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Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle
approach to enterprise integration that covers multiple operating systems, programming languages, middieware and
networking infrastructures, and software development environments. OMG's specifications include: UML® (Unified
Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM ™ (Common Warehouse
Metamodel); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http: //mwww.omg.org/technol ogy/documents/spec _catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
e XMI

. CWM

. Profile specifications.

OMG Middleware Specifications
. CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM).

Platform Specific Model and Interface Specifications
*  CORBAservices
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. CORBAfacilities

. OMG Domain specifications

. OMG Embedded Intelligence specifications
*  OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. (as of
January 16, 2006) at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as SO standards. Please consult http: //www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text
Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.
Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note — Termsthat appear in italics are defined in the glossary. Italic text also represents the name of a document, specification,
or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technol ogy/agreement.htm.
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1 Scope

1.1 Introduction

This specification of a UML™ profile adds capabilities to UML for model-driven development of Real Time and
Embedded Systems (RTES). This extension, called the UML profile for MARTE (in short MARTE for Modeling and
Analysis of Real-Time and Embedded systems), provides support for specification, design, and verification/validation
stages. This new profile is intended to replace the existing UML Profile for Schedulability, Performance and Time
(formal/03-09-01).

MARTE consists in defining foundations for model-based description of real time and embedded systems. These core
concepts are then refined for both modeling and analyzing concerns. Modeling parts provides support required from
specification to detailed design of real-time and embedded characteristics of systems. MARTE concerns also model-based
analysis. In this sense, the intent is not to define new techniques for analyzing real-time and embedded systems, but to
support them. Hence, it provides facilities to annotate models with information required to perform specific analysis.
Especially, MARTE focuses on performance and schedulability analysis. But, it defines also a general analysis framework
which intends to refine/specialize any other kind of analysis.

Among others, the benefits of using this profile are thus:

« Providing acommon way of modeling both hardware and software aspects of a RTES in order to improve
communication between devel opers.

« Enabling interoperability between development tools used for specification, design, verification, code generation, etc.

« Fostering the construction of models that may be used to make quantitative predictions regarding real-time and
embedded features of systems taking into account both hardware and software characteristics.

2 Conformance

2.1 Overview

The range of applications and areas of knowledge that are inside the scope of this specification is largely broader than the
current usage of traditional tools in the real-time and embedded systems market. Though all of them are related from the
system perspective and will benefit from having a common place for notations, vocabulary, and semantics inside MARTE,
it is afact that a number of different specialized actors are involved. Consequently, the tools that are currently in the
market, which are those expected to evolve to support this specification, have different users and specific target
applications sub-domains. For this reason, and in order to ease its adoption process, this specification defines a modular
approach for conformance. Thisis similar to the UML compliance strategy, but in this case the compliance points are not
defined as stratified horizontal layers. Here they are defined as Compliance Cases, whose constitutions depend closely on
the expected use cases of the specification.

Though it is recognized that the ability to exchange models between tools is extremely important, this is not compromised
in this approach since interchange is only deemed useful between tools for similar and/or complementary purposes. When
such purposes are similar, the exchanging tools will likely satisfy the same conformance cases. If they are complementary,
model transformations and/or a broader scope of compliance cases will be required at least in one of the tools involved.

A UML Profile for MARTE, Beta 2 1



2.2 Extension Units and Features

In order to properly identify the elements of MARTE that will be required in each compliance case, the following
definition is made:

EXTENSION UNITS: These are the concrete separated UML profiles or Model Libraries in which the language
extensions that MARTE proposes are packaged. Some of them may require others to be complete or meaningful.
Extension Units play the role of language units and/or individual meta-model packages as they are used in the definition
of conformance in UML.

The Extension Units defined in this specification are listed in the following table.

Table 2.1 - Extension Units Defined

Acronym Name, description Section(s)
NFP Non-Functional Properties Section 8
Time Enhanced Time Modeling Section 9
GRM Generic Resource Modeling Section 10
Alloc Allocation Modeling Section 11
GCM Generic Component Model Section 12
HLAM High-Level Application Modeling Section 13
SRM Software Resource Modeling Section 14.1
HRM Hardware Resource Modeling Section 14.2
RTM Real-Time objects Modeling (RTE MoCC) Section 13
GQAM Generic quantitative Analysis Modeling Section 15
SAM Schedulability Analysis Modeling Section 16
PAM Performance Analysis Modeling Section 17
VSL Value Specification Language Annex B
CHF Clock Handling Facilities Annex C
RSM Repetitive Structure Modeling Annex E

2.3 Conformance of MARTE with UML

For the many of the extension units considered the Level 2 of conformance with UML may be sufficient. Though there
are some extension for which several language units in Level 3 of conformance with UML are necessary, in particular
Templates.

2 A UML Profile for MARTE, Beta 2



2.4

Conformance with MARTE

Tools vendors and MARTE implementers require a set of conformance definitions that allows them to better target their
particular users needs without having to implement the complete MARTE Specification.

The target usages of the profile (its use cases and/or the actors involved) are good conceptual entities to look for groups
of Extension Units that may lead to useful compliance definitions.

2.4.1 Compliance Cases

Considering the Use cases of this specification, (described in section 6,), the compliance cases defined are:

» Software Modeling

 Constructs for modeling real-time and embedded (RTE) software applications and its non functional properties
(NFP).
Hardware Modeling
 Congtructs for modeling the high level hardware aspects of RTE systems, including its NFP.

System Architecting
« It includes both Software Modeling and Hardware Modeling compliance cases mentioned before, plus the
alocation extension units.
Performance Analysis
« It includes the extension units necessary to address the performance evaluation of RTES

Schedulability Analysis
« It includes the extension units necessary to address the schedulability analysis of RTES

Infrastructure Provider

« It includes the extension units necessary to address the definition and/or usage of platform specific services (like
OS services for example). This may be used to create RTOS services model libraries, as well asto specify the
services required to a platform in order to support higher level RT design methodologies.

Methodol ogist

 Tools conforming to this compliance case are expected to support all the extension units required for the other
compliance cases, which in practice means to support all the mandatory features of MARTE.

In order to manage complexity and speed up the adoption process, Compliance Cases are defined at two compliance
levels: Base and Full. Each level indicates a concrete set of extension units that are consider as mandatory at that level.
The Base level is defined as a subset of the Full level. Extension units that are included in the Full level, but are not in
the Base level, are considered as optional at the Base level.

2.4.2 Extension Units in each compliance case
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The Extension Units that must be supported in each Compliance Cases are assigned as depicted in the next table:

Table 7.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM | NFP | VSL | Time | CHF | SRM | HRM | GCM | Alloc | HLAM | GQAM | PAM SAM | RSM
Software Base X X X X

Full X X X X
Hardware Base X X X X

Full X X X X X
System Base X X X X X

Full X X X X X X
Performance Base X X X X X

Full X X
Schedulability Base X X X X X

Full X X
Infrastructure Base X X X X

Full X X X
Methodologist Base X X X X X X

Full X X X X X X X X

2.4.3 Special additional compliance case and extension units

Tools that wish to serve AADL users should implement Section A.3 in Annex A of this specification.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications:

« UML 2.1.2 Superstructure Specification (OMG document number formal/2007-11-02)
« UML 2.1.2 Infrastructure Specification (OMG document number formal/2007-11-04)
« XMI 2.1 Specification (OMG document number formal/2005-09-01)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.
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5 Symbols

Acronym Meaning
AADL IArchitecture Analysis and Design Language
AHB IAMBA High-performance Bus
AMBA Advanced Microcontroller Bus Architecture
ARM Advanced RTSC Machines
CAN Controller Area Network
CCM Corba Component Model
CORBA Common Object Request Broker Architecture
CPU Central Processing Unit
DMA Direct Memory Access
DPRAM Double-Port RAM
DRAM Dynamw Random Access I\/Iemory
EAST-ADLZ2 EAST Architecture Description Language 2
EDF Earliest Deadline First
EQN Extended Queueing Network
FIFO First Tn First Out
GQAM Generic Quantitative AnalySi's Modeling
GRM Generic Resource Modell ng
GUI Graphical User Tnterface
LON [ayered Queueing Network
[W-CCM Cightweight CCM
MARTE UML profile for Modeling and AnalyS's of Real-Time and Embedded systems
MDA Model-Driven Architecture
NFP Non-Functional Propertl es moddli ng
OCL Object Constraint Language
oS Operating System
PAM Performance Anal ysis Modeli ng
QN Queueng Network
QoS Quality of Service
QOS& FT UML Profilefor Qual |ty of Service and Fault Tolerance specmcatlon
RISC Reduced Tnstruction-Set Computer
RMA Rate Monotonic Analysis
RSM Repetltlve Structure Moddl| ng
RTOS Redl-Time Operating System
SAM Schedulability AnalyS's Modeling
ST Systéme Tnternational
SPT UML Profile for Schedulability, Performance and Time Specitication
SysML Systems Modeling Language

CP ransmission Control Protocol
TPC-W ransaction Processing Council Web benchmark
VL ag Value Language
UML Unified Modeling Language
SC alue Specification Language
CEI orst Case Execution Time
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6 Additional Information

6.1 Scope of OMG RT/E related standards

The MARTE profile, which replaces the current profile for Schedulability, Performance, and Time, is one of a group of
related OMG specifications (Figure 6.1). The most obvious of these is the UML 2 Superstructure specification, which is
the basis for any UML profile. It also uses the OCL 2.0 specification for all constraints specified in OCL.

1 1
« profile » « replace » o profile »
Marte | T TT7¢ SPT
« Uses » o USES »
'_‘J'.- .'\‘
« metamodel »
UMLZ Superstructure {L3) OGL:2

Figure 6.1 - Informal description of the MARTE dependencies with other OMG standards

Note that the Superstructure is dependent on UML compliance level 3 (L3), which is the complete UML metamodel.
In addition, MARTE is related to the following other OMG specifications:

« The UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. This
specification provides, among other things, a generic metamodel for defining different qualities of service and is used
for specifying any such characteristics defined in the MARTE profile.

» The UML profilefor Systems Engineering (SysML), which deals with many of the same areas, such as the modeling of
platforms and their constituent elements (hardware resources) and the allocation of software to platforms (i.e.,
deployment). In areas where there is conceptual overlap, MARTE is either reuses the corresponding SysML
stereotypes, or defines elements that are conceptually and terminologically aligned with SysML.

» The Executable UML Foundation specification (currently in progress) defines, among other things, amodel of
causality for UML that is at the core of various scenario-based analysis methods (such as performance and
schedulability analyses). The MARTE causality model must be fully consistent with the model specified in the
Executable UML Foundation spec.

+ The RTCORBA and CCM specifications address issues related to software execution platforms, real-time constraints,
composition mechanisms, etc. i.e. issuesthat are all in the scope of the MARTE specification. All these computing
platforms may be then considered as specific resources for executing MARTE model-based application.

The following OMG specifications deal with similar subject matter but are not considered relevant to this submission:
» The UML for SoC profile.
« The EDOC UML profile.
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6.2 Rationale and general principles

Since the adoption of the UML standard and its hew advanced release UML 2, this modeling language has been used for
development of alarge number of time-critical and resource-critical systems (a significant number of these can be found
in the various books, papers, and reports listed in the bibliography at the end of this specification). Based on this
experience, a consensus has emerged that, while a useful tool, UML is lacking in some key areas that are of particular
concern to real-time and embedded system designers and developers. In particular, it was noticed that first the lack of a
quantifiable notion of time and resources was an impediment to its broader use in the real-time and embedded domain.
Second, the need for rigorous semantics definition is also a mandatory requirement for a widespread usage of the UML
for RT/E systems development.

Fortunately, and contrary to an often expressed opinion, it was discovered that UML had all the requisite mechanisms for
addressing these issues, in particular through its extensibility faculties. This made the job much easier, since it was
unnecessary to add new fundamental modeling concepts to UML — so-called “heavyweight” extensions. Rather, the work
being done in the specification consisted in defining a standard way of using these capabilities to represent concepts and
practices from the real-time and embedded domain.

6.2.1 Real-time and embedded domain

The main intent of this section is to describe the domain of interest for this current profile; i.e. the real-time and
embedded domain. There is no general consensus about the definition of both real-time and embedded terms. So, it is not
straight forward to define this domain. Nevertheless, it is possible to give some general descriptions of five main sub
categories included in the RT/E domain category and representative of most of RT/E systems.

Embedded domain

Embedded systems are generally defined as interconnected devices that contain software and hardware (mainly
electronics based) parts, but which are not computers in the classic sense. Embedded systems are computer-based systems
that are deployed into an environment (part of the physical world) with which they interact.

Embedded systems development implies designing a system in which resources are usually limited, and which may need
to run without manual intervention. So all errors need to be handled. As the resources are constrained (in memory size,
power consumption, etc.) the design of embedded systems requires optimization.

The designed system will be embedded in areal application, either software or hardware. Therefore, the produced code
must be easily interfaced with a software environment such as a real-time operating system (RTOS), middleware, a micro-
controller or onto specific hardware (e.g. ASIC, FPGA).

Embedded systems distinguish themselves especially by following specific characteristics. heterogeneity (hardware /
software), distribution (on potential multiple and heterogeneous hardware resources), ability to react (supervision, user
interfaces modes), criticality, real-time and consumption constraints.

Reactive domain

Systems are generally tagged as “reactive” to stress the fact that they are meant to react to information inputs coming
from some environment; The main goal of such reactive systems is actually to control, supervise, or simply collaborate or
interact with this environment. Of course such systems may perform heavy data computation, but this aspect is played
down and abstracted somehow in the system description.
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The behavior of reactive systems usually consists of reaction cycles: first, input events are gathered from the environment
(through sensors); second, a reaction is computed and decided upon; third, the proper outputs are emitted back in atimely
manner in response to environment stimuli through actuators for example. The reactions may depend on alocal or global
state, defining the current mode of operation of the reactive system.

Reactive systems can be found in transportation (automotive, aircrafts), factory automation, in hardware/software
controllers, in various embedded electronic appliances, including mobile communications.

Control/Command domain

Applications for control/command domain are usually dedicated to manage the execution of a process or object of the
physical world. The command synthesis matches the production of commands toward actuators from a given request.

A request is generated after measures have been done on one or several sensors. A measure is packaged (i.e. processing
the signal coming from the sensor) and then managed (i.e. taking into account the process state) in order to build the
corresponding request. From a given request, it is possible to distinguish three kinds of command synthesis: (1) the
regulating or the request is fixed; (2) serving that means the adaptation of a command following the order variations; (3)
the trajectory monitoring in case of variable request.

The command synthesis may be achieved either in open loop or in closed loop mode. The command synthesis in open
loop mode consists in designing a function that depends on the request values and parameters of the actuators. The
command synthesis in closed loop mode is relying on an additional measure requiring to evaluate the level at which the
request is considered and to adjust the command if needed.

Moreover, real case studies demonstrate that, in addition to the usual functions for command synthesis and measuring, it
is necessary to have user information functions (via a specific APl or network) and trace functions.

Systems dedicated to process control consist of three main activities: measuring, command synthesis and information
output. Three components involved in the development of control/command systems may be also identified: Sensors
(buttons, serial input devices, etc.) related to measuring activities; Actuators (motors, printers, etc.) related to command
synthesis in open and closed loop; and output devices (e.g. screen, files, networks, etc.) related to information output.

Intensive data flow computation domain

Intensive data flow computation is mainly encountered in signal processing, image processing and mobile devices. A
common scenario is aradio signal tuned by a receiver, filtered, and decoded. These different stages require intensive data
computation to be performed, possibly in parallel, with the help of several computation units.

Many signal and image processing applications follow an organization in two high level stages: systematic signal
processing and intensive data processing.

The systematic signal processing is the very first part of a signal processing application. It mainly consists of a chain of
filters and regular processing applied on the input signals independently of the signal values. It resultsin a
characterization of the input signals with values of interest.

The intensive data processing is the second part of a signal processing application. It applies irregular computations on
the values issued by the systematic signal processing. Those computations may depend on the signal values.

Software Defined Radio receiver is a concrete industrial example of such a domain. This emerging application is
structured with front end systematic signal processing including signal digitalization, channel selection, and application of
filters to eliminate interferences. The data is decoded in a second and more irregular phase (synchronization, signal
demodulation, etc.).
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Intensive data-flow computation is an important class of embedded applications requiring hardware architectures
description. It requires mainly being able to express potential parallel processing of data and parallel hardware
architectures, preferably in simple ways that allow for factorization of repeated elements.

Best-effort service domain

Real-time systems sometimes include elements which do not deliver services in a totally safe or time-constrained way
(such as web application serversin an IP telephony system). These systems nonetheless have properties (delay
distribution, probability of failure of a service) which need to be understood.

Best-effort services supply one or more responses as data, to a request. They often make subsidiary requests to other
services, particularly to data services (databases, caches, file servers, disk storage). Best-effort services are not
distinguishable from systems which are not primarily designated "real-time" systems.

To a certain extent most computer systems have some aspect of requirements for real-time responses, which are affected
by system resources. This profile provides some capabilities for describing and analyzing those real-time aspects of any
system.

6.2.2 Guiding principles

This section aims in defining what have been the main guiding principles used to write this specification. The main
guiding principles are then as follows:

» The profile should support independent modeling of both software or hardware parts of RT/E systems and the
relationships between them.

» The profile has to provide modeling constructs covering the development process of RT/E systems. Such features may
be categorized into qualitative (parallelism, synchronization, communication) or quantitative (deadline, periodicity).
The profile must provide high-level modeling constructs for specification purposes, for example, but also low-level
construct for implementation purposes.

» Asmuch as possible, modelers should not be hindered in the way they use UML to represent their systems just to be
ableto do model analysis. That is, rather than enforcing a specific approach or modeling style for real-time systems, the
profile should allow modelers to choose the style and modeling constructs that they feel are the best fit to their needs of
the moment.

» Modelers should be able to take advantage of different types of model analysis techniques without requiring a deep
understanding of the inner workings of those techniques. The steep learning curve behind many of the current model
analysis methods has been one of the major impediments to their adoption.

« The profile must support al the current mainstream real-time technologies, design paradigms, and model analysis
techniques. However, it should aso be fully open to new developmentsin al of these areas.

It must foster construction of UML models that can be used to make quantitative and partitioning predictions and
analysis regarding hardware and software characteristics of the RT/E system. In particular, it isimportant to be able to
perform such analyses early in the development cycle. For that, it hasto be possible to analyze partial models. It should
be possible to automatically construct different analysis-specific models directly from a given UML model. Such tools
should be able to read the model, process it, and feed the results back to the modeler in terms of the original UML
model.
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6.2.3 How to use this specification

This section is aiming to describe which potential actors may use this specification and how they can do it. Of course,
neither the actors nor use cases described in this section represent an exclusive set for how this specification can be used,

but rather reflect on some of the ways that we expect it to be used or (in most cases) expanded.

Figure 6.2 describes a set of potential actors that may use this specification for designing RT/E systems.
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Model Designer Modd A ralyst Eecution Platform Provicer Mettodolog P rovider

i

I

Softw are Moceler R T/E SystemArchitect Ha dvare Moceler Analyss Methoddogy Provide D esign Methalology Provider
Softw ae A rchtect Hardware Architect

Figure 6.2 - Possible actors using the MARTE specification

10

« Model Designer: These are modelers that design models dedicated to be applied in the context of the development

process of RT/E systems. Models may be used for usual specification, design or implementation stages. But models
may be also used for analyzing in order to determine whether they will meet their performance and schedul ability
requirements.

» RT/E Systems Architect: These are specific modelers concerned with the overall architecture and they usually
make trade-offs between implementing functionality in hardware, software, or both.

» Hardware Modeler: These are model ers specifically dedicated to hardware aspects of the RT/E systems
development.

» Hardware Architect: These are modelers concerned by designing hardware architecture.

« Software Modeler: These are modelers specifically dedicated to software aspects of the RT/E systems
development.

« Software Architect: These are modelers concerned with designing software architecture.

Model Analyst: These are modelers concerned with annotating system models in order to perform specific analysis
methodologies.

Execution Platform Provider: These are devel opers and vendors of run-time technologies (hardware- or/and software-
based platforms) such as Real-Time CORBA, real-time operating systems and specific hardware components.
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« Methodology Provider: These are the individuals and teams who are responsible for defining model-based
methodology for RT/E domain. This category includes UML tool providers.

« Design Methodology Provider: These are specialized methodol ogy providers who are responsible for defining
model-based methodology for specifying, designing or/and implementing RT/E systems.

« Analysis Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based analysis methodology such as RMA or queuing theory, as well as technology provider such as tool
vendors providing tools and processes for supporting particular model analysis methods.

Common possible usages of the MARTE profile are specified in the use case diagram depicted in Figure 6.3.

Marte specification
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Figure 6.3 - Common use cases of the MARTE specification

Details of the use case “build Model”
« Actor: Modeler

» Description: A modeler builds amodel iterating it through several stages defined in an appropriate development
process. According to a given methodol ogy (see the “ define Methodology” use case), amodeler uses appropriate UML
extensions or specific model libraries defined in the MARTE specification in order to describe the RT/E aspectsin the
model of their system.

» Deliverable: The result of this use case isamodel of the user system containing all its RT/E specificities.

Details of the use case “adapt MARTE Specification”
« Actor: Methodology Provider and Execution Platform Provider

« Description: This use case consistsin defining a specific MARTE sub-profile. The motivations to adapt MARTE may
be either to deal with a specific domain not covered by MARTE or to define restrictions on the usage of MARTE
modeling constructs. In the former case, the actor may either specialize MARTE modeling constructs in order to adapt
them suitably to their needs or introduce new concepts not available in MARTE. The second way to adapt the MARTE
specification is to define modeling rules in order to constraint the usage of the specification.

» Deliverable: The outcome of this use case is adefinition of MARTE extension that takes the form aUML profile based
on the MARTE specification. The dependencies with the MARTE profile may be merge, import or specialization.

Details of the use case “define Methodology”
» Actor: Methodology Provider
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» Description: This use case consistsin defining how to use the MARTE specification for agiven purpose. For example,
one may define a specific methodology for the design of electronic automotive systems (cf. the EAST-ADL appendix)
or for avionics (see AADL appendix). One may also define model-based analysis methodol ogy such as schedul ability
or performance analysis.

 Deliverable: The outcome of this use caseis amodel-based methodology. Thislatter may include a process description,
aset of constraint rules and a set of required techniques that appliesto the methodology. If necessary, this use case may
also include the definition of an extension of the MARTE profile (include of the “extend MARTE Specification” use
case).

Details of the use case “annotate Model for Analysis”
« Actor: Model Analyst

« Description: The model analyst uses appropriate MARTE extensions, as defined for example in a specific analysis
methodology, in order to annotate appropriately models in order to perform a given analysis techniques.

 Deliverable: The outcome of this use case is amodel annotated with MARTE extensions and ready for performing
specific analysis.
Details of the use case “analyze Model”

« Actor: Model Analyst

 Description: The model analyst perform a given analysis techniques on a model. The purpose of the analysis may be
varied depending of the nature of the analysis techniques used. Some examples of analysis are: schedulability or
performance analyses.

« Deliverable: The outcomes of this use case are analysis results.

Details of the use case “build Execution Platform Model”

« Actor: Execution Platform Provider

» Description: This use case consists in building model of execution platform for MARTE based developments of RT/E
systems.

« Deliverable: The outcome of this use caseisa MARTE compatible execution platform model.

Details of the use case “provide Execution Platform”

« Actor: Execution Platform Provider
« Description: This use case consists in providing execution platform conform to a given model of platform.

» Deéliverable: The outcome of this use case is an execution platform.

6.3 Approach and structure

6.3.1 Profile architecture

The profile is structured around two main concerns, one to model the features of real-time and embedded systems and the
other to annotate application models so as to support analysis of system properties. These are shown by the RTEM
package named “MARTE design model” in Figure 6.4, and the cluster of three packages, respectively. These two major
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parts share common concerns with describing time and the use of concurrent resources, which are contained in the shared
package named “MARTE foundations”. Finally the “AnalysisModeling” features are broken into a foundational generic
part in the package GQAM, and two packages for specific analysis domains, as shown. These first two specific analysis
domains are entirely concerned with time, however the profile structure allows for adding additional analysis domains,
such as power consumption, memory use or reliability. It is the intention to encourage modular sub profiles like the two
analysis packages, for such domains.

MARTE foundations
] ——] — —
« profile = & profile » 4« profile » u profile »
MFP Time GRM Alloc
A =
[ \'\.
L RTEA
MARTE design model [RealTimad Embadded Analysing)
— — —
a predile » « profile » « profile »
GCM HLAM GOAM
— "
« profile » « profile » — f
profile = o profile »
SHRM HRM SAM PAM
MARTE annexes
1 1 1
a profile » u profile » & modelLibrary »
VaL RSM MARTE Library

Figure 6.4 - Architecture of the MARTE Profile
6.3.2 A foundation for model driven techniques

The profile is intended to provide a foundation for applying transformations from UML models into a wide variety of
analysis models. The environment for exploiting the profile would consist of a set of tools, including model transformers,
as shown in Figure 6.5. Prototypes of such tool chains have been produced based on SPT.

The forward path shows the way the model is expected to be transformed via the XMI output, to a format readable by an
analysis tool. The dashed line indicates a potential feedback path to re-import the analysis results into the UML diagrams.

Another feedback path clearly exists from the analysis to the modeler.
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Figure 6.5 - A Tool Chain for Carrying out Analysis of a Model
6.3.3 Approach to modeling RT/E systems

Embedded systems are becoming increasing heterogeneous. This is true of applications, which combine intensive, often
heavily pipelined, data computation for signal processing, together with control mode switches and communication
protocols. Thisis true also of execution platforms, which comprise flexible or custom-made hardware, multi-core
processors, cache and bus hierarchies and so on. Thisis reflected in the design of such systems, which must try to fit best
applications onto existing platforms, or even adjust and dimension again execution platforms for pre-existing applications.
The main criteria governing this allocation of application functions to HW/SW execution resources are stringent real-time
requirements, but power- and area-consumption or cost also play arole, Adequate modeling can of course be of great help
with this design activity by providing the support for design and analysis. The modeling support should also encompass
early global timing budget and maximal latency requirements, as well as scheduling results display expressing the explicit
quality of allocation in a traceable manner.

Application modeling is based on interacting component blocks for structural aspects. As for behavior, data-intensive
pipe-lined computations are generally represented with block-diagrams amenable to activity charts, while control-flow
parts and communication protocols use hierarchical finite-state machines. This functionality is complemented with timing
aspects, based on appropriate time/cycle descriptions (see time model section below). Application modeling is further
described in chapter 9.

Execution platform modeling comprises the description of both dedicated hardware and (middleware) software layers and
interconnects composing the platform. It can be described at the same level of abstraction as the application, and contains
also timing information along with structural and behavioral aspects. Explicit detailed modeling can be needed in as far

as the appropriate match between application and architecture is to be studied (hierarchical cache structure or Instruction
Set Simulators for instance). Execution platform modeling is further described in both chapters 10 (p. 99) and 14 (p. 175).

The allocation model describes the association matching applicative functions onto execution platform resources. It is
sometimes mandatory to provide timing information on this allocation link itself, rather that on its constituents, for
reasons of modular abstraction (for instance one may indicate that a complex filter function can be realized at a given cost
on a given specific processor, without going back to individual statements and instructions). Allocation modeling is
further described in chapter 12 on page 141.
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Note: allocation is here reminiscent of the similar notion in the SysML proposal.

Regular iterative constructs, that are often encountered in the embedded world to represent signal-processing applications
or dedicated DSP operator blocks, or processor arrays, are best modeled using dedicated iterative model representations
such as described in Annex E on page 413.

6.3.4 Approach to annotating for model analysis

Annotations use stereotypes which permit us to map model elements into the semantics of an analysis domain such as
schedulability, and give values for properties whichh are needed in order to carry out the analysis. We may distinguish
“input” properties which are needed to carry out the analysis, and “output” properties which are determined by the
analysis. However the modeler may also input required values of output properties, which can be used to determine how
well the system meets its requirements (another output property).

Analysisis not always simply “pass/fail”, and the particular goals of analysis are specific to its domain. Output properties
to be reported may include details of how and where time and resources are consumed, in order to diagnose problems, and
may include sensitivity studies to explore the importance of parameters whose values are uncertain.

6.3.5 MDA and MARTE

The MARTE profile defines precise semantics for time and resource modeling. These precise semantics allows automatic
transformations of models to lower abstraction level models such as UML for SoC for hardware / software simulation or
into C++ for implementation purpose.

One of the goals of this profile is to support common design flows for RT/E systems. One of these design flows is to
define in different views or models the application (including functional and non functional characteristics), the hardware
architecture and the allocation of the application onto the hardware architecture. Starting from this allocation model, if the
semantics is precise enough, one can automate code generation for simulation at different abstraction levels or synthesis
of specific hardware parts.

Another use of MDA (or MDE, “Model Driven Engineering”) with the MARTE profile is the integration of tools. Indeed,
some analysis or verification tools can be coupled with the modeling tools if the semantics of the models correspond to
the semantics of the analysis or verification tool. Model transformation techniques can then be used to enable this
coupling.

6.4 How to read this specification

6.4.1 Structure of the document

The MARTE specification consists of five blocks of chapters:
« Block one gathers the introduction chapters (from chapter 1 to 6).

- Block two isthe part | of the MARTE specification and it is intended to define the MARTE foundations. It conflates
chapters 7 to 12 respectively focused on: chapter 7, Core Elements, defines the basic elements for model-based
approach and specially for real-time embedded domains such as a causality model; chapter 8, Non-Functional
Properties modeling, defines a common framework for annotating models with quantitative and qualitative non-
functional information; chapter 9, Time modeling, defines the time as used within MARTE; chapter 10, Generic
Resource Modeling, specifies how to describe at system level resource models; finally, chapter 11, Allocation
modeling, defines concepts required to describe allocation concerns.
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« Thethird block isthe part |1 of the MARTE specification. It isintended to define the MARTE concepts for model-
based design of RTES. It consist of both following chapters. chapter 12, General Component Model, introduces a
general component model suitable for RTES. This component model, called GCM, is build on top of the composite
structure of the UML, and it is compatible with well-known component models such as the one of SysML, CCM,
AADL and EAST-ADL; chapter 13, High-Level Application Modeling, defines high-level concepts for designing
qualitative and quantitative concerns of RTES (e.g., concurrency and synchronization); chapter 14, Detailed Resource
Modeling, is split into two sub-sections respectively dedicated to detailed modeling of software (section 14.1, SRM,

“ Software Resource Modeling”) and hardware (section 14.2, HRM, “Hardware Resource Modeling”) resources.

» Thefourth block isfocused on model-based analysis. It does not intend to define new analysis technologies, but to
define the information required for annotation models on which external analysis techniques may be applied. It consists
of three chapters: chapter 15, Generic Quantitative Analysis Modeling, defines basis concept for specific analysis
technics; chapter 16, Schedulability Analysis Modeling, specializes the generic framework for performing
schedulability analysis, whereas chapter 17, Performance Modeling, is the specialization for model-based performance
analysis.

« Thelast block contains al the MARTE annexes. The main information contained within these annexes is about
additional usefull value specification languages provided by MARTE (Annex B and Annex C): the Value Specification
Language (VDL), the Clocked Value Specification Language (CVSL) and the Clock Constraint Specification
Language (CCSL). Another important added value contained is a predefined MARTE model library (Annex D). This
latter annex described predefined primitive and data types required for defining the UML profile for MARTE itself, but
also usefull for user models. The annex part owns also a UML extension definition (Annex E, the Repetitive Structure
Modeling MARTE subprofile) intended to support specific system modeling consisting of repetitions of structural
elements, interconnected viaaregular connection pattern. We call thiskind of structures*repetitive structures”. Finally,
the annex block of MARTE owns an annex dedicated to describe the detailed semantics of each domain concepts
introduced within the specification (see following section which relates on how to use this Annex F).

6.4.2 Extension specification rationale and format convention

Each extensions proposed by MARTE have been conflated around one main concerns and detailed in separate chapters:
chapter 7 to chapter 17 and Annex F. Such chapters are then organized following the same patterns. The way to define

each sub profile contained within MARTE rely on a two stage process. a domain model specification and its underlying
UML profile design.

The first stage consists in defining of the required concepts (also called domain elements) related to one specific concern
(e.g., non-functional properties modelling and time modelling). The output of this stage is then called the domain model
which formalized through the definition of a meta-model and the detailled semantics descriptions of each of its elements.
In order to reduce the bulk of this document, we decided to gather all these detailed description within a common place,
the Annex F.

The second stage of the process we adopted for MARTE aims at desiging a UML profile (sections called “UML
representations’). Our purpose is then to define UML extensions (i.e., mainly stereotypes, tagged val ues, specific
notations and OCL rules) for supporting within the UML the specific concepts introduced within each MARTE domain
model for supporting RTES model-based engineering.

In order to minimize the impact of the MARTE proposed extensions on the model readability, firstly we try to reduce the
size of stereotype names as much as possible, but without scarifying too much their meaning. Secondly, we decide to
prefix the stereotypes only when required. A typical example was when we define stereotype that was inherited other
stereotypes.

6.4.3 Conventions and typography
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In the description of this specification, the following conventions have been used:

6.5

While referring to stereotypes, metacl asses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

No visibilities are presented in the diagrams, since al elements are public.
If asection is not applicable, it is not included.

Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., ‘ModelElement’,
‘ElementReference’).

Boolean meta-attribute names always start with ‘is’ (e.g., ‘isComposite’).
Enumeration types always end with “Kind” (e.g., ‘ DependencyKind’).

In diagrams described in the rest of this docuement, the way of identifying an element external to the package being
described will be its name preceded by the hierarchy of containing packages/namespaces; the root element to use for
this sequence shall be the closest ancestor in the hierarchy which is common to both, the imported element, and the
package being described.
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7 Core Elements (CoreElements)

7.1 Overview

The concepts presented in this section serve as a general basis for the description of most elements in the domain view of
the rest of this specification. They are not new extensions to UML but a comprehensive set of related concepts that is

useful to define those others more elaborated, which are used to build the domain models of subsequent chapters of this
specification. They are split in two packages for convenience. The Foundations package holds the basic elements used to
represent the dual descriptor-instance nature of any modeling entity. These concepts may serve to different purposes for
modeling and analysis, and are the basis for structural modeling. The Causality package describes the basic elements

necessary for behavioral modeling, and their run-time semantics. Figure 7.1 shows these packages and their relationship.

MARTE::CoreEle ments

Foundations =——----- — Causality

Figure 7.1 - Dependencies between packages for the CoreElements package

The Causality package is a specification of how things happen at run time. The purpose of this model is to provide a very
high-level view of the run-time semantics for those modeling elements that are suitable for real-time and embedded
systems, and will be later used when required to point out the various elements of that view that are covered and
specialized in the domain models of the MARTE specification. The term “run-time” is used to refer to the execution
environment. Run-time semantics are therefore specified as a mapping of modeling concepts into corresponding program
execution phenomena.

This model is used as a basis for any dynamic model description associated with the MARTE profile. It captures the
essentials of the cause-effect chains in the behavior of run-time instances. The model is inspired from (and hence
compliant with) the Common Behavior model of the UML superstructure. But, it is more detailed and precise in certain
aspects, in particular for its further use as the basis for the definition of aricher timing model, which includes the timing
constraints induced by the real-time annotations. A complete model and a language for timed expressions are provided at
full length in section 9. Other dedicated attribute properties for time-related concepts are also introduced further along this
specification. Figure 7.2 presents the internal sub-packages of the causality model. The purpose and contents of each sub
package are described in next sections.
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Figure 7.2 - Architecture of the Causality package
7.2 Domain view

7.2.1 The Foundations package

The domain models presented in this specification will use a consistent set of modeling elements, which in spite of being
non-normative, form a large meta-model that covers all the modeling requirements imposed by the RFP.

For modeling and analysis purposes, it is fundamental to distinguish between design-time classifier elements, such as
classes and types, and run-time instance elements that are created on the basis of those classifiers. All modeling elements
at any level of specification will represent either one or the other of these two fundamental aspects, based on their
purpose.

This basic partitioning into classifiers and instance is reflected in the diagram depicted in Figure 7.3. Any number of
instances can be created from a given classifier. This latter is referred to as the type of the instance. Notice that an
instance may have multiple types (which can be used either to represent different viewpoints of the model element) or a
composition of partial descriptions, including multiple inheritance for example).

The concept of Instance may be in practice represented in UML not only as InstanceSpecifications but also by those other
elements that are described in terms of role-based models (like UML::ConnectableElement in collaborations or internal
structure diagrams, parts, ports, or roles ).
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Mode Element

owner
0..1
* ownedElement

name: String [0..1]

0.* 0.*
Instance Classifier
instance type

Figure 7.3 - Instance and Classifier root diagram of the Foundations package

As it is described in Chapter 8, values of non-functional properties (NFP) may be annotated on any model element
designated as such. In this way, further specializations of Classifiers or Instances may become kinds of
AnnotatedElements. In particular, time-based analysis methods operate on annotated models that are usually described
over a number of specific instances of the system. However, it is also useful to be able to associate NFP values with
classifiers. In this case it simply means that such values apply by default to all instances created on the basis of those
descriptors, and not that the classifier itself has that value. These default values can be further overridden in specific
instance cases. But, this uniform annotation of instances requires specia care and may not always be appropriate. In case
of interface specifications, for example, there could be many realizations of the same interface, each with different service
characteristics described by means of NFP.

For practical reasons, most concepts and modeling elements in the domain views of this specification as well as the
stereotypes in the UML representation will be defined and described using the classifier root concept, but it should be
noted that a corresponding instance may also exist. However, instance based elements will be defined to stress its nature,
when appropriate. This semantic variation will also be taken into account in the UML views of the specification firstly to
define the applicability of the required consistency rules, and secondly in the subsequent adoption of the proper semantics
when the corresponding stereotype is applied to extend user defined modeling elements.

Mode Element

i

] Property « enumeration »
owned Propertles AggregationKind
* aggregation : AggregationKind [1] = none

Classffier L

none
shared
type| 0..1 composite

Figure 7.4 - Property diagram of the Foundations package

As the UML homonymous concept a property is a typed element that may be owned by a classifier. It has a multiplicity
in terms of upper and lower bounds, an aggregation kind, and a type (as a Classifier).
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7.2.2 The Causality::CommonBehavior package

This model states the relationships between classifier element models and their instances from a behavioral viewpoint. It
is aligned to the UML semantics basis, in the sense that there is no disembodied behavior: all behavior emanates from the
actions of structural entities. In particular since in UML a behavior is akind of class, it is possible for a behavior to be its
own structural context. For many of the UML behavioral concepts mentioned here you may find the corresponding UML2
semantics description in Chapter 13 of the OMG document ptc/06-04-02. For those that reify the UML2 concepts,
analogous definitions have been extracted from that OMG document.

CommonBehavior ‘
CoreElements::Foundation: CoreElements::Foundations:: type
ModelElement Classifier 0.1
Trigger owned Trigger Behaviore dClassifier
ﬁ? CoreElements::Foundation::
. 1 ModelElement
context 71
) /mainBehavior
event,|, 1 ownedBehavior | 0..1 {subsetownedW
Event aC’(IOf‘l Behavior 0.1 parameter
@~ = Parameter —
0.1 ZF
CompositeBehavior Action

Figure 7.5 - The CommonBehavior package

A Behavior defines how some system or entity changes over time. From a modeling point of view, this concept defines
the behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context
classifier. It is a specification of how its context classifier as well as the state of the system that is in the scope of the
behavior may change over time. A behavior may have Parameters whose values may be used for evaluating a behavior.
A behaviored classifier may have behavior specifications which illustrate specific scenarios of interest associated with
that classifier, such as the start-up scenario. In particular, the behavior specification used to represent the behavior that
starts executing when instances of that classifier are created and started is called main behavior. For many real-time
concurrent systems, this can be for example the behavior that initiates the activity of a thread, which continues until the
thread is terminated. Two kinds of Behavior may be defined: CompositeBehavior and Action. Action is an atomic
behavior, and CompositeBehavior may contain other Behaviors, which in turn may be either composite or atomic.

An Action is the fundamental unit of behavior. An action takes a set of inputs and converts them into a set of outputs,
though either or both sets may be empty. Actions are contained in behaviors, which provide their context. Behaviors
provide constraints among actions to determine when they execute and what inputs they have.
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An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are
often generated as a result of some action either within the system or in the environment surrounding the system.
Consistently with UML 2, Triggers are specification of what can cause execution of behavior (e.g., the execution of the
effect activity of atransition in a state machine).

A Trigger specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
event occurrences not of interest. Indeed, a Trigger is the concept that relates an Event to a Behavior that may affect any
instance of the behavioral classifier.

The Timed versions of these concepts are introduced in section 9, under the name of TimedProcessing (for Actions) and
TimedEvents (for Events and Triggers).

7.2.3 The Causality::RunTimeContext package

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers. Hence, behavior executions are run-time instances of the behavior and action concepts. For this
reason, in this domain model, this concept is specialized into both important concepts. CompBehaviorExecution and
ActionExecution. Correspondingly, events have instances called EventOccurrences.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A
behavior execution specification describes how the states of these instances change over time. Behavior executions, as
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that datais
obtained from the host instance.

In UMLZ2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior
is performed by an instance (its host) and is the description of the behavior of this instance. Emergent behavior execution
results from the interaction of one or more participant instance.

MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2
Behavior Performance concept described in the overview section of its common behavior chapter.

On one hand, a behavior execution is thus directly caused by the invocation of a behavioral feature of an instance or by
its creation. In either case, it is a consequence of the execution of an action by some related classifier instance. A behavior
has access to the structural features of its host instance.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating
classifier instances are parts of alarger composite classifier instance, a behavior execution can be seen as indirectly
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing
behaviors of the participant instances.

This latter form of behavior is of interest since the behavior that is to be analyzed and observed at the system level, in
order to predict its timing properties, is normally described as an abstract view of the run-time emergent behavior due to
the combination of the behavior executions of all its constituent parts.
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Instance participant
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Figure 7.6 - The RunTimeContext package

There is a variety of behavior specification mechanisms supported by the UML, such as automata, activities (data-flow
like description), Petri-net like graphs, informal descriptions (e.g., Use Cases), or partially-ordered sequences of event
occurrences (Interactions), each corresponding to the concrete subtypes of Behavior that it provides.

This model supports not only scenario-based style for behavioral specification, by describing the observable event
occurrences resulting from the execution of one possible situation of behavior execution, but it also extends the behaviors
supported by the specification to state-based and activity-based approaches. The latter describe behaviors by specifying a
state machine that do not describe observable event occurrences, but that would implicitly induce event occurrences. This
intends to extend the domain of applicability of the MARTE profile to modeling and analysis techniques as Timed
Automata, and Petri-nets.

Nevertheless, the relationship between a specified behavior and its hosting or participating instances is independent of the
specification mechanism chosen. The choice of specification mechanism is one of convenience and purpose; typically, the
same kind of behavior could be described by any of the different mechanisms. Note that not all behaviors can be
described by each of the different specification mechanisms, because behaviors do not have the same expressive power.
However, for many behaviors, the choice of specification mechanism depends on the formalism used to analyze the
system.

7.2.4 The Causality::Invocation package

As shown in Figure 7.7, the execution of a behavior may be caused by an event occurrence. Events can occur from the
direct invocation of a behavior through an action or from a trigger occurrence representing an indirect invocation of a
behavior, such as through an operation call.
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In a number of analyses, it is also useful to consider the events that occur when a behavior starts and ends its execution.

A start occurrence marks the beginning of a behavior execution, while its completion is accompanied by a termination

occurrence.

These and further defined concepts specialized from EventOccurrence will be considered eligible to be extended by

timing annotations, though for simplicity in the domain model these annotations may be defined in the form of extensions
to their common ancestor EventOccurrence.

N

{subset event}

Invocation
1 Causality::RunTimeC ontext: 1
execution Behavior Execution execution
Causality::RunTimeC ontext:
EventOccurrence
finish | 1 ‘ Z> ‘ 1 | start
—@f TerminationOccurrence StartOccurrence
endEvent startEvent

{subset event}| 1

TeminationEvent

1 behavior
.o
1

Causality ::
CommonBehavior::
Behavior

behavior 1

ﬁ StartEvent

Y

Causality::CommonBehavior: Event

Figure 7.7 - The Invocation package

7.2.5 The Causality::Communication Package

The Communication sub package of the Causality package adds the infrastructure to communicate between classifier

instances and to invoke behaviors. The domain model in Figure 7.8 shows how a communication takes place. This domain

model specifies the general semantics of communication between concurrent units.
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Figure 7.8 - The Communication package

In real time systems, the basic unit of logical concurrency is commonly known as athread®. Threads are the root of a
special case of instances, usually called active, or real-time or even reactive objects. In fact, the recommended way of
adding concurrency into an object model is to identify the desired concurrent units (logical or physical depending of the
detail level of the model) through the application of concurrency identification strategies. Once the threads are identified,
the developer may create an active object for each. According to the level of specification other forms of expressing
concurrency in UML may be used, like the fork in an activity, or a state with orthogonal regions. Other objects, i.e. those
which are not identified as concurrent units, are then usually called passive objects. These latter objects are then
associated to the active objects via a composition or shared relationships. The role of the active object is to run when
appropriate and call or delegate actions to the passive objects that it owns. Passive objects execute usually using the
concurrent resource of the caller active object.

Instances respond to messages that are generated by others executing communication actions. When these messages
arrive, the receivers eventually respond by executing the behavior that is matched to that message. The dispatching
method by which a particular behavior is associated with a given message depends on the higher-level formalism used
and is not defined here (hence, it is an open-variation semantics point of UML).

Figure 7.8 shows the general communication model. An action representing the invocation of a behavioral feature is
executed by a sender instance resulting in an InvocationOcurrence. The invocation event may represent the sending of a
signal or the call to an operation. As a result of the invocation event occurrence a Reguest is generated.

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature);

1. It should be noted here that from the concurrency point of view, there is no distinction between threads, tasks, and processes. They all
are variations of the very same concept, though they may differ in some aspects of their detailed properties (such as the context switch
time and whether low-cost pointers can be used across the concurrency boundary).
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information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and
receiver instances; as well as sufficient information about the behavior execution to enable the return of areply from the
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

While each request is targeted at exactly one receiver instance and caused by exactly one sending instance, an occurrence
of an invocation event may result in a number of requests being generated (asin a signal broadcast). The receiver may be
the same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of
the different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, which according to the triggers
expected may subsequently launch the behaviors of the receiver instance or of any of its internal instances. Like in the
Common Behaviors Domain Model of UML, two kinds of requests are determined according to the kind of invocation
occurrence that caused it: the sending of a signal, and the invocation of an operation. The former is used to trigger a
reaction in the receiver in an asynchronous way without a reply. The latter applies an operation to an instance, which may
be synchronous or asynchronous and may require a reply from the receiver to the sender.

Observe that modeling elements like invocation occurrence and receive occurrence shown in this domain model are no
explicitly represented in the specification of a system, but they are implicit in the dynamic semantics of the constructs
used.

7.3 UML Representation

As stated before, this chapter does not define concrete extensions to UML offered as stereotypes to the user. Instead it
collects a number of primitive modeling concepts to be use in the domain models of other chapters in this specification.
Nevertheless, a certain impact on the representation of modeling elements is envisioned according to their classifier/
instance dua nature.

The modeling elements defined in this specification may adopt the nature of Classifier or Instance presented here, or both.
This quality of being may be of course specifically stated as part of their definition, but it may be also left to the user to
be decided according to the purpose of the annotation, and the intended semantics.

In most of the cases the concepts defined in the domain view are proposed to be represented in UML by means of a
stereotype extending a concrete UML modeling element. When this is the case, the Classifier or Instance intrinsic nature
of the UML annotated element may lead to identify the corresponding nature, semantics, or concrete variations of the
MARTE concept that is intended to be represented with the annotation. Hence, the explicit different semantics that may
be defined for each MARTE modeling concept, when it is considered as an instance or as a classifier, may be inferred
directly from the fundamental nature of the corresponding UML element that is annotated.

When a stereotype is applied on an instance, and provided it can be also applied on classifiers, the value of the attributes
not explicitly assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype
definition, but they might be overridden by those in its corresponding classifier, if it happens to be annotated with the
same stereotype.
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8 Non-functional Properties Modeling (NFPs)

8.1 Overview

This chapter describes both domain model and its UML representation for specifying Non-Functional Properties (NFPs).
It also describes how NFPs may be attached to UML modeling elements. This sub package of the MARTE specification
provides a general framework for annotating UML models with NFPs. It is especially focused on formalizing a set of
modeling constructs in order to specify this kind of properties in a detailed way.

The NFP modeling framework deals with the following requirementsz:
« How NFPs are to be described, and particularly what NFPs should be considered.
» How particular instances of NFPs are to be attached to UML model elements.
« How relationships between different NFPs are to be defined.

» How to express constraints on or between NFPs in order to express reguirements on the system model.

« Usability of the annotations should minimize the designer efforts>.

 To provide an open modeling framework, i.e. not tailored towards specifications of a particular modeling concern or a
restricted set of NFPs.

Although the UML Profile for “Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
(QOS& FT) aready defines a framework to express a similar concept to NFP, there are some reasons to define a different
one in the context of this specification.

For instance, the QoS& FT profile relies on a two-step annotation process:; a) derive a Quality Model for each application
model by instantiating template classes from the QoS Catalogs and, b) annotate UML models with QoS Constraints and
QoS Values, which implies catalog binding and either the creation of extra objects (instantiated from the Quality Model),
or the specification of long OCL expressions. This two-step process requires too much effort for the users and may induce
not readeable models.

The QoS& FT profile provides a flexible mechanism to store pre-defined QoS Characteristics. It supports declaring the
most common QoS characteristics for different application domains by means of QoS Catalogs. A particular QoS Catalog
may contain qualifiers of QoS properties including statistical qualifiers and measurement units. At the level of QoS value
specifications, however, QoS& FT ignores some important attributes such as measurement sources, precision, and time
expressions. These properties are required for the domain of MARTE and are therefore supported by the NFPs introduced
in this specification and the Value Specification Language (VSL) defined in Annex B.

In general, the term Quality of Service (QoS) is the aptitude of a service for providing a quality level to the different
demands of its clients. In the computer systems domain, the term QoS is frequently associated specifically with network
issues, such as throughput and bandwidth (and in conjunction with multimedia applications). But it has more recently
begun to be applied to NFPs of more general services. Thereis still no common consensus about the concepts of NFP and

2. Alistof compliancewiththe MARTE RFP have been included in Annex. It also rel ates how this document dealswith theinitial MARTE
RFP requirements.

3. Oneof the mgjor constraints that drove the definition of this specification has been to minimize the required efforts to apply the profile.
But since our purpose was to enrich UML with capacities to describe formally and efficiently the real-time and embedded features of a
system, applying the profile hence requires some additional effort with regard to a common usage of the UML.
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QoS. Anyhow, the NFPs considered here have a larger extent than only quality levels. NFPs may describe the internals
and externals of the system, and some of them directly relate to the users of resource services and their QoS perception
and others not.

Besides, the UML profile for “Schedulability, Performance, and Time Specification” (SPT) provided a straightforward
annotation mechanism specifying a set of predefined stereotypes and tagged values. Moreover, it supports already some
of the requirements for NFP annotations, such as support for symbolic variables and expressions through its specialized
Tag Value Language (TVL). However, its approach was not defined formally enough to allow for new user-defined NFP
or for different specialized domains. Indeed, SPT defines a grammar for powerful concepts, as for instance
“RTtimeValue’ expressions, but does not define a mechanism to extend or refine these constructs for more specific needs.

The MARTE NFP modeling framework has reused some useful structural concepts proposed in the UML profile for
QoS& FT. However, some considerations to reduce the inherent usage complexity of the UML profile for QoS& FT and to
facilitate the modeling process have been taken into account and led to a new proposal. Additionally, as much as possible,
features of the SPT profile have been reused. For instance, The Value Specification Language (VSL) introduced in
MARTE extends and formalizes (by means of a metamodel and its associated concrete syntax) some concepts supported
by TVL to annotate constant, variable, tuple and expression values. In this manner, we provide a flexible and
straightforward framework for supporting a wide variety of NFPs annotations while adopting the best modeling practices
of both UML profiles.

8.2 Domain View

8.2.1 Overview

The model of a computing system describes its architecture and behavior by means of model elements (e.g.: resources,
resources services, behavior features, logical operations, configurations modes, modeling views), and the properties of
those model elements. It is convenient to group application properties into two categories: functional properties, which
are primarily concerned with the purpose of an application (i.e., what it does at run-time); and non-functional properties
(NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to do it).

In the context of model-driven development approaches for real-time and embedded systems, modeling NFPs is of
fundamental relevance and implies a number of design decisions. NFPs provide information about different
characteristics, as for example throughput, delays, overheads, scheduling policies, deadline, or memory usage.

In this and subsequent sections, we will use metamodels to describe the domain viewpoint. Note that, although the intent
of this domain model is to be precise, it is not fully formal since its purpose is primarily to provide profile's users with
the minimal knowledge to understand the concepts and relationships of the domain.

The NFP annotation framework has many facets that are grouped into individual sub-packages. The overall package
structure of the NFP framework is shown in Figure 8.1.
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Figure 8.1 - Structure and dependencies of the NFPs modeling package

The purpose and contents of each sub package denoted in the Figure 8.1 are described in subsequent sections.

8.2.2 The NFP_Nature package

From an abstract viewpoint, a NFP (AbstractNFP) can be either qualitative or quantitative, as shown in Figure 8.2.

QuantitativeNFPs are measurable properties. A given quantitative NFP may be characterized by a set of
SampleRealizations and Measures.

SampleRealizations represent a set of values that occur for the QuantitativeNFP under consideration at run-time (for
instance, measurements collected from a real system or a simulation experiment). A QuantitativeNFP may be sampled
once or repeated multiple times over an extended run. In a cyclic deterministic system, in which each execution cycle has
the same value, a single sample is sufficient to characterize completely the QuantitativeNFP.

A Measureis a (statistical) function (e.g., mean, max, min) characterizing the set of sample realizations. Measures may be
computed either directly by applying the desired function to the set of realizations values, or by using theoretical
functions of the probability distribution given for the respective QuantitativeNFP.

According to measurement theory, measures are defined as a Quantity expressed in terms of a specific Unit. Quantities
can be basic or derived. BasicQuantities are for example length, mass, time, current, temperature or luminous intensity.
The units of measure for the basic quantities are organized in systems of measures, such as the universally accepted
Systéme International (SI) or International System of Units. Quantities expressed in the same unit can be compared.
DerivedQuantities (e.g., area, volume, force, frequency) may be obtained from basic quantities by explicit formulas.
Additionally, different units of the same physical quantity may be transformed to, or expressed in terms of, existing base
units through a given conversion factor and an offset factor.

A UML Profile for MARTE, Beta 1 33



NFP_Nature

*

AbstractNFP
realk ationValues par amet er
SampleRedi zation 0 4
domain |1 * 1 ‘ ‘
E—
Quantitati viNFP Qualitati veNFP
>
0..* | fun ction 1
0.
Measure
measur e
! Quantity BaseQuantity
physica Qua ntity
1
0..1,|, measurem entUnit DerivedQuanti ty
Unit allowedUnit s
convF actor: Real [0..1]
convOff set: Real [0..1] | *
ba seUnit’[' .1

Figure 8.2 - Domain Model for NFP Nature

QualitativeNFP refer to inherent or distinctive characteristics that may not be measured directly. In general, a qualitative
NFP is denoted by alabel (e.g., “bronze,” “silver,” and “gold” level of service) representing a high-level of abstraction
characterization that is meaningful to the analyst and the analysis tools. More specifically, a qualitative NFP takes a value
from alist of allowed values, where each value identifies a possible alternative.

When looking in more detail at a qualitative NFP, it may be possible to define it in function of a set of criteria, which may
be in turn qualitative or quantitative. Some qualitative NFPs have known meanings that can be interpreted by particular
domains, for example the choice of a scheduler type for a processor, or the choice of a statistical distribution for the
latency of a network. In both examples, the full specification of the property requires not only a qualitative value, but also
some quantitative parameters, as for instance: scheduler-type = roundRobin (quantumSize) or latency-value = gamma
(mean, variance).

8.2.3 The NFP_Annotation Package

Figure 8.3 shows a domain model for NFP annotations. A model of a system (which is considered in this specification to
be expressed in UML) can be extended by annotated models with additional semantic expressing concepts from a given
modeling concern or domain viewpoint. An annotated model contains annotated elements, which are model elements
extended by standard modeling mechanisms. For example, some typical performance analysis-related annotated elements
are: step (aunit of execution), scenario (a sequence of steps), resource (an entity that offers one or more services), service
(offered by a resource or by a component of some kind) *.

4. The Sep and Scenario model elements are defined in GQAM (Chapter 15), whilst the Resource and Service model elemnts are intro-
duced in GRM (Chapter 10)
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An annotated element describes certain of its non-functional aspects (i.e., the ones that are directly related to the
annotation concern) by means of NFP value annotations. These annotations are specified by the designer in the models
and attached to model elements. Thus, the role nfpValue on ValueSpecification (Figure 8.3) indicates that an annotated
model element has a value or values for a specific NFP. ValueSpecification is used to define the value expressions
associated with NFPs. The values must conform to the defining NFP in type and multiplicity. Examples of NFPs are: the
total delay of a step when executed (including queuing delays), the utilization of a resource, and the response time and
throughput of a service.

NFP_Annotation ‘

CoreElements::
Foundations:
ModelElement

1

owns 1 annotationConcern ModelingConcern

Annotated o Annotated
Element owner Model 1.* des cription: string [0..1]
’ * . 0.1 context
constrained Element
ownedRule
. « enumeration »
NFP_Constraint . .
- ConstraintKind
kind: ConstraintKind [0..1] required
0.1 offered
contract
specification 1
MARTE:: VSL::
nfpValue Value Specification relev antNfp
NFPs::
- NFP_Declaration::
nfpDeclaration NEP

Figure 8.3 - Domain model for NFP annotations

Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a certain modeling
concern. In other words, a given modeling concern uses a set of NFPs which establishes the ontology of the domain. For
instance, specific analysis techniques (e.g., performance or schedulability analysis) deal with distinctive non-functional
annotations.

A NFP_Constraint is a condition (a Boolean expression) on the non-functional properties associated with model
elements. In general, NFP_Constraints are assertions that indicate restrictions that must be satisfied by a real-time system.
The annotated model defines the context of the constraints for interpreting names used in the value specification. Kind of
constraints qualifies NFP constraints by either required, offered, or contract nature. When a constraint is defined as
required, the values specified in the NFP_Constraint indicate the minimum quantitative or qualitative level that the
constrained elements demand (these elements are usually clients of resources). An example of required constraints for a
step element is the maximum latency for execution. Offered constraints establish the space of NFP values that can support
amodel element, as for example the throughput of a CPU (elements in this case are commonly software or hardware
resources). Contract constraints define conditional expressions that specifies relationships between offered and required
non-functional values. For instance, if a given model element (e.g., a computing resource) does not support a condition
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on one or many of its NFP values (e.g., a processing capacity), other model element might change one or many of its NFP
values accordingly (e.g., the delay to execute a piece of code). In section 8.3.3.2, we give a detailed example of
NFP_Contraints usage.

8.2.4 The NFP_Declaration package

NFP declaration is intended to qualify and assign extended data types to NFP values (Figure 8.4).

On the other hand, NFP elements have a TupleType (see Annex D for MARTE extended data types), called NFP_Type.
Two attributes define the body of NFP types: valueAttribute and exprAttribute. ExprAttribute is used to specify
expressions associated with NFPs. Hence, we are able to assign variables, literals, intervals, and other expressions. The
return value of the expression must be conform to the associated value attribute of NFP type.

NFP_Type adds the ability to carry a measurement unit (by means of unitAttribute) and additional qualifiers to NFP
values (qualifier Attributes).

A NFP_Type with measurement unit is associated with physical measures. Units are attributes of most Quantitative NFP
elements and it is important to use standard forms. In Section 8.3.3.1, we show some pre-declared units largely used in
the domain (e.g., time units, data size units, transmission speed units) which can be used when specifying NFP values.

Examples of qualifiers are statisticalQualifier, direction, value source, measurement precision and (see NFP Types Library
in Section 8.3.3.1). A statisticalQualifier indicates the type of statistical measure of a given property (e.g., maximum,
minimum, mean, percentile, distribution). The direction attribute (i.e., increasing or decreasing) defines the type of the
quality order relation in the allowed value domain of NFPs. Indeed, this allows multiple instances of NFP values to be
compared with the relation "higher-quality-than" in order to identify what value represents the higher quality or
importance. Source is a peculiarity of non-functional properties associated with the origin of specifications. Precision is
the degree of refinement in the instruments and methods used to obtain a result.
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Figure 8.4 - Domain Model of NFP Declaration

Notice that the set of concepts supporting the declaration of NFPs provides means to annotate NFPs in a first phase, but
the concrete infrastructure for specifying values is supported by VSL (Annex B). Nevertheless, default measurement units
and values may be assigned when declaring NFPs and NFP types.

The ability to specify all the kinds of values supported by VSL is a key concern for NFP annotations. Indeed, NFP
specifications needs to be composable. That means, it should be possible to specify NFP values at afine-grained level and
compose them into higher-level specifications. Conversely, a high-level NFP specification should be decomposable such
that fine-grained NFP specifications can be refined. The refinement relationship between two levels of NFP specification
must ensure consistency between both levels. The process of composition and decomposition should be carried out in
such a manner as to guarantee this consistency. NFP specifications should be able to be refined so that new NFP
specifications can be based on existing ones.

8.3 UML Representation

This section describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support NFP modeling with UML is organized according to the application context of the domain
concepts. In particular, in the NFP modeling framework, note that not every domain concept will result directly inaUML
stereotype or tagged value. This is because some domain concepts are abstract, representing generalizations that will not
appear directly in any UML model.
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For instance, the abstract notion of a“Measure” is very useful as an abstraction in our framework, but will only be
manifested in its concrete forms (e.g., delay, throughput, capacity) in MARTE models. While a corresponding stereotype
could have been defined for this abstract concept, it would never be used in practice. Therefore, we have chosen to only
define stereotypes for concepts that we envisage are actually going to be used in practical modeling situations. This
results in a simpler and more compact profile.

Thus, we first describe the extensions concretized in stereotypes. In Annex D, a set of NFP Types is predefined, which is
used extensively in MARTE to type and qualify non-functional properties.

In Section 8.3.3.2, we will describe some examples that use the whole extensions for NFP annotations with both tagged
values and UML constraints.

8.3.1 Profile diagrams

The Figure 8.5 shows the UML extensions for NFP modeling. The NFP Modeling package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following section.

« profile»
NFPs
« metaclass » «metaclass » « metaclass »
UML: :Classes: :Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel::
EnumerationLiteral Property Constraint
A A A
« stereo_type» « stereotype» « stereotype»
Unit Nfp NfpConstraint

convFactor. Real [0..1] kind: ConstraintKind [0..1]
convOffset: Real D..1]
baseUnit: Unit[0..1]

« stereotype»

VSL::DataTypes :TupleType « enumeration »
P GV ConstraintKind

tupleAttrib: Property [*]

required
offered
contract
« stereotype»
NfpType

v alueAttrib: Property [0..1] {subsets tupleAttrit}

unitAttrib: Property [0..1] {subs ets tupleAttrib}
exprAttrib: Property [0..1] {subsets tuple Attrib}

Figure 8.5 - UML profile diagram for NFPs modeling
8.3.2 Profile elements description

8.3.2.1 Nfp
The Nfp stereotype maps the NFP domain element (Section F.2.10) denoted in Annex F.

Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a
value or values. Nfp is intended to declare, qualify and assign extended data types to NFP values.
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Extensions
» Property (from UML::StructuredClasses::Kernel)

Generalizations

« None

Associations

* None

Attributes

* None

Constraints
« None

8.3.2.2 NfpType

This NfpType stereotype maps the NFP_Type domain element (Section F.2.12) denoted in Annex F. Note, however, that
the qualifier Attributes role is not implemented in the UML view. In practical terms, the tupleAttribute inherited from
TupleType is sufficient to define qualifier attributes.

A Nfp type is a type whose instances are identified only by NFP value specifications. A Nfp Type contains specific
attributes to support the modeling of NFP tuple types.

Extensions
» DataType (from UML::StructuredClasses::K ernel)

Generalizations
« TupleType (from VSL::DataTypes) on Annex B.3.2.5.

Associations

« None

Attributes

« valueAttrib: Property [1]
both physical and non-physical NFP types have a value attribute, which serves as
placeholder to specify avalue of NFPs.

- unitAttrib: Property [0..1]
measurement unit declaration that apply to al the value specifications of the NFP.
Usually, it is an enumeration data type with alist of the valid measurement units.

« exprAttrib: Property [0..1]
attributes representing an expression. MARTE uses the V SL language to define
expressions.
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Constraints
» None

8.3.2.3 NfpConstraint
This NfpConstraint stereotype maps the NFP_Constraint domain concept (Section F.2.11) denoted in Annex F.

NfpConstraint extends the UML mechanism for applying a condition or restriction to modelled elements. Specifically,
NFP constraints support textual expressions to specify assertions regarding performance, scheduling, and other embedded
systems’ features, and their relationship to other features by means of variables, mathematical, logical, and time
expressions.

Extensions
« Constraint (from UML::StructuredClasses::Kernel)

Generalizations

+ None

Associations

» None

Attributes

« kind: ConstraintKind [0..1]
tagged definition qualifying NFP constraints by either required, offered, or contract nature.

Attributes
» None

Constraints
« None

8.3.2.4 Unit
This Unit stereotype maps the Unit domain element (Section F.2.18) denoted in Annex F.

Unit is a qualifier of measured values in terms of which the magnitudes of other quantities that have the same physical
dimension can be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of
length such as meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less stable
or precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by a
numerical scale.

Unit is defined as a stereotype of EnumerationLiteral. This allows modelers to assign alist of allowed units to a particular
physical NFP type by means of a related Enumeration element. In this way, we bound the universe of legal units that
apply to a specific kind of NFPs.

Units can be declared with a parameter representing the Conversion Factor that is applied to a Base Unit to determine the
value in terms of the specified measurement unit.
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Extensions

» EnumerationLiteral (StructuredClasses::Kernel)

Generalizations

« None

Associations

* None

Attributes

» convFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by a numerical factor.

« offsetFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by applying an offset value
to them.

« baseUnit: Unit [0..1]
This attribute represent the base unit by which a derived measurement unit is created
Basic units do not require this attribute.

Constraints

« None
8.3.3 Graphical Syntax of NFP Value Specification

In this section, we define an alternative graphical syntax for value specifications having NfpType as data type. This
syntax consists of a pair of avalue and a unit:

<nfp-value> ::= <value-specification> [' ' <unit-enumeration>]
The following are typical examples:

5ms # a duration value

50 kHz # afrequency value

Note that this notation is for the graphical view of models only. The tuple notation (see Section B.3.3.9) is still valid for
NFP values (NfpType inherits from VSL::TupleType), both in graphical models and in the repository as well. For
instance, the NFP value: '50 kHz' can be specified in the model repository as: '(50, -, kHz, max, -, est, -)' or '(value=50,
expr=null, unit=kHz, statQ=max, dir=null, source=est, precision=null)".

The main rationale of the "value-unit" notation is readability of graphical models. Specific tools could provide more
flexibility in the graphical notation. For instance, users may be able to customize the elements of a tuple in a NFP value
specification that should be displayed. However, because of its common usage in engineering models in general, the
"value-unit" notation is normative (although not mandatory) in MARTE.

8.3.4 Examples
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A requirement for NFP annotations is a trade-off between usability and flexibility. Usability suggests the merit of
declaring a set of standard NFPs for a given modeling domain, so they can be easily referred to and, consequently, every
user of the annotations means the same thing. For NFPs with well-known variants, a set of declarations can be
standardized, which cover the important cases with differently-named measures; these can be translated if necessary by
domain specialists for the use of a specific tool with different names. However there are some NFPs whose meaning is
domain- or even project-dependent. This requires a capability for users to define their own NFPs. Thus flexibility and
expressive power requires that the users have the capability to define their own NFPs, but usability requires a set of
standard measures that can be used in straightforward way.

The following sections will describe respectively an example of NFP model library and examples of usage of such library.

8.3.4.1 Example of NFP model library definition

This section provides an example of NFP types model library definitions. This example corresponds to an excerpt of a
more complete model library predefined for MARTE and specified in detail in Annex D.1. This MARTE library includes
predefined data types supporting NFP annotations commonly used in the real-time and embedded system domain.

NFP Types are implemented in MARTE through UML data types. UML data types (DataType metaclass) are special kind
of classifiers, similar to classes. A datatype differs from aclassin that instances of a datatype are identified only by their
values. Like a class, data type may have attributes. In VSL, we define four kinds of composite data types (data types
alowing attributes): Interval Type, CollectionType, ChoiceType and TupleType. data types with attributes of different
types are called TupleTypes (see Annex D in p.395 for MARTE extended data types). If a tuple type has attributes with
different types, then instances of that data type will contain attribute values matching the types of their corresponding
attributes. Particularly in MARTE, we define a set of pre-declared NFP types which are useful for the other sub-profiles.
However, other domain-specific libraries can be defined either using the NFP profile or specializing the MARTE libraries.

Figure 8.6 shows the package pre-declaring NFP types. Note that we import the MARTE primitive types defined in the
VSL annex (Annex B, p. 353). The list of MARTE primitive types includes Real and DateTime in addition to the pre-
declared UML primitive types. However, note that the set of UML primitive types are completely redefined within
MARTE in order to allow specifying operators on these types (more rationales on this are provided in annex D.1).

Genera MARTE data types that are not NFP types are declared in the MARTE_DataTypes library (Annex D). This library
uses stereotypes of the VSL Profile for data types (see Annex B).

Genera MARTE NFP types are declared in the BasicNFP_Types library (Annex D). A root NFP type called
NFP_CommonType is defined to factorize common NFP type attributes.

In addition to value, expression and unit attributes, NFP types are declared specifying a set of qualifier attributes required
to precisely specify and qualify NFP values.

The semantic of the provided qualifier attributes is the following:

 source: SourceKind [0..1]
peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values
are estimated, calculated, required and measured.

« precision: Real [0..1]
degree of refinement in the performance of a measurement operation, or the degree of perfection in the
instruments and methods used to obtain aresult. Precision is characterized in terms of a Real value, which
is the standard deviation of the measurement.

- statQ: StatisticaQualifierKind [0..1]
statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum,
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mean, percentile, distribution).

« dir: DirectionKind [0..1]
direction attribute (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed
value domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the
relation “higher-quality-than” in order to identify what value represents the higher quality or importance.
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Figure 8.6 - Extract of the model library defining the pre-declared Basic NFP Types and measure units
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Additionally, although not shown in Figure 8.6, we include a set of probability distribution operations that can apply to
the pre-declared NFP Types. Probability distribution is a fundamental concept to specify stochastic values. A probability
distribution assigns to every interval of the real numbers a probability, so that the probability axioms are satisfied. In
technical terms, a probability distribution is a probability measure whose domain is the Borel algebra on the reals. A
probability distribution is modeled in MARTE as the name of the function and a set of parameters allowing estimating the
function in terms of the standard form of the distribution.

Probability distributions are defined as operations of NFP types, each with particular parameters. The included
probability distribution function values are described by the following:

« bernoulli (prob: Real)
Bernoulli distribution has one parameter, a probability (areal value no greater than 1):

» binomial (prob: Real, trials: Integer)
binomial distribution has two parameters: a probability and the number of trials (a positive integer):

» exp (mean: Real)
exponential distribution has one parameter, the mean value:

« gamma (k: Integer, mean: Real)
gamma distribution has two parameters (“k” a positive integer and the “mean”):

« normal (mean: Real, standDev: Real)
normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

» poisson (mean; Real)
Poisson distribution has a mean value:

uniform (min: Real, max: Real)
uniform distribution has two parameters designating the start and end of the sampling interval:

Two kinds of data types are defined: physical dimension types and dimensionless types. In this latter group, we define all
the data types supporting NFP literal values (e.g., NFP_Real, NFP_DateTime, NFP_Boolean). For dimensionless types,
the value attribute is typed according to the related primitive type. For dimension types, the value attribute has the
primitive type Real. This has a practical definition intended to allow modelers representing measured NFP values in the
domain of real numbers. Note that this set of dimension types is not a complete one, since in Annex D, we include
additional time and non-time specific NFP types as predeclared MARTE data types.

The time at which a VSL expression is evaluated depends on different factors. For example, some expressions could be
evaluated when a resource allocation at modelling level is done. Other properties may be evaluated when a given “real
time situation” is modelled. Analysis tools could also provide evaluation of certain expressions.

Notice that dimension types have measurement units. The BasicMeasurementUnits package (stereotyped «modelLibrary»)
define a set of measurement units which are useful for the MARTE scope. We apply to this package the «unit» stereotype
defined in the NFP profile. Asillustrative examples, we show in Figure 8.6 some units used in the MARTE domain (a
complete MARTE library for measurement Units is shown in Annex D.1). It holds a set of self-defined units, as for
example: “s” denoting the time unit for “seconds’. Other derived units are defined with basis on basic units. For instance,
“ms’ denotes a time unit obtained with basis on “seconds” by a conversion factor of “0.001”. Modelers are able to define
further units in the same way.
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8.3.4.2 Usage example of NFP model libraries

We consider three annotation mechanisms: Tagged Values, Constraints, and (Instace Specification) Sots. Tagged values
are a kind of value slots associated with attributes of specific UML stereotypes. Hence, one tagged value characterizes
just one model element. On the other hand, a constraint is a condition expressed in natural language text or in a machine-
readable language (e.g., OCL) for declaring some semantics of one or various model elements. This is useful if we define
NFPs that involve more than one element (for instance, a delay between two different events). On the other hand, NFP
annotations in instance specification slots are related to classifier-defined NFPs. Thus, while the stereotype attribute
mechanism implies the creation of UML profiles, the two latter are mainly aimed at supporting user-defined NFPs.

We explore the capabilities of the NFP modeling framework to annotate NFPs by means of stereotypes and tagged values.
In Figure 8.7, we show a generic scheme to define and apply NFPs. The Basic_NFP_Types package (stereotyped
modelLibrary) corresponds to that presented in Figure 8.6. It encloses the general NFP types and their default
measurement units supporting NFP annotations through all the UML profile for MARTE. Additionally, we depict an
extract of the UML sub-profile for GQAM (Generic Quantitative Analysis Modeling) (detailed in Chapter 15), which uses
the basic NFP Types. To illustrate annotation examples we present a small example of modeling for quantitative analysis.

«modelLibrary»
BasicNFP_Types

« import»

«profile »
GQAM
(Generic Quantitative
Analysis Modeling

hemman( APPl Hewwana UserModelForAnalysis

Figure 8.7 - General Structure for Declaring and Annotating NFPs

In the GQAM *“profile” package (Figure 8.8), we illustrate a description of one of the stereotypes defined in chapter 15
and some of its property definitions. The example's intent is to show some particulars of the extension mechanisms used
in the NFP modeling framework. These arise from the fact that we use NFP annotations for defining most of types of the
stereotype attributes. This feature provides more flexibility to the profile and full compliance with the profile extension
mechanism provided by UML2. The «gaExecHost» stereotype, which represents an execution resource with annotations
for analysis, has efficiency properties (e.g., utilization), and overhead properties as for example cntxtSvT (context switch
time), clockOvh (clock overhead). These attributes are then typed with the NFP Types defined in the Basic_NFP_Types
model library (e.g., NFP_Duration, NFP_Real), which, in turn, contains the tuple information of NFPs. At this stage, we
use the NFP qualifiers statQ (statistical qualifier), dir (direction) and unit (measurement unit) as default values of NFPs
to define the exact semantic of the non-functional attributes. However, this does not prevent modifying these attributes for
specific instances.
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« profile»
GQAM

« metaclass »
UML:: InstanceSpecification

A

« stereotype»
GaExecHost

utiization: NFP_Real (statQ= percent, dir= decr)
clockOvh NFP_Duration= (statQ= max, unit= us)
cnixtSwT. NFP_Duration= (statQ= max)

Figure 8.8 - An example of declaration of NFPs in stereotype attributes

The use of this profile definition is shown in the package named UserModelfor Analysis (Figure 8.9). In this model, an
instance of a node model element is stereotyped «gaExecHost». The associated tagged values of this stereotype are shown
in a compartment (see notation alternatives in the UML Superstructure document, Chapter of Profiles). We can see that
tagged values are specified as structured data types. For example, clockOvh is atuple value that has expression and source
item values. The expression: “normal(50,7)” is a CallOperationExpression (see the VSL annex, package Expressions, for
further details) which calls the probability distribution operation of the defining NFP type (NFP_Duration). The
utilization tagged value is specified as an expression string making reference to a variable $ul. As a methodological rule
that we adopted in the analysis sections, variables indicate to analysis tools that these attributes must be computed and
returned to the UML model. Note that the default values defined in the stereotype attribute declarations can be overridden
in the tagged values if required. For instance, the measurement unit of clockOvh has been overridden in our example.

UserModelForAnalysis UserModelForAnalysis UserModelForAnalysis

« gaExecHost»
uC: Controller

« gaExecHost»

« gaExecHost»
uC: Controller

uC: Controller

|

|

|

|

|

|

|

| « gaExecHost »
utilization= (value=$u1, source= calc) : utilization= ($u1, -, -, -, calc, -)

|

|

|

|

|

|

1

« gaExecHost »
utilization= $u1
clockOvhe= (value= normal (50, 7), source= est) clockOvh= (normal(50, 7), -, -, -, est, -) clockOvh= normal (50, 7)
cntxtSwT= (value= 8, unit= us, source= meas) cntxtSwT= (8, us, -, -, -, meas, -) cntxtSwT= 8 us

|
|
|
|
|
|
I
: « gaExecHost »
|
|
|
|
|
|
|
|

(b) Reduced Notation (c) Graphical Value-Unit

Notation

(a) Extended Notation

Figure 8.9 - Example of user model for analysis with NFP annotations

A UML Profile for MARTE, Beta 1 47



The second mechanism considered to annotate UML models with non-functional aspects is through NFP Constraints.
Constraints commonly define relational expressions between two terms containing parameters, specified by means of
VSL variables or UML properties, and possibly numeric values. Such constraints can be used to identify critical
performance parameters and their relationships to other parameters on the system modeled.

The third NFP annotation mechanism is by using slots of UML Instance Specifications. For this purpose, NFPs are to be
declared at classifier level and NFP values are specified within the related slots. This mechanism has the disadvantage
that annotations are confined to classifiers' instances.

Figure 8.10 shows an example for using the two latter annotation mechanisms (contraints and slots). An important aspect
to have in mind regarding this particular example is that we declare NFPs at user model level, instead of defining NFPs
as stereotype attributes like in the formerlly illustrated mechanism. Our aim is to show how modelers can define their
owns NFPs and use them to specify NFP values by means of NfpContraints and Sots. Hence, in such cases, the semantics
of the defined NFPs is user-dependent®.

5. Notethat, in general, if modelerswill usethe different MARTE sub-profiles, they should follow the annotation mechanism of stereotype
attributes and tagged values to specify NFPs and NFP values. The approach illustrated in the second example has been included in
MARTE in order to support user model-defined (or library-defined) NFPs.
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Controller

«nfp» procUtlliz NFP_Real= (percent, decr)
«nfp» schedUtiliz NFP_Real= (percent, decr)
«nfp» contextSwitch NF P_Duration=(max)
«nfp» clockF req: NFP_F requency= (max, us)

Internal Composite Structure of a
specific Controller instance

Al
«computingResource»
uC: Controller

proc Utiliz= ($u1, calc)

« scheduler »
{schedPolicy = F ixedPriority}
s1/sysSched

« clockResource »
p1 / procClock

ag 5
\‘ [ ]
‘\\ « nfpContraint » {kind=cffered }
N {contextSwitch= (8, us, meas) and
‘\ s chedUtiliz= (5, percent) }
‘\
«nfpContraint » {kind= contract}
{ procUtiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq== (20, MHz2) }
VSL Conditional
/ Expression
Condition If-True Expression If-False Expression

T T T

procUtiliz> (90, percent) ? clockFreq==(60, MHz) : clockFreq==(20, MHZz)

VSL OperationCallExpression  VSL PropertyCalExpres sion VSL Tuple Specification
(VSL infix notation: (call toa property of (related tothe
call to the operation >, ‘Controller ) ‘NFP_Frequency’ NFP type)

‘greater than’ )
Figure 8.10 - Example of user model with NfpConstraint and Slot annotations

We defined a classifier, named Controller, that owns a set of properties stereotyped as «nfp». Note that we have declared
simmilar NFPs as in the previous example, but we intentionally changed their names to emphasize the fact that, in this
case, the declared NFPs have user-specific meaning. As for the stereotype annotation mechanism, in this example we use
NFP_Types to define the structure of NFP value specifications. We also defined default values for NFPs, which state the
predefined value qualifiers: statistical qualifier, direction and unit.

We created a uC instance of Controller and then specified its internal structure by means of a Composite Structure

diagram. These instance-level model elements are stereotyped with high-level modeling contructs, «computingResource»,
«scheduler», and «clockResource», which are formally introduced in the GRM sub-profile, Section 10.3. At this stage, we
specify a set of NFP values by means of two NfpConstraints attached to the specific constrained elements. In both cases,
the constrainedElement (association end from the UML Contraint metaclass to UML Element metaclass) are the specific
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model elements to which the non-functional annotations apply, and the context (association end from the UML Contraint
metaclass to the UML Namespace metaclass) is the Controller node element, which actuates as a namespace context for
VSL expressions.

For instance, one of the NFP_Contraints is attached to the sysScheduler part element. This one defines an “offered” non-
functional constraint written in VSL (see Annex B for details on the VSL textual language). The VSL expression is a
three-level nested boolean expression. In the first level, an infix CallOperationExpression makes reference to the “and”
operation (see the list of operations in Annex D) by specifying two operands. These operands are in turn other
CallOperationExpressions making reference to the equal To (“==") operation, which has two operands. The first operand
in both cases is PropertyCallExpression (calling to the contextSwitch and schedUtiliz properties of Controller) and the
second operand in both expressions is a particular value that is conform to the defining property. In simple words, VSL
allows for specifying NFP values by using (NFP) properties previously declared in the model.

In order to complement this basic annotation, a more complex NFP_Constraint has been specified for the procClock par
(processor clock instance). We illustrate a non-functional contract assertion that is intended to be allowed at run time.
When the Controller utilization becomes greater than 90%, the clock’s frequency increase from 20 MHz to 60 MHz. In
this example, we do not make any assumption about the run-time mechanisms supporting this assertion. The contract has
been specified by using a VSL Conditional Expression, whose structure is detailed in Figure 8.10.

The third proposed annotation mechanism is depicted by defining a procUtiliz slot within the uC instance of Controller.
Asin the first example (Figure 8.9), the utilization slot is specified by a variable $ul. The methodological rule indicates,
again, that this variable should be computed by analysis tools and returned to the UML model.

Additional examples of VSL time expressions and the constraint annotation mechanism are given in Annex B.
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9 Time Modeling (Time)

This chapter contains both domain and UML viewpoints for time modeling. The chapter describes a general framework
for representing time and time-related concepts and mechanisms that are appropriate for modeling real-time and
embedded systems. These serve as a base for the standard modeling elements defined in subsequent chapters of the
MARTE profile.

Since Real-time systems are specifically concerned with the cardinality of time (e.g., delay, duration, clock time),
(chrono-) metric time will be considered. Embedded systems may also require logical time models. Thus, both logical and
metric times are covered in this specification.

9.1 Overview

The time domain model described in this chapter identifies the set of time-related concepts and semantics that are
supported by this profile. The model is quite general, and a given application may need to use only a subset of its
proposed concepts and semantics.

Time can be differently perceived at the different phases of the development of an embedded real-time system (modeling,
design, performance analysis, schedulability analysis, implementation, etc). The concept of ordering (i.e., something
occurring before or after another thing) is common to many Time representations. MARTE adopts models of time that
rely on partial ordering of instants. The temporal ordering of behavior activities can be represented in many ways,
depending on the level of precision required. There are three main classes of time abstraction used to represent behavioral
flows (with minor variations at each level). They are known under different names in different contexts, and these names
are also often used with different meanings elsewhere (so there is no general consensus):

» Causal/temporal: in such models, oneisonly concerned about instruction precedence/dependency. These relations can
be partial in presence of concurrency. Cooperation between concurrent entities takes place as communications (i.e.,
through events). Communications themsel ves can be fully asynchronous, blocking (with the emitter awaiting areturned
reply), or hand-shake synchronization.

» Clocked/synchronous: this class of time abstraction adds a notion of simultaneity, and dividesthetime scalein a
discrete succession of instants. Rich causal dependencies can take place inside an instant, leading to the “ instantaneous
reaction” abstraction. When the clock(s) is (are) linked to aregular pulse, clock ticks become the unit scale of a
discrete-time model (but this need not be the case in any “ synchronous’ tempora model).Thislevel isused in hardware
modeling (at RTL level) where instantaneous propagation corresponds to “combinatorial” behaviors, in simulation

formalisms (asin MATLAB® / SIMULINK®, or in Hardware Descri ption Languages such as SystemC/VHDL/Verilog
with &-cycles representing causal zero-delay dependencies), or in software modeling when relying on synchronous
languages semantics (such as Esterel or SCADE or Signal). A generalization of the synchronous domain allows
clocked entities to be linked in alooser, asynchronous network where no single-clock domain is defined. It leads to the
notion of GALS (Globally-Asynchronous/L ocally-Synchronous) domains. These are used in the field of system-level
models, for instance for SoC (System-on-Chip) design, where several levels of modeling — either software or hardware
— can be combined during the course of the design.

» Physical/real-time: this class of time abstraction demands the precise accurate modeling of real-time duration values,
for scheduling issues in critical systems. Physical time models can also be applied to clocked model, for instance to
derive the admissible speed of areaction.

In embedded real-time systems modeling, time should not be considered as an external model: Time and Behavior are
strongly coupled. The Time domain model identifies concepts that relate time and behavior. The Causality package in the
CoreElements chapter of MARTE has provided a high-level view of the run-time semantics of real time and embedded
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systems. The Time modeling chapter enriches this view with explicit references to time-related concepts. The Invocation
package in the CoreElements chapter is also extended with the concept of SmultaneousOccurrenceSet. The notion of
instant has also to be revisited to deal with simultaneity. This is done in the TimeSructure®, which represents Time as a
partial ordering of instants. A timed event occurrence refers to one instant. An object may be bound to a time structure by
atime base. A time base is a set of instants at which the executions hosted by the object may take place. Time may be the
physical time, with its presumed regularity, but it can also be some endogenous time linked to some repetitive event, not
directly bound to physical time. Hence, the idea to associate time structure with events, behaviors, and objects, or more
generally instances of the concrete subtypes of the BehavioredClassifier metaclass.

To capture the influence of Time on behaviors, we propose that objects, behavior executions, and event occurrences may
explicitly refer to clocks considered as accessors to the time structure.

9.2 Domain view

This chapter covers different concerns about time modeling and usage, informally shown in Figure 9.1. This figure is not
a UML diagram. It only gives an overview of the concepts covered by the Time Modeling chapter and their logical

grouping.

structure

Optional aceess to time ﬁ TimeValueS pecification

TimeAccess TimeUsage

‘

Concepts Concepts Concepts
Time bases Cloc_ks Timed elements
Multiple Time Bases L ogical clocks Timed ewents
Instants C hronometric clocks Timed acions
Time structure relations Currenttime Timed constraints

Figure 9.1 - Overview of the time model concerns

These concerns are reflected in the structure of the time domain model which is partitioned into the following separate but
related groups of concepts:

» Concepts for modeling a simple form of time structured as atotally ordered set of instants owned by atime base
(TimeStructure concern as depicted in Figure 9.1).

 Concepts for modeling multiple time base models (TimeSructure concerns as depicted in Figure 9.1).

« Concepts for accessing to time structure, including clocks and time values (TimeAccess and TimeValueSpecification
concerns as depicted in Figure 9.1).

» Concepts for modeling entities bound to time (TimeUsage concerns as depicted in Figure 9.1).

6. TimeStructureis refined into both BasicTimeModels and MultipleTimeModel s packages in the rest of the chapter.
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Figure 9.2 - Structure of the Time domain model

The BasicTimeModels and MultipleTimeModels packages provide a structural model of time (the TimeStructure) that
constitutes the semantic foundation of our approach to time. These two packages are merged because the concept of
TimeBase introduced in the former is enriched in the latter. Both packages are used by the TimeAccesses and
TimeRelatedEntities packages that contain concepts and constructs effectively used by the standard user of the profile.

9.2.1 The BasicTimeModels package

The BasicTimeModels package (Figure 9.3) provides a structural view of time as an ordered set of instants. This model
does not refer to any notion of physical time. Hence, it can conveniently support logical time, which is widely used in
distributed systems and synchronous languages. This model of time focuses on the ordering of instants, while ignoring the
physical duration between successive instants.

A TimeBase is a container of Instants. The structure of time is specified by the nature attribute that takes its values in the
enumeration TimeNatureKind. Possible values are discrete or dense. In dense time, for any given pair of instants there
always exists at least one instant between the two. A TimeBase owns an ordered set of Instants. We consider only
countable sets. For a discrete time base, instants can be indexed by positive integers. For a dense time base, instants can
be indexed by rational number. Notice that continuous time models, whose indices would be real numbers, can not be
fully represented by countable sets. Since UML behavioral semantics only deal with discrete behaviors, the countable
nature of setsis not a limitation for practical uses.

In order to avoid duplication of concepts based on a distinction between dense and discrete representations, all the
numbers are given using a unique predefined data type Real, which expresses the mathematical concept of a number,
covering integer, rational and real numbers. A real represents a count or a measurement. The primitive type Real does not
impose any restrictions on the precision and the scale of the representation.
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Since discrete time bases play a central role in the time structure model, it is convenient to distinguish a special class for
discrete time bases, which subclasses TimeBase. Junction instants are specialized instants (their name will be justified in
the MultipleTimeModels package). A discrete time base owns junction instants only. This does not preclude a dense time
base from owing junction instants.

The association between a discrete time base and a time base optionally enables to link a discrete time base to a dense
time base. In this case, the former results from a discretization of the latter.

BasicTimeModels

<<enumeration>>
TimeNatureKind

discrete
dense

coveringTB

TimeBase

nature:TimeNatureKind

tb 1

{ ordered}

1 instants

1

Instant

currentinstant
{subsets instants}

date: Real

DiscreteTimeBase
{nature = discrete }

Junctioninstant

Figure 9.3 - Basic time diagram of the time model

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer,
it can be modeled as a dense time base. A convenient model for Physical Time as perceived in MARTE is the

mathematical concept of real line R.
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9.2.2 The MultipleTimeModels package

MultipleTimeModels ‘
0..1 Lparen’(MTB
nestedMTBs
0.* tsRelations
MultipleTimeB ase Qﬁo* TimeStructureRelation
1 owningMTB 4
TimeBaseRelation TimelnstantRelation
. . {union,ordered}
ownedTBs | O. 0. [related Jls

- 2. -

BasicTimeModels : Basic TimeModels :
TimeBase {union,ordered) Junctiorinstant

/related TBs

Figure 9.4 - Multiple time diagram of the time model

The linear vision of time presented in the BasicTimeModels is not sufficient for most of the applications, especialy in the
case of distributed systems. Multiple time bases are then used. A time structure contains a tree of multiple time bases. A
MultipleTimeBase consists of one or many time bases. A time base is owned by one and only one multiple time base.

Time bases are a priori independent. They become dependent when instants from different time bases are linked by
relations (Time Instant Relations). Note that the word relation has been preferred to relationship in order to stress on the
mathematical meaning of this word. The instants involved in such relations are special instants called junction instants,
previously introduced in the BasicTimeModels package (Figure 9.3). All the instants of a discrete time base are also
junction instants, because they are potentially observable instants (see the subsection 9.2.3 about Time Access, page 74).

A multiple time base owns a possibly empty set of time structure relations. These relations specify the time structure.
TimeSructureRelation is an abstract class. It is subclassed into TimeBaseRelation and Timel nstantRelation, which are
also abstract classes. A time base relation relates 2 or more time bases. A time instant relation relates 0 or more junction
instants. Notice that the relatedTBs and relatedJIs properties are derived union (i.e., the effectively related elements are
defined in concrete subclasses, as illustrated in the next 2 sections).
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9.2.2.1 Concrete time instant relations

TimelnstantRelation

A

CoincidenceRelation PrecedenceRelation TimelntervalMembership
{ subsets relateddls } { subsets relatedJls }
after 1 1 b efore
2.” Basic TimeModels : 0.”
coin cide ntJls Junctiorinstant members
{subsets relatedJls } { subsetsrelatedJls }
up per 1 low er 1
Timelnterval
BasicTimeModels: ase 1
TimeBase 1 isLow er Open: Boolean[1] timeInterval

isUpper Open: Boolean[1]

Figure 9.5 - TimelnstantRelation diagram of the time model

As shown in Figure 9.5, three concrete subclasses of the abstract TimelnstantRelation class are defined:
CoincidenceRelation, PrecedenceRelation, and Timel nterval Member ship.

CoincidenceRelation is a strong form of time instant relation: junction instants belonging to different time bases can be
coincident (i.e., same time and same place). In modeling, coincidence has not necessarily this strict relativistic meaning.
It may represent clock synchronizations or design choices, for instance. The coincidence relation must be symmetric and
transitive. Moreover, we assume that any junction instant is coincident with itself, so that the coincidence relation is an
equivalence relation over instants. A strong requirement is that adding coincidence does not introduce cyclic
dependencies in the temporal ordering. In mathematical words, the set of instants quotiented by the coincidence relation
must be a partially ordered set. For convenience, the coincidence relation is often represented in diagrams by linking
pairs of coincident instants. The actual relation is obtained by computing the transitive closure of the relation. Figure 9.6
shows an example for a multiple time base made of three time bases. Junction instants a2 and b2 are coincident. So are
b2 and c2. Even if not drawn in the picture, a2 and c2 are also coincident junction instants (by transitivity).
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Figure 9.6 - Example of multiple time base with coincidences

PrecedenceRel ation between junction instants from different time bases is a time instant relation weaker than coincidence.
It expresses a directional dependency: ajunction instant owned by a time base may precede or follow junction instants
owned by other time bases.

A time interval on atime base is a convex set of junction instants owned by this time base. The convexity is the property
that ensures that any junction instant between two junction instants of the interval is also in the interval. Two Boolean
attributes specify whether the lower and upper bounds of the interval are in the interval or not. By default, the interval is
closed on both boundaries. The bounds and the closure attributes must specify a non empty set of instants. The time
interval is specified by its two bound junction instants. The Timel ntervalMembership is a relation that characterizes
junction instants (members) which are either in the given time interval or are coincident with junction instants in thistime
interval.

9.2.2.2 Concrete time base relations

As explained in the previous section, time instant relations induce relations on time bases of a multiple time base. Time
base relations are a higher level way to impose dependencies between junction instants. A time base relation specifies a
set of time instant relations. As shown in Figure 9.7, for any two time bases A and B, one defines a relation A is finer
than B (or B is coarser than A) if for each junction instant in B there exists one and only one coincident junction instant
in A. This relation can be characterized by a mapping M from the coarser time base B to the finer time base A. This
mapping is injective and order-preserving (i.e., if bl and b2 are two junction instants of B, and bl is before b2, then al =
M(bl) and a2 = M(b2) are such that al is before a2 in time base A). Notice that the specific association between
DiscreteTimeBase and TimeBase (Figure 9.3, page 71) represents a coarser/finer relationship: the coarser time base, which
is discrete, results from a discretization of its covering time base (i.e., its coveringTB property), which is a dense time
base.

al a2 a3 a4 a5 ab a7 a8 a9 al10 atl1
A:TimeBase ~

A'is finer than B
B is coarser thanA

-

B:TimeBase O oO— §
b1 b2 b3 b4 b5 ‘|\

More precisely, A is 2-finer than B

e

Figure 9.7 - Example of time relations between two time bases
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When the finer time base is also a discrete time base, more precise relations can be specified. For instance, the k-finer
relation is defined as follows. A is k-finer than B for k integer, k > 1, if A is finer than B and for any two consecutive
instantsin B, there exist k-1 instants between the corresponding coincident instantsin A. Figure 9.7 illustrates an example
where k=2.

Predefined time base relations are proposed in the TimeStructureRelation Library of MARTE. The semantics of these
relations is given in OCL.

9.2.3 The TimeAccesses package

In real technical systems, special devices, called clocks, are used to measure the progress of physical time. In MARTE we
adopt a more general point of view: a clock is considered as a means to access to time, be it physical or logical. In the
TimeAccesses package, we introduce the concepts of Clock, TimeValue and DurationValue. These concepts are introduced
without any specific reference to physical time. Thus, they can be also applied to logical time. Clocks that refer to
physical time will be considered as specialized clocks.

The TimeA ccesses package is subdivided into four packages as shown in Figure 9.8:
« The Clocks package introduces a general concept of clock.
» The TimeValues package defines the concepts of time value and instant value.
« The DurationValues package defines the concept of duration value.

The ChronometricClocks package contains a specialization of the initial clock concept.

TimeAccesses

Clocks EEsasass <M POr t>>=———<=ws  TimeValues
<<mport>>

I E——
ChronometricClocks  mws-<<import>>as= DurationValues

Figure 9.8 - Subpackage diagram of the TimeAccesses package

The “Value Specification Langauge” annex (Annex B) provides detailed definitions of abstract and concrete syntax for
specifying time expressions in MARTE.

9.2.3.1 The Clocks package

As indicated in Figure 9.9, Clock is an abstract class. A concrete clock is either alogical clock or a chronometric clock.
The latter is defined in another package (ChronometricClocks package on page 78).
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A Clock refers to a discrete time base (its timeBase) and therefore indirectly to a set of junction instants. The timeBase
discrete time base allows access to the time structure. A clock, whose nature is dense, may indirectly refer to a dense
time base through the coveringTB property of its base.

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units
is the defaultUnit. The default unit is the unit attached to the currentTime value. The resolution property specifies the
readout granularity of the clock, expressed in defaultUnit unit. Its default value is 1.

The optional attribute maximalValue expresses the limited capability of usual clocks to represent arbitrary large instant
values: the clock “rolls over” when the currentTime value gets at the maximalValue. Note that in this case currentTime
maps on many junction instants.

A clock may own an event (clockTick). This event occurs at each change of the current time of the clock.

A LogicalClock is a concrete subclass of Clock. It may be defined by an event (definingEvent property); in this case, the
logical clock ticks at each occurrence of the definingEvent. Logical timeis usually counted in the number of ticks. So, tick
is a predefined unit often used as the defaultUnit for alogical clock, and then the resolution of the clock is 1 (the default
value).

Clocks

BasicTimeModels: 1 Clock NFPs::NFP_Annotation:
DiscreteTimeBase timeBase - . AnnotatedElement
nature: TimeNatureKind
resolution: Real=1.0

acceptedUnits

N FPs:: currenflTime: Real -
NFP_Nature:: 1.* maximalValue : R eal[0..1]
Unit 0.1 CoreElements::
defaultUnit 1 clockTick Cau sality::
{subsets 0..1 CommonBehavior:
acceptedUnits} definingEvent Event

LogicaClock

Figure 9.9 - Clocks diagram of the time model
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9.2.3.2 The TimeValues package

TimeValues ‘

NFPs:: unit
NFP_Nature::Unit 0.1
TimeValue
nature: TimeNatureKind
TimeAccesses:: 1

Clocks::Clo ck on Clock Zﬁ

BasicTimeModels:: 0.*
Junctionlnstant

InstantValue
denotedInstant

min 1 m ax 1

TimelntervalValue

MultipleT imeMod els: 0.*
Timelnterv al denoted Timelnterval isMinOpen: Boolean[1]
isMaxOpen: Boolean[1]

Figure 9.10 - TimeValues diagram of the time model

An application may use time in two ways: either as a reference to a time instant or as a time span. The TimeValues
package deals with the first usage, while the DurationValues package addresses the latter.

Since the access to time is done through clocks, a TimeValue refers to a Clock (the onClock property). A TimeValue may
also have a unit property. When unit is given, it must be in the acceptedUnits set of the onClock, and used instead of its
defaultUnit. The attribute nature specifies whether the time values associated with the clock take their values in a dense
or discrete domain. Since computers work with finite precision numbers, the distinction between discrete and dense sets
is blurred by the limited precision of the representation: ultimately all values are discrete. Since the distinction between
dense and discrete sets has a semantic meaning, we retain this distinction in the model, and we use “real” numbers for
dense time values and integer numbers for discrete ones.

In the MARTE time model, logical clocks are always discrete, and their time values are integer numbers.

An InstantValue, which is a TimeValue, may refer to 0, 1, or many junction instants of a discrete time base. The multiple
denotation of junction instants is due to the bounded nature of the representation of values. There may exist a folding of
the time representation due to clock roll-over.

A TimelntervalValue is defined as a pair of instant values and denotes O or many time intervals (many results from

possible folding of the time representation). The min InstantValue refers to the lower instant of the time interval; the max
InstantValue refers to the upper instant of the time interval. The closure properties of the interval are specified by the two
Boolean attributes isMinOpen and isMaxOpen. By default, the interval is closed (i.e., it includes the min and max values).

When used in a time value specification, a time interval value indicates any time value in the interval.

The TimeValue class is abstract. It generalizes InstantValue, and DurationValue, which is introduced next.
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9.2.3.3 The DurationValues package

DurationValues

TimeAccesses:: intervalValue TimeAccesses::
TimeValues:: DurationValue e TimeValues::
TimelntervalValue 1 TimeValue
minD 1 1 maxD

DurationintervalValue

isMinDOpen: Boolean[1]
isMaxDOpen: Boolean[1]

Figure 9.11 - DurationValues diagram of the time model

The DurationVal ues package introduces the concept of duration value (Figure 9.11). Duration is a “distance” between two
instants. It characterizes the “extension” of atime interval. From the user’s point of view, atime interval is specified by
a TimelntervalValue. As explained in Section.9.2.3.2, a Timelnterval Value may denote 0, 1 or many time intervals, due to
possible clock roll-over. In the simple case when the clock has no defined maximalValue, the DurationValue of a
Timelnterval Value is defined by the difference between the max and min instant values of this time interval value. When
the maximal Value property is defined, the DurationValue is defined as the difference modulo maximalValue between the
max and min instant values of this time interval value.

A Durationinterval Value is defined by a pair of duration values, which specifies an interval of values. When used in
specification, a duration interval value indicates any duration value in the interval.
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9.2.3.4 The ChronometricClocks package

ChronometricClocks

. <<enumeration>>
Tim eAc cesses: Tim eStandardK ind
Clocks :Clock
TAI
uTo
Ut
UuTcC
TT
TDB
ChronometricClock $g§
Sider eal
referenceClock | standard: Time StandardKind[0..1] Local
0.1 stability : Real [0..1] GPS
offset DurationValue [0..1]
skew:Real[0..1] "'i
drit: Real[0.1] L

‘ PhysicalTime

Figure 9.12 - ChronometricClocks diagram of the time model

In Section 9.2.1, physical time has been characterized as a continuous and unbounded progression of physical instants.
The progression of physical time is perceived through event occurrences. Some events are considered as better candidates
to represent the (assumed) uniform progression of physical time. For instance, one may choose the period of the radiation
corresponding to the transition between the two hyperfine levels of the ground state of the cesium 133 atom (see the
definition of the second time unit). Today, this is the best known reference. More conveniently, one considers cyclic
events, whose occurrences are (more or less) periodic. Periodicity should be checked against the above mentioned best
referense. Usually, periodic event generators are called clocks. We have already used this term in a broader sense: thereis
noreference to periodicity in clocks defined in Section 9.2.3. Therefore, we name ChronometricClock a clock that
implicitly refers to physical time.

The ChronometricClocks package introduces the main concepts related to clocks bound to physical time (Figure 9.12). A
chronometric clock provides quantitative information about time. Numerous non functional time-related properties can be
defined for chronometric clocks. Only a few are presented below.

Figure 9.13 represents, in an informal way, the dependency of chronometric clocks on physical time. Physical timeis
modeled as a dense time base (the Real line). The instants of the discrete time base associated with a chronometric clock
are coincident with physical instants regularly interspaced on the real line. In a chronometric clock, the resolution
property is the duration value of physical time elapsed between two consecutive instants of this clock. Real chronometric
clocks do not perfectly reflect evolution of physical time. Possible defects are characterized by non functional properties.
For instance, stability is the ability for a clock to report consistent intervals of time. Stability is measured by derivatives
of the clock rate, derivation against time or against environmental factors.

When many clocks are present in a system, other non functional time properties are considered. They are time-dependent
pair-wise characteristics. Usually, one clock is taken as a reference clock against which the other clock is matched. When
omitted, the reference clock is supposed to be an "almost perfect clock”. Two clocks with the same rate may present an
offset. This duration value may vary along time. The rate of change of the offset (i.e., its first derivative against time)
between two clocks is called the skew. This skew itself may change over time. The derivative of the skew is called the
drift.
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Figure 9.13 - Dependency example of chronometric clocks on physical time

9.2.4 The TimeRelatedEntities package

TimeRelated Entities

TimedConstraints

@ TimedObservations

TimedEventModels

4 TimedProcessingModels

ClockConstraints .
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--.‘._‘ <<;n:1port>>
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g ~
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Figure 9.14 - Subpackages of the TimeEntities package
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Time can be used for observation or for control. Typical examples of the first usage are observations of event occurrences
in interactions diagrams. Time events triggering behaviors are examples of the second usage. MARTE proposes to
explicitly relate events, actions, messages... to time. The TimeRel atedEntities package is subdivided into the following
subpackages (Figure 9.14):

« the TimedElements package defines the key concept of TimedElement;

- the ClockConstraints package introduces constraints on clocks;

« the TimedObservations package provides concepts related to observation of timed entities;
- the TimedConstraint package specifies constraints on time-related observations;

- the TimedEventModels package deal s with events whose occurrences are bound to time;

« the TimedProcessingModels package addresses executions bound to time.

9.2.4.1 The TimedElements package

TimedElements

CoreElements::

TimedElement 1 Foundations:
ModelElement

TimeAccesses:: 1.*
Clocks::Clock on

Figure 9.15 - TimedElement diagram of the time model

A timed element, introduced in the TimedElements package (Figure 9.15), is a most general concept. TimedElement is an
abstract class generalization of all other timed concepts. It associates a non empty set of clocks with amodel element. The
semantics of the association with clocks depends on the kind of timed element.

9.2.4.2 The ClockConstraints package

ClockConstraints
NFPs::
NFP_An notation:
NfpCo nstraint
TimeAccesses:: 2." ) 1 ccs::
7 ClockConstraint ®»————— ; e
Clocks::Clock constrainedClocks specification ClockConstraintSpecification
{subsets { redefines
constrainedElement } specffication }

Figure 9.16 - ClockConstraints diagram of the time model
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A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a
ClockConstraintSpecification. Clock constraint specifications are specia value specifications described in Annex C
(Clock Constraint Specification Language). An example of clock constraint is that two clocks are harmonic with one
twice faster than the other.

9.2.4.3 The TimedObservations package

TimedOb servations
CoreElements::
TimedElements:: ’ ) observationContext Causality:
l | TimedObservation
Timed Element 0.. RunTimeCo ntext:
ZF CompBehaviorExecution
TimedIn stantObservation TimedDurationObservation CoreElements:
0.. Causality:
. ; . . exc RunTimeCo ntext:
obsKind:EventKind[0..1] obsKind:EventKind[0..2] Bl rvi i esie
<<enumeration>>
EventKind
1 eocc 0..1 | stim
start
CoreElements: CoreElements: finish
Causdity: 0.2 Causality: senq
RunTimeCo ntext: eocc Communication:: receve
EventOccurrence Request consume

Figure 9.17 - TimedObservations diagram of the time model

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. A
TimedObservation is a TimedElement. As a TimedElement it has associated clocks, used for observing time. A
TimedObservation is made in the runtime context of a (sub)system behavior execution (the observationContext property).

The enumeration literals of the EventKind enumeration allow the user to specify the kind of events considered in a
TimedObservation. For a behavior, observed events can be either its start event or its finish event. For a Request, the
possible events are its sending, its receipt or the start of its processing by the receiver.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence (eocc property) and observed
on a given clock. The obsKind property of the TimedlnstantObservation may specify the kind of observed event.

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences,
and observed on one clock or two clocks. The exc property associates the duration observation with a BehaviorExecution,
which is an abstraction of CompBehaviorExecution and ActionExecution. The duration is the time elapsed between the
occurrences of the start and the finish events of an execution of this BehaviorExecutionSpecification (i.e. a
CompBehaviorExecution or an ActionExecution). The stim property associates the duration observation with a Request.
A Message is a kind of Request. The duration can be observed between two of the three events associated with a request
(its sending, its receipt or the start of its processing). The precise kind of event can be given by the obsKind attribute.
Finally, a duration can be observed between two event occurrences (eocc property), not necessarily observed on the same
clock.

A UML Profile for MARTE, Beta 1 65



9.2.4.4 The TimedConstraints package

TimedConstraints

VSL:TimeExpressions::
InstantExpression

ZF NFPs::

1 o
InstantPredicate l=———— | TimedinstantConstraint NFP_Annotation:
specification NfpConstraint
1.* | observation {redefines
a specification }

TimedElements:: N TimedConstraint

TimedObservation

1. | observation %7

Duration Predicate < ——————<@ TimedDuratio nConstraint TimedElements::
specification TimedElement
{redefines
specification }

VSL:TimeExpressions::
Duratio nExpression

Figure 9.18 - TimedConstraints diagram of the time model

A TimedConstraint is a constraint imposed on the occurrence of an event (TimedlnstantConstraint), or on the duration of
some execution, or even on the temporal distance between two events (TimedDurationConstraint). The constraints are
specified by predicates (InstantPredicate for instants and DurationPredicate for durations). A usual form of predicate is
"the constrained instant value belongs to a given time interval value" or "the constrained duration value belongs to a given
duration interval value". Instant and duration predicates contain usages of timed observations.

9.2.4.5 The TimedEventModels package

This package consists of two packages: TimeEventOccurrences and TimedEvents (Figure 9.19).

TimedEventModels

TimedEventOccurrences TimedEvents

Figure 9.19 - The TimeEventModels package

The TimeEventOccurrences package

An event occurrence can be associated with time instants. MARTE introduces the concept of TimedEventOccurrence
(Figure 9.20), which is both a TimedElement and an EventOccurrence. The at property specifies the instant value of this
timed event occurrence on one of its clocks. Since a timed event occurrence may refer to several clocks (on property),
several instant values (at property) are possible. Usually, there is one clock only, but several are allowed at least to cover
the case of simultaneous occurrence set, introduced below.
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This package also introduces the concept of SimultaneousOccurrenceSet. In the Causality Modeling chapter, an execution
of a behavior may be caused by an event occurrence. In some situations, several events have to be considered as a whole
because their collective effect cannot reduce to the serialization of their individual effects. The concept of
SimultaneousOccurrenceSet is introduced to address thisissue. A SimultaneousOccurrenceSet is an EventOccurrence, and
as such, it can be the cause of a behavior execution. This concept is useful at design-time when different views of a same
event, which have been introduced earlier, have to be merged into one event. It is also of common use in reactive
synchronous modeling.

TimedEventModels
::Timed EventOccurrences

CoreElements::

Causality:: TimedElements::
RunTimeContext: Timed Element
EventOccurrence

0.* | occSet ZF
0..1
SimultaneousOccurrenceSet TimedEventOccurrence
0..1

1.% at

TimeAccesses::
TimeValues::
InstantValue

Figure 9.20 - TimedEventOccurrences diagram of the time model

The TimeEvents package

A TimedEvent is an event the occurrences of which are bound to clocks. A TimedEvent may have several occurrences.
The when property specifies when the first occurrence occurs. The Boolean attribute isRelative specifies whether the time
value is relative (the when property is a time duration value) or absolute (the when property is a time instant value). The
every optional property permits repetitive occurrences of the timed event. When every is present, its value is the duration
that separates the successive occurrences of the timed event. The number of occurrences can be limited by the repetition
attribute. The time values are specified by CVS expressions. CV'S (Clocked Value Specification) is defined in Annex C.
A CVS::ClockedValueSpecification specifies a TimeValue, a CV S::DurationValueSpecification a DurationValue, and a
CVS::InstantValueSpecification an InstantValue.

A UML Profile for MARTE, Beta 1 67



Timed EventModels
::TimedEvents

CoreElements:
TimedElements:: Causality::
Timed Element CommonBehavior:
Event

Timed Event

isRelative : Boolean
repetition: Integer[0..1]

1 when 0..1 |every
CVS:: CVs::
ClockedValueSpecification DurationValueSpecification

Figure 9.21 - TimedEvents diagram of the time model

9.2.4.6 The TimedProcessingModels package

This package consists of two packages: TimedExecutions and TimedProcessings.

TimedProcessingModels

TimedExecutions TimedProcessings

Figure 9.22 - The TimedProcessingModels package

The TimedExecutions package

A TimedExecution is a TimedElement that is a specialization of the
CoreElements::Causality::RunTimeContext::BehaviorExecution. As a TimedElement, a timed execution makes explicit
reference to clocks.

Two instants values startInstant and finishlnstant are associated with an execution and they correspond to the occurrence
instants of its StartOccurrence and TerminationOccurrence, respectively. A DurationValue may also characterize an
execution. Since a timed execution may refer to several clocks (on property), severa time values are possible.
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In the CoreElements::Causality::RunTimeContext package, CompBehaviorExecution and ActionExecution are concrete
subclasses of BehaviorExecution, so that timed behavior executions and timed action executions also make explicit
reference to clocks. A message transfer can also be assimilated to a timed execution (the sending instant being the

startlnstant of the communication and the receipt instant being its finishinstant). In what follows, Behavior, Action, and

Message are collectively designated as timed processing, even if this assimilates a Message to its transfer.

TimedProcessingModels
;:TimedExecutions

CoreElements:
Causality::
RunTimeContext:
BehaviorExecution

Timed Element

Timed Elements:

%

1

executionDuration 1..%

Timed Execution

startinstant | 1..”

finishinstant | 1..

TimeAccesses::
DurationValues::
Duration Value

TimeA ccesses::

TimeValues::
InstantValue

Figure 9.23 - TimedBehaviorExecutions diagram of the time model

The TimedProcessings package

TimedProcessing (Figure 9.24) is a generic concept for modeling activities that have known start and finish times, or a
known duration. In fact, two out of the three time values suffice to characterize a particular execution of the processing.

For a timed message, start and finish events are respectively named as sending and receipt events.

A delay is a specia kind of timed action that represents a null operation lasting for a given duration.
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Timed Processing Models
;:TimedProcessings
CoreElements:: CoreElements:: CoreElements::
Causality : Causality:: Causality::
CommonBehavior: Communication:: Common Behavior::
Behavior Requ est Action
Timed Behavior TimedMessage Timed Action

\ I

V Delay

Timed Processing

0.1 duration start| 0..1 finish | 0..1
CoreElements::
CVS:: Causality:: Timed Elements::
Duration ValueSpecification CommonBehavior: Timed Element
Event

Figure 9.24 - TimedProcessings diagram of the time model

9.3 UML Representation

This section describes the UML extensions required to support the concepts defined in the Time Modeling domain view.
Some concepts result in new stereotypes, others specialize stereotypes defined for NFPs modeling, and still others need
no extensions at al. Most of the time-related stereotypes extend metaclasses from UML ::Classes::Kernel,
UML::CommonBehaviors and the SimpleTime package of CommonBehaviors.

9.3.1 Profile Diagrams

The Time profile depends on the NFPs profile as shown in Figure 9.25.

«profile» « modelLibrary»
NFPs TimeTypesLibrary
. 7 .
o, P ~e
<< i?’hport» <<import>> <<import>>
-§\. "’o' \\
] 47\. .'r 4‘~—‘
«profile» i _— «profile » «modelL ibrary »
VSL::DataTypes [<=——<<import>> Time pe= === AP ply > nemm—aey TimeL ibrary

Figure 9.25 - Time profile dependencies diagram
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For convenience, the Time profile is represented as a collection of diagrams. Each diagram gathers tightly related model

elements. The actual Time profile consists of all these diagrams. The libraries are presented in Annex D.

9.3.1.1 TimedElement and Clock stereotypes

In the Time domain view, the concepts related to the time structure have been introduced in the BasicTimeModels and
MultipleTimeM odels packages. These concepts constitute the semantic domain of the Time model. The corresponding

concepts in the UML view are ClockType and TimedDomain. The TimedDomain stereotype of the UML view maps to
MultipleTimeBase and the ClockType stereotype maps to TimeBase.

<<metaclass>=>

=<metaclass>>

<<metaclass=>>

UML: :Classes:: UML::Classes::Kernel:: w = s
Kernel::Property InstanceSpecification UML::Classes::Kernel::Class
A A [}
<zmetaclass>>
UML::Classes::Kermnel:: cfste&‘rotxpeﬁ <<stereotype>>
Package o ClockType
A standard: TimeStandardkind(0..1] nature: TimaNaturekind[1]

) unitType: Enumeration((,,1]
<<sterectype>> an | 1. ¥pe_ | isLogical: Boolean]1]=false
TimedDomain ' 1 resolattr Property[0..1]

max\alAtr: Property[D..1]

offsetAttr: Property[0..1]

getTime: Operation[d..1]
<<sierootype>> __unit =<storeotype>> 221Time: Operation([D..1]
NFP_profila::Unit 01 TimedElemant indexToValue: Operation[0..1]

Figure 9.26 - UML extensions for Time modeling (1)

9.3.1.2 Timed value specification stereotypes

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a

TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

<<metaclas s>>
UML::Classes::Kernel::
Value Specification

<<stereotype>

Bl

TimedValueSpecification

interpretation: Time Inte rpr etation Kind[0.. 1]

Figure 9.27 - UML extensions for Time modeling (2)

9.3.1.3 Constraint stereotypes
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Time Modeling introduces two stereotypes specializing the NfpConstraint stereotype, which is itself an extension to the
UML Constraint. TimedConstraint deals with constraints imposed on either instant value or on duration value, according
to the value given to the interpretation attribute. ClockConstraint imposes dependency between clocks or between clock
types. As TimedElement, both stereotypes refer to clocks. Additional OCL rules specify the constrained elements, the
specification, and the context of the constraint. Note that VSL is convenient to express various timed constraints.

<<stereotype>>
NFP_Profile:
NfpConstraint

<<stereotype>>
TimedConstraint <<stereotype>>
ClockConstraint

interpretation: Timelnter pretationKind

<<stereotype>>
TimedElement

Figure 9.28 - UML extensions for Time modeling (3)

9.3.1.4 Observation stereotypes

TimedObservation is an abstract stereotype of TimedlnstantObservation and TimedDurationObservation. It allows time
expressions to refer to either in a common way. As a TimedElement, a TimedObservation makes reference to clocks. The
optional obsKind attribute may specify the kind of the observed event(s). The Enumeration EventKind is part of the
TimeTypesLibrary (Annex D.3.1).

-::_smrnntype: <<stereotypes> =<metaclass=>
ol TimedinstantObservation - | UML::CommonBehaviors::
i SimpleTime::
obskind Eventiind(0..1] TimeQbservation
<<stereotype>> :]
TimedObservation
« enumeration »
EventKind
slart <<storeotype>> <<mataclass>>
finish TimedDurationObservation _ | UML::CommanBehaviors::
f:;ve | SimpleTime::
SR obsKind Eventkind[0, 2] LIRS Do

Figure 9.29 - UML extensions for Time modeling (4)

9.3.1.5 Timed event stereotype

The TimedEvent stereotype represents Event whose occurrences are explicitly bound to clocks.
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<<metaclass>>
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ValueSpecification
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TimeEvent
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<<stere oty pe>>
Timed Event

0.1

0..

repetition: Integer[0 .. 1]

Figure 9.30 - UML extensions for Time modeling (5)

9.3.1.6 Timed processing stereotype

The TimedProcessing stereotype represents activities that have know start and finish times or a known duration, and

whose instants and durations are explicitly bound to clocks.

<<metaclass>>
UML::Actions::
Action

!

<<metaclass>>
UML: CommonB ehaviors: :

<<metaclass>>
UML::CommonB ehaviors::
Communication::
Ev ent

<<stereotype>>
TimedElement

<<met aclass>>
UML: Interactions:
Basiclnteractions:
Message

A

Behavior
4
tart
0.1 <<stereotype>>
finish TimedProcessing
0.1

y

<<stereotype>>
Timed Element

Figure 9.31 - UML extensions for Time modeling (6)

9.3.2 Profile elements description

9.3.2.1 Clock

0.1

duration
0.1

<<met aclass>>
UML::Classes:Kernel::
ValueSp ecific ation

The Clock stereotype maps the Clock domain element (section F.3.2) denoted in Annex F. It also relates to the
ChronometricClock domain element (Section F.3.1).

A Clock is a model element that represents an instance of ClockType. A Clock gives access to time. A Clock existsin a
TimedDomain. A Clock maps to a TimeBase in the semantic domain. The stereotype specifies the unit of the Clock. A
Clock is also characterized by its resolution, and optionally by its offset (itsinitial instant value) and its maximal value.

The values of these attributes are contained in the slots of the stereotyped |nstanceSpecification.

A Clock can also be a stereotyped Property, so that it can be used in composite structure and interactions.
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Extensions
. "Property (from UML::Classes::Kernel)

* InstanceSpecification (from UML::Classes::Kernel).

Generalizations
* None.

Associations

* type: ClockType[1]
specifies the Clock Type whose this Clock is an instance.

e unit: NFPs::Unit[0..1]
defines the unit used by this Clock. If unit is not defined, then this Clock uses the anonymous
tick unit. When defined, this unit must be of the unitType specified in the ClockType.

Attributes

e standard: TimeStandardKind[0..1]
references the system of time adopted by the clock. This property is not defined for alogical clock.

Constraints

[1] The owner of a class stereotyped by Clock must be a Package stereotyped by TimedDomain.
base Class.owner.ocllsTypeOf(TimedDomain)

[2] The base_InstanceSpecification of the ClocklnstanceSpecification must be an InstanceSpecification of the base Class
of its type property.

self.base_InstanceSpecification.classifier->includes(self.type.base Class)
[3] The unit must be an ownedLiteral of the unitType enumeration of the ClockType.
self.unit->notEmpty( ) implies self.type.unitType.ownedL iteral->includes(sel f.unit)
[4] A logical clock does not have a defined standard.

self.type.isLogical implies self.standard->isEmpty( )

9.3.2.2 ClockConstraint
The ClockConstraint stereotype maps the ClockConstraint domain element (section F.3.3, p. 446) denoted in Annex F.

A ClockConstraint is a Constraint that imposes dependency between clocks or between clock types. A ClockConstraint
refersto a set of clocks or clock types, and possibly to other model elements. The clocks in the constrained elements must
belong to the on clock set of this ClockConstraint; the constrained clock types must be types of clocks in the on clock set.
The specification of the constraint is usually an opaque expression using a dedicated language: CCSL (Clock Constraint
Specification Language) defined in Annex C.

Extensions
* None
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Generalizations
e NfpCongtraint (from NFPs)

*  TimedElement

Associations

* None
Attributes
* None

Constraints

[1] The constrained clocks are members of the on clock set of the ClockConstraint.
self.on->includesAll(self.base_Constraint.constrainedElement->sel ect(c|c.ocl sTypeOf (Clock))
[2] The constrained clock types are types of clock members of the on clock set of the ClockConstraint.

self.on->includesAll(self.base_Constraint.constrainedElement->sel ect(c|c.ocl| sTypeOf (Clock Type).type)

9.3.2.3 ClockType

The ClockType stereotype maps the TimeBase domain element (section F.3.21) denoted in Annex F. It also related
indirectly to Clock (section F.3.2) and ChronometricClock (section F.3.1).

A ClockType is a classifier for Clock. The attributes of the stereotype define the nature of the represented time (discrete
or dense), the type of units, and whether its instances are logical clocks or chronometric clocks.

Extensions
e Class (from UML::Classes::Kernel)

Note — The ClockType stereotype the UML Class. This metaclass goes through several merge increments in the UML
specification. Using UML::Classes::Kernel::Class does not preclude usage of Class from UML::StructuredClasses.

Generalizations
* None

Associations
¢ None

Attributes
e nature: TimeNatureKind [1]
specifies the nature dense or discrete of the time represented by this ClockType.

e UunitType: UML::Classes.:Kernel::Enumeration [0..1]
isthe type of units supported by this ClockType.

e isLogica: Boolean[1] =fase
specifies whether this ClockType reads alogical time or not. When isLogical isfase, the ClockType reads a
chronometric time, i.e., atime bound to physical time.
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« maxVaAttr: Property [0..1]
the maxValAttr property refersto a property of the base class. This property declares aread only attribute which
determines the maximal Value of the associated Clock, value at which the clock rolls over. The maximal valueis
expressed with the clock's unit as a unity.

«  offsetAttr: Property [0..1]
the offsetAttr property refersto a property of the base class. This property declares aread only attribute which
determines the offset (initial instant) of the associated Clock. The offset is expressed with the clock's unit asa
unity.

« resolAttr: Property [0..1]
the resol Attrib property refersto a property of the base class. This property declares aread only attribute which
determines the resolution of the associated Clock. The resolution is expressed with the clock's unit as a unity.
When resolution is not defined, the granularity is arbitrarily small. Thisisthe case for densetime.

e getTime: UML::Classes::Kernel::Operation [0..1]
the getTime property refers to an operation of the base class that returns the current time.

e seTime: UML::Classes::Kernel::Operation [0..1]
the setTime property refersto an operation of the base class that sets the current time.

e indexToValue: UML::Classes::Kernel::Operation [0..1]
the indexToValue property refers to an operation of the base class that yields the instant value associated with an
instant specified by itsindex.

Constraints
¢ None

9.3.2.4 TimedConstraint

The TimedConstraint stereotype maps the TimedConstraint domain element (section F.3.25) denoted in Annex F. It also
related indirectly to TimedlnstantConstraint (section F.3.32) and TimedDurationConstraint (section F.3.26).

A TimedConstraint imposes constraints on either instant value or duration value associated with model elements bound to
clocks. If interpretation is set to the enumeration literal instant, then the constraint is interpreted as a constraint on instant
value. If interpretation is set to the enumeration literal duration, then the constraint is interpreted as a constraint on
duration value. There is no other case. The specification of the constraint itself can be conveniently expressed in VSL.

Extensions
¢ None

Generalizations
* NfpConstraint (from NFPs)

*  TimedElement

Associations
e None

Attributes

e interpretation: TimelnterpretationKind [1]
specifies whether the constraint appliesto an instant value or to a duration value.
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Constraints
[1] The owner of a constraint stereotyped by TimedConstraint must be a Package stereotyped by TimedDomain

base Constraint.owner.ocllsTypeOf(TimedDomain)
[2] The interpretation property is either instant or duration

[3] self.interpretation <> TimelnterpretationKind::any

9.3.2.5 TimedDomain
The TimedDomain stereotype maps the MultipleTimeBase domain element (section F.3.17) denoted in Annex F.

A TimedDomain is a container of Clocks. Model elements of the TimeDomain may refer to Clocks to express that their
behavior depends on time. A TimedDomain is also a context for a ClockConstraint. A TimedDomain may own nested
TimedDomains. A TimedDomain maps to a MultipleTimeBase in the semantic domain.

Extensions
e Package (from UML::Classes::K ernel::Package)

Generalizations
¢ None

Associations

* None
Attributes
* None

Constraints
¢ None

9.3.2.6 TimedDurationObservation

The TimedDurationObservation stereotype maps the TimedDurationObservation domain element (section F.3.27) denoted
in Annex F.

A TimedDurationObservation denotes some interval of time, observed on one or two clocks. The duration may be the
time elapsed between the occurrences of the start and the finish events of an execution. The duration may also be the time
elapsed between two of the three events associated with a message (its sending, its receipt, and the start of its processing
by the receiver). More generally, the duration may be the time elapsed between the occurrences of two distinct events.

Extensions
e DurationObservation (from UML::CommonBehaviors::SimpleTime::DurationObservation).

Generalizations
¢ TimedObservation
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Associations
¢ None

Attributes
e 0obsKind: EventKind [0..2] specifies the kind of the observed events.

Constraints
* None

9.3.2.7 TimedElement (abstract)
The TimedElement stereotype maps the TimedElement domain element (section F.3.28) denoted in Annex F.

The TimedElement stereotype is an abstract stereotype that does not extend UML meta classes. It stands for model
elements referencing Clocks. Only concrete specializations of TimedElement can be applied.

Extensions
e None

Generalizations
e None

Associations
e on:Clock [1..*] references aset of Clocks.

Attributes
* None

Constraints
* None

9.3.2.8 TimedEvent

The TimedEvent stereotype maps the TimedEvent domain element (section F.3.29) denoted in Annex F. It also related
indirectly to TimedEventOccurrence (section F.3.30).

The TimedEvent stereotype represents events whose occurrences are explicitly bound to a Clock. When this stereotype is
applied to an Event, this Event specifies the first occurrence of this Event (isRelative and when properties). The when

value is considered read on the on Clock of this TimedEvent, and with the unit of this Clock. The every property specifies
the duration between successive occurrences, if any. The number of occurrences can be limited by the repetition property.

Extensions
e TimeEvent (from CommonBehaviors::SimpleTime)

Generalizations
*  TimedElement
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Associations

e every: UML::Classes::Kernd::ValueSpecification [0..1]
is an optional owned specification of the duration val ue between two successive occurrences
of this TimedEvent. By default this duration is read on the on Clock of this TimedEvent. By applying
the TimedValueSpecification stereotype to this ValueSpecification, another Clock can be chosen.

Attributes

e repetition: Integer[0..1]
isan optional repetition factor. When defined, repetition is the number of successive
occurrences of the TimedEvent. Its absence isinterpreted as an unbounded repetition.

Constraints
[1] A TimedEvent is bound to one Clock.

on->size() =1

[2] The optional repetition property of a TimedEvent must be not defined when every is not defined.
every->isEmpty( ) implies repetition->isEmpty( )
9.3.2.9 TimedInstantObservation

The TimedlInstantObservation