

Date: October 2004

Lightweight Services Specification, v1.0

formal/04-10-01
October 2004

Copyright © 2002-2003, Mercury Computer Systems, Inc.
Copyright © 2003, Object Management Group
Copyright © 2002-2003, Objective Interface Systems, Inc.
Copyright © 2002-2003, Rockwell Collins

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified version.
Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright in the included
material of any such copyright holder by reason of having used the specification set forth herein or having conformed any computer
software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid up,
non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to create and
distribute software and special purpose specifications that are based upon this specification, and to use, copy, and distribute this
specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above and this permission
notice appear on any copies of this specification; (2) the use of the specifications is for informational purposes and will not be
copied or posted on any network computer or broadcast in any media and will not be otherwise resold or transferred for commercial
purposes; and (3) no modifications are made to this specification. This limited permission automatically terminates without notice
if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies of the specifications in
your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use of
an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be required by
any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are brought to its
attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting themselves
against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work covered by
copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or mechanical, including
photocopying, recording, taping, or information storage and retrieval systems--without permission of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN ERRORS
OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION, INCLUDING BUT NOT
LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR
WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT SHALL THE OBJECT
MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE FOR ERRORS CONTAINED

HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL, RELIANCE OR COVER
DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED BY ANY USER OR ANY
THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL, EVEN
IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of The
Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2) of the
Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-7202-2 of
the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition Regulations and
its successors, as applicable. The specification copyright owners are as indicated above and may be contacted through the
Object Management Group, 250 First Avenue, Needham, MA 02494, U.S.A.

TRADEMARKS

The OMG Object Management Group Logo®, CORBA®, CORBA Academy®, The Information Brokerage®, XMI® and
IIOP® are registered trademarks of the Object Management Group. OMG™, Object Management Group™, CORBA logos™,
OMG Interface Definition Language (IDL)™, The Architecture of Choice for a Changing World™, CORBAservices™,
CORBAfacilities™, CORBAmed™, CORBAnet™, Integrate 2002™, Middleware That's Everywhere™, UML™, Unified
Modeling Language™, The UML Cube logo™, MOF™, CWM™, The CWM Logo™, Model Driven Architecture™, Model
Driven Architecture Logos™, MDA™, OMG Model Driven Architecture™, OMG MDA™ and the XMI Logo™ are
trademarks of the Object Management Group. All other products or company names mentioned are used for identification
purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its designees) is
and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer software to use
certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and only if
the software compliance is of a nature fully matching the applicable compliance points as stated in the specification. Software
developed only partially matching the applicable compliance points may claim only that the software was based on this
specification, but may not claim compliance or conformance with this specification. In the event that testing suites are
implemented or approved by Object Management Group, Inc., software developed using this specification may claim
compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form listed on the
main web page http://www.omg.org, under Documents & Specifications, Report a Bug/Issue.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this pro-
cess we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may
find by completing the Issue Reporting Form listed on the main web page http://www.omg.org,
under Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

1 Scope ...1

2 Conformance ...1
2.1 Summary of optional versus mandatory interfaces ... 1
2.2 Proposed major conformance points .. 1

 2.2.1 Proposed minor conformance points .. 2

3 Normative References ... 2
3.1 UML Specifications ... 2

 3.1.1 UML Language Specification .. 2
 3.1.2 UML Profile for CORBA Specification ... 2

3.2 CORBA Core Specifications ... 2
 3.2.1 CORBA Specification .. 2
 3.2.2 Minimum CORBA Specification .. 3

3.3 CORBA Services Specifications ... 3
 3.3.1 Naming Service Specification ... 3
 3.3.2 Event Service Specification ... 3
 3.3.3 Enahanched View of Time Specification ... 3
 3.3.4 Property Service Specification .. 3

4 Additional Information ..4
4.1 Changes to Adopted OMG Specifications ... 4
4.2 How to Read this Specification ... 4
4.3 Acknowledgements ... 4

5 Lightweight Naming Service ..5
5.1 Platform Independent Model ... 5

 5.1.1 Overview ... 5
 5.1.2 The CosLightweightNaming Package ... 7

5.2 Platform Specific Model: CORBA Service ... 16
 5.2.1 Overview ... 16
 5.2.2 CosNaming Module ... 16

6 Lightweight Event Service ..19
6.1 Platform Independent Model ... 19

 6.1.1 Overview ... 19
 6.1.2 The CosLightweightEventComm Package .. 20
 6.1.3 The CosLightweightEventChannel Package ... 23

6.2 Platform Specific Model: CORBA Service ... 31
 6.2.1 Overview ... 31
 6.2.2 CosEventChannelAdmin Module .. 31
 6.2.3 CosEventComm Module ... 32

7 Lightweight Time Service ...35
 i

7.1 Platform Independent Model ... 35
 7.1.1 Overview ... 35
 7.1.2 Minor Conformance Points .. 35
 7.1.3 The LightweightTime Package .. 37
 7.1.4 The ClockProperty Package ... 43
 7.1.5 The PeriodicExecution Package ... 47

7.2 Platform Specific Model: CORBA Service ... 50
 7.2.1 Overview ... 50
 7.2.2 Minor Conformance Points .. 51
 7.2.3 LightweightTime Module ... 51
 7.2.4 PeriodicExecution Module ... 53

Annex A - OMG IDL ..55
ii

1 Scope

This specification defines a compatible subset of three existing CORBA services to make these services suitable for use
in resource-constrained systems. These subsets are intended to be inserted as new chapters in the Services documents that
they produce the subset of. No other changes to the existing documents are being proposed. This specification defines the
Lightweight Naming Service, the Lightweight Event Service, and the Lightweight Enhanced View of Time Services.

The services defined by this specificaton are fully upward compatible with the corresponding full-featured services. A
better way of looking at it is to view the “Heavyweight” services as extensions of the lightweight ones. This approach
would be much cleaner, but would require edits to these “Heavyweight” specs to make that clarification. Using the
extension approach would readily allow specific functions to be removed from interfaces if necessary without any
requirement for a NOT_IMPLEMENTED exception. Without permission to “merge” versus “insert” the lightweight
chapters into the heavyweight specifications, the subset solution presented here must be used.

Semantics

Operations that are termed “disabled” in these conformance points are still part of the associated IDL interface, but
implementations may raise either BAD_OPERATION or NO_IMPLEMENT exceptions when they are invoked. This
flexibility allows the lightweight services to avoid extra overhead in the service implementation skeletons and removes
any requirement for clients to test explicitly for disabled operations. In cases where the operation is termed optional,
NO_IMPLEMENT is preferred over BAD_OPERATION. However, the Lightweight Service implementer may use
BAD_OPERATION for the optional interfaces to meet the constraints of their embedded system.

The semantics of “disabled” interfaces with respect to lightweight services is further intended to be consistant with all
other OMG Lightweight specifications.

For convenience, in this specification, only the operations that are not disabled are shown in the informative IDL
descriptions of these services.

The IDL specifications in the “full” service specifications continue to be the normative definition for each interface.

2 Conformance

2.1 Summary of optional versus mandatory interfaces

All interfaces are mandatory within the compliance points.

2.2 Proposed major conformance points

Each individual service defined in this specification represents an independent item. Each service therefore forms an
independent major compliance point:

• Lightweight Naming Service (formal/04-10-03)

• Lightweight Event Service (formal/04-10-02)

• Lightweight Enhanced View of Time Service (formal/04-10-04)
Lightweight Services Specification, v1.0 1

2.2.1 Proposed minor conformance points

The Lightweight Enhanced View of Time Service defined in this specification supports two optional conformance points:

• Support of multiple clocks

• Support of periodic execution control

3 Normative References

3.1 UML Specifications

3.1.1 UML Language Specification

Unified Modeling Language (UML) Specification, V1.5
Formal OMG Specification, document number: formal/2003-03-01
The Object Management Group, March 2003
[http://www.omg.org]

Note – The following specifications might become formal before finalization of this Lightweigth Services specification
is complete. Unless these documents become formal OMG specifications, their reference is not normative.

UML Version 2.0 Infrastructure Specification
final submission (conveniance document), document number: ad/2003-03-01

UML Version 2.0 Superstructure Specification
final adopted specification, document number: ptc/2003-08-02

3.1.2 UML Profile for CORBA Specification

UML Profile for CORBA Specification V1.0
Formal OMG Specification, document number: formal/2002-04-01
The Object Management Group, April 2002
[http://www.omg.org]

3.2 CORBA Core Specifications

3.2.1 CORBA Specification

Common Object Request Broker (CORBA/IIOP), version 3.0.2
Formal OMG Specification, document number: formal/2002-12-06
The Object Management Group, December 2002
[http://www.omg.org]
2 Lightweight Services Specification, v1.0

3.2.2 Minimum CORBA Specification

Minimum CORBA, V1.0
Formal OMG Specification, document number: formal/2002-08-01
The Object Management Group, August 2002
[http://www.omg.org]

3.3 CORBA Services Specifications

3.3.1 Naming Service Specification

Naming Service, version 1.3
Formal OMG Specification, document number: formal/2004-10-xx
The Object Management Group, October 2004
[http://www.omg.org]

3.3.2 Event Service Specification

Event Service, version 1.2
Formal OMG Specification, document number: formal/2004-10-xx
The Object Management Group, October 2004
[http://www.omg.org]

3.3.3 Enhanced View of Time Specification

Enhanced View of Time Service, version 1.2
Formal OMG Specification, document number: formal/2004-10-xx
The Object Management Group, October 2004
[http://www.omg.org]

3.3.4 Property Service Specification

Property Service, version1.0
Formal OMG Specification, document number: formal/2000-06-22
The Object Management Group, June 2000
[http://www.omg.org]

4 Additional Information

4.1 Changes to Adopted OMG Specifications

The specifications contained in this document require no changes to adopted OMG specifications.

Note – The submitters recommend a document merge of the specifications contained in this document with the
specifications of the corresponding full-featured services to guarantee consistency even under potential future revisions.
In particular the submitters strongly suggest to use the lightweight services as base services and to redefine the full-
featured services as specialization of the lightweight services.
Lightweight Services Specification, v1.0 3

4.2 How to Read this Specification

The rest of this document contains the technical specification. We recommend that the reader is familar with the Unified
Modeling Language(UML) as defined in the UML Infrastructure and UML Superstructure specifications. It is further
required that the reader is familiar with the specifications of the corresponding full-featured versions of the services, since
the lightweight service definitions contained in this document will make frequent references to the specifications of the
full-featured services.

A knowledge of the particular technical challenges imposed by resource-constraint systems would be of great benefit to
understand the design decisions made during the derivation of the lightweight services from their full-featured
counterparts.

4.3 Acknowledgements

The following companies are pleased to co-submit the specification:

• Mercury Computer Systems, Inc.

• Objective Interface Systems, Inc.

• Rockwell Collins, Inc.

The following companies are pleased to support the Specification for Lightwight Services as submitted by the submitting
companies listed above.

• Raytheon Company

• MITRE Corporation

• BAE Systems

• ITT Industries
4 Lightweight Services Specification, v1.0

5 Lightweight Naming Service

5.1 Platform Independent Model

5.1.1 Overview

This chapter defines the Platform Independent Model (PIM) for the Lightweight Naming Service. The Lightweight
Naming Service is intended to be a subset of the Naming Service Specification (formal/04-10-03). The packages,
interfaces, and classes appearing in this chapter are intended to model this subset and should map to the IDL for their
counterparts in the Naming Service Specification (Version 1.2, formal/02-09-02). The descriptions of the interfaces,
operations and their semantics are also intended to be identical to those defined by the Naming Service Specification
(Version 1.2, formal/02-09-02) over this same subset.

Figure 1 - Lightweight Naming Service Packages

Figure 2 - Lightweight Naming Service Interfaces and Classes

CosNaming
<<CORBAModule>>

Namin gCon text

bind()
rebind()
resolve()
unbind()
bind_new_context()
destroy()

(from CosNaming)

<<CORBAInterfa ce>>
Lightweight Services Adopted Specification 5

Figure 3 - Lightweight Naming Service Data Types

stri ng
(from CORBA)

<<CORBAp ri mit ive>>

Istring
(from CosNaming)

<<CORBATypede f>>

NameCompon ent

id : Istring
kind : Istring

(from CosNaming)

<<CORBAStruct>>

Name
(from CosNaming)

<<CORBASequence>>

1..*

index : long {0..*}

0..1

1..*

0..1

index : long {0..*}

NotFoundReason

missing_node : NotFoundReason
not_context : NotFoundReason
not_object : NotFoundReason

(from Naming Context)

<<CORBAEnum>>
6 Lightweight Services Adopted Specification

5.1.2 The CosLightweightNaming Package

The CosLightweightNaming package is a collection of interfaces, datatypes, and exceptions that together define the
Lightweight Naming Service. Unlike the full CosNamingService, this package supports only the NamingContext
interface.

5.1.2.1 Istring

Description

Istring is a "placeholder for a future IDL internationalized string data type" in the original CosNaming specification. It is
maintained solely for compatibility reasons.

Attributes

No additional attributes

Operations

No additional operations

Associations

No associations

Constraints

No additional constraints

Semantics

No additional semantics

stri ng
(from CORBA)

<<CORBAprimitive>>

Istring
(from CosNaming)

<<CORBATypedef>>
Lightweight Services Adopted Specification 7

5.1.2.2 Name

Description

A name is a sequence of NameComponents.

Attributes

No attributes

Operations

No operations

Associations

• component: NameComponent[1..*]
A name consists of an ordered list of NameComponents.

Constraints

No constraints

Semantics

A name is a sequence of NameComponents. The empty sequence is not a legal name. An implementation may limit the
length of the sequence to some maximum. When comparing Names for equality, each NameComponent in the first name
must match the corresponding NameComponent in the second Name for the names to be considered identical.

5.1.2.3 NameComponent

Description

The NameComponent represents one segment of the name, consisting of two parts represented as attributes.

NameCompone nt

id : Istring
kind : Istring

(from CosNaming)

<<CORBAStruct>>

Name
(from CosNaming)

<<CORBASequence>>

1..*

inde x : lo ng {0. .*}

0..1

1..*

0..1

inde x : lo ng {0. .*}
8 Lightweight Services Adopted Specification

Attributes

• id: Istring [1]

An arbitrary length string holding the main component of the name.
(Comment:This is usually the name iteslf.)

• kind: Istring [1]

An arbitrary length string holding the additional component of the name.
(Comment: This is usually some characterization of the name.)

Operations

No operations

Associations

No associations

Constraints

No constraints

Semantics

A name component consists of two attributes: the identifier attribute (id) and the kind attribute (kind).

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters, excluding the ASCII NUL character.

When comparing two NameComponents for equality both the id and the kind field must match in order for two
NameComponents to be considered identical. This applies for zero-length (empty) fields as well. Name comparisons are
case sensitive.

An implementation may place limitations on the characters that may be contained in a name component, as well as the
length of a name component. For example, an implementation may disallow certain characters, may not accept the empty
string as a legal name component, or may limit name components to some maximum length.

5.1.2.4 NamingContext

Description

NamingContext

bind(n : Name, obj : Object)
rebind(n : Name, obj : Object)
resolve(n : Name) : Object
unbind(n : Name)
bind_new_context(n : Name) : NamingContext
destroy()

<<CORBAInterface>>
Lightweight Services Adopted Specification 9

A NamingContext is a container hosting a set of name bindings.

Attributes

No attributes.

Operations

• bind(in n: Name, in obj: Object)

Creates an object binding in the naming context. If a binding with the specified name already exists, bind will raise an
AlreadyBound exception. If an implementation places limits on the number of bindings within a context, bind will
raise the IMP_LIMIT system exception if the new binding cannot be created. The operation may also raise Not-
Found, CannotProceed, or InvalidName.

• rebind(in n: Name, in obj: Object)

Creates an object binding in the naming context even if the name is already bound in the context. If already bound, the
previous binding must be of type object; otherwise, a NotFound exception with a why reason of not_object is raised.
If rebind raises a NotFound exception because an already existing binding is of the wrong type, the rest_of_name
member of the exception has a sequence length of 1. The operation may also raise CannotProceed or Invalid-
Name.

• resolve (in n: Name): Object)

The resolve operation retrieves an object bound to a name in a given context. The given name must exactly match the
bound name. The naming service does not return the type of the object. Clients are responsible for "narrowing" the
object to the appropriate type. That is, clients typically cast the returned object from Object to a more specialized inter-
face.

Names can have multiple components; therefore, name resolution can traverse multiple contexts. These contexts can
be federated between different Naming Service instances. The operation may raise NotFound, CannotProceed,
or InvalidName.

• unbind(in n: Name)

The unbind operation removes a name binding from a context. The operation may raise NotFound, CannotPro-
ceed, or InvalidName.

• bind_new_context (in n: Name): NamingContext

This operation creates a new context and creates a context binding for it using the name supplied as an argument.
If an implementation places limits on the number of naming contexts, bind_new_context can raise the IMP_LIMIT
system exception if the context cannot be created. bind_new_context can also raise IMP_LIMIT if the bind would
cause an implementation limit on the number of bindings in a context to be exceeded. The operation may also raise
NotFound, CannotProceed, or InvalidName.

• destroy()

This operation destroys its naming context. If there are bindings denoting the destroyed context, these bindings are not
removed. If the naming context contains bindings, the operation raises NotEmpty.
10 Lightweight Services Adopted Specification

Associations

No association.

Constraints

No constraints.

Semantics

A name-to-object association is called a name binding. A name binding is always defined relative to a naming context. A
naming context is an object that contains a set of name bindings in which each name is unique. Different names can be
bound to an object in the same or different contexts at the same time. There is no requirement, however, that all objects
must be named. To resolve a name is to determine the object associated with the name in a given context. To bind a name
is to create a name binding in a given context. A name is always resolved relative to a context - there are no absolute
names. Because a context is like any other object, it can also be bound to a name in a naming context. Binding contexts
in other contexts creates a naming graph - a directed graph with nodes and labeled edges where the nodes are contexts. A
naming graph allows more complex names to reference an object. Given a context in a naming graph, a sequence of
names can reference an object. This sequence of names (called a compound name) defines a path in the naming graph to
navigate the resolution process.

5.1.2.5 NamingContext::NotFoundReason

Description

The enumeration NotFoundReason specifies the reason that a NotFound exception was raised with respect to resolution
of a given name (which may be a component of a larger name).

Attributes

• missing_node
The first component of the given name is not bound within its parent context.

• not_context
The first name component of the given name denotes a binding with a type of nobject when the type ncontext was
required.

• not_object
The first name component of the given name denotes a binding with a type of ncontext when the type nobject was
required.

Operations

No operations

NotFoundReason

missing_node : NotFoundReason
not_context : NotFoundReason
not_object : NotFoundReason

(from NamingContext)

<<CORBAEnum>>
Lightweight Services Adopted Specification 11

Associations

No associations

Constraints

No constraints

Semantics

This is an Enumeration type.

5.1.2.6 NamingContext::NotFound

Description

The NotFound user exception.

Attributes

• why: NotFoundReason [1]
The why attribute explains the reason for the exception.

• rest_of_name: Name [1]
The rest_of_name attribute contains the remainder of the non-working name:

Operations

No operations

Associations

No associations

Constraints

No constraints

UserException
(from CORBA)

<<CORBAException>>

NotFound

why : NotFoundReason
rest_of_name : Name

(from NamingContext)

<<CORBAException>>
12 Lightweight Services Adopted Specification

Semantics

This exception is raised by operations when a component of a name does not identify a binding, or the type of the binding
is incorrect for the operation being performed.

5.1.2.7 NamingContext::CannotProceed

Description

The CannotProceed user exception.

Attributes

• cxt: NamingContext [1]
The cxt attribute contains the context that the operation may be able to retry from.

• rest_of_name: Name [1]
The rest_of_name attribute contains the remainder of the non-working name:

Operations

No operations

Associations

No associations.

Constraints

No constraints.

Semantics

This exception is raised when an implementation has given up for some reason. The client, however, may be able to
continue the operation at the returned naming context.

UserException
(from CORBA)

<<CORBAException>>

CannotProceed

cxt : NamingContext
rest_of_name : Name

(from NamingContext)

<<CORBAException>>
Lightweight Services Adopted Specification 13

5.1.2.8 NamingContext::InvalidName

Description

The InvalidName user exception.

Attributes

No attributes.

Operations

No operation.

Constraints

No constraints.

Semantics

This exception is raised if a Name is invalid. A name of length zero is invalid (containing no name components).
Implementations may place further limitations on what constitutes a legal name and raise this exception to indicate a
violation.

UserException
(from CORBA)

<<CORBAException>>

InvalidName
(from NamingContext)

<<CORBAException>>
14 Lightweight Services Adopted Specification

5.1.2.9 NamingContext::AlreadyBound

Description

The AlreadyBound user exception.

Attributes

No attributes.

Operations

No operation.

Constraints

No constraints.

Semantics

Indicates an object is already bound to the specified name. Only one object can be bound to a particular Name in a
context. The lightweight naming service user must use the “rebind” interface to explicitly bind a new object reference to
an existing name.

UserException
(from CORBA)

<<CORBAException>>

AlreadyBound
(from NamingContext)

<<CORBAException>>
Lightweight Services Adopted Specification 15

5.1.2.10 NamingContext::NotEmpty

Description

The NotEmpty user exception.

Attributes

No attributes.

Operations

No operation.

Constraints

No constraints.

Semantics

This exception is raised by destroy if the NamingContext contains bindings. A NamingContext must be empty to be
destroyed.

5.2 Platform Specific Model: CORBA Service

5.2.1 Overview

The following sections specify a platform specific mapping of the Lightweight Naming Service onto the CORBA
platform. The resulting CORBA service is specified in CORBA IDL and represents a fully compatible subset of the
CosNamingService.

5.2.2 CosNaming Module

#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

UserException
(from CORBA)

<<CORBAException>>

NotEmpty
(from NamingContext)

<<CORBAException>>
16 Lightweight Services Adopted Specification

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#endif

module CosNaming
{
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

5.2.2.1 Istring

 typedef string Istring;

5.2.2.2 NameComponent

 struct NameComponent
 {
 Istring id;
 Istring kind;
 };
 typedef sequence<NameComponent> Name;

5.2.2.3 NamingContext

 interface NamingContext
 {

 enum NotFoundReason { missing_node, not_context, not_object };

 exception NotFound

 {
 NotFoundReason why;
 Name rest_of_name;
 };

 exception CannotProceed
 {
 NamingContext cxt;
 Name rest_of_name;
 };

 exception InvalidName {};
 exception AlreadyBound {};
 exception NotEmpty {};

 void bind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName, AlreadyBound);
 void rebind(in Name n, in Object obj)
 raises(NotFound, CannotProceed, InvalidName);
Lightweight Services Adopted Specification 17

 Object resolve (in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 void unbind(in Name n)
 raises(NotFound, CannotProceed, InvalidName);
 NamingContext bind_new_context(in Name n)
 raises(NotFound, AlreadyBound, CannotProceed, InvalidName);
 void destroy()
 raises(NotEmpty);
 };

};
#endif // _COSNAMING_IDL_
18 Lightweight Services Adopted Specification

6 Lightweight Event Service

6.1 Platform Independent Model

6.1.1 Overview

This chapter defines the Platform Independent Model (PIM) for the Lightweight Event Service. The Lightweight Event
Service is intended to be a subset of the Event Service Specification (formal/04-10-02). The packages, interfaces, and
classes appearing in this chapter are intended to model this subset and should map to the IDL for their counterparts in the
Event Service Specification (Version 1.1, formal/01-03-01). The descriptions of the interfaces, operations, and their
semantics are also intended to be identical to those defined by the Event Service Specification (Version 1.1,
formal/01-03-01) over this same subset.

Figure 4 - Lightweight Event Service Packages

CosEventComm
<<CORBAModul e>>

CosEventChannelAdmin
<<CORBAModul e>>
Lightweight Services Specification, v1.0 19

Figure 5 - Lightweight Event Service Packages

6.1.2 The CosLightweightEventComm Package

The CosLightweightEventComm package defines the interfaces for push consumers and push suppliers. Only the push
model is supported by the Lightweight Event Service.

PushConsumer

p ush ()
d isconn ect_pu sh_ con sumer()

(from CosEventComm)

<<CORBAInterface>>
PushSupplier

disconnect_push_supplier()

(from CosEventComm)

<<CORBAInterface>>

ProxyPushCon sume r

connect_push_supplier()

(from CosEventChannelAdmin)

0..*

1

-pu shSuppl ie r

0..*

1

SupplierAdmin

o bta in_ push_consum er()

(from CosEventChannelAdmin)

<<CORBAInterface>>

0...

1

-proxyPushConsumer0...

-suppl ierAd min 1

EventChannel

for_consumers()
for_supp li ers()
destroy()

(from CosEventChannelAdmin)

1

1

-supplierAdmin1

-eventChannel 1

ConsumerAdmin

obtain_push_supplier()

(from CosEventChannelAdmin)

<<CORBAInterface>>

1

1

-consumerAdmin 1

-eventChannel1

PushConsumer

p ush ()
d isconn ect_pu sh_ con sumer()

(from CosEventComm)

<<CORBAInterface>>

ProxyPushSupplier

connect_push_consumer()

(from C osEventChannelAdmin)

0...

1

-proxyPushSupplier 0...

-consumerAdmin1

0..*

1

-pushConsumer

0..*

1

20 Lightweight Services Specification, v1.0

6.1.2.1 Push Consumer

Description

A push-style consumer supports the PushConsumer interface to receive event data.

Attributes

No attributes.

Operations

• push(in data:Any)

A supplier communicates event data to the consumer by invoking the push operation and passing the event data as an
in parameter. The operation raises the exception Disconnected if the event communication has already been termi-
nated.

• disconnect_push_consumer ()

The disconnect_push_consumer operation terminates the event communication; it releases resources used at the con-
sumer to support the event communication. The PushConsumer object reference is disposed.

Associations

No associations.

Constraints

No Constraints.

Semantics

Calling disconnect_push_consumer causes the implementation to call the disconnect_push_supplier operation on the
corresponding PushSupplier interface (if that interface is known).

PushConsumer

push()
disconnect_push_consumer()

<<CORBAInterface>>
Lightweight Services Specification, v1.0 21

6.1.2.2 Push Supplier

Description

A push-style supplier supports the PushSupplier interface.

Attributes

No attributes.

Operations

• disconnect_push_supplier ()

The disconnect_push_supplier operation terminates the event communication; it releases resources used at the supplier
to support the event communication. The PushSupplier object reference is disposed.

Associations

No associations

Constraints

No Constraints.

Semantics

Calling disconnect_push_supplier causes the implementation to call the disconnect_push_consumer operation on the
corresponding PushConsumer interface (if that interface is known).

PushSupplier

disconnect_push_supplier()

<<CORBAInterface>>
22 Lightweight Services Specification, v1.0

6.1.2.3 Disconnected Exception

Description

Disconnected is the exception raised when an attempt is made to transfer an event after event communication has been
terminated. It is a kind of CORBA UserException.

Attributes

No attributes.

Operations

No additional operations.

Associations

No assocication.

Constraints

No constraints.

Semantics

Raised in response to an attempt to push an event after event communication has been terminated. Event communication
may be terminated by the operation disconnect_push_consumer.

6.1.3 The CosLightweightEventChannel Package

The CosLightweightEventChannelAdmin package defines the interfaces for making connections between supplier and
consumers. Only the push model is supported by the Lightweight Event Service.

UserException
(from CORBA)

Disconnected
<<exception>>
Lightweight Services Specification, v1.0 23

6.1.3.1 EventChannel

Description

The EventChannel interface defines three administrative operations: adding consumers, adding suppliers, and destroying
the channel.

Any object that possesses an object reference that supports the EventChannel interface can perform the operations listed
below.

Consumer administration and supplier administration are defined as separate objects so that the creator of the channel can
control the addition of suppliers and consumers. For example, a creator might wish to be the sole supplier of event data
but allow many consumers to be connected to the channel. In such a case, the creator would simply export the
ConsumerAdmin object.

Attributes

No attributes.

Operations

• for_consumers(): ConsumerAdmin

The ConsumerAdmin interface allows consumers to be connected to the event channel. The for_consumers operation
returns an object reference that supports the ConsumerAdmin interface.

• for_suppliers(): SupplierAdmin

ProxyPushSuppl ier

connect_push_consumer()

ConsumerAdmin

ob tain_ push_supplie r()

<<CORBAInterface>>

0.. .

1

-proxyPushSupp lier0.. .

-consumerAdmin1

EventChannel

for_consumers() : Con sumerAdmi n
for_suppl iers() : Sup plierAdmi n
destroy()

1

1

-consumerAdmin 1

-eventChannel1

ProxyPushConsumer

connect_push_supplier()

SupplierAdmin

obtain_push_consumer()

<<CORBAInterface>>

1

1

-supplierAdmin1

-eventChannel 1

0...

1

-proxyPushConsumer 0...

-supplierAdmin 1
24 Lightweight Services Specification, v1.0

The SupplierAdmin interface allows suppliers to be connected to the event channel. The for_suppliers operation
returns an object reference that supports the SupplierAdmin interface.

• destroy()
The destroy operation destroys the event channel.

Associations

• supplierAdmnin: SupplierAdmin [1]
Each event channel has a single associated SupplierAdmin object.

• consumerAdmin: ConsumerAdmin [1]
Each event channel has a single associated ConsumerAdmin object.

Constraints

No constraints.

Semantics

Destroying an event channel destroys all ConsumerAdmin and SupplierAdmin objects that were created via that channel.
Destruction of a ConsumerAdmin or SupplierAdmin object causes the implementation to invoke the disconnect operation
on all proxies that were created via that ConsumerAdmin or SupplierAdmin object.

6.1.3.2 ConsumerAdmin

Description

The ConsumerAdmin interface defines the first step for connecting consumers to the event channel; clients use it to obtain
proxy suppliers.

EventChannel

for_consumers()
for_suppliers()
destroy()

ProxyPushSuppl ier

connect_push_consumer()

ConsumerAdmin

ob tain_push _su ppl ier()

<<CORBAInterface>>

1

1

-consumerAdmin 1

-eventChannel 1

0...

1

-proxyPushSupplier 0...

-consumerAdmin1
Lightweight Services Specification, v1.0 25

Attributes

No attributes.

Operations

• obtain_push_supplier(): ProxyPushSupplier

The obtain_push_supplier operation returns a ProxyPushSupplier object. The ProxyPushSupplier object is then used
to connect a push-style consumer.

Associations

• eventChannel: EventChannel [1]
The EventChannel object with which the ConsumerAdmin object is associated.

• proxyPushSupplier: ProxyPushSupplier [0..*]
A proxy push supplier returned by the obtain_push_supplier operation.

Constraints

No constraints.

Semantics

The ConsumerAdmin interface for the Lightweight Event Service defines only the full Event Service operations needed to
support the push model of event communication. It provides a logical link between the EventChannel object with which
it is associated and the ProxyPushSupplier object to which consumers connect in order to receive events.

6.1.3.3 SupplierAdmin

Description

EventChannel

for_consumers()
for_suppl iers()
destroy()

ProxyPushConsumer

connect_push_supplier()

Suppl ierAdmin

obtain_push_consumer()

<<CORBAInterface>>

1

1

-suppl ierAdmin1

-eventChannel1

0...

1

-proxyP ushConsum er 0...

-supplierAdmin 1

EventChannel

for_consumers()
for_suppl iers()
destroy()

ProxyPushConsumer

connect_push_supplier()

Suppl ierAdmin

obtain_push_consumer()

<<CORBAInterface>>

1

1

-su ppl ie rAdmin1

-eventChannel1

0...

1

-proxyPushConsumer 0...

-su ppl ie rAd min 1
26 Lightweight Services Specification, v1.0

The SupplierAdmin interface defines the first step for connecting suppliers to the event channel; clients use it to obtain
proxy consumers.

Attributes

No attributes.

Operations

• obtain_push_consumer(): ProxyPushConsumer

The obtain_push_consumer operation returns a ProxyPushConsumer object. The ProxyPushConsumer object is then
used to connect a push-style supplier.

Associations

• eventChannel: EventChannel [1]
The EventChannel object with which the SupplierAdmin object is associated.

• proxyPushConsumer: ProxyPushConsumer [0..*]
A proxy push consumer returned by the obtain_push_consumer operation.

Constraints

No constraints.

Semantics

The SupplierAdmin interface for the Lightweight Event Service defines only the full Event Service operations needed to
support the push model of event communication. It provides a logical link between the EventChannel object with which
it is associated and the ProxyPushConsumer object to which suppliers push events.
Lightweight Services Specification, v1.0 27

6.1.3.4 ProxyPushConsumer

Description

The ProxyPushConsumer class defines the second step for connecting push suppliers to the event channel. It realizes the
interface defined by PushConsumer and extends it to support the connection of push suppliers.

Attributes

No attributes.

Operations

• connect_push_supplier(in pushSupplier: PushSupplier)

A nil object reference may be passed to the connect_push_supplier operation; if so, a channel cannot invoke the
disconnect_push_supplier operation on the supplier; the supplier may be disconnected from the channel without being
informed.

If a non-nil reference is passed to connect_push_supplier, the implementation calls disconnect_push_ supplier via that
reference when the ProxyPushConsumer is destroyed.

PushConsumer

push()
disconnect_push_consumer()

(f rom CosEventComm)

<<CORBAInterface>>

EventChannel

for_consumers()
for_suppliers()
destroy()

Su ppl ie rAd min

obtain_push_consumer()

<<CORBAInterface>>

1

1

-supplierAdmin1

-eventChannel1

ProxyPushConsumer

connect_push_supplier(in push_supplier : PushSuppl ier)

0..*

1

-proxyPushConsumer0..*

-supplierAdmin 1

PushSupplier

disconnect_push_supplier()

(from CosEventComm)

<<CORBAInterface>>

1 0..*1

-pushSupplier

0..*
28 Lightweight Services Specification, v1.0

If the ProxyPushConsumer is already connected to the given PushSupplier, then the AlreadyConnected exception
is raised.

Associations

• supplierAdmin: SupplierAdmin [1]
The SupplierAdmin object with which the ProxyPushConsumer object is associated.

• pushSupplier: PushSupplier [0..*]
The PushSupplier objects (if any) connected to the ProxyPushConsumer object.

Constraints

No constraints.

Semantics

The ProxyPushConsumer object acts as a surrogate (proxy) to which suppliers push events.

6.1.3.5 ProxyPushSupplier

Description

PushSupplier

d isconnect_pu sh_ suppl ier()

(from CosEventComm)

<<CORBAInterface>>

EventChannel

for_co nsume rs()
for_su pplie rs()
destro y()

ConsumerAdmin

obtain_push_supplier()

<<CORBA Interfa ce>>

1

1

-consumerAdmin 1

-eventChannel 1

ProxyPushSupplier

conn ect_push_consum er(in push_consumer : Push Consumer)

0..*

1

-proxyPushSupplier0..*

-co nsumerAd min1

Pu shCo nsu mer

push()
disconnect_ push_co nsu mer()

(from CosEventComm)

<<CORBAInterface>>

1 0..*1

-pushConsumer

0..*
Lightweight Services Specification, v1.0 29

The ProxyPushSupplier class defines the second step for connecting push consumers to the event channel. It realizes the
interface defined by PushSupplier and extends it to support the connection of push consumers.

Attributes

No attributes.

Operations

• connect_push_consumer(in pushConsumer: PushConsumer)

Implementations shall raise the CORBA standard BAD_PARAM exception if a nil object reference is passed to the
connect_push_consumer operation.

If the ProxyPushSupplier is already connected to the given PushConsumer, then the AlreadyConnected exception
is raised.

Associations

• consumerAdmin: ConsumerAdmin [1]
The ConsumerAdmin object with which the ProxyPushSupplier object is associated.

• pushConsumer: PushConsumer [0..*]
 The PushConsumer objects (if any) connected to the ProxyPushSupplier object.

Constraints

No constraints.

Semantics

The implementation calls disconnect_push_consumer on the reference passed to connect_push_ consumer when the
ProxyPushSupplier is destroyed.

6.1.3.6 AlreadyConnected Exception

Description

AlreadyConnected is the exception raised when an attempt is made to connect a consumer/producer to a proxy that
already has a connection to the same object. It is a kind of CORBA UserException.

UserException
(from CORBA)

<<CORBAException>>

AlreadyConnected
<<CORBAException>>
30 Lightweight Services Specification, v1.0

Attributes

No attributes.

Operations

No additional operations.

Associations

No associations.

Constraints

No constraints.

Semantics

Raised if an attempt is made to connect a PushConsumer object to a ProxyPushSupplier object when the two are already
connected, or when an attempt is made to connect a PushSupplier object to a ProxyPush Consumer object when the two
are already connected.

6.2 Platform Specific Model: CORBA Service

6.2.1 Overview

The following sections specify a platform specific mapping of the Lightweight Event Service onto the CORBA platform.
The resulting CORBA service is specified in CORBA IDL and represents a fully compatible subset of the
CosEventService.

6.2.2 CosEventChannelAdmin Module

#include <CosEventComm.idl>
#pragma prefix "omg.org"
module CosEventChannelAdmin {
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

 exception AlreadyConnected {};
exception TypeError {};

6.2.2.1 ProxyPushConsumer

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};
Lightweight Services Specification, v1.0 31

6.2.2.2 ProxyPushSupplier

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);

};

6.2.2.3 ConsumerAdmin

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();

};

6.2.2.4 SupplierAdmin

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();

};

6.2.2.5 EventChannel

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};

};

#endif /* ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_ */

6.2.3 CosEventComm Module

//File: CosEventComm.idl
//Part of the Event Service

#ifndef _COS_EVENT_COMM_IDL_
#define _COS_EVENT_COMM_IDL_
#pragma prefix "omg.org"
module CosEventComm
{

ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";

endif // _PRE_3_0_COMPILER_

exception Disconnected{};
32 Lightweight Services Specification, v1.0

6.2.3.1 PushConsumer

interface PushConsumer
{

void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

6.2.3.2 PushSupplier

 interface PushSupplier
{

void disconnect_push_supplier();
};

};
#endif /* ifndef _COS_EVENT_COMM_IDL_ */
Lightweight Services Specification, v1.0 33

34 Lightweight Services Specification, v1.0

7 Lightweight Time Service

7.1 Platform Independent Model

7.1.1 Overview

This section defines the Platform Independent Model (PIM) for the Lightweight Time Service. The Lightweight Time
Service is intended to be a subset of the Enhanced View of Time Service, v1.2 (formal/04-10-04). The packages,
interfaces, and classes appearing in this chapter are intended to model this subset and should map to the IDL for their
counterparts in the CORBA Enhanced View of Time Service Specification (Version 1.1, formal/02-05-07). The
descriptions of the interfaces, operations and their semantics are also intended to be identical to those defined by the
CORBA Enhanced View of Time Service Specification (Version 1.1, formal/02-05-07) over this same subset.

7.1.2 Minor Conformance Points

The platform independent model of the Lightweight Time Service supports two optional minor conformance points:
Support of Multiple Clocks and Support of Periodic Execution Control.

• Support of Multiple Clocks

This conformance point controls the presence or absense of an optional model section. If the conformance point evalu-
ates to true, the ClockCatalog interface and the ClockEntry structure.are included in the model, providing support for
multiple clocks.

• Support of Periodic Execution Control

This conformance point controls the presence or absense of an optional model section. If the conformance point evalu-
ates to true, the PeriodicExecution package is included in the model, thus providing support for clock-controlled peri-
odic execution.

Figure 6 - Lightweight Time Service Package Structure

L igh twe igh tTime
<<CORBAMod ule >>

ClockProperty
<<CORBAModule>>

(from LightweightTime)

PeriodicExecution
<<CORB AModule>>

(from LightweightTime)
Lightweight Services Specification, v1.0 35

Figure 7 - Lightweight Time Service Interfaces and Classes

PropertySet M

TimeT M

Clo ck
(from LightweightTime)

<<CORBAInterface>>

+properties

{readOnly}

1

+current_time

1
{readOn ly

getRaise s = (Ti meUnavai lable)}

Clock
(from Lig htweig htTime)

<<CORBAInterface>>

ClockEntry

name : string

(from ClockCatalog)

<<CORBAStruct>>

+sub ject

ControlledClock

set()
set_rate()
pause()
resume()
terminate()

(from LightweightTime)

<<CORBAInterface>>

ClockEntry
(from ClockCatalog)

<<CORBAStruct>>ClockEntries
(from ClockCatalog)

<<CORBASequence>>

1
in dex : l ong {0..* }

0..1
1

0..1

in dex : l ong {0..* }

ClockCatalog

get_entry()
available_entries()
register()
delete_entry()

(from LightweightTime)

<<CORBAInterface>>

1-clockEntries 1
36 Lightweight Services Specification, v1.0

7.1.3 The LightweightTime Package

The LightweightTime package defines interfaces for finding a clock reading, a time source, controlling a clock, and
support for periodic execution. Synchronization of clocks is not supported in the LightweightTime package.

7.1.3.1 Clock

Description

Base interface for all clocks.

Attributes

No attributes.

Operations

No operations.

Associations

• properties: PropertySet [1]
Points to a PropertySet holding the specific properties of the clock.

• current_time: TimeT [1]
Points to a data element holding the current time as a 64-bit value with a resolution of 100 nanoseconds.

Prope rtySe t M

TimeT M

Clock
(from LightweightTime)

<<CORBAInterface>>

+properties

{readOnly}

1

+current_time

1
{readOnly

getRaises = (TimeUnavailable)}

ControlledClock

set()
set_rate()
pause()
resume()
terminate()

(from LightweightTime)

<<CORBAInterface>>
Lightweight Services Specification, v1.0 37

Constraints

No constraints.

Semantics

This is the base interface for all clocks defined in the Lightweight Time Service. It provides configurability for the clock
via properties (name-value pairs) and access to a time base.

7.1.3.2 ControlledClock

Description

A user-controllable specialization of the Clock interface.

Attributes

No attributes.

Operations

• set(in t0: TimeT)
This operation sets the controllable clock to the specified specific time.

• set_rate(in ratio: Float)
This operation allows a clock to be speeded up or slowed down (or run backwards). The parameter indicates the ratio
of the elapse of the clock’s readout to the real passage of time.

• pause()
This operation pauses the apparent elapse of time.

• resume()
This operation resumes the apparent elapse of time.

• terminate()
This operation stops the controlled clock permanently.

Associations

No additional associations.

Constraints

No Constraints.

Semantics

The ControlledClock is a specialization of the Clock interface. It provides the ability to set the clock to a certain value,
control the apparent “speed” (time elapse rate), and to pause and resume the clock under user control.
38 Lightweight Services Specification, v1.0

7.1.3.3 ClockCatalog

This interface is part of the optional minor conformance point “Support of Multiple Clocks.”

Description

A lightweight catalog of available clocks.

Attributes

No attributes.

Operations

• get_entry(in name: String): ClockEntry
Returns a single clock entry holding the information about a particular clock. The clock entry is selected via the clock
entry name.

• available_entries(): ClockEntries
Returns the whole catalog to allow the client the application of a more specific selection mechanism, as for example by
a specific property.

• register(in entry: ClockEntry)
Register a new clock entry in the catalog.

• delete_entry()
Permanently removes a clock entry from the clock catalog.

Associations

• clockEntries: ClockEntries[1]
The encapsulation of the clock entry catalog content.

Constraints

No constraints.

Clo ckEn try
(from ClockCatalog)

<<CORBAStruct>>ClockEntries
(from Cl ockCatalog)

<<CORBASeque nce>>

1
index : long {0..*}

0..1
1

0..1

index : long {0..*}

ClockCatalo g

get_entry()
available_entries()
register()
delete_entry()

(from LightweightTime)

<<CORBAInterface>>

1-clockEntries 1
Lightweight Services Specification, v1.0 39

Semantics

The ClockCatalog is the user-visible interface to a single-level lightweight trader service equivalent, holding information
about available clock definitions.

7.1.3.4 ClockEntries

This set is part of the optional minor conformance point “Support of Multiple Clocks.”

Description

The set holding the individual clock entries.

Attributes

No attributes.

Operations

No operations.

Associations

• clockEntry: ClockEntry[*]
The actual set holding the individual entries in the clock catalog.

Constraints

No constraints.

Semantics

Provides an encapsulation for the set of individual clock information entries.

7.1.3.5 ClockEntry

This interface is part of the optional minor conformance point “Support of Multiple Clocks.”

Description

An individual entry in the clock catalog.

Attributes

• name: String [1]
The ClockEntry name.

Clock
(from LightweightTime)

<<CORBAInterface>>

ClockEn try

name : string
(from ClockCatalog)

<<CORBASt ruct>>

+subject
40 Lightweight Services Specification, v1.0

Operations

No operations.

Associations

• clockl: Clock [1]
The clock definition represented by this catalog entry.

Constraints

No constraints.

Semantics

A ClockEntry consists of a name (unique within the catalog) and a reference to a particular clock definition.

Figure 8 - Lightweight Time Service Exceptions

7.1.3.6 TimeUnavailable

Description

TimeUnavailable exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

UserException
(from CORBA)

<<CORBAException>>

TimeUnavailable
<<CORBAException>>

UnknownEntry
(from ClockCatalog)

<<CORBAException>>

NotSupported
(from ControlledClock)

<<CORBAException>>
TimePast

(from Controller)

<<CORBAException>>
Lightweight Services Specification, v1.0 41

Constraints

No constraints.

Semantics

This exception is raised whenever the underlying clock fails, or is unable to provide time that meets the required security
assurance.

7.1.3.7 UnknownEntry

Description

UnknownEntry exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.

Semantics

Indicates that the catalog contains no entry with the given name.

7.1.3.8 NotSupported

Description

NotSupported exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.
42 Lightweight Services Specification, v1.0

Semantics

The NotSupported exception may be raised if the operation is not supported for the instance of the ControlledClock, or
if its characteristics disallow the operation. For example, the rate of a ControlledClock may not be settable. Other clocks
may not be allowed to run “backwards.”

7.1.3.9 TimePast

Description

TimePast exception.

Attributes

No attributes.

Operations

No operations.

Associations

No associations.

Constraints

No constraints.

Semantics

Raised by the start_at or resume_at operations if the requested time is in the past.

7.1.4 The ClockProperty Package

This package contains only data definitions. They constitute the minimum set of properties required for any clock.

7.1.4.1 Resolution

Description

Defines the apparent clock resolution.

R e so l u t i o n
(fr om C lockPr oper ty)

< < C O R BA T y p e de f >>

u n si gn e d l o n g
(fr om C O R BA)

< < C O R B A P ri m i t i ve > >
Lightweight Services Specification, v1.0 43

Constraints

Must be specified in units of nanoseconds.

Semantics

No special semantics.

7.1.4.2 Precision

Description

Defines the apparent clock precision.

Constraints

No constraints.

Semantics

Raised by the start_at or resume_at operations if the requested time is in the past.

7.1.4.3 Width

Description

P re ci si o n
(from C lockProper ty)

<<CO RB A T yp e De f>>

sh o rt
(from C OR BA)

<<CO RB A P rim i ti ve >>

W i dt h
(from C loc kProper ty)

< < C O R BA T y p e de f >>

u n si g n e d sh o rt
(fr om C O R BA)

< < C O R B A P ri m i t i ve > >
44 Lightweight Services Specification, v1.0

Number of bits in clock readout.

Constraints

No constraints.

Semantics

Commonly used readout widths are less or equal 64 bits.

7.1.4.4 Stability_Description

Description

Describes the clock stability.

Constraints

No constraints.

Semantics

No special semantics.

Stab i l i ty_Descrip tion
(from C lockProperty)

<<CORBAT y pede f>>

stri ng
(from CORBA)

<<CORBAprim i ti ve>>
Lightweight Services Specification, v1.0 45

7.1.4.5 Coordination

Description

Defines the clock coordination method.

Constraints

Under the Lightweight Time Service, Coordination is restricted to the following set of values:

Semantics

No special semantics.

7.1.4.6 TimeScale

Description

Defines the time scale used by the clock.

Name Value Meaning

Uncoordinated 0 only static characterization is available

Coo rdination
(from ClockProperty)

<<CORBATypedef>>

short
(from CORBA)

<<CORBAPrimitive>>

T i m e S ca l e
(fr om C lockProper ty)

< < CO R B A T yp e D e f> >

sh o rt
(fr om C O R BA)

< < CO R B A P ri m i t i ve > >
46 Lightweight Services Specification, v1.0

Constraints

Under the Lightweight Time Service, TimeScale is restricted to the following set of values:

Semantics

No special semantics.

7.1.4.7 Comments

Description

For supplemental comments.

Constraints

No constraints.

Name Value Meaning

Unknown -1

TAI 0 International Atomic Time

UT0 1 diurnal day

UT1 2 + polar wander

UTC 3 TAI + leap second

TT 4 terrestrial time

TDB 5 Barycentric Dynamical Time

TCG 6 Geocentric Coordinated Time

TCB 7 Barycentric Coordinated Time

Sidereal 8 hour angle of veneral equinox

Local 9 UTC + time zone

GPS 10 Global Positioning System

Other 0x7fff e.g., mission

C o m m e n ts
(fr om C loc kP r ope r ty)

< < C O R B A T y p e D e f> >

st ri n g
(fr om C O R B A)

< < C O R B A p ri m i t i v e > >
Lightweight Services Specification, v1.0 47

Semantics

No special semantics.

7.1.5 The PeriodicExecution Package

This package is part of the optional minor conformance point “Support of Periodic Execution Control.”

7.1.5.1 Controller

This interface is part of the optional minor conformance point “Support of Periodic Execution Control.”

Description

Controls periodic execution.

Attributes

No attributes.

Operations

• start(in period: TimeT, in with_offset: TimeT, in execution_limit: unsigned long, in params: Any)

Initiates periodic execution with a specified period for a specified count of executions. Specifying an execution limit of
0 is interpreted as an unbounded number of executions. The with_offset parameter may be used to delay the start of the
first execution. The value of the type any parameter params will be passed to each invocation.

• start_at(in period: TimeT, in at_time: TimeT, in execution_limit: unsigned long, in params: Any)

Identical to the start operation except that the at_time parameter specifies an absolute time for the start of the first exe-
cution.

• pause()
Pauses periodic execution.

• resume()
Resumes periodic execution immediately.

• resume_at(in at_time: TimeT)
Resumes periodic execution at a particular time.

Controller

start(in period : TimeT, in with_offset : TimeT, in execution_limit : unsigned long, in params : Any)
start_at(in period : TimeT, in at_time : TimeT, in execution_limit : unsigned long, in params : Any)
pause()
resume()
resume_at(in at_time : TimeT)
termiante()
executions() : unsigned long

<<CORBAInterface>>
48 Lightweight Services Specification, v1.0

• terminate()
Terminates periodic execution.

• executions(): unsigned long
Reports the number of periodic executions that have already been initiated.

Associations

No associations.

Constraints

No constraints.

Semantics

This interface provides control over periodic execution. The appropriate object has been registered with the clock and
must specialize the Periodic interface.

7.1.5.2 Executor

This interface is part of the optional minor conformance point “Support of Periodic Execution Control.”

Description

Register an object for periodic execution.

Attributes

No attributes.

Operations

• enable_periodic(in on: Periodic): Controller

Registers an object that specializes the Periodic interface for periodic execution. The operation returns a reference to
the associated Controller interface.

Executor

enab le_ perio dic_execu ti on(in o n : Perio dic) : Control ler

<<CORBAInterface>>

Clock
(from LightweightTime)

<<CORBAInterface>>
Lightweight Services Specification, v1.0 49

Associations

No associations.

Constraints

No constraints.

Semantics

The Executor is an interface for a factory that associates the specified object with a clock capable of supporting periodic
execution. The registered object must specialize the Periodic interface. The Executor interface returns a reference to the
Controller interface associated with this periodic execution.

7.1.5.3 Periodic

This interface is part of the optional minor conformance point “Support of Periodic Execution Control.”

Description

Make an object capable for periodic execution.

Attributes

No attributes.

Operations

• do_work(in params: Any): boolean

The do_work operation will be periodically invoked by this service. Each invocation will be passed the type any value
registered by the start or start_at operations on the Controller instance. The user implementation of the do_work oper-
ation should return a value of TRUE to continue periodic invocation; a value of FALSE will terminate periodic invoca-
tion.

Associations

No associations.

Constraints

No constraints.

Periodic

do_work(params : Any) : boolean

<<CORBAInterface>>
50 Lightweight Services Specification, v1.0

Semantics

Instances of objects that are to be periodically executed must specialize and implement the Periodic interface. This means
they must provide a do_work operation, and a means to enter a “ready to execute” state prior to registration with a clock.

7.2 Platform Specific Model: CORBA Service

7.2.1 Overview

The following sections specify a platform specific mapping of the Lightweight Time Service onto the CORBA platform.
The resulting CORBA service is specified in CORBA IDL and represents a fully compatible subset of the Enhanced View
of Time service, version 1.1

7.2.2 Minor Conformance Points

The platform specific model of the Lightweight Time Service supports the two minor conformance points of the platform
independent model: Support of Multiple Clocks and Support of Periodic Execution Control. The selection of the
corresponding features in the IDL definition is controlled by two preprocessor symbols controlling sets of conditional
compilation preprocessor directives.

• LW_TIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS

If this preprocessor symbol is defined, support for multiple clocks is activated by including the ClockCatalog interface
and the ClockEntry structure.

• LW_TIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL

If this preprocessor symbol is defined, the PeriodicExecution module is enabled, which contains support for clock-con-
trolled periodic execution.

7.2.3 LightweightTime Module

#include <TimeBase.idl>
#include <CosPropertyService.idl>
#pragma prefix "omg.org"
module LightweightTime
{
ifndef _PRE_3_0_COMPILER_
 typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

interface Clock;

7.2.3.1 ClockProperty Module

module ClockProperty
{

// the minimum set of properties to be supported for a clock
typedef unsigned long Resolution; // units = nanoseconds
typedef short Precision; // ceiling of log_2(seconds
Lightweight Services Specification, v1.0 51

// signified by least significant
// bit of time readout)

typedef unsigned short Width; // no. of bits in readout -
// usually <= 64

typedef string Stability_Description;
typedef short Coordination;
const Coordination Uncoordinated = 0; // only static characterization

 // is available

typedef short TimeScale;
// possible values for TimeScale (“pseudo-enumeration”)

const TimeScale Unknown = -1;
const TimeScale TAI = 0; // International Atomic Time
const TimeScale UT0 = 1; // diurnal day
const TimeScale UT1 = 2; // + polar wander
const TimeScale UTC = 3; // TAI + leap seconds
const TimeScale TT = 4; // terrestrial time
const TimeScale TDB = 5; // Barycentric Dynamical Time
const TimeScale TCG = 6; // Geocentric Coordinate Time
const TimeScale TCB = 7; // Barycentric Coordinate Time
const TimeScale Sidereal = 8; // hour angle of vernal equinox
const TimeScale Local = 9; // UTC + time zone
const TimeScale GPS = 10; // Global Positioning System
const TimeScale Other = 0x7fff; // e.g. mission

// end of pseudo-enumeration

typedef string Comments;

}; // end of module ClockProperty

exception TimeUnavailable {};

7.2.3.2 Clock Interface

// the basic clock interface
interface Clock // a source of time readings
{

readonly attribute CosPropertyService::PropertySet properties;
readonly attribute TimeBase::TimeT current_time
getRaises(TimeUnavailable);

};

7.2.3.3 ClockCatalog Interface

#ifdef LWTIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS

// alternative to Trader service (e.g., for embedded systems)
// Optional for system support of multiple clocks.
interface ClockCatalog
{

struct ClockEntry
52 Lightweight Services Specification, v1.0

{
Clock subject;
string name;

};

typedef sequence<ClockEntry> ClockEntries;
exception UnknownEntry {};
ClockEntry get_entry(in string with_name) raises (UnknownEntry);
ClockEntries available_entries();
void register(in ClockEntry entry);
void delete_entry(in string with_name) raises (UnknownEntry);

};

#endif // LWTIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS

7.2.3.4 ControllableClock Interface

// a controllable clock
interface ControlledClock: Clock
{

exception NotSupported {};
void set(in TimeBase::TimeT to) raises (NotSupported);
void set_rate(in float ratio) raises (NotSupported);
void pause() raises (NotSupported);
void resume() raises (NotSupported);
void terminate() raises (NotSupported);

};

7.2.4 PeriodicExecution Module

// Optional for Lightweight Time.

#ifdef LWTIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL

module PeriodicExecution
{

7.2.4.1 Periodic Interface

// (conceptually abstract) base for objects that can be
// invoked periodically
interface Periodic
{

boolean do_work(in any params); // return FALSE terminates
// periodic execution

};

7.2.4.2 Controller Interface

// control object for periodic execution
interface Controller
Lightweight Services Specification, v1.0 53

{
exception TimePast {};
void start(in TimeBase::TimeT period,

 in TimeBase::TimeT with_offset,
 in unsigned long execution_limit, // 0 = no limit
 in any params);

void start_at(in TimeBase::TimeT period,
 in TimeBase::TimeT at_time,
 in unsigned long execution_limit, // 0 = no limit
 in any params) raises (TimePast);

void pause();
void resume();
void resume_at(in TimeBase::TimeT at_time) raises(TimePast);
void terminate();
unsigned long executions();

};

7.2.4.3 Executor Interface

// factory clock for periodic execution
interface Executor : Clock
{

Controller enable_periodic_execution(in Periodic on);
};

}; // end of module PeriodicExecution

#endif // LWTIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL

}; //end of module LightweightTime

#endif // _LightweightTime_IDL_
54 Lightweight Services Specification, v1.0

Annex A
(non-normative)

OMG IDL

The following sections contain the complete OMG IDL for the Lightweight Services. The IDL specifications in the full service
specifications continue to be the normative definition for each interface. Operations that are termed disabled in Lightweight
Services implementations may raise either BAD_OPERATION or NO_IMPLEMENT exceptions when they are
invoked. This flexibility allows the lightweight services to avoid extra overhead in the service implementation skeletons and
removes any requirement for clients to test explicitly for disabled operations. In cases where the operations is termed optional,
NO_IMPLEMENT is preferred over BAD_OPERATION. However, the Lightweight Service implementer may use
BAD_OPERATION for the optional interfaces to meet the constraints of their embedded system.

A.1 OMG IDL for Lightweight Naming Service

//File: CosNaming.idl

//The only module of the Naming Service

#ifndef _COS_NAMING_IDL_
#define _COS_NAMING_IDL_

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#endif

module CosNaming
{
ifndef _PRE_3_0_COMPILER_
typeprefix "omg.org";
endif // _PRE_3_0_COMPILER_

typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};

typedef sequence <NameComponent> Name;

#ifndef LIGHTWEIGHT_SERVICE
enum BindingType {nobject, ncontext};

struct Binding {
Name binding_name;
Lightweight Services Specification, v1.0 55

BindingType binding_type;
};

typedef sequence <Binding> BindingList;
interface BindingIterator;

#endif

interface NamingContext {

enum NotFoundReason {missing_node,
not_context,
not_object};

 exception NotFound { NotFoundReason why;
Name rest_of_name;};

exception CannotProceed { NamingContext cxt;
Name rest_of_name;};

 exception InvalidName{};
exception AlreadyBound {};
exception NotEmpty{};

void bind(in Name n, in Object obj)
raises(NotFound,

CannotProceed,
InvalidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound,

CannotProceed,
InvalidName);

#ifndef LIGHTWEIGHT_SERVICE
void bind_context(in Name n, in NamingContext nc)

raises(NotFound,
CannotProceed,
InvalidName,
AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound,

CannotProceed,
InvalidName);

#endif
Object resolve (in Name n)

raises(NotFound,
CannotProceed,
InvalidName);

void unbind(in Name n)
raises(NotFound,

CannotProceed,
InvalidName);
56 Lightweight Services Specification, v1.0

#ifndef LIGHTWEIGHT_SERVICE
NamingContext new_context();

#endif
NamingContext bind_new_context(in Name n)

raises(NotFound,
AlreadyBound,
CannotProceed,
InvalidName);

void destroy()
raises(NotEmpty);

#ifndef LIGHTWEIGHT_SERVICE
void list (in unsigned long how_many,

out BindingList bl,
out BindingIterator bi);

#endif
 };

#ifndef LIGHTWEIGHT_SERVICE
interface BindingIterator {

boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

 out BindingList bl);
void destroy();

};

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n)
raises(InvalidName);

Name to_name(in StringName sn)
raises(InvalidName);
exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName sn)
raises(NotFound,

CannotProceed,
InvalidName,
AlreadyBound);

NamingContext resolve_context (in Name n)
raises(NotFound,

CannotProceed,
InvalidName);

};
#endif
Lightweight Services Specification, v1.0 57

};
#endif /* ifndef _COS_NAMING_IDL_ */

A.2 OMG IDL for Lightweight Event Service

A.2.1 LightweightCosEventChannelAdmin.idl

//File: CosEventChannelAdmin.idl
//Part of the Event Service

#ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_
#define _COS_EVENT_CHANNEL_ADMIN_IDL_

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#else
 typeprefix "omg.org";
#endif

#include <CosEventComm.idl>

module CosEventChannelAdmin {

 exception AlreadyConnected {};
exception TypeError {};

interface ProxyPushConsumer: CosEventComm::PushConsumer {
void connect_push_supplier(

in CosEventComm::PushSupplier push_supplier)
raises(AlreadyConnected);

};

#ifndef LIGHTWEIGHT_SERVICE
interface ProxyPullSupplier: CosEventComm::PullSupplier {

void connect_pull_consumer(
in CosEventComm::PullConsumer pull_consumer)

raises(AlreadyConnected);
};

interface ProxyPullConsumer: CosEventComm::PullConsumer {
void connect_pull_supplier(

in CosEventComm::PullSupplier pull_supplier)
raises(AlreadyConnected,TypeError);

};
#endif

interface ProxyPushSupplier: CosEventComm::PushSupplier {
void connect_push_consumer(

in CosEventComm::PushConsumer push_consumer)
raises(AlreadyConnected, TypeError);
58 Lightweight Services Specification, v1.0

};

interface ConsumerAdmin {
ProxyPushSupplier obtain_push_supplier();

#ifndef LIGHTWEIGHT_SERVICE
ProxyPullSupplier obtain_pull_supplier();

#endif
};

interface SupplierAdmin {
ProxyPushConsumer obtain_push_consumer();

#ifndef LIGHTWEIGHT_SERVICE
ProxyPullConsumer obtain_pull_consumer();

#endif
};

interface EventChannel {
ConsumerAdmin for_consumers();
SupplierAdmin for_suppliers();
void destroy();

};
};
#endif /* ifndef _COS_EVENT_CHANNEL_ADMIN_IDL_ */

A.2.2 LightweightCosEventComm.idl

//File: CosEventComm.idl
//Part of the Event Service

#ifndef _COS_EVENT_COMM_IDL_
#define _COS_EVENT_COMM_IDL_

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#else
 typeprefix "omg.org";
#endif

module CosEventComm {

exception Disconnected{};

interface PushConsumer {
void push (in any data) raises(Disconnected);
void disconnect_push_consumer();

};

 interface PushSupplier {
void disconnect_push_supplier();
Lightweight Services Specification, v1.0 59

};

#ifndef LIGHTWEIGHT_SERVICE
interface PullSupplier {

any pull () raises(Disconnected);
any try_pull (out boolean has_event)

raises(Disconnected);
void disconnect_pull_supplier();

};

interface PullConsumer {
void disconnect_pull_consumer();

};
#endif
};
#endif /* ifndef _COS_EVENT_COMM_IDL_ */

A.3 OMG IDL for Lightweight Enhanced View of Time Service

//Enhanced View of Time, v1.0 - OMG IDL Summary File
//Object Management Group, Inc.
//
//Copyright 1999, Objective Interface Systems, Inc.
//Copyright 2001, Object Management Group, Inc.

//The companies listed above have granted to the Object Management Group, Inc.
//(OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and
//distribute this document and to modify this document and distribute copies of
//the modified version. Each of the copyright holders listed above has agreed
//that no person shall be deemed to have infringed the copyright in the included
//material of any such copyright holder by reason of having used the
//specification set forth herein or having conformed any computer software to
//the specification.
//
//This file contains OMG IDL from the Enhanced View of Time, v1.0 specification.
//OMG regularly publishes a summary file that contains all the "code" parts of
//an OMG formal document. Every formal document line that is IDL, PIDL, or
//language code is included in the summary file. The reason for such a listing
//is to give readers an electronic version of the "code" so that they can
//extract pieces of it. Readers might want to test an example, include it in
//their own code, or use it for documentation purposes. Having the code lines
//available electronically means there is less likelihood of a transcription
//error.

//File: CosClockService.idl
#ifndef _CosClockService_IDL_
#define _CosClockService_IDL_

// This module comprises the COS Clock service
60 Lightweight Services Specification, v1.0

#include <TimeBase.idl>
#include <CosPropertyService.idl>

#ifdef _PRE_3_0_COMPILER_
pragma prefix "omg.org"
#else
 typeprefix "omg.org";
#endif
module CosClockService
{

interface Clock;

module ClockProperty
{

// the minimum set of properties to be supported for a clock typedef unsigned long Resolution;
// units = nanoseconds typedef short Precision;
// ceiling of log_2(seconds signified by least
// significant bit of time readout) typedef unsigned short Width;
// no. of bits in readout - usually <= 64 typedef string Stability_Description;

 typedef short Coordination;
 const Coordination Uncoordinated = 0; // only static characterization

 // is available
#ifndef LIGHTWEIGHT_SERVICE

 const Coordination Coordinated = 1; // measured against another
 // source
 const Coordination Faulty = 2; // e.g., there is a bit stuck

 // the following are only applicable for coordinated clocks
 struct Offset
 {
 long long measured; // units = 100 nanoseconds
 long long deliberate; // units = 100 nanoseconds
 };

 typedef short Measurement;
 const Measurement Not_Determined = 0; // has not been measured
 const Measurement Discontinuous = 1; // e.g., one clock is paused
 const Measurement Available = 2; // has been measured

 typedef float Hz;
 struct Skew
 {
 Measurement available;
 Hz measured; // only meaningful if available = Available - in Hz
 Hz deliberate; // in Hz
 };
 typedef float HzPerSec;
 struct Drift
Lightweight Services Specification, v1.0 61

 {
 Measurement available;
 HzPerSec measured; // meaningful if available = Available
 // in Hz/sec
 HzPerSec deliberate; // in Hz/sec
 };

#endif

 typedef short TimeScale;
 const TimeScale Unknown = -1;
 const TimeScale TAI = 0; // International Atomic Time
 const TimeScale UT0 = 1; // diurnal day
 const TimeScale UT1 = 2; // + polar wander
 const TimeScale UTC = 3; // TAI + leap seconds
 const TimeScale TT = 4; // terrestrial time
 const TimeScale TDB = 5; // Barycentric Dynamical Time
 const TimeScale TCG = 6; // Geocentric Coordinate Time
 const TimeScale TCB = 7; // Barycentric Coordinate Time
 const TimeScale Sidereal = 8; // hour angle of vernal equinox
 const TimeScale Local = 9; // UTC + time zone
 const TimeScale GPS = 10; // Global Positioning System
 const TimeScale Other = 0x7fff; // e.g. mission

#ifndef LIGHTWEIGHT_SERVICE
 typedef short Stratum;
 const Stratum unspecified = 0;
 const Stratum primary_reference = 1;
 const Stratum secondary_reference_base = 2;

 typedef Clock CoordinationSource; // what clock is coordinating with

#endif
 typedef string Comments;

 };

 exception TimeUnavailable {};

 // the basic clock interface
 interface Clock // a source of time readings
 {

 readonly attribute CosPropertyService::PropertySet properties;
 readonly attribute TimeBase::TimeT current_time
 getRaises(TimeUnavailable);

 };

#ifndef LIGHTWEIGHT_SERVICE
 enum TimeComparison
 {

TCEqualTo,
 TCLessThan,
 TCGreaterThan,
 TCIndeterminate
62 Lightweight Services Specification, v1.0

 };

 enum ComparisonType
 {

 IntervalC,
 MidC

 };

 enum OverlapType
 {

 OTContainer,
 OTContained,
 OTOverlap,
 OTNoOverlap

 };

 valuetype TimeSpan;

 // replaces UTO from CosTime
 valuetype UTC
 {

 factory init(in TimeBase::UtcT from);
 factory compose(in TimeBase::TimeT time,

in unsigned long inacclo,
in unsigned short inacchi,
in TimeBase::TdfT tdf);

 public TimeBase::TimeT time;
 public unsigned long inacclo;
 public unsigned short inacchi;
 public TimeBase::TdfT tdf;

 TimeBase::InaccuracyT inaccuracy();
 TimeBase::UtcT utc_time();

 TimeComparison compare_time(in ComparisonType comparison_type,
 in UTC with_utc);
 TimeSpan interval();

 };

 // replaces TIO from CosTime
 valuetype TimeSpan
 {

 factory init (in TimeBase::IntervalT from);
 factory compose(in TimeBase::TimeT lower_bound,

 in TimeBase::TimeT upper_bound);

 public TimeBase::TimeT lower_bound;
 public TimeBase::TimeT upper_bound;
 TimeBase::IntervalT time_interval();
 OverlapType spans (

in UTC time,
Lightweight Services Specification, v1.0 63

out TimeSpan overlap
);

 OverlapType overlaps (
in TimeSpan other,
out TimeSpan overlap
);

 UTC time ();
 };

 // replaces TimeService from CosTime
 interface UtcTimeService : Clock
 {

 UTC universal_time() raises(TimeUnavailable);
 UTC secure_universal_time() raises(TimeUnavailable);
 UTC absolute_time(in UTC with_offset) raises(TimeUnavailable);

 };
#endif
#if !defined(LIGHTWEIGHT_SERVICE) || defined(LWTIME_HAS_SUPPORT_OF_MULTIPLE_CLOCKS)
 // alternative to Trader service (e.g., for embedded systems)
 interface ClockCatalog
 {
 struct ClockEntry
 {

 Clock subject;
 string name;
 };
 typedef sequence<ClockEntry> ClockEntries;
 exception UnknownEntry {};

 ClockEntry get_entry(in string with_name) raises (UnknownEntry);
 ClockEntries available_entries();
 void register(in ClockEntry entry);
 void delete_entry(in string with_name) raises (UnknownEntry);
 };
#endif

 // a controllable clock
 interface ControlledClock: Clock
 {
 exception NotSupported {};
 void set(in TimeBase::TimeT to) raises (NotSupported);
 void set_rate(in float ratio) raises (NotSupported);
 void pause() raises (NotSupported);
 void resume() raises (NotSupported);
 void terminate() raises (NotSupported);
 };

#ifndef LIGHTWEIGHT_SERVICE
 // useful for building user synchronized clocks
 interface SynchronizeBase : Clock
64 Lightweight Services Specification, v1.0

 {

 struct SyncReading

 {

 TimeBase::TimeT local_send;

 TimeBase::TimeT local_receive;

 TimeBase::TimeT remote_reading;

 };

 SyncReading synchronize_poll(in Clock with_master);

 };

 interface SynchronizedClock;

 exception UnableToSynchronize
 {
 TimeBase::InaccuracyT minimum_error;
 };

 // allows definition of a new clock that uses the underlying hardware source
 // of the existing clock but adjusts to synchronize with a master clock
 interface Synchronizable : SynchronizeBase
 {
 const TimeBase::TimeT Forever = 0xFFFFFFFFFFFFFFFF;

 SynchronizedClock new_slave
 (in Clock to_master,
 in TimeBase::InaccuracyT to_within,

 // synchronization envelope
 in short retry_limit,

 // if unable to attain accuracy
 in TimeBase::TimeT minimum_delay_between_syncs,

 // limits network traffic,
 // Forever precludes auto resync
 in CosPropertyService::Properties properties
 // if null list, then inherit
 // properties of self

) raises (UnableToSynchronize);

 };

 // able to explicitly control synchronization
 interface SynchronizedClock : Clock
 {
Lightweight Services Specification, v1.0 65

 void resynch_now() raises (UnableToSynchronize);
 };
#endif

#if !defined(LIGHTWEIGHT_SERVICE) ||
defined(LWTIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL)
 module PeriodicExecution
 {

 // (conceptually abstract) base for objects that can be invoked periodically
 interface Periodic
 {
 boolean do_work(in any params);
 // return FALSE terminates periodic execution
 };

 // control object for periodic execution
 interface Controller
 {
 exception TimePast {};
 void start
 (in TimeBase::TimeT period,

 in TimeBase::TimeT with_offset,
 in unsigned long execution_limit, // 0 = no limit
 in any params);

 void start_at
 (in TimeBase::TimeT period,

 in TimeBase::TimeT at_time,
 in unsigned long execution_limit, // 0 = no limit
 in any params) raises (TimePast);

 void pause();
 void resume();
 void resume_at(in TimeBase::TimeT at_time) raises(TimePast);
 void terminate();
 unsigned long executions();
 };

 // factory clock for periodic execution
 interface Executor : Clock
 {
 Controller enable_periodic_execution(in Periodic on);
 };
#endif // LWTIME_HAS_SUPPORT_OF_PERIODIC_EXECUTION_CONTROL
 };

};
#endif // _CosClockService_IDL_
66 Lightweight Services Specification, v1.0

	1 Scope
	2 Conformance
	2.1 Summary of optional versus mandatory interfaces
	2.2 Proposed major conformance points
	2.2.1 Proposed minor conformance points

	3 Normative References
	3.1 UML Specifications
	3.1.1 UML Language Specification
	3.1.2 UML Profile for CORBA Specification

	3.2 CORBA Core Specifications
	3.2.1 CORBA Specification
	3.2.2 Minimum CORBA Specification

	3.3 CORBA Services Specifications
	3.3.1 Naming Service Specification
	3.3.2 Event Service Specification
	3.3.3 Enhanced View of Time Specification
	3.3.4 Property Service Specification

	4 Additional Information
	4.1 Changes to Adopted OMG Specifications
	4.2 How to Read this Specification
	4.3 Acknowledgements

	5 Lightweight Naming Service
	5.1 Platform Independent Model
	5.1.1 Overview
	5.1.2 The CosLightweightNaming Package

	5.2 Platform Specific Model: CORBA Service
	5.2.1 Overview
	5.2.2 CosNaming Module

	6 Lightweight Event Service
	6.1 Platform Independent Model
	6.1.1 Overview
	6.1.2 The CosLightweightEventComm Package
	6.1.3 The CosLightweightEventChannel Package

	6.2 Platform Specific Model: CORBA Service
	6.2.1 Overview
	6.2.2 CosEventChannelAdmin Module
	6.2.3 CosEventComm Module

	7 Lightweight Time Service
	7.1 Platform Independent Model
	7.1.1 Overview
	7.1.2 Minor Conformance Points
	7.1.3 The LightweightTime Package
	7.1.4 The ClockProperty Package
	7.1.5 The PeriodicExecution Package

	7.2 Platform Specific Model: CORBA Service
	7.2.1 Overview
	7.2.2 Minor Conformance Points
	7.2.3 LightweightTime Module
	7.2.4 PeriodicExecution Module
	A.1 OMG IDL for Lightweight Naming Service
	A.2 OMG IDL for Lightweight Event Service
	A.3 OMG IDL for Lightweight Enhanced View of Time Service

