Lightweight L og Service Specification

February 2005
Version 1.1
formal/05-02-02

eI\

PERJECT MAHAGEMEHT GREYP

An Adopted Specification of theObj ect M anagement Group, I nc.

Copyright © 2002, Mercury Computer Systems, Inc.
Copyright © 2003, Object Management Group (OMG)
Copyright © 2002, Rockwell Collins

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companieslisted above have granted to the Object Management Group, Inc. (OMG) anonexclusive, royalty-free, paid
up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to al of the terms and conditions bel ow, the owners of the copyright in this specification hereby grant you afully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and specia purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specificationsisfor informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. Thislimited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specificationsin your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiriesinto the legal validity or scope of
those patents that are brought to its attention. OM G specifications are prospective and advisory only. Prospective users are
responsible for protecting themsel ves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regul ations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY
WHILE THIS PUBLICATION ISBELIEVED TO BE ACCURATE, IT ISPROVIDED "ASIS" AND MAY CONTAIN

ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,

INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE.

IN NO EVENT SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE
BE LIABLE FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
CONSEQUENTIAL, RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR
USE, INCURRED BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING,
PERFORMANCE, OR USE OF THISMATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rightsin Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI®
and I1OP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA
logos™, OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™,
CORBAservices™, CORBAfacilities™, CORBAmed™, CORBAnNet™, Integrate 2002™, Middleware That's
Everywhere™, UML™, Unified Modeling Language™, The UML Cube logo™, MOF™, CWM ™, The CWM Logo™,
Model Driven Architecture™, Model Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG
MDA ™ and the XMI Logo™ are trademarks of the Object Management Group. All other products or company names
mentioned are used for identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize devel opers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’sIssue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://mmw.omg.org,
under Documents, Report a Bug/l ssue (http://www.omg.org/technol ogy/agreement.htm).

February 2005

Contents

OV VIBW . 1-1
11 SO it e e 1-1
12 PUNPOSE .. e e 1-2
1.3 Relationship to the Realtime, Embedded, and Specialized
Systems (RTESS) Platform Taskforce 1-2
14 Relation to Existing OMG Specifications 1-2
15 Relation to Pending OMG Specifications 1-3
16 ComplianCet e 1-3
Platform Independent Model 2-1
2.1 Overview and Architecturet 2-1
2.2 Type Definitions 2-4
2.3 Common Interface Operations 2-8
24 LogConsumer Interface Operations 2-12
2.5 LogProducer Interface Operations 2-18
2.6 LogAdministrator Interface Operations 2-19
Platform Specific Model: Mappingto CORBA IDL 3-1
31 OVEIVIBW . 31
3.2 Typesand DataStructuresco..... 3-2
3.3 LoggingInterfaces 37
CompleteLogging ServicelDL 4-1
4.1 CosLwLog ServicelDL 4-1
Lightweight Log Service, v1.1 i

Lightweight Log Service, v1.1

February 2005

Preface

About the Object Management Group

OMG Documents

February 2005

The Object Management Group, Inc. (OMG) is an international organization supported
by over 600 members, including information system vendors, software developers and
users. Founded in 1989, the OMG promotes the theory and practice of object-oriented
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provide a
common framework for application development. Primary goals are the reusability,
portability, and interoperability of object-based software in distributed, heterogeneous
environments. Conformance to these specifications will make it possible to develop a
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG's objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are based.
More information is available at http://www.omg.org/.

The OMG Specifications Catalog is available from the OMG website at:

http://www.omg.org/technol ogy/documents/spec _catalog.htm

The OMG documentation is organized as follows:

OMG Modeling Specifications
Includes the UML, MOF, XMI, and CWM specifications.

Lightweight Log Service, v1.1 iii

OMG Middleware Specifications

Includes CORBA/IIOP, IDL/Language Mappings, Specialized CORBA specifications,
and CORBA Component Model (CCM).

Platform Specific Model and | nterface Specifications

Includes CORBAservices, CORBAfacilities, OMG Domain specifications, OMG
Embedded Intelligence specifications, and OMG Security specifications.

Obtaining OMG Documents

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment and,
with its membership, evaluating the responses. Specifications are adopted as standards
only when representatives of the OMG membership accept them as such by vote. (The
policies and procedures of the OMG are described in detail in the Object Management
Architecture Guide.)) OMG formal documents are available from our web site in
PostScript and PDF format. Contact the Object Management Group, Inc. at:

OMG Headquarters
250 First Avenue
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
pubs@omg.org
http://www.omg.org

Typographical Conventions

Acknowledgments

The type styles shown below are used in this document to distinguish programming
statements from ordinary English. However, these conventions are not used in tables or
section headings where no distinction is necessary.

Helvetica bold - OMG Interface Definition Language (OMG IDL) and syntax
€lements.

Couri er bol d - Programming language elements.
Helvetica - Exceptions

Terms that appear in italics are defined in the glossary. Italic text also represents the
name of a document, specification, or other publication.

The following companies submitted and/or supported parts of this specification:
« 88solutions Corporation

Lightweight Log Service, v1.1 February 2005

* BAE

e Mercury Computer Systems
MITRE Corporation
Raytheon Company
Rockwell Collins

June 2004 Lightweight Log Service: Acknowledgments

Vi

Lightweight Log Service, v1.1

February 2005

1.1 Scope

February 2005

Overview

Contents

This chapter contains the following sections.

Section Title Page
“Scope’ 11
“Purpose” 1-2
“Relationship to the Realtime, Embedded, and Specialized | 1-2
Systems (RTESS) Platform Taskforce”

“Relation to Existing OMG Specifications’ 1-2
“Relation to Pending OMG Specifications” 1-3
“Compliance’ 1-3

The Software Communications Architecture (SCA) is an open architecture defined by the
Joint Tactical Radio Systems (JTRS) Joint Program Office (JPO). The SCA defines a
framework based on CORBA middleware layered on top of areal-time operating system.
The framework provides the common infrastructure for the software defining the
characteristics of the software-defined radio system. One component of this framework is
a central logging facility, enabling the asynchronous collection of informational
messages from any component connected to the framework; and the controlled read
access to this information. The transition of the particular section of the SCA
specification defining the CORBA-based logging facility into an OMG specification is

the scope of this document.

Lightweight Log Service, v1.1

1-2

1.2 Purpose

In addition, the CORBA-based specification, proven by several implementations, has
been abstracted into Platform Independent Model, expressed in UML, to make this
service available to a wider audience. Intended are primarily embedded and/or real-time
usages. However, other areas might equally benefit from using this service.

The Lightweight Logging Service specification contained in this document is primarily
intended as an efficient, central facility inside an embedded or real-time environment to
accept and manage logging records. These records are emitted from applications residing
in the same environment and stored in a memory-only storage area owned and managed
by the Lightweight Logging Service. The service was designed to be a mostly compatible
subset of the Telecom Log Service, however, it differsin the way logging records are
written to the log; or looked up and retrieved from the log.

This service has a much wider application than just the software-defined radio domain. It
will find its way into all areas of embedded systems, like machine control, onboard
vehicle systems, etc., but also into ubiquitous computing devices like pocket computer
and electronic organizers. But also "regular” application areas will benefit, if just asmall,
memory-only logging facility is required.

1.3 Relationship to the Realtime, Embedded, and Specialized Systems (RTESS)
Platform Taskforce

The Lightweight Logging Service RFC fits the plans of the Realtime, Embedded, and
Specialized Systems (RTESS) Platform Taskforce by filling the first dlot in a planned
series of lightweight service specifications.

1.4 Relationto Existing OMG Specifications

The Lightweight Logging Service described in this document was in principle designed
as a subset of the Telecom Log Service targeted for embedded and/or real-time systems.
However, the severe resource constraints typically present in those systems required
several deviations from the Telecom Log Service specification. The following list shows
the major deviations:

® Only simple logging is supported. The Lightweight Logging Service is a stand-
alone service targeted for use in resource constraint embedded and/or real-time
environemts. The Lightweight Logging Service does not inherit from the Event- or
Notification Service.

®* The Lightweight Logging Service provides no connection to event cannels of any
kind. Instead log producer and consumer interfaces are provided.

® The Lightweight Logging Service does not support any federation of logging
services. In particular, the Lightweight Logging Service does not support
forwarding of log records to another Log object implementation

® Logging information is only stored in memory. No persistent log record store is
supported.

Lightweight Log Service, v1.1 February 2005

® No filters are supported.

® Due to the constraints of an embedded environment, the Lightweight Logging
Service uses a dedicated structure to hold logging records, instead of type any in the
Telecom Log Service. Combined with alist of "well known" typecodes, this
structure provides the restrictive control on type variety necessary in an embedded
system. Further, an "any-less" structure simplifies the use of embedded ORBSs,
which frequently impose restrictions on type any.

® The only query-like operation is a lookup by time for a single record; otherwise
read access to arecord is only viaits record ID.

®* The Lightweight Logging Service provides the service to read logging records in a
series of small consecutive chunks, very similar to the use of an iterator.

® Write operations to the Log are strictly asynchronous. The log provides no feedback
or exceptions; this would interfere with the timing constraints of the log producer.

1.5 Relationto Pending OMG Specifications

The Lightweight Logging Service addresses primarily the logging needs of embedded
systems, which may or may not have real-time behavior. Therefore it relies only on a
minimum set of system resources. A platform specific CORBA-based implementation
would only require capahilities slightly above the Minimum CORBA Profile, a capability
set currently under discussion as "Embedded CORBA Profile" in the RTESS Platform
Taskforce.

This specification is aso fully aligned with the current planning of the RTESS Platform
Taskforce to create a set of lightweight services targeted for the embedded CORBA
market.

1.6 Compliance

This specification consists of two parts, a Platform Independent Model (PIM) and a
Platform Specific Model (PSM), specifying a realization of the PIM in the terms of
CORBA IDL. Both parts each represent indivisible pieces of work. Conformant
implementations must either provide an implementation which represents a complete
mapping of the PIM into the selected target technology; or it must provide a complete
implementation of the CORBA IDL PSM described in this document.

No partial implementation of either the PIM or the PSM is deemed conformant.

February 2005 Lightweight Log Service: Relation to Pending OMG Specifications 1-3

1-4

Lightweight Log Service, v1.1

February 2005

PlatformIndependent Model

Contents

This chapter contains the following sections.

Section Title Page
“Overview and Architecture” 2-1
“Type Definitions’ 2-4
“Common Interface Operations’ 2-8
“LogConsumer Interface Operations’ 2-12
“LogProducer Interface Operations” 2-18
“LogAdministrator Interface Operations’ 2-19

2.1 Overview and Architecture

February 2005

In consideration of the resource constraints imposed by the embedded system

environment, the Lightweight Logging Service is a free-standing, self-contained service,

and not connected to an event channel or similar infrastructure. The core of the
Lightweight Logging Service is represented by the class Log, which encapsulates the
storage area for logging records and provides the methods comprising the logging

functionality. However, the class Log does not communicate directly with the rest of the
environment. Communication with the surrounding environment is handled through three

distinct interfaces.

Lightweight Log Service, v1.1

2-1

2-2

LogProducer

This interface allows the insertion of new log records
into the logging storage area encapsulated by the Log
class. In favor of preserving the overall operational
integrity of the system, no guarantee is made that a
logging record is accepted and stored if the logging
service is unable to process and /or store it.

LogConsumer

This interface allows the retrieval of logging records
from the storage area encapsulated by the Log class.

LogAdmin

This interface provides the management functionality to
operate and manage the logging service.

The above three interfaces are derived from an abstract super interface LogStatus,
which provides informationa functionality common to all three interfaces.

Lightweight Log Service, v1.1 February 2005

February 2005

<dinterface>>
LogStatus
BoetMexSize()
BoetQurentSize()
BoetNumRecords()
FgetlogrulAction)
BoetAdministrativeState()
BoetAailabilityStatus()
FoetOperationalState)
<<interface>> <<interface>> <<interface>>
LogProducer LogAdinistrator LogConsumer
i riteRecords() BsetViaxSize() ®oetRecordidFromiTime()
®riteRecord() Bsetl ogrull Action() BretiieveRecords()
v BsetAdministrativeState() FretieveRecordsByLevel()
BclearLog() ®etrieveRecordsByProducerName()
Boestroy() ®etrieveRecordsByProducerid()
A /7 * Qurrently Assigned Log Levels * [\
\ SECURITY_ALARM =1
‘ FAILURE ALARM =2
\ / DEGRADED ALARM =3
BEXCEPTION ERROR=4
‘ FLOW_CONTROL ERROR=5
Log RANGE_ERROR=6
USAGE ERROR=7
ADMINSTRATIVE_EVENT =8
STATISTIC REPORT=9
Lewvel Oiis invalid and the 16 levels
from Level 10to 26 are resened
0 for use in program debugging
ProduicerLogRecord J
LogRecard Sproducerid : String <<Integer>>
T|Ed: Recodd | o producer\ame : String Loglewel
Bitime : LogTime | Hed : Loglew
LogTime e wlogDeata: String
Efnanoseconds : long
Eiseconds : long

Figure2-1 Lightweight Logging Service PIM

Asshown in Figure 2-1, the central piece of the Lightweight Logging Serviceisthe class
Log, which encapsulates the storage area for logging records and provides al necessary
operations to manage and operate the Lightweight Logging Service. Note, however, that
the operations should not be directly accessible to any clients of the logging service.
Instead, a set of interfaces is provided to give controlled access to each kind of clients.

Lightweight Log Service: Overview and Architecture 2-3

2-4

Thisiskind of a“poor man’s’ protection system, which provides sufficient protection
against accidental misuse, while, at the same time, giving tribute to the severe resource
constraints common in embedded devices.

2.2 TypeDefinitions

2.2.1 InvalidParam Exception

The InvalidParam exception indicates that a provided parameter was invadid. Details
about the cause for this exception are delivered in the string attribute details.

<<exception>>
InvalidP aram

details : string

2.2.2 LogLeve

The LogLevel allows a classification of the logging record. The value provided is
recorded in the logging record and provided to the consumer at retrieval, but it has no
particular meaning or side effects during storage of the record in the Log.

<<Integer>>
LogLevel

The implementation of the LogLevel type should provide a mechanism to assign the
following values, or an equivalent implementation thereof, to an instance of the
LogLevel type.

SECURITY_ALARM =1
FAILURE_ALARM =2
DEGRADED_ALARM =3
EXCEPTION_ERROR =4
FLOW_CONTROL_ERROR =5
RANGE_ERROR =6
USAGE_ERROR =7
ADMINISTRATIVE_EVENT =8
STATISTIC_REPORT =9

Further, an implementation should reserve the codes 10-26, or their equivalent, to denote
program debugging messages.

Lightweight Log Service, v1.1 February 2005

February 2005

2.2.3 OperationalSate

The enumeration OperationalState defines the Log states of operation. When the Log
isENABLED it is fully functional and available for use by log producer and log
consumer clients. A Log that is DISABLED has encountered a runtime problem and is
not available for use by log producers or log consumers. The internal error conditions
that cause the Log to go into DISABLED state are implementation specific.

<<enumeration>>

OperationalState
DISABLED
ENABLED

ENABLED ‘ DISABLED

2.2.4 AdministrativeSate

The AdministrativeState denotes the active logging state of an operational Log. When
set to UNLOCKED the Log will accept records for storage, per its operational
parameters. When set to LOCKED the Log will not accept new log records and records
can be read or deleted only.

<<enumeration>>
AdministrativeState
LOCKED
UNLOCKED

/

UNLOCKED LOCKED

Lightweight Log Service: Type Definitions 2-5

2.2.5 AvailabilitySatus

The Availability Status denotes whether or not the Log is available for use. When true,
offDuty indicates the Log is LOCKED (administrative state) or DISABLED
(operational state). When true, logFull indicates the Log storage is full.

Availability Status

offDuty : boolean
logFull : boolean

2.2.6 LogFullAction

This type specifies the action that the Log should take when its internal buffers become
full of data, leaving no room for new records to be written. WRAP indicates that the Log
will overwrite the oldest LogRecords with the newest records, as they are written to the
Log. The Log will overwrite as many of the oldest LogRecords as needed to
accommodate the newest records. HALT indicates that the Log will stop logging when

full.
<<enumeration>>
LogFullAction
WRAP
HALT
HALT WRAP
2.2.7 Recordld

This type provides the record ID that is assigned to a LogRecord by the Log; the
Recordld must be unique.

This type should be able to hold a 64 bit integer quantity or equivalent

<<Integer>>
RecordID

2-6 Lightweight Log Service, v1.1 February 2005

February 2005

2.2.8 LogTime

This type provides the time format used by the Log to time stamp LogRecords. The
fields of this type are intentionally designed to map directly to the POSIX timespec
structure.

LogTime

seconds : long
nanoseconds : long

2.2.9 LogRecord

The LogRecord type defines the format of the LogRecords as stored in the Log. It
represents an encapsulation of the ProducerLogRecord, supplied by the log producer,
and adds the time stamp (viathe LogTime structure) and a unique record identification
(viathe Recordld field). Refer to Figure 2-2.

2.2.10 LogRecordSequence

The LogRecordSequence type defines an unbounded sequence of LogRecords.
Refer to Figure 2-2.

2.2.11 ProducerLogRecord

The ProducerLogRecord represents the log record written by the log producer client
to the log. It will be encapsulated in a LogRecord object before it is stored in the log
storage area. Refer to Figure 2-2.

Lightweight Log Service: Type Definitions 2-7

2-8

LogRecordSequence

o

LogRecord

id : RecordID
time : LogTime

1

ProducerLogRecord

producerld : string
producerName : string
level : LogLevel
logData : string

Figure2-2 LogRecordSequence, LogRecord, and ProducerL ogRecord

2.3 Common Interface Operations

Interface LogStatus shall provide access to operations of common interest, which are

through inheritance available in all interfaces of the logging service.

2.3.1 getMaxSze

Returns the size of the logging storage area.

Synopsis
+ get MaxSi ze () : unsigned long | ong

Lightweight Log Service, v1.1

February 2005

Parametersand Return

Parameter Type Description

<return> unsi gned | ong | ong | The maximum size of the log
storage area in bytes.

Exceptions
This function raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The
available space in this storage area is finite. This operation shall return the maximum
capacity in bytes of the storage area.

2.3.2 getCurrentSze

Returns the amount of log storage area currently occupied by logging records.

Synopsis

+ getCurrentSize () : unsigned long | ong

Parametersand Return

Parameter Type Description

<return> unsi gned | ong |l ong | Thesize of the currently used
log storage area in bytes.

Exceptions
This function raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The

get Cur rent Si ze operation shall return the size in bytes of the log storage area
currently occupied by logging records. Thisvalueisless or equal to the total storage area
size returned by the get MaxSi ze operation.

2.3.3 getNumRecords

Returns the number of records presently stored in the Log.

February 2005 Lightweight Log Service: Common Interface Operations 2-9

2-10

Synopsis

+ get NunRecords () : unsigned |ong | ong

Parametersand Return

Parameter Type Description

<return> unsi gned | ong | ong The number of logging records
currently stored in the storage area.

Exceptions
This operation raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The
get NunmRecor ds operation shall return the number of logging records currently stored
in the log storage area.

2.3.4 getLogFullAction

Returns the action to be taken when the storage area becomes full.

Synopsis
+ getLogFul | Action () : LogFull Action

Parametersand Return

Parameter Type Description

<return> LogFul | Action The selected alternative of the
LogFullAction enumeration.

Exceptions
This operation raises no exceptions.

Description

Since the storage space of the Log storage areais finite, the Logging Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. Theget LogFul | Act i on operation shall return the information
about the action that the Logging Service shall take when the storage area becomes full.
The possible values are HALT, which means no further logging records shall be accepted
and stored; or WRAP, which means the log shall continue by overwriting the oldest
records in the storage area.

Lightweight Log Service, v1.1 February 2005

February 2005

2.3.5 getAvailabilitySatus

Returns the availability status of the Log.

Synopsis
+ getAvailabilityStatus () : AvailabilityStatus

Parametersand Return

Parameter Type Description

<return> Avail abilityStatus | Aninstance of the
AvailabilityStatus representing
the actual status of the log.

Exceptions
This operation raises no exceptions.

Description

The ability of the Log to accept and store logging records might become impaired. The
get Avai | abi | it ySt at us operation is used to check the availability status of the
Log. The returned instance of the AvailibilityStatus type shall contain two Boolean
values: of f Dut y, which shall indicate that the log is disabled when true, and | ogFul I,
which shall indicate that all free space is depleted in the log storage area.

2.3.6 getAdministrativeSate

Returns the administrative state of the Log.

Synopsis

+ get AdministrativeState () : AdministrativeState

Parametersand Return

Parameter Type Description
<return> Admi ni strativeState | Theactualy selected alternative
of the AdministrativeState
enumeration.
Exceptions

This operation raises no exceptions.

Lightweight Log Service: Common Interface Operations 2-11

Description

The ability of the logging service to accept and store new logging records can be affected
by administrative action. The get Adm ni st rati veSt at e shal return the current
administrative state of the Log. The possible states are LOCKED and UNLOCKED. If
the state is LOCKED, no new records shall be accepted. Reading of already stored
records is not affected.

2.3.7 getOperational Sate

Returns the operationa state of the Log.

Synopsis
+ getQperational State () : Operational State

Parametersand Return

Parameter Type Description

<return> Qperational State | Theactualy selected alternative of
the Operational State enumeration.

Exceptions
This operation raises no exceptions.

Description

The get Oper at i onal St at e operation shall return the actual operational state of the
log. Possible values are ENABLED, which shall indicate that the log is fully functional
and available to log producer and log consumer clients; or DISABLED, which shall
indicate that the log has encountered a runtime problem and is not available for use by
log producers or log consumers.

2.4 LogConsumer Interface Operations

2.4.1 getRecordldFromTime

Identify arecord in the log based on its time stamp.

Synopsis

+ get Recordl dFronfinme (in fronlime : LogTine)
Recordl d

2-12 Lightweight Log Service, v1.1 February 2005

February 2005

Parametersand Return

Parameter Type Description
frontTi me LogTi ne The timestamp with which to start the
search.
<return> Recordl d Record ID of the first record matching
the timestamp.
Exceptions

This operation raises no exceptions.

Description

The get Recor dl dFr onili ne operation shall return the record Id of the first record in
the Log with a time stamp that is greater than, or equal to, the time specified in the

f r onli me parameter. If the Log does not contain a record that meets the criteria
provided, then the Recordld returned shall correspond to the next record that will be
recorded in the future. In this way, if this “future” r ecor dl d is passed to a retrieval
operation, an empty record will be returned unless records have been recorded since the
time specified. Note that if the time specified in the f r oniTi me parameter isin the
future, there is no guarantee that the resulting records returned by a retrieval operation
will have atime stamp after the f r onili me parameter if the returned r ecor dI d from
this invocation of the get Recor dl dFr onili me operation is subsequently used as
input to ther et ri eveByl d operation.

2.4.2 retrieveRecords

Retrieves a specified number of records from the Log.

Synopsis

+ retrieveRecords (inout currentld : Recordld,
i nout howiMany : unsigned | ong)
LogRecor dSequence

Lightweight Log Service: LogConsumer Interface Operations 2-13

2-14

Parametersand Return

Parameter Type Description
currentld Recordl d The ID of the starting record.
howvany unsi gned | ong The number of records to retrieve,

will be updated to the number of
records actually retrieved.

<return> LogRecor dSequence The sequence of retrieved records.

Exceptions
This operation raises no exceptions.

Description

Ther et ri eveRecor ds operation shal return aLogRecordSequence that begins
with the record specified by the cur r ent | d parameter. The number of records in the
LogRecordSequence returned by ther et ri eveRecor ds operation shall be equal
to the number of records specified by the howivany parameter, or the number of records
available if the number of records specified by the howany parameter cannot be met.
The log shall update howivany to indicate the number of records returned and set

cur rent | d to either the id of the record following the last examined record or the next
record that will be recorded in the future if there are no further records available. If the
record specified by cur r ent | d does not exist, but corresponds to the next record that
will be recorded in the future, ther et ri eveRecor ds operation shall return an empty
list of LogRecords, set howiVany to zero, and leave the value of current | d
unchanged. If the record specified by cur r ent | d does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
ther et ri eveRecor ds operation shall return an empty list of LogRecords, and set
both, current | d and howivlny to zero. Note that this operation does not guarantee a
return of sequential records in Log and modifies the cur r ent | d value. Consequently,
subsequent invocations of this operation with a different val ueli st or the other
retrieval operations before reestablishing a record ID with the

get Recor dl dFr onili me operation may result in the Log consumer not being able to
obtain some of the records.

2.4.3 retrieveRecordsByL evel

Retrieves a specified number of records from the Log that correspond to the provided log
levels.

+ retrieveRecordsByLevel (inout currentld : Recordld,
i nout howMany : unsigned | ong,
i n val uelLi st : LogLevel Sequence,
LogRecor dSequence

Lightweight Log Service, v1.1 February 2005

Parametersand Return

Parameter Type Description
currentld Recordl d The ID of the starting record.
howvany unsi gned | ong The number of records to retrieve,

will be updated to the number of
records actually retrieved.

val ueli st LogLevel Sequence The sequence of log levels that will
be sought.
<return> LogRecor dSequence | The sequence of retrieved records.
Exceptions

This operation raises no exceptions.

Description

Theretri eveRecor dsBylLevel operation shall return aLogRecordSequence of
records that correspond to the supplied LogLevel s. Refer to Section 2.2.2,
“LogLevel,” on page 2-4. The val ueli st parameter is composed of an undefined
number of LogLevel s. Candidate records for the LogRecordSequence shall begin
with the record specified by the cur r ent | d parameter. The number of records in the
LogRecordSequence returned by ther et ri eveRecor dsByLevel operation shall
be equal to the number of records specified by the howivany parameter, or the number
of records available if the number of records specified by the howivany parameter
cannot be met. The log shall update howivany to indicate the number of records returned
and set cur r ent | d to either the id of the record following the last examined record or
the next record that will be recorded in the future if there are no further records available.
If the record specified by cur r ent | d does not exist, but corresponds to the next record
that will be recorded in the future, ther et ri eveRecor dsByLevel operation shall
return an empty list of LogRecords, set howivany to zero, and leave the value of
cur r ent | d unchanged. If the record specified by cur r ent | d does not exist and does
not correspond to the next record that will be recorded in the future, or if the Log is
empty, ther et ri eveRecor dsByLevel operation shall return an empty list of
LogRecords, and set both, cur r ent | d and howivany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
current | d value. Consequently, subsequent invocations of this operation with a
different val uelLi st or the other retrieval operations before reestablishing a record ID
with the get Recor dl dFr onli me operation may result in the Log consumer not being
able to obtain some of the records.

2.4.4 retrieveRecordsByProducerid

Retrieves a specified nhumber of records from the Log that correspond to the provided
producer IDs.

February 2005 Lightweight Log Service: LogConsumer Interface Operations 2-15

+ retrieveRecordsByProducerld (inout currentld : Recordld,
i nout howMany : unsigned | ong,
i n val uelLi st : StringSequence,
LogRecor dSequence

Parametersand Return

Parameter Type Description
currentld Recordl d The ID of the starting record.
howivany unsi gned | ong The number of records to retrieve,

will be updated to the number of
records actually retrieved.

val ueli st St ri ngSequence The sequence of producer 1Ds that
will be sought.
<r et urn> LogRecor dSequence | The sequence of retrieved records.
Exceptions

This operation raises no exceptions.

Description

Theretri eveRecor dsByPr oducer | d operation shall return a
LogRecordSequence of records that correspond to the supplied pr oducer | ds.
Refer to Section 2.2.11, “ProducerLogRecord,” on page 2-7. Theval uelLi st parameter
is composed of an undefined number of pr oducer | ds. Candidate records for the
LogRecordSequence shall begin with the record specified by the current I d
parameter. The number of records in the LogRecordSequence returned by the
retri eveRecordsByProducer | d operation shall be equal to the number of
records specified by the howivany parameter, or the number of records available if the
number of records specified by the howivny parameter cannot be met. The log shall
update howivany to indicate the number of records returned and set current 1 d to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by current | d does not exist, but corresponds to the next record that will be recorded
inthe future, ther et r i eveRecor dsByPr oducer | d operation shall return an empty
list of LogRecords, set howVany to zero, and leave the value of current I d
unchanged. If the record specified by cur r ent | d does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
theretri eveRecor dsByProducer | d operation shall return an empty list of
LogRecords, and set both, cur r ent | d and howivany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
cur rent | d value. Consequently, subsequent invocations of this operation with a
different val ueLi st or the other retrieval operations before reestablishing a record ID
with the get Recor dl dFr onli me operation may result in the Log consumer not being
able to obtain some of the records.

2-16 Lightweight Log Service, v1.1 February 2005

2.4.5 retrieveRecordsByProducer Name

Retrieves a specified number of records from the Log that correspond to the provided
producer names.

+ retrieveRecordsByProducerld (inout currentld : Recordld,
i nout howvany : unsigned | ong,
i n val ueLi st . StringSequence,
LogRecor dSequence

Parametersand Return

Parameter Type Description
currentld Recordl d The ID of the starting record.
howvany unsi gned | ong The number of records to retrieve,

will be updated to the number of
records actually retrieved.

val uelLi st St ri ngSequence The sequence of producer names
that will be sought.
<return> LogRecor dSequence | The sequence of retrieved records.
Exceptions

This operation raises no exceptions.

Description

Theretri eveRecor dsByPr oducer Name operation shall return a
LogRecordSequence of records that correspond to the supplied pr oducer Nanes.
Refer to Section 2.2.11, “ProducerLogRecord,” on page 2-7. Theval ueli st parameter
is composed of an undefined number of pr oducer Nanes. Candidate records for the
LogRecordSequence shall begin with the record specified by thecurrent | d
parameter. The number of records in the LogRecordSequence returned by the
retri eveRecor dsByProducer Nanme operation shall be equal to the number of
records specified by the howivany parameter, or the number of records available if the
number of records specified by the howivany parameter cannot be met. The log shall
update howivany to indicate the number of records returned and set current 1 d to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by current | d does not exist, but corresponds to the next record that will be recorded
in the future, ther et ri eveRecor dsByPr oducer Nane operation shall return an
empty list of LogRecords, set howivany to zero, and leave the value of current | d
unchanged. If the record specified by cur r ent | d does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
ther et ri eveRecor dsByPr oducer Nane operation shall return an empty list of
LogRecords, and set both, cur r ent | d and howivany to zero. Note that this
operation does not guarantee a return of sequentia records in Log and modifies the

February 2005 Lightweight Log Service: LogConsumer Interface Operations 2-17

cur rent | d value. Consequently, subsequent invocations of this operation with a
different val ueLi st or the other retrieval operations before reestablishing a record ID
with theget Recor dl dFr onili ne operation may result in the Log consumer not being
able to obtain some of the records.

2.5 LogProducer Interface Operations

2-18

2.5.1 writeRecords

Writes records to the Log.

Synopsis

+ writeRecords (in records : Producer LogRecordSequence)

Parametersand Return

Parameter Type Description

records Producer LogRecor dSequence | The records to be
written to the log.

<return> This operation does not
return a value.

Exceptions
This operation raises no exceptions.

Description

Thewr i t eRecor ds operation shall add the log records supplied in the r ecor ds
parameter to the Log. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to HALT, thewr i t eRecor ds
operation shall set the availability status logFull state to true. For example, if 3 records
are provided in the records parameter, and while trying to write the second record to the
log, the record will not fit, then the log is considered to be full. Therefore, the second and
third records will not be stored in the log but the first record would have been
successfully stored. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to WRAP, thewr i t eRecor ds
operation shall overwrite the oldest L ogRecords with the newest records, as they are
written to the Log, and leave the availability status logFull state unchanged.

Thewr i t eRecor ds operation shall insert the current UTC time to thet i ne field of
each record written to the Log, and shall assign a unique record ID to thei d field of the
LogRecord.

L og records accepted for storage by thewr i t eRecor ds shall be available for retrieval
in the order received.

Lightweight Log Service, v1.1 February 2005

2.5.2 writeRecord

Writes a single record to the Log.

Synopsis

+ writeRecord (in record : ProducerLogRecord)

Parametersand Return

Parameter Type Description

record Producer LogRecor d The record to be written
to the log.

<return> This operation does not
return a value.

Exceptions
This operation raises no exceptions.

Description

Thewr i t eRecor d operation shall add the log record supplied in ther ecor d
parameter to the Log. When there is insufficient storage to add the supplied log record to
the Log, and the LogFullAction isset to HALT, thewr i t eRecor d operation shall set
the availability status logFull state to true. When there is insufficient storage to add the
supplied log record to the Log, and the LogFullAction is set to WRAP, the

wr i t eRecor d operation shall overwrite the oldest LogRecords with the new record,
and leave the availability status logFull state unchanged.

Thewr i t eRecor d operation shall insert the current UTC time to the t i ne field of
each record written to the Log, and shall assign a unique record ID to thei d field of the
LogRecord.

Log records accepted for storage by wr i t eRecor d shall be available for retrieval in
the order received.

2.6 LogAdministrator Interface Operations

2.6.1 setMaxSze

Sets the maximum size of the Log storage area.

Synopsis

+ set MaxSi ze(in size : unsigned |ong |ong)

February 2005 Lightweight Log Service: LogAdministrator Interface Operations 2-19

Parametersand Return

Parameter Type Description
si ze unsi gned | ong | ong | The desired size for the logging
storage area in bytes.
<return> This operation does not return a
value.
Exceptions
This operation shall raise the InvalidParam exception if the supplied parameter is
invalid.
Description

Log records are stored in a storage area encapsulated by the Log class. The available
space in this storage area is finite. This operation shall allow the maximum capacity, in
bytes, of the storage area to be set. Note, however, that this operation might be
constrained by the underlying operation (you can’t assign more memory than is
physically present), or a platform specific implementation might decide to render this
operation as a no-op and provide a fixed maximum size instead.

2.6.2 setLogFullAction

Configure the action to be taken if the log storage area becomes full.

Synopsis

+ setLogFul | Action (in action : LogFull Acti on)

Parametersand Return

Parameter Type Description

action LogFul | Action Specify the desired selection from
the LogFull Action enumeration
(either HALT or WRAP).

<return> This operation does not return a
value

Exceptions
This operation raises no exceptions.

2-20 Lightweight Log Service, v1.1 February 2005

Description

Since the storage space of the Log storage area is finite, the Log Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. Theset LogFul | Act i on operation shall allow the actions that
should be taken after all free space in the log storage area is depleted to be specified. The
possible values are HALT, which shall indicate that no further logging records are
accepted and stored; or WRAP, which shall indicate that the log continues by
overwriting the oldest records in the storage area. When the LogFullAction typeis set
to WRAP, the Log shall set the availability status logFull state to false.

2.6.3 setAdministrativeSate

This operation provides write access to the administrative state value.

Synopsis

+ setAdministrativeState (in state : Adm nistrativeState)

Parametersand Return

Parameter | Type Description

state Admini strativeState | Select the desired alternative from
the AdministrativeState
enumeration. (Possible values are
LOCKED and UNLOCKED.)

<return> This operation does not return a
value

Exceptions
This operation raises no exceptions.

Description

This operation shall affect the ability of the logging service to accept and store new
logging records by administrative action. The possible states are LOCKED and
UNLOCKED. If the state is LOCKED, no new records shall be accepted. Reading of
already stored records shall not be affected. If the state is set to UNLOCKED, the log
shall operate normally.

2.6.4 clearLog

Purge the log storage area.

February 2005 Lightweight Log Service: LogAdministrator Interface Operations 2-21

2-22

Synopsis
clearLog ()

Parametersand Return

This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Description

This operation shall purge all logging records from the log storage area; however, it shall
not alter the size of the storage areain any way. The log shall set the availability status
logFull state to false.

2.6.5 destroy

Tear down an instantiated L og.

Synopsis
destroy ()

Parametersand Return

This operation has no parameters or returns.

Exceptions

This operation raises no exceptions.

Description

This operation shall destroy the associated instance of the Log class. All existing records
in the log storage area shall be irrecoverably lost and the memory resources associated
with the storage area shall be released.

Lightweight Log Service, v1.1 February 2005

3.1 Overview

PlatformSpecificModel: Mapping
to CORBAIDL 3

Contents

This chapter contains the following sections.

Section Title Page
“Overview” 31
“Types and Data Structures” 32
“Logging Interfaces” 37

This specification defines a Lightweight Logging Service intended for use in resource-
constraint systems like embedded and/or real-time CORBA systems. It represents the
CORBA Platform Specific Model (PSM) derived from the Lightweight Logging Service
Platform Independent Model (PIM) described in Chapter 2 of this document. In this
particular case, this PSM is “the original,” derived from the Software Communication
Architecture (SCA) version 2.2. SCA defines the system platform for software-defined
radios, using CORBA on top of a real-time operating system. The PIM described in
Chapter 2 was derived from this PSM through generalization.

3.1.1 Mapping from the Platform Independent Model

February 2005

The mapping between the elements of the Platform Independent Model described in
Chapter 2 and the corresponding elements of the CORBA IDL Platform Specific Model
described in the following sections is in most cases one-to-one. A note in the description

of each PSM element will explain the correspondence between the PSM element and its
counterpart in the PIM.

Lightweight Log Service, v1.1 31

According to the characteristic of CORBA to fully encapsulate the object underlying the
provided interfaces, no visible mapping exists between the UML Log class of the PIM
and a CORBA IDL construct in the PSM. The operations to be implemented by the
underlying Log object are only visible through the four interfaces, as defined in the PIM,
and are fully described in the corresponding interface sections below.

3.2 Typesand Data Sructures

3.2.1 InvalidParam Exception

exception InvalidParam{ string details; };

The InvalidParam exception indicates that a provided parameter was invalid. Details
about the cause for this exception are delivered in the string attribute details.

Mapping from the Platform I ndependent M odel

This IDL exception is the result of a one-to-one mapping from the UML classifier
InvalidParam (stereotyped as <<exception>>), described in Section 2.2.1, “InvalidParam
Exception,” on page 2-4.

Differencetothe Telecom Log Service

This IDL exception is identical to the corresponding definition in the Telecom Log
Service.

3.2.2 LogLeve

Type LogLevel is an enumeration-like type that is utilized to identify log levels.
unsi gned short LogLevel;

const unsigned short SECURI TY_ALARM = 1;

const unsigned short FAILURE ALARM = 2;

const unsi gned short DEGRADED ALARM =3;

const unsi gned short EXCEPTI ON ERROR =4;

const unsi gned short FLOW CONTROL_ERROR =5;
const unsi gned short RANGE ERROR =6;

const unsigned short USAGE ERROR = 7;

const unsi gned short ADM NI STRATI VE_EVENT = 8;
const unsi gned short STATI STI C_ REPORT = 9;

/1 Values ranging from10 to 26 are reserved for
/1 16 debuggi ng | evels.

The LogLevel alows a classification of the logging record. The value provided is
recorded in the logging record and provided to the consumer at retrieval, but it has no
particular meaning or side effects during storage of the record in the Log.

Lightweight Log Service, v1.1 February 2005

Mapping from the Platform I ndependent M odel

This IDL integer type is the result of a one-to-one mapping from the UML classifier
LogLevel (stereotyped as <<Integer>>), described in Section 2.2.2, “LogLevel,” on
page 2-4. Note that the first 27 values (from 0 to 26) are predefined by the PIM.

Differencetothe Telecom Log Service
This type does not exist in the Telecom Log Service.

3.2.3 OperationalSate

enum QOper ational State {di sabl ed, enabl ed};

The enumeration Qper at i onal St at eType defines the Log states of operation.
When the Log is enabled it is fully functional and is available for use by log producer
and log consumer clients. A Log that is disabled has encountered a runtime problem
and is not available for use by log producers or log consumers. The internal error
conditions that cause the Log to set the operational state to enabled or disabled are
implementation specific.

Mapping from the Platform I ndependent M odel

This IDL enumeration type is the result of a one-to-one mapping from the UML
classifier OperationalState (stereotyped as <<enumeration>>), described in
Section 2.2.3, “Operational State,” on page 2-5. The identifiers of the enumeration values
have been converted to lower-case for compatibility with the Telecom Log Service.

Differenceto the Telecom Log Service

This IDL enumeration type isidentical to the corresponding type definition in the
Telecom Log Service.

3.2.4 AdministrativeSate

enum Adm ni strativeState {locked, unl ocked};

The AdministrativeState type denotes the active logging state of an operational Log.
When set to unlocked the Log will accept records for storage, per its operational
parameters. When set to locked the Log will not accept new log records and records can
be read or deleted only.

Mapping from the Platform | ndependent M odel

This IDL enumeration type is the result of a one-to-one mapping from the UML
classifier AdministrativeState (stereotyped as <<enumeration>>), described in
Section 2.2.4, “ AdministrativeState,” on page 2-5. The identifiers of the enumeration
values have been converted to lower-case for compatibility with the Telecom Log
Service.

February 2005 Lightweight Log Service: Typesand Data Sructures 33

Differenceto the Telecom Log Service

This IDL enumeration type isidentical to the corresponding type definition in the
Telecom Log Service.

3.2.5 LogFullAction

enum LogFul | Action {WRAP, HALT};

This type specifies the action that the Log should take when its internal buffers become
full of data, leaving no room for new records to be written. WRAP indicates that the Log
will overwrite the oldest LogRecords with the newest records, as they are written to
the Log. The Log will overwrite as many of the oldest LogRecords as needed to
accommodate the newest records. HALT indicates that the Log will stop logging when
full.

Mapping from the Platform I ndependent M odel

This IDL enumeration type is the result of a one-to-one mapping from the UML
classifier LogFullAction (stereotyped as <<enumeration>>), described in
Section 2.2.6, “LogFullAction,” on page 2-6.

Differencetothe Telecom Log Service

The open-ended list of short integer values in the Telecom Log Service has been replaced
by a two-element enumeration to better accommodate the constraints of the embedded
environment. The enumeration values are retained in upper-case to distinguish from the
constants used by the Telecom Log Service.

3.2.6 LogAvailabilitySatus

struct AvailabilityStatus{
bool ean of f _duty;
bool ean log full;

b

The AvailabilityStatus denotes whether or not the Log is available for use. When true,
of f _duty indicatesthe Logislocked (administrative state) or disabled (operational
state). When true, | og_f ul | indicates the Log storage is full.

Struct member Description

off_duty Indicates that the log is unavailable, if true.

log_full Indicates that the log storage area is full, if true.

Mapping from the Platform | ndependent M odel

This IDL structure type is the result of a one-to-one mapping from the UML class
Availability Status, described in Section 2.2.5, “AvailabilityStatus,” on page 2-6.

Lightweight Log Service, v1.1 February 2005

February 2005

3.2.7 LogTime

struct LogTime {
| ong seconds;
| ong nanoseconds;

b

This type provides the time format used by the Log to time stamp LogRecords. Each
field is intended to directly map to the POSIX timespec structure.

Note — An implementation should exclusively use UTC for time recording to support
location transparency.

Mapping from the Platform | ndependent M odel

This IDL structure type is the result of a one-to-one mapping from the UML class
LogTime, described in Section 2.2.8, “LogTime,” on page 2-7.

Differenceto the Telecom Log Service

The LogTime structure replaces the use of the Time Service TimeT type. This way the
dependency on the Time Service has been eliminated and the time specification aligned
with the POSIX timespec structure, which is implemented by virtually all existing
operating systems for embedded systems.

3.2.8 ProducerLogRecord

struct ProducerLogRecord {

string producer | d;
string pr oducer Nane;
LogLevel |evel;

string | ogDat a;

s
typedef sequence <ProducerLogRecor d>
Pr oducer LogRecor dSequence;

Log producers format log records as defined in the structure ProducerLogRecord.

Struct member Description

producerld This field uniquely identifies the source of alog record.
The value is the component’s identifier and should be
unique for each log record producing component within the
Domain.

Lightweight Log Service: Typesand Data Sructures 35

producerName This field identifies the producer of alog record in textual
format. Thisfield is assigned by the log producer, thus is
not unique within the Domain (e.g., multiple instances of an
application will assign the same name to the ProducerName
field).

level The level field can be used to classify the log record
according to the LogL evel type.

logData This field contains the informational message being logged.

This structure represents a logging record written by alog producer client to the Log via
the LogProducer interface. Upon reception, it is encapsulated by the LogRecord
described in Section 3.2.2, “LogLevel,” on page 3-2.

Mapping from the Platform | ndependent M odel

This IDL structure type is the result of a one-to-one mapping from the UML class
ProducerLogRecord, described in Section 2.2.11, “ProducerL ogRecord,” on

page 2-7.

Differenceto the Telecom Log Service

The ProducerLogRecord structure replaces the use of the IDL any typein the
LogRecord of the Telecom Log Service. Thisis required in lieu of the lightweight
nature of this service; and by the fact that many embedded ORB implementations do not
support type any.

3.2.9 Recordld

typedef unsigned | ong | ong Recordl d;

This type provides the unique record ID that is assigned to a LogRecord by the Log.

Mapping from the Platform I ndependent M odel

This IDL type is the result of a one-to-one mapping from the UML classifier Recordld,
as described in Section 2.2.7, “Recordld,” on page 2-6. Defined as an unsigned long long
it is capable to hold a 64 bit integer value, as required by the PIM.

Differencetothe Telecom Log Service

The type Recordld isidentical to the type used in the Telecom Log Service for simple log
records.

Lightweight Log Service, v1.1 February 2005

3.2.10 LogRecord

struct LogRecord {
Recordl d id;
LogTi ne time;
Pr oducer LogRecord i nf o;

H
typedef sequence<LogRecord> LogRecor dSequence;

The LogRecord type defines the format of the log records as stored in the Log. The
‘info’ field isthe ProducerLogRecord that iswritten by a producer client to the Log.

The LogRecordSequence type defines an unbounded sequence of LogRecords.

Mapping from the Platform I ndependent M odel

This IDL structure type is the result of a one-to-one mapping from the UML classes
LogRecord and LogRecordSequence, described in Section 2.2.9, “LogRecord,” on
page 2-7 and Section 2.2.10, “LogRecordSequence,” on page 2-7, and the aggregation
between these classes.

Differencetothe Telecom Log Service

The LogRecord structure was loosely modeled after the Telecom Log Service
LogRecord structure. However, since many embedded ORBs are not supporting the IDL
type any, the ProducerLogRecord structure replaces the any-typed info field in the
Telecom Log Service LogRecord. Further, the Lightweight Logging Service does not
support attributes in LogRecords.

Struct member | Description

Id This field uniquely identifies a log record in the Log.

Time This field holds the timestamp for the record.

Info This field contains the logging record supplied by the
producer.

3.3 Logging Interfaces

February 2005

Operations on the Log object are separated into three distinct concrete interfaces. Each of
these interfaces represents a different access kind or privilege. This represents a
lightweight method of protection for the underlying Log object, without adding any
additional code. For the typically severe resource constrained embedded environments
this Lightweight Logging Service is addressing, the code saving is important, and the
protection functionality is considered sufficient.

Lightweight Log Service: Logging Interfaces 3-7

3-8

Differenceto the Telecom Log Service

The way the Lightweight Logging service is integrated into the surrounding environment
is very different from the Telecom Log Service (which is based on Event- or Notification
Channels). The Lightweight Logging Service is a stand-alone service targeted for
embedded systems, where the variety of client applications is limited and usually well-
known. The specified interfaces aim for a minimum footprint.

3.3.1 Interface LogSatus

3311

interface LogStatus {
unsi gned | ong | ong get_nmax_size();
unsi gned |l ong long get_current_size();
unsigned |l ong long get_n_records();
LogFul | Action get _log_full _action();
Avail abilityStatus get _availability_status();
Admini strativeState get _administrative_state();
Operational State get_operational _state();

b

The purpose of thisinterface isto make common operations equally availablein the three
concrete interfaces inherited from this interface. These operations provide a common and
consistent way to query the actual state of a Log object. No state changes are permitted
or implied through the operations offered in this interface.

From aclient’s perspective, thisinterface should be considered as abstract; its operations
should be invoked only in the context of the inherited interfaces.

get_max_size

Returns the size of the logging storage area.

Parametersand Return

Parameter Type Description

<ret urn> unsi gned | ong | ong | The maximum size of the log
storage area in bytes.

Exceptions
This function raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The
available space in this storage areais finite. This operation returns the maximum capacity
in bytes of the storage area.

Lightweight Log Service, v1.1 February 2005

February 2005

33.1.2

3.3.1.3

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getMaxSize, defined in the UML class Log and made visible through interface
LogStatus in the PIM (see Section 2.3.1, “getMaxSize,” on page 2-8). The spelling of
the operation name has been changed to conform to the OMG IDL Style Guide.

Differenceto the Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

get_current_size

Returns the amount of log storage area currently occupied by logging records.

Parametersand Return

Parameter Type Description

<return> unsi gned | ong | ong The size of the currently used
log storage area in bytes.

Exceptions
This function raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The

get _current _si ze operation returns the size in bytes of the log storage area
currently occupied by logging records. Thisvalueisless or equal to the total storage area
size returned by the get _max_si ze operation.

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getCurrentSize, defined in the UML class Log and made visible through interface
LogStatus in the PIM (see Section 2.3.2, “getCurrentSize,” on page 2-9). The spelling
of the operation name has been changed to conform to the OMG IDL Style Guide.

Differencetothe Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

get_n_records

Returns the number of records presently stored in the Log.

Lightweight Log Service: Logging Interfaces 39

3-10

3.3.14

Parametersand Return

Parameter Type Description
<return> unsi gned | ong | ong | The number of logging records
currently stored in the storage
area.
Exceptions

This operation raises no exceptions.

Description

Logging records are stored in a storage area encapsulated by the Log class. The
get _n_recor ds operation returns the number of logging records currently stored in
the log storage area.

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getNumRecords, defined in the UML class Log and made visible through interface
LogStatus in the PIM (see Section 2.3.3, “getNumRecords,” on page 2-9). The spelling
of the operation name has been changed to conform to the OMG IDL Style Guide; and
for compatibility with the Telecom Log Service.

Differenceto the Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

get_log_full_action

Returns the action take when the storage area becomes full.

Parametersand Return

Parameter Type Description

<return> LogFul | Action The actually selected
alternative of the
LogFull Action enumeration.

Exceptions
This operation raises no exceptions.

Lightweight Log Service, v1.1 February 2005

February 2005

3.3.1.5

Description

Since the storage space of the Log storage areais finite, the Logging Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. Theget | og ful |l _acti on operation returnsthe information
about which action the Logging Service will take when the storage area becomes full.
The possible values are HALT, which means no further logging records are accepted and
stored; or WRAP, which means the Log continues by overwriting the oldest records in
the storage area.

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getLogFullAction, defined in the UML class Log and made visible through interface
LogStatus in the PIM (see Section 2.3.4, “getLogFullAction,” on page 2-10).

The spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differencetothe Telecom Log Service

This operation is identical in name and signature to the equivalent operation of the
Telecom Log Service; however, the result is different.

get_availability_status

Returns the availability status of the Log.

Parametersand Return

Parameter Type Description

<return> Avai | abi | i tyStatus An instance of the
AvailabilityStatusrepresenting
the actual status of the log.

Exceptions
This operation raises no exceptions.

Description

The ability of the Log to accept and store logging records might become impaired. The
get _avail ability_status operationisused to check the availability status of the
Log. The returned instance of the AvailibilityStatus type contains two Boolean values:
off_duty, which indicates the log is disabled when true; and log_full, which indicates
that al free space is depleted in the log storage area.

Lightweight Log Service: Logging Interfaces 311

312

3.3.16

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getAvailabilityStatus, defined in the UML class Log and made visible through
interface LogStatus in the PIM (see Section 2.3.5, “ getAvailabilityStatus,” on

page 2-11). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Differenceto the Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

get_administrative_state

Returns the administrative state of the Log.

Parametersand Return

Parameter Type Description

<return> Adnini strativeState The actually selected
alternative of the
AdministrativeState
enumeration.

Exceptions
This operation raises no exceptions.

Description

The ability of the logging service to accept and store new logging records can be affected
by administrative action. Theget _admi ni strati ve_st at e isused to read the
administrative state of the Log. The possible states are locked and unlocked. If the
state is locked, no new records are accepted. Reading of already stored records is not
affected.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getAdministrativeState, defined in the UML class Log and made visible through
interface LogStatus in the PIM (see Section 2.3.6, “ getAdministrativeState,” on

page 2-11). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Differencetothe Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

Lightweight Log Service, v1.1 February 2005

3.3.1.7 get_operational _state

Returns the operational state of the Log.

Parametersand Return

Parameter Type Description
<return> Operational State The actually selected alternative
of the Operational State
enumeration.
Exceptions

This operation raises no exceptions.

Description

The get _oper ati onal _st at e operation returns the actual operational state of the
log. Possible values are enabled, which means the log is fully functional and available
to log producer and log consumer clients; or disabled, which indicates the log has
encountered a runtime problem and is not available for use by log producers or log
CONSUMes.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getOperational State, defined in the UML class Log and made visible through
interface LogStatus in the PIM (see Section 2.3.7, “ getOperational State,” on

page 2-12). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Differencetothe Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

3.3.2 Interface LogConsumer

i nterface LogConsuner : LogStatus {
Recordld get _record id fromtine (in LogTine froniline);
LogRecor dSequence retrieve_records(i nout Recordld currentld,
i nout unsigned | ong howvany);
LogRecor dSequence retrieve _records_by |evel (
i nout Recordld currentld,
i nout unsigned | ong howvany,
i n LogLevel Sequence val ueli st);

February 2005 Lightweight Log Service: Logging Interfaces 313

LogRecor dSequence retrieve_records_by producer _id(
i nout Recordld currentld,
i nout unsigned | ong howvany,
in StringSeq val uelLi st);
LogRecor dSequence retrieve_records_by_ producer_nane(
i nout Recordld currentld,
i nout unsigned | ong howvany,
in StringSeq val uelLi st);

3.3.2.1 get record id_from time

Identify arecord in the log record based on its time stamp.

Parametersand Return

Parameter Type Description

fromTi me LogTi ne The timestamp with which to start the
search.

<return> Recordl d Record ID of the first record
matching the timestamp.

Exceptions
This operation raises no exceptions.

Description

Theget _record_id _fromti me operation returns the record Id of the first record
in the Log with atime stamp that is greater than, or equal to, the time specified in the

f r onTli me parameter. If the Log does not contain a record that meets the criteria
provided, then the RecordId returned corresponds to the next record that will be
recorded in the future. In this way, if this “future” r ecor dl d is passed into a retrieval
operation, an empty record will be returned unless records have been recorded since the
time specified. Note that if the time specified in the f r onil'i me parameter isin the
future, there is no guarantee that the resulting records returned by aretrieval operation
will have atime stamp after the f r onili me parameter if the returned r ecor dI d from
this invocation of theget _record_i d_from ti me operation is subsequently used
asinputtotheretri eveByl d operation.

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
getRecordldFromTime, defined in the UML class Log and made visible through
interface LogConsumer in the PIM (see Section 2.4.1, “getRecordldFromTime,” on
page 2-12). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

314 Lightweight Log Service, v1.1 February 2005

Differenceto the Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.2 retrieve_records

Retrieves a specified number of records from the Log.

Parametersand Return

Parameter Type Description
currentld Recordl d The ID of the starting record.
howvany Unsi gned | ong The number of records to
retrieve.
<return> LogRecor dSequence The sequence of retrieved
records.
Exceptions

This operation raises no exceptions.

Description

Theretrieve_records operation returns aLogRecordSequence that begins
with the record specified by the cur r ent | d parameter. The number of records in the
LogRecordSequence returned by ther et ri eve_r ecor ds operation is equal to
the number of records specified by the howiVany parameter, or the number of records
available if the number of records specified by the howVlny parameter cannot be met.
The log will update howivany to indicate the number of records returned and will set
cur rent | d to either the id of the record following the last examined record or the next
record that will be recorded in the future if there are no further records available. If the
record specified by cur r ent | d does not exist, but corresponds to the next record that
will be recorded in the future, ther et ri eve_r ecor ds operation returns an empty list
of LogRecords, sets howivany to zero, and leaves the value of current | d
unchanged. If the record specified by currentld does not exist and does not correspond to
the next record that will be recorded in the future, or if the Log is empty, the
retrieve_records operation returns an empty list of LogRecords, and sets both,
current | dand howvhany to zero. Note that this operation does not guarantee a return
of sequential records in Log and modifies the cur r ent | d value. Consequently,
subsequent invocation of this operation with theget _record_id fromtinme
operation may result in the Log consumer not being able to obtain some of the records.

February 2005 Lightweight Log Service: Logging Interfaces 3-15

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecords, defined in the UML class Log and made visible through interface
LogConsumer in the PIM (see Section 2.4.2, “retrieveRecords,” on page 2-13). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differenceto the Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.3 retrieve_records by level

Retrieves a specified number of records from the Log that correspond to the provided log
levels.

Parametersand Return

Parameter Type Description

currentld Recordl d The ID of the starting record.

howMany Unsi gned | ong The number of records to
retrieve.

val uelLi st LogLevel Sequence The sequence of log levels that
will be sought.

<return> LogRecor dSequence The sequence of retrieved
records.

Exceptions

This operation raises no exceptions.

Description

Theretrieve records_by | evel operation returnsalogRecordSequence
of records that correspond to the supplied LogLevel s. Candidate records for the
LogRecordSequence begin with the record specified by the cur r ent | d parameter.
The number of records in the LogRecordSequence returned by the
retrieve_records_by | evel operationisequal tothe number of records
specified by the howivany parameter, or the number of records available if the number
of records specified by the howvany parameter cannot be met. The log will update
howivany to indicate the number of records returned and will set cur r ent | d to either
the id of the record following the last examined record or the next record that will be
recorded in the future if there are no further records available. If the record specified by
cur rent | d does not exist, but corresponds to the next record that will be recorded in
the future, ther et ri eve_records_by_| evel operation returns an empty list of

3-16 Lightweight Log Service, v1.1 February 2005

3

LogRecords, sets howvany to zero, and leaves the value of cur r ent | d unchanged.
If the record specified by currentld does not exist and does not correspond to the next
record that will be recorded in the future, or if the Log is empty, the
retrieve_records_by | evel operation returns an empty list of LogRecords,
and sets both, curr ent | d and howivany to zero. Note that this operation does not
guarantee a return of sequential records in Log and modifiesthe current | d vaue.
Consequently, subsequent invocation of this operation with the

get _record_id _fromti nme operation may result in the Log consumer not being
able to obtain some of the records.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecordsByLevel, defined in the UML class Log and made visible through
interface LogConsumer in the PIM (see Section 2.4.3, “retrieveRecordsByL evel,” on
page 2-14). The spelling of the operation name has been changed to conform to the OMG
IDL Style Guide.

Differencetothe Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.4 retrieve records by producer_id

Retrieves a specified humber of records from the Log that correspond to the provided
producer IDs.

Parametersand Return

Parameter Type Description

currentld Recordl d The ID of the starting record.

howvany Unsi gned | ong The number of records to
retrieve.

val ueli st StringSeq The seguence of producer ids
that will be sought.

<return> LogRecor dSequence The sequence of retrieved
records.

Exceptions

This operation raises no exceptions.

February 2005 Lightweight Log Service: Logging Interfaces 317

Description

Theretrieve_records_by producer _i d operation returnsa
LogRecordSequence of records that correspond to the supplied pr oducer | ds.
Candidate records for the LogRecordSequence begin with the record specified by the
cur rent | d parameter. The number of records in the LogRecordSequence returned
by theretrieve_records_by producer i d operationisequal to the number of
records specified by the howivany parameter, or the number of records available if the
number of records specified by the howivany parameter cannot be met. The log will
update howivany to indicate the number of records returned and will set cur rent | d to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by current | d does not exist, but corresponds to the next record that will be recorded
in the future, theretri eve_records_by producer _i d operation returns an
empty list of LogRecords, sets howivany to zero, and leaves the value of

cur r ent | d unchanged. If the record specified by currentld does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
theretri eve_records_by producer _i d operation returns an empty list of
LogRecords, and sets both, cur r ent | d and howivany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
current | d value. Consequently, subsequent invocation of this operation with the
get _record_id fromti me operation may result in the Log consumer not being
able to obtain some of the records.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecordsByProducerld defined in the UML class Log and made visible
through interface LogConsumer in the PIM (see Section 2.4.4,
“retrieveRecordsByProducerld,” on page 2-15). The spelling of the operation name has
been changed to conform to the OMG IDL Style Guide.

Differencetothe Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.2.5 retrieve_records by producer _name

Retrieves a specified number of records from the Log that correspond to the provided
producer names.

3-18 Lightweight Log Service, v1.1 February 2005

February 2005

Parametersand Return

Parameter Type Description
currentld Recordl d The ID of the starting record.
howvany Unsi gned | ong The number of records to
retrieve.
val uelLi st StringSeq The sequence of producer
names that will be sought.
<return> LogRecor dSequence The sequence of retrieved
records.
Exceptions

This operation raises no exceptions.

Description

Theretrieve_records_by_ producer_name operation returns a
LogRecordSequence of records that correspond to the supplied pr oducer Nanes.
Candidate records for the LogRecordSequence begin with the record specified by the
cur rent | d parameter. The number of records in the LogRecordSequence returned
by theretri eve_records_by producer_nane operation isequal to the number
of records specified by the howvany parameter, or the number of records available if
the number of records specified by the howiVany parameter cannot be met. The log will
update howivany to indicate the number of records returned and will set cur rent | d to
either the id of the record following the last examined record or the next record that will
be recorded in the future if there are no further records available. If the record specified
by current | d does not exist, but corresponds to the next record that will be recorded
in the future, ther et ri eve_records_by_producer _nane operation returns an
empty list of LogRecords, sets howivany to zero, and leaves the value of

cur r ent | d unchanged. If the record specified by currentld does not exist and does not
correspond to the next record that will be recorded in the future, or if the Log is empty,
theretri eve_records_by_ producer_name operation returns an empty list of
LogRecords, and sets both, cur r ent | d and howivany to zero. Note that this
operation does not guarantee a return of sequential records in Log and modifies the
current | d value. Consequently, subsequent invocation of this operation with the
get _record_id fromti me operation may result in the Log consumer not being
able to obtain some of the records.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
retrieveRecordsByProducerName defined in the UML class Log and made visible
through interface LogConsumer in the PIM (see Section 2.4.5,
“retrieveRecordsByProducerName,” on page 2-17). The spelling of the operation name
has been changed to conform to the OMG IDL Style Guide.

Lightweight Log Service: Logging Interfaces 3-19

3-20

Differenceto the Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.3 Interface LogProducer

3331

i nterface LogProducer : LogStatus {
oneway void wite_records(
i n Producer LogRecor dSequence records);
oneway void wite_record(
i n ProducerLogRecord record);
H
This interface alows the insertion of new log records into the logging storage area
encapsulated by the Log class. In favor of preserving the overall operational integrity of
the system, no guarantee is made that a logging record is accepted and stored if the
logging service is unable to process and /or store it.

write records

Writes records to the Log.

Parametersand Return

Parameter Type Description
records Producer LogRecor dSequence The records to be written to the
log.
<return> voi d This operation provides no
return.
Exceptions

This operation raises no exceptions.

Description

Thewrite_records operation adds the log records supplied in ther ecor ds
parameter to the Log. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to HALT, thewri t e_r ecor ds
operation will set the availability statuslogFull state to true. For example, if 3 records are
provided in the records parameter, and while trying to write the second record to the log,
the record will not fit, then the log is considered to be full. Therefore, the second and
third records will not be stored in the log but the first record would have been
successfully stored. When there is insufficient storage to add one of the supplied log
records to the Log, and the LogFullAction is set to WRAP, thewri t e_records
operation will overwrite the oldest L ogRecords with the newest records, as they are
written to the Log, and leave the availability status logFull state unchanged.

Lightweight Log Service, v1.1 February 2005

3

February 2005

3.3.3.2

Thewr it e_recor ds operation inserts the current UTC timeto thet i me field of each
record written to the Log, and assigns a unique record id to thei d field of the
LogRecord.

Log records accepted for storage by thewr i t e_r ecor ds will be available for retrieval
in the order received.

Note — The purpose of the oneway invocation is, within the limitations of embedded
ORBs, to de-couple the log producer from the logging service implementation, so that
difficulties in the Log have no side-effects on the log producer or its operation.
However, since ORBs may legally discard oneway requests, implementers should take
extra care that the oneway invocations of wri t e_r ecor ds are not discarded without
very substantial reason.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
writeRecords, defined in the UML class Log and made visible through interface
LogProducer in the PIM (see Section 2.5.1, “writeRecords,” on page 2-18). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differenceto the Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

write_record

Writes a single record to the Log.

Parametersand Return

Parameter Type Description
record Producer LogRecor d The record to be written to the
log.
<r et urn> voi d This operation provides no
return.
Exceptions

This operation raises no exceptions.

Lightweight Log Service: Logging Interfaces 321

3-22

Description

Thewrite_record operation adds alog record supplied in ther ecor d parameter to
the Log. When there isinsufficient storage to add the supplied log record to the Log, and
the LogFullAction is set to HALT, the wri te_recor d operation will set the
availability status logFull state to true. When there is insufficient storage to add the
supplied log record to the Log, and the LogFullAction is set to WRAP, the

write_ record operation will overwrite the oldest LogRecords with the new record,
and leave the availability status logFull state unchanged.

Thewrite_record operation inserts the current UTC time to the t i me field of each
record written to the Log, and assigns a unique record id to thei d field of the
LogRecord.

Log records accepted for storage by wri t e_r ecor d will be available for retrieval in
the order received.

Note — The purpose of the oneway invocation is, within the limitations of embedded
ORBs, to de-couple the log producer from the logging service implementation, so that
difficulties in the Log have no side-effects on the log producer or its operation.
However, since ORBs may legally discard oneway requests, implementers should take
extra care that the oneway invocations of wri t e_r ecor d are not discarded without
very substantial reason.

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
writeRecord, defined in the UML class Log and made visible through interface
LogProducer in the PIM (see Section 2.5.2, “writeRecord,” on page 2-19). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differenceto the Telecom Log Service

Thisis a new operation, not available in the Telecom Log Service. It reflects the
architectural and operational difference between the two services.

3.3.4 Interface LogAdministrator

i nterface LogAdm nistrator : LogStatus {
void set_max_size(in unsigned | ong | ong size)

voi d
voi d
voi d
voi d

rai ses (IlnvalidParam;

set _log full _action(in LogFull Action action);

set _admi nistrative_state(in AdnministrativeState state);
clear _log();

destroy ();

This interface alows the retrieval of logging records from the storage area encapsul ated
by the Log class.

Lightweight Log Service, v1.1 February 2005

3.3.4.1 set max _size

Sets the maximum size the Log storage area.

Parametersand Return

Parameter Type Description
si ze unsi gned | ong | ong The desired size for the logging
storage area in bytes.
<return> voi d This operation does not return a
value,
Exceptions

This operation raises the InvalidParam exception if the supplied parameter is invalid.

Description

Logging records are stored in a storage area encapsulated by the Log class. The
available space in this storage area is finite. This operation allows setting of the
maximum capacity in bytes of the storage area. Note, however, that this operation might
be constrained by the underlying operation (you can't assign more memory than is
physically present), or a platform specific implementation might decide to render this
operation as a no-op and provide a fixed maximum size instead.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
setMaxSize, defined in the UML class Log and made visible through interface
LogController in the PIM (see Section 2.6.1, “setMaxSize,” on page 2-19). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differencetothe Telecom Log Service

This operation is identical in name and signature to the equivalent operation of the
Telecom Log Service.

3.3.4.2 set_log_full_action

Configure the action to be taken if the log storage area becomes full.

February 2005 Lightweight Log Service: Logging Interfaces 3-23

3-24

3.34.3

Parametersand Return

Parameter Type Description

action LogFul | Action Specify the desired selection
from the LogFullAction

enumeration (either HALT or
WRAP).

<return> voi d This operation does not return a
value.

Exceptions
This operation raises no exceptions.

Description

Since the storage space of the Log storage areais finite, the Logging Service has to take
special action when the free space is depleted. The kind of action is described by the
LogFullAction type. Theset | og full _acti on operation alows the
specification which action should be taken after all free space in the log storage areais
depleted. The possible values are HALT, which means no further logging records are
accepted and stored; or WRAP, which means the Log continues by overwriting the
oldest records in the storage area. When the LogFullAction typeis set to WRAP, the
Log will set the availability status logFull state to false.

Mapping from the Platform I ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (see Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differenceto the Telecom Log Service

This operation is in principle identical in name, signature and return to the equivalent
operation of the Telecom Log Service; however, the input parameter type has been
changed to an IDL enumeration.

set_administrative_state

Theset admi ni strative_st at e operation provides write access to the
administrative state value.

Lightweight Log Service, v1.1 February 2005

February 2005

3344

Parametersand Return

Parameter Type Description

state unsi gned | ong | ong Select the desired alternative
from the AdministrativeState
enumeration. (Possible values are
locked and unlocked).

<return> voi d This operation does not return a
value.

Exceptions
This operation raises no exceptions.

Description

This operation allows one to affect the ability of the logging service to accept and store
new logging records by administrative action. The possible states are locked and
unlocked. If the state is locked, no new records are accepted. Reading of already
stored records is not affected. If the state is set to unlocked, the log operates normally.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (see Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differenceto the Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

clear_log

Purge the log storage area.

Parametersand Return
This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Lightweight Log Service: Logging Interfaces 3-25

3-26

3.34.5

Description

This operation purges all logging records from the log storage area; however, it does not
alter the size of the storage area in any way. The log will set the availability status
logFull state to false.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (see Section 2.6.2, “setLogFull Action,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differencetothe Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

destroy

Tear down an instantiated L og.

Parametersand Return
This operation has no parameters or returns.

Exceptions
This operation raises no exceptions.

Description

This operation will destroy the associated instance of the Log class. All existing records
in the log storage area are irrecoverably lost and the memory resources associated with
the storage area are released.

Mapping from the Platform | ndependent M odel

This IDL operation definition is the result of a one-to-one mapping from operation
setLogFullAction, defined in the UML class Log and made visible through interface
LogController in the PIM (see Section 2.6.2, “setLogFullAction,” on page 2-20). The
spelling of the operation name has been changed to conform to the OMG IDL Style
Guide.

Differencetothe Telecom Log Service

This operation is identical in name, signature, and result to the equivalent operation of
the Telecom Log Service.

Lightweight Log Service, v1.1 February 2005

CompleteLogging Servicel DL

4.1 CosLwlLog ServicelDL

4.1.1 LogService IDL - CosLwLogService.idl

#ifndef COS_LW_LOG_SERVICE_IDL
#define COS_LW_LOG_SERVICE_IDL

#include <CosLwLogAdministrator.idl>
#include <CosLwLogConsumer.idl>
#include <CosLwLogProducer.idl>

#ifdef _PRE_3 0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog

{
h

#endif // COS_LW_LOG_SERVICE_IDL

interface Log : LogAdministrator, LogConsumer, LogProducer {};

4.1.2 LogSatus Interface IDL - CosLwLogSatus.idl

#ifndef MODULE_COS_LW_LOG_STATUS_IDL
#define MODULE_COS_LW_LOG_STATUS_IDL

#ifdef PRE_3_0_COMPILER_

#pragma prefix "omg.org"
#endif

February 2005 Lightweight Log Service, v1.1

4-1

4-2

module CosLwLog {

#ifndef _PRE_3_0_COMPILER_
typeprefix CosLwlLog "omg.org";
#endif

/I The following constants are intended to identify

/I the nature of alogging record. The constants

/I represent the valid values for LogLevel

/I The list of constants may be expanded

const unsigned short SECURITY_ALARM =1;

const unsigned short FAILURE_ALARM = 2;

const unsigned short DEGRADED_ALARM =3;
const unsigned short EXCEPTION_ERROR =4;
const unsigned short FLOW_CONTROL_ERROR =5;
const unsigned short RANGE_ERROR =6;

const unsigned short USAGE_ERROR =7;

const unsigned short ADMINISTRATIVE_EVENT = 8;
const unsigned short STATISTIC_REPORT = 9;

/I Values ranging from 10 to 26 are reserved for

// 16 debugging levels.

typedef unsigned short LogLevel,

enum OperationalState {disabled, enabled};

enum AdministrativeState {locked, unlocked};

enum LogFullAction {WRAP, HALT};

typedef unsigned long long Recordld;

struct LogTime {

long seconds;

long nanoseconds;

h

struct Availability Status{
boolean off_duty;
boolean log_full;

h

struct ProducerLogRecord {
string producerld;
string producerName;
LoglLevel level;
string logData;

h

struct LogRecord {
Recordld id;
LogTime time;
ProducerLogRecord info;

h

typedef sequence<LogRecord> LogRecordSequence;

typedef sequence<ProducerLogRecord>
ProducerLogRecordSequence;

typedef sequence<LogLevel> LogLevelSequence;

Lightweight Log Service, v1.1

February 2005

typedef sequence<string> StringSeq;

exception InvalidParam {
string details;

h

interface LogStatus {
unsigned long long get_max_size();
unsigned long long get_current_size();
unsigned long long get_n_records();
LogFullAction get_log_full_action();
AvailabilityStatus get_availability _status();
AdministrativeState get_administrative_state();
OperationalState get_operational_state();

h
b
#endif // MODULE_COS_LW_LOG_STATUS_IDL

4.1.3 LogAdministrator Interface IDL - CosLwLogAdministrator.idl

#ifndef MODULE_COS_LW_LOG_ADMINISTRATOR_IDL
#define MODULE_COS_LW_LOG_ADMINISTRATOR_IDL

#include <CosLwLogStatus.idl>

#ifdef _PRE_3 0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog {

interface LogAdministrator : LogStatus {

void set_max_size(in unsigned long long size)
raises (InvalidParam);
void set_log_full_action(in LogFullAction action);
void set_administrative_state(
in AdministrativeState state);

void clear_log();
void destroy ();

b
b
#endif // MODULE_COS_LW_LOG_ADMINISTRATOR_IDL

4.1.4 LogProducer Interface IDL - CosLwLogProducer.idl

#ifndef MODULE_COS_LW_LOG_PRODUCER_IDL
#define MODULE_COS_LW_LOG_PRODUCER_IDL

#include <CosLwLogStatus.idl>

February 2005 Lightweight Log Service: CosLwLog ServicelDL 4-3

4-4

#ifdef _PRE_3_0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog {
interface LogProducer : LogStatus {
oneway void write_records(
in ProducerLogRecordSequence records);
oneway void write_record(
in ProducerLogRecord record);

b
b
#endif // MODULE_COS_LW_LOG_PRODUCER_IDL

4.1.5 LogConsumer Interface IDL - CosLwLogConsumer.idl

#ifndef MODULE_COS_LW_LOG_CONSUMER_IDL
#define MODULE_COS_LW_LOG_CONSUMER_IDL

#include <CosLwLogStatus.idl>

#ifdef _PRE_3 0_COMPILER_
#pragma prefix "omg.org"
#endif

module CosLwLog {
interface LogConsumer : LogStatus {
Recordld get_record_id_from_time (in LogTime fromTime);
LogRecordSequence retrieve_records(
inout Recordld currentld,
inout unsigned long howMany);
LogRecordSequence retrieve_records_by_level(
inout Recordld currentld,
inout unsigned long howMany,
in LogLevelSequence valuelist);
LogRecordSequence retrieve_records_by_producer_id(
inout Recordld currentld,
inout unsigned long howMany,
in StringSeq valueList);
LogRecordSequence retrieve_records_by_producer_name(
inout Recordld currentld,
inout unsigned long howMany,
in StringSeq valueList);

b
b
#endif // MODULE_COS_LW_LOG_CONSUMER_IDL

Lightweight Log Service, v1.1 February 2005

| ndex

A
AdministrativeState 3-3

C
clear_log 3-25
clearLog 2-21
CORBA
contributors iv
documentation set iii
CORBA IDL 1-3

D
destroy 2-22, 3-26
DISABLED 2-5

E
ENABLED 2-5

F
filters 1-3

G

get_administrative_state 3-12
get_availability_status 3-11
get_current_size 3-9
get_log_full_action 3-10
get_max_size 3-8
get_n_records 3-9
get_operationa_state 3-13
get_record_id_from_time 3-14
getAdministrativeState 2-11
getAvailabilityStatus 2-11
getCurrentSize 2-9
getLogFullAction 2-10
getMaxSize 2-8
getNumRecords 2-9
getOperationa State 2-12
getRecordldFromTime 2-12

H
HALT 2-6

|
InvalidParam Exception 3-2

J

Joint Tactical Radio Systems (JTRS) Joint Program Office

(JPO) 1-1

L

LOCKED 2-5
LogAdmin 2-2
LogAdministrator 3-22
LogAvailabilityStatus 3-4

February 2005

LogConsumer 2-2, 3-13
LogFullAction 3-4
LogLevel 3-2
LogProducer 2-2, 3-20
LogRecord 2-7, 3-7
LogRecordSequence 2-7
LogStatus 2-2, 2-8, 3-8
LogTime 2-7,3-5

o

Object Management Group iii
address of iv

Operational State 3-3

P

Platform Independent Model 3-1
Platform Independent Model (PIM) 1-3
Platform Specific Model 3-1

Platform Specific Model (PSM) 1-3
ProducerLogRecord 2-7, 3-5

R

Realtime, Embedded, and Specialized Systems (RTESS) Platform
Taskforce 1-2

Recordld 2-6, 3-6

retrieve_records 3-15

retrieve_records by level 3-16

retrieve_records by producer_id 3-17

retrieve_records_by producer_name 3-18

retrieveRecords 2-13

retrieveRecordsByLevel 2-14

retrieveRecordsByProducerld 2-15

retrieveRecordsByProducerName 2-17

S

set_administrative_state 3-24

set_log_full_action 3-23

set_max_size 3-23

setAdministrativeState 2-21

setLogFullAction 2-20

setMaxSize 2-19

Software Communications Architecture (SCA) 1-1

)
UNLOCKED 2-5

w

WRAP 2-6
write_record 3-21
write_records 3-20
writeRecord 2-19
writeRecords 2-18

Lightweight Log Service, v1.1 Index-1

| ndex

Index-2 Lightweight Log Service, v1.1 February 2005

Lightweight Log Service, v1.1
Reference Sheet

The document history for this specification is as follows:
* ptc/04-06-12 - Convenience document
* ptc/04-06-13 - OMG IDL
* ptc/04-06-14 - RTF Report

	Overview
	1.1 Scope
	1.2 Purpose
	1.3 Relationship to the Realtime, Embedded, and Specialized Systems (RTESS) Platform Taskforce
	1.4 Relation to Existing OMG Specifications
	1.5 Relation to Pending OMG Specifications
	1.6 Compliance

	Platform Independent Model
	2.1 Overview and Architecture
	2.2 Type Definitions
	2.2.1 InvalidParam Exception
	2.2.2 LogLevel
	2.2.3 OperationalState
	2.2.4 AdministrativeState
	2.2.5 AvailabilityStatus
	2.2.6 LogFullAction
	2.2.7 RecordId
	2.2.8 LogTime
	2.2.9 LogRecord
	2.2.10 LogRecordSequence
	2.2.11 ProducerLogRecord

	2.3 Common Interface Operations
	2.3.1 getMaxSize
	2.3.2 getCurrentSize
	2.3.3 getNumRecords
	2.3.4 getLogFullAction
	2.3.5 getAvailabilityStatus
	2.3.6 getAdministrativeState
	2.3.7 getOperationalState

	2.4 LogConsumer Interface Operations
	2.4.1 getRecordIdFromTime
	2.4.2 retrieveRecords
	2.4.3 retrieveRecordsByLevel
	2.4.4 retrieveRecordsByProducerId
	2.4.5 retrieveRecordsByProducerName

	2.5 LogProducer Interface Operations
	2.5.1 writeRecords
	2.5.2 writeRecord

	2.6 LogAdministrator Interface Operations
	2.6.1 setMaxSize
	2.6.2 setLogFullAction
	2.6.3 setAdministrativeState
	2.6.4 clearLog
	2.6.5 destroy

	Platform Specific Model: Mapping to CORBA IDL
	3.1 Overview
	3.1.1 Mapping from the Platform Independent Model

	3.2 Types and Data Structures
	3.2.1 InvalidParam Exception
	3.2.2 LogLevel
	3.2.3 OperationalState
	3.2.4 AdministrativeState
	3.2.5 LogFullAction
	3.2.6 LogAvailabilityStatus
	3.2.7 LogTime
	3.2.8 ProducerLogRecord
	3.2.9 RecordId
	3.2.10 LogRecord

	3.3 Logging Interfaces
	3.3.1 Interface LogStatus
	3.3.2 Interface LogConsumer
	3.3.3 Interface LogProducer
	3.3.4 Interface LogAdministrator

	Complete Logging Service IDL
	4.1 CosLwLog Service IDL
	4.1.1 LogService IDL - CosLwLogService.idl
	4.1.2 LogStatus Interface IDL - CosLwLogStatus.idl
	4.1.3 LogAdministrator Interface IDL - CosLwLogAdministrator.idl
	4.1.4 LogProducer Interface IDL - CosLwLogProducer.idl
	4.1.5 LogConsumer Interface IDL - CosLwLogConsumer.idl

