in action : LogFullAction)

Parameters and Return

Exceptions
This operation raises no exceptions.

Parameter Type Description

size unsigned long long The desired size for the logging
storage area in bytes

<return> This operation does not return a
value

Parameter Type Description

action LogFullAction Specify the desired selection from
the LogFullAction enumeration
(either HALT or WRAP)

<return> This operation does not return a
value
2-20 Lightweight Log Service, v1.1 May 2004

2

Description
Since the storage space of the Log storage area is finite, the Log Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. The setLogFullAction operation shall allow the actions
which should be taken after all free space in the log storage area is depleted to be
specified. The possible values are HALT, which shall indicate that no further logging
records are accepted and stored; or WRAP, which shall indicate that the log continues by
overwriting the oldest records in the storage area. When the LogFullAction type is set
to WRAP, the Log shall set the availability status logFull state to false.

2.6.3 setAdministrativeState
This operation provides write access to the administrative state value.

Synopsis

+ setAdministrativeState (in state : AdministrativeState)

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
This operation shall affect the ability of the logging service to accept and store new
logging records by administrative action. The possible states are LOCKED and
UNLOCKED. If the state is LOCKED, no new records shall be accepted. Reading of
already stored records shall not be affected. If the state is set to UNLOCKED, the log
shall operate normally.

2.6.4 clearLog
Purge the log storage area.

Synopsis

clearLog ()

Parameter Type Description

state AdministrativeState Select the desired alternative from
the AdministrativeState
enumeration. (Possible values are
LOCKED and UNLOCKED.)

<return> This operation does not return a
value
May 2004 Lightweight Log Service: LogAdministrator Interface Operations 2-21

2

Parameters and Return
This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Description
This operation shall purge all logging records from the log storage area; however, it shall
not alter the size of the storage area in any way. The log shall set the availability status
logFull state to false.

2.6.5 destroy
Tear down an instantiated Log.

Synopsis

destroy ()

Parameters and Return
This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Description
This operation shall destroy the associated instance of the Log class. All existing records
in the log storage area shall be irrecoverably lost and the memory resources associated
with the storage area shall be released.
2-22 Lightweight Log Service, v1.1 May 2004

Platform Specific Model: Mapping
to CORBA IDL 3
Contents

This chapter contains the following sections.

3.1 Overview
This specification defines a Lightweight Logging Service intended for use in resource-
constraint systems like embedded and/or real-time CORBA systems. It represents the
CORBA Platform Specific Model (PSM) derived from the Lightweight Logging Service
Platform Independent Model (PIM) described in Chapter 2 of this document. In this
particular case, this PSM is “the original,” derived from the Software Communication
Architecture (SCA) version 2.2. SCA defines the system platform for software-defined
radios, using CORBA on top of a real-time operating system. The PIM described in
Chapter 2 was derived from this PSM through generalization.

3.1.1 Mapping from the Platform Independent Model
The mapping between the elements of the Platform Independent Model described in
Chapter 2 and the corresponding elements of the CORBA IDL Platform Specific Model
described in the following sections is in most cases one-to-one. A note in the description
of each PSM element will explain the correspondence between the PSM element and its
counterpart in the PIM.

Section Title Page

“Overview” 3-1

“Types and Data Structures” 3-2

“Logging Interfaces” 3-7
May 2004 Lightweight Log Service, v1.1 3-1

3

According to the characteristic of CORBA to fully encapsulate the object underlying the
provided interfaces, no visible mapping exists between the UML Log class of the PIM
and a CORBA IDL construct in the PSM. The operations to be implemented by the
underlying Log object are only visible through the four interfaces, as defined in the PIM,
and are fully described in the corresponding interface sections below.

3.2 Types and Data Structures

3.2.1 InvalidParam Exception

exception InvalidParam { string details; };

The InvalidParam exception indicates that a provided parameter was invalid. Details
about the cause for this exception are delivered in the string attribute details.

Mapping from the Platform Independent Model
This IDL exception is the result of a one-to-one mapping from the UML classifier
InvalidParam (stereotyped as <<exception>>), described in Section 2.2.1, “InvalidParam
Exception,” on page 2-4.

Difference to the Telecom Log Service
This IDL exception is identical to the corresponding definition in the Telecom Log
Service.

3.2.2 LogLevel
Type LogLevel is an enumeration-like type that is utilized to identify log levels.

unsigned short LogLevel;

const unsigned short SECURITY_ALARM = 1;
const unsigned short FAILURE_ALARM = 2;
const unsigned short DEGRADED_ALARM =3;
const unsigned short EXCEPTION_ERROR =4;
const unsigned short FLOW_CONTROL_ERROR =5;
const unsigned short RANGE_ERROR =6;
const unsigned short USAGE_ERROR = 7;
const unsigned short ADMINISTRATIVE_EVENT = 8;
const unsigned short STATISTIC_REPORT = 9;
// Values ranging from 10 to 26 are reserved for
// 16 debugging levels.

The LogLevel allows a classification of the logging record. The value provided is
recorded in the logging record and provided to the consumer at retrieval, but it has no
particular meaning or side effects during storage of the record in the Log.
3-2 Lightweight Log Service, v1.1 May 2004

3

Mapping from the Platform Independent Model
This IDL integer type is the result of a one-to-one mapping from the UML classifier
LogLevel (stereotyped as <<Integer>>), described in Section 2.2.2, “LogLevel,” on
page 2-4. Note that the first 27 values (from 0 to 26) are predefined by the PIM.

Difference to the Telecom Log Service
This type does not exist in the Telecom Log Service.

3.2.3 OperationalState

enum OperationalState {disabled, enabled};

The enumeration OperationalStateType defines the Log states of operation.
When the Log is enabled it is fully functional and is available for use by log producer
and log consumer clients. A Log that is disabled has encountered a runtime problem
and is not available for use by log producers or log consumers. The internal error
conditions that cause the Log to set the operational state to enabled or disabled are
implementation specific.

Mapping from the Platform Independent Model
This IDL enumeration type is the result of a one-to-one mapping from the UML
classifier OperationalState (stereotyped as <<enumeration>>), described in
Section 2.2.3, “OperationalState,” on page 2-5. The identifiers of the enumeration values
have been converted to lower-case for compatibility with the Telecom Log Service.

Difference to the Telecom Log Service
This IDL enumeration type is identical to the corresponding type definition in the
Telecom Log Service.

3.2.4 AdministrativeState

enum AdministrativeState {locked, unlocked};

The AdministrativeState type denotes the active logging state of an operational Log.
When set to unlocked the Log will accept records for storage, per its operational
parameters. When set to locked the Log will not accept new log records and records
can be read or deleted only.

Mapping from the Platform Independent Model
This IDL enumeration type is the result of a one-to-one mapping from the UML
classifier AdministrativeState (stereotyped as <<enumeration>>), described in
Section 2.2.4, “AdministrativeState,” on page 2-5. The identifiers of the enumeration
values have been converted to lower-case for compatibility with the Telecom Log
Service.
May 2004 Lightweight Log Service: Types and Data Structures 3-3

3

Difference to the Telecom Log Service
This IDL enumeration type is identical to the corresponding type definition in the
Telecom Log Service.

3.2.5 LogFullAction

enum LogFullAction {WRAP, HALT};

This type specifies the action that the Log should take when its internal buffers become
full of data, leaving no room for new records to be written. WRAP indicates that the
Log will overwrite the oldest LogRecords with the newest records, as they are written
to the Log. The Log will overwrite as many of the oldest LogRecords as needed to
accommodate the newest records. HALT indicates that the Log will stop logging when
full.

Mapping from the Platform Independent Model
This IDL enumeration type is the result of a one-to-one mapping from the UML
classifier LogFullAction (stereotyped as <<enumeration>>), described in
Section 2.2.6, “LogFullAction,” on page 2-6.

Difference to the Telecom Log Service
The open-ended list of short integer values in the Telecom Log Service has been replaced
by a two-element enumeration to better accommodate the constraints of the embedded
environment. The enumeration values are retained in upper-case to distinguish from the
constants used by the Telecom Log Service.

3.2.6 LogAvailabilityStatus

struct AvailabilityStatus{
 boolean off_duty;
 boolean log_full;
};

The AvailabilityStatus denotes whether or not the Log is available for use. When
true, off_duty indicates the Log is locked (administrative state) or disabled
(operational state). When true, log_full indicates the Log storage is full.

Mapping from the Platform Independent Model
This IDL structure type is the result of a one-to-one mapping from the UML class
AvailabilityStatus, described in Section 2.2.5, “AvailabilityStatus,” on page 2-6.

Struct member Description

off_duty Indicates that the log is unavailable, if true.

log_full Indicates that the log storage area is full, if true.
3-4 Lightweight Log Service, v1.1 May 2004

3

3.2.7 LogTime

struct LogTime {
 long seconds;
 long nanoseconds;
};

This type provides the time format used by the Log to time stamp LogRecords. Each
field is intended to directly map to the POSIX timespec structure.

Note – An implementation should exclusively use UTC for time recording to support
location transparency.

Mapping from the Platform Independent Model
This IDL structure type is the result of a one-to-one mapping from the UML class
LogTime, described in Section 2.2.8, “LogTime,” on page 2-7.

Difference to the Telecom Log Service
The LogTime structure replaces the use of the Time Service TimeT type. This way the
dependency on the Time Service has been eliminated and the time specification aligned
with the POSIX timespec structure, which is implemented by virtually all existing
operating systems for embedded systems.

3.2.8 ProducerLogRecord
struct ProducerLogRecord {
 string producerId;
 string producerName;
 LogLevel level;
 string logData;
};
typedef sequence <ProducerLogRecord>
 ProducerLogRecordSequence;

Log producers format log records as defined in the structure ProducerLogRecord.

Struct member Description

producerId This field uniquely identifies the source of a log record.
The value is the component’s identifier and should be
unique for each log record producing component within the
Domain.
May 2004 Lightweight Log Service: Types and Data Structures 3-5

3

This structure represents a logging record written by a log producer client to the Log via
the LogProducer interface. Upon reception, it is encapsulated by the LogRecord
described in Section 3.2.2, “LogLevel,” on page 3-2.

Mapping from the Platform Independent Model
This IDL structure type is the result of a one-to-one mapping from the UML class
ProducerLogRecord, described in Section 2.2.11, “ProducerLogRecord,” on
page 2-7.

Difference to the Telecom Log Service
The ProducerLogRecord structure replaces the use of the IDL any type in the
LogRecord of the Telecom Log Service. This is required in lieu of the lightweight
nature of this service; and by the fact that many embedded ORB implementations do not
support type any.

3.2.9 RecordId

typedef unsigned long long RecordId;

This type provides the unique record ID that is assigned to a LogRecord by the Log.

Mapping from the Platform Independent Model
This IDL type is the result of a one-to-one mapping from the UML classifier RecordId,
as described in Section 2.2.7, “RecordId,” on page 2-6. Defined as an unsigned long long
it is capable to hold a 64 bit integer value, as required by the PIM.

Difference to the Telecom Log Service
The type RecordId is identical to the type used in the Telecom Log Service for simple log
records.

producerName This field identifies the producer of a log record in textual
format. This field is assigned by the log producer, thus is
not unique within the Domain (e.g., multiple instances of an
application will assign the same name to the ProducerName
field.)

level The level field can be used to classify the log record
according to the LogLevel type.

logData This field contains the informational message being logged.
3-6 Lightweight Log Service, v1.1 May 2004

3

3.2.10 LogRecord
struct LogRecord {
 RecordId id;
 LogTime time;
 ProducerLogRecord info;
};

typedef sequence<LogRecord> LogRecordSequence;

The LogRecord type defines the format of the log records as stored in the Log. The
‘info’ field is the ProducerLogRecord that is written by a producer client to the Log.

The LogRecordSequence type defines an unbounded sequence of LogRecords.

Mapping from the Platform Independent Model
This IDL structure type is the result of a one-to-one mapping from the UML classes
LogRecord and LogRecordSequence, described in Section 2.2.9, “LogRecord,” on
page 2-7 and Section 2.2.10, “LogRecordSequence,” on page 2-7, and the aggregation
between these classes.

Difference to the Telecom Log Service
The LogRecord structure was loosely modeled after the Telecom Log Service
LogRecord structure. However, since many embedded ORBs are not supporting the IDL
type any, the ProducerLogRecord structure replaces the any-typed info field in the
Telecom Log Service LogRecord. Further, the Lightweight Logging Service does not
support attributes in LogRecords.

3.3 Logging Interfaces
Operations on the Log object are separated into three distinct concrete interfaces. Each of
these interfaces represents a different access kind or privilege. This represents a
lightweight method of protection for the underlying Log object, without adding any
additional code. For the typically severe resource constrained embedded environments
this Lightweight Logging Service is addressing, the code saving is important, and the
protection functionality is considered sufficient.

Struct member Description

Id This field uniquely identifies a log record in the Log.

Time This field holds the timestamp for the record.

Info This field contains the logging record supplied by the
producer.
May 2004 Lightweight Log Service: Logging Interfaces 3-7

3

Difference to the Telecom Log Service
The way the Lightweight Logging service is integrated into the surrounding environment
is very different from the Telecom Log Service (which is based on Event- or Notification
Channels). The Lightweight Logging Service is a stand-alone service targeted for
embedded systems, where the variety of client applications is limited and usually well-
known. The specified interfaces aim for a minimum footprint.

3.3.1 Interface LogStatus
interface LogStatus {

unsigned long long get_max_size();
unsigned long long get_current_size();
unsigned long long get_n_records();
LogFullAction get_log_full_action();
AvailabilityStatus get_availability_status();
AdministrativeState get_administrative_state();
OperationalState get_operational_state();

};

The purpose of this interface is to make common operations equally available in the three
concrete interfaces inherited form this interface. These operations provide a common and
consistent way to query the actual state of a Log object. No state changes are permitted
or implied through the operations offered in this interface.

From a client’s perspective, this interface should be considered as abstract; its operations
should be invoked only in the context of the inherited interfaces.

3.3.1.1 get_max_size
Returns the size of the logging storage area.

Parameters and Return

Exceptions
This function raises no exceptions.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
available space in this storage area is finite. This operation returns the maximum capacity
in bytes of the storage area.

Parameter Type Description

<return> unsigned long long The maximum size of the log
storage area in bytes
3-8 Lightweight Log Service, v1.1 May 2004

3

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getMaxSize, defined in the UML class Log and made visible through interface
LogStatus in the PIM (See Section 2.3.1, “getMaxSize,” on page 2-8). The spelling of
the operation name has been changed to conform to the OMG IDL Style Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

3.3.1.2 get_current_size
Returns the amount of log storage area currently occupied by logging records.

Parameters and Return

Exceptions
This function raises no exceptions.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
get_current_size operation returns the size in bytes of the log storage area
currently occupied by logging records. This value is less or equal to the total storage area
size returned by the get_max_size operation.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getCurrentSize, defined in the UML class Log and made visible through interface
LogStatus in the PIM (See Section 2.3.2, “getCurrentSize,” on page 2-9). The spelling
of the operation name has been changed to conform to the OMG IDL Style Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

3.3.1.3 get_n_records
Returns the number of records presently stored in the Log.

Parameter Type Description

<return> unsigned long long The size of the currently used
log storage area in bytes.
May 2004 Lightweight Log Service: Logging Interfaces 3-9

3

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
get_n_records operation returns the number of logging records currently stored in
the log storage area.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getNumRecords, defined in the UML class Log and made visible through interface
LogStatus in the PIM (See Section 2.3.3, “getNumRecords,” on page 2-9). The spelling
of the operation name has been changed to conform to the OMG IDL Style Guide; and
for compatibility with the Telecom Log Service.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

3.3.1.4 get_log_full_action
Returns the action take when the storage area becomes full.

Parameters and Return

Exceptions
This operation raises no exceptions.

Parameter Type Description

<return> unsigned long long The number of logging records
currently stored in the storage
area.

Parameter Type Description

<return> LogFullAction The actually selected
alternative of the
LogFullAction enumeration.
3-10 Lightweight Log Service, v1.1 May 2004

3

Description
Since the storage space of the Log storage area is finite, the Logging Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. The get_log_full_action operation returns the information
about which action the Logging Service will take when the storage area becomes full.
The possible values are HALT, which means no further logging records are accepted and
stored; or WRAP, which means the Log continues by overwriting the oldest records in
the storage area.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getLogFullAction, defined in the UML class Log and made visible through interface
LogStatus in the PIM (See Section 2.3.4, “getLogFullAction,” on page 2-10).

The spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This operation is identical in name and signature to the equivalent operation of the
Telecom Log Service; however, the result is different.

3.3.1.5 get_availability_status
Returns the availability status of the Log.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The ability of the Log to accept and store logging records might become impaired. The
get_availability_status operation is used to check the availability status of the
Log. The returned instance of the AvailibilityStatus type contains two Boolean values:
off_duty, which indicates the log is disabled when true; and log_full, which indicates
that all free space is depleted in the log storage area.

Parameter Type Description

<return> AvailabilityStatus An instance of the
AvailabilityStatus representing
the actual status of the log
May 2004 Lightweight Log Service: Logging Interfaces 3-11

3

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getAvailabilityStatus, defined in the UML class Log and made visible through
interface LogStatus in the PIM (See Section 2.3.5, “getAvailabilityStatus,” on
page 2-11). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

3.3.1.6 get_administrative_state
Returns the administrative state of the Log.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The ability of the logging service to accept and store new logging records can be affected
by administrative action. The get_administrative_state is used to read the
administrative state of the Log. The possible states are locked and unlocked. If the
state is locked, no new records are accepted. Reading of already stored records is not
affected.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getAdministrativeState, defined in the UML class Log and made visible through
interface LogStatus in the PIM (See Section 2.3.6, “getAdministrativeState,” on
page 2-11). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

Parameter Type Description

<return> AdministrativeState The actually selected
alternative of the
AdministrativeState
enumeration.
3-12 Lightweight Log Service, v1.1 May 2004

3

3.3.1.7 get_operational_state
Returns the operational state of the Log.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The get_operational_state operation returns the actual operational state of the
log. Possible values are enabled, which means the log is fully functional and available
to log producer and log consumer clients; or disabled, which indicates the log has
encountered a runtime problem and is not available for use by log producers or log
consumers.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getOperationalState, defined in the UML class Log and made visible through
interface LogStatus in the PIM (See Section 2.3.7, “getOperationalState,” on
page 2-12). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

3.3.2 Interface LogConsumer
interface LogConsumer : LogStatus {

RecordId get_record_id_from_time (in LogTime fromTime);
LogRecordSequence retrieve_records(inout RecordId currentId,

inout unsigned long howMany);
LogRecordSequence retrieve_records_by_level(

inout RecordId currentId,
inout unsigned long howMany,
in LogLevelSequence valueList);

Parameter Type Description

<return> OperationalState The actually selected alternative
of the OperationalState
enumeration.
May 2004 Lightweight Log Service: Logging Interfaces 3-13

3

LogRecordSequence retrieve_records_by_producer_id(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

LogRecordSequence retrieve_records_by_producer_name(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

};

3.3.2.1 get_record_id_from_time
Identify a record in the log a record based on its time stamp.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The get_record_id_from_time operation returns the record Id of the first record
in the Log with a time stamp that is greater than, or equal to, the time specified in the
fromTime parameter. If the Log does not contain a record that meets the criteria
provided, then the RecordId returned corresponds to the next record that will be
recorded in the future. In this way, if this “future” recordId is passed into a retrieval
operation, an empty record will be returned unless records have been recorded since the
time specified. Note that if the time specified in the fromTime parameter is in the
future, there is no guarantee that the resulting records returned by a retrieval operation
will have a time stamp after the fromTime parameter if the returned recordId from
this invocation of the get_record_id_from_time operation is subsequently used
as input to the retrieveById operation.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
getRecordIdFromTime, defined in the UML class Log and made visible through
interface LogConsumer in the PIM (See Section 2.4.1, “getRecordIdFromTime,” on
page 2-12). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Parameter Type Description

fromTime LogTime The timestamp to start the search
with.

<return> RecordId Record ID of the first record
matching the timestamp.
3-14 Lightweight Log Service, v1.1 May 2004

3

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.2 retrieve_records
Retrieves a specified number of records from the Log.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieve_records operation returns a LogRecordSequence that begins
with the record specified by the currentId parameter. The number of records in the
LogRecordSequence returned by the retrieve_records operation is equal to
the number of records specified by the howMany parameter, or the number of records
available if the number of records specified by the howMany parameter cannot be met.
The log will update howMany to indicate the number of records returned and will set
currentId to either the id of the record following the last examined record or the next
record that will be recorded in the future if there are no further records available. If the
record specified by currentId does not exist, but corresponds to the next record that
will be recorded in the future, the retrieve_records operation returns an empty list
of LogRecords, sets howMany to zero, and leaves the value of currentId
unchanged. If the record specified by currentId does not exist and does not correspond to
the next record that will be recorded in the future, or if the Log is empty, the
retrieve_records operation returns an empty list of LogRecords, and sets both,
currentId and howMany to zero. Note that this operation does not guarantee a return
of sequential records in Log and modifies the currentId value. Consequently,
subsequent invocation of this operation with the get_record_id_from_time
operation may result in the Log consumer not being able to obtain some of the records.

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to
retrieve.

<return> LogRecordSequence The sequence of retrieved
records.
May 2004 Lightweight Log Service: Logging Interfaces 3-15

3

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecords, defined in the UML class Log and made visible through interface
LogConsumer in the PIM (See Section 2.4.2, “retrieveRecords,” on page 2-13). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.3 retrieve_records_by_level
Retrieves a specified number of records from the Log that correspond to the provided log
levels.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieve_records_by_level operation returns a LogRecordSequence
of records that correspond to the supplied LogLevels. Candidate records for the
LogRecordSequence begin with the record specified by the currentId parameter.
The number of records in the LogRecordSequence returned by the
retrieve_records_by_level operation is equal to the number of records
specified by the howMany parameter, or the number of records available if the number
of records specified by the howMany parameter cannot be met. The log will update
howMany to indicate the number of records returned and will set currentId to either
the id of the record following the last examined record or the next record that will be
recorded in the future if there are no further records available. If the record specified by
currentId does not exist, but corresponds to the next record that will be recorded in
the future, the retrieve_records_by_level operation returns an empty list of

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to
retrieve.

valueList LogLevelSequence The sequence of log levels that
will be sought.

<return> LogRecordSequence The sequence of retrieved
records.
3-16 Lightweight Log Service, v1.1 May 2004

3

LogRecords, sets howMany to zero, and leaves the value of currentId unchanged.
If the record specified by currentId does not exist and does not correspond to the next
record that will be recorded in the future, or if the Log is empty, the
retrieve_records_by_level operation returns an empty list of LogRecords,
and sets both, currentId and howMany to zero. Note that this operation does not
guarantee a return of sequential records in Log and modifies the currentId value.
Consequently, subsequent invocation of this operation with the
get_record_id_from_time operation may result in the Log consumer not being
able to obtain some of the records.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecordsByLevel, defined in the UML class Log and made visible through
interface LogConsumer in the PIM (See Section 2.4.3, “retrieveRecordsByLevel,” on
page 2-14). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.4 retrieve_records_by_producer_id
Retrieves a specified number of records from the Log that correspond to the provided
producer IDs.

Parameters and Return

Exceptions
This operation raises no exceptions.

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to
retrieve.

valueList StringSeq The sequence of producer ids
that will be sought.

<return> LogRecordSequence The sequence of retrieved
records.
May 2004 Lightweight Log Service: Logging Interfaces 3-17

3

Description
The retrieve_records_by_producer_id operation returns a
LogRecordSequence of records that correspond to the supplied producerIds.
Candidate records for the LogRecordSequence begin with the record specified by the
currentId parameter. The number of records in the LogRecordSequence returned
by the retrieve_records_by_producer_id operation is equal to the number of
records specified by the howMany parameter, or the number of records available if the
number of records specified by the howMany parameter cannot be met. The log will
update howMany to indicate the number of records returned and will set currentId to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by currentId does not exist, but corresponds to the next record that will be recorded
in the future, the retrieve_records_by_producer_id operation returns an
empty list of LogRecords, sets howMany to zero, and leaves the value of
currentId unchanged. If the record specified by currentId does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
the retrieve_records_by_producer_id operation returns an empty list of
LogRecords, and sets both, currentId and howMany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
currentId value. Consequently, subsequent invocation of this operation with the
get_record_id_from_time operation may result in the Log consumer not being
able to obtain some of the records.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecordsByProducerId defined in the UML class Log and made visible
through interface LogConsumer in the PIM (See Section 2.4.4,
“retrieveRecordsByProducerId,” on page 2-15). The spelling of the operation name has
been changed to conform to the OMG IDL Style Guide.

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.5 retrieve_records_by_producer_name
Retrieves a specified number of records from the Log that correspond to the provided
producer names.
3-18 Lightweight Log Service, v1.1 May 2004

3

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The retrieve_records_by_producer_name operation returns a
LogRecordSequence of records that correspond to the supplied producerNames.
Candidate records for the LogRecordSequence begin with the record specified by the
currentId parameter. The number of records in the LogRecordSequence returned
by the retrieve_records_by_producer_name operation is equal to the number
of records specified by the howMany parameter, or the number of records available if
the number of records specified by the howMany parameter cannot be met. The log will
update howMany to indicate the number of records returned and will set currentId to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by currentId does not exist, but corresponds to the next record that will be recorded
in the future, the retrieve_records_by_producer_name operation returns an
empty list of LogRecords, sets howMany to zero, and leaves the value of
currentId unchanged. If the record specified by currentId does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
the retrieve_records_by_producer_name operation returns an empty list of
LogRecords, and sets both, currentId and howMany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
currentId value. Consequently, subsequent invocation of this operation with the
get_record_id_from_time operation may result in the Log consumer not being
able to obtain some of the records.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecordsByProducerName defined in the UML class Log and made visible
through interface LogConsumer in the PIM (See Section 2.4.5,
“retrieveRecordsByProducerName,” on page 2-17). The spelling of the operation name
has been changed to conform to the OMG IDL Style Guide.

Parameter Type Description

currentId RecordId The ID of the starting record.

howMany Unsigned long The number of records to
retrieve.

valueList StringSeq The sequence of producer
names that will be sought.

<return> LogRecordSequence The sequence of retrieved
records.
May 2004 Lightweight Log Service: Logging Interfaces 3-19

3

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.3 Interface LogProducer
interface LogProducer : LogStatus {

oneway void write_records(
 in ProducerLogRecordSequence records);

oneway void write_record(
 in ProducerLogRecord record);
};

This interface allows the insertion of new log records into the logging storage area
encapsulated by the Log class. In favor of preserving the overall operational integrity of
the system, no guarantee is made that a logging record is accepted and stored if the
logging service is unable to process and /or store it.

3.3.3.1 write_records
Writes records to the Log.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The write_records operation adds the log records supplied in the records
parameter to the Log. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to HALT, the write_records
operation will set the availability status logFull state to true. For example, if 3 records are
provided in the records parameter, and while trying to write the second record to the log,
the record will not fit, then the log is considered to be full. Therefore, the second and
third records will not be stored in the log but the first record would have been
successfully stored. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to WRAP, the write_records
operation will overwrite the oldest LogRecords with the newest records, as they are
written to the Log, and leave the availability status logFull state unchanged.

Parameter Type Description

records ProducerLogRecordSequence The records to be written to the
log.

<return> void This operation provides no
return.
3-20 Lightweight Log Service, v1.1 May 2004

3

The write_records operation inserts the current UTC time to the time field of each
record written to the Log, and assigns a unique record id to the id field of the
LogRecord.

Log records accepted for storage by the write_records will be available for retrieval
in the order received.

Note – The purpose of the oneway invocation is, within the limitations of embedded
ORBs, to de-couple the log producer from the logging service implementation, so that
difficulties in the Log have no side-effects on the log producer or its operation.
However, since ORBs may legally discard oneway requests, implementers should take
extra care that the oneway invocations of write_records are not discarded without
very substantial reason.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
writeRecords, defined in the UML class Log and made visible through interface
LogProducer in the PIM (See Section 2.5.1, “writeRecords,” on page 2-18). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.3.2 write_record
Writes a single records to the Log.

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
The write_record operation adds a log record supplied in the record parameter to
the Log. When there is insufficient storage to add the supplied log record to the Log, and
the LogFullAction is set to HALT, the write_record operation will set the

Parameter Type Description

record ProducerLogRecord The record to be written to the
log.

<return> void This operation provides no
return.
May 2004 Lightweight Log Service: Logging Interfaces 3-21

3

availability status logFull state to true. When there is insufficient storage to add the
supplied log record to the Log, and the LogFullAction is set to WRAP, the
write_record operation will overwrite the oldest LogRecords with the new record,
and leave the availability status logFull state unchanged

The write_record operation inserts the current UTC time to the time field of each
record written to the Log, and assigns a unique record id to the id field of the
LogRecord.

Log records accepted for storage by write_record will be available for retrieval in
the order received.

Note – The purpose of the oneway invocation is, within the limitations of embedded
ORBs, to de-couple the log producer from the logging service implementation, so that
difficulties in the Log have no side-effects on the log producer or its operation.
However, since ORBs may legally discard oneway requests, implementers should take
extra care that the oneway invocations of write_record are not discarded without
very substantial reason.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
writeRecord, defined in the UML class Log and made visible through interface
LogProducer in the PIM (See Section 2.5.2, “writeRecord,” on page 2-19). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This is a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.4 Interface LogAdministrator
interface LogAdministrator : LogStatus {

void set_max_size(in unsigned long long size)
 raises (InvalidParam);

void set_log_full_action(in LogFullAction action);
void set_administrative_state(in AdministrativeState state);
void clear_log();
void destroy ();

};

This interface allows the retrieval of logging records from the storage area encapsulated
by the Log class.

3.3.4.1 set_max_size
Sets the maximum size the Log storage area.
3-22 Lightweight Log Service, v1.1 May 2004

3

Parameters and Return

Exceptions
This operation raises the InvalidParam exception if the supplied parameter is invalid.

Description
Logging records are stored in a storage area encapsulated by the Log class. The
available space in this storage area is finite. This operation allows setting of the
maximum capacity in bytes of the storage area. Note, however, that this operation might
be constraint by the underlying operation (you can’t assign more memory than is
physically present), or a platform specific implementation might decide to render this
operation as a no-op and provide a fixed maximum size instead.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
setMaxSize, defined in the UML class Log and made visible through interface
LogController in the PIM (See Section 2.6.1, “setMaxSize,” on page 2-19). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This operation is identical in name and signature to the equivalent operation of the
Telecom Log Service.

3.3.4.2 set_log_full_action
Configure the action to be taken if the log storage area becomes full.

Parameter Type Description

size unsigned long long The desired size for the logging
storage area in bytes.

<return> void This operation does not return a
value.
May 2004 Lightweight Log Service: Logging Interfaces 3-23

3

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
Since the storage space of the Log storage area is finite, the Logging Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. The set_log_full_action operation allows the
specification which action should be taken after all free space in the log storage area is
depleted. The possible values are HALT, which means no further logging records are
accepted and stored; or WRAP, which means the Log continues by overwriting the
oldest records in the storage area. When the LogFullAction type is set to WRAP, the
Log will set the availability status logFull state to false.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (See Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This operation is in principle identical in name, signature and return to the equivalent
operation of the Telecom Log Service; however, the input parameter type has been
changed to an IDL enumeration.

3.3.4.3 set_administrative_state
The set_administrative_state operation provides write access to the
administrative state value.

Parameter Type Description

action LogFullAction Specify the desired selection
from the LogFullAction
enumeration (either HALT or
WRAP).

<return> void This operation does not return a
value.
3-24 Lightweight Log Service, v1.1 May 2004

3

Parameters and Return

Exceptions
This operation raises no exceptions.

Description
This operation allows one to affect the ability of the logging service to accept and store
new logging records by administrative action. The possible states are locked and
unlocked. If the state is locked, no new records are accepted. Reading of already
stored records is not affected. If the state is set to unlocked, the log operates normally.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (See Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

3.3.4.4 clear_log
Purge the log storage area.

Parameters and Return
This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Parameter Type Description

state unsigned long long Select the desired alternative
from the AdministrativeState
enumeration. (Possible values are
locked and unlocked).

<return> void This operation does not return a
value.
May 2004 Lightweight Log Service: Logging Interfaces 3-25

3

Description
This operation purges all logging records from the log storage area; however, it does not
alter the size of the storage area in any way. The log will set the availability status
logFull state to false.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (See Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.

3.3.4.5 destroy
Tear down an instantiated Log.

Parameters and Return
This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Description
This operation will destroy the associated instance of the Log class. All existing records
in the log storage area are irrecoverably lost and the memory resources associated with
the storage area are released.

Mapping from the Platform Independent Model
This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (See Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Difference to the Telecom Log Service
This operation is identical in name, signature and result to the equivalent operation of the
Telecom Log Service.
3-26 Lightweight Log Service, v1.1 May 2004

Complete Logging Service IDL 4
4.1 Complete IDL - Single File

#ifndef MODULE_COS_LW_LOG_IDL
#define MODULE_COS_LW_LOG_IDL

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org";
#endif

module CosLwLog {

#ifndef _PRE_3_0_COMPILER_
typeprefix CosLwLog "omg.org";

#endif

// The following constants are intended to identify
// the nature of a logging record. The constants
// represent the valid values for LogLevel
// The list of constants may be expanded
const unsigned short SECURITY_ALARM = 1;
const unsigned short FAILURE_ALARM = 2;
const unsigned short DEGRADED_ALARM =3;
const unsigned short EXCEPTION_ERROR =4;
const unsigned short FLOW_CONTROL_ERROR =5;
const unsigned short RANGE_ERROR =6;
const unsigned short USAGE_ERROR = 7;
const unsigned short ADMINISTRATIVE_EVENT = 8;
const unsigned short STATISTIC_REPORT = 9;
// Values ranging from 10 to 26 are reserved for
// 16 debugging levels.

typedef unsigned short LogLevel;
May 2004 Lightweight Log Service, v1.1 4-1

4

enum OperationalState {disabled, enabled};
enum AdministrativeState {locked, unlocked};
enum LogFullAction {WRAP, HALT};
typedef unsigned long long RecordId;
struct LogTime {
long seconds;
long nanoseconds;
};
struct AvailabilityStatus{

boolean off_duty;
boolean log_full;

};
struct ProducerLogRecord {

string producerId;
string producerName;
LogLevel level;
string logData;

};
struct LogRecord {

RecordId id;
LogTime time;
ProducerLogRecord info;

};
typedef sequence<LogRecord> LogRecordSequence;
typedef sequence<ProducerLogRecord>

ProducerLogRecordSequence;
typedef sequence<LogLevel> LogLevelSequence;
typedef sequence<string> StringSeq;

exception InvalidParam {
string details;

};

interface LogStatus {
unsigned long long get_max_size();
unsigned long long get_current_size();
unsigned long long get_n_records();
LogFullAction get_log_full_action();
AvailabilityStatus get_availability_status();
AdministrativeState get_administrative_state();
OperationalState get_operational_state();

};

interface LogConsumer : LogStatus {
RecordId get_record_id_from_time (in LogTime fromTime);
LogRecordSequence retrieve_records(

inout RecordId currentId,
inout unsigned long howMany);
4-2 Lightweight Log Service, v1.1 May 2004

4

LogRecordSequence retrieve_records_by_level(
inout RecordId currentId,
inout unsigned long howMany,
in LogLevelSequence valueList);

LogRecordSequence retrieve_records_by_producer_id(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

LogRecordSequence retrieve_records_by_producer_name(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

};

interface LogProducer : LogStatus {
oneway void write_records(

in ProducerLogRecordSequence records);
oneway void write_record(

in ProducerLogRecord record);
};

interface LogAdministrator : LogStatus {
void set_max_size(in unsigned long long size)

raises (InvalidParam);
void set_log_full_action(in LogFullAction action);
void set_administrative_state(

in AdministrativeState state);
void clear_log();
void destroy ();

};

};
#endif // MODULE_COS_LW_LOG_IDL

4.2 Complete IDL - Multiple Files

4.2.1 LogStatus Interface IDL

#ifndef MODULE_COS_LW_LOG_STATUS_IDL
#define MODULE_COS_LW_LOG_STATUS_IDL

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org";
#endif

module CosLwLog {

#ifndef _PRE_3_0_COMPILER_
typeprefix CosLwLog "omg.org";
May 2004 Lightweight Log Service, v1.1 4-3

4

#endif

// The following constants are intended to identify
// the nature of a logging record. The constants
// represent the valid values for LogLevel
// The list of constants may be expanded
const unsigned short SECURITY_ALARM = 1;
const unsigned short FAILURE_ALARM = 2;
const unsigned short DEGRADED_ALARM =3;
const unsigned short EXCEPTION_ERROR =4;
const unsigned short FLOW_CONTROL_ERROR =5;
const unsigned short RANGE_ERROR =6;
const unsigned short USAGE_ERROR = 7;
const unsigned short ADMINISTRATIVE_EVENT = 8;
const unsigned short STATISTIC_REPORT = 9;
// Values ranging from 10 to 26 are reserved for
// 16 debugging levels.

typedef unsigned short LogLevel;
enum OperationalState {disabled, enabled};
enum AdministrativeState {locked, unlocked};
enum LogFullAction {WRAP, HALT};
typedef unsigned long long RecordId;
struct LogTime {
long seconds;
long nanoseconds;
};
struct AvailabilityStatus{

boolean off_duty;
boolean log_full;

};
struct ProducerLogRecord {

string producerId;
string producerName;
LogLevel level;
string logData;

};
struct LogRecord {

RecordId id;
LogTime time;
ProducerLogRecord info;

};
typedef sequence<LogRecord> LogRecordSequence;
typedef sequence<ProducerLogRecord>

ProducerLogRecordSequence;
typedef sequence<LogLevel> LogLevelSequence;
typedef sequence<string> StringSeq;

exception InvalidParam {
string details;

};
4-4 Lightweight Log Service, v1.1 May 2004

4

interface LogStatus {
unsigned long long get_max_size();
unsigned long long get_current_size();
unsigned long long get_n_records();
LogFullAction get_log_full_action();
AvailabilityStatus get_availability_status();
AdministrativeState get_administrative_state();
OperationalState get_operational_state();

};
};
#endif // MODULE_COS_LW_LOG_STATUS_IDL

4.2.2 LogAdministrator Interface IDL

#ifndef MODULE_COS_LW_LOG_ADMINISTRATOR_IDL
#define MODULE_COS_LW_LOG_ADMINISTRATOR_IDL

#include <CosLwLogStatus.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org";
#endif

module CosLwLog {
interface LogAdministrator : LogStatus {

void set_max_size(in unsigned long long size)
raises (InvalidParam);

void set_log_full_action(in LogFullAction action);
void set_administrative_state(

in AdministrativeState state);
void clear_log();
void destroy ();

};
};
#endif // MODULE_COS_LW_LOG_ADMINISTRATOR_IDL

4.2.3 LogProducer Interface IDL

#ifndef MODULE_COS_LW_LOG_PRODUCER_IDL
#define MODULE_COS_LW_LOG_PRODUCER_IDL

#include <CosLwLogStatus.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org";
#endif

module CosLwLog {
May 2004 Lightweight Log Service, v1.1 4-5

4

interface LogProducer : LogStatus {
oneway void write_records(

in ProducerLogRecordSequence records);
oneway void write_record(

in ProducerLogRecord record);
};

};
#endif // MODULE_COS_LW_LOG_PRODUCER_IDL

4.2.4 LogConsumer Interface IDL

#ifndef MODULE_COS_LW_LOG_CONSUMER_IDL
#define MODULE_COS_LW_LOG_CONSUMER_IDL

#include <CosLwLogStatus.idl>

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org";
#endif

module CosLwLog {
interface LogConsumer : LogStatus {

RecordId get_record_id_from_time (in LogTime fromTime);
LogRecordSequence retrieve_records(

inout RecordId currentId,
inout unsigned long howMany);

LogRecordSequence retrieve_records_by_level(
inout RecordId currentId,
inout unsigned long howMany,
in LogLevelSequence valueList);

LogRecordSequence retrieve_records_by_producer_id(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

LogRecordSequence retrieve_records_by_producer_name(
inout RecordId currentId,
inout unsigned long howMany,
in StringSeq valueList);

};
};
#endif // MODULE_COS_LW_LOG_CONSUMER_IDL
4-6 Lightweight Log Service, v1.1 May 2004

Index

May 2004 Lightweight Log Service, v1.1 Index-1

A
AdministrativeState 3-3

C
clear_log 3-25
clearLog 2-21
CORBA

contributors 1-v
documentation set 1-iv

CORBA IDL 1-3

D
destroy 2-22, 3-26
DISABLED 2-5

E
ENABLED 2-5

F
filters 1-3

G
get_administrative_state 3-12
get_availability_status 3-11
get_current_size 3-9
get_log_full_action 3-10
get_max_size 3-8
get_n_records 3-9
get_operational_state 3-13
get_record_id_from_time 3-14
getAdministrativeState 2-11
getAvailabilityStatus 2-11
getCurrentSize 2-9
getLogFullAction 2-10
getMaxSize 2-8
getNumRecords 2-9
getOperationalState 2-12
getRecordIdFromTime 2-12

H
HALT 2-6

I
InvalidParam Exception 3-2

J
Joint Tactical Radio Systems (JTRS) Joint Program Office

(JPO) 1-1

L
LOCKED 2-5
LogAdmin 2-2
LogAdministrator 3-22
LogAvailabilityStatus 3-4

LogConsumer 2-2, 3-13
LogFullAction 3-4
LogLevel 3-2
LogProducer 2-2, 3-20
LogRecord 2-7, 3-7
LogRecordSequence 2-7
LogStatus 2-2, 2-8, 3-8
LogTime 2-7, 3-5

O
Object Management Group 1-iii

address of 1-v
OperationalState 3-3

P
Platform Independent Model 3-1
Platform Independent Model (PIM) 1-3
Platform Specific Model 3-1
Platform Specific Model (PSM) 1-3
ProducerLogRecord 2-7, 3-5

R
Realtime, Embedded, and Specialized Systems (RTESS) Platform

Taskforce 1-2
RecordId 2-6, 3-6
retrieve_records 3-15
retrieve_records_by_level 3-16
retrieve_records_by_producer_id 3-17
retrieve_records_by_producer_name 3-18
retrieveRecords 2-13
retrieveRecordsByLevel 2-14
retrieveRecordsByProducerId 2-15
retrieveRecordsByProducerName 2-17

S
set_administrative_state 3-24
set_log_full_action 3-23
set_max_size 3-22
setAdministrativeState 2-21
setLogFullAction 2-20
setMaxSize 2-19
Software Communications Architecture (SCA) 1-1

U
UNLOCKED 2-5

W
WRAP 2-6
write_record 3-21
write_records 3-20
writeRecord 2-19
writeRecords 2-18

	Overview
	1.1 Scope
	1.2 Purpose
	1.3 Relationship to the Realtime, Embedded, and Specialized Systems (RTESS) Platform Taskforce
	1.4 Relation to Existing OMG Specifications
	1.5 Relation to Pending OMG Specifications
	1.6 Compliance

	Platform Independent Model
	2.1 Overview and Architecture
	2.2 Type Definitions
	2.2.1 InvalidParam Exception
	2.2.2 LogLevel
	2.2.3 OperationalState
	2.2.4 AdministrativeState
	2.2.5 AvailabilityStatus
	2.2.6 LogFullAction
	2.2.7 RecordId
	2.2.8 LogTime
	2.2.9 LogRecord
	2.2.10 LogRecordSequence
	2.2.11 ProducerLogRecord

	2.3 Common Interface Operations
	2.3.1 getMaxSize
	2.3.2 getCurrentSize
	2.3.3 getNumRecords
	2.3.4 getLogFullAction
	2.3.5 getAvailabilityStatus
	2.3.6 getAdministrativeState
	2.3.7 getOperationalState

	2.4 LogConsumer Interface Operations
	2.4.1 getRecordIdFromTime
	2.4.2 retrieveRecords
	2.4.3 retrieveRecordsByLevel
	2.4.4 retrieveRecordsByProducerId
	2.4.5 retrieveRecordsByProducerName

	2.5 LogProducer Interface Operations
	2.5.1 writeRecords
	2.5.2 writeRecord

	2.6 LogAdministrator Interface Operations
	2.6.1 setMaxSize
	2.6.2 setLogFullAction
	2.6.3 setAdministrativeState
	2.6.4 clearLog
	2.6.5 destroy

	Platform Specific Model: Mapping to CORBA IDL
	3.1 Overview
	3.1.1 Mapping from the Platform Independent Model

	3.2 Types and Data Structures
	3.2.1 InvalidParam Exception
	3.2.2 LogLevel
	3.2.3 OperationalState
	3.2.4 AdministrativeState
	3.2.5 LogFullAction
	3.2.6 LogAvailabilityStatus
	3.2.7 LogTime
	3.2.8 ProducerLogRecord
	3.2.9 RecordId
	3.2.10 LogRecord

	3.3 Logging Interfaces
	3.3.1 Interface LogStatus
	3.3.2 Interface LogConsumer
	3.3.3 Interface LogProducer
	3.3.4 Interface LogAdministrator

	Complete Logging Service IDL
	4.1 Complete IDL - Single File
	4.2 Complete IDL - Multiple Files
	4.2.1 LogStatus Interface IDL
	4.2.2 LogAdministrator Interface IDL
	4.2.3 LogProducer Interface IDL
	4.2.4 LogConsumer Interface IDL

