Date: September 2018

OBJECT MANAGEMENT GROUP

UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems

(Convenience document with change bars)

Version 1.2

OMG Document Number: ptc/2018-07-04

Standard document URL: http://www.omg.org/spec/MARTE/1.2

Associated Files™: http://www.omg.org/spec/MARTE/20180705
http://www.omg.org/spec/MARTE/20180706

Original files: ptc/2010-02-04 (XMI), ptc/2010-02-05 (model library XMI)

Copyright © 2001-2018, Airbus

Copyright © 2001-2010, Alcatel-Lucent

Copyright © 2003-2010, ARTISAN Software Tools
Copyright © 2001-2018, Commissariat a I’Energie Atomique
Copyright © 2001-2010, International Business Machines Corporation
Copyright © 2003-2010, Lockheed Martin Corporation
Copyright © 1997-2018, Object Management Group
Copyright © 2001-2010, SOFTEAM

Copyright © 2010-2018, Simula Research Laboratory
Copyright © 2003-2018, THALES

Copyright © 2001-2018, Universidad de Cantabria

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ | Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ | IMM™ MOF™ | OMG Interface Definition Language (IDL)™, and
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

1Preface v
2Scope 1

2.1 Introduction 1
3Conformance 1

3.1 Overview 1
3.2 Extension Units and Features 2
3.3 Conformance of MARTE with UML 2
3.4 Conformance with MARTE 3
3.4.1 Compliance Cases 3
3.4.2 Extension Units in each Compliance Case 4
3.4.3 Special additional compliance case and extension units 4

4Normative References 4
5Terms and Definitions 4
6Symbols 5

7Additional Information 6

7.1 Scope of OMG RT/E Related Standards 6
7.2 Rationale and General Principles 7
7.2.1 Real-time and embedded domain 7
7.2.2 Guiding principles 9
7.2.3 How to use this specification 10
7.3 Approach and Structure 13
7.3.1 Profile Architecture 13
7.3.2 A Foundation for Model Driven Techniques 14
7.3.3 Approach to Modeling RT/E Systems 14
7.3.4 Approach to Annotating for Model Analysis 15
7.3.5 MDA and MARTE 15
7.4 How to Read this Specification 16
7.4.1 Structure of the Document 16
7.4.2 Extension Specification Rationale and Format Convention 16
7.4.3 Conventions and Typography 17
7.5 Acknowledgements 17

8Core Elements (CoreElements) 19

8.1 Overview 19
8.2 Domain View 20
8.2.1 The Foundations Package 20
8.2.2 The Causality::CommonBehavior Package 22
8.2.3 The Causality::RunTimeContext Package 25
8.2.4 The Causality::Invocation Package 26
8.2.5 The Causality::Communication Package 27
8.3 UML Representation 29
8.3.1 Profile Diagrams 30
8.3.2 Profile Elements Description 30

UML Profile for MARTE, V1.2

8.3.3 Examples 32
9Non-functional Properties Modeling (NFPs) 37

9.1 Overview 37
9.2 Domain View 38
9.2.1 Overview 38
9.2.2 The NFP_Nature package 39
9.2.3 The NFP_Annotation Package 40
9.2.4 The NFP_Declaration Package 42
9.3 UML Representation 43
9.3.1 Profile Diagrams 44
9.3.2 Profile elements description 44
9.3.3 Graphical Syntax of NFP Value Specification 48
9.3.4 Examples 48

10Time Modeling (Time) 57

10.1 Overview 57
10.2 Domain View 58
10.2.1 The BasicTimeModels Package 59
10.2.2 The MultipleTimeModels Package 61
10.2.3 The TimeAccesses Package 64
10.2.4 The TimeRelatedEntities Package 69
10.3 UML Representation 76
10.3.1 Profile Diagrams 76
10.3.2 Profile Elements Description 79
10.3.3 Examples 88

11Generic Resource Modeling (GRM) 91

11.1 Overview 91
11.2 Domain View 92
11.2.1 The ResourceCore Package 92
11.2.2 The ResourceTypes Package 94
11.2.3 The ResourceManagement Package 97
11.2.4 The Scheduling Package 98
11.2.5 The ResourceUsage Package 100
11.3 UML Representation 101
11.3.1 Profile Diagrams 101
11.3.2 Profile Elements Description 105
11.3.3 GRM model library elements description 117
11.4 Examples 117

12Allocation Modeling (Alloc) 121

12.1 Overview 121
12.2 Domain View 123
12.3 UML Representation 124
12.3.1 Profile Diagrams 125
12.3.2 Profile elements description 128
12.4 Examples 134
12.4.1 Unix process 134

UML Profile for MARTE, V1.2

12.4.2 System on Chip 135
12.4.3 Allocate activity group 136

13Generic Component Model (GCM) 139

13.1 Overview 139
13.2 Domain View 139
13.2.1 The GenericComponentModel Package 139
13.2.2 On the MARTE Causality Model for GCM 143
13.3 UML Representation 146
13.3.1 Profile Diagrams 146
13.3.2 Profile Elements Description 147
13.4 Examples 169

13.4.1 Example of Model Patterns lllustrating the Usage of Flow Ports 169

13.4.2 Automotive Example 174
13.4.3 Avionics Example 176

14High-Level Application Modeling (HLAM) 179

14.1 Overview 179
14.2 Domain View 179
14.3 UML Representation 183
14.3.1 Profile Diagrams 183
14.3.2 Profile Elements Description 185
14.4 Examples 194
14.4.1 Notational Examples 194
14.4.2 Avionics Example 195

15Detailed Resource Modeling (DRM) 197

15.1 Software Resource Modeling (SRM) 197
15.1.1 Overview 197
15.1.2 Domain View 198
15.1.3 UML Representation 206
15.1.4 Profile Diagrams 207
15.1.5 Profile Elements Descriptions 212
15.1.6 Examples 230
15.2 Hardware Resource Modeling (HRM) 236
15.2.1 Overview 236
15.2.2 Domain View 238
15.2.3 UML Representation 251
15.2.4 Examples 286

16Generic Quantitative Analysis Modeling (GQAM) 285

16.1 Overview 285
16.2 Domain View 287
16.2.1 The GQAM package 287
16.2.2 The GQAM_Workload Package 288
16.2.3 GQAM_Observers Package 291
16.2.4 The GQAM_Resource Package 292
16.2.5 Common NFP Attributes for Analysis 294
16.3 UML Representation 295

UML Profile for MARTE, V1.2

16.3.1 Profile Diagrams 295
16.3.2 Profile Elements Description 300

17Schedulability Analysis Modeling 311

17.1 Overview 311
17.2 Domain View 311
17.2.1 The SAM Root Package 312
17.2.2 The SAM Workload package 313
17.2.3 The SAM Observers Package 316
17.2.4 The SAM Resources Package 317
17.3 UML Representation 319
17.3.1 Profile Diagrams 320
17.3.2 Profile Elements Description 322
17.3.3 Examples 328

18Performance Analysis Modeling (PAM) 335

18.1 Overview 335
18.2 Domain View 335
18.2.1 The PAM_Workload Package 335
18.2.2 Outline of Domain Concepts 338
18.3 UML Representation 344
18.3.1 Profile Diagrams 344
18.3.2 Profile Elements Description 346
18.4 Examples for Performance Analysis 352
18.4.1 Example 1: A Simple Web Application 352
18.4.2 Example 2: An Electronic Bookstore Home Page Interaction 355
18.4.3 Example 3: a building surveillance system 358
18.4.4 Example 4: Communications example, a layer subsystem 362
18.4.5 Example 5: Services by component subsystems 364
18.4.6 Example 6: State machine annotations 368

19Annex A 373

19.1 Open-source Tool Support for MARTE 373
19.2 AADL-like Models with MARTE 373
19.2.1 MARTE for AADL Summary Table 374
19.2.2 Packages, Components Declaration, and Implementation 377
19.2.3 Software Components 379
19.2.4 Execution Platform Components 391
19.2.5 System 396
19.2.6 Features and Shared Access 398
19.2.7 Mode 405
19.2.8 Flows 409
19.2.9 Properties 412
19.3 EAST/ADL2.0 Models with MARTE 412
19.3.1 MARTE for EAST-ADLZ2 Functional Modeling Summary Table 414
19.3.2 EAST-ADL2 End-to-end Flow Modeling with MARTE 416
19.3.3 Examples 419
19.3.4 Marking EAST-ADL2 end-to-end flows with timing information 425

20Annex B 433

UML Profile for MARTE, V1.2

20.1 Overview 433
20.2 Domain View 433
20.2.1 Overview 433
20.2.2 The Datatypes Package 434
20.2.3 The LiteralValues package 436
20.2.4 The Expressions package 437
20.2.5 The CompositeValues package 438
20.2.6 The TimeExpression package 439
20.3 UML Representation 441
20.3.1 Profile Diagrams 442
20.3.2 Profile elements description 443
20.3.3 Concrete syntax of value specification 451
20.3.4 Examples 466

21Annex C 471

21.1 Overview 471
21.2 Clocked Value Specification 471
21.2.1 Domain view 471
21.2.2 Concrete Syntax 478
21.2.3 Examples of clocked value specifications 480
21.3 Clock Constraint Specification Language 481
21.3.1 Domain View 481
21.3.2 CCSL concrete syntax 488

22Annex D
Normative MARTE Model Libraries
(MARTE_Library) 493

22.1 MARTE Model Library for Primitive Types 493
22.1.1 Real 493
22.1.2 Integer 494
22.1.3 UnlimitedNatural 495
22.1.4 String 495
22.1.5 Boolean 495
22.1.6 DateTime 496
22.1.7 Precedence Rules 496
22.2 MARTE model library for extended datatypes 496
22.2.1 AperiodicPattern 502
22.2.2 ArrivalPattern 502
22.2.3 BurstPattern 502
22.2.4 ClosedPattern 503
22.2.5 IrregularPattern 503
22.2.6 NFP_Boolean 503
22.2.7 NFP_CommonType 504
22.2.8 NFP_DataTxRate, NFP_Frequency, NFP_Length, NFP_Area, NFP_Power,
NFP_DataSize, NFP_Energy, NFP_Weight 505
22.2.9 NFP_DateTime 505
22.2.10 NFP_Duration 505
22.2.11 NFP_Integer 506
22.2.12 NFP_Natural 506

UML Profile for MARTE, V1.2

22.2.13 NFP_Percentage 506
22.2.14 NFP_Price 506
22.2.15 NFP_Real 507
22.2.16 NFP_String 507
22.2.17 OpenPattern 507
22.2.18 PeriodicPattern 507
22.2.19 SporadicPattern 508
22.2.20 TransmModeKind 508

22.3 MARTE Model Library for Time 508
22.3.1 TimeTypesLibrary Library 509
22.3.2 TimeLibrary 510

22.4 MARTE Model Library for GRM 512
22.4.1 EDF_Parameters 512
22.4.2 FixedPriorityParameters 512
22.4.3 NoParams 513
22.4 4 PeriodicServerKind 513
22.4.5 PeriodicServerParameters 513
22.4.6 PoolingParameters 513
22.4.7 ProtectProtocolKind 514
22.4.8 SchedParameters 514
22.4.9 SchedPolicyKind 515

22.5 MARTE Model Library for RTOSs 516
22.5.1 OSEK/VDX OS 516
22.5.2 ARINC-653 521

23Annex E 529

23.1 Overview 529
23.2 Domain View 529
23.2.1 Package Overview 529
23.2.2 Class Description 532
23.3 UML Representation 535
23.3.1 Profile Diagrams 535
23.3.2 Profile Elements Description 537
23.4 Examples 543

24Annex F 547

24.1 Core Elements 547
24.1.1 Action (from Causality::CommonBehavior) 547
24 .1.2 ActionExecution (from Causality::RunTimeContext) 547
24 .1.3 AggregationKind (from Foundations) 548
24 1.4 Behavior (from Causality::CommonBehavior) 548
24 1.5 BehavioredClassifier (from Causality::CommonBehavior) 549
24 .1.6 BehaviorExecution (from Causality::RunTimeContext) 549
24 1.7 Classifier (from Foundations) 550
24.1.8 CompBehaviorExecution (from Causality::RunTimeContext) 551
24.1.9 CompositeBehavior (from Causality::CommonBehavior) 551
24.1.10 Configuration 552
24.1.11 Event (from Causality::CommonBehavior) 552
24 .1.12 EventOccurrence (from Causality::RunTimeContext) 553
24.1.13 Instance (from Foundations) 553

UML Profile for MARTE, V1.2

24.1.14 InvocationOccurrence (from Causality::Communication) 554
24.1.15 Mode 554
24.1.16 ModeBehavior 555
24.1.17 ModeTransition 555
24.1.18 ModelElement (from Foundations) 556
24.1.19 MultiplicityElement (from Foundations) 557
24.1.20 Parameter (from Causality::CommonBehavior) 557
24.1.21 Property (from Foundations) 557
24 .1.22 ReceiveOccurrence (from Causality::Communication) 558
24 .1.23 Request (from Causality::Communication) 559
24 .1.24 StartEvent (from Causality::Invocation) 559
24 .1.25 StartOccurrence (from Causality::Invocation) 560
24.1.26 TerminationEvent (from Causality::Invocation) 560
24 .1.27 TerminationOccurrence (from Causality::Invocation) 561
24.1.28 Trigger (from Causality::CommonBehavior) 562
24.2 NFP 562
24.2.1 AbstractNFP (abstract, from NFP_Nature) 562
24 .2.2 AnnotatedElement (abstract, from NFP_Annotation) 562
24 2.3 AnnotatedModel (abstract, from NFP_Annotation) 563
24 2.4 BasicQuantity (abstract, from NFP_Nature) 563
24.2.5 ConstraintKind 564
24 2.6 DerivedQuantity (abstract, from NFP_Nature) 564
24.2.7 Dimension 564
24 .2.8 DirectionKind 565
24.2.9 Measure (abstract, from NFP_Nature) 565
24.2.10 ModelingConcern (from NFP_Annotation) 565
24.2.11 NFP (from NFP_Declaration) 566
24.2.12 NFP_Constraint (from NFP_Annotation) 566
24.2.13 NFP_Type (abstract, from NFP_Declaration) 567
24.2.14 QualitativeNFP (abstract, from NFP_Nature) 567
24 .2.15 QuantitativeNFP (abstract, from NFP_Nature) 567
24.2.16 Quantity (abstract, from NFP_Nature) 568
24.2.17 SampleRealization (abstract, from NFP_Nature) 568
24.2 .18 StatisticalQualifierKind 568
24.2.19 Unit (from NFP_Nature) 569
24.2.20 ValueProperty (from NFP_Declaration) 569
24.2.21 ValueType (abstract, from NFP_Declaration) 570
24.3 Time 570
24 .3.1 ChronometricClock (from TimeAccesses::ChronometricClocks) 570
24.3.2 Clock (from TimeAccesses::Clocks) 571
24 3.3 ClockConstraint (from TimeRelatedEntities::ClockConstraints) 572
24.3.4 ClockConstraintSpecification (from TimeRelatedEntities::ClockConstraints) 572
24.3.5 CoincidenceRelation (from MultipleTimeModels) 573
24.3.6 Delay (from TimeRelatedEntities:: TimedProcessingModels::TimedProcessings)
573
24.3.7 DiscreteTimeBase (from BasicTimeModels) 574
24.3.8 DurationIntervalValue (from TimeAccesses::DurationValues) 574
24 .3.9 DurationPredicate (from TimeRelatedEntities::TimedConstraints) 575
24.3.10 DurationValue (from TimeAccesses::DurationValues) 575
24 .3.11 EventKind (from TimeRelatedEntities:: TimedElements:: TimeObservations) 576
24 .3.12 Instant (from BasicTimeModels) 576

UML Profile for MARTE, V1.2 vii

viii

24.3.13 InstantPredicate (from TimeRelatedEntities::TimedConstraints) 577

24 .3.14 InstantValue (from TimeAccesses::TimeValues) 577

24.3.15 JunctionInstant (from BasicTimeModels) 578

24.3.16 LogicalClock (from TimeAccesses::Clocks) 578

24.3.17 MultipleTimeBase (from MultipleTimeModels) 579

24.3.18 PhysicalTime (from TimeAccesses::ChronometricClocks) 580

24.3.19 PrecedenceRelation (from MultipleTimeModels) 580

24.3.20 SimultaneousOccurrenceSet (from TimeRelatedEntities:: TimedEvent

Models:: TimedEventOccurrences) 581

24.3.21 TimeBase (from BasicTimeModels and MultipleTimeModels) 581

24.3.22 TimeBaseRelation (from MultipleTimeModels) 582

24.3.23 TimedAction (from TimeRelatedEntities:: TimedProcessingModels::Timed
Processings) 582

24.3.24 TimedBehavior (from TimeRelatedEntities:: TimedProcessingModels:: Timed
Processings) 583

24.3.25 TimedConstraint (from TimeRelatedEntities::TimedConstraints) 583

24.3.26 TimedDurationConstraint (from TimeRelatedEntities::TimedConstraints) 584
24.3.27 TimedDurationObservation (from TimeRelatedEntities:: TimedObservations) 584
24.3.28 TimedElement (from TimeRelatedEntities:: TimedElements) 585

24.3.29 TimedEvent (from TimeRelatedEntities:: TimedEventModels:: TimedEvents) 585
24.3.30 TimedEventOccurrence (from TimeRelatedEntities:: TimedEventModels:: Timed
EventOccurrences) 586

24.3.31 TimedExecution (from TimeRelatedEntities:: TimedProcessingModels::Timed
Executions) 587

24 .3.32 TimedInstantConstraint.......... (from TimeRelatedEntities:: TimedConstraints) 588
24.3.33 TimedInstantObservation ... (from TimeRelatedEntities::TimedObservations) 588
24.3.34 TimedMessage (from TimeRelatedEntities::TimedProcessingModels:: Timed
Processings) 589

24.3.35 TimedObservation (from TimeRelatedEntities:: TimedObservations) 589
24.3.36 TimedProcessing (from

TimeRelatedEntities:: TimedProcessingModels::TimedProcessings) 590

24.3.37 TimelnstantRelation (from MultipleTimeModels) 590

24.3.38 Timelnterval (from MultipleTimeModels) 591

24.3.39 TimelntervalMembership (from MultipleTimeModels) 592

24.3.40 TimelntervalValue (from TimeAccesses::TimeValues) 592

24.3.41 TimeNatureKind (from BasicTimeModels) 593

24.3.42 TimeStandardKind (from TimeAccesses::ChronometricClocks) 593

24.3.43 TimeStructureRelation (from MultipleTimeModels) 594

24.3.44 TimeValue (from TimeAccesses:: TimeValues) 594

24.4 GRM 595

24 .4.1 AccesControlPolicy (from MARTE:GRM::ResourceManagement) 595
24 .4.2 AccesControlPolicy (from MARTE:GRM::ResourceManagement) 595
24 .4 .3 Acquire(from MARTE:GRM::ResourceTypes) 596

24 .4 4 Activate (from MARTE:GRM::ResourceTypes) 596

24 4.5 ClockResource (from MARTE:GRM::ResourceTypes) 596

24.4.6 CommunicationEndPoint (from MARTE::GRM::ResourceTypes) 597
24 4.7 CommunicationMedia (from MARTE::GRM::ResourceTypes) 597
24.4.8 CommunicationResource (from MARTE::GRM::ResourceTypes) 598
24.4.9 ComputingResource (from MARTE:GRM::ResourceTypes) 598
24.4.10 ConcurrencyResource (from MARTE:GRM::ResourceTypes) 599
24.4 11 DeviceResource (from MARTE:GRM::ResourceTypes) 600

UML Profile for MARTE, V1.2

24.4.12 DynamicUsage (from MARTE::GRM::ResourceUsages) 600
24 .4.13 GetAmountAvailable (from MARTE:GRM::ResourceTypes) 600
24.4.14 MutualExclusionProtocol (from MARTE::GRM::Scheduling) 601
24.4.15 MutualExclusionResource (from MARTE::GRM::Scheduling) 601
24.4.16 ProcessingResource (from MARTE::GRM::Scheduling) 602
24.4.17 ProtectParameters (from MARTE::GRM::Scheduling) 603
24.4.18 ProtectProtocolKind (from MARTE::GRM::Scheduling) 603
24.4.19 Release (from MARTE:GRM::ResourceTypes) 603
24.4.20 Resource (from MARTE::GRM::ResourceCore) 604
24.4.21 ResourceAmount (from MARTE::GRM::ResourceCore) 605
24 .4.22 ResourceBroker (from MARTE:GRM::ResourceManagement) 606
24.4.23 Resourcelnstance (from MARTE::GRM::ResourceCore) 606
24 .4.24 ResourceManager (from MARTE:GRM::ResourceManagement) 607
24 .4.25 ResourceReference (from MARTE:GRM::ResourceCore) 607
24.4.26 ResourceService (from MARTE::GRM::ResourceCore) 608
24.4.27 ResourceUsage (from MARTE::GRM::ResourceUsages) 608
24.4.28 SchedPolicyKind (from MARTE:GRM::Scheduling) 609
24.4.29 SchedulableResource...........ccccceveeeeennnen. (from MARTE::GRM::Scheduling) 609
24.4.30 Scheduler (from MARTE:GRM::Scheduling) 610
24 .4.31 SchedulingParameters (from MARTE::GRM::Scheduling) 611
24.4.32 SchedulingPolicy (from MARTE:GRM::Scheduling) 612
24.4.33 SecondaryScheduler (from MARTE:GRM::Scheduling) 612
24.4.34 ScheduleSpecification 613
24.4.35 StaticUsage (from MARTE::GRM::ResourceUsages) 613
24.4.36 StorageResource (from MARTE:GRM::ResourceTypes) 613
24.4.37 SynchResource (from MARTE:GRM::ResourceTypes) 614
24.4.38 TableDrivenSchedule 614
24.4.39 TableEntryType 615
24.4.40 TimerResource (from MARTE:GRM::ResourceTypes) 615
24 .4.41 TimingResource (from MARTE:GRM::ResourceTypes) 616
24.4.42 UsageDemand (from MARTE::GRM::ResourceUsages) 616
24 .4.43 UsageTypedAmount (from MARTE::GRM::ResourceUsages) 617
24.5 Alloc 618
24.5.1 Allocation (from Allocations) 618
24.5.2 AllocationEnd (from Allocations) 618
24.5.3 ApplicationAllocationENd.............coeiiiiiiiiiiiiiieeeee, (from Allocations) 619
24.5.4 ExecutionPlatformAllocationEnd (from Allocations) 619
24.5.5 Refinement (from Allocations) 620
246 GCM 620
24.6.1 AssemblyPart 620
24.6.2 BroadcastSignalAction 621
24.6.3 CallOperationAction 621
24.6.4 ClientServerFeature (abstract) 621
24.6.5 ClientServerKind 622
24.6.6 ClientServerPort 622
24.6.7 ClientServerSpecification 623
24.6.8 Connector 623
24.6.9 ConnectorEnd 624
24.6.10 ConnectorKind 624
24.6.11 FlowDirectionKind 624
24.6.12 FlowPort 625

UML Profile for MARTE, V1.2 ix

24.6.13 FlowProperty 625
24.6.14 FlowSpecification 626
24.6.15 InteractionPort (abstract) 626
24.6.16 InvocationAction (abstract) 627
24.6.17 Reception 627
24.6.18 Operation 627
24.6.19 SendDataAction 628
24.6.20 SendSignalAction 628
24.6.21 StructuredComponent 629
24.7 HLAM 629
24.7.1 CallConcurencyKind 629
24.7.2 CompResPolicy 630
24.7.3 ConcurencyKind 630
24.7.4 ExecutionKind 630
24.7.5 InMsgQueue 630
24.7.6 PoolMgtPolicy 631
24.7.7 PpUnit 632
24.7.8 RtAction 632
24.7.9 RealTimeFeature 633
24.7.10 RtService 633
24.7.11 RtUnit 634
24.7.12 SynchronizationKind 635
24.8 DRM::SRM 636
24.8.1 Alarm (from SRM::SW_Concurrency) 636
24.8.2 AccessPolicyKind (from SRM::SW_Brokering) 636
24.8.3 ConcurrentAccessProtocolKind (from SRM::SW __Interaction) 637
24 .8.4 DeviceBroker (from SRM::SW_Brokering) 637
24 .8.5 EntryPoint (from SRM::SW_Concurrency) 638
24.8.6 InterruptResource (from SRM::SW_Concurrency) 638
24 .8.7 InterruptKind (from SRM::SW_Concurrency) 639
24 .8.8 MemoryBroker (from SRM::SW_Brokering) 639
24.8.9 MemoryPartition (from SRM::SW_Concurrency) 640
24.8.10 MessageComResource (from SRM::SW _Interaction) 641
24.8.11 MessageResourceKind (from SRM::SW_ Interaction) 641
24.8.12 MutualExclusionResourceKind (from SRM::SW__Interaction) 642
24.8.13 NotificationKind (from SRM::SW _Interaction) 642
24.8.14 NotificationResourceKind (from SRM::SW_ Interaction) 642
24.8.15 NotificationResource (from SRM::SW _Interaction) 643
24.8.16 QueuePolicyKind (from SRM::SW_Interaction) 643
24.8.17 SharedDataComResource (from SRM::SW_ Interaction) 644
24.8.18 SwAccessService (from SRM::SW_ResourceCore) 644
24.8.19 SwCommunicationResource (abstract) (from SRM::SW__Interaction) 645
24.8.20 SwConcurrentResource (abstract) (from SRM::SW_Concurrency) 645
24.8.21 SwinteractionResource (abstract) (from SRM::SW_ Interaction) 646
24.8.22 SwMutualExclusionResource (from SRM::SW_ Interaction) 647
24.8.23 SwResource (abstract) (from SRM::SW_ResourceCore) 647
24.8.24 SwSchedulableResource (from SRM::SW_Concurrency) 648
24.8.25 SwSynchronizationResource (abstract) (from SRM::SW_Interaction) 649
24.8.26 SwTimerResource (from SRM::SW_Concurrency) 649
24.9 DRM::HRM 650

UML Profile for MARTE, V1.2

24.9.1 CacheStructure 650

24.9.2 CacheType 650

24.9.3 ComponentState 651

24.9.4 ConditionType 651

24.9.5 Env_Condition 651

24.9.6 FifoLocationSpecification 652

24.9.7 HW_Actuator 652

24.9.8 HW_Arbiter 653

24.9.9 HW_ASIC 653

24.9.10 HW_Battery 654

24.9.11 HW_BranchPredictor 654

24.9.12 HW_Bridge 655

24.9.13 HW_Bus 655

24.9.14 HW_Cache 656

24.9.15 HW_Card 657

24.9.16 HW_Channel 657

24.9.17 HW_Chip 658

24.9.18 HW_Clock 658

24.9.19 HW_CommunicationResource 659
24.9.20 HW_Component (from HW_Layout) 659
24.9.21 HW_Component (from HW_Power) 661
24.9.22 HW_ComputingResource 661

24.9.23 HW_CoolingSupply 662

24.9.24 HW_Device 662

24.9.25 HW_DMA 663

24.9.26 HW_Drive 663

24.9.27 HW_EndPoint 664

24.9.28 HW_1/O 664

24.9.29 HW_ISA 665

24.9.30 HW_McProcessorHW _1/O 666
24.9.31 HW_Media 666

24.9.32 HW_Memory 667

24.9.33 HW_MMU 667

24.9.34 HW_PLD 668

24.9.35 HW_Port 669

24.9.36 HW_PowerDescriptor 670

24.9.37 HW_PowerSupply 670

24.9.38 HW_ProcessingMemory 671

24.9.39 HW_Processor 671

24.9.40 HW_RAM 673

24.9.41 HW_Resource (from HW_General) 673
24.9.42 HW_Resource (from HW_Logical) 674
24.9.43 HW_ResourceService (from HW_General) 675
24.9.44 HW_ResourceService (from HW_Physical) 675
24.9.45 HW_ROM 676

24.9.46 HW_Router 676

24.9.47 HW_Sensor 677

24.9.48 HW_StorageManager 677

24.9.49 HW_StorageMemory 678

24.9.50 HW_Support 679

24.9.51 HW_Timer 679

UML Profile for MARTE, V1.2

xi

24.9.52 HW_TimingResource 680
24.9.53 HW_Unit 680
24.9.54 HW_Watchdog 681
24.9.55 ISA_Type 681
24.9.56 MemoryOrganization 682
24.9.57 PLD_Class 682
24.9.58 PLD_Organization 683
24.9.59 PLD_Technology 683
24.9.60 PortType 684
24.9.61 Repl_Policy 684
24.9.62 ROM_Type 684
24.9.63 SwitchingType 685
24.9.64 Timing 685
24.9.65 WritePolicy 686
2410 GQAM 686
24.10.1 AcquireStep 686
24.10.2 AnalysisContext 686
24.10.3 BehaviorScenario 687
24.10.4 CommunicationChannel (from GQAM::GQAM_Resources) 688
24.10.5 CommunicationHost (from GQAM::GQAM_Resources) 688
24.10.6 CommunicationStep 689
24.10.7 EventTrace 689
24.10.8 ExecutionHost 689
24.10.9 ExecutionStep 690
24.10.10 LatencyObserver 691
24.10.11 LaxityKind 691
24.10.12 PrecedenceRelation 692
24.10.13 ReleaseStep 692
24.10.14 RequestedService 692
24.10.15 RequestedService 693
24.10.16 ResourcesPlatform 693
24.10.17 Step 694
24.10.18 TimedObserver 695
24.10.19 WorkloadBehavior 695
24.10.20 WorkloadEvent 696
24.10.21 WorkloadGenerator 696
24.11 SAM 697
24.11.1 EndToEndFlow 697
24.11.2 SaAnalysisContext 698
24.11.3 SaStep 698
24.11.4 SaCommunicationStep 699
24.11.5 SaExecutionHost 700
24.11.6 SaCommunicationHost 701
24.11.7 SchedulingObserver 701
24.11.8 SharedResource 702
24.12 PAM 702
24.12.1 Perf_Workload_Behavior 702
24 .12.2 Perf_ResourcesPlatform 703
24 .12.3 PRequestEventStream 703
24.12.4 PWorkloadGenerator 703

Xii UML Profile for MARTE, V1.2

24.12.5 PStep 704
24.12.6 PExecutionStep 705
24.12.7 PResourcePassStep 706
24.12.8 PCommunicationStep 706
24.12.9 PRequestedService 707
24.12.10 PBehaviorDemand 708
24.12.11 PExtOpDemand 708
24.12.12 PProcess 708
24.12.13 LogicalResource 709

2413 VSL 709
24.13.1 Behavior 709
24.13.2 BehaviorCallExpression (from Expressions) 710
24.13.3 BoundedSubtype (from DataTypes) 710
24.13.4 ChoiceSpecification (from CompositeValues) 711
24.13.5 CollectionSpecification (from CompositeValues) 712
24.13.6 CollectionType (from DataTypes) 712
24.13.7 CompositeType (from DataTypes) 712
24.13.8 ConditionalExpression (from Expressions) 713
24.13.9 DataType (from DataTypes) 713
24.13.10 DurationExpression (from TimeExpressions) 713
24.13.11 DurationIntervalSpecification (from TimeExpressions) 714
24.13.12 EnumerationSpecification (from LiteralValues) 714
24.13.13 EnumerationType (from DataTypes) 714
24.13.14 EnumerationLiteral (from DataTypes) 715
24.13.15 Expression (from Expressions) 715
24.13.16 ExpressionContext (from Expressions) 715
24.13.17 InstantExpression (from TimeExpressions) 716
24.13.18 InstantintervalSpecification (from TimeExpressions) 716
24.13.19 IntervalSpecification (from CompositeValues) 716
24.13.20 IntervalType (from DataTypes) 717
24.13.21 Jitter (from TimeExpressions) 717
24.13.22 LiteralSpecification (abstract, from LiteralValues) 717
24 .13.23 LiteralBoolean (from LiteralValues) 718
24 .13.24 LiteralDateTime (from LiteralValues) 718
24 .13.25 LiteralDefault (from LiteralValues) 718
24 .13.26 LiteralInteger (from LiteralValues) 719
24 .13.27 LiteralNull (from LiteralValues) 719
24 .13.28 LiteralReal (from LiteralValues) 719
24 .13.29 LiteralString (from LiteralValues) 719
24 .13.30 LiteralUnlimitedNatural (from LiteralValues) 720
24.13.31 ObservationCallExpression (from Expressions) 720
24.13.32 OpaqueExpression (from Expressions) 721
24 .13.33 Operation (from DataTypes) 721
24.13.34 OperationCallExpression (from Expressions) 721
24 .13.35 Parameter (from DataTypes) 722
24 .13.36 PrimitiveType (from DataTypes) 722
24 .13.37 Property (from DataTypes) 723
24.13.38 PropertyCallExpression (from Expressions) 723
24 .13.39 Subtype (from DataTypes) 723
24.13.40 TimeExpression (from TimeExpressions) 724
24.13.41 TupleltemValue (from CompositeValues) 724

UML Profile for MARTE, V1.2 xiii

24.13.42 TupleSpecification (from CompositeValues) 724
24.13.43 TupleType (from DataTypes) 725

24.13.44 ValueSpecification (abstract, from VSL) 725
24.13.45 Variable (from Expressions) 725

24.13.46 VariableCallExpression (from Expressions) 726

25Annex G
Bibliography 725
26Annex H 731

Xiv UML Profile for MARTE, V1.2

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attp:/www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A listing of all OMG
Specifications is available from the OMG website at:

http.//www.omg.org/spec/index.htm

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBAI/IIOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

UML Profile for MARTE, v1.2 Y

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
« CORBAServices
* CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http.//www.omg.org/
report_issue.htm.

Vi UML Profile for MARTE, v1.2

Subpart | - MARTE Foundations

This subpart contains the following clauses:
* 7 - Core Elements (CoreElements)
* 8 - Non-functional Properties Modeling (NFPs)
* 9 - Time Modeling (Time)

* 10 - Generic Resource Modeling (GRM)

11 - Allocation Modeling (Alloc)

UML Profile for MARTE, V1.2

vii

viii

UML Profile for MARTE, V1.2

1 Scope

1.1 Introduction

This specification of a UML™ profile adds capabilities to UML for model-driven development of Real Time and
Embedded Systems (RTES). This extension, called the UML profile for MARTE (in short MARTE for Modeling and
Analysis of Real-Time and Embedded systems), provides support for specification, design, and verification/validation
stages. This new profile is intended to replace the existing UML Profile for Schedulability, Performance and Time
(formal/03-09-01).

MARTE defines foundations for model-based descriptions of real time and embedded systems. These core concepts are
then refined for both modeling and analyzing concerns. Modeling parts provides support required from specification to
detailed design of real-time and embedded characteristics of systems. MARTE concerns also model-based analysis. In this
sense, the intent is not to define new techniques for analyzing real-time and embedded systems, but to support them.
Hence, it provides facilities to annotate models with information required to perform specific analysis. Especially,
MARTE focuses on performance and schedulability analysis. But, it defines also a general analysis framework that
intends to refine/specialize any other kind of analysis.

Among others, the benefits of using this profile are thus:

 Providing a common way of modeling both hardware and software aspects of an RTES in order to improve
communication between developers.

+ Enabling interoperability between development tools used for specification, design, verification, code generation, etc.

+ Fostering the construction of models that may be used to make quantitative predictions regarding real-time and
embedded features of systems taking into account both hardware and software characteristics.

2 Conformance

2.1 Overview

The range of applications and areas of knowledge that are inside the scope of this specification is largely broader than the
current usage of traditional tools in the real-time and embedded systems market. Though all of them are related from the
system perspective and will benefit from having a common place for notations, vocabulary, and semantics inside MARTE,
it is a fact that a number of different specialized actors are involved. Consequently, the tools that are currently in the
market, which are those expected to evolve to support this specification, have different users and specific target
applications sub-domains. For this reason, and in order to ease its adoption process, this specification defines a modular
approach for conformance. This is similar to the UML compliance strategy, but in this case the compliance points are not
defined as stratified horizontal layers. Here they are defined as Compliance Cases, whose constitutions depend closely on
the expected use cases of the specification.

Though it is recognized that the ability to exchange models between tools is extremely important, this is not compromised
in this approach since interchange is only deemed useful between tools for similar and/or complementary purposes. When
such purposes are similar, the exchanging tools will likely satisfy the same conformance cases. If they are complementary,
model transformations and/or a broader scope of compliance cases will be required at least in one of the tools involved.

UML Profile for MARTE, V1.2 1

2.2 Extension Units and Features

In order to properly identify the elements of MARTE that will be required in each compliance case, the following

definition is made:

EXTENSION UNITS: These are the concrete separated UML profiles or Model Libraries in which the language
extensions that MARTE proposes are packaged. Some of them may require others to be complete or meaningful.
Extension Units play the role of language units and/or individual meta-model packages as they are used in the

definition of conformance in UML.

The Extension Units defined in this specification are listed in the following table.

Table 2.1 - Extension Units Defined

Acronym Name, description Clause
Sub clause

NFP Non-Functional Properties Clause 8

Time Enhanced Time Modeling Clause 9

GRM Generic Resource Modeling Clause 10
Alloc Allocation Modeling Clause 11
GCM Generic Component Model Clause 12
HLAM High-Level Application Modeling Clause 13
SRM Software Resource Modeling Sub clause 14.1
HRM Hardware Resource Modeling Sub clause 14.2
RTM Real-Time objects Modeling (RTE MoCC) Clause 13
GQAM Generic quantitative Analysis Modeling Clause 15
SAM Schedulability Analysis Modeling Clause 16
PAM Performance Analysis Modeling Clause 17

VSL Value Specification Language Annex B

CHF Clock Handling Facilities Annex C

RSM Repetitive Structure Modeling Annex E

2.3 Conformance of MARTE with UML

For many of the extension units considered, the Level 2 of conformance with UML may be sufficient. Though there are
some extensions for which several language units in Level 3 of conformance with UML are necessary, in particular

Templates.

UML Profile for MARTE, V1.2

2.4 Conformance with MARTE

Tools vendors and MARTE implementers require a set of conformance definitions that allow them to better target their
particular user needs without having to implement the complete MARTE Specification.

The target usages of the profile (its use cases and/or the actors involved) are good conceptual entities to look for groups
of Extension Units that may lead to useful compliance definitions.

241 Compliance Cases

Considering the Use cases of this specification, (described in Clause 6), the compliance cases defined are:

+ Software Modeling
* Constructs for modeling real-time and embedded (RTE) software applications and its non functional properties
(NFP).
+ Hardware Modeling

* Constructs for modeling the high level hardware aspects of RTE systems, including its NFP.

+ System Architecting

* It includes both Software Modeling and Hardware Modeling compliance cases mentioned before, plus the
allocation extension units.

« Performance Analysis

* It includes the extension units necessary to address the performance evaluation of RTES.

 Schedulability Analysis

* It includes the extension units necessary to address the schedulability analysis of RTES.

+ Infrastructure Provider

* It includes the extension units necessary to address the definition and/or usage of platform specific services (like
OS services for example). This may be used to create RTOS services model libraries, as well as to specify the
services required to a platform in order to support higher level RT design methodologies.

« Methodologist

* Tools conforming to this compliance case are expected to support all the extension units required for the other
compliance cases, which in practice means to support all the mandatory features of MARTE.

In order to manage complexity and speed up the adoption process, Compliance Cases are defined at two compliance
levels: Base and Full. Each level indicates a concrete set of extension units that are considered as mandatory at that level.
The Base level is defined as a subset of the Full level. Extension units that are included in the Full level, but are not in
the Base level, are considered as optional at the Base level.

UML Profile for MARTE, V1.2 3

2.4.2 Extension Units in each Compliance Case

The Extension Units that must be supported in each Compliance Cases are assigned as depicted in the next table:

Table 2.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM | NFP | VSL | Time | CHF | SRM | HRM | GCM | Alloc | HLAM | GQAM | PAM SAM | RSM
Software Base X X X X

Full X X X X
Hardware Base X X X X

Full X X X X X
System Base X X X X X

Full X X X X X X
Performance Base X X X X X

Full X X
Schedulability Base X X X X X

Full X X
Infrastructure Base X X X X

Full X X X X
Methodologist Base X X X X X X

Full X X X X X X X X

2.4.3 Special additional compliance case and extension units

Tools that wish to serve AADL users should implement A.3 in Annex A of this specification

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications:

« UML 2.1.2 Superstructure Specification (OMG document number formal/2007-11-02)
« UML 2.1.2 Infrastructure Specification (OMG document number formal/2007-11-04)

« XMI 2.1 Specification (OMG document number formal/2005-09-01)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

UML Profile for MARTE, V1.2

5 Symbols

Acronym Meaning

AADL Architecture Analysis and Design Language
AHB AMBA High-performance Bus

AMBA Advanced Microcontroller Bus Architecture
ARM Advanced RISC Machines

CAN Controller Area Network

CCM Corba Component Model

CORBA Common Object Request Broker Architecture
CPU Central Processing Unit

DMA Direct Memory Access

DPRAM Double-Port RAM

DRAM Dynamic Random Access Memory
EAST-ADL2 EAST Architecture Description Language 2
EDF Earliest Deadline First

EQN Extended Queueing Network

FIFO First In First Out

GQAM Generic Quantitative Analysis Modeling
GRM Generic Resource Modeling

GUI Graphical User Interface

LQN Layered Queueing Network

Lw-CCM Lightweight CCM

MARTE UML profile for Modeling and Analysis of Real-Time and Embedded systems
MDA Model-Driven Architecture

NFP Non-Functional Properties modeling

OCL Object Constraint Language

(0N Operating System

PAM Performance Analysis Modeling

QN Queueing Network

QoS Quality of Service

QoS&FT UML Profile for Quality of Service and Fault Tolerance specification
RISC Reduced Instruction-Set Computer

RMA Rate Monotonic Analysis

RSM Repetitive Structure Modeling

RTOS Real-Time Operating System

UML Profile for MARTE, V1.2

SAM Schedulability Analysis Modeling

SI Systéme International

SPT UML Profile for Schedulability, Performance and Time specification
SysML Systems Modeling Language

TCP Transmission Control Protocol

TPC-W Transaction Processing Council Web benchmark

TVL Tag Value Language

UML Unified Modeling Language

VSL Value Specification Language

WCET Worst Case Execution Time

6 Additional Information

6.1 Scope of OMG RT/E Related Standards

The MARTE profile, which replaces the current profile for Schedulability, Performance, and Time, is one of a group of
related OMG specifications (Figure 6.1). The most obvious of these is the UML 2 Superstructure specification, which is
the basis for any UML profile. It also uses the OCL 2.0 specification for all constraints specified in OCL.

« profile » «replace » « profile »
Marte SPT
rd S
P ~eal
K e

« uses »/, s« uses »

// TS

)
yd |

MOF 2.0 QVT « metamodel » ocL 2

i UML2 Superstructure (L3)

Figure 6.1 - Informal description of the MARTE dependencies with other OMG standards

Note that the Superstructure is dependent on UML compliance level 3 (L3), which is the complete UML metamodel.

In addition, MARTE is related to the following other OMG specifications:

+ The UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. This
specification provides, among other things, a generic metamodel for defining different qualities of service and is used
for specifying any such characteristics defined in the MARTE profile.

« The UML profile for Systems Engineering (SysML), which deals with many of the same areas, such as the modeling of
platforms and their constituent elements (hardware resources) and the allocation of software to platforms (i.e.,

UML Profile for MARTE, V1.2

deployment). In areas where there is conceptual overlap, MARTE is either reuses the corresponding SysML
stereotypes, or defines elements that are conceptually and terminologically aligned with SysML.

+ The Executable UML Foundation specification (currently in progress) defines, among other things, a model of
causality for UML that is at the core of various scenario-based analysis methods (such as performance and
schedulability analyses). The MARTE causality model must be fully consistent with the model specified in the
Executable UML Foundation specification.

« The RTCORBA and CCM specifications address issues related to software execution platforms, real-time constraints,
composition mechanisms, etc. (i.e., issues that are all in the scope of the MARTE specification). All these computing
platforms may be then considered as specific resources for executing MARTE model-based application.

The following OMG specifications deal with similar subject matter but are not considered relevant to this specification:
« The UML for SoC profile
« The EDOC UML profile

6.2 Rationale and General Principles

Since the adoption of the UML standard and its new advanced release UML2, this modeling language has been used for
development of a large number of time-critical and resource-critical systems (a significant number of these can be found
in the various books, papers, and reports listed in the bibliography at the end of this specification). Based on this
experience, a consensus has emerged that, while a useful tool, UML is lacking in some key areas that are of particular
concern to real-time and embedded system designers and developers. In particular, it was noticed that first the lack of a
quantifiable notion of time and resources was an impediment to its broader use in the real-time and embedded domain.
Second, the need for rigorous semantics definition is also a mandatory requirement for a widespread usage of the UML
for RT/E systems development.

Fortunately, and contrary to an often expressed opinion, it was discovered that UML had all the requisite mechanisms for
addressing these issues, in particular through its extensibility faculties. This made the job much easier, since it was
unnecessary to add new fundamental modeling concepts to UML — so-called “heavyweight” extensions. Rather, the work
being done in the specification consisted of defining a standard way of using these capabilities to represent concepts and
practices from the real-time and embedded domain.

6.2.1 Real-time and embedded domain

The main intent of this sub clause is to describe the domain of interest for this current profile; i.e., the real-time and
embedded domain. There is no general consensus about the definition of both real-time and embedded terms. So, it is not
straight forward to define this domain. Nevertheless, it is possible to give some general descriptions of five main sub
categories included in the RT/E domain category and representative of most of RT/E systems.

Embedded domain

Embedded systems are generally defined as interconnected devices that contain software and hardware (mainly
electronics based) parts, but which are not computers in the classic sense. Embedded systems are computer-based systems
that are deployed into an environment (part of the physical world) with which they interact.

Embedded systems development implies designing a system in which resources are usually limited, and which may need
to run without manual intervention. So all errors need to be handled. As the resources are constrained (in memory size,
power consumption, etc.) the design of embedded systems requires optimization.

UML Profile for MARTE, V1.2 7

The designed system will be embedded in a real application, either software or hardware. Therefore, the produced code
must be easily interfaced with a software environment such as a real-time operating system (RTOS), middleware, a micro-
controller or onto specific hardware (e.g., ASIC, FPGA).

Embedded systems distinguish themselves especially by following specific characteristics: heterogeneity (hardware /
software), distribution (on potential multiple and heterogeneous hardware resources), ability to react (supervision, user
interfaces modes), criticality, real-time, and consumption constraints.

Reactive domain

Systems are generally tagged as “reactive” to stress the fact that they are meant to react to information inputs coming
from some environment. The main goal of such reactive systems is actually to control, supervise, or simply collaborate or
interact with this environment. Of course such systems may perform heavy data computation, but this aspect is played
down and abstracted somehow in the system description.

The behavior of reactive systems usually consists of reaction cycles: first, input events are gathered from the environment
(through sensors); second, a reaction is computed and decided upon; third, the proper outputs are emitted back in a timely
manner in response to environment stimuli through actuators for example. The reactions may depend on a local or global
state, defining the current mode of operation of the reactive system.

Reactive systems can be found in transportation (automotive, aircrafts), factory automation, in hardware/software
controllers, in various embedded electronic appliances, including mobile communications.

Control/Command domain

Applications for control/command domain are usually dedicated to manage the execution of a process or object of the
physical world. The command synthesis matches the production of commands toward actuators from a given request.

A request is generated after measures have been done on one or several sensors. A measure is packaged (i.e., processing
the signal coming from the sensor) and then managed (i.e., taking into account the process state) in order to build the
corresponding request. From a given request, it is possible to distinguish three kinds of command synthesis: (1) the
regulating or the request is fixed; (2) serving that means the adaptation of a command following the order variations; (3)
the trajectory monitoring in case of variable request.

The command synthesis may be achieved either in open loop or in closed loop mode. The command synthesis in open
loop mode consists in designing a function that depends on the request values and parameters of the actuators. The
command synthesis in closed loop mode is relying on an additional measure requiring to evaluate the level at which the
request is considered and to adjust the command if needed.

Moreover, real case studies demonstrate that, in addition to the usual functions for command synthesis and measuring, it
is necessary to have user information functions (via a specific API or network) and trace functions.

Systems dedicated to process control consist of three main activities: measuring, command synthesis, and information
output. Three components involved in the development of control/command systems may be also identified: Sensors
(buttons, serial input devices, etc.) related to measuring activities; Actuators (motors, printers, etc.) related to command
synthesis in open and closed loop; and output devices (e.g., screen, files, networks, etc.) related to information output.

Intensive data flow computation domain

Intensive data flow computation is mainly encountered in signal processing, image processing, and mobile devices. A
common scenario is a radio signal tuned by a receiver, filtered, and decoded. These different stages require intensive data
computation to be performed, possibly in parallel, with the help of several computation units.

8 UML Profile for MARTE, V1.2

Many signal and image processing applications follow an organization in two high level stages: systematic signal
processing and intensive data processing.

The systematic signal processing is the very first part of a signal processing application. It mainly consists of a chain of
filters and regular processing applied on the input signals independently of the signal values. It results in a
characterization of the input signals with values of interest.

The intensive data processing is the second part of a signal processing application. It applies irregular computations on
the values issued by the systematic signal processing. Those computations may depend on the signal values.

Software Defined Radio receiver is a concrete industrial example of such a domain. This emerging application is
structured with front end systematic signal processing including signal digitalization, channel selection, and application of
filters to eliminate interferences. The data is decoded in a second and more irregular phase (synchronization, signal
demodulation, etc.).

Intensive data-flow computation is an important class of embedded applications requiring hardware architectures
description. It requires mainly being able to express potential parallel processing of data and parallel hardware
architectures, preferably in simple ways that allow for factorization of repeated elements.

Best-effort service domain

Real-time systems sometimes include elements that do not deliver services in a totally safe or time-constrained way (such
as web application servers in an IP telephony system). These systems nonetheless have properties (delay distribution,
probability of failure of a service) that need to be understood.

Best-effort services supply one or more responses as data, to a request. They often make subsidiary requests to other
services, particularly to data services (databases, caches, file servers, disk storage). Best-effort services are not
distinguishable from systems that are not primarily designated “real-time” systems.

To a certain extent most computer systems have some aspect of requirements for real-time responses, which are affected
by system resources. This profile provides some capabilities for describing and analyzing those real-time aspects of any
system.

6.2.2 Guiding principles

This sub clause aims in defining what have been the main guiding principles used to write this specification. The main
guiding principles are then as follows:

+ The profile should support independent modeling of both software or hardware parts of RT/E systems and the
relationships between them.

 The profile has to provide modeling constructs covering the development process of RT/E systems. Such features may
be categorized into qualitative (parallelism, synchronization, communication) or quantitative (deadline, periodicity).
The profile must provide high-level modeling constructs for specification purposes, for example, but also low-level
construct for implementation purposes.

« As much as possible, modelers should not be hindered in the way they use UML to represent their systems just to be
able to do model analysis. That is, rather than enforcing a specific approach or modeling style for real-time systems, the
profile should allow modelers to choose the style and modeling constructs that they feel are the best fit to their needs of
the moment.

« Modelers should be able to take advantage of different types of model analysis techniques without requiring a deep
understanding of the inner workings of those techniques. The steep learning curve behind many of the current model

UML Profile for MARTE, V1.2 9

analysis methods has been one of the major impediments to their adoption.

+ The profile must support all the current mainstream real-time technologies, design paradigms, and model analysis
techniques. However, it should also be fully open to new developments in all of these areas.

« It must foster construction of UML models that can be used to make quantitative and partitioning predictions and
analysis regarding hardware and software characteristics of the RT/E system. In particular, it is important to be able to
perform such analyses early in the development cycle. For that, it has to be possible to analyze partial models. It should
be possible to automatically construct different analysis-specific models directly from a given UML model. Such tools
should be able to read the model, process it, and feed the results back to the modeler in terms of the original UML
model.

6.2.3 How to use this specification

This sub clause describes which potential actors may use this specification and how they can do it. Of course, neither the
actors nor use cases described represent an exclusive set for how this specification can be used, but rather reflect on some
of the ways that we expect it to be used or (in most cases) expanded.

Figure 6.2 describes a set of potential actors that may use this specification for designing RT/E systems.

A

Marte User

T

Modd Amalyst E xecution Platform Provider Methodology P rovider

7

Model Designer

T

Softw are Modeler R T/E SystemArchitect Hadvare Mocler Analysis Methoddogy Provider D esign Methadology Provider
Softw ae A rchitect H ardware Architect

Figure 6.2 - Possible actors using the MARTE specification

+ Model Designer: These are modelers that design models dedicated to be applied in the context of the development
process of RT/E systems. Models may be used for usual specification, design, or implementation stages. But models
may be also used for analyzing in order to determine whether they will meet their performance and schedulability
requirements.

* RT/E Systems Architect: These are specific modelers concerned with the overall architecture and they usually
make trade-offs between implementing functionality in hardware, software, or both.

10 UML Profile for MARTE, V1.2

* Hardware Modeler: These are modelers specifically dedicated to hardware aspects of the RT/E systems
development.

» Hardware Architect: These are modelers concerned by designing hardware architecture.

 Software Modeler: These are modelers specifically dedicated to software aspects of the RT/E systems
development.

* Software Architect: These are modelers concerned with designing software architecture.

« Model Analyst: These are modelers concerned with annotating system models in order to perform specific analysis
methodologies.

« Execution Platform Provider: These are developers and vendors of run-time technologies (hardware- or/and software-
based platforms) such as Real-Time CORBA, real-time operating systems, and specific hardware components.

+ Methodology Provider: These are the individuals and teams who are responsible for defining model-based
methodology for RT/E domain. This category includes UML tool providers.

* Design Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based methodology for specifying, designing or/and implementing RT/E systems.

* Analysis Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based analysis methodology such as RMA or queuing theory, as well as technology provider such as tool
vendors providing tools and processes for supporting particular model analysis methods.

Common possible usages of the MARTE profile are specified in the use case diagram depicted in Figure 6.3.

Marte specification

define Meth odology
- build Model

indud
« noude 2e Methodology Provider

adapt Marte Sped@

«indude » ™~

Model D esigner

annotate Modelfor Analysis
build Execution PlatformModel

analyze Model

1
|

Model Analyst provide Execution Platform

Execution Platform Provider

Figure 6.3 - Common use cases of the MARTE specification
Details of the use case “build Model”
+ Actor: Modeler

+ Description: A modeler builds a model iterating it through several stages defined in an appropriate development
process. According to a given methodology (see the “define Methodology” use case), a modeler uses appropriate UML
extensions or specific model libraries defined in the MARTE specification in order to describe the RT/E aspects in the
model of their system.

« Deliverable: The result of this use case is a model of the user system containing all its RT/E specificities.

UML Profile for MARTE, V1.2 1"

Details of the use case “adapt MARTE Specification”

+ Actor: Methodology Provider and Execution Platform Provider

+ Description: This use case consists in defining a specific MARTE sub-profile. The motivations to adapt MARTE may

be either to deal with a specific domain not covered by MARTE or to define restrictions on the usage of MARTE
modeling constructs. In the former case, the actor may either specialize MARTE modeling constructs in order to adapt
them suitably to their needs or introduce new concepts not available in MARTE. The second way to adapt the MARTE
specification is to define modeling rules in order to constraint the usage of the specification.

Deliverable: The outcome of this use case is a definition of MARTE extension that takes the form a UML profile based
on the MARTE specification. The dependencies with the MARTE profile may be merge, import or specialization.

Details of the use case “define Methodology”

Actor: Methodology Provider

Description: This use case consists in defining how to use the MARTE specification for a given purpose. For example,
one may define a specific methodology for the design of electronic automotive systems (cf. the EAST-ADL annex) or
for avionics (see AADL annex). One may also define model-based analysis methodology such as schedulability or
performance analysis.

Deliverable: The outcome of this use case is a model-based methodology. This latter may include a process description,
a set of constraint rules and a set of required techniques that applies to the methodology. If necessary, this use case may
also include the definition of an extension of the MARTE profile (include of the “extend MARTE Specification” use
case).

Details of the use case “annotate Model for Analysis”

Actor: Model Analyst

Description: The model analyst uses appropriate MARTE extensions, as defined for example in a specific analysis
methodology, in order to annotate appropriately models in order to perform a given analysis techniques.

Deliverable: The outcome of this use case is a model annotated with MARTE extensions and ready for performing
specific analysis.

Details of the use case “analyze Model”

Actor: Model Analyst

Description: The model analyst perform a given analysis techniques on a model. The purpose of the analysis may be
varied depending of the nature of the analysis techniques used. Some examples of analysis are: schedulability or
performance analyses.

Deliverable: The outcomes of this use case are analysis results.

Details of the use case “build Execution Platform Model”

12

Actor: Execution Platform Provider

Description: This use case consists in building model of execution platform for MARTE based developments of RT/E
systems.

Deliverable: The outcome of this use case is a MARTE compatible execution platform model.

UML Profile for MARTE, V1.2

Details of the use case “provide Execution Platform”

+ Actor: Execution Platform Provider
+ Description: This use case consists in providing execution platform conform to a given model of platform.

« Deliverable: The outcome of this use case is an execution platform.

6.3 Approach and Structure

6.3.1 Profile Architecture

The profile is structured around two main concerns, one to model the features of real-time and embedded systems and the
other to annotate application models so as to support analysis of system properties. These are shown by the RTEM
package named “MARTE design model” in Figure 6.4, and the cluster of three packages, respectively. These two major
parts share common concerns with describing time and the use of concurrent resources, which are contained in the shared
package named “MARTE foundations.” Finally the “AnalysisModeling” features are broken into a foundational generic
part in the package GQAM, and two packages for specific analysis domains, as shown. These first two specific analysis
domains are entirely concerned with time, however the profile structure allows for adding additional analysis domains,
such as power consumption, memory use, or reliability. It is the intention to encourage modular sub profiles like the two
analysis packages, for such domains.

MARTE foundations |
]] —1 1 —1
« profile » « profile » « profile » « profile » « profile »
CoreElements NFP Time GRM Alloc
A A
] 1
1 i
H H
MARTE design madal MARTE analysis model
1 |]
« profile » « profile » « profile »
GCM HLAM GQAM
—1 1 —1 —1
« profile » « profile » « profile » « profile »
SRM HRM SAM PAM
MARTE annexes
1 1 1
« profile » « profile » « modelLibrary =
V5L RSM MARTE_Library

Figure 6.4 - Architecture of the MARTE Profile

| UML Profile for MARTE, V1.2 13

6.3.2 A Foundation for Model Driven Techniques

The profile is intended to provide a foundation for applying transformations from UML models into a wide variety of
analysis models. The environment for exploiting the profile would consist of a set of tools, including model transformers,
as shown in Figure 6.5. Prototypes of such tool chains have been produced based on SPT.

The forward path shows the way the model is expected to be transformed via the XMI output, to a format readable by an
analysis tool. The dashed line indicates a potential feedback path to re-import the analysis results into the UML diagrams.

Another feedback path clearly exists from the analysis to the modeler.

A

Model Designer Model Analyst

b ui Id analyzei
_ Transformation
UML Tool Annotated to Analysis | Analy sis Analysis Tool
UML Model Model Model

XMI

'
Y

-
Ann o tated

Plat form
Model Librar

Diagnostic/
F eedback

- —— .

Analy sis
Re s ults

Gl

Figure 6.5 - A Tool Chain for Carrying out Analysis of a Model
6.3.3 Approach to Modeling RT/E Systems

Embedded systems are becoming increasingly heterogeneous. This is true of applications, which combine intensive, often
heavily pipelined, data computation for signal processing, together with control mode switches and communication
protocols. This is true also of execution platforms, which comprise flexible or custom-made hardware, multi-core
processors, cache and bus hierarchies, and so on. This is reflected in the design of such systems, which must try to fit best
applications onto existing platforms, or even adjust and dimension again execution platforms for pre-existing applications.
The main criteria governing this allocation of application functions to HW/SW execution resources are stringent real-time
requirements, but power- and area-consumption or cost also play a role. Adequate modeling can of course be of great help
with this design activity by providing the support for design and analysis. The modeling support should also encompass
early global timing budget and maximal latency requirements, as well as scheduling results display expressing the explicit
quality of allocation in a traceable manner.

Application modeling is based on interacting component blocks for structural aspects. As for behavior, data-intensive
pipe-lined computations are generally represented with block-diagrams amenable to activity charts, while control-flow
parts and communication protocols use hierarchical finite-state machines. This functionality is complemented with timing
aspects, based on appropriate time/cycle descriptions (see time model below). Application modeling is further described
in Clause 9.

14 UML Profile for MARTE, V1.2

Execution platform modeling comprises the description of both dedicated hardware and (middleware) software layers and
interconnects composing the platform. It can be described at the same level of abstraction as the application, and contains
timing information along with structural and behavioral aspects. Explicit detailed modeling can be needed in as far as the
appropriate match between application and architecture is to be studied (hierarchical cache structure or Instruction Set
Simulators for instance). Execution platform modeling is further described in both Clauses 10 and 14.

The allocation model describes the association matching applicative functions onto execution platform resources. It is
sometimes mandatory to provide timing information on this allocation link itself, rather than on its constituents, for
reasons of modular abstraction (for instance one may indicate that a complex filter function can be realized at a given cost
on a given specific processor, without going back to individual statements and instructions). Allocation modeling is
further described in Clause 12.

Note: allocation is here reminiscent of the similar notion in the SysML specification.

Regular iterative constructs, that are often encountered in the embedded world to represent signal-processing applications
or dedicated DSP operator blocks, or processor arrays, are best modeled using dedicated iterative model representations
such as described in Annex E.

6.3.4 Approach to Annotating for Model Analysis

Annotations use stereotypes that permit us to map model elements into the semantics of an analysis domain such as
schedulability, and give values for properties that are needed in order to carry out the analysis. We may distinguish
“input” properties that are needed to carry out the analysis, and “output” properties that are determined by the analysis.
However the modeler may also input required values of output properties, which can be used to determine how well the
system meets its requirements (another output property).

Analysis is not always simply “pass/fail,” and the particular goals of analysis are specific to its domain. Output properties
to be reported may include details of how and where time and resources are consumed, in order to diagnose problems, and
may include sensitivity studies to explore the importance of parameters whose values are uncertain.

6.3.5 MDA and MARTE

The MARTE profile defines precise semantics for time and resource modeling. These precise semantics allow automatic
transformations of models to lower abstraction level models such as UML for SoC for hardware / software simulation or
into C++ for implementation purposes.

One of the goals of this profile is to support common design flows for RT/E systems. One of these design flows is to
define in different views or models the application (including functional and non functional characteristics), the hardware
architecture and the allocation of the application onto the hardware architecture. Starting from this allocation model, if the
semantics is precise enough, one can automate code generation for simulation at different abstraction levels or synthesis
of specific hardware parts.

Another use of MDA (or MDE, “Model Driven Engineering”) with the MARTE profile is the integration of tools. Indeed,
some analysis or verification tools can be coupled with the modeling tools if the semantics of the models correspond to
the semantics of the analysis or verification tool. Model transformation techniques can then be used to enable this
coupling.

UML Profile for MARTE, V1.2 15

6.4

6.4.1

How to Read this Specification

Structure of the Document

The MARTE specification consists of five blocks of clauses:

Block one gathers the introduction clauses (from Clauses 1 to 6).

Block two is Part I of the MARTE specification and it is intended to define the MARTE foundations. It conflates
clauses 7 to 12 respectively focused on: Clause 7, Core Elements, defines the basic elements for model-based approach
and specially for real-time embedded domains such as a causality model; Clause 8, Non-Functional Properties
modeling, defines a common framework for annotating models with quantitative and qualitative non-functional
information; Clause 9, Time modeling, defines the time as used within MARTE; Clause 10, Generic Resource
Modeling, specifies how to describe at system level resource models; finally, Clause 11, Allocation modeling, defines
concepts required to describe allocation concerns.

The third block is Part IT of the MARTE specification. It is intended to define the MARTE concepts for model-based
design of RTES. It consists of the following clauses: Clause 12, General Component Model, introduces a general
component model suitable for RTES. This component model, called GCM, is build on top of the composite structure of
the UML, and it is compatible with well-known component models such as the one of SysML, CCM, AADL and
EAST-ADL; Clause 13, High-Level Application Modeling, defines high-level concepts for designing qualitative and
quantitative concerns of RTES (e.g., concurrency and synchronization); Clause 14, Detailed Resource Modeling, is
split into two sub-clauses respectively dedicated to detailed modeling of software (sub clause 14.1, SRM, “Software
Resource Modeling”) and hardware (sub clause 14.2, HRM, “Hardware Resource Modeling”) resources.

The fourth block is Part IIT and focuses on model-based analysis. It does not intend to define new analysis technologies,
but to define the information required for annotation models on which external analysis techniques may be applied. It
consists of three clauses: Clause 15, Generic Quantitative Analysis Modeling, defines basis concept for specific
analysis technics; Clause 16, Schedulability Analysis Modeling, specializes the generic framework for performing
schedulability analysis, whereas Clause 17, Performance Modeling, is the specialization for model-based performance
analysis.

The last block, Part IV, contains all the MARTE annexes. The main information contained within these annexes is
about additional useful value specification languages provided by MARTE (Annex B and Annex C): the Value
Specification Language (VDL), the Clocked Value Specification Language (CVSL) and the Clock Constraint
Specification Language (CCSL). Another important added value contained is a predefined MARTE model library
(Annex D). This latter annex described predefined primitive and data types required for defining the UML profile for
MARTE itself, but also usefull for user models. The annex part owns also a UML extension definition (Annex E, the
Repetitive Structure Modeling MARTE subprofile) intended to support specific system modeling consisting of
repetitions of structural elements, interconnected via a regular connection pattern. We call this kind of structure
“repetitive structure.” Finally, the annex block of MARTE owns an annex dedicated to describe the detailed semantics
of each domain concepts introduced within the specification (see following sub clause which relates on how to use this
Annex F).

6.4.2 Extension Specification Rationale and Format Convention

Extensions proposed by MARTE have been conflated around one main concern and detailed in separate clauses: Clause 7
to Clause 17 and Annex F. Such clauses are then organized following the same patterns. The way to define each sub
profile contained within MARTE rely on a two stage process: a domain model specification and its underlying UML
profile design.

16

UML Profile for MARTE, V1.2

The first stage consists of defining the required concepts (also called domain elements) related to one specific concern
(e.g., non-functional properties modeling and time modeling). The output of this stage is then called the domain model,
which formalized through the definition of a meta-model and the detailed semantics descriptions of each of its elements.
In order to reduce the bulk of this document, we decided to gather all these detailed descriptions within a common place,
Annex F.

The second stage of the process we adopted for MARTE aims at designing a UML profile (sub clauses called “UML
representations”). Our purpose is then to define UML extensions (i.e., mainly stereotypes, tagged values, specific
notations, and OCL rules) for supporting within the UML the specific concepts introduced within each MARTE domain
model for supporting RTES model-based engineering.

In order to minimize the impact of the MARTE extensions on the model readability, firstly we try to reduce the size of
stereotype names as much as possible, but without scarifying their meaning too much. Secondly, we decided to prefix the
stereotypes only when required. A typical example was when we define stereotype that was inherited by other
stereotypes.

6.4.3 Conventions and Typography

In the description of this specification, the following conventions have been used:

6.5

While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

No visibilities are presented in the diagrams, since all elements are public.
If a sub clause is not applicable, it is not included.

Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., ‘ModelElement,’
‘ElementReference’).

Boolean meta-attribute names always start with ‘is’ (e.g., ‘isComposite”).
Enumeration types always end with “Kind” (e.g., ‘DependencyKind’).

In diagrams described in the rest of this document, the way of identifying an element external to the package being
described will be its name preceded by the hierarchy of containing packages/namespaces; the root element to use for
this sequence shall be the closest ancestor in the hierarchy that is common to both the imported element, and the
package being described.

Acknowledgements

The following companies submitted and/or supported parts of this specification:

Adaptive

Alcatel

ARTISAN Software Tools

Carleton University

Commissariat a I’Energie Atomique
ESEO

ENSIETA

UML Profile for MARTE, V1.2 17

France Telecom

International Business Machines
INRIA

INSA from Lyon

Lockheed Martin

MathWorks

Mentor Graphics Corporation
NASA

No Magic

Software Engineering Institute (Carnegie Mellon University)
Softeam

Telelogic AB

Thales

Tri-Pacific Software Inc.

Universidad de Cantabria

The following persons were members of the core team that originally designed and wrote this specification (sorted in
alphabetical order): Charles André, Jean-Philippe Babau, Pierre Boulet, Irv Badr, Arnaud Cuccuru, Gérard Cristau,
Jérome Delatour, Cédric Dumoulin, Sébastien Demathieu, Robert De Simone, Huascar Espinoza, Madeleine Faugere,
Sébastien Gérard, Mark Gerhardt, Peter Kortmann, Frédéric Mallet, Julio Medina, Alan Moore, Chokri Mraidha, Dorina
Petriu, Laurent Rioux, Bran Selic, Safouan Taha, Jean-Pierre Talpin, Frédéric Thomas, Murray Woodside and Ben
Watson.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification (sorted in alphabetical order): Jérome Blanc, Joel Champeau, Jos¢ Maria Drake, Thierry
Gautier, Michael Gonzalez Harbour, Jack Low, Benoit Masson, and Yves Sorel.

18

UML Profile for MARTE, V1.2

7 Core Elements (CoreElements)

7.1 Overview

The concepts presented in this clause serve as a general basis for the description of most elements of the rest of this
specification. They are a comprehensive set of related concepts that are useful to define those others more elaborated,
which are used to build the subsequent clauses of this specification. They are split in two packages for convenience. The
Foundations package holds the basic elements used to represent the dual descriptor-instance nature of any modeling
entity. These concepts may serve different purposes for modeling and analysis, and are the basis for structural modeling.
The Causality package describes the basic elements necessary for behavioral modeling, and their run-time semantics.
Figure 7.1 shows these packages and their relationship.

MARTE::CoreEle ments

Foundations ——————- — Causality

Figure 7.1 - Dependencies between packages for the CoreElements package

The Causality package is a specification of how things happen at run time. The purpose of this model is to provide a very
high-level view of the run-time semantics for those modeling elements that are suitable for real-time and embedded
systems, and will be later used when required to point out the various elements of that view that are covered and
specialized in the domain models of the MARTE specification. The term “run-time” is used to refer to the execution
environment. Run-time semantics are therefore specified as a mapping of modeling concepts into corresponding program
execution phenomena.

This model is used as a basis for any dynamic model description associated with the MARTE profile. It captures the
essentials of the cause-effect chains in the behavior of run-time instances. The model is inspired from (and hence
compliant with) the Common Behavior model of the UML superstructure. But, it is more detailed and precise in certain
aspects, in particular for its further use as the basis for the definition of a richer timing model, which includes the timing
constraints induced by the real-time annotations. A complete model and a language for timed expressions are provided at
full length in Clause 9. Other dedicated attribute properties for time-related concepts are also introduced further along this
specification. Figure 7.2 presents the internal sub-packages of the causality model. The purpose and contents of each sub
package are described in the next sub clauses.

| UML Profile for MARTE, V1.2 19

C ausality

CommonBehavior

RunTimeC ontext
) t
" -
1 3 H
Invocation Communication

Figure 7.2 - Architecture of the Causality package
7.2 Domain View

7.21 The Foundations Package

The domain models presented in this specification will use a consistent set of modeling elements, which in spite of being
non-normative, form a large meta-model that covers all the modeling requirements imposed by the RFP.

For modeling and analysis purposes, it is fundamental to distinguish between design-time classifier elements, such as
classes and types, and run-time instance elements that are created on the basis of those classifiers. All modeling elements
at any level of specification will represent either one or the other of these two fundamental aspects, based on their
purpose.

This basic partitioning into classifiers and instance is reflected in the diagram depicted in Figure 7.3. Any number of
instances can be created from a given classifier. This latter is referred to as the type of the instance. Notice that an
instance may have multiple types (which can be used either to represent different viewpoints of the model element) or a
composition of partial descriptions, including multiple inheritance for example).

The concept of Instance may be in practice represented in UML not only as InstanceSpecifications but also by those other
elements that are described in terms of role-based models (like UML::ConnectableElement in collaborations or internal
structure diagrams, parts, ports, or roles).

20 UML Profile for MARTE, V1.2

Foundations

MaodalElamant

W
oA
owned Elemant

name: String [0..1]

0. 0.*
Instance - Classifier
instance type

Figure 7.3 - Instance and Classifier root diagram of the Foundations package

As described in Clause 8, values of non-functional properties (NFP) may be annotated on any model element designated
as such. In this way, further specializations of Classifiers or Instances may become kinds of AnnotatedElements. In
particular, time-based analysis methods operate on annotated models that are usually described over a number of specific
instances of the system. However, it is also useful to be able to associate NFP values with classifiers. In this case it
simply means that such values apply by default to all instances created on the basis of those descriptors, and not that the
classifier itself has that value. These default values can be further overridden in specific instance cases. But, this uniform
annotation of instances requires special care and may not always be appropriate. In case of interface specifications, for
example, there could be many realizations of the same interface, each with different service characteristics described by
means of NFP.

For practical reasons, most concepts and modeling elements in the domain views of this specification as well as the
stereotypes in the UML representation will be defined and described using the classifier root concept, but it should be
noted that a corresponding instance may also exist. However, instance based elements will be defined to stress its nature,
when appropriate. This semantic variation will also be taken into account in the UML views of the specification firstly to
define the applicability of the required consistency rules, and secondly in the subsequent adoption of the proper semantics
when the corresponding stereotype is applied to extend user defined modeling elements.

UML Profile for MARTE, V1.2 21

Foundations

Classifiar

ownedFroperties

ModelElerment

i

MultiplicityElemant

fupper : UnlimitedMatural [0..1]
fower - Integer [0..1)

I

Property

type'|" 0.1

aggregation : Aggregationkind [1] = none

owningUpper upperyValue

MARTE::\VSL::
ValueSpecification

0.1 0.1
owvninglower lowery alue
"D..'I 0.1
« enumeration »
AggregationkKind
none
shared
composite

Figure 7.4 - Property diagram of the Foundations package

A Property is a MultiplicityElement, so that it can have an upper and lower bound specifying the valid range of
cardinalities for this property. Additionally, it has an aggregation kind and a type (as a classifier).

7.2.2 The Causality::CommonBehavior Package

7.2.2.1 Basic Behavior

This model states the relationships between classifier element models and their instances from a behavioral viewpoint. It
is aligned to the UML semantics basis, in the sense that there is no disembodied behavior: all behavior emanates from the
actions of structural entities. In particular since in UML a behavior is a kind of class, it is possible for a behavior to be its
own structural context. For many of the UML behavioral concepts mentioned here you may find the corresponding UML2
semantics description in Clause 13 of the OMG document ptc/06-04-02. For those that reify the UML2 concepts,

analogous definitions have been extracted from that OMG document.

22

UML Profile for MARTE, V1.2

CommonBehavior
CoreElements. Foundations:: CoreElements: Foundations:: type
ModelElerment Classifier 0.1
ownedTrigger , ,
Befn assif
avioredClassifier CoreClements:: Foundations::
. " ModelElemeant
context 11
) ImainBehavior
event | 1 ownedBehavior |+ 0.1 ¢ {subset ownedBehavior} ,J
action . .
Evant Eeafavior
- .%ﬁ' A paramelexr Parameter E—
0.1 43 I
ComposifeBahawvor Action

Figure 7.5 - The CommonBehavior package

A Behavior defines how some system or entity changes over time. From a modeling point of view, this concept defines
the behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context
classifier. It is a specification of how its context classifier as well as the state of the system that is in the scope of the
behavior may change over time. A behavior may have Parameters whose values may be used for evaluating a behavior.
A behaviored classifier may have behavior specifications that illustrate specific scenarios of interest associated with that
classifier, such as the start-up scenario. In particular, the behavior specification used to represent the behavior that starts
executing when instances of that classifier are created and started is called main behavior. For many real-time concurrent
systems, this can be, for example, the behavior that initiates the activity of a thread, which continues until the thread is
terminated. Two kinds of Behavior may be defined: CompositeBehavior and Action. Action is an atomic behavior, and
CompositeBehavior may contain other Behaviors, which in turn may be either composite or atomic.

An Action is the fundamental unit of behavior. An action takes a set of inputs and converts them into a set of outputs,
though either or both sets may be empty. Actions are contained in behaviors, which provide their context. Behaviors
provide constraints among actions to determine when they execute and what inputs they have.

An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are
often generated as a result of some action either within the system or in the environment surrounding the system.
Consistently with UML 2, Triggers are specification of what can cause execution of behavior (e.g., the execution of the
effect activity of a transition in a state machine).

A Trigger specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
event occurrences not of interest. Indeed, a Trigger is the concept that relates an Event to a Behavior that may affect any
instance of the behavioral classifier.

The Timed versions of these concepts are introduced in Clause 9, under the name of TimedProcessing (for Actions) and
TimedEvents (for Events and Triggers).

UML Profile for MARTE, V1.2 23

7.2.2.2 Modal Behavior

The previous sub clause described the main concepts to describe basic system behavior. This basic behavior is aligned
with UML, and hence, it represents a common conceptual basis for further extensions required in the real-time and
embedded systems. There is however, a kind of behavior that is not particularly distinguished in UML and that requires
specific consideration when modeling time and safety-critical systems. This behavior is related to the notion of
operational mode, and for this reason we call it modal behavior.

An operational mode can represent different things:

« An operational system (or subsystem) state that is managed by reconfiguration mechanisms (e.g., fault-tolerance
management middleware) according to fault conditions.

« A state of system operation with a given level of QoS that can be handled by resource management infrastructures (e.g.,
middleware that assign resources at run time according to load demand, timing constraints, or resource usage).

+ A phase of a system operation (e.g., starting, stopping, launching, in a mission-critical aerospace system).

CommonBehavior |
Behawior
[f‘ {subseats context}
. composite
a - ModeBehavior = BahavioradClassifier
! {subsets ownedBehavior} 0.1
0.1 odeBehavior « | participatingEntity
mode
activeln
Mode made
Configuration
source | q 1 | target
foutgoing | * * iincoming
i trigpgper
transition .
- ModeTransition (e < Trigger
0.1

Figure 7.6. Domain model of Modal Behavior

A mode identifies an operational segment within the system execution that is characterized by a given configuration. The
system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional
parameters).

Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier. A BehavioredClassifier can be active in zero or more
operational modes. Furthermore, a BehavioredClassifier that represents a system, subsystem or any composite entity can
have a set of modes modeled as a ModeBehavior.

24 UML Profile for MARTE, V1.2

A ModeBehavior specifies a set of modes mutually exclusive, i.e., only one mode can be active in a given time instant.
Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions. A mode transition
describes the modeled system under mode switching. A mode transition can be produced in response to a Trigger. Thus,
as described before in the Basic Behavior sub clause, a Trigger is related to an Event that determines the conditions
causing the triggering action.

7.2.3 The Causality::RunTimeContext Package

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers. Hence, behavior executions are run-time instances of the behavior and action concepts. For this
reason, in this domain model, this concept is specialized into both important concepts: CompBehaviorExecution and
ActionExecution. Correspondingly, events have instances called EventOccurrences.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A
behavior execution specification describes how the states of these instances change over time. Behavior executions, as
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is
obtained from the host instance.

In UML2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior
is performed by an instance (its host) and is the description of the behavior of this instance. Emergent behavior execution
results from the interaction of one or more participant instance(s).

MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2
Behavior Performance concept described in the overview of its Common Behavior clause.

On one hand, a behavior execution is thus directly caused by the invocation of a behavioral feature of an instance or by
its creation. In either case, it is a consequence of the execution of an action by some related classifier instance. A behavior
has access to the structural features of its host instance.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating
classifier instances are parts of a larger composite classifier instance, a behavior execution can be seen as indirectly
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing
behaviors of the participant instances.

This latter form of behavior is of interest since the behavior that is to be analyzed and observed at the system level, in
order to predict its timing properties, is normally described as an abstract view of the run-time emergent behavior due to
the combination of the behavior executions of all its constituent parts.

UML Profile for MARTE, V1.2 25

RunTimeC ontext

Causality::CommonBehavior:: Causaltty::CommonBehavior:: Causality::CommonBehavior::
Event CompositeBehavior Action
event | 4 behavior |1 effect | 0..1 0..1 | action
subset type
{subset type} {subset type} exAdtion . ‘ { ype}
y BehaviorExecution
host A1 | A |
cause
EventOccurrence CompBehaviorExecution ActionExecution
1

exBehavior|*

14 Nost 0..1| invoker
CoreElements::Foundations:: 1.7
Instance participant

1

Figure 7.7 - The RunTimeContext package

There is a variety of behavior specification mechanisms supported by the UML, such as automata, activities (data-flow
like description), Petri-net like graphs, informal descriptions (e.g., Use Cases), or partially-ordered sequences of event
occurrences (Interactions), each corresponding to the concrete subtypes of Behavior that it provides.

This model supports not only scenario-based style for behavioral specification, by describing the observable event
occurrences resulting from the execution of one possible situation of behavior execution, but it also extends the behaviors
supported by the specification to state-based and activity-based approaches. The latter describes behaviors by specifying
a state machine that does not describe observable event occurrences, but that would implicitly induce event occurrences.
This intends to extend the domain of applicability of the MARTE profile to modeling and analysis techniques as Timed
Automata and Petri-nets.

Nevertheless, the relationship between a specified behavior and its hosting or participating instances is independent of the
specification mechanism chosen. The choice of specification mechanism is one of convenience and purpose; typically, the
same kind of behavior could be described by any of the different mechanisms. Note that not all behaviors can be
described by each of the different specification mechanisms, because behaviors do not have the same expressive power.
However, for many behaviors, the choice of specification mechanism depends on the formalism used to analyze the
system.

7.2.4 The Causality::Invocation Package

As shown in Figure 7.7, the execution of a behavior may be caused by an event occurrence. Events can occur from the
direct invocation of a behavior through an action or from a trigger occurrence representing an indirect invocation of a
behavior, such as through an operation call.

26 UML Profile for MARTE, V1.2

In a number of analyses, it is also useful to consider the events that occur when a behavior starts and ends its execution.

A start occurrence marks the beginning of a behavior execution, while its completion is accompanied by a termination
occurrence.

These and further defined concepts specialized from EventOccurrence will be considered eligible to be extended by

timing annotations, though for simplicity in the domain model these annotations may be defined in the form of extensions

to their common ancestor EventOccurrence.

Invocation
1 Causality::RunTimeContext: 1
execution BehaviorExecution execution
Causality::RunTimeC ontext:
EventOccurrence
finish | 1 ‘ A ‘ 1 | start
—@{ TerminationOccurrence StartOccurrence
endEvent startEvent
1 |{subset event} {subset event}| 1
: Causalty:: ;
1 beha beha
TeminationEvent 0% CommonBehavior:: %10 StartEvent
‘ 1 Behavior ‘
C ausality::CommonBehavior::Event

Figure 7.8 - The Invocation package
7.2.5 The Causality::Communication Package

The Communication sub package of the Causality package adds the infrastructure to communicate between classifier

instances and to invoke behaviors. The domain model in Figure 7.8 shows how a communication takes place. This domain

model specifies the general semantics of communication between concurrent units.

UML Profile for MARTE, V1.2

27

Communication
Causality::RunTimeContext:: CoreElements::Foundations:: C ausality::RunTimeContext:
EventOccurrence Instance EventOccurrence
) cause effect 1 effect)
InvocationOccurrence Request R eceiveOccurrence
1 1.* cause 1
invocation | *
sender.| 1 receiver |1
sender.
execution | 1 1 CoreElements::Foundations:: receiver
Instance 1
Causalty::RunTimeContext::
ActionE xecution

Figure 7.9 - The Communication package

In real time systems, the basic unit of logical concurrency is commonly known as a thread!. Threads are the root of a
special case of instances, usually called active, or real-time or even reactive objects. In fact, the recommended way of
adding concurrency into an object model is to identify the desired concurrent units (logical or physical depending on the
detail level of the model) through the application of concurrency identification strategies. Once the threads are identified,
the developer may create an active object for each. According to the level of specification other forms of expressing
concurrency in UML may be used, like the fork in an activity, or a state with orthogonal regions. Other objects, i.e. those
that are not identified as concurrent units, are then usually called passive objects. These latter objects are then associated
to the active objects via a composition or shared relationships. The role of the active object is to run when appropriate and
call or delegate actions to the passive objects that it owns. Passive objects execute usually using the concurrent resource
of the caller active object.

Instances respond to messages that are generated by others executing communication actions. When these messages
arrive, the receivers eventually respond by executing the behavior that is matched to that message. The dispatching
method by which a particular behavior is associated with a given message depends on the higher-level formalism used
and is not defined here (hence, it is an open-variation semantics point of UML).

Figure 7.8 shows the general communication model. An action representing the invocation of a behavioral feature is
executed by a sender instance resulting in an InvocationOccurrence. The invocation event may represent the sending of a
signal or the call to an operation. As a result of the invocation event occurrence a Request is generated.

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature);

1. It should be noted here that from the concurrency point of view, there is no distinction between threads, tasks, and processes. They all
are variations of the very same concept, though they may differ in some aspects of their detailed properties (such as the context switch
time and whether low-cost pointers can be used across the concurrency boundary).

28 UML Profile for MARTE, V1.2

information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and
receiver instances; as well as sufficient information about the behavior execution to enable the return of a reply from the
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

While each request is targeted at exactly one receiver instance and caused by exactly one sending instance, an occurrence
of an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be
the same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of
the different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, which according to the triggers
expected may subsequently launch the behaviors of the receiver instance or of any of its internal instances. Like in the
Common Behaviors Domain Model of UML, two kinds of requests are determined according to the kind of invocation
occurrence that caused it: the sending of a signal, and the invocation of an operation. The former is used to trigger a
reaction in the receiver in an asynchronous way without a reply. The latter applies an operation to an instance, which may
be synchronous or asynchronous and may require a reply from the receiver to the sender.

Observe that modeling elements like invocation occurrence and receive occurrence shown in this domain model are not
explicitly represented in the specification of a system, but they are implicit in the dynamic semantics of the constructs
used.

7.3 UML Representation

A certain impact on the representation of modeling elements is envisioned according to their classifier/instance dual
nature.

The modeling elements defined in this specification may adopt the nature of Classifier or Instance presented here, or both.
This quality of being may be of course specifically stated as part of their definition, but it may be also left to the user to
be decided according to the purpose of the annotation, and the intended semantics.

In most of the cases the concepts defined in the domain view are proposed to be represented in UML by means of a
stereotype extending a concrete UML modeling element. When this is the case, the Classifier or Instance intrinsic nature
of the UML annotated element may lead to identify the corresponding nature, semantics, or concrete variations of the
MARTE concept that is intended to be represented with the annotation. Hence, the explicit different semantics that may
be defined for each MARTE modeling concept, when it is considered as an instance or as a classifier, may be inferred
directly from the fundamental nature of the corresponding UML element that is annotated.

When a stereotype is applied on an instance, and provided it can be also applied on classifiers, the value of the attributes
not explicitly assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype
definition, but they might be overridden by those in its corresponding classifier, if it happens to be annotated with the
same stereotype.

This sub clause describes the UML extensions required to support the concepts defined in the previous domain view. The
set of extensions, to support Core Elements modeling with UML, is organized according to the application context of the
domain concepts. In particular note that not every domain concept will result directly in a UML stereotype or tagged
value. In CoreElements, only the concepts related to the ModalBehavior domain model are concretized as stereotypes.

UML Profile for MARTE, V1.2 29

7.3.1 Profile Diagrams

Figure 7.10 shows the UML extensions for CoreElements. The CoreElements package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following sub clause.

« profile »
CoreElements
UML::StateMachines:: UML:: StateMachines:: UL StateMachines::
BehaviorStateMachines:: BehaviorStateMachines: BehaviorStateMachines::
State Transition StateMachine
A A
« stereotype » « siereotype » « Steractype »
Mode ModeTransition ModeBehavior
mode

UML::CompositeStructures:: . . .
|nternalSILcires:: UML: Classes: Kemel:

StructuredClassifier Fackage

=

« stereotype »
Configuration

Figure 7.10 - UML profile diagram for CoreElements modeling
7.3.2 Profile Elements Description

7.3.2.1 Configuration
The Configuration stereotype maps the Configuration domain element denoted in Annex F (F.1.10, *Configuration’).

A system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional
parameters).

Extensions
« StructuredClassifier (from UML::CompositeStructure::InternalStructures)

+ Package (from UML::Classes::Kernel)

Generalizations

* None

30 UML Profile for MARTE, V1.2

Associations

« mode: CoreElements::Mode [*]
The operational modes that are represented by this configuration.

Attributes

» None

Constraints
« None
7.3.2.2 Mode
The Mode stereotype maps the Mode domain element denoted in Annex F.

A Mode identifies an operational segment within the system execution that is characterized by a given configuration.
Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier domain concepts. However, since BehavioredClassifier is an
abstract concept (there is not a corresponding stereotype), we add the relationship of the different mode-sensitive system
entities to a mode directly in the concrete stereotypes. See for example, Clause 8 - NFP where a mode is associated to the
NFPs::NfpConstraint stereotype.

Extensions
« State (from UML::UML::StateMachines::BehaviorStateMachines)

Generalizations

* None

Associations

» None

Attributes

+ None

Constraints

[1] Transitions between modes must be stereotyped as ModeTransition.

7.3.2.3 ModeBehavior
The ModeBehavior stereotype maps the ModeBehavior domain element denoted in Annex F (F.1.16, "ModeBehavior”).

A ModeBehavior specifies a set of modes mutually exclusive (i.e., only one mode can be active in a given time instant).
Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions.

Extensions
- StateMachine (from UML:: UML::StateMachines::BehaviorStateMachines)

UML Profile for MARTE, V1.2 31

Generalizations

* None

Associations

» None

Attributes

» None

Constraints

[1] Owned States must be stereotyped as Mode, and Owned Transitions must be stereotyped as ModeTransition.

7.3.2.4 ModeTransition
The ModeTransition stereotype maps the ModeTransition domain element denoted in Annex F.

A ModeTransition describes the modeled system under mode switching. A mode transition can be produced in response
to a UML::Trigger. Thus, a UML::Trigger is related to a UML::Event that determines the conditions causing the
triggering action.

Extensions
« Transition (from UML:: UML::StateMachines::BehaviorStateMachines)

Generalizations

* None

Associations

* None

Attributes

» None

Constraints

[1] Owned States must be stereotyped as Mode, and Owned Transitions must be stereotyped as ModeTransition.

7.3.3 Examples

We illustrate a reconfigurable system that uses the concepts of operational mode and configuration.

32 UML Profile for MARTE, V1.2

stm « modeBehavior » Systeml'il'lodes)

/’_ « modeBehavior »
SystemModes

« modaTransiion =
[ModeCrash] ReconfigToDegraded

« mode »
NominalMode

« mode »
DegradedMode

« configuration »
{mo
DegradedMade_SystemConfiguration

de= Degradad Maode)

: Application_RobotArm
col: Commandintespreien eenme Coanmand ban s

0 [p———— 5 d

dpr: GUIRaleashar | LT rinp: Repaster
[B—
cablcales s9ROCHE salochtes calrales o ghociles T
H : Rabet_RessarcesPladorm i

+ Rabat_SwPlatdorm

ez SenwsConsredies

k| h | A Y . | h |
skl hask2 chanceil thannet! nuekl taskd taekS
¥ ¥ : L v - -
RO dloches alprate wallccabinn gipegre, *HICHEN EHI00IE
' g + Fahot_HwPlatiom . J >
T " {7
LR

Figure 7.11 - Modeling Modes and Configurations

In Figure 7.11 we can see that the software application has two possible modes: a NominalMode and a DegradedMode.
We specify the modal behavior by using state machines. For instance, reconfiguration properties, such as mode transitions

and causing events are modeled with UML::Transition and guards/actions notation.

Then, the system configuration under DegradedMode is represented by using a composite structure. The composite

structure represents an allocation scenario of application components into a set of platform resources (for further details

on the allocation, see Clause 11, *Allocation Modeling (Alloc)’). We say that this configuration is valid for the

DegradedMode by using the mode attribute in Configuration.

| UML Profile for MARTE, V1.2

33

34

UML Profile for MARTE, V1.2

8 Non-functional Properties Modeling (NFPs)

8.1 Overview

This clause describes both domain model and its UML representation for specifying Non-Functional Properties (NFPs). It
also describes how NFPs may be attached to UML modeling elements. This sub package of the MARTE specification
provides a general framework for annotating UML models with NFPs. It is especially focused on formalizing a set of
modeling constructs in order to specify this kind of property in a detailed way.

The NFP modeling framework deals with the following requirements:
« How NFPs are to be described, and particularly what NFPs should be considered.
« How particular instances of NFPs are to be attached to UML model elements.
« How relationships between different NFPs are to be defined.

« How to express constraints on or between NFPs in order to express requirements on the system model.

« Usability of the annotations should minimize the designer efforts?.

+ To provide an open modeling framework, i.e., not tailored towards specifications of a particular modeling concern or a
restricted set of NFPs.

Although the UML Profile for “Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
(QoS&FT) already defines a framework to express a similar concept to NFP, there are some reasons to define a different
one in the context of this specification.

For instance, the QoS&FT profile relies on a two-step annotation process: a) derive a Quality Model for each application
model by instantiating template classes from the QoS Catalogs and, b) annotate UML models with QoS Constraints and
QoS Values, which implies catalog binding and either the creation of extra objects (instantiated from the Quality Model),
or the specification of long OCL expressions. This two-step process requires too much effort for the users and may induce
not readable models.

The QoS&FT profile provides a flexible mechanism to store pre-defined QoS Characteristics. It supports declaring the
most common QoS characteristics for different application domains by means of QoS Catalogs. A particular QoS Catalog
may contain qualifiers of QoS properties including statistical qualifiers and measurement units. At the level of QoS value
specifications, however, QoS&FT ignores some important attributes such as measurement sources, precision, and time
expressions. These properties are required for the domain of MARTE and are therefore supported by the NFPs introduced
in this specification and the Value Specification Language (VSL) defined in Annex B.

In general, the term Quality of Service (QoS) is the aptitude of a service for providing a quality level to the different
demands of its clients. In the computer systems domain, the term QoS is frequently associated specifically with network
issues, such as throughput and bandwidth (and in conjunction with multimedia applications). But it has more recently
begun to be applied to NFPs of more general services. There is still no common consensus about the concepts of NFP and

2. One of the major constraints that drove the definition of this specification has been to minimize the required efforts to apply the profile.
But since our purpose was to enrich UML with capacities to describe formally and efficiently the real-time and embedded features of a
system, applying the profile hence requires some additional effort with regard to a common usage of the UML.

UML Profile for MARTE, V1.2 37

QoS. Anyhow, the NFPs considered here have a larger extent than only quality levels. NFPs may describe the internals
and externals of the system, and some of them directly relate to the users of resource services and their QoS perception
and others not.

Besides, the UML profile for “Schedulability, Performance, and Time Specification” (SPT) provides a straightforward
annotation mechanism specifying a set of predefined stereotypes and tagged values. Moreover, it supports already some
of the requirements for NFP annotations, such as support for symbolic variables and expressions through its specialized
Tag Value Language (TVL). However, its approach was not defined formally enough to allow for new user-defined NFP
or for different specialized domains. Indeed, SPT defines a grammar for powerful concepts, as for instance
“RTtimeValue” expressions, but does not define a mechanism to extend or refine these constructs for more specific needs.

The MARTE NFP modeling framework has reused some useful structural concepts suggested in the UML profile for
QoS&FT. However, some considerations to reduce the inherent usage complexity of the UML profile for QoS&FT and to
facilitate the modeling process have been taken into account and led to a new proposal. Additionally, as much as possible,
features of the SPT profile have been reused. For instance, The Value Specification Language (VSL) introduced in
MARTE extends and formalizes (by means of a metamodel and its associated concrete syntax) some concepts supported
by TVL to annotate constant, variable, tuple, and expression values. In this manner, we provide a flexible and
straightforward framework for supporting a wide variety of NFPs annotations while adopting the best modeling practices
of both UML profiles.

The NFP modeling framework provides the capability to describe various kind of values related to physical quantities,
such as Time, Mass, Energy. These values are used to describe the non-functional properties of a system. This notion of
value is introduced and used in a broader sense in the context of another OMG specification: Systems Modeling Language
(SysML) by the means of value properties and value types.

8.2 Domain View

8.2.1 Overview

The model of a computing system describes its architecture and behavior by means of model elements (e.g., resources,
resources services, behavior features, logical operations, configurations modes, modeling views), and the properties of
those model elements. It is convenient to group application properties into two categories: functional properties, which
are primarily concerned with the purpose of an application (i.e., what it does at run-time); and non-functional properties
(NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to do it). Both functional
and non-functional property are specialization of a more general concept of value property, related to a quantity.

In the context of model-driven development approaches for real-time and embedded systems, modeling NFPs is of
fundamental relevance and implies a number of design decisions. NFPs provide information about different
characteristics, as for example throughput, delays, overheads, scheduling policies, deadline, or memory usage.

In this and subsequent sub clauses, we will use metamodels to describe the domain viewpoint. Note that, although the
intent of this domain model is to be precise, it is not fully formal since its purpose is primarily to provide profile’s users
with the minimal knowledge to understand the concepts and relationships of the domain.

The NFP annotation framework has many facets that are grouped into individual sub-packages. The overall package
structure of the NFP framework is shown in Figure 8.1.

38 UML Profile for MARTE, V1.2

MARTE::CoreElements:: MARTE:
Foundations VSL
A A
« import » :
i «import »
NFPs i
1
« IM POt ym = NFP_Nature
i
[
(
H
NFP_Declaration teseemeimport y======- NFP_Annotation

Figure 8.1 - Structure and dependencies of the NFPs modeling package

The purpose and contents of each sub package denoted in Figure 8.1 are described in subsequent sub clauses.

8.2.2 The NFP_Nature package

From an abstract viewpoint, an NFP (4bstractNFP) can be either qualitative or quantitative, as shown in Figure 8.2.

QuantitativeNFPs are measurable properties. A given quantitative NFP may be characterized by a set of
SampleRealizations and Measures.

SampleRealizations represent a set of values that occur for the QuantitativeNFP under consideration at run-time (for
instance, measurements collected from a real system or a simulation experiment). A QuantitativeNFP may be sampled
once or repeated multiple times over an extended run. In a cyclic deterministic system, in which each execution cycle has
the same value, a single sample is sufficient to characterize completely the QuantitativeNFP.

A Measure is a (statistical) function (e.g., mean, max, min) characterizing the set of sample realizations. Measures may be
computed either directly by applying the desired function to the set of realizations values, or by using theoretical
functions of the probability distribution given for the respective QuantitativeNFP.

According to measurement theory (JCGM 200:2008, International Vocabulary of Metrology - Basic and General Concepts
and Associated Terms (VIM), 3rd edition, 2008, BIPM, Paris, France.), measures are defined as a Quantity expressed in
terms of a specific Unit. Quantities can be basic or derived for a given system of quantities. BasicQuantities are for
example length, mass, time, current, temperature, or luminous intensity. The units of measure for the basic quantities are
organized in systems of measures, such as the universally accepted Systeme International (SI) or International System of
Units. Quantities expressed in the same unit can be compared. DerivedQuantities (e.g., area, volume, force, frequency)
may be obtained from basic quantities by explicit formulas known as Dimension relationships. This notion of dimension
is useful for dimensional analysis of non-functional properties: for a given system of quantities, a derived quantity can be
expressed as a set of base quantities in a dimension equation. Additionally, different units of the same physical quantity
may be transformed to, or expressed in terms of, existing base units through a given conversion factor and an offset
factor.

UML Profile for MARTE, V1.2 39

NFP_Mature

AbstractNFFP
realizationValues pararmeber
SampleRealization % é}
domain | 1.7 1 | L
-
QuantitativeNFP QualitativeNFP
0." | function 1
0.*
Measure
MEasUra
9 baseQuantity
Quantity BaseQuarntity
physicalQuantity = |orderad}
1
0.4}, measuramentnit
Unit allowad Units DerivedQuantity

convFactor: Real [0..1]
conviffset Real [0..1]

baselnit / fu__1 Dimension
1

. - symbol: String [0..1]
dimension | haseExponents: Integer ['] fordarad}

Figure 8.2 - Domain Model for NFP Nature

QualitativeNFP refers to inherent or distinctive characteristics that may not be measured directly. In general, a qualitative
NFP is denoted by a label (e.g., “bronze,” “silver,” and “gold” level of service) representing a high-level of abstraction
characterization that is meaningful to the analyst and the analysis tools. More specifically, a qualitative NFP takes a value
from a list of allowed values, where each value identifies a possible alternative.

When looking in more detail at a qualitative NFP, it may be possible to define it in function of a set of criteria, which may
be in turn qualitative or quantitative. Some qualitative NFPs have known meanings that can be interpreted by particular
domains, for example:

« the choice of a scheduler type for a processor, or
« the choice of a statistical distribution for the latency of a network.

In both examples, the full specification of the property requires not only a qualitative value, but also some quantitative
parameters, as for instance: scheduler-type = roundRobin (quantumSize) or latency-value = gamma (mean, variance).

8.2.3 The NFP_Annotation Package

Figure 8.3 shows a domain model for NFP annotations. A model of a system (which is considered in this specification to
be expressed in UML) can be extended by annotated models with additional semantic expressing concepts from a given
modeling concern or domain viewpoint. An annotated model contains annotated elements, which are model elements
extended by standard modeling mechanisms. For example, some typical performance analysis-related annotated elements
are: step (a unit of execution), scenario (a sequence of steps), resource (an entity that offers one or more services), service
(offered by a resource or by a component of some kind) 3,

40 UML Profile for MARTE, V1.2

An annotated element describes certain of its non-functional aspects (i.e., the ones that are directly related to the
annotation concern) by means of NFP value annotations. These annotations are specified by the designer in the models
and attached to model elements. Thus, the role nfpValue on ValueSpecification (Figure 8.3) indicates that an annotated
model element has a value or values for a specific NFP. ValueSpecification is used to define the value expressions
associated with NFPs. The values must conform to the defining NFP in type and multiplicity. Examples of NFPs are: the
total delay of a step when executed (including queuing delays), the utilization of a resource, and the response time and
throughput of a service.

NFP_Annotation |

CoreElemenis:: « enumeration »
Foundations:: ConstraintKind
ModelEfement required
offarad
f 5 confract
Annotated owns 1 Annotated annotationConcem | ModelingConcern
Elemant : cwner Modef i.* description: string [0..1]
0. context
consirainedElemant
oned e
NFP_Constraint mode CoreElemeants::
CommeonBehavior::
kind: Consirainiking [0..1] . Mode
0.1
speciication 1
MARTE::VSL::
nfpValug ValueSpecification
NFPs::
NFP_Declaration:: =
nfpDeclaration NFP relevanthip

Figure 8.3 - Domain model for NFP annotations

Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a certain modeling
concern. In other words, a given modeling concern uses a set of NFPs, which establishes the ontology of the domain. For
instance, specific analysis techniques (e.g., performance or schedulability analysis) deal with distinctive non-functional
annotations.

An NFP_Constraint is a condition (a Boolean expression) on the non-functional properties associated with model
elements. In general, NFP_Constraints are assertions that indicate restrictions that must be satisfied by a real-time system.
The annotated model defines the context of the constraints for interpreting names used in the value specification. Kind of
constraints qualifies NFP constraints by either required, offered, or contract nature. When a constraint is defined as
required, the values specified in the NFP_Constraint indicate the minimum quantitative or qualitative level that the
constrained elements demand (these elements are usually clients of resources). An example of required constraints for a
step element is the maximum latency for execution. Offered constraints establish the space of NFP values that can support
a model element, as for example the throughput of a CPU (elements in this case are commonly software or hardware
resources). Contract constraints define conditional expressions that specify relationships between offered and required
non-functional values. For instance, if a given model element (e.g., a computing resource) does not support a condition on

3. The Step and Scenario model elements are defined in GQAM (Clause 15), whilst the Resource and Service model elements are intro-
duced in GRM (Clause 10).

UML Profile for MARTE, V1.2 41

one or many of its NFP values (e.g., a processing capacity), other model elements might change one or many of NFP
values accordingly (e.g., the delay to execute a piece of code). In 8.3.2.5, "NfpConstraint’ we give a detailed example of
NFP_Contraints usage.

Multiple NFP_Constraints may serve to specify different levels of qualities for the same services. For instance, in a
component-based architecture, components can support different operational modes, and these operational modes may
provide different non-functional values or qualities for the same component services. This is represented by the
association of NFP_Constraint to Mode. A given NFP_Constraint may also represent the quality level in more than one
Mode. The level of quality modeled by a given NFP_Constraint depends on the resources available and functional
parameters such as state variables that identify the mode configuration. For instance, in a reconfigurable system, resources
may offer different quality depending on the load that they have.

8.2.4 The NFP_Declaration Package

NFP declaration is intended to qualify and assign extended data types to NFP values (Figure 8.4).

This package introduces the notion of value property, further specialized by the notion of non-functional property. A value
property represents any kind of physical quantity relevant in the design of the system. A non-functional property (NFP) is
a kind of value property, which focuses on fitness for purpose aspects. These NFPs are used in other clauses of the
specification for design and analysis of RTES.

Value properties have a TupleType (see Annex D for MARTE extended data types), called ValueType. Two attributes
define the body of value types: valueAttribute and exprAttribute. ExprAttribute is used to specify expressions associated
with value properties. Hence, we are able to assign variables, literals, intervals, and other expressions. The return value of
the expression must conform to the associated value attribute of the value type.

ValueType adds the ability to carry a measurement unit (by means of unitAttribute) and additional qualifiers to values
(qualifierAttributes).

A ValueType with a measurement unit is associated with physical measures. In sub clause 8.3.3.1, we show some pre-
declared units largely used in the domain (e.g., time units, data size units, transmission speed units) that can be used when
specifying values.

NFP and NFP_Type are direct specialization of ValueProperty and ValueType to describe non-functional aspect of a
system.

Examples of qualifiers are statisticalQualifier, direction, value source, measurement precision, and (see NFP Types
Library in sub clause 8.3.2.4). A statisticalQualifier indicates the type of statistical measure of a given property (e.g.,
maximum, minimum, mean, percentile, distribution). The direction attribute (i.e., increasing or decreasing) defines the
type of the quality order relation in the allowed value domain of NFPs. Indeed, this allows multiple instances of NFP
values to be compared with the relation “higher-quality-than” in order to identify what value represents the higher quality
or importance. Source is a peculiarity of non-functional properties associated with the origin of specifications. Precision
is the degree of refinement in the instruments and methods used to obtain a result.

42 UML Profile for MARTE, V1.2

NFP_Declaration

MARTE::VSL:: NFPs:: MARTE::V5L::
ValueSpecification NFP_Nature:: DataTypes::
Unit TupleTypa
07 defaultvalue 0.1 " PallowedUnits
adtaultUnit
valuedtribute 1
tsubsets tupleAtributes)
unitattribute ©--1 MARTE::VSL::
type s I:uplemtnnuteg, o
ValueProperty i ValuaType ! DataTypes::

1 R v—— Property
axpritiibute 0.

{subsets tupladtributes}

T —
qualifiertibutes ™
[P {subsats tpledttributes)

NFP NFP_Type

Figure 8.4 - Domain Model of NFP Declaration

Notice that the set of concepts supporting the declaration of NFPs provides means to annotate NFPs in a first phase, but
the concrete infrastructure for specifying values is supported by VSL (Annex B). Nevertheless, default measurement units
and values may be assigned when declaring NFPs and NFP types.

The ability to specify all the kinds of values supported by VSL is a key concern for NFP annotations. Indeed, NFP
specifications need to be composable. That means, it should be possible to specify NFP values at a fine-grained level and
compose them into higher-level specifications. Conversely, a high-level NFP specification should be decomposable such
that fine-grained NFP specifications can be refined. The refinement relationship between two levels of NFP specification
must ensure consistency between both levels. The process of composition and decomposition should be carried out in
such a manner as to guarantee this consistency. NFP specifications should be able to be refined so that new NFP
specifications can be based on existing ones.

8.3 UML Representation

This clause describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support NFP modeling with UML is organized according to the application context of the domain
concepts. In particular, in the NFP modeling framework, note that not every domain concept will result directly in a UML
stereotype or tagged value. This is because some domain concepts are abstract, representing generalizations that will not
appear directly in any UML model.

For instance, the abstract notion of a “Measure” is very useful as an abstraction in our framework, but will only be
manifested in its concrete forms (e.g., delay, throughput, capacity) in MARTE models. While a corresponding stereotype
could have been defined for this abstract concept, it would never be used in practice. Therefore, we have chosen to only
define stereotypes for concepts that we envisage are actually going to be used in practical modeling situations. This
results in a simpler and more compact profile.

Thus, we first describe the extensions concretized in stereotypes. In Annex D, a set of NFP Types is predefined, which is
used extensively in MARTE to type and qualify non-functional properties.

UML Profile for MARTE, V1.2 43

In sub clause 8.3.3, we will describe some examples that use the whole extensions for NFP annotations with both tagged
values and UML constraints.

8.3.1 Profile Diagrams

Figure 8.5 shows the UML extensions for NFP modeling. The NFP Modeling package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following sub clause.

« profile »
NFPs
« metaclass » « metaclass » « metaclass »
UML::Classes::Kernel:: UML::Classes::Kernel: UML::Classes::Kernel::
EnumerationLiteral Property Constraint
A A A
« stereotype » « stereatype » « stereotype »
Unit Nfp NfpConstraint
convFactor: Real [0..1] kind: Constiaintiing [0..1]
convOffsat: Raeal [0..1]
BaselUnit Unit [0..1)
* ¢mode
« metaclass » « stereotype » « stereotype »
UML::Classes:: Kernal:: VSL::DataTypes:: TupleType MARTE::CoreElements::
Enumeration tupleAttrib: Property [7] Mode
A [P
« Stareotype » « stereotype » « enumeration »
Dimension NipType ConstraintKind
symbol: String [0..1] valusAlrl: Property [0..1] {subsets bpleAttib) required
baseDimension: Dimension [7] {ordered) wnitAfirib: Propery [0..1] (subsets tuple Atir} offarad
baseExponent: Intager [*] {ordared} expratib: Properly [0. 1] [subsats uplastin} contract

Figure 8.5 - UML profile diagram for NFPs modeling
8.3.2 Profile elements description

8.3.2.1 ConstraintKind

ConstraintKind is an enumeration type that defines literals used to specify the nature of constraint assertions by either
required, offered, or contract nature.

Literals

* required
It indicates the minimum quantitative or qualitative level that the constrained elements demand (these elements are
usually clients of resources).

» offered
It establishes the space of values that can support a model element (elements in this case are commonly software or
hardware resources).

* contract
It defines conditional expressions that specify relationships between offered and required non-functional values.

44 UML Profile for MARTE, V1.2

8.3.2.2 Dimension

A Dimension is a relationship between a quantity and a set of base quantities in a given system of quantities.

Extensions

+ Enumeration (StructuredClasses::Kernel)

Generalizations

» None

Associations

* None

Attributes

* symbol: String [0..1]
This attribute represents the symbol used to designate the dimension.

* baseDimension: Dimension [*] {ordered}
This attribute represents the base dimensions by which the dimension of a derived quantity unit is created. Basic
dimensions do not require this attribute.

* baseExponent: Integer [*] {ordered}
This attribute represents the exponents that characterize the base dimensions used to define the dimension of a
derived quantity. Basic dimensions do not require this attribute.

Constraints

* None

8.3.2.3 Nfp

The Nfp stereotype maps the NFP domain element denoted in Annex F (F.2.10, "ModelingConcern (from
NFP_Annotation)’).

Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a
value or values. Nfp is intended to declare, qualify, and assign extended data types to NFP values.

Extensions

 Property (from UML::StructuredClasses::Kernel)

Generalizations

+ None

Associations

* None

Attributes

* None

UML Profile for MARTE, V1.2 45

Constraints

* None

8.3.2.4 NfpType

This NfpType stereotype maps the NFP_Type domain element denoted in Annex F (F.2.12, "NFP_Constraint (from
NFP_Annotation)’). Note, however, that the qualifierAttributes role is not implemented in the UML view. In practical
terms, the tupleAttribute inherited from TupleType is sufficient to define qualifier attributes.

An Nfp type is a type whose instances are identified only by NFP value specifications. An Nfp Type contains specific
attributes to support the modeling of NFP tuple types.

Extensions
 DataType (from UML::StructuredClasses::Kernel)

Generalizations

+ TupleType (from VSL::DataTypes) in Annex B, sub clause B.3.2.5.

Associations

+ None

Attributes

» valueAttrib: Property [1]
both physical and non-physical NFP types have a value attribute, which serves as
placeholder to specify a value of NFPs.

* unitAttrib: Property [0..1]
measurement unit declaration that apply to all the value specifications of the NFP.
Usually, it is an enumeration data type with a list of the valid measurement units.

* exprAttrib: Property [0..1]
attributes representing an expression. MARTE uses the VSL language to define expressions.

Constraints

* None

8.3.2.5 NfpConstraint

This NfpConstraint stereotype maps the NFP_Constraint domain concept denoted in Annex F (F.2.11, "NFP (from
NFP_Declaration)’).

NfpConstraint extends the UML mechanism for applying a condition or restriction to modeled elements. Specifically,
NFP constraints support textual expressions to specify assertions regarding performance, scheduling, and other embedded
systems’ features, and their relationship to other features by means of variables, mathematical, logical, and time
expressions.

Extensions

+ Constraint (from UML::StructuredClasses::Kernel)

46 UML Profile for MARTE, V1.2

Generalizations

* None

Associations

* mode: Mode [*]
The set of modes in which the NFP constraint annotations are valid.

Attributes

» kind: ConstraintKind [0..1]
Tagged definition qualifying NFP constraints by either required, offered, or contract nature.

Constraints

* None

8.3.2.6 Unit
This Unit stereotype maps the Unit domain element denoted in Annex F (F.2.18, *StatisticalQualifierKind’).

Unit is a qualifier of measured values in terms of which the magnitudes of other quantities that have the same physical
dimension can be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of
length such as a meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less
stable or precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by
a numerical scale.

Unit is defined as a stereotype of EnumerationLiteral. This allows modelers to assign a list of allowed units to a particular
physical NFP type by means of a related Enumeration element. In this way, we bound the universe of legal units that
apply to a specific kind of NFPs.

Units can be declared with a parameter representing the Conversion Factor that is applied to a Base Unit to determine the
value in terms of the specified measurement unit.

Extensions

« EnumerationLiteral (StructuredClasses::Kernel)

Generalizations

* None

Associations

» None

Attributes

* convFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by a numerical factor.

» offsetFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by applying an offset value
to them.

UML Profile for MARTE, V1.2 47

e baseUnit: Unit [0..1]
This attribute represent the base unit by which a derived measurement unit is created
Basic units do not require this attribute.

Constraints

« None
8.3.3 Graphical Syntax of NFP Value Specification

In this sub clause, we define an alternative graphical syntax for value specifications having NfpType as data type. This
syntax consists of a pair of a value and a unit:

<nfp-value> ::= <value-specification> [' ' <unit-enumeration>]
The following are typical examples:

5 ms # a duration value

50 kHz # a frequency value

Note that this notation is for the graphical view of models only. The tuple notation (see sub clause B.3.3.9) is still valid
for NFP values (NfpType inherits from VSL::TupleType), both in graphical models and in the repository as well. For
instance, the NFP value: '50 kHz' can be specified in the model repository as: '(50, -, kHz, max, -, est, -)' or '(value=50,
expr=null, unit=kHz, statQ=max, dir=null, source=est, precision=null)".

The main rationale of the “value-unit” notation is readability of graphical models. Specific tools could provide more
flexibility in the graphical notation. For instance, users may be able to customize the elements of a tuple in an NFP value
specification that should be displayed. However, because of its common usage in engineering models in general, the
“value-unit” notation is normative (although not mandatory) in MARTE.

8.3.4 Examples

A requirement for NFP annotations is a trade-off between usability and flexibility. Usability suggests the merit of
declaring a set of standard NFPs for a given modeling domain, so they can be easily referred to and, consequently, every
user of the annotations means the same thing. For NFPs with well-known variants, a set of declarations can be
standardized, which cover the important cases with differently-named measures; these can be translated if necessary by
domain specialists for the use of a specific tool with different names. However there are some NFPs whose meaning is
domain- or even project-dependent. This requires a capability for users to define their own NFPs. Thus flexibility and
expressive power requires that the users have the capability to define their own NFPs, but usability requires a set of
standard measures that can be used in a straightforward way.

The following sub clauses will describe respectively an example of NFP model library and examples of usage of such
library.

8.3.4.1 Example of NFP model library definition

This sub clause provides an example of NFP types model library definitions. This example corresponds to an excerpt of a
more complete model library predefined for MARTE and specified in detail in Annex D.1. This MARTE library includes
predefined data types supporting NFP annotations commonly used in the real-time and embedded system domain.

48 UML Profile for MARTE, V1.2

NFP Types are implemented in MARTE through UML data types. UML data types (DataType metaclass) are a special
kind of classifier, similar to classes. A data type differs from a class in that instances of a data type are identified only by
their values. Like a class, data type may have attributes. In VSL, we define four kinds of composite data types (data types
allowing attributes): IntervalType, CollectionType, ChoiceType, and TupleType. A data type with attributes of different
types is called TupleType (see Annex D for MARTE extended data types). If a tuple type has attributes with different
types, then instances of that data type will contain attribute values matching the types of their corresponding attributes.
Particularly in MARTE, we define a set of pre-declared NFP types that are useful for the other sub-profiles. However,
other domain-specific libraries can be defined either using the NFP profile or specializing the MARTE libraries.

Figure 8.6 shows the package pre-declaring NFP types. Note that we import the MARTE primitive types defined in the
VSL annex (Annex B). The list of MARTE primitive types includes Real and DateTime in addition to the pre-declared
UML primitive types. However, note that the set of UML primitive types are completely redefined within MARTE in
order to allow specifying operators on these types (more rationales on this are provided in Annex D.1).

General MARTE data types that are not NFP types are declared in the MARTE DataTypes library (Annex D). This library
uses stereotypes of the VSL Profile for data types (see Annex B).

General MARTE NFP types are declared in the BasicNFP_Types library (Annex D). A root NFP type called
NFP_CommonType is defined to factorize common NFP type attributes.

In addition to value, expression, and unit attributes, NFP types are declared specifying a set of qualifier attributes required
to precisely specify and qualify NFP values.

The semantic of the provided qualifier attributes is the following:

* source: SourceKind [0..1]
peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values
are estimated, calculated, required, and measured.

» precision: Real [0..1]
degree of refinement in the performance of a measurement operation, or the degree of perfection in the
instruments and methods used to obtain a result. Precision is characterized in terms of a Real value, which
is the standard deviation of the measurement.

+ statQ: StatisticalQualifierKind [0..1]
statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum,
mean, percentile, distribution).

* dir: DirectionKind [0..1]
direction attribute (i.c., increasing or decreasing) defines the type of the quality order relation in the allowed
value domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the
relation “higher-quality-than” in order to identify what value represents the higher quality or importance.

| UML Profile for MARTE, V1.2 49

Issue 15434 - udpate figure
modellibrary »
MARTE_Library::MeasurementUnits.
« dimension » « dimension » w dimension »
TimeUnitkind DataSizeUnitKind FrequencyUnitKind
{symbol = T} {symbol = D} {baseDimension = {T}
baseExponent = {-1}}
wunit: 5 o unit » bt N
wunity fick « unit n Byte [basellnit=hil, conyFactor=R} # unit » Hz _
wunits ms {basellnit=s, convFactor=0,001} « unit o KB {basalinil=Byia, + unit » kHz {basalnit=Hz,
wunits us (haseUnit=ms, conyFactor=0,001} || convFactor=1024} convFactor=1E3}
wunits min {basaUnit=5_ convFactor=60} # unit » ME {baselnit=KB, « unit o MHz {baseUnii=Hz,
wunits hr (baseUnit=min, convFactor=60) convFactor=1024} convFacior=1E6}
wiinits day {baseUni=his, convFactor=24} || « unit 0 GB {baselnit=M8, # unit n GHz [baselinit=Hz,
convFactor=1024} convFacior=1E4}
« Unit » rpm {baselUnit=Hz,
convFaclor=0.0167]

« dimension »
PowerUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -3}}

« dimension »
DataTxRateUnitKind
{baseDimension = {D, T},
baseExponent = {1, -1}}

s unif » W

+ unit + bis

% unit » m\W [baselinit=W, conwFactor=1E-3}

% unit » Kbis {baselnit=b/s, convFactor=1024}
® Unil » Mb/s {baseUnit=bis, convFaclor=1024}

% unit » kW {baselUnit=W, convFactor=1E3}

« modelLibrary »
MARTE_Library::

MARTE_PrimitiveTypes

« modelLibrary »

MARTE_Library::MARTE_DataTypes ® im|;or1 »
« dataType » « dataType » « dataType »
« collectionType » « collectionType » « intervalType » « primitive »
4 Ll 3 [collectionAirin- n\an:uFlamnnl 1 + ™ PR 'i'Sl E 0 HEE;U[I
IntegerVectar IntegerMatrix Integerinterval =
wactorElem: Integer [0..%] matrixElem: Intagervector [0..%] | | bound: Integer [2]

50

3
« modelLibrary » u '-n;iorl x
MARTE_Library::BasicNFP_Types !
dataType » enumeration
« enumeration » “ s #
SourcoKing || % gnumeration » «nfpType » StatisticalQualifierKind
DirectionKind F—
et ner NFP_CommonType :i’:‘
:-I:Ica.s decr wxpr: VEL_Exprassion mean
req source: Sourcakind varance
statl: StatisticalQualifisrkind range
dir: Directionkind percent
made: String [*] distrib
datarm
& other
[I T I T]
« dataType » « dataType » « dataType » « dataType » « dataType » « dataType »
= nfpType » « nfpType » « nfpType » u nfpType » « nfpType » a nfpType »
§ walueddirb= value | { walueditrib= walue | 4 valueAsiro=valua | [waluefdtrib= vabue } § valushzirib= valoe | [valusdziibe= valoe)
NFP_Boolean NFP_Natural MNFP_String NFP_Real NFP_Integer NFP_DateTime
value; Boolaan value; Unlimited Natural value; Slring valug; Real value; Integer value; DateTima
« dataType » « dataType » « dataType » « dataType » « dataType »
« nfpType » « nfpType » a nfpType » anfpType » a nfpType »
[writAdirib= unit) [uritittrib= unit) J unithiirde ui b [uritAtrin= 1t) { imitésnib= urit }
NFP_Duration NFP_DataTxRate NFP_Frequency NFP_Power NFP_DataSize
unit TimeUnitKind unit: DataTxRatsUniting unit: FraquancyUnitking unit: Pewarlinitiing unit: DataSizalnitkind
z'{i‘:\';s:”:ml pracision: Raal pracision: Real pracision: Real pracision: Real
worst: Real
bsst: Raal

UML Profile for MARTE, V1.2

« modelLibrary »
MARTE_Library::MeasurementUnits

« dimension »

« dimension »
FrequencyUnitKind

« dimension »

TimeUnitKind DataSizeUnitKind N N
{symbol = T} {symbol = D} {baseDimension = {T}
- — baseExponent = {-1}}
«unity s « unit » bit .
«unit » Hz

«unity tick « unit » Byte {baseUnit=bit, convFactor=8}
«unit» ms {baseUnit=s, convFactor=0.001} « unit » KB {baseUnit=Byte,

«unit» us {baseUnit=ms, convFactor=0.001} || convFactor=1024}

«unit» min {baseUnit=s, convFactor=60} « unit » MB {baseUnit=KB,

«unit» hr {baseUnit=min, convFactor=60} convFactor=1024}

«unit» day {baseUnit=hrs, convFactor=24} « unit » GB {baseUnit=MB,
convFactor=1024}

« unit » kHz {baseUnit=Hz,
convFactor=1E3}

« unit » MHz {baseUnit=Hz,
convFactor=1E6}

« unit » GHz {baseUnit=Hz,
convFactor=1E9}

« unit » rpm {baseUnit=Hz,
convFactor=0.0167}

« dimension »
DataTxRateUnitKind
{baseDimension = {D, T},
baseExponent = {1, -1}}

« dimension »
PowerUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -3}}

«unit» W « un!t » bls)
« unit » Kb/s {baseUnit=b/s, convFactor=1024}

« unit » mW {baseUnit=W, convFactor=1E-3} N .
« unit » kW {baseUnit=W, convFactor=1E3} « unit » Mb/s {baseUnit=Kb/s, convFactor=1024}

A
i « modelLibrary »

«import » MARTE_Library::MARTE_PrimitiveTypes
i

« modelLibrary » -
MARTE_Library::MARTE_DataTypes « import »

« dataType »
« intervalType » « primitive »

{ intervalAttrib = bound } VSL_Expression
Integerinterval =

« dataType »
« collectionType »
{ collectionAttrib= matrixElement }
IntegerMatrix

« dataType »
« collectionType »
{ collectionAttrib= vectorElement }
IntegerVector

matrixElem: IntegerVector [0..*] bound: Integer [2]

vectorElem: Integer [0..*]

T

i
« import »

« modelLibrary »
MARTE_Library::BasicNFP_Types i

. - « dataType » « enumeration »
« enumeration » || « enumeration » «nfpType » StatisticalQualifierKind
SourceKind DirectionKind { exprAttrib= expr }
?nsi incr NFP_CommonType iy
caelss decr expr: VSL_Expre_ssion mean
req source: SourceKind variance
statQ: StatisticalQualifierKind range
dir: DirectionKind percent
mode: String [*] distrib
determ
Z; other

1
« dataType »

T
« dataType »

[[
« dataType » « dataType » « dataType » « dataType »
« nfpType » « nfpType » « nfpType » « nfpType » « nfpType » « nfpType »
{ valueAttrib= value } { valueAttrib= value } { valueAttrib= value } { valueAttrib= value } { valueAttrib= value } { valueAttrib= value }
NFP_Boolean NFP_Natural NFP_String NFP_Real NFP_Integer NFP_DateTime
value: Boolean value: UnlimitedNatural value: String value: Real value: Integer value: DateTime

« dataType »
« nfpType »
{ unitAttrib= unit }
NFP_Duration

« dataType »
« nfpType »
{ unitAttrib= unit }
NFP_DataTxRate

« dataType »
« nfpType »
{ unitAttrib= unit }
NFP_Frequency

« dataType »
« nfpType »

NFP_Power

{ unitAttrib= unit }

« dataType »
« nfpType »
{ unitAttrib= unit }
NFP_DataSize

unit: TimeUnitKind unit: DataTxRateUnitKind

cloclf: _String precision: Real
precision: Real

precision: Real

unit: FrequencyUnitKind

unit: PowerUnitKind
precision: Real

unit: DataSizeUnitKind
precision: Real

worst: Real
best: Real

Figure 8.6 - Extract of the model library defining the pre-declared Basic NFP Types and measure units

UML Profile for MARTE, V1.2

51

The NFP_CommonType (parent of all the other NfpTypes) includes a set of probability distribution operations that are
defined in Annex D, sub clause D.2.2 (NFP_CommonType). This list of probability distributions is certainly not
exhaustive but it includes the more common distributions used in state-of-the-art performance analysis and simulation
tools. Further probability distributions can be added in specialized libraries without needing any modification in the
MARTE profile or VSL. Probability distribution is a fundamental concept to specify stochastic values. A probability
distribution assigns to every interval of the real numbers a probability, so that the probability axioms are satisfied. In
technical terms, a probability distribution is a probability measure whose domain is the Borel algebra on the reals. A
probability distribution is modeled in MARTE as the name of the function and a set of parameters allowing estimating the
function in terms of the standard form of the distribution.

Probability distributions are defined as operations of NFP types, each with particular parameters. The included
probability distribution function values are described by the following:

e Dbernoulli (prob: Real)
Bernoulli distribution has one parameter, a probability (a real value no greater than 1).

* binomial (prob: Real, trials: Integer)
Binomial distribution has two parameters: a probability and the number of trials (a positive integer).

* exp (mean: Real)
Exponential distribution has one parameter, the mean value.

+ gamma (k: Integer, mean: Real)
Gamma distribution has two parameters (“k” a positive integer and the “mean”).

* normal (mean: Real, standDev: Real)
Normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

* poisson (mean: Real)
Poisson distribution has a mean value.

* geometric (p: Real)
The Geometric distribution is a discrete distribution bounded at 0 and unbounded on the high side.

* triangular (min: Real, max: Real, mode: Real)
The Triangular distribution is often used when no or little data is available; it is rarely an accurate representation
of a data set.

* logarithmic (theta: Real)
The Logarithmic distribution is a discrete distribution bounded by [1,...]. Theta is related to the sample size and
the mean.

For example, consider a property typed by NFP_CommonType:
distribution: NFP_CommonType

The values of this property can be constructed by using a special VSL expression called CallOperationExpression (see the
VSL annex, package Expressions, for further details). For instance, the following expression:

distribution= normal (50, 7)

is a CallOperationExpression that calls the probability distribution operation “normal” of the defining NfpType
(NFP_CommonType) and provides the arguments for its parameters “mean: Real" and “standDev: Real.”

Two kinds of data types are defined: physical dimension types and dimensionless types. In this latter group, we define all
the data types supporting NFP literal values (e.g., NFP_Real, NFP_DateTime, NFP_Boolean). For dimensionless types,
the value attribute is typed according to the related primitive type. For dimension types, the value attribute has the

52 UML Profile for MARTE, V1.2

primitive type Real. This has a practical definition intended to allow modelers representing measured NFP values in the
domain of real numbers. Note that this set of dimension types is not a complete one, since in Annex D, we include
additional time and non-time specific NFP types as predeclared MARTE data types.

The time at which a VSL expression is evaluated depends on different factors. For example, some expressions could be
evaluated when a resource allocation at modeling level is done. Other properties may be evaluated when a given “real
time situation” is modeled. Analysis tools could also provide evaluation of certain expressions.

Notice that dimension types have measurement units. The BasicMeasurementUnits package (stereotyped «modelLibraryy)
define a set of measurement units that are useful for the MARTE scope. We apply to this package the «unity stereotype
defined in the NFP profile. As illustrative examples, we show in Figure 8.6 some units used in the MARTE domain (a
complete MARTE library for measurement Units is shown in Annex D.1). It holds a set of self-defined units, as for
example: “s” denoting the time unit for “seconds.” Other derived units are defined with basis on basic units. For instance,
“ms” denotes a time unit obtained with basis on “seconds” by a conversion factor of “0.001.” Modelers are able to define
further units in the same way.

8.3.4.2 Usage example of NFP model libraries

We consider three annotation mechanisms: Tagged Values, Constraints, and (Instance Specification) Slots. Tagged values
are a kind of value slots associated with attributes of specific UML stereotypes. Hence, one tagged value characterizes
just one model element. On the other hand, a constraint is a condition expressed in natural language text or in a machine-
readable language (e.g., OCL) for declaring some semantics of one or various model elements. This is useful if we define
NFPs that involve more than one element (for instance, a delay between two different events). On the other hand, NFP
annotations in instance specification slots are related to classifier-defined NFPs. Thus, while the stereotype attribute
mechanism implies the creation of UML profiles, the two latter are mainly aimed at supporting user-defined NFPs.

We explore the capabilities of the NFP modeling framework to annotate NFPs by means of stereotypes and tagged values.
In Figure 8.7, we show a generic scheme to define and apply NFPs. The Basic NFP_Types package (stereotyped
modelLibrary) corresponds to that presented in Figure 8.6. It encloses the general NFP types and their default
measurement units supporting NFP annotations through all the UML profile for MARTE. Additionally, we depict an
extract of the UML sub-profile for GQAM (Generic Quantitative Analysis Modeling) (detailed in Clause 15), which uses
the basic NFP Types. To illustrate annotation examples we present a small example of modeling for quantitative analysis.

« modelLibrary»
BasicNFP_Types

i

« import»
i

1]

« profile »
GQAM
(Generic Quantitative
Analysis Modeling

«apply UserModelForAnalysis

Figure 8.7 - General Structure for Declaring and Annotating NFPs
In the GQAM “profile” package (Figure 8.8), we illustrate a description of one of the stereotypes defined in Clause 15
and some of its property definitions. The example’s intent is to show some particulars of the extension mechanisms used

in the NFP modeling framework. These arise from the fact that we use NFP annotations for defining most of types of the

UML Profile for MARTE, V1.2 53

stereotype attributes. This feature provides more flexibility to the profile and full compliance with the profile extension
mechanism provided by UML2. The «gaExecHost» stereotype, which represents an execution resource with annotations
for analysis, has efficiency properties (e.g., utilization), and overhead properties as for example cntxtSwT (context switch
time), clockOvh (clock overhead). These attributes are then typed with the NFP Types defined in the Basic NFP_Types
model library (e.g., NFP_Duration, NFP_Real), which, in turn, contains the tuple information of NFPs. At this stage, we
use the NFP qualifiers statQ (statistical qualifier), dir (direction), and unit (measurement unit) as default values of NFPs
to define the exact semantic of the non-functional attributes. However, this does not prevent modifying these attributes for
specific instances.

« profile»
GQAM

« metaclass »
UML:: InstanceSpecification

/

« stereotype»
GaExecHost

utilization: NFP_Real (statQ= percent, dir= decr)

clockOvh NFP_Duration= (statQ= max, unit= us)
cntxtSWT. NFP_Duration= (stat Qe max)

Figure 8.8 - An example of declaration of NFPs in stereotype attributes

The use of this profile definition is shown in the package named UserModelforAnalysis (Figure 8.9). In this model, an
instance of a node model element is stereotyped «gaExecHost». The associated tagged values of this stereotype are shown
in a compartment (see notation alternatives in the UML Superstructure document, Clause of Profiles). We can see that
tagged values are specified as structured data types. For example, clockOvh is a tuple value that has expression and source
item values. The expression: “normal(50,7)” is a CallOperationExpression (see the VSL annex, package Expressions, for
further details) which calls the probability distribution operation of the defining NFP type (NFP_Duration). The
utilization tagged value is specified as an expression string making reference to a variable $u/. As a methodological rule
that we adopted in the analysis sub clauses, variables indicate to analysis tools that these attributes must be computed and
returned to the UML model. Note that the default values defined in the stereotype attribute declarations can be overridden
in the tagged values if required. For instance, the measurement unit of clockOvh has been overridden in our example.

54 UML Profile for MARTE, V1.2

UserModelForAnalysis

UserModelForAnalysis

UserModelForAnalysis

« gaExecHost»
uC: Controller

« gaExecHost»
utilization= (value=$u1, source= calc)
clockOvh= (value= normal (50, 7), source= est)
cntxtSwT= (value= 8, unit= us, source= meas)

« gaExecHost»
uC: Controller

« gaExecHost »

utilization= ($u1, -, -, -, calc, -)
clockOvh= (normal(50, 7), -, -, -, est, -)
cntxtSwT= (8, us, -, -, -, meas, -)

« gaExecHost»
uC: Controller

« gaExecHost »
utilization= $u1
clockOvh= normal (50, 7)
cntxtSwT= 8 us

(a) Extended Notation

Figure 8.9 - Example of user model for analysis with NFP annotations

The second mechanism considered to annotate UML models with non-functional aspects is through NFP Constraints.

(b) Reduced Notation

(c) Graphical Value-Unit
Notation

Constraints commonly define relational expressions between two terms containing parameters, specified by means of
VSL variables or UML properties, and possibly numeric values. Such constraints can be used to identify critical
performance parameters and their relationships to other parameters on the system modeled.

The third NFP annotation mechanism is by using slots of UML Instance Specifications. For this purpose, NFPs are to be
declared at classifier level and NFP values are specified within the related slots. This mechanism has the disadvantage
that annotations are confined to classifiers’ instances.

Figure 8.10 shows an example for using the two latter annotation mechanisms (constraints and slots). An important aspect
to have in mind regarding this particular example is that we declare NFPs at user model level, instead of defining NFPs
as stereotype attributes like in the formerly illustrated mechanism. Our aim is to show how modelers can define their
owns NFPs and use them to specify NFP values by means of NfpConstraints and Slots. Hence, in such cases, the

semantics of the defined NFPs is user-dependent4.

4. Note that, in general, if modelers will use the different MARTE sub-profiles, they should follow the annotation mechanism of stereotype
attributes and tagged values to specify NFPs and NFP values. The approach illustrated in the second example has been included in
MARTE in order to support user model-defined (or library-defined) NFPs.

UML Profile for MARTE, V1.2

55

Controller

«nfp» procUtiliz NFP_Real= (percent, decr)
«nfp» schedUtiliz NFP_Real= (percent, decr)
«nfp» contextSwitch NF P_Duration= (max)
«nfp» clockF req: NFP_F requency= (max, us)

Internal Composite Structure ofa
specific Controllerinstance

A
«computingResource»
uC: Controller

proc Utiliz= ($u1, calc)

« scheduler »
{schedPolicy = F ixe dPriority}
s 1/sysSched

« clockResource »
p1 / procClock

w\\\ 1
- .
“ « nfpContraint » {kind=offered }
\‘ {contextSwitch== (8, us, meas) and
S\ s ched Utiliz== (5, percent) }
\‘-

« nfpContraint » {kind= contract}

{ procUtiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq== (20, MH2z) }

VSL Conditional

/ Expression

Condition If-True Expression If-False Expression

T~ T~ T

procU tiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq==(20, MH z)

VSL OperationCallExpression VSL PropertyCallExpres sion VSL Tuple Specific ation
(VSL infix notation: (call to a property of (related to the
call to the operation > *, ‘Controller) ‘NFP_Frequency’ NFP type)

‘greater than’)
Figure 8.10 - Example of user model with NfpConstraint and Slot annotations

We defined a classifier, named Controller, that owns a set of properties stereotyped as «nfp». Note that we have declared
similar NFPs as in the previous example, but we intentionally changed their names to emphasize the fact that, in this case,
the declared NFPs have user-specific meaning. As for the stereotype annotation mechanism, in this example we use
NFP_Types to define the structure of NFP value specifications. We also defined default values for NFPs, which state the
predefined value qualifiers: statistical qualifier, direction, and unit.

We created a uC instance of Controller and then specified its internal structure by means of a Composite Structure
diagram. These instance-level model elements are stereotyped with high-level modeling constructs,
«computingResourcey, «scheduler», and «clockResource», which are formally introduced in the GRM sub-profile, sub
clause 10.3. At this stage, we specify a set of NFP values by means of two NfpConstraints attached to the specific
constrained elements. In both cases, the constrainedElement (association end from the UML Constraint metaclass to UML

56 UML Profile for MARTE, V1.2

Element metaclass) are the specific model elements to which the non-functional annotations apply, and the context
(association end from the UML Contraint metaclass to the UML Namespace metaclass) is the Controller node element,
which actuates as a namespace context for VSL expressions.

For instance, one of the NFP_Contraints is attached to the sysScheduler part element. This one defines an “offered” non-
functional constraint written in VSL (see Annex B for details on the VSL textual language). The VSL expression is a
three-level nested boolean expression. In the first level, an infix CallOperationExpression makes reference to the “and”
operation (see the list of operations in Annex D) by specifying two operands. These operands are in turn other
CallOperationExpressions making reference to the equalTo (“==") operation, which has two operands. The first operand
in both cases is PropertyCallExpression (calling to the contextSwitch and schedUtiliz properties of Controller) and the
second operand in both expressions is a particular value that is conform to the defining property. In simple words, VSL
allows for specifying NFP values by using (NFP) properties previously declared in the model.

In order to complement this basic annotation, a more complex NFP_Constraint has been specified for the procClock par
(processor clock instance). We illustrate a non-functional contract assertion that is intended to be allowed at run time.
When the Controller utilization becomes greater than 90%, the clock’s frequency increase from 20 MHz to 60 MHz. In
this example, we do not make any assumption about the run-time mechanisms supporting this assertion. The contract has
been specified by using a VSL Conditional Expression, whose structure is detailed in Figure 8.10.

The third proposed annotation mechanism is depicted by defining a procUtiliz slot within the uC instance of Controller.
As in the first example (Figure 8.9), the utilization slot is specified by a variable $u/. The methodological rule indicates,
again, that this variable should be computed by analysis tools and returned to the UML model.

Additional examples of VSL time expressions and the constraint annotation mechanism are given in Annex B.

UML Profile for MARTE, V1.2 57

58

UML Profile for MARTE, V1.2

9 Time Modeling (Time)

This clause contains both domain and UML viewpoints for time modeling. The clause describes a general framework for
representing time and time-related concepts and mechanisms that are appropriate for modeling real-time and embedded
systems. These serve as a base for the standard modeling elements defined in subsequent clauses of the MARTE profile.

Since Real-time systems are specifically concerned with the cardinality of time (e.g., delay, duration, clock time),
(chrono-) metric time will be considered. Embedded systems may also require logical time models. Thus, both logical and
metric times are covered in this specification.

9.1 Overview

The time domain model described in this clause identifies the set of time-related concepts and semantics that are
supported by this profile. The model is quite general, and a given application may need to use only a subset of its
concepts and semantics.

Time can be differently perceived at the different phases of the development of an embedded real-time system (modeling,
design, performance analysis, schedulability analysis, implementation, etc.). The concept of ordering (i.e., something
occurring before or after another thing) is common to many Time representations. MARTE adopts models of time that
rely on partial ordering of instants. The temporal ordering of behavior activities can be represented in many ways,
depending on the level of precision required. There are three main classes of time abstraction used to represent behavioral
flows (with minor variations at each level). They are known under different names in different contexts, and these names
are also often used with different meanings elsewhere (so there is no general consensus).

Issue 17339 - udpate text

« Causal_(untimed)#emporal: in such models, one is only concerned about instruction precedence/dependency. These
relations can be partial in presence of concurrency. Cooperation between concurrent entities takes place as
communications (i.e., through events). Communications themselves can be fully asynchronous, blocking (with the
emitter awaiting a returned reply), or hand-shake synchronization.

| + Eleeked/sSynchronous_(partially timed): this class of time abstraction adds a notion of simultaneity, and divides the
time scale in a discrete succession of instants. Rich causal dependencies can take place inside an instant, leading to the
“instantaneous reaction” abstraction. When the clock(s) is (are) linked to a regular pulse, clock ticks become the unit
scale of a discrete-time model (but this need not be the case in any “synchronous” temporal model). This level is used
in hardware modeling (at RTL level) where instantaneous propagation corresponds to “combinatorial” behaviors, in

simulation formalisms (as in MATLAB® / SIMULINK®, or in Hardware Description Languages such as SystemC/
VHDL/Verilog with &-cycles representing causal zero-delay dependencies), or in software modeling when relying on
synchronous languages semantics (such as Esterel or SCADE or Signal). A generalization of the synchronous domain
allows clocked entities to be linked in a looser, asynchronous network where no single-clock domain is defined. It leads
to the notion of GALS (Globally-Asynchronous/Locally-Synchronous) domains. These are used in the field of system-
level models, for instance for SoC (System-on-Chip) design, where several levels of modeling — either software or
hardware — can be combined during the course of the design.

« Physical #(real-time): this class of time abstraction demands the precise accurate modeling of real-time duration

values, for scheduling issues in critical systems. Physical time models ean-alse-be-applied-to-eclocked-modelrefine the
partially timed models by adding reference(s) to one or more physical dimensions, for instance to derive the admissible

speed of a reaction.

| UML Profile for MARTE, V1.2 57

Issue 16010 - udpate text

In embedded real-time systems modeling, time should not be considered as an external model: Time and Behavior are
strongly coupled. The Time domain model identifies concepts that relate time and behavior. The Causality package in the
CoreElements clause of MARTE has provided a high-level view of the run-time semantics of real time and embedded
systems. The Time modeling clause enriches this view with explicit references to time-related concepts. The Invocation
package in the CoreElements clause is also extended with the concept of SimultaneousOccurrenceSet. The notion of
instant has also to be revisited to deal with simultaneity. This is done in the TimeStructure®, which represents Time as a
partial ordering of instants. A timed event occurrence refers to one instant. An object may be bound to a time structure by
a time base. A time base is a set of instants at which the executions hosted by the object may take place. Time may be the
physical time, with its presumed regularity, but it can also be some endogenous time linked to some repetitive event, not
directly bound to physical time. Hence, the idea is to associate time structure with events, behaviors, and objects, or more
generally instances of the concrete subtypes of the BehavioredClassifier metaclass.

To capture the influence of Time on behaviors, we suggest that objects, behavior executions, and event occurrences may
explicitly refer to clocks considered as accessors to the time structure.

9.2 Domain View

This clause covers different concerns about time modeling and usage, informally shown in Figure 9.1. This figure is not
a UML diagram. It only gives an overview of the concepts covered by the Time Modeling clause and their logical
grouping.

structure

Optional acoess to time ﬁ TimeValueS pecification

TimeAccess

TimeU sage

4

Concepts Concepts Concepts
Time bases Clot_j(s Timed elements
Multiple Time Bases Logical clocks Timed events
Instants C hronometric clocks Timed adions
Time structure relations Currenttime Timed constraints

Figure 9.1 - Overview of the time model concerns

These concerns are reflected in the structure of the time domain model, which is partitioned into the following separate
but related groups of concepts:

+ Concepts for modeling a simple form of time structured as a totally ordered set of instants owned by a time base
(TimeStructure concern as depicted in Figure 9.1).

+ Concepts for modeling multiple time base models (7imeStructure concerns as depicted in Figure 9.1).

5. TimeStructure is refined into both BasicTimeModels and MultipleTimeModels packages in the rest of the clause.

58 UML Profile for MARTE, V1.2

+ Concepts for accessing to time structure, including clocks and time values (TimeAccess and TimeValueSpecification
concerns as depicted in Figure 9.1.

+ Concepts for modeling entities bound to time (7imeUsage concerns as depicted in Figure 9.1).

MA RTE::Time

Basic TimeModels —g.‘.‘_
<<merge>>
aad
u
MultipleTimeModels
A__-?
<<imp ort>>
'_-‘—
Time Acce sses
M.
<<imp ort>>
“Sman
al
TimeRe lat edEn titie s

Figure 9.2 - Structure of the Time domain model

The BasicTimeModels and MultipleTimeModels packages provide a structural model of time (the TimeStructure) that
constitutes the semantic foundation of our approach to time. These two packages are merged because the concept of
TimeBase introduced in the former is enriched in the latter. Both packages are used by the TimeAccesses and
TimeRelatedEntities packages that contain concepts and constructs effectively used by the standard user of the profile.

9.2.1 The BasicTimeModels Package

The BasicTimeModels package (Figure 9.3) provides a structural view of time as an ordered set of instants. This model
does not refer to any notion of physical time. Hence, it can conveniently support logical time, which is widely used in
distributed systems and synchronous languages. This model of time focuses on the ordering of instants, while ignoring the
physical duration between successive instants.

A TimeBase is a container of Instants. The structure of time is specified by the nature attribute that takes its values in the
enumeration TimeNatureKind. Possible values are discrete or dense. In dense time, for any given pair of instants there
always exists at least one instant between the two. A TimeBase owns an ordered set of /nstants. We consider only
countable sets. For a discrete time base, instants can be indexed by positive integers. For a dense time base, instants can
be indexed by rational number. Notice that continuous time models, whose indices would be real numbers, cannot be fully
represented by countable sets. Since UML behavioral semantics only deal with discrete behaviors, the countable nature of
sets is not a limitation for practical uses.

In order to avoid duplication of concepts based on a distinction between dense and discrete representations, all the
numbers are given using a unique predefined data type Real, which expresses the mathematical concept of a number,
covering integer, rational and real numbers. A real represents a count or a measurement. The primitive type Real does not
impose any restrictions on the precision and the scale of the representation.

UML Profile for MARTE, V1.2 59

Since discrete time bases play a central role in the time structure model, it is convenient to distinguish a special class for
discrete time bases, which subclasses TimeBase. Junction instants are specialized instants (their name will be justified in
the MultipleTimeModels package). A discrete time base owns junction instants only. This does not preclude a dense time
base from owing junction instants.

The association between a discrete time base and a time base optionally enables to link a discrete time base to a dense
time base. In this case, the former results from a discretization of the latter.

BasicTimeModels

<<enumeration>>
TimeNatureKind

discrete
dense

0..1 coveringTB

1

TimeB ase

nature:TimeNatureKind

tb 1

{ordered}

1 instants

currentinstant
{subsets instants}

Instant

date: Real

DiscreteTimeBase
{nature = discrete }

Junctionlnstant

Figure 9.3 - Basic time diagram of the time model

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer,
it can be modeled as a dense time base. A convenient model for Physical Time as perceived in MARTE is the

mathematical concept of real line R.

60

UML Profile for MARTE, V1.2

9.2.2 The MultipleTimeModels Package

MultipleTimeModels ‘

0..1 L parentMTB

0.* tsRe lations

MultipleTimeB ase > o Time StructureRelation

nestedMTBs

1 ’owningMTB $

TimeBaseRelation TimelnstantRelation
0.* . {union,ord ered}
ownedTBs - 0. Irelated Jis
A 2.7 A
BasicTimeModels: : BasicTimeModels :
Time Base {union,o rde red} Junctionnstant
/related TBs

Figure 9.4 - Multiple time diagram of the time model

The linear vision of time presented in the BasicTimeModels is not sufficient for most of the applications, especially in the
case of distributed systems. Multiple time bases are then used. A time structure contains a tree of multiple time bases. A
MultipleTimeBase consists of one or many time bases. A time base is owned by one and only one multiple time base.

Time bases are a priori independent. They become dependent when instants from different time bases are linked by
relations (Time Instant Relations). Note that the word relation has been preferred to relationship in order to stress on the
mathematical meaning of this word. The instants involved in such relations are special instants called junction instants,
previously introduced in the BasicTimeModels package (Figure 9.3). All the instants of a discrete time base are also
junction instants, because they are potentially observable instants (see sub clause 9.2.3 about Time Access, page 74).

A multiple time base owns a possibly empty set of time structure relations. These relations specify the time structure.
TimeStructureRelation is an abstract class. It is subclassed into TimeBaseRelation and TimelnstantRelation, which are
also abstract classes. A time base relation relates 2 or more time bases. A time instant relation relates 0 or more junction
instants. Notice that the relatedTBs and relatedJIs properties are derived union (i.e., the effectively related elements are
defined in concrete subclasses, as illustrated in the next 2 sub clauses).

| UML Profile for MARTE, V1.2 61

9.2.2.1 Concrete time instant relations

TimelinstantRelation

/\

CoincidenceRelation

PrecedenceRelation

{ subsets relatedJls }

after 1 1 b efore

2.7

{subsets relatedJls }

BasicTimeModels:
TimeBase

coincide ntJls

BasicTimeModels: :

{ subsets relatedJls }

TimelntervalMembership

0.

Junctionnstant

up oer 1 low er 1

ase

Timelnterval

members
{ subsetsrelatedJls }

1

isLow er Ope n: Boolean[1]
isUpperOpen: Boolean[1]

Figure 9.5 - TimelnstantRelation diagram of the time model

timelnterval

As shown in Figure 9.5, three concrete subclasses of the abstract TimelnstantRelation class are defined:
CoincidenceRelation, PrecedenceRelation, and TimelntervalMembership.

CoincidenceRelation is a strong form of time instant relation: junction instants belonging to different time bases can be
coincident (i.e., same time and same place). In modeling, coincidence has not necessarily this strict relativistic meaning.
It may represent clock synchronizations or design choices, for instance. The coincidence relation must be symmetric and
transitive. Moreover, we assume that any junction instant is coincident with itself, so that the coincidence relation is an
equivalence relation over instants. A strong requirement is that adding coincidence does not introduce cyclic
dependencies in the temporal ordering. In mathematical words, the set of instants quotiented by the coincidence relation
must be a partially ordered set. For convenience, the coincidence relation is often represented in diagrams by linking
pairs of coincident instants. The actual relation is obtained by computing the transitive closure of the relation. Figure 9.6
shows an example for a multiple time base made of three time bases. Junction instants a2 and b2 are coincident. So are
b2 and c2. Even if not drawn in the picture, a2 and c2 are also coincident junction instants (by transitivity).

ATimeBase

:MultipleTimeBase

B:TimeBase

C TimeBase

c2

c1 c3 c4

Figure 9.6 - Example of multiple time base with coincidences

62

&0
&0

Legend: AN
Q instance of
Instant
D
Instance of
CoincidenceRelation

UML Profile for MARTE, V1.2

PrecedenceRelation between junction instants from different time bases is a time instant relation weaker than coincidence.
It expresses a directional dependency: a junction instant owned by a time base may precede or follow junction instants
owned by other time bases.

A time interval on a time base is a convex set of junction instants owned by this time base. The convexity is the property
that ensures that any junction instant between two junction instants of the interval is also in the interval. Two Boolean
attributes specify whether the lower and upper bounds of the interval are in the interval or not. By default, the interval is
closed on both boundaries. The bounds and the closure attributes must specify a non empty set of instants. The time
interval is specified by its two bound junction instants. The TimelntervalMembership is a relation that characterizes
junction instants (members) that are either in the given time interval or are coincident with junction instants in this time
interval.

Issue 17340 - udpate text and figure

9.2.2.2 Concrete time base relations

As explained in the previous sub clause, time instant relations induce relations on time bases of a multiple time base. Time
base relations are a higher level way to impose dependencies between junction instants. A time base relation specifies a
set of time instant relations. As shown in Figure 9.7, for any two time bases A and B, one defines a relation A—isfiner-
thanB—(erB is eoarserthan subClock of A) if for each junction instant in B there exists one and only one coincident
junction instant in A. This relation can be characterized by a mapping M from the coarser time base B to the finer time
base A. This mapping is injective and order-preserving (i.e., if bl and b2 are two junction instants of B, and bl is before
b2, then al = M(bl) and a2 = M(b2) are such that al is before a2 in time base A). Notice that the specific association
between DzscreteszeBase and szeBase (Flgure 9. 3) represents a eeafseﬁﬁﬁﬁeﬂubClock relatlonshlp —the—eeafseFﬂme—

2N o L L d ata a O d A A NG mea-b a o e o

al a2 a3 a4 a5 a6 a7 a8 a9 al10 at1
A:TimeBase <

A is finer than B

7
B:TimeBase 4(4——(4/ e} O—a"

©
1
b1 b2 b3 b4 b5 ‘.\

More precisely, A is 2-finer than B %

al a2 a3 a4 as ab alr ab i3] all all

A: TimeBase

| B is subClock ofﬂ
-

B: TimeBase

A N
bl b2 b3 b4 b5

More precisely BiSD.ELLQ.d.LLQﬂA.D.eLi.Qd_ZQﬁs.ELl|

Figure 9.7 - Example of time relations between two time bases

UML Profile for MARTE, V1.2 63

Whaa—ﬂ&e—&&er—&&ﬂaas%ﬂse—a—%ete—tnﬁe—base—A more precise relatlons can be specified. For instance, theffiner-

=+ in the figure 9.7. Bis a
subClock of A and B is periodic on A with a period 'p' and an offset '0'; for any two consecutive instants in B, there exist
ltp-1 instants between the corresponding coincident instants in A. Figure 9.7 illustrates an-examplesuch periodicity
wherekwith p=2_and o=1.

Predefined-Other time base relations are suggested in the FimeStruetareRelationLibrary of MARTEThe semanties-of-
theserelations-is—givenr-OCEClock Constraint Specification Language section, in annex C.3.

9.2.3 The TimeAccesses Package

In real technical systems, special devices, called clocks, are used to measure the progress of physical time. In MARTE we
adopt a more general point of view: a clock is considered as a means to access to time, be it physical or logical. In the
TimeAccesses package, we introduce the concepts of Clock, TimeValue, and DurationValue. These concepts are
introduced without any specific reference to physical time. Thus, they can be applied also to logical time. Clocks that
refer to physical time will be considered as specialized clocks.

The TimeAccesses package is subdivided into four packages, as shown in Figure 9.8:
+ The Clocks package introduces a general concept of clock.
» The TimeValues package defines the concepts of time value and instant value.
+ The DurationValues package defines the concept of duration value.

+ The ChronometricClocks package contains a specialization of the initial clock concept.

TimeA ccesses
1]
C locks eSsasass <<im POl > > emec—eaws) Time Values
< <im ;;i\ort>>
I — g
ChronometricClocks mem-<<impo rt>>saamw DurationValues

Figure 9.8 - Subpackage diagram of the TimeAccesses package

“Value Specification Language” (Annex B) provides detailed definitions of abstract and concrete syntax for specifying
time expressions in MARTE.

64 UML Profile for MARTE, V1.2

9.2.3.1 The Clocks Package

As indicated in Figure 9.9, Clock is an abstract class. A concrete clock is either a logical clock or a chronometric clock.
The latter is defined in another package (ChronometricClocks package on page 78).

A Clock refers to a discrete time base (its timeBase) and therefore indirectly to a set of junction instants. The timeBase
discrete time base allows access to the time structure. A clock, whose nature is dense, may indirectly refer to a dense time
base through the coveringTB property of its base.

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units
is the defaultUnit. The default unit is the unit attached to the currentTime value. The resolution property specifies the
readout granularity of the clock, expressed in defaultUnit unit. Its default value is 1.

The optional attribute maximalValue expresses the limited capability of usual clocks to represent arbitrary large instant
values: the clock “rolls over” when the currentTime value gets to the maximalValue. Note that in this case currentTime
maps on many junction instants.

A clock may own an event (clockTick). This event occurs at each change of the current time of the clock.

A LogicalClock is a concrete subclass of Clock. It may be defined by an event (definingEvent property); in this case, the
logical clock ticks at each occurrence of the definingEvent. Logical time is usually counted in the number of ticks. So, tick
is a predefined unit often used as the defaultUnit for a logical clock, and then the resolution of the clock is 1 (the default
value).

Clocks

BasicTimeModels: 1 Clock NFPs::N FP_Annotation:
DiscreteTimeBase = AnnotatedElement

timeBase

nature: TimeNatureKind
resolution: Real=1.0

acceptedUnits

N FPs:: currenflT ime: Real -
NFP_Nature:: 1.7 maximalValue :R eal[0..1]
Unit 0..1 CoreElements::
defaultUnit 1 clockTick Causality::
{subsets 0..1 CommonBehavior:
acceptedUnits} definingEvent Event

LogicalC lock

Figure 9.9 - Clocks diagram of the time model

9.2.3.2 The TimeValues package

UML Profile for MARTE, V1.2 65

TimeValues

NFPs:: un it

NFP_Nature::Unit 0..1
TimeValue

Ti A 1 nature: Time N atureKind
imeAccesses::

Clocks::Clo ck on Clock %

BasicTimeModels:: 0..”
Jun ctionlnstant

Instan tV alue
denotedlInstant

m in 1 m ax 1

TimelntervalValue

*

MultipleT imeMod els:: 0..
Timelnterval denoted Timelnterval isMinOpen: Boolean[1]
isMaxOpen: Boolean[1]

Figure 9.10 - TimeValues diagram of the time model

An application may use time in two ways: either as a reference to a time instant, or as a time span. The TimeValues
package deals with the first usage, while the DurationValues package addresses the latter.

Since the access to time is done through clocks, a TimeValue refers to a Clock (the onClock property). A TimeValue may
also have a unit property. When unit is given, it must be in the acceptedUnits set of the onClock, and used instead of its
defaultUnit. The attribute nature specifies whether the time values associated with the clock take their values in a dense
or discrete domain. Since computers work with finite precision numbers, the distinction between discrete and dense sets
is blurred by the limited precision of the representation: ultimately all values are discrete. Since the distinction between
dense and discrete sets has a semantic meaning, we retain this distinction in the model, and we use “real” numbers for
dense time values and integer numbers for discrete ones.

In the MARTE time model, logical clocks are always discrete, and their time values are integer numbers.

An InstantValue, which is a TimeValue, may refer to 0, 1, or many junction instants of a discrete time base. The multiple
denotation of junction instants is due to the bounded nature of the representation of values. There may exist a folding of
the time representation due to clock roll-over.

A TimelntervalValue is defined as a pair of instant values and denotes 0 or many time intervals (many results from

possible folding of the time representation). The min InstantValue refers to the lower instant of the time interval; the max
InstantValue refers to the upper instant of the time interval. The closure properties of the interval are specified by the two
Boolean attributes isMinOpen and isMaxOpen. By default, the interval is closed (i.e., it includes the min and max values).

When used in a time value specification, a time interval value indicates any time value in the interval.

The TimeValue class is abstract. It generalizes InstantValue and DurationValue, which is introduced next.

9.2.3.3 The DurationValues package

66 UML Profile for MARTE, V1.2

DurationValues

TimeAccesses::

TimeValues::
TimelntervalValue

intervalValue

1

DurationValue

minD 1 1 maxD

TimeAccesses::

Time Values::
TimeValue

DurationintervalValue

isMinDOpen: Boolean[1]
isMaxDOpen: Boolean[1]

Figure 9.11 - DurationValues diagram of the time model

The DurationValues package introduces the concept of duration value (Figure 9.11). Duration is a “distance” between two
instants. It characterizes the “extension” of a time interval. From the user’s point of view, a time interval is specified by

a TimelntervalValue. As explained in “The TimeValues package” on page 65, a TimelntervalValue may denote 0, 1 or

many time intervals, due to possible clock roll-over. In the simple case when the clock has no defined maximalValue, the
DurationValue of a TimelntervalValue is defined by the difference between the max and min instant values of this time

interval value. When the maximalValue property is defined, the DurationValue is defined as the difference modulo
maximalValue between the max and min instant values of this time interval value.

A DurationlntervalValue is defined by a pair of duration values, which specifies an interval of values. When used in
specification, a duration interval value indicates any duration value in the interval.

UML Profile for MARTE, V1.2

67

9.2.3.4 The ChronometricClocks Package

ChronometricC loc ks

. <<enumeration>>
vl @AG 60 850 555 Tim eStandardK ind
Clocks::Clock
TAI
U To
UT1
UuTcC
TT
TDB
ChronometricClock $g<83
Sidereal
referenceC lock standard: Time StandardKind[0..1] L ocal
0.1 sta bility : Real [0 ..1] GPS
offsett DurationValue [0..1]
skew:Real[0..1] "'i
drift: Real[0 ..1] l

‘ PhysicalTime

Figure 9.12 - ChronometricClocks diagram of the time model

In “The BasicTimeModels Package” on page 59, physical time has been characterized as a continuous and unbounded
progression of physical instants. The progression of physical time is perceived through event occurrences. Some events
are considered as better candidates to represent the (assumed) uniform progression of physical time. For instance, one
may choose the period of the radiation corresponding to the transition between the two hyperfine levels of the ground
state of the cesium 133 atom (see the definition of the second time unit). Today, this is the best known reference. More
conveniently, one considers cyclic events, whose occurrences are (more or less) periodic. Periodicity should be checked
against the above mentioned best reference. Usually, periodic event generators are called clocks. We have already used
this term in a broader sense: there is no reference to periodicity in clocks defined in sub clause 9.2.3. Therefore, we name
ChronometricClock a clock that implicitly refers to physical time.

The ChronometricClocks package introduces the main concepts related to clocks bound to physical time (Figure 9.12). A
chronometric clock provides quantitative information about time. Numerous non functional time-related properties can be
defined for chronometric clocks. Only a few are presented below.

Figure 9.13 represents, in an informal way, the dependency of chronometric clocks on physical time. Physical time is
modeled as a dense time base (the Real line). The instants of the discrete time base associated with a chronometric clock
are coincident with physical instants regularly interspaced on the real line. In a chronometric clock, the resolution
property is the duration value of physical time elapsed between two consecutive instants of this clock. Real chronometric
clocks do not perfectly reflect evolution of physical time. Possible defects are characterized by non functional properties.
For instance, stability is the ability for a clock to report consistent intervals of time. Stability is measured by derivatives
of the clock rate, derivation against time or against environmental factors.

When many clocks are present in a system, other non functional time properties are considered. They are time-dependent
pair-wise characteristics. Usually, one clock is taken as a reference clock against which the other clock is matched. When
omitted, the reference clock is supposed to be an “almost perfect clock.” Two clocks with the same rate may present an
offset. This duration value may vary along time. The rate of change of the offset (i.e., its first derivative against time)
between two clocks is called the skew. This skew itself may change over time. The derivative of the skew is called the
drift.

68 UML Profile for MARTE, V1.2

1 c2

Physical time ‘ :C hrono metricC lock ‘ ‘ :C hronom etricClock ‘

\LcoveringTB ‘ base base
R T B Y Ti > Di ol
‘ {de nse} ‘ Base ‘ ‘ Base ‘
/FcoveringTB ‘
offse t
q i T L

OO0

Figure 9.13 - Dependency example of chronometric clocks on physical time

9.2.4 The TimeRelatedEntities Package

TimeR elate dEntities
ClockConstraints - TimedObservations
~o_ <<im po‘r't>>
h_: ,—
<<impo rt>>] -~]
S
TimedEle ments =—-<<import>-—=4 TimedEventModels
__-‘7
<<imp ort>> Sl
1 e <<import> []
e N,
h Y
TimedConstraints S TimedProcessingM odels

Figure 9.14 - Subpackages of the TimeEntities package

Time can be used for observation or for control. Typical examples of the first usage are observations of event occurrences
in interactions diagrams. Time events triggering behaviors are examples of the second usage. MARTE explicitly relates
events, actions, messages... to time. The TimeRelatedEntities package is subdivided into the following subpackages
(Figure 9.14):

UML Profile for MARTE, V1.2 69

« TimedElements package defines the key concept of TimedElement;

+ ClockConstraints package introduces constraints on clocks;

» TimedObservations package provides concepts related to observation of timed entities;
« TimedConstraint package specifies constraints on time-related observations;

« TimedEventModels package deals with events whose occurrences are bound to time;

+ TimedProcessingModels package addresses executions bound to time.

9.2.41 The TimedElements Package

TimedElements

TimeAccesses:: 1.% TimedEl . CForeEZz ntu_ents.::
Clocks::Clock on ImedEiemen — 1 MZZZII:?Ie'r?rZzi

Figure 9.15 - TimedElement diagram of the time model
A timed element, introduced in the TimedElements package (Figure 9.15), is a most general concept. TimedElement is an
abstract class generalization of all other timed concepts. It associates a non empty set of clocks with a model element. The

semantics of the association with clocks depends on the kind of timed element.

9.2.4.2 The ClockConstraints package

ClockCo nstraints

NFPs::

NFP_An notation:
NfpCo nstrain t

I

TimeAccesses:: 2. . 1 ccs::
. ClockConstraint - a st
Clocks::Clock constraine dClocks specification ClockConstraintSpecification
{subsets { redefines
constrainedElement } specification }

Figure 9.16 - ClockConstraints diagram of the time model

70 UML Profile for MARTE, V1.2

Issue 17340 and 17341 - udpate text

A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a
ClockConstraintSpecification. Clock constraint specifications are special value specifications described in Annex C.3
(Clock Constraint Specification Language). An example of clock constraint is given in section 9.2.2.2 that-twe-eloeksare-

9.2.4.3 The TimedObservations Package

TimedObservations
CoreElements::
TimedElements: : . . observationContext Causality:
| TimedObservation
Timed Element ! rvat! 0.. RunTimeCo ntext:
$ CompBehaviorExecution
TimedInstantObservation TimedDurationObservation CoreElements::
0.. Causality:
. i exc RunTimeCo ntext:
obsKind:EventKind[0..1] obsKind:EventKind[0..2] BehaviorExecution
<<enumeration>>
EventKind
1 eocc 0..1 | stim
start
CoreElements: CoreElements: finish
Causality: 0.2 Causality: send
RunTimeContext: eocc Communication : receive
EventOccumence Request consume

Figure 9.17 - TimedObservations diagram of the time model

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. A
TimedObservation is a TimedElement. As a TimedElement it has associated clocks, used for observing time. A
TimedObservation is made in the runtime context of a (sub)system behavior execution (the observationContext property).

The enumeration literals of the EventKind enumeration allow the user to specify the kind of events considered in a
TimedObservation. For a behavior, observed events can be either its start event or its finish event. For a Request, the
possible events are its sending, its receipt, or the start of its processing by the receiver.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence (eocc property) and observed
on a given clock. The obsKind property of the TimedInstantObservation may specify the kind of observed event.

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences,
and observed on one clock or two clocks. The exc property associates the duration observation with a BehaviorExecution,
which is an abstraction of CompBehaviorExecution and ActionExecution. The duration is the time elapsed between the
occurrences of the start and the finish events of an execution of this BehaviorExecutionSpecification (i.e., a
CompBehaviorExecution or an ActionExecution). The stim property associates the duration observation with a Request.
A Message is a kind of Request. The duration can be observed between two of the three events associated with a request

UML Profile for MARTE, V1.2 7

(its sending, its receipt or the start of its processing). The precise kind of event can be given by the obsKind attribute.
Finally, a duration can be observed between two event occurrences (eocc property), not necessarily observed on the same

clock.

9.2.4.4 The TimedConstraints Package

TimedConstraints |

VSL::TimeExpressions::
InstantExpression

2

InstantPredicate —
.) specification
1.. observation { redefines
specification }
Time::TimeRelatedEntities::
TimedObservations::
TimedObservation
1.* | cbservation
1
DurationPredicate
speciication
{ redefines
%7 specification }
VSL::TimeExpressions::
DurationExpression

TimedinstantConstraint

NFP_Modeling::
NFP_Annotation::
NfpConstraint

g

TimedConstraint

y

TimedDurationConstraint

TimedElements::
TimedElement

Figure 9.18 - TimedConstraints diagram of the time model

A TimedConstraint is a constraint imposed on the occurrence of an event (TimedInstantConstraint), or on the duration of
some execution, or even on the temporal distance between two events (TimedDurationConstraint). The constraints are
specified by predicates (InstantPredicate for instants and DurationPredicate for durations). A usual form of predicate is
“the constrained instant value belongs to a given time interval value” or “the constrained duration value belongs to a
given duration interval value.” Instant and duration predicates contain usages of timed observations.

9.2.4.5 The TimedEventModels package

This package consists of two packages: TimeEventOccurrences and TimedEvents (Figure 9.19).

72

UML Profile for MARTE, V1.2

TimedEventModels

TimedEventOccurrences

TimedEvents

Figure 9.19 - The TimeEventModels package

UML Profile for MARTE, V1.2

73

9.2.4.5.1 The TimeEventOccurrences package

An event occurrence can be associated with time instants. MARTE introduces the concept of TimedEventOccurrence
(Figure 9.20), which is both a TimedElement and an EventOccurrence. The at property specifies the instant value of this
timed event occurrence on one of its clocks. Since a timed event occurrence may refer to several clocks (on property),
several instant values (at property) are possible. Usually, there is one clock only, but several are allowed at least to cover
the case of simultaneous occurrence set, introduced below.

This package also introduces the concept of SimultaneousOccurrenceSet. In the Causality Modeling clause, an execution
of a behavior may be caused by an event occurrence. In some situations, several events have to be considered as a whole
because their collective effect cannot reduce to the serialization of their individual effects. The concept of
SimultaneousOccurrenceSet is introduced to address this issue. A SimultaneousOccurrenceSet is an EventOccurrence, and
as such, it can be the cause of a behavior execution. This concept is useful at design-time when different views of a same
event, which have been introduced earlier, have to be merged into one event. It is also of common use in reactive
synchronous modeling.

TimedEventModels
::Timed EventOccurrences

CoreElements::

Causality:: TimedElements::
RunTimeContext: Timed Element
EventOccurrence

0.* | occSet 4
0..1
SimultaneousOccurrenceSet TimedEventOccurrence
0..1
1.7 at

TimeAccesses::
TimeValues::
InstantValue

Figure 9.20 - TimedEventOccurrences diagram of the time model

Issue 17342 - udpate text

9.2.4.5.2 The TimedEvents package

A TimedEvent is an event the occurrences of which are bound to clocks. A TimedEvent may have several occurrences.

The when property specifies when the first occurrence occurs. The Boolean attribute isRelative specifies whether the time
value is relative (the when property is a time duration value) or absolute (the when property is a time instant value). The
every optional property permits repetitive occurrences of the timed event. When every is present, its value is the duration
that separates the successive occurrences of the timed event. The number of occurrences can be limited by the repetition

74 UML Profile for MARTE, V1.2

attribute. The time values are specified by CVS expressions. CVS (Clocked Value Specification) is defined in Annex C.
A CVS::ClockedValueSpecification specifies a TimeValue, a CVS::DurationValueSpecification a DurationValue, and a
CVS::InstantValueSpecification an InstantValue.

TimedEventModels
::TimedEvents
CoreElements:
TimedElements:: Causality: :
Timed Element CommonBehavior:
Event
Timed Event
isRelative : Boolean
repetition: Integer[0..1]
1 when 0..1 |every
CVs:: CVs::
ClockedValueSpecification DurationValueSpecification

Figure 9.21 - TimedEvents diagram of the time model

9.2.4.6 The TimedProcessingModels package

This package consists of two packages: TimedExecutions and TimedProcessings.

TimedProcessingModels

TimedExecutions TimedProcessings

Figure 9.22 - The TimedProcessingModels package

9.2.4.6.1 The TimedExecutions package

A TimedExecution is a TimedElement that is a specialization of the
CoreElements::Causality::RunTimeContext::BehaviorExecution. As a TimedElement, a timed execution makes explicit
reference to clocks.

Two instant values, startInstant and finishInstant, are associated with an execution and they correspond to the occurrence
instants of its StartOccurrence and TerminationOccurrence, respectively. A DurationValue may also characterize an
execution. Since a timed execution may refer to several clocks (on property), several time values are possible.

UML Profile for MARTE, V1.2 75

In the CoreElements::Causality::RunTimeContext package, CompBehaviorExecution and ActionExecution are concrete
subclasses of BehaviorExecution, so that timed behavior executions and timed action executions also make explicit
reference to clocks. A message transfer can also be assimilated to a timed execution (the sending instant being the
startInstant of the communication and the receipt instant being its finishInstant). In what follows, Behavior, Action, and
Message are collectively designated as timed processing, even if this assimilates a Message to its transfer.

TimedProcessingModels
::TimedExecutions

CoreElements::
Causality : Timed Elements :
RunTimeContext: Timed Element
BehaviorExecution

—— 1

Timed Execution

executionDuration | 1. startinstant | 1..* finishinstant | 1..*
TimeAccesses:: TimeAccesses::
DurationValues:: TimeValues::

DurationValue InstantValue

Figure 9.23 - TimedBehaviorExecutions diagram of the time model

9.2.4.6.2 The TimedProcessings package

TimedProcessing (Figure 9.24) is a generic concept for modeling activities that have known start and finish times, or a
known duration. In fact, two out of the three time values suffice to characterize a particular execution of the processing.
For a timed message, start and finish events are respectively named as sending and receipt events.

A delay is a special kind of timed action that represents a null operation lasting for a given duration.

76 UML Profile for MARTE, V1.2

TimedProcessingModels ‘

::TimedProcessings
CoreElements:: CoreElements:: CoreElements::
Causality:: Causality:: Causality::
CommonBehavior:: Communication:: CommuonBehaviar::
Behavior Request Action
TimedBehavior TimedMessage TimedAction
1 | A
v
TimedProcessing
0.1 duration start | 0.1 0.1 |finish
) . CoreElements:;
|:|T - met.ﬁoo\?s;ses..._ Causality:: TimedElements::
[l;::ﬂ al'lio:n:' ;’:f:: : Communication:: TimedElement
Request

Figure 9.24 - TimedProcessings diagram of the time model

9.3 UML Representation

This sub clause describes the UML extensions required to support the concepts defined in the Time Modeling domain
view. Some concepts result in new stereotypes, others specialize stereotypes defined for NFPs modeling, and still others
need no extensions at all. Most of the time-related stereotypes extend metaclasses from UML::Classes::Kernel,
UML::CommonBehaviors, and the SimpleTime package of CommonBehaviors.

9.3.1 Profile Diagrams

The Time profile depends on the NFPs profile as shown in Figure 9.25.

« profile» « modelLibrary»
NFPs TimeTypesLibrary
. 7 A
o, - ~o
<< i?ﬁport» <<impo?t>> <<import>>
AN >~
N, 'o' \\
] 47\. "I A—‘
« profile» i —— « profile » | vomeseand ¢ Modellibrary»
VSL::DataTypes [<=———<<import>> Time r== <<apply>> TimeL ibrary

Figure 9.25 - Time profile dependencies diagram

For convenience, the Time profile is represented as a collection of diagrams. Each diagram gathers tightly related model
elements. The actual Time profile consists of all these diagrams. The libraries are presented in Annex D.

UML Profile for MARTE, V1.2 77

9.3.1.1 TimedElement and Clock stereotypes

In the Time domain view, the concepts related to the time structure have been introduced in the BasicTimeModels and
MultipleTimeModels packages. These concepts constitute the semantic domain of the Time model. The corresponding
concepts in the UML view are ClockType and TimedDomain. The TimedDomain stereotype of the UML view maps to
MultipleTimeBase and the ClockType stereotype maps to TimeBase.

Issue

16609 - udpate text

TimedElement is an abstract stereotype that must be used to associate one (or many when dealing with multiple time

references) clock(s) to a UML model element. The concrete specializations of TimedElement make it clear which model
element can or cannot be associated with clocks. When the property “on” is not specified, (its size is 0). the modeling tool
should add to the property to the idealClk clock (available in the library TimeLibrary, Appendix D.3.2 on page 500). This

means that a designer that does not specify the "on" property refers, by default, to #tsheuwld-be-understood-asbeingby

deﬁ&ulrka dense chronometrlc clock w1th no ﬂaws that represent the physical time. Ore-possible-example-efsuch-eloek-

« metaclass »
UML::Classes::
Kernel::Property

t

« metaclass »
UML::Classes::Kernel::
InstanceSpecification

A

« Metaclass »

UML::CommonBehaviors::
Communications::Event

« Stereotype » unit

« stereotype »
Clock

standard: TimeStandardKind[0..1]

NFP_Profile::Unit 0.1

« stereotype »
TimedElement

1. | on type

1

Figure 9.26 - UML extensions for Time modeling (1)

9.3.1.2 Timed value specification stereotypes

<<metaclass>>
Class

« metaclass »
UML::Classes::Kernel::
Namespace

J

A

« stereotype »
ClockType

nature: TimeNatureKind[1]
unitType: Enumeration[0..1]
isLogical: Boolean[1] = false
resolAttr: Property[0..1]
maxValAttr: Property[0..1]
offsetAttr: Property[0..1]
getTime: Operation[0..1]
setTime: Operation[0..1]
indexToValue: Operation[0..1]

« stereotype »
TimedDomain

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

<<metaclas s>>
UM L::Classes::Kernel::
Value Specification

<<stereotype>>
TimedValueSpecification

interpretation: Time Inte rpr etation Kind[O..1]

Figure 9.27 - UML extensions for Time modeling (2)

9.3.1.3 Constraint stereotypes

78

<<stereotype>>
TimedElement

UML Profile for MARTE, V1.2

Time Modeling introduces two stereotypes specializing the NfpConstraint stereotype, which is itself an extension to the
UML Constraint. TimedConstraint deals with constraints imposed on either instant value or on duration value, according
to the value given to the interpretation attribute. ClockConstraint imposes dependency between clocks or between clock

types. As TimedElement, both stereotypes refer to clocks. Additional OCL rules specify the constrained elements, the
specification, and the context of the constraint. Note that VSL is convenient to express various timed constraints.

Issue 17343 - udpate figure

stereotype »
NFP_Profile::
NfpConstraint

« stereotype »
TimedConstraint

« stereotype »
ClockConstraint

Intarpretation: Timelnterpretationkind

isCaoincidenceBased: Boolean
isPrecedenceBased: Boolean
isChronometricBased; Boolean

« stereotype »
TimedElerment
AD «Stereotype» (I—
NfpConstraint
«Stereotype»
ClockConstraint
«Stereotypex - = |
TimedConstraint || + isCausal : Boolean
—— + isSynchronous : Boolean
+ interpretation : Timelnterpretationkind [0..1] + isPhysical : Boolean
«Stereolype»
—D TimedElement

Figure 9.28 - UML extensions for Time modeling (3)

9.3.1.4 Observation Stereotypes

As specializations of TimedElement, TimedInstantObservation, and TimedDurationObservation refer to clocks. The
optional obsKind attribute may specify the kind of the observed event(s). The Enumeration EventKind is part of the

TimeTypesLibrary (Annex D.3.1)

Y

1
« stereotype »
u stereotype » | TimedinstantObservation
TimedElement
obskind : eventKind[0__1]

« enumeration =

@ Melaclass »
UML::CommonBehaviors::
SimpleTime::
TimeObservation

EventKind
start
finish
send « stereotype »
recaive TimedDurationObservation
consume absKind : eventkind[0_ 2]

Figure 9.29 - UML extensions for Time modeling (4)

UML Profile for MARTE, V1.2

« melaclass »
UML::CommonBehaviors::
SimpleTime::
DurationObservation

79

9.3.1.5 Timed event stereotype

The TimedEvent stereotype represents Event whose occurrences are explicitly bound to clocks.

<<meta cla ss>>
UML:C ommonB ehaviors:

SimpleTime::
TimeEvent
A
<<stere oty pe>>
<<meta cla ss>> ever f <<s t typ e>
UML::Classes: Kernel: yﬁ‘ TimedEvent I Ti;:rde;e)::en t
ValueSpecification 0.1 0.1 | repetition: Integer[0 ..1]

Figure 9.30 - UML extensions for Time modeling (5)

9.3.1.6 Timed processing stereotype

The TimedProcessing stereotype represents activities that have know start and finish times or a known duration, and
whose instants and durations are explicitly bound to clocks.

<<metaclass>>

<<me.t_a C|a'SS>_>. SHED taclass>> » UML: interactions:
UML::Actions:: UML::CommonB ehaviors:: Basiclnteractions:
Action Be havior

t 1

tart

<<metaclass>>

UML::CommonB ehaviors:: 0.1 << stereotype>> du ration UMLifén[:tszzl,saf;::nel--
Communica tion:: finish TimedProcessing 0.1 0.1 Va lueSp ecific ation

E t
ven 0 1

y

<< stereotype> >
TimedElement

Figure 9.31 - UML extensions for Time modeling (6)
9.3.2 Profile Elements Description

9.3.2.1 Clock

The Clock stereotype maps the Clock domain element denoted in Annex F (sub clause F.3.2). It also relates to the
ChronometricClock domain element (sub clause F.3.1).

A Clock is a model element that represents an instance of ClockType. A Clock gives access to time. A Clock exists in a
TimedDomain. A Clock maps to a TimeBase in the semantic domain. The stereotype specifies the unit of the Clock. A
Clock is also characterized by its resolution, and optionally by its offset (its initial instant value) and its maximal value.
The values of these attributes are contained in the slots of the stereotyped InstanceSpecification.

A Clock can also be a stereotyped Property, so that it can be used in composite structure and interactions.

80 UML Profile for MARTE, V1.2

Alternatively, any UML event can be handled as a clock since the stereotype Clock extends the metaclass Event. This
extension maps to the domain concept of definingEvent (sub clause F.3.16) and allows for defining clock constraints on
any event, not just TimeEvent. When using this choice, the type MUST be logical.

9.3.2.1.1 Extensions
* Event (UML::CommonBehaviors::Communications::Event)
* Property (from UML::Classes::Kernel)

* InstanceSpecification (from UML::Classes::Kernel).

9.3.2.1.2 Generalizations

« None

9.3.2.1.3 Associations

» type: ClockType[1]
Specifies the ClockType whose this Clock is an instance.

e unit: NFPs::Unit[0..1]
Defines the unit used by this Clock. If unit is not defined, then this Clock uses the anonymous
tick unit. When defined, this unit must be of the unitType specified in the ClockType.

9.3.2.1.4 Attributes

» standard: TimeStandardKind[0..1]
References the system of time adopted by the clock. This property is not defined for a logical clock.

9.3.2.1.5 Constraints
[1] The base_InstanceSpecification of the Clock must be an InstanceSpecification of the base Class of its type property.

not self.base InstanceSpecification.ocllsUndefined() implies
self.base_InstanceSpecification.classifier->includes(self.type.base Class)

[2] The base Property of the Clock must be a Property of the base Class of its type property.
not self.base_Property.ocllsUndefined() implies self.base Property.type = self.type.base Class
[3] The unit must be an ownedLiteral of the unitType enumeration of the ClockType.
self.unit->notEmpty() implies self.type.unitType.ownedLiteral->includes(self.unit)
[4] A logical clock does not have a defined standard.
self.type.isLogical implies self.standard->isEmpty()
[5] When clock extends an event, its type must be logical.

not self.base_Event.oclUndefined() implies self.type.isLogical = true

9.3.2.2 ClockConstraint

The ClockConstraint stereotype maps the ClockConstraint domain element denoted in Annex F (sub clause F.3.3).

UML Profile for MARTE, V1.2 81

A ClockConstraint is a Constraint that imposes dependency between clocks or between clock types. A ClockConstraint
refers to a set of clocks or clock types, and possibly to other model elements. The clocks in the constrained elements must
belong to the on clock set of this ClockConstraint; the constrained clock types must be types of clocks in the on clock set.
The specification of the constraint is usually an opaque expression using a dedicated language: CCSL (Clock Constraint
Specification Language) defined in Annex C.

Issue 17343 - udpate text

A ClockConstraint may define one or several clock relations and relies on many, often infinitely many, instant relations.
When relying on coincidence instant relations, the attribute “isCeineideneeBasedSynchronous” must be set to true. When
relying on precedence instant relations, the attribute “isPreeedeneeBasedCausal” must be set to true. Note that they are
not exclusive. However, when only “isCeinetdeneeBasedSynchronous” is true, the constraint is purely synchronous, when
only “isPrecedeneeBasedCausal” is true, the constraint is purely asynchronous. Apart from these struetarat distinctions, a
ClockConstraint may also define a constraint related to chronometric aspects of the clocks (like stability, skew, offset ...).
In such cases, the attribute “isChronometrieBasedPhysical” must be set to true.

9.3.2.2.1 Extensions

e None

9.3.2.2.2 Generalizations
* NifpConstraint (from NFPs)

* TimedElement

9.3.2.2.3 Associations

* None

9.3.2.2.4 Attributes

+ isCeineideneceBasedSynchronous: Boolean [1]
Specifies whether this ClockConstraint relies-on-eeineideneeenforces synchronous instant relations.

+ isPrecedenceBasedCausal: Boolean [1]
Specifies whether this ClockConstraint relies-on-precedenee-enforces causal/asynchronous instant relations.

* isChrenemetrieBasedPhysical: Boolean [1]
Specifies whether this ClockConstraint relies on chronometric aspects of physical clocks (such as stability, offset,
skew).-that-are-net

purely-struetural:

9.3.2.2.5 Constraints

[1] The constrained clocks are members of the on clock set of the ClockConstraint.
self.on->includesAll(self.base_Constraint.constrainedElement->select(c|c.ocllsTypeOf(Clock))
[2] The constrained clock types are types of clock members of the on clock set of the ClockConstraint.

self.on->includesAll(self.base_Constraint.constrainedElement->select(c|c.oclIsTypeOf(ClockType).type)

82 UML Profile for MARTE, V1.2

9.3.2.3 ClockType

The ClockType stereotype maps the TimeBase domain element denoted in Annex F (sub clause F.3.21). It also relates
indirectly to Clock (sub clause F.3.2) and ChronometricClock (sub clause F.3.1).

A ClockType is a classifier for Clock. The attributes of the stereotype define the nature of the represented time (discrete
or dense), the type of units, and whether its instances are logical clocks or chronometric clocks.

9.3.2.3.1 Extensions
* Class (from UML::Classes::Kernel)

Note: The ClockType stereotype the UML Class. This metaclass goes through several merge increments in the UML
specification. Using UML::Classes::Kernel::Class does not preclude usage of Class from UML::StructuredClasses.

9.3.2.3.2 Generalizations

« None

9.3.2.3.3 Associations

* None

9.3.2.3.4 Attributes

* nature: TimeNatureKind [1]
Specifies the nature dense or discrete of the time represented by this ClockType.

* unitType: UML::Classes::Kernel::Enumeration [0..1]
Is the type of units supported by this ClockType.

» isLogical: Boolean [1] = false
Specifies whether this ClockType reads a logical time or not. When isLogical is false, the ClockType reads a
chronometric time, i.e., a time bound to physical time.

* maxValAttr: Property [0..1]
The maxValAttr property refers to a property of the base class. This property declares a read only attribute which
determines the maximalValue of the associated Clock, value at which the clock rolls over. The maximal value is
expressed with the clock's unit as a unity.

» offsetAttr: Property [0..1]
The offsetAttr property refers to a property of the base class. This property declares a read only attribute which
determines the offset (initial instant) of the associated Clock. The offset is expressed with the clock’s unit as a
unity.

* resolAttr: Property [0..1]
The resolAttrib property refers to a property of the base class. This property declares a read only attribute which
determines the resolution of the associated Clock. The resolution is expressed with the clock’s unit as a unity.
When resolution is not defined, the granularity is arbitrarily small. This is the case for dense time.

» getTime: UML::Classes::Kernel::Operation [0..1]
The getTime property refers to an operation of the base class that returns the current time.

UML Profile for MARTE, V1.2 83

» setTime: UML::Classes::Kernel::Operation [0..1]
The setTime property refers to an operation of the base class that sets the current time.

* indexToValue: UML::Classes::Kernel::Operation [0..1]
The indexToValue property refers to an operation of the base class that yields the instant value associated with an
instant specified by its index.

9.3.2.3.5 Constraints

« None

9.3.2.4 TimedConstraint

The TimedConstraint stereotype maps the TimedConstraint domain element denoted in Annex F (sub clause F.3.25). It
also relates indirectly to TimedInstantConstraint (sub clause F.3.32) and TimedDurationConstraint (sub clause F.3.26).

A TimedConstraint imposes constraints on either instant value or duration value associated with model elements bound to
clocks. If interpretation is set to the enumeration literal instant, then the constraint is interpreted as a constraint on instant
value. If interpretation is set to the enumeration literal duration, then the constraint is interpreted as a constraint on
duration value. There is no other case. The specification of the constraint itself can be conveniently expressed in VSL.

9.3.2.4.1 Extensions

e None

9.3.2.4.2 Generalizations
* NfpConstraint (from NFPs)

e TimedElement

9.3.2.4.3 Associations

« None

9.3.2.4.4 Attributes

* interpretation: TimelnterpretationKind [1]
Specifies whether the constraint applies to an instant value or to a duration value.

9.3.2.4.5 Constraints

[1] The owner of a constraint stereotyped by TimedConstraint must be a Package stereotyped by TimedDomain
base Constraint.owner.ocllsTypeOf(TimedDomain)

[2] The interpretation property is either instant or duration

[3] self.interpretation <> TimelnterpretationKind::any

9.3.2.5 TimedDomain

The TimedDomain stereotype maps the MultipleTimeBase domain element denoted in Annex F (sub clause F.3.17).

84 UML Profile for MARTE, V1.2

A TimedDomain is a container of Clocks. Model elements of the TimeDomain may refer to Clocks to express that their

behavior depends on time. A TimedDomain is also a context for a ClockConstraint. A TimedDomain may own nested
TimedDomains. A TimedDomain maps to a MultipleTimeBase in the semantic domain.

9.3.2.5.1 Extensions

* Namespace (from UML::Classes::Kernel::Namespace)

9.3.2.5.2 Generalizations

* None

9.3.2.5.3 Associations
* None

9.3.2.5.4 Attributes

* None

9.3.2.5.5 Constraints

e None

9.3.2.6 TimedDurationObservation

The TimedDurationObservation stereotype maps the TimedDurationObservation domain element denoted in Annex F (sub

clause F.3.27).

A TimedDurationObservation denotes some interval of time, observed on one or two clocks. The duration may be the

time elapsed between the occurrences of the start and the finish events of an execution. The duration may also be the time
elapsed between two of the three events associated with a message (its sending, its receipt, and the start of its processing
by the receiver). More generally, the duration may be the time elapsed between the occurrences of two distinct events.

9.3.2.6.1 Extensions

* DurationObservation (from UML::CommonBehaviors::SimpleTime::DurationObservation).

9.3.2.6.2 Generalizations

* TimedElement
9.3.2.6.3 Associations

* None

9.3.2.6.4 Attributes
* obsKind: EventKind [0..2]

Specifies the kind of the observed events.

9.3.2.6.5 Constraints

« None

9.3.2.7 TimedElement (abstract)

UML Profile for MARTE, V1.2

85

The TimedElement stereotype maps the TimedElement domain element denoted in Annex F (sub clause F.3.28).

The TimedElement stereotype is an abstract stereotype that does not extend UML meta classes. It stands for model
elements referencing Clocks. Only concrete specializations of TimedElement can be applied.

9.3.2.7.1 Extensions

e None

9.3.2.7.2 Generalizations

¢ None

9.3.2.7.3 Associations

e on: Clock [1..%]
References a set of Clocks. When no clock is explicitly specified, a reference to an implicit dense chronometric clock
(like idealClk, see D.3.2) is intended.

9.3.2.7.4 Attributes

* None

9.3.2.7.5 Constraints

* None

9.3.2.8 TimedEvent

The TimedEvent stereotype maps the TimedEvent domain element denoted in Annex F (sub clause F.3.29). It also relates
indirectly to TimedEventOccurrence (sub clause F.3.30).

The TimedEvent stereotype represents events whose occurrences are explicitly bound to a Clock. When this stereotype is
applied to an Event, this Event specifies the first occurrence of this Event (isRelative and when properties). The when

value is considered read on the on Clock of this TimedEvent, and with the unit of this Clock. The every property specifies
the duration between successive occurrences, if any. The number of occurrences can be limited by the repetition property.

9.3.2.8.1 Extensions

* TimeEvent (from CommonBehaviors::SimpleTime)

9.3.2.8.2 Generalizations

e TimedElement

9.3.2.8.3 Associations

* every: UML::Classes::Kernel::ValueSpecification [0..1]
Is an optional owned specification of the duration value between two successive occurrences
of this TimedEvent. By default this duration is read on the on Clock of this TimedEvent. By applying
the TimedValueSpecification stereotype to this ValueSpecification, another Clock can be chosen.

9.3.2.8.4 Attributes

86 UML Profile for MARTE, V1.2

» repetition: Integer[0..1]
Is an optional repetition factor. When defined, repetition is the number of successive
occurrences of the TimedEvent. Its absence is interpreted as an unbounded repetition.

9.3.2.8.5 Constraints

[1] A TimedEvent is bound to one Clock.
on->size() =1

[2] The optional repetition property of a TimedEvent must be not defined when every is not defined.
every->isEmpty() implies repetition->isEmpty()

9.3.2.9 TimedInstantObservation

The TimedInstantObservation stereotype maps the TimedInstantObservation domain element denoted in Annex F (sub
clause F.3.33).

A TimedInstantObservation denotes an instant in time, associated with an event occurrence, and observed on a clock. The
obsKind attribute may specify the kind of the observed event.

9.3.2.9.1 Extensions

* TimeObservation (from UML::CommonBehaviors::SimpleTime:: TimeObservation)

9.3.2.9.2 Generalizations

* TimedElement

9.3.2.9.3 Associations

* None

9.3.2.9.4 Attributes

» obsKind: EventKind [0..1]
specifies the kind of the observed event.

9.3.2.9.5 Constraints
¢ None
9.3.2.10 TimedProcessing

The TimedProcessing stereotype maps the TimedProcessing domain element denoted in Annex F (sub clause F.3.36). It
also relates indirectly to TimedEventOccurrence (sub clause F.3.30), TimedBehavior (sub clause F.3.24), TimedAction
(sub clause F.3.23), TimedMessage (sub clause F.3.34), and TimedExecution (sub clause F.3.31).

The TimedProcessing stereotype represents activities that have known start and finish times or a known duration, and
whose instants and durations are explicitly bound to Clocks.

9.3.2.10.1 Extensions

UML Profile for MARTE, V1.2 87

* Action (from UML::Actions)
* Behavior (from UML::CommonBehaviors)

* Message (from UML::Interactions::BasicInteractions)

9.3.2.10.2 Generalizations

* TimedElement

9.3.2.10.3 Associations

e duration: UML::Classes::Kernel:: ValueSpecification [0..1]
Is an optional owned specification of the duration of an execution for Action and Behavior, or the
duration of a transmission for a Message. By default this duration is read on the on Clock of this
TimedProcessing, if it is unique. By applying the TimedValueSpecification stereotype to this
ValueSpecification, another Clock can be chosen.

* finish: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the end of execution of the processing, for Action or Behavior;
the receipt for a Message.

« start: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the start of execution of the processing, for Action or Behavior;
the sending for a Message.

9.3.2.10.4 Attributes

* None

9.3.2.10.5 Constraints

[1] Not all three properties are empty.

duration->notEmpty() or (start->notEmpty() and finish->notEmpty())

9.3.2.11 TimedValueSpecification

The TimedValueSpecification stereotype maps the TimeValue domain element denoted in Annex F (sub clause F.3.44),
InstantValue domain element (sub clause F.3.14), and DurationValue domain element (sub clause F.3.10).

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

9.3.2.11.1 Extensions

* ValueSpecification (from UML::Classes::Kernel:: ValueSpecification)

9.3.2.11.2 Generalizations

* TimedElement

9.3.2.11.3 Associations

« None

9.3.2.11.4 Attributes

88 UML Profile for MARTE, V1.2

* interpretation: TimelnterpretationKind[0..1]
Specifies whether the time values are instant values or duration values.

9.3.2.11.5 Constraints

¢ None

9.3.2.12 TimelnterpretationKind (from TimeTypesLibrary)

TimelnterpretationKind is an enumeration type that defines literals used to specify the way to interpret a time expression.

9.3.2.12.1 Literals

* duration
Indicates that the typed elements are time spans.

* instant
Indicates that the typed elements are instants.

s any
Indicates that the typed elements can be durations or instants.

9.3.2.13 TimeNatureKind (from TimeTypesLibrary)

TimeNatureKind is an enumeration type that defines literals used to specify the nature discrete or dense of a time value.

9.3.2.13.1 Literals

» discrete
Indicates that the typed elements are from a discrete set.

* dense
Indicates that the typed elements are from a dense set.

9.3.3 Examples

9.3.3.1 Chronometric clocks

The MARTE::TimeLibrary contains the description (IdealClock, a class stereotyped by ClockType) and an instance
(idealClk) of an “ideal” clock. Starting with this clock, the user can define new chronometric clocks, as shown in Figure
9.32. These chronometric clocks may present deviations with respect to the ideal clock.

| UML Profile for MARTE, V1.2 89

Issue 17344 - udpate text and figure

<<clockType >> << clockT ype >>
{nature = discrete , unitType = TimeUnitKind, { nature = dense, unitType = TimeU nitKind ,
resolAttr=re solution, getTime = curre ntT ime } getTime = currentTime }
Chronometric IdealC lock
resolution: R eal {read Only} currentTime():Re al
currentT ime :Real ==
() .
AN

N

Imp orte d from
M AR TE::TimelLibrary

<< timeD omain>>

AnoplicationTimeDomain ”~
L P
™
P
<<clock>> <<clock> >
{unit=s,standard = UTC} {unit='s }
cc1:Chronom etric Do
~.
resolution = 0.01 S
<<clockCon straint>> { kind = required} .

{ Clock cis idealClk dis cretizedBy 0.001;
cc1l isPeriodicOn cperiod10;

<<clock>> cc2 isPeriodicOn cperiod10;
{ unit=s,standard = UTC} m—ws CC1 hasStability 1E-5;
cc2:Chronom etric D= cc2 hasStability 1E-5;
ccl1,cc2haveOffset [0.5]ms wrt idealC Ik;
resolution = 0.01 }
«mARTE::MARTE_Foundations::Time::ClockTypex «mARTE:: MARTE_Foundations::Time::ClockTyp...
Chronometric (MARTE_Library::TimeLibrary)
«ClockTy pex IdealClock
nature=discrete «ClockTypes
unitType=TimeUnitKind nature=dense
isLogical=false unitType=TimeUnitKind
resolAttr=resolution isLogical=false
getTime=currentTime getTime=currentTime
+ resolution : Real + currenktTime(): Real
+ currentTime(): Real

imported from the TimelLibra
«timedDomains po ¥ ﬁ

1 ApplicationTime Domain

«mARTE::MARTE_Foundations::Time::Clocks wclocks
— £ed: Chronometris idealClk: IdealClock
«Clocks»
5‘E”Ea1,;rﬂ=um) f‘l:ﬁﬁ;rd=TAl
£y pe= ronomatric type=|dealClock
e unit=s
resolution: 0.1 \‘-\
~ .
«mARTE::MARTE_Foundations::Time::Clock» «Cloc k_gonls(t:rl'smtal =
2: Chronometric Ur'_[' gl 55]
Le& kind=required
«Clocks»
standard=UTC
type=Chronometric {Clock localClock = idealClk discretized by 0.1;
unit=min ccl is periodic on lecalClock period 10;
cc2 Is perlodic on ccl perlod 60;
resolution: 0.166 ccl has stability 1e-5;
}

Figure 9.32 - Example of chronometric clocks

First, the user specifies a new ClockType: Chronometric, which is discrete, not logical (i.e., chronometric), and with a
read only attribute (resolution).

90 UML Profile for MARTE, V1.2

Instances of clocks belong to timed domains. In this example only one time domain is considered, and it owns 3 clocks:
idealClk, which is an instance of IdealClock, ccl, and cc2, which are two instances of Chronometric.

ccl and-ee2 uses s (second) and cc2 uses min (minutes) as their unit of time: they; have a resolution of 0.01 s for ccl and

0.166 (1/60) min for cc2. They bothard adopt the UTC system of time. The-deviations-of-these-eloeks-withrespeet-to-the-

ideal-one-are-speeified-by-a-—ecloekeenstraint: Clock constraints are expressed using a simple declarative language, called
CCSL (Clock Constraint Specification Language), described in Annex C.3._

gweﬂ—fesemﬂeﬂ—ég—&l—s—l-()—ms} The first llne in the body of the constraint_in Flgure 9.32, declares a clock
elocalClock, local to the constraint and not part of the system. elocalClock is defined as an ideal diserete clock whese-

resolutitonwith a discretization factor of-s 0.001 s = 1 ms. The other lines are constraints. They impose to ccl and cc2 to

be almost periodic (stability of cc1=10-5), with respectively a period of 1 second and 1 minute. Note that cc2 is specified
with regards to ccl. Figure 9.33 represents a time structure that satisfies the given clock constraint.

. l«—10m 1 ms—» .
idealClk >

(c)—0O<

cc1 A S >

cc2 O O >

offset of .
cc1vs.cc2
~ cc1.period -

Figure 9.33 - Instants of clocks cc1 and cc2

9.3.3.2 Logical Clocks

In this simplified example, a processor executes the same code for several controllers (Figure 9.34). The processor is a
Voltage Scaling processor: its frequency can be dynamically controlled. For simplicity, only two frequencies are
considered: the frequency in the full power mode, and the frequency in the low power mode, which is half the former. The
Boolean attribute inLowPower indicates the running mode of the processor. The control must be applied periodically (the
period attribute of the Controller) by executing some code (pidCode which is an OpaqueBehavior). The behavior of the
controller is specified by a state machine (ctrlBeh).

stm ctriBeh (p: NFP_Duration u

<<clockType >>

{nature =discre te, afterp
re sol/‘%ttr=rAesqu tion, y 0.+ Controller
isLo gical } -
Processor proc crl | heriod: NFP_D uration

inLow Pow er: Boole an .
re so lution: R eal {re adO nly} entry pid Code

Figure 9.34 - Example of timed control
pidCode is a behavior that is executed in a fixed and known number of processor cycles. This can be modeled with a

logical clock. To this end, the class Processor is stereotyped by ClockType. This mixture of physical time (period of
activation) and logical time (execution duration expressed in processor cycles) is usual in control applications. Figure

UML Profile for MARTE, V1.2 91

9.35 represents instances and a clock constraint. The TimedDomain is not explicitly represented. There are two instances
of Controller, with periods of activation equal to 1 and 2 ms, respectively. Each execution of pidCode takes 100 cycles of
the processor, which is expressed by a TimedProcessing. The dependency between the processor cycle duration and the
physical time is specified by a ClockConstraint. The constraint specification indicates that the local Clock c is a discrete
clock with a period of 1 us (1E-6 s). Clock pr is derived from c. The period of pr is 20 us when running in the low power
mode, and 10 us in the full power mode. The trigger of the transition labeled “after p” in the state machine, implicitly
declares a TimeEvent with isRelative = true and when = p. This TimeEvent is stereotyped by TimedEvent with on =

idealClk.

c1: Controller

<<clock>>
pr:Processor

period = (value=1,unit=ms)

<<clock >>
{unit =s}
idealClk:ld ealClo ck

reso lution = 1
Il

c2: Controller

period = (value =2 unit=ms)

Dame —aa

.
:
<<clockConstraint>>
{ Clock cis idealClk discretizedBy 1E-6;
pr = c filteredBy0B(1.0"19)if pr.inLowPower
pr =cfilteredByOB(1.079)if notpr.inLowPower;

}

Figure 9.35 - Clocks and TimedProcessing

92

{on = pr,

pidCode

<<timedProcessing >>

duration =100 }
<<opaqueBehavior>>

UML Profile for MARTE, V1.2

10 Generic Resource Modeling (GRM)

10.1 Overview

The objective of this package is to offer the concepts that are necessary to model a general platform for executing real-
time embedded applications. The generic resource model (GRM) includes the features that are required for dealing with:

« Modeling of executing platforms at different level of details. The level of granularity needed for platform modeling
depends on the concern motivating the description of the platform, as for example the type of the platform, the type of
the application, or the type of analysis to be carried out on the model.

« Modeling of both “hardware” (e.g., memory units or physical communication channels) and “software” (e.g., real-time
operating systems) platform.

 Providing foundational modeling constructs that are later refined to support design (SRM & HRM) as well as analysis
(GQAM, SAM & PAM) models.

Both 14.1, ’Software Resource Modeling (SRM)’ and 14.2, "Hardware Resource Modeling (HRM)’ provide a
specialization of this general resource model for software and hardware related platforms respectively.

Figure 10.1 describes the dependencies of the GRM package with other sub-packages of MARTE.

1
MARTE::MARTE_Library::
Basic_NFP_Types

1 ‘?" 1 1
MARTE::] MARTE:: MARTE::
NFP_Modeling | Time CoreElements
F B R
GRM

Figure 10.1 - Dependencies of the GeneralResourceModel (GRM) package

The different facets of the GRM are grouped in individual packages, following the structure shown in Figure 10.2:
+ The ResourceCore package defines the basic elements and their relationships.
« The ResourceTypes package defines fundamental types of resources as well as the basic services that they provide.

« The ResourceManagement package defines specific management resources and their associated services.

UML Profile for MARTE, V1.2 91

GRM
1
ResourceCore)‘n
a A R A
:‘ 1 \ "\
I 1 1 A
i 1 Y
’r; — ! 3 "
; \
/ ResourceTypes % | ResourceUsages
. ~l
/ 7 53 !
4 - " %
n’| o ——
ResourceManagement fe= - -~ Scheduling

Figure 10.2 - Architecture of the GeneralResourceModel (GRM) package

The purpose and contents of each sub-package are described in the following sub clauses.

10.2 Domain View

10.2.1 The ResourceCore Package

The basic partitioning into classifiers and instances made in the Foundations package is used here to describe the nature
of the basic resource elements, depicted in the class diagram in Figure 10.3. The central concept of the GRM is the notion
of a Resource. A Resource represents a physically or logically persistent entity that offers one or more ResourceServices.
Resources and its services are the available means to perform the expected duties and/or satisfy the requirements for

which the system under consideration is aimed.

Causality::Commo nBehavior

MARTE::CoreElements::

::Behavior

Figure 10.3 - Instance/Classifier nature of core resource elements

92

MARTE:.Core Eements: 0.” 1.* | MARTE CoreElements:
Foundations::Instance instance type Foundations :Classifier
MARTE:CoreElements:: MARTE:CoreElements:Causality :: gntext
Causality::RunTimeContext Common Be havior: :Beh avioredClassifier 1
::BehaviorExecution Z}
ownedbehavior
* * Resource
0.. 1.
Resourcelnstance
instance type | resMut: Integer [0..1]
context 1 context 1
. p Services
exeServices 1.% {subset ownedbehavior}
instance 1.
e Resource ServiceExecution 0 : ResourceService
L ype

UML Profile for MARTE, V1.2

As shown in Figure 10.4, Resources and their respective instances are also kinds of AnnotatedElements, hence values of
non-functional properties (NFPs) may be annotated on them. In particular, as a type of classifier, Resources may have
NFPs declared on it. As it is also shown in Figure 10.4, besides the NFP specifications, a resource has an optional set of
referenced clocks, normally only one, but more in general.

MARTE::NFPs::NFP_Annotation::

AnnotatedElement
0.* ownedElement
owner
0.* 1.* Resource o
Resourcelnstance - E 0.1
instance type | resMutt: Integer [0..1]
MARTE:NFPs:: provided

NFP_declaration:NFP {subset value}

required
{subset value}

*

MARTE:: Time::
TimeAccesses ::Clocks::Clock | reference Clocks

Figure 10.4 - NFP annotations and reference Clocks of a Resource

A second orthogonal aspect, which is also very important, is the necessity to differentiate between application and
platform elements. The latter are considered either as resources or resource services. Resources are used to model the
execution platform from a structural point of view, while the resource services supply the behavioral point of view. A
resource may be structurally described in terms of its internal resources - this is represented by the “owner-
ownedElement” association in Resource inherited from the ModelElement meta-class. For example, a processing resource
may be refined as a processor connected to a memory through a bus, if such level of detail is of interest for the modeler
or for the analysis method to be applied to the model.

The reference clock of a resource may be either a chronometric (i.e., “physical”) clock or a logical clock. In any case, a
clock is used as the reference unit for time related characteristics of the services provided by the resource. For example,
considering chronometric clocks, the “processing time” associated with functions in a computation library may be
expressed in terms of processor cycles rather than absolute time values. The reference clock (typically the processor
clock) would then allow translating such values into physical times.

The optional attribute resMult (resource multiplicity) is used to express the limited nature of an aggregated multi
elementary resource. When used it indicates the maximum number of instances of the elementary units of a particular
type of resource that are available through its corresponding services.

Resource and ResourceService, as well as their corresponding instance-based concepts, Resourcelnstance and
ResourceServiceExecution respectively, may also provide and/or require non-functional properties. A
ResourceServiceExecution is a kind of BehaviorExecution that represents a concrete instance of the realization of a
service, in the context of the instance of a resource.

UML Profile for MARTE, V1.2 93

MAR TE::C oreElements::
Foundations::ModelElement

7

ResourceReference ResourceAmount

Figure 10.5 - Resource Reference, and ResourceAmount of the ResourceCore package

For convenience, as shown in Figure 10.5, two more abstract concepts are defined in this ResourceCore package:
« ResourceReference, to be used when modeling the dynamic creation of resources is required.

+ ResourceAmount, representing a generic quantity of the “amount” provided by the resource. This may be mapped to
any significant quantification of the resource, like memory units, utilization, power, etc.

A resource can be a “black box,” in which case only the provided services are visible, or a “white box,” in which case its
internal structure, in terms of lower level resources, may be visible, and the services provided by the resource may be
detailed based on collaborations of these lower level resources.

Note that in the case of the platform provider for example, it is up to the modeler to represent it as:

+ One black box resource (e.g., a real-time operating system), which abstracts the hardware hence considered as internal
elements.

A collaboration between a software layer and a hardware layer.

A collaboration between basically hardware elements. In this case, software features of the execution platform may be
represented by overheads on raw hardware performance figure.

« Any combination of these previous approaches depending on the type of development and analysis method applied by
the user.

The rationale for deciding if an element in the execution platform should be represented as a resource in the platform
model is more related to its criticality in terms of real-time behavior, rather than to its software or hardware nature.
Therefore, the interface (i.e., the set of services) provided by the execution platform as a whole may be much simpler than
the API (Application Programming Interface) visible to the application software. Of course, a model library describing a
given platform may provide several views, corresponding to different anticipated use cases for the platform.

As it occurs with classifiers, the execution platform may be represented as a hierarchical structure of resources.

10.2.2 The ResourceTypes Package

Figure 10.6 presents the basic resource types defined along with their specific attributes. Next a description of each of
them is provided, including the interpretation of the resource base clock when necessary. A first characterization of
resources can be done using the two additional attributes shown, isProtected and isActive. Each of the specialized kinds
may be defined by considering the Boolean values for them. isProtected implies the necessity to arbitrate access to the
resource or its services, while isActive means that it has its own course of action.

94 UML Profile for MARTE, V1.2

GRM::ResourceCore::
Resource

resMult: Integer
isProtected :Boolean
isActive : Boolean

StorageResource

CommunicationResource TimingResource

SynchResource

ConcurrencyResource ComputingResource DeviceResource

Figure 10.6 - Types of resources in the ResourceTypes package

+ A StorageResource represents memory, and its capacity is expressed in number of elements; the size of an individual

element in bits must be given. The reference clock corresponds to the pace at which data is updated in it, and hence it
determines the time it takes to access to one individual memory element. The level of granularity in the amount of
storage resources represented is up to the model designer. For example, if the storage resource represents a hard disk
drive, the element could be a block or a sector, and the speed of the clock to access such element would be directly
related to the disk rotation speed. The services provided by a storage resource are intended to move data between
memory and a processing unit (which can be a computing resource or a communication endpoint).

A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of
time. It is defined as a kind of chronometric clock, and may represent a clock itself or a timer, in which case it acts
according to the clock that it has as a reference. This concept is used to model the SPT TimingMechanism. According
to the concrete kind of resource or timing mechanism that it represents, the referenced clock may be another
chronometric clock or a logical clock, as defined in the Time clause. A timing resource may have concrete services for
its management and operation. Figure 10.7 shows these services in the form of roles of associations with
ResourceService in the model of timing resources.

GRM::ResourceCore: Resource e

referenceClocks MARTE:: Time: TimeArcasses::

Clocks::Clack
L? slarl
set
. gel .
TimingResource RasourceService
reset
i‘% pause

ClockResource TimerResource

Dwration: NFP_Durafion

isPariadic: Boolsan

Figure 10.7 - Timing resources

UML Profile for MARTE, V1.2

95

« A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent
execution flows, and in particular the mutual exclusive access to shared resources. This general concept is further
specialized inside the context of the GRM in the Scheduling package.

+ A ComputingResource represents either virtual or physical processing devices capable of storing and executing
program code. Hence its fundamental service is to compute, what in fact is to change the values of data without
changing their location. It is active and protected.

+ A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution
concurrently with others, all of which take their processing capacity from a potentially different protected active
resource (eventually a ComputingResource). Concurrency may be physical or logical, when it is logical, the supplying
processing resource needs to be arbitrated with a certain policy. This root concept is further specialized in the
Scheduling package.

« A DeviceResource typically represents an external device that may require specific services in the platform for its
usage and/or management. Active device resources may also be used to represent external specific purpose processing
units, whose capabilities and responsibilities are somehow abstracted away. The implicit assumption is that their
internal behavior is not a relevant part of the model under consideration.

« As shown in Figure 10.8, two kinds of CommunicationResources are defined. A communication media has an attribute
for defining the size of the elements transmitted; as expected, this definition is related to the resource base clock. For
example, if the communication media represents a bus, and the clock is the bus speed, “element size” would be the
width of the bus, in bits. If the communication media represents a layering of protocols, “element size” would be the
frame size of the uppermost protocol. It has also an attribute indicating the capacity of the communication element
when it is applicable. For timing evaluations, it holds also the time it takes to transmit the element used as a
communication quantum, usually called a packet, the size in bits of this quantum is described by the attribute
elementSize. It may have also the specification of the time the communicationMedia is blocked and cannot transmit
due to the transmission of one communication quantum, and the transmission mode available (simplex, half-duplex, or
full-duplex). A communication endpoint acts as a terminal for connecting to a communication media, and it is
characterized by the size of the packet handled by the endpoint. This size may or may not correspond to the media
element size.

CommunicationResource

I Q |

CommunicationEndPoint CommunicationMedia

packetSize : Integer elementSize : Integer
capacity: NFP_DataTxRata
packetTime: NFP_Duration
blacking Time: MFP_Curation
transmMode: Transmbdodekind

Figure 10.8 - Kinds of Communication resource
in the ResourceTypelResourceTypes package

Concrete services provided by CommunicationEndPoint include the sending and receiving of data, as well as a
notification service able to trigger an activity in the application. The fundamental service of a CommunicationMedia is to
transport information (e.g., message of data) from one location to another location.

Figure 10.9 denotes some other basic services that may be provided by resources.

96 UML Profile for MARTE, V1.2

*

GRM::ResourceCore:: 1.
ResourceService

4 +service
Acquire Release ‘ GetAmountAvailable Activate
isBlocking: Boolean

+amount

1.* | GRM::ResourceCore | 1.

1.* ::Resource Amount

+amount

+amount

Figure 10.9 - Basic resource services of the ResourceTypeResourceTypes package

« Both Acquire and Release services correspond respectively to the allocation and de-allocation of some “amount" from
the resource. For example, for a resource representing storage, the amount could be the memory size. As another
example, a resource could represent a single element (maximum amount available is “1”), and acquire/release would be
used to model mutual exclusive access.

« Activate corresponds to the application of a service on a given quantity. For example, activate a communication service
with the amount of data to be transferred as a parameter.

+ GetAmountAvailable returns the amount of the resource that is currently available.
The behavior shown by each service (acquire, release, activate, etc.) of a concrete resource that offers it, shall be

described to the extent needed by the modeling concerns of that specific resource.

10.2.3 The ResourceManagement Package

The elements in this package serve for modeling various resource management services, such as those found in most
operating systems. Figure 10.10 shows both types of resources that hold management services.

broke dResource GRM::ResourceCore: managedResource

1.% Resource

.

ResourceBroker ResourceManager

broker

manag er

* *

accCtrlPolicy | 1..* 1..*|, resCtriPolicy

AccessControlPolicy ResourceControlPolicy

Figure 10.10 - Resource management

UML Profile for MARTE, V1.2 97

The ResourceBroker is a kind of resource that is responsible for allocation and de-allocation of a set of resource instances
(or their services) to clients according to a specific access control policy. For example, a memory manager will allocate

memory from a heap upon request from a client and also return it back into the heap once the client no longer needs it.

The access control policy determines the criteria for determining and making effective the provision of resources, it can
impose limitations on the prioritization of competing requests, or on the amount of memory provided to individual clients,
etc.

On the other hand, the ResourceManager is responsible for creating, maintaining, and deleting resources according to a
resource control policy. For example, a buffer pool manager is responsible for creating a set of buffers from one or more
chunks of heap memory. Once created and initialized, the resources are typically handed over to a resource broker. In
most practical cases, the resource manager and the resource broker are the same entity. However, since this is not always
true the two concepts are modeled separately (they can be easily combined by designating the same entity as serving both
purposes).

10.2.4 The Scheduling Package

Scheduling is the way of arranging behavior at run-time. At this level of description a Scheduler is defined as a kind of
ResourceBroker that brings access to its brokered ProcessingResource or resources following a certain scheduling policy.
The concept of scheduling policy as it is presented here corresponds to the scheduling mechanism described in sub clause
6.1.1 of SPT, since it refers specifically to the order to choose threads for execution. A ProcessingResource generalizes
the concepts of CommunicationMedia, ComputingResource, and active DeviceResource. It introduces an element that
abstracts the fundamental capability of performing any behavior assigned to the active classifiers of the modeled system.
Fractions of this capacity are brought to the SchedulableResources that require it.

Issue 14610 - udpate text

as a kind of ConcurrencyResource with logical concurrency. This means that it takes the processing capacity from another

active protected resource, usually a ProcessingResource, and competes for it with others linked to the same scheduler
under the basis of the concrete scheduling parameters that each SchedulableResource has associated. These scheduling
parameters need to be compatible with the Sheduling Policy of the scheduler that arbitrates access to the underlying
processing resources.

In the case of hierarchical scheduling, schedulers other than the main scheduler are represented by the
SecondaryScheduler concept. This kind of schedulers do not receive processing capacity directly from a processing

resource, instead they receive it from a SchedulableResource, which is in its turn effectively scheduled by another
scheduler. These intermediate SchedulableResource, play the role of a virtual processing resource, conducting the fraction
of capacity they receive from their host scheduler to its dependent secondaryScheduler.

Figure 10.11 shows the relationships between all these elements, as well as the various kinds of scheduling policies and
the corresponding scheduling parameters.

98 UML Profile for MARTE, V1.2

Scheduling

GRM::ResourceManagem | 1." ~ GRM::ResourceManage | broker brokedResource | GRM::ResourceCore::
ent::AccessControlPolicy ment::ResourceBroker * 1 Resource

accCtrlPolicy

0..1\/ mainScheduler

SchedulinglPolicy 1+ processingUnits
— Scheduler * {subset brokedResource}

schedule:ScheduleSpecification 1..* | speedFactor: NFP_Real = {value = 1.0}

ProcessingResource

policy: SchedPolicyKind
otherSchedPolicy: String

policy

{subset accCtrlPolicy} Z% host | 1 4

« enumeration » ‘
SchedPolicyKind SecondaryScheduler 1 GRM::ResourceTypes:: GRM::ResourceTypes::
EarliestDeadlineFirst host ComputingResource CommunicationMedia
FIFO dependentScheduler | 0..1
FixedPriority
LeastLaxityFirst * *
RoundRobin virtualProcessingUnits 1 0. schedulableResource GRM::ResourceTypes::
TimeTableDriven DeviceResource
Undef
Other SchedulableResource @ ——— {isActive=True}

1 schedParams

GRM::ResourceTypes::
ConcurrencyResource

SchedulingParameters

Figure 10.11 - The Scheduling package

For a scheduler, the description of an offline schedule is expressed either by an opaque expression or by a table with the
timeslots corresponding to the different schedulable resources that will represent the partitioned available capacity.

When the executionBehaviors of concurrencyResources need to access common protected resources, the underlying
scheduling mechanisms are typically implemented using some form of synchronization resource, (semaphore, mutex, etc.)
with a protecting protocol to avoid priority inversions. Other solutions avoid this concurrency issue by creating specific
schedules that order the access in advance. Whichever mechanism is used, the pertinent abstraction at this level of
specification requires at least the identification of the common resource, its protecting mechanism, and the associated
protocol; this is what the MutualExclusionResource defines. Figure 10.12 shows this element. Its associated protocol,
represented by MutualExclusiveProtocol, is derived from the policy associated to the scheduler that manages it, and the
parameters required by the protocol are represented by the ProtectionParameters element.

| UML Profile for MARTE, V1.2 99

Scheduling

GRM::Res ourceManagement

GRM::ResourceManage ment

GRM::ResourceTypes:

::AccessControlPolicy ::ResourceBroker SynchResource
scheduler /['0..1
«enumerated » *
ProtectProtocolKind MutualExclusionProtocol 1 *
Y MutualExclusionResource

FIFO protocol: ProtectProtoc olKind rotocol
NoPreemption otherProtectProtocol:String P
PriorityCeiling *
Prioritylnheritance
StackBased
Undef ProtectionParameters N
Other

priorityCeiling: Integer roteclparams

preemptionLevel: UnlimitedNatural P cp

Figure 10.12 - The MutualExclusionResources in the Scheduling Package
10.2.5 The ResourceUsage Package

When resources are used, their usage may consume part of the “amount” provided by the resource. Taking into account
these usages when reasoning about the system operation is a central task in the evaluation of its feasibility. Figure 10.13
shows the model of a ResourceUsage, it links resources with concrete demands of usage over them. The concept of
UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource. Two general forms
of usage are defined; the StaticUsage and the DynamicUsage, each used according to the specific needs of the model. A
few concrete forms of usage are defined at this level of specification under the concept of UsageTypedAmount; those are
aimed to represent the consumption or temporary usage of memory, the time taken from a CPU, the energy from a power
supply, and the number of bytes to be sent through a network.

ResourceUsages
MAI_'\"TI?::CoreEIements:l: 5 GRM::ResourceCore:: GRM::ResourceCore::Resource
Causaility::CommonBehavior:: FEseEs
Event
event | 0..1 usedResource | 0..* Z}
UsageTypedAmount
: execTime: NFP_Duration [*]
0.* usage * requiredAmount msgSize: NFP_DataSize [*]
UsageDemand \load o.* ResourceUsage 0.+ | allocatedMemory: NFP_DataSize [']
workioa - | usedMemory: NFP_DataSize [*]
powerPeak: NFP_Power [*]
energy: NFP_Energy [*]
StaticUsage StaticUsage +——— > GR“S;&?;;Z?:;}(;?S:

Figure 10.13 - Resource usage

100 UML Profile for MARTE, V1.2

10.3 UML Representation

This sub clause describes the UML extensions provided to support the concepts defined in the presented domain view.
The stereotypes here provided are generic and may be used at different levels of specification.

In order to get the maximum flexibility in the ways of applying the proposed stereotypes, most of the UML elements
extended, are extended by the generic stereotype Resource. Then, through inheritance the large majority of stereotypes in
GRM may extend elements like Property, InstanceSpecification, Classifier, Lifeline, and ConnectableElement. In
particular, they might be applied for example to Classifiers, as well as to InstanceSpecifications of those very same
Classifiers. In this case it is worth to consider the rules described in Section 7.3 for the usage of a stereotype in such
situations. According to this rule when a stereotype is applied on an instance, the value of the attributes not explicitly
assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype definition, but
they might have to be taken from the annotation of the same stereotype on its corresponding classifier, which may have
overwrote them, making effective with it the classifier nature of the annotation.

10.3.1 Profile Diagrams

The UML extensions for the modeling of resources at this level of specification are provided in the MARTE::GRM
profile and the MARTE::MARTE Library::GRM_BasicTypes model library. They are shown in separate figures for
convenience.

Figure 10.14 shows the stereotypes defined for the root concepts defined for the modeling of resources. Figure 10.16
shows the relationships between stereotypes defined for scheduling. Figure 10.17 shows the UML elements that may be
extended with the GrService stereotype. And Figure 10.19 shows for convenience the model library that collects all the
utilitarian types defined for the GRM profile and which is formally presented in Annex D.

The MARTE::GRM package (stereotyped as profile) defines how the elements of the domain model extend metaclasses
of the UML metamodel. All the stereotypes defined in the GRM profile are then listed and described in alphabetical order.
The semantic descriptions of the concepts that these stereotypes represent are provided along 10.2 “Domain View” on
page 92. And the detailed descriptions of their corresponding concepts in the domain view are presented in Annex F.
Finally the elements in the GRM_Basic_Types model library are also described in alphabetical order.

UML Profile for MARTE, V1.2 101

« profile »

GRM
metaclass « metaclass » metaclass metaclass et
« » « » « » .
UML::CompositeStructures::
UML::Classes::Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel:: UML.::Interaction::Basic InternapIStructureS"
Property InstanceSpecification Classifier Interactions::Lifeline ConnectableElement
A A A
« stereotype»
Resource
resMult: NFP_Integer = 1
« stereotype » isProtected: Boolean « stereotype »
CommunicationEndPoint isActive: Boolean StorageResource
elementSize: NFP_Integer

packetSize: NFP_Integer

« stereotype » «

SynchronizationResource

ConcurrencyResource

stereotype »

« stereotype »
Scheduler

« stereotype »
MutualExclusionResource

« stereotype »
SchedulableResource

isPreemptible: Boolean = true

schedPolicy: SchedPolicyKind = FixedPriority
otherSchedPolicy: String

schedule: ScheduleSpecification

protectKind: ProtectProtocolKind=prioritylnheritance
ceiling: NFP_Integer

schedParams: schedParameters|0..*]
isActive:Boolean=true{lsReadOnly}

otherProtectProtocol: String
isProtected:Boolean=true{lsReadOnly}

« metaclass » « stereotype »

UML::CompositeStructures::

ProcessingResource

InternalStructures:: speedFactor: NFP_Real
Connector
« stereotype » « stereotype » « stereotype »
CommunicationMedia ComputingResource DeviceResource

elementSize: NFP_Integer

« stereotype »
SecondaryScheduler

Figure 10.14 - UML extensions for GeneralResourceModeling

102

UML Profile for MARTE, V1.2

« profile »
GRM

W Slerectypes
Resource

1

« slereolype »
TimingResource

4

& stereotype » « steraolype »
TimerResource ClockResource

duration:MFF_duration
IsPeriodic: Boolaan

Figure 10.15 - UML Extensions for timing mechanisms in the GRM profile

« profile »
GRM

« stereotype »
ComputingResource

« stereotype »
ProcessingResource

host | 0..1

mainScheduler

processingUnits

0..1

0.*

« stereotype »
MutualExclusionResource

protectKind: ProtectProtocolKind=PriorityInheritance
ceiling: Integer

otherProtectProtocol: String
isProtected:Boolean=true{ReadOnly, redefines isProtected}

protectedSharedResources

*

« stereotype »
Scheduler

scheduler
0..1

isPreemptible: Boolean = true
schedPolicy: SchedPolicyKind = FixedPriority
otherSchedPolicy: String

schedule: ScheduleSpecification

host
0..1

« stereotype »
SecondaryScheduler

dependentScheduler | 0..1

schedulabledResources

« stereotype »
SchedulableResource

schedparams: SchedParameters[0..*]
isActive:Boolean=true{ReadOnly, redefines isActive}

0..* | virtualProcessingUnits

Figure 10.16 - Relationships between UML Extensions for scheduling in the GRM Profile

UML Profile for MARTE, V1.2

103

« profile

GRM
+ metaclass »
UML::Classes: Kemel:
BehavioralFeature ey
A LUML::CommonBehaviors::
BasicBehaviors:: Behavior
@ slereotype »
« metaclass » GrSer\-?;cF;e « metaclass »
UML:: Interactions: Basicinteractions f— =1 UML:CompositeSiruciures::
::ExecutionSpecification awner: Resourca(0..1] Collaborations::Collaboration

1

« metaclass »
UML: CompositeStruciures::
Collaborations:: CollaborationUse

« StErectype »
Acquire

« stereotype »
Releasa

isBlocking: Boolean

Figure 10.17 - UML Extensions for Services in the GRM Profile

« profile »
GRM

« metaclass »

UML::Classes::Kernel::NamedElement

i

« stereotype»

ResourceUsage

*

{ordered}
subUsage

execTime: NFP_Duration {ordered} [*]
msgSize: NFP_DataSize {ordered} [*]
allocatedMemory: NFP_DataSize {ordered} [*]
usedMemory: NFP_DataSize {ordered} [*]
powerPeak:NFP_Power {ordered} [*]
enery:NFP_Energy {ordered} [*]

{ordered}

usedResources

*

« stereotype»
Resource

Figure 10.18 - UML Extensions for resource usage in the GRM Profile

104

UML Profile for MARTE, V1.2

« model library »
MARTE::MARTE_Library::
GRM_BasicTypes
« enumeration » « enumeration » « dataType » « dataType »
SchedPolicyKind ProtectProtocolKind « tupleType » « tupleType »
. - EDFParameters FixedPriorityParameters
EarliestDeadlineFirst FIFO
FIFO ine: i fority:
FixedPriority NoPreemption deadline: NFP_Duration priority: NFP_Integer
LeastLaxityFirst F’f!or!tyCelIlqg
RoundRobin Prioritylnheritance
TimeTableDriven StackBased
Undef
Undef
Other Other
« dataType » « dataType »
- « choiceType » « tupleType »
« enumeration » SchedParameters PeriodicServerParameters
PeriodicServerKind « dataType »
Sporadic edf: EDFParameters kind: PeriodicServerKind « tupleType »
Deferrable fp: IlzlxgdanntyParameters ll)elz(?kgroundl?rlorlly: NFPTInteger PoolingParameters
Undef polling: PoolingParameters initialBudget: NFP_Duration
Other server: PeriodicServerParameters replenishPeriod: NFP_Duration period: NFP_Duration
tableEntryKey: OpaqueExpression[0..*] maxPendingReplenish: NFP_Integer overhead: NFP_Duration [0..*]
« dataType »
« dataType » « dataType » « tupleType »
« choiceType » « tupleType » TableEntryType
ScheduleSpecification TableDrivenSchedule
- entryKey: OpaqueExpression
ttd: TableDrivenSchedule frameCycleTime: NFP_Duration timeSlot: NFP_Duration {ordered} [1..*]
other: OpaqueExpression entries: TableEntryType [1..*] offset: NFP_Duration {ordered} [1..*]

Figure 10.19 - Model library defining types used in the GRM profile (extract of Annex D)
10.3.2 Profile Elements Description

10.3.2.1 Acquire
The Acquire stereotype maps the Acquire domain element denoted in Annex F (sub clause F.4.3).
At this level of specification the amount to acquire is by default one and refers to the owner protected resource.

Extensions
e None

Generalizations
* QGrService

Attributes

» isBlocking: Boolean [0..1]
If true, it indicates that any attempt to acquire the resource may result in a blocking situation if it is not
available. If false, it indicates that the unavailability of the protected resource will not block the caller but it will
be returned as part of the service results instead.

Associations

* None

UML Profile for MARTE, V1.2 105

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).
10.3.2.2 ClockResource

The ClockResource stereotype maps the ClockResource domain element denoted in Annex F (sub clause F.4.5).

Extensions

e None

Generalizations

» TimingResource

Attributes

« None

Associations
e None

Constraints
e None

10.3.2.3 CommunicationEndPoint

The CommunicationEndPoint stereotype maps the CommunicationEndPoint domain element denoted in Annex F (sub
clause F.4.6).

Extensions

e None

Generalizations

« Resource

Attributes

» packetSize: NFP_Integer[0..1]
The size of the packet handled by the endpoint.

Associations
e None

Constraints

* None

10.3.2.4 CommunicationMedia

The CommunicationMedia stereotype maps the CommunicationMedia domain element denoted in Annex F (sub clause
F.4.7).

106 UML Profile for MARTE, V1.2

Extensions

* Connector (from UML::CompositeStructures::InternalStructures).

Generalizations

* ProcessingResource

Attributes

* clementSize: NFP_Integer[0..1]
Characterizes the size of the elements to be transmitted.

* capacity: NFP_DataTxRate [0..1]
Capacity of the communication element when applicable link.

» packetT: NFP_Duration [0..1]
Time to transmit the element used as a communication quantum, usually called a packet, the size in bits of this
quantum is described by the attribute elementSize.

* blockT: NFP_Duration [0..1]
Time the communicationMedia is blocked and cannot transmit due to the transmission of one communication
quantum.

» transmMode: MARTE Library::MARTE DataTypes::TransmModeKind [0..1]
Defines the transmission mode, one of the following values: {simplex, half-duplex, full-duplex}.

Associations

« None

Constraints
e None

10.3.2.5 ComputingResource

The ComputingResource stereotype maps the ComputingResource domain element denoted in Annex F (sub clause F.4.9).

Extensions
e None

Generalizations

* ProcessingResource

Attributes

* None

Associations

e None

Constraints

[1] The attribute isActive inherited from Resource is always true.

UML Profile for MARTE, V1.2 107

10.3.2.6 ConcurrencyResource

The ConcurrencyResource stereotype maps the ConcurrencyResource domain element denoted in Annex F (sub clause
F.4.10).

Extensions

* None

Generalizations

* Resource

Attributes

e None

Associations

« None

Constraints
e None

10.3.2.7 DeviceResource
The DeviceResource stereotype maps the DeviceResource domain element denoted in Annex F (sub clause F.4.11).

When it is active it can be considered as an external processing resource whose responsibilities will not be described in
detail in the model under consideration.

Extensions

e None

Generalization

* Resource

Attributes

« None

Associations

¢ None

Constraints
e None

10.3.2.8 GrService
The GrService stereotype maps the ResourceService domain element denoted in Annex F (sub clause F.4.26).

It is a very general concept that helps in the definition of generic resource models able for further refinement.

108 UML Profile for MARTE, V1.2

Extensions

* Behavior (from UML::CommonBehaviors::BasicBehaviors)

* BehaviorExecutionSpecification (from UML::Interactions::BasicInteractions)
* BehavioralFeature (from UML::Classes::Kernel)

* Collaboration (from UML::CompositeStructures::Collaborations)

* CollaborationUse (from UML::CompositeStructures::Collaborations)

Generalizations

e None

Attributes

* owner: Resource [0..1]
Refers to the resource that owns the represented service.

Associations

« None

Constraints
e None

10.3.2.9 MutualExclusionResource

The MutualExclusionResource stereotype maps the MutualExclusionResource domain element denoted in Annex F (sub
clause F.4.15).

Extensions

e None

Generalizations

* Resource

Attributes

» ceiling: NFP_Integer [0..1]
Determines the concrete parameter used to characterize the protection access protocol, it is used for the
PriorityCeiling and the StackBased protocols. For the latter only positive values are to be used. It holds the
concept of ProtectionParameters of the domain model.

» otherProtectProtocol: String [0..1]
Is used to annotate a protocol that is not included among the values of the
ProtectProtocolKind enumerated type.

+ protectKind: ProtectProtocolKind [0..1]=Prioritylnheritance
Determines the type of protection protocol used to access the resource.

» isProtected: Boolean = true {readOnly, redefines isProtected}

UML Profile for MARTE, V1.2 109

Associations

» scheduler: Scheduler [0..1]
Refers to the scheduler that will implement the protection protocol.

Constraints
[1] The attribute isProtected inherited from Resource is always true.

[2] The scheduling policy of the scheduler must be compatible to the kind of protectKind given to the
MutualExclusionResource.

10.3.2.10 ProcessingResource

The ProcessingResource stereotype maps the ProcessingResource domain element denoted in Annex F (sub clause
F.4.16).

It is an active, protected, executing-type resource that is allocated to the execution of schedulable resources, and hence
any actions that use those schedulable resources to execute. In general, they abstract the processing capabilities of a
computing resource, a communication media, or an active external device.

Extensions
e None

Generalizations
¢« Resource

Attributes

» speedFactor: Real [0..1] = (value=1.0)
Is a relative factor for annotating the processing speed expressed as a ratio to the speed of the
reference processingResource for the system under consideration. The amount of resource usages
specified for the entities in further usage models (like execution times for schedulability) assume a
normative value of 1.0, which means that they have been measured or estimated either in respect to
the reference system platform or directly over the platform used if it has speedFactor equal to 1.0.

Associations

* mainScheduler: Scheduler [0..1]
Is the scheduler that controls the access to its processing capacity.

Constraints

e None

10.3.2.11 Release
The Release sterecotype maps the Release domain element denoted in Annex F (F.4.19).

At this level of specification the amount release is by default one and refers to the owner protected resource.

Extensions

« None

110 UML Profile for MARTE, V1.2

Generalizations

* GrService

Attributes

e None

Associations

e None

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).

10.3.2.12 Resource

The Resource stereotype maps both Resource denoted in Annex F (F.4.20) and Resourcelnstance domain elements
(F.4.23).

It is provided for further refinement and for the representation of generic resources from a holistic system wide
perspective. The nature of the concrete element extended defines the domain concept that it represents.

Extensions

* InstanceSpecification (from UML::Classes::Kernel)

» Classifier (from UML::Classes::Kernel)

* Property (from UML::Classes::Kernel)

» Lifeline (from UML::Interactions::BasicInteractions)

* ConnectableElement (from UML::CompositeStructures::InternalStructures)

Generalizations

« None

Attributes

* resMult: NFP_Integer [0..1]=1
Indicates the multiplicity of a resource. For a classifier it may specify the maximum number of instances of the
resource considered as available. By default only one instance is available.

* isProtected: Boolean [0..1]
If true, it indicates that the access to the resource is protected by some kind of brokeringResource.

* isActive: Boolean [0..1]
If true, it indicates that the resource has an initial behavior associated that allows it to possibly perform its
services autonomously or by the triggering and animation of behaviors on others.

Associations
e None

UML Profile for MARTE, V1.2 1M1

Constraints

* None

10.3.2.13 ResourceUsage

The ResourceUsage stereotype maps both ResourceUsage denoted in Annex F (F.4.27) and UsageTypedAmount (F.4.43)
domain elements.

Extensions
* NamedElement (from UML::Classes::Kernel)

Generalizations
e None

Attributes

+ execTime: NFP_Duration {ordered} [*]
Time that the resource is in use due to the usage.

* msgSize: NFP_DataSize {ordered} [*]
Amount of data transmitted by the resource.

+ allocatedMemory: NFP_DataSize {ordered} [*]
Amount of memory that is demanded from or returned to the resource. It may be a positive or
negative value.

+ usedMemory: NFP_DataSize {ordered} [*]
Amount of memory that will be used from a resource but that will be immediately returned, and
hence should be available while the usage is in course. This may be used to specify the required
free space in the stack for example.

+ powerPeak:NFP_Power {ordered} [*]
Power that should be available from the resource for its usage.

» energy:NFP_Energy {ordered} [*]
Amount of energy that will be permanently consumed from a resource due to the usage.

Associations

» usedResources: Resource [0..*] {ordered}
List of resources that are used.

* subUsages: ResourceUsage {ordered} [0..*]
List of resourceUsages used to complement the description of the resourceUsage and generate
composite descriptions.

Constraints

[1] To consider the ResourceUsage fully specified, if the list usedResources is empty, the list subUsages should not be
empty and vice versa. Further refinements of ResoureUsage may define additional attributes that may bring implicit
elements into the usedResources list.

[2] If the list usedResources has only one element, all the optional lists of attributes (execTime, msgSize,
allocatedMemory, usedMemory, powerPeak and energy) refer to this unique Resource and at least one of them
must be present.

112 UML Profile for MARTE, V1.2

[3] If the list usedResources has more than one element, all of the optional lists of attributes (execTime, msgSize,
allocatedMemory, usedMemory, powerPeak, and energy) that are present, must have that number of elements,
and they will be considered to match one to one.

[4] If the list subUsages is not empty, and any of the optional lists of attributes (execTime, packetSize, allocatedMemory,
usedMemory, powerPeak, and energy) is present, then more than one annotation for the same resource and kind of
usage may be expressed. In this case, if the annotations have also the same source and statistical qualifiers they will
be considered in conflict, and hence the ResourceUsage inconsistent.

10.3.2.14 SchedulableResource
The SchedulableResource stereotype maps the SchedulableResource domain element denoted in Annex F (F.4.29).

It is an active resource able to perform actions using the processing capacity brought from a processing resource by the
scheduler that manages it.

Extensions
e None

Generalizations
« Resource

Attributes
* schedParams: SchedParameters [0..*]
Parameters used to compete for processing capacity.

* isActive: Boolean = true {readOnly, redefines isActive}.

Associations

* dependentScheduler: SecondaryScheduler [0..1]
This scheduler takes its capacity from the schedulable resource, and in its turn shares it among its
nested served schedulable resources.

* host: Scheduler [0..1]
Is the scheduler that controls the processing capacity that will be shared among the demanding
schedulable resources.

Constraints

[1] The policy used by the scheduler (host) must be compatible with the scheduling parameters (schedparams) of the
schedulable resource. The following table establishes the rules for such compatibility.

SchedulingPolicy choiceAttribute(s) of the SchedulingParameters used
EarliestDeadlineFirst edf

FixedPriority fp, polling, or server

LeastLaxityFirst edf (combined with)/plus server

TimeTableDriven tableEntry

| UML Profile for MARTE, V1.2 13

10.3.2.15 Scheduler

The Scheduler stereotype maps the Scheduler domain element denoted in Annex F (F.4.30).

Extensions
e None

Generalizations
¢« Resource

Attributes

» isPreemptible: Boolean [0..1] = true
Qualifies the capacity of the scheduler for preempting schedulable resources once the access to the
processing capacity has been granted upon the arrival of a new situation where a different
schedulable resource has to execute.

» otherSchedPolicy: String
Is used to annotate a scheduling policy that is not included among the values of the
schedPolicyKind enumerated type.

» schedPolicy: schedPolicyKind [0..1] = fixedPriority
Scheduling policy implemented by the scheduler.

* schedule: OpaqueExpression [0..1]
Is the concrete schedule to use in the case of time table driven strategies. The format for expressing
the times for activation and suspension, the cycle time as well as the number and identification of
schedulable resources is user dependent.

Associations

* host: ComputingResource [0..1]
Refers to the computing resource on which the scheduler runs. It may or may not be the same computing
resource whose processing capacity it will control and share among the demanding schedulable
resources.

» processingUnits: ProcessingResources [0..*]
List of ProcessingResources whose processing capacity is shared by the scheduler among the
schedulableResources it has associated.

» protectedSharedResources: MutualExclusionResource[0..*]
List of the MutualExclusionResources to which access must be protected using the corresponding
protocol.

* schedulableResources: SchedulableResource [0..*]
List of schedulable resources that demand processing capacity from the scheduler.
Constraints

[1] The scheduling policy of the scheduler must be compatible with the scheduling parameters of all the schedulable
resources that it has associated.

[2] The scheduling policy of the scheduler must be compatible with the ProtectProtocolParameters of all the associated
MutualExclusionResources.

114 UML Profile for MARTE, V1.2

10.3.2.16 SecondaryScheduler
The SecondaryScheduler stereotype maps the SecondaryScheduler domain element denoted in Annex F (F.4.33).

A scheduler of this kind takes its capacity from the set of schedulable resources collected as virtual processing units, and
in its turn shares it among its nested served schedulable resources.

Extensions

* None

Generalizations
e Scheduler

Attributes

e None

Associations

» virtualProcessingUnits: SchedulableResource [0..*]
Set of virtual processing resources to whose processing capacity the secondary scheduler controls access.

Constraints

[1T A SecondaryScheduler takes its capacity from the virtualProcessingUnits list of schedulable resources, so it is not
possible to have processing resources capacity through the processingUnits list inherited from Scheduler.

10.3.2.17 StorageResource

The StorageResource stereotype maps the StorageResource domain element denoted in Annex F (F.4.36).

Extensions

e None

Generalizations

* Resource

Attributes

* elementSize: NFP_Integer [0..1]
Size in bits of the basic storage unit.

Associations

« None

Constraints
e None

UML Profile for MARTE, V1.2 115

10.3.2.18 SynchronizationResource
The SynchronizationResource stereotype maps the SynchResource domain element denoted in Annex F (F.4.37).

Extensions
e None

Generalizations
¢« Resource

Attributes

* None

Associations

e None

Constraints

* None

10.3.2.19 TimerResource

The TimerResource stereotype maps the TimerResource domain element denoted in Annex F (F.4.40).

Extensions

¢ None

Generalizations

* TimingResource

Attributes

* duration: NFP_Duration [0..1]
Interval after which the timer will make evident the elapsed time.

* isPeriodic: Boolean [0..1]
If true, the timer will indicate the arrival of a new finalization of the programmed interval in a periodic
repetitive way. If false, it will do it only one time after it is started.

10.3.2.20 TimingResource

The TimingResource stereotype maps the TimingResource domain element denoted in Annex F (F.4.41).

Extensions

* None

Generalizations

* Resource

116 UML Profile for MARTE, V1.2

Attributes

* None

Associations

e None

Constraints

* None
10.3.3 GRM model library elements description

The description of all the elements in the model library for GRM are in Annex DA4.

10.4 Examples

The general resource model is planned to be used not only for further extension in the software and hardware platform
models, or in the analysis models of this specification, but also as a way to describe resources and platform architectures
at a very high level, when design choices and analysis techniques to use for the verification are probably still undecided.
The illustration in Figure 10.20 shows a simple example of the platform description for a teleoperated robot using a
deployment diagram. This example is further revisited to illustrate the usage of schedulability analysis annotations in
Section 16.3.3.

The system platform is composed of two processors interconnected through a CAN bus, and a robot arm whose servo
control cards are connected by means of a backpanel VME bus.

<<CommunicationMedia>>

{speedFactor=(1.0)}

. ’ ’
<<ComputingResource> 4 <<ComputingResource>
{speed Factor=(1.0)} <& CA N_Bus——————— {speedFactor=(0.6)}
NT _Station Controller

)
4
)
] ——
4 _on—--“
A —————T VME Bus
K4 <<CommunicationMedia>
{speedFactor=(8.5)}

<<StorageResource>>
{elementSize=1024x1024x8,
resMult256}

<<DeviceResource>>
{speedFactor=(1.0)}
Robot Arm

Figure 10.20 - Simple example of usage of the GRM Profile at a high architectural level

| UML Profile for MARTE, V1.2 117

The first processor is a teleoperation station (NT_Station); it hosts a GUI application, where the operator commands the
robot and where information about the system status is displayed. The second processor (Controller) is an embedded
microprocessor that implements the controller of the robot servos and its associated instrumentation. Figure 10.21 shows
a possible software architecture for this example.

. « computingResource »
« comp:t::ngtResc;u;ce» {speedFactor=(0.6)}
(SP(;:T gtaotrij)(n' " Controller
« allotate » « allacate »
\ tialAllocati
| {spatialAllocation} «allodate » {spatiallocation}
«alfcate » - « ajocate » {spatialAJlocation} | Controller_Communication
{spatialAllocation} | « mutualExclusionResource » {spatidlAllocation) « allogate »
Display_Data {spatialAflocation} +Send SausE: Saws)
« ?"00' te »_ + Await Command(): Command
« allacate » +Read(): Data {spatialAllgcation}
{spatialjlocation} + Write(D: Data) W\
/ \ « schedulableResource » « sc(r;gdulable%em)urce »
« schedulableResource » « schedulableResource » Reporter mmand_Manager
Display Refresher Command_Interpreter - T Task - T Task
- T: Task - T: Task - Report() - Manage()
- Update_Display() - FgloceSTS_l_Evint() i
- i = Plan_Trajectol
Update_Graphics() ~ Tralectont) / «schedulableResource »
« mutualExclusionResource » Servos_Controller
Servos_Data
. - < T Task
Station_Communication
" + Get(): Data - Control_Servos()
+Send_Command(C: Command) + Set(D: Data) - Control_Algorithms()
+ Await Status(): Status - Do_Control()

Figure 10.21 - Example of usage of the GRM Profile to annotate initial structural architectural choices

The software of the Controller processor contains three active classes and a passive one that is used by the active classes
to communicate. Servo_Controller is a periodic task that is triggered by a ticker timer with a period of 5 ms. The Reporter
task periodically acquires, and then notifies about, the status of the sensors. Its period is 100 ms. The Command Manager
task is aperiodic and is activated by the arrival of a command message from the CAN bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter task
handles the events that are generated by the operator using the GUI control elements. The Display Refresher task updates
the GUI data by interpreting the status messages that it receives through the CAN bus. Display Data is a protected object
that provides the embodied data to the active tasks in a safe way. Both processors have a specific communication software
library and a background task for managing the communication protocol.

According to the initial specification the system has at least three end-to-end flows of independent stimuli subject to hard
real-time requirements. Each one interferes with the others by sharing the processing resources (Station, Controller, and
CAN_Bus) and by accessing the protected objects.

One is the basic control algorithm that executes the Control _Servos procedure with a period (and expectably a deadline)
of 5 ms. The second is the Report procedure that transfers the sensors and servos status data across the CAN bus, to
refresh the display with a period (and deadline) of 100 ms. Finally, the user commands that typically have a sporadic
triggering pattern, but whose minimum inter-arrival time between events could be bounded to 1 s.

For illustration purposes Figure 10.22 shows a closer view of the end-to-end flow that makes the periodic reports every
tenth of a second by means of a sequence diagram. There, they have been annotated the deadline specification as well as
the periodic timing stimuli and the lifelines instances of the resources involved.

118 UML Profile for MARTE, V1.2

<<TimerResource>> %

<< CommunicationMedia>
elementsize=64

duration=(0.15) <<MutualExclusionResource>> % ,ll <<MutualExclusionResource>> %
7]
/‘\'l o ; ‘\‘-o
Controller | | . :Servos :Controller :Station :Display :Display
— | :Reporter - - | :CAN_Bus - N -
Clock P Data Comm . Lomm Refresher Data
\ \ R
Report Await_Statuis

il

{Init..Init+(0.1,s)}

Status

<<SchedulableResource >>¥

<< SchedulableResource >>¥

’
4

’l

’ ‘

Ve
-

Vs

<<SchedulableResource>> %

Transmit

I

ransmit_Command

{return Await_Status

<<ResourceUsage>>
msgSize=(80,Bytes,max)
usedResource=CAN_Bus

Update_Display

Figure 10.22 - Use of the GRM Profile to annotate behavioral specification instances

UML Profile for MARTE, V1.2

119

120 UML Profile for MARTE, V1.2

11 Allocation Modeling (Alloc)

11.1 Overview

This clause contains both domain and UML viewpoints for allocation modeling.

Allocation of functional application elements onto the available resources (the execution platform) is the main concern of
real-time embedded system design. This comprises both spatial distribution and temporal scheduling aspects, in order to
map various algorithmic operations onto available computing and communication resources and services.

The MARTE profile defines relevant application and execution platform models (Clause 13 and Clause 14). A MARTE
allocation is an association between a MARTE application and a MARTE execution platform. Application elements may
be any UML element suitable for modeling an application, with structural and behavioral aspects. An execution platform
is represented as a set of connected resources, where each resource provides services to support the execution of the
application. So resources are basically structural elements, while services are rather behavioral elements.

Application and execution platform models are built separately, before their pairing through the allocation process. Often
this requires prior adjustment (inside each model) to abstract/refine its components to allow a direct match. Allocation can
be viewed as a “horizontal” association, and abstraction/refinement layering as a “vertical” one, with the abstract version
relying on constructs introduced in the more refined model. While different in role, allocation and refinement share a lot
of formal aspects, and so both will be described here. This dual function was recognized in SPT, where allocation was
called realization, while refinement was used as such.

Application and execution platform elements can be annotated with time information based on logical or physical clocks.
Allocation and refinement should provide relations between these timing under the form of constraints between the clocks
and their ticks. Other similar non-functional properties definable from the NFPs package (such as space requirement, cost,
or power consumption) can also be considered.

Note — we do not use here the UML notion of deployment, but rather a SysML-inspired notion of allocation to emphasize the
fact that Execution Platform models should themselves be abstract and not seen as concretization models.

In the simplest case application elements are untimed without explicit logical clocks attached. Asynchronous parts can
also be attached to fully independent virtual clocks. In this simple case the timed allocation provides a physical duration
(and maybe other constraints) to the execution of this given application function on this given execution platform service
or resource. In the more general case timed allocations provide constraints between the virtual logical clocks on the
application side and the more physical technical clocks on the platform side. Clocks on the application side can be
important as they allow the user for visualizing a possible scheduling, maybe computed by subsequent tools and
respecting the provided scheduling constraints, rather than being provided by the user himself.

Refinement (or its inverse abstraction) should also relate the more abstract clocks to the mode refined. On the application
side, abstraction grouping could amount to performing a number of operations in a single instruction (by parallelization,
vectorization, or by replacing a task body by a simple call to it). Atomic instants at some level can be subdivided into
many micro-steps at a more refined level. On the execution platform side, abstraction can help define new services built
as collaborations between resource elements and lower-level services; these services can be generic, or ad-hoc to help
represent simply the allocation of application functions using them. Again here the clocks can be subdivided to represent
the division of service calls into more atomic services.

UML Profile for MARTE, V1.2 121

Allocation can be specified in different kinds: Structural, behavioral, or hybrid. Structural allocation is an association
between a group of structural elements and a group of resources. Behavioral allocation is an association between a set of
behavioral elements and a service provided by the execution platform. When clear from context, hybrid allocations can
also be allowed (for instance when an implicit service is uniquely defined for a resource). At the finer level of detail,
behavioral allocation deals with the mapping of UML actions to resources and services.

The next sub clause considers how resources can be grouped to collaborate and provide a given service, possibly with a
given scenario. The following sub clause describes the principles of the Allocation process (between two previously
independent models). The last part deals with NFP annotations.

Grouping process (Abstraction/Refinement)

Allocations concerns groups of elements. Such grouping of resources was already included in the service definition. The
intention is as follows: grouping, together with the associations already existing at each side (application or platform),
should provide a way to represent a change of atomicity level (abstraction/refinement) inside each model. If a number of
application actions (sets of instructions or subprogram) can be realized atomically as a platform service, itself being made
of several resources collaborating according to a given scenario, then this scheme allows for linking them by an atomic
mapping between the two models. The preliminary process of constructing the entities to be matched is conducted
separately, inside each model. This shows a separation of concern between service definition and actual mapping of
matching elements.

Groups of services could themselves be viewed as compound services. Keeping the two levels is useful to discriminate
between generic services, built on the platform in full isolation, and ad-hoc services, only introduced to cover specific
needs of a particular application.

Allocation process

Allocation results in both spatial distribution and temporal scheduling. Spatial distribution is the allocation of
computations to processing elements, of data to memories, and of data/control dependencies to communication resources.
Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource. Scheduling is represented as a relation between the respective time bases of
application and platform elements.

In turn, the potential analysis performed due to allocation mapping may refine “back” the temporal aspects of
applications, to reflect the results of constraints (scheduling, resource allocation, and sharing) imposed by the execution
platform. It may do so according to a possible refinement of the Time model at the application level.

Structural allocation enforces the corresponding behavioral allocation of encapsulated behaviors, so that contained
elements “inherit” the allocation of compound structures unless otherwise stated at their level (and then the proper
execution platform communication pattern should be feasible). For example, if a Behavior is executed in the context of a
particular object, and this object is allocated to a particular ComputingResource C1 for execution, then any
uml::CallBehaviorAction would by default use the “Call” service provided by C1. However, if the called Behavior
belongs to an object to which another ComputingResource is allocated, it uses the “RemoteProcedureCall” service
provided by C1 to reach C2 - assuming a communication path exists between C1 and C2.

The allocation model could offer different allocation alternatives for a given application element, so that there is an actual
choice on how to map application functions and objects to various parts of the execution platform. The mapping can then
be refined and made more precise in several ways by model transformations directed by analysis techniques.

Both spatial and temporal allocations have to be mutually and globally consistent to ensure a correct execution of the
application by its deployment on the execution platform. This is in general the topic of analysis techniques that the
current MARTE profile aims to offer. But the profile itself only describes the means to describe (total or partial)

122 UML Profile for MARTE, V1.2

allocations, some of which may be provided by users, some computed by advanced analysis techniques in any advanced
design methodology associated with the profile. In usage the allocation model can be made to represent relations that are
issued to the user from an analysis tool, not just provided by human edition.

Allocations should also comply with, or at least not contradict, the local associations and dependencies internal to both
the application and the execution platform. For instance two actions connected by a dependency link should not be
mapped to disconnected parts of the platform. Other well-formedness rules for maintaining structural and behavioral
consistency are listed below.

Application actions and services both derive from TimedAction, hence have “start” and “end” time value specifications
(related to different or to the same logical clock).

When an application action is allocated to an execution platform service, it implies a coincidence relation between all
“start” events on the time base supporting the application action, and all “start” events on the time base supporting the
execution platform service.

The same coincidence relation is implied for the “end” events on respective time bases. This enforces relations between
logical clocks defined by the application, and logical clocks defined by the execution platform.

11.2 Domain View

Figure 11.1 shows a general view of allocation, while Figure 11.2 shows the refinement relations. Both the Allocations
and the refinement are annotated with NFP_Constraints as built from the NFP clause. Time constraints can also be
associated since the metaclass NFP_Constraints is a generalization of the metaclass ClockConstraint defined in Clause 9.
Allocations provide links between independent models, while refinement/abstraction works by changing the focus on an
underlying similar structure.

Allocations
source
ApplicationAllocationEnd
1 *
target
Allocation ExecutionPlatformAllocationEnd

1 *

impliedConstraint | NFP_Annotation::

“ NFP_Constraint

Figure 11.1 - The allocation model

Allocations are used to associate individual application elements to individual execution platform elements. The role of
the time constraints in such case is to provide correlations of some sort between the logical/virtual time bases used as
activation conditions on the application side, and the more technical/physical time bases used as processor rates in the
execution platform side.

UML Profile for MARTE, V1.2 123

Allocation as from SysML can map structural to structural, and behavioral to behavioral or structural elements. The
refinement process generally involves the definition of additional constraints to precise links between the general element
and the refined ones. For instance, one may want to specify how the time bases relates, how the bandwidth (or power
consumption ...) is spread among refined elements. The association with some NFPs::NFP_Annotations::NfpConstraint is
a provision for defining such links.

Allocations J
genaral
Refinement refined AllocationEnd
1
« | constraint
NFP:;__B;FEBAHZE';?I?O":: Application ExecutionPlatform
= AllocationEnd AllocationEnd

Figure 11.2 - The Refinement model

Refinement can deal with both application models and execution platform model. A single element on the more abstract
side can be associated with a number of elements (a group) in the more refined side. In case a group of (structural)
resources and (behavioral) services are grouped to form a more abstract behavioral element (a higher-level service), then
a collaboration use scenarios or something similar should be introduced to indicate how the cooperation of the more basic
entities form the more abstract service is implemented.

For instance on the application side a “task™ call can be refined as its body, or arrange of operations can be parallelized
(or vectorized) as a single instruction. On the execution platform side a service or transaction can be realized by a
sequence of protocol steps.

11.3 UML Representation

The UML view for allocation is strongly inspired from the SysML solution. The SysML solution is satisfactory, but we
wanted to emphasize three important points:

1. The allocation is a mechanism aiming at defining a mapping from the logical parts (the application model elements)
of the model to some more physical parts (the execution platform).

2. There can be several possible allocations and all of them imply a cost that affects the time budget, the power budget
or the budget of any other non functional property.

3. There can be at least two reasons to make an allocation: to perform a spatial distribution of artifacts onto resources or
resource services, or to schedule algorithmic parts onto available resources.

The allocation package includes all these three points.

124 UML Profile for MARTE, V1.2

11.3.1 Profile Diagrams

The first step is to identify what can be allocated, the logical view (behavior or structure), and what can serve as a target
of an allocation, the physical view (a resource or a service). The stereotype Allocated (Figure 11.3) is used for this matter.

Alloc

« anumeration »
AllocationEndKind

astercotypes
Allocated

undef

application
executionPlatform
both

fallocatedTao @ Allocatad [*]
fallocatedFrom : Allocated []
kind : AllocationEndKind

ametaclass»
NamedElement

Figure 11.3 - The stereotype "allocated"

The second step is to identify what is allocated onto what and what are the reasons for such an allocation and what are the

constraints implied by this allocation, hence the definition of the stereotype Allocate.

UML Profile for MARTE, V1.2

125

Issue

15291 - udpate figure

Alloc

«metaclass»
UML::Abstraction

«enumeration»
AllocationNature

«enumeration»
AllocationKind

spatialDistribution structural
A timeScheduling behavioral
hybrid
impliedConstraint| ~ «stereotype»
“sif(.f;‘c’i‘iﬂe” NFP_Modeling::

kind : AllocationKind

nature : AllocationNature

NfpConstraint

Alloc

«metaclass»
UML::Abstraction

«enumeration»
AllocationNature

«enumeration»
AllocationKind

A

spatialDistribution
timeScheduling

«stereotype»
Allocate

structural
behavioral
hybrid

impliedConstraint| «stereotype»

kind : AllocationKind

nature : AllocationNature

NfpConstraint

NFP_Modeling::

Figure 11.4 - The stereotype "allocate"

In addition, we define an alternative UML representation of the Allocation domain view metaclass, via the Assign
stereotype. The Assign stereotype extends a UML metaclass: Comment with neutral semantics (instead of leveraging the
semantics of Abstraction). It defines “from” / “to” attributes to indicate the ends of the assignment. Like an allocation, an
assignment can be characterized by its “nature” (spatial or time distribution) and its “kind” (structural, behavioral, or
hybrid). The optional body property of the Comment meta-class can be used to provide the justification of the assignment.

126

UML Profile for MARTE, V1.2

Issue 15291 - udpate figure

Alloc
«metaclass» «enumeration» «enumeration»
i AllocationKind
UML::Abstraction AllocationNature ocaton™n
spatialDistribution structural
A timeScheduling behavioral
hybrid

impliedConstraint| ~ «stereotype»
«Sflrlzzta):ze» NFP_Modeling::
* NfpConstraint

kind : AllocationKind
nature : AllocationNature

Alloc

«metaclasss
UML::Comment

impliedConstraints ustereotypes
* NFP_Modeling::NfpConstraint
astaraotypen
Allocate

from

UML::Classes::Kernel::Element

kind : Allocationkind o
nature : AllocationMature 1.”

Figure 11.5 - The stereotype Assign

As in SysML, a special attention is given to activities since the notation is natural to allocate a set of actions to a
structural element (classifier, instance or part). We define the stereotype AllocateActivityGroup (Figure 11.6), which
name is less misleading than AllocateActivityPartition that would suggest an actual partition of activity nodes. We intend
to represent possible allocations; we anticipate several cases where activity nodes will be shared by several allocate
activity groups. In this case, that means the shared activity nodes can be allocated either to one activity partition (an
instance of the classifier, the instance itself, or the instance playing the part represented by the activity partition) or to the
other. The isUnique property explicitly prevents an activity node from being allocated to several groups. This does not
mean the node cannot be shared by several groups, it only means that once we have made the final decision of the
allocation, the node is actually allocated to only one group.

| UML Profile for MARTE, V1.2 127

Alloc

«stereotype»
AllocateActivityGroup «metaclass»
UML::ActivityPartition

isUnique : Boolean = false

Figure 11.6 - The stereotype AllocateActivityGroup

For the purpose of specifying refinement, the abstraction mechanism offered by UML and the UML keyword refine are
enough. Defining abstractions is useful in bottom-up approaches while making refinement is useful in top-down approach.

Alloc |

ametaclasss
UML:: Dependency

A

constraint wstersotypes
NFPs::
NfpConstraint

wstereatypes
NipRefine

Figure 11.7 - The stereotype NfpRefine

Concerning the refinement we also think it is important to emphasize the fact that the refinement process implies some
additional constraints. It could be ClockConstraints to relate clocks at the different abstraction level or any other
NfpConstraint.

11.3.2 Profile elements description

11.3.2.1 Allocate (from Alloc)
The Allocate stereotype maps the Allocation domain element denoted in Annex F (F.5.1).

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements from a logical context,
application model elements, to named elements described in a more physical context, execution platform model elements.

The dependency Allocate can be used either to specify one possible allocation, in which case, a space exploration tool
may determine what the best allocations are, or to specify an actual allocation in the system. The context in which the
allocate dependency is used should be sufficient to know in which case we are.

As a named element, a dependency can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
allocation is required, offered, etc.

128 UML Profile for MARTE, V1.2

When the nature is TimeScheduling, the allocate dependency represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation amongst the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions

* Abstraction (from Dependencies)

Associations

Issue 15291 - udpate text

* impliedConstraints: NFPs::NfpConstraint [*]
The set of constraints #mpliedowned by the allocation. Allocating an application model element on a resource
has a cost. This cost is described using a set of non functional property constraints.

Issue 16835 - udpate text

Attributes

* kind: AllocationKind [0..1]
This differentiates the kind of allocations, whether both allocated elements on each side are structural, behavioral,
or whether this is a hybrid allocation.

* nature: AllocationNature [0..1]
This identifies the purpose of the allocation, whether the allocation is equivalent to a spatial distribution, where
several application model elements are distributed to different resources or whether timed elements are
scheduled according to a given scheduler.

Constraints

[1] When the kind is structural, suppliers, and clients must all be structural elements: classes, instance specifications, or
packages. When the kind is behavioral, suppliers must be UML::Behavior or UML::Action and the clients must be
behavioral elements, a UML::BehavioralFeature for example. When the kind is hybrid, suppliers must be behavioral
elements while the clients must be structural elements.

[2] When the nature is TimeScheduling, supplier and the clients must be Time::TimedElement and the

NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the elements being allocated “to” the elements that are the targets of the
allocation

11.3.2.2 AllocateActivityGroup (from Alloc)

AllocateActivityGroup is used to depict an allocation relationship on an Activity. It is an extension of the metaclass
UML.::ActivityPartition.

UML Profile for MARTE, V1.2 129

AllocateActivityGroup is a standard UML:: ActivityPartition, with modified constraints such that any actions within the
partition must result in an “allocate” dependency between the activity used by the action, and the element that the
partition represents.

Since we also intend to represent possible allocations, we anticipate several cases where activity nodes will be shared by
several allocate activity groups (Figure 11.10). In this case, that means the shared activity nodes can be allocated either to
one activity partition (an instance of the classifier, the instance itself or the instance playing the part represented by the
activity partition) or to the other. The isUnique property explicitly prevents an activity node from being allocated to
several groups. This does not mean the node cannot be shared by several groups, it only means that once we have made
the final decision of the allocation, the node is actually allocated to only one group.

Extensions

» ActivityPartition (from IntermediateActivities).

Attributes

* isUnique: Boolean=false
This specifies whether or not the actions contained in the partition can actually be allocated to several partitions
(the default) or can only be allocated to only one.

Constraints

[1] All Actions appearing in an AllocateActivityGroup will be the /suppliers (from) end of a single Allocate dependency.
The element represented by the AllocateActivityGroup will be the /client (to) end of the same Allocate dependency.
This allows for defining non functional property constraints applying to all contained actions.

Notation

For brevity, the keyword used on an AllocateActivityGroup is “allocate,” rather than the stereotype name
(“allocateActivityGroup”™).

11.3.2.3 Allocated (from Alloc)
The Allocated stereotype maps the AllocationEnd domain element denoted in Annex F (F.5.2).

The stereotype Allocated applies to any named element that has at least one allocation relationship with another named
element. Allocated named elements may be designated by either the /from or /to end of an “allocate” dependency.

The stereotype Allocated provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any allocation. With this stereotype you can allocate anything on anything. To make it clear
you want to allocate something logical, from the application model, use the meta-attribute kind (application,
executionPlatform).

The attribute kind is not available in SysML.

Extensions

* NamedElement (from Dependencies)

Associations

¢ None

130 UML Profile for MARTE, V1.2

Atrributes

+ /allocatedTo: Allocated [*]
Named elements that are suppliers of an “allocate” whose client is extended by this stereotype. This property is the
union of all suppliers to which this instance is the client. This association is derived from any “allocate” dependency.

+ /allocatedFrom: Allocated [*]
Named elements that are clients of an “allocate” whose supplier is extended by this stereotype. The allocatedFrom
elements are not necessarily derived from the same “allocate” dependency. A given element can be the supplier of
several application model elements, each of which is allocated using a separate “allocate” dependency. The
association is derived from any “allocate” dependency.

» kind: AllocationEndKind [1] = undef
Specifies the kind of allocation end.

11.3.2.4 AllocationEndKind (from Alloc)

AllocationEndKind is an enumeration type that differentiates the application allocation end from the execution platform
allocation end.

Literals

* undef
Should be used when no differentiation is to be made on the nature of the allocation end. It could be either an
application allocation end or an execution allocation end or something else (as in SysML, where no distinction is
made).

+ application
Identifies an allocation end as being on the application side of the allocation. This allocation end must be the source
(the client) of an allocate dependency.

» executionPlatform
Identifies an allocation end as being on the execution platform side of the allocation. This allocation end must be the
target (the supplier) of an allocate dependency.

* both
Identifies an allocation end as being both on the application and the execution platform side of the allocation. This
allocation must be the source (the client) of an allocate dependency and the target (the supplier) of an (another)
allocate dependency.

11.3.2.5 AllocationNature (from Alloc)

AllocationNature is an enumeration type that defines literals used to specify the purpose of the allocation.

Literals

» spatialDistribution
It indicates that the suppliers are distributed on the clients. Spatial distribution is the allocation of computations to
processing elements, of data to memories, and of data/control dependencies to communication resources.

* timeScheduling
It indicates that the allocation consists in a temporal/behavioral ordering of the suppliers, the order being given by
the clients. Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource.

11.3.2.6 AllocationKind (from Alloc)

UML Profile for MARTE, V1.2 131

AllocationKind is an enumeration type that defines literals used to specify the kind of named elements that are used as
clients and suppliers.

Literals
» structural
Indicates that the suppliers and the clients are all structural named elements.

* behavioral
Indicates that the suppliers and the clients are all behavioral named elements.

* hybrid
Indicates that the suppliers and the clients are not of the same kind.

11.3.2.7 Assign (from Alloc)
The Assign stereotype maps the Allocation domain element denoted in Annex F (F.5.1).

Assign is an alternative UML representation for the Allocation domain element based on semantically neutral
UML::Comment. It is a mechanism for associating elements from a logical context, application model elements, to named
elements described in a more physical context, execution platform model elements.

The Assign stereotype can be used either to specify one possible allocation, in which case, a space exploration tool may
determine what the best allocations are, or to specify an actual allocation in the system. The context in which the Assign
stereotype is used should be sufficient to know in which case we are.

As a named element, an assignment can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
allocation is required, offered, etc.

When the nature is timeScheduling, the Assign stereotype represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation among the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions

« Comment

Associations

Issue 15291 - udpate text

* impliedConstraints: NFPs::NfpConstraint [*]

The set of constraints impliedowned by the assignment. Assigning an application model element on a resource has a
cost.

This cost is described using a set of non functional property constraints.

132 UML Profile for MARTE, V1.2

Issue 16835 - udpate text

Attributes

» kind: AllocationKind [0..1]
This differentiates the kind of assignment, whether both allocated elements on each side are structural, behavioral, or
whether this is a hybrid assignment.

* nature: AllocationNature [0..1]
This identifies the purpose of the assignment, whether the assignment is equivalent to a spatial distribution, where
several application model elements are distributed to different resources or whether timed elements are scheduled
according to a given scheduler.

Associations

* from : Element [*] (from Kernel)
The elements that are assigned.

* to: Element [*] (from Kernel)
The elements to which the assignment is performed.

Constraints

[1] When the kind is structural, suppliers, and clients must all be structural elements: classes, instance specifications, or
packages. When the kind is behavioral, suppliers must be UML::Behavior or UML::Action and the clients must be
behavioral elements, a UML::BehavioralFeature for example. When the kind is hybrid, suppliers must be behavioral
elements while the clients must be structural elements.

[2] When the nature is TimeScheduling, supplier and the clients must be Time::TimedElement and the
NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation

The two allowed notations are presented in the following table.
11.3.2.8 NfpRefine (from Alloc)

The stereotype NfpRefine maps the domain element Refinement denoted in Annex F (F.5.5).

NfpRefine is a dependency based on UML::Dependency. It is a mechanism for associating one abstract model element to
refined model elements. It is a provision for grouping elements. The refinement process implies some additional
constraints between the abstract element and the refined elements.

When several application model elements are to be collectively allocated to execution platform elements they should first
be grouped using the dependency NfpRefine. Some NfpConstraints, like for instance ClockConstraint, should be
associated with this dependency to specify relations between the general element and the refined ones.

Extensions

* Dependency (from Dependencies).
Associations

» constraints: NFPs::NfpConstraint [*]
The set of constraints implied by the refinement.

UML Profile for MARTE, V1.2 133

Constraints

[1] A singledependency NfpRefine shall have only one client (from), but may have one or many suppliers (to).
context NfpRefine
inv: base_Dependency.from->size()=1 and base Dependency.to->size()>=1

[2] The client and the suppliers must be Time::TimedElement.

Notation

The relationship NfpRefine is a dashed line with an open arrow head. The arrow points in the direction of the refinement.
In other words, the directed line points “from” the element being refined “to” the elements that are the refined elements.

wallocateds {kind = application} sallocateds {kind = application]
«computingResource s acomputingResourcas
Processor Processor
! |
PEG B «assigns

{nature=timeScheduling} | {nature=timeScheduling}
| |

AN W
wallocatads aallocatads
«computingResource: scomputingResources
CPU CPU
1. Assignment within note and arrow 2. Assignment as a dashed arrow

(The arrow points in the direction of the allocation. In other words, the directed line points “from” the elements being
assigned “to” the elements that are the targets of the assignment.)

11.4 Examples

11.4.1 Unix process

Figure 11.8 shows an example of allocations with three layers. The first layer describes the application point of view, the
second layer represents the operating system internals, and the last layer shows the hardware parts. We use structured
classifiers to represent both hardware and software resources.

The example models the design of a given operating system family, not a particular implementation. It represents a typical
Unix operating system. A VxWorks model or an embedded Unix model would show a different partition of memory (e.g.,
no virtual memory). An Arinc653 OS model would show the explicit “partitions” as both space and time partitioning of
hardware resources.

A refinement down to Posix threads would show further partitioning of the CPU resources without further partitioning of
Memory.

134 UML Profile for MARTE, V1.2

Application

p : Process [256]
«allocated»{kind=application} «allocated»{kind=application}
«computingResource» «storage»
CPU Memory
| «allocate» {nature=timeScheduling} «allocate» {nature=spatialDistribution}
OperatingSystem
«allocated»{kind=executionPlatform} «storage»
VirtualMemory
<allocated» «allocated» «allocated» «allocated»
{kind=application} {kind=application} {kind=application} {kind=application}
«storage» «storage» «storage» «storage»
ReservedMemory OS_Memory Swap RootFs
«allocate» {nature=spatialDistribution} callocate, {nature=spatialDistribution}
) Hardware
«allocated» «allocated» «allocated» «allocated»
{kind=executionPlatform} {kind=executionPlatform} {kind=executionPlatform} {kind=executionPlatform}
«computingResource» «storage» «communicationMedia» «storage»
CPU Memory Bus Disk

Figure 11.8 - Allocation of Unix processes

The diagram shows several resources such as computing resources, communication media and storage (using stereotypes
defined in GRM), and how these resources can be grouped using a structured classifier and how they can be allocated to
more physical resources.

The lower layer in the diagram represents the hardware elements.

The top layer is the view from the application: a (Unix, in this example) process is a group involving a time shared access
to a computing resource, and a “spatial” partition in the virtual memory.

The intermediate layer is the implementation internals. The VirtualMemory is the high-level view as seen from the
application process. Physically, this virtual memory relies on two types of physical storage (the actual physical memory
and a hard disk).

This diagram is for illustration purpose. Often hard real-time application do not need to model the virtual memory and
swap space, since a prior analysis based on a simpler model would have verified that the worst case memory requirement
does not exceed available RAM memory.

11.4.2 System on Chip

To illustrate the use of the stereotype “clockRefine” we take the example of a system on chip (Figure 11.9). We first
decide that we need to have a digital signal processor (e.g., the OAK+) to compute floating point operations and a Risc
processor (e.g., an ARM 7) to control the whole application. The two processors are meant to communicate but we do not
elaborate on the communication itself at this point (Figure 11.9, upper part).

UML Profile for MARTE, V1.2 135

SoC
uclockTypes
wallocated »{kind=application} acomputingResources
cOomm ARMT
dsp . OAK+ - risc : ARM7
E sclockTypes
| «storages
i DPRAM
| uclockRefine»
4 { comm=ram;
~Z1,_ ramisFinerThan AHB; sclockTypes
~ 1 ™, ram isFinerThan GDP; } e s
-~ OAKZARM ™.
waliocateds .* : \\\ wallocateds «clockTypes
. {kind:exew%ianpé;rﬁodm; ') {kind=sgecutionPlatform), ecommunicationMediax
OAK_interface b1:GDF wallocateds b2 : AHB
Or E £ {kind=executionPlatform} =]—C
ram. DPRAM AHB_interface

Figure 11.9 - Communication refinement

We then decide to refine the communication (Figure 11.9, lower part). We use a double port Ram for the communication.
The bus coming from the OAK+ is the GDP bus and the bus coming from the ARM7 conforms to the AMBA High-
performance Bus specification. The “clockRefine” dependency specifies that these two connectors (GDP, AHB) and this
part (ram : DPRAM) are refinements of the connector comm. Each named element involved in these structured classifiers
are typed by a class stereotyped “clockType” (Figure 11.9, right part), which means there is no a priori assumption on
relative rates of each part of this diagram. Additionally, the clock constraints associated with the dependency constrain
these rates by stating that:

 The clock of the instance that is to be used to conform to the role ram is the same as the macroscopic clock perceived
for the global communication between the OAK+ and the ARM?7.

 The clock of this instance is finer than the clock of the two busses (b1l : GDP and b2 : AHB). This is probably an over
specification and the Time Model (Clause 9) offers several clock relations that allows for more accurate defining of
constraints.

Note that using a single dependency rather than three separate ones gives a stronger specification because the dependency
identifies a common context that gathers all four constrained elements.

11.4.3 Allocate activity group

To illustrate the use of the stereotype AllocateActivityGroup with take the example of a system described using an
activity (Figure 11.10). The activity groups (P1 and P2) represent processors that are the potential clients for the actions
of the activity. Because of the nature of the processor (digital signal processor or general purpose processor) and because
of the physical localization of sensors (used by actions inpC, outW and outZ) some processing elements cannot be
executed by one processor or another. For instance, the operation operl requires a hardware coprocessor not included on
processor P2. However, the operation oper2 can be allocated to both processors even though the cost of the allocation (not
represented here) could be different. An analysis tool could use this information to choose the best allocation regarding,
for instance, to a time budget.

136 UML Profile for MARTE, V1.2

Had we wanted to represent the allocation cost, we would have used the non functional property constraints defined in
NFP clause. For clarity, we can either draw explicitly dependencies or draw a separate table that would present the cost

of each allocation.

«allocate»
P1

«allocate»
P2

Figure 11.10 - Actions shared between two allocate activity groups

The table below illustrates how to complete the allocation information of Figure 11.9 to represent the cost.

Pl P2
inpC 4 ms 6 ms
operl 10 ms
oper2 10 ms 8 ms
outw 4 ms
outz 6 ms

We use the standard notation for NFP Constraints, either the simplify version or the full tuple notation. Several constraints
can be put in the same cell or a different table can be done for each different constraint. Any kind of NFP constraints can

be specified (e.g., time, power consumption).

UML Profile for MARTE, V1.2 137

138 UML Profile for MARTE, V1.2

Subpart Il - MARTE Design Model

This Subpart contains the following clauses.
* 12 - Generic Component Model (GCM)
* 13 - High-Level Application Modeling (HLAM)
* 14 - Detailed Resource Modeling (DRM)

| UML Profile for MARTE, V1.2 137

138 UML Profile for MARTE, V1.2

12 Generic Component Model (GCM)

12.1 Overview

The MARTE GeneralComponentModel presents additional concepts (with respect to usual component paradigms) that
have been identified as necessary to address the modeling of artifacts in the context of real-time and embedded systems
component based approaches. Figure 12.1 shows the dependencies of this package.

1

MARTE::CoreElements

1

MARTE::GenericComponentModel

Figure 12.1 - Dependencies of the GenericComponentModel package

Additionally, the MARTE generic component model defines shortcut notations that help in simplifying the modeling and
are useful in the application of component base strategies in the real-time and embedded systems domains.

12.2 Domain View

12.2.1 The GenericComponentModel Package

The domain model introduced in this specification for the MARTE Generic Component model is mainly an abstraction of
the UML structured classes. This model provides a common denominator among various component models, which in
principle do not target exclusively the real-time and embedded domain. The purpose is to provide in MARTE a model as
general as possible, that is not tied to specific execution semantics, on which real-time characteristics can be applied later
on. The MARTE generic component model relies mainly on UML structured classes, on top of which a support for
SysML blocks has been added. Providing a support for Lightweight-CCM, AADL and EAST-ADL2 have also influenced
the definition of some features of the MARTE Generic Component Model.

| UML Profile for MARTE, V1.2 139

Property

Marte::CoreElements::Foundations::

Marte::CoreElements::Causality::CommonBehavior::

ownedConnectors [*]

Connector

/kind : ConnectorKind [1]

owner [1]

ends [2..]

ConnectorEnd

blyPart

BehavioredClassifier
ownedPorts [*] [0..1]
InteractionPort (<@ StructuredComponent Assem
owner [1] Iparts [*]
endPort [0..1] [endPart [0..1]

« enumeration »

ConnectorKind

delegation
assembly

Marte::CoreElements::Foundations::
MultiplicityElement

Figure 12.2 - The bulk of the MARTE GenericComponentModel package

A StructuredComponent defines a self-contained entity of a system, which may encapsulate structured data and behavior.
The MARTE structured component specializes the BehavioredClassifier concept
(Marte::CoreElements::Foundations::BehavioredClassifier). It owns properties that can be used as AssemblyParts (within
an internal component description), attributes, or member ends of an association. When used as an assembly part, a
property is indicated in the parts reference. As mentioned in the CoreElements package, Property is similar to the
corresponding UML definition, i.e., it has a multiplicity in terms of upper and lower bounds, an aggregation kind and a
type (as a Classifier). InteractionPorts are a special kind of properties owned by a structured component. An interaction
port defines an explicit interaction point through which components may be connected (linked) through an assembly
connector, and through which they can communicate via message passing. Messages can represent operation calls,
signals, or simply data (as described below). One may also directly connect structured component with no ports. In any
case, related ports need to be compatible regarding their provided/required ClientServerFeatures or flow specifications

and directions.

140

UML Profile for MARTE, V1.2

« enumeration »
InteractionPort FlowDirectionKind Marte::CoreElements::Foundations::
; Property
in
out
inout
FlowPort FlowProperty
specification property
f/isAtomic : Boolean [1] FlowSpecification R[*] direction : FlowDirectionKind [1] = inout
direction : FlowDirectionKind [1] = inout [0.1]

Figure 12.3 - Flow ports of the GenericComponentModel package

One of the main reasons to have refined the UML model of composite structure within this specification is to support both
client-server like and data-flow like communication schemas.

FlowPorts have been introduced to enable data flow-oriented communication between components, where messages that
flow across ports represent data items. A flow port specifies the input and output items that may flow between a
structured component and its environment. The specification of what can flow is achieved by typing the flow port with a
specification of items that may flow along the ports and their connectors. This can include typing an atomic flow port
with a single type representing the items that flow in or out, or associating the FlowPort with a set of FlowProperties
(where each FlowProperty has its own direction, and is a specification of an item that flow).

As stated by Conrad Bock in [Bock], there are traditionally two ways for considering data-flow communications
semantics:

 The pull form of the data flow semantics with the following characteristics:

* Passive: the arrival of data in the data store does not trigger behaviors per se. It is indeed additional actions, for
example time-triggered actions, that when needed pull the data from the data store.

» Non-depleting: the use of data in the store does not remove it from the store.

 The push form of the data flow semantics, with the following characteristics:
+ Active: the arrival of data in the data store triggers execution of some behavior.

* Depleting: the data arriving on the port is not stored locally. Data is indeed conveyed to the triggered behavior.

Both forms are supported by the MARTE generic component model: the push form mainly relies on the UML event
model, while the pull form mainly relies on a particular usage of delegation connectors and properties (see next sub clause
related to the details of the GCM Causality model).

UML Profile for MARTE, V1.2 141

« enumeration »
ClientServerKind

InteractionPort provided
required

Z} proreq

ClientServerPort specification reature ClientServerFeature
lisAtomic : Boolean [1] ClientServerSpecification ["] | kind: ClientServerkind [1] = proreq
kind : ClientServerKind [1] = proreq [0.1]

Operation Reception

Figure 12.4 - Message ports of the GeneralComponentModel package

ClientServerPorts support a request/reply communication paradigm (also called client-server model of communication),
where messages that flow across ports represent operation calls or signals. A ClientServerPort owns a set of features,
called the ClientServerFeature. These features may be provided or required or even they may be in the same time
provided and required. When the ClientServerFeature is an Operation, it represents a service that the owning structured
component may provide and/or require via this port. In the case of a Reception, it represents a signal that they may
publish (in this case, we consider the feature is required) and/or consume (in this case, we consider the feature is
provided) via this port. Just like flow ports, a client server port can be atomic (i.e., /isAtomic = true). In this case, the
ClientServerPort has no features, and the port is directly typed (via its attribute type inherited from
Foundations::Property) by the signal it may produce and/or consume (with respect to its attribute kind).

Causality::CommonBehaviors::
Action

i

)) onPort)
InvocationAction InteractionPort
1
SendSignalAction CallOperationAction SendDataAction
% targetProperty [0..1]
BroadcastSignalAction FlowProperty

Figure 12.5 - Possible kinds of InvocationAction in the GenericComponentModel package

142 UML Profile for MARTE, V1.2

GCM also defines particular refinements of the Action concept (from Causality::CommonBehaviors) related to
communication aspects. For client-server communications, the SendSignalAction (and its BroadcastSignalAction variant)
and CallOperationAction are introduced respectively for expressing signal occurrence creations and operation calls. For
the dataflow communications, the SendDataAction is introduced for dealing with modeling of data emission.

12.2.2 On the MARTE Causality Model for GCM

This sub clause provides a description of the MARTE causality model in the context for the GCM. This description is
based on the concepts introduced in the package MARTE::CoreElements::Causality, and let’s notice that no particular
specializations of the concepts defined in this package have been required for GCM. Note that the package Causality uses
the concept of Request to denote the run-time manifestation of a communication in transit between an emitting instance
and a receiving instance.

The InteractionPorts of a StructuredComponent basically act as relay objects between the internals of the component and
its environment (i.e., when the StructuredComponent is used as an AssemblyPart in the context of a particular assembly).
When a request is sent by the environment (i.e., it is an incoming request from the perspective of the receiver), the
targeted port is in charge of delegating the request to the component internals, which handle the request by processing the
appropriate behavior. Similarly, when a request is sent by the structured component internals (i.e., it is an outgoing
request from the perspective of the sender), the targeted port is in charge of forwarding the request to the environment,
which must properly handle or process it. More generally, it can be said that GCM InteractionPort semantics is driven by
a kind of “request propagation process,” just like standard UML ports.

Of course, the way of handling and processing a request is strongly different if the request is related to a client-server like
communication (i.e., the request represents an operation call or a signal occurrence, and the client-server communication
has been put into action via a GCM CallOperationAction, GCM SendSignalAction, or GCM BroadcastSignalAction on a
GCM ClientServerPort) or if the request is related to a data-flow like communication (i.e., the request actually conveys a
data value, and the data-flow communication has been put into action via a GCM SendDataAction on a GCM FlowPort).
The “message propagation process” described above however remains the same for both kind of communications. Figure
12.6 (which provides an informal description of the way an incoming message is handled) and Figure 12.7 (related to the
handling of an outgoing message) are thus valid for both client-server and data-flow communications, as described below.

On the semantics about incoming requests on ports

The semantics related to incoming requests and defined in GCM is sketched in the following activity diagram shown in
Figure 12.6.

UML Profile for MARTE, V1.2 143

Semantics of Incoming Requests)

Lost Request Samantic Varation Point

ial
[Delegation Connectors] i [Partial Delegation]
Analysis of
delegation paths [Conflicting Ends of Delegation]
[else]
Reguest ref J Semantics of
:::;glr\.?dt Propagation > = Incoming Requests
on a port o p
. = Step A1
Generation of r Insertion of the ReceiveOccurence in
Mo Delegation Connectors] 3 ReceiveOceurence /-I\ the event pool of the context object
Step A2 & Stap A 3.h
Reques! recaived .
%% on an AssemblyPart | ;"l Request proc by the A blyPart l

Step 8.1 Step 8.2

Figure 12.6 - Schema of the various semantics related to incoming requests on port

When a request is received on a port (Step A.1 in Figure 12.6) owning delegation connectors, it is propagated to the
internals of the structured component (In UML, this case typically corresponds to a non-behavioral port). In this case, one
processes to an analysis of the possible delegation paths (Step A.2.a). It consists of selecting a delegation connector with
a connector end that is able to handle the request. If the delegation scheme is partial (i.e., no compatible connector is
found), the message is lost (as depicted by the final node Lost Request shown in Figure 12.6). For the particular case of
an operation call on a ClientServerPort, if the StructuredComponent directly realizes the called operation (i.e., in UML,
this fact would typically be captured by an InterfaceRealization relationship between the component and the interface that
is provided on the port), then the message is not lost and directly triggers the execution of the corresponding
StructuredComponent’s operation. In the opposite case where the analysis detects several connector ends that are able to
handle the request (i.e., ends are conflicting), the selection of the delegation connector is a semantic variation point (as
depicted by the final node Semantics Variation Point). Otherwise (i.e., one and only one delegation connector has been
detected), the request is propagated via the selected connector (Step A.3.a), and the handling process is recursively
involved (Step A.4.a). The conditions for a connector to be able to handle a request depend on the nature of the port
receiving the request:

« ClientServerPort: For a given delegation connector outgoing a ClientServerPort, one of the end (i.e., a ClientServerPort
or directly an assembly part) must have a provided or provided/required ClientServerFeature that is compatible with the
request. It means that if the request matches to a given signal occurrence, this feature must be a Reception with an
associated Signal that is type-compatible with the Signal occurrence of the received request. If the request matches to
an operation call, this feature must be an operation that is signature-compatible with the operation associated with the
call. The case where multiple ClientServerFeatures are compatible with the received request falls in the case of
Semantics Variation Point described above (i.e., the case with conflicting connector ends). Note that in the case where
the received request corresponds to a Signal, an alternative and valid delegation scheme concerns the case where the
delegation connector targets an atomic ClientServerPort which is type-compatible with the type of the signal.

« FlowPort: For a given delegation connector from this FlowPort, one of the end (that can be a FlowPort or directly an
assembly part) must have one of the following characteristics:

« Either it is an in or inout atomic flow port which type is compatible with the type of the received data.

144 UML Profile for MARTE, V1.2

* Or it is a port owning an in or inout flow property which type is compatible with the type of the received data. The
case where multiple flow properties are compatible with the message falls in the case of the Semantics Variation
Point described above (i.e., conflicting ends of connectors).

* Or it is an assembly part which type is compatible with the type of the received-data (this case matches to the pull
form of data-flow semantics considered by Step B.1 as described below).

If a request is received on a port that has no delegation connectors, a ReceiveOccurence (see 7.2.5) on the
Causality::Communication Package) is generated (Step A.2.b) and stored in the event pool of the context structured
component for further usages (Step A.3.b). Typically, these events can be used as Triggers by Behaviors processed in the
context of the receiving object (see description of Behavior, Trigger, Event and BehaviorExecution in 7.2.2 and 7.2.3).
Firstly, each ReceiveOccurence is associated with the information related to the received request (i.e., either, both the
operation that has been called and the associated parameters in the case of an operation call, or the values of the signal
properties in the case of a signal occurrence reception, or simply a value in the case of a data-flow communication).
Secondly, each ReceiveOccurence is made available to the Behaviors that use these events as triggers. Note that in the
particular case of a FlowPort, such events are used to support the push form of data-flow semantics (i.c., the availability
of a data, which is the consequence of a request reception, is manifested by the generation of an event).

The last possible case corresponds to the reception of a request directly on an assembly part (Step B.1). The way the
request is processed (Step B.2) varies according to the communication paradigm:

+ Client-server paradigm: Depending on the nature of the request (operation call or signal occurrence) and the way the
type of the assembly part has been specified (i.e., if the typing classifier is specified as a BehavioredClassifier or not.
See 7.2, either the request is stored as a ReceiveOccurence in the event pool of the receiving element for further usage,
or the request triggers directly the processing of a Behavior (e.g., in the case of an operation call).

+ Data-flow paradigm: Provided what we have described in the previous paragraphs and the fact that the type of the
assembly part is necessarily compatible with the type of the received data, the value of the received data is simply held
by the assembly part, and it will be persistently available for any behavior that need to use it. This case corresponds to
the pull form of data-flow semantics. Indeed, no ReceiveOccurence is generated in this case, and cannot therefore be
used to trigger a behavior.

On the semantics about requests outgoing from ports

The semantics related to incoming requests and defined in GCM is sketched in the following activity diagram shown in
Figure 12.7.

Semantics of Oulgoing Requesﬁ)

Semantic Variation Point

[via delegation connector] ref Semantics of

[Corflicting Ddlegation Ends) Outgoing Requests

i Step 4.
Reguest I:.—:alys:ii Reque's_-l eo 4.4
reception ppamag s propagation
Step 1 Stap 2 [Partial Delegation] Step 3

| ref J Semantics of
Incoming Requests

=tep 4. b

[via assembly connector]

Lost Message

Figure 12.7 - Schema of the various semantics related to incoming requests on port

| UML Profile for MARTE, V1.2 145

A request sent to port from internals of a structured component, either through a delegation connector, or directly by one
of the behaviors of the owning structured component, (step 1 of Figure 12.7) is propagated to the environment through
connectors (steps 2 and 3 in Figure 12.7). This request is either the consequence of a CallOperationAction or a
SendSignalAction (in the case of client-server communications), or it is the consequence of a SendDataAction (in the case
of data-flow communications). In the propagation process, the situation varies depending on the kind of connector,
delegation or assembly connector. In the case of a delegation connector, the propagation semantics is similar to what is
described above for the semantics of incoming requests (and it is subject to the same semantic variation points: partial
delegation or conflicting connector ends), except that the request propagation takes place in the opposite direction: the
request goes from the internals - parts or ports of these parts - towards the output ports of the owning structured
component, which are recursively in charge of forwarding the request to the environment through either another
delegation connector or an assembly connector (as captured by steps 4.a and 4.b in Figure 12.7).

12.3 UML Representation

The concepts presented in the domain view of the General Component Model are here mapped to concrete UML
stereotypes for implementing in practice the corresponding extensions to UML. The stereotypes proposed extend those
elements of UML that better catch the semantics, expressiveness, and notation of the concepts introduced, but there is not
formal relationship between these UML meta-classes and the concepts used in the domain view for its semantic
definition.

12.3.1 Profile Diagrams

« enumeration » :
L . enumeration
FlowDirectionKind C(f,lienl:Serve:'Kin)Z!
in « metaclass » -
Port prow_ded
out " ° required
inou ﬁ proreq
« stereotype» « stereotype» « enumeration »
FlowPort ClientServerPort PortSpecificationKind
f/isAtomic: Boolean [1] IspecificationKind : PortSpecificationKind [1]= interfaceBased N ia:tc:an:flacceBased
direction: FlowDirectionKind [1] = inout kind: ClientServerKind [1] = proreq featureBased
provinterface, |, [*] reqinterface ||, [*]
« metaclass » « metaclass » « metaclass »
Property Interface BehavioralFeature
‘ featuresSpec [0..1] T
« stereotype » « stereotype »
FlowProperty « stereotype » « stereotype » ClientServerFeature
T T N K FlowSpecification ClientServerSpecification
direction: FlowDirectionKind [1] = inout kind: ClientServerKind [1] = proreq

Figure 12.8 - UML2 profile of the MARTE GeneralComponentModel

146 UML Profile for MARTE, V1.2

« metaclass » port « metaclass » onPort « metaclass »
Trigger " Port [0..1] InvocationAction

A

onPort | [0..1] invocations | [0..1]

« metaclass »
« stereotype » feature Behavior

GCMTrigger 1
« metaclass » §

Feature

onFeature « stereotype »

[GCMlInvocatingBehavior

« metaclass »
AnyReceiveEvent

i onFeature

1

« stereotype »
GCMinvocationAction

« stereotype » classifier « metaclass »

DataEvent 1 Classifier

Figure 12.9 - UML2 profile of the MARTE GeneralComponentModel, event and communication

« metaclass » « enumemtif:n »
Property DataPoolOrderingkind
FIFO
' LIFD
UserDefined
slerectype » insertion
DataPoaol
i — ©.1 « metaclass »
ordening : DataFoolOrderingKind [1] = FIFO seleciion Behavior
[0.1]

Figure 12.10 - UML2 profile of the MARTE GeneralComponentModel, DataPool
12.3.2 Profile Elements Description

This sub clause describes in details each elements introduced in the profile diagram described previously. The following
list is sorted in alphabetical order.

12.3.2.1 ClientServerKind

It is used with atomic ClientServerPorts to specify the direction of a signal that types the port. It can also be used to
specify the direction of ClientServerBFeatures.

Literals
* required
Used to model that an operation or a (signal) reception is required.

* provided
Used to model that an operation or a (signal) reception is provided.

UML Profile for MARTE, V1.2 147

* proreq
Used to model that an operation or a (signal) reception is both provided and required.

12.3.2.2 ClientServerFeature

This ClientServerFeature stereotype maps both Reception and Operation domain elements as described in F.6.17 and
F.6.18.

Issue 16012 - udpate text

A ClientServerFeature specifies the nature of a BehavioralFeature owned by interfaces stereotyped as
ClientServerSpecification. If kind is required it is expected to be a required operation or required signal reception while if
kind is provided, it is expected to be a provided operation or provided signal reception.

Extensions
- BehavioralFeature (from UML::Kernel)

Generalizations

» None

Attributes

» kind: ClientServerKind [1] =proreq
Define the nature of the ClientServerFeature.

Associations

» None

Constraints

» None

Notation

When applying the stereotype ClientServerFeature using the iconographical notation, the following icons are used.

Icon Usage
Q For a provided behavioral feature (i.e., kind = provided).
(For a required behavioral feature (i.e., kind = required).
CO For a behavioral feature which is both provided and required (i.e., kind = proreq).

12.3.2.3 ClientServerPort

This stereotype maps the ClientServerPort domain concept defined in F.6.6.

148 UML Profile for MARTE, V1.2

The main purpose of the ClientServerPort stereotype is to provide a mechanism for specifying provided and required
behavioral features of standard UML ports, which is more intuitive and direct than the standard UML mechanism (which
relies on derivation rules based on the port type, and the set of Usage and InterfaceRealization relationships associated
with this type). ClientServerPort can be seen as a kind of “syntactic sugar,” and a client-server port is thus semantically
equivalent to a standard UML port. It practically means that a GCM model (i.e., a UML model on which the GCM
subprofile has been applied) can be defined using standard UML ports, on which the ClientServerPort has not been
applied.

We identify three potential usages of ClientServerPort (where a particular usage is technically captured by the
specificationKind:PortSpecificationKind derived property):

+ Atomic usage: the designer wants to directly associate a signal with the port (i.e., the port is typed by the signal),
specifying that the component owning the port is either able to send (i.e., ClientServerPort::kind = required) or receive
(i.e., ClientServerPort::kind = provided) the signal via this port.

« Interface-based usage: the designer wants to directly provide and/or require standard UML interfaces on a port. In this
case, the port is not typed, and the set of provided and required interfaces are specified via properties of the
ClientServerStereotype (i.e., provinterface and reqlnterface respectively).

+ Feature-based usage: the designer wants to associate a ClientServerSpecification (i.e., a consistent set of behavioral
features, some of which may be provided or required) with the port. In this case, the port is not typed, and the
ClientServerSpecification is specified via the property specification of the stereotype ClientServerPort.

In the case of Feature-based usage, if the property “isConjugated” (from UML ports) is true, all the directions of the
ClientServerFeatures specified by a ClientServerSpecification that characterizes a featureBased ClientServerPort are
exposed in the opposite kind (i.e., a provided feature is treated as a required feature by the ClientServerPort). In the case
of an atomic or interface-based usage, the value of “isConjugated” is ignored.

Note that in the case of the atomic usage, a ClientServerPort typed by a signal means that emission or reception of the
signal can occur over that port (with respect to the kind of the port). It is equivalent to a standard UML port exposing an
Interface with a Reception for this signal, and does not introduce any new communication paradigm.

The fact that FlowPort enables the same kind of construction (i.e., an atomic FlowPort which is typed by a signal) may be
confusing. It comes from the fact that the FlowPort concept has been defined in the context of SysML, and reused without
changes in the definition of MARTE for compatibility purposes. MARTE thus provides two syntactic means for
specifying atomic ports. They are however semantically equivalent and they can be used jointly in a same model.
Examples of such combined usages of atomics FlowPorts with standard UML ports or ClientServerPorts are illustrated in
Figure 12.12, Figure 12.13, Figure 12.14, and Figure 12.15.

UML Profile for MARTE, V1.2 149

Delegation Connector | Reception Semantics

Behavioral ClientServerPort

NO

A MessageEvent (i.e., a CallEvent or a SignalEvent) is raised and stored in the
event pool of the receiving instance.

7O

YES

In MARTE, we consider such model to be ill-formed.

Non-Behavioral ClientServerPort

NO
If the classifier of the receiving instance directly realizes the behavioral feature, the

reception of the message directly triggers a call to this behavioral feature (and no
MessageEvent is generated).

If the behavioral feature is not realized by the classifier of the receiving instance,
the message is lost.

YES The received message follows one of the available delegation connectors, so that
the message is handled by the delegation target.
If multiple connectors can be followed (i.e., multiple targeted elements are able to

handle the message), the choice of the connector to be followed is a semantic
o i i

variation point (for more details, let’s see the “Conflicting End” semantic variation
point, in 12.2.2 on the causality model of the MARTE GCM).

Extensions

 Port (from UML::Ports)

Generalizations

* None

Attributes

150

/specificationKind : PortSpecificationKind [1] = interfaceBased
A derived property describing the way how the set of provided or required functionalities of the port has been
specified. Cf. the description or PortSpecificationKind for a description of the different ways of specifying the set of
required/provided functionalities (and consequently to derive the value of /specificationKind).

kind : ClientServerKind [1]
In the case where the ClientServerPort is atomic (i.e., specificationKind = atomic), this property enables to directly
specify the kind of the port. In the case where the ClientServerPort is interface-based (i.e., specificationKind =
interfaceBased), then the value of the kind property must be consistent with the set of interfaces associated with the
port (via the provInterface and reqInterface properties). If provInterface is the only property to be used, then kind
must be equal to provided. If only reqInterface is used, then kind must be equal to required. If both properties are
used, then kind must be equal to proreq. Finally, in the case where the port is feature-based (i.e., specificationKind =
featureBased), then the value of the kind property must be consistent with the ClientServerSpecification associated

UML Profile for MARTE, V1.2

with the port (via the featuresSpec property) and with the fact that the port is conjugated or not. If the
ClientServerSpecification only owns provided features, kind must be equal to provided (required if the port is
conjugated). If the ClientServerSpecification only owns required features, kind must be equal to required (provided
if the port is conjugated). If it contains provided and required features, kind must be equal to proreq.

Associations

» specification : ClientServerSpecification [0..1]
The ClientServerSpecification used to specify the set of ClientServerBFeature provided/required by the port. This
case corresponds to what we call a “featureBased” usage of ClientServerPort (i.e., /specificationKind =
featureBased).

* provinterface : Interface [0..*]
The set of interfaces provided by the ClientServerPort. It is important here to notice that this property is not derived,
as opposed to the “provided” property of standard UML ports. “provinterface” can be seen as a shortcut to provide a
set of interfaces on a port, without using the standard UML mechanism based on port type. This case corresponds to
what we call an “interfaceBased” usage of ClientServerPort (i.e., /specificationKind = interfaceBased). Note that the
“provInterface” property can be used jointly with the “reqInterface” property.

* reqlnterface : Interface [0..*]
The set of interfaces required by the ClientServerPort. Again, it is important to notice that this property is not derived,
as opposed to the “required” property of standard UML ports. “reqInterface” just provide a shortcut. This case also
corresponds to what we call an “interfaceBase” usage of ClientServerPort (i.e., /specificationKind = interfaceBased).
The “reqInterface” property can be used jointly with the “provInterface” property.

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.
[2] Interfaces contained in ClientServerPort.provinterface cannot be FlowSpecification or ClientServerSpecification.
[3] Interfaces contained in ClientServerPort.reqInterface cannot be FlowSpecification or ClientServerSpecification.

[4] If ClientServerPort.specificationKind = atomic, then: NOT(Port::type.isEmpty) and Port::type instanceof Signal and
provinterface.isEmpty and reqInterface.isEmpty and specification.isEmpty.

[6] If ClientServerPort.specificationKind = interfaceBased, then: Port::type.isEmpty and NOT(provinterface.isEmpty and
reqlnterface.isEmpty) and specification.isEmpty.

[7] If ClientServerPort.specificationKind = featureBased, then: Port::type.isEmpty and NOT(specification.isEmpty) and
provinterface.isEmpty and reqlnterface.isEmpty.

[8] The ClientServerPort.kind property is only applicable to atomic ClientServerPorts.

[9] The ClientServerPort.isConjugated property is only applicable to featureBased ClientServerPorts.

UML Profile for MARTE, V1.2 151

Notation

The following graphical notation may be used:

Icon Usage
Q For a ClientServerPort with kind = provided.
C For a ClientServerPort with kind = required.
<© For a ClientServerPort with kind = proreq.

Figure 12.11 denotes a UML Component (CarSpeedRegulator) with an atomic ClientServerPort typed by the Start signal.
Figure 12.16 illustrates the usage of the notation for interface-based ClientServerPorts.

« signal » « clientServerPart » €] £]
Start on: Start [1] CarSpeedRegulator CarSpeedRegulator
targetSpeed: Integer [1] on: Start [1]
{i} icon + text form (i) icom farm
Figure 12.11 - Example of atomic client-server port
lisAtomic = true
direction = inout
ﬁuwF'nrl W
P Sig 4 Req_ISig winterface » Sianal
: « Signal »
a; C‘Dmpﬁ |$|g s|g
ISig w« signal » Sig
A
r:1Sig Lo Use »
Req_lSig

ISig

Figure 12.12 - Combined usage of atomic FlowPorts with standard UML ports

152 UML Profile for MARTE, V1.2

Ispecificationkind = atomic
kind = required

o Poits ¥ diantSamrl'—%n 0

p Sig q : Sig
a: ComphA

« clienggerverPort »
RO S
-

IspecificationKind = atomic Iﬁ

b : CompB

kind = provided

Figure 12.13 - Combined usage of atomic FlowPorts with "atomic" ClientServerPorts

provinterface =]
reqInterface = [1Sig]

JspecificationKind = interfaceBased ﬁ

u?omet w dlientServerfirt »
p: Sig q:

a: Comph

b : CompB

{:IiemSewgPon W
s, T

\
-

provinterface = [|Sig)

fspecificationkind = interfaceBased
reginterface =[]

Figure 12.14 - Combined usage of atomic FlowPorts with "interfaceBased" ClientServerPorts

fspecificationkind = featureBased
specification = CompBlnterfaceSpac
isConjugated = trus

W ‘T:I‘manrt W ® clientServerFort »

P Sig q: « clientServerSpecification »
a: CompA CompBlinterfaceSpec

b : CompB « sigréa] » Big

D

“ clientServsrPon »
L

,
\
.\
s « clientServerBFeature »
Ispecificationkind = featureBased kind = provided

specification = CompBIntarfaceSpec
isCanjugated = false

Figure 12.15 - Combined usage of atomic FlowPorts with "featureBased" ClientServerPorts

When a message port is non-atomic, the following icon may be used for the stereotype (Example in Figure 12.4): <.

UML Profile for MARTE, V1.2 153

« chentServerPort »

CarSpeedRegulator rrL1] CarSpeadRegulator

rspacihcataniind = inleracelased
Tagliteracs = [Reglmarass]

(i} icon + text form (i} icon form
Figure 12.16 - Example of interface-based ClientServerPorts

12.3.2.4 ClientServerSpecification

1]

The ClientServerSpecification stereotype is related to ClientServerFeature domain elements as described in F.6.4.

A ClientServerSpecification provides a way to define specialized interface that allows for defining its nature in terms of

either its ability to receive and send UML signals, or of its provided and required operations.

Extensions

 Interface

Generalizations

» None

Attributes

» None

Associations

» None

Constraints

[1T A ClientServerSpecification can only own ClientServerBFeatures, i.e., Operations and/or Receptions on which the

ClientServerBFeature stereotype has been applied. It cannot own properties.

Notation

When applying the stereotype using its iconographical or shape forms, following icons are used.

Icon Usage
, For ClientServerSpecification with kind = required, when all the features contained in the interface are
signal receptions.

154

UML Profile for MARTE, V1.2

. For ClientServerSpecification with kind = provided, when all the features contained in the interface are
signal receptions.

For ClientServerSpecification with kind = required, when all the features contained in the interface are

7

operations.
Q For ClientServerSpecification with kind = provided, when all the features contained in the interface are
operations.
N ssi?"::l » « interface » interface »
2 « elientServerSpecification » SpeedSensorFS
targetSpead ; Integer [1] {kind = provided}
SpeedSensorFS X stan) SpeedSensorFS
A stari() (iv) shape form

Figure 12.17 - Examples of ClientServerSpecification

12.3.2.5 DataEvent

DataEvent extends the AnyReceiveEvent metaclass, which is the most generic kind of concrete MessageEvent of UML.
DataEvents are raised when messages (which have been created as a consequence of a SendObjectAction) are received on
a behavioral FlowPort. They are then stored in the pool of events of the owning object just like any other kind of UML
events would be. It implies that the UML semantic variation points related to the management of events in the events pool
also applies to event stereotyped with “DataEvent” (see UML2 Superstructure, 13.3.4 BehavioredClassifier for more
details about event management in UML). Particular semantic interpretation on the way data-event are handled would
thus require a specialization of the MARTE Generic Component Model, such as the one discussed in the HLAM clause.
The definition of “DataEvent” mimics the definition of the UML SignalEvent metaclass in the sense that it is possible to
attach a classifier to the event in order to characterize it (just as it is possible to attach a Signal to a SignalEvent).
DataEvents can then be exploited by triggers of StateMachine transitions or triggers of AcceptEventActions in activity
diagrams for example so that it is possible to specify reactions to reception of data of a particular type (i.e., data which
are typed by a classifier compatible with the classifier associated with the DataEvent). Note that in UML such triggers can
natively be related to the port from which the DataEvent has been raised. In order to avoid overlapping with UML
SignalEvent, a constraint imposes that the classifier associated with the DataEvent cannot be a Signal.

Extensions

+ AnyReceiveEvent (from UML::Communications)

Generalizations

« None

Attributes

* None
Associations

» classifier : Classifier [1]
The specific classifier that is associated with this event.

UML Profile for MARTE, V1.2 155

Constraints

[1] classifier can be any UML Classifier that can be used to type an atomic FlowPort or a FlowProperty (i.e., DataType
or Class) except a Signal.

12.3.2.6 DataPool

The DataPool stereotype extends the UML Property metaclass. It is used to specify the storing policy of a flow port that
semantics is to be a “pull-semantics.” The stereotype has to be applied on a property of the port owner and the property
must be linked to the flow-port by a delegation connector. The multiplicity of the property is used to define the size of the
store associated to the flow port. Infinite pool may be specified by setting to "*" the upper value of the multiplicity.

When such a DataPool also has a connector targeting an input parameter of a behavior (see 12.3.2.9, ’FlowPort’ about
FlowPort, sub-clause concerning the use of connectors between properties and parameters of behavior), the DataPool also
specify the policy that determines what are the values that will actually be used as input parameters of the targeted
behavior (when this behavior will be called). The property ordering is used to specify the insertion and selection policies.
Two default policies are pre-defined: FIFO and LIFO (see 12.3.2.7, DataPoolOrderingKind’ on DataPoolOrderingKind).
It is a MARTE semantics variation point to define what happen in case of the DataPool is full (i.e., the upper-bound
multiplicity associated with the DataPool has been reached). In MARTE, however we define the following default
semantics: for both predefined policies (FIFO and LIFO) the reception of a new data while the pool is full will not be
blocking. The oldest data contained in the pool is lost to the benefit of the freshest one.

For flexibility purposes, it is possible to specify user-defined policy for managing the data pool. In this case, the property
ordering must be set to UserDefined, and properties, insertion and selection, of the stereotype DataPool must be used to
reference specific behaviors. These behaviors encapsulate then the explicit user-defined description of how data should be
inserted and selected from the pool (see Example 4 in the notation clause below). Finally, as denoted in the following
constraint clause, let's notice that two constraints have been defined in order to model the behaviors describing the user-
defined insertion and selection policy.

Extensions
 Property (from UML::Kernel)

Generalizations

+ None

Attributes

* ordering : OrderingKind [1] = FIFO
It denotes how data are to be inserted and selected from the DataPool.

Associations

* insertion : Behavior [0..1]
It references a behavior describing the policy for the insertion of data in the DataPool.

» selection : Behavior [0..1]
It references a behavior describing the policy for the selection of data from the DataPool.

156 UML Profile for MARTE, V1.2

Constraints

[1] If the Property ordering is set to UserDefined, it implies that both properties insertion and selection have to be
specified.
self.ordering = UsedDefined implies (self.insertion.size()=1 and self.selection.size()=1)

[2] The Behavior referenced by the property insertion must have one and only one parameter. Its direction must be in or
inout and its type that is compatible with the type of the FlowPort connected to the DataPool.

[3] The Behavior referenced by the property selection must have one and only one parameter. Its direction must be return
and its type and its multiplicity must be compatible with the type and the multiplicity of the Parameter connected to
the DataPool (see example 4 shown on Figure 12.25).

12.3.2.7 DataPoolOrderingKind

The DataPoolOrderingKind is used in the context of a DataPool to specify both insertion/selection policies of data in the
pool.

Literals
« FIFO

The first element inserted in the DataPool is the first element to be selected.
« LIFO

The last element inserted in the DataPool is the first element to be selected.

» UserDefined
The insertion and selection policies are user-defined (see 12.3.2.6, DataPool’).

12.3.2.8 FlowDirectionKind
This enumeration maps the FlowDirectionKind domain concept defined in Annex F (F.6.8).

It is used with atomic flow (or message) ports to specify the direction of a flow element or a signal that types the port. It
can be also used with non-atomic flow (or message) ports to specify the direction of a flow specification (or signal
specification), or the direction of its owned properties.

Literals

e in
The direction of the information flow is from outside to inside of the owning entity. When related to a signal, it is
usual to say that the signal is consumed.

e out
The direction of the information flow is from inside to outside of the owning entity. When related to a signal, it is
usual to say that the signal is produced or published.

* inout
The information flow is bidirectional.

12.3.2.9 FlowPort

This stereotype maps the concept of FlowPort defined in Annex F. A FlowPort may relay incoming, outgoing, or
bidirectional flows. The nature of the flow is specified by the type of the port in the case of an atomic flow port. A flow
also can be specified in terms of flow specifications and flow properties, in the case of a non-atomic flow port.

UML Profile for MARTE, V1.2 157

In the case where the flow port is not atomic, if the property “isConjugated” (from UML ports) is true, all the directions
of the flow properties (FlowProperty) specified by a FlowSpecification that types a port are relayed in the opposite
direction (e.g., an incoming flow property is treated as an outgoing flow property by the FlowPort). If the post is atomic
the value of “isConjugated” is ignored.

In the case where a FlowPort (or FlowProperty) is typed by a Signal, the UML SendSignalAction is used to create a
signal instance and transmit it via the port (or FlowProperty). For other kind of types (i.e., DataType or Classes) and as
shown in example 1 of the next notation clause, the designer may use the UML SendObjectAction for sending data on a
port. Since SendObjectAction inherits from InvocationAction, it is natively possible to determine the port on which the
SendObjectAction is applied, via the property onPort of InvocationAction (see “GCMInvocationAction” for the ability to
specify the flow property of a non-atomic flow port that is concerned by SendObjectAction). SendObjectAction is an
action that transmits an object to the target object. In our case, the transmitted object is a message encapsulating the data
that has been put on its input pin denoted by its metaproperty request.

As stated in the domain view, the MARTE Generic Component Model supports the two following main forms of dataflow
communications: the “push” semantics and the “pull” semantics.

For the push semantics, the execution of a SendObjectAction results in the emission of a message encapsulating the sent
object. When such a message is received on a target behavioral flow port, a “DataEvent” (see 12.3.2.5, ’DataEvent’ for a
deeper description of DataEvent) is raised on the receiving side (In the case of a non-behavioral FlowPort, data are
propagated along associated delegation connectors, and no event is raised at all). DataEvents raised consequently to data
receptions on behavioral ports are then stored in the event pool of the owning object just like any other kind of UML
events would be. It implies that the UML semantic variation points defined in the UML2 specification and related to
event management also apply to DataEvent. Additional semantics on how DataEvent are handled would thus require a
specialization of the GCM semantics, such as the one discussed in the HLAM sub-profile of MARTE.

DataEvents can be exploited by triggers of transitions within a StateMachine, or by triggers of AcceptEventActions within
an Activity (as illustrated in example 2 of the next notation sub clause). Hence, it is possible to specify reactions to
reception of data of a particular type (i.e., data which are typed by a classifier compatible with the classifier associated
with the DataEvent). Note that such triggers can natively be related to particular ports (i.e., the ports from which the
DataEvent have been raised). The “active” characteristic of the “push” semantics is covered because the reception of a
data on a behavioral FlowPort raises a DataEvent that can be used as a trigger in a behavior. The “depleting”
characteristics of the “push” semantics is covered because, according to the standard UML semantics, once an event has
been consumed by a behavior, it is no longer available in the event pool to trigger other behaviors.

Concerning the “pull” semantics of MARTE’s FlowPorts, no particular extensions are required. A simple modeling
pattern (as suggested by SysML and by Conrad Bock in [Bock], respectively for the usage of delegation connectors and
the usage of properties for persistent data storage and non-depleting data use) is sufficient.

According to the UML 2 superstructure, a non-behavioral port should have delegation connectors, so that incoming
requests can be propagated along these connectors to parts of the composite structure owning the port. In other case, the
messages arriving on a non-behavioral port without out delegation connectors are considered to be lost. If out delegation
connectors exist, the connected parts either delegate the requests to some of their parts, or deal directly with the request
triggering the execution of one of their behaviors. At the end of the delegation chain, a non-behavioral input atomic flow
port should have at least one delegation connector targeting a part which is type-compatible with the port. When a data is
received on such a port and delegated through the connector, no DataEvent is raised (which is in line with the “passive”
characteristics of the “pull” form of the data flow semantics). In this case, the semantics says that the data is written in the
part targeted by the delegation connector, replacing any existing value. The data stored on the targeted property can then
be used when needed by the behavior of the component, typically via a ReadStructuralFeatureAction (which has no
depleting effect on the value of the property). This case is illustrated in Example 3 of the next notation sub clause. For
more complex storage policies, the stereotype «dataPool» can be applied to the targeted property, in order to describe how

158 UML Profile for MARTE, V1.2

received data are inserted in the property, and how they are selected when they are needed (see 12.3.2.6, ’DataPool’ for a
precise description of the DataPool concept). This rule can be extended for non-atomic flow ports, where each flow
property should be associated with a delegation connector (by convention and for simplicity, when one of the flow
properties is not associated with a delegation connector, the FlowPort should be behavioral, and then the data received on
this FlowPort and related to this FlowProperty will raise a DataEvent).

”push” Semantics

connector targeting
directly an input
parameter (In or Inout) of
the classifier behavior.

?
(X} inparam
-

—
(3} nperam

I
{streaming}

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
Flowport
True No A Dataevent is raised when data | Events in the event pool can be
is received on the port. This used to trigger any behavior
event is then stored in the event | executing in the context of the
pool of the receiving instance. receiving object. Once they have
been used as a trigger for one of
these behaviors, they are
removed from the event pool,
— and no longer available for other
[]E behaviors (see Example 2
shown in Figure 12.23).
True Yes In Marte, this kind of model is considered as ill-formed.
False There exists a delegation The data received on the port is | The semantics of token

made available as a data token
on the In or Inout parameter (of
the executing classifier
behavior) targeted by the
delegation connector.

consumption is those of Uml 2
activities (i.e., depleting). See
Uml 2 Superstructure, Clause 11
Actions and Clause 12
Activities for more details.

For the data passed as a
parameter to be accepted by the
behavior while it is executing,
the parameter must be specified
as a streaming parameter (See
Example 5 shown in Figure
12.26).

UML Profile for MARTE, V1.2

159

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
Flowport
False There exists a delegation Data received on the port will be | Data values held in the property
connector targeting a stored on the property targeted are persistently available to Any
property. by the delegation connector, and | behavior that is (or will be)
replace any value contained in executing in the context of the
the property. receiving instance. These data
If the stereotype «datapool» is can simply be accessed via a
« dataPool » applied on the targeted property, | read structural feature action
p1: Typet received data will be inserted in | when needed (See Example 3
the property with respect to the | shown in Figure 12.24).
policy specified by the property | A delegation connector between
'ordering' of the stereotype such a property and an input
2 «datapool». parameter of a behavior
E If ordering is set to user defined, | (typically owned by the owner
g the user-defined insertion of the property) can be used as
@ behavior (referenced by the an alternative. When this
% property insertion of the behavior is called (e.g., its
2 stereotype «datapool») execution is triggered by a
determines how received data transition on a Statemachine),
must be inserted in the property. | values that are passed as input
parameters to this call are those
contained in the property. If the
stereotype «datapool» is applied
on the property, then the values
to be passed as input parameters
are those determined by the
ordering policy (see Example 4
shown in Figure 12.25).
False No Incoming data are considered to be lost in this case.

160

UML Profile for MARTE, V1.2

*Push” semantics

connector targeting
directly an input
parameter (in or inout) of
the classifier behavior.

?
(X} inparam
-

—
(3} nperam

I
{streaming}

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
FlowPort
TRUE NO A DataEvent is raised when a Events in the event pool can be
data is received on the port. This | used to trigger any behavior
event is then stored in the event | executing in the context of the
pool of the receiving instance. receiving object. Once they have
been used as a trigger for one of
these behaviors, they are
removed from the event pool,
— and no more available for other
[’E behaviors (see Example 2
shown in Figure 12.23).
TRUE YES In MARTE, we consider this kind of model as ill-formed.
FALSE There exists a delegation The data received on the port is | The semantics of token

made available as a data token
on the in or inout parameter (of
the executing classifier
behavior) targeted by the
delegation connector.

consumption is those of UML 2
activities (i.e., depleting. See
UML 2 superstructure, Clause
11 Actions and Clause 12
Activities for more details).

For the data passed as a
parameter to be accepted by the
behavior while it is executing,
the parameter must be specified
as a streaming parameter (see
Example 5 shown in Figure
12.26).

UML Profile for MARTE, V1.2

161

Behavioral | Delegation Connector | Reception Semantics Consumption Semantics
FlowPort
FALSE There exists a delegation Data received on the port will be | Data values held in the property
connector targeting a stored on the property targeted are persistently available to any
property. by the delegation connector, and | behavior that is (or will be)
replace any value contained in executing in the context of the
the property. receiving instance. These data
If the stereotype «DataPool» is | can simply be accessed via a
« dataPool » applied on the targeted property, | ReadStructuralFeatureAction
p1: Typet received data will be inserted in | when needed (see example 3
the property with respect to the | shown in Figure 12.24).
policy specified by the property | A delegation connector between
'ordering' of the stereotype such a property and an input
«DataPooly. If ordering is set to | parameter of a behavior
.E’ UserDefined, the user-defined (typically owned by the owner
g insertion behavior (referenced of the property) can be used as
§ by the property insertion of the an alternative. When this
2 stereotype «DataPool») behavior is called (e.g., its
E determines how received data execution is triggered by a
s must be inserted in the property. | transition on a statemachine),
values that are passed as input
parameters to this call are those
contained in the property. If the
stereotype «DataPool» is
applied on the property, then the
values to be passed as input
parameters are those determined
by the ordering policy (see
example 4 shown in Figure
12.25).
FALSE NO Incoming data are considered to be lost in this case.

12.3.2.10 Linking FlowPorts with Activity Parameters

As UML 2 activities naturally behave following a data-flow communication paradigm, we provide modeling patterns to
relate non-behavioral flowports to parameters of an Activity. The two forms of data flow semantics defined in MARTE

are addressed next:

+ “pull” semantics: A standard UML connector is expressed between a property (which used to be the target of a
delegation connector, but does not need to be) of the component and an in or inout parameter of a BehaviorFeature
(such as an Operation that would typically belong to the owner of the port, but does not need to be) or a Behavior. It
means that the values passed to the parameters of the behavior or BehavioralFeature when they are called are actually
the values of the connected properties. The connectors just prevent from the usage of an explicit
ReadStructuralFeatureAction to get the value associated with the properties. Note that this usage of connectors is
compatible with the abstract syntax of UML, as both Property and Parameter are ConnectableElements. In the case
where the connected property is stereotyped with “DataPool,” the Behavior referenced by its property selection is used

162

UML Profile for MARTE, V1.2

to determine what are the values to be selected from the property that is the data pool in this case and then that are to be
passed to the parameter (as illustrated in example 4 of the notation sub clause).

+ “push” semantics: Connectors are directly expressed between input non-behavioral flow ports (respectively the output
flow ports) and input parameters (respectively the output parameters) of the Activity denoting the classifierBehavior®
of the composite structure owning the ports. The idea is that each data received on a flow port will be propagated to a
parameter of the classifier behavior. The data associated with the input message will be handled as a token on an
ActivityParameterNode corresponding to the parameter. The token will then enter the chain of computation described
by the set of object flows and actions of the activity (with respect to the token propagation semantics of UML
activities). At the end of the computation chain, tokens will be propagated to ActivityParameterNodes corresponding to
output parameters of the Activity. If a delegation connector is expressed between such a parameter and an output flow
port of the component, a message containing the produced data will be emitted through the flow port (just as if a
SendObjectAction with this value would have been applied on the flow port). The standard semantics of UML
activities implies that tokens related to input pins of a CallBehaviorAction must be available for the called activity to
start and that tokens corresponding to output parameters the CallBehaviorAction are then available on its output pins
only once the invoked activity is finished. The execution of an Activity finishes when one of its final node has been
reached by a control token. If final nodes are omitted in the specification of the Activity, the execution finishes when
output values have been produced for each of the required output/return parameters of the Activity (with respect to the
lower bound of their multiplicity).

Notice that parameters of a behavior may be specified as streamed (see the definition of property isStream in UML
2 Superstructure, clause 12.3.41 Parameter). In that case, the invoked activity may accept tokens on its input
parameter and may also produce results on its output parameters while running. Therefore, if the classifier behavior
of a structured class (described by an Activity) needs to accept / produce data on its parameters while it is
executing (which is probably the most usual case), the usage of streaming parameters on the classifier behavior
may be required, as illustrated in Example 5 shown in Figure 12.26.

Extensions
 Port (from UML::Ports)

Generalizations

» None

Attributes

* isAtomic: Boolean [1] = false
If true, the port is said to be an atomic port, otherwise it is considered as a non-atomic port. An atomic port is typed by

a Classifier, Signal, a DataType, or a PrimitiveType.

» direction: FlowDirectionKind [0..1] = inout
If the port is atomic, the direction property specifies the direction of the flow. If the port is non-atomic, the direction
property must be consistent with the direction of the FlowProperties owned by the FlowSpecification specifying this
non-atomic FlowPort. If the FlowSpecification only owns in FlowProperties, then the direction of the FlowPort must
be in (out if the port is conjugated). If the FlowSpecification only owns out FlowProperties, then the direction of the
FlowPort must be out (in if the port is conjugated). If it contains both in and out properties, then the direction of the
FlowPort must be inout.

6. In UML, when a BehavioredClassifier is instantiated, its classifier-behavior is started. When the execution of the classifier-behavior
finishes, the context instance (i.e., the instance of BehavioredClassifier that is hosting the execution of the classifier -behavior) is also
terminated.

| UML Profile for MARTE, V1.2 163

Associations

* None

Constraints

[1] A conjugated port may be involved in only bidirectional connector, i.e., connector with exactly two connector ends.

[2] A conjugated port cannot be an atomic port.

self.isConjugated = true implies self.isAtomic = false

[3] The type of a non-atomic flow port has to be a flow specification (i.e., an interface stereotyped with
“flowSpecification”).

[4] A behavioral flow port cannot have delegation connectors.

Notation

The following graphical notation may be used:

Icon

Usage

For 'in' flow ports.

For 'out' flow ports.

<>

For 'inout' flow ports.

Figure 12.18 shows an example of a Speedometer class owning a port called outSpeed. This port is an outgoing flow port
typed by Integer. That means that instances of this Speedometer class can send Integer data to other external elements
connected to outSpeed port (Note that Figure 12.19.1 uses the stereotype notation mixing both text and icon forms,

whereas Figure 12.19.ii uses only the icon form).

« flowPort »

Speedometer

outSpeed: Integer [1]

gik isAtomic= true k
direction = out

(i)icon + extform

Figure 12.18 - Example of atomic flow port

164

outSpeed: Integer [1]
Speedometer

(i) icon form

UML Profile for MARTE, V1.2

« interface »
« flowSpecification »
SpeedSensorFs Speedometer « flowPort » Speedometer
[2 cSpeed | SpeedDT outSpeed : SpeedSensorFS outSpeed | SpeedSensorFS
3 cTime ; Time {i} text + icon forms fify icon form

Figure 12.19 - Example of non-atomic flow port

12.3.2.11 FlowProperty

This stereotype maps the FlowProperty domain concept defined in F.6.13. A FlowProperty defines the type and the

direction of a single flow element carried through flow ports. It may relate to a Classifier, a Signal, a PrimitiveType or a
DataType. A flow property is used by as part of a flow specification to characterize the type of a non-atomic flow port.

Extensions

+ Property

Generalizations

* None

Attributes

» direction: FlowDirectionKind [1] = inout
Direction of the flow property.

Associations

* None

Constraints

* None

Notation

When applying the stereotype using its iconographical form, following icons are used:

Icon Usage
, For 'in' flow properties.
. For 'out' flow properties.
<> For 'inout' flow properties.

Figure 12.20 describes an example using both textual and iconographical forms of the stereotype.

UML Profile for MARTE, V1.2

165

a interface » « interface »
« flowSpecification » « flowSpecification »
SpeedSensorFsS SpeedSensorFS
« fliowProperty » { direction = out } cSpeed : SpeedDT ' cSpead : SpeadDT
« flowProperty » { direction = in } cTime - Time J cTime : Time
(i) text form (ii} icon form

Figure 12.20 - Example of flow properties

12.3.2.12 FlowSpecification
This stereotype has been defined to specialize interfaces used to type flow port (domain concept introduced in F.6.14) in

order to enable the description of the different data a flow port may relay.

Extensions

+ Interface

Generalizations

« None

Attributes

+ None

Associations

* None

Constraints

[1] If the direction of flow specification is “in,” all its owned flow property must be conformed to this direction (i.e.,
only in flow properties).

[2] If the direction of flow specification is “out,” all its owned flow property must be conformed to this direction (i.e.,
only out flow properties).

[3] A flow specification owns only FlowProperties, i.e., Properties on which the FlowProperty stereotype has been
applied. It cannot own operations, or receptions (of signal).

12.3.2.13 GCMInvocatingBehavior

GCMlInvocatingBehavior extends the UML Behavior metaclass with the ability to define any number of invocations
happening inside it. Each invocation will be defined either by a pair port/feature (i.e., a FlowPort and a FlowProperty, or
a ClientServerPort and a ClientServerFeature) or by an invocation action.

Extensions
« Behavior (from UML::BasicBehaviors)

166 UML Profile for MARTE, V1.2

Generalizations

* None

Attributes

» None

Associations

 onPorts: Port[0..*]
The set of ports the interactions will occur at.

« onFeatures: Feature[0..*]
The set of features, related to the ports, to which the interaction is related.

« invocations: InvocationAction[0..*]
The set of invocation actions that define the interactions occurring at this behavior.

Constraints

[1] The ports referenced by the “onPorts” association must be FlowPorts or ClientServerPorts.
self.onPorts->forAll(port | port.ocllstypeOf(MARTE::MARTE_ DesignModel::GCM::FlowPort) or
port.ocllsTypeOf(MARTE::MARTE DesignModel::GCM::ClientServerPort).

[2] The features referenced by the “onFeatures” association must be FlowProperties or ClientServerFeatures.

self.onFeatures->forAll(feature | feature.ocllstypeOf(MARTE::MARTE DesignModel::GCM::FlowPorperty) or
feature.ocllsTypeOf(MARTE::MARTE DesignModel::GCM::ClientServerFeature).

[3] If a feature is included in the “onFeatures” list, then its related port must be referenced in the “onPorts™ list.

12.3.2.14 GCMInvocationAction

GCMlInvocationAction extends UML InvocationAction metaclass with the ability to specify the Feature (i.e.,
FlowProperty or ClientServerFeature) of a FlowPort or ClientServerPort that is concerned by the invocation.

Extensions

+ InvocationAction (from UML::InvocationActions

Generalizations

* None

Attributes

* None
Associations

* onFeature: Feature [1]
The Feature (of a FlowPort or ClientServerPort) that is concerned by the InvocationAction.

UML Profile for MARTE, V1.2 167

Constraints

[1] The InvocationAction must reference (via InvocationAction::onPort) exactly one port.
[2] The referenced port must be a non-atomic FlowPort or a feature-based ClientServerPort.

[3] In the case of a FlowPort, ‘onFeature’ must reference a FlowProperty owned by the FlowSpecification specifying the
port.

[4] In the case of a ClientServerPort, ‘onFeature’ must reference a ClientServerFeature owned by the
ClientServerSpecification specifying the port.

[5] In the case of a FlowPort, the ‘direction’ of the FlowProperty referenced by ‘feature’ must be either out, or inout.

[6] In the case of a ClientServerPort, the ‘kind’ of the ClientServerFeature referenced by ‘feature’ must be either
required, or proreq.

12.3.2.15 GCMTrigger

GCMTrigger extends the UML Trigger metaclass. Within UML, triggers can natively be related to a particular port.
Additionally, the GCMTrigger can be related to a particular feature of a FlowPort or ClientServerPort. It is thus possible
to specify reactions that are, for example, related to the occurrence of a specific event on a given non-atomic port. For
example, if we consider a non-atomic flow port proving an interface defining two flow-property (e.g., a time and a speed),
the designer may specify individual reaction to whatever received information.

Extensions

+ Trigger (from UML::InvocationExtensions)

Generalizations

« None

Attributes

* None

Associations

» feature: Feature [1]
The Feature (of a ClientServerSpecification or FlowSpecification) to which the Trigger is related.

Constraints

[1] The Trigger must reference (via Trigger::port) exactly one port.
[2] The referenced port must be a non-atomic FlowPort or a feature-based ClientServerPort.
[3] In the case of FlowPort, feature must reference a FlowProperty owned by the FlowSpecification specifying the port.

[4] In the case of a ClientServerPort, feature must reference a ClientServerFeature owned by the
ClientServerSpecification specifying the port.

[5] In the case of a FlowPort, the direction of the FlowProperty referenced by feature must be either in, or inout.

168 UML Profile for MARTE, V1.2

[6] In the case of a ClientServerPort, the kind of the ClientServerSpecification referenced by feature must be either
provided, or proreq.

12.3.2.16 PortSpecificationKind

The PortSpecificationKind is an enumeration whose literals correspond to the way a ClientServerPort can be used.

Literals

* atomic
The ClientServer port is directly typed by a Signal.

* interfaceBased
The port is not typed, and the properties provided and required of the stereotype ClientServerPort are used to
explicitly specify the set of provided and required interfaces of the port.

+ featureBased
The port is not typed, and the “specification” property is used to explicitly specify the ClientServerSpecification that
determines the features that are required or provided by the port.

12.4 Examples

12.4.1 Example of Model Patterns lllustrating the Usage of Flow Ports

Example 1 shown in Figure 12.21 illustrates the use of an action SendObjectAction to put a data on an atomic out
flowport (port outData in the example). The send is encapsulated in the activity Update, owned by the class Sensor.
According to the statemachine SensorBehavior that models the classifier behavior of the class Sensor, the behavior
Update is called each time the Sensor class receives an occurrence of the signal Tick on its behavioral client-server port
tick.

| Classifier behavior of the class Sansnrb]

Sensor =
SM SensorBehavior]
Tick / Updatea()

- acquire () ! Integer

) 3 o - o 1)
tick : Tick outData : Integer ||]

/_ Update \
Activity owned by class
- Sansor
Send result
. 2 l 2mq""m}3%|:Emrl outData

3 by
CallOperationAction invoking the SandObjectAction,
operation acquire of the class Sensor, with “onPort = outData”

Figure 12.21 - Example 1, a sensor emitting a sample through its flow port
outData each time the sensor receives an update message on its input port tick.

| UML Profile for MARTE, V1.2 169

Example 2 shown in Figure 12.22 illustrates the use of the GCMInvocatingBehavior stereotype to show all the
interactions taking place inside a behavior. As in Example 1, the sends are encapsulated in the activity Update, owned by
Sensor. In this case, the interactions triggered by the execution of Update are available at state machine level, without
needing to go deep into the details of the Update activity. The same is also applicable for StateMachines or
OpaqueBehaviors.

Sensor SM SensorBehavioy

Tick / Update()
outAtomic : Integer [’]

tik: Tk O |—] “

outData : Integer | P

/ «GCMinvocationBehavior» «GCMiInvocationBehavior»
Update = o onPort = {outData, outAtomic}

onFeature = a
«GCMinvocationAction»
Send ... on outData

Send...
on outAtomic

SRR S Activity owned by
— ‘. — class Sensor
onrort = outata onPort = outAtomic
onFeature = a /

-

Figure 12.22 - Example 2, a sensor emitting two samples though different ports and features.

Example 3 shown in Figure 12.23, illustrates the “push” form of the flow port semantics. The port inData is a behavioral
input atomic flow port typed as Integer. Thus, each time an integer value is received on this port inData, a DataEvent is
raised and stored in the event pool of the context object of the classifier behavior DataDrivenFilterClassifierBehavior
(i.e., the instance of the class DataDrivenActuator receiving the integer value). The activity
DataDrivenFilterActuatorClassifierBehavior (used as a classifier behavior for the class DataDrivenActuator) specifies a
reaction to the occurrence of a DataEvent on its flowport inData, as described by its AcceptEventAction. The output pin
of the AcceptEventAction represents the data associated with the DataEvent, which is provided as an input to the next
action, the CallOperationAction compute.

170 UML Profile for MARTE, V1.2

DataDrivenActuator

Classifier behavior of the
class DataDrivendciuator

B
=

(DataDrivenFilterClassifierBehavior \
Integer O
fram inData
1

AcceptEventAction with a tigger basaed on a « DataEvent »,
i.e., an AnyReceiveEvent on which the « DataEvent »

= compute (in p1: Integer [1])

3

inData : Integer

stereotype has been applied, and the ‘classifier property set
to ‘Integer’.

Figure 12.23 - Example 3, on the "push” form of the flow port semantics. Reactions of the actuator are triggered by
data receptions, through an AcceptEventAction using a "DataEvent” as a trigger.

Example 4 shown in Figure 12.24 illustrates the “pull” variant of flow port semantics. The input port inData, a non-
behavioral port, of the class SamplingActuator has a delegation connector towards the part i_value. This property is typed
by the Integer primitive type accordingly to the type of the port. As described in sub clause 12.3.2.9 on the semantics of
FlowPort, this modeling pattern means that data received on port inData are held by the property i_value. In this case, as
the stereotype «dataPool» is not applied on the property i_value, the data hold by the property is replaced each time a new
data is received on port inData. This data is then available for the activity Update (which is owned by the class
SamplingActuator). With respect to the classifier behavior SensorBehavior, each time an instance of the class
SamplingActuator receives an instance of the signal Tick on its client-server port tick, the outgoing transition from state
On is triggered and its effect behavior is ran. In this case, the effect behavior is modeled by the activity Update. This
latter reads the value hold on the property i_value and passes the value as input parameter to the CallOperationAction
compute.

| UML Profile for MARTE, V1.2 171

SamplingActuator

SM S Behavior), |
- compute (in p1: Integer [1]) EnsorBenaviol/ Tick / Updatai)

tick : Tick

i_value : Integer [0..1]

h‘\
\.‘
(_ Update \ Classifier behavior of
class SamplingBehavior
.{ Read i_value Hﬁomput@}%@
» J Activity owned by class IT

Il?eadStmc.luralFeaEulreAc.lb_rll where CallOperationActia Sensor
structuralFeature = |_value’

inData : Intege

Figure 12.24 - Example 4, on the "pull" form of the flow port semantics. Reactions of the sampling actuator are
triggered by reception of Tick signal instances

In addition to Example 4 shown in Figure 12.24, Example 5 depicted in Figure 12.25 illustrates the use the stereotype
«dataPool» applied here on the property buffer of the class SamplingActuator. The activity Replace (see top left corner of
Figure 12.25) is used as a specification of how data must be inserted in the property buffer when they are received on the
flow port inData. Moreover, this example also illustrates the use of connectors between the input parameter of the activity
Update (owned by the class SamplingActuator) and the property buffer, and the use of connectors between the output
parameter of the activity updateMethod and the flow port outData of class SamplingActuator. These connectors mean that
each time the activity Update is called (here, as a consequence of Tick signal occurrences), the input values to activity
Update are read from the data pool buffer, with respect to the ‘selection’ policy specified by the activity LastIsBest (see
top right corner in Figure 12.25). When an execution of activity Update finishes, data available on its output parameter
are propagated via the delegation connector between its output parameter and the flow port outData of the actuator.

172 UML Profile for MARTE, V1.2

/ Replace

LastisBest \\

input Iﬁ-{ write input on buffer }——}I:h

g

isReplacesll = true

addStructuralFeatureValueAction, with:

structural Feature = buffer

]

.—,‘:-| read buffer }%-| output ‘
1
readStructuralFeatureAction, with:
l\\ structural Feature = buffer

1

describe the insertion policy of the buffer DataPool

Behavior {owned by the SamplingActuator class) used m‘ﬁ

Behavior {owned by the SamplingActuator class) used to
describe the selection policy of the buffer DataPool

SamplingActuator Classifier behavior of the
SamplingActuater Class
o] ¥
tiek : Tick SM SensorBehavior | Tick / Updatef)
p | « dataPool » ¢« daiaPoal »
b | orderirg = UserDefined
inData : Integer buffer : Integer [1) =0 insertion = Replace
) selection = LastisBest
3
outData : Integer
H
1 Partial view of the coresponding model repository
i
i
‘ "« dataPool » ownedConnecior ‘
i Class Jpart iProperty role end
name = "SamplingActuator” name = "buffer”
‘ } ‘ type = Integer
: Parameter end
name = "UpdateMethod" diraction = in
Iype = Integear
: Parameter
—n role
. ownedParameter| name = "output” ; ConnectorEnd
ownedBehavior direction = return
type = Integer
ypem end
method
—
0 "
name = "Update” « FlowPort »
ownedOperation {direction = out} | role + Connector
: i.ConnectorEnd
fownedPort iPort and
name = "outData" ownedConnector

Figure 12.25 - Example 5, on the usage of the stereotype "DataPool" in the context of the "pull"

form of the flow port semantics

Example 6 shown in Figure 12.26 illustrates the use of an Activity as a classifier behavior (i.e.,

DataDrivenFilterBehavior) for putting into action the 'push' form of flow port semantics. Data received on the flow port

inData are made available as tokens to the streaming parameter input of the activity DataDrivenFilterBehavior via a

delegation connector. As UML activities behave naturally according to the push form of flow port semantics, the tokens
available on the parameter input will be proposed to the CallOperationAction filter. This latter will consume incoming

token one per one and produce output tokens on its streaming parameter labeled output. The delegation connector

UML Profile for MARTE, V1.2

173

between the parameter output of DataDrivenFilterBehavior and the flow port outData of DataDrivenFilter is used to mean
that the data produced by the activity is conveyed to the port outData. Note that the use of streaming parameters is
essential so that the execution of DataDrivenFilterBehavior can accept and produce data in a pipeline manner.

DataDrivanFilter

- filter {input :Integer(1]) : Integer [1]

4 DataDrivenFilterBehavior I

Ny
@ input m awtput [b]

inData : Integer ustreamlng} {slreamlngu

outData : Integer

E [Partial view of the comesponding model repository

v
« flowPort »
{direction = in} : Parameter |parameter ActivityParameterNode
. : ity
- name = input
iClass fownedPort | Name = '”?ata direction = in ownedParameter node
name = "DataDrivenFiltar" |sBeh_awor = false type = Integer
type = Integer isSiream = trug
rale T rale 1\
‘ : ConnectorEnd ‘ | : ConnectorEnd |
end ‘end
' 1

edC t .
‘.‘Wl : Connector | L Activity - .
farme = classifierBehavior
ownedConnector DataDrivenFillerBehavio
1 : Connector

end end

: ConnectorEnd : ConnectorEnd

role \l‘ e 4{

] {

jownedPort |« flowPort » : Parameter
{direction = out}
. Port name = output | OWnedParameter nede
direction = in
name = "outDala" type = Integer pErametar : ActivityParameterNode
isBehavior = false isSiream = true
type = Integer

Figure 12.26 - Example 6, on the "push" form of the flow port semantics
12.4.2 Automotive Example

The example shown in Figure 12.27 denotes the interface description for the example of a component model depicted
previously. The package SpeedRegulatorinterfaces consists of two definitions of interface and one signal declaration.
Reglnterface is a UML2 interface stereotyped with “clientServerSpecification.” It specifies a provided reception for the
Start signal (i.e., a reception stereotyped with “clientServerFeature” with kind = ‘provided.’ It is modeled in this example
using the iconographical notation) and a required controlEngine service (i.e., an operation stereotyped as
“clientServerFeature,” with kind = ‘required.” It is also represented using the iconographical notation). The interface
EClnterface is a classical UML interface, with a single operation named controlEngine.

174 UML Profile for MARTE, V1.2

SpeedRegulatorinterfaces

SignalDeclarations
« Interface » « interface »
[wsignal» | ECInterface « clisntServerSpecification »
Start cantrolEngine (in torque : Real [1]) Reginterface
targetSpeed : Integer [1]

O « signal » Start
{ controlEngine (in torque : Real [1])

Figure 12.27 - Interfaces definition for a speed regulator example

The example shown in Figure 12.28 denotes a CarSpeedRegulator composite class including its ports and its internal
parts. This class has two ports, regOn and engineCmd, stereotyped as “ClientServerPort.” The port regOn is a required
atomic port (i.e., /specificationKind = atomic, and kind = required, as depicted by the comment symbol attached to the
stereotyped port). This port is typed with the Start signal (see previous definition of this signal in the package named
SignalDeclarations as shown in Figure 12.27). The class CarSpeedRegulator exposes then to its environment a port
through which it can consume occurrences of the signal Start. The second port exposed by the class CarSpeedRegulator is
the port labeled engineCmd. It is an interface-based ClientServerPort (/specificationKind = interfaceBased) requiring the
interface EClnterface (reqlnterface = [EClInterface], implying that kind = required).

In addition, the class CarSpeedRegulator also owns two parts, spm and rgm. The part spm specifies an output atomic flow
port labeled outSpeed relaying integer output data to its environment. The part rgm defines firstly an atomic input flow
port labeled inSpeed conveying integer data received from its environment. The second port owned by the part rgm, the
port startAndControl, is a feature-based ClientServerPort (/specificationKind = featureBased). Its provided and required
features are then specified using the client-server specification Reglnterface (featuresSpec = Reglnterface). The port
startAndControl is not conjugated (isConjugated = false). As specified by the client-server specification Reglnterface
shown in Figure 12.26, the port startAndControl provides a Reception for the Start signal and requires the operation
controlEngine. As the client-server specification Reglnterface owns both a provided (reception to signal Start) and a
required (operation controlEngine) client-server feature, the kind of this port is both provided and required (i.e., its kind
property is setup to proreq).

The delegation connector between both ports, regOn and startAndControl, means that signal occurrences of the signal
Start received on the port regOn will be propagated through this connector towards the port startAndControl. This
delegation connector is valid because the port startAndControl provides a reception for the signal Start. The delegation
connector between ports startAndControl and engineCmd means that request to the operation controlEngine emitted from
the port startAndControl will be propagated through the connector towards the port engineCmd. This latter will in turn
propagate the request to its environment. This connector is valid firstly because both ports, startAndControl and
engineCmd, require the operation controlEngine, but also because the operation required by the port startAndControl is
compatible with respect to its signature with the operation also required by the port engineCmd.

| UML Profile for MARTE, V1.2 175

CarWithSpeed Regulator

CarSpeedRegulator

u flowPort » « flowPart »
utSpead: Integer [1] InSpeed: Integer [1

ol
spm; Speedometer [1] LJ=;,
ECInterface

¢ C|iEﬂ015'Els\;aElﬂF'[olrll * « clientServerPort
n: o
Ej reg ; startAndControl [1 + clisntSarverPor »
engineCmd [1] r]}_/

fepectcationiing = teaturaBasan
spedification = Reginterface FehoFirg] ,_ah-
=Conjugatad « fglse ‘Bpaciicatan = Imariacatass

Iipa raginterface = |ECInerfacs]

rgm: Regulator [1]

Figure 12.28 - Example of UML composite classes and parts with specialized MARTE ports

& clientServerPort » $]
regOn: Start [1]

« chientServerPort »
engineCmd[1]
CarSpeadRegulator

rapecicalioniind = intEnacebass
reqinterface = [ECInarfacs|
I

TEpBCNCEONFNG = atomic:
kire = provwided
L

Figure 12.29 - Example of UML component with specialized MARTE ports
12.4.3 Avionics Example

Figure 12.30 illustrates a Trajectory component used in a Flight Management System inspired from an avionics textbook.
This component computes a trajectory and generates continuous navigation commands to other equipment. Trajectory
depends on three components, defined in related packages, to perform its tasks: FlightPlan, Location, and Database.

Trajectory makes use of flight plan data, as well as the current plane location to perform computations. It explicitly calls
the getLocation and getFlightPlan required services, to access these data when needed. These services are defined in the
LocationAccess and FlightPlanAccess interfaces, bound to two dedicated message ports.

Trajectory also makes use of performance and fuel consummation parameters stored in its cache. It happens that a pilot

changes these parameters, initially stored in the database, when the FMS is in operation. If so, the Database component

notifies Trajectory that new parameters need to be taken into account. This information is pushed through an atomic flow
port to the Trajectory component. The 3 icon indicates that the direction of the Trajectory flow port is “in.” The flow
port is typed by a ParameterUpdated signal that contains new parameter data.

When computations are completed, Trajectory generates navigation commands as a data flow specified by the
NavCommand flow specification. The data flow is transmitted to external equipment through a dedicated flow port. The
<> icon indicates that the port is typed by a flow specification and therefore it is not atomic.

176 UML Profile for MARTE, V1.2

Databasze

« signal »
Parameterlpdated

rewParam: ParamatarData

M
Location Traleciory] i
« interface » « interface »
LocationAccess - « BowSpecification »
1| MavCommand
Lacationllata: getl.ocation() « flowProperty » {direction = out} vhav: Comemand
« flowProperty » {directicn = cut} Inav: Command

R « FlowPort »
update: Paramsterlpdated

]
.
L

lo:

FlightPlan

T PlanfAccess
interface »

PlanAccess hez- -
FlightFlanData: getFlightPlan()

« FlowPaort »
nav: NavCommand

LocationAccess

Figure 12.30 - Trajectory component definition

Figure 12.31 illustrates the internal structure of the simple FMS. It shows how the Trajectory component, along with
FlightPlan, Location and Database, is used as a part of the FlightMangementSystem composite structure. One can
distinguish boundary ports, owned by FlightManagementSystem and defined at the component boundaries. These ports
relay incoming data inside a component (e.g., cdsCom, cdsDisplay, irs, radio) or outgoing data to other connected
components (e.g., extNav). The other ports indicated in the composite structure relate to component parts (e.g., fp, loc,
update, nav, owned by the :Trajectory part). These ports are used to tie parts together using connectors and define a
component assembly. Within a component assembly, connected ports need to define compatible types and directions.
Message ports need to be typed by a common interface (e.g., PlanAccess), a left-hand port providing this interface (e.g.,
traj) and a right-hand port requiring this interface (e.g., fp). Flow ports need to be typed by a common flow element or
flow-specification (e.g., ParameterUpdated), with opposite directions on the left-hand and right-hand ports (e.g., src and
handler).

A boundary port can be connected to a port owned by a part in order to relay a service invocation or a data flow to the
component assembly (e.g., cdsDisplay and cds). In that case, port directions are relayed as well.

UML Profile for MARTE, V1.2 177

FlightManagementSystem
CDSCommand
v% cds: src: ParameterUptated
cdsCom: :Database »
CDSCommand ;]
p: DBAccess
handler: ParameterUpdated
CDSDisplay ~ DPACCESS] db: 5
LT
. . PlanAccess
OE cds: traj: nav: NavCommand
cdsDisplay: :FlightPlan :Trajectory g Q
PlanAccess fp: extNav: NavCommand
CDSDisplay]
loc:
LocationAccess
irs: IRSInterface LocationAccess
:Location
irs: IRSInterface loc:
b
radio: Radiolnterface
b

radio: Radiolnterface
Figure 12.31 - FlightManagementSystem internal structure

Note — Both Figure 12.30 and Figure 12.31 are compatible with the SysML block definition diagrams and internal block

diagrams.

178 UML Profile for MARTE, V1.2

13 High-Level Application Modeling (HLAM)

13.1 Overview

1 I
MARTE::GRM MARTE::CoreElemeants
R 7
— :
HLAM

Figure 13.1 - Dependencies of the HLAM package

As illustrated by Figure 13.1, the HLAM package of MARTE is depending of both GRM and CoreElements packages.
The concern of the HLAM package is to provide high-level modeling concepts to deal with real-time and embedded
features modeling. In comparison with usual application domains, RT systems (in short RTS) development requires
possibilities of modeling on one hand quantitative features such as deadline and period and, in other the hand, qualitative
features that are related to behavior, communication and concurrency. The next sub clause will describe a domain model
defining the MARTE concepts for RT/E high-level modeling constructs to support both aspects.

13.2 Domain View

One first important issue to deal with when modeling RTE applications is concurrency. In order to handle that feature, this
specification uses the concept of RtUnit as depicted in Figure 13.2. It provides high-level constructs for real-time and
embedded application modeling based on the MARTE foundations introduced in Part I (within both CoreElements and
GRM packages) and in the Generic Component Model. An RtUnit is similar to the active object of UML but with a more
detailed semantics description. It owns one or several schedulable resources (GRM::Scheduling::SchedulableResource). If
its dynamic attribute is set to true, the schedulable resources are created dynamically when required. In other case, the
real-time unit has a pool of schedulable resources. When no schedulable resource is available , the real-time unit may
either wait indefinitely for a resource to be released, wait for only a given amount of time (specified by its
poolWaitingTime attribute), and increase its pool thread dynamically to adapt to the demand, or generate an exception.

Hence, a real-time unit may be seen as an autonomous execution resource, able to handle different messages at the same
time. It can manage concurrency and real-time constraints attached to incoming messages. An RtUnit is a unit of
concurrency that encapsulates in a single entity both the object and the process paradigms, which means that concurrency
control is encapsulated within the unit. Any real-time unit can invoke services of other real-time units, send signals or
data (see the GCM clause for details on dataflow-oriented communications), without worrying about concurrency issues.
Real-time units are some kind of tasks servers that can satisfy several requests from several real-time units at the same
time, enabling intra-unit parallelism if necessary. An RtUnit owns also a concurrency and behavior controller for
managing message constraints according to its current state and the concurrent execution constraints attached to the
messages.

An application owns at least one main RtUnit. Following creation, each real-time unit that has a main (which is indicated
by setting the isMain attribute to true) starts invoking a main real-time service, which executes until the real-time unit is
terminated. Like any other real-time units, the main service of a main unit may perform explicit receive actions during its
execution, in order to accept any received events. A receive action by a real-time unit leads to a direct activation of the

UML Profile for MARTE, V1.2 179

appropriate service specification. During the execution of the service, triggered by the receipt of the message, the main
service may either be blocked (the so-called “run-to-completion” paradigm), or it may proceed executing concurrently to
other real-time service. In this latter case, intra-concurrency is to be available within a real-time unit.

An RtUnit may own one or several behaviors (see GCM::StructuredComponent and
CoreElements::Causality::CommonBehavior::BehavioredClassifier). An RtUnit also owns a single message queue for
saving the messages it receives once its execution has started. This message queue is equivalent to the event pool of a
UML active object, except that the semantic variation point related to event selection is resolved via the possibility of
specifying a scheduling policy for the queue (see Figure 13.4). Messages contained in the queue can represent operation
calls, signal occurrences or data receptions. Each message can be used to trigger the execution of a behavior owned by the
unit (i.e., as described by its main service). It can also be used as a trigger by any behavior executing in the context of the
unit, and expecting such a message in the course of its execution. The size of the message queue may be infinite or
limited. In this latter case, the queue size is specified by its maxSize attribute. In addition, an RtUnit owns a specific
behavior, called operational mode. This behavior usually takes the form of a state-based behavior where states represents
a configuration of the RtUnit and transitions denotes reconfigurations of the unit.

GRM::ResourceTypes::
Resourcellanagear

GRM::RescurceCore:: CoreElements::Causallty::
Service CommonBehaviors:
BehavioredClassifier

i T 1 1

GRM:: ResourceTypes::
ConcurrencyResource

services "
{subsets pServices} RtUnit \ onalMod
B i ic: JopeTaLong es CoreElemants::

1| isDynamic: Boolean
RiService isMsin: Boolean | griner {subsets ownedBehavior) Causality:
memorySize : NFP_DataSize 1 0.1 CommonBehavier:

0.1 l@| srPoolFalicy: PoolMgiPalicy Behavior
Jmain srPoclWaitingTime: MFP_Duration
{subsets pServices}

« enumeration » awner 1 owner 1
PoolMgtPoli -
8 <y exeRes queus 1

infinite\Wait

timeadyVait GRM:: ResourceTypas::

create ComputingRescurce InMsgQueue
exceplion

ather

Figure 13.2 - RtUnit of the HLAM package

When modeling for concurrency, it is mandatory to be able to model shared information. For that purpose, it has been
introduced the concept of protected passive unit (PpUnit) as denoted in Figure 13.3. Protected passive units specify their
concurrency policy either globally for all of their provided services (concPolicy attribute), or locally through the
concPolicy attribute of an RtService. The execution kind of a protected passive unit is either immediateRemote or
deferred. In both cases, the execution is remote, i.e., it uses a schedulable resource of the real-time unit that invokes the
service provided by the protected passive unit.

180 UML Profile for MARTE, V1.2

CoreElements::Causality: CoreElements::
CommonBehaviors: Causality:: CommonBehavior::
BehavioradClassifier SynchResource
‘e PpUnit « anumeration »
{subsets pSarvices} concPolicy: CallConcurmencyiind CallConcurrencykind
RtService - ;
* 1 sequential
guarded
concurrent

Figure 13.3 - PpUnit of the HLAM package

The incoming message queue of a real-time unit plays the role of the broker for its schedulable resources. The possible
scheduling policies defined within MARTE are specified by the MARTE::GRM::Scheduling::SchedPolicyKind
enumeration. The selected policy actually determines the order in which messages will be extracted from the queue. The
size of the message queue may be either infinite or limited. In the latter case, its size is specified through its queueSize
attribute. Additionally, a message queue can also specify the maximal size of the message (msgMaxSize attribute) that
may be received.

ResourceTypes:: GRM::ResourceTypes:
wageResource ResourceBroker
InMsgQueue 9 Oce | CoreElements::Causality::
m Communication::
queueSchedPolicy: SchedulingPolicyKind awner ReceiveCccurrance
queveSize : Integer fexeRes
msghaxSize | NFP_DataSize 1 {subsets managedResource} GRM: ResourceTypes:
broker . ComputingResource
‘ -
« enumeration »
SchedulingPolicyKind
schedulingPolicy
’ FIFD
subset accCtriPolicy} LIFQ
FixedPriority
CompResPolicy e
kind : SchedulingPolicyKind ELF
RoundRobin
Synchronous
Other

Figure 13.4 - InMsgQueue of the HLAM package

As shown in Figure 13.2 and Figure 13.3, real-time units and protected passive units may provide real-time services. In
the case of the protected passive units, as they use the schedulable resource of invoking real-time units, it has to be
specified the concurrency policy of the service (concPolicy attribute). The execution of a real-time service may be
declared as atomic and it is also possible to specify how the execution is handled by the unit through the exeKind
attribute. The service execution may be deferred (i.e., save in a queue of a behavior of the unit) or immediate. In this case,
in a real-time unit, the execution may be done in the context of the calling unit (i.e., remote execution) or in the context
of the unit receiving the message (i.c., local execution). In case of a protected passive unit, the remote case does not
apply. Finally, a real-time service may specify a real-time feature and a concurrency policy. Both these information may
be used by the internal controllers of real-time units and protected passive units to control the execution of their services.

UML Profile for MARTE, V1.2 181

GRM::ResourceCore::

Service RealTimeFeature
utility: UtilityType
occKind: AmvalPatiern
Ref: TimedInstantObservation
relDl: NFP_Duration
RtService absDIl: NFP_DataTime

boundDl: NFP_Duration
concPolicy: Concurrencykind pRTE_ | rdTime: NFP_Duration

exeKind: ExecutionKind - 0 2| miss: NFP_Percentage
sAlomic: Boolean [1] = false priority : MFP_Integer
synchkind: Synchronizationkind

« enumeration » & enumeration » « enumeration » « dataType »
SynchronisationKind ConcurrencyKind ExecutionKind mTEUh;mRTE_DaIaTypa: !
synchronous reader deferred)
asynchronous whiter remctelmmediate =={u: UtilityType kBoolsan
o achroneus. | | parale eealmmedzce S i Tygey Boclean
rendezous Lo
==l UlilnyTypg kBoolaan
other ==fu; UilityTyps Boalaan
=={u: UtilyTvpe kBoalean

Figure 13.5 - RtService of the HLAM package

One other important qualitative feature to handle in this domain concerns the communication aspects. In UML,
communications are initiated by executing specific actions such as call actions. Here it is introduced the concept of
realtime action (specialization of the InvocationAction concept introduced in the MARTE::GCM package). Real-time
action can specify real-time features such as a deadline or period (see details of the ArrivalPattern data type introduced in
the MARTE Model Library). It can also describe the size of the message generated when executing or the kind of
synchronization (synchKind attribute). Finally, a real-time action execution may be defined as atomic.

GCM:
InvocationAction

i

RtAction

pRTE
synchKind: SynchronizationKind ’—019- RealTimeFeature
isAtomic: Boolean [1] = false -
msgSize | NFP_DataSize

Figure 13.6 - RtAction of the HLAM package

This sub clause formalizes a specific model of computation aligned on the notion of active object defined in UML. It is
applicable for asynchronous / event-based approaches to real-time and embedded application design.

Other approaches and models of computation exist in the real-time and embedded domain (e.g., synchronous objects).
The MARTE specification does not explicitly address these models at this time. However, the framework introduced in
Part I provides the foundations to specify alternative models of computation as an extension to the specification. Making
use of the NFP, Time, and GRM packages, interested parties are able to formalize user-defined models of computation
that rely on the same semantics foundation. It provides the ability to leverage existing MARTE capabilities along with
this specific model.

182 UML Profile for MARTE, V1.2

13.3 UML Representation

This sub clause describes the MARTE HLAM sub-profile. This latter contains all required UML extensions to support the
concepts denoted in the previous domain model.

I

o profile »
HLAM

Figure 13.7 - The MARTE HLAM sub-profile

13.3.1

Profile Diagrams

« enumeration »
PoolMgtPolicyKind

« enumeration »
CallConcurrencyKind

It?rggzmiatn « metaclass » sequential
dynamic CommonBehavior:: guarded
exception BasicBehaviors:: concurrent
other BehavioredClassifier

ey

« stereotype »
RtUnit

« stereotype »
PpUnit

isDynamic: Boolean [1] = true
isMain: Boolean

srPoolSize: Integer

srPoolPolicy: PoolMgtPolicyKind
srPoolWaitingTime: NFP_Duration
queueSchedPolicy: SchedPolicyKind
queueSize: Integer

msgMaxSize: NFP_DataSize
operationalMode: Behavior

main: Operation

memorySize: NFP_DataSize

concPolicy: CallConcurrencyKind
memorySize: NFP_DataSize

« enumeration »
MARTE_Library::
GRM_BasicTypes::
SchedPolicyKind

Figure 13.8 - RtUnit and PpUnit stereotype of the MARTE::HLAM sub-profile

UML Profile for MARTE, V1.2

EarliestDeadlineFirst
LIFO

FixedPriority
LeastLaxityFirst
RoundRobin
TimeTableDriven
Undef

Other

183

Issue

15166 and 16583 - update figure

« metaclass »
Kemel::BehavioralFeature

« metaclass »
CommonBehavior:
BasicBehaviors::
InvecationAction

« melaclass »
Basiclnteractions::Message

« metaclass »
Communication;:Signal

« metaclass »
Poris:Port

[.1] f

fcontext

T

#

#

+

{subsets annotatedElamant}

« sterectype » « stereotype »
RiFeature RtSpecification
Feprecification e

{subsets ownedComment}

[1.°1

« metaclass »
CommonBehavior::
BasicBehaviors::
InvocationAction

« metaclass »
Ports::ConnectorEnd

acckind: ArvalPattern

1Rel TimadinstantOhsaraion
rall NFP_Duration

absDl: NFP_DataTime
bBoundDl: WFP_Duration
rdTime: MFP_Duration

miss! NFP_Parcantage
priority : MFP_Intagar

1

« melaclass »
Karnel:: Commeant

« metaclass »
Kernel::Feature

/context
{subsets annotatedElement}

Y

Communication::Signal

« metaclass »

« metaclass »
Ports::Port

« metaclass »
Basiclnteractions::Message

%

f f

« stereotype »
RtFeature

Ispecification
{subsets ownedComment}

[0..1]

« metaclass »
Kernel::Comment

« stereotype »
RtSpecification

utility: UtilityType

occKind: ArrivalPattern

tRef: TimedInstantObservation
relDI: NFP_Duration

absDI: NFP_DateTime
boundDI: NFP_Duration

1.4

Figure 13.9 - RtFeature stereotype of the MARTE::HLAM sub-profile

184

rdTime: NFP_Duration
miss: NFP_Percentage
priority : NFP_Integer

UML Profile for MARTE, V1.2

Kemel:BehavicralFeature

« Mmetaclass »

« metaclass »
CommonBehavior:
BasicBehaviors:InvocationAction

t

}

« enumeration »

« stereotype »
RtAction

SynchronisationKind

synehronous

synchkind: Synchronizationkind
EAtomic: Boclean [1] = false
msgSize: MFP_DataSize

asynchronous
delayedSynchronous
rendezous

other

Figure 13.10 - RtAction of the MARTE::HLAM sub-profile

« dataType »
MARTEL{b::MARTE _DataType::
« enumeration » lﬂﬂ-‘!ﬂ'w-n
SynchronisationKind
« metaclass » b =={u: UtilityTypej:Boolean
UMLZ::BehavioralFeature :Z;:cnggzs :_(—LELJ—“’ LUl : eiBoolean
2{y; UilityTypa):Boglaan
delayadSynchronous ==(u; UtiliyTvpekBoolsan
* rendez\ous =={u; UtilityTypel:Boolsan
other 2={u: UtliityType):Boolasn
RtService
« enumeration » « enumeration »
concPolicy: Concurrenaykind ExecutionKind ConcurrencyKind
exeKind: Executionkind deforred ney
isAtoimic: Boolean [1] = false rematelmmadiate reader
synchKind: Synchronizationkind locallmmeadiate wiiter
parallel

Figure 13.11 - RtService of the MARTE::HLAM sub-profile
13.3.2 Profile Elements Description

13.3.2.1 CallConcurrencyKind

The CallConcurrencyKind enumeration maps the CallConcurrencyKind domain element denoted in Annex F (F.7.1).

This enumeration defines the kind of concurrency policy applied to a protected passive unit.

Literals

* sequential
Only one schedulable resource at a time can access a feature of a PpUnit. The PpUnit do not
provide in this case access control mechanism,; it is up to the client to deal with potential
concurrent conflicts.

* guarded
A schedulable resource at a time can access a feature of a PpUnit while concurrent ones are suspended.

* concurrent
Multiple schedulable resources at a time can access a PpUnit.

13.3.2.2 ConcurrencyKind

UML Profile for MARTE, V1.2 185

The ConcurrencyKind enumeration maps the ConcurrencyKind domain element denoted in Annex F (F.7.3).

This enumeration defines the kinds of concurrency of a behavioral feature.

Literals

* reader
The behavioral feature execution has no side effects (i.e., it does not modify the state of the object,
or the values of its properties).

e writer
The behavioral feature execution may have side effects.

* parallel

The behavioral feature execution may be done in parallel of any kind of service.

13.3.2.3 ExecutionKind
The ExecutionKind enumeration maps the ExecutionKind domain element denoted in Annex F (F.7.4).

This enumeration defines the kind of execution of a behavioral feature.

Literals

* deferred
Event occurrence matching the service invocation is saved in the queue of behavior attached to the object.

* remotelmmediate
The execution is performed immediately with schedulable resource of the calling object.

* locallmmediate
The execution is performed immediately with a schedulable resource of the called object.

13.3.2.4 PoolMgtPolicyKind
The PoolMgtPolicyKind enumeration maps the PoolMgtPolicy domain element denoted in Annex F (F.7.4).

This enumeration has been introduced in the profile to define the concurrency pool management policy of the real-time
units.

Literals
* infiniteWait
If the pool is empty, the real-time unit waits indefinitely until a schedulable resource will be released.

* timedWait
If the pool is empty, the real-time unit waits for bound time until a schedulable resource will be released. At the end of
the waiting time, if no schedulable resource have released, an exception is raised.

* dynamic
If the pool is empty, the real-time unit creates a new schedulable resource and adds it to the pool.

* exception
If the pool is empty, the real-time unit raise an exception.

e other

186 UML Profile for MARTE, V1.2

13.3.2.5 PpUnit
The PpUnit stereotype maps the PpUnit domain element denoted in Annex F (F.7.7).

Protected passive units specify their concurrency policy either globally for all of their provided services (concPolicy
attribute), or locally through the concPolicy attribute of the RtService. The execution kind of a protected passive unit is
either immediateRemote or deferred. In this latter case, the execution is also remote, i.e., it uses the schedulable resource
of the real-time unit invoking the service to the protected passive unit.

Extensions

+ BehavioredClassifier (from UML::CommonBehavior::BasicBehaviors).

Attributes

» concPolicy: CallConurrencyKind [0..1]
Kind of concurrency policy applied to the behavioral feature of the PpUnit. CallConcurrencyKind
is the enumeration defined in the UML2. Its literal values may be as defined in UML: sequential, guarded, or
concurrent.

* memorySize: NFP_DataSize
Amount of static memory required for each instance of the protected passive unit to be placed in an application.

13.3.2.6 RtAction
The RtAction stereotype maps the RtAction domain element denoted in Annex F (F.7.8).
InvocationActions and BehavioralFeatures, stereotyped with RtAction, gain the additional following attributes of “real-

time” constraints.

Extensions

« InvocationAction (from UML::BasicBehaviors)

« BehavioralFeature (from UML::Kernel)

Attributes

* synchKind: SynchronizationKind
Synchronization mechanism associated to the communication action.

* isAtomic: Boolean [1] = false
When true, implies that the RtAction executes as one indivisible unit, non-interleaved with other RtActions.

* msgSize: NFP_DataSize
Size of a message generated when executing an action.

13.3.2.7 RtFeature
The RtFeature stereotype maps the RealTimeFeature domain element denoted in Annex F (F.7.10).

The RtFeature stereotype is used to annotate model elements with real-time features according to set of RtSpecification
associated with this stereotype. This stereotype may be also used in other contexts than RtUnit and PpUnit.

UML Profile for MARTE, V1.2 187

Issue 15166 - udpate text

The stereotype «RtFeature» can be applied to multiple kinds of modeling elements (i.e., behavioral features, actions,
messages, signals, connector end and ports). Whatever the element on which the stereotype is applied, there is a common
run-time interpretation for real-time specifications associated with a real-time feature. The stereotype «RtSpecification»
enables indeed to capture information concerning messages in transit between two (or more) communicating instances.
This information is used by the receiving instances as constraints on behavior executions triggered by incoming messages.

The run-time moment at which the values for this information are fixed depends on the design-time element on which the
stereotype «RtFeature» has been applied. It can be easily understood in terms of priority rules, as described in the
following paragraph.

The most basic model elements on which the stereotype «RtFeature» can be applied are instances of InvocationAction.
When such action is executed at run-time, a message carrying run-time values (consistent with the corresponding values
of the properties of the instance of the stereotype «RtSpecification» applied on the executed action) will be sent. The
instance receiving the message will then handle it a priori by launching the execution of a behavior. This execution will
then be constrained by the real-time information associated with the message. Applying the stereotype «RtFeature» on a
modeling element that is not an instance of InvocationAction can be seen as a means for defining a default real-time
constraint specification if an invocation action has no associated real-time specification. In the case where the stereotype
«RtFeaturey is applied on several modeling elements, the HLAM profile provides priority rules between the different
modeling elements on which the stereotype can be applied, as illustrated in Figure 13.12.

For example, if the design-time model is object-oriented (i.e., corresponding run-time instances do not communicate via
ports), the stereotype RtFeature can also be applied on a BehavioralFeature of a classifier involved in the model. At run-
time, when an instance of this classifier receives a message (i.e., operation call event or signal occurrence) related to an
«RtFeature» behavioral feature and in the case where the invocation action (whose execution resulted in the emission of
this message) was not stereotyped with «RtFeaturey, real-time information associated with the «RtFeature» behavioral
feature are used to determine the real-time information associated with the message itself. In the case where the
stereotype «RtFeature» is applied on both the invocation action and the invoked behavioral feature, the real-time
specification associated with the action has priority on the real-time specification associated with the behavioral feature.
In Figure 13.12, green circles represent the different places where the stereotype «RtFeature» can be applied within a
UML model. The number associated with each circle represents the priority of the modeling element (i.e., real-time
information associated with an invocation action has the strongest priority).

188 UML Profile for MARTE, V1.2

Issue 15166 - udpate text and figure

Comp3
AA
¢1 : Comp c2 : Comp2

« interface »

' A
Invation
H " apA()
m'“'@ « signal » S
/ f

Compi Comp2
A A
opA() ()
j 3
« signal »

®

Comp3
A A
c1: Comp1 c2: Comp2

« interface »

A

Invation
\ opa) (@)
«signal» S

Comp1 Comp2

A A
opA0 ()
@ e
« signal »

s

Figure 13.12 - RtFeature annotation possibilities and priority
rules for interpretation of these annotations

The interpretation of each rule is then as follows:

Case 1. The stereotype «RtFeaturey is applied to an invocation action. When such an action is executed, a message
associated with real-time information (based on the real-time specification associated with the action) is sent.

UML Profile for MARTE, V1.2 189

Case 2. The stereotype "RtFeature" is applied on a connector end on the side of the part sending the information. At run-
time, if no real-time information can be determined from rule 1, real-time information associated with a message emitted
through the port owned by a part will be determined with respect to the real-time specifications associated with the
connector end which role references the port itself.

Case 3. The stereotype "RtFeature" is applied on a connector end on the side of the part receiving the information. At
run-time, if no real-time information can be determined from rules 1 or 2, real-time information associated with a
message emitted through the port owned by a part will be determined with respect to the real-time specifications
associated with the connector end which role references the port itself.

Case 24.The stereotype «RtFeature» is applied to a port with a real-time specification concerning a required feature (i.e.,
in the example, the attribute context of the RtSpecification associated with the port p would be equal to opA). At run-
time, if no real-time information can be determined from rule 1, 2 or 3, real-time information associated with a message
emitted through the port will be determined with respect to the real-time specifications associated with the port.

Case 35.The stereotype «RtFeature» is applied to a port with a real-time specification concerning a provided feature (i.e.,
in the example, the attribute 'context' of the RtSpecification associated with port 'q' would be equal to 'opA'). At run-time,
if no real-time information can be determined from rules 1-et, 2, 3, 4 or 5 real-time information associated with a message
emitted through the port will be determined with respect to the real-time specifications associated with the port.

Case 40.The stereotype «RtFeature» is applied to a behavioral feature of a class. At run-time, if no real-time information
can be determined from rules 1, 2, e+-3, 4 or 5. real-time information associated with a message invoking this behavioral
feature will be determined according to the real-time specification associated with the behavioral feature.

Case 57.The stereotype «RtFeature» is applied to a behavioral feature of an interface. At run-time, if no real-time
information can be determined from rules 1, 2, 3, ex-4, 5 or 6. real-time information associated with a message invoking
this behavioral feature (i.e., typically a message targeting an instance whose classifier realizes this interface) will be
determined with respect to the real-time specification associated with the behavioral feature of the interface.

Case 68.The stereotype «RtFeature» is applied to a signal definition. At run-time, if no real-time information can be
determined from rules 1, 2, 3, 4, ex-5, 6 or 7. real-time information associated with a signal occurrence typed this signal
will be determined according to real-time information associated with the signal.

Extensions
« Action (from UML::Kernel)

- BehavioralFeature (from UML::Kernel)
» Message (from UML::BasicInteractions)
« Signal (from UML::Communication)

« Behavior (from UML::BasicBehaviors)

« Port (from UML::Ports)

» ConnectorEnd (from UML::Port)

Associations

» /specification : RtSpecification [1..*] {subsets ownedComment}
This is a derived property. It references the set of comments owned by this “RtFeature” on which the stereotype
“RtSpecification” is applied.

190 UML Profile for MARTE, V1.2

Constraints

[1] The set of comments (i.e., property ownedComment) owned by the element on which the stereotype «RtFeature» is
applied contains at least one «RtSpecification».

[2] If the stereotype «RtFeature» is not applied to a port, the property specification must reference exactly one
«RtSpecification».

13.3.2.8 RtService
The RtService stereotype maps the RtService domain element denoted in Annex F (F.7.12).

BehavioralFeatures, stereotyped with RtService, gain the additional following attributes of “real-time” constraints. The
RtService stereotype may be applied on one BehavioralFeature independently of the fact that the containing classifier to
be either a RtUnit or a PpUnit.

Extensions
« BehavioralFeature (from UML::Kernel)

Attributes

» concPolicy: ConcurrencyKind [0..1]
Concurrency property of the service.

+ exeKind: ExecutionKind [0..1]
Execution nature property of the service.

* isAtomic: Boolean [1] = false
When true, implies that the RtService executes as one indivisible unit, non-interleaved with other RtService.

» synchKind: SynchronizationKind [0..1]

Synchronization mechanism of the service.

13.3.2.9 RtSpecification

The sterecotype RtSpecification enables capturing information (with real-time concerns) concerning messages in transit
between two (or more) communicating instances. This information is used by the receiving instances as constraints on
behavior executions triggered by the reception of the message.

Extensions
« Comment (from UML::Kernel)

Issue 16583 - udpate text

Attributes

+ utility: UtilityType [0..1]
Specification of the importance features. This property is typed by the UtilityType data type defined in the
MARTE Library. This type is abstract and it is up to the user to define its own specialized utility type according to its
needs.

* occKind: ArrivalPattern [0..1]
Specification of the arrival pattern.

UML Profile for MARTE, V1.2 191

* tRef: TimedInstantObservation [0..1]
Time reference used for relative timing properties.

* relDl: NFP_Duration [0..1]
specification of the relative deadline.

» absDIl: NFP_DateTime [0..1]
Specification of the absolute deadline.

* boundDI: NFP_Duration [0..1]
Specifies the relative deadline.

* rdTime: NFP_Duration [0..1]
Specifies the minimal ready time.

* miss: NFP_Percentage [0..1]
Specifies the percentage of acceptance for missing the deadline.

* priority : NFP_Integer [0..1]
Specification of the priority.

Associations

* /context: BehavieralFeature [0..1] {subsets annotatedElement}
This is a derived property. It references the BehavioralFeature on which the information contained in this
«RtSpecification» applies (in the case where the owning “RtFeature” is a port).

Constraints

[1] The element owning this «RtSpecification» must be an element on which the stereotype «RtFeature» is applied.

[2] If the owning «RtFeature» is not a port, the property annotatedElement (from Comment) must contain a reference to
exactly one element (i.e., the «RtFeature» owning this «RtSpecificationy)

[3] If the owning «RtFeature» is a port, the property annotatedElement (from Comment) must not contain more than two
references (i.e., the «RtFeature» owning this «RtSpecification», and the BehavioralFeature that is used as a context for the
«RtSpecificationy).

[4] If the «RtFeature» owning this «RtSpecification» is a port, the property context of the «RtSpecification» associated
with the «RtFeature» must be a feature that is provided or required by the port (see the GCM clause for details about
different means of providing/requiring a feature).

[3] If the stereotype «RtFeature» is applied to a port, the property context of the «RtSpecification» associated to the
«RtFeature» can be empty only if the port is atomic (see the GCM clause).

13.3.2.10 RtUnit
The RtUnit stereotype maps the RtUnit domain element (F.7.11)

An RtUnit is similar to the active object of UML but with a more detailed semantics description. It owns at least one
schedulable resource, but can also have several ones. If its dynamic attribute is set to true, the schedulable resources are
created dynamically when required. In other case, the real-time unit has a pool of schedulable resources. When no
schedulable resources are available in the possible, the real-time unit may either wait indefinitely for a resource to be
released, or wait only a given amount of time (specified by its poolWaitingTime attribute), or increase its pool thread

192 UML Profile for MARTE, V1.2

dynamically to adapt to the demand, or generate an exception. An RtUnit may own behaviors that have one message
queue for saving the messages received by the unit. The size of this message queue may be infinite or finite. In this latter
case, the queue size is specified by its maxSize attribute. In addition, an RtUnit owns a specific behavior, called
operational mode. This behavior take usually the form of a state-based behavior where states represents a configuration of
the RtUnit and transitions denotes reconfigurations of the unit.

Extensions

+ BehavioredClassifier (from UML::CommonBehavior::BasicBehaviors)

Attributes

* isDynamic: Boolean [1] = true
If true, it denotes that the real-time unit creates dynamically the schedulable resource required to execute its services.
If false, the real-time unit owns a pool of schedulable resources to execute its services.

* isMain: Boolean [0..1]
If true, the real-time unit is a main unit of the application.

» srPoolSize: Integer [0..1]
Size of the schedulable resource pool of a real-time unit.

» srPoolPolicy: PoolMgtPolicyKind [0..1]
Kind of pool policy adopted by a real-time unit.

» srPoolWaitingTime: NFP_Duration [0..1]
Maximal time a real-time unit waits for a schedulable resource to be released in case of pool management policy
set to timed Wait.

* queueSchedPolicy: SchedPolicyKind [0..1]
Queue scheduling policy of the RtUnit.

* queueSize: Integer [0..1]
queue size

* msgMaxSize: NFP_DataSize [0..1]
Maximal size of the messages acceptable in the queue.

» operationalMode: Behavior [0..1]
Behavior owned by the real-time unit and denoting the operational modes of the real-time unit.

* main: Operation [0..1]
Main operation of the real-time unit.

* memorySize: NFP_DataSize [0..1]
Amount of static memory required for each instance of the real-time unit to be placed in an application.

Constraints

[1] IfisDynamic is true, the real-time unit do not owns a pool of schedulable resources. Hence, srPoolSize, srPoolPolicy,
and srPoolWatingPolicy are not applicable.

[2] A main real-time unit has to own a main operation.

13.3.2.11 SynchronizationKind

UML Profile for MARTE, V1.2 193

The SynchronizationKind stereotype maps the SynchronizationKind domain element denoted in Annex F

(F.7.12).

This enumeration defines the kinds of synchronization mechanism for real-time actions.

Literals

* synchronous

The action waits the end of the client execution before continuing to execute.

* asynchronous

The action does not wait the end of the client execution before continuing to execute.

* delayedSynchronous

The client action continues to execute and synchronize later when the client will return a value.

* rendezVous

The client waits for the client to start executing.

13.4 Examples

13.4.1 Notational Examples

Figure 13.13 describes a class diagram of a very simple cruise control system that is used to illustrate the usage of
MARTE::HLAM sub-profile. Both CruiseController and ObstacleDetector are real-time units. The former creates
dynamically schedulable resources to handle the execution of its services, and the latter has a pool of 10 schedulable

resources.

CruiseControl System & |

isDynamic = false

- « rtnit » « rtUnit » ishain e
isMain = true p CruiseControler ObstacleDetector $7 nociSize = 10
main = start o

tgSpeed: Speed startDetection() pociPalicy = create

stopDetection
artServices {exekind=defarred} start() 0
artServices {exekind=deferred} stop()]
| spm « ppUnit = spm
] {eoncPolicy=guarded} 1
Speedometer « dataType »
getSpeed(): Speed Speed

Figure 13.13 - A very simple cruise control model

Figure 13.14 shows an example of call action with a deadline real-time feature specification. The generated message is
aperiodic. Its time reference is denoted by the instant observation to. This latter denotes the start execution time of the
action. The specified deadline is 10 ms and the acceptable rate of deadline missing is 1%.

194

UML Profile for MARTE, V1.2

=3

act start J ?

« rtFeature »
gSpeed = spm->getSpeed()

______ @0 {kind=startAetion)
H

[

« rSpecification »

occkind = aperodic ()
value = (tRef=t0, relD=(10, ms), miss=({1, %, max))
|

Figure 13.14 - An example of call action with a deadline real-time feature

Figure 13.15 shows an example of call action with a priority real-time feature specification.

r===== (@0 {kind=startAction}
i
aftFeatures] u riSpecification »
tnSpeed = spm->getSpesd() oeckind = aperiodic {)
value = {priority=4)

Figure 13.15 - An example of call action with a priority real-time feature

Figure 13.16 shows an example of real-time feature specification within a sequence diagram.

sd Cruise-ControISiart)

« riSpecification »
accKind = apeariodic ()
“CruiseControl value = (tRef=10, relDI={10, ms}, ‘Speedometer
...... ~1 miss={1, %. max]))

« riFeatura » - ==
start() a---="""1

« rtFeature =
startAcquisition() |

fEri]
« rtSpecification »
« rMFeature » occkind = perodic (perod=(10, ms), jittar=(2, us})
getSpead() value = (IRef=t0, relDI=(10, ms), miss=(1, %, max))

o rtSpecification »
T occkind = penodic (perod=(10, ms), jitter=(2, us))

wvalue = {tRef=t0, relDi=(10, ms). miss=(1, %, max]})

Figure 13.16 - Examples of real-time feature within sequence diagrams
13.4.2 Avionics Example

In this example, we make use of components introduced in the avionics example of the General Component Model clause.
We refine these components by applying the real-time characteristics introduced in this clause. We consider Trajectory,
Location, FlightPlan, and Database as passive components that require to be allocated on execution resources to be set in
operation. Figure 13.17 illustrates elements of the Location package used for communicating with Trajectory. Location is
a passive component (e.g., Lw-CCM), which provides a real-time service called getLocation through its LocationAccess
interface. The operation carries an “rtService” stereotype that indicates the concurrency kind (reader), the execution kind
(deferred), and the synchronization kind (delayedSynchronous). The operation also carries an “rtFeature” stercotype that
indicates additional real-time features, such as the priority (P1), the occurrence kind (10 ms period, 2 ms jitter), the

UML Profile for MARTE, V1.2 195

relative deadline (3 ms), as well as the acceptable deadline miss ratio (1% i.e., a hard deadline). Defining these features
at a service level is used as a contract defined between ports that provide and require the service. The characteristics are
applicable whatever the service invocation context or action.

The Location package also introduces a protected passive unit, called LocationData and stereotyped “ppUnit.” It is used
to transmit data from the Location to the Trajectory component. When initialized, Location instantiates a LocationData
object and keeps it periodically updated, based on the IRS and radio signal received. Trajectory concurrently accesses to
the same object as a reader, invoking the getLocation real-time service every 10 ms. LocationData implements a
sequential access policy that ensures integrity by preventing readers and writers to concurrently access to the same data.

u rtSpecification » [,

priority = 1
accKind = peradic (period={10,ms), jittar={2,us))
relDi=(3 .ms)
tRef=t0
miss=(1,% max)
concPolicy=reader

Locat axekind=dalerrad

Ganan synckind=delayedSynchronous -
i
« ppUnit » « interface »
LocationData Locationfccess
latitude : Degres « tService, riFeatura » LocationData @ getlocation()
longitude : Degree
7
i LocationAcoess
concPolicy=sequential « FlowPort» g Locati
B} irs ; IRSInterface [:l ocation [Ioc:
=
« FlowPart »
radia : Radiolnterface

Figure 13.17 - Real-time characteristics defined on elements of the Location package

Figure 13.18 illustrates the main behavior of the Trajectory component, called computeTrajectory. This activity defines a
series of four periodic actions triggered every 10 ms. At the beginning of the period, two actions are concurrently
activated: a CallServiceAction invokes the getLocation real-time service, while another CallServiceAction invokes the
getFlightPlan real-time service. Real-time features defined on getLocation apply here and there is no need to redefine
these. Real-time features can be also defined at an action level, using the “rtAction” and “rtFeature” stereotypes, as
illustrated by the getFlightPlan, performComputation, and generateCommand service call actions.

Both getLocation and getFlightPlan service calls are delayed synchronous. Results shall be received and control flows
need to be synchronized (with a 3 ms deadline constraint) before the trajectory computation begins with the invocation of
the internal performComputation operation (synchronous, with a 4ms deadline constraint). Resulting commands can be
generated and relayed through the nav flow port owned by Trajectory, with the invocation of the internal
generateCommand operation (synchronous, with a 1ms deadline constraint).

196 UML Profile for MARTE, V1.2

computeTrajectory J
B

} priority=1

tRef=tl

« MSpeciication »

occKind = pericdic (perod=(10.ms), jitter=(2 us))
relli=(3,ms)

miss=(1, %, max)
syncKind=delayedSynchronous

arthetion, rtFeatures
getFlightPlan

pricrity=1

tRaf=1]

urtfction, riFeatures
perfermComputation 4,

ocekind = periodic (period=(10,ms), jitter=(2,us))
ralDl=(4,ms)

miss=(1, %, max)
synckind=synchronous

o rtSpecification » ™

« riAction, riFeatures
generateCommand

priomity=1

tRef=t0

occkind = periodic (perdod={10,ms), jitter=(2,us))
relDi=(1,ms)

miss=(1, %, max}
synckind=synchronous

« rtSpecification » "y

Figure 13.18 - Main behavior of the Trajectory component

Figure 13.19 illustrates another behavior owned by the Trajectory component. This activity is composed of aperiodic
action triggered upon a reception of a ParameterUpdated signal, sent by the Database component. When the signal is

received, the deadline to handle parameter change is 1ms with a miss ratio of 20% (i.e., a soft deadline). The updateParam
service call action is assigned priority P2. As a consequence, this operation will be invoked when the computeTrajectory

activity is completed.

handleParameterChange)

occkind = aperiodic()

wriAction, iFeatures
handieEvent

« rtSpecification » Ill . EEvant

artAction, iFeaturas
updateParam

T,
« riSpacification »

priosity=2

acckind = aperiadic ()
{Ref=tEvent
relDI=(1.ms)
miss={20, %, max)

Figure 13.19 - A trajectory behavior that handles events from Database

Figure 13.20 illustrates a particular execution of the Trajectory behaviors within a period, based on information presented
in previous figures. It shows a possible series of interactions between components in that context. The period starts at
t0[i]. A message is sent from Trajectory to Location, representing the getLocation service call in this sequence diagram.

UML Profile for MARTE, V1.2

197

The message is be stereotyped as a real-time feature, indicating information such as period and deadline. Other
characteristics (e.g., synchronization kind) are implied from real-time features defined on real-time actions or services. A
message is also sent from Trajectory to FlightPlan, representing the getFlightPlan service call.

Trajectory computation begins when both LocationData and FlightPlanData objects are returned (this internal behavior is
not shown in this diagram). The sequence of actions used to compute the trajectory and generate the navigation
commands shall end by t1[i], 8 ms after the beginning of the period. This allows 2 ms in order to handle aperiodic signals.
An aperiodic signal arriving before t1[i] implies that its resulting processing will be delayed. The updateParam service
call action has a lower priority than the other actions. In this execution scenario, the signal ParamUpdated is received
after the Trajectory component completed its computation. Therefore, the parameter update can be immediately
processed.

Trajectory execution scenario)

‘Trajectory :Locationfccess ‘PlanAccess :Database

ar ion =
| | aceKind = periadic {perad=(10,ms]|
ralCi=(3,ms)

i iRat=tn
@0 r « rtFeature » geﬂ_ocajon'[)d‘i_- ,
," U & HEpecificatian o
i S acckind = parad c (panod=(10.ma))
. i reii=|3,ms)
) LocationData | i i
O « MFeaturas geltFllghtPIan{] "_,,"
E14i] — 1001 = (8, ms}
| b

| accking = apericdis])
i
« rtFeature » paramUpdated(paramialue)
|

.

Figure 13.20 - A Trajectory execution scenario within a period

Note: We assume here that all the components rely on the same global clock.

198 UML Profile for MARTE, V1.2

14 Detailed Resource Modeling (DRM)

The objective of this clause is to provide a set of detailed resources for modeling both software and hardware platforms
by specializing the concepts defined within the General Resource Modeling (GRM) clause. This clause is split into two
sub clauses:

+ The Software Resource Modeling (SRM): focuses on modeling of application programming interfaces of software
multi-tasking platform.

+ The Hardware Resource Modeling (HRM): focuses on modeling hardware platform through different views and detail
levels.

14.1 Software Resource Modeling (SRM)

14.1.1 Overview

There are mainly two approaches to designing software real-time and embedded (RTE) applications: the sequential-based
design approach (also called loop-design) and the multitask-based design approach. The former approach consists in
designing applications as a set of ordered sequential actions, whose order is pre-calculated in order to satisfy the real-time
features. The multitask-based method aims at designing applications as a set of units executing concurrently and
interacting (i.e., communicating and synchronizing) via specific mechanisms provided by a specific execution support.
That support is in charge of real-time and embedded features (e.g., time constraints, determinism, and memory footprint).
It provides a set of resources and services through its application programming interface (API). That API may be either
standard or specific (proprietary or commercial).

The widespread approach used to design software RTE applications is the multi-tasking-based approach built upon a real-
time operating system (RTOS) as the execution support. Hence, the Software Resource Modeling (SRM) clause specifies
a set of modeling artifacts that can be used to describe the structure of such support. More specifically, it is looking to
depict software resources and software services described in multi-tasking (API). Thus, it provides:

+ Modeling artifacts to design in a unified way RTOS-like software execution support API through the definition of
specific UML profile: the SRM (Software Resource Model) sub-profile.

« Examples of specific UML model libraries using the SRM profile to describe parts of standardized RTOS APIs, such as
OSEK/VDX (OS 2.2.2) and ARINC (653-1) standards.

The typical use of the SRM UML profile is the description in a unified way of software multi-tasking API in order to
integrate explicitly the execution supports in the design flow (e.g., model library description and model transformation
description). The SRM profile is not a new multi-tasking API standard. It provides modeling artifacts to describe such
API. Moreover, even if this clause focuses on RTOS APIs, it is useful not only to describe such support but also to depict
specific multi-tasking libraries and more generally multi-tasking framework API (e.g., RTE middleware and RTE virtual
machine).

This clause is structured around a domain model description and its UML representation. The domain model sub clause
describes domain concepts. That domain model has been built based on a deep analysis of the main RTOS API standards
(SCEPTRE 2, POSIX Issue 6 IEEE std 1003.1, OSEK/VDX 2.2.2, ARINC 653-1), and of some RTOS (e.g., VxWorks
5.5, RTAI 3.1, QNX). The UML representation defines the UML extensions required to manipulate the concepts as
defined in the domain model and then be able to describe UML model libraries.

UML Profile for MARTE, V1.2 197

14.1.2 Domain View

This domain view is a specialization of the Generic Resource domain model for the purpose of software modeling. Hence,
the SRM model specializes resources and services defined in that previous clause. Commonly, multi-tasking software
resources relate to:

 Concurrent execution contexts (i.e., parallel execution).

- Interactions between concurrent context both to communicate and to synchronize themselves.

+ Brokering of hardware and software resources (e.g., device management and memory management).
Hence, the domain model is organized in four packages:

1. SW_ResourceCore provides the basic software resource concepts.

2. SW_Concurrency classifies concurrent execution contexts.

3. SW_Interaction sorts communication and synchronization resources.

4. SW_Brokering refers to hardware and software resources management.

Figure 14.1 shows the overall package structure.

— — —1
« madelLibrary »
GRM CoreElements MARTE ::Library::BasicNFP_Types
)
o im[:ltorl » i I'?\
. « import » ar impart »
SRM | | |
. 1
|
S 11 T —— = SW_ResourceCore fes------ « impat »
, |
! |
i i Iﬁ' |
: pmmmmn 4 import »-——----: w imﬁurl] :
—l—l—l v ot :
1 |
SW_Concurrency SW_Interaction SW_Brokering

Figure 14.1 - Structure of the SRM modeling framework

The purpose and the content of each package is described briefly in subsequent sub clauses. For more formal semantic
details, refer to the class description (Annex F).

14.1.2.1 The SW_ResourceCore Package
Figure 14.2 shows the structure of the SW_ResourceCore package.

As a rule, execution supports APIs fulfill real-time and embedded concepts as both a set of types and a set of operations.
For example, a kind of concurrency implementation in the POSIX standard is the concept of “thread.” Hence, a type
named “pthread t” and an operation named “pthread create” (i.e., operation that implements the creation of a thread)
fulfill POSIX threads. Users make use of those types and operations to implement their applications on the execution

198 UML Profile for MARTE, V1.2

support. The SW_ResourceCore package supplies the framework to model both those types and those operations. Types
are modeled as SwResource. SwResource inherits from the generic resource concept of the GRM::ResourceCore package.
Hence, a SwResource provides by inheritance a set of ResourceServices provided by the GRM package (sub clause 10.2).

In this domain model, there is no distinction between services provided by software resources to the application (for
example: a mailbox mechanism allows users to communicate messages) and services provided to manage those resources
(for example: the creation and the deletion of a mailbox). An SwResource concept gathers both the resource as such and
the manager of that resource. Hence, an SwResource inherits not only from the GRM::ResoureCore::Resource, but also
from the GRM::ResourceManagement::ResourceManager.

pServices
GRM: RescurcaeCore: Resource J— {subset ownedBehavior} R CoreElements: Foundation-
maxRIS: NFP_Integer [0_.1] 1 1, ResourcaeSenica ModelElement
‘% 0.* CoreElements:: Causality::
GRM::ResourceManagamant:! CommonBehavior:
ResowrcelManager parameters FParameter
SwRasoures createServices
0.
deletaServices GRM:ResourceCora::
identifierElements : ModelElement [0..%] 0. ResourceService
stateElements : ModelElement [0..7] intializeServices
memory SizeFootprint : ModelElameant [0..1] 0

Figure 14.2 - The SW_ResourceCore package overview

A specific software service is the SwAccessService used to access elements. In fact, software resources provide some
services to access their characteristics: get and set. Those services may be considered as SwAccessServices. In case of the
“set” one, the Boolean attribute “isModifier” may be true.

GRM::RasourceCona::
Resounce Service

accessedElement SwhccessService
CoreElements::Foundation: Property }.I_ ehodiier « Boolaan

Figure 14.3 - The SwAccessService

14.1.2.2 The SW_Concurrency Package

Figure 14.5, Figure 14.6, Figure 14.7, Figure 14.8, Figure 14.9, and Figure 14.10 show the structure of the
SW_Concurrency package.

The SW_Concurrency package defines SwConcurrentResource that represents entities that compete for computing
resources in order to execute sequential part of instructions. They provide an execution context (e.g., stack, interrupts
enable/disable and registers) for an execution flow (i.e., sequence of actions). The execution context may be confined to
specific memory partition (i.e., virtual address space). Kinds of SwConcurrentResource are interrupt resources and
schedulable resources.

UML Profile for MARTE, V1.2 199

An entry point specifies the execution flow associated to a SwConcurrentResource. That entry point is re-entrant whether
it can be invoked while it is still executing from a previous invocation.

SRM:EW RescurceCore:: ‘ GRM:Resource Type:: |

Allscations:Allocation GRM:ResourcelManagement::
i ResourceBroker SwiResource ConcurmencyResource

Q 4 L3

| +activateServices

i i SwioncurrentResource 0.
EntryPoint Smnomts +resumeServices -
isReentrant : Boolean 0.r type : ArrivalPatiarn ; 0.*
routine 1 activationCapacity | Integer +suspendServices GR;M-'-'RBSDL;GB;W:
i . g g esourceSenvice
addressSpace concurrentResources PEncdElements : ModelElement [0..7] 0
CoreElements:: Causality:: MernaryPartilion | el priorityElements : ModelElement [0.*] [*+enableConcurrencyServices
CommonBehavior i 0.1 1_* | stackSizeElements - ModelElement [0 %] [
Behawvior heapSizeElements : ModelElement [0..*] [tdisableConcurrencyServices.

o
JA) | mo.‘

I 1 terminateServices

| SwichedulableResource

InterruptResource

Figure 14.4 - The SwConcurrentResource overview

sharedDataResources SRM::SW._Interaction::
0.* SharedDataComResource
SwConcurrentResource
messageResources . o
v amapaton g [l
adivationCapacity : Integer B
periodElements: ModelElement [0..*]
priorityElements : ModelElement [0..%] .)
y . mutualExclusonResources SRM::SW_Interaction::
stackSzeElements : ModelElement [0..*] 0 SwMutuaExclsonResource
T notificationResources SRM::SW_Interaction::
0.* NotificationResource

Figure 14.5 - The SwConcurrentResource interactions

Interrupt resources match to the physical processing level. In that execution context, the competition for the processing
unit is managed at the physical level by a controller and bypasses the scheduler. Many execution supports provide specific
services to manage context of interrupt service routine (ISR) execution (i.e., interrupt entry point). The Interrupt resource
deals with both hardware interrupts and exceptions (i.e., software interrupts produced by the control processing unit
(CPU) while executing instructions). Exceptions can either be “Processor-detected” exceptions when the CPU detects an
anomalous condition while executing an instruction or “Programmed” exceptions (also called software interrupts) when
they occur at the request of the programmer. Some examples of “Processor-detected” exceptions are faults (divide error,
device not ready), traps (breakpoints, debug), and aborts (double fault).

200 UML Profile for MARTE, V1.2

SwConcurrentResource

A « enumeration »
i i Interruptkind
. ! InterruptResource routineConnedServices ptki
isrEntryPoints)
{redefines entryPoint} : 0.* Hardwarelnterruption
EntryPoirt kind:InterruptKind " GRM:ResourceCore:: Processor DetectedException
0.* isMaskable : Boolean -) ResourceService ProgrammedException
- vectorElements : ModelElement [0..%] routneDisconnedSenvices Undef
maskHements : ModeEement [0..%] 0.* Cther

Figure 14.6 - The Interrupt Resource

A specific class of interruptResource is the alarm one which allows the interrupt service routines (i.e., the alarm entry
points) to be connected to a timer and invoked after a one-shot or periodically. A particular software alarm is the
watchdog. If the application doesn’t succeed in resetting the watchdog, that means that the system is not functioning
properly and the alarm occurs, forcing application to execute the watchdog entry point or to reset the processor.

GRM::Resource Type::
TimerResource InterruptRe source

: 7

SwTimerResource .
timers Alarm

durationElements : ModelElement {redefines duration} | 0.*

isWatchdog : Boolean

Figure 14.7 - The Alarm resource

SwSchedulableResources match to the logical processing context. In that context, the competition for the CPU is
brokered at the logical level by a software scheduler. Hence, SwSchedulableResources are linked to an explicit software
scheduler that determines the order and the timing (i.e., the “schedule”) in which those should be executed. Typical
examples of SwSchedulableResource are the POSIX Thread, the ARINC-653 Process and the OSEK/VDX Task.

GRM::Scheduling:
SnConcurrentResourds SchedulableResource
SwSchedulableResource joinServices
0.*
. scheduler scheduledResource| isStaticSchedulingFeature : Boolean : ; GRM::Resource Core::
: =) . vieldServices - - ~ore:;
GRM:Scheduling::Scheduler 1 0.+| isPreemptable : Boolean 0.* ResourceService

deadlineElements : ModelEement [0..%]
deadiineTypeElements : ModeElement [0..*]
timeSliceElements : ModeElement [0..*]

| debyServices -
0.

Figure 14.8 - The SwSchedulable resource overview

As explained above, software computing resources may be confined in specific MemoryPartitions. A MemoryPartition
represents a virtual address space which insures that each concurrent resource associated to a specific memory partition
can only access and change its own memory space.

UML Profile for MARTE, V1.2 201

SRM::SwResource

1

| concurrentResources addressSpace M
SwConcurrentResource X g 0~
0.1 " .

GRM:ResourceType:: | Mmemo rySpaces MemoryParfiton exitServices
StorageResource 0.* 0.*

GRM::ResourceCore::ResourceService

Figure 14.9 - The MemoryPartition resource

14.1.2.3 The SW_lInteraction Package

Figure 14.11, Figure 14.12, Figure 14.13, Figure 14.14, Figure 14.15, Figure 14.16, and Figure 14.17 show the structure

of the SW_Interaction package.

In concurrent execution contexts, resources need to interact both to synchronize their actions and to communicate data.
Hence, SwSynchronizationResources control execution flows whereas SwCommunicationResources manage data flows.

In any case, resources interact according to a waiting policy. For example, considering a blocked WaitingPolicy, the
acquire call part of a mutual exclusion synchronization involves that the caller is blocked in a waiting state (non available
for scheduling) until someone release the shared resource. The waiting resources are queued in a waiting queue
characterized by a policy and a capacity. Those interactions may be limited to a certain partition of the memory (i.e.,
isIntraMemoryPartitionInteraction property).

SRM::SW_Resource Core:: SwRe source

GRM::ResourceManagement:

GRM:ResourceType::

A

« enumeration »
QueuePolicyKind

FIFO
LIFO
Priority
Undef

Resource Broker Commu nication EndPoint
SwinteractionResour ce

isinraMemoryPartitionInteraction : Boolean
waitingQue uePolicy : QueuePolicyKind
waitingQue ueCapacity : Integer

waitingPolicyElements :ModelElement [0..%]

I}

Other

SwCommu nication Re source

SwSynchronizationResource

Figure 14.10 - The SW_InteractionResource package overview

To control execution flow, real-time execution supports provide several kinds of synchronization mechanisms: ones to
notify event and others to control shared data mutual access. The two corresponding resources are
SwMutualExclusionResource and NotificationResource.

202

UML Profile for MARTE, V1.2

SwinteractionResource

GRM::Resource Type::
SynchronizationResource

A

A

SwSyn chronization Re source

A

SwMutualExclusionResour ce

NotificationResource

Figure 14.11 - The SwSynchronizationResource overview

SwMutualExclusionResource describes resources commonly used to synchronize mutual access to shared data. As
examples, Boolean semaphore (one token that anybody can release even if it does not get it), mutex (a Boolean
semaphore associated with a concept of ownership : only resource that owns the mutex can release it) and counting
semaphore (several token may be got and released) are kind of SwMutualExclusionResource.

SwSynchronizationResource ‘

MutualExclusionResource

GRM::Scheduling::

MutualExclusionResourceKind

BooleanSemaphore
CountSemaphore
Mutex

Undef

Other

« enumeration »
ConcurrentAccessProtocolKind
PIP SwMutualExclusionResource acquireServices
PCP 0.*
NoPreemption concurrentAccessProtocol : ConcurrentAccessProtocolKind .
Undef accessTokenElements : ModelElement [0..] releaseServices
Other mechanism : MutualExclusionResourceKind 0.%

Figure 14.12 - The MutualExclusionResource Overview

GRM::ResourceCore::
ResourceService

NotificationResource supports control flow by notifying occurrences of conditions to awaiting concurrent resource. As

examples POSIX Signal, OSEK\VDX Event and ARINC-653 Event are NotificationResources. The notified occurrence
can be memorized (i.e., memorized in a buffer), bounded (i.e., each occurrence increments a counter) or memoryless (i.e.,
not memorized in a buffer, hence multiple occurrences are lost).

‘ SwSynchronizationResource ‘

-

« enumeration »
NotificationResource Kind

NotificationResource

flushServices

Barrier
Event
Undef
Other

policy : Occurence PolicyKind
occurenceCountElements : ModeElement [0..*]
maskElements : ModelElement [0..*]
mechanism : NotificationResourceKind

0.*
signalService
0.7

waitService

GRM::ResourceCore:

0.*
clearService

ResourceService

Figure 14.13 - The NotificationResource overview

UML Profile for MARTE, V1.2

0.*

«enumeration »
OccurencePolicyKind

Memorized
Bounded
Memoryless
Undef
Other

203

Commonly, to manage data flows, users can manipulate both shared data and message.

. GRM::ResourceType:
SwinteractionResource Comm unica ionMedia

A B

SwCommunicationResource

£

SharedDataComResource MessageComResource

Figure 14.14 - The MessageComResource overview

MessageComResource are artifacts to communicate messages (i.e., a structure of data characterized by, for example,
either a fixed or a dynamic size, a priority, a type of data.) among concurrent resources. Messages may be queued.

Common mechanisms are MessageQueue, Blackboard, POSIX Pipe.

SwCommunicationResource

Z> \

«enumeration » «enumeration » MessageComResource .
QueuePolicyKind MessageRessour ceKind 9 sendServices

Ve Q isFixedMessageSize : Boolean 0.” i]
[Illfg szsage eue messageSizeElements : ModelElement [0.] Gi“g;sm‘gs?\%ge-
Priority Blackboard me chanism :MessggeRessouroeKnd_[O..ﬂ receiveServices
Undef Undef me ssageQueuePolicy : QueuePolicyKind [0..1] -
031 © anheer me ssageQueueCapacityElements : ModelElement [0..] 0.

er

Figure 14.15 - The Messaging Communication resource

SharedDataComResource define specific resources used to share the same area of memory among concurrent resources.
They allow concurrent resources to exchange safely information by reading and writing the same area in memory.

SwCommunicationResource

i

readServices
0. GRM: S
SharedDataComResource Re 2RE N
writeSeniice: esourceSenvice
0.*

Figure 14.16 - The shared data communication resource

204 UML Profile for MARTE, V1.2

14.1.2.4 The SW_Brokering package

Figure 14.17 shows the structure of the SW_Brokering package. The SW_Brokering package gathers resources that broke
hardware as well as software resources. For example, kind of brokering actions are allocation, hardware device access,

and so on.
(Rl SRM::SW _ResourceCore: :SwResource
ResourceBroker —

DeviceBroker MemoryBroker

Figure 14.17 - The SW_BrokerResource Package Model

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support. By initializing that resource,
user makes devices accessible for software. Commonly, deviceBroker resources are based on file mechanisms.
DeviceBroker may be buffered (i.e., in which data is read and written in large chunks and buffered privately).

« enumeration» GRM::ResourceManagement: .. .
Acce ssPolicyKind ResourceBroker SRM::SW_ResourceCore::SwResource
Read
Write
ReadWrite
Undef
Other
DeviceBroker closeServices
. o 0..*
accessPolicy : AccessPolicyKind controlService s GRM::Re sourceCore:
isBuffered : Boolean 0.* ResourceService
GRM::ResourceType:: |devices openServices
DeviceResource 0..* 0..*

readServices A 0..*
writeServices | 0..*

Figure 14.18 - The DeviceBroker overview

MemoryBroker gathers allocation, mapping (map real memory onto the virtual address ranges used in memory partition)
and protection of memory. For example, memory paging and memory swapping techniques impose severe and
unpredictable delays in execution time. Thus, applications can use page-locking facilities, such as Lock and UnLock
services, to declare that certain blocks of memory must not be paged or swapped.

| UML Profile for MARTE, V1.2 205

GRM:ResourceManagement.: SRM::SW_Re sourceCore:: SwResource

ResourceBroker

| lockServices

MemoryBroker 0.7

unLockServices

o o 0.*

: accessPolicy : AccessPolicyKind
- .. |memories . b .
GRM::Re sourceType: memoryBlockAd dressElements : Mode [Element [0..*] mapSerwcef GRM:ResourceCore::
Storage 0.* memoryBlockSize Eements : ModelElement [0..%] 0.. ResourceService
unmap Services
0.*

Figure 14.19 - The MemoryBroker overview
14.1.3 UML Representation

This sub clause contains a definition of each stercotype that is defined for the software resource modeling profile (SRM).
The first sub clause describes rationales for matching domain model concepts to UML profile concepts (i.e., sub-profile,
stereotypes, tag, and constraints). Then, the purpose and the content of each sub-profile are briefly described in a second
sub clause. Finally, a third sub clause is dedicated to a detailed description of each stercotype.

As the SRM profile is intended to provide modeling artifacts to describe APIs of multi-tasking execution support,
rationales have been made to implement domain model concepts in a UML profile:

« The MARTE::CoreElements::ModelElement metaclass is matched to the UML::Kernel::Classes::TypedElement
metaclass. This matched rule allows users to reference as well structural features (for example,
UML::Kernel::Classes::Property) as behavioral features (for example, UML::Kernel::Classes::Parameter). Figure
14.20 shows one example of the SwResource matching.

« metaclass »
Classifier
SwResource

N .

« stereotype»
SwResource

identifierElements : ModelElement [0..*]

identifierElements : TypedElement [0..*]

(i) domain model (ii) UML profile
Figure 14.20 - SRM Matched rule on ModelElement metaclass

« As Associations between ResourceService and SwResource are navigable in one way, the association ends relative to
the SwResource metaclass are matched to SwResource stereotype tags. Moreover, the ResourceService metaclass is
matched to the UML::Kernel::Classes::BehavioralFeature. In UML, a behavioral feature specifies that an instance of a
classifier will respond to a designated request by invoking a behavior. Hence, services described in APIs are kind of
behavioral features (i.e., behavior signature). Figure 14.21 shows one example of the SwResource matching.

206 UML Profile for MARTE, V1.2

SwResource

createServices

0.*

Figure 14.21 - SRM Matched rule on Association between ResourceService and SwResource

« Associations between domain model concepts are matched both to specific stereotype tags and profile constraints.

ResourceService

« metaclass »
Classifier

!

(i) domain model

« stereotype»
SwResource

create Services : BehavioralFeature [0..%]

(i) UML profile

Figure 14.22 shows one example of the SwConcurrentResource matching.

SwConcurrentResource

addressSpace

0..1

MemoryPartition

&

« metaclass »
Classifier

*

« metaclass »
Classifier

i

« stereotype»
SwConcurrentResource

« stereotype»
MemoryPartition

addressSpace : TypeElement [0..1]

Constraint : Type of the addressSpace value must be

stereotyped as “MemoryPartition”

(ii) UML profile

Figure 14.22 - SRM Matched rule on Associations

14.1.4 Profile Diagrams

Figure 14.23 shows the overall profile structure. The purpose and the content of each sub-profile are described in

subsequent clauses.

UML Profile for MARTE, V1.2

207

1 1 1
a modelLibrary »
ST S MARTE::Library::BasicNFP_Types
i I
@ Imp'nor[® i "?‘
! & import » « import »
SRM ! i
! H
I |
===t IMPOrt #ommmmmmma = SW_ResourceCore |pE-===== & import o
| |
| i
1 1
i . I |
} pmmm——— i IMpOFt me=mamm s L |
' L y Lmpotx i
1 |
SW_Concumancy SW_interaction SW._Brokering

Figure 14.23 - The SRM profile overview

The SW_ResourceCore sub-profile aims to describe foundations of the SRM profile. It matches to the SW_ResourceCore

package (see 14.1.2.1).

« profile »

SW_ResourceCore

« Slareclype »
GRM::Resource

.

« steraotypa »
GRM::GrService

)

+ starofype »
SwiResource

« sterotype »
SwhAccessServica

identifierElements : TypedElement [0..7]
stateElemeants @ TypadElameant [0..7]
memorySizeFootprint : TypedElement [0..1]
createServices | BehavicralFeatura [0..7]
deleteServices : BehavioralFeature [0_.%]
initializeServices - BehavioralFeaturs [0..%]

isModifier - Boolsan
accessedElament : Property [1]

Figure 14.24 - The SW_ResourceCore profile overview

The SW_Concurrency sub-profile matches to the SW_Concurrency package (see 14.1.2.2). It aims to provide modeling
artifacts to describe software concurrent execution contexts.

208

UML Profile for MARTE, V1.2

Issue

16229 - update figure

« profile »
SW_Concurrency

« stereotype »
Alloc::Allocate

*

« stereotype»
EntryPoint

isReentrant : Boolean
routine : BehavioralFeature [1]

« stereotype »
SRM::SW_ResourceCore::SwResource

L

« stereotype»
SwConcurrentResource

« metaclass »
UML2::Classes::Kernel::NameSpace

« stereotype »
SRM::SW_ResourceCore::SwResource

1

T « STEreotype »
MemoryPartition

A

type : ArrivalPattern

activationCapacity : Integer

entryPoints : Element [*]

addressSpace : TypedElement [*]
periodElements : TypedElement [*]
priorityElements : TypedElement [*]
heapSizeElements : TypedElement [*]
stackSizeElements : TypedElement [*]
activateServices : BehavioralFeature [*]
enableConcurrencyServices : BehavioralFeature [*]
resumeServices : BehavioralFeature [*]
suspendServices : BehavioralFeature [*]

« stereotype »

GRM::SchedulableResource

concurrentResources : TypedElement [*]
memorySpaces : TypedElement [*]

fork : BehavioralFeature [*]

exit : BehavioralFeature [*]

terminateServices : BehavioralFeature [*]
disableConcurrencyServices : BehavioralFeature [*]
shareDataResources : TypedElement[*]
messageResources : TypedElement[*]
mutualExclusionResources : TypedElement[*]
notificationResources : TypedElement[*]

« enumeration »
InterruptKind

Hardwarelnterruption

7

« stereotype»

« stereotype»

SwSchedulableResource

ProcessorDetectedException InterruptResource
ProgrammedException kind:InterruptKind
Undef isMaskable : Boolean
Other vectorElements : TypedElement [*]
maskElements : TypedElement [*]
GRM:: routineConnectServices : BehavioralFeature [*]
TimerResource routineDisconnectServices : BehavioralFeature [*]
SwTimerResource « stereotype»

durationElements : TypedElement {redefines duration}

Alarm

isWatchdog : Boolean
timers : TypedElement [*]

isStaticSchedulingFeature : Boolean
isPreemptable : Boolean

schedulers : NamedElement [1]
deadlineElements : TypedElement [*]
deadlineTypeElements : TypedElement [*]
timeSliceElements : TypedElement [*]
delayServices : BehavioralFeature [*]
joinServices : BehavioralFeature [*]
yieldServices : BehavioralFeature [*]

UML Profile for MARTE, V1.2

209

« profile »
SW_Concurrency
« Stereotype »
« stereotype » SRM::SW_ResourceCore::SwResource
Alloc::Allocate Z>
« stereotype» « stereotype»
EntryPoint SwConcurrentResource
isReentrant : Boolean type : ArrivalPattern
routine : BehavioralFeature [1] activationCapacity : |nteger
entryPoints : Element [*]
« metaclass » addressSpace : TypedElement [*]
UML2::Classes::Kernel::NameSpace periodElements : TypedElement [']
priorityElements : TypedElement [*]
A heapSizeElements : TypedElement [*]
« stereotype » stackSizeElements : TypedElement [*]
SRM::SW_ResourceCore::SwResource activateServices : BehavioralFeature [*]
enableConcurrencyServices : BehavioralFeature [*] « stereotype »
resumeServices : BehavioralFeature [*] GRM::SchedulableResource
suspendServices : BehavioralFeature [*]
« stereotype » terminateServices : BehavioralFeature [*]
MemoryPartition disableConcurrencyServices : BehavioralFeature [*]
concurrentResources : TypedElement [*] shareDataResources : TypedElement[*]
memorySpaces : TypedElement [*] messageResources : TypedElement[*]
fork : BehavioralFeature [*] mutualExclusionResources : TypedElement[*]
exit : BehavioralFeature [*] notificationResources : TypedElement[*]
« enumeration » 4
InterruptKind ‘
Hardwarelnterruption « stereotype»
ProcessorDetectedException InterruptResource
ProgrammedException kind:InterruptKind « stereotype»
Undef isMaskable : Boolean SwSchedulableResource
Other vectorElements : TypedElement [*]
maskElements : TypedElement [*] isStaticSchedulingFeature : Boolean
GRM:: routineConnectServices : BehavioralFeature [*] isPreemptable : Boolean
TimerResource routineDisconnectServices : BehavioralFeature [*] scheduler : NamedElement [1]
deadlineElements : TypedElement [*]
deadlineTypeElements : TypedElement [*]
timeSliceElements : TypedElement [*]
SwTimerResource « stereotype» _de_laySe!'vices : BehgvioralFeature [
Alarm joinServices : BehavioralFeature [*]
durationElements : TypedElement {redefines duration} | | iswatchdog : Boolean yieldServices : BehavioralFeature [*]
timers : TypedElement [*]

Figure 14.25 - The SW_Concurrency profile overview

The SW_Interaction sub-profile describes communications and synchronizations among concurrent execution contexts. It
matches to the SW_Interaction package (see 14.1.2.3).

210 UML Profile for MARTE, V1.2

« profile »
SW_lInteraction

« stereotype» ‘

SRM::SW_ResourceCore::SwResource

SwinteractionResource

« stereotype »

« enumeration »
QueuePolicyKind

isintraMemoryPartitionInteraction : Boolean

« stereotype»
GRM::CommunicationMedia

waitingQueuePolicy : QueuePolicyKind
waitingQueueCapacity : Integer
waitingPolicyElements : TypedIElement [*]

: j

‘ « stereotype » ‘

SwCommunicationResource

P

« stereotype »
SharedDataComResource

« stereotype »
MessageComResource

readServices : BehavioralFeature [0..*]
writeServices : BehavioralFeature [0..*]

isFixed ize : Boolean

mechanism : MessageResourceKind
messageSizeElements :TypedElement [*]
messageQueueCapacityElements: TypedIElement [*]
messageQueuePolicy : QueuePolicyKind [0..1]
sendServices : BehavioralFeature [0..*]

receiveServices : BehavioralFeature [0..*]

¢

FIFO
LIFO
Priority
« stereotype» (l;nr::lef
GRM::SynchronizationResource ther
« stereotype»

GRM::MutualExclusionResource

SwSynchronizationResource

« Stereotype »

P

« stereotype »
NotificationResource

« stereotype »

SwMutualExclusionResource

occurence : NotificationKind
mechanism : NotificationResourceKind

occurenceCountElements : TypedElement [*]

maskElements : TypedElement [*]
flushServices : BehavioralFeature [*]
signalServices : BehavioralFeature [*]
waitServices : BehavioralFeature [*]
clearServices : BehavioralFeature [*]

mechanism : MutualExclusionResourceKind

accessTokenElements : TypedElement [*]
releaseServices : BehavioralFeature [*]
acquireServices : BehavioralFeature [*]

concurrentAccessProtocol : ConcurrentAccessProtocolKind

« enumeration » n " N « enumeration »
« enumeration » « enumeration » « enumeration » "
i ConcurrentAccessProtocolKind
MessageResourceKind NotificationKind NotificationResourceKind MutualExclusionResourceKind
- PIP
I\P/I_essageQueue Memorized Event BooleanSemaphore PCP
Ipe Bounded Barrier CountSemaphore "
Blackboard Memoryless Undef Mutex toPreamption
Undef Undef Other Undef Other
Other Other Other

Figure 14.26 - The SW_Interaction profile overview

The SW_Brokering sub-profile matches to the SW_Brokering package (see 14.1.2.4). The SW_Brokering sub-profile
describes stereotypes to annotate hardware and software resource management.

« profile»
SW_Brokering

« stereotype»

SRM::SW_ResourceCore:: SwResource

&

« stereotype »
DeviceBroker

accessPolicy : AccessPolicyKind
isBuffered : Boolean
devices : TypedElement [0..*]

« stereotype »
Me mor yBroker

« enumeration »
AccessPolicyKind

acce ssPolicy : AccessPolicyKind
memories : TypedElement [*]
me moryBlockAddressElements : Typed Element [*]

Read
Wiite
ReadWrite

closeServices : BehavioralFeature[*]
controlServices : BehavioralFeature[*]
openServices : BehavioralFeature [*]
readServices : BehavioralFeature [*]
writeServices : BehavioralFeature [*]

me moryBlockSizeElements : TypedElement [¥]
lockServices : BehavioralFeature [*]
unlockServices : BehavioralF eature [*]
mapServices : BehavioralFeature [*]
unMapServices : BehavioralFeature [*]

Undef
Other

Figure 14.27 - The SW_Brokering profile overview

UML Profile for MARTE, V1.2

21

14.1.5 Profile Elements Descriptions

14.1.5.1 Alarm (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept Alarm denoted in Annex F (F.8.1).
Alarm resource provides executing context to a user routine, which must be connected to a timer invoked after a one-shot

or periodically.

Extensions

* None

Generalizations

+ InterruptResource (from SW_Concurrency)

Associations

+ None

Attributes

+ isWatchdog: Boolean [0..1]
Specifies if the alarm is a watchdog.

* timers: TypedElement [0..1]

Specifies the timer that raises the signal to execute the entry-point of the alarm resource.

Constraints

[1] Types of timers values must be stereotyped either as “SwTimerResource.”

Notations

The image associated with that stereotype is shown below:

Figure 14.28 - The alarm notation

14.1.5.2 AccessPolicyKind (from MARTE::SRM::SW_Brokering)

The AccessPolicyKind enumerates common policy to access a resource.

Description
* Read
Read access only.

* ReadWrite
Read and write access are allowed.

212 UML Profile for MARTE, V1.2

* Write
Write access only.

* Undef
Undefined policy.
» Other

Other user's specific policy.

14.1.5.3 ConcurrentAccessProtocolKind (from MARTE::SRM::SW_Interaction)

The ConcurrentAccessProtocolKind enumerates common protocol to access mutually a shared resource.

Description

e NoPreemption
Lock the concurrency to avoid preemption when a resource is accessing a shared variable.

« PCP
Priority Ceiling protocol.
« PIP
Priority Inheritance Protocol.
* Undef
Undefined policy.
* Other

Other user's specific policy.

14.1.5.4 DeviceBroker (from MARTE::SRM::SW_Brokering)
This stereotype matches the domain concept DeviceBroker denoted in Annex F (F.8.4).

A DeviceBroker (i.e., driver) interfaces peripheral devices to the software execution support.

Extensions

» None

Generalizations

+ SwResource (from SRM::SW_ResourceCore) on page 196

Associations

« None

Attributes

» accessPolicy: AccessPolicyKind [0..1]
Access policy of the device (read, write).

» closeServices: BehavioralFeature [0..*]
Services that make the hardware device unavailable from software resources.

» controlServices: BehavioralFeature [0..*]
Services that initialize and broker the device.

UML Profile for MARTE, V1.2

213

* devices: TypedElement [0..*]
Hardware device brokered by the driver.

* isBuffered: Boolean[0..1]
If true, data is read and written in large chunks and buffered privately.

» openServices: BehavioralFeature [0..*]
Services that establish the connection between a device and the resource. This service makes
available the device to software resources.

» readServices: BehavioralFeature [0..*]
Services which read data from the device.

» writeServices: BehavioralFeature [0..%]
Services which write data to the device.

Constraints

[1] Types of device values must be stereotyped either as “DeviceResource” or as “DeviceBroker” sub-Stereotype.

Notations

The icon associated with that stereotype is:

Figure 14.29 - The deviceBroker notation

14.1.5.5 EntryPoint (from MARTE::SRM::SW_Concurrency)
This stereotype matches the domain concept EntryPoint denoted in Annex F (F.8.5).

The EntryPoint supplies the routine (i.e., operations) executed in the context of the Sw ComputingResource.

Extensions
+ Allocate (from Alloc)

Generalizations

« None

Associations

* None

Attributes

» isReentrant: Boolean [0..1]
Specifies if a single copy of the routine instructions in memory can be shared by multiple concurrent
resource. If true, instructions described in the routine could be called from multiple concurrent resource
contexts simultaneously without conflict.

214 UML Profile for MARTE, V1.2

* routine: BehavioralFeature [1]
Specifies the routine that has to be executed in the context of the software computing resource.

Constraints

» None

14.1.5.6 InterruptResource (from MARTE::SRM::SW_Concurrency)

This stereotype matches the domain concept InterruptResource denoted in Annex F (F.8.6).

InterruptResource defines an executing context to execute user-delivered routines (i.e., entry point) further to hardware or

software asynchronous signals.

Extensions

» None

Generalizations

+ SwConcurrentResource (from SRM::SW_Concurrency) on page 193

Associations

» None

Attributes
* kind: InterruptKind [0..1]
Specifies the kind of interrupt.

» isMaskable: Boolean [0..1]
Interrupts can either be maskable or not. Only few critical signals raise non maskable interrupts.
The control processor unit (CPU) always recognizes those. Maskable interrupts can be in two
states: unmasked (i.e., recognized by the CPU) or masked (i.e., ignored by the control unit). For
example, a schedulable resource can explicitly mask maskable interrupts to avoid its pre-emption
in some code sub clauses.

* maskElements: TypedElement [0..*]
Specifies elements that map the semantics of the interrupt mask.

» routineConnect: BehavioralFeature [0..*]
Services that connect the routine to the interrupt vector.

» routineDisConnect: BehavioralFeature [0..*]
Identifies services that disconnect the routine to the interrupt vector.

* vectorElements: TypedElement [0..*]
Specifies elements that map the semantics of the interrupt vector.

Constraints

* None

Notations

The image associated with that stereotype is:

UML Profile for MARTE, V1.2

215

vl

Figure 14.30 - The interrupt notation

14.1.5.7 InterruptKind (from MARTE::SRM::SW_Concurrency)

The InterruptKind enumerates different kinds of interrupt.

Description

* Hardwarelnterrupt
The interrupt source is a hardware one.

* ProcessorDetectedException
Software interrupts produced by the CPU control unit while it detects an anomalous condition in
executing an instruction. Some examples of “Processor-detected” exceptions are faults (divide
error, device not ready) and aborts (double fault).

* ProgrammedException
Software interrupts produced by an explicit request of the programmer. Some examples of
“ProgrammedException” exceptions are traps (breakpoints, debug).

e Undef
Undefined mechanism.
e Other:

Others mechanisms.

MemoryBroker (from MARTE::SRM::SW_Brokering)

This stereotype matches the domain concept MemoryBroker denoted in Annex F (F.8.8).

MemoryBroker resources provide primarily services to manage the memory allocation, the memory protection, and the
memory access.

Extensions

» None

Generalizations

« SwResource (from SW_ResourceCore) on page 196

Associations

« None

Attributes

» accessPolicy : AccessPolicyKind [0..1]
Defines the access policy to the memory (read, write).

216 UML Profile for MARTE, V1.2

* memories: TypedElement [0..*]
Specifies the hardware device type brokered by the driver.

* memoryBlockAddressElements: TypedElement [0..*]
Specifies elements that map the semantic of the memory block address.

* memoryBlockSizeElements: TypedElement [0..*]
Specifies elements that map the semantic of the memory block size.

* lockServices: BehavioralFeature [0..*]
Services that lock the paging or the swapping.

* mapServices: BehavioralFeature [0..*]
Services that map real memory onto the virtual address ranges used in memory partition.

* unlockServices: BehavioralFeature [0..*]
Services that unlock the paging or the swapping.

» unMapServices: BehavioralFeature [0..*]
Services that unmap real memory onto the virtual address ranges used in memory partition.

Constraints

[1] Types of memory values must be stereotyped either as “StorageResource” or as “StorageResource” sub-Stereotype.

Notations

The image associated with that stereotype is:

Figure 14.31 - The memoryBroker notation

14.1.5.8 MemoryPartition (from MARTE::SRM::SW_Concurrency)
This stereotype matches the domain concept MemoryPartition denoted in Annex F (F.8.9).

MemoryPartition represents a virtual address space and insures that each concurrent resource associated to a specific
memory partition can only access and change its own memory space.

Extensions
« NameSpace (from UML::Kernel::Classes)

Generalizations

« SwResource (from SRM::SW_ResourceCore) on page 196

Associations

» None

UML Profile for MARTE, V1.2 217

Attributes

+ concurrentResources: TypedElement [0..%]
Specifies concurrent resource executing in that address space.

+ exitServices: BehavioralFeature [0..%]
Releases an address space.

» forkServices: BehavioralFeature [0..*]
Spawns a new address space.

* memorySpaces: TypedElement [0..*]
Specifies parts of the memory linked to this address space.

Constraints

[1] Types of concurrentResources values must be stereotyped either as “SwConcurrentResource” or as
“SwConcurrentResource” sub-Stereotype.

[2] Types of memorySpaces values must be stereotyped either as “StorageResource” or as “StorageResource”
sub-Stereotype.

Notations

The image linked to that stereotype is:

Figure 14.32 - The memoryPartition notation

14.1.5.9 MessageComResource (from MARTE::SRM::SW_Interaction)
This stereotype matches the domain concept MessageComResource denoted in Annex F (F.8.10).
MessageComResource defines communication resource to exchange message.

Extensions

+ None

Generalizations

« SwCommunicationResource (from SRM ::SW_Interaction) on page 193

Associations

» None

Attributes

+ isFixedMessageSize : Boolean
Specifies whether all messages managed by the resource have the same size.

218 UML Profile for MARTE, V1.2

* mechanism: MessageResourceKind [0..1]
Specifies the kind of mechanism used to exchange messages.

* messageQueueCapacityElements: TypedElement [0..1]
Specifies the upper limit of message number allowed in a queue.

+ messageQueucePolicy: QueuePolicyKind [0..1]
Defines the algorithm to manage the outgoing message queue.

* messageSizeElements : TypedElement [0..*]
Specifies the parameter used in message exchange services to define the size of the message.

* receiveServices : BehavioralFeature [0..*]
Identifies services that get a message.

» sendServices : BehavioralFeature [0..*]
Identifies services that set a message.

Constraints

» None

Notations

The image associated with that stereotype is:

=

Figure 14.33 - The MessageComResource notation

14.1.5.10 MessageResourceKind (from MARTE::SRM::SW_Interaction)

The MessageResourceKind enumerates common mechanisms provided by platform to exchange data.

Literals

* Blackboard
Defines a one message buffer.

* MessageQueue
Defines a multiple message buffer.

* Pipe
Defines POSIX Pipe mechanism, which allows data flow among separate memory partitions.

e Undef
Undefined mechanism.

e Other
Other mechanisms.

14.1.5.11 MutualExclusionResourceKind (from SW_Interaction)

The MutualExlusionResourceKind enumerates common mechanisms provided by platform to synchronize resource.

UML Profile for MARTE, V1.2 219

Literals

* BooleanSemaphore
Defines a binary semaphore. It is a flag available or unavailable. There is no proprietary
purpose. Anybody can give the semaphore even if it does not take it.

* CountSemaphore
Defines a counting semaphore for which every time the semaphore is given the count is
incremented; every time the semaphore is given the count is decremented.

* Mutex
Defines a binary semaphore associated with a propriety concept, resource can give the
semaphore if and only if the resource takes it.

e Undef

Undefined mechanisms.
e Other

Other mechanisms.

14.1.5.12 NotificationKind (from MARTE::SRM::SW_Interaction)

The NotificationKind enumerates common policy to access a resource.

Literals
Bounded
Each occurrence increments a counter.

Memorized
Occurrences are memorized in a buffer.

* Memoryless
Occurrences are not memorized in a buffer, hence multiple occurrences are lost.

e Undef
Undefined.
e Other

User’s specific policy.

14.1.5.13 NotificationResourceKind (from MARTE::SRM::SW_Interaction)

The NotificationResourceKind enumerates common mechanisms provide by support to notify occurrence.

Literals

e Barrier
barrier mechanism.

e Event

event mechanism.
e Undef

undefined mechanisms.
e Other

other mechanisms.

220

UML Profile for MARTE, V1.2

14.1.5.14 NotificationResource (from MARTE::SRM::SW_Interaction)

This stereotype matches the domain concept NotificationResource denoted in Annex F (F.8.15).

NotificationResource supports control flow by notifying the occurrences of conditions to awaiting concurrent resources.

Extensions

» None

Generalizations

« SwSynchronizationResource on page 198

Associations

* None

Attributes

» clearServices: BehavioralFeature [0..*]
Services that erase one or several occurrences.

» flushServices: BehavioralFeature [0..*]
Services to release any resource that waits for an occurrence.

* maskElements: TypedElement [0..*]
Elements that map the semantic of the mechanism to mask occurrence.

* mechanism : NotificationResourceKind
Identifies notification mechanism.

* occurenceCountElements: TypedElement [0..*]
Elements that map the semantic of the occurrence number.

» occurenceKind : NotificationKind
Specifies the kind of notification.

» signalServices: BehavioralFeature [0..*]
Services that send one or several occurrences.

» waitServices: BehavioralFeature [0..¥]
Services to wait one or several occurrences.

Constraints

* None

Notations

The image associated with that stereotype is:

UML Profile for MARTE, V1.2

221

V.

Figure 14.34 - The NotificationSynchronization notation

14.1.5.15 QueuePolicyKind (from MARTE::SRM::SW_Interaction)

The QueuePolicyKind enumerates algorithms provided by resources to order a queue.

Literals
+ FIFO

The first element put in the queue is the first outgoing.
+ LIFO

The last element put in the queue is the first outgoing.
* Priority

Each element is annotated with a priority.
* Undef

Undefined.
» Other

Other algorithms.

14.1.5.16 SharedDataComResource (from MARTE::SRM::SW_Interaction)

This stereotype matches the domain concept SharedDataComResource denoted in Annex F (F.8.17).

SharedDataComResource defines specific resources used to share the same area of memory among concurrent resources.

Extensions

» None

Generalizations

« SwCommunicationResource (from SRM:SW _Interaction) on page 193

Associations

* None

Attributes

» readServices: BehavioralFeature [0..*]
Services that read the shared data.

» writeServices: BehavioralFeature [0..*]
Services that write the shared data.

222

UML Profile for MARTE, V1.2

Constraints

* None

Notations

The image associated with that stereotype is:

(o

Figure 14.35 - The SharedDataComResource notation

14.1.5.17 SwAccessService (from MARTE::SRM::SW_ResourceCore)
This stereotype matches the domain concept SwAccessService denoted in Annex F (F.8.18).

The services provided by a software resource to access its characteristics: the accessor and the setter.

Extensions

* None

Generalizations
+ GrService (from GRM)

Associations

* None

Attributes

» accessedElement: Property [1]
The property that is accessed by this service.

» isModifier: Boolean
Specifies if the access modify the resource feature pass by parameters of this service.

Constraints

* None.

14.1.5.18 SwCommunicationResource (abstract) (from MARTE::SRM::SW_Interaction)

This abstract stereotype matches the domain concept SwCommunicationResource denoted in Annex F
(F.8.19).

SwCommunicationResource defines data exchange interaction among concurrent resources.

Extensions

* None

UML Profile for MARTE, V1.2 223

Generalizations

+ SwinteractionResource (from SRM ::SW _Interaction) on page 195.

+ CommunicationMedia (from GRM) on page 102.

Associations

+ None

Attributes

* None

Constraints

+ None

14.1.5.19 SwConcurrentResource (abstract) (from MARTE::SRM::SW_Concurrency)
This abstract stereotype matches the domain concept SwConcurrentResource denoted in Annex F (F.8.20).

This resource defines entities that may execute concurrently sequential parts of instructions.

Extensions

* None

Generalizations

« SwResource (from SRM::SW_ResourceCore) on page 196

Associations

+ None

Attributes

* activateServices: BehavioralFeature [0..*]
Services that make available a resource to execute. As a result, activated resources are ready to
compete for the computing resource. In case of interruption, it results in explicitly raised the
interrupt (i.e., to set of the interrupt).

+ activationCapacity: Integer [0..1]
Specifies the activation number allowed in the system.

* addressSpace: TypedElement [0..1]
Defines the address space in which the flow is executed.

» disableConcurrencyServices : BehavioralFeature [0..*]
Services that lock the competition for a computing resource. As a result, any concurrent resource
cannot pre-empt the executing resource.

* enableConcurrencyServices: BehavioralFeature [0..*]
Services that unlock the competition for a computing resource. As a result, any concurrent resource
can preempt the executing resource.

224 UML Profile for MARTE, V1.2

entryPoints: Elements [0..*]
Defines entry points of the resource.

heapSizeElements : TypedElement [0..*]
Elements that map the semantic of the resource heap size in case of dynamic memory allocation.

periodElements: TypedElement [0..*]
Elements that map the semantic of the resource period in case of a periodic concurrent resource.

priorityElements: TypedElement [0..*]
Elements that map the semantic of the resource priority.

stackSizeElements: TypedElement [0..*]
Elements that map the semantic of the resource stack size.

type : ArrivalPattern (from MARTE_Library::BasicNFP_Types::ArrivalPattern)
Identifies the occurrence execution pattern.

resumeServices: BehavioralFeature [0..%]
Services that make available a resource to compete with either ready or pended concurrent
resource. Pended resources are blocked due to the unavailability of some other resources. In case
of interrupt, resume service is equivalent to an enable service.

suspendServices: BehavioralFeature [0..*]
Services that make unavailable a resource to execute. In case of interrupt, suspend service is
equivalent to disable service.

terminateServices: BehavioralFeature [0..*]
Services that stop definitively resource execution.

sharedDataResources: TypedElement [0..*]
Resources used to share data among computing resources. Those resource types must be stereotyped
as “SRM::SW_Interaction::SharedDataComResource.”

messageResources: TypedElement [0..%]
Resources used to communicate messages among computing resources. Those resource types must
be stereotyped as “SRM::SW_ Interaction::MessageComResource.”

mutualExclusionResources: TypedElement [0..*]
Resources used to synchronize mutual accesses. Those resource types must be stereotyped as
“SRM::SW_Interaction::SwMutualExclusionResource.”

notificationResources: TypedElement [0..*]
Defines resources used to synchronize computing resources. Those resource types must be
stereotyped as “SRM::SW _Interaction::NotificationResource.”

Constraints

(1]
(2]
(3]
(4]
(3]
(6]

Type of the addressSpace value must be stereotyped as “MemoryPartition.”

entryPoints values must be stereotyped as “EntryPoint.”

sharedDataResources values must be stereotyped as “SRM::SW _Interaction::SharedDataComResource.”
messageResources values must be stereotyped as “SRM::SW_Interaction::SwMutualExclusionResource.”
mutualExclusionResources values must be stereotyped as “SRM::SW _Interaction::SwMutualExclusionResource.”

notificationResources values must be stereotyped as “SRM::SW _Interaction::NotificationResource.”

UML Profile for MARTE, V1.2 225

14.1.5.20 SwinteractionResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches to the domain concept SwinteractionResource denoted in Annex F (F.8.21).
InteractionResource is an abstract concept that denotes generic mechanism to interact among concurrent executing

resources. Synchronization and Communication are specific kinds of interaction.

Extensions

* None

Generalizations

« SwResource (from SRM::SW_ResourceCore) on page 196

Associations

+ None

Attributes

« isIntraMemoryPartitionInteraction: Boolean [0..1]
Specifies if the mechanism can be accessed from different memory partitions (i.e., namespace,
address space).

- waitingPolicyElements: TypedElement [0..*]
Elements by which the communication waiting policy is specified: waiting, ready, waiting with a
time out, conditional waiting.

« waitingQueuePolicy: QueuePolicyKind [0..*]
Defines the algorithm to manage the resource waiting queue.

+ waitingQueueCapacity: Integer [0..1]
The number of resources allowed in the waiting queue.

Constraints

+ None
14.1.5.21 SwMutualExclusionResource (from MARTE::SRM::SW_Interaction)
This stereotype matches the domain concept SwMutualExclusionResource denoted in Annex F (F.8.22).
MutualExclusionResource describes resources commonly used for synchronize access to shared variables.

Extensions

+ None

Generalizations

« MutualExclusionResource (from GRM) on page 109

« SwSynchronizationResource on page 198

226 UML Profile for MARTE, V1.2

Associations

* None

Attributes
« accessTokenElements : TypedElement [0..*]

Elements that map the semantics of the token used to access a shared information.

- acquireServices: BehavioralFeature [0..*]
Services that get an access token to a shared information.

« concurrentAccessProtocol : ConcurrentAccessProtocolKind
Specifies the protocol applied in concurrent access.

+ mechanism : MutualExclusionResourceKind
Specifies the kind of mechanism used to mutual exclusion synchronization.

- releaseServices: BehavioralFeature [0..*]
Services that release an access token to a shared information.

Constraints

* None

Notations

The image associated with that stereotype is:

Figure 14.36 - The SwMutualExclusionResource notation

14.1.5.22 SwResource (abstract) (from MARTE::SRM::SW_ResourceCore)
This stereotype matches the domain concept SwResource denoted in Annex F (F.8.23).

SwResource model software structural entities provided to the user by execution supports.

Extensions

+ None

Generalizations

+ Resource (from GRM on page 117)

Associations

* None

UML Profile for MARTE, V1.2

227

Attributes

» createServices: BehavioralFeature [0..*]
Services that allocate and declare the resource to the system.

* deleteServices: BehavioralFeature [0..*]
Services that free and delete the resource from the system.

* identifierElements: TypedElement [0..*]
Elements that map the semantic of a resource identifier.

* initializeServices: BehavioralFeature [0..*]
Services that initialize the resource.

* memorySizeFootprintElements: TypedElement [0..1]
Elements that map the memory size footprint of the resource.

+ stateElements: TypedElement [0..*]
Elements that map the semantic of the resource state.

Constraints

* None

14.1.5.23 SwSchedulableResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches the domain concept SwSchedulableResource denoted in Annex F (F.8.24).

SchedulableResource are resources that execute concurrently to other concurrent resource.

Extensions

* None

Generalizations
 SchedulableResource (from GRM) on page 113.

« SwConcurrentResource (from SRM::SW_Concurrency) on page 193.

Associations

« None

Attributes

* deadlineElements: TypedElement [0..*]
Elements that map the semantic of the deadline feature.

* deadlineTypeElements : TypedElement [0..*]
Elements that map the semantic of the deadline criticality degree (e.g., soft and hard).

* delayServices: BehavioralFeature [0..*]
Services that delay for a lapse of time the execution. The resource is in a dormant state during
this lapse.

» isPreemptable: Boolean [0..1]
Specifies if the scheduler can preempt that kind of resource.

228 UML Profile for MARTE, V1.2

» isStaticSchedulingFeature: Boolean [0..1]

Specifies if the scheduling parameters (priority, deadline, timeslice) are static (i.e., constants define off-line).

* joinServices: BehavioralFeature [0..*]

Services that suspend the execution of set of concurrent resource until other concurrent resources terminates.

» scheduler: TypedElement [1]
Specifies the scheduler that orchestrates the concurrent execution of this kind of resource.

+ timeSliceElements: TypedElement [0..*]
Elements that map the semantic of the timeSlice in case of round robin scheduling.

» yieldServices: BehavioralFeature [0..*]
Services that explicitly relinquish the computing resource. They explicitly ask scheduler to reschedule.

Constraints

[1] The type of scheduler value must be stereotyped cither as “Scheduler” or as “Scheduler” sub-Stereotype.

Notations

The image associated with that stereotype is:

L]

Figure 14.37 - The SwSchedulableResource notation

14.1.5.24 SwSynchronizationResource (abstract) (from MARTE::SRM::SW_Interaction)
This stereotype matches the domain concept SwSynchronizationResource denoted in Annex F (F.8.25).
This resource defines interaction mechanisms to synchronize concurrent execution flow.

Extensions

» None

Generalizations

« SwinteractionResource (from SRM::SW _Interaction) on page 195.

« SynchronizationResource (from GRM) on page 102.

Associations

* None

Attributes

» None

Constraints

» None

UML Profile for MARTE, V1.2

229

14.1.5.25 SwTimerResource (from MARTE::SRM::SW_Concurrency)
This stereotype matches to the domain concept SwTimerResource denoted in Annex F (F.8.26).

A SwTimerResource represents an entity that is capable of following and evidencing the pace of time upon demand with
a prefixed maximum resolution, at programmable time intervals.

Extensions

* None

Generalizations

+ TimerResource (from GRM::ResourceTypes) on page 104

Associations

+ None

Attributes

* DurationElements : TypedElement [0..*] {redefines GRM::TimerResource::duration}
Elements that map the semantic of the interval after which the timer will make evident the elapsed time.

Constraints

» None

Notations

The image associated with that stereotype is:

Figure 14.38 - The SwTimerResource notation
14.1.6 Examples

The following examples illustrate how the SRM sub-profile stereotypes may be used in practice. Several brief case studies
are described for each sub-profile. In a first sub clause, modeling possibilities are exhaustively described. In a second sub
clause, some concrete RTOS concepts are modeling. In addition, D.5 provides two examples of RTOS API model library,
for OSEK VDX and ARINC-653, build with the SRM profile.

14.1.6.1 Modeling possibilities

The idea of this sub clause is to describe common use of SRM sub-Profile stereotypes. It aims to give an overview of
typical modeling possibilities. The list of examples is by no means exhaustive.

230 UML Profile for MARTE, V1.2

Applying SwResource stereotypes on classifiers

All stereotypes of the SRM sub-profile extend the UML::Classes::Kernel::Classifier metaclass. Thus, any UML Classifier
sub-metaclass may be extended by those stereotypes (e.g., Class, Interface, Component, and AssociationClass). Figure
14.40 and Figure 14.41 illustrate UML Class and UML Component extension.

« SwSchedulableResource » « SwSchedulableResource » 7
deadineElements =Task:Deadine 0 deadlineElements = Task :Deadline « interface »
yieldService = Task:yield() «swSchedulableResource » yieldSenvice = TaskService::yield() «swSchedulableResource » TaskService
~a Task S Task pmaaad ™
S : , +yield()
“~ Deadline : Integer - Deadine : Integer
+yield()
(i) Class (i) Class and Interface
Figure 14.39 - Class extension example
« SwSch(IedulableResour.ce » « interface»
yieldService = TaskService::yield() 7%] TaskService
~«< « swSchedulableResource » pe===wrg
Task +yiek:| ()

Figure 14.40 - Component extension example

Figure 14.41 illustrates the use of an AssociationClass (from UML::CompositesStructures::InternalStructures) to describe
interaction between concurrent computing resources. As the SwinteractionResource stereotype extends the UML
Classifier metaclass, a UML AssociationClass may be stereotyped as any SwinteractionResource sub-stereotype (for
example: NotificationResource, MessageComResource, SwMutualExclusionResource). In this example, the execution
support provides concurrent resource to compute instructions: “Alarm” and “Task.” They are described as UML classes
and respectively stereotyped as “Alarm” and as “SwSchedulableResource.” In this example, an “Alarm” resource may
interact with a “SwSchedulableResource” (i.e., a task) by means of an event mechanism stereotyped
“NotificationResource.”

O

« NotificationRe source »
Event
1
@7 . i task
0.1
«Alarm » « SwSchedulableResource »
Alarm Task

Figure 14.41 - AssociationClass extension example

Applying SwResource stereotypes on properties

All stereotypes of the SRM sub-profile extend the UML::ConnectableElement meta class (from
UML.::CompositeStructures::InternalStructures). Figure 14.42 illustrates the use of such extension to describe interactions
between concurrent computing resources in a memory partition.

UML Profile for MARTE, V1.2 231

« memoryPartition »
Partition

« interruptResource »
its : Interrupt [0..%]

«messageComResource »
mbx : MaiBox [0..*]

« swSchedulableResource »
tasks : Task [1..*]

Figure 14.42 - ConnectableElement extension example

Applying the EntryPoint stereotype on dependencies

Figure 14.43 denotes a use of the entryPoint stereotype on a UML::Dependency. This example illustrates a robotic
application build upon a generic API. This design is a part of a robot controller in charge of the motion control. On the
left side, the software designer describes the logical “RobotController” model. On the right side, the SRM profile is used
to describe the MemoryPartiton and the SchedulableResource provided by a generic real-time and embedded API. Then,
a model is described as instances of the MemoryPartition and Schedulable resources. Hence, the Task instances are bound
with their entryPoint by means of UML 2.0 dependency In case of the “t2” instanceSpecification, the stereotype
“entryPoint” is used to specify that the “trajectoryControl” operation of a specific MotionController instanceSpecification
is the routine that has to be executed in the context of that schedulable resource.

« model»
RobotControllerLogicalModel

MotionController

+maxSpeed : Integer

odometry()

trajectoryControl()

: MotionControler ‘

« entryPoint »
isReentrant = true
routine = trajectoryControl

™

~

« Profile »
SRM
« modelLibrary» f-\l
GenericAPI «apply »
1

+tasks

+owner
0.1 1.%

« MemoryPartition »

Partition

« SwSchedulableResource »

Task

« import »
[|

«import »
N
N

« entryPoint »

RobotControllerTaskModel

«model»

isReentrant = true

routine = odometry

p1 : Partition

-
LS

-
So, .
« entryBoint »
L

4
« entryjpo'nt e b TR .

7
4

- t1: Task '—1

;{

£ : Task

Figure 14.43 - EntryPoints examples

232

UML Profile for MARTE, V1.2

Applying the SwAccessService stereotype on services

“Get” and “Set” services may be formally clarified with the SwAccessService stereotype. In the example depicted in
Figure 14.44, the “sem_getValue” service returns the semaphore value. Hence, it is stereotyped as “SwAccessService.”
The tag “accessedElement” specifies that the feature accessed is the property named “value.” Therefore, the boolean tag
“isModifier” indicates that this service does not modify the value.

Semaphore « SwAccessService »
accessedElement =value
i isModifier = false

-value : Integer

« swAccessService » +sem_getValue() :Integer ="

Figure 14.44 - SwAccessService example

Tagged values examples

Stereotype properties allow users to precise semantics of elements. For example, in Figure 14.40, the “Deadline” property
is tagged to clarify its semantic. It denotes explicitly in the model that among all attributes of this class, one refers to the
task deadline. That is named “Deadline.” Thus, it allows tools to distinguish properties and to permit automatic model
transformations (code generation for example).

In the second part of Figure 14.45, the “TaskService” interface owns a “yield” operation. This operation is tagged as a
“yieldServices” by the “SwSchedulableResource” stereotype, whereas this stereotype is not applied to the interface. It
means that in the context of a “task,” the service to call in order to release the computing resource is the operation “yield”
of the interface “TaskService.”

Multiple tagged values for the same tag and multiple tags for the same feature are allowed. On the one hand user can
express formally multiple semantics for the same feature through multiple tags. On the other hand, user can express the
same semantic for multiple features through the same tag. Figure 14.46 describes a “taskSpawn()” service as both task
creating and task activating. In the same way, to activate a task, you can either call the “taskSpawn()” service or the
“taskActivate()” one. Figure 14.47 illustrates that user may reference UML properties as well as UML parameters to the
same tag.

« SwSchedulable Resource »

createServices =Task: taskSpawn()

adivateServices =Task taskSpawn(), Task :taskActivate () « swSchedulableResource »

‘\ Task
h.\-‘
S
"= +taskSpawn()
+taskAdivate ()

Figure 14.45 - Multiple tags and multiple tagged services

UML Profile for MARTE, V1.2 233

« SwSchedulable Resource »
priorityElements = Task::Priority, Task:taskSpawn::prio
. « swSchedulableResource »
Sl Task
Q.“~‘
Sl Priority : Integer
\

+taskSpawn(prio : Integer)
+taskActivate ()

Figure 14.46 - Multiple tagged features

14.1.6.2 Specific RTOS APl examples

The idea of this sub clause is to describe concrete use of SRM sub-Profile stereotypes. Those stereotypes are applied to
specific RTOS concepts. Some explanations are given for each case study. In addition, large examples of specific UML
model libraries using the SRM profile are described in Annex D.4. Thus, some parts of OSEK/VDX (OS 2.2.2) and
ARINC (653-1) APIs are described as examples.

SwSchedulableResource and MemoryPartition example

To illustrate the use of the “SwSchedulableResource” and “MemoryPartition” stereotypes, Figure 14.47 aims to represent
the POSIX Process and Pthread concepts modeled as UML classes. POSIX process is an address space with one or more
threads executing within that address space, and the required system resources for those threads. Each process shall be
controlled by a priority. Hence, POSIX Process conforms to both a “MemoryPartition” and an
“SwSchedulableResource.” The PID attribute is the process identifier. Hence, this attribute is assigned to the
“identifierElements” inherited tagged value of the “SwResource” stereotype. That tagged value clarifies the semantic of
the PID attribute. It explains explicitly in the model that the attribute named “PID” refers to the process identifier. POSIX
thread (i.e., pthread) is a single flow of control within a process. Anything whose address may be determined by a thread
is accessible to all threads in the same process. Each thread shall be controlled by an associated priority. Hence, a POSIX
Thread is conformed to an “SwSchedulableResource” and associated with the “Process” classifier.

« MemonPartion »

enaret e amemonParttion » « SwSthedulabieResource »

« SWResource » « swSchediaieResource » U «sKSthedulabieResturee » addessSpace = ouner

o _ +hread Pthread

ideniifierBements =FID — Frocess m[l 1 = S ng .
SwCcnpUingRes +PID - pid t ' ~ | +sthed priority Integer pricritySlermerts = sched_priorty

womIpUngREsaTee +shed_pricrty - Infeger

priotyBements = sched_prioriy

Figure 14.47 - POSIX Process and Pthread example

InterruptResource example

Figure 14.48 illustrates the OSEK/VDX interrupt resource modeled as a UML class. OSEK interrupts are scheduled by
hardware while tasks (i.e., OSEK schedulableResource) are scheduled by the scheduler. Interrupts can interrupt tasks
(preemptable and non preemptable tasks). OSEK offers fast functions to suspend (i.e., disable) and resume (i.e., enable)
interrupts.

234 UML Profile for MARTE, V1.2

« SwComputingResource »
Type = Aperiodic « interruptResource » 7/
resumeServices = Enableallnterrupts. Resume Allnterruips, ResumeOSinterrupts Interrupt

suspendSenvices = DisableAllinterrupts, Suspendallinterrupts, Suspend OSinterrupts]

+EnableAllintemrupts{)

« InterruptResource » +DsableAllnterrupts()
kind = hardware +ResumeAllinterrupts)
+SuspendAllnterrupts()
+SuspendOSinterrupts)
+ResumeCSinterrupts{)

Figure 14.48 - OSEK/VDX Interrupt example

Alarm example

Figure 14.49 illustrates the use of the “Alarm” stereotype. The OSEK operating system provides services for processing
recurring events. Such events may be for example timers that provide an interrupt at regular intervals, or encoders at axles
that generate an interrupt in case of a constant change of a camshaft or crankshaft angle, or other regular application
specific triggers. The OSEK operating system provides a two-stage concept to process such events. The recurring events
(sources) are registered by implementation specific counters. Based on counters, the OSEK operating system software
offers alarm mechanisms to the application software, such as services to activate tasks, set events, or call an alarm-
callback routine (i.e., the alarm entry point) when an alarm expires. Note that the SwTimerResource is directly used to
stereotype OSEK/VDX Counter.

« alamiz lb;_.__'(_—; —l\\
A /
« SwConcurreniResources]) . — « SwTimerResource »
suspendSanices : Cancelflarm :muqﬂﬁmmmm {eadCniy} « swTmerResource » @ || durdionElements =rinCyce
: ri: Bociean {readCniy} Courer : ’
fmer_
.x.'a'lm” R +Cedareflarmi{AzrmiD : AlamType) I 1 7| smasdlowedyalue | LANTI2 o enumer ation »
isNakriog =tls +(ettlarmBase®armD: sarniType Info: abrmBas=RefTyps) : stabusType HminCyde : LINT22 Aarm#zienind
fimers =timer +Getilarmi AamiD : darmiType, Tidk - tisReTyps) : satsTye “icksPerBase : LINT2 - -
+ Setfteliam (AarmiD: samiType, St tidType, Cyde : fckType : stausType "ET""E‘IET”‘S‘\
+Zancslamn (AlamilD: alarmType) @ stalsType F\L.-RSE'EL“C&_LEACK

Figure 14.49 - OSEK/VDX Alarm example

SwMutualExclusionResource example

Figure 14.50 illustrates one use of the “SwMutualExclusionResource” stereotype to clarify the semantic of the POSIX
semaphore type, named Sem_t. POSIX semaphore may be used to guard access to any resource accessible by more than
one schedulable resource in the system. A concurrent resource that wants access to a critical resource (section) has to wait
for (i.e., to acquire) the semaphore that guards that resource. When the semaphore is locked on behalf of a concurrent
resource, it knows that it can use the resource without interference by any other cooperating concurrent resource in the
system. When the concurrent resource finishes its operation on the critical resource, leaving it in a well-defined state, it
releases the semaphore, indicating that some other concurrent resource may now obtain the resource protected by that
semaphore.

| UML Profile for MARTE, V1.2 235

B « SwResource »

« swMutuaExdusionResource » 7] | « SwResource » ‘ -
createServices = sem_init

Sem t createServices =sem_int e =

~| deleteServices = sem_destroy debteSer\/loes —semje;hfoy
-value : Integer inifializeServices = sem_init initalizeServices = sem_iit
+sem_init () « SwMutualExchiSonResource » « SwMutualExdusionResource »
+sem_dose() P « swMutualExdusionResource » | mechanism = CountSemaphore

mechanism = CountSemaphore

+sem_destroy() accessTokenElements = vakie Sem_t accessTokenElements = value
+sem_open() aoquireServices = sem_wait, sem_timedWait, sem_tryWat aoquireServices = sem wait, sem_timedWait, sem_tryWait
+sem_post() releaseServices = sem]aost - - releaseServices = sem post
+sem_timedWait ()
+sem_tryWait()
+sem_wait()

(i) icon + text form (i) shape form
Figure 14.50 - POSIX semaphore example

MessageComResource example

Figure 14.51 shows a representation of the ARINC-653 Buffer and Event mechanism. ARINC-653 Buffer is stereotyped
MessageComResource. That mechanism is a communication object used by schedulable resources (i.e., ARINC-653
process) of a same memory partition (i.e., ARINC-653 partition) to send or receive message.

ARINC-653 Event is a communication object used to notify of a condition to schedulable resources (i.e., ARINC-653
processes) that may wait for it. Hence, it is stereotyped “NotificationResource.”

« SwResource » B N
L createServices = createEvent = « SwResource »
« NotfficationResource » «MessageComResource » createServices =createBuffer
Event « SwinteractionResource » Buffer
isintraMemoryPartitionlnteraction=true « SwinteractionResource »
createEvent(...) fe~avcadd createBuffer(..) =%*= isintraMemoryPartitionlnter action=true
resetEvent(...) i receiveBuffer(...)
setEvent(...) « NotificationRe source » sendBuffer(...) « SwMessageComResource »
waitEvent(...) occurrence = Memoryless |sF|xedMessageS|ze = false
mechanism = Event mechanism = Buffer
clearServices =resetEvent receiveServices = receiveBuffer
signalServices = setEvent sendServices = sendBuffer
waitServices = waitEvent

Figure 14.51 - ARINC-653 Event and Buffer example
14.2 Hardware Resource Modeling (HRM)

14.2.1 Overview

This sub clause provides mechanisms to model the hardware (HW) part of embedded systems, which is essential to fulfill
the application specification. When interfacing hardware and software design flows, it is a common practice to specify
abstracted and understandable models in order to communicate design intends and to study interdependencies affecting
design decisions. At the end, the hardware modeled resources are combined with the software (SW) ones to support the
whole application execution.

Hardware has several various architectures and a huge amount of hardware components exist. It is also continuously
varying with many new emerging technologies. Therefore, modeling such a domain requires a highly expressive
language. The UML mechanisms like generalization, composition, encapsulation, separation of concerns (structure/

236 UML Profile for MARTE, V1.2

behavior), abstraction (different views), and refinement, are well adapted for that dilemma. The Deployments package of
UML specifies constructs like DeploymentTarget, Node, or Device, which can be used to define roughly a hardware
architecture that is to serve as the target of software artifacts. Our scope is larger, we aim to cover many aspects:

« Software design and allocation using a high level hardware description model of the targeted hardware architecture,
with some details about available resources, instruction set family, memory size. Such model is a formal alternative to
block diagrams.

 Analysis and simulation of a specialized hardware description model:

* The nature of details depends on the analysis focus and the simulated resources. For example, schedulability
analysis requires details on the processor throughput, memory organization, and communication bandwidth;
whereas, power analysis will focus on power consumption, heat dissipation, and the layout of the hardware
components.

* The required level of detail depends on the analysis and simulation accuracy. The performance simulation needs a
fine description of the processor microarchitecture and memory timings; whereas, many functional simulators
simply require entering the instruction set family.

« Hardware constructors can describe their products with a kind of model-based datasheets. They must provide a detailed
hardware design model refined with specific details.

To support all use cases enumerated above, the authors extend UML using a profile based on a detailed Hardware
Resource Model. This latter is intended to serve for description of existing and conception of new hardware platforms,
through different views and detail levels. In a few words, the Hardware Resource Model is grouping most hardware
concepts under a hierarchical taxonomy with several categories depending on their nature, functionality, technology, and
form.

Separation of concerns and abstraction are the main qualities of this profile. It eases adaptation to many orthogonal
activities. The Hardware Resource Model is composed of two views: a logical view that classifies hardware resources
depending on their functional properties, and a physical view that concentrates on their physical properties. Both are
specializations of the general model. The logical and physical views are complementary. They provide two different
abstractions of hardware and they could be simply merged (example 14.2.4.3). In turn, each view is composed of many
models differentiated by other criteria.

Stereotypes introduced within this clause are organized under a tree of successive inheritances from generic stereotypes to
specific ones, no stereotype is orphan. This is the main reason behind the ability of the hardware resource profile to cover
many detail levels. Optional tagged values and the composite structure of stereotypes are strengthening this ability as
well.

Another feature of the Hardware Resource Model is support of most hardware concepts thanks to a big range of
stereotypes and once more its layered architecture. If no specific stereotype corresponds to a particular hardware
component, a generic stereotype may match. This is also appropriate to support new hardware concepts of new nature or
new technologies.

| UML Profile for MARTE, V1.2 237

NonFunctional PropertyModel TimeModel

% 7

\ /
)

)
/
»
»
»
+

GeneralResourceMo del

A A8
[4 \‘
< Import » S, «import »
ll' \\
/’ LY
l"
Hardware ResourceModel SoftwareRe sourceModel
HW_General
[/, LY
«merge " S\ « merge »
rd .
— ‘l — \‘

HW_Logical HW_P hysical

Figure 14.52 - Hardware Resource Model dependencies

Both Hardware Resource Model and Software Resource Model (SRM: 14.1, *Software Resource Modeling (SRM)’) are
specializations of the General Resource Model (GRM: Clause 10). Therefore, hardware/software allocation model (Alloc:
Clause 12) benefits from the unified structure of these models.

This sub clause contains all information about Hardware Resource Modeling profile. See sub clause 14.2.2, which
describes the domain model that is separated into general, logical, and physical parts. In 14.2.3, the UML representation
contains the profile diagrams and the stereotype descriptions. Sub clause 14.2.4 assembles illustrative examples.

14.2.2 Domain View

In this sub clause, the hardware (HW) concepts are introduced category by category through several metamodel diagrams.
Each metaclass has a detailed description in the Annex F and modeling examples are given in sub clause 14.2.4.

To ease the use of the Hardware Resource Model (HRM), names of stereotypes and their attributes are rigorously chosen
in accord with conventional hardware terminology. In addition, they are prefixed by the “HW_" label to save from
ambiguity. For example, HW_Timer denotes the hardware counter device and it is not a software timer.

Each metaclass attribute is chosen only if it verifies many criteria. First, it denotes a characteristic property of the
metaclass that is common to all represented hardware resources. Then, it complies with the level of abstraction of the
concept and the modeled view. Finally, it must be essential for at least one of the profile use cases enumerated in the
introduction.

Last, many OCL rules are specified to ensure the coherency of the hardware platform model.

14.2.2.1 The Hardware General model

The HW_General model defines a typical structure of execution platforms. It is inferred from the GRM and it is a
common basis for both logical and physical models.

238 UML Profile for MARTE, V1.2

MARTE::Causality::CoreBehavior:
Behavior

1

MARTE::GRM::Resource MARTE::GRM::ResourceService

Z% p_HW_Services Z%

{subsets pServices}
HW _Resource > 1..*

. HW _ResourceService
r HW_Services

description ; NFP_String 0.*

owned HW 0.* 0.1
{subsets ownedElement} | h

Figure 14.53 - HW_General model details

The concept of HW_Resource is generic; it denotes a generic hardware entity. It may encapsulate other owned hardware
resources. This composition mechanism allows successive refinements with different granularities. From a structural point
of view the HW_Resource concept is similar to UML Components but semantically an HW_Resource defines a hardware
execution entity for which the services can be qualified by one or more quality-of-service characteristics.

One example of composite hardware resources is FPGA, which often contains many embedded processors, some amount
of RAM, and it can also be configured into many units with different functions (SMP example 14.2.4.3).

Typically, an HW_Resource provides at least one HW_ResourceService, and may require some services from other
resources. Each HW_ResourceService could be detailed by many views to describe its behaviors.

Collaborations of resources by means of their services characterize the execution platform.

Most of the metaclasses introduced below are inheriting from HW_Resource and in consequence from its structure. Thus,
they are associated with the HW_ResourceServices that they are offering. In order to lighten metamodels and improve
their flexibility, services would not be explicitly specified if they are inherited from the GRM or intuitively deduced from
the HW_Resource type (example 14.2.4.1).

14.2.2.2 The Hardware Logical model

The objective of the logical modeling is to provide a functional classification of hardware entities, whether they are
computing, storage, communication, timing, or device resources. Such a classification is mainly based on services that
each resource offers and optionally influenced by the resources nature (example 14.2.4.1).

The logical taxonomy is common to many previous works. It is not categorical, and the following concepts are not
necessarily incompatible. One hardware resource could have many functions within the same hardware platform.

| UML Profile for MARTE, V1.2 239

HW_General
« merge »
\
HW_Logical
HW_Computing HW_Timing
—
HW _Storage HW_Device
HW_Commu nication

Figure 14.54 - HW_Logical model structure

HW _Logical package merges the HW_General and it is composed of five subpackages, each one for a particular
resource’s type. There are several dependencies between these subpackages.

HW_Computing package

The HW_Computing package defines a set of active processing resources that are central to execution platforms.
HW_ComputingResources are often complex and composite; they may contain many other subresources from different
HW _Logical packages (14.2.4.3).

240 UML Profile for MARTE, V1.2

Issue 15248 - up

date text and figure

MARTE:: GRM:: ComputingResource

HW_Logical::HW_Resource

« enumeration »
ISA_Type

RISC
cIsc
VLIV
SinMD
other
undef

caches
{subseis ownedHW} | 0.*

1

1

HW_ComputingResource

blocksComguting
{subsets cwnedHW}

L1 B

op_Frequencies : Interval<NFP_Fraguency=>

i

HW_Processor

HW_ASIC

HW_PLD

HW_Logical::HW_Storage::
I-[ﬂ_l"m

farchitecture : NFP_DataSize
mips : NFP_Matural
fipc : NFF_Real

technology : PLD_Technology
organization PLD_Organization
nbLUTs: NFF_Natural

ownedMMUs
{subsats awnedHW) |U--'

HW _Logical::HW_Storage::
HW_NMM

]

TOLOMNESs TN |-|-’_N=u|.|f§1
nbPipelines : NFP_Natural
nbSiages : NFP_Natural
nbALUs : NFP_Natural
nbFPUs - NFP_Matural

owned|SAs

prediciars
{subsets ownedHW)

i

HW_BranchPredictor

1.* | {subsets ownedHW)

HW_ISA

family : NFP_String
inst_Vvidth : NFP_DataSize

type : 1SA_Type

v

HW_Logical::HW_Resource

UML Profile for MARTE, V1.2

« enumeration »
PLD_Technology

OO o HF Pt

nbFlipFlops : NFP_Matural

SRAM
antifuse
flash
ather
undef

o twplaType »
PLD_Organization

nbRows | NFP_Natural
nbColumns : NFP_MNatural
class : PLD_Class

blocksRAM

0.7 | {subsets cwnedHW}

HW_Logical::HW_Storage::
HW_RAM

o BnLmeration »
PLD_Class

symetricalArray
rowBased
sealiGales
hierarchicalPLD
ather

undaf

241

MARTE::GRM::ComputingResource HW_Logical::HW_Resource

T 0

blocksComputing

« enumeration » HW_ComputingResource {subsets ownedHW}
ISA_Type 0.
N <| >
RISC op_Frequencies : Interval<NFP_Frequency
CcisC
VLIW
SIMD
other
undef
HW_Processor HW_ASIC HW_PLD
caches
{subsets ownedHW} | 0. - -
/architecture : NFP_DataSize technology : PLD_Technology
P .. mips : NFP_Natural organization PLD_Organization
HW—L°9;|°"‘\’I"§WES'°'39°" Jipc : NFP_Real < HW_McProcessor nbLUTs: NFP_Natural
=TS nbCores : NFP_Natural nbLUT_Inputs : NFP_Natural
nbPipelines : NFP_Natural core Id: NFP Natural nbFlipFlops : NFP_Natural
ownedMMUs nbStages : NFP_Natural _ _
{subsets ownedHW} 0.* nbALUs : NFP_Natural
nbFPUs : NFP_Natural 1..* | ownedCores
HW_Logn;c\I’..:\-anh\’IIDStorage.. ? {subsets ownedHW} blocksRAM
- 0..*| {subsets ownedHW}
ownedISAs .
predictors 1.* | {subsets ownedHW} « enumeration » HW_Logical::HW_Storage::
{subsets ownedHW},|,0..* PLD_Technology HW_RAM
SRAM
HW_BranchPredictor HW_ISA antifuse
- 3 flash
family : NFP_String other
inst_Width : NFP_DataSize undef « enumeration »
type : ISA_Type PLD_Class
« dataType » symetricalArray
%7 PLD_Organization rowBased
seaOfGates
nbRows : NFP_Natural hierarchicalPLD
. nbColumns : NFP_Natural other
HW_Logical::HW_Resource class : PLD Class undef

Figure 14.55 - HW_Computing package details

HW_ComputingResource is a generic resource. It could be specialized (HW_ASIC), such resources are known to be
efficient but not flexible. It could be configurable (HW_PLD), there are many technologies that have different capabilities
like dynamic reconfiguration (SRAM). And it could be programmable (HW_Processor), which typically implements some
instruction sets, owns caches, corresponding memory management units, and adopts branch prediction policies. In_
particular a HW_Processor may have more than one internal Core; these HW_McProcessors are identified by their
Core_Id attribute.

HW_Storage package

The metamodel of the HW_Storage package includes two diagrams, one for the HW_Memory resource and the other for
the HW_StorageManager resource.

242 UML Profile for MARTE, V1.2

Issue 13668

- update fiqure

« enumeration »

MARTE::GRM:: StorageResource

HW_Logical::HW_Resource

HW_Memory

w tuplaType »
Timing

Repl_Polic memorySize : NFP_DataSize 2
il addressSize : NFP_DataSize notalan.: NFP_String

LRU timings : Timing [] description : NFP_String
MFU Throughput : NFP_DataTxRate value : NFP_Duration
FIFO
random 4‘3
other
undef I ‘
« enumeration » i huffer

WritePolicy D Syl {subsets ownedHW)

LT HW _Storagetemory
writeBack repl_Policy : Repl_Policy 0.1
writeThrough writeFalicy : WritePolicy
ather
undef ? }%
HW_Cache HW_RAM HW_ROM HW_Drive

level : MFP_Matural
type - CacheType

organization : MemoryOrganization
isSynchronous - MFP_Boolean

type : ROM_Type
organization : MemoryOrganization

sectorSize : NFP_DataSize

structure : CacheStructure

isStatic :NFP_Boolean
isMonValatlle : NFP_Boolean

« enumeration » @ tupleType » « upleType » & anumeration »
CacheType CacheStructure MemoryOrganization ROM_Type

data nbSets | NFP_Matural nbRows | NFP_Natural maskedROM
instruction blocSize | NFP_DataSize nbCaolumns : NFP_Matural EPROM
unified associativity - NFP_Matural nbBanks : NFP_Matural COTP_EPROM
other wordSize - NFP_DataSize EEFROM
undef flash

ather

undeaf

UML Profile for MARTE, V1.2

243

« enumeration »

MARTE::GRM::StorageResource

HW_Logical::HW_Resource

HW_Memory

« tupleType »
Timing

Repl Polic memorySize : NFP_DataSize A .
- Y addressSize : NFP_DataSize notation : N!:P_Strlng_

LRU timings : Timing [*] description : NFP_$tr|ng
NFU Throughput : NFP_DataTxRate value : NFP_Duration
FIFO
random 4
other
undef ‘ ‘
« enumeration » HW_ProcessingMemory buffer

WritePolicy {subsets ownedHW}

HW_StorageMemory
writeBack repl_Policy : Repl_Policy 0.1
writeThrough writePolicy : WritePolicy
other
undef % Zﬁ
HW_Cache HW_RAM HW_ROM HW_Drive

level : NFP_Natural organization : MemoryOrganization type : ROM_Type sectorSize : NFP_DataSize
type : CacheType isSynchronous : NFP_Boolean organization : MemoryOrganization
structure : CacheStructure isStatic :NFP_Boolean

isNonVolatile : NFP_Boolean

« enumeration » « tupleType » « tupleType » « enumeration »
CacheType CacheStructure MemoryOrganization ROM_Type

data nbSets : NFP_Natural nbRows : NFP_Natural maskedROM
instruction blocSize : NFP_DataSize nbColumns : NFP_Natural EPROM
unified associativity : NFP_Natural nbBanks : NFP_Natural OTP_EPROM
other wordSize : NFP_DataSize EEPROM
undef isInterleaved : NFP_Boolean flash

other

undef

Figure 14.56 - HW_Storage package details (HW_Memory)

HW_Memory denotes a given amount of memory. It could be an HW_ProcessingMemory or HW_StorageMemory.
HW _ProcessingMemory is an abstract metaclass that symbolizes a fast and volatile working memory, while
HW_StorageMemory is an abstract metaclass for permanent and relatively time consuming storage devices.

In real world, RAM (Random Access Memory) takes many forms, SRAM for Static RAM is often used as cache,
SDRAM for Synchronous Dynamic RAM is enough fast to be used as main memory (example 14.2.4.2). But as the
logical model focuses on the functionality rather than the technology, we distinguish HW_RAM for main memories and
HW_Cache for cache memories.

244 UML Profile for MARTE, V1.2

MARTE::GRM::StorageResource

MARTE::GRM::Reso urceBroker

HW_Logical::HW_Resource

I

7

HW_Arbiter

HW_L ogical:HW_Communication:

HW_StorageManager

managedMemories
{subsets brokedResource}

HW_DMA

HW_MMU

nbChannels : NF P_|
transferWidth : NFP_DataSize

Natural

drivenBy

0..*

virtualAddrSpace : NFP_DataSize
physicalAddrSpace : NF P_DataSize
memoryProtection : NFP_Boolean
/nbEntriesTLB : NFP_Natural

HW_Logicak:HW_Computing:
HW_Processor

ownedTLBs

{subsets ownedHW} 0.7

HW_Cache

Figure 14.57 - HW_Storage package details (HW_StorageManager)

)

HW_Memory

HW _StorageManager denotes memory brokers. HW_MMU for Management Memory Unit manages addresses and the

content of memories. It might own TLBs (Translation Lookaside Buffer) to translate virtual into physical addresses.

Whereas, HW_DMA for Direct Memory Access, combines memory management and communication control. It may be

driven by an HW_Processor, and it allows devices to transfer data without subjecting the HW_Processor.

HW_Communication package

The objective of the HW_Communication package is to group all communication participants within a functional

taxonomy. It offers a stand-alone communication view that supplies the skeleton of the hardware platform architecture.

UML Profile for MARTE, V1.2

245

Issue

16158 - update text and fiqure

MARTE::GRM::
CommunicationResource

HW_Laogical::HW_Resource

MARTE::GRM::ResourceBroker

JA)

HW_CemmunicationRescurce

i

246

5 endPaoints
0.7 {subsets ownedH\W}
HW_Arbiter
arbiters |0 cmfa AL: HW_EndPoint
- controlledMedias 0.
TEUbSelE DrokedResourca)
T HW_Media Jy

MARTE::GRM:: < siles MARTE::GRM::

CommunicationMedia 2.0 CommunicationEndPoint
HW_Bus
HW_Bridge

adressWidth : NFP_DataSize
wordWidih - NFP_DataSize
isSynchronous ; NFP_Boolean
|sSerial - MFP_Baoolean

UML Profile for MARTE, V1.2

CommunicationResource

MARTE::GRM::

HW _Logical::HW_Resource

MARTE::GRM::ResourceBroker ‘

‘ HW_CommunicationResource ‘

endPoints
‘ 0..*| {subsets ownedHW}
. 0.*
HW_Arbiter HW_EndPoint
. connectedTo
arbiters | 0..* controlledMedias
{subsets brokedResource}
1 HW_Media
MARTE::GRM::
MARTE::GRM:: sides CommunicationEndPoint
CommunicationMedia 2.*
« enumeration »
SwitchingType
‘ packetSwitching
circuitSwitching
‘ other
undefined
HW_Router HW_Bus HW_Bridge

fifoSize : NFP_DataSize

switchingType : SwitchingType
isSynchronous : NFP_Boolean

isRoutingAdaptative : NFP_Boolean

adressWidth : NFP_DataSize
wordWidth : NFP_DataSize
isSynchronous : NFP_Boolean
IsSerial : NFP_Boolean

fifoLocation : fifoLocationSpecification

Figure 14.58 - HW_Communication package details

The HW_Media is a central concept that denotes a communication resource able to transfer data with a theoretical

« enumeration »
FifoLocationSpecification

input
output
both

bandwidth. It may link many HW_EndPoint(s). It could be controlled by many HW_Arbiters and it may be connected to
other HW_ Medias by means of HW_ Bridges. An HW_EndPoint is an identified connection point of an HW_Resource

(e.g., pin, port, or slot).

If HW_Media is generic and symbolizes any kind of connections_like HW_Router which allows modeling of Network-on-
Chips (NoCs) or ; HW_Bus which is a particular wired channel with specific functional properties (example 14.2.4.3).

UML Profile for MARTE, V1.2

247

HW_Timing package

MARTE::GRM::Timin gResource

HW_Logical:HW_Resource — HW_TimingResource
clock | 0..1 ‘
inputClock HW Ti
HW_Clock {redefines clock} —mer
. 1 nbCounters: NFP_Natural
frequency : NFP_Frequency oounterWidth : NFP_Datasize
HW_Watchdog

Figure 14.59 - HW_Timing package details

Figure 14.60 defines timing resources. The HW_Clock is a basic periodic pulse with a definite frequency. Every
HW_Resource can be clocked.

HW _Timer is a set of counters. The counter width determines the maximum measurement of time in terms of clock
periods (2counterWidth -1). HW_Watchdog is typically a count-down timer, which sends an alarm when the zero count is
reached (example 14.2.4.1).

HW_Device package

MARTE: :GRM::
DeviceResource

T 1

HW_Logical::HW_Resource

HW_Device
HW_IfO HW_Support
HW_Actuator | HW_Sensor

Figure 14.60 - HW_Device package details

248 UML Profile for MARTE, V1.2

From a functional point of view, an HW_Device is an auxiliary resource that is not as fundamental as computing, storage,
and communication resources are, but it expands the functionality of the hardware platform. It has two subcategories. The
HW _10O denotes resources that interact with the environment, like sensors, actuators, peripherals, displays, external port,
and so on. Whereas, the HW_Support is a support resource like power suppliers (batteries), power regulators, cooling
fans, or miscellaneous electronic devices. Because of their nature, some support devices are detailed in the physical model
(example 14.2.4.3).

14.2.2.3 The Hardware Physical model

The HW_Physical model represents hardware resources as physical components with details on their shape, size, position
within platform, power consumption, heat dissipation, and many other physical properties.

As most embedded systems have limited area and weight, hard environmental conditions and a predetermined autonomy,
this view helps the hardware design and mapping components on the physical platform.

HW_Genenal
i
i «merge »

!

HW_Physical

HW_Layout
H

i« merge »
!

HW_Power

Figure 14.61 - HW_Physical model structure

Same as the functional view introduced above, the HW_Physical package merges the HW_General and contains two
subpackages. The HW_Layout package that focuses on the layout architecture and the HW_Power package that provides
mechanisms to annotate the model with power properties.

HW_Layout package

The HW_Layout package provides mechanisms to make UML graphical diagrams as close as possible to the real
hardware platform layout. It classifies hardware components depending on their forms and offers arrangement constructs
using rectilinear grids (example 14.2.4.3).

| UML Profile for MARTE, V1.2 249

HRM::HW_General::HW_Resource

« enumeration »

ConditionType
@ wupleType » tempearature
Env_Condition hurmidity
altiude
type | ConditionType wibration
HW_Component status | ComponentState shock
0.1 - descrption : NFP_String ather
dimensions : NFP_Length [0..3] rEnge ol] rhval undet
Jarea : NFP_Area
position | Interval<NFP_MNatural> [0..2] w enumeration » « enumeration »
grid : NFP_Matural [D..2] CompeonentState PortType
o nbPins : NFP_Matural [0..1]
- wight : NEP_Weight operating male
subCamponents price : NFP_Price storage female
{subsats ownedHW} | 1 Conditions : Env_Cendition [*] other other
[P undef undef
HW_Chip HW_Channeal HW_Port
technology : NFP_Length nbWires : NFP_MNatural type : PortType
0" X
HW_Unit HW_Card
ownedUnits

{subsets subComponents)

sublUnits

£ {subsets subComponents}

Figure 14.62 - HW_Layout package details

HW_Component denotes a generic physical component that can be refined into a grid of subcomponents. It has
dimensions, a resulting area, a particular weight, and optionally a number of pins and a position within a potential
container. Each HW_Component requires some environmental conditions whether if it is in use or not.

HW_Power package

The HW_Power package comes with a detailed description of HW_Component power consumption and heat dissipation.
It enables advanced power analysis and autonomy optimization that are crucial for embedded systems. Notice that the
HW_Layout may also influence the power analysis.

250

UML Profile for MARTE, V1.2

poweredS ervices
{redefines p_HW_Services }

HW_Physical::
HW _ResourceService 0.*

HW_Component

consumption | 0..1 Z}

HW_PowerDescriptor
leakage HW_PowerSupply HW_Coolin gSupply
consumption : NF P_Power 0.1
dissipation : NFP_Power suppliedPower : NFP_Power coolingPower : NFP_Power
HW_Battery

capacity : NFP_Energy

Figure 14.63 - HW_Power package details

HW_PowerDescriptor is a key metaclass that provides instantaneous power descriptions. It annotates each provided
service with its corresponding consumption and each HW_Component with a description of its leakage at non-operating
time.

HW_PowerSupply and HW_Battery are energy suppliers, whereas HW_CoolingSupply is a heat reducer.
14.2.3 UML Representation

This sub clause depicts the Hardware Resource Model profile. It first groups all hardware stereotypes under several
profile diagrams, and then it provides the detailed description of each hardware stereotype. The Hardware Resource
Model profile is based on the hardware resource domain model. Therefore most stereotype descriptions refer to the
corresponding domain concepts. All cases where stereotypes are different from the mapped domain concepts are justified.

As shown in Figure 14.65, the Hardware Resource Model profile keeps the structure of the domain model. It is composed
of logical and physical profiles. Both have a local general model of hardware platforms, in order to ensure their total
independency. The logical profile is in turn composed of many other packages representing many functions of hardware,
whereas the physical profile is also composed of layout and power packages. Note that these packages are not sub-
profiles, they only improve the organization of the HwLogical and HwPhysical profiles.

To leave a large modeling flexibility, HwResource of both HwGeneral packages (Figure 14.66, Figure 14.73) inherits
from the Resource stereotype (from the General Resource Model, Clause 10) that extends the Classifier and
InstanceSpecification metaclasses from the UML kernel package. This allows using the Hardware Resource Model profile
within all structural UML diagrams (Class, Component, Composite Structure - examples 14.2.4.2, 14.2.4.3). The same
principle applies to the HwResourceService that extends the Operation metaclass and could be associated with many
UML behavior views.

All hardware resource stereotypes have the same extensions. However some of them also are particularly extending other
appropriate UML metaclasses (e.g., HwMedia from the HwCommunication package also extends Association).

UML Profile for MARTE, V1.2 251

Within MARTE, stereotypes tag definitions are optional and they should be specified only if needed. In addition, because
of extending both Classifier and InstanceSpecification, they could be fixed either at model or instance level. This

variation point enlarges the semantics of tag definitions (battery within example 14.2.4.3).

The Hardware Resource Model profile includes many notations. There is an appropriate icon for each logical stereotype
and a shape for each physical one. Also, the HwLayout package from the HwPhysical profile provides arrangement
mechanisms with rectilinear grids to make UML graphical diagrams as close as possible to the real hardware platform
architecture.

14.2.3.1 Profile diagrams

The Hardware Resource Model profile (HRM profile) has similar structure to the HRM domain model. It is composed of
logical and physical sub-profiles that contain a local general model and other different packages.

1 1
« profile » « modelLibrary »
MARTE: . GRM MARTE::Library:: BasichNFP_Types
[[
| i
wimport » |]
H) o import »
H i
« profile » i
HRM
1
- port =, « profile » 2 impont»
] Hw(General ;
] H
| H
i '
i [
] i
u profile »] « profila » [
HwlLogical ! HwPhysical '
] w profile »
a profile » HwStorage o profile »
HwComputing HwL: t
— wlayoul
« profile »
—] Hwiemory
ofile
& protile o profile »
HwCommunication profile » HuwPower
HwStorageManaoer
1 1
« profile » i profile »
HwTiming HwDevice

Figure 14.64 - Hardware Resource Model profile structure

252

UML Profile for MARTE, V1.2

HwGeneral profile

a profile =
HwGeneral
& metaclass » @ metaclass » & metaclass »
Classifier InslanceSpeacification Opearation
T J T
« stereatype » # Sterectype »
MARTE::GRM::Resource MARTE: :GRM::GrService
0.1 p_HW_Services
—— g~ o stereolype » - T
HwResource - « sterectype »
0 _ HW_Services HwResourceService
P—y description ; NFP_String 0.*

Figure 14.65 - HwGeneral profile details (HwLogical)

The HwGeneral profile of the HRM profile maps the general model from the domain view (Figure 14.53). It benefits from

General Resource Model profile extensions (Clause 10, ’Generic Resource Modeling (GRM)’) and it provides a
functional classification of resources.

UML Profile for MARTE, V1.2

253

HwComputing profile

254 UML Profile for MARTE, V1.2

Issue

16248 - update figure

w profile »
HwCamputing

« enumeration »
ISA_Type

RISC
CISC
VLIV
SIMD
ather

undef

« slereotype »
MARTE :GRM::ComputingResource

slereotype »

HwReasource

T 1

« stereolype »
HwlomputingResource

blocksComputing
{subsets ownedHW}

- Frequencies : Interval<MFP_Frequency=

0.

« slarectype »
HwProcessor

« Slereatype »
HwASIC

« slareotype »
HwPLD

caches
{subsets ownedH\W} | 0..*

farchitecture : NFP_DataSize

technalogy : PLD_Technology

migs . NFP_MNatural Of! anizaticn
N ::ag;’ fipc : NFP_Real nbLUTs: NFP_Natural
nbCores : NFP_Natural nbLUT_Inputs : MFP_Natural
nbFipelines : NFP_Matural nbFlipFlops : NFP_Natural
ownedMMUs nbStages : NFP_Matural
{subsets ownedHW}, | 0-* nbALUs - NFP_Natural [}
nbFPUs : NFP_Matural
e 1 | blocksRam
« enumeration » 0.7 | {subsets ownedHW}
ownedlSAs PLD_Technology
predictors 0. | {subsets ownedHW} « stereolype »
{subsets ownedHW},| 9. SRﬁ*f\M HwRAM
antifuse
« Sterectype » « Stﬂ:?gfa " flash
HwBranchPradictar other
family - NFP_String undef « enumeration »
inst_Width - NFP_DataSize PLD_Class
ype : ISA_Time « tupleType » symetricalirray
PLD_Crganization rowBasad
sealfGates
‘{7 nbRows - NFP_Natural hierarchicalPLD
nbColumns : NFP_Natural other
« stereclype.» class: PLD_Class undef
HwResource

UML Profile for MARTE, V1.2

255

«

HwComputing

profile »

« enumeration »
ISA_Type

RISC
cisc
VLIW
SIMD
other
undef

{subsets ownedHW}

caches
0.+ g
/architecture : NFP_DataSize

« stereotype »
MARTE::GRM::ComputingResource

« stereotype »
HwResource

« stereotype »
HwComputingResource

blocksComputing
{subsets ownedHW}

op_Frequencies : Interval<NFP_Frequency>

I

0.

« stereotype »
HwProcessor

« stereotype »

HwASIC ‘

« stereotype »
HwPLD

« stereotype »
HwCache

mips : NFP_Natural
lipc : NFP_Real
nbCores : NFP_Natural

{subse

ownedMMUs " nbStages : NFP_Natural
ts ownedHW} 0.. nbALUs : NFP_Natural
nbFPUs : NFP_Natural

nbPipelines : NFP_Natural

« stereotype »
HwMMU

\

« stereotype »
HWMcProcessor

core_ld: NFP_Natural

technology : PLD_Technology
organization PLD_Organization
nbLUTs: NFP_Natural
nbLUT_Inputs : NFP_Natural
nbFlipFlops : NFP_Natural

ownedCores

{subse

ownedISAs

predictors
ts ownedHW}, | 0..*

{subsets ownedHW}

« stereotype »

HwBranchPredictor

« stereotype »
HwISA

family : NFP_String
inst_Width : NFP_DataSize
type : ISA_Type

Y

« stereotype »
HwResource

{subsets ownedHW}

blocksRAM
0.." | {subsets ownedHW},

« enumeration »
PLD_Technology

« stereotype »
HwWRAM

SRAM
antifuse
flash
other
undef

« enumeration »

PLD_Class

« tupleType »
PLD_Organization

symetricalArray
rowBased

class : PLD_Class

nbRows : NFP_Natural
nbColumns : NFP_Natural

seaOfGates
hierarchicalPLD
other

undef

Figure 14.66 - HwComputing package details

The HwComputing profile from the HwLogical profile maps the corresponding hardware computing domain model.

256

UML Profile for MARTE, V1.2

HwMemory profile

| UML Profile for MARTE, V1.2 257

Issue 13668 - update figure
o profile »
Hwhlemory
« slerectype » « sleractype »
MARTE::GRM::Storage HwResource
« slereolype » « dataT
ype »
Hwdemory Timing
memarySize : NFF_DataSize - -
addressSize : NFP_DataSize notation : MFP_String
timings : Timing [*] description : NFP_String
Thoughput : NFP_DataTxRate valug ; NFP_Duration
terectype tereTtyperT TsteTETtyE TEteTETye T
HwCache HwRAM HwROM HwDrive
level : NFP_Natural organization : MemoryOrganization | | type - ROM_Type sectorSize | NFP_DataSize
type : CacheType isSynchronous : NFP_Boolean organization : MemoryOrganization
structure - CacheStructure isStatic ‘NFP_Boolean
repl_Policy : Repl_Policy isMonVolatile - NFP_Baolean 0.1
writePalicy | WritePolicy repl_Policy : Repl_Policy buffer
itePalicy : WritePoli
wr il ad {subsets owredHW}
« enumeration » « enumeration » « enumeration » « tupleType » « tupleType » « enumeration
Repl_Folicy WritePolicy CacheType CacheStructure MemaryQrganization ROM_Type
LRU writeBack data nbSets : NFP_Natural nbRows : NFP_Natural masked ROM
MFU writeThrough instruction blocSize : NFP_DataSize nbColumns : NFP_Natural EPROM
FIFO ather unifiad associativity : NFP_Matural nibBanks : NFP_Natural OTP_EPROM
random undef othar wiondSize | NFP_DataSize EEPROM
ather undef flash
undef other
undefined

258

UML Profile for MARTE, V1.2

« profile »
HwMemory

« stereotype »
MARTE::GRM::Storage

« stereotype »
HwResource

« stereotype »
HwMemory

« dataType »
Timing

memorySize : NFP_DataSize
addressSize : NFP_DataSize
timings : Timing [*]

Thoughput : NFP_DataTxRate

notation : NFP_String
description : NFP_String
value : NFP_Duration

« stereotype »
HwCache

« stereotype »
HwRAM

« stereotype »
HwWROM

« stereotype »
HwDrive

level : NFP_Natural
type : CacheType
structure : CacheStructure

organization : MemoryOrganization
isSynchronous : NFP_Boolean
isStatic :NFP_Boolean
isNonVolatile : NFP_Boolean

type : ROM_Type
organization : MemoryOrganization

sectorSize : NFP_DataSize

0..1

repl_Policy : Repl_Policy
writePolicy : WritePolicy

repl_Policy : Repl_Policy
writePolicy : WritePolicy

buffer
{subsets ownedHW}

« enumeration » « enumeration » « enumeration » « tupleType » « tupleType » « enumeration »

Repl_Policy WritePolicy CacheType CacheStructure MemoryOrganization ROM_Type
LRU writeBack data nbSets : NFP_Natural nbRows : NFP_Natural maskedROM
NFU writeThrough instruction blocSize : NFP_DataSize nbColumns : NFP_Natural EPROM
FIFO other unified associativity : NFP_Natural nbBanks : NFP_Natural OTP_EPROM
random undef other wordSize : NFP_DataSize EEPROM
other undef isinterleaved : NFP_Boolean || flash
undef other

undefined

Figure 14.67 - HwMemory profile details (HwStorage)

The HwMemory profile lightly varies from its corresponding domain model. It removes abstract HW_ProcessingMemory

and HW_StorageMemory concepts but it maintains the composition specifying the buffer memory for the HwDrive.

UML Profile for MARTE, V1.2

259

HwStorageManager profile

1

« stereolype »
HwDMA

nbChannels - NFF_Natural
transferidth . NFP_DataSize

drivenBy|0_*

« stereotype »
HwProcessor

« profile »
HWStorageManager
« sterectype » « siereotype »
MARTE::GRM::Storage HwResource
« sleraotype » managedMemories o slerantype »
« StErectyps » HwStoragehanager o.* Hwhemory
Hwarbitar

« slereolype »
HwhirU

virtualdddrSpace : NFP_DataSize
physicalAddrSpace : NFP_DataSize
memoryProtection : NFP_Boolean
/nbEntriesTLB - NFP_Natural

ownedTLBs
{subsets ownedHW}

Stareatype »
HwCache

Figure 14.68 - HwStorageManager profile details (HwStorage)

The HwStorageManager profile from the HwLogical profile maps identically the corresponding domain model.

260

UML Profile for MARTE, V1.2

HwCommunication profile

| UML Profile for MARTE, V1.2 261

Issue

16158 - update figure

w profile =
HW{Communication

« slarectype » .y
HwResource [
« stereotype »
i stereotype » MARTE :GRM::
HwCommunicationResource CommunicationEndPaint
b endPoints
| {subsets owned HW}
+ slerealype »
HwArbiter ertedT
oo o N
arbiters |0..* 0. HwERdPoint
slereotype »
controlledMedias HawMedia
0.*
« slareotype » sides
MARTE::GRM:: <F————— bandwidth : NFP_DataTxRate [= g+
CommunicationMedia -

1

« Slareclype »
HwBus

adress\Width : NFP_DataSize
wordWidth : NFP_DalaSize
izSynchmous | NFP_Baolean
|sSerial - NFP_Boolean

« sterectype »
HwBridge

262

UML Profile for MARTE, V1.2

« profile »
HWCommunication

« stereotype »
HwResource

« stereotype »
HwCommunicationResource

« stereotype »
MARTE::GRM::
CommunicationEndPoint

« stereotype »

.| endPoints

{subsets ownedHW}

HwArbiter

arbiters [0..*

« stereotype »
MARTE::GRM::
CommunicationMedia

0..*

connectedTo

« stereotype »
controlledMedias HwMedia

0.

sides

« stereotype »
HwEndPoint

bandwidth : NFP_DataTxRate

1

« stereotype »
HwRouter

« stereotype »
HwBus

0.*

« enumeration »
SwitchingType

packetSwitching
circuitSwitching
other

undefined

fifoSize : NFP_DataSize
isRoutingAdaptative : NFP_Boolean
switchingType : SwitchingType
isSynchronous : NFP_Boolean
fifoLocation : FifoLocationSpecification

adressWidth : NFP_DataSize
wordWidth : NFP_DataSize
isSynchrnous : NFP_Boolean
IsSerial : NFP_Boolean

« stereotype »
HwBridge

« enumeration »
FifoLocationSpecification

input
output
both

Figure 14.69 - HwCommunication profile details

The HwCommunication profile maps the corresponding HW_Communication domain model.

Notice that among the inherited extensions, HwMedia extends the UML Connector metaclass.

UML Profile for MARTE, V1.2

263

HwTiming profile

w profile »
HWTiming

« slereolype »

MARTE::GRM:: TimingResource

« stereotype »
HwResource

frequency : NFP_Frequency [0..1]

[3

« stereotype »
HwTimingResource

1

|

« sterectype »
HwClock

inputClock

« Stereotype »
HwTimer

frequency : NFP_Frequency

[N}

nbCounters : NFP_Natural
counterWidth : NFP_Datasize

Figure 14.70 - HwTiming profile details

Compared to its domain model, the association connecting an HW_Resource to an HW_Clock is substituted by an
optional HwResource attribute named frequency.

As shown in example 14.2.4.1, the notifying service is the only difference between the two domain concepts HW_Timer
and HW_Watchdog. Therefore, the HRM profile unifies both concepts under the HwTimer stereotype.

HwDevice profile

« profile »

HWDevice
« stereotype » « stereotype »
GRM::DeviceResource HwResource

i

i

HwDevice

« starectype »

i

o sleraotype »
Hwl/O

« stereotype »
HwSupport

Figure 14.71 - HwDevice profile details

The HwDevice profile from the HwLogical profile maps the corresponding hardware device domain model.

264

UML Profile for MARTE, V1.2

HwLayout profile

w profile »
HWLayout
 stereotype » « enumeration » w tu
pleType »
HwResource Componentkind Env_Condition
card type : ConditionType
channel status | ComponentState
chip descrption : NFP_String
part range : Interval<T-=Real>
starectype » unit
HwCompoenant athar
0.1 .
undef « enumeration »
kind : Componentkind ConditionType
u.fhmenslnns :NFP_Length [0..3] « enumeration »
farea : NFP_Area ComponentState temperature
position - Interval<NFP_Natural= [0..2] humidity
gricd : NFP_Matural [0..2] eratin altitude
a.* | nbPins : MFP_Natural [0..1] :t'i)rage ¢ vibration
subComponents wglghl':thlgPF_,WQnght ather shock
bsets ownedH price : INFF_Fnce undef other
{subssts ow Wi r_Conditions - Env_Condition [*] undef

Figure 14.72 - HwLayout profile details

HwPower profile

« profile »

HWPower
« sterectype » powered Services « stereolype »
HwResourcaService {redefines p_ HW _Senvices} HaCampanant

consumption | NFP_Power
dissipation : NFP_Power

0.

staticConsumgtion | NFP_Power
staticDissipation : NFP_Power

i

o stereolype »
HwPowerSupply

« slereolype »
HwCoolingSupply

suppliedPower : NFP_Power
capacity - MFF_Energy [0..1]

coolingPower : NFP_Power

Figure 14.73 - HwPower profile details

Compared to the domain model, the HwPower profile puts the HW_PowerDescriptor properties directly into the
HwComponent and the HwResourceService stereotypes. It also fuses HW_Battery and HW_PowerSupply domain

concepts under the same stereotype.

14.2.3.2 Stereotype Descriptions

This sub clause provides a description of each stereotype from the Hardware Resource Profile. If a stereotype maps a

domain concept, a reference is given to the corresponding page. The following list is sorted in alphabetical order.

Note — The detailed description of concepts is mainly given in F.9, ’'DRM::HRM’.

UML Profile for MARTE, V1.2

265

CacheStructure

The CacheStructure tupletype maps the CacheStructure domain element (F.9.1).

Attributes

* nbSets: NFP_Natural
Specifies the number of sets.

* blockSize: NFP_DataSize
Specifies the width of a cache block.

» associativity: NFP_Natural
Specifies the associativity of the cache.

CacheType
The CacheType enumeration maps the CacheType domain element (F.9.2).

Literals
e data

e instruction

e unified
for both data and instruction

e other

e undef

ComponentKind

ComponentKind is an enumeration of the following HwComponent kinds:

Description

+ card

* channel

e chip

e port

* unit

* other

* undef
ComponentState

The ComponentState enumeration maps the ComponentState domain element (F.9.3).

Description
* operating

e storage
non-operating state

266

UML Profile for MARTE, V1.2

e other

e undef

ConditionType

The ConditionType enumeration maps the ConditionType domain element (F.9.4).

Description

* temperature
* humidity
+ altitude

e vibration

e shock
e other
e undef

Env_Condition

The Env_Condition tupletype maps the Env_Condition domain element (F.9.5).

Attributes

+ type: ConditionType
Specifies the condition type.

+ status: ComponentState
Specifies the required state of the HwComponent.

* description: NFP_String
Specifies a short description of the environmental condition.

* range: Interval<T->Real>
Specifies the range of possible values.

Issue 16158 - update text

FifoLocationSpecification

The FifoLocationSpecification enumeration maps the FifoLocationSpecification domain element (F.9.6).

HwActuator

Actuators are frequently used as mechanisms to introduce motion, or to clamp an object so as to prevent motion. They are
devices that transform an input signal (mainly an electrical signal) into motion (Issue).

Generalizations

« Hwl/O

UML Profile for MARTE, V1.2 267

HwArbiter
The HwArbiter stereotype maps the HW_Arbiter domain element (F.9.8).

Generalizations

+ HwCommunicationResource

Associations

* controlledMedias: HwMedia[0..*]
Specifies the controlled connections.

Notations

HwASIC
The HWASIC stereotype maps the HW _ASIC domain element (F.9.9).

Generalizations

« HwComputingResource

Constraints

[1] if a clock frequency is specified, it must belong to op Frequencies.

HwBranchPredictor

The HwBranchPredictor stereotype maps the HW_BranchPredictor domain element (F.9.11).

Generalizations

« HwResource

HwBridge
The HwBridge stereotype maps the HW_Bridge domain element (F.9.12).

Generalizations

« HwMedia

Associations

e sides: HwMedia[0..*]
Specifies HwMedias at the ends of the HwBridge.

268 UML Profile for MARTE, V1.2

Notations

T

HwBus

The HwBus stereotype maps the HW_Bus domain element (F.9.13).

Generalizations

+ HwMedia

Attributes

* adressWidth: NFP_DataSize
Specifies the supported addressing size. In general, it is a number of bits.

* wordWidth: NFP_DataSize
Specifies the transfer word width.

» isSynchronous: NFP_Boolean
Specifies whether the bus is clocked or not.

» isSerial: NFP_Boolean
Distinguishes serial from parallel buses.
Constraints

[1] Synchronous bus must have a clock frequency.

HwCache

The HwCache stereotype maps the HW_Cache domain element (F.9.14).

Generalizations

+ HwMemory

Attributes

* level: NFP_Natural
Specifies the cache level. The default value is 1.

* type: CacheType
Specifies the type of the cache.

» structure: CacheStructure
Specifies the structure of the cache.

Constraints

[1] memorySize is derived from structure attribute.

[2] addressSize is greater than the total cache entries number derived from the structure attribute.

UML Profile for MARTE, V1.2 269

HwClock
The HwClock stereotype maps the HW_Clock domain element (F.9.18).

Generalizations

+ HwTimingResource

Attributes

+ None

HwCommunicationResource

The HwCommunicationResource stereotype maps the HW_CommunicationResource domain element (F.9.19).

Generalizations

« HwResource

HwComponent

The HwComponent stereotype maps the HW_Component domain element from the HW_Layout package (F.9.20).

Generalizations

 HwResource

Associations

* subComponents: HwComponent[0..*]
Specifies the owned physical entities. Subsets HwResource.ownedHW.

Attributes

* dimensions: NFP_Length[0..3]
Specifies Cartesian dimensions of the HwComponent. It is an ordered attribute.

» /arca: NFP_Area
Specifies the area of the HwComponent. Derived from dimensions.

» position: Interval<NFP_Natural>[0..2]
Specifies position within the enclosing HwComponent. It is an ordered attribute.

+ grid: NFP_Natural[0..2]
Specifies a rectilinear grid associated to the HwComponent. It is an ordered attribute.

* nbPins: NFP_Natural[0..1]
Specifies the number of pins. It is optional.

* weight: NFP_Weight
Specifies the weight of the HwComponent.

» price: NFP_Price
Specifies the HwComponent price.

* 1 _Conditions: Env_Condition[*]
Specifies the required environmental conditions.

270 UML Profile for MARTE, V1.2

* kind: ComponentKind
Specifies the kind of the HwComponent

+ staticConsumption: NFP_Power
Specifies the HwComponent static consumption.

+ staticDissipation: NFP_Power
Specifies the HwComponent static dissipation.

Semantics

The HwComponent stereotype maps its corresponding domain concept but it has three additional attributes kind to specify
the kind of the hardware component, staticConsumption, and staticDissipation that are appropriate for power description
and substitute the composition between the HW_Component and HW_PowerDescriptor domain concepts.

Constraints

[1] area must derive from dimensions

[2] subComponents positions must not exceed the grid

[3] requiredConditions intervals must be included within the subcomponents corresponding intervals.
Notations

HwComponent has many shapes depending on its kind.

« Card

+ Channel

- Chip

| UML Profile for MARTE, V1.2 271

« Port

Each composite class stereotyped with “HW_Component” may be considered as a rectilinear grid where its parts are
located in their corresponding positions. Hence, one proposes an extension to the notation of composite class in order to
take into account this feature as depicted below. This notation is similar to the one of the Region concept of UML state
machine diagram.

HwComputingResource

The HwComputingResource stereotype maps the HW_ComputingResource domain element (F.9.22).

Generalizations

« MARTE::GRM::ComputingResource

« HwResource

Attributes

* op_Frequencies : Interval<NFP_Frequency>
Specifies the range of supported frequencies.

Constraints

[9] if a clock frequency is specified, it must belong to op_Frequencies.

272 UML Profile for MARTE, V1.2

Notations

Figure 14.74 - HwCoolingSupply

HwCoolingSupply

The HwCoolingSupply stereotype maps the HW_CoolingSupply domain element (F.9.23).

Generalizations

« HwComponent

Attributes

* coolingPower: NFP_Power
Specifies the cooling power.

Notations

b

HwDevice

The HwDevice stereotype maps the HW_Device domain element (F.9.24).

Generalizations

« MARTE::GRM::DeviceResource

« HwResource

Notations

HwDMA
The HWDMA stereotype maps the HW_DMA domain element (F.9.25).

UML Profile for MARTE, V1.2

273

Generalizations

« HwStorageManager

+ HwArbiter

Associations

e drivenBy: HwProcessor[0..*]
Specifies processors that control the HWDMA.

Attributes

* nbChannels: NFP_Natural
Specifies the number of HWDMA channels.

» transferWidth: NFP_DataSize
Specifies the maximum supported transfer width.

HwDrive

The HwDrive stereotype maps the HW_Drive domain element (F.9.26).

Generalizations

+ HwMemory

Associations

* buffer: HWRAM]JO0..1]
Specifies the memory buffer of the HwDrive. Subsets HwResource::ownedHW.

Attributes

» sectorSize : NFP_DataSize
Specifies the sector size of the HwDrive.

Semantics
An HwDrive may own an HWRAM as a memory buffer. This composition substitutes the one from the domain model

between the HW_ProcessingMemory and HW_StorageMemory concepts.

HwEndPoint
The HwEndPoint stereotype maps the HW_EndPoint domain element (F.9.27).

Generalizations

 MARTE::GRM::CommunicationEndPoint

+ HwCommunicationResource

Associations

* connectedTo: HwMedia[0..*]
Specifies the communication medias that the end point is connected to.

274 UML Profile for MARTE, V1.2

Hwl/O
The Hwl/O stereotype maps the HW_1/O domain element (F.9.28).

Generalizations

« HwDevice

Notations

HwISA
The HWISA sterecotype maps the HW_ISA domain element (F.9.29).

Generalizations

HwResource

Attributes
» family: NFP_String
Specifies the ISA family.

* inst Width: NFP_DataSize
Specifies the instruction width.

* type: ISA Type
Specifies the ISA type.

Issue 16248 - update text

HwMcProcessor

The HwMcProcessor stereotype is used to designate each of the cores of a multi-core processor, it maps to the
Hw_McProcessor domain element (F.9.29).

Generalizations

HwProcessor

Attributes

» core Id: NFP_Natural
Specifies the Identity of the Core that is being modeled by the HwMcProcessor stereotype.

HwMedia
The HwMedia stereotype maps the HW_Media domain element (F.9.30).

UML Profile for MARTE, V1.2 275

Generalizations

« MARTE::GRM::CommunicationMedia

+ HwCommunicationResource

Extensions

» None

Associations
» arbiters: HwArbiter[0..*]

Specifies the HwMedia controllers.
Attributes

+ None

Notations

—)

HwMemory

The HwMemory stereotype maps the HW_Memory domain element (F.9.32).

Generalizations

« MARTE::GRM::StorageResource

« HwResource

Attributes

* memorySize: NFP_DataSize
Specifies the storage capacity of the HwMemory.

» addressSize: NFP_DataSize
Specifies the address width of the HwMemory.

* timings: Timing[*]
Specifies timings of the HwMemory.

+ throughput:NFP_DataTxRate
Speciifes the throughput in a memory.

Constraints

[10] The value of the inherited attribute isprotected is true.

276 UML Profile for MARTE, V1.2

Notations

HwMMU
The HWMMU stereotype maps the HW_MMU domain element (Section F.9.33).

Generalizations

« HwStorageManager

Associations

* ownedTLBs: HwCache[0..*]
Specifies the owned Translation Lookaside Buffers.

Attributes

» virtualAddrSpace: NFP_DataSize
Specifies the managed virtual address space.

* physicalAddrSpace: NFP_DataSize
Specifies the managed physical address space.

* memoryProtection: NFP_Boolean
Specifies if memory protection is supported.

* /nbEntriesTLB: NFP_Natural

Specifies the total number of TLBs entries. Derived from the ownedTLBs association.

Constraints

[1] nbEntriesTLB is derived from the ownedTLBs number of entries.

HwPLD
The HWPLD stereotype maps the HW_PLD domain element (F.9.34).

Generalizations

« HwComputingResource

Associations

* blocksComputing: HwComputingResource[0..*]
Specifies owned computing blocks. Subsets HwResource.ownedHW.

* blocksRAM : HWRAM][O..*]
Specifies the owned HWRAM memories.

UML Profile for MARTE, V1.2

277

Attributes

» technology: PLD Technology
Specifies the HWPLD technology.

» organization: PLD Organization
Specifies the matrix organization of the HwPLD.

nbLUTs
Specifies the number of LUTs within the HwPLD.

* nbLUT Inputs
Specifies the number of inputs of one LUT.

* nbFlipFlops
Specifies the number of FlipFlops within the HwPLD.

Constraints

[1] if a clock frequency is specified, it must belong to op_Frequencies.

HwPowerSupply

The HwPowerSupply stereotype maps the HW_PowerSupply domain element (F.9.37).

Generalizations

« HwComponent

Attributes

* suppliedPower: NFP_Power
Specifies the instantaneous supplied power.

» capacity: NFP_Energy[0..1]
Specifies the capacity of the HwPowerSupply.

Semantics

This stereotype denotes both domain elements HW_PowerSupply and HW_Battery.

Constraints

[1] power consumption is greater than dissipation.

Notations

HwProcessor

The HwProcessor stereotype maps the HW_Processor domain element (F.9.39).

278

UML Profile for MARTE, V1.2

Generalizations

« HwComputingResource

Associations

» predictors: HwBranchPredictor[0..*]
Specifies the owned branch prediction units. Subsets HwResource.ownedHW.

» caches: HwCache[0..*]
Specifies processor caches. Subsets HwResource.ownedHW.

* ownedMMUs: HWMMUJO0..*]
Specifies the owned Memory Management Units. Subsets HwResource.ownedHW.

* ownedISAs: HWISA[1..*]

Specifies the owned instruction set architectures. Subsets HwResource.ownedHW.

Attributes

» /architecture: NFP_DataSize
Specifies the instruction width. Derived from ownedISAs.

* mips: NFP_Natural
Specifies the throughput of the processor.

* /ipc: NFP_Real
Specifies the number of instructions executed each clock cycle. Derived from mips and clock attributes.

* nbCores: NFP_Natural
Specifies the number of cores within the HwProcessor.

* nbPipelines: NFP_Natural
Specifies the number of pipelines per core.

+ nbStages: NFP_ Natural
Specifies the number of stages per pipeline.

* nbALUs: NFP_Natural
Specifies the number of Arithmetic Logic Units within the HwProcessor.

* nbFPUs: NFP_ Natural
Specifies the number of Floating Point Units within the HwProcessor.

Constraints
[1] if a clock frequency is specified, it must belong to op Frequencies.
[2] architecture must derive from the inst Width of the supportedISAs.

[3] ipc must derive from mips attribute and clock frequeny.

HwRAM
The HWRAM stereotype maps the HW_RAM domain element (F.9.40).

Generalizations

+ HwMemory

UML Profile for MARTE, V1.2 279

Attributes

» organization: MemoryOrganization
Specifies the organization of the HwWRAM.

» isSynchronous: NFP_Boolean
Specifies whether the HwAM is clocked or not.

» isStatic: NFP_Boolean
Specifies whether the HWRAM is static or not.

» isNonVolatile: NFP_Boolean
Specifies whether the HWRAM is volatile or not. Default value is false.
Constraints

[1] memorySize is derived from organization attribute.
[2] addressSize is greater than the number of memory words derived from organization attribute.

[3] synchronous HWRAM must have a clock frequency.

HwResource (from HwLogical)

This HwResource stereotype maps the HW_Resource domain element from the HW_Logical package (F.9.41).

Generalizations

« MARTE::GRM::Resource

Associations

* ownedHW: HwResource[0..*]
Specifies the owned sub-HwResources. Subsets Resource.ownedElement.

* p HW Services: HwResourceService[0..*]
Specifies the provided services. Subsets Resource.pServices.

* r HW_Services: HwResourceService[0..*]
Specifies the required services.

* endPoints: HWEndPoint[0..*]

Specifies the connection points of the HwReource. Subsets ownedHW.

Attributes

* description: NFP_String
Specifies a textual description of the HwResource.

+ frequency: NFP_Frequencyl[O0..1]
Specifies the clock frequency of the HwResource.

HwResource (from HwPhysical)

This HwResource stereotype maps the HW_Resource domain element from the HW_General package (F.9.43).

Generalizations

« MARTE::GRM::Resource

280 UML Profile for MARTE, V1.2

Associations

* ownedHW: HwResource[0..*]
Specifies the owned sub-HwResources. Subsets Resource.ownedElement.

* p HW Services: HwResourceService[0..*]
Specifies the provided services. Subsets Resource.pServices.

* 1 HW_Services: HwResourceService[0..*]

Specifies the required services.

Attributes
* description: NFP_String

Specifies a textual description of the HwResource.

HwResourceService (from HwLogical)

The HwResourceService stereotype maps the HW_ResourceService domain element from the HW_General package
(F.9.43).

Generalizations
« MARTE::GRM::ResourceService

HwResourceService (from HwPhysical)

The HwResourceService stereotype maps the HW ResourceService domain element from the HW_Physical package
(F.9.44).

Generalizations

« MARTE::GRM::ResourceService

Attributes

» consumption: NFP_Power
Specifies the consumption of the HwComponent when powering the HwResourceService.

» dissipation: NFP_Power
Specifies the dissipation of the HwComponent when powering the HwResourceService.
Semantics
Compared to its analogous domain concept, the HwResourceService stereotype from the HwPhysical package converts
the association with the HW_PowerDescriptor to two appropriate attributes.
Constraints

[1] power consumption is greater than dissipation.

HwROM
The HWROM stereotype maps the HW_ROM domain element (F.9.45).

Generalizations

+ HwMemory

UML Profile for MARTE, V1.2 281

Attributes

* type: ROM Type
Specifies the HWROM type.

* organization: MemoryOrganization
Specifies the structure of the HwWROM.

Constraints

[1] memorySize is derived from organization attribute.

[2] addressSize is greater than the number of memory words derived from organization attribute.

Issue 16158 - update text

HwRouter

The HwRouter stereotype maps the HW_Router domain element (F.9.46).

Generalizations

« HW_Media

Associations

¢ None

Attributes

« fifoSize: NFP_DataSize
Specifies the size of the HW_Router fifo queuing.

+ isRoutingAdaptative: NFP_Boolean

Specifies whether the HW_Router supports adaptative routing or not.

» switchingType: SwitchingType
Specifies the HW_Router switching type.

« isSynchronous: NFP_Boolean
Specifies whether the HW_Router is synchronous.

« fifoLocation: FifoL.ocationSpecification
Specifies the location of the HW_Router fifo queuing.

Semantics

HW_Router denotes a router networking device.

HwSensor

A sensor is a device that measures a physical quantity and converts it into a signal, which can be read by an observer or

by an instrument. (Issue).

282

UML Profile for MARTE, V1.2

Generalizations

« Hwl/O

HwsStorageManager

The HwStorageManager stereotype maps the HW_StorageManager domain element (Issue).

Generalizations

« MARTE::GRM::StorageResource

« HwResource

Associations

* managedMemories: HwMemory[0..*]
Specifies the managed memories.

Notations

HwSupport

The HwSupport stereotype maps the HW_Support domain element (F.9.50).

Generalizations

« HwDevice

HwTimer

The HwTimer stereotype maps the HW_Timer domain element (F.9.51).

Generalizations

« HwTimingResource

Associations

* inputClock: HwClock[0..1]
Specifies the input clock of the HwTimer.

Attributes

* nbCounters: NFP_Natural
Specifies the number of counters within the HwTimer.

* counterWidth: NFP_DataSize
Specifies the width of one counter.

UML Profile for MARTE, V1.2

283

Semantics

This stereotype unifies both domain elements HW_Timer and HW_Watchdog.

HwTimingResource

The HwTimingResource stereotype maps the HW_TimingResource domain element (F.9.52).

Generalizations

« MARTE::GRM::TimingResource

« HwResource

Notations

ISA_Type
The ISA_Type enumeration maps the ISA Type domain element (F.9.55).

Description
« RISC
(Reduced Instruction Set Computer)
+ CISC
(Complex Instruction Set Computer)
+ VLIW
(Very Long Instruction Word)
« SIMD
(Single Instruction Multiple Data)
+ other
* undef

MemoryOrganization

The MemoryOrganization tupletype maps the MemoryOrganization domain element (F.9.56).

Issue 13668 - update text

Attributes

* nbRows: NFP_Natural
Specifies the number of rows.

284 UML Profile for MARTE, V1.2

* nbColumns: NFP_Natural
Specifies the number of columns.

* nbBanks: NFP_Natural

+ isInterleaved: NFP_Boolean

Specifies the number of banks.

If true, it specifies that the memory organization is interleaved else it is not.

PLD_Class

| The PLD_Class enumeration maps the PLD_Class domain element (F.9.57).

Description

symetrical Array
rowBased
seaOfGates
hierarchicalPLD
other

undef

PLD_Organization

| The PLD_Organization tupletype maps the PLD_Organization domain element (F.9.58).

Attributes
* nbRows: NFP_Natural

Specifies the number of rows.

* nbColumns: NFP_ Natural
Specifies the number of columns.

* class: PLD Class

Specifies the HW_PLD Class.

PLD_Technology

| The PLD_Technology enumeration maps the PLD Technology domain element (F.9.59).

Description

SRAM
Antifuse
Flash
other

undef

| UML Profile for MARTE, V1.2

285

Repl_Policy
The Repl Policy enumeration maps the Repl Policy domain element (F.9.61).

Description
+ LRU

Least Recently Used
« NFU

Not Frequently Used
+ FIFO

First In First Out

« Random

e other
e undef
ROM_Type

The ROM_Type enumeration maps the ROM_Type domain element (F.9.62).

Description
* maskedROM

+ EPROM (
Erasable Programmable ROM)

+ OTP_EPROM(
One Time Programmable EPROM)

« EEPROM
(Electrically EPROM)
+ flash
» other
* undef

Issue 16158 - update text

SwitchingType

The SwitchingType enumeration maps the SwitchingType domain element (F.9.63).

Timing
The Timing tupletype maps the Timing domain element (F.9.64).

Attributes

* notation: NFP_String
Specifies the Timing notation.

286

UML Profile for MARTE, V1.2

* description: NFP_String
Specifies a short description of the Timing.

* value: NFP_Duration
Specifies the duration value of the Timing.

WritePolicy

The WritePolicy enumeration maps the WritePolicy domain element (F.9.65).
Description

+ writeBack

« writeThrough

+ other

+ undef
14.2.4 Examples

This sub clause contains examples implementing the Hardware Resource Model profile. These examples may help users
to model a given hardware platform or to design a new one using the set of stereotypes detailed above.

In order to leave a large modeling flexibility, the HRM profile can be applied on all structural UML diagrams: Class
(example 14.2.4.2), Component, Composite Structure (example 14.2.4.3).

At the end, notice that the OMG standard XML Metadata Interchange (XMI) eases exchanging metadata of UML models.
It is now supported by most UML-based modeling tools. The XMI also eases model transformation, parsing, and code
generation, consequently, many tools affords mechanisms to extract data from UML models for analysis, simulation, or
implementation purposes.

14.2.4.1 Resource services

Within the domain view, the resource services (HW_ResourceService) are not explicitly specified as they are mainly
deduced from the nature of the resource and they should be fully listed only if such level of detail is needed. The logical
view classifies hardware resources depending on their functional role within the execution platform and the services they
are offering.

UML Profile for MARTE, V1.2 287

HW_ResourceService

pulseService
{subset p_HW_Senvices}

HW_Pulse HW_Clock

pulseService
{subset r_HW_Services}

time GetService
{subsetp_HW_Senvices}

HW_TimeGet

timeSet Service
{subset p_HW_Services} P

HW_TimeSet

. HW_Timer
oountService
subset p_HW_Services,
HW_Count { P i o
. —
stop Service
{subsetp_HW_Services}
HW_Stop
scaleService
{subset p_HW_Senvices}
HW_Scale
alarmService
HW_Alarm fsubsetp_HW_Services} - HW_Watchdog

Figure 14.75 - Resource services example (HW_Timing)

Figure 14.76 gives a detailed description of required and provided services of timing resources (Figure 14.60). An
HW_Timer requires an HW_Pulse service offered by the HW_Clock and provides at least:

« HW_TimeGet service to get the current time.

« HW_TimeSet service to set a new time value given as parameter.

« HW_Count service to start counting.

« HW_Stop service to stop counting.

« HW_Scale service to set a counting scale, it needs a number of clocks as parameter.

An HW_Watchdog is an HW_Timer providing an additional notifying service HW_Alarm.

14.2.4.2 Stereotype application
Figure 14.77 shows a three step example of applying the HWRAM stereotype.

(a) is part of the detailed HwStorage metamodel, it collects properties common to all memory technologies.

288 UML Profile for MARTE, V1.2

(b) defines the SDRAM (short for Synchronous Dynamic Random Access Memory) technology as a model where a part
of tagged values (e.g., isNonVolatile, isSynchronous, and isStatic) are fixed. Other specific attributes are added at this
level to refine the SDRAM class (burst transfers and refresh modes).

(c) is the final step where we instantiate a particular memory card from of the SDRAM technology model. Here is a real
example of specific Samsung SDRAM.

(a) Metamodel level

« stereotype »

HwResource

frequency : NFP_Frequancy [0..1]

7

« stereotype »
HwMemory

memorySize | NFP_DataSize
addressSize : NFP_DataSize

timings : Timing [*]

« wpleType » a anumeration »
Timing WritePolicy
notation : NFP_String writaBack
description : NFP_String writeThrough
value : NFP_Duration other
undef

« tupleType »
MemoryOrganization « anumeration »
Repl_Policy
 Stereotype » nbRows : NFP_Matural
Hwﬂ.hlfr nbColumns : NFP_Natural LRU
nbBanks : NFP_Matural MNFU
organization - MemoryOrganization wordSize : NFP_DataSize FIFSJ
IsSynehranous - NFP_Boclean ranheurn
isStatic ‘NFP_Boolean of e
isNon\alatile : NFP_Boolean s
repl_Policy - Repl_Policy
writePolicy : WritePolicy
(b) Model level
o hwRAM » @ « enumeration » w enumeration »
SDRAM RefreshMode BurstType
{IsSynchronous = true, RASHONy sequencial
isStatic = false, CASHbeforeRASH interleave
isNonVolatil = false} hiddan other
other undef
burstLengths : NFP_Matural [1..%] undef
burstTypes : BurstType [1..%]
refreshRate ;| RefreshRate
tuple T
refreshModes - RefreshiMode [1.%] ;efi::h)g:‘:
nbcycles : NFP_Natural
periad ; NFP_Duration

Figure 14.76 - Stereotype application example (SDRAM)

14.2.4.3 Logical/Physical modeling

(c) Instance level

« hwRAM »
K4S641632H : SDRAM @

{frequency = 166 MHz,

memorySize = 64 MB

adressSize = 22 bil,

arganization = (4096, 256, 4, 16 bit),
timings = {{"tCAS", 'CAS latency’, 2 CLK),
{'tRAS', ‘row active time’, 18 ns)j}

burstiLengths =1, 2, 4, §, 4K
burstTypes = sequencial, interleave
refreshRate = (4K, 64 ms)
refreshiModes = CAS#beforeRASH

The next example is an SMP (Symmetric MultiProcessing) hardware platform with four processors owning caches and

sharing the same main memory, through an FSB bus. This SMP platform also contains a 4-channels DMA (Direct

Memory Access) and a battery (Figure 14.78).

UML Profile for MARTE, V1.2

289

« hwResource »
- Swp -

r

« hwResource» «hwResource » « hwResource »
CPU FSB DMA

« hwResource»
Battery

«hwResource»
SDRAM

« hwResource»
uL2

Figure 14.77 - SMP description

The next figures depict two refinements of the previous high level model into a logical view on Figure 14.79 and a
physical view on Figure 14.80.

« hwLogicat:hwResource »

SMP
« hwProcessor » 1 « hwSup port»
CPU Battery
1
«hwBus» « hwRAM »
SDRAM
« hwCache » 1 FSB {isSynchronous = true,
uL2 {isSynchronous = true} sStatc = false]
{Ievel_ =2, 1
type = unified) «hwDMA »
DMA

{nbChannels = 4}

Figure 14.78 - SMP logical view

Due to its encapsulation/composition mechanisms, the UML Composite Structure diagram is well adapted to hardware
modeling even if the HRM profile can be used with all structural diagrams.

« hwComponent»
SMP

{kind = card}

« hwComponent »
CPU [4]
{kind = chip}

« hwComponent »
uLz
Ikind = unit}

« hwComponent »
FSB

{kind = chanrel}

« hwComponent »

{kind = chip}

« hwComponent »
SDRAM

{kind = card}

« hwPowerSupply »
Battery
{kind = other,
capacity = 40Wh}

Figure 14.79 - SMP physical view

290

UML Profile for MARTE, V1.2

As UML allows application of many stereotypes on the same element, these two previous views could be merged into a
unified view as shown in Figure 14.80.

« hwlLogical::hwResource, hwComponent »
SMP

{kind = card}
a hwSupport, hwPowerSupply »
« hwProcessor, hwComponent » 1 Pe Battery i
cPU [kind = other,
{kind = chip} 1 capacity = 40 Wh}
« hwBus, h“rCompcént » « hwRAM, hwComponent »
o EsB SDRAM
IsSynchronous = true, {isSynchronous = true,
« hwCache, hwComponent » s 1 { Ly Kind = o nel} j=Static = false,
ULz — kind = card
flevel =2,
type = unified, 1 « hwDMA, hwComponent »
kind = unit} DMA
1

{kind = chip,
nbChannels = 4}

Figure 14.80 - SMP merged (logical/physical) view

Even if merging logical and physical views is possible, separation of concerns is an adequate way to have specialized and

detailed models that are lightened from unused properties. Figure 14.81 and Figure 14.82 depict two detailed logical and
physical refinements of the SMP example introduced above.

« hwlLogical::hwResource »
smp : SMP

« hwProcessor »
cpui : CPU S

{frequency = BOD Mhz}

a hwProcessor »
cpu2 ; CPU S

{fraquency = 800 Mhz}

« hwProcessor »
cpud : CPU D

{frequency = 800 Mhz}

« hwProcessor »
cpud : CPU J'II:"I'

{frequency = B00 Mhz}

« hwCache »
12: ULz @

{memoaorySize = 512 kB}

a hwCache »
12:UL2 @

{memorySize = 512 KB}

« hwCache »
12 : UL2 @

ImemaorySize = 512 kB}

a hwCache »
i2: UL2 @
fmemorySize = 512 kB}

—— 17

« hwBus »

{irequency = 133 Mhz,
wordWidth = 128 bit}

| I

« hwSupport »

battory : Battery

« hwDMA» a hwRAM =

dma : DMA sdram : SDRAM @
{managediMemories = sdram {frequency = 266 Mhz,
memorySize = 256 MB}

Figure 14.81 - SMP detailed logical model

The HRM includes many notations (icons and shapes), the physical view provides arrangement mechanisms to make

UML graphical diagrams as close as possible to the real hardware platform architecture. The physical view on Figure
14.82 illustrates these profile features.

| UML Profile for MARTE, V1.2 291

« hwComponent »
smp : SMP
{grid = {4 3}.
area = 5000 mm?,
r_conditions = (Temperature; Operating; *; [10 *C.60 "Gl

hwComponent » « hwComponent » « thu|1"|pmem »
cpul : CPU cpuld : CPU sdram : SDRAM

sition = {[1,1], [1.1]}, position = {[2.2), [1,1]). {position = {[3.4], [1,1]},
sla{l[i:':consrumgtinn] =[5 J\?’J slaiicﬂo;slum{p[?ozn.I:r 5 1-13} nbPins = 144}

« hwComponerit »
fsb : FSB
{position = {[1.4]. [2.2]}}

« hwComponent » « hwComponent »
cpu2 : CPU cpud : CPU

{position = {[1.1], [3.3]}, {position = {[2,2], [3.3]}.

« hwComponeant » « hwPowerSupply »
dma : DMA battery : Battery

{position = {J3.3] {position = {[4 4], [3.3]},
[3.30} capacity = 10 Wh,
weight = 150 g}

staticConsumption = 5 W} staticConsumption = 5 W}

Figure 14.82 - SMP detailed physical model

Because of the nature of hardware resources, the logical and physical views converge on many concepts. Some logical
stereotypes have a set of corresponding physical stereotypes like an HwLogical::HwBus that is typically a physical
channel or HwLogical::HwProcessor(s) that are chips. Reciprocally, an HwPhysical::HwBattery is considered as an
HwLogical::HwSupport device. More accurately, the addressSize and wordSize tag values of an HwLogical::HwMemory
must go with the nbPins tag value of the corresponding HwPhysical::HW_Component.

Within MARTE, stereotype tag values can be fixed either at model or instance level. This enlarges the semantics of
hardware models. For example, within Figure 14.80, the capacity of the battery at the model level was 40Wh and
corresponds to the maximum capacity of such class of batteries, whereas the same tag value becomes 10Wh at instance
level (Figure 14.82) and represents the current stored energy.

292 UML Profile for MARTE, V1.2

Subpart lll - MARTE Analysis Model

This Subpart contains the following clauses:
* 15 - Generic Quantitative Analysis Modeling (GQAM)
* 16 - Schedulability Analysis Modeling (SAM)
* 17 - Performance Analysis Modeling (PAM)

| UML Profile for MARTE, V1.2 283

284 UML Profile for MARTE, V1.2

15 Generic Quantitative Analysis Modeling (GQAM)

The generic analysis domain includes specialized domains in which the analysis is based on the software behavior, such as
performance and schedulability (the two next clauses), and also power, memory, reliability, availability, and security.
Although analysis domains have different terminology, concepts, and semantics, they also share some foundation concepts
that are expressed in this clause, in order to simplify the profile and make it easier to add new analyses. Generic modeling
defines basic modeling concepts and NFPs, using the NFP annotation framework depicted in Clause 8.

MARTE analysis is intended to support accurate and trustworthy evaluations using formal quantitative analyses based on
sound mathematical models, which may supplement designer intuition and “feel.” Model analysis can detect problems early in
the development life cycle and reduce cost and risk.

The two following clauses use GQAM in creating sub-profiles for:

+ Schedulability analysis, to predict whether a set of software tasks meets its timing constraints and to verify its temporal
correctness, e.g., RMA-based techniques (see, e.g., “Real-Time Systems,” by Jane Liu).

 Performance analysis, to determine if a system with non-deterministic behavior can provide adequate performance,
usually defined by some statistical measures (see e.g., The Art of Computer Performance Modeling, by Raj Jain).

Figure 15.1 shows the relationship of these clauses to each other and to the rest of the profile. Analysis of power consumption
and the use of memory are also briefly considered here as additional specializations that may be used in future analysis
subprofiles.

1 1 1 1
- « modelLibrary @
NFPs Time GRM MARTE_Library
3) A A
& import » | | i
H « Impart » w imgart » o import »
GOAM ;
— —

GQAM_Workload |-~--« import »--={ GQAM_Resources

—————— & import #---------= GQAM_Observers
M M
« impoart » & impart »
H H
SAM PAM

Figure 15.1 - Dependencies of GenericQuantitativeAnalysisModeling (GQAM) package

15.1 Overview

This sub clause supports generic concepts for types of analysis based on system execution behavior, which may be
represented at different levels of detail. Extra annotations needed for analysis are to be attached to an actual design model,
rather than requiring a special version of the design model to be created only for the analysis. Even if the specification
contains fine detail, the annotations may optionally be applied to aggregates. The same arguments may be applied to
modeling software or embedded devices.

UML Profile for MARTE, V1.2 285

The core of the GQAM domain is the description of how the system behavior uses resources.

Quantitative analysis techniques determine the values of “output NFPs” (such as response times, deadline failures,
resource utilizations, and queue sizes) based on data provided as “input NFPs” (e.g., request or trigger rates, execution
demands, deadlines, QoS targets). The goals of analysis may have varying degrees of generality:

A point evaluation of the output NFPs gives their values, along with decisions such as pass/fail.

« Sensitivity or scalability analysis is parameterized over variations in the input NFPs. It may seek to find which cases
are satisfactory, and which are not; or to find the sensitivity of some measures to parameters that are not well
determined.

« Some analysis may search over input NFP values to find feasible or optimal values.

The same NFP may be an input or output, depending on the context. For example a worst-case latency may be an output
in WCET analysis, or an input in Schedulability Analysis.

Although NFPs may describe all aspects of a system (including, for example, heat generation and power consumption),
this discussion centers on time and resource-related properties.

Time-Related NFPs

The core purpose of real-time analysis is to estimate the capability of a system to provide timely responses to requests for
(or initiations of) specified system-level operations, which we will call services, and to handle an adequate frequency of
requests, under specified conditions. To enable this analysis, a UML model must specify the system-level operations, the
frequency of requests, and the conditions of execution (which we may term its environment).

Timeliness of a response can be defined in several different ways, as a property of the response delay to complete it. A
recent survey is given by Sha et al. Some examples of definitions given in this survey are:

+ Hard deadline: the response must be complete within this delay.

+ Soft deadline: a stated percentage of responses must be complete within this delay. Quality-of-service specifications
often are stated in these terms (see e.g., Jin and Nahrstedt, esp. Fig 4.).

+ Delay cost function: a function of delay should be within a target value, or should be minimized. This is useful for
trading off delays of multiple streams of requests that compete for resources. (see e.g., Franaszek and Nelson).

+ Other statistical measures: the average delay, or the average of some function of some measure, must be within a target
value, or some other measure must meet some requirement. The following real example is a generalization of soft
deadlines: “the probability distribution function of delay must lie above a specified distribution function, so at each
delay value the probability is higher than the specification.”

The expression of such measures in service level agreements was discussed and surveyed recently by Skene et al. They
point out the value of analysis of the execution path of the software.

Other NFPs

Although this clause is concerned with time, it is instructive to consider others, such as memory and power usage
(reliability and security are further examples not considered here).

Memory usage is determined by the size of objects that must be stored. As seen at the level of a system specification,
these objects include:

« Executables when loaded.

286 UML Profile for MARTE, V1.2

« Data structures in memory, both static and dynamic. For dynamic data structures, the maximum size seems to be of the
greatest interest. However a situation might arise where the program creates one buffer pool at one stage, then destroys
it and creates another one at a later stage. A full analysis would then have to look at the memory use over the duration
of a response, attaching sizes for a given object to particular operations. An example of a potentially dynamic data
structure is a buffer pool.

« Messages sent between entities.
« Files.

Additional objects arise in the environment, including the operating system executable and data, file system cache and
other memory objects, and the “heap.”

Power use depends on the system configuration and deployment and on its behavior, in that power is used to operate
peripherals and memory, as well as to execute instructions and i/0 operations. Power may be managed dynamically by a
power control policy of the operating system, which responds to demands and battery status.

Power is related to time to execute a behavior, because the power used by a host processor is controlled through its clock
speed, which affects its rate of operation.

Power management also applies to DRAM memories. (see “Memory Controller Policies for DRAM Power Management,”
Xiaobo Fan, Carla S. Ellis, Alvin R. Lebeck, Proceedings of the International Symposium on Low Power Electronics and
Design (ISLPED), pages 129--134, August 2001).

In wireless networks the power of transmission may be controlled, affecting messaging speed. Optimal policies take into
account competition between nodes (see e.g., Cruz and Santhanam).

15.2 Domain View

Figure 15.2 shows the domain model for generic quantitative model-based analysis composed of four packages: GQAM,
GQAM_Workload, GQAM_Observers, and GQAM_Resources.

15.2.1 The GQAM package
The top-level GQAM package shown in Figure 15.2, is organized around the concept of AnalysisContext, which

represents the root of the domain model. It contains two parts that address different concerns:

« WorkloadBehavior (refined in Figure 15.3) contains a set of related end-to-end system-level operations, each with a
defined behavior, triggered over time as defined by a set of workload events.

+ ResourcesPlatform (refined in Figure 15.5) is a logical container for the resources used by the system-level behavior
represented in the previous model.

AnalysisContext may have parameters of type VSL::Expressions:: Variables, which define different cases being considered
for analysis, and may affect the parameters of behavior and resources (such as the number of repetitions of a sub-
operation, or the size of a list).

| UML Profile for MARTE, V1.2 287

VSL::Expressions::
ExpressionContext

i

AnalysisContext

1 contextParams | VSL::Expressions::
T context O Variable
{redefines context}

warkloadBahavior [1_* 1+ |resourcesPlatiorm

GOAM Workload:: GQAM_Resources::
WorkloadBehavior ResourcePlatform

Figure 15.2 - Top package of the GQAM domain model
15.2.2 The GQAM_Workload Package

The package GQAM_Workload (Figure 15.3) describes workload and behavior concerns. WorkloadBehavior is a
container for one or more end-to-end system operations (behaviors) used for analysis, and one or more streams of request
events.

15.2.2.1 Workload concepts

Different workloads may correspond to different situations, such as takeoff, in-flight and landing of an aircraft, or peak-
load and average-load of an enterprise application. Each workload is represented by a stream of triggering events,
WorkloadEvent. Such a stream may be generated in different ways:

+ by atimed event.
+ by a stated arrival pattern, which includes a wide range of classic models of event streams.

« from an arrival-generating mechanism represented by a Workload Generator (that may be modeled as a state-machine).
There may be multiple independent identical mechanisms generating the stream, the number is called its “population.”

« or from a trace (Event Trace) stored in a file.

In practice, one of these options is used and the others are left undefined. The arrivalPattern alternatives are described in
Annex D, but they include the PeriodicPattern, often used for schedulability, the Open and Closed patterns often used for
performance analysis, and some less regular patterns. EventTrace has attributes for location (the file location or URL),
format (a description of the trace record format) and content (for the trace data itself).

288 UML Profile for MARTE, V1.2

GQAM_Workload

GRM::ResourceUsages::

EventTrace

WorkloadGenerator

population: NFP_Integer

Time::
TimedEventModel::
TimedEvents::
TimedEvent

UsageDemand
——<@ WorkloadBehavior @——
0..1
trace 1..%|, demand behavior |, 1..*
cause
WorkloadEvent {redefines BehaviorScenario
0.1 workload} 1
generator pattern: ArrivalPattern g offect | NostDemand: NFP_Duration
— - " hostDemandOps: NFP_Real [*]
{redefines | . . o [+
usage} interOccTime: NFP_Duration [*]
throughput: NFP_Frequency [*]
0.1 respTime: NFP_Duration [*]
timeEvent utilization: NFP_Real [*]

{redefines event}

« enumeration »
ConnectorKind

Sequence
Branch
Merge
Fork

Join

connectors

PrecedenceRelation

connectorKind: ConnectorKind

utilizationOnHost: NFP_Real [*]

Time::TimeRelatedEntities::
TimedProcessingModels::
TimedProcessing

R

GRM::ResourceUsages::
ResourceUsage

b

i

childScenario
0.1 0.1 scenario GQAM_Observers::
TimingObserver
parentStep root | 0..1 * | steps
0.1
Step
outputRel « .
P isAtomic: NFP_Boolean 0.1 GQAM_Resources::
1 succes | blockingTime: NFP_Duration [*] host ExecutionHost
repetitions: NFP_Real =1
probability: NFP_Real = 1
. priority: NFP_Integer
inputRel * serviceDemand:RequestedService [*] {ordered} 0.1 GRM::Scheduling::
1 predec | serviceCount:NFP_Real []{ordered} concurRes | SchedulableResource

ReleaseStep

AcquireStep

resUnits: NFP_Integer

relRes | 0..1

CommunicationStep

RequestedService

resUnits: NFP_Integer

0..1

acqRes

msgSize: NFP_DataSize

{redefines host}

host 0.1

0..1 concurRes

GRM::ResourceCore::
Resource

GQAM_Resources::
CommunicationHost

GQAM_Resources::
CommunicationChannel

{redefines concurRes}

Figure 15.3 - GQAM_Workload package of the GQAM domain model

15.2.2.2 Behavior Scenario concepts

The behavior in response to a trigger event is described by a BehaviorScenario, which is composed of sub-operations
called Steps, any one of which can be refined as another BehaviorScenario. A BehaviorScenario captures any system-
level behavior description or any operation in UML, and attaches resource usage to it. Resources are used in three

different ways:

UML Profile for MARTE, V1.2

289

« Each primitive Step has a host processor used to execute the operation of the step.
A Step implicitly uses an operating system process, which is a SchedulableResource.

« A Step may be a specialized AcquireStep or ReleaseStep to acquire or release a Resource, particularly a logical
Resource representing a software resource.

BehaviorScenarios and Steps may also use other kinds of resources, such as power and memory. For this reason,
BehaviorScenario inherits from ResourceUsage (described in Clause 10), which links resources with concrete usage
demands. A few concrete forms of usage are defined at this level of specification, such as: memory, CPU execution time,
energy from a power supply, and size of messages to be sent through a network.

GQAM models Scenarios that terminate, and assumes that they are triggered repeatedly by the WorkloadEvent stream.
The predecessor-successor relationship between Steps may be a simple sequence, or it may be:
« branch (one predecessor Step, multiple successor Steps, each with a probability of selecting that branch).
- merge (multiple predecessor Steps, one successor triggered by any predecessor).
« fork (one predecessor Step, multiple successor Steps, indicating that all successors are executed logically in parallel.
« join (multiple predecessor Steps, one successor triggered by all predecessors completing).
These are represented in the Figure by the types of connectorKind in PrecedenceRelation.

Steps and BehaviorScenarios have attributes as shown in Figure 15.3. Most of these are defined in Table 15.1 below,
which also defines additional result variables which could be included in an extended model, but which are not
incorporated in this domain model. In particular, respTime is the end-to-end delay of a BehaviorScenario, and
blockingTime is any pure delay which enters the Step in addition to delays related to execution of operations. A
BehaviorScenario is a collection of Steps, but also a Step can also be the parent of a refinement as a more detailed
BehaviorScenario (its childScenario). Priority is the priority of execution of a Step on the host processor, and the
isAtomic property specifies atomicity of execution of the entire Step (the default is false).

A Step has a host association, a process (a SchedulableResource), and a hostDemand for its own execution time, which
can be represented either as a time, or a number of operations on the host processor. It also may have optional requests
(servDemand, with mean count servCount) for services from system components. To support demands for multiple
services, these are expressed as ordered sets of service requests and counts, with the order corresponding one to the other.

A CommunicationStep defines the conveyance of a message between system entities, and has an attribute of the message
size. The repetitions attribute of a CommunicationStep Inherited from Step) denotes multiple sendings (event
multiplication) if >1, or decimation of sendings (event division) if <I. If repetitions is deterministic and less than 1 it is
interpreted as event division by N = 1/repetitions, rounded to the nearest integer. That is, every Nth execution of the
sending Step causes on cal to occur. Repetitions may also be a random quantity.

BehaviorScenarios in similar forms are widely used for timing analysis. In schedulability analysis they are called “task
sequences” (Jane Liu, “Real Time Systems”), and specifications of timing normally refer to certain scenarios.
Performance models are also created from scenarios (see e.g., Smith and Williams, “Performance Solutions”). Early
analysis may be deliberately restricted to certain behaviors for certain triggers.

A BehaviorScenario may be represented by a UML interaction, statechart, or activity diagram.

290 UML Profile for MARTE, V1.2

Time Intervals

Time intervals are defined by events that are associated with units of behavior, particularly Steps and BehaviorScenario,
or with pairs of events from other sources. The inter-occurrence time interval between two successive initiations of a
behavior unit (the “interOccTime” NFP) is one such example.

It is also sometimes necessary to define an interval between two events that are associated with separate units of behavior,
such as the interval between corresponding events on two parallel paths, to give the amount by which one parallel path
leads or follows another.

Services

Services are provided by resources and by subsystems. A service by a subsystem is identified as a RequestedService, a
subtype of Step. It is associated with an operation included in some interface of a system component, and is defined for
analysis purposes as a Step refined by the BehaviorScenario for the behavior of that operation.

15.2.3 GQAM_Observers Package

TimedObservers (Figure 15.4) are conceptual entities that define requirements and predictions for measures defined on an
interval between a pair of user-defined observed events, named startObs and endObs in the figure. A TimedObserver must
be extended to define the measure that it collects. The LatencyObserver makes this extension to collect the duration
between the two events, and some properties of that duration. Other extensions can be defined to describe power or
energy usage, memory usage, etc., over a partial behavior.

A TimedObserver uses Timed Instant Observations (from the Time subprofile) to define the start and end events in a
given behavioral model. It may express constraints on the defined measure, for instance on the duration between the two
time observations. It can use predefined and parameterized patterns (e.g., latency, jitter) or more elaborate expressions
(e.g., written in OCL or VSL) since TimedObserver inherits all the modeling capabilities from NfpConstraint.

A TimedObserver may be attached to particular start and end observed events, or to a behavior element such as a Step. In
the latter case the start and end events are the start and end events for execution of the behavior element.

LatencyObserver specifies a duration observation between startObs and endObs, with a miss ratio assertion (percentage),
a utility function that places a value on the duration, and a jitter constraint. Jitter is the difference between the maximum
and minimum duration.

UML Profile for MARTE, V1.2 291

GQAM_Observers

— « enumeration »
NFPs:: ConstraintKind
NFP_Annoctation::
NFP_Ceonstraint required
offared
kinel: Consirainiiing T
. stanObs . « enumeration »
; EdRJ'meél:Em - TimedObserver LaxityKind
im ate ities:: . —
| H
TimedObservations:: endOba ity LaxifyKind hiard
TimedinstantObservation 5?:
- othar

]

LatencyObserver

latency: NFP_Duration
missRatio: NFP_Real
ulidity: Uity Typs
maxJitter: NFP_Duration

Figure 15.4 - The GQAM Observers package

15.2.4 The GQAM_Resource Package

The top class in the GQAM_Resource package (Figure 15.5) is ResourcesPlatform, which represents a logical container
for all the resources used to perform the behaviors described in the previous package.

Resources in real-time systems take a variety of forms, including hardware devices, software servers and logical resources
like locks. The viewpoint of resources in Figure 15.5 is inherited from the GRM package: an abstract Resource class, with
features shared by all resources which include a scheduling discipline, and a multiplicity called “resMult” for “maximum
resource instances.” In use it will also have an output NFP of resource utilization (for a multiple resource this is defined
as the mean number of busy units), and for throughput (the number of requests handled successfully per unit time). A
multiprocessor may be modelled as a single resource with multiple units and one scheduler (for a processor pool), or a
collection of single resources each representing one processor, (where tasks are allocated to processors separately).

From an analysis viewpoint, these four types of resources shown in Figure 15.5 are important:

» ExecutionHost: a processor or other device that executes operations specified in the model. It has a host role relative to
the processes and the Steps that execute on it.

+ CommunicationsHost: hardware links between devices, with the role of host to the conveyance of a message.

» SchedulableResource: a schedulable service like a process or thread pool, which is a software resource managed by the
OS.

» CommunicationChannel : a middleware or protocol layer that conveys messages.

There are also other concurrency resources, such as mutual exclusion resources (from the GRM clause), which may be
any mechanism that can make a program wait for a condition to be satisfied. Examples include a critical section,
semaphores, and locks; a finite buffer pool (a multiple resource, with multiplicity equal to the number of units of memory
in the pool), or a pool of admission control tokens.

292 UML Profile for MARTE, V1.2

All resources have a scheduling discipline, a multiplicity (number of units of the resource), and offer Services. Explicit
resource acquisition and release is mostly required for logical Resources, but for generality it is expressed in Figure 15.3
for any resource.

Resource usage by the software may cover an entire BehaviorScenario, or a few Steps. A Step runs on a processor that is
its host, which is implicit in the deployment of the software component of which it is part, and it has a host demand that
is its CPU requirement.

GQOAM_Resources

ResourcesPlatform

" l SO0 TCES:

« enumeration » GRM::ResourceCore::
MARTE_Library:: Resource
MARTE_DataTypes:: le

TransmModeKind

Simple | |

HalfDuplex "
Fullnuge; GRM::Scheduling:: GRM::ResourceTypes::

ProcessingResource ConcurrencyResource

% GRM::Scheduling::

SchedulableResource

ExecutionHost CommunicationHaost Zl_\
commTxOverhead: NFP_Duration capacity: NFP_DataTxRate CommunicationChannel
commRevOverhead: MFP_Duration throughput: NFP_Frequency
contextSwitchTime: NFP_Duration packetTime: MFP_Duration Size: MFFP DataSi
clockOvh: NFP_Duration blockingTime: NFP_Duration e NEF Rl
schedPricrityRange: NFP_Interval fransmidode: TransmidodeXind -
memorySize: NFP_DataSize utilization: MFF_FReal
thraughput: NFP_Fraguency[”]
utilization: NFP_Real {redefines host) o1

host P 0.1 fost

Figure 15.5 - GQAM_resources package of the GQAM domain model

Acquisition and release are operations that occur during the BehaviorScenario; they may be implicit in the behavior. For
instance, when a message goes to a process or thread, a thread/process resource must be acquired, or the scenario will
block. Similarly, where a behavior scenario enters or leaves a critical section, the corresponding logical resource is
acquired or released implicitly. Other logical resources, such as a locks, buffers, and admission tokens, are explicitly
acquired or released. Notice that the resource is different from the resource manager, which may be a process that
implements the resource scheduler and has its own host and demands. The operation of an embedded system may have
resources whose function depends on other resources.

Messages between processes that are not co-located use the links between their host processors; the links can often be
identified implicitly from the deployment.

| UML Profile for MARTE, V1.2 293

15.2.5 Common NFP Attributes for Analysis

There are several widely-used measures used for real-time requirements, parameters that are inputs to an analysis, and
results that are outputs from it, including:

+ Repetition count for a Step or a loop (repetitions).

« Probability of a subpath (probability).

+ Host demand (CPU requirement) in time units (hostDemand).

+ Host demand in host operations (hostDemandOps).

« Priority on the host (priority).

+ Delay (including initial scheduling delay) (respTime).

+ Delay (without initial scheduling delay) (executionTime).

- Time interval between two successive occurrences (interOccTime).

 Throughput (executions per unit time) (throughput).

« Utilization of the entity, meaning the fraction of time it is busy or (if it is reentrant or has multiple copies) the mean
number of busy copies (utilization).

« Host utilization by the entity, the fraction of time its host is busy executing it (required and evaluated).

(utilizationOnHost).

These quantities may be applied to different kinds of entities, as described in the following table. All are optional and

may be an array of values.

Table 15.1 - Common NFP Attributes for Analysis

NFP For Resource For Scenario and Step For WorkloadEvent
repetitions: NFP_Real[*] repetitions, the number of times the Step is | N/A
N/A repeated, once triggered
(default = 1).
probability: NFP_Real[*] probability, the probability that the step is N/A
N/A executed, following its
predecessor (for conditions)
hostDemand: NFP_Duration[*], | composite demand For a Step, the CPU demand N/A
hostDemandOps:NFP_Real[*] across all services of the | on the host of the process that
Resource, in terms of executes the Step.
time and in terms of For a Scenario, the sum of all
processor operations demands for all its Steps.
priority : NFP_Integer[*] N/A For a Step, priority on its host N/A

respTime: NFP_Duration[*]

response time,
composite average
response time across all
services offered by the
resource

total delay from the trigger
event until completion of the
Step or Scenario

required value for the
Scenario

294

UML Profile for MARTE, V1.2

Table 15.1 - Common NFP Attributes for Analysis

execTime : NFP_Duration[*]

execution time,
N/A (same as
hostDemand)

respT minus any initial
scheduling delays

N/A

interOccTime: NFP_Duration[*]

inter-occurrence time,
interval between
successive requests for
services

interval between initiations

interval between trigger
events

throughput : NFP_Frequency[*]

frequency of requests for
all services

frequency of initiations

frequency of the trigger
event

utilization : NFP_Real[*] fraction of time the fraction of time the N/A
resource is active (has BehaviorScenario is active
an active service). For a (between its trigger event and
multiple resource, the its completion)
mean number of busy
units.
utilizationOnHost: NFP_Real[*] | N/A fraction of time the host is busy | N/A
executing the
BehaviorScenario. If it has
multiple hosts, this is a set of
values.
blockingTime: NFP_Duration[*] | blocking time, a pure delay waiting for N/A
N/A passive resources to be
available or an event controlled
from elsewhere (value is an
output variable)
selfDelay: NFP_Duration[*] delay a pure delay controlled or N/A

requested by the Step. (value
is an input variable)

For a BehaviorScenario, which is a composite entity, some NFPs apply directly (repetitions, probability, response time,
inter-occurrence time, and throughput) while others either do not apply or represent sums of the attributes of the Steps
that make up the Scenario, weighted by their throughputs relative to that of the BehaviorScenario (execution time,
hostDemand, utilizationOnHost).

15.3 UML Representation

15.3.1 Profile Diagrams

The UML extensions for the GQAM sub-profile are presented in this sub clause. The sub-profile is split in four figures
related to corresponding domain model packages GQAM, GQAM_Workload, GQAM_Behavior, GQAM_Observers, and
GQAM_Resources.

UML Profile for MARTE, V1.2 295

In general, resource-related stereotypes extend the UML metaclass Classifier. More exactly, the stereotypes GaExecHost,
GaCommHost, and GaCommChannel specialize the stereotype GRM::Resource, defined in the GRM clause, which
extends in turn Classifier, InstanceSpecification, and Property (the last used for annotating Parts in UML composite
structure diagrams). Therefore, resource stereotypes can be applied to all kinds of classes, instances, components, parts,

and

deployment nodes.

GaScenario and Step stereotypes inherit from TimeModels:: TimedProcessing (which extends Behavior, Message, Actions)
and GRM::Resource (which extends NamedElement). So, Scenario and Step stereotypes can be applied to a wide set of
behavior-related elements covered by the UML2 metaclass NamedElement, such as Operations, Actions, Messages that
initiate Operations or Actions, Transitions and States in state machine diagrams, Signals that trigger state machine
transitions, Events, ExecutionOccurrenceSpecifications and InteractionFragments in interaction diagrams, InputPins in
activity diagrams and UseCases.

« profile »
GQAM

« metaclass »
UML::Classes: :Kernal::
MamedElasment

A

 stersotype »
MARTE::V5SL::Expressions::
ExpressionContext

« sterootype »
MARTE::CoreElements::
Configuration

« stereotype »
GaWarkleadBehavior

behavior; GaScenario [*]
demand: Ga\WorkloadEvent [*]

%

ﬁ‘?

& stereatype »
GaAnalysisContext

contextParams: NFF_String [*]
workload: GaWorkloadBehavior [1..7]
platform: GaResourcesPlatform [1..%]

« metaclass »

Classifiar

UML::Classas::Kernal::

3

« stereotype »
GaResourcesPlatform

rescurces: Rescurce [*]

Figure 15.6 - UML extensions for top level stereotypes of the GQAM profile

296

UML Profile for MARTE, V1.2

Issue

18547 - udpate figure

« profile »
GQAM

« metaclass »
UML.::Classes::Kernel::
NamedElement

« metaclass »
UML::CommonBehavior
::SimpleTime::
TimeEvent

4

« metaclass »
UML::CommonBehavior::
BasicBehaviors::Behavior

A

A

timedEvent 0..1

« stereotype »

« stereotype »
GaWorkloadEvent

« dataType »

« choiceType »
MARTE_Library::
BasicNFP_Types::
ArrivalPattern

« stereotype »
GaWorkloadGenerator

GaEventTrace

content: String
format: String
location: String

pattern: ArrivalPattern [0..1]
generator: GaWorkloadGenerator

trace: GaEventTrace [0..1]
effect: GaScenario [0..1]
timeEvent::UML::timeEvent[0..1]

periodic: PeriodicPattern
aperiodic: AperiodicPattern
sporadic: SporadicPattern
[0.1] burst: BurstPattern
irregular: IrregularPattern
closed: ClosedPattern
open: OpenPattern

pop: NFP_Integer = (1)

« metaclass »
UML::Classes::

« stereotype »
MARTE::GRM::
R. U

Mool

« stereotype »
MARTE::Time::TimeRelatedEntities::

Kernel::O
P

T dan.
) et <]

o a0
SHmearT

g

A

i 5

« stereotype »
GaScenario

cause: GaWorkloadEvent
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]

« stereotype »
GaStep

isAtomic: NFP_Boolean
blockT: NFP_Duration [*]
rep: NFP_Real =(1.0)
prob: NFP_Real =(1.0)

interOccT: NFP_Duration [*] childScenario parentStep
throughput: NFP_Frequency [*] 0-1 0.1
respT: NFP_Duration [*]

utilization: NFP_Real [*] scenario steps

priority: NFP_Integer
concurRes: SchedulableResource
host: GaExecHost

utilizationOnHost: NFP_Real [*] | 0.1
root: GaStep
timing: GaTimingObserver [*]

servDemand: GaRequestedService [*] {ordered}
servCount: NFP_Real [*] {ordered}

?

« stereotype »
GaCommStep

« stereotype »

GaRequestedService

« stereotype »

« stereotype »

GaAcqStep GaRelStep

acqRes: Resource
resUnits: NFP_Integer = (1)

relRes: Resource
resUnits: NFP_Integer= (1)

UML Profile for MARTE, V1.2

297

« profile »
GQAM

« metaclass »

« metaclass »

UML::Classes::Kernel::
NamedElement

UML::CommonBehavior::
BasicBehaviors::Behavior

A A

« stereotype »
GaEventTrace

content: String
format: String
location: String

« stereotype »
GaWorkloadEvent

pattern: ArrivalPattern [0..1]

generator: GaWorkloadGenerator [0..1]
trace: GaEventTrace [0..1]

effect: GaScenario [1]

timeEvent: UML::TimeEvent [0..1]

« dataType »
« choiceType »
MARTE_Library::
BasicNFP_Types::
ArrivalPattern

periodic: PeriodicPattern
aperiodic: AperiodicPattern
sporadic: SporadicPattern
burst: BurstPattern
irregular: IrregularPattern
closed: ClosedPattern
open: OpenPattern

« metaclass »
UML::Classes::
Kernel::Operation

« stereotype »
MARTE::GRM::
ResourceUsage

A

« stereotype »
MARTE::Time::TimeRelatedEntities::
TimedProcessingModels::TimedProcessing

B

i

« stereotype »
GaScenario

J

« stereotype »
GaWorkloadGenerator

pop: NFP_Integer = (1)

cause: GaWorkloadEvent [1..*]
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT: NFP_Duration [*]
throughput: NFP_Frequency [*]
respT: NFP_Duration [*]
utilization: NFP_Real [*]
utilizationOnHost: NFP_Real [*]

« stereotype »
GasStep

isAtomic: NFP_Boolean
blockT: NFP_Duration [*]
rep: NFP_Real =(1.0)
prob: NFP_Real =(1.0)
priority: NFP_Integer

host: GaExecHost

concurRes: SchedulableResource

servDeman: GaRequestedService [*] {ordered}

root: GaStep
timing: GaTimedObs [*]

servCount: NFP_Real [*] {ordered}
behavior: GaScenario [0..1]

?

« stereotype »
GaRequestedService

« stereotype »
GaCommStep

« stereotype »
GaAcqStep

« stereotype »
GaRelStep

acgRes: Resource
resUnits: NFP_Integer = (1)

relRes: Resource
resUnits: NFP_Integer= (1)

Figure 15.7 - UML extensions for GQAM stereotypes

298

related to behavior

UML Profile for MARTE, V1.2

« profile »
GQAM
« slerectype » « enumeration »
MARTE::NFP=::NfpConstraint ConstraintKind
kind: Constraintkind reguired
offerad
confrack
undaf
startObs « sterectype »
L : GaTimedObs
UML::CommonBehaviors::
BasicTime:: TimeObservation | #ndObs laxity: LaxityKind [0..1]
« enumeration » « stereotype »
LaxityKind GaLatencyQObs
hard latency: MFP_Duration [*]
soft miss: NFP_Real [1]
other utility: Uity Type
maxJitter: NFP_Duration [*]

Figure 15.8 - GQAM stereotype for observing timing occurrences between two events

« profile »
GaAM

« enumeration »
MARTE_Library::
MARTE_DataTypes::
TransmModekind

MARTE::GRM: :Resource

7

Simpla
HalfDuplex
FullDuplex |
Sharootypo »
MARTE::GRM::
ProcessingResource
« stereotype »
MARTE::GRM::
Scheduler
« steraotype » « stereotype »
MARTE::GRM:: MARTE::GRM::
ComputingResource CommunicationMedia

T

« stereotype »
GaExecHaost

commTxOvih: MFP_Duration
commBoyOwvh: NFP_Duration
cntxtSwT: NFP_Dwuration

« stereotype »
GaCommHost

clockOvh: MFP_Duration
schedPriRange: NFP_Interval
memSize: NFP DataSize

utilization: NFP_Real [*]
throughput; NFF_Frequency [*]

utilization: NFP_Real []
throughput: NFP_Freguency [*]

o Sterootypo »
MARTE::GRM::

ConcurrencyResource

i

« sterectype »
MARTE. :GRM::
SchedulableResource

7

« stereotype »
GaCommChannel

pachketSize: NFP_DataSize
ulilization: NFP_Real [*]

Figure 15.9 - UML extensions for GQAM stereotypes related to resources

| UML Profile for MARTE, V1.2

299

15.3.2 Profile Elements Description

This sub clause describes the stereotypes of the GQRM profile (listed in alphabetical order).

15.3.2.1 GaAcqStep
The GaAcqStep stereotype maps the AcquireStep domain element denoted in Annex F (F.10.1).

A step that acquires a resource.

Extensions

* None

Generalizations
« GaStep

Associations

+ None

Attributes

* acqRes: Resource [0..1]
The resource to be acquired within the step execution.

» resUnits : NFP_Integer [0..1]=1
The number of units of resource acquired within the step execution.

Constraints
+ None
15.3.2.2 GaAnalysisContext
The GaAnalysisContext stereotype maps the AnalysisContext domain element denoted in Annex F (F.10.2).

For a given analysis, the context identifies the model elements (diagrams) of interest and specifies global parameters of
the analysis.

Extensions

* None

Generalizations
+ ExpressionContext (from MARTE::VSL::Expressions)

« Configuration (from CoreElements)

Associations

* None

300 UML Profile for MARTE, V1.2

Issue 18547 - udpate text

Attributes

» contextParams: NFP_String [*]
Strings giving a set of annotation variables defining global properties of this analysis context. Each string should
conform to the concrete syntax for variable calls or declarations as defined in B.3.3.132.

Constraints
» None
15.3.2.3 GaCommChannel
The GaCommChannel stereotype maps the CommunicationChannel domain element denoted in Annex F (F.10.4).

It is used for denoting a logical communications layer connecting SchedulableResources.

Extensions

* None

Generalizations
 SchedulableResource (from MARTE::GRM)

Associations

» None

Attributes

+ msgSize: NFP_DataSize [0..1]
The size of the data unit handled by the channel.

+ utilization: NFP_Real [0..1]
The fraction of the Communication Host capacity used by the Channel. This is typically a result of the analysis better
than a specification.

Constraints

» None

15.3.2.4 GaCommHost
The GaCommHost stereotype maps the CommunicationHost domain element denoted in Annex F (F.10.5).

It is used for denoting a physical communications link.

Extensions

+ None

Generalizations
« CommunicationMedia (from MARTE::GRM)

UML Profile for MARTE, V1.2 301

« Scheduler (from MARTE::GRM)

Associations

« None
Attributes
+ throughput: NFP_Frequency [*]
actual throughput

+ utilization: NFP_Real [*]
utilization of this host

Constraints

[1] The associations processingUnits and mainScheduler inherited from Scheduler and ProcessingResource respectively
have as default values the very same element that is being annotated with the GaCommHost stereotype.

15.3.2.5 GaCommStep
The GaCommStep stereotype maps the CommunicationStep domain element denoted in Annex F (F.10.6).

A CommStep is an operation that conveys a message from one locale to another.

Extensions

+ None

Generalizations
« GaStep

Associations

» None

Attributes

» None

Constraints

* None

15.3.2.6 GaEventTrace
The GaEventTrace stereotype maps the EventTrace domain element denoted in Annex F (F.10.7).

A trace of events that can serve as source for the request event stream.

Extensions
+ NamedElement (from UML::Classes::Kernel)

302 UML Profile for MARTE, V1.2

Generalizations

* None

Associations

» None

Attributes

+ content: String [0..1]
Contains the serialization of the event trace according to the file format.

* format: String [0..1]
This indicates the format of the event trace - which is how the string content should be interpreted.

* location: String [0..1]
This contains a location that can be used by a tool to locate the file as an alternative to embedding it in the stereotype.

Constraints

» None

15.3.2.7 GaExecHost
The GaExecHost stereotype maps the ExecutionHost domain element denoted in Annex F (F.10.4.

It denotes a processor that executes Steps.

Extensions

Generalizations
« ComputingResource (from MARTE::GRM)

+ Scheduler (from MARTE::GRM)

Associations

* None

Attributes

* commTxOvh: NFP Duration [*]
The host demand for sending messages.

* commRcvOvh:NFP_Duration [*]
The host demand for receiving messages.

* cntxtSwT: NFP_Duration [*]
Context switch time.

* clockOvh: NFP_Duration [*]
Clock overhead.

» schedPriRange: NFP_Interval [*]
The range of priorities offered by this processor.

UML Profile for MARTE, V1.2 303

* memSize: NFP_DataSize [0..1]
The memory size.

+ utilization: NFP_Real [*]
The processor utilization, expressed as mean busy processors (in the range from 0 to resMult which is the number of
processors).

* throughput: NFP_Frequency [*]
The throughput of the host in scheduled initiations/sec.

Constraints

[1] The associations processingUnits and mainScheduler inherited from Scheduler and ProcessingResource respectively
have as default values the very same element that is being annotated with the GaExecHost stereotype.

15.3.2.8 GalLatencyObs
The GaLatencyObs stereotype maps the LatencyObserver domain element denoted in Annex F (F.10.10).

GaLatencyObs specifies a duration observation between startObs and endObs UML TimeObservations, with a miss ratio
assertion (percentage), a utility function, which places a value on the duration, and a jitter constraint. Jitter is the
difference between maximum and minimum duration.

Extensions

» None

Generalizations
+ GaTimedObs

Attributes

+ latency: NFP_Duration [*]
Value of the latency.

* miss: NFP_Real [*]
For soft timing constraints the miss ratio indicates the admitted or actual percentages of
“required” latency missed.

+ utility: UtilityType [0..1]
Value of importance for required timing constraints.

* maxlJitter: NFP_Duration [*]
Maximum deviation value - it represents a maximum deviation with which a periodic internal event is
generated. The output jitter is calculated as the difference between a worst-case latency time and the
best-case latency time for the observed event measured from a reference event.

Constraints

» None

15.3.2.9 GaRelStep
The GaRelStep stereotype maps the ReleaseStep domain element denoted in Annex F (F.10.13).

It denotes a step that releases a resource.

304 UML Profile for MARTE, V1.2

Extensions

* None

Generalizations
» GaStep

Associations

» None

Attributes

* relRes:Resource [0..1]
The resource to be released.

* resUnits : NFP_Integer [0..1] =1
How many units to be released (default = 1).

Constraints
« None
15.3.2.10 GaResourcesPlatform
The GaResourcesPlatform stereotype maps the ResourcesPlatform domain element denoted in Annex F (F.10.16).

A logical container for the resources used in an analysis context.

Extensions
+ Classifier (from UML::Classes::Kernel)

Generalizations

* None

Associations

* None

Attributes

* resources: Resource[*]
Set of resources contained by this container.

Constraints

+ None

15.3.2.11 GaRequestedService
The GaRequestedService stereotype maps the RequestedService domain element denoted in Annex F (F.10.15).
A request for an operation by some system object, for instance a subsystem defined by component notation and interface

operations. The operation details may be defined by a Scenario attached by the behavior association inherited from Step.

UML Profile for MARTE, V1.2 305

Extensions

 Operation (from UML::Classes::Kernel)

Generalizations
» GaStep

Associations

» None

Attributes

+ None

Constraints

« None

15.3.2.12 GaScenario
The GaScenario stereotype maps the BehaviorScenario domain element denoted in Annex F (F.10.3).

A Scenario captures system-level behavior and attaches allocations and resource usages to it. It is composed of sub-
operations called Steps, any one of which can be a composite Step, refined as another Scenario.

Extensions

» None

Generalizations
+ ResourceUsage (from MARTE::GRM)

+ TimedProcessing (from MARTE::Time:: TimeRelatedEntities:: TimedProcessingModels)

Associations
* steps: GaStep [1..*]
The set of steps that make up the Scenario.

* parentStep: GaStep [1..*]
A GaStep of which this scenario is a refinement.

Attributes

» cause: GaWorkloadEvent [1..¥]
The event stream which triggers the scenario

* hostDemand: NFP_Duration [*]
The cpu demand in units of time, if all Steps are on the same host.

* hostDemandOps: NFP_Integer [*]
The cpu demand in units of operations, if all Steps are on the same host.

* interOccT: NFP_Duration[*]
The interval between successive initiations of the scenario.

306 UML Profile for MARTE, V1.2

* throughput: NFP_Frequency[*]
The mean rate of initiation of the scenario.

* respT: NFP_Duration[*]

The time duration from initiation to completion, for one execution of the scenario.

+ utilization: NFP_Real[*]

The occupancy of the scenario, computed as the mean number of scenario instances active at any one time.

+ utilizationOnHost: NFP_Real[*]

The occupancy of thehost processor, executing Steps of this scenario, if all Steps are on the same host.

* root: GaStep [0..1]
The first Step of the scenario.

* timing: GaTimedObs [*]
Timing observers associated with this scenario.

Constraints

[1] The hostDemand and hostDemandOps attributes derive their values from the Steps in the Scenario, but only in cases

where all the Steps have the same Host.

15.3.2.13 GaStep

The GaStep stereotype maps the Step domain element denoted in Annex F (F.10.17).

A GaStep is a part of a Scenario, defined in sequence with other actions, and may be a composite Step containing a

Scenario.

The precedence relations in the domain model are not defined as associations because they do not need to be explicitly

defined in the UML behavior, they are given implicitly by the diagram.

Extensions

» None

Generalizations

» GaScenario

Associations
» scenario: GaScenario [0..1]
A GaScenario that contains the Step.

* childScenario: GaScenario [0..1]
A GaScenario that refines this Step, making it a composite Step.

Attributes

* isAtomic: NFP_Boolean [0..1] = false
If true, the step must not be decomposed any further.

UML Profile for MARTE, V1.2

307

blockT: NFP_Duration [0..1]
A delay inserted in the execution of the Step, waiting for an event controlled elsewhere (by another step or scenario),
or for a condition such as the availability of passive protected resources nedded by the step but in by preempted (i.e.,
lower priority schedulableResources) concurrent steps.

selfDelay: NFP_Duration [0..1]
A delay inserted in a Step, whose duration is controlled or requested by the Step (e.g., a sleep time).

rep: NFP_Real [0..1] =1
The actual or average number of repetitions of an operation or loop.

prob: NFP_Real [0..1]=1
The probability of the step to be executed (for a conditional execution).

priority: NFP_Integer [0..1]
The step priority on its host processor.

concurRes:GrmSchedulableResource [0..1]
The process which executes the Step.

host: GaExecHost [0..1]
The host processor..

servDemand: GaRequestedService [*] {ordered}
A set of operations requested by the Step, such as calls to interface operations. The order corresponds to the order in
servCount.

servCount: NFP_Real [*] {ordered}
A set of values for the number of requests to the operations given in the list for GaRequestedService, in the same
order.

Constraints

(1]
(2]

the elements of the ordered lists servDemand and servCount correspond, element to element.

a composite Step (with the behavior association defined) cannot have a host or concur association.

15.3.2.14 GaTimedObs

The

GaTimedObs stereotype maps the TimedObserver domain element denoted in Annex F (Section F.10.18).

GaTimedObs is a purely conceptual entity that serves to collect timing requirements and predictions that relates to user-
defined observed events. In this sense, GaTimedObs uses UML TimeObservations to define the observed event in a given
behavioral model. If there is more than one start/end pair, they are ordered correspondingly along with the laxity property
for each pair.

Extensions

» None

Generalizations

308

+ NfpConstraint (from NFPs::NFP_Annotation)

UML Profile for MARTE, V1.2

Associations

* endObs: UML::CommonBehaviors::BasicTime::TimeObservation [0..*]{ordered}
Observed event to which the timing observer applies.

+ startObs: UML::CommonBehaviors::BasicTime:: TimeObservation [0..*]{ordered}
Reference event

Attributes

» laxity: LaxityKind [0..*]{ordered}
Indicates whether required timing constraints are hard or soft.

Constraints
» None
15.3.2.15 GaWorkloadBehavior
The GaWorkloadBehavior stereotype maps the WorkloadBehavior domain element denoted in Annex F (F.10.18).

A logical container for the analyzed behavior and the workload that triggers it, in an analysis context.

Extensions
« NamedElement (from UML::Classes::Kernel)

Generalizations

* None

Associations

» None

Attributes

+ Dbehavior: GaScenario [*]

+ demand: GaWorkloadEvent [*]

Constraints
+ None
15.3.2.16 GaWorkloadEvent
The GaWorkloadEvent stereotype maps the WorkloadEvent domain element denoted in Annex F (F.10.20).

A stream of events that initiate system-level behavior. It may be generated in different ways: by a stated arrival process
(such as Poisson or deterministic), by an arrival-generating mechanism modeled by a workload generator class, by a
timed event and from a trace.

Extensions
+ NamedElement (from UML::Classes::Kernel)

UML Profile for MARTE, V1.2 309

Generalizations

* None

Issue 18547 - udpate text

Attributes
» pattern: MARTE::MARTE Library::BasicNFP_Types::ArrivalPattern [0..1]
If defined, this attribute defines a pattern of arrival events.

» generator:GaWorkloadGenerator [0..1]
A workload generator that produces the events.

+ trace: GaEventTrace [0..1]
Indicates an event trace file.

+ timeEvent: UML::CommonBehaviors::SimpleTime:: TimeEvent [0..1]
A time event in the UML specification that triggers the request events.

o effect:GaScenario [1]
The scenario triggered by the GaWorkloadEvent.

Associations

* Nonceffeet:GaSeenario{1H
| o tricoored by the GaWer] .

Constraint

[1] Only one of the four attributes may be defined.

15.3.2.17 GaWorkloadGenerator

The GaWorkloadGenerator stereotype maps the WorkloadGenerator domain element denoted in Annex F (F.10.21).

A mechanism defined by a UML behavior definition such as a state machine, that generates events to drive the system
behavior, for example by invoking a top-level system behavior (scenario). There may be multiple independent and
identical instances (population > 1).

Extensions

« Behavior (from UML::CommonBehavior::BasicBehavior)

Generalizations

* None

Associations

+ None

Attributes
« pop: NFP_Integer [0..1]=1

310 UML Profile for MARTE, V1.2

Constraints

* None

15.3.2.18 LaxityKind

The LaxityKind is an Enumeration that includes a list of qualifiers specifying the criticality of a given “required” timing
property.

Enumeration literals

e hard
The required timing specifications have to be met for system behavior correctness.

+ soft
If the required timing specifications are not met, the system behavior is still correct. Further specifications,
such as the miss ratio, can be used to specify the limit of timing misses.

» other

A user-specific laxity.

| UML Profile for MARTE, V1.2 311

312 UML Profile for MARTE, V1.2

16 Schedulability Analysis Modeling

16.1 Overview

In this clause, we describe a component of the MARTE profile that is intended specifically for schedulability analysis. As it is
known, when dealing with real-time systems, the influence of scheduling on the timing and performance is crucial to calculate
guaranteed bounds on response times and resource processing loads. The maturity of scheduling analysis techniques has led to
a set of useful mathematical formalisms like the classic and generalized Rate Monotonic Analysis (RMA), holistic techniques,
or extended timed automata.

Typical tools for this class of model analysis provide two important functions:

« The first one is to calculate the schedulability of the system or a particular piece of software; that is, the ability of the
system to meet certain temporal constraints (e.g., deadlines, miss rations) defined for the entire system or for a group of
individual concurrent execution units. Such tools typically indicate which entities are schedulable and which are not.

« Sensitivity analysis assists with determining how the system can be improved. That may mean suggestions for making
an entity schedulable or it may mean epitomizing system usage for a more balanced system. A system designer will
typically want to analyze the system under several configurations using different parameter values for each scenario, or
to explore the variability of different resource allocations and deployment into alternative hardware and software
platforms.

Schedulability analysis can be used at different stages. Early analysis of a design model aids developers to detect potentially
unfeasible real-time architectures and prevents costly design mistakes, particularly related to timing behavior. On the other
hand, a later analysis of an implemented system allows analyzers to discover (with more precise quantitative information of
the system) temporal-related faults, or to evaluate the impact of possible platform migrations or modifications on the
scheduling strategies.

This clause describes a set of common annotations for model-based schedulability analysis. It allows quantitative annotations
to be attached at the level of detail desired by the designer. Indeed, even if the specification might contain extreme detail, the
set of annotations may optionally be partially applied. On the other hand, each vendor is encouraged to supply specialized
profiles that extend this set in order to perform model analysis that is more extensive.

It was actually stated that the SPT’s sub-profiles for schedulability and performance analysis were too much independently
defined, reducing the ability to reuse annotated models for any kind of analysis. To improve this aspect, we introduced a
common framework, named Generic Quantitative Analysis Modeling (GQAM), supporting both kinds of timing analysis. The
modeling framework described in this sub clause attempts to specialize GQAM into a collection of modeling concepts for
model-based schedulability analysis purposes, as well as a set of Non-Functional Properties (NFPs) for these basic concepts.
This framework therefore involves the use of the NFP Modeling framework presented in Clause 8.

The structure of this sub clause follows the convention adopted throughout this document: First, a domain viewpoint is
described that identifies the basic abstractions used in schedulability analyses. The semantics of these abstractions and their
relationships are explained with the aid of metamodels. The second part of the clause describes how these abstractions are
expressed in the UML metamodel. This is done through a series of UML extensions (stereotypes, constraints, and tag
definitions). Supplementing this description is a set of illustrative examples showing common ways of applying this part of the
MARTE profile.

16.2 Domain View

The Schedulability Analysis Modeling (SAM in short) domain model uses similar domain concepts as those presented in the
GQAM framework. Since these concepts are already described in a general way, we define here their semantics in the

UML Profile for MARTE, V1.2 311

schedulability analysis domain and add the NFPs used for these purposes. All the NFP data types for schedulability analysis
are declared in a model library (the BasicNFP_Types model library is presented in Annex D).

The SAM sub-profile has many facets that are grouped in individual packages. The overall package structure is shown in
Figure 16.1.

1 1
MARTE:: MARTE::
GRM GQAM
[[
o import » i
i a import »
MARTE::SAM i
1 1
SAM_Workload == Import 5= SAM_Resources
|
]
| 1
|
L impart p-- - m - - 2 SAM_Observers

Figure 16.1 - Structure of the SAM domain model

The purpose and contents of each package are described in the following sub clauses.
16.2.1 The SAM Root Package

As in the GQAM clause, the SAM’s conceptual domain model is organized around the notion of Analysis Context (Figure
16.2). An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis
scenario. Starting with the analysis context and its elements, a tool can follow the links of the model to extract the information
that it needs to perform the model analysis.

Analysis contexts are also known as real-time situations in the schedulability analysis domain. In particular, an
SaAnalysisContext is a kind of AnalysisContext with additional attributes. The isSchedulable attribute indicates whether all
the timing constraints defined for the analysis context are respected. The optimalityCriterion attribute denotes a global
criterion used to determine a schedule for the context analyzed (e.g., meet all hard deadlines, minimize the number of missed
deadlines, minimize the mean tardiness, maximize flow).

Note — Most of specialized SAM-specific concepts have the prefix “Sa,” which stands for “Schedulability Analysis.”

In general, AnalysisContext is associated with the following two modeling concerns:

« WorkloadBehavior: represents a given load of processing flows triggered by external (e.g., environmental events) or
internal (e.g., a timer) stimuli. The processing flows are modeled as a set of related steps that contend for use of
processing resources and other shared resources.

« ResourcesPlatform: represents a concrete architecture and capacity of hardware and software processing resources used
in the context under consideration.

312 UML Profile for MARTE, V1.2

SAM

GOAM::
AnalysisContext
| I
1 ¢ waorkload Behavior lesc.uroesPlatiofm¢1
GOAM_Workload:: GOAM_Resources::
WorkloadBehavior ResourcesPlatform
SaAnalysisContext « enumeration »

Optimallity CriterionKind

meetHard Deadlines
minimize MissedDeadlines

isSchedulable: MFF_Boolean
opiimalityCritaron: optimalityCriterdonkind

minimize MeanTardiness
undaf
ather

Figure 16.2 - The SAM root domain model: Analysis context

Since analysis models are intended to be integrated with existing design models, or at least to be defined in a separated view
with a clear mapping to design views, we are especially interested on collecting modeling elements according to the above
mentioned modeling concerns. Indeed, this separation of modeling concerns is essential to support the MDA approach.
Splitting an analysis context model into these two aspects allows MDA modelers to keep platform-independent models
(models annotated with WorkloadBehavior elements) separated from platform description models (ResourcesPlatform
annotations). We illustrate an example supporting this approach in Section 16.3.3. This feature attempts to enhance the
modeling practices fostered by MARTE in order to ease retargetability of logical model elements onto execution platforms
models possibly stored into reusable libraries (a key requirement).

In the remaining sub clauses, the main concepts related to these modeling concerns are described.

16.2.2 The SAM Workload package

The SAM_Workload package contains concepts related to the processing load on the system. We split this package in two
figures (Figure 16.3 and Figure 16.4).

The end-to-end related concepts are gathered in Figure 16.3. This figure shows the constructs required to specify the end-to-
end behavior and the associated quantitative information concerning end-to-end stimuli, timing requirements, and responses.

Note — In general, most of the discussed concepts are imported from GQAM and GRM. For explanation purposes, we show
here some available attributes of interest for schedulability analysis. For a complete list of attributes of the imported concepts,
refer to the respective clauses.

In a given analysis context, a single WorkloadBehavior situation is commonly evaluated. A WorkloadBehavior situation may
correspond to a mode of system operation (e.g., starting mode, fault recovering, or normal operation) or a level of intensity of
environment events. A specific WorkloadBehavior model is defined by both a workload demand (set of workload events) and
the triggered behaviors (set of behavior scenarios). In SAM, these two latter concepts are regrouped in end-to-end processing
flows (EndToEndFlow), which represent the analyzed workload.

End-to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-end
response.

UML Profile for MARTE, V1.2 313

SAM_Workload

« dataType »
« choiceType »
ArrivalPattern

SAM_Observers::
TimedObserver

periodic: PeriodicPattern

aperiodic: AperiodicPattern timing *
sporadic: SporadicPattern

burst: BurstPattern EndToEndFlow 1

irregular: IrregularPattern S

closed: ClosedPattern isSchedulable: NFP_Boolean

open: OpenPattern schedulabilitySlack: NFP_Real

endToEndTime: NFP_Duration
endToEndDeadline: NFP_Duration

1.% endToEndStimuli endToEndResponse 1
GQAM_Workload::
WorkloadEvent e ! GQAM_Workload::
pattern: ArrivalPattern cause effect BehaviorScenario
demand 1. behavior 1.

GQAM_Workload::
WorkloadBehavior

-

Figure 16.3 - The SAM Workload domain model: EndToEndFlow (partial view)

End-to-end flows refer to a set of stimuli requesting computations. We may refer to an instance of a particular request stimulus
as an event occurrence. Since the stimulus can occur repeatedly, we refer to recurrence of events as WorkloadEvent. Workload
events can be originated outside the system, inside the system, or because of the passage of time. From a modeling viewpoint,
workload events can be modeled by known patterns (see the definition of the ArrivalPattern data type in Annex D), by traces

files, by internal timed event models, or by workload generator models (e.g., state machine models). Workload event models

are fully defined in the GQAM clause.

A computation that is performed as a consequence of a workload event is referred to as the behavior scenario
(BehaviorScenario) that executes in response to its event occurrences. Depending on the implementation nature of behavior
scenarios, they could be concretized in a single task executing in one processor or in dependent tasks into single or multiple
processors. But ultimately, behavior scenarios serve to describe end-to-end responses of a workload model under analysis.

As a conceptual entity, end-to-end flow allows to define a set of timing requirements and timing predictions. Timing
requirements include deadlines, maximum miss ratios and maximum jitters. Timing predictions are typically provided by
analysis tools and include latencies, jitters, and other scheduling metrics. These aspects are modeled by the TimedObserver
concept. Section 16.2.3 provides details on this.

314 UML Profile for MARTE, V1.2

SAM_Workload

conneclors

GQAM_Workload::
PrecedenceRelation

outputRel gueeae

GOAM_Workload::
BehaviorScenario

hostDemand: MFF_Duratian
respTime: MFP_duration [*]

GRM::Resourcelsages::
Resourcelsage

7

ulilization: NFP_Real [*]

0.1 Whehavior
* |steps

1
mputRel

GOAM_Woerkload::

concurRas

GRM::Scheduling::

Step

1 predac

IsAtmmic: NFP_Boolean
blocking Time: NFF_Duratian
priosity; MFFP_Iniager

GOAM_Workload::
ReleaseStep

GOAM Workload::
AcquireStep

imdafines concurRes}

GQAM_Workload::
CommunicationStep

megSize: MFF_DataSize

o1
concurfes

0

GOAM_Resources::
CommunicationChannel

SaCommunicationStep

daadling: NFP_Duration
spareCapacity: NFP_Duration

e

.

7 | SchedulableResource

SAM_Resources::
SharedResource

- {subsets usedResource}
sharedResource

SaStep

deadline: NFP_Duraton
spareCapaciy: MFF_Duration
schedulabilitySlack: NFP_Real
preempted Time: NFP_Duration

readyTima: MFP_Duration
nonprasmptionBlocking: MFF_Duration

stiedulabiitySlack: NFF_Real selfSuspensionBlocking: MFF_Duration

numbarSelSuspensions: NFP_Intagar

Figure 16.4 - The SAM Workload domain model: BehaviorScenario (partial view)

Additionally, end-to-end flows are characterized by a set of NFPs. isSchedulable indicates whether the flow meets all its
deadlines. schedulabilitySlack provides a percentage measure by which the (effective) execution time of all the atomic
processing units participating in the end-to-end response may be increased while still keeping the end-to-end flow
schedulable. EndToEndTime and EndToEndDeadline are respectively the predicted worst completion time and required
completion latency of the end-to-end response measured from the arrival of the requested event. This applies if only one
input end-to-end stimuli exist and only one finalization Step exists.

Figure 16.4 shows the domain concepts for defining behavior execution modeling aspects. This model is based on the one
introduced in the GQAM framework.

Thus, the BehaviorScenario concept serves to collect detailed descriptions of the response behavior. Depending on the
implementation nature of BehaviorScenario, they could be concretized in a single step executing in one processor or in a
number of flow related steps into single or multiple processors. A step may represent a small segment of code execution
as well as the sending of a message through a communication media (ExecutionStep and CommunicationStep). The
ordering of steps follows a predecessor-successor pattern, with the possibility of multiple concurrent successors and
predecessors, stemming from concurrent thread joins and forks respectively. The granularity of a step is often a modeling
choice that depends on the level of detail that is being considered. Hence, a step at one level of abstraction may be
decomposed further into a set of finer-grained steps.

Schedulability analysis models commonly restrict steps to processing units that must not change allocation of system
resources. Scheduling-based processing steps (SaStep and SaCommunicationStep) begin and end when decisions about
the allocation of system resources are made, as for example when changing its priority. As a main concept on
schedulability analysis models, step deadlines define the maximal time bounds on the completion of particular segments
that must be met. The SaStep concept is enriched with other latency properties such as preempted time and ready time.
Notice that the association required Amount inherited from ResourceUsage (sub clause 10.2.5) is used to model execution

UML Profile for MARTE, V1.2 315

times. The worst, average, and best execution times are modeled with different instances of the usage attribute by means
of the statistical qualifier slot in NFP types. For instance, a pair of worst and best case execution time values is:
“execTime= {(5.0, ms, max),(3.0, ms, min)}.” The same case applies for whatever attribute typed with a NFP data type.

In this model, steps use the active resource services for execution by means of schedulable resources (e.g., threads,
process in execution resources) and communication channels (e.g., message management units) characterized by concrete
scheduling parameters, and synchronize through calls to shared resources (for instance, I/O devices, DMA channels,
critical sections or network adapters) identified using the sharedResource association of the SaStep instances.

16.2.3 The SAM Observers Package

Timed Observers (Figure 16.5) are purely conceptual entities that serve to collect timing requirements and predictions that
relates to user-defined observed events. In this sense, Timed Observer use Timed Instant Observations (Clause 9) to
define the observed event in a given behavioral model. Timed Observers are a powerful mechanism to annotate and
compare timing constraints against timing predictions provided by analysis tools. Timed Observers can be used as
predefined and parameterized patterns (e.g., latency, jitters) or by means of more elaborated expressions since
TimedObserver inherits all the modeling capabilities from NFP_Constraint.

Note that these modeling constructs are mainly useful for complex end-to-end flows with several observation points in
order to provide centralized and flexible means to annotate analyzer-defined timing constraints. Most of analysis tools
provide a repository to store this kind of global information that is more related with the exploration of constraint cases.

Timed Observers are typically of two kinds in schedulability analysis: required and offered. Required Timed Observers
represent timing constraints such as deadlines or required maximum jitters. Offered Timed Observers specify prediction
results mostly calculated by analysis tools.

Two kinds of Timed Observer patterns are used in SAM. LatencyObserver specifies a duration observation with its
corresponding miss ratio percentage assertion (percentage), a utility value of a latency value, and a maximum jitter with
which a periodic internal event is generated. The output jitter is calculated as the difference between a worst-case latency
time and the best-case latency time for the observed event measured from a reference event. Required latency values are
known as deadlines in real-time systems. SchedulingObserver provides prediction about scheduling metrics such as
overlaps, the maximum number of suspensions caused by shared resources or the blocking time caused by the used shared
resources. All these metrics are relative to the interval defined by the reference and observed events.

Timed Observers must be attached to behavior elements. When the reference and observed events are not defined, the
start and finish events can be deduced from the behavior element annotated.

316 UML Profile for MARTE, V1.2

SAM_Observers

« enumeration » NFP_Modeling::
ConstraintKind NFP_Annotation::
required NFP_Constraint
offered kind: ConstraintKind
contract %
TimeModels:: startObs GQAM_Observers:: « enumeration »
TimedRelatedEntities:: TimedObserver LaxityKind
TimedObservations:: v LaxitvKi
dOb: laxity: LaxityKind hard
TimedInstantObservation en* s Y 3 soft
undef
Z; other
SchedulingObserver GQAM_Observers::
LatencyObserver

suspensions: NFP_Integer
blockingTime: NFP_Duration latency: NFP_Duration
overlaps: NFP_Integer missRatio: NFP_Real
utility: UtilityType
maxJitter: NFP_Duration

Figure 16.5 - The SAM Observers domain model
16.2.4 The SAM Resources Package

In the SAM framework, the concept of resourcesPlatform matches the engineering model of resources introduced in the
SPT profile. That includes not only hardware resources (CPU, devices, backplane buses, network resources), but also
software ones (threads, tasks, buffers). Figure 16.6 shows a framework to describe the platform of resources.

Schedulability models use an abstracted version of a more structured and detailed platform model (see Clause 14 for
detailed resources models), which is especially useful for expressing NFPs oriented to quantitative analysis and without
distinguishing among different abstraction levels (hardware, RTOS, or middleware).

As defined in GQAM, the resources platform model consists of a set of resources with explicit NFPs. Specifically,
throughput properties (e.g., processing rate), efficiency properties (e.g., utilization), and overhead properties as for
example blocking times and clock overhead times. This model distinguishes two kinds of processing resources: execution
hosts (e.g., processors, coprocessors) and communication hosts (e.g., networks, buses). For each one, the SAM framework
adds specialized NFPs. Particularly, schedulability metrics, interrupt overheads, and utilization of scheduling processing.

Two kinds of concurrent resources are used by steps to access processing hosts: schedulable resources and communication
channels. SchedulableResource is a kind of active protected resource that is used to execute steps. In an RTOS, this is the
mechanism that represents a unit of concurrent execution, such as a task, a process, or a thread. In a communication host,
the related element is CommunicationChannel, which may be characterized by concrete scheduling parameters (like the
packet size). Schedulable resources are scheduled with a chosen set of scheduling parameters associated to a given
scheduling algorithm. The component that implements these algorithms is called the scheduler.

Schedulers can be of two types: system schedulers (typically a RTOS scheduler) that offer the whole processing capacity
of its associated base processors to its allocated schedulable resources, and secondary schedulers that only provide the
processing capacity offered by its hosting schedulable resource. This hierarchical structure is typically used in real-time
systems when users are interested in applying dynamic scheduling on top of commercial RTOS supporting only static
scheduling. Likewise, novel algorithms exist that allow to perform real-time analysis of these hierarchical configurations
of schedulers.

UML Profile for MARTE, V1.2 317

SAM_Resources

GQAM_Resources::
ResourcesPlatform

- resources
GRM: :ResourceCore::
Resource
GRM::Scheduling:: GRM:: Scheduling:: GRM::Scheduling:: 0.1 GRM::ResourceTypes::
MutualExclusionResource || ProcessingResource Scheduler haat ConcurrentResource
A’ A} 1.* | processingUnits o1 | mainSchedular
Gggl::R::oulr:evasz G;':'nm::ﬂ:m GRM::Scheduling::
| esource
puting schedulableResource SchedulableResource
capadty: MFP_DataTxRate
packetTime: MFF_Duration . "
blocking Time: NFP_Duration
GQAM_Resources:: - e jlinsmMode kg schydRes
ExecutionHost
GQAM_Resources:
commTxOveraead: NFP_DIJF’Mlm (:Ommuﬂl:ﬂllﬁr'chaﬂml
commRovOverhead: NFP_Duration .
contaxtSwitchTime: MFP_Duration GQAM_Resources:: packetSiza: NFP_DataSiza
clockOvh: NFF_Duration CommunicationHost ulilization: NFP_Real
schedPriorityRange: NFP_Interval I
tilization: NFP_Raeal 0
memeorySize: NFP_DataSize L \
ulilization: NFP_Real Q commGhannals
% SaCommunicationHost | sehedParams 1
SharedResource il
; isSchadulabla: NFP_Boolsan
capacily: NFP_Integer SaExecutionHost schedulabilitySlack: NFP_Real GRM::Scheduling::
isPreamptible: NFP_Boolean SchedulingParameters
isConsumable: NFP_Boolean ISRswitchTime: NFP_Duration
acquisitionTime: NFF_Duration I5RpriortyRange: NFP_Integerinterval
releasaTime: NFE_Duration isSchedulable: NFP_Boolean -
=] bilitySlack: NFP_Real
schedUtlization: NFP_Real timingRes GRM::ResourceTypes:
sharedResources > 0.1 TimingResource

Figure 16.6 - The SAM Resources domain model

Execution Hosts own shared resources, as for example I/0 devices, DMA channels, critical sections, or network adapters.
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access
policies are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol.

16.2.4.1 Types of Model Analysis Methods

Two major categories of scheduling policies, and therefore two types of analysis, are available. One category is static in
nature - i.e., parametric decisions about scheduling importance are all made “up-front” and the entire collection of
execution possibilities and contexts is known beforehand. The other category involves dynamic scheduling (i.e.,
scheduling decisions are made at runtime using information available within the dynamic context of execution). It is the
intention of this specification to support both categories.

Depending on the policy, parameters like scheduling priority may be statically determined by the analyst, with or without
the aid of model analysis tools, or dynamically by portions of the system that continuously analyze context and adjust
internal parameters like priority. Earliest Deadline First scheduling is an example of such a dynamic activity. Deadlines -

318 UML Profile for MARTE, V1.2

the amount of time remaining in which the defined work of a thread must be done - changes continually when that thread
is not running. This means that the earliest deadline is a dynamically changing value. Rate Monotonic Analysis, on the
other hand, is determined from the complete static set of schedulable threads, their resources, and rates of invocation.

Static scheduling and related model analysis

Rate Monotonic Analysis

Rate Monotonic Analysis assigns scheduling priority to periodic schedulable resources by ordering scheduling priority
according to the frequency of repetition of execution (i.e., the rate by which a periodic schedulable resource needs to be
scheduled to execute). The name Rate Monotonic means that the priority ordering is a monotonic function of the rate of
execution. This model analysis technique can be extended to include both periodic and sporadic scheduling end-to-end
flows. Detailed discussion of these topics can be found readily in the literature.

Deadline Monotonic Analysis

Rate Monotonic Analysis is used for analysis of periodic schedulable resources where the deadline coincides with the
next required execution to start (i.e., the period and the deadline are the same). Sometimes this is not the case. A slight
variation of RMA is deadline monotonic analysis where the deadline for a periodic schedulable resource need not be the
same as its period. Detailed discussion of deadline monotonic analysis can be found readily in the literature.

Dynamic Scheduling - value or utility based scheduling

Dynamic Scheduling deals with the condition where the values used to order the scheduling of the CPU are a changing
function over time. Therefore, dynamic scheduling uses a scheduler that makes decisions based on importance of each
schedulable resource, but the importance is continuously re-examined within the dynamic context of execution of the
system containing the scheduler. This class of scheduling policy is often called value based or utility based scheduling; it
uses a supplied function (which may be but doesn't have to be a function of time, v(t)) to obtain a value for scheduling
importance.

Earliest deadline first is a simple concrete example of a specific value function; it is a widely used scheduling policy
implemented in a dynamic scheduling manner in many domains, including the telecommunications community. Although
earliest deadline is a popular value function the notion can be generalized to any value function that makes sense for a
specific domain.

Value based scheduling is currently receiving significant attention.

16.3 UML Representation

We now examine how the domain concepts previously presented can be represented (mapped) in the UML modeling
space. To provide the flexibility required by the RFP for this specification, the same stereotypes may be applied to a
number of different kinds of modeling elements.

This sub-profile allows modelers to choose the style and modeling constructs, or to impose constraints, that they feel are
the best fits to their needs. From a predictive point of view, most of schedulability analysis models are intrinsically
instance-based. Nevertheless, high-level descriptor/type-based models and state-based models can also be annotated with
non-functional characteristics, and then concrete analysis models may be instantiated for specific analysis runs. For
instance, stereotypes for schedulability analysis modeling apply to both instance concepts as well as generic descriptor
concepts. Either form may be used since there are no semantic differences as far as the interpretation of the results is
concerned. The choice depends on circumstances (i.e., whichever model is more readily available) or individual
preference of the modeler. The tagged values of descriptor elements should be viewed as defaults for derived instances,
which can override the defaults.

UML Profile for MARTE, V1.2 319

16.3.1 Profile Diagrams

This sub clause shows the UML extensions for the SAM sub-profile. The SAM package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel.

An analysis context (real-time situation) for schedulability analysis is modeled as a stereotype SaAnalysisContext
(Figure 16.7). It specializes the GQAM::GaAnalysisContext stereotype, and the latter in turn specializes the
VSL::ExpressionContext stereotype, which extends UML::NamedElement. Although this could seem too general,
common extended elements are UML::Classifier, for more complex models, and whatever UML::Behavior kind, for the
simplest cases. This means that these model elements are used as collectors of schedulability analysis sub-views, i.c.,
workload behavior models and platform resources model. Note that in the simplest cases, an analysis context can be
extracted from a behavior model that has explicit allocations (stereotypes from the Allocation profile) to resources
elements.

GQAM::GaWorkloadBehavior and GQAM::GaResourcesPlatform (see the GQAM clause) extend UML::NamedElement
and UML::Classifier respectively.

An end-to-end flow maps to UML::NamedElement. Although this could seem too general, common extended elements
are UML::Behaviors such as UML::Interaction or UML::Activity. The reason by which it extends UML::NamedElement
is that it might extend other elements, such as UML::ActivityPartition. An SaEndToEndFlow will make reference
implicitly to one or more GQAM::GaWorkloadEvent and to one GQAM::GaScenario commonly by means of a
containment relationship (owned elements) or allocation stereotypes.

« profile »
SAM
« stereotype » HOTEEST « stereotype » « metaclass » « stereotype »
MARTE::GQAM:: UM'E'Cla’Tfﬁ i MARTE::GOAM:: UML::Classes:: MARTE::GQAM::
GahnalysisContext amet: GQAM_Woerkload:: Kemel: GQAM_Workload::
NamadEiIemam GaCommStep BehavioralFeature GaStep
[
‘? % A A %
] swm_nype » « steraotype » « stereotype » « storootype »
SaAnalysisContext SaEndToEndFlow SaCommStep SaStep
isBched: NFP_Bookean IeSched: NFP_Boolean deadline: MFF_Duration deadling: NFP_ Durath
optCritarion; opdimalityCritarionKind sch3lack: NFP_Real spareCap: NFP_Duralion &a ge. NEP ;ra. ?"
snd ToEnGT: NFE_Duration 7] sehSkack: NFP_Real :f::gr“?‘ NP R 'j;l" o
« enumeration » endToEndD: NFP_Duration [*] 'm-gg“'_lp-T NFP-D:'[_‘“UH
OptimallityCriterionKind ;?LIE;II'N"@UHSBWBFI 1 readyT: NFP_Curation
meetHardDeadlines L nonpreemptionBlacking: NFP_Duration
minimizeMissedDeadlines sellSuspensionBlocking: NFP_Duration
minimizeMeanTardingss numberSelSuspansions: MFE_ nteger
undaf sharadRas: SaShamdResource 7]
ather {subsets usedResources}

Figure 16.7 - The SAM Profile: Analysis Context and Workload Behavior elements

A GQAM::GaWorkloadEvent extends UML::NamedElement in GQAM. Nevertheless, more common extended elements
are: UML::AcceptEventAction, UML::Event, UML:: Trigger, UML::InitialNode, or UML::Message. The relationship
between GQAM::GaWorkloadEvent and GQAM::GaScenario is either via collocation of the stereotypes, or by a UML
meta-association between the two elements stereotyped (e.g., UML elements: Event-Trigger-Behavior, InitialNode-
ControlFlow-Action, Message-ExecutionSpecification-Behavior).

320 UML Profile for MARTE, V1.2

The GQAM::GaScenario, and the SAM::SaStep and SAM::SaCommStep extend Time::TimedProcessing of the MARTE
Time profile. The latter extends UML::Actions, UML::Behavior, UML::ExecutionSpecification, and UML::Message. The
Allocation stereotypes can be used to associate steps with particular resources. GQAM::GaStep can call
GQAM::RequestedServices, which is a kind of GQAM::GaStep (see the GQAM Clause). This is used to make calls from
an instance-based behavioral element (e.g., UML::ExecutionSpecification) to descriptor-based behavior elements (e.g.,
UML.::BehavioralFeature).

GQAM::GaTimedObs specializes NFP::NfpConstraint, and the latter extends UML::Constraints (see the NFPs profile). In
general, GQAM::GaTimedObs are used to constrain other behavioral elements. For instance, SAM::SaEndToEndFlow has
an association (timing) that defines a meta-association between this element and UML constraints stereotyped as
GQAM::GaTimedObs, or its children stereotypes.

« profile »
SAM
« stereotype »
MARTE::NFPs::NfpConstraint
startEvent Z% .
« stereotype » « enumeration »
« metaclass » * GQAM:: LaxityKind
UML::CommonBehaviors:: GaTimedObs)
BasicTime::TimeObservation | éndEvent
. laxity: LaxityKind [0..1] soft
other

I

« stereotype »
SaSchedObs

suspentions: NFP_Integer [*]
blockT: NFP_Duration [*]
overlaps: NFP_lInteger [*]

Figure 16.8 - The SAM Profile: Timed Observers

Resources stereotypes extend UML structural elements (Figure 16.9). These are indicated by stereotyping
UML.::Classifier or UML::InstanceSpecification (e.g., UML::Class, UML::Node, UML::Component) with the appropriate
stereotypes (SAM::SaCommHost, SAM::SaExecHost, SAM::SaSharedResource, GRM::Scheduler,
GRM::SchedulableResource, GQAM::GaCommChannel). The relationship between SAM::SaExecHost and the
SAM::SaSharedResource, GRM::Scheduler, and GRM::SchedulableResource resources is established using the
Alloc::Allocate and Alloc::Allocated stereotypes of the Allocation profile.

| UML Profile for MARTE, V1.2 321

o profike »

SAM
« stereotype » « stereotype » « stereotype »
MARTE::GRM:: MARTE::GQAM:: MARTE::GQAM::
Scheduling:: GQOAM_Resources:: GQOAM_Resources::
MutualExclusionResource GaCommHost GaExecHost
« stereotype » « stereotype » « stereotype » « enumeration »
SaSharedResource SaCommHost SaExacHost SchedPolicyKind

capacity: MFP_Integer
isPreamp: MFP_Boolean

isSched: NFP_Boolean
schSlack: NFP_Real

IsSched: MFP_Boolean EarliestDaadline First

schBlack: NFP_Real FIFD

IsConsum: NFF_Boolean schedUtiliz: NFP_Real FixadPriarity
aculsT: NFP_Duration |7 |SRswitchT: NFF_Duration LeastLaxityFirst
ralaasaT: MFP_Duration [*] |SRpricRangs: NFP_Intagerinterval RoundRobin

TimeTablaDriven
Undef
Cilhat

Figure 16.9 - The SAM Profile: Resources
16.3.2 Profile Elements Description

This sub clause describes the SAM stereotypes. These stereotypes are listed in alphabetical order. The detailed semantic
descriptions corresponding to these stereotypes and tagged values are provided in sub clause F.11.

16.3.2.1 SaEndToEndFlow

The SaEndToEndFlow stereotype maps the EndToEndFlow domain element (sub clause F.11.1) denoted in Annex F. End-
to-end flows describe a unit of processing work in the analyzed system, which contend for use of the processing
resources. This is a conceptual entity only, which is represented by its concrete elements: end-to-end stimuli and end-to-
end response.

Extensions
« UML::Classes::Kernel::NamedElement

Generalizations

* None

Associations

« None

Attributes

» isSched: NFP_Boolean [0..1]
Indicates whether the flow meets all its deadlines.

» schSlack: NFP_Real [0..1]
Provides a percentage measure by which the (effective) execution time of all the atomic processing
units participating in the end-to-end response may be increased while still keeping the end-to-end
flow schedulable.

322 UML Profile for MARTE, V1.2

* EndToEndT: NFP_Duration [0..1]
Represents the predicted worst completion time latency of the end-to-end response measured from
the arrival of the requested event. This applies if only one input end-to-end stimuli exist.

* EndToEndD: NFP_Duration [0..1]
Represents the required worst completion time latency of the end-to-end response measured from
the arrival of the requested event. This applies if only one input end-to-end stimuli exist.

* timing: TimedObs [*]
Set of timing requirements or preditions that constrain local fragments or the global end-to-end
execution flow.

Constraints

+ None

16.3.2.2 SaAnalysisContext
The SaAnalysisContext stereotype maps the SaAnalysisContext domain element denoted in Annex F (F.11.2).

An analysis context is the root concept to collect relevant quantitative information for performing a specific analysis
scenario. Starting with the analysis context and its elements, a tool can follow the links of the model to extract the
information that it needs to perform the model analysis. Analysis contexts are also known as real-time situations in the
schedulability analysis domain.

Extensions

» None

Generalizations

+ GaAnalysisContext (from GQAM)

Associations

* None

Attributes

* isSched: NFP_Boolean [0..1]
It indicates whether all the timing constraints defined for the analysis context are respected.

» optCriterion: optimalityCriterionKind [0..1]
The optimalityCriterion attribute denotes a global criterion used to determine a schedule for the
context analyzed (e.g., meet all hard deadlines, minimize the number of missed deadlines,
minimize the mean tardiness, maximize flow).

Constraints

* None

16.3.2.3 SaStep

The SaStep stereotype maps the SaStep domain element denoted in Annex F (F.11.3).

UML Profile for MARTE, V1.2 323

An SaStep is a kind of GaStep that begin and end when decisions about the allocation of system resources are made, as
for example when changing its priority.

Extensions

« None

Generalizations
« GaStep (from GQAM)

Associations

» sharedRes: SaSharedResource [*] {subsets GQAM_Workload::GaStep::usedResources}
Set of shared resources that will be locked during the execution of this step.

Attributes

* deadline: NFP_Duration [0..1]
Defines the maximal time bound on the completion of this particular execution segment that must
be met.

» spareCap: NFP_Duration [0..1]
Amount of execution time that can be added to the step without affecting schedulability.

» schSlack: NFP_Real [0..1]
Percentage by which the execution time of the step can be increased (positive values) or should be
decreased (negative values) in order to reach the schedulability limit.

» preempT: NFP Duration [0..1]
Length of time that the step is preempted, when runnable, to make way for a higher priority step.

* readyT: NFP_Duration [0..1]
Effective release time expressed as the length of time since the beginning of a period; in effect a
delay between the time an entity is eligible for execution and the actual beginning of execution.

* nonpreemptionBlocking: NFP_Duration [0..1]
Maximum length of time within the context of the current SaStep that a ready SaStep is blocked while lower
priority schedulable entities are nonpreemptible.

» selfSuspensionBlocking: NFP_Duration [0..1]
Maximum length of time within the context of the current SaStep that a ready SaStep voluntarily yields the
Processing Resource.

* numberSelfSuspensions: NFP_Integer [0..1]
Maximum number of times an SaStep self suspends during its execution. (MUST be provided if
selfSuspensionBlocking is provided.).

Constraints

« None

16.3.2.4 SaCommStep
The SaCommStep stereotype maps the SaCommunicationStep domain element denoted in Annex F (F.11.4).

A SaCommStep is a kind of step that represents a usage of a communication media.

324 UML Profile for MARTE, V1.2

Extensions

» None

Generalizations

« CommStep (from GQAM)

Associations

» None

Attributes

* deadline: NFP_Duration [0..1]
Defines the maximal time bound on the completion of this particular transmission that must be met.

» spareCap: NFP_Duration [0..1]
Amount of execution time that can be added to the step without affecting schedulability.

* schSlack: NFP_Real [0..1]
Percentage by which the execution time of the step can be increased (positive values) or should be
decreased (negative values) in order to reach the schedulability limit.

Constraints

» None

16.3.2.5 SaExecHost
The SaExecHost stereotype maps the SaExecutionHost domain element denoted in Annex F (F.11.5).

A CPU or other device which executes functional steps. The SaExecHost stereotype adds schedulability metrics, interrupt
overheads, and utilization of scheduling processing.
Extensions

» None

Generalizations

« GaExecHost (from GQAM)

Associations

* None

Attributes

» ISRswitchT: NFP_Duration [0..1]
Context switch time of ISR (Interrupt Service Routines) interruptions.

» ISRprioRange: NFP_IntegerInterval [0..1]
Range of ISR priorities supporte by the platform.

* isSched: NFP_Boolean [0..1]
Indicates whether all the timing constraints defined for the execution host are respected.

UML Profile for MARTE, V1.2 325

» schSlack: NFP_Real [0..1]
Percentage by which the execution time of all the steps running in this execution host can be increased
(positive values) or should be decreased (negative values) in order to reach the schedulability limit.

» schedUtiliz: NFP_Real [0..1]
Total utilization of scheduling services.
Constraints

» None

16.3.2.6 SaCommHost

The SaCommHost stereotype maps the SaCommunicationHost domain element denoted in Annex F (F.11.6).

In a communication host (e.g., networks, buses). the related schedulable resource element is CommunicationChannel,
which may be characterized by concrete scheduling parameters (like the packet size).

Extensions

» None

Generalizations

+ GaCommHost (from GQAM)

Associations

» None

Attributes

* isSched: NFP_Boolean [0..1]
Indicates whether the transmitted message meets all its deadlines.

* schSlack: NFP_Real [0..1]
Provides a percentage measure by which the (effective) transmission time of all the communication
steps participating in the host may be increased while still keeping the system schedulable.

Contraints
+ None
16.3.2.7 SaSchedObs
The SaSchedObs stereotype maps the SchedulingObserver domain element denoted in Annex F (F.11.7).

SaSchedObs provides prediction about scheduling metrics such as overlaps, the maximum number of suspensions caused
by shared resources or the blocking time caused by the used shared resources. All these metrics are relative to the interval
defined by the reference and observed events.

Extensions

» None

326 UML Profile for MARTE, V1.2

Generalizations

« TimedObs (from GQAM)

Associations

» None

Attributes

* suspensions: NFP_Integer [*]
The maximum number of suspensions caused by shared resources.

* blockT: NFP_Duration [*]
The blocking time caused by the used shared resources.

» overlaps: NFP_Duration [*]
In case of soft timing constraints, this indicates how many instances may overlap their execution
because of missed deadlines.

Contraints

» None

16.3.2.8 SaSharedResource
The SaSharedResource stereotype maps the SharedResource domain element denoted in Annex F (F.11.8).

Execution Hosts own shared resources as for example I/O devices, DMA channels, critical sections or network adapters.
Shared resources are dynamically allocated to schedulable resources by means of an access policy. Common access
policies are FIFO, priority ceiling protocol, highest locker, priority queue, and priority inheritance protocol.
Extensions

* None

Generalizations

« MutualExclusionResource (from GRM)

Associations

» None

Attributes
» capacity: NFP_Integer [0..1]
Number of permissible concurrent users, for example using a counting semaphore.

* isPreemp: NFP_Boolean [0..1]
If the resource can be preempted while it is being used.

* isConsum: NFP_Boolean [0..1]
Indicates that the resource is consumed by use.

UML Profile for MARTE, V1.2 327

* acquisiT: NFP_Duration [0..1]
Time delay suffered by an action between being granting access to a resource and the availability of
the resource.

* releaseT: NFP_Duration [0..1]
Time delay suffered by an action between initiating release of a resource and the action becoming
eligible for execution again.

Contraints

« None
16.3.3 Examples

We now examine how the domain concepts and the profile previously presented can be used for modeling schedulability-
aware systems.

The annotations have been made over a case study application for the real-time modeling and analysis of a simple
distributed system for the teleoperated control of a robotized cell.

The application system (see Figure 16.10) is composed of two processors interconnected through a CAN bus. The first
processor is a teleoperation station (Station); it hosts a GUI application, where the operator commands the robot and
where information about the system status is displayed. The second processor (Controller) is an embedded microprocessor
that implements the controller of the robot servos and its associated instrumentation.

The software architecture is described by means of the class diagram shown in Figure 16.10. The software of the
Controller processor contains three active classes (called rtUnits in MARTE, see Clause 13) and a passive one that is used
by the active classes to communicate. Servo Controller is a periodic rtUnit that is triggered by a ticker timer with a period
of 5 ms. The Reporter rtUnit periodically acquires, and then notifies about, the status of the sensors. Its period is 100 ms.
The Command Manager rtUnit is aperiodic and is activated by the arrival of a command message from the CAN bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter rtUnit
handles the events that are generated by the operator using the GUI control elements. The Display Refresher rtUnit
updates the GUI data by interpreting the status messages that it receives through the CAN bus. Display Data is a
protected object (called ppUnit in MARTE, see Clause 13) that provides the embodied data to the rtUnit in a safe way.
Both processors have a specific communication software library and a background task for managing the communication
protocol.

328 UML Profile for MARTE, V1.2

ClassesView_TeleoperatedRobot DeploymentView_TeleoperatedRobot

« ppUnit»
DisplayData
display Data displayData
data: Integer [*]

read (): Data
write(D: Data) Station

«rtUnit » « tUnit»
DisplayRefresher Commandinterpreter

updateDis play () processEvent ()
updateGraphics () planTrajectory ()

J/ comm \Jcomm CAN Bus

StationCommunication ControllerCommunication

sendCommand (C: Command) sendStatus (S: Status)
awaitStatus (): Status awaitCommand (): Command

/N:omm com —

«rtUnit» « rtUnit »
Reporter Command Manager Controller LwE Bs— RobotArm

report () manage ()

servos Data
\J_servosData

« ppUnit» « rtUnit»
ServosData ServosController
servosData
| Data:Integer [*] | controlServos ()
get(): Data controlAlgorithms ()
set (D: Data) doControl ()

Figure 16.10 - Example of the Teleroperated Robot application: Structural View

To organize the UML models annotated for schedulability analysis, we adopt the concept of views, which represent the
concern models composing the SAM's real-time situation concept. In this way, we provide separated diagrams for
specifying the SAM concepts of workload behavior, and resources platform. Next, we show some examples that illustrate
this organization.

16.3.3.1 Example of Workload Behavior model

The workload behavior situation to be analyzed contains three end-to-end flows with hard real-time requirements. They
all use the processing resources Station, Controller and CAN_Bus and interact by accessing protected objects.

Additionally, a set of schedulable resources and communication channels instances are modeled as parts that are allocated
on processing resources and the communication host respectively. Schedulable resources and communication channels are
annotated with a priority parameter.

Figure 16.11 illustrates an UML Activity diagram that represents a workload behavior model consisting of the three
above-mentioned end-to-end flows characterized by their workload events and behavior scenarios. These three end-to-end
flows explicitly introduce the semantic of concurrency for the modeled activity partitions. Workload events annotating
UML AcceptEventActions introduce the semantic of event sequence arrivals for the execution of each callBehaviorAction
(Control, Report, and Command). We also annotate non-functional properties for the three kinds of extensions. An end-
to-end flow is characterized by an end-to-end deadline and the request event stream by their the arrival patterns. Behavior

UML Profile for MARTE, V1.2 329

scenarios are annotated with expressions of variables ($r1, $ul, $el, $Swcetl, $pR, etc.). In general, when attributes are

annotated with variables, the model indicates to the analysis tools that these attributes must be computed and returned to
the UML model.

« gaWorkloadBehavior » Normalhlode)

o workloadEvent »
ContralTrigg

{ periodic (perlad= (&, maj}§

(G.me) |

wgasScenanion

{ respTime= (371, ms),
utilization= Sut,
execTime= (§21, ms) |
Control

saEndToEndFlow »
ControlServas
{ endTeEndD:

« worklnadEvent »

x =

2w £ ReportTrigg

= b s % o

I.|_E. [‘_U: { periodic {pariod= (100, SpR, ms)) } “gasc}e“aﬂaw

w I:LE il { respTime= (%12, ms),

2 % utilization= $uZ,

2 %w execTimes= ($weetl, max, ms)]
o

'-é v E Report

= @

« workloadEvant »
ReportTrigg
{ periodic {pariod= (1, 5)) }

(1.8} }

o wgaScenarios

= { respTima= {$r3, ms),
) utllizations $u3,
E axacTime= ($a3, ms) }

Command

& saEndToEndFlow »
ExecuteCommand

Figure 16.11 - Example of end-to-end flows situations model

Figure 16.12 presents one of the three scenarios that models the Report behavior scenario. Note that a “GaScenario”
stereotype (which is annotating UML CallBehaviorActions) can also annotate the behavior itself. Behaviors can be
Interactions, State Machines and Activities. The behavior model elements allow for representing end-to-end behaviors and
the precedence between the processing steps involved in the scenario. In our example, we applied it to sequence diagrams
(see Figure 16.12). Observe that the stereotypes “SaStep” and “SaCommStep” extend UML messages. In general, steps
annotating UML messages represent the execution load of the associated UML ExecutionSpecification at the reception of
the message. In this example, “SaSharedResource” elements are UML Lifelines of the sequence diagram. The chain of
steps (connected by the successor-predecessor patterns) conform the model of the “GaScenario.” “SaStep” elements
include worst and best case execution times, and “SaCommStep,” in turn, the size of the message transmitted or received.

330 UML Profile for MARTE, V1.2

« gaScenario » Report)

« saCommStep »transmit ()
{msgSize =(100, kB) }

-ContrClock «alocated » « saSharedR esource » « allocated » «allocated » «alocated » «SaSharedR esource»
. :Reporter :ServosD ata :ControllerComm .CANBUS :StationComm :DisplayRefresher :DisplayData
I = _[. — priority Ceil { allocated To= = {allocatedTo= {alocatedTo= { protectKind= priorityCeiling
Reporter} priority=16 } Ms jStatus MsiStatus} DisplayRefre sherTask} priority=31 }
o 1 | | | | |
« saStep » report() «gaAcqStep » lock () | | I |
{ execTime= (1.22, I JX)
(1.1, min) } U LH
« saStep » get () | I : S:%‘?Zt»s 0 |
me= w u
(execﬂme(—ogb(zzn:qiﬁ;(;m | I { execTime=(0.022 max), |
| | ' | | | | o.ozzl, min) } |
@t1
I U « gaRelStep » unlock () | | | I |
N | , « saCommStep »transmit ()
| |] { msgsize=(100, kB)} | |
« saStep » sendStatus () « saStep »
| { execTime= (0.031, max) tf(ansm'tgomm(azng 6()) | |
0.031, min execTime= , max;
| | f o T s I |
/ | an I |
' |

«saStep » read ()

« saStep »
updateDisplay ()
{ execTime= (4, max

(0.24, min)]
«saStep»
updates Graphics ()
{ execTime= (10, max)

«saExecStep» write () I

(5, min)}

Figure 16.12 - Example of Behavior Scenario model

16.3.3.2 Example of Resources Platform model

Figure 16.13 represents the domain concept of resource platform since an analysis viewpoint. In this case, we use a

structured classifier to collect a set of resource instances. The structured classifier represents the resources platform under
analysis. The processing resources defined in Figure 16.10 (Station, CAN_Bus, Controller, RobotArm) are represented as
parts of the resources platform. These parts are annotated with non-functional characteristics required for schedulability
analysis. In addition, a scheduler instance (a part again) represents the OS scheduler based on fixed priority scheduling.

Additionally, a set of schedulable resources instances are modeled as parts that are allocated on processing resources.
Schedulable resources are annotated with a priority parameter.

Note that execution and communication steps are allocated to this set of schedulable resources by means of the stereotype
allocated applied to lifelines in Figure 16.12. This means that the execution specifications realized in the lifelines are
processed in the context of the target schedulable resources.

UML Profile for MARTE, V1.2 331

« gaResourcesPlatform »
TeleoperatedRobot_Platform

« schedulableResource o
= - - - wallocates-- - - - 2 : DisplayRefresherTask
1 T i pricrily= 22) }

« saExecHost »
: Station

« gaCommChannal =

e : MsjStatus
« saCommHost » e wallocates 1p (pricity= 241}
: CAN_Bus
{ tranahiasa= Halt-Dupiex e « GaCommChannsl »
speedFaciars (SpeGAM) wallocater. .| : MsjCommand
biockT= {111, 15, max, meas) [{priity= 261 }
packatT= (G4, us. calc) }

« schadulableReaourcs »
.4 : ServosControllerTask

aal h'e'»' [4 Ipricinity= 30 }
a’wa « SchedulableResource o
« saExecHost » P .
- Controller =] - Reporter
{speedfactor=(1.0) | #allocates {15 Ipnonty= 241 3
rcmm'l'?- :-::2:‘::: = « schadulableResourcs »
ISRawitehT= (25, us, meas) [oo oo 2 CommandManager
senedPricRanga= ([0, 301, catemn) < [priority= 161}
F5RFriaRangs= {[31.31], datem)) <, allocaten « schadulablaResourcs »
- - ControllerComm
{ 1p lprionty= 31} }
VME_Bus
@ schaduler »
« saExecHost » L -RTOS Scheduler

- RobotAmm

[sehedPalicy= FixedPrisity)

Figure 16.13 - Example of Resources Platform model

16.3.3.3 Example of Analysis Context model

In order to define the analysis context for a given pair of workload behavior and resources platform models, we illustrate
how to use structured classifiers (Figure 16.14). In this example we collect analysis views by means of parts instantiating
workload behavior (normalMode Activity in the example) and resources platform (TeleoperatedRobot Platform
StructuredClassifier in the example) models. In addition, this example illustrates how to parameterize analysis results by
means of variables (see Annex B - VSL for the profile of variable definition). Note that “GaAnalysisContext” inherits
from “ExpressionContext,” which enable “SaAnalysisContext” elements to be used as contexts or namespaces of
variables. Variables extend UML Property.

Note - This mechanism does not replace the basic annotation mechanism of variables declared in tags by which a model
indicates the information to return by analysis tools. Our aim is to provide a more flexible and alternative way to
communicate analysis intents to analysis tools by means of UML Property elements (stereotyped as variable: “var”).

Particularly, the context under consideration defines four variables especially chosen to analyze certain parameters of
interest. isSched System defines the global scheduling correctness regarding all the required deadlines annotated in the
context under analysis. The variables wcet Report, procRate CAN (CAN’s processing rate), and period Report actuates
are parameters to study. In order to define the semantics of these variables in the context of the modeled system, we
specify CallVariableExpression (see the Annex VSL) in their default values. These call variable expressions make
reference to variables declared in the context of the models under consideration. Thus, isSchSys is a variable defined for
the isSched tag of the “SaAnalysisContext” stereotype. The variables wcetl and pR are variables defined in the workload
behavior model named NormalMode (Figure 16.11) and prCAN is a variable declared in the TeleoperatedRobot Platform
model (Figure 16.13).

332 UML Profile for MARTE, V1.2

In order to analyze different situations we instantiate the analysis context and define the actual values for the proposed
variables. For instance, the UML InstanceSpecification named Schedulability defines isSched System as the information
to return (“$v0” expression) as a calculated value (source slot of the NFP defined as “calc”), and the other variables are
inputs to the analysis tool (source slot of the NFPs defined as “determ”). The result value returned by analysis tools is
shown in red. In this case, the system has been determined to be schedulable.

More complex scenario analysis can be constructed for sensitivity analysis. For example, the UML InstanceSpecification
named SensitivityAnalysis, defines isSched System as a required value “true” (source slot defined as “req”). It actuates
as a pivot parameter for calculating the other three variables, which in turn, are defined as results of the analysis (calc).
Thus, the “maximum” worst case execution times of the Report response, while keeping the system schedulable is
calculated, is 50 milliseconds. The “minimum” processing rate or speed factor (current measurements for the CAN
message transmission speed are defined for a value of 1) is 0.2, while still keeping the system schedulable. Finally, the
period of triggering of the Report end-to-end flow can be reduced to 10 milliseconds by still meeting all the deadlines.

esafnalysisContaxis | sSched= (SisSchSys)
TeleoperatedRobotSAM

wvare [dirs inoul} isSched_System: NFF_Boolaan= isSchSys
wyare [dir= inout] woel_Regort; NFP_Durabion= weail

wvare [dirs inout] procRate_CAM: NFP_Raal= proah

avars {dir= inout} period_Report: NFP_Duration= pR.

: NormalMode : TeleocperatedRobot_Platform
wsafnalysisContexts wsafnalysisContexts
Schedulability: TeleoperalsdRobotSAM SensitivityAnalysis: TeleoperatedRobotSAM
isSched_System = (true, $v0, caic) isSched System = (brue, rag)
wrat Report = (5. ms, detarm) woat Raport = (50, $v1, ms, max, calc)
procRate_CAM = {1, determ) procRate CAM = 0.2, $v2, min, calc)
pared_Repaort = {30, ms, determ) perdad_Repart = {10, $v3. ms, min, calc)

Figure 16.14 - Example of parametric Analysis Context situations

Notice that most analysis tools operate on a simplified view of a system, as illustrated in this example. However, this
profile allows annotations and interpretations to be attached at the level of detail desired by the designer. Indeed, even if
the specification contains extreme detail, the annotations may optionally be applied to aggregates. This is an overriding
reason to find a path to annotations that require a minimum of effort, with a minimum of additions to the design model,
and with clear, non-fragmented specifications of NFPs. It is also essential that NFPs can be attached to a real software
design, rather than requiring a special version of a design created only for analysis.

Issue 16224 - update text and insert new figure

16.3.3.4 Example of modeling implicit platform elements in behavioral models

Sometimes it is necessary to define platform elements that are not explicitly part of the platform model. For example, this
is often used when such elements are needed in worst-case analysis of some overheads. Consider for instance the case of
the overheads due to the management of messages that will be sent through or received from networks. The software that
hendles this is usually not part of the application itself but part of the drivers that are owned by the operating system. The
code of these drivers can be represented by concrete operations (and resourceUsages or saSteps) and they are, of course,

UML Profile for MARTE, V1.2 333

art of the platform, although their scheduling properties may not be known until their use is described by the application.
Rather than model such elements explicitly, which would complicate the platform model, it may be more convenient to
represent such elements implicitly via the attributes (annotations) of the behaviors they generate, as shown in the example

in Figure 16.15.

« gaWorkloadBehavior » StationNetworkOverheads)

«saStep»
{interOccTime = (13.875, ms),
concurRes=StationCommTaskDriver
execTime = (2.5, us),
deadline = (13.875, ms) }
Send_Oper

{fp(priority=32),
host=Station}
StationCommTaskDriver

« saEndToEndFlow »
« schedulableResource»

« workloadEvent »
Packet_Receive
{ periodic (period= (13.875, ms)) }

«saStep»
{ execTime= (2.0, us),
concurRes=StationCommTaskDriver,
deadline= (13.875, ms) }
Receive_Oper

« saEndToEndFlow »
StationReceiveDriver

Figure 16.15_- Example of active resources defined as stereotyped behavioral elements

Figure 16.15 shows the model of the overheads in the processor Station due to the injection and reception of messages
into and from the CAN Bus network. This overhead is modeled by two additional endToEndFlows that operate in the
same thread at priority 32 and at the maximum possible rate considering the partitioning of messages at the packet size of
the network. (This overhead may appear to be excessive but it is the minimum worst case model sufficient to ensure
schedulability.) Note the two different styles to express periodicity, one with a workloadEvent and the other expressing
directly the inter occurrence time of the step.

334 UML Profile for MARTE, V1.2

17 Performance Analysis Modeling (PAM)

17.1 Overview

In MARTE, “performance modeling” describes the analysis of temporal properties of best-effort systems and soft-real-
time embedded systems, including systems supplying information, web-based services, enterprise services, multimedia,
telecommunications, and networked services. Performance measures (analysis outputs) are statistical, such as mean
throughput and delay, or the probability of missing a target response time. Input parameters to the analysis may also be
probabilistic, such as a random arrival process, random execution time for a media frame, or a probability of a cache hit.
The common performance analysis techniques include simulations, extended queueing models, and discrete-state models
such as Stochastic Petri Nets. Behavior is often regarded as non-terminating for the purposes of analysis (steady state
behavior, for example for capacity analysis).

Performance analysis includes single-case analysis for a given set of input parameters, or multicase analysis such as:

« sensitivity analysis that explores a parameter space, to find ideal operational parameters or to identify risky workload
situations. Sensitivity analysis may also include alternative scenarios, platforms, physical deployments, and
configurations.

+ Scalability or capacity analysis which explore the capabilities of the design or configuration.
There is explicit support for multicase analysis in the parameters of the AnalysisContext.

The performance domain employs and extends the Generic Quantitative Analysis Modeling (GQAM) domain of Clause

15. It employs features such as the WorkloadEvent description of the stream of arriving events, focusing on some of the
workload types (open and closed arrivals, workload generators, and traces), and the behavior-causality model of Scenarios
and Steps. It extends the properties of Steps to include more kinds of operation demands during a step, and the possibility
of an asynchronous (non-synchronizing) parallel operation. Other extensions: a Step subtype PassResource that identifies
the passing of a resource (usually a SharedResource) from one process to another.

The increment to the GQAM domain model is shown in Figure 17.1 and Figure 17.2, broken into two packages,

PAM_ Workload and PAM_Resources. Some elements are shown in both diagrams where there are associations between
resources and behavior elements. For elements from other domains, only the attributes of interest for performance
analysis are shown.

17.2 Domain View

17.2.1 The PAM_Workload Package

Performance analysis is determined by how the system behavior uses system resources. Important resources include
hardware ExecutionEngines, concurrent process threads (ScheduledResources), and LogicalResources defined by the
software. A logical resource can be any entity to which the software requires access, and for which the program may have
to wait at some point. Thus a semaphore is in this sense a resource, as is a lock, or a buffer, or a block of memory. A pool
of access control tokens can be modeled as a logical resource.

A process resource, or pool of process threads, is also a kind of logical resource that is modeled separately, by the concept
of SchedulableResource imported from the General Resource domain model (GRM). Because processes may be identified
in behavior specifications by other entities (lifelines and swimlanes in particular), a special concept of
RunTimeObjectlnstance is introduced to represent an alias for a process resource.

UML Profile for MARTE, V1.2 335

PAM_Workload

GQAM Workload:

GQAM_Resou
Communicatio

rces::

nHost

concurRes | 0..1

Commui

GQAM_Resources::

noSync: Boolean [0..1] = Fase

exteralOpDemands: String [*] {ordered}
extemalOpCount: NF P_Real [*] {ordered}
behaviorDemands: GaScenario [*]{ordered}
behaviorCount NFP_Real [*]{ordered}

nication Channel

host | 0..1

oonourR&i 0.1

GQAM Resources::

ExecutionH ost

GRM::
SchedulableResource

generator WorkloadGenerator
o demand GQAM_Workload :
GQAM_Workoad: 1. WorkloadEvent 0.1 population: NFP_Integer
WorkioadBehavior
® ttem: Arriva Patt
pattem: ArrivalPattern tace [GQAM_Workload::
0.1 EventTrace
behavior | 1..*
«enumeration» «enumeration» GBQﬁM__Wg;kbaq::
GQAM Workload : GQAM_Workload:: ehaviorscenario
EventStreanKind ConnectorKind hostDemand: NFP Duration connectars
hostDemandOps: NFP_Real []
G t Sel —
P:::rri or Br;‘r‘fhme interOccT :NFP_Duration [*]
T Nerge throughput NFP_Frequency [GQAM_Workload::
Timed Fork respT: NFP_Duration[*] PrecedenceRelation
il utilization : NFP_Real [*]
utilizationOnHost: NFP_Real [*]
root: GaStep
0..1| behavior
GQAM_Workload:: acgRes
GQAM_Workload:: root * | steps AcquireStep
RequestedService R
GQAM Workload:: GQAM_Workload:: relnes
Step . ReleaseStep GRM::
GQAM_Workload:: Resource
C ommunication Step
ResourcePassStep passedRes
host | 0.1 resU rits: NFP_Integer
PAM_Step

Figure 17.1 - Part of the performance domain model relevant to behavior

Resources that are not modeled within the software design may also have an impact on performance. This domain model
identifies “external operations” by such resources by a name (a string), so they can be modeled in the performance
environment. An example is the use of a TCP connection, which is not modeled in the software specification, but for which
customized simulators exist. The same considerations might apply to database or storage subsystems.

Demands by a Step for external operations are described by the pair of properties externalOpDemand and externalOpCount.

The first is an ordered list of operation names (strings), and the second is an ordered list (in the same order) of the number of
demands made during one execution of the Step. The number may be an exact number (an integer), an average value (real) or
a probability distribution defined in the NFP.

336

UML Profile for MARTE, V1.2

PAM_Resources |

GOAM_Resources:: GRM::
ResourcesPlatform Resource

A

GRM:: GRM::
LogicalResource ProcessingResource ConcurrencyResource
utilization: MFP_Real [*] ﬁ}‘
throughput: NFP_Frequency [*
LB _rreq ay [*] GRM:: instancea RunTimeObjectinstance
| | SchedulableResource 0.1

pooiSize: NFP_Integer
GOAM_Resources:: GOAM_Resources:: unbddPaol: Boolean [..1] = False
ExecutionHost CommunicationHost hast: GaExecHast [0..1]
utilization: MFP_Real [*]
throughput: NFP_Freqguency [*]

GOAM_ Resources::
CommunicationChannel

Figure 17.2 - Part of the performance domain model relevant to resources

Performance properties of different system elements fall into a small number of different measures, as discussed in Clause
15. For instance, the term throughput (in operations/sec) is applied to the system as a whole, for handling of requests, but
also to a single process, or component, or processing step. Because of this uniformity, one set of property names is
defined in Table 15.1 to be applied at will to different behavior and resource entities. These NFPs are used here also.
Typical performance properties include average response time, mean throughput capacity, resource utilization, and the
probability of missing a delay target. However more sophisticated properties can be investigated, and in general
performance analysis uses input and output properties which may be any statistical measure of five types of quantities:

+ Duration (e.g., respT) (e.g., as an operation delay, or as a response time), NFP_Duration.
* also forced duration (e.g., blockT) (a duration which is part of the operation, such as a user think time),
NFP_Duration
+ Frequency (or throughput. e.g., of events or operations) NFP_Frequency.

+ Probability (e.g., of occurrence of some event), NFP_Real.

+ Repetitions, for a loop repetition or a repeated operation, NFP_Real. This is represented as Real rather than integer so
that mean values can be represented.

» Message size or memory size, NFP_DataSize.

The analysis associates a BehaviorScenario with the concepts of workload, request, service, and response. The workload
defines the frequency or intensity of occurrence of requests for the service; the details of the service given to each request
are defined by the BehaviorScenario (giving the resources and operations including their demand parameters), and the
response is the result, including its properties of delay, frequency, and probabilities. Resources are associated with one or
more BehaviorScenarios, constrain their properties, and have their own properties that include holding time and
utilization (which is the probability that the resource is busy, or a mean count of the number of busy resource units).

UML Profile for MARTE, V1.2 337

17.2.2 Outline of Domain Concepts

17.2.2.1 Performance AnalysisContext and Workload

The AnalysisContext (from GQAM) corresponds to the scope of a study or evaluation. It combines the system represented
by its behavior (BehaviorScenarios) and its resources (from GQAM), with one or more workloads. It has a set of
parameters that are used in expressions that define system input parameters, and which define the range of variation of
cases that may arise within the study.

A performance context specifies one or more BehaviorScenarios that are used to explore various dynamic situations
involving a specific set of resources. For instance, a performance context may describe a “busy hour,” during which the
maximum processor load is expected and therefore imposing the greatest likelihood of performance problems, such as
missed deadlines. For a given system specification, there may be many performance contexts with overlapping resources,
but one BehaviorScenario is specific to one performance context.

One UML specification may give rise to several performance models, due to variations in system usage, workload,
allocation/deployment, and configuration. We will call these different models cases; they are supported by parameterizing
the specification. Parameterized NFPs are supported by the use of:

« Variables global to the AnalysisContext, defining the variations.

« Variable names in place of numeric values of input properties for model elements.

 Functional dependencies of the input properties on the global variables, to define values.
Variables can then be used to specify:

« Workload intensity, through arrival rates or concurrency (population size).

« System scaling through multiprocessors or replication.

+ Data record size (and then various demands, through functions).

Analysis cases are defined outside the UML specification by defining groups of values of variables, with one group of
values for each case. These may be expressed in a table with a column for each case and a row for each variable.

Additional sources of variation may arise with different configurations and environments. Some of these variations are
independent of the UML model, for example the choice of middleware or operating system. The construction of
performance models can incorporate directives to compose the application with a stated environment, using a library of
submodels for environments (described above). These also become case parameters.

| UML Model |
Configuration/

Platform
C ase Parameters T™— Performance

Model
Input NFPs _/
(Parameter Output NFPs
Values) Performance (Performance
Model Solver Results)

Figure 17.3 - Analysis over cases

338 UML Profile for MARTE, V1.2

17.2.2.2 Behavior

The unit of description of behavior is the BehaviorScenario, which corresponds to a behavior diagram (interaction,
activity, or state-machine diagram). It is a sequence of actions (called Step here for its performance aspects), with
predecessor-successor relationships that may include forks, joins, and loops. Steps indicate the demands of the system on
its resources, both for execution on the host processor of the step (called its hostDemand attribute) and for other
resources.

Other resources can be acquired (and released) explicitly using subtypes of Step called ResourceAcquire and
ResourceRelease, in which the resource is identified directly. Still further resources can be utilized through demands by a
Step for Services (like calls) that may involve arbitrary resource combinations. One kind of Service, by an
ExternalResource, shows the use of resources outside the UML model.

The input attributes of a Step include its probability (following a branch, or in an opt or alt CombinedFragment), a
repetition count (for a repeated step, such as a loop CombinedFragment), and a “noSync” attribute (following a fork, or
on an asynchronous message or par operand) to explicitly indicate that a parallel branch does not join. Behavior using
noSync may provide increased concurrency and increased performance.

A Step may be refined by another BehaviorScenario. In an Interaction Diagram the sub-BehaviorScenario may be the
operand of a CombinedInteraction; in an Activity Diagram it may be the contents of a StructuredActivity. A
BehaviorScenario that responds directly to requests by a Workload may be termed a “top-level” BehaviorScenario, while
others are sub-scenarios.

In a performance model the system behavior is often non-terminating, that is it cycles forever, repeating the top-level
scenarios as defined by the workload intensity.

Resource demands by a step include its host execution (CPU) demand, acquisition of a logical resource, and demands for
services which are not defined in the same behavior definition, but are provided by some system component, or by the
platform or the environment, or by an external system.

17.2.2.3 Workload

A context may have any number of workloads, representing different sources of requests or initiations of operations. Each
workload has a distinct mechanism for initiating requests, its own load intensity, and its own QoS requirements. In a
performance analysis, a workload corresponds to a class of traffic, with a mechanism that may be either open or closed.

Behavior is initiated by a workload event. An open workload is a WorkloadEvent in which the events arrive at a given
rate in some predetermined pattern (such as clocked or Poisson arrivals), or by a trace.

A closed workload defines a stream generated by a fixed number of active or potential users or jobs that cycle between
demanding to execute the BehaviorScenario, and spending an external delay period (some times called a Think Time)
outside the system, between the end of one response and the next request. A system may have any combination of open
and closed workloads. Further, a closed workload may combine requests for different BehaviorScenarios in some
sequence; in general a mechanism to describe this is called a WorkloadGenerator, governed by a state machine making
requests for operations. ClosedWorkload is a special case.

The same BehaviorScenario concept describes execution of a request for a service by an external resource, which was
discussed above. The operation size parameter can be used in such requests to define the service time of the request, when
executed. For example a file service request might define the file size; then a performance submodel for the file system
could use this parameter to work out the demands on the various resources in the file system, for each request.

UML Profile for MARTE, V1.2 339

17.2.2.4 Service

It is normal in performance analysis to speak of services, with offered and demanded quality of service. An informal
expanded view of behavior with ServiceDemands and OfferedServices is shown in Figure 17.4 and used in the following
discussion.

A Service is a pivotal concept in performance. Requests queue for service by some resource, and may have a required
quality of service. The actual service is defined in general by a BehaviorScenario, with a provided quality of service. It
may be incorporated into the modeled behavior in three ways:

« By making a serviceDemand from a Step to a RequestedService, representing an operation offered at some interface,
which is in turn defined by a BehaviorScenario.

+ By making a behaviorDemand from a Step to directly invoke a BehaviorScenario, which defines a logical service
offered in some way by the system.

+ By making an extOpDemand from a Step to request an external service, which is defined in the performance
environment outside the UML model.

External services vary depending on how much is defined in the UML model. For instance if the network is defined in the
deployment then a message transmission is defined within the UML model, but if no network is specified it is an external
service.

In the performance model, behavior can be composed flexibly from units defined by scenarios, by service operations
embedded in components, and by external operations, as shown in Figure 17.4. This provides a toolkit that suits many
different software design structures, and situations in which different kinds of performance information is available.

For component or platform services defined in the UML document, a submodel can be made and composed with the
model of the defined services, through service demands. As an abstraction, for systems in which there is no such
submodel, the equivalent behavior can be described by a subscenario and composed through behavior demands. For some
kinds of platform services the costs can be included as overhead parameters of the host devices.

PWo rkloadGenerator

A

’
« use »

}

¥
GQAM_Workload::
BehaviorScenario

—— i ~ae

-~ Ser
‘i(use » « use » « use»
c"-’ H "-h
o \I/ hiL 2N
GQAM_Workload:: . .
2 = . PRequ estedService External Op eration
Behavio 1S cenario
H TSeel Thecuser S0 3 s
« use » « use » -;'.'g.. « use » «use »
M el A Rt T | o,
~. - -,
t . ~.. .
! « use » \ ! “Sea. S
Y & v mana, Ve,
GQAMTWO rifee 'i'" PRequ estedService External Op eration
Behavio 1S cenario

Figure 17.4 - Informal view of Services and Behavior

340 UML Profile for MARTE, V1.2

17.2.2.5 Resources

In performance modeling based on queues, resources may be modeled as servers. An active resource is self-contained
(e.g., a CPU) and has a characteristic service time for each class of service it offers. A passive resource may be acquired
and released during a BehaviorScenario, and has a holding time that is determined by the behavior (e.g., by the sub-
scenario) between acquisition and release, which defines the class of service. An external resource is an active resource
that is an abstraction for an external sub-system of any kind.

Software components, like resources, offer services that are defined by sub-scenarios. The steps of the sub-scenario define
the use of other components and resources during a service. A component has a set of interfaces, each of which offers one
or more of the services of the component. In software terms a single service may be defined as the response to one
interface method, or to any one of a set of interface methods (methods may be clustered as a form of abstraction in the
performance analysis). A software component may also be a passive resource (a process or thread) if its execution is
restricted in some way. If there is no limit in the number of simultaneous concurrent active executions of the component,
it optionally may be regarded as a special kind of “infinite resource,” or as not a resource; the two concepts are
equivalent.

17.2.2.6 Communications Channels
A message between two objects is conveyed by some mechanism:
1. If the objects are in the same process, it is conveyed by the language runtime.
2. Ifthe objects are in different processes in the same node (ProcessingHost), it is conveyed by the operating system.

3. Ifthey are of different nodes, it is conveyed by a system layer we will term a CommChannel. This may be a
middlware layer (a web services connection, a CORBA connection, a Java Remote Method Invocation, an MPI
(Message-Passing Interface) connection in a grid, a socket or secure socket connection), or a more complex
infrastructure such as a publish-and-subscribe system.

To give the modeler flexibility, these will be modeled in five different ways, of increasing detail and complexity (levels
of detail):

1. Within the same node, language runtime costs and operating system costs are ignored by default; they are part of the
scenario. If the interprocess communication cost per byte of the ProcessingHost is defined, that is used instead to
calculate a hostDemand.

2. Between nodes the default is to determine node hostDemands from the sending and receiving overhead on the nodes
(attributes of the two ProcessingHosts) and insert the latency of the link (an attribute of the connecting
CommunicationsHost).

3. Between nodes the conveyance of the message may also be modeled as an external operation, invoking a submodel of
the communications layer. If this demand is defined it overrides the default. It is an attractive option for modeling the
behavior of the internet and the complexities of the TCP protocol.

4. Between nodes a communications layer such as CORBA may be defined as a UML StructuredClass offering send and
receive operations to the two end-point processes. This layer is denoted as a CommChannel with a conveyance
operation demanded by the CommunicationsStep in the scenario. Its service is defined by a BehaviorScenario defined
for the send operation and the combination of the two end-point processes. The scenario may involve directory look-
ups, authorization, and redirection of requests. If a serviceDemand for this operation is defined it overrides the
default.

| UML Profile for MARTE, V1.2 341

5. Between nodes a complex communications protocol can be modeled by a pure BehaviorScenario not associated with
a system component, but describing a collaboration of the hosts. For example, in a publish-and-subscribe system a
message is transferred by posting it to a repository, which then informs subscribers of the message. They finally
access it themselves, at which point the message is delivered. If a serviceDemand for this operation is defined it
overrides the default.

Each message with performance significance is defined as a kind of Step called a CommunicationStep, in sequence in the
BehaviorScenario. Its annotations determine which level is used to model the cost and delay of communications. Figure
17.5 shows these definitions as dependencies, for both cases.

Notice that if the channel is a CommunicationsEngine with a rate parameter, its transmission demand may define the
latency.

SchedulableResource SchedulableResource

(sender) (receiver)
1 T
i 1 1
1 1 1
! U 1
1 \4 1
: | hardware-based conveyance | '
1 -, T < 1
4] ~]
: e 4 < ! s ~ < 1
\'4 24 \'% N \%
ProcessingHost CommunicationsHost F’rocessingHost
(sender) (link) (receiver)
-sendOH -latency -recvOH

(a) Detail Level 2, conveyance modeled at the hardware level

SchedulableResource
(sender)

|

|

|
v

SchedulableResource
(receiver)

structured conveyance |

Pid < {one or the other}\ S
td -~

P

yiad

communications layer
CommChannel
(sender to receiver)

-~

\\A

system-wide behavior
BehaviorScenario
(sender to receiver)

(b) Detail levels 4 and 5: using a communications layer
Figure 17.5 - Roles in modeling the transmission of a message

From the above discussion, the model for levels 4 and 5 defined by a BehaviorScenario for transmission, either associated
with CommChannel or invoked explicitly. For level 3 there is an implicit three step scenario of (send overhead on sending
host, latency delay, receive overhead on receiving host). The domain model to support communications modeling is
shown in Figure 17.5.

342 UML Profile for MARTE, V1.2

PAM_Communications

PAM_Workload::
PAM_Step

T

sendHost =y
GQAM_Resources::] CommunicationStep
ExzecutionHost recvHost parent
0.1 1
endPaoint
lirk 0.1 | cormveyPath requestor (1
GQAM_Resources:: :
CommunicationHost « | demandedService refinement | 0.1
GOQAM_Workload: : GOAM_Workload::
th | 0.1 — . 2| d
SN RequestedService - BehaviorScenario
1 cormeyScenaro | 0.1
conveyorService | 1
CommChannel

Figure 17.6 - Domain model for communications in performance modeling

17.2.2.7 Types of Performance Analysis Methods

A sub-profile for performance analysis should support modeling tools for building different kinds of performance models.
Most modeling tools deal with one or more of the following common types of models:

+ Queueing models define customer classes (workloads) which execute particular aspects of the software, which are
captured in different scenarios. In the simplest queueing models it is only necessary to define the class sizes or arrival
rates, and the total average demands placed on each device in the system, during one execution of each scenario. In
more complex queueing models the distribution of the demand may be required, there may be passive resources as well
as devices, and the detailed scenario sequence may be required (for instance if it has parallel branches).

Queueing models calculate average throughput, utilization and response times for classes overall, and layered or extended
queueing models also can calculate these figures for passive resources and for parts of BehaviorScenarios (scenario steps
or resource-operations).

1. Simulation models define multiple logical tokens which execute the software, following the detailed
BehaviorScenario structure and using execution time distributions for the operations of each step. There may be
passive resources and they may have complex scheduling (for instance, LRU management of a cache).

Simulation models can calculate a wide range of measures including histograms and percentiles as well as average
values.

2. Discrete-state models such as Petri Nets define tokens which execute the software, following the detailed
BehaviorScenario structure. As in queueing models there may be open or closed classes of tokens for different
scenarios. Where tokens must be differentiated they are said to be colored. Petri Nets use places to define the progress
of tokens and transitions to describe decisions, and the passage of time. Resources are described by additional places
and tokens, and resource scheduling by transitions which execute scheduling decisions. Other forms of discrete-state
models include Markov and Semi-Markov chains, Stochastic Process Algebras, and Stochastic Automata.

| UML Profile for MARTE, V1.2 343

Performance Petri Nets and other discrete-state models typically calculate average measures but can provide more
detailed measures such as higher moments and distributions.

17.3 UML Representation

17.3.1 Profile Diagrams

The profile is defined in the two diagrams that follow, and in text in the next sub clause. Much of it re-uses extensions
defined for Generic Quantitative Analysis Modeling (Section 15.3.1), prefixed Ga, and these extensions are shown again
here to show that they are part of this sub-profile, though their definitions are given elsewhere. For the inherited
stereotypes, properties (tags) which are important for performance analysis are shown here.

344 UML Profile for MARTE, V1.2

« profile »
PAM

« stereotype »

MARTE::GQAM::
GaEventTrace

« stereotype »

MARTE::GQAM::GaWorkloadEvent

« stereotype »
MARTE::GQAM::

content: String
format: String
location: String

generator: GaWork

effect: GaScenario

pattern: ArrivalPattern

loadGenerator

trace: GaEventTrace
timedEvent: UML::CommonBehavior::SimpleTime:: TimeEvent

GaWorkloadGenerator

pop: NFP_lInteger = 1

« stereotype »

« stereotype »
MARTE::GQAM::
GaAnalysisContext

MARTE::GQAM::
GaWorkloadBehavior

contextParams: NFP_String [*]

« stereotype »
MARTE::GQAM::
GaResourcesPlatform

behavior: GaScenario [*]
demand: GaWorkloadEvent [*]

workload

1.%

platform

1= | resources: Resource [*]

« stereotype »
MARTE::GQAM::GaScenario

cause: GaWorkloadEvent
hostDemand: NFP_Duration [*]
hostDemandOps: NFP_Real [*]
interOccT: NFP_Duration [*]
throughput: NFP_Frequency [*]
respT: NFP_Duration [*]
utilization: NFP_Real [*]
utilizationOnHost: NFP_Real [*]
root: GaStep

behavior steps

« stereotype »

MARTE::GQAM::GaStep

isAtomic: NFP_Boolean
blockT: NFP_Duration [*]
rep: NFP_Real =1

prob: NFP_Real = 1
priority: NFP_Integer

0.1 1.%

timing | *

« stereotype »
GaTimedObs

host: GaExecHost

concurRes: SchedulableResource

servDeman: GaRequestedService [*] {ordered}
servCount: NFP_Real [*] {ordered}

« stereotype »
PaStep

« stereotype »
MARTE::GQAM::
GaAcqStep

acqRes: Resource
resUnits: NFP_Integer = 1

« stereotype »
MARTE::GQAM::
GaRelStep

relRes: Resource
resUnits: NFP_Integer = 1

« stereotype »
PaResPassStep

resource: Resource
resUnits: NFP_Integer = 1

noSync: NFP_Boolean = False

« stereotype »
MARTE::GQAM::
GaRequestedService

extOpDemand: String [*] {ordered}
extOpCount: NFP_Real [*] =1 {ordered}
behavDemand: GaScenario [*] {ordered}
behavCount: NFP_Real [*] {ordered}

« stereotype »
MARTE::GQAM::GaCommStep

msgSize: NFP_DataSize
concurRes: SchedulableResource

1

I

PaRequestedService

« stereotype »

« stereotype »
PaCommStep

.

UML Profile for MARTE, V1.2

Figure 17.7 - Profile diagram of performance extensions for workload, behavior, and time observations

345

« profile »
PAM

« stereotype »

MARTE::GRM::Resource

T

[

« stereotype » « stereotype » « stereotype »
PalogicalResource MARTE::GRM:: MARTE::GRM::
ProcessingResource ConcurrencyResource
utilization: NFP_Real
throughput: NFP_Fraquency f{-‘-
poolSize: NFP_Intager
« stereotype »
e stereotype » « stercolype » S it
MARTE:: GQAM:: MARTE::GQAM::
GaExecHost GaCommHost
commTxOvih: NFP_Duration capacity: NFP_DataTxRate [*] ‘i}
commRevCvh: NFP_Duration utilization: NFP_Real [*] « stereotype »
utilization: NFP_Real [*] throughput: NFP_Frequency [*] MARTE: :GQAM::
troughput: NFP_Frequency [*] GaCommChannal

msgSize: NFP_DataSize
utilization: NFP_Real []

« mataclass » « stereotype »
UML::Classes::Kemel:: PaRunTInstance
NamedElement
poolSize: NFP_Integer
A unbddPool: Boolean = False
Instance: SchedulableResource
host: GaExecHost

utilization: NFP_Real
throughput: NFP_Frequency

Figure 17.8 - Profile diagram of performance extensions for resources
17.3.2 Profile Elements Description

Imported stereotypes from GRM and GQAM that are part of this subprofile are included in this list, however they are not
defined. Where the semantics of the imported stereotype are affected by the performance domain, the semantics are
outlined.

17.3.2.1 GaAnalysisContext (from MARTE::GQAM)
17.3.2.2 GaAcqStep (from MARTE::GQAM)
17.3.2.3 GaCommChannel (from MARTE::GQAM)
17.3.2.4 GaCommHost (from MARTE::GQAM)

17.3.2.5 PaCommStep

The semantics is similar to GQAM::GaCommStep, however the inheritance from PaStep incorporates the additional
behavior definitions for operations during the step (external operations and behavDemand for a nested Scenario). The
message conveyance may be executed by a combination of host middleware and network services.

346 UML Profile for MARTE, V1.2

Extensions

» None

Generalizations

« PaStep
+ GaCommStep (from MARTE::GQAM)

Associations

* None

Attributes

* msgSize: NFP_dataSize [*]
The size of message to be transmitted by the step.

» concurResource: MARTE::GRM::SchedulableResource [0..1]
The logical communications channel by which the message is conveyed.

Constraints

+ None
17.3.2.6 GaEventTrace (from MARTE::GQAM)

17.3.2.7 GaExecHost (from MARTE::GQAM)

In performance modeling, an GaExecHost can be any device which executes behavior, including storage and peripheral
devices.

17.3.2.8 PalLogicalResource
The PalLogicalResource stereotype maps the LogicalResource domain element denoted in Annex F (F.12.13).

A PalogicalResource is a resource that can be acquired and released explicitly by AcqStep or RelStep. It may be a single-
unit resource, as a mutex or exclusive lock, or have multiple units, as a buffer pool or an access token pool. A logical
resource that is embodied as a software process is stereotyped SchedulableResource or PaRunTInstance instead.

Extensions

« Classifier (from UML::Classes::Kernel)

Generalization

- Resource (from MARTE::GRM)

Associations

» None

UML Profile for MARTE, V1.2 347

Attributes

* poolSize: NFP Integer [0..1]=1
The number of units of the resource.

+ utilization: NFP_Real [*]
The occupancy of the resource, expressed as the mean number of busy units of the resource. If
poolsize = 1, there is one instance, and the utilization is the probabilty it is busy.

+ throughput: NFP_Frequency [*]
The rate of requests to the resource.

Constraints

» None
17.3.2.9 GaRelStep (from MARTE::GQAM)

17.3.2.10 PaRequestedService
The PaRequestedService stereotype maps the RequestedService domain element denoted in Annex F.

The semantics are similar to GQAM::GaRequestedService, however the inheritance from PaStep incorporates the
additional behavior definitions for operations during the step (external operations and behavDemand for a nested
Scenario).

Extensions

 Operation (from UML::Classes::Kernel)

Generalizations

« PaStep
« GaRequestedService (from MARTE::GQAM)

Associations

» None

Attributes

» None

Constraints

» None
17.3.2.11 GaResourcesPlatform (from MARTE::GQAM)

17.3.2.12 PaResPassStep

ResPassStep is applied immediately after a fork to indicate that a resource held before the fork is passed to this branch,
and not shared by all the branches of the fork. Resource units that are held before the fork and not passed, are shared by
all branches.

348 UML Profile for MARTE, V1.2

Extensions

» None

Generalizations

+ GaStep (from MARTE::GQAM)

Associations

» None

Attributes

» resource: Resource [0..1]
The identity of the resource of which some units are passed.

» resUnits: NFP_Integer [0..1] =1
The number of units which are passed.

Constraints

» None

17.3.2.13 PaRunTInstance

A stereotype for a swimlane or lifeline that indicates a run-time instance of a process resource and its properties.

Provides an explicit connection between a locality or role in a behavior definition (a lifeline or swimlane) and a run time
instantiation of a process, and optionally defines properties of the process. In some specifications there may be multiple
deployment instantiations of the same process class, with different properties, so this stereotype should be used for the

properties that are different.

Extensions

« NamedElement (from UML::Classes::Kernel)

Generalizations

+ None

Associations

» None

Attributes

* poolSize: NFP Integer [0..1]=1
The number of threads for the process.

* unbddPool: Boolean [0..1] = false
Indicates effectively infinite threads if true.

* instance: MARTE::GRM::SchedulableResource [0..1]

The SchedulableResource that is the actual process resource.

UML Profile for MARTE, V1.2

349

* host: GaExecHost [0..1]
The host of the process and thus of all Steps associated with this run-time instance.

+ utilization:NFP_Real [*]
The occupancy of the thread pool, in terms of the mean busy threads.

+ throughput: NFP_Frequency [*]
The rate of acceptance of messages by all threads in the process, taken together.
Constraints

» None

17.3.2.14 SchedulableResource (from MARTE::GRM)

In performance modeling, a schedulable resource is a process or thread pool. A named element such as a swimlane or
lifeline that represents behavior of a schedulable resource is stereotyped as a PaRunTInstance (see below) with a pointer
to the resource, and also may capture the size of the thread pool and the host of the process.

17.3.2.15 PaStep

A step is a unit of a scenario. Some inherited properties of PaStep are given to provide performance interpretations.
PaStep without a refining scenario is a basic sequential execution step on a host processor. With a refining scenario it is a
larger unit of behavior.

Extensions

» None

Generalizations

« GaStep (from MARTE::GQAM)

Associations (inherited):

* Dbehavior:GaScenario [0..1]
A scenario that is a refinement of this Step.

Attributes (inherited)

* blockT: NFP_Duration [*]
A pure delay that is part of the execution of a step. Think times for performance models are
represented by a blockT value.

* rep: NFP_Real [0..1]=1
Repetitions, used to represent loops or optional execution.

* prob: NFP_Real [0..1]=1
Probability of a branch.

* host: GaExecHost [0..1]
Host processor (usually implicit in the deployment of the process).

+ servDemand: GaRequestedService [*] {ordered}
A list of operations that are called during one execution of the Step.

350 UML Profile for MARTE, V1.2

* servCount: NFP_Real [*] {ordered}
A list of values for how many calls are made to each operation in the servDemand list, in the same
order.

» concurRes: SchedulableResource [0..1]
The process or software component which executes the step, usually implicit in the location of
execution in the behavior definition (lifeline, swimlane).

Attributes

« noSync: Boolean [0..1] = false
Identifying a Step immediately after a fork, for which there will be no corresponding join. An
asynchronous branch of a fork.

+ extOpDemands : String [*] {ordered}
A set of identifiers for operations by external services which are demanded by this Step, in a form
understood by the performance environment.

+ extOpCount: NFP_Real [*] {ordered}
The number of requests made for each external operation during one execution of the Step, in the
same order as the demands.

« behavDemands: GaScenario [*] {ordered}
A set of scenarios defining operations that are invoked by this Step. This provides another way to
insert a Scenario into a Step, in this case with a parameter for multiple, or probabilistic insertion.

+ behavCount: NFP_Real [*] {ordered}
The number of requests made to execute each scenario operation during one execution of the Step,
in the same order as the demands.

Constraints

* None

17.3.2.16 GaTimedObs (from MARTE::GQAM)

This observer stereotypes is an NFP_Constraint associated to two TimingObservations. In performance analysis it is used
to identify and compute the duration of the time interval between them.

17.3.2.17 GaWorkloadEvent (from MARTE::GQAM)

Defines a stream of events that make up a workload that drives the system. For performance analysis the events can be
taken from a trace (for simulation) from an arrivalPattern, which can be an OpenPattern, or a ClosedPattern; or from a
WorkloadGenerator that is a State Machine defining sequences of operations.

17.3.2.18 GaWorkloadBehavior (from MARTE::GQAM)

A container for a set of Scenarios and a set of WorkloadEvents.

17.3.2.19 GaWorkloadGenerator (from MARTE::GQAM)

A State Machine defining sequences of events to drive a system. There may be a population of instances, each
representing one user or one source of input.

UML Profile for MARTE, V1.2 351

17.4 Examples for Performance Analysis

17.4.1 Example 1: A Simple Web Application

The basic performance features will be illustrated by describing a web-based application. Example 1 is a simple
sequential scenario with basic features of the profile: open arrivals, average processor demands, a repeated operation,
multithreaded processes, and communication overheads at the nodes. Example 2 adds more complex behavior patterns
and corresponds roughly to a web application benchmark.

Figure 17.9, the blockT attribute of the LAN represents the network latency, and the capacity is the nominal maximum
throughput rate. The send and receive overheads on the nodes apply equally to all transmissions. The nodes are
stereotyped as ExecHost and each is a multiserver, with 5 and 2 processors respectively indicated by resMult (multiplicity
of available instances). The webserver artifact represents a load module for the webserver and its deployment, and
similarly for the database.

<<GaCommHost>>
LAN
{blockT = (10,us),
capacity = (100,Mb/s)}

<<GaExecHost>> <<GaExecHost>>
AppHost DBhost
commRcvOvh = (0.15,ms/KB), commRcvOvh = (0.14,ms/KB),
commTxOvh = (0.1,ms/KB)} commTxOvh = (0.07,ms/KB)}
<<deploy>>
<<artifact>> <<deploy>>
<<SchedulableResource>> -
<<artifact>
webserver database

<<magifest>> <<magifest>>
: WebServer : DatabaseSystem

Figure 17.9 - Deployment of Example 1, with communications overhead annotations

352 UML Profile for MARTE, V1.2

<<PaRunTInstance>> <<PaRunTInstance>>
1 web database
i {poolSize = (webthreads=80), {poolSize = (dbthreads=5),
H instance = webserver} instance = database}
i
|
i 1:
1
<<PaStep>> 2:
<<GaWorkloadEvent>> <<PaStep>>

{open(interArrT=(exp(17,ms)))
hostDemand = 4.5,ms}

<<PaCommStep>>

{hostDemand = (12.4,ms),
repetitions = (1.3,-,mean),
msgSize = (2,KB)}

3:

4 <<PaCommStep>>
{msgSize = (50,KB)}

<<PaCommStep>>
{msgSize = (75,KB)}

Figure 17.10 - Example of interaction performance annotations

In Figure 17.10 a simple sequence is annotated, in which a web server makes calls to a database server. The Process
annotation indicates the process resource with 80 threads, and links it to the webserver artifact deployed on the AppHost
Node. Thus the host for PaSteps on this lifeline is the AppHost Node. The scenario steps are annotated on the messages,
as the tool would not accept stereotypes for execution occurrences.

Walking through the message annotations, the first message is stereotyped with the workload, showing it has exponential
inter-arrival times with a mean of 17 ms, thus it is a Poisson process with mean rate 1000/17 = 58.8/sec. This is how a
Poisson process must be annotated. It is also stereotyped as a PaStep with a hostDemand of 4.5 ms; this applies to the
operation triggered by the message.

Message 2 is stereotyped both with the message size (in the CommStep stereotype) and the database operation parameters
(in the PaStep). The Step is repeated an average of 1.3 times (from the repetitions attribute), and this implies the same for
its invocation message, so the communication overhead demands and latencies are repeated also. The CommStep shows a
small (2 KB) message, which according to the deployment information will generate:

host demand on AppHost of 1.3*2*0.1 = 0.26 ms
latency of 1.3*10 us
host demand on DBhost of 1.3*2*0.14 = 0.364 ms

The PaStep has an average of 1.3 repetitions, that is, it is performed conditionally and may be repeated, and creates a total
of 1.3*12.4 = 16.12 ms of demand for DBhost. The reply CommSteps apply further load,

from database: 1.3*50*0.07= 4.55 ms on DBhost, 1.3*50*0.15 = 9.75 ms on AppHost
from webserver: 75*%0.1 = 7.5 ms on AppHost

and the recursive message 4 indicates an additional half ms demand for AppHost.

UML Profile for MARTE, V1.2 353

Performance Models: Queueing Network (QN)

A queueing model of this system has two servers - AppHost with 5 servers and total demand Dap ms/request, and DBhost
with 3 servers and total demand Ddb ms/request - where:

Dap =4.5+ 0.26 +9.75 + 7.5 = 22.01 ms/request
Ddb = 0.28 + 16.12 + 4.55 = 20.95 ms/request
The annotations have not specified a message size for the original request from the browser, so it is ignored.

A QN model could be shown as follows:

Arrivals AppHost DBho%
N
—>" 10>

Dep artures\l/

Figure 17.11 - Queueing Network for Example 1

The two total demand values Dap and Ddb are sufficient to give a solution if this is assumed to be a separable QN, which
means assuming processor-sharing scheduling at the two computers (not a very serious assumption for enterprise
systems). The demands are assumed to include all operating system overheads, including background workloads. If
additional workloads are present they should either be modeled as additional classes (from other scenarios) or some
fraction of processor utilization should be allocated to them.

The QN model ignores the performance impact of the process thread pool sizes. To represent this we require an extended
queueing network or layered network, that models the simultaneous possession of two resources (threads and processor).
(see e.g., Lavenberg, “Performance Modeling Handbook™).

Extended Queueing Network or layered Queueing Network (EQN or LQN)

The ordinary queueing model ignores the thread limits on the webserver and database, which may limit performance. An
EQN can model this with logical resources as shown in the Figure. The oval resource pools have resource tokens that are
dispatched to requests in a queue (the upright triangle shows the dispatcher, the inverted triangle shows the release point
for the thread.

354 UML Profile for MARTE, V1.2

webserver

) process
Arrivals AppHost

S5 Ihns>" D N>
i database DBhost

process
Departures €=\, / €&——l

dbthreads

Figure 17.12 - Extended Queueing Network diagram

The service time of the logical server is the holding time of the thread. Solution of an EQN is approximate, using various
strategies (see e.g., Jain, or Menasce and Almeida).

In Figure 17.13 each process is a logical server with a queue and a pool of tokens representing the process threads. The
arriving job must first obtain a process token and be processed by the webserver on AppHost, then without releasing the
first token (since this is a blocking call) it obtains a database process token and is processed by the database on DBhost.
It releases the second token and goes back with the reply to the webserver, cycles an average of 1.3 times to the database,
and then releases the webserver token and departs. This resource logic is captured more compactly in the LQN, in which
each process is a layered server, illustrated in Figure 17.12.

arrivalsat 58.8/sec
htmIReq| webserver @
10 ms | [webthreads]
Ll 3)
dbReq database D
124ms | [dbthreacs]

Figure 17.13 - Layered Queueing version of the same model

The LQN notation has servers that are processes or tasks (represented by the bold rectangles, with threading shown as a
multiserver multiplicity) allocated to host processors, the ellipses, also with multiplicity. The classes of service are
denoted as entries, the attached rectangles, showing the total hostDemand for each operation. Entries make requests to
other entries, shown as arcs labeled with the mean frequency (1.3 here). The solution of the LQN is essentially the same
as the solution of the EQN above, it is just a more elegant notation provided the usage of logical resources are nested,
lower layers within higher.

17.4.2 Example 2: An Electronic Bookstore Home Page Interaction

This example illustrates additional annotations and their application to additional features of the UML2 Interaction
Diagram:

+ Parameters global to the AnalysisContext, and their use in expressions for values.

UML Profile for MARTE, V1.2 355

« Alt and par CombinedFragments stereotyped as Steps, with probability for alt.
+ An external operation for storage.

« A noSync stereotype applied to an asynchronous operation.

+ A closed workload.

+ Computation of parameters for the reply to getHomePage, using an NFP with expressions to determine the value,
depending on the variable $images.

+ A repeated action (getHomelmages) and an optional action with a probability.
A percentile requirement on overall response time.

The example is elaborated from the Transaction Processing Council standard scalable benchmark TPC-W for electronic
commerce (see TPC for the specification), by putting two Promotions into an alt combination (Promotionl on the first
pass, then Promotion2 thereafter), and introducing a logging operation in parallel with getHomelmages.

The scenario shows the interactions of a user starting from getting the home page, until the page is completely displayed.
It includes checking the site’s data on the user if the user is logged in with a site ID, retrieving a subpage on a promotion,
getting page data from the database, and getting a number of embedded images from an image server.

The deployment is based on example 1, with an added image server. It does not specify the number of replicated
processors, so the default value of 1 is assumed.

<<GaCommHost>>
LAN
{blockT = (10,us),
capacity = (100,Mb/s)}

<<GaExecHost>> <<GaExecHost>> <<GaExecHost>>
AppHost ImageServerHost DBhost
commRcvOvh = (0.15,ms/KB), {commRcvOvh = (0.1,ms/KB), commRcvOvh = (0.14,ms/KB),
commTxOvh = (0.1,ms/KB), commTxOvh = (0.2,ms/KB)} commTxOvh = (0.07,ms/KB),
resMult = 5} resMult = 3}
A o A
<<deploy>> <<de:ploy>> <<deploy>>
..
<<artifact>> <<artifact>> <<artifact>>
<<SchedulableResdurce>> <<SchedulableResource>> <<SchedulableResource>>
webserver imageserver database

<<manifest>> <<manifest>>

<<manifest>>
:WebServgr : ImageServer : DatabaseSégm

Figure 17.14 - Deployment of a web application representing the TPC-W benchmark

The behavior is shown in Figure 17.15.

356 UML Profile for MARTE, V1.2

<<GaPerformanceContext>>
{contextParams=in$Nusers, in$ThinkTime, in§lmages, in$R}

browser webserver imageserver database
r<PaRunTInstance>> <<PaRunTlnstance>> <<PaRunTlnstance>> <<PaRunTlInstance>>
{instance=browser} {instance=webserver} {instance=imageserver} {instance=database}

1: getHomePage

<<GaWorkloadEvent>>

{closed(population = Nusers
extDelay|=|ThinkTime)} opt J <<PaStep>> 2. getiCustomeData

<<PaStep>> hostDemand = (2,ms)}
{hostDemgnd = (1,ms), 3:
respT ={((fl,s,percent95),red)
((R,s,pericgnt95),calc)}, <<PaStep>>{prob = 0.2
k<PaCommStep>p [if customgr s logged in]

{msgSiz¢ (2.9,KB)}

a .

alt
ref
[first promo] <<PaStep>>{proly = 0.4}
Promotion1
| 1
[else raf

<<PaStep>> {probi = 0.6}
Promotion2

4:getlistOfSuljjects <<PaStep>>
{hostDemand = (10,ms)}

5:

par

6: loginteraction

[l <<PaStgp>>
{noSync}

8: {hostDemand = (0.5,ms),
' rep = Images,

I_ extOpDemand ="ImageFileOp",
extOpCount = 1}

7: getHomel magj <<PaStep>>

9:

<<PaCommStep>> |
{msgSize = (3.4 + 5*|mages)}

Figure 17.15 - Example 2: the home page scenario of the TPC-W standard benchmark, with some additions to
illustrate alt and par CombinedFragments

UML Profile for MARTE, V1.2 357

17.4.3 Example 3: a building surveillance system

17.4.3.1 Overview

This is a soft real-time embedded system with a set of cameras that must be scanned at least once every second (with 95%
probability), as described by Xu et al. The scan is free-running, with the next camera being polled as soon as the image-
capture of the previous one is complete. The images are polled by an “acquire” thread, placed in a buffer and passed to a
“storage” thread, which stores them in a database. Multiple buffers, asynchronous storage, and multithreaded processes
ensure concurrency in the handling, to obtain adequate performance.

The profile features that are emphasized in this example are:

Case parameters attached to the PerformanceContext, giving the number of cameras ($Ncameras), the size of a camera
image ($imageSize, in MB), and the number of storage blocks per image ($blocks), with default values.

Annotation of an activity diagram, with process resources stereotyped on ActivityPartitions (swimlanes).

Repetition of a complex operation defined by a StructuredActivity. It is stereotyped as a Step with a repetition count
and a refinement as the interior activity.

Use of both a mean and variance in defining a host demand parameter.

A CommStep stereotype applied to an ActivityEdge.

A logical resource (the buffer pool) with multiple units, with explicit acquire and release steps.
Passing a resource from one process to another (passing a buffer to be stored).

An external Service (a file storage operation) defined by name only in an extOpDemand attribute of the Database
operation.

Figure 17.16 and Figure 17.17 show the deployment and activity diagrams for the example. In the deployment diagram
the “SchedulableResource” stereotypes are shown only for the Control artifact, but in fact apply to all the artifacts shown
(not shown to avoid diagram clutter).

358

UML Profile for MARTE, V1.2

<<GaAnalysisContext>>
{contextParams=in$Nbuffers = 15}

<<GaExecHost>>
Camera

<<GaExecHost>>

LAN ControlNode

J<GaCommHostp>

{capacity = (+08-Mbis)}
i

<<dep oy>>

<<deploy>>

Backend

y<GaCommHost>>

{capacity = (10

<<GaExecHost>>

DataBaseNod
00,Mb/s)

<<deploy>>

<<depl y>>

<<artifact>x® <<artifactfy <<artifactp® <<artifact¥®
BufMgr Control Acquire Store
<<SchedulaljleResource>
i
<<deploy>> <<m%pifest>> <<m4gnifest>> <<mgnifest>>
<<Resource>> [N||_: CameraContr#Facguire :Acgui&| | : Store [|
bufferpool
{resMult = $Nbuffe|rs}

<<dgploy>>

<<artifact
DB

<<mgnifest>>

Figure 17.16 - Deployment diagram of the building surveillance system of example 3

Examining the deployment diagram first, the nodes are stereotyped as ExecHost. As the Camera node is only symbolic,
and is not represented in the design, it need not be stereotyped. The ProcessingRate attribute of the DataBaseNode is
interpreted for performance as a factor, relative to a nominal processor, on which the hostDemand figures are based.

The deployed objects are all artifacts, and it is these artifacts that are referenced by the RunTInstance stereotypes in the
activity diagram. The reference to the artifact (rather than to the class or instance) is to resolve the deployment of active
objects. The bufferpool artifact stands for a set of buffers at run-time, and the number of buffers $Nbuffers is a significant
parameter for performance (remember resMult stands for “multiplicity of resource instances™).

The attachment of the parameter $Nbuffers to the analysis context assists in identifying parameters that may be varied
over cases in the analysis. The analysis context should be shared with the behavior diagram(s).

UML Profile for MARTE, V1.2

359

<<GaAnalysisContext>>
{contexParams={in$Ncameras = 100, in$frameSize = 0.1, in$blocks = 15,
in$acquireThreads = 1, in$storeThreads = 2, in$DBThreads = 2},
<<GaWorkloadEvent>>
{closed (population = 1, extDelay = 0),
interOccTime = {(1.0,s,percent95,req),

(CycleTime95,s,percent95,calc)

& cyclelnit °®

<<PaStep>>
{hostDemand = (0.2, ms),
T extDelay = (0, s), N

getOnelmage <<PaStep>>{rep = $Ncameras}

<<PaRunTInstance> <<PaRunTInstance>> <<PaRunTInstance>> <<PaRunTlnstance>>
Acquire bufMgr Store DB
. . {resMult = 1, fresMult = storeThreads| {resMult=DBThreads,
{instance = Acquire, instance = Acquire} | stance = Store} instance = DB}

resMult = acquireThrgads}

<<PaStep>>

getBuf <<PaStep>>
{hostDemand = (1. s)} <<GaAcqStep>>
allocBuffer

{hostDemand = (0.5,ms)
acqRes = bufferpool,

<<PaStep>>
storelmage

getimage

resUnits = 1} {hostDemand = (2.5,rhs}, <<PaStep>>
<<PgCommSte p>> oSl {hostD::er:c?E
msgSize =|($frameSize,bytes), *
b = ($frarheSize/ 1500} H{(blocks’0.9).msmean}.

(blocks*0.2),var)},

<<PaStep>> extOpDemand = writeBlock,

PassStep>> freeBuf tOpC = block
resource = bufferpool, extOpCount - blacks)
resUr?its 27 urrerp! hostDemand = (0.2,rhs)}

yd
<<PaStep>>

<<GaRelStep>>

deallocBuffer m

{hostDemand = (0.5,ms)),

relRes = bufferpool} e

Figure 17.17 - Activity diagram for the building surveillance system of example 3

In the activity diagram there are additional global parameters associated with the analysis context. The workload is

modeled as a single “user” (think of it as a token) that arrives to initiate a scan, and returns immediately after the scan is
done to start the next one. Thus the population is 1 and the external delay is zero. The performance requirement is on the
95th percentile of the time between successive initiations of the scan; thus 95% of scans should take less than 1 second.

The cyclelnit Action has a hostDemand. Since it is not shown in a swimlane, its process (SchedulableResource) is given
directly on the Step stereotype by the attribute “concurRes” (which determines its deployment and thus its host
processor).

360 UML Profile for MARTE, V1.2

Apart from the scan initialization, the scan is a loop that is described inside a StructuredActivity that is stereotyped as a
Step, with a repetition count equal to the number of cameras. Four processes are identified: the component attribute gives
the artifact for deployment, and the resMult attribute gives the number of threads. Two comments:

- Since threads are annotated on the PaRunTInstance, two run-time instantiations of the same artifact can have different
numbers of threads.

 One artifact may manifest multiple processes.

The StructuredActivity has two ending points, and shows the use of the noSync attribute of the storeImage Step, to
enhance concurrency. After the fork node on the left, the main loop ends and this allows the next iteration to begin. The
explicit noSync attribute on the storelmage action shows that the main behavior does not wait for this branch to complete,
so the right-hand behavior for storing the frame continues in parallel with the next scan. In fact, the concurrency of the
storage behavior is only limited by the number of Store threads and the number of buffers. This overlapped storage
behavior is illustrated by a Gantt chart, in Figure 17.17. Any number of concurrent storage operations can be continuing
while further buffers are filled, up to the point where there are no free buffers to allocate.

get buffer and fill with get buffer and fill with get buffer and fill with third |

e . 1 : etc.
firstimage second image image

K

store first image and deallo&ate buffer |

¥tore second image and deal?vcate buffer |

store third image etc... |

» time

Figure 17.18 - An asynchronous pattern of buffer storage operations, indicated by the noSync property (to indicate
concurrent continuation of a refinement BehaviorScenario after the return to the outer level of behavior).

The bufferpool logical resource is of importance in this specification, as the system suffers easily from buffer starvation.
Notice:

+ The number of buffers is declared on the deployment artifact.

« The acquisition and release of the buffers are separate stereotypes on the buffer manager steps that allocate and
deallocate them. The single unit of resource is shown explicitly on the allocate (it need not be defined as one is the
default), but the deallocate uses the default.

« The explicit passing of the buffer from one process to another is shown by the ResourcePassStep stereotype attached to
an ActivityEdge from Acquire to Store. Here the unit is shown (one is again the default). Without an explicit
ResourcePassStep, the logical resource is handed on along the flow, including flows that cross from one process to
another (as in the return from the Buffer manager). However after a fork in the flow it may be essential to indicate the
passing explicitly.

Only one CommStep is annotated here, for the delay to transfer the data over the network. The database communications
might also be significant. The annotations give a derived communications latency of (message size)/rate, in the absence
of explicit delay and demand attributes in the deployment diagram.

UML Profile for MARTE, V1.2 361

The use of mean and variance in specifying a random hostDemand, is illustrated for the storeDB action. Notice that the
units are not given for the variance (implicitly they are the square of the units for the mean, but they are normally not
stated).

An external operation is defined for the storeDB action, defining the storage on disk of one block of image data, with an
operation count of $blocks.

17.4.4 Example 4: Communications example, a layer subsystem

Communication is provided by the execution platform of the system, and this may be described in UML by a layering of
components and subsystems. The commService stereotype on a message identifies an Operation on an interface of the
platform, as conveying the message. This sub clause illustrates the concept with an oversimplified CORBA layer
submodel.

I ——

1: <<PaCommStep>>

{servDemand =send, servCount = 1}

2: <<PaCommStep>>
{servDemand = send, servCount = 1}

3:

<<PaCommStep>>
{servDemand =send, servCount = 1}

Figure 17.19 - Sending of messages by the application, with commService attributes

Figure 17.18 shows a call-reply pair and an asynchronous message. Notice that the reply is stereotyped separately here, so
it has its own sub-scenario. It is also possible to aggregate all the latencies and workloads into the request, which provides
the correct total workload and delays but does not represent the behavior precisely. Figure 17.19 shows the simplified
CORBA system, with a stub component (integrated with the sender), a skeleton component (integrated with the receiver),
an ORB component to execute the core functions, and a location server. The last two are separate processes in this
assumed system; the deployment will not be shown.

362 UML Profile for MARTE, V1.2

corba-ayer Sending
<<PaRequestedService>>+send(){behavior+
wi‘f)a oCT Id}
Stub ORBCIassesl LocationService
|

Receiving

+receive()

Skeleton

corba-layer

send |: |—| stub : StubI

[.
Iskeleton : Skeleton I———[

|_| ORB: ORBCIasseF
[

| locationService : LocationServic+e

:| receive

Figure 17.20 - A simplified CORBA layer subsystem

The send port has an interface of type Sending that offers an operation send, which is stereotyped as a
«PaRequestedService», with behavior definition given by the sequence diagram in Figure 17.21 (the behavior attribute

does not show in the stereotype).

The identification of the send operation of the layer, in the stereotype «commStep», binds the CORBA layer component
model that offers this service, and the behavior model, into the original scenario. The send operation that starts the
scenario in Figure 17.21 is the operation that begins the conveyance of the message. The binding of the receive required
interface and the receive operation of Figure 17.21 to the receiver of the application message is implicit.

UML Profile for MARTE, V1.2

363

SD corbaSend <<GaScenario>>

<<GaAnalysisContext>> {contextParams=in$messageSize}

stub <<P#RunTInstance}> 4<PaRunTInstan¢e>> wﬂ

ORB locationService

1

<<PaStep>>
{hostDemand = ((0.01*messageSize),ms)}
2:
<<PaStep>> 3
{hostDemand = (12 'rSL<PaCommStep Lo
prob = 0.3} <<PaStep>>
4:
9.
6:<<PaStep>> .
<<PaCommStep>> 7:

{hostDemand = ((0.011*messageSizq},ms)}

Figure 17.21 - Behavior of the operation "send"
17.4.5 Example 5: Services by component subsystems

Operations by components and subsystems may be included in a Step by giving it an attribute servDemand with a
parameter servCount. ServDemand is typed on the operation, which itself must be stereotyped as GaRequestedService,
and servCount is the average number of invocations. Services may be useful to include platform and environment
operations, without modifying the behavior definition provided by the designer.

Figure 17.22 shows a basic behavior that invokes a findRecord operation defined on the class DataManager, three times.
The findRecord operation is shown in Figure 17.23 and is annotated with its hostDemand and an external service
operation.

364 UML Profile for MARTE, V1.2

<<PaRunTlInstance>> <<PaRunTInstance>>
webserver

. App
{pooISize = (webthreads=80}), {instance = App}

instance = webserver}

1: htmIReq
<<PaStep>> 2: appReq
hostDemand = 4.5,ms} . <<PaStep>>
aStep>

<<GaWorkloadEvent>> -
{open (IntAnTime = exp(17,ms)), {hostDemand = (12.4,ms),
servDemand = findRecord,

servCount = 3}

..I_-.__--__--.__-.__-.-_--_.--.__-.__.-__-___--._--.._--__--___-._

Figure 17.22 - Sequence diagram for an operation findRecord invoked from a Step

DataManager

<<PaRequestedService>>+findRecord(){hostDemand = (7,ms),
extOpDemand = readStore, extOpCount = 1500, concurRes = dataManager}

Figure 17.23 - The DataManager class with annotated operation findRecord

In both Figure 17.21 and Figure 17.22, the operation findRecord is stereotyped on the DataManager class, not on a run-
time instance of DataManager. Because the stereotype extends PaStep, it can also have properties execHost and
concurRes which identify the host processor and process, respectively. This is sufficient if there is just one deployment of
DataManager. If there is more than one deployed instance of DataManager, there is a problem to identify which instance
is invoked and what are the parameters such as hostDemand. A possible solution is to use a different variable name for
the servCount in the PaStep stereotypes that make the invocations. Then that variable name can be associated with a
deployed instance in a table.

For example if StepA invoked findRecord on dataManagerl, its servCount for the operation could be set to the variable
$findR 1, while StepB invokes the same operation on dataManager2 $findR2 times. Then a table can be set up:

Table 17.1 - Instance Parameters for calls to DataManager findRecord

Instance servCount Variable Value
dataManagerl $findR1 3
dataManager2 $findR2 1.7

UML Profile for MARTE, V1.2 365

This associates the instances with the Step and a value. The tool would have to determine the deployment of each instance
by name, however.

<<GaCommHost>>
LAN

{blockT = (10,us),
capacity = (100,Mb/s)}

] |

<<GaExecHost>> <<GaExecHost>>
AppHost DataMgrhost
{commRcvOvh = (0.15,ms/KB), commRcvOvh = (0.14,ms/KB),
commTxOvh = (0.1,ms/KB), commTxOvh = (0.07,ms/KB),
resMult = 5} resMult = 3}
i ; i
| i i
<<deé/|oy>> <<dee:/|oy>> <<de@oy>>
<<artifact>> D <<artifact>> <<artifact>> D
webserver application dataManager
i i i
<<ma NI'rfest» \§<man ifest>> <<m a@ifest»
| : WebServer | | : Application | q<PaRunTInstance>>
: DataManager

Figure 17.24 - Deployment of the dataManager instance of DataManager

Call Hierarchy

The operation findRecord may be the work of a subsystem rather than a single object, and the subsystem can be annotated
to show the invocation hierarchy and to parameterize the calls. The next example shows a call hierarchy and also a
number of instances of the same class, with additional parameters. The call hierarchy may be represented schematically in
terms of the instances as in Figure 17.25, with a modified data manager DataManagerB.

366 UML Profile for MARTE, V1.2

| dataManager:DataManagerB | DataManagerB |

h/ search|
searc

sel: se2: SearchEngine
SearchEngine SearchEngine
io io
storA:Storage | | storB:Storage | storC:Storage
(a) (b)

Figure 17.25 - (a) Call Hierarchy for the findRecord operation of dataManager,
(b) Class structure of the call hierarchy

First the class structure of the call hierarchy may be represented as in Figure 17.25(b). The operations of the classes are
annotated to represent this, with variables for the operation counts, in Figure 17.26.

DataManagerB

<<PaRequestedService>>+findRecord(){servDemand = search, servCount = searchC ount

Instance parameters for calls from
DataManagerB.findRecord

SearchEngine Instance findRecord.searchCount
of SearchEngine
<<PaRequestedService>>+search(){hostDemand = (seHostDem,ms), servCount = ioCount, servDemand = io} sel 1.0
se2 0.7

sel : SearchEngine | |se2 : SearchEngine

AN

Instance parameters for calls from SearchEngine.search

Instance of seHostDem Instance of search.ioCount

SearchEngine Storage
Storage sef @1,ms) storA 200
storB 350
<<PaRequestedService>>+io(){hostDemand = (25,us)} se2 (15,ms) storB 30
storC 250
storD 175

|storA : Storggg| |storB : Storggg| |storC : Storggg|

Figure 17.26 - Annotations to the classes for the class invocation hierarchy of Figure 17.25

We can see in the annotations that the target operations are identified, with variable $searchCount for the search operation
and variable $ioCount for the io operation. The bindings of instances to invocations is defined in the tables. In the upper
table it is stated that there are calls to two different instances of SearchEngine, with the given values of the count. Notice
that since it is an average count it can be non-integral. These values are NFPs so it could be written with a statistical
qualifier.

In the lower table the instances of SearchEngine and Storage are bound together by definitions of the $ioCount variable
for different combinations of the calling and called operation, and the parameters $seHostDem of the search operation is
defined for each instance of SearchEngine.

UML Profile for MARTE, V1.2 367

17.4.6 Example 6: State machine annotations

We will consider some kinds of behavior described by a state machine. The first kind will be a state machine that governs
the generation of requests, called in the profile a “Workload Generator” state machine. The states represent states of the
user (or the process that generates the workload) and in each state, there is a reference to a behavior for that state. This

behavior represents an action taken on entering the state. The blockingTime attributes represent user-thinking time during
that state, before the user enters the request that will take it to a new state.

Figure 17.27 shows a simplified version of the cycle of user states described for the TPC-W benchmark, and references
one interaction diagram in each state. The behavior for each state is a single execution and does not itself have repetitive
workload attributes. The getHomePage interaction diagram would be the same as the one depicted in Figure 17.15 but its
GaWorkloadEvent stereotype would reference the state machine as a WorkloadGenerator.

368 UML Profile for MARTE, V1.2

<<GaAnalysisContext>>{contextParams=in$ Nusers}
<<GaWorkloadGenerator>>{population=Nusers}

<<PaStep>>
GetHomePage

{behavDemand = getHomePage,
behavCount = 1,
blockT = (4,s)}

<<PaStep>>
NewProducts

{behavDemand = newProduct,
behavCount = 1,
blockT = (4,s)}

<[Pastep>> <<PaStep>>
{lprob = 0.9} (prob =0.7)
<<PaStep>>

GetProductDetails

{blockT =(10,s),
behavDemand = getProductD etails,
behavCount = 1}

<<PaStep>>
{prob=0.1}

<<PaStep>>
ShoppingCart
{blockT = (12,s),
behavDemand = ShoppingCart,
behavCount = 1}

<<PaStep>>
{prob = 0.3}

<<PaStep>>
Checkout

Figure 17.27 - Example 6: a WorkloadGenerator state machine combining five scenarios for the electronic

bookstore

{blockT = (45,s),
behavCount =1,
behavDemand = Checkout}

Some of the transitions are also annotated as PaStep in order to specify the transition probability to the next state. For
instance after GetProductDetails, there is specified a 90% probability of looking for new products again, and 10% for

proceeding to the shopping cart.

UML Profile for MARTE, V1.2

369

A workload generator could more generally be a set of state machines communicating by signals and all generating
behavior concurrently.

The analytic performance model will represent the generator as a Markov Chain governing the probabilities of making
requests for different behaviors (what is sometimes called the user profile).

The Markov Chain is solved to provide the steady state probabilities of each state, and thus of each behavior in the
combined workload.

A second use of a state machine is to define a sequence of operations, like an interaction diagram. This must be a
behavior that terminates, and its start point is driven by a WorkloadEvent.

Each state or transition can be a PaStep, and a state can be refined to a subscenario either as a composite state or by an
annotation with a behavDemand as above. A composite state with multiple regions is an implicit parallel section, however
all the details of composite states (e.g., history) have not been integrated into the profile. This kind of terminating
behavior can also be defined with several interacting machines.

A third use of a state machine is similar to the second, but it repeats infinitely, waiting at some well-defined “home state”
for input events derived from a WorkloadEvent stream.

370 UML Profile for MARTE, V1.2

Subpart IV - Annexes

This subpart contains the following annexes.
* A - Guidance Example for Use of MARTE
* B - Value Specification Language (VSL)
* C - Clock Handling Facilities
* D - Normative MARTE Model Libraries (MARTE Library)
» E - Repetitive Structure Modeling (RSM)
* F - Domain Class Descriptions
* G - Bibliography
* H - Mapping SPT on MARTE

| UML Profile for MARTE, V1.2 371

372 UML Profile for MARTE, V1.2

Annex A
Guidance Example for Use of MARTE

A.1 Open-source Tool Support for MARTE

In the context of different projects - System@tic::UsineLogicielle::OpenDevFactory (http://www.usine-logicielle.org/),
RNTL::OpenEmbeDD (http://openembedd.inria.fr/home html), and CARROLL::Protes/CORTESS(http://www.carroll-
research.org/) - the CEA LIST has developed an open-source implementation of the UML profile for MARTE (including
a support for the VSL language). This implementation is an eclipse-based project and it is available at this address:
www.papyrusuml.org.

A.2 AADL-like Models with MARTE

AADL is an RTES design and analysis language and standard referenced at the SAE (standard number XXX). Version 2
has been voted in XXX. This sub clause presents the correspondence between MARTE 1.0 and AADL 2.0 concepts, with
the aim to clarify which subset of MARTE concepts shall be used to explicit AADL concepts. The MARTE profile has
been adopted as the UML profile for AADL, so this sub clause presents the MARTE2AADL concepts correspondence.

The sub clause is not a methodology to design AADL applications in UML.

An AADL specification consists of AADL global declarations and AADL declarations. Global declarations essentially
describe a hierarchical package structure for the system model.

AADL declarations comprise component types and implementations and port group types.

A component type specifies a functional interface in terms of “features,” flow specifications and properties. These would
be considered as communication models in MARTE.

A component implementation describes the internal structure and behavior of that component in terms of subcomponents,
connections and flows across them, and behavioral modes.

A system modeled in AADL consists of “application software” components “bound” to “execution platform” components.
In MARTE the word “software” is dropped from “application,” since the execution platform can also contain software
(middleware, RTOS) as well as hardware parts. AADL “binding” is called “allocation” in MARTE, following the SysML
wording, but the concept is the same. It can be hierarchical and compositional.

AADL application ‘software’ components are made of data, threads, and process components. Data are akin to Objects in
UML, as they may contain “subprograms,” similar to UML operations. AADL thread components model units of
concurrent execution. A scheduler manages the execution of a thread. Threads can be in states such as suspended, ready
or running. State transitions occur as a result of dispatch requests [...] or if time constraints are exceeded. Dispatch
semantics are given by standard dispatch protocols such as periodic, sporadic, and aperiodic threads. Additional dispatch
protocols may be defined. This provides various models of computation, including simultaneity of concurrent threads
running periodically on the same clock. Different clock domains can be defined; as well as explicit delays on any logical
clock. This again is in line with some of MARTE’s requirements. Threads owe behaviorally to UML activity diagrams,
which allow distinction between Object (Data) and Control (Event) flows.

UML Profile for MARTE, V1.2 373

AADL execution platform components use processors, memory, busses, and devices. They are connected by “features”
such as flows and may be structurally and behaviorally switching modes (in a control-flow fashion). This again is in line
with MARTE. Flows can be represented by UML sequence diagrams, and modes by state diagrams.

Operating systems may be represented through properties of the execution platform or, requiring significantly more detail,
modeled as software components. These call for various Models of Computation. The ability to model in the RT/E design

part the scheduling disciplines considered in the Analysis part is also a goal in MARTE.

An AADL system design contains a set of properties needed to support system generation and/or desired forms of
scheduling analysis. This information will be generated from the AADL design model.

To fully address MARTE to AADL mapping, the SysML profile is needed, and shall be imported: the “Block” concept is
used to represent the AADL system concept.

A.2.1 MARTE for AADL Summary Table

The following table resumes the mapping defined between AADL and MARTE concepts.

A.2.1.1 AADL Software Components

AADL Concepts

MARTE/UML concept

AADL definition

subprogram group accesses.

Data UML DataType, UML Classifiers, Data component represents data types, static
swMutualExclusionResource according the data, data assessors, shared data in source
different semantics. text.

Subprogram UML Operation accessible through A subprogram component represents

sequentially executed source text that is
called with parameters.

Subprogram Group

UML Operation stored in UML
“modelLibrary” element.

A subprogram group represents subprogram
libraries accessible through subprogram group
features and connections.

Thread MARTE swSchedulableResource stereotype Concurrent schedulable unit of sequential
on UML Classifier. execution through source code.

Thread Group MARTE swSchedulableResource stereotype | A thread group represents an organizational
on abstract UML Classifier. component to logically group threads

contained in processes.

Process MARTE memoryPartition stereotype on Represents a protected address space and

UML Classifier. contains executable code or data.
374 UML Profile for MARTE, V1.2

A.2.1.2 AADL Hardware Components

AADL Concepts

MARTE/UML concept

AADL definition

Processor

hwProcessor stereotype on UML Classifier.

Hardware unit responsible for scheduling and
executing threads.

Virtual Processor

swSchedulingResource and
ProcessingResource on UML Classifier

A virtual processor represents a logical
resource that is capable of scheduling and
executing threads.

Memory hwMemory stereotype on UML Classifier. Abstract representation that is a storage
component for data and executable code.
Bus hwBus stereotype on UML Classifier. Hardware unit that enables communication
among other execution platform components.
Virtual Bus CommunicationMedia stereotype on UML A virtual bus component represents logical bus
connection or classifier allocated to the abstraction.
physical HWBus.
Device hwDevice stereotype on UML Classifier. Represents entities that interface with the

external environment of an application system.

A.21.3 AADL System

AADL Concepts

MARTE/UML concept

AADL definition

System

SysML Block on UML composite structure.

Represents a composite software, execution
platform, or system components.

Pre-requisite: to fully address MARTE to AADL mapping, the SysML profile is needed, and shall be imported: the
“Block” concept is used to represent the AADL system concept.

A.2.1.4 AADL Features

AADL Concepts

MARTE/UML concept

AADL definition

only ONE data attribute.

Data Port flowPort typed by a UML Primitive type or Represents a composite software, execution
Data type. platform, or system components.

Event Port ClientServerPort typed by UML signal without | MARTE ClientServerPort typed by a UML
data attributes. signal without data attributes.

EventDataPort ClientServerPort typed by UML signal with AADL Event Data Ports should be represented

as MARTE ClientServerPorts typed by a UML
signal with only ONE AADL data attribute.

| UML Profile for MARTE, V1.2

375

AADL Concepts

MARTE/UML concept

AADL definition

Feature group

UML2 port typed by UML interface composed
of at least two attributes or operations.

Represents group of component features.

Data access

UML2 port typed by UML interface composed
of ONE attribute.

Represents modeling of shared access to a
common data area or static data.

Subprogram group
access

UML2 port typed by UML interface composed
of ONE operation.

Represents accesses to subprograms
components.

Bus Access

UML2 UML interface directly provided by
HwBus.

Represents connectivity of execution platform
components through buses.

A.2.1.5 AADL Connections and Flows

AADL Concepts

MARTE/UML concept

AADL definition

Connections

UML delegation connectors between Ports and
Parts on composite diagrams. UML assembly
connectors between parts.

A connection declaration binds a port from a
component to another one.

Flows specifications See A.2.8. Specifies the detailed description and analysis
of an abstract information path throughout a
system.

End-To-End Flows See A.2.8. Specifies a flow that starts within one

subcomponent and ends within another one.

A.2.1.6 AADL Mode

AADL Concepts

MARTE/UML concept

AADL definition

Mode

See A.2.7.

Represents a defined configuration of
contained components and connections.

A.2.1.7 AADL Properties

As MARTE suggests many precise concepts, dedicated to design and analysis, most AADL properties can find their
equivalences in MARTE. If not, they will be added through “NFP” and “NFP constraints,” precising the MARTE
characteristics. All these properties will be precise in each AADL concepts mapping area.

Contrarily to MARTE, AADL also addresses other aspects, like platform parameterization and code generation aspects.
These specific properties have not been considered because of being out of scope of MARTE.

AADL Concepts

MARTE/UML concept

AADL property set

MARTE stereotypes and associated attributes and user defined Nfp and NFP constraints

stereotyped attributes.

376

UML Profile for MARTE, V1.2

A.2.1.8 AADL Binding

AADL Concepts MARTE/UML concept AADL definition

System Binding MARTE Allocate stereotyped UML Binds software components to appropriate
Dependency, with attribute “nature” set to execution platform components (i.e., hardware
“SpatialDistribution.” components).

A.2.2 Packages, Components Declaration, and Implementation

A.2.2.1 Packages

AADL packages will be used to organize component modeling, improving model visibility and component reuse. AADL
packages will be modelized by the way of UML packages as shown in Figure A.1.

A.2.2.2 Component type and implementation

In AADL, each component is characterized by a component declaration and some component implementation
descriptions. Each component type specifies the external behavior of the component, its way of communicating and
features that might be provided for other elements. Component implementations allow the definition of subcomponents,
mode specific behaviors, or components properties.

Component declarations and implementation could be modelized in different packages named Declaration and
Implementation as shown in Figure A.1. A Uml “ComponentRealization” will be used to formalize this implementation
relationship (“Gps” component can have two different implementations named “Gps.Basic” and “Gps.Handheld”).
Component declaration and implementation could also be extended using a UML Generalization link (“Gps.handled”
implementation extends “Gps.Basic” implementation).

Declaration

==memoryPartition== ==rmemaoryPartition==
Gps | Gps_secure

T S

S e

[
Implementation - ~
~ ~
| o .

I
==memaryPartition== ==memaryPartition== ==memoryPartition==
Gps.Basic v Gps_secure.Handled . Gps.handled

Figure A.1 - Component Types and Implementation modeling

UML Profile for MARTE, V1.2 377

A.2.2.3 Abstract component

The component category abstract represents an abstract component. AADL abstract component category represents a
component that can be refined into any concrete component categories.

It will be represented as an abstract UML classifier, refined using “refined” UML abstraction according to AADL
constraints (features, access).

MARTE View AADL View
abstract car
end car;
e E abstract power_train

==Block==
carRT

| 7

end power _train;

: p— o| abstract exhaust_system
car.genere = IRTHIY end exhaust system;

PowerTrain : power _train i | : : .
— — + — — — —| Power_train: power_train abstract implementation car.generic
| ExhaustSystem : exhaust_system I; refings= subcomponents

el “Blucks> o PowerTrain: abstract power _train;

Exhaust_system : exhaust_system
ExhaustSystem: abstract exhaust system;

‘pawer_train ‘ ‘exhaus(_symm ‘ end car.generic;

system carRT extends car
end carRT;

system implementation carRT.impl extends car.generic
subcomponents
PowerTrain : refined to system power _train;
ExhaustSystem : refined to system exhaust system;
end carRT.impl;

A.2.2.4 Prototype

AADL Prototype represents parameterization of component type, component implementation, and feature group type
declarations. AADL also provides more specific refinement capabilities as in/out direction, required/provided ports, port
kind, and component category.

On the MARTE side, UML will provide “Template” concept specifying how classifiers can be parameterized with
Classifier, ValueSpecification, and Feature (Property and Operation) template parameters. TemplateParameters will be
typed by TemplateSignatures. A template binding relationship specifies the substitutions of actual parameters for the
formal parameters of the template.

Only Classifier Parametrization will be addressed within the MARTE2AADL mapping.

378 UML Profile for MARTE, V1.2

IT=T |

_LSugcorlstiae B SchorEpTy_pe |

==memaryParttions=
flowComponent

incoming : T ‘,H sub : SubcompType

T
|

==bi|l1d:=» T-= Signal, Subcomponent Type-=distributed_sample lj
|

=Signal, distribute_samples

==memaoryPartitions=
refined_flowComponent

a-thread : distribute_sample

incaming : Signal ‘,ﬁ <=gwEchedulableResource== —

In the above example, the type T will bind to Signal, and distributed_sample component to type SubcompType.
A.2.3 Software Components

A.2.3.1 Process

A process represents a virtual address space that protects its internal data. This virtual address space contains the program
formed by the source text associated with the process and its subcomponents. It can access external data through server

subprograms or data reference. A single process does not contain an implicit thread. In many cases, a processor will be

bound to a process via a specific binding link.

Component and Associated Features Representation

AADL Concept UML profile

Process UML classifier stereotype by the MARTE
«MemoryPartition» stereotype.

Type Provide data access, Require data access | UML port typed by a UML Interface composed of
ONE data attribute.

Port MARTE FlowPort and ClientServerPorts

Server subprogram UML port typed by a UML Interface composed of
ONE UML Operation representing the access to ONE
subprogram.

Flow specification See A.2.8.

UML Profile for MARTE, V1.2 379

Implementation Subcomponent (data, thread, thread UML Part of the owner component.
group)
Connections UML Connector and delegation connectors between

Ports in composite structure diagram.
Flows See A.2.8.
Properties See A.2.9.
AADL Properties
AADL Properties MARTE/Properties

Scheduling_protocol
(Ex: EDF, RMS, SporadicServer, SlackServer, ARINC653)

Specified by the “schedPolicy” attribute of Scheduler
stereotype.

Scheduler and SchedulableResource stereotypes modeled
with associated scheduling policy kinds, and scheduling
parameters.

load_time and load_deadline

« Specific “execTime” and “deadline” attributes from
SaStep stereotype, or

« specific added “nfp” attributes types NFP_Duration.

Period and deadline are specified for inheritance

Period and deadlines are specified at the thread level on
WorkloadEvent and SaSteps.

An AADL process will be represented by a MARTE “partition Memory” stereotyped UML classifier, containing
subcomponents as UML parts, communicating with other components or subcomponents through ports. In the following
example, the “control processing.speed_control” process contains four subcomponents.

subcomponents
control input
control output
control_ thread group :

set_point_data : data set_point_ data type;

end control processing.speed control

process implementation control processing.speed control

: thread control in.input processing;
: thread control out.output processing;

thread group control_ threads.control_ thread_set;

Figure A.2 - AADL Process example

380

UML Profile for MARTE, V1.2

==memoryPartition==

control_processing.speed_control

==swichedulableRessources==
control_input : control_iniinput_processing

control_output : control_out.output_processing

==swichedulableRessource==

==swichedulableRessource_groups=
control_thread_group : control_threads.control_thread_set

set_point_data : set_point_data_type

==dataTypess=

Figure A.3 - Process and contained subcomponents UML representation

A.2.3.2 Thread

A thread is a concurrent schedulable unit of a sequential execution through source code. A thread models a schedulable
unit that transits between various scheduling states. It always executes within the virtual address space of a process, i.e.,
the binary images making up the virtual address space must be loaded before any thread can execute in that virtual

address space.

Component and associated features representation

AADL Concept

UML Profile

Thread UML class stereotyped «swSchedulableRessource»
Type Provide/require data access UML port typed by a UML Interface owning one or
more data attributes and/or operations.
Port MARTE FlowPorts, ClientServerPorts.
Server subprogram UML port typed by a UML Interface composed of
ONE operation.
Flow Specification See A.2.8.
Implementation Subcomponents UML Part of the owner component.

Subprogram Call

Message call on subprogram provided component.

Connections UML Connector and UML delegation Connectors
between Ports in composite structure diagram.

Flows See A.2.8.

Modes See A.2.7.

AADL properties mainly rely on analysis information. As MARTE analysis context and scenarios specification are not in
line with AADL approach, this information should be represented on structural component models.

UML Profile for MARTE, V1.2

381

AADL properties

Marte Analysis

Dispatch protocol: enumeration

Specified by “occKind” attribute of Schedulable Resource.

Periodic

“PeriodicPattern” enumeration literal selected for
“ArrivalPattern” attribute.

Sporadic

“SporadicPattern” enumeration literal selected for
“Pattern” attribute for the WorkloadEvent stereotype.

Aperiodic

“AperiodicPattern” enumeration literal selected for
“ArrivalPattern” attribute.

Background

“OpenPattern” enumeration literal selected for
“ArrivalPattern” attribute, with “ArrivalProcess” attribute
set to “Background.”

Timed

“PeriodicPattern” enumeration literal selected for
“ArrivalPattern” attribute with phase attribute set to the
period.

Hybrid

“IrregularPattern” enumeration literal selected for
“ArrivalPattern” attribute with minlnterval attribute set to
the period.

Period: Time

“Period” attribute from the “PeriodicPattern” attribute.

Deadline: Time (inherited from period)

At this level, the same as “Period” attribute defined above.

Compute _execution_time

Computed from the different “Steps” concepts supported by
the thread; shall be defined in scenarios. Could also be
defined as “NFP” attributes by the end-user within the
different threads.

Compute deadline

Computed from the different “SaSteps” supported by the
thread; shall be defined in scenarios. Could also be defined
as “NFP” attributes by the end-user within the different
threads at design time.

Initialize execution_Time and Initialize deadline

Specific “execTime” and “deadline” attributes from SaStep
stereotype corresponding on mode switch operations
defined in the SwPlatform model. Could also be defined as
“NFP” attributes by the end-user within the different
threads at design time.

Active execution_time (specific for mode switch) and
Active deadline (specific for mode switch)

Specific “execTime” and “deadline” attributes from SaStep
stereotype corresponding on mode switch operations
defined in the Swplatform model. Could also be defined as
“NFP” attributes by the end-user within the different
threads at design time.

382

UML Profile for MARTE, V1.2

Deactive execution_time (specific for mode switch) and
Deactive _deadline (specific for mode switch)

Specific “execTime” and “deadline” attributes from SaStep
stereotype corresponding on mode switch operations
defined in the Swplatform model. Could also be defined as
“NFP” attributes by the end-user within the different
threads at design time.

Recover_execution_time (specific for mode fault handling)
and Recover_deadline (specific for mode fault handling)

Specific “execTime” and “deadline” attributes from SaStep
stereotype corresponding on mode switch operations
defined in the Swplatform model. Could also be defined as
“NFP” attributes by the enduser within the different threads
at design time.

Finalize execution_ time and Finalize deadline

Specific “execTime” and “deadline” attributes from SaStep
stereotype corresponding on mode switch operations
defined in the Swplatform model. Could also be defined as
“NFP” attributes by the end-user within the different
threads at design time.

Synchronized component

Nifp stereotyped attribute defined by the end-user.

Active thread handling protocol (specific to mode switch):
ex abort, complete_one flush queue,

complete one transfer queue,complete one preserve
queue, complete all

Nfp stereotyped attribute with associated end-user defined
enumeration.

The following example illustrates a thread containing a data subcomponent.

thread control_ laws

end control_laws;

data static_data

end static_data;

thread implementation control laws.control input
subcomponents
configuration data : data static data;

end control laws.control input;

Figure A.4 - AADL Thread example

UML Profile for MARTE, V1.2

383

==zwichedulahleRessources=
control_laws.control_input

==datalTypes==
configuration_data : static_data

Figure A.5 - Thread and data subcomponent UML representation

Two possible representations of the dispatch protocol are given here. The choice between the two depends on the
abstraction layer and end-user objectives. Some alternative solutions may also be possible.

A first representation allows mixing application elements and resources by attaching a Dispatch protocol attribute and
applying the stereotype “swSchedulableResource.” For instance, a new property (named “dispatch_type”) and stereotyped
“rtf” can be defined in the user model view. This dispatch property covers the different AADL dispatch protocols, named
periodic, sporadic, aperiodic, timed, hybrid, background.

<<swSchedulableResource>>
my_comp
<<nfp>>-dispatch_type : ArrivalPattern

The following table illustrates the use of this component to create different dispatch protocols.

384 UML Profile for MARTE, V1.2

A periodic thread is periodically dispatched according to
the attribute period. The dispatch_Offset is represented by
the attribute “phase” defined by the type PeriodicPattern
(D.2.3).

<<swSchedulableResource>>
periodic task: my comp
dispatch_type = "periodic(period=5ms, _

a remote subprogram is called. The time interval between
successive dispatch requests can never be less than the
associated Period property value (see SporadicPattern in
D.2.5).

phase=0,5ms)"
An aperiodic task is dispatched when an event occurs or
when a subprogram is called. (See type AperiodicPattern in SRR (2 L BRI
D21 aperiodic task : my comp
o) dispatch type = "aperiodic()"
A sporadic task is dispatched when an event occurs or when
<<swSchedulableResource>>

sporadic task : my comp
dispatch type = "sporadic(mininterarrival=5ms)"

A timed task is dispatched at event, event data, or remote
subprogram arrival, or it is issued a time interval specified
by the Period property value since the last dispatch if no
event, event data, or remote subprogram call has arrived or
is queued since the last dispatch.

<<swSchedulableResource>>
timed task: my comp
dispatch _type = "periodic(phase=3ms)"

A thread whose dispatch protocol is hybrid, combines both
aperiodic and periodic dispatch behavior in the same thread.

<<swSchedulableResource>>

hybride task : my comp

completion of its initialization entrypoint execution (see
OpenPattern in D.2.17).

A dispatch request is the result of an event, event data, or dispatch_type = "irregularPattern()"
remote subprogram call arrival, as well as periodic dispatch
requests at a time interval specified by the Period property
value.
A background task is dispatched immediately upon
<<swSchedulableResource>>

background task : my comp

dispatch_type = "OpenPattern(arrivalProcess=background)"

A second representation is to define a model library for AADL threads. One class can be defined for each dispatch

protocol and the classes are used to type parts of a structured classifier. Subprograms can then be represented as actions

within an Activity and are allocated to the parts of the structured classifier, which represent the software execution

platform.

UML Profile for MARTE, V1.2

385

AADL Thread <<egnumeration>>
SupportedDispatchProtocols

+ deadline : NFP_Duration

+ minExecutionTime : MFP_Duration + periodic
+ maxExecutionTime : MFP_Duration + sporadic
+ dispatchProtocol : SupportedDispatchProtocols + aperiodic
+ background

f

<<swSchedulableResource>>
{deadlineElements=deadline,
periodElements=period}
PeriodicThread

==swSchedulableResource>>
{deadlineElements=deadline}
AperiodicThread

+ period | NFP_Duration
{zelf dispatchProtocol = periodic)

{sell dispaichProtocal = aperdodic}

This model library is then instanciated:

{2 : AperiodicThread

period = (50.0, ms)

deadline = (45.0, ms)
minExecutionTime = (6.0, ms)
maxExecutionTime = (10.0, ms)
dispatchProtocol = periodic

deadline = (70.0, ms)
minExecutionTime = (15.0, ms)
maxExecutionTime = (23.0, ms)
dispatchProtocol = aperiadic

A.2.3.3 ThreadGroup

A thread group represents an organizational component to logically group threads contained in processes.

Thread group types and implementations specify the features, the required subcomponent accesses, the contained thread

connectivity.

A thread group will be represented as an abstract UML classifier stereotyped “swSchedulable Resource” (used to make
the distinction with abstract component).

386

UML Profile for MARTE, V1.2

==gywSchedulableResource== ~
Thread_qroup
7
==gywSchedulableResource==
==gwSchedulableResource== —
Thread1 o
: Threadi
==gwEchedulsbleResources=s —
: Thread3
£7 ==z SchedulableResources= —
==zwichedulableResources== : Thread2
Thread2
/ 5
/ \
d \
/ b
==gwSchedulableResources= —~ ==gwSchedulableResource== for)
TGLimpl TG2imp!
==gwichedulableResource== = cemwEChedURblEResOUN Cams —
: Thread1 —
: Thread1
| |

T 0

== SchedulableResources» —

==zvw SchedulableResources> —
= : Thread3

: Thread2

A.2.3.4 Data

There are two ways to model AADL components; the first addresses a pure architectural design, the second, based on the
Data Annex [SAE AS5506 A, Annex Document B: Data Modeling], is more dedicated to data modeling.

AADL data components are used to represent different concepts:

» Data component classifier (type and implementation) staying for “data type in the source text.” This source text data
type can be modeled by a data component type declaration with relevant properties without providing internal details
that will be specified in a data component implementation.

» Data subcomponents staying for “static data in the source text.” Data subcomponents are instances of data classifiers.
According to data classifier features and subcomponent features, the data component can represent:

A simple type (not necessary primitive).

» A structured type (when sub component declared).

» A class (when subcomponent present and provide subprograms declared).

+ A shared resource (if data access connection is specified).

AADL Primitive Types

Each AADL primitive type from the AADL data_types packages (i.e., aadlboolean, aadlinteger, aadlreal, aadlstring) will
have a UML/MARTE primitive type equivalent, defined in MARTE Model Library for Primitive Types (Annex D from
MARTE).

UML Profile for MARTE, V1.2 387

These primitive types are commonly used in properties specification. To represent them in an architectural view, the data
annex based representation style must imperatively be followed.

MARTE View

AADL View

==primitive==
Integer

DATA annex based representation
package data_types
public
data integer
properties
data model::data representation => integer;
end integer;

end data_types;

AADL simple and structured data type

A structured data type will be represented by a UML Data Type with corresponding attributes.

388

UML Profile for MARTE, V1.2

MARTE View

AADL View

==dataTypes== ==cjataTypes==
logs my_struct

-p& o Integer
-pE : flost

Simple type representation
data logs
end logs;

Structured type representation
data my_struct
end my_struct;
data implementation my_struct.i
subcomponents
PA : Integer;
pB: float;
end my_struct.i;

DATA annex based representation
data my_struct
properties
data_model::data_repr=>struct;
data_model::enumeration=>("pA","pB");
data_model::base types=>(classifier integer, classifier
float);
end my_struct;

data logs
end logs;

A Class

A data type may have associated access functions (called attributes accessors in OO languages) that are represented by
providing subprogram access declarations in the features sub clause of the data type declaration.

A Shared Resource

Concurrent access to shared data is coordinated according to the concurrency control protocol specified by the
Concurrency_ Control Protocol property value associated with the data component.

A Shared resource on data declaration will be represented by a MARTE concurrency concept.

UML Profile for MARTE, V1.2

389

a_tata : my_data

my_data

D_access T

. =«zwEchedulableResources== —
my_thread

==memaryPartition==
P

b =«gwichedulablzResource=> —
T1 : my_thread
DLAGEEEE P | ==gwichedulableResource=> —
. T2 : my_thread
C_access

==putualExclusionResource== &
D : my_data

feeiling=10,
protectiind = PriorityCeiling}

MARTE View AADL View
& process P
D_access [W
= ==MutualExclusionResources= end P,

Process implementation P.i
Subcomponents
T1 : thread my_thread,
T2 : thread my_thread,
D : data my data { Concurrency Control Protocol =>
Priority Ceiling_Protocol; };
Connections
Data access D -> T1.d;
Data access D -> T2.d;
End P.i;

This mapping necessitates a pre-requisite on the AADL side:
concurrency_protocols (PIP, PCP, No, etc.) shall exist.

A.2.3.5 Subprograms and subprogram calls

Subprogram

An AADL property project with MARTE

A subprogram represents a sequentially executable source text, a callable component, with or without parameters, that
operates on data or provides server functions to components that call it.

To stay consistent the MARTE models of subprogram, subprogram calls, and subprogram access, subprograms should be
represented as a UML operation, element of a UML Interface, allowing subprogram access representations.

MARTE View

AADL View

sp1_access ™

+compute pressurel raw_data, fitered_data

subprogram compute_pressure
features
raw_data : in parameter;
filtered data : out parameter;
end compute pressure;

Access to subprogram components are detailed in the subprogram access sub clause.

390

UML Profile for MARTE, V1.2

Subprogram calls

Subprogram calls should be represented by UML sequence diagrams, illustrating how the calling component requires
subprogram access.

:my_system?2 : my_system1

i 1: compute_pressurel) i

Figure A.6 - SubProgram call in UML/MARTE

A.2.3.6 SubprogramGroup

Subprogram groups represent subprogram libraries accessible to other components through subprogram group access
features and subprogram group access connections. These libraries will be stored in UML “modelLibrary” stereotyped
packages.

[

==modelLibrary=»
my_lib

m_ ~} [’Ubl‘rﬂﬂ_ﬂc cess |
e ubprog
+subpri1() :§mgg§28
+subprgl 20) +sUbprog3()
[T
[+subpr110 +subprogi 0
|+subprg 20 | +subprog2()

| +subprog3()

A.2.4 Execution Platform Components

Execution platform component UML profile is illustrated in Figure A.9.

A.2.41 Processor

A processor is an abstraction of hardware and associated software that is responsible for scheduling and executing
threads. Processors can execute threads that are declared in application software system, or threads that reside in
components accessible from those processors.

UML Profile for MARTE, V1.2 391

Component and associated features representation

AADL Concept UML Profile

Processor «hwProcessor» stereotyped UML Class
Port MARTE Flow Port and ClientServerPorts
Requires bus access UML Dependency between the Processor and

the bus provided Interface.

Flow specifications See A.2.8.
Implementation Subcomponents (Memory) UML Part of Processor
Subprogram Calls None.
Connections None.
Flows See A.2.8.
AADL Properties
AADL properties Marte Analysis
Thread limit AssociationEnd cardinality between “Scheduler” and
“swSchedulingResources” concepts modelized in the sw Platform.
Assign_time: Time Nfp stereotyped attribute defined by the end-user.
Assign byte Time: Time Nfp stereotyped attribute defined by the end-user.
Assign_fixed Time: Time Nfp stereotyped attribute defined by the end-user.
Clock_Jitter Nfp stereotyped attribute defined by the end-user.
Clock_period Nfp stereotyped attribute defined by the end-user.
Clock Period Range “Op_frequencies” attribute from HwProcessor stereotype.

A.2.4.2 Virtual Processor

A virtual processor represents a logical resource that is capable of scheduling and executing threads and other virtual
processors bound to them. It will be represented as a MARTE “swSchedulingResource” AND “ProcessingResource”
stereotyped UML Classifier.

A.2.4.3 Bus

A bus represents hardware and associated communication protocols that enable interactions among other execution.

392 UML Profile for MARTE, V1.2

Component and associated subclauses representation

AADL Concept Mapping proposal

Bus «hwBus» stereotyped UML Class

Type Require bus access UML Dependency between the Bus and another

bus provided interface.

Properties «properties» stereotyped UML Comment
Flows None

Implementation Subcomponents None
Subprogram Calls None
Connections None
Flows None
Modes See A.2.7.

AADL Properties

AADL properties

Marte Anaysis

Propagation_delay

Nfp stereotyped attribute defined by the end-user.

Transmission_Time

“ExecTime: NFPDuration[*]”- attribute on SaStep or SaCommStep stereotype.

Allowed Message Size

“MessageSizeElements” - attribute on MessageComResource stereotype.

A.2.4.4 Virtual Bus

A virtual bus component represents logical bus abstraction such as a virtual channel or communication protocol. It will be
represented at resource level as a MARTE “CommunicationMedia” stereotyped UML connection or classifier allocated to

the physical HWBus.

« If the communication media represents a bus, and the clock is the bus speed, “element size” would be the width of the

bus, in bits.

« If the communication media represents a layering of protocols, “element size” would be the frame size of the

uppermost protocol.

| UML Profile for MARTE, V1.2

393

==Block==
s1

==memaryPartition=:= |
P

==zcommunicationtedia== |=;=;memoryPart'rtion:=:=- T

‘?J :P2

ddcommlﬁlnica‘tionhﬂediabb \-_:\9 |
twel

lll |

\ I I
v | I

==Allocst

d‘;d;memoryPar‘hhon:::; | v {ﬁm%rtrlocglf'artﬂion:}' -
[P3 llacate ﬂ LS|
1 » P4
f 7 =chmrunigationhedis= |

I / :«Alloi:gg }rj:ch?n:: I
I Lemiocsted-= VL Lo
e i V| E=flliocated== W
==trwProcessarss = m ==hwPracessar== &
:proc2 :proci
==hwBus==

A.2.4.5 Memory

Memory abstractions represent storage components for data and executable code. Memory components include randomly
accessible physical storage (e.g., RAM, ROM) or complex permanent storage such as disks or reflective memory.

Component and associated feature representation

AADL Concept

Mapping proposal

Memory «hwMemory» stereotyped UML Class
Type Requires bus access UML Dependency between a UML Class
stereotyped «hwMemory» and the bus access
provided the needed interface.
Flows specifications None
Implementation Subcomponents UML Part of a UML Class stereotyped
«hwMemory».
Subprogram Calls None
Connections None
Flows None
Modes A2.7.
394 UML Profile for MARTE, V1.2

AADL properties

MARTE SW/HW Platform

MARTE Anaysis

MemoryProtocol (R,W, RW)

Model elements stereotyped

element stereotyped “HwMemory.”

Property AccessPolicy of stereotype

“MemoryBroker” allocated on a model | «MemoryBroker».

Read Time:Timef[]

Property ExecTime: NFPDuration[*] of
stereotypes «SaStep» or «SaComStep».

Write Time:Time[]

Property ExecTime: NFPDuration[*] of
stereotypes «SaStep» or «SaComStep».

A.2.4.6 Device

Device abstractions represent entities that interface with the external environment of an application system. Those devices
often have complex behaviors. They may have internal processors, memory, and software that are executed on an external
processor. Alternatively, they may require driver softwares that are executed on an external processor. A device external
driver software may be considered as a part of a processor’s execution overhead, or it may be treated as an explicitly

declared thread with its own execution properties.

Component and associated features representation

AADL Concept

UML Profile

Device «hwDevice» stereotyped UML Class
Type Server subprogram «server_subprogram» stereotyped UML
Dependency between server components and
the called subprogram (UML Operation).
Port MARTE Flow Port and ClientServerPort
Require bus access UML Dependency between the device and the
bus provided interface.
Flow Specifications See A.2.8.
Implementation Subcomponents None
Subprogram Calls None
Connections None
Flows See A.2.8.
Modes See A.2.7.

| UML Profile for MARTE, V1.2

395

==hwBus== ;
T ==hwDevices= —
a_bus i -
- a_device
==hrwvhdemory== =zhwProcessor=: —
a_memory a_processor

Figure A.7 - Execution platform components UML representation
A.2.5 System

A.2.5.1 System Composition

The system abstraction represents a composite of software, execution platform, or system components. System
abstractions can be organized into a hierarchy that can represent complex systems of systems as well as the integrated
software and hardware of a dedicated application system.

Component and associated features representation

AADL Concept Mapping proposal
System SysML block concept
Port MARTE Flow Ports
Requires/Provides bus access Dependency/realization link between System

Provided/required access Interface

Require/Provides data access Dependency/realization link between System
Provided/required access Interface

Flows specifications See Clause 10.
Implementation Subcomponents (data, process, UML Part of System
processor, memory, bus, device,
system)
Subprogram calls None
Connections UML Connectors between Ports of the UML

Class and Ports of the contained UML Parts.

Flows See A.2.8.

Modes See A.2.7.

396 UML Profile for MARTE, V1.2

A.2.5.2 Binding

For a complete system specification (one that can be instantiated), software components must be bound to appropriate

execution platform components. For example, threads must be bound to processing elements and processes must be bound
to memory. Similarly, inter processor connections must be bound to buses, and subprogram calls must be bound to their
server subprogram. These bindings are defined through property association.

Component and associated features representation

AADL Concept

Mapping proposal

Binding

“SpatialDistribution.”

MARTE Allocate stereotype and NFPConstraint with attribute “nature” set to

In the following example, the “a_client process” component is bound to the “a_client processor” component. Both

components are bound by an “allocation” stereotyped MARTE NFPConstraint.

global_system

==memoryPartition==

==memoryPartition==

process1: my_process '_'I
o

t
[
[
[

hus_access _t!lus_accesé,l

,Prutessz :my_other_process g

|
dp u
! |
I ==Allocates=

- {nature = spatJaIDistribution}

\ ba ==hwProceszor== -

==&llocate==
{nature=spatialDistribution

{nature = spatialbistribution}

I
E A . | —,

I

I ba |

|

| I b ==hihdemory== G
I m : my_memory

l | :

| i

A I by S_ACCEeSsS

) f
|
| ==hllocate==
|
|

==hwvProcessars=

my_processor

—
{

| bus/access

| hus_access

==hwvProcessars=
I MY_processor b

iy | zahihlemorys= -
==hwBus=s]/ba my_memory |

smy_bus

B

bus_access

Figure A.8 - System binding representation

UML Profile for MARTE, V1.2

==hwBusss

my_bus

397

A.2.6 Features and Shared Access

A.2.6.1 Port and Port connections

A port represents a communication interface for the directional exchange of data, events, or both (event data) between
components. Connections are linkages representing the communication of data between components through ports of
different threads or between threads and processor or device component. Component and associated features

representation.

AADL Concept

Mapping proposal

Port MARTE Flow and ClientServer Port.
Port direction (in, out, in/out) In, out, in/out port (event data, “direction” attribute on MARTE Flow and
data, event) ClientServer Port.
Port type Event port MARTE ClientServerPort typed by a UML
signal without data attributes.

Data port AADL Data Ports will be represented as
MARTE Flow Ports typed by a UML
Primitive type or Data Type.

Event/Data Port AADL Event Data Ports will be
represented as MARTE ClientServerPorts
typed by a UML signal with only ONE
AADL data attribute.

Connections Immediate Connections UML Connectors between MARTE ports

Delayed Connections “NfpConstraints” linked to UML
Connector between Ports.

AADL Data port

« Interfaces for typed state data transmission among components without queuing.

« Connections between data ports are either immediate or delayed.

398

UML Profile for MARTE, V1.2

MARTE View AADL View

process control
features
speed: in data port raw_speed;
| . thorttle command: out data port

==flowPort==

==flowPort==
izttomic=true;

izAtomic=true;

==memaryPartition==17 1|’ Command data;
control I -
\ end control;
> | »
speed © raw _speed throttle_command : command_data
==primitive== ==datalype==
raw_speed command_data

-command_number | integer

AADL Event port

Interfaces for the communication of events raised by subprograms, threads, processors, and devices (examples: trigger
for the dispatch of aperiodic thread, initiator of mode switch, alarm communications).

Events may be queued. Event such alarms may be queued by the recipient, and the recipient may process the queue
content.

MARTE View AADL View
: data raw_set_speed;
==signal== - =
signal_raw_set_speed end raW_Set_Speed;
-data ; raw_set_speed

==MessagePort=»

process control
izAtomic=true;

features
B T set_speed: in event data port
<. control y raw_set_speed;

set_speed : reset e | set_speed2: in data port raw_set_speed;

end control;

-

et o2 et o
zet_speed? | raw_set_spee /_?J

==FlowPott==
izAtomic=true;

==dataType==
raw_set_speed

UML Profile for MARTE, V1.2 399

AADL Event Data port

« Interfaces for message transmission with queuing. Enables the queuing of data associated with an event.

+ Message arrival may cause dispatch of the recipient and allow the recipient to process one or more messages.

MARTE View AADL View

- process control
==zignal==
reset features
control: in event port;
end control;

==memoryParttion== | |
control 3

3

contral : reset\

AN

==MeszagePort==

izitomic=true;
AADL properties Marte Analysis
Compute_execution_time Time and Deadline are either specified in the associated communication media or

) component.

Compute Deadline P
Queue_size “MessageQueueCapacityElements” attribute on MessageComResource stereotype.
Queue_Processing_protocol “Mechanism” attribute on MessageComResource stereotype available values are

“MessageQueue, Pipe, BlackBoard, undef, other).

Overflow_handling_protocol Nfp stereotyped attribute defined by the end-user, typed bt end-user defined
enumeration.
Dequeued protocol Nfp stereotyped attribute defined by the end-user, typed bt end-user defined
enumeration.
Connection

A connection is a linkage that represents communication of data and control between components.
Each AADL connection should be represented by UML delegation/assembly connections between the different ports.

A UML delegation connectors will be used to link ports to AADL subcomponents, and UML assembly connector to link
AADL subcomponents together.

400 UML Profile for MARTE, V1.2

A.2.6.2 Subprogram, data, and bus access

Components such as buses or data might be accessed by the system through an explicit declaration access in component
types. Provides indicates that the component provides access to a data or bus component within it. Requires indicates that
a component requires access to a data or bus component that is external to it.

Data access

Data access represents modeling of shared access to a common data area or static data.

Data Access connections designate access to shared data components by concurrently executing threads or by
subcomponents executing within a thread. Bus access represents communication between processors, memory, and
devices by accessing a shared bus.

AADL Data access will be represented by:
« UML 2 ports typed by a UML interface.
« UML Interface composed of a UML attribute representing the access to ONE DATA.

« UML delegation/assembly connection represents AADL data access.

| UML Profile for MARTE, V1.2 401

MARTE View AADL View

~=Configuration-> system global system
. a—— end global system,;

D_access
— sys2 : my_system2

system implementation global system.I
sys1:my_systemi & data_access) «ememoryParttion== | -
}[subcomponents
sysl : system my_systeml.i;

sys2 : system my_system?2.i;
connections

data access sysl.dp —> sys2.dp;
o] end global system.I;

D_access, D_access

my_system D_access
0 dp

] I {H system my_systeml

& D_access features
dp : provides data access D;
end my_system]1;

il 10 D_access () 1 1
i : ==fiemoryParttion== | - system implementation my_system1.I
D 0 . [FICRrocess +5et_A[) subcomponents
_dCCess, - +iget_A()
d : data D;
data_sccess .
connections

data access d —> dp;
end my_systeml.I;

system my_system?2
features
dp : requires data access D;
end my_system?2;

system implementation my_system?2.1
subcomponents
procl : process my process;
connections
data access dp —> procl.data_access;
end my_system?2.1;

process my_process
features
data_access : requires data access D;
end my_process;

data D
end D;

402 UML Profile for MARTE, V1.2

Bus access

Bus access represents connectivity of execution platform components through buses whose access they share.

AADL Bus access should be represented by:

+ MARTE HwBus provides bus access services through a bus_access interface (without passing through ports).

+ UML delegation/assembly connection represents AADL bus access connections.

==hwProcessors== o b%
i my_processor ba =<hwBus=z :r &
. : —| ba

X R ==hwwProcessors=

my_processor

global_system
==hwProcessor=>

ha A -
hus_access P2 my_processor =<hwBUs==
]) my_bus

:suh_systeE] bus gcce

ba

b ==huhlemory == -

bus_access CILTVAmEmary
bus_j c’k@ss

sub_system
hus_access

==hwhlemory==
my_memory

bus_access

Subprogram access

bus_access ()
7

==hwBus==
my_bus

Subprogram access represents access to subprogram component in enclosing thread group, process, or system. Execution

by calling thread.
AADL Subprogram access will be represented by:

« UML 2 ports typed by a UML interface.

» UML Interface composed of a UML operation representing the access to ONE subprogram.

» UML delegation/assembly connection represents AADL subprogram access.

UML Profile for MARTE, V1.2

403

MARTE View AADL View

System implementation global system.I
==memoryPartition== LI subcomponents
global_system
Sp_access sysl : system my_systeml.i;

sys2 : system my_system2.i;
7 E —
sys1: my_system1 P 3. T emn2 .
& connections
£

. subprogram access sysl.sp —> sys2.sp;
SLEEEESS end global system.I;

system my system2

A em2
Sp_acce p my._syst features

my_system Sp_access
[E(R Sp : requires subprogram access sub_pl;
=p end my_system?2;
SPI:C:ZSS O subprogram sub_pl
+zUb_p
end sub_pl;

system my_systeml
features
sp : provides subprogram access sub_pl;
end my systeml;

system global_system
end global system,;

A.2.6.3 Feature Group

Feature group represents groups of component features, features group can contain feature group, and can be used
anywhere features can be used. Inside a component, each feature can be connected individually, outside a component a
feature group can be connected as a single unit.

In MARTE, feature groups will be represented as a UML interface composed by at least two attributes (representing more
than one data access) or two subprogram access (representing more than one subprogram access).

FeatureGroup composition will be represented by data or operation additions to the interface representing the
FeatureGroup, or interface refinement, and FeatureGroup decomposition inside the components by smaller interface
(interface subtypes) specifications. By default, the interface is provided. Inside the components, i.e. in threads or
processes constituting the system, internal ports will be typed by interfaces representing the FeatureGroup subtypes,
providing FeatureGroup subtypes or unitary data/subprogram access.

In MARTE, the FeatureGroup semantical perimenter will be restricted to data and subprogram accesses, providing a
homogeneous representation for designers, with data access and subprogram access.

UML delegation/assembly connection represents AADL subprogram access connections and UML provided/required
interface concept the AADL provides/requires data access.

404 UML Profile for MARTE, V1.2

MARTE View

AADL View

sSp_access | |

+sub_pli)

==tnemoryPartitions== LI
global_system e
SQ_ACCESS
: syst 5 sp
sys1:my_ et 2 . my_system2
sp _
Sp_access
system1 sp_access system?
my_system p_ B - my_system
sp

System implementation global system.I
subcomponents

sysl : system my_systeml.i;

sys2 : system my_system2.i;
connections

subprogram access sysl.sp > sys2.sp;
end global system.I;
System my_system2
features

sp : requires subprogram access sub_pl;
end my_system?2;
Subprogram sub_pl
end sub_pl;
System my_systeml
features

sp : provides subprogram access sub_pl;
end my_systeml;
System global system
end global system;

A.2.7 Mode

A mode abstraction is an explicitly defined configuration of sub-components, connections, flows, end-to-end flows, as
well as property values. Modes represent alternative operational states of a system or component. Mode transition models

dynamic operational behavior that represents switching between configurations and changes in components internal

characteristics.

An AADL mode represents an operational mode state characterized by:

« A specific component and subcomponent topology including specific data and control flows, subprograms and data

access, and specific non-functional property values.

« A behavioral aspect, clarifying mode state relations is associated to this topology.

The notion of “Configuration,” “ModeBehavior,” “Mode,” and “ModeTransition” (defined in Section 7.2.2.1) are used to
describe the different AADL modes and associated configurations.

UML Profile for MARTE, V1.2

405

Mode and associated features representation
AADL Concept UML Profile

Mode specific component topology (subcomponents and connections, flows, and property values)
will be represented by a UML Composite structure specialized by the “Configuration” stereotype.
The “Mode” attribute will make reference to a specific mode state, declared in a ModeBehavior
defined in the behavioral part of the enclosing component.

Mode configuration

Modes and Mode transitions will be defined in UML StateMachine diagram, which will be
stereotyped “ModeBehavior’. Each mode is represented by an UML State stereotyped “Mode”.
Modes and Modes transitions UML transitions, describing how modes are linked together, will be represented by UML
Transition stereotyped “ModeTransition”. To specify from which port the event triggered the
transition arrived, an UML Constraint will be attached to the transition.

A composite structure view presents a global topology view, in a mode independent way as illustrated in the figure below.

==Block== = |
sys1
Ep 1sys2 \ epl
epiel N |
B :sysd | ep!
ep [) .J S
oo S
| max : NFP_Duration = (expr=50,unit=ms, mode=-m1) I
|
I 1sys3 ! s — |
spoet M| ep 3 _ e []
| max : NFP_Duration = {expr=50,unit=ms}) |

Configurations (specific composite structures) will be used to specify component mode specific typology (subcomponents
and connections), flows, and property values as illustrated in the figure above.

406 UML Profile for MARTE, V1.2

==Ccomment==

Mode m2 specific
property value

s
==Configuration=»
s
m2 ¥
Imode = m2}
==Block== / = |
: sysi
ep?
e tsys3 el L :sysd =Hl
»y 5 BB
= » - - e
| max: HFP_Duration = {(expr=30,unit=ms, mode=m2)
e - |/ - - — - - - — — — — el
b | [d
cccomment=> ccomment=> ==comment== ==Ccomment==
o i Mode specific Mode specific
?ngoﬁﬂppeocrlug?ﬁ hode specific flaw connections property value
\ / / /
\ ! ==Configuration== /
\ / s m /
; / / ; fmode = m1}
\ d d /
\ [==Elocks== ! =]
. / ! : sys1 .
' /
L} / /
:sys? v / |
e, e / ch 1 sysd 1 epz
p | I— F3 B/ W= ——————— En
T ¥ - a2 | max: HFP_Duration = (expr=50,unit=ms, mode=m1)] J
==flow== CRE | I S e |]
etp epl
3 4

Figure A.9 - Mode configuration example

Figure A.9 details “sys1” configuration valid in mode configuration “m1”: sysl will be composed of sys2 and sys4

subcomponents instances with specific connections, F3 flow in sys2 instance; “max” attribute of sys4 instance owns a
mode configuration specific property value.

In mode configuration “m2,” the sysl topology with sys3 and sys4 subcomponent instances and associated connections
will be valid, as well as sys4 specific “max” property value.

Mode configuration specific data access and subprogram access connections will be also specified in composite
structures.

| UML Profile for MARTE, V1.2 407

==Configuration==

mrl
{mode = m1}

sys2 1 my_system?2

[_access
sys1:my_systemn1 - dp
dp y
[_access,

data_access| -amemoryParttion== | |
rocl : my_process

D_access

Figure A.10 - Data access mode

specific example

Mode configuration dependant data access “D_access” is illustrated in Figure A.10. The connections between sysl, sys2

and procl instances are specific to

mode configuration “m1.”

Mode and Mode transition will be declared and represented in UML StateMachines stereotyped “ModeBehavior.” AADL
modes are declared as UML States stereotyped “Mode,” and state switching by UML Transitions stereotyped
“ModeTransition” as illustrated in Figure A.10. The event triggering the transition corresponds to the UML Signal
declared in the input event port specification. An additional guard attached to the “ModeTransition,” will precise the port

origin of the event triggering the tr.

ansition.

rstahe machine sysi [sysi U

initial_mode

<<Mode>>
m1

guard: from etp

<<ModeTransition>>

et2

<<Mod eTransition>>

<<Mode>>
m2

Figure A.11 - Mode and Mode Transition example

End-to-end flows are also mode specific, activity diagrams and sequence diagrams will be stereotyped “Configuration”
precising in which mode the end-to-end latency values are obtained.

408

UML Profile for MARTE, V1.2

A.2.8 Flows

An AADL flow is logical flow of information through a sequence of threads, processors, devices, and connections. An
end-to-end flow represents a complete path through the system, starting at a flow source, ending at a flow sink, passing
through components (flow paths) and between components over connections. Flow specification declarations are made
within component type declarations, specifying externally visible flows through flow sources, flow sinks, and flow paths.
Flow implementation specification relies on component implementations, specifying how the flow is realized as a
sequence of flows through subcomponents along connections from the flow in port to the flow specification out port. An
end-to-end flow represents the logical flow from the source to the destination.

Flow specification declaration

A flow-specification declaration indicates that information logically flows from one of its incoming ports, or feature
groups to one of its outgoing ports, or feature groups.

Flow path will be represented by UML InformationFlows, represented by UML Dependencies stereotyped “flows.”

MARTE View AADL View

flow1: flow path ep —> ep2;

A
flow2: flow path dp —> ep2 ;
ep
[} ==flovwss

T = figw
D_access flow2 : = - ep2
T X

b ==flow==

AADL flow sinks and flow sources cannot be explicitly modelized in UML/MARTE.

Flow specification implementation

A flow-implementation declaration in a component implementation specifies how a flow specification is realized in this
implementation: as a sequence of flows through subsystems (i.e., subcomponents) along connections from the flow-
specification inport to the flow specification outport. Since flows are realized when code is executed, processes and
threads must be considered.

A UML interaction diagram will be used to represent the flow path implementation. The name of the Interaction diagram
will make reference to the flow path name completed with the suffix “flow.impl.”

Instances will be represented with input and output ports, UML “GeneralOrdering” elements keeping order preservation
in mind will be used to represent flow path declarations inside components, UML “Messages” will be used to represent
communication between instances. To be in line with the structural AADL semantics, the name of the GeneralOrdering

element will make reference to the flow path declaration; the name of the message will make reference to the connection
conveying it.

UML Profile for MARTE, V1.2 409

MARTE View AADL View

= Process implementation A.impl

‘B HL =
F3 F4
[-~ — [1 2 _]
==flowess O] apl - ==flowy==

Flow1_flow.impl)

:A.impl B :C :A.impl

ep] L[dpl [@] [et Lap | [ap2] Lepl [dp]

Flows
e Flow1.impl: flow path
dp->C2->B.F3->C3->C.F4->C4->ep

dp

E—

2 o |

F3 >
a3

F4
c4

AADL flow sinks and flow sources cannot be explicitly modelized in UML/MARTE.

End to end flows

An end-to-end flow represents a logical flow of data and control from a source to a destination through a sequence of
threads that process and possibly transform the data. In a complete AADL specification, the source and destination can be
threads, data components, devices, and processors. In an incomplete AADL specification, the source and destination are
the leaf nodes in the component hierarchy, which may be thread groups, processes, or systems.

Two ways to represent AADL end-to-end flows are possible: The first one as sequence diagrams and the second one as
activity graphs. Both diagrams are stereotyped “SaEndToEndFlow.”

Using Interactions diagrams, Flow Path will be represented as UML Messages between components ports, and
connections by unnamed Message with connection property set to the connection element.

AADL Expected Latency and Actual latency property will be represented respectively by MARTE “EndToEndD” and
“EndToEndT” stereotype attribute.

410 UML Profile for MARTE, V1.2

MARTE View AADL View

ETE1: end to end flow B.F3—>C3—>C.F4;

<<SaEndToEndFlow>>
Interaction ETE1
B :C
ap | I apl ap | apl
F3
F4
Message.
Connector
property set
to« C3 »

The use of activity diagrams for end-to-end flows representation makes explicit the different objects transmitted between
the various actions (allocated one of the threads instances). These object properties intrinsically take into account timing
aspects like queueing policies and dequeue protocols, impacting the final end-to-end latency.

In UML, an object node (a special activity node) can contain 0 or many tokens. The number of tokens in an object node
can be bound by setting its property upperBound. The order in which the tokens present in the object node are offered to
its outgoing edges can be imposed (property ordering). FIFO (First-In First-Out) is a predefined ordering value. So, object
nodes can be used to represent both event and event-data AADL communication links. The token flow represents the
communication itself. The standard rule is that only a single token can be chosen at a time. This is fully compatible with
the AADL dequeue protocol Oneltem. The UML representation of the AADL dequeue protocol Allltems is also possible.
This needs the advanced activity concept of edge weight, which allows any number of tokens to pass along the edge, in
groups at one time. The attribute “weight” specifies the minimum number of tokens that must traverse the edge at the
same time. Setting this attribute to the unlimited weight (denoted '*') means that all the tokens at the source are offered to
the target.

To model data ports, UML provides “datastore” object nodes. In these nodes, tokens are never consumed thus allowing
multiple readings of the same token. Using a data store node with an upper bound equal to one is a good way to represent
AADL data port communications.

UML Profile for MARTE, V1.2 411

ad End-to-end flow ,I

t1 : AperiodicThread

12 Aperiodil:Thl;kad

-
= =5 ! ! <<allocate>¥
alb'c"‘\te’. i <<allocates>) s
5 H T
£ A 1 ' e
Y J Allapetiodic | -
) * h [l v S
g v Ty
Y ! ; 7
<< S 1 ; e 3 S
allocated: e b =<allocated== s <<gllocated
"\

jﬁ : AperiodicThread

- 1

- i

s
P

[]
]

&

==allocate=> T A q J o <<gllocates>
==gllocatés= ! s {{all?c.ate}} i
PN ' ; ; i
T i 1
' * ! il ' 1

1] ¥ Fl
: fxscullonPlﬂi‘ferm K ,-"{ i

‘
- 1
W " [;
-=~=ep_allocated>>.*‘ ;" _-Eﬂnp_allocamdb-b]
cpul : Processor ¢ |/ cpu2 : Processor i
\‘ Ir' ; :
\‘ I' 'I :
W i
1
=<gp_allocated>> <=zgp_allocated>> 1
--1-= - . db1 : Bus = . i !
= Ds : Device Da : Device =

The use of CCSL constraints allows specifying delayed communication on periodic threads.

A.2.9 Properties

In AADL, Properties provide information about components (type and

implementations), subcomponents, features,

connections, flows, modes, and subprogram calls. Each property is characterized by a name, a type, and a value.

All AADL element properties will be grouped together in a UML::Comment stereotyped “AADL_Properties.”

Component and associated features characteristics

AADL Concept

UML profile

Property

UML Note stereotype «AADL_Properties»
linked to concerned element.

A.3 EAST/ADL2.0 Models with MARTE

EAST-ADL is an architecture description language, dedicated to automotive embedded electronic systems, developed in
the context of the ITEA cooperative project EAST-EEA (http://www.easteea.net/) finished in 2004. This language is
intended to support the development of automotive embedded software, by capturing all the related engineering
information. The scope is the embedded system (hardware and software) and its environment.

412

UML Profile for MARTE, V1.2

The ATESST project (www.atesst.org) is aimed at refining the EAST-ADL language in the context of dependability
concerns, aligning with OMG standards and the new automotive domain standardization AUTOSAR (http://
www.autosar.org/).

To cover dependable systems, requirement constructs will be enriched to satisfy the needs of different integrity levels and
the modeling entities will be refined to support necessary analysis methods, and an engineering process for safety.
Transversal to these concepts, with the same consideration for dependability, the variability constructs of EAST-ADL will
be improved to support vehicle product lines, the major productivity driver in automotive industry.

The EAST ADL?2 abstraction layers are used to allow reasoning of the features on several levels of abstraction. Note,
however, that the abstraction levels are only conceptual; the modeling elements are organized according to the artifacts
that may span more than one of these layers.

Entities on different abstraction levels are related with a Realization association, where applicable, to allow traceability.
Traceability can also be deduced from the requirements structure.

The EAST ADL?2 abstraction layers with their corresponding artifacts are:

+ Vehicle layer, with the Vehicle Feature Model describing user visible features such as anti-lock braking or windscreen
wipers.

+ Analysis level with Functional Analysis Architecture capturing the behavior and algorithms of the Vehicle Feature
Model functions. There is an n-to-m mapping between Vehicle Feature Model entities and Functional Analysis
Architecture entities, i.e., one or several functions may realize one or several features.

 Design level with Functional Design Architecture, representing a decomposition of functionality in the Functional
Analysis Architecture. The decomposition has the purpose of making it possible to meet constraints regarding
allocation, efficiency, re-use, supplier concerns, etc. Again, there is an n-to-m mapping between entities on Functional
Design Architecture and Functional Analysis Architecture. Non-transparent infrastructure functionality of the
BasicSWArchitecture, such as mode changes and error handling are also represented on a Design Level.

+ Implementation level with the ImplementationArchitecture represented by HardwareArchitecture,
BasicSWArchitecture, and ApplicationSWArchitecture based on AUTOSAR concepts.

« Operational level, this describes the binary entities and their related tools.

« The Hardware Architecture and Environment Model span several abstraction levels. The Hardware Architecture
contains models Electronic Control Units, ECUs, communication links, sensors and actuators and their connections.
The Environment model contains Environment functions that are encapsulations of plant models (i.e., models of the
behavior of the vehicle and its non-electronic systems). The environment model is only conceptual and is not an ADL
entity.

This part is non-normative. The intent is to describe how MARTE may be used for authoring EAST-ADL2-like models.
This annex only focuses on aspects related to functional modeling and end-to-end flows. In the next versions of MARTE,
it will be enhanced in order to provide a more complete mapping of EAST-ADL2 concepts.

UML Profile for MARTE, V1.2 413

A.3.1 MARTE for EAST-ADL2 Functional Modeling Summary Table

Table A.1. Comparison table of EAST-ADL2 and MARTE concepts

EAST-ADL2 Description UML MARTE Stereotype
Concept Concept

ADLClientPort The ADLClientPort denotes a port for | Port ClientServerPort with kind set to
clients in a client-server interaction. required.

ADLClientServer The ADLClientServerlnterface is used | Interface ClientServerSpecification

Interface to specify the operations in
ADLClientServerPorts.

ADLClientServer ADLClientServerPort is an abstract Port ClientServerPort

Port port for client-server interaction, which
is subtyped (see ADLClientPort and
ADLServerPort) to allow for different
notations in an ATESST tool.

ADLConnector The ADLConnectorPrototype connects | Connector None: uses the plain UML2 Connector.

Prototype a pair of flowports or a client and
server port.

ADLFlowPort The ADLFlowPort is an abstract port Port See concrete mappings for
for data-flow interaction, which is ADLInFlowPort, ADLOutFlowPort and
subtyped (see ADLInFlowPort, ADLInOutFlowPort.
ADLOutFlowPort and
ADLInOutFlowPort) to allow for
different notations in an ATESST tool.

ADLFunction Appear as parts of ADLFunctionTypes | Part None: uses the plain UML2 part concept.

Prototype and are typed by an ADLFunctionType. An ADLFunctionPrototype will be
This allows for a reference to the represented as a property typed by an
occurrence of an ADLFunctionType ADLFunctionType.
when it acts as a part.

ADLFunctionType | ADLFunctionType is the functionality | Class None: The stereotype ADLFunctionType
provided by a car on the analysis level. is introduced.

ADLInFlowPort The ADLInFlowPort represents a port | Port FlowPort with direction=in.
that requires data input. The data is The attribute isTriggered of and
specified by the associated datatype, ADLInFlowPort is mapped to the
and may be discrete or continuous in attribute isBehavior of UML ports.
value. The value may be continuous or FlowPort defines also an RtFeature
discrete in time, depending on the referring to an RtSpecification to denote
properties of the sending the possible inter arrival time between
ADLFunction. ADLInFlowPort owns two occurrences of the data conveyed via
an attribute isTriggered that indicates the port.
whether the owning ADLFunction is
triggered by the ADLInFlowPort.

414 UML Profile for MARTE, V1.2

Table A.1. Comparison table of EAST-ADL2 and MARTE concepts

EAST-ADL2 Description UML MARTE Stereotype
Concept Concept

ADLInOutFlow The ADLInOutFlowPort is a Port that | Port FlowPort with direction set to inout.

Port both provides and requires data. The FlowPort also defines an RtFeature
direction attribute has the value referring to an RtSpecification to denote
INOUT. the possible inter arrival time between

two occurrences of the data conveyed via
the port.

ADLOutFlowPort The ADLOutFlowPort is a port that Port FlowPort with direction set to out.
provides data according to the FlowPort defines also an RtFeature
associated datatype. refering to an RtSpecification to denote

the possible inter arrival time between
two occurrences of the data conveyed via
the port.

ADLPortGroup The ADLPortGroup is used to collapse | None None
several ports to one. All ports that are
part of a port group are graphically
represented as a single graphically
collapsed to a single line.

ADLServerPort The ADLServerPort is a port for Port ClientServerPort with kind set to
servers in a client-server interaction. provided.

The interface type of such port No extension is required.
specifies the operations that are The attribute isTriggered of
provided. Its property isTriggered ADLServerPort is mapped to the attribute
indicates whether the owning isBehavior of UML ports.
ADLFunction is triggered by the

ADLServerPort.

In case the owner is non-elementary

the triggering property refers to the

contained ADLFunction connected by

delegation connector(s).

Only server ports can be triggered.

As illustrated in Table A.1, most of the concepts defined in EAST-ADL?2 for functional modeling have an almost direct
counterpart in either UML or MARTE. Therefore, very few extensions are required. They are depicted in Figure A.12.

UML Profile for MARTE, V1.2 415

« profile »
MARTE4EAST-ADL2

« metaclass »
Class

« enumeration »
TrigPolicyKind

EVENT

t t
« stereotype » TIME

ADLFunctionType

isDiscrete : Boolean [1] = true

executionTime : TimingRestriction [*] « dataType »
trigPolicy : TrigPolicyKind [0..1] T « _tupl';TVP_e »
offset : NFP_Duration [0..1] imingRestriction
triggerCondition : OpaqueExpression [0..1] iitter - NFPDurati 1
triggerPeriod : PeriodicPattern [0..1] J\Ilg?uré - NFP Sﬁzﬁgn[?o]1]

Figure A.12. Extensions to UML and MARTE for EAST-ADL2 Functional Modeling

A.3.2 EAST-ADL2 End-to-end Flow Modeling with MARTE

One important modeling concern for EAST-ADL?2 is the ability to describe end-to-end flows of an application. UML?2
proposes native concept to deal with this concern, especially through the interaction concept. However, as for other parts
of the UML2, user guidelines are required to drive the EAST-ADL2 practitioner to use these UML?2 interactions to
describe her/his end-to-end flows.

The rest of this sub clause is organized as follows: next sub clause outlines UML2 native concepts of Interaction that is
the most natural candidate to be used to model end-to-end flows. The second sub clause introduces the specific MARTE
sub-profile for EAST-ADL2 end-to-end flow modeling, while the third sub clause provides guidelines and examples for
describing end-to-end flows for both EAST-ADL?2 elementary and non-elementary function types. The last sub clause
discusses the refinement issue of end-to-end flow descriptions.

A.3.2.1 UML2 Interactions

UML2 interactions are defined in order to describe how several instances (objects) of an application collaborate for
performing one given activity/task. They may be shown in different kinds of diagram: sequence diagram, interaction
overview diagram, communication diagram, and timing diagram. Let’s also note the existence of an additional possible
form, a non-graphical one, where interactions may be shown in tables. The main artifacts involved within a UML2’s
interaction are Lifelines and Message:

« Each lifeline contained in one interaction denotes an individual entity that participates in realizing the interaction. In
addition, a lifeline may refer to a structural element that has to be a connectable element as defined in the composite
clause of the UML2 specification. It means that lifelines refer to either parts or attributes of structured classifiers. One
of the main features of connectable elements is that they may be linked by connector that denotes for the connected
elements their ability to communicate together. Finally, lifelines involved in one interaction contribute to its realization
by exchanging messages.

416 UML Profile for MARTE, V1.2

« A message defines different ways of communication between lifelines of one interaction, generally involving a pair of
sender and receiver. In this latter case, messages are said to be complete. In other cases, messages may be lost (one
sender and no specified receiver), found (one receiver and no specified sender), or unknown. Messages may also refer
to the connector that conveys them from sender to receiver. Message may also be of the following kinds: synchronous
or asynchronous operation call, asynchronous signal post, creation or deletion of an object, or a reply message.

UML2 interactions are then a good candidate for modeling EAST-ADL?2 end-to-end flows. Nevertheless, as previously
outlined, the main paradigm for communicating within interaction is the message that involved either operation call-based
or signal-based communication. This is not sufficient for our purpose, because EAST-ADL2 enables also structural
entities (also called ADLFunctionTypes) to communicate by data-passing, similarly to the general component model of
the MARTE standard. The purpose of the next sub clause is then to describe the EASL-ADL2 proposed extension to
UML2 interactions in order to cope with data-based communications.

A.3.2.2 The UML sub-profile for EAST-ADL2 data-flow based interactions

The focus of this sub clause is to describe the EASL-ADL?2 sub-profile dedicated to define its extensions for modeling
end-to-end flows on EAST-ADL2 functions (for both elementary and non-elementary functions).

First of all, Figure A.13 denotes the stereotype “ADLE2EFlow” for marking an interaction to show that the latter is
denoting an EASL-ADL?2 end-to-end flow. Note its attribute called kind enabling to specify that an interaction is either
internal or external. An external end-to-end flow focuses only on showing what are the inputs and the outputs of the
element the interaction is attached to. Within an external end-to-end flow, one does not want to show the complete
interactions. In other words, we consider the modeled element for which an interaction is described as a black box. An
internal end-to-end flow will describe all the details of the flow, even what happens inside the described element.

« profile »
MARTE4EAST-ADL2
« metaclass »
UML::Interaction
A
« enumeration »
« stereotype » E2EFlowKind
ADLE2EFlow
. : internal
kind: E2EFlowKind external

Figure A.13. UML profile diagram for EAST-ADL2 interactions

We also need to extend the message concept as defined within the Interactions clause of the UML2 specification in order
to enable UML2 interaction to support data-based communication. As shown in Figure A.13, we then define the
stereotype «ADLDataMessage». This latter owns a property value, which models the data value conveyed by the
message. The type of this property is a UML OpaqueExpression. An opaque expression consists of a set of body
descriptions described in some given language defining how to interpret each text string contained in the bodies. For our
purpose, it is expected that users will use VSL to describe the value conveyed by a message. But the user is also free to
adopt any kind of other language, such as Java or C++ for example, or even natural language.

UML Profile for MARTE, V1.2 417

« profile »
MARTE4EAST-ADL2

« metaclass »
Message

!

« stereotype »
ADLDataMessage

value: OpaqueExpression

Figure A.14 - UML profile diagram for EAST-ADL2 data-based message

In UML2, a message owns generally two message ends: one refers to the event occurrence related to the posting of the
message, while the other refers to the event occurrence related to the receipt of the message. Currently, due to its initial
intent, the UML2 interactions clause defines only specific events dedicated to either operation-based message or signal-
based message. For our concern, i.e., enabling data-based communication within UML2’s interactions, we will then need
to also extend the concept of UML2’s Event as defined in the package UML::CommonBehaviors::Communications.
Figure A.15 denotes the extensions we define for that concern. It consists of extending the Event concept of UML2 by
introducing an abstract stereotype, «ADLDataEvent» and to reify this latter in order to introduce both concepts of event

related to posting and reception of data.

« profile »
MARTE4EAST-ADL2

« metaclass »

Communications::Event

UML::CommonBehaviors::

T

« stereotype »
ADLDataEvent

?

« stereotype »
ADLSendDataEvent

« stereotype »
ADLReceiveDataEvent

« stereotype »
data SysML::ltemFlow data

itemProperty: Property

Figure A.15 - UML profile diagram for EAST-ADL2 data event

418

UML Profile for MARTE, V1.2

Firstly, we define an abstract stereotype «kEADLDataEvent» and we generalize this latter into both stereotypes,
«ADLSendDataEvent» and « ADLReceiveDataEvent». Both stereotypes reference a SysML ItemFlow that is used to
denote the data that may be conveyed through the message.

Finally, on the notation point of view, we introduce a new representation of message in order to distinguish clearly data-
based communication from signal-based and operation-based communications. A data-based message will then be
represented as a line with a hollow triangle as an arrowhead (see examples in next sub clause). The name of the message
will consist of the text string contained in the body of data referenced by one of the end events (either
ADLSendDataEvent or ADLReceiveDataEvent). In case of complete messages (i.e., messages with two message ends), it
is the ADLSendDataEvent that is taken into account.

A.3.3 Examples

This sub clause provides examples illustrating the usage of the previous defined extensions. It consists of two sub clauses
that show how to model interaction for respectively EAST-ADL2 elementary and non-elementary functions.

A.3.3.1 The elementary ADLFunctionTypes case

In EAST-ADL2, an elementary function is a function that may not be decomposed in finer sub-functions. It is represented
in UML2 using its profile for EAST-ADL?2 with a composite class annotated with the stereotype «ADLFunctionType» for
which the property isElementary is set to true.

The model described in Figure A.16 denotes an elementary ADLFunctionType, called EFTO, owning both following
client/server ports: on the left side of the figure, EFTO specifies a server port pServl typed with the interface Interfacel.
This latter defines an operation named operation; on the right side of the figure, pClil defines a client port typed with the
interface named Interface2. This interface defines an operation named operation2. Instances of EFT0 may then receive
calls to the operationl operation and they may also do calls to the operation2 operation.

Interface2
Interface1
O] O « ADLFunctionType » C /Q
EFTO
pServ1 pCli1
« interface » « interface »
Interface1 Interface2
operation() operation2()

Figure A.16. Example of elementary ADLFunctionType with GCM client/server ports

The model described in Figure A.17 denotes an elementary ADLFunctionType, called EFT1, owning both following flow
ports: on the left side of the figure, EFT1 specifies an input flow port typed as an Integer; on the right side of the figure,
poutl defines an output port also typed as Integer. Instances of EFT1 may then receive integer-typed values through pinl
and it may send integer-typed values via the port poutl.

UML Profile for MARTE, V1.2 419

« ADLFunctionType »

EFTA pout1: Integer

pin1: Integer

Figure A.17. Example of an elementary ADLFunctionType with flow ports

Figure A.18 shows an example of an EAST-ADL?2 external end-to-end flow for the previous defined elementary
ADLFunctionType, EFT1. This figure models that when an instance of EFT1 receives an integer value on its pinl port, it
sends some time later an output integer value (j) on its output port poutl. Let’s note the specific line drawn between the
head of the left message and the tail of the right message. This line denotes a general ordering (see UML2 specification
on p. 480, sub clause 14.3.12 for more details on this concept) that enables to specify a partial order between
OccurrenceSpecifications (i.e., event linked to the ends of a message) that may otherwise not have a specified order. In
this case, that means that the j value is sent from poutl after the value i is received on pinl.

« ADLEZ2EFlow » {kind = extemnal}
sd EZEF_10HEFTH

EFT1

pin1: Integer | | pouti: Integer

i |

—l::]* | @
| EE—

Figure A.18. Example of an EAST- ADL2 external end-to-end flow for an elementary ADLFunctionType

Both Figure A.19 and Figure A.20 denote examples of internal end-to-end flows. The interaction shown in Figure A.19
illustrates the fact that an instance of EFT1 will execute some actions when receiving the value i in order to generate the
value j. This is described by the gray rectangle allocated to the life line shown in the middle of the sequence diagram.
This rectangle specifies an execution of either a unit of behavior, or action within the life line. Finally, let’s note that in
this example, there are no extra delays on both input and output ports.

o ADLEZEFlow » {kind = internal)
sd E2EF_10MEFTH

‘EFT1

pin1: Integer | [[pouti: Integer

i) I

o,
| I[J. D___|) =

Figure A.19 - Example 1 of an EAST- ADL2 internal
end-to-end flow for an elementary ADLFunctionType

Figure A.20 illustrates the specification of a delay on the input port side.

420 UML Profile for MARTE, V1.2

o« ADLEZEFlow » {kind = internal}
sd E2ZEF_1OfEFTH

‘EFT1

pin1: Integer | | [poutt: intsger

0] M |

o |
fj .:_:| () [~

Figure A.20 - Example 2 of an EAST- ADL2 internal
end-to-end flow for an elementary ADLFunctionType

The In flow port of EAST-ADL2 may be triggered meaning that the behavior execution of the ADL function owning the
port is triggered by the arrival of the data on the in ports. In the previous example, pinl is supposed to be an input data
triggered port. In other words, the semantics of the EAST-ADL?2 function is said to be time-triggered. That means that the
function will poll periodically its input ports in order to get the data stored by the ports (Figure A.21).

« ADLE2EFlow » {kind = internal}
sd E2EF_10fEFT1

:EFT1
pin1: Integer I poutt: Integer
o | | |
]y |y

|
| |]

Figure A.21 - Example of an EAST- ADL2 internal
end-to-end flow for an elementary ADLFunctionType
owhning a non-triggered input port

A.3.3.2 The non-elementary AFLFunctionTypes case

Non-elementary functions are different from elementary functions due mainly to two features: Firstly, one non-elementary
function may expose several end-to-end flows; secondly, a non-elementary function may be further described in terms of
sub-functions (called in EASL-ADL?2 function prototypes).

The first example will consist of denoting two possible end-to-end flows for the non-elementary function type described
in Figure A.22. This function type defines two input flow ports, pinl and pin2 typed as Integer, and one single output
flow port, poutl, typed as Integer. Both models describe two possible end-to-end flows for our non-elementary function.
This latter may either receive i values on its input port pinl and consequently send j data values on its output port poutl.
Or, if it receives input values on pin2, it outputs also a result value on poutl.

| UML Profile for MARTE, V1.2 421

pind : Integer N .
& ADLFunclionTypea » q-
MEFT1 pout1 : Integer

pinZ : Integer

Figure A.22. An example of non-elementary ADLFunctionType

« ADLEZEFlow » {kind = external}
sd EZEF_10fMEFT1

:NEFT1

pin1: Integer poutt: Integer |
{i)

Figure A.23. End-to-end flow 1 for NEFT1

« ADLE2EFlow » {kind = external}
sd E2EF_10OMEFT1

“NEFT1

pin2: Integer pouti: Integer
(i)

Figure A.24. End-to-end flow 2 for NEFT1

Previous examples were an illustration of external end-to-end flow for non-elementary functions. In the next example, we
illustrate the modeling of internal end-to-end flows for non-elementary functions. Firstly, as shown in Figure A.25, we
refine the description of the previous non-elementary function type, called NEFT1, by detailing its internal structure
(Figure A.25). NETF1 consists of two elementary function prototypes that are denoted by parts, partl, and part2. Both
elementary function prototypes are respectively typed by the elementary function types, EFT1, EFT2, and EFT3. EFT1
(resp. EFT3) owns an input port pinl (resp. pin3) typed as Integer, and an output port poutl (resp. pout3) also typed as
Integer. EFT2 has two input flow ports, pin21 and pin22, typed as Integer and one output port, pout21, typed as Integer.

422 UML Profile for MARTE, V1.2

MEFT1

® ADLFunclicnType s

pin21 : Integer

parl2. EFT2

':lpwtl Integar

Figure A.25 - Example of a non-elementary function type owning two elementary function prototypes

Both following figures denote two possible internal end-to-end flows for the previous described non-elementary functions
NEFTI. In Figure A.26, we may notice one particular point: the arrow head used to model the data-passing from poutll
to pin21 is tiled downwards showing that the data take sometime to pass along the assembly connector linking both

involved ports.

« ADLE2EFlow » {kind = internal}
sd EZEF_20MNEFTA
MR part: EFT1 part2: EFT2 ‘ MR
pir; Integer pint; Integer | | [pout!: Integer pin21: Integer | | |pout21: Integer | poutl: Integer
(i) r--.| (i) ,.,__‘_| (i) |
L -
| | |
| | |
(3 k)
- ——

Figure A.26 - Example 1 of an internal end-to-end flow for one non-elementary function

In the following internal end-to-end flow, let’s also notice that we did not detail all internal messages involved in the
interaction (i.e., in the end-to-end flow). In particular, we decided for this example to not show the details of the
interaction that happen inside both function prototypes denoted by parts, partl and part3. Hence, we abstracted this part
of the model by using the general ordering concepts as previously shown in Figure A.18.

« ADLEZEFlow » {kind = internal}
sd E2ZEF_30OMMEFTA

myNEFT1:

NEFT1 partd: EFT3 part2: EFT2 mﬂ;ﬁ:t
pint! Integer pind: Integer I | poutd: Integer pin12: Integer | | pout12: Integer | pout!: Integer
i | () | I | | |
= T
| e | | | |
| | 0l | |
e
. k (k)
R R R e

Figure A.27 - Example 2 of an internal end-to-end flow for one non-elementary function

UML Profile for MARTE, V1.2

423

Finally, the following example introduces one additional UML2 feature related to sequence diagrams that enable to
improve reuse. Hence, UML2 interaction defines the concept of InteractionUse (see 14.3.18 on page 487 of the UML2
specification for more details on that concept). An InteractionUse enables referring to another existing interaction within
a given interaction. In the example shown in Figure A.28, we used InteractionUse in order to reuse one of the previous
modeled end-to-end flows of EFT1 as the one shown in Figure A.19.

« ADLEZEFlow » {kind = internal}
sd EZEF_20fNEFTH

mﬂg__ﬁ': parti: EFT{ part2: EFT2 rmﬂﬁzi:
pint: Integer pint: Integer | | poutt: Integer pin2: Integer | | [pout2: Integer | pouti: Integes
i | (i [
U = |
| E2EF_101EFT1 | |
| () ':}' ®) r:_:|_)
| | |

Figure A.28 - Example of reuse within one end-to-end flow description

A.3.3.3 Refinement of end-to-end flows

When modeling application with EAST-ADL?2, it is expected that people will apply sometimes top-down approach that

means refining their models in order to detail them. The example shown in the following figure illustrates this refinement
relationship where the non-elementary function, NEFT1, is first seen as a black box in the model called ModelLevell, and
then further refined in the model named ModelLevel2. At this level, the user has detailed the inside of the non-elementary

function.
ModelLevell
pind - Integer
[ﬂpoun : Integer
PNz : Intege
'
'
|
|
i
i« abstraction »
| u refine »
ModelLevel2 .
i
+ ADLFunctionType »
MNEFT 1
pinl : Intager E
it Iintegir
n21 : Integar
: o parzEFT2 [J] E|puu11 Integer
FNZE : intepar
pand : Integesr [

Figure A.29 - Example of non-elementary function refinement

424

UML Profile for MARTE, V1.2

So, if now we consider the description of the end-to-end flow, it becomes also possible to define refine relationship
between the end-to-end flows associated to ModelLevell::NEFT1 and ModelLevel2::NEFT1 (Figure A.30).

« ADLE2EFlow » {kind = external}
sd E2EF_10fNEFT1

:NEFT1

pin 1: Integer poutl: Integer
(i)

« abstraction »

« refine »
« ADLE2EFIlow » {kind = internal})
sd E2EF _20fNEF T1
T e
pin1: Integer pint: Integer ‘ I ‘ poutl: Integer pin21: Integer ‘ I ‘ pout21: Integer ‘ poutl: Integer ‘
() >| 0) >| W | | | | I |
l | o | G | | | |
)

| | I o | I |

[| | [| [] (k) . ERCI.

[I ' [I] | !

Figure A.30 - Example of end-to-end flow refinement
A.3.4 Marking EAST-ADL2 end-to-end flows with timing information

In addition to be able to describe end-to-end flows for function types and prototypes, the EAST-ADL2 users need also to
annotate those descriptions with timing-related information, such as deadlines. Extensions are then required to be defined
in order to cope with that need. Of course, we reuse as much as possible the MARTE standard.

A.3.4.1 Details of the EADL sub-profile for timed end-to-end description

The focus of this sub clause is to describe the EASL-ADL?2 sub-profile dedicated to extensions for modeling timing
aspects on the end-to-end flows.

According to the EAST-ADL2 timing domain model, two concepts are required to annotate end-to-end flows: latency and
synchronization. Latency is supported by the MARTE standard through the concept called GaLatencyObs defined in its
generic quantitative analysis sub-profile (Figure 15.8).

Note that the MARTE::GalLatencyObs concept inherits from MARTE::NfpConstraint, which is an extension of the UML
constraint. Moreover, as NfpConstraint, it has the ability to specify if the constraint is required or offered. In this case, the
contract case has no sense.

Finally, EASL-ADL user needs also to be able to specify timed synchronization constraints between different timed
instant observations. As shown in Figure A.31, we define the stereotype «ADLTimedSynchConstraint» that inherits from
the MARTE::NfpConstraint. An ADL timed synchronization constraint refers to set of timed instant observations for

UML Profile for MARTE, V1.2 425

which one wants to specify a timed synchronization constraint. It is then possible to specify either an upper, or a lower,
or a nominal value for the acceptable delay you accept between the min and the max of the synchronized timed instant
observations.

« profile »
MARTE4EAST-ADL2

« stereotype »
MARTE::NfpConstraint

kind: ConstraintKind

1

« stereotype »
ADLTimedSynchConstraint synchinstants MARTE::
2.* | TimedInstantObservation

value: NFP_Duration

Figure A.31 - UML profile diagram for EAST-ADL2 timed synchronization constraint

A.3.4.2 Examples

The first example presented in this sub clause denotes a flow latency specification for the ADL elementary function type
modeled in Figure A.32. In this case, we want to specify a latency between the data values output from poutl and the data
values received on pinl. To do that, we first have to describe the end-to-end flow itself that we want to consider as shown
on the left hand side of Figure A.32. The second step is to adorn this end-to-end flow model with the timed instant
observations that are needed to express the latency. In our case, we want to specify latency between the instant when
values are output from an instance and EFT1 and the instant when values are received on the input port of this instance
of EFT1. As shown in Figure A.32, we add both TimedInstantObservation, t1 and t2, that denote respectively, the instant
when an integer value is received on pinl and the instant when an integer value is sent from poutl. Then, we add a UML2
constraint (shown in the rectangle with the upper right corner bent, also called “note symbol”) stereotyped as
ADLE2EFlowLatency to specify the latency. The text of the constraint has to be understood that way: in this case, it is an
offered latency. When receiving an integer value, i, on its input flow port pinl, an instance of EFT1 will output an integer
value j on its output flow port poutl 6,2 ms later in the nominal case. Note also that the output value is never sent before
5,5 ms after receiving the input value, and no later than 6,8 ms. Finally, we accept a jitter of 1 ms for this flow.

426 UML Profile for MARTE, V1.2

« ADLE2EFlow » {kind = external}
sd E2EF_10fEFT1

:EFT1

pin1: Integer pout1: Integer
in1: Integer] «ADLFunctionType » out1: Integer ; | |
pint-integ EFT1 poutt: Integ (i) | !
‘i>| ______________________) I

i ‘@ R ! 0
I @
«gaLatencyObs»

{ kind=required, startObs=(t1), endObs=(t2),
latency=(best=5.5 ms, value=6.2 ms, worst=6.8 ms),
maxdJitter=1 ms }

Figure A.32 - Example of flow latency for an elementary function type

In the next example, we consider a second elementary function type owning two input ports, pinl and pin2 and one output
port, poutl. In this example, we would like to specify a latency constraint between the output values and both input values
(Figure A.33).

« ADLFlowPort »
pin1: Integer « ADLFunctionType » « ADLFlowPort »
ut1 : Integer
« ADLFlowPort » EFT2 poutt - Integ
pin2 : Integer

Figure A.33 - An ADL elementary function type with two input ports and one output ports

The interesting point highlighted in this example (Figure A.34) is the specific modeling to take into account the receipt of
input values, i and j. In this case, an instance of EFT2 may receive Integer values on both input ports pinl and pin2. And
we want to specify a latency between a pair of values received on the input ports and a value sent on the output port. We
first model that i and j may be received in whatever order (i.e., i before j, or j before i). To do that, we used a co-region
as shown in Figure A.34. This co-region enables us to model here that the reception order for i and j is not specified, that
means they may be interleaved. The specified flow latency can then be read as follows: it is required for any instance of
EFT2 to send an output integer value on pout 1 respecting following timing constraints: in the nominal case, 6 ms later
the inputs are received, but not before 5 ms and no later than 7 ms. The acceptable jitter is 2 ms.

| UML Profile for MARTE, V1.2 427

« ADLE2EFlow » {kind = external}
sd TE2EF_10fEFT2

‘EFT2

pin1: Integer ‘ ‘ pin2: Integer
T

: pout1: Integer
|
|

|
0 | @)
— 5 : %@
1) i\@t2 @)
|
|

« gaLatencyObs »
{ kind=required, startObs=(t1, t2), endObs=(t3),
latency=(best=5 ms, value=6 ms, worst=7 ms), maxditter=2 ms }

Figure A.34 - Example of latency specification with two input values

The last example presented in this sub clause is intended to illustrate how it is possible to specify synchronization on
constraints within end-to-end flow models. For that, we will consider the non-elementary function type shown in Figure
A.35.

«ADLFunctionType »
NEFT1

wADLFunctionType » 3 pout: Integer pind1: Integer ’J']
part1: EFT1 L.

«ADLFunctionType » pout2: Integer pind2: Integer wADLFunctionType »
pariz: EFT2 D | [J parid: EFT4
«ADLFunctionType » 3 pout3: Integer pind3: Integer
part3: EFT3 F

Figure A.35 - An example of non-elementary function type for illustrating
synchronization constraints

In the following example, we illustrate the specification of a timed synchronization constraint specification between all
the input values of the ADL function prototype named part4 in the previous figure. In this example, our purpose is to
specify that the upper value of the acceptable delay between the values received by pindl, pin42, and pin43 is 6 ms. To
achieve this goal, we have to follow three steps as shown respectively in Figure A.36, Figure A.37, and Figure A.38. The
first step, shown in Figure A.36 consists of modeling an end-to-end flow focused on the concerns related to desired timed
synchronization constraint. In our case, the constraint holds for the input values of the ADL function prototype part4
(Figure A.35). In this example, we use a specific UML2’s construct for interaction, a parallel interaction operand. This
latter enables us to model that values are received on pin41, pin42, and pin43 in parallel. Once the end-to-end flow is
modeled, we explicit which are the timed instants we need to observe in order to define our timed synchronization

428 UML Profile for MARTE, V1.2

constraint. Here, we then introduce tin41, tin 42, and tin43 that enables us to identify the instants when I, j, and k are
received by their respective ports (Figure A.37). Finally, we can write the timed synchronization constraint as described
in Figure A.38.

« ADLE2EFlow » {kind=external}
sd InputsSyncroSpecSpe0f_part4

partd: EFT4
pin41: Integer ‘ ‘ pind2: Integer ‘ ‘ pin42: Integer
I |
par (i) I | I
. A— | | |
(J) T e |
L S = !
k
Rt | =
1 1]

Figure A.36 - Step 1 for modeling a timed synchronization constraint

« ADLE2EFlow » {kind=extema}}
sd InputsSyncroSpecSpe@Of_part4

pard: EFT4

pind1: Integer ‘ ‘ pind2: Integer ‘ ‘ pind2: Integer

|
o || ! |
.Lqﬁl—@tinM ! !
@) i >f—@tin42 |
e)] } >|—@tin42
L 1 L

Figure A.37 - Step 2 for modeling a timed synchronization constraint

| UML Profile for MARTE, V1.2 429

« ADLE2EFlow » {kind=external}
sd InputsSyncroSpecSpec20f_part4

part4: EFT4

pind1: Integer ‘ ‘ pind2: Integer ‘ ‘ pind2: Integer « ADLTimedSynchConstraint »
{'synchinstants = (tin41, tin42, tin43),
value = 6 ms}

I I I
par . i i i -
o) ! @i | | 7
(J) : | |
® ! >l @tind2 !
[T T
o v : : DE—@HMZ
| |

Figure A.38 - Step 3 for modeling a timed synchronization constraint

430 UML Profile for MARTE, V1.2

Annex B
Value Specification Language (VSL)

(normative)

B.1 Overview

This annex provides a detailed definition of the abstract (MOF compliant metamodel) and concrete (textual grammar)
syntax for specifying expressions in MARTE. The MARTE expression language is used to specify the values of
constraints, properties, and stereotype attributes particularly related to non-functional aspects. In fact, this expression
language can be used by profile users in tagged values, body of constraints, and in any UML element associated with
value specifications.

In addition, the expression language might be used by any other UML-based specification interested in extending the base
expression infrastructure provided by UML. As shown below, the MARTE expression language is an extension to the
“Value specification” and “DataType” concepts provided by UML. For this reason, we call it Value Specification
Language (VSL).

VSL deals with the following requirements:
« How to specify parameters/variables, constants, and expressions in textual form.

« How relationships between different parameters/variables, or constant values are to be defined with support on
arithmetic, logical, relational, and conditional expressions.

+ How different time values and assertions are to be defined in UML.
+ How to specify composite values such as collection, interval, and tuple values.

VSL expressions can be used to specify non-functional values, parameters, operations, and dependency between different
values in a UML model. UML modelers can use VSL to specify non-functional constraints in their models.

Note: This annex is normative in the UML profile for MARTE.
B.2 Domain View

B.2.1 Overview

This sub clause describes the abstract syntax of VSL. In this abstract syntax a number of concepts (metaclasses) from the
UML metamodel are reused. These concepts are shown in the models with a gray fill color. Note that, however, we do not
formally “import” them from UML, but re-define them with the same semantics in the MARTE namespace. In the UML
representation clause, we describe how all these metaclasses are actually mapped to UML.

The abstract syntax is divided into several packages. The overall package structure of VSL is shown in Figure B.1.

+ The DataTypes package describes the concepts that define the datatype extensions to UML. In addition to primitive and
enumeration datatypes, it includes further specializations for composite datatypes and subtypes.

+ The Literal Values package includes literal constant values of different primitive types. Besides UML literals, this
package distinguishes, among others, Real and DateTime literals.

UML Profile for MARTE, V1.2 433

+ The Expressions package describes the structure of expressions, including variables and reference values to UML
model elements.

« The CompositeValues package defines four kinds of composite values: interval, collection, tuple, and choice.
« The TimeExpressions package presents specialized syntax for time value specifications and expressions.

The purpose and contents of each sub package denoted in Figure B.1 are described in subsequent sub clauses.

« modelLibrary »
MARTE_Library::
MARTE_PrimitiveTypes

]
14
«import »
MARTE::VSL !
DataTypes swmm « import »
’
LiteralValues :------): Expressions
:
« import »
H
— : —
CompositeValues L- TimeExpressions
«import yreww

Figure B.1 - Structure of the VSL framework
B.2.2 The Datatypes Package

A datatype is a type whose instances are identified only by their value. Instances of a given datatype consist of a set of
distinct values, characterized by properties and operations on those values. A value space is the set of values for a
datatype. The value space of a given datatype can be defined either by enumeration, axiomatically from fundamental
notions, or as a subset of values from some already defined value space.

VSL is a typed language. Each value specification, including expressions, has a type that is either explicitly declared or
can be statically derived. Evaluation of an expression yields a value of this type.

The model of datatypes used in this specification is said to be an “abstract computational model.” It is “computational” in
the sense that it deals with the manipulation of information by computer systems and makes distinctions in the typing of
data units that are appropriate to that kind of manipulation. It is “abstract” in the sense that it deals with the perceived
properties of the data units themselves, rather than with the properties of their representations in computer systems.

In this specification, datatypes are categorized, for syntactic convenience, into:

« Enumeration types, whose value space is defined by enumeration.

434 UML Profile for MARTE, V1.2

« Primitive types, which are defined axiomatically without reference to other datatypes.
« Subtypes, which are defined in terms of other datatypes.

« Composite types are aggregates of value spaces that can be seen as an organization of specific datatypes.

VSL::DataTypes ‘
tat ownedAttribute
1 go :pe N Property
DataType)
baseType datatype ownedOperation -
‘0] - Operation
Z> 0.1 operation
‘ ‘ ‘ ownedParameter | *
Parameter
Subtype EnumerationType | | PrimitiveType CompositeType
* iowneduteral ‘ ‘ ‘ ‘
EnumerationLiteral IntervalType CollectionType TupleType ChoiceType @——
BoundedSubtype intervalAttribute collectionAttribute tupleAttributes choiceAttributes
{subs e_ts 1 1 {subsets N {subsets . {subsets
minValue: String ownedAttribute} ownedAttribute} ownedAttribute} ownedAttribute}
maxValue: String ‘ 0.1
isMinOpen: Boolean Property .
isMaxOpen: Boolean defaultAttribute
{subsets
ownedAttribute}

Figure B.2 - VSL::DataTypes package

Note that the Datatype package preserves the same structure and semantics as in UML, but it extends UML in the
following ways:

« Like in UML, DataTypes may contain attributes to support modeling of structured data types. However, dissimilar
kinds of structures, with different syntax and semantics, are defined in our language. CompositeType is the metaclass
that congregates composite data types. Each kind of composite type (interval, collection, tuple, and choice) has a set of
attributes defining particular structures of data types.

+ The set of owned operations for a data type comprises those operations on the data type values, possibly yielding values
of the owner data type, of the Boolean data type, or, in some cases, of other existing data types. In general, there is no
unique collection of operations for a given data type. This specification provides a set of operations for each MARTE
data type, which is sufficient for most purposes in this domain. However, this does not limit the capacity of the
language to accept new operations in specialized or new data type libraries.

+ A Subtype is a data type derived from an existing data type, designated the base data type, by restricting the value space
to a subset of that to the base data type while maintaining all operations. Particularly, a Bounded Subtype defines a
subtype of any ordered data type by placing new minimum and maximum value bounds on the value space.

UML Profile for MARTE, V1.2 435

« Composite types are composed of values that are made up of values of the owned attributes. CollectionType describes
a list of elements of a particular given type. TupleType combines different types into a single aggregate type.
IntervalType defines a collection of values, having the same type, contained between two given values. ChoiceType
generates a data type each of whose values is a single value from any of a set of alternative data types.

Note that composite types involve an indirect way to define data type properties. For instance, the intervalAttribute
association end of IntervalType is of type Property. This implies that the multiplicity, uniqueness, and order of the bound
elements is specified by a data type property (referenced by intervalAttribute), which is defined when a given composite
type is created. Thus, for IntervalTypes, the multiplicity of the referenced property must be ‘[2]” in order to guarantee that
the interval value specifications will have two value elements (the max. and the min. values of the interval).

B.2.3 The LiteralValues package

LiteralSpecification is an abstract literal expression that represents a constant. In addition to the existing literal constants
supported by UML, this language includes DateTime, Real, and Default literals (Figure B.3). While the first two are
actually related to requirements in the MARTE domain, the last one supports a notation for unspecified values that should
take a pre-declared default value.

DateTime literal represents an instant in time expressed as a calendar date and/or time format.

Real literal is a constant value expressing a computational approximation to a mathematical real number, without bound
values.

EnumerationSpecification is a value specification that identifies an EnumerationLiteral.

VSL::LiteralValues

ValueSpecification
EnumerationLiteral A

1 enumLiteral ‘

EnumerationSpecification LiteralSpecification

| | : | |

LiteralString LiteralBoolean| | LiteralDateTime ‘ LiteralNull ‘ ‘ LiteraIDefauIt‘

value: String D..1] value: Boolean value: DateTime

|

Literalinteger || LiteralUnlimitedNatural| | LiteralReal

value: Integer value: UnlimitedNatural value: Real

Figure B.3 - Literal Values package

436 UML Profile for MARTE, V1.2

B.2.4 The Expressions package

An expression represents a node in an expression tree. If there are no operands, it represents a terminal node. If there are
operands, it represents an operator applied to those operands. In either case there is a symbol associated with the node.
The interpretation of this symbol depends on the context of the expression.

Expressions are used to derive values from other values or expressions. An expression can be a simple literal or variable,
or it can be a compound expression (arithmetic, logical, or time expressions) formed by combining operands and
Operation Call Expressions.

The basic structure in the package consists of Variable Call/Declaration Expression, Property Call Expression, Operation
Call Expression, and Conditional Expression (Figure B.4).

Variables are typed elements for passing data in expressions. The variable can be used in expressions where the variable
is in scope. A Variable Call Expression is an expression that consists of a reference to a variable. Variable creates a
variable with a given name, data type, and nature (input, output, input/output).

Variables are declared in a given Expression Context. The Expression Context’s name attribute is used for identification
of the variable elements. An Expression Context provides a container for variables. It provides a means for resolving
conflicting global variables by allowing Variable Call Expressions of the form exprContextl::subContext2::varX.
Concrete rules to construct the derived attribute “variable” of Variable Call Expression, are defined in “UML
Representation.”

A Property Call Expression is used to refer to Properties in the UML metamodel.

An Operation Call Expression refers to an operation defined in a UML Classifier. The expression may contain a list of
argument expressions if the operation is defined to have parameters. In this case, the number and types of the arguments
must match the parameters.

A Behavior Call Expression refers to a behavior defined in a UML Namespace. The expression may contain a list of
argument expressions if the behavior is defined to have parameters. In this case, the number and types of the arguments
must match the parameters.

This metamodel does not define explicitly the context of properties and operations and the namespace that the
corresponding call expressions must use. When specifying values making reference to properties and operations of their
corresponding data types, the namespace is not taken into account. Further usages of this metamodel may define different
namespaces for property and operation.

Conditional Expressions define “if-then-else” statements, which can be used inside an expression. The result of evaluating
this expression will be the result of the evaluation of the ifTrueExpr if the conditionExpr is true. Otherwise, the result will
be the result of the ifFalseExpr.

An Opaque Expression is an uninterpreted textual statement that denotes a (possibly empty) set of values when evaluated.
This allows extending VSL to other specialized expression languages.

| UML Profile for MARTE, V1.2 437

VSL::Expressions ‘

argument {ordered} *

initExpression
ValueSpecification
0.1 argument {ordered} *
* /\ {ordered} conditionExpr ifTrueExpr/|\ ifFalseExpr
operand 1 1 1
L @ Expression OpaqueExpression
symbol: String [0..1] body: String [*] {ordered}
language: String [*] {ordered}
VariableCall PropertyCall definingProperty Property
Expression | Expression . ConditionalExpression
Ivariable: String /property: String | yefiningOperation
OperationCall 0.1| Operation
Expression
Joperation: String ‘—1 Behavior
definingBehavior | symbol : String [0..1]
BehaviorCall /1 lisAnOperator : Boolean
Expression /arity : Integer

Ibehavior: String (@

definingVariable 1

datatype
Variable

0.1
——@ name: String DataType
direction: VariableDirectionKind [0..1]

/datatypeName: String [0..1]

context J/ 0.1 « enumeration »
. VariableDirectionKind

0.1
ExpressionContext i
|; name: String [1] out

inout
subContext *

Figure B.4 - VSL::Expressions package
B.2.5 The CompositeValues package

In general, a composite value can contain zero, one, or more component values. Three kinds of composite value
specifications are defined: interval, collection, and tuple (Figure B.5).

Collection Specifications represent a list of elements of a particular given type. Individual elements of collections are item
Value Specifications. Note that there is no restriction on the item value type of a collection type. This means in particular
that a collection type may be parameterized with other collection types allowing collections to be nested arbitrarily deep.
Size, uniqueness, and order nature of item values are defined by the defining data type.

Interval Specifications describe ordered sets of value specifications represented by two values: the minimum and the
maximum value. Additionally, two attributes define whether these two values belong or not to the referred set
(isLowerOpen and isUpperOpen).

Tuple Specifications denote structured values of possibly different types. It contains a name, a type, and a value for each
item of the tuple value. There is no restriction on the kind of types that can be used to define item values of tuples. In
particular, a Tuple Specification may contain other tuple and collection values.

438 UML Profile for MARTE, V1.2

Choice Specification denotes a value of a choice data type (ChoiceType). It contains the name of one of the attribute
members (chosenAlternative), which determines the chosen data type, and a value that conforms to the chosen data type.
The derived attribute “chosenAlternative” can be constructed with basis on an explicitly chosen data type. When the
chosen data type is undefined in a given choice value specification, the chosen alternative can be deduced from the
default alternative attribute of the corresponding choice type.

VSL::CompositeValues

itemValue 1 ValueSpecification 1
value
max 1 *
min 1 itemValue

| Q | |

IntervalSpecification ChoiceSpecification

TupleSpecification CollectionSpecification

isLowerOpen: Boolean /chos enAltemative: String
isUpperOpen: Boolean

tupleltem choiceAttribute 0.1
TupleltemValue 1
- Property
ftupleltemName:String tupleAttribute

Figure B.5 - VSL::CompositeValues package
B.2.6 The TimeExpression package

This package adds textual capabilities to represent time related expressions. UML has defined a Simple Time model in the
Common Behavior package, which already provides means to represent time and durations, as well as a mechanism to
refer to event observations with time marks. MARTE extends UML to support more expressive time expressions,
constraints, as well as observations in different behavior diagrams. Particularly, VSL’s Time Expression model improves
UML with the following capabilities:

+ One single instant or duration observation can be expressed with an occurrence index. For instance, we can express the
“i-th” occurrence of a given event. While the occurrence could be trivial in sequence diagrams (since this diagram is
based on occurrence specifications), other diagrams such as state machines and activities may require the explicit
identification of the occurrence. In the same way, recurrent interaction fragments represented by a single sequence
diagram, such as periodic or loop fragments may require time assertions comparing different instance traces of the
sequence diagram. For instance, the duration between the i-th and i+1-th occurrence of an event that triggers a periodic
scenario.

+ One single instant or duration observation can be expressed with a given condition. For example, the instant time at
which a given event occurs (observation) when a specific class’ attribute has a value greater than a given constant
(condition).

+ The jitter of a nominal periodic event or, in general, the jitter between two causal events that occur in instants separated
by a nominal time interval. Typical examples are the jitter of a clock event or the maximum jitter introduced by packet
networks so that a continuous playout of audio (or video) transmitted over the network can be ensured.

| UML Profile for MARTE, V1.2 439

Observation Call Expressions (ObsCallExpression) refers to a single observation (instant and duration observation). It
includes an occurrence index expression (occurlndexExpr) that must evaluate to an integer value. Condition expression
defines an operational (run-time) condition that completes the definition of a relative event.

The semantics of the occurrence index depends on the observed events. While the absolute order of a given event
occurrence regarding another different event could be useful only when both events are synchronized, it exists certain
cases where the relative order of an occurrence may be useful to express constraints from different responses of a
recurrent scenario. In many systems, each request for service needs to be met by a separate response, but the two need not
happen at the same time. For instance, let us point to data consistency of FIFO queues as a simple example. Also index
“i” enables comparisons between different occurrences of the same event that may not be consecutive (e.g., burstiness).

The condition expression of observation call expression allows having a similar construct as the UML ChangeEvent,
which defines an expression condition that defines the event occurrence. However, we target to construct textual
expressions that do not require the explicit definition of a ChangeEvent element.

TimeExpression is an expression that factorizes different kinds of time related expressions, including instants, durations,
and jitters.

The Time Expression is given by “expr” that may contain usage of the observations (obsExpr) given by
ObsCallExpression. In the case where there are no “obsExpr,” the “expr” will contain a time constant. In the case where
there is no “expr,” there shall be a single “obsExpr” that indicates the instant or duration expression value.

InstantExpression is a time expression that denotes a time instant value.
DurationExpression is a time expression that evaluates to a duration value.

JitterExpression is a duration expression that denotes an unwanted variation (delta) in an event occurrence instant that
should occur in periodic intervals.

Instant and DurationIntervalSpecifications are special kinds of interval specifications that have time expressions as upper
and lower bounds.

440 UML Profile for MARTE, V1.2

VSL::TimeExpressions
conditionExpr 0..1
ValueSpecification
occurlndexExpr 0..1
0.1
expr
{ordered}
obsExpr Z o
ObsCallExpression Time Expression Composnte\{a'lue:s.
* IntervalSpecification
{redefines min} Zﬁ
Emln - .
InstantExpression InstantintervalSpecification
{redefines max}
max
observation 1 {redefines min}
min
@
Observation JitterExpression ——| DurationExpression DurationIntervalSpecification
{redefines max}
max

Figure B.6 - VSL::TimeExpressions package

Note that the Time Expressions package only introduces the basis to write time related expressions. For example, this
model does not account for the relativistic effects that occur in many distributed systems, or the effects resulting from
imperfect clocks with finite resolution, overflows, drift, skew, etc. These capabilities, among others, are defined in the
MARTE’s Time clause. In the same way, measurement units and other time value qualifiers are defined in the NFP
modeling clause.

B.3 UML Representation

This sub clause describes the UML extensions required to support the concepts defined in the previous domain view. The
set of extensions to support VSL with UML is organized according to the extension mechanism used for each part of the
metamodel. In particular, note that in VSL not every domain concept will result directly in a UML stereotype or tagged
value. This is because some domain concepts are defined to be implemented as a separated metamodel.

For instance, we have chosen to only define stereotypes for concepts that are related to data types definition and variable
declaration. The group of domain concepts related to value specifications and expressions yields a separated language,
thus providing a new metamodel used in a complementary way to the UML one. Indeed, the latter defines an extended
grammar for textual notations.

Thus, we first describe the extensions concretized in stereotypes. Then, we define the extensions related to the
specification of value expressions. It covers the definition of the concrete syntax of VSL for annotating model elements
with extended value specifications.

In sub clause D.1, we define a model library of primitive DataTypes and its operations, which is intensively used in
MARTE, especially to characterize the supported operations in primitive types.

UML Profile for MARTE, V1.2 441

B.3.1 Profile Diagrams

Figure B.7 shows the UML extensions for DataTypes definition. The VSL::DataTypes package (stereotyped as profile)
defines how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and tagged values are provided in sub
clause B.3.2.

« profile»
VSL::DataTypes

« metaclass »
UML::DataType

f 1

« stereotype» « stereotype» « stereotype» « stereotype» « stereotype»
BoundedSubty pe IntervalType CollectionType TupleType ChoiceType
baseType: DataT ype [1] intervalAttrib: Property [1] collectionAttrib: Property [1] tupleAttrib: Property [*] choiceAttrib: Property [*]
minValue : String [1] defaultAttrib: Property [0..1]

max Value: String [1]
isMinOpen: Boolean [1] =False
isMax Open: Boolean [1] = False

Figure B.7 - UML Extensions for DataTypes definition

Although variables can be created in VSL expressions, we provide the capability to alternatively declare them by means
of extended UML Properties. When using UML properties, variable declaration matches to the concept of Parameters in
SysML Constraint Blocks.

Figure B.8 shows the UML extensions for Variable definition. The VSL::Variables package (stereotyped as profile)
defines how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and tagged values are provided in sub
clause B.3.2.

442 UML Profile for MARTE, V1.2

« profile »
VSL::Variables

« metaclass » « metaclass »
UML::Property UML::NamedElement
y A
«enumeration» « stereotype»

« stereotype»

VariableDire ctionKind Var .
ExpressionContext

in dir: VariableDirectionKind [0..1] =inout

out
inout

Figure B.8 - UML Extensions for Variable declaration

« profile »
VSL::Operators

« metaclass »
UML::Behavior

T

« stereotype »
Operator

symbol : String [1]
/arity : Integer

Figure B.9 - UML Extensions for declaring new type signatures for predefined VSL operators
B.3.2 Profile elements description

B.3.2.1 BoundedSubtype
The BoundedSubtype stereotype maps the BoundedSubtype domain element defined in Annex F (F.13.3).

Bounded Subtype is a kind of subtype. A subtype is a data type derived from an existing data type, designated the base
data type, by restricting the value space to a subset of that of the base data type while maintaining all operations.
BoundedType creates a subtype of any ordered datatype by placing upper and/or lower bounds on the value space
(minValue and MaxValue).

Extensions

+ DataType (from UML::Kernel)

Generalizations

* None

UML Profile for MARTE, V1.2 443

Associations

» None

Attributes

* DbaseType: UML::Classes::Kernel::DataType [1]
Designates an ordered datatype.

* minValue: String [1]
Defines a string that specifies that the value space is limited to this value in his lower bound.
When minValue is "*", it indicates that no lower bound is being specified.

* maxValue: String [1]
Defines a string that specifies that the value space is limited to this value in his upper bound.
When maxValue is "*", it indicates that no upper bound is being specified.

* isMinOpen: Boolean [1]
Defines if minValue is excluded in the bounded value space.

* isMaxOpen: Boolean [1]
Defines if maxValue is excluded in the bounded value space.
Contraints

» None

B.3.2.2 ChoiceType
This stereotype maps the “ChoiceType” domain element defined on Annex F.

Choice Type generates a data type each of whose values is a single value from any of a set of alternative data types.
Choice Type combines different types into a single data type. Instances of choice data types belong to only one of the
member types. This type is similar to the C union type and the Ada/Pascal “variant-record.” When all the attributes of the
extended data type participate as alternatives of the choice type, choiceAttrib can be left undefined.

Extensions

+ DataType (from UML::Kernel)

Generalizations

* None

Associations

* None

Attributes

* choiceAttrib: UML::Classes::Kernel::Property [*]
Defines the type, size, uniqueness, and order of the alternative members of the choice data type. When all the
attributes of the extended data type participate as alternatives of the choice type, the choiceAttrib’s tagged
value can be left undefined.

» defaultAttrib: UML::Classes::Kernel::Property [0..1]
Defines the default alternative member of the choice data type.

444 UML Profile for MARTE, V1.2

Constraints

[1]The types of the properties belonging to this DataType are constrained to be UML::DataType or one of its children meta-
classes only.

B.3.2.3 CollectionType
This stereotype maps the domain concept “CollectionType” defined in Annex F.

Collection Type describes a list of elements of a particular given type. Part of every collection type is the declaration of
the type of its elements by means of the CollectionAttribute (i.c., a collection type is parameterized with an element type).
Note that there is no restriction on the element type of a collection type. This means in particular that a collection type
may be parameterized with other collection types allowing collections to be nested arbitrarily deep.

Extensions

» DataType (from UML::Kernel)

Generalizations

« None

Associations

« None

Attributes

» collectionAttrib: UML::Classes::Kernel::Property [1]
defines the element type, size, uniqueness and order kind of this composite data type.

Constraints

[1]The types of the properties belonging to this DataType are constrained to be UML::DataType or one of its children meta-
classes only.

Issue 15433 - udpate text

B.3.2.4 IntervalType

This stereotype maps the domain concept “IntervalType.”

Interval type is a composite data type.

the-upper-bound-eftheIntervallnstances of a particular IntervalType can be used to specify interval of values. The
property intervalAttrib is used to specify both the type of elements contained in the interval and (at instance level or in
the case where a default value is specified) the lower and upper bounds of the interval.

Extensions

» DataType (from UML::Kernel)

Generalizations

« None

UML Profile for MARTE, V1.2 445

Associations

« None

Attributes

* intervalAttrib : UML::Classes::Kernel::Property [1]
Defines both the type of the elements contained in the interval and (at instance level or in the case where a default
value is specified) the lower and upper bound of the interval.

Constraints

« None

B.3.2.5 Operator

The stereotype Operator matches the domain concept “Behavior,” defined in Annex F, in the case the property
“Behavior.isAnOperator” is true. This stereotype applies to the metaclass Behavior. It is used to specify that a given
predefined VSL operator (i.e., unary 'not', unary '-', unary '+', "' '/', '+, 12! < S <=" == =SS! and!, or!, and 'xor)
applies on specific data types, an can safely be manipulated in the context of an infix or prefix VSL expression.

Extensions

» Behavior (from UML::BasicBehaviors)

Generalizations

- None

Associations

« None

Attributes

» symbol: String [1]
The symbol associated with the corresponding operator.

« /arity: String [1]
The arity of the corresponding operator. This is a derived property. The arity of the operator is equal to the
number of input parameters of the stereotyped Behavior.

Constraints

[1] Symbol must represent a predefined VSL operator. It must be equal to one of the following strings: "*', '/, '+', '-', '<',
|>|’ ’<:V, ‘>:|’ — :|’ |<>|’ ’notl’ landl’ 'Or" IXOI.V.

[2] The behavior must have only input parameters (no out or inout parameters).

[3] The behavior must have exactly one return parameter.

446 UML Profile for MARTE, V1.2

Semantics

In standard libraries of data types defined in MARTE, predefined operators (manipulated in infix or prefix expressions of
VSL) are captured as operations associated with data types. The stereotype Operator provides an alternative solution for
specifying that a given predefined VSL operator applies on a standard or user-defined data type. The property “symbol”
actually captures the corresponding operator, and the set of input parameters as well as the return parameter of the
behavior capture the type signature of the operator.

The usage of behaviors for capturing operator signatures can help to limit the coupling between type definitions and
operator signature definitions (since operator signatures are not captured as operations of data types), potentially limiting
the need for modifications of existing data types libraries.

The following simple examples illustrates the usage of the stereotype “Operator,” for the definition of operators '+' and
'-" applying on the DataType Integer, and how the information provided by the stereotype could be exploited by an
implementation of a VSL parser.

VSL

PrimitiveBehaviors

« operator » « operator »
{symbol = “+"} Integer {symbol = -}

Integer Integer

Addinteger

Minusinteger

Integer

Figure B.10 - Defining operators ‘+’ and ‘-’ (for DataType Integer) using stereotype «Operator»

In an implementation of VSL parser, an expression such as “a + b” would be interpreted as an “additive expression,” due
to the presence of operator '+'. Then, a generic type checking algorithm (associated with a parser implementation) would
typically consist in:

[IPS L)

1. Inferring the type of expression “a
2. Inferring the type of expression “b”

3. Searching in the PrimitiveBehaviors library (or any namespace which is “visible” in the context of the Expression,
e.g., by a library import) if there is a behavior such that:
» the stereotype «Operator» is applied, and its property 'symbol' is equal to "+"
* the signature is compatible with typeOf("a") and typeOf("b") (I come back on what “compatible” means in your
point about “polymorphic behaviors™).

If typeOf("a") == Integer and typeOf("b") == Integer, then the expression "a + b" would be equivalent to the behavior call
expression "VSL.PrimitiveBehaviors.AddInteger(a,b)"

This kind of algorithm necessarily relies on a notion of scope or visibility, to determine what behaviors are actually
visible in the context of an expression. Let us consider the following example to show how such a notion of scope could
actually be implemented.

UML Profile for MARTE, V1.2 447

VSL

« library »
PrimitiveBehaviors « library »
MyCustomBehaviors

« operator »
Integer| {symbol = “+”} « operator »

Integer {symbol = *+"}

Addinteger Integer
Integer Addinteger
« import »
« import »
M
C c!
«var » a: Integer «var » a: Integer
«var » b: Integer «var » b: Integer
p: Integer = AddInteger(a, b)o p: Integer = AddInteger(a, b)o
Equivalent to: Equivalent to:
VSL.PrimitiveBehaviors.AddInteger(a, b) MyCustomBehaviors.AddInteger(a, b)

Figure B.11 - Principles of the Scoping mechanism in VSL

In this example, the model M (in the bottom of the figure) owns a class C, which owns a property p. In order to type C.p
by VSL.PrimitiveTypes.Integer, the library VSL.PrimitiveTypes must have been imported, at least by model M. Similarly,
in order to write a BehaviorCallExpression which uses a behavior from the library VSL.PrimitiveBehaviors (such as
AddInteger(a,b) in our example), this library must be imported, at least at the level of model M. In this case, any behavior
defined in the imported library is visible in the context of an expression, so that an expression such as “AddInteger(a,b)”
(which would be equivalent to the infix expression "a+b") is valid (i.e., the fully qualified name is not mandatory since
the library VSL.PrimitiveBehaviors has been imported), and semantically equivalent to

“VSL.PrimitiveBehaviors. AddInteger(a,b).”

To make this principle more general, let’s consider the function scopeOf(n : Namespace), which returns the list of
elements that are either directly owned by the namespace n, or directly imported by n. In our example, scopeOf(C) would
return: {a, b, p}. Similarly, scopeOf(C') would return : {a, b, p, AddInteger} (i.e., 'AddInteger' is visible due to the
"import" relationship between C' and MyCustomBehaviors").

Considering this function, one can write a generic algorithm such that, according to a behavior name expression in a
BehaviorCallExpression, the actual “Operator” Behavior can be retrieved. This algorithm could be as follows (pseudo
Java statement):

retrieveBehavior (behaviorName : String, context : Namespace) : Behavior {
// the operation ''contains'' makes abstraction of potential nested namespaces
if (scopeOf (context).contains ("a behavior which matches behaviorName..") {

448 UML Profile for MARTE, V1.2

// return this behavior
else
if (context.getOwner () != null)
// recursively applies the process on the namespace containing context
return retrieveBehavior (behaviorName, context.getOwner()) ;
else
// No behavior matching behaviorName has been found

return null ;

In the case where the resolution process described above retrieves multiple behaviors (i.e., there are multiple behaviors
whose signature match the expected signature, in the same scoping level), the model is probably ill-formed (i.e., there are
probably some problems regarding definitions of behavior libraries, or multiple imports which overlap), and the usage of
qualified name is required (which in this case prevents the usage of the infix notation).

In the case where the expected signature does not exactly match available signatures (e.g., we have an expression like
“3.5+b,” ie., the expected signature is: Real, Integer), an additional notion of type compatibility must also be
considered. In UML, what makes a type compatible with another type is a semantic variation point. One possibility would
be to following object-oriented type compatibility rules, where a type can be considered as compatible with another type
if there is a direct or indirect generalization relationship between the types.

The last example below illustrates how the stereotype operator can be used to specify that the operator '-' applies on the
standard primitive type DateTime, and how the operator '<' applies on standard data type NFP_Duration. Please note that
the definition of the two operators has no impact on the two data types.

B.3.2.6 TupleType
This stereotype maps the domain concept “TupleType.”

Tuple Type combines different types into a single composite type. The parts of a Tuple Type are described by its
attributes, each having a name and a type. There is no restriction on the kind of types that can be used as part of a tuple.
In particular, a Tuple Type may contain other tuple types and collection types. Each attribute of a Tuple Type represents
a single feature of a TupleType. Each part is uniquely identified by its name. When all the attributes of the extended data
type participate in the tuple structure, tupleAttrib can be left undefined.

Extensions

+ DataType (from UML::Kernel)

Generalizations

* None

Associations

* None

Attributes

* tupleAttrib: UML::Classes::Kernel::Property [*]
Attribute defining the type, size, uniqueness and order kind of the structured elements of this

UML Profile for MARTE, V1.2 449

composite data type. When all the attributes of the extended data type participate in the tuple
structure, the tupleAttrib’s tagged value can be left undefined.

Constraints

» None
B.3.2.7 Var

This stereotype maps the domain concept “Variable.”

Variables are typed elements for passing data in expressions. Variable creates a variable with a given name, data type, and
nature (input, output, input/output).
Extensions

« Property (from UML::Kernel)

Generalizations

+ None

Associations

» None

Attributes

e dir: VariableDirectionKind [0..1]
Nature of the created variable: input, output, input/output. The complete semantics of this attribute
depends on the context on which the variable is created

Constraints
« None
B.3.2.8 ExpressionContext
This stereotype maps the domain concept “ExpressionContext.”

Variables are declared in a given Expression Context. The Expression Context's name attribute is used for identification
of the variable elements. A Expression Context provides a container for variables. It provides a means for resolving
conflicting global variables by allowing Variable Call Expressions of the form ExprContextl::SubContext2::varX.

Extensions

- NamedElement (from UML::Kernel)

Generalizations

» None

Associations

+ None

450 UML Profile for MARTE, V1.2

Attributes

» None

Constraints

« None
B.3.3 Concrete syntax of value specification

This sub clause defines VSL for specifying value specifications. We base the syntax and semantics of this textual
language on the metamodel (abstract syntax) defined in B.2.3 to B.2.6.

Value Specifications are used to specify the textual value parts of UML models. The value specification could be a simple
literal, such as a number, or it could be a complex expression that involves variables and operations. Whatever the
expression, the desired value is produced when the expression is evaluated.

The use of expressions and variables clearly presumes that there is a pre-processor that evaluates the values before a
model can be analyzed. It also requires a mechanism for supplying the values of independent variables, since this
language itself does not have an assignment operation. However, these additional mechanisms are necessary for any
system that allows values to be expressed through variables and are not a consequence of using VSL.

In the VSL grammar that specifies the concrete syntax, every production rule is denoted using the EBNF formalism and

annotated with disambiguating rules.

Disambiguating rules

Some of the production rules are syntactically ambiguous. For such productions disambiguating rules have been defined.
Using these rules, each production and thus the complete grammar becomes non ambiguous. For example in parsing a.b(),
there are at least two possible parsing solutions:

1. ais a VariableCallExpr (a reference to a variable).
2. ais a PropertyCallExp (self is implicit).

A decision on which grammar production rule to use can only be made when the environment of the expression is taken
into account. The disambiguating rules describe these choices based on the environment and allow unambiguous parsing
of a.b(). In this case, the rules (in plain English) would be:

+ Ifais a defined variable in the current scope, a is a VariableCallExpr. We need then to identify the meaning of a.b().

« Ifnot, check self and all variables in scope. The inner-most scope for which as is an UML::Property with the name a,
resulting in an PropertyCallExpr. We need then to identify the meaning of a.b().

« If neither of the above is true, the expression is illegal / incorrect and cannot be parsed.

Disambiguating rules may be based on the UML model to which the VSL expression is attached (e.g., does a
UML.::Property exist or not). Because of this, the UML model must be available when a VSL expression is parsed,
otherwise it cannot be validated as a correct expression. The grammar is structured in such a way that at most one of the
production rules will fulfill all the disambiguating rules, thus ensuring that the grammar as a whole is unambiguous. The
disambiguating rules are written in plain English.

UML Profile for MARTE, V1.2 451

Parsing Implementation

The grammar in this sub clause in VSL might not prove to be the most efficient way to directly construct a tool. Of
course, a tool builder is free to use a different parsing mechanism. He/She can, for example, first parse a VSL expression
using a special concrete syntax tree, and do the semantic validation against a UML model in a second pass. Also, error
correction or syntax directed editing might need hand-optimized grammars. This document does not prescribe any
specific parsing approach. The only restriction is that at the end of all processing a tool should be able to produce the
same well-formed instance of the abstract syntax tree, as would be produced by this grammar.

Thus, a value in VSL can be specified as a literal value (LiteralSpecification), as a composite value (IntervalSpecification,
CollectionSpecification, TupleSpecification), as an expression (Expression), or as a time value or expression
(TimeValueSpecification, TimeExpression). The top-level production is defined by:

<value-specification> ::= <literals> | <enum-specification> | <intervals> |
<collection> | <tuple> | <choice> | <expressions> |
<time-expression> | <obs-call-expressions

The following are typical examples of the notation for value specification.

Table B.1 - Examples of Value Specifications

NFP Value Specification Examples of expressions for NFP values
Real Number 1.2E-3 //scientific notation
1234.56 //conventional notation
Variable InStimeout //an input variable declaration
timeout+ (2, us) //an expression calling a variable
Collection {1, 2, 88, 5, 2} //sequence, bag, ordered set..
{{1,2,3}, {3,2}} //collection of collections
Tuple (value=2, unit=ms, clock=ckl) //a duration tuple value
(2, -, ms, ckl) //a duration tuple value without names.
Interval [1..251] //interval between integers
[Al..A2] //interval between variables
DateTime 06/01/02 12:00:00 //a given calendar time instant
Duration (endEvent - startEvent) //between two observed events
Operations on values deadline < timeout + 5.0 //timing constraint
Conditional Expression V1l == ((clients<6) ? (exp(6)) : 1)

In the following sub clauses, we describe the notation supported for the symbol of values.

B.3.3.1 Literals

The ability to describe constants (by means of literals) is a fundamental capability for a language that serves exclusively
to specify values.

Literals are defined by the following production rule:

452 UML Profile for MARTE, V1.2

<literals> ::= <number-literal> | <string-literals> | <boolean-literal> | <datetime-
literals> | <null-literals | <default-literals

B.3.3.2 Number Literal

Numbers are represented in decimal, binary, and hexadecimal form only. Integer, unlimited natural and real numbers are
allowed, as are positive and negative numbers. No whitespaces or commas are allowed within numbers. Real numbers
may be expressed using the scientific notation.

<number-literal> ::= <integer-literals> | <unlimited-natural> | <real-literals

<integer-literal> ::= ['+' | '-'] (<decimal-string> | <hexadecimal-string> |
<binary-string>)

<unlimited-natural> ::= <unlimited-string>

<real-literal> ::= ['+' | '-'] (<real-string> | <scientific-reals)
<scientific-real> ::= <real-string> 'E' ['+' | '-'] <decimal-string>
<real-string> ::= <decimal-string> ['.' <decimal-strings)]
<hexadecimal-string> ::= '0x' (('0'..'9') | ('A'..'F') | ('a'..'f'))+
<binary-string> ::= '0b' ('0' | '1')+

<decimal-string> ::= ('0'..'9")+

<unlimited-strings> ::= (('0'..'9")+ | 'x')

Expression typing

 The <integer-literal> production rule should be evaluated to the Integer (MARTE_Library::MARTE _
PrimitiveTypes::Integer) primitive type described in D.1.

+ The <unlimited-natural> production rule should be evaluated to the UnlimitedNatural (MARTE_Library::MARTE _
PrimitiveTypes::UnlimitedNatural) primitive type described D.1.

+ The <real-literal> production rule should be evaluated to the Real (MARTE Library::MARTE PrimitiveTypes::Real)
primitive type described in D.1.

Abstract syntax mapping

+ The <integer-literal> production rule maps to the Literallnteger domain element described in Annex F (F.13.26).

 The <unlimited-natural> production rule maps to the LiteralUnlimitedNatural domain element described in Annex F
(F.13.30).

 The <real-literal> production rule maps to the LiteralReal domain element described in Annex F (F.13.28).
Disambiguating rules
« None

The following are typical examples:

12345 #positive integer
-123 #negative integer
O0xFF #thexadecimal integer

UML Profile for MARTE, V1.2 453

0b00100111 #binary integer

1234.56 #positive real
1.2E3 #real with scientific notation
* #infinite wvalue

B.3.3.3 Enumeration Specification

An enumeration specification identifies a UML enumeration literal. The notation is simply the name of the enumeration
literal.

<enum-specification> ::= <enum-ids>
<enum-id> ::= <body-texts>
Expression typing

« The <enum-specification> should be evaluated to any Enumeration (UML::Enumeration) type.

Abstract syntax mapping

+ The <enum-specification> production rule maps to the EnumerationLiteral domain element described in Annex F
(F.13.14).

Disambiguating rules

+ <enum-id> must be a name of an existing enumeration literal owned by the enumeration type of the Element that is
being valuated.

For instance,

EDF #a reference to an enumeration literal named 'EDF'

B.3.3.4 Boolean Literal
We express Boolean values through two predefined literals: true and false.
<boolean-literal> ::= 'true' | 'false'

Expression typing

+ The <boolean-literal> production rule should be evaluated to the Boolean (MARTE_Library::MARTE _
PrimitiveTypes::Boolean) primitive type described in D.1.

Abstract syntax mapping

+ The <boolean-literal> production rule maps to the LiteralBoolean domain element described in Annex F (F.13.23).

Disambiguating rules

+ None
For example:

isPeriodic = true

454 UML Profile for MARTE, V1.2

B.3.3.5 String Literal

Strings are specified by bracketing a stream of printable characters between single quotes ('). Any printable character can
be included in a string. To include the single quote character itself, the two-character combination of backslash and quote
(\") is used, while a backslash character can be inserted into a string constant using a double backslash combination (\\).
There are no predefined upper limits on the size of strings.

<string-literal> ::= ''' (<body-text> | '\'' | '\\')* !

<body-text> ::= (terminal symbol consisting of string of characters defined in one
character set encoding)

Expression typing

 The <string-literal> production rule should be evaluated to the String (MARTE _Library::MARTE
PrimitiveTypes::String) primitive type described in D.1.

Abstract syntax mapping

« The <string-literal> production rule maps to the LiteralString domain element described in Annex F (Section F.13.29).
Disambiguating rules

« None
The following are typical examples:

'A simple string'

'A string with a quote literal (\') included within.'

'The backslash-quote combination (\\\") appearing literally in a string'

B.3.3.6 DateTime Literal

DateTime is a special value expressed described by the following extended BNF:

<datetime-literal> ::= (<date-string> [<daystring>]) | (<time-string> [<date-
string>] [<day-string>]) | (<day-string>)

<time-string> ::= <hr> [':' <min> [':' <sec> [':' <centisec>]] 1]

<hr> ::= '00'..'23"

<min> ::= '00'..'59"

<sec> ::= '00'..'59"

<centisec> ::= '00'..'99"'

<date-string> ::= <year> '/' <mon> '/' <day-of-mon>

<year> ::= '0000'..'9999"

<mon> ::= '0O1'..'1l2"

<day-of-mon> ::= '01'..'31"

<day-string> ::= 'Mon' | 'Tue' | 'Wed' | 'Thr' | 'Fri' | 'Sat' | 'Sun'

UML Profile for MARTE, V1.2 455

Expression typing

 The <datetime-literal> production rule should be evaluated to the DateTime (MARTE_Library::MARTE _
PrimitiveTypes::DateTime) primitive type described in D.1.

Abstract syntax mapping

+ The <datetime-literal> production rule maps to the LiteralDateTime domain element described in Annex F (F.13.24).

Disambiguating rules

« None
The following are typical examples:
12:24:00 #a simple standard time value
12:24:00 2006/02/07 #a simple datetime wvalue
2006/02/07 Tue #a date wvalue
B.3.3.7 Null Literal
A Null Literal allows specifying an undefined value. We use the text “null” to specify a null literal.
<null-literal> ::= 'null'
Expression typing

+ The <null-literal> production rule should be evaluated to any DataType that types the Element that is being valuated.

Abstract syntax mapping

+ The <null-literal> production rule maps to the LiteralNull domain element described in Annex F (F.13.27).

Disambiguating rules

« None

B.3.3.8 Default Literal

A Default Literal allows specifying a default value. If a default value exists, it is assigned to the value, otherwise the
value remains as a Null value. We use the symbol “-” to specify a default value literal.

<default-literals ::= '-"!

Expression typing

+ The <default-literal> production rule should be evaluated to any DataType that types the Element that is being
valuated.

Abstract syntax mapping

+ The <default-literal> production rule maps to the LiteralDefault domain element described in Annex F (F.13.25).

Disambiguating rules

* None

456 UML Profile for MARTE, V1.2

B.3.3.9 Intervals

Values can be specified as intervals (ranges) of values. The min value and max value of an interval as to be conformed to
the same data type. The “interval” value returns all the values counting by one from the initial value to the end value. An
interval value can specify if it includes or not the initial and end values. For example, [x..y] stands for left and right
closed interval or]x .. x[stands for left and right open interval.

<intervals> ::= ('[' | 'l') <interval-bounds> ('[' | '1")
<interval-bounds> ::= <number-interval-bound> '..' <number-interval-bounds>
| <datetime-interval-bound> '..' < datetime -interval-bounds
| <tuple-interval-bound> '..' <tuple-interval-bounds>
| <choiceinterval-bound> '..' <choice-interval-bounds>
| <expression-interval-bound> '..' <expression-interval-bounds
<tuple-interval-bound> ::= <tuples>
<choice-interval-bound> ::= <choice>
<expression-interval-bound> ::= <expression>

Expression typing
 The <interval> production rule should be evaluated to any UML::DataType stereotyped VSL::IntervalType.

+ The <interval-bounds> production rules must be evaluated to the corresponding interval Attrib’s data type of the
IntervalType evaluated in the precedent point.

Abstract syntax mapping

+ The <interval> production rule maps to the IntervalSpecification domain element described in Annex F
(F.13.19).

Disambiguating rules

+ None
The following are typical examples:
[1..2] #a simple numerical interval

[start..end|[#a variable interval which does not include the wvalue assigned to
the variable "end".

B.3.3.10 Collections

It is possible to combine value specifications into a collection of items between a set of parentheses with individual item
values separated by commas. There are no predefined limits on the size of collections.

<collection> ::= '{' <value-specification> (',' < value-specification >)* '}’

Expression typing
 The <collection> production rule should be evaluated to any UML::DataType stereotyped VSL::CollectionType.

+ The <value-specification> production rules must be evaluated to the corresponding collectionAttrib’s data type of the

UML Profile for MARTE, V1.2 457

CollectionType evaluated in the precedent point.

Abstract syntax mapping

+ The <collection> production rule maps to the CollectionSpecification domain element described in Annex F
(F.13.5).

Disambiguating rules

e None

The following are typical examples:

{1, 2, 5, 88} #a simple numerical collection
{rapple', 'orange', 'strawberry'}#a string collection

{1, 3, a5, 2, 3} #a sequence collection
{{1,2,3}, {3,2}} #a collection of collections

B.3.3.11 Tuples

Tuple specification enables to describe values that are conformed to tuple data types. The elements of a tuple are named
tuple items and consist of a pair of item name and its associated value separated by an equal symbol.

<tuple> ::= '(' [<item-name> '='] <value-sgpecification> (',' [<item-name> '=']
<value-specification>)* ')

<item-name> ::= <body-texts>
Expression typing
» The <tuple> production rule should be evaluated to any UML::DataType stereotyped VSL::TupleType.

» The <value-specification> production rules must be evaluated to the corresponding UML::Property’s data types of the
TupleType evaluated in the precedent point.

Abstract syntax mapping

» The <tuple> production rule maps to the TupleSpecification domain element described in Annex F (F.13.42).

Issue 18249 - udpate text

Disambiguating rules

« <item-name> must be a name of an existing UML::Property owned by the TupleType evaluated for this <tuple>.

» If'the tuple expression does not include <item-name> elements identifying the TupleType attribute being assigned by a
given <value-specification>, the list of <value-specification> should follow the order in which the attributes of the
tuple type are defined. Each <value-specification> is assigned to the matching (by order) attribute. Default or null
literals shall be used for attributes that are not explicitly assigned.

» If'it is possible to statically determine from the context where the tuple expression is evaluated that the expected type is

an NFP Type. an unnamed tuple (that is, a tuple expression where <item-name> is not used) with only two <value-

specification> is allowed. The first <value-specification> is assigned to the 'value' attribute of the target NFP Type, and
the second <value-specification> is assigned to the unit attribute.

458 UML Profile for MARTE, V1.2

The following are typical examples:

(maxValue=10, meanValue=3, minValue=1) #a tuple value specifying three measured

magnitudes
(10, 30, 5) #the same tuple value without itemNames
(10, -, 5) #a tuple value with an Undefined value

B.3.3.12 Choice values

Choice value specification denotes a value of a choice data type. It contains the name of one of the attribute members
(chosen alternative), which determines the chosen data type, and a value that conforms to the chosen data type. When the
chosen alternative name is undefined in a given choice value specification, the chosen alternative can be deduced from the
default alternative attribute of the corresponding choice type. In order to avoid double parentheses in value specifications,
choice parentheses are optional when the enclosed value is a tuple.

<choice> ::= ([<chosen-alternative-name>] ' (' <value-specification> ')') | (
[<chosen-alternative-name>] <tuples>)

<chosen-alternative-name> ::= <body-texts>

Expression typing
« The <choice> production rule should be evaluated to any UML::DataType stereotyped VSL::ChoiceType.

 The <value-specification> and/or <tuple> production rules must be evaluated to the corresponding UML::Property’s
data types of the ChoiceType evaluated in the precedent point.

Abstract syntax mapping

+ The <choice> production rule maps to the ChoiceSpecification domain element described in Annex F (F.13.4).

Disambiguating rules

+ <chosen-alternative-name> must be a name of an existing UML::Property owned by the ChoiceType evaluated for this
<choice>.

The following are typical examples:

periodic(period=10, jitter=0.1) #a choice value specifying a chosen alternative
"periodic" whose data type is a tuple with two
items "period" and "jitter".

B.3.3.13 Expressions

An expression can be a simple constant or variable, or it can be a compound expression formed by combining expressions
through operator calls. The latter provides a relatively sophisticated capability to express values that are related to each
other in possibly very complex ways.

<expression> ::= <variable-call-expr> | <variable-declaration> | <property-call-
expr> | <operation-call-expr> | <behavior-call-expr> | <conditional-expr>

UML Profile for MARTE, V1.2 459

For instance, the following somewhat contrived example shows a complex case where the tuple value of a timeout tag
(expression plus measurement unit) will depend exponentially on the number of clients configured in the system (clients),
unless that number is greater than 6, in which case a single maximum value is used:

timeout = (abs((clients<6)?(0.5%*exp(clients)):(0.5%exp(6))), ms)

B.3.3.14 Variables

There are two expressions of variables: call and declaration. A variable call expression is just a name that refers to a
variable. Variable declaration creates a variable. In variable declarations, the type and init expression are optional. When
these are required, this is defined in the production rule where the variable declaration is used. When the type is not
defined, the type “String” is assumed. Variable declarations begin with the ‘direction’ information, either ‘in,” ‘out,” or
‘inout’ (see the Domain Model for further details). The ‘direction’ information is optional, which means that an
unspecified direction implies that this information is irrelevant for the usage context. The “$” symbol is a key word for
variable declarations, which is placed at the beginning of variable names.

Variables are declared in a given Expression Context (See the UML Profile for Variables in B.3.1, "Profile Diagrams’)
The Expression Context’s name attribute is used for identification of the variable elements. A Expression Context
provides a container for variables. It provides a means for resolving conflicting global variables by allowing Variable Call
Expressions of the form exprContextl::subContext2::varX. All variable names have a namespace that is defined by the
closer UML element stereotyped “ExpressionContext” in which the variables are contained. If no namespace is specified,
either the context of the expression is the same as the context of the variable declaration, or there is not exists an
ExpressionContext. In the latter case, variables are global to the UML model in which they appear.

<variable-call-expr> ::= <variable-name>

<variable-declaration> ::= [<variable-direction>] '$' <variable-name> [':' <type-
name>] ['=' <init-expression>]

<variable-direction> ::= 'in' | 'out' | 'inout'

<variable-name> ::= [<namespace> '.'] <body-texts>

<namespace> = <body-texts>

<type-name> ::= <body-texts>

<init-expressions> ::= <value-specifications

Expression typing

 The <variable-call-expr> production rule should be evaluated to the same primitive type as the referred <variable-
declaration> type (<type-name> production rule).

 The <variable-declaration> production rule should be evaluated to the same primitive type as the referred <type-
name>.

Abstract syntax mapping

« The <variable-call-expr> production rule maps to the VariableCallExpression domain element described in Annex F
(F.13.46).

 The <variable-declaration> production rule maps to the Variable domain element described in Annex F (F.13.45).

460 UML Profile for MARTE, V1.2

Disambiguating rules

 <variable-name> must be a name of an existing <variable-declaration> (VSL::Variable) in the current
ExpressionContext (the closer UML element stereotyped “VSL::ExpressionContext™) in which the variables are
contained.

+ <type-name> must be a name of an existing primitive type as described in Annex D.1
(MARTE _Library::MARTE PrimitiveTypes).

For example:

(clock rate, us) #a tuple value specifying a variable and a unit
inStimeStamp:DateTime #a declaration of an input variable for a DateTime
value

RMAanalysis.isSchedulable #a variable call expression which uses the UML element
called "RMAanalysis" as context for a variable called
"isSchedulable".

B.3.3.15 Property Call Expression

This rule represents property call expressions for an implicit (without namespace) or explicit (with namespace) scoped
UML Property metaclass instance.

This metamodel does not define explicitly the context of properties and operations and the namespace that the
corresponding call expressions must use. When specifiyng values making reference to properties and operations of their
corresponding data types, the namespace is not taken into account. Further usages of this metamodel may define different
namespaces for property and operation.

<property-call-expr> ::= <property-names
<property-name> ::= [<namespace> '.'] <body-text>
<namespace> ::= <body-text> ['.' <namespaces]

Expression typing

+ The <property-call-expr> production rule should be evaluated to the type of the UML::Property that is called.

Abstract syntax mapping

+ The <property-call-expr> production rule maps to the Property domain element described in Annex F (F.13.38).

Disambiguating rules

+ <property-name> should correspond to a name of an existing UML::Property.
For example:

MyPackage.MyTask.priority #a property call expression which makes reference to the
UML property called "priority" defined in the Class
"MyTask" which in turn is contained in a Package
"MyPackage."

B.3.3.16 Operation Call Expressions

UML Profile for MARTE, V1.2 461

Operation calls are particularly used in the MARTE context to call operations of data type values. An operation call
expression has two different forms: normal and infix notations. Some operators (e.g., '+, '-," "*.' '/, '<!' > <> <= =)
are used as infix operators. If a type defines one of those operators with the correct signature, they will be used as infix
operators. The expression:

a + b

is conceptually equal to the expression:

a.+(b)

that is, invoking the “+” operation on a with b as the parameter to the operation.

The infix operators defined for a type must have exactly one parameter. For the infix operators '<,! "> '<='">='<>'
'and,' 'or,' and 'xor' the return type must be Boolean.

<operation-call-expr> ::= (<value-specifications>
'.' <operation-name> ' ('[<argument-value> [','<argument-value>]*]')"')
| (<argument-value> <operation-name> <argument-values
| ' ('<argument-value> <operation-names> <argument-values> ')')

<argument-value> ::= <value-specification>
<operation-name> ::= <body-texts
Expression typing
 The <operation-call-expr> production rule should be evaluated to the type of the UML::Operation that is called.

+ The <value-specification> production rule must be evaluated to the corresponding to DataType that types the Element
that is being evaluated.

+ The <argument-value> production rule must be evaluated to the corresponding to UML::Parameter’s type of an
existing UML::Parameter owned by the UML::Operation.

Abstract syntax mapping

+ The <operation-call-expr> production rule maps to the OperationCallExpression domain element described in Annex F
(F.13.34).

Disambiguating rules

« <operation-name> should correspond to an existing UML::Operation name owned by the DataType to which the
<value-specification> is evaluated.

B.3.3.17 Behavior Call Expressions
Behavior calls are particularly used in the MARTE context to call behaviors taking data type values as parameters.

<behavior-call-expr> ::= <behavior-name> ' ('[<argument-value> [', '<argument-
values>]*]')"

<behavior-name> ::= [<namespace> '.'] <body-texts>

<namespace> ::= <body-text> [<namespace> '.']

462 UML Profile for MARTE, V1.2

Expression typing

+ The <behavior-call-expr> production rule should be evaluated to the type of the UML::Behavior that is called.

+ The <argument-value> production rule must be evaluated to the corresponding UML::Parameter’s type of an existing
UML::Parameter owned by the UML::Behavior.

Abstract syntax mapping

+ The <behavior-call-expr> production rule maps to the BehaviorCallExpression domain element described in Annex F
(F.13.2).

Disambiguating rules

« <behavior-name> should correspond to an existing UML::Behavior name.
B.3.3.18 Conditional Expressions
This expression works like an if-then-else statement.

<conditional-expression> ::= <condition-expr> '?' <if-true-expr> ':'
<if-false-exp>

<condition-expr> ::= '(' <variable-declaration> | <variable-call-expr> |
<property-call-expr> | <operation-call-expr> ')'

<if-true-expression> ::= <value-specification>

<if-false-expression> ::= < value-specification>

The result of evaluating this expression will be the result of the evaluation of the <if-true-expr> if the <condition-expr>
is true. Otherwise, the result will be the result of the <if-false-expr>.
Expression typing

+ The <conditional-expression> production rule should be evaluated to the DataType that types the Element that is being
valuated.

+ The <if-true-expr> and <if-false-expr> production rules should be evaluated to the DataType that types the Element
that is being valuated.

+ The <condition-expr> production rule should be evaluated to Boolean (MARTE_Library::MARTE _
PrimitiveTypes::Boolean). However, some of the terms (e.g., <variable-declaration>) have an implicit comparative
semantics: "==true" not expressed in the syntax.

Abstract syntax mapping

« The <conditional-expression> production rule maps to the OperationCallExpression domain element described in
Annex F (F.13.8).

Disambiguating rules

» None

The following are typical examples:

UML Profile for MARTE, V1.2 463

(clock rate>5)?5:clock rate returns either the value 5 if the clock rate value is
greater than 5 or the wvalue of variable denoted by clock rate.

The conditional operator has a precedence that is below the relational operators, but above the Boolean operators.

B.3.3.19 Time Expressions

A time expression can be a simple constant or variable representing a time value or it can be a compound expression
formed by combining observation call expressions. The latter provides a relatively sophisticated capability to specify time
expressions that are related to specific events or event occurrences declared in UML models. Observation declarations are
defined in the UML model space conforming to the Simple Time model of the Common Behavior package (UML
Superstructure).

<time-expression> ::= <duration-expr> | <instant-expr> | <jitter-exprs>
<instant-expr> ::= ((<datetime-literals | <variable-call-expr>) ['+' <duration-
expr>]) | (<instant-obs-expr> ['+' <duration-expr>])

<duration-expr> ::= (<real-literals> | <variable-call-expr>) | <duration-obs-
expr> | ('(' <instant-obs-expr> '-' <instant-obs-expr> ')')

<jitter-expr> ::= ('jitter(' <instant-obs-expr> ')') | ('jitter(' <instant-obs-
expr> '-' <instant-obs-expr> ')')

<instant-intervals ::= ('[' | ']l') <instant-expr> '..' <instant-expr> ('[' | 'l")
<duration-intervals> ::= ('[' | 'l') <duration-expr> '..' <duration-expr> ('[' |
1Y)

<obs-call-expression> ::= <instant-obs-expr> | <duration-obs-exprs>
<instant-obs-expr> ::= <instant-obs-name> ['[' <occur-index-expr> ']'] [' when

' <condition-expr> ']']

<duration-obs-expr> ::= <duration-obs-name> ['[' <occur-index-expr> ']' 1 ['
when ' <condition-expr> ']']

<instant-obs-name> ::= [<namespace> '.'] <body-text>

<duration-obs-name> ::= [<namespace> '.'] <body-texts>

<occur-index-expr> ::= <value-specification>

<condition-expr> ::= <value-specification>

Expression typing

+ The <duration-expr> and <jitter-expr> production rules should be evaluated to the Real (MARTE Library::MARTE
PrimitiveTypes:: Real) primitive type.

+ The <instant-expr> and <jitter-expr> production rules should be evaluated to the DateTime
(MARTE _Library::MARTE _ PrimitiveTypes::DateTime) primitive type.

Abstract syntax mapping

 The <time-expression> production rule maps to the TimeExpression domain element described in Annex F

464 UML Profile for MARTE, V1.2

(F.13.40).

+ The <duration-expr> production rule maps to the DurationExpression domain element described in Annex F

(F.13.10).

« The <instant-expr> production rule maps to the InstantExpression domain element described in Annex F

(F.13.17).

+ The <jitter-expr> production rule maps to the JitterExpression domain element described in Annex F (F.13.21).

Disambiguating rules

+ The <instant-obs-name> and <duration-obs-name> must be names of existing UML::TimeObservation and
UML::DurationObservation elements.

Some typical examples of observation-based time expressions are:

tl

di

t1[i]

(t2-t1)

#ireturns the instant time of an event observation "tl" declared in
a UML model element "time observation."

#returns the duration time of an action, message or whatever
behavior execution observation "d1l" declared in a UML model element
"duration observation."

#returns the instant time of an event observation "tl" declared in
a UML model element "time observation". The index "i" is a modifier
that indicates that the instant time refers to whatever of the
occurrences of the observed event. It is a modifier in the sense
that if the observed event is an instance (event occurrence) the
expression refers to its type (event).

#returns the duration between two observed events which their
occurrence instants are labeled by "tl" and "t2" and where "t1"
occurs before than "t2."

(t1[1+1]-t1[i]) #returns the duration between any two successive occurrences of an

tl+dl

jitter(tl)

jitter (t2-tl)

observed event whose occurrence instants are labeled by "tl.n"

#fireturns the instant time which is defined "d1" units of time after
"tl," where "dl1" is the duration of an observed action, message or
other behavior execution and "tl" is the time at which occurs an
observed event.

#returns the occurrence deviation of an specific event, which is
defined by a time observation "tl," regarding its nominal
occurrence period. The jitter notation is a modifier in the sense
that the referred event is nominally periodic and, additionally, is
the observed event is an instance (event occurrence) the expression
refers to its type (event).

#returns the jitter between two observed events which their
occurrence instants are labeled by "tl" and "t2" and where "t1"
occurs before than "t2." The jitter notation is a modifier in the
sense that the referred interval between these two events is

UML Profile for MARTE, V1.2 465

nominally constant and, additionally, whether the observed events
are instances (event occurrences) the expression refers to their
types (events).

B.3.4 Examples

In order to illustrate the extensions proposed by VSL, we present a short example of declaration of extended data types
and a set of associated value specifications.

In Figure B.12, we define a representative collection of data types.

From an implementation perspective, VSL data type extensions involve an indirect mechanism to define data type
features. For instance, the collectionAttrib tag definition of CollectionType is of type Property (UML Property metaclass).
This implies that the size, uniqueness, and order of collection elements is specified by a data type property (referenced by
collectionAttrib), which is created when the stereotype is applied.

For instance, the Long bounded subtype defines an Integer type whose value space is restricted two the set of integers
from -480000 to + 480000.

The IntegerInterval data type defines a data type, which composite values are expressed as a pair of integers denoting the
set of integers comprised between them.

IntegerVector and IntegerMatrix declare integer value spaces of collections and collection of collections.

Power data type defines a tuple to express an aggregated value containing a value, an expression, a measurement unit, and
a source. Note that we do not define the tupleAttrib’s tagged values. Indeed, this tagged value is optional when all the
data type properties participate in the tuple structure (see definition of the TupleType stereotype). This kind of tuple is
used in the NFP modeling clause to declare qualified values.

Arrival pattern type defines a choice type. Two alternative attributes are defined: periodic and sporadic. Each attribute is
typed by a tuple type containing the parameters of the alternative choice. Note that we do not define the choiceAttrib’s
tagged values. Indeed, this tagged value is optional when all the data type attributes are alternatives of the choice type.
This kind of type is used to define parameterized values.

Finally, we show a template of Array data type, which is used to create arrays of different item type and elements number.

466 UML Profile for MARTE, V1.2

MARTE::DataTypesDeclaration

« boundedSubtype»
{ baseType = Integer,
minValue =-480000 ,
maxValue = +480000 }

« dataType»
« intervalType»
{intervalAttrib = bound }

« collectionType»
{ cdlectionAttrib = vectorElement }
IntegerVector

«collectionType»
{ cdlectionAttrib = matrixElement }
IntegerMatrix

Long Integerinterval
vectorElement: Integer [0..%] matrixElement: IntegerVector [0..%]
bound: Integer[2]
«tupleType» _________‘__*-l
Power 1 T, k: StringExpression=*

« collectionTYge rm = = = == == o o i
{ cdlectionAttrib = vectorElement }
Array

value: Real

expr: VSL_Expression
unit: PowerUnitKind
source: Sourc eKind

« tupleType»
PeriodicPattern

period: Real

jitter Real vectorElement T [0. .k]

« choiceType»
ArrivalPattern

« tupleType»

,»“« bind » <T->Integer, k->100>
SporadicPattern -

« collectionType»
Array<T->Real>

« collectionType»
MyintegerArray

mininterarrival: Real

periodic: Periodic Pattern v
maxinterarmrival: Real

sporadic: SporadicPattem

Figure B.12 - Examples of declarations using the UML stereotypes for Datatypes

In Figure B.13, we use these data types to declare a set of contrived properties and their values with the VSL textual
syntax.

Examples::DataTypesUsage

MyClass m:MyClass

length = 212333

priorityRange = [0..2]

position= {2,3}

shape = {{2,3}{1,5}}

consumption = (-, exp=x*v1, unit=mW, source= calc)
amray1={1,2,3}

amray2={01, 0.2,0.3}

armival = periodic (period= 10, jitter=0.1)

length: Long

priorityRange: Integerinterval
position: IntegerVector
shape: IntegerMatrix
consumption: Power

array 1: My IntegerArray
amray2: Aray<T->Real>
amival: ArivalPattem

Figure B.13 - Using of the Datatypes created in the example of the previous figure

In order to illustrate some VSL expressions, we should refer to Annex D, where a set of data types and their operations
are declared. Operations help to define functions applicable on data types.

From a computer science viewpoint, every function declaration can be expressed as a tuple: <name, parameters/
arguments, returning type>. For instance, all the functions supported by Matlab are defined in this way. In Matlab,
functions are program routines, usually implemented in M-files that accept input arguments and return output arguments.
Every mathematical (or not mathematical) function in Matlab is implemented with this basic principle (integrals,
derivatives, matrices, potentials, optimization expressions, etc.).

If we look at VSL, the notion of function matches very well with the UML::Operation concept. Thus, VSL is supported
in Operations for the declaration and specification (expression specifications) of functions. More concretely, we use:

UML Profile for MARTE, V1.2 467

+ The definition of UML::Operations in DataTypes, for the declaration of functions in data type libraries.

+ VSL::OperationCallExpression, for the specification of functions (reference/call to declared UML::Operations) in VSL
expressions.

The number of functions that could be added to VSL, and useful in the real-time and embedded system domain, is large.
In MARTE, we did not attempt to define all these functions. Instead, we proposed only a basic subset useful for general
expressions. The initial intent was that further libraries could extend MARTE libraries to support domain-specific
functions.

We provide some examples on how VSL would support different kind of expressions for the functions:
a) Powers
A VSL expression calling to this UML::Operation would be (OperationCallExpr):

a.~(3) or the infix notation: a3 ' where a is a Real

The same mechanism can be used for exponentials with different basis. For instance, multiple functions (e.g., exp10(),
exp2(), expE()) may be created for different basis (base 10, base 2, base e).

b) Derivatives

For instance, if we want to calculate the second order derivative of a variable f, represented by the algebraic expression:
(x2 + x - 3), which in other words would be: d2f/dx the corresponding VSL expression is:

(x"2 + x - 3).diff(x, 2) ' where x is a variable defined elsewhere: $x

c¢) Integrals

For example, if we want to express the integral of (x5 + x3) over the interval [0, I1/2], we can do it with VSL as follows:
x"5 + x73).intg(x, 0, pi/2) ' where x and pi are variables defined elsewhere: $x and $pi

d) Summations

Consider the summation:

100
2
o k
, the VSL expression would be:
(1/k"~2).sum(k, 1, 100)' where k is a variable defined elsewhere: $k

e) Indexed Elements
Consider the following schedulability theorem stated by Liu and Layland:

A set of n independent periodic tasks scheduled by the rate monotonic algorithm will always meet its deadlines, for all
tasks, if:

n

C' 1/n
—+<n2"" -1
5 <z

i=1 i

468 UML Profile for MARTE, V1.2

Where Ci is the completion time of task i, and Ti is the period of task i.
We can specify this expression in VSL as follows:

(C.at(i)/T.at(i)).sum(i, 1, n) <= n*(2"(1/n)-1)' where i and n are variables defined elsewhere: $i: Integer, $n:
Integer, and C and T are variables declared elsewhere: $C:
RealVector, $T: RealVector

The “at” operation is defined for the RealVector collection data type in Annex D. It returns the ih element of the
Collection.

In order to illustrate the use of time expressions, Figure B.14 depicts a sequence diagram with timing annotations and
constraints. Note that for completeness of the example, time constraints have been extended in the MARTE’s Time
modeling clause. We focus here in the textual language for expressions.

This sequence diagram shows a periodic gate called “start.” “Constraintl” in the Interaction “DataAcquisition”
determines the period of the gate (100 milliseconds). Additionally, a jitter constraint is attached to the gate, confining its
deviation (regarding to the period) to a value shorter than 5 milliseconds. Note that we use the tuple notation to write the
magnitude and the measurement unit of duration values. The MARTE’s NFP clause defines the Duration tuple type that
allows to assign this measurement unit to a duration value.

After receiving “start,” Controller sends a message “acquire” to ask “Sensor” for new data. The duration of the message
transmission is constrained to 1 millisecond.

After receiving the acquire message, Sensor must send a message “ack,” which must be received by Controller in a
maximum of 8 milliseconds after acquire has been sent. In the same way, a “sendData” message is transmitted to
Controller in a maximum of 10 milliseconds. “Constraint2” confines the time instant at which the sendData message is
received by Controller to 30 milliseconds after Sensor receives the acquire message, if and only if the data value is greater
than 5.0.

We suppose here a global clock for all the time annotations. The MARTE’s Time modeling clause introduces further
notions to specify global and local reference clocks.

D uration expression

. Constraint in an
between two sucessive

Jitter constraint observation with condition

occurrences expression
/
Sd DataAcquisition constrainti= { (t0[+1] - t0[i]) > (100, ms)}
constraint2= { (t3 when data<5.0) < t2+(30, ms)}
E xtended :Controller :Sensor
duration
intervals with start() {jitter(t0)< (5 us) |

bound « []»

. . acquire() {d1<=(1, ms)
specification a 0t

@tO
“IT e
{[d1..30%d1]}
ack()

{1t1..t1+(8, ms)]} I

4
Instant Interval — @t3 T @data) {[(0, ms)..(10, ms)])l
Constraint I

Figure B.14 - Time Expressions and Constraints in Sequence Diagrams with VSL

UML Profile for MARTE, V1.2 469

470 UML Profile for MARTE, V1.2

Annex C
Clock Handling Facilities

C.1 Overview

This annex provides the abstract syntax for specifying clocked values and clock dependencies. Concrete syntax is also
described: the Clocked Value Specification Language (CVSL) and the Clock Constraint Specification Language (CCSL).
These languages reuse the Value Specification Language (VSL) for general expressions on Boolean, Integer, Real.

C.2 Clocked Value Specification

C.2.1 Domain view

A ClockedValuedSpecification (CVS) is the specification of a set of instances of time values making reference to Clocks.
Since the concept of time covers the two concepts of instant and duration, the CVS domain view (Figure C.1) reflects this
dichotomy. A ClockedValueSpecification may reference an instance (InstantlnstanceValue or DurationInstanceValue) or
may be an expression denoting an instance or instances when evaluated. The CVS expressions involve only instants
(InstantExpression), only durations (DurationExpression), or both (Span and Translation) in order to combine instants and
durations in restricted ways. Interval specifications (InstantIntervalSpecification and DurationIntervalSpecification) are
used to specify range of values or uncertainties.

In Figure C.1, InstantValueSpecification and DurationValueSpecification are duplicated to improve legibility.

UML Profile for MARTE, V1.2 471

Ccvs
ClockedValueSpecification ValueSpecification
{ ordered} 0..* 1 0.*{ordered}
InstantValue Specification - DurationValue Specificatior
iOperand duration dOperand
0.1
InstantExpression hst:l:ttzil\];alue Scaling Ing:ggs:lue DurationExpression
0.1 0..1
symbol:String[0..1] factor: Real[1] symbol:Strind0..1]
0.1
Span
0.1
begin| 1 1 end %7
0..1 1 min 0.1
Instantinterval i %’ Durationinterval
Specification InstantValue DurationValue Specification
Specification Specification
1 start max
isLowerOpen: Boolean[1] > X 1 ﬁ? isLower Open: Boolean[1
isUpperOpen: Boolean[1] o v isUpper Open: Boolean[1
Z% 1 | offset
0..1
Translation
isBackward: Boolean[0..1] ‘0..1

Figure C.1 - CVS domain view

C.2.1.1 ClockedValueSpecification

A ClockedValueSpecification may reference an instance (InstantlnstanceValue or DurationInstanceValue) or may be an
expression denoting an instance or instances when evaluated.

Generalizations

+ ValueSpecification (from UML::Classes::Kernel)

Associations

* None

Attributes

* None

472 UML Profile for MARTE, V1.2

Semantics

A ClockedValueSpecification yields zero or more time values bound to Clocks. A ClockedValueSpecification may
reference an instance (InstantInstanceValue or DurationInstanceValue) or may be an expression denoting an instance or
instances when evaluated. This is an abstract class.

C.2.1.2 DurationExpression

A DurationExpression is a structured tree of symbols that denotes a set of duration values when evaluated in a context.

Generalizations

« DurationValueSpecification (from CVS)

Associations

* dOperand: DurationValueSpecification[0..*]
specifies a sequence of operands, which are DurationValueSpecifications.

Attributes

* symbol: String[0..1]
the symbol associated with the node in the expression tree.

Semantics

A DurationExpression represents a node in an expression tree. If there are no operands, it represents a terminal node. If
there are operands, it represents an operator applied to those operands. In either case there is a symbol associated with the
node. The interpretation of this symbol depends on the context of the expression.

C.2.1.3 DurationlnstanceValue

A DurationInstanceValue is value that identifies a duration on a Clock.

Generalizations

« DurationValueSpecification (from CVS)

Associations

« None

Attributes

* None

Semantics

A DurationInstanceValue is value that identifies a duration on a Clock.

C.2.1.4 DurationintervalSpecification

A DurationIntervalSpecification specifies an ordered set of duration value specifications.

UML Profile for MARTE, V1.2 473

Generalizations

+ DurationValueSpecification (from CVS)

Associations

* max: DurationValueSpecification [1]
Specifies the upper bound of the interval.

e min: DurationValueSpecification [1]

Specifies the lower bound of the interval.

Attributes

* isLowerOpen: Boolean [1] = false
Specifies whether the lower bound is in the interval (isLowerOpen set to false) or not (isLowerOpen
set to true).

* isUpperOpen: Boolean [1] = false
Specifies whether the upper bound is in the interval (isUpperOpen set to false) or not (isUpperOpen
set to true).

Semantics

A DurationIntervalSpecification specifies an ordered set of duration value specifications.

C.2.1.5 DurationValueSpecification

A DurationValueSpecification may reference an instance (DurationInstanceValue) or may be an expression denoting an
instance or instances of durations when evaluated.

Generalizations

+ ClockedValueSpecification (from CVS)

Associations

* None

Attributes

+ None

Semantics

A DurationValueSpecification yields zero or more duration values bound to Clocks. A DurationValueSpecification may
reference an instance (DurationInstanceValue) or may be an expression denoting an instance or instances of durations
when evaluated. This is an abstract class.

C.2.1.6 InstantValueSpecification

An InstantValueSpecification may reference an instance (InstantInstanceValue) or may be an expression denoting an
instance or instances of instants when evaluated.

474 UML Profile for MARTE, V1.2

Generalizations

+ ClockedValueSpecification (from CVS)

Associations

» None

Attributes

» None

Semantics

An InstantValueSpecification yields zero or more instant values bound to Clocks. An InstantValueSpecification may
reference an instance (InstantInstanceValue) or may be an expression denoting an instance or instances of instants when
evaluated. This is an abstract class.

C.2.1.7 InstantExpression

An InstantExpression is a structured tree of symbols that denotes a set of instant values when evaluated in a context.

Generalizations

« InstantValueSpecification (from CVS)

Associations

* iOperand: InstantValueSpecification [0..*]
specifies a sequence of operands, which are InstantValueSpecifications.

Attributes

* symbol: String [0..1]
the symbol associated with the node in the expression tree.

Semantics

An InstantExpression represents a node in an expression tree. If there are no operands, it represents a terminal node. If
there are operands, it represents an operator applied to those operands. In either case there is a symbol associated with the
node. The interpretation of this symbol depends on the context of the expression.

C.2.1.8 InstantinstanceValue

An InstantInstanceValue is value that identifies an instant on a Clock.

Generalizations

« InstantValueSpecification (from CVS)

Associations

» None

UML Profile for MARTE, V1.2 475

Attributes

» None

Semantics

An InstantInstanceValue is value that identifies an instant on a Clock.

C.2.1.9 InstantintervalSpecification

An InstantIntervalSpecification specifies an ordered set of instant value specifications.

Generalizations

« InstantValueSpecification (from CVS)

Associations

* max: InstantValueSpecification [1]
Specifies the upper bound of the interval.

* min: InstantValueSpecification [1]

Specifies the lower bound of the interval.

Attributes

* isLowerOpen: Boolean [1] = false
Specifies whether the lower bound is in the interval (isLowerOpen set to false) or not
(isLowerOpen set to true).

* isUpperOpen: Boolean [1] = false
Specifies whether the upper bound is in the interval (isUpperOpen set to false) or not
(isUpperOpen set to true).

Semantics

An InstantIntervalSpecification specifies an ordered set of instant value specifications.

C.2.1.10 Scaling

A Scaling is a special expression that denotes duration values obtained from a DurationValueSpecification by applying a
multiplicative factor.

Generalizations

« DurationValueSpecification (from CVS)

Associations

* duration: DurationValueSpecification [1]
Specifies a duration on a Clock.

Attributes

* factor: Real [1]
Specifies the multiplicative factor to apply to duration.

476 UML Profile for MARTE, V1.2

Semantics
A Scaling is a special expression that denotes duration values obtained from a DurationValueSpecification by applying a

multiplicative factor.

C.2.1.11 Span

A Span is a special expression that denotes duration values characterized by two instants (begin and end) on a Clock.

Generalizations

« DurationValueSpecification (from CVS)

Associations

* begin: InstantValueSpecification [1]
Specifies an instant origin of a time interval on a Clock.

* end: InstantValueSpecification [1]
Specifies an instant end of a time interval on a Clock.
Attributes

* None

Semantics

A Span is a special expression that denotes duration values characterized by two instants (begin and end) on a Clock.

C.2.1.12 Translation

A Translation is a special expression that denotes instant values obtained by a forward or backward translation of instants
on a Clock.

Generalizations

« InstantValueSpecification (from CVS)

Associations

» offset: DurationValueSpecification [1]
Specifies a duration that indicates the delay applied to the start instant on a Clock.

» start: InstantValueSpecification [1]

Specifies an instant which is delayed on a Clock.

Attributes

* isBackward: Boolean [0..1]
Indicates whether the instant translation is forward (isBackward not defined or defined and set to false)
or backward (isBackward set to true).

Semantics

A Translation is a special expression that denotes instant values obtained by a forward or backward translation of instants
on a Clock.

UML Profile for MARTE, V1.2 477

C.2.2 Concrete Syntax

CVSL is a simple language for specifying clocked values (instant or duration) in MARTE. The language is not normative.
For time expressions on a unique ChronometricClock, VSL::TimeExpressions (Annex B) can be used as well.

A character set encoding is assumed, supporting at least the alpha and the numeric classes, and possibly a miscSymbol
class. Classically,

alpha ::= ('a' .. 'z') | ('a' .. 'z")
numeric ::= '0' .. '9'
alphanumeric ::= alpha | numeric

And for the miscSymbol class, contains a possibly empty set of symbols useful to represent physical units. For instance,
miscSymbol ::= '°' | '0' |

The syntax of the language reflects the domain view defined in the CVS package.

C.2.2.1 Literals
CVSL reuses number literals of VSL

number-literal ::= integer-literal | unlimited-natural | real-literal
integer-literal ::= ('+' | '-')? (decimal-string | hexadecimal-string | binary-
string)

unlimited-natural ::= unlimited-string

real-literal ::= ('+' | '-')? nonNegative-real-literal
nonNegative-real-literal ::= (real-string | scientific-real)
scientific-real ::= real-string 'E' ('+' | '-')? decimal-string
real-string ::= decimal-string ('.' decimal-string)?
hexadecimal-string ::= '0x' (('0'..'9') | ('A'..'F') | ('a'..'f'))+
binary-string ::= '0b' ('0' | '1')+

decimal-string ::= ('0'..'9'")+

unlimited-string ::= (('0'..'9"')+ | '*')

C.2.2.2 String literal
string-literal ::= ''' (body-text | "(\')' | "(\\)'")*x '

body-text ::= (terminal symbol consisting of string of characters defined in a
character set encoding)

478 UML Profile for MARTE, V1.2

C.2.2.3 Identifiers
ident ::= (alpha | ' ') (alphanumeric)*

In the rules, other non-terminals can be used in place of ident to point out semantic differences (e.g., clockld , itemld...).

clockId ::= ident
itemId ::= ident
unitId ::= miscSymbol | (miscSymbol)? ident

C.2.2.4 Intervals

Intervals are used to specify a range of values. They are borrowed from VSL.

interval ::= ('[' | ']') value-specification '..' value-specification ('[' | '1")
C.2.2.5 Expressions

CVSL does not make full use of the VSL expressions. value specification from VSL are restricted to Boolean expressions
(boolExpr), integer expressions (intExpr), real expressions (realExpr), and use of variables.

C.2.2.6 Operators
CVSL considers a restricted set of operators. This set might be extended in the future if new operations are needed.
addOp ::="'+" | -t

prefixOp::= 'min' | 'max'

C.2.2.7 Clocked Value Specification

clockedValueSpecification ::= TimedValueSpecification
| ("{' TimedvalueSpecification '}' unitId ‘'on' clockId)
TimedValueSpecification ::= duration | instant

duration specifications

duration ::= durTerm (addOp durTerm)*
durTerm ::= ('mult' '(' realExpr ',' durFactor ')') | durFactor
durFactor::=durationValue | durFunc | durationInterval

In this simple version only min and max operations are available.
durFunc::=prefixOp ' (' duration (',' duration)* ')' | span
span specifies duration by two instant specifications:

span ::= 'durationBetween' ' (' instant ',' instant ')
instant specifications

instant::= instFactor addOp duration | instFactor

UML Profile for MARTE, V1.2 479

instFactor::= instantValue | instantFunc | instantInterval | '(' instant ')'

An instant can be specified as the sum or the difference of an instant specification and a duration specifications. An
instant can also be specified by a more general expression. In this simple version only min and max operations are
available.

instantFunc ::= prefixOp ' (' instant (',' instant)* ')!'

C.2.2.8 TimelnstanceValue

Two syntactic forms are available for denoting TimelnstanceValue. This first one uses the tuple notation, as VSL does.
The second is closer to a natural language expression.

timeInstancevValue ::= '(' wvalOrExpr ',' unitSpec (',' clockSpec)? ')

| realvalue unitId 'on' clockId

valOrExpr ::= ('value' '=' realValue) | ('expr' '=' realExpr)
unitSpec ::= 'unit' '=' unitId

clockSpec ::= 'onClock' '=' clockId

realValue ::= nonnegative-real-literal | variable-name

The tuple form denotes either an instance of an NFP_duration (from BasicNFP_Types) or an instance of a
TimedValueType (from TimeLibrary). The former can be used only for the idealClk, which is implicit in the notation.
variable-name is defined in the VSL grammar.

instantInstanceValue and durationInstanceValue are both timelnstanceValue. The evaluation context determines the
interpretation of the value.

instantInstanceValue::= timeInstanceValue

durationInstanceValue ::= timeInstanceValue
C.2.3 Examples of clocked value specifications

C.2.3.1 Single clock time values
The three specifications below denote the same time instance value, on the idealClk clock.

(value = 1.5, unit = ms)
(value = 1.5, unit = ms, onClock = 'idealClk')

1.5 ms on idealClk

The first two specifications use the tuple notation. In the first one (NFP_Duration) the clock is implicitly the idealClk
clock. The last one avoids item identifiers, parentheses, commas, and single quotes.

C.2.3.2 Simple expressions on a single clock
(value = 1, unit = ms) + (value = 150, unit = us)

This expression is implicitly on the idealClk clock. Its value is (value = 1.150, unit = ms) or (value = 1150, unit = us),
value obtained after applying the conversion factor between ms and us (1 ms = 1000 us). Any clock other than idealClk
must be explicitly given.

480 UML Profile for MARTE, V1.2

C.2.3.3 Expressions on multiple clocks
min (15 tick on prClk, 5 ms on idealClk)

This expression is an expression referencing two clocks. It is not always computable. A ClockConstraint binding the two
clocks prClk and idealClk must be provided (e.g., the duration of a processor cycle).

{min (15 tick on prClk, 5 ms on idealClk)} ms on idealClk

The same expression placed in a context as above, must return a time value on idealClk and with ms for unit (if it is
computable).

Issue 17341 - udpate text

C.3 Clock Constraint Specification_Language

C.3.1 Domain View

A ClockConstraintSpecification (CCS) consists of a non empty set of conditional constraints. Conditional means that the
constraint is imposed only when the associated guard evaluates to true. In the absence of guard, the constraint is
unconditionally applied.

Clock constraints are specialized into ClockRelation, InstantRelation, and ChronoNFP. An InstantRelation imposes an
ordering or a coincidence between two instants of different clocks. A ClockRelation is more general and imposes
constraints on set of instants of different clocks. A ChronoNFP is a constraint that applies to chronometric clocks only,
and specifies time related non functional properties for a chronometric clock or a group of chronometric clocks. A fourth
clock constraint is a ClockDefinition. It defines a new clock, local to the ClockConstraintSpecification.

UML Profile for MARTE, V1.2 481

CCSs
" 0.1 CoreElements::Causality: <<enumeration>>
— ClockDefinition L : .
definingEvent CommonBehavior. Event InstantRelationKind
* coincidence
0.1 t 0.1 localClock cock precedence
1 TimeModels:: 1
{ ordered}1. TimeAccesses::
0.1 | defBody ‘ 3 ks Clocks: Clock — InstantReference
ocl
* index: Inté
ClockExpression docks 0..*{ordered} naex: integer
{ordered} 2’| instantRefs
0.* Cl TimeModels::
{ ordered} anonymousClocks TimeAccesses::
ChronometricClocks:
ChronometricClock
0--1‘ {ordered} 1.* ’|' chronos 0.1
InstantRelation
ClockRelation ChronoNFP
relation: InstantRelationKind
. ' . 1.%) 0.1 .
ClockConstraintSpecification @ AbstractConstraint Predicate
constraints 0.1 guard

Figure C.2 - CCS domain view

C.3.1.1 AbstractConstraint

AbstractConstraint is an abstract super class of ClockRelation, ChronoNFP, InstantRelation, and ClockDefinition.

Generalizations

* None

Associations

* guard: Predicate [0..1]
An owned predicate, which is evaluated in the context of the owning ClockConstraintSpecification.
When this property is empty or when it is defined and evaluates to true, the constraint is applied. It
is ignored otherwise.

Attributes

* None

Semantics

AbstractConstraint is an abstract super class of ClockRelation, ChronoNFP, InstantRelation, and ClockDefinition. The
optional guard attribute indicates whether the constraint is applied or ignored according to the context of the
ClockConstraintSpecification.

482 UML Profile for MARTE, V1.2

C.3.1.2 ChronoNFP

A ChronoNFP is a constraint that applies to chronometric clocks only, and specifies time related non functional properties
for a chronometric clock or a group of chronometric clocks.

Generalizations

 AbstractConstraint (from CCS)

Associations

* chronos:Time::TimeAccesses::ChronometricClocks::ChronometricClock[1..*]
References a set of chronometric clocks whose time related non functional properties are constrained.
Attributes

* None

Semantics

A ChronoNFP is a constraint that applies to chronometric clocks only, and specifies time related non functional properties
for a chronometric clock or a group of chronometric clocks.

Examples of ChronoNFP

« StabilityConstraint, which imposes a constraint on the value of the stability attribute of a ChronometricClock.
Additional constraint: chronos->size() = 1.

« SkewConstraint, which imposes a constraint on the value of the skew attribute of a ChronometricClock, with respect to
another ChronometricClock. Additional constraint: chronos->size() = 2.

+ DriftConstraint, which imposes a constraint on the value of the drift attribute of a ChronometricClock, with respect to
another ChronometricClock. Additional constraint: chronos->size() = 2.

+ OffsetConstraint, which imposes a constraint on the value of the offset attribute of a ChronometricClock, with respect
to another ChronometricClock. Additional constraint: chronos->size() = 2.

C.3.1.3 ClockDefinition

A ClockDefinition defines a new clock, local to the ClockConstraintSpecification.

Generalizations

« AbstractConstraint (from CCS)

Associations

* defBody: ClockExpression[0..1]
Owned ClockExpression that specifies the localClock as derived from other clocks.

» definingEvent: CoreElements::Causality::CommonBehavior::Event[0..1]
References the event whose occurrences define the ticks of the localClock.

* localClock: Time::TimeAccesses::Clocks::Clock[1]
References the defined clock.

UML Profile for MARTE, V1.2 483

Attributes

» None

Semantics

A ClockDefinition defines a new clock, local to the ClockConstraintSpecification. This clock is defined as derived from

other clocks or from occurrences of an event.

Constraints

[2] A (local) clock can be defined either by a ClockExpression or by an Event.

definingEvent->None.mpty() = defBody->isEmpty()
C.3.1.4 ClockExpression

A ClockExpression specifies a clock derived from one or many clocks.

Generalizations

« None

Associations

* clocks: Clock [1..*] { ordered }
References the clocks from which the specified clock is derived.

Attributes

« None

Semantics

A ClockExpression specifies a clock derived from one or many clocks.

Examples of ClockExpression

A ClockExpression is a function-like clock relation that returns a Clock derived from other clocks.

 ClockDiscretization, takes a dense ChronometricClock, and returns a discrete Clock. Parameters: a discretizationStep,

and an optional discretization interval.

+ ClockFiltering, derives a discrete clock from another discrete clock. Each instant of the returned clock is coincident
with an instant of the filtered clock. Parameter: a BinaryWord which specifies the filter: the kth instant of the filtered
clock is coincident with an instant of the returned clock if and only if the kth bit of the BinaryWord is set to 1.

+ ClockDelay, takes a clock and returns a new one. Parameter: a delay. The kth instant of the returned clock is coincident

with the (k+delay)th instant of the given clock.

+ ClockChaining, takes two clocks and returns a new one. The first argument clock must be finite. The first instants of
the returned clock are coincident with the instants of the first clock. The following instants are coincident with the

instants of the second clock.

Figure C.3 illustrates clock expressions. Junction instants are represented by small circles, and the coincidence relation by

red edges between junction instants.

484

UML Profile for MARTE, V1.2

Discretfizaton interval —
Dicre tization step Argument clock

{dense}

Dis cretized clock
{discrete}

ClockDiscretization

Argument clock
bw=01100(10)

@, &, \ 9, &, \/ 9, Filtered clock

C lockFiltering

Argument clock

delay =3
Al A A J L D elayed clock
ClockD elay
. T'Argument clock
7 finite}
'@ 29 Argument clock

Chained clock

ClockC haining

Figure C.3 - Examples of clock expressions

C.3.1.5 ClockRelation

A ClockRelation specifies a constraint among clocks. This constraint imposes relations between instants of those clocks.

Generalizations

 AbstractConstraint (from CCS)

Associations

» anonymousClocks: ClockExpression [0..*]
References clock expressions involved in the relation. They are called anonymous clocks because
they are not identified clocks, but clock expressions specifying an unnamed clock. The clock
expressions are owned by this ClockRelation.

* clocks: Clock [0..*]
References clocks involved in the relation.

Attributes

* None

Semantics

A ClockRelation specifies a constraint among clocks. This constraint imposes relations (coincidence or precedence)
between instants of those clocks.

UML Profile for MARTE, V1.2 485

Constraints

[1] A ClockRelation constrains at least two clocks or anonymous clocks.

clocks->union (anonymousClocks) ->size() >= 2

Examples of ClockRelation

A ClockRelation is a relational dependency between instants of clocks. This is a more general concept than
ClockExpression, which is a functional dependency. A ClockRelation imposes a partial ordering between the instants of
the clocks. In what follows, ClockReference denotes either a Clock or a ClockExpression.

The following clock relations constrain a pair of ClockReferences.

+ Periodicity imposes that there exists an integer p such that between each pair of successive instants of a
ClockReference, there exist p instants of the other ClockReference.

 Sporadicity imposes that there exists an integer g such that between each pair of successive instants of a
ClockReference, there exist at least g instants of the other ClockReference.

+ Subclocking imposes that there exists an injective mapping from the instants of one ClockReference onto the instants
of the other ClockReference, such that this mapping preserves the instant ordering. This relation is a weak form of the
ClockFiltering without an imposed filter.

+ Equality is a strong relation: there exists a one-to-one mapping between instants of the two ClockReferences, and this
mapping is order preserving.

Some clock relations require a third ClockReference. Each constrained ClockReference must be subclock of this third
ClockReference.

« RelativeSpeed imposes that for any integer k, the kth instant of the faster ClockReference precedes the kth instant of
the slower ClockReference.

« MaximalDrift imposes that there exists an integer m such that for each instant k of the third ClockReference, the
absolute difference between the numbers of instants preceding instant k in the two ClockReferences is less than or
equal to m.

Figure C.4 illustrates clock relations. Note that junction instants are not necessarily evenly interspaced.

486 UML Profile for MARTE, V1.2

=

y .
D——DO denotes x=y (coincidence)
0-——-% denotes x ? y (weak precedence)
P4 .
O ———0O denotes xp y (strict precedence)

=

=

al a2 a3 a4 a5 a6 a7 a8 a9 al0
Q—O—O? O—O WG
\ \ LN ’
N /’ N -~ \ s
\ N e ba\. 7 s
¥ .-~ 04 _ b periodic
A A - _
b1 b2 b3 w.rt a, p=3
Periodicity
cil @ ¢c3 c4 c5 c6 c7 c8 «c9 c10

c
a subclocking ¢
al l a2 a3 J\ a4
O b subclocking ¢

b1 b2 b3

RelativeSpeed: a faster than b

Figure C.4 - Examples of clock relations

C.3.1.6 InstantReference

An InstantReference specifies an instant of a Clock.

Generalizations

» None

Associations

* clock: Clock [1]
References the Clock whose instant is referred to.

Attributes

* index: Integer [1]
specifies the index of the instant.

Semantics

An InstantReference specifies an instant of a Clock.

C.3.1.7 InstantRelation

An InstantRelation imposes a precedence or a coincidence constraint between two instants of two different clocks.

Generalizations

 AbstractConstraint (from CCS)

UML Profile for MARTE, V1.2

487

Associations

* instantRefs: InstantRefence [2] {ordered}
Specifies two owned InstanceReferences. The order is significant for the precedence relation.

Attributes

» relation: InstantRelationKind [1]
Specifies whether the constraint between the constrained instants is a coincidence or a precedence.

Semantics

An InstantRelation imposes a precedence or a coincidence constraint between two instants of two different clocks.

Constraints

[1] The referenced instants belong to different clocks.

instanceRefs.clock->gize() = 2
C.3.2 CCSL concrete syntax

CCSL is a purely declarative language for expressing constraints on MARTE's Clocks. The concrete syntax has been
chosen to be close enough to the English language. It is not normative.

A character set encoding is assumed, supporting at least the alpha and the numeric classes. Classically,

alpha ::= ('A' .. 'Z2') | (ra' .. 'z")
numeric ::= '0' .. '9!
alphanumeric ::= alpha | numeric

The syntax of the language reflects the domain view defined in the CCS package.

C.3.2.1 Literals

CCSL reuses number literals of VSL

number-literal ::= integer-literal | unlimited-natural | real-literal
integer-literal ::= ('+' | '-')? (decimal-string | hexadecimal-string | Dbinary-
string)

unlimited-natural ::= unlimited-string

real-literal ::= ('+' | '-')? (real-string | scientific-real)

scientific-real ::= real-string 'E' ('+' | '-')? decimal-string

real-string ::= decimal-string ('.' decimal-string)?

hexadecimal-string ::= '0x' (('0'..'9') | ("A'..'F') | (ra'..'f'))+
decimal-string ::= ('0'..'9'")+

unlimited-string ::= (('0'..'9")+ | '*')

488 UML Profile for MARTE, V1.2

CCSL adds new literals for BitVectors and BinaryWords. A BitVector is a sequence of bits; a BinaryWord is a pair of
BitVectors consisting of a prefix and a period. Two concrete notations are provided: a flat notation starting with the "0b’
prefix, and notation with repetition factors starting with the *0B” prefix.

bit::='0' |'1"

bitv::='0b'((bit)+ (' (" (bit)+"))2)| (" (" (bit)+") "))

rbit::=bit (""" ('1'..'9') ('0'..'9'")*)?
gbitv::=rbit ('.' (rbit))=*
gbw::='0B' ((gbitv)+ (' (' gbitv ')")?) | ('(' gbitv ')'))

bw ::=bitv | gbw

Examples of BinaryWords

0b100(1100) denotes the binary word whose prefix is 100 and whose period is 1100. In turn, this binary word denotes the
infinite bit vector 100110011001100....110.

0B1.072(172.072) denotes the same binary word (useful notation when the exponent is big).
0b(100) denotes the binary word whose prefix is empty and whose period is 100.

0b110 denotes the binary word whose prefix is 110 and whose period is empty. Thus, this binary word denotes the finite
bit vector: 110.

Note that 0b(0) an infinite sequence of 0, not the empty BitVector.

C.3.2.2 Identifiers
ident ::= (alpha | ' ") (alphanumeric)*

In the rules, other non-terminals are can be used in place of ident to point out semantic differences (e.g., clockld ,
itemld...).

clockld ::= ident

itemld ::= ident

instantld ::= ident

C.3.2.3 Intervals

Intervals are used to specify a range of values. They are borrowed from VSL.

interval ::= ('[' | ']") value-specification '.." value-specification ('[' | ']")

C.3.2.4 Tuples

Tuples are convenient for representing structured data values. They are also from VSL.

tuple ::="'(" (itemld '=")? value specification (', (itemld '=")? value specification)* ")’

UML Profile for MARTE, V1.2 489

C.3.2.5 Expressions

CCSL does not make full use of the VSL expressions. value specification from VSL are restricted to Boolean expressions
(boolExpr), integer expressions (intExpr), real expressions (realExpr).

CCSL adds its own duration expression:

durationExpr: :=realExprunitId 'on' clockId

C.3.2.6 Operators

CCSL has relational operators, Boolean operators, and the dot operator used for navigation like OCL.

relOp HEE RS |'<=' |'=' |'>=' |'<' |'<>' |'in'
booleanOp::='and' | 'or' | 'xor' | 'not!'
path c:=1d ('.' 1d)~*

C.3.2.7 Constraints

A clock constraint consists of a set of conditional statements.

clockConstraint ::= (conditionalStatement';')+

conditionalStatement ::= statement (guard)?

statement ::=clockDef | instantRel | clockRel | chronoNFP | instantDef
guard ::='if' boolExpr

clockDef::='Clock' clockId ('is' clockExpr)?

clockRef::=clockId | '(' clockExpr ')'

instantDef::='Instant' instantId ('is' instantRef)?
instantRef::=instantId | (clockRef '[' intExpr 'l')

| 'instantOf' clockRef 'suchThat' boolExpr

C.3.2.8 ChronoNFP

Time-related non functional properties of ChronometricClocks have been defined in the CCS domain view. The chosen
syntax is self-explanatory.

chronoNFP: :=clockRef

(('hasStability' realExpr) ('wrt' clockId)?
| (',' clockRef
(('haveSkew'|'haveDrift') realExpr)

| ('haveOffset' durationExpr)
) ('wrt' clockId)? ('at' instantExpr)?

490 UML Profile for MARTE, V1.2

C.3.2.9 Clock expressions
A ClockExpression specifies a clock derived from one or many clock references.

clockExpr::=clockId

| ('when' eventExpr)
| clockRef
(('restrictedTo' boolExpr)
| ('filteredBy' bwExpr)
| ('discretizedBy' realExpr
('from' realExpr)? ('to' realExpr)?)
| ('delayedBy' intExpr)
| ('followedBy' | 'inter' | 'minus’ 'sampledTo')
clockRef

C.3.2.10 Clock relations
The ClockRelations have been defined in the CCS domain view.

clockRel: :=clockRef

((('isPeriodicOn' clockRef ('period' realExpr)?)
| ('isSporadicOn' clockRef ('gap' realExpr)?)

| (('"isFinerThan' |'isCoarserThan') clockRef)

| (('isFasterThan' |'isSlowerThan') clockRef)

| (',' clockRef 'haveMaxDrift' intExpr)
| ('=' clockRef)
| ('#' clockRef)
| ('alternatesWith' clockRef)
| ('hasSameRateThan' clockRef)
)

C.3.2.11 Instant relations

The reference to an instant of a given Clock is made using the at operation.

instant::=clockId '.' ‘'at' ' (' intExpr ')'
instantRel: :=instantRef
('coincidentWith' | ('strictly')? 'precedes')
instantRef

Periodicity and Sporadicity are respectively denoted by isPeriodicOn and isSporadicOn. The optional real expression
allows the user to specify the period or the minimal gap between successive instants of the first clock with respect to the
second.

Subclocking is denoted by isCoarserThan. The converse is also offered if b isCoarserThan a, then a isFinerThan b. (b is a
subclock of a, and a is a superclock of b.)

UML Profile for MARTE, V1.2 491

RelativeSpeed is expressed by isFasterThan, with the converse relation isSlowerThan.
Equality is simply denoted by the equality symbol.

The maximalDrift relation being symmetric, the adopted syntax is a pair of clock references followed by haveMaxDrift.
This yields an integer value that is constrained.

492 UML Profile for MARTE, V1.2

D.1 MARTE Model Library for Primitive Types

This sub clause defines a model library of MARTE primitive types (Figure D.1) that includes predefined operations

Normative MARTE Model Libraries

Annex D

(MARTE_Library)

commonly used in the real-time and embedded system domain.

« modelLibrary »
MARTE_Library::MARTE_ PrimitiveTypes

« primitive »
Integer

« primitive »
Boolean

« primitive »
UnlimitedNatural

« primitive »
String

+(i: Integer): Integer

-1 Integer

*(I: Integer}: integer

Il Integer): Integar

={i: Intagar): Boolaan

=[i: Integer): Beolaan

=>=(i Integer): Boolean

==([: Integer): Boolean

==z Integer) Boolean

<=(i Intager): Boolaan

mod{i: Intager): Integar

*p: Real}: Raal

diff(z: Real, n: Integer)

Intgix: Real, w: Real, up: Real)
sumik: Real, Iw; Real, up; Real}

orlb: Boolean): Boolean
xor(b: Boolean): Bookean
and{b: Boolean): Boolean
nol(}: Boalean

==(b; Boolean}: Boolsan
<=>(b: Boolean): Boolean

+{un: UnlimitedMatural j: Unlimited Natural
{1 Intager

"{un: Un ¥ L tieal
fiun: UnlemitedMatural); Real

=[un: UnlimitedMatural j; Boolaan

<[un: UnlimitedMatural ;: Boolaan

==(un: Unlimitediatural): Boolean
<={iin: UnlimitedMNatliral) Boalean
==(un; Unlimited Natural): Boolkean
=<={un; Unlimited Natural): Boclean
mod{un: UnlimitedMatural): Integar

*(p: Real): Real

dliff[x: Resal, n: Integer)

intgix: Feal, w: Real, up: Real)

sumik: Real, lw: Real, up: Real}

concat (s: String): String
==(g: Stringy: Boolean
<=(s; Siringl Boolean

*[r- Real): Real

!fr: Real j: Resl

absir: Real): Integer

=(i! Resal) Bonlean

<[r: Realk Boolean

#=ir: Real); Boclean

==ir: Real): Boolasn

==ir: Real): Boolean

<. Real) Boolean

*p: Real): Real

diff(x: Real, n: Integar)

Inigix: Feal, lw: Real, up: Real)
sumik: Real, lw: Real, up: Real}

« primitive » « primitive »
Real DateTime
+{it Reall Real +(r: Real): Raeal
«}: Real -(): Real

=(dt: DateTime: Boclean
<(di: DateTime|: Boolean
=={dt: DataTime) Boolean
==(dl: DaleTime}: Boolean
==[dt: DataTima}: Boolaan
==(dt: DataTime): Boolean

Figure D.1 - MARTE Primitive types and their operators

For each operation the signature and a description of the semantics is given in the following sub-headings. Within the
description, the reserved word ‘result’ is used to refer to the value those results from evaluating the operation. Note that
all the defined operations are static.

D.1.1 Real

UML Profile for MARTE, V1.2

493

The standard type Real represents an approximation to the mathematical concept of real. Note that Integer is a subclass of
Real, so for each parameter of type Real, you can use an integer as the actual parameter.

+ (r : Real) : Real value of the addition of self and r.

- () : Real negative value of self.

* (r : Real) : Real value of the multiplication of self and r.

/ (r : Real) : Real value of self divided by r.

abs() : Real absolute value of self.

< (r : Real) : Boolean true if self is less than r.

> (r : Real) : Boolean true if self is greater than r.

<= (r: Real) : Boolean true if self is less than or equal to r.

>= (r : Real) : Boolean true if self is greater than or equal to .

<> (r : Real) : Boolean true if different to r.

== (r : Real) : Boolean true if equal to r.

Ap: Real): Real Ap: Real): Real.

diff(x: Real, n: Integer) Order n derivative of self regarding the independent variable x.
intg(x: Real, Iw: Real, up: Real) Integral of self from the lower limit Iw to the upper limit up.
sum(k: Real, Iw: Real, up: Real). Summation of self from k equal to a lower value Iw to an upper value up.

D.1.2 Integer

The standard type Integer represents the mathematical concept of integer.

+ (i : Integer) : Integer value of the addition of self and i

- () : Integer negative value of self

* (i : Integer) : Integer value of the multiplication of self and i.

/ (i : Integer) : Real value of self divided by i

< (i : Integer) : Boolean true if self is less than i.

> (i : Integer) : Boolean true if self is greater than i.

<= (i : Integer) : Boolean true if self is less than or equal to i.

>= (i : Integer) : Boolean true if self is greater than or equal to i

<> (i : Integer) : Boolean true if different to i

== (i : Integer) : Boolean true if equal to i

mod (i : Integer) : Integer true modulo of self and i

Ap: Real): Real A(p: Real): Real.

diff(x: Real, n: Integer) Order n derivative of self regarding the independent variable x.
intg(x: Real, Iw: Real, up: Real) Integral of self from the lower limit Iw to the upper limit up.
sum(k: Real, Iw: Real, up: Real). Summation of self from k equal to a lower value Iw to an upper value up.

494 UML Profile for MARTE, V1.2

D.1.3 UnlimitedNatural

The standard type Unlimited Natural represents the mathematical concept of Natural including the infinite value.

+ (un : UnlimitedNatural) : UnlimitedNatural

value of the addition of self and un

- () : Integer

negative value of self.

* (un : UnlimitedNatural) : UnlimitedNatural

value of the multiplication of self and u

/ (un : UnlimitedNatural) : Real

value of self divided by un

< (un : UnlimitedNatural) : Boolean

true if self is less than un

> (un : UnlimitedNatural) : Boolean

true if self is greater than un.

<= (un : UnlimitedNatural) : Boolean

true if self is less than or equal to un

>= (un : UnlimitedNatural) : Boolean

true if self is greater than or equal to un

<> (un : UnlimitedNatural) : Boolean

true if different to un.

== (un : UnlimitedNatural) : Boolean

true if equal to un

mod (un : UnlimitedNatural) : Integer

true modulo of self and i

Ap: Real): Real

Ap: Real): Real.

diff(x: Real, n: Integer)

Order n derivative of self regarding the independent variable x.

intg(x: Real, Iw: Real, up: Real)

Integral of self from the lower limit Iw to the upper limit up.

sum(k: Real, Iw: Real, up: Real).

Summation of self from k equal to a lower value Iw to an upper value

up.

D.1.4 String

The standard type String represents strings, which can be both ASCII and Unicode.

concat(s : String) : String

concatenation of self and s

<> (s : String) : Boolean

true if different to s.

== (s : String) : Boolean

true if equal to s.

D.1.5 Boolean

| UML Profile for MARTE, V1.2

495

The standard type Boolean represents the common true/false values.

or (b : Boolean) : Boolean true if either self or b is true

xor (b : Boolean) : Boolean true if either self or b is true, but not both
and (b : Boolean) : Boolean true if both self and b are true

not () : Boolean true if self is false.

<> (b: Boolean) : Boolean true if different to b

== (b: Boolean) : Boolean true if equal to b

D.1.6 DateTime

Datetime defines an instant of time in calendar format.

+ (r : Real) : Real value of the addition of self and r, after converting DateTime to real.
- (r : Real) : Real value of the subtraction of r to self, after converting DateTime to real
< (dt : DateTime) : Boolean true if self is less than dt.

> (dt : DateTime) : Boolean true if self is greater than dt.

<= (dt : DateTime) : Boolean true if self is less than or equal to dt

>= (dt : DateTime) : Boolean true if self is greater than or equal to dt.

<> (dt : DateTime) : Boolean true if different to dt.

== (dt : DateTime) : Boolean true if equal to dt

D.1.7 Precedence Rules

The precedence order for the operations, starting with highest precedence, in VSL is defined as follow:
+ unary 'not', unary minus '-' and unary plus '+'
. 13k and V/V
 binary '+' and '-'
. |<|’ ’>” |<=l’ ‘>=|
o == !
+ 'and', 'or' and xor'

Parentheses '(" and ")’ can be used to change precedence.

D.2 MARTE model library for extended datatypes

This sub clause defines the complete set of MARTE datatypes that use the UML profiles for NFP and VSL. In Figure D.2,
we show the whole architecture of extended data types and the applied profiles.

496 UML Profile for MARTE, V1.2

] [1 1
profie » et MARTE Library- « profie »
MARTE_PrimitiveTypes
E i 7
; b o apply o ! i i
A R — P
. o
| i | et N
i MeasurementUnits i i i
| 7 | .
! oppiy » : ! P
E a Impart s E i E i
; — —— P
' 1
N modelLibrary » «modelLibrary » |------ P
MARTE Librarys | --"52%% MARTE_Library:: |
BasicNFP_Types MARTE_DataTypes |
A |
io It # i
i i
1 !
« model library » = Apply o i

MARTE_Library::
‘GRM_Basic_types

Figure D.2 - Structure of the MARTE time model library

The following four figures show the internals of the concerned four packages. The semantics and usage of the pre-defined

datatypes is stated in each of the clauses that use them.

UML Profile for MARTE, V1.2

497

Issue

15434 - udpate figure

« modelLibrary »

MARTE_Library::MeasurementUnits

« dimension »
LengthUnitKind
{symbol =L}

« dimension »
WeightUnitKind
{symbaol = M}

w unit o m
& unit » cm {basaUnit=m, convFactor=1E-2}
a unit o mm {baseUnit=m, convFactor=1E-3)

w unit s g
4 unit # mg {basalnit=g, convFactor=1E-3}
+ unit » kg {baselnit=g, convFactor=1E3}

« dimension »
TimeUnitKind
{symbol = T}

aunits 5

« dimension »
DataSizel nitKind
{symbol = D}

+ unit s Bit

« dimension »
FrequencylnitKind
{basaDimension = {T}
baseExponent = {-1}}

w unlt » Hz

u undl » kKHZ {BaselUnil=Hz, convFaclor=1E3}

unit » MHz [Basellnit=Hz, convFaclor=1E8}

w unit » GHz (basalnit=Hz, convFactor=1E3}

& unit » rpm {baseUnit=Hz, convFactor=0.0167}

« dimension »

WO TGk

aunits ms {baselnil=s, convFactor=0001}
wunits us {baselnit=ms, convFactor=0.001}
sunits min {baseUnit=s, convFactor=6i}
aunits b [Baselnil=min, convFastor=80)
wunity day {haselUni=hes, convFactor=24}

« unil » Byte [baselnit=hil, convFacior=8)

& URit » KB [BaseUnil=Byle, convF acters1024)
unit » MB (hasalnit=KB, convFactor=1024}
+ unit » GB [baselnit=ME, convFactor=1024}

AT
{baseDimension = {L},
baseExponent = {2}}

& unit = mmz
& unit ¢ um2 {basalnit=mmZ, convFactor=1E-f}

« dimension »
PowerUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -3}}

+ unit = W
unit » mW {basallnit=\%, convFactor=1E-3}
® unil » k'Y {baselnit=WV, convFacior=1E3]}

« dimension »
EnergyUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -2}}

+ unit s J

« unit » kd {baseUnil=., convFactor=1E3}

+ unit » Wh {hasalnit=J, convFactor=2, T7TRE-4}
+ unit » kWh {baselnit=¥h, convFacior=1E3}
+ unit = miWh {baseUnit=\%h, convF actor=1E-3}

& dimension »
DataTxRateUnitKind
{baseDimension = {D, T},
baseExponent = {1, 1}}

u unit » big
« unit » Kb's (baselni
& unit ¢ MbJs [baselinit

convFactor=1024)
i5, convFactor=1024)

« modelLibrary »
MARTE_Library::MeasurementUnits

« dimension »
LengthUnitKind
{symbol =L}

« dimension »
WeightUnitKind
{symbol = M}

« dimension »

«unit» m
« unit » cm {baseUnit=m, convFactor=1E-2}
« unit » mm {baseUnit=m, convFactor=1E-3}

unit» g

unit » mg {baseUnit=g, convFactor=1E-3}
unit » kg {baseUnit=g, convFactor=1E3}

FrequencyUnitKind
{baseDimension = {T}
baseExponent = {-1}}

unit » Hz

« dimension »
TimeUnitKind
{symbol = T}

«unit» s

«unit» tick

«unit» ms {baseUnit=s, convFactor=0.001}
«unit» us {baseUnit=ms, convFactor=0.001}
«unit» min {baseUnit=s, convFactor=60}
«unit» hr {baseUnit=min, convFactor=60}
«unit» day {baseUnit=hrs, convFactor=24}

« dimension »
DataSizeUnitKind
{symbol = D}

unit » kHz {baseUnit=Hz, convFactor=1E3}

unit » GHz {baseUnit=Hz, convFactor=1E9}
unit » rpm {baseUnit=Hz, convFactor=0.0167}

unit » bit

unit » KB {baseUni
unit » MB {baseUnit:

unit » Byte {baseUnit=bit, convFactor=8}
yte, convFactor=1024}
=KB, convFactor=1024}
unit » GB {baseUnit=MB, convFactor=1024}

« dimension »
AreaUnitKind

{baseDimension = {L},
baseExponent = {2}}

unit » mm2

unit » um2 {baseUnit=mm2, convFactor=1E-6}

« dimension »
PowerUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -3}}

« dimension »
EnergyUnitKind
{baseDimension = {L, M, T},
baseExponent = {2, 1, -2}}

« dimension »

«unit» W
«unit» mW {baseUnit=W, convFactor=1E-3}
«unit » kW {baseUnit=W, convFactor=1E3}

unit » J

unit » kJ {baseUnit=J, convFactor=1E3}

it=J, convFactor=2.778E-4}
Wh, convFactor=1E3}
unit » mWh {baseUnit=Wh, convFactor=1E-3}

DataTxRateUnitKind
{baseDimension = {D, T},
baseExponent = {1, -1}}

« unit » b/s

« unit » Kb/s {baseUnit=b/s, convFactor=1024}
« unit » Mb/s {baseUnit=Kb/s, convFactor=1024}

Figure D.3 - MARTE library of measurement units

498

UML Profile for MARTE, V1.2

« modelLibrary »
MARTE_Library::MARTE_DataTypes

« dataType »
« collectionType »
[calactionAnrib= vachorElamant |
IntegerVectar

« dataType »
« collectionType »
[eollectiondetria= matricElkment }

IntegerMatrix

« dataType »

« intervalType »
{ Insarvalannb = bourd §
Integerinterval

veciorElem: Integer [0..°)

mabrixElem: Integeryector [0_.°)

bound: Integer [2)

atfi: Integer): Integer atilInteger): Integervector
« dataType » « dataType » « dataType »
« collectionType » « collectionType » « intervalType »
[eallectionAbib wechorElemeant } [eollectiondinb=matrxElgmert § { inervalAtiib = bourd §
RealVector RealMatrix Realinterval
vaciorElem: Real [0..%] mabrixElem: Realvactor [0..%] bound: Real [2]
at(ic Integer): Real at(i: Integer): RealVector
R (7 Sungberession |
——— 1 T, k StringExpression=" | « data1_'*' SEERTERE
wdataType-m — — — - — — — — — = inbereaiT
« collectionType » “l rval {pe *
{ collestisnAtirib= vecirElement | l'n'er;:;;; Lo}
Array
vactorElsment: T [0..k] bound: TIZ]
atfi: Integery: T
« dataType »
Utility Type

« enumeration » « primitive »

TransmModeKind VSL_Expression

- - =={u: UtilityType :Boolean

:In;plex =(u- Uty Type|-Boolean

aff-duplax =iu: Utiliby Type |- Boolean

Tull-cluplex ¢=“5 ; Uity Type iBosinan

(T il i

Typs iBoglean
=={u: UtilityType Beolean

Figure D.4 - MARTE library of general data-types

The set of data types stereotyped VSL::CollectionType have the following operations:

at(i: Integer): [BaseType]

The i element of the Collection whose elements' type is [BaseType].

UML Profile for MARTE, V1.2

499

« modelLibrary »
MARTE_Library::BasicNFP_Types

Toia « enumeration »
« enumeration » | [y enumeration » ‘: mpw'l‘p": : StatisticalQualifierKind
SourceKind DirectionKind [exprlirioe expr b max
85l iner NFP_CommonType ﬁl:m
;B;s deet expr. WEL_Expression \'al;EanW
raq source: Sourcekind range
si8t0: SiatisticalCualifierkind peroent
dir- Directionkind distrib
mode: String [7] determ
[:‘& wther
[T T T I 1
« dataType » « dataType » « dataType » « dataType » « dataType » « dataType »
w nfpType » «nfpType » wnfpType » « nfpType » « nfpType » « nfpType »
[waalumtribe wakie } {valusdribz value} || | valuedtric= vaie) { valustsrib= walue) { walasAdirib= walle) { vahusAtirib= wale)
NFP_Boolean NFP_Natural NFP_String NFP_Real NFP_Integer NFP_DateTime
valua: Boolean value: Unlimitedtabral value: String value: Real valua: Integar valus; DateTimea
« dataType » « dataType » « dataType » « dataType » « dataType »
« nfpType » « nfpType » « nfpType » « nfpType » « nfpType »
[unitdrdb= urit | [umittrib= urit) [uriArib= unit } [unAtrib= unit } {unithsirin= uni |
NFP_Duration NFP_DataTxRate NFP_Frequency NFFP_Power NFP_DataSize
:';'é;g:ﬁ:;“m uni1:_D_z|taTsc RatalnitKind unil'_F_quusnc:rUnilKild Llnﬁ:_P_owUniIKild wmit :_D_amSizsUnhKind
precl‘slon: Real pracision: Real precision: Real pracision: Real precision: Real
worst: Feal
best Redl « dataType » « dataType »
dataTy dataTy ‘ ﬂ':PT::\TELP it) ¢ nfl:'ll:::’;; unit} « dataType » « dataType »
« dataType » « dal pe» uritAlirite= urit | i b= « nfpType # a« nfpType »
« nfpType » « nfpType » NFP_Length NFF_Area - { LritAterib= it |
{ unitAltrib= unit } {urilAiiri i § unit; LanglhUnitKingt unit: ArealniiKing NFP_Percentage NFP_Price
NFP_Weight NFP_Energy pracision: Real precision: Real . .
unit: String= % unit: String= LIS
unit: WaightL nitiind unit: EnargyUnitKind
pracision: Real precision: Real
« dataType »
« choiceType »
ArrivalPattern
perodic: PerodicPatiam
apenodic: ApariodicFattern
sporadic: SporadicPatiern
burst: BurstPatiarm
irmegular; regularPattern
closed: ClosedPattermn
open: OpenPathem
« dataType » « dataType » « dataType » « dataType »
« tupleType » w tupleType » « tupleType » « tipleType »
PeriodicPattern AperiodicPattern ClosedPattern OpenPattern

period: NFP_Duration
Fiter: MFP_Duration
phase: NFF_Duration
otlrenees: NFP_Integer

miterArrivalTims: NFP_Duration
arrivalRata: NFP_Fraguancy
arrivalProcess: String

distribution: MFF_CommaonType population: MFF_Integar

extDelay: NFP_Duration

« dataType » « dataType » « dataType »
a tupleType » « tupleType » « tupleType »
SporadicPattern BurstPattern IrregularPattern

mininteranival: NFP_Duration
maxlnterarrival: NFF_Durafion
minEvantintarval: NFP_Duration
maxEventintarval: NFP_Duration
burstSize: NFF_Integer

phase NFP_Duration
mtararrivals [*]: MFP_Duration

minlnteranival: NFP_Duration
maxinterarrival: NFFP_Duration
pitar: MFP_Cruration

Figure D.5 - MARTE library of pre-declared NFP types

Figure D.6 describes the set of operations in NFP_CommonType that declare common probability distributions. Note that
it represents a partial view of NFP_CommonType. The properties of this NfpType are described in Figure D.5.

500 UML Profile for MARTE, V1.2

« modelLibrary »
MARTE_Library::BasicNFP_Types

« dataType »
« nfpType »
[expridirib= expr }

NFP_CommonType

bernoulli (prob: Real)

binomial (prob: Real, tnals: Integer)

exp (mean: Real)

gamima (k Integer, mean: Real)

narmal (mean: Real, standDev: Real)

poisson (mean: Real)

unifomm (min: Real, max: Real)

geomelric (p: Real)

triangular (rmin: Real, max: Real, made: Real)
logarithanic (theta: Real)

Figure D.6 - Extract of the MARTE pre-declared NFP types: Operations in NFP_CommonType

« modelLibrary »
MARTE_Library::BasicNFP_Types

« primitive »

s « primitive » « primitive » « primitive » « primitive » a primitive »
og Boolean UnlimitedNatural String Real DateTime
i: : : Real): Real 9
*[‘}'_ I':::::J- Integer or{b: Boolean: Boolsan +{un: UnlimitzdNaturalj: UniimitedNatural | | concat (s: String): String 4{1:]1 R:aT] ua }:::;I]' Feal
A xorib: Boolean): Boolean {1 Integer w=ia: Sirng!: Boak N . d)
*[i: Integer): Integar s Bool : Bool P e i X (52 String: e ir: Real): Real ={dt DataTime}: Boolean
H{i: Intager): Intagar and{b: Booleany: Boolean L U RSN B R <=(5: Siring): Boolean Hir: Real): Real <{dt DataTime): Boolean

noti}: Boolean
=={b: Boolean): Boolean
==(h: Boolean): Boalean

fiun: Unfimitediatural): Raal
=({un: UnlimitedMatural): Boolean
=(un: UnlimitedMatural): Boolean
=={un: Unlimitedistural): Boolean
<={un; UnlimitedMatural) Boolean

abs(r: Real): Integer
=1t Real): Boolaan
=ir: Real}; Boolean
==(r: Real: Boolaan

==(dt: DataTime): Boolsan
=<={di: DateTime|: Boolean
==(dt; DatsTima}; Boolaan
<={dt: DateTima): Boolean

={I: Integer): Boolean
<(i: Infeger). Boolean

==(js

=i : =(r- Real: Baol
<_-,E:1 :2::';:;{ ?,:g::;: =={un: UnlimitsdNatural): Boolaan A = EF R::I:: Bolean n
rad(: Integer): Integer Jil =R LTIl i (e (1 Real | Boolean

T muod{un: UnlimitedMaturalf: Integer v .

{12 Real): Real (p: Real): Real

“{p: Real): Real

dilf{x: Real, il Intager)

mig{x: Real, lw: Real, up: Real)
surnik: Real. w: Real, up: Real)

diffix: Real, n: Integer)
Intgix: Resal, w: Real, up: Real)
sum{k: Real, lw: Real, up: Real)

diff{x: Real, n: Integer}
intgi=: Real, lw: Real, up: Real)
sum(k: Real, lw: Real. up: Real)

data’
« dataType » « dataType » « dataType » « dataType » « dataType » ::nfp I'ype:
« nfpType » wnfpType » « nfpType » «nfpType » « nfpType » halumm'i!:p“_ .
[waluaArdib= value b [walumatribe vake | [walumAitrib= wabie | [walumAttrib= wahe | [valumatirib= vakie
NFP_Integer NFP_Boolean NFP_Natural NFP_5tring NFP_Real NFP_DateTime
value: Integer value: Boolean wvalug: Unlimited Matural valug: String value: Real value: DateTime

Figure D.7 - Inherited Operations for NfpTypes

As shown in Figure D.7, the operations of the set of predefined NfpTypes in MARTE inherit from the MARTE primitive
type counterparts.

The semantic of NfpTypes operations for physical quantities, such as for example NFP_Duration, NFP_Temperature, etc.,
are different than their primitive type counterparts (Real primitive types). Indeed, operations in NfpTypes involve
evaluating not only the “value” part but also the measurement “unit” part. This is out of the scope of this specification,
and an implementation supporting measurement unit conversion should take care of this.

UML Profile for MARTE, V1.2 501

D.2.1 AperiodicPattern

This is a TupleType that contains the parameters that are necessary to specify an aperiodic pattern (unbounded pattern).

Attributes

+ distribution: NFP_CommonType [0..1]
A distribution of the arrival pattern that could use one of the patterns described in 8.3.3.

D.2.2 ArrivalPattern

This is a ChoiceType that contains the different kinds of parameters that are necessary to specify the most common arrival
patterns of events.

Attributes

» periodic: PeriodicPattern [0..1]
It describes periodic interarrival patterns, with an optional maximal deviation (jitter).

» aperiodic: AperiodicPattern [0..1]
It describes an unbounded pattern that is defined by a distribution function.

» sporadic: SporadicPattern [0..1]
It describes a bounded pattern that is defined by a corner case interarrival times and a maximum deviation (jitter).

* burst: BurstPattern [0..1]
It describes a bursty interarrival pattern with a number of events that can occur in a bounded period.

» irregular: IrregularPattern [0..1]
It describes an aperiodic pattern that is described by a table of successive interarrivals durations measured from a
starting phase.

* closed: ClosedPattern [0..1]
It describes a workload characterized by a fixed number of active or potential users or jobs that cycle between
executing the scenario.

* open: OpenPattern [0..1]
It describes a workload that is modeled as a stream of requests that arrive at a given rate in some predetermined
pattern (such as Poisson arrivals).

D.2.3 BurstPattern

This is a TupleType that contains the parameters that are necessary to specify a bursty pattern.

Generalizations

+ AperiodicPattern.

Attributes

* minlnterarrival: NFP_Duration [0..1]
The minimum interarrival duration between two successive occurrences of a burst.

* maxInterarrival: NFP_Duration [0..1]
The maximum interarrival duration between two successive occurrences of a burst.

502 UML Profile for MARTE, V1.2

+ minEventInterval: NFP_Duration [0..1]
The minimum interval between two event occurrences within a burst.

+ maxEventInterval: NFP_Duration [0..1]
The maximum interval between two event occurrences within a burst.

* burstSize: NFP_Integer
The number of event occurrences within a burst.

D.2.4 ClosedPattern

This is a TupleType that contains the parameters that are necessary to specify a closed pattern. It is characterized by a
fixed number of active or potential users or jobs that cycle between executing the scenario, and spending an external
delay period (sometimes called “think time”) outside the system, between the end of one response and the next request.

Attributes

* population: NFP_Integer [0..1]
The size of the workload (number of system users).

+ extDelay: NFP_Duration [0..1]
The delay between the end of one response and the start of the next for each member of the population of system
users.

D.2.5 IrregularPattern

This is a TupleType that contains the parameters that are necessary to specify an irregular pattern (list of duration
separations between successive event occurrences). This is a fully deterministic arrival pattern.
Generalizations

+ AperiodicPattern

Attributes

* phase: NFP_Duration [0..1]
A delay for the first occurrence of the event.

* interarrivals: NFP_Duration[*]
The set of duration separations between successive event occurrences.

D.2.6 NFP_Boolean

Generalization

« NFP_CommonType

+ Boolean

Attributes

» value: MARTE PrimitiveTypes::Boolean [0..1]
Attribute representing the value part of an NfpType.

UML Profile for MARTE, V1.2 503

D.2.7 NFP_CommonType

This is the parent NfpType that contains common parameters (modeled as UML Properties) and common operations of
the various NfpTypes defined in MARTE.

Attributes

+ expr: VSL_Expression [0..1]
Attribute representing an expression. MARTE uses the VSL language to define expressions.

* source: SourceKind [0..1]
Peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values are estimated,
calculated, required and measured.

» statQ: StatisticaQualifierKind [0..1]
Statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum, mean,
percentile, distribution).

e dir: DirectionKind [0..1]
Direction attribute (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed value
domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the relation “higher-
quality-than” in order to identify what value represents the higher quality or importance.

* mode: String [*]
Operational mode(s) in which the NFP annotation is valid. The string should contain the name of a existing UML
element stereotyped as «MARTE::CoreElements::Modey.

Operations

* Dbernoulli (prob: Real)
Bernoulli distribution has one parameter, a probability (a real value no greater than 1).

* binomial (prob: Real, trials: Integer)
Binomial distribution has two parameters: a probability and the number of trials (a positive integer).

* exp (mean: Real)
Exponential distribution has one parameter, the mean value.

+ gamma (k: Integer, mean: Real)
Gamma distribution has two parameters ("k" a positive integer and the "mean").

* normal (mean: Real, standDev: Real)
Normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

* poisson (mean: Real)
Poisson distribution has a mean value.

* uniform (min: Real, max: Real)
Uniform distribution has two parameters designating the start and end of the sampling interval.

* geometric (p: Real)
The Geometric distribution is a discrete distribution bounded at 0 and unbounded on the high side.

* triangular (min: Real, max: Real, mode: Real)
The Triangular distribution is often used when no or little data is available; it is rarely an accurate representation of a
data set.

504 UML Profile for MARTE, V1.2

* logarithmic (theta: Real)
The Logarithmic distribution is a discrete distribution bounded by [1,...]. Theta is related to the sample size and the
mean.

D.2.8 NFP_DataTxRate, NFP_Frequency, NFP_Length, NFP_Area, NFP_Power,
NFP_DataSize, NFP_Energy, NFP_Weight

Generalization

« NFP Real

Attributes

* unit: {MeasurementUnits:: DataTxRateUnitKind, FrequencyUnitKind, LengthUnitKind, AreaUnitKind, PowerUnitKind,
DataSizeUnitKind, EnergyUnitKind, WeightUnitKind} [0..1]
Attribute representing the measurement unit.

» precision: Real [0..1]
Degree of refinement in the performance of a measurement operation, or the degree of perfection in the instruments
and methods used to obtain a result. Precision is characterized in terms of a Real value, which is the standard
deviation of the measurement.

D.2.9 NFP_DateTime

Generalization

« NFP_CommonType

+ DateTime

Attributes

+ value: MARTE PrimitiveTypes::DateTime [0..1]
Attribute representing the value part of an date time NfpType.

D.2.10 NFP_Duration

Generalization

« NFP_Real

Attributes

Issue 15432 - update text

* unit: MeasurementUnits:: Puratienbnitiind TimeLibrary:: TimeUnitKind [0..1]
Attribute representing the measurement unit.

* clock: String [0..1]
Attribute representing the reference to a clock.

» precision: Real [0..1]
Degree of refinement in the performance of a measurement operation, or the degree of perfection in the instruments

UML Profile for MARTE, V1.2 505

and methods used to obtain a result. Precision is characterized in terms of a Real value, which is the standard
deviation of the measurement.

* worst: Real [0..1]
Attribute representing the worst-case value of a duration.

e Dbest: Real [0..1]
Attribute representing the best-case value of a duration.

D.2.11 NFP_Integer

Generalization

+ NFP_CommonType

 Integer

Attributes

» value: MARTE PrimitiveTypes::Integer [0..1]
Attribute representing the value part of an integer NfpType.

D.2.12 NFP_Natural

Generalization

« NFP_CommonType

+ UnlimitedNatural

Attributes

» value: MARTE PrimitiveTypes::Natural [0..1]
Attribute representing the value part of a natural NfpType.

D.2.13 NFP_Percentage

Generalizations

« NFP_Real

Attributes

* unit: String="%" [0..1]
Attribute representing the measurement unit.

D.2.14 NFP_Price

Generalizations

« NFP Real

506 UML Profile for MARTE, V1.2

Attributes

* unit: String="$US" [0..1]
Attribute representing the measurement unit.

D.2.15 NFP_Real

Generalization

« NFP_CommonType
- Real

Attributes

* value: MARTE PrimitiveTypes::Real [0..1]
Attribute representing the value part of a real NfpType.

D.2.16 NFP_String

Generalization

« NFP_CommonType

+ String

Attributes

* value: MARTE_PrimitiveTypes::String [0..1]
Attribute representing the value part of a string NfpType.

D.2.17 OpenPattern

A workload that is modeled as a stream of requests that arrive at a given rate in some predetermined pattern (such as
Poisson arrivals).

Attributes

* interArrivalTime: NFP_Duration [0..1]
The time between successive arrivals. For a Poisson process this is exponentially distributed with mean = 1/rate.

» arrivalRate: NFP_Frequency [0..1]
The average rate of arrivals.

» arrivalProcess: String [0..1]
The name of an arrival process, understood by the analysis tool. Examples (not exhaustive) are Poisson, General,
Phase-type, Markov-Modulated Poisson, Correlated, Pareto. If arrivalProcess is defined, normally arrivalRate is
also defined, and interArrival Time is not.

D.2.18 PeriodicPattern

This is a TupleType that contains the parameters that are necessary to specify a periodic pattern.

UML Profile for MARTE, V1.2 507

Attributes

* period: NFP_Duration [0..1]
The period as a duration.

+ jitter: NFP_Duration [0..1]
The maximum deviation of the occurrences.

* phase: NFP_Duration [0..1]
A delay for the first occurrence of the event.

* occurrences: NFP_Integer [0..1]
The maximum number of occurrences of the periodic arrival event.

D.2.19 SporadicPattern

This is a TupleType that contains the parameters that are necessary to specify a sporadic pattern (bounded pattern).

Generalizations

+ AperiodicPattern.

Attributes

* minlnterarrival: NFP_Duration [0..1]
The minimum interarrival duration between two successive occurrences of an event.

* maxInterarrival: NFP_Duration [0..1]
The maximum interarrival duration between two successive occurrences of an event.

» jitter: NFP_Duration [0..1]
The maximum deviation of the occurrences regarding to the minimum interarrival time.

D.2.20 TransmModeKind

This enumeration defines the kind of transmission mode of messages over a network.

Literals

* simplex
It allows for one-way communication of data through the network.

* half-duplex
It allows communication in both directions, but only one direction at a time (not simultaneously). Typically, once a
party begins receiving a signal, it must wait for the transmitter to stop transmitting, before replying.

+ full-duplex
It allows communication in both directions, and unlike half-duplex, allows this to happen simultaneously.

D.3 MARTE Model Library for Time

This sub clause provides model elements related to Time, gathered in two model libraries (Figure D.8). The
TimeTypesLibrary library is used in the Time profile, the TimeLibrary is for users.

508 UML Profile for MARTE, V1.2

<<modelLibrary>> <<profile>>
TimeTypesLibrary Time
N pd
<<import>> <<apply>>
7 4
*\‘\\ /,'
<<modelLibrary>>

TimeLibrary

Figure D.8 - Structure of the MARTE time model library

D.3.1 TimeTypesLibrary Library

This package contains enumerations used in the Time profile (Figure D.9). TimeNatureKind is an enumeration type that
defines literals used to specify the discrete or dense nature of a time value. TimelnterpretationKind is an enumeration type
that defines literals used to specify the way to interpret a time expression: either as a duration or as an instant.

The EventKind enumeration contains literals that may characterize events: events related to a behavior execution (start
and finish), and events related to a stimulus (send, receive, and consume).

TimeStandardKind defines literals used to specify the standard “systems of time.” The meaning of the acronyms is given

below:

GPS
Local
Sidereal
TAI
TCB
TCG
TDB
TT
uUToO
UTI
UTC

General Positioning System, not adjusted for leap seconds

Local Time

Sidereal Time

International Atomic Time scale, a statistical timescale based on a large number of atomic clocks
Barycentric Coordinate Time

Geocentric Coordinate Time

Barycentric Dynamical Time

Terrestrial Time

Universal Time 0

Universal Time 1

Coordinated Universal Time

UML Profile for MARTE, V1.2 509

« modelLibrary »
TimeTypesLibrary

« enumeration »
TimeNatureKind

discrete
dense

« enumeration »
TimeStandardKind

« enumeration »
EventKind

« enumeration »
TimelnterpretatiorKind

start
finish
send
receive
consume

duration
instant

TAIl
uTo
uT1
UTC
Local
TT
TDB
TCG
TCB
Sidereal
GPS

Figure D.9 — TimeTypesLibrary library

D.3.2 TimeLibrary

The TimeLibrary library (Figure D.10) provides enumerations related to time and facilities for using the ideal
chronometric time (i.e., the time referenced in physical laws).

TimeUnitKind contains the main chronometric time units. s (second) is an SI unit. Other units are derived units. All the
enumeration literals are stereotyped by clockUnit.

LogicalTimeUnitKind is a special enumeration which contains one enumeration literal only. This literal is tick.

The IdealClock and its instance idealClk model the abstract and ideal time which is used in physical laws. It is a dense
time. idealClk should be imported in models that refer to chronometric time. TimedValueType is a templated data type.
The template parameter is an enumeration which contains time units.

510

UML Profile for MARTE, V1.2

« modelLibrary »
TimeLibrary

« enumeration »
TimeUnitKind

«unit» s

«unit» ms {baseUnit=s, convFactor=0.001}
«unit» us {baseUnit=ms, convFactor=0.001}
«unit» ns {baseUnit=us, convFactor=0.001}
«unit» min {baseUnit=s, convFactor=60}
«unit» hrs {baseUnit=min, convFactor=60}
«unit» dys {baseUnit=hrs, convFactor=24}

« tupleType »
TimedValueType

value: Real

expr: ClockedValueSpecification
unit: TUK

onClock: String

« enumeration »

clock
LogicalTimeUnitKind € ODER

{unit=s}

idealClk:IdealClock
<<unit>> tick

« primitive »
ClockedValueSpecification

<<clockType>>
{nature = dense, unitType = TimeUnitKind,
getTime = currentTime }
IdealClock

currentTime(): Real

Figure D.10 - Detailed model library of TimeLibrary

UML Profile for MARTE, V1.2

511

D.4 MARTE Model Library for GRM

« model library »
MARTE::MARTE_Library::
GRM_BasicTypes
« enumeration » « enumeration » « dataType » « dataType »
SchedPolicyKind ProtectProtocolKind « tupleType » « tupleType »
) L EDFParameters FixedPriorityParameters
EarliestDeadlineFirst FIFO
FIFO ine: i iority:
FixedPriority NoPreemption deadline: NFP_Duration priority: NFP_Integer
LeastLaxityFirst Pr!or!tyCelllng
RoundRobin Prioritylnheritance
TimeTableDriven StackBased
Undef
Undef p
Other ther
« dataType » « dataType »
- « choiceType » « tupleType »
« enumeration » SchedParameters PeriodicServerParameters
PeriodicServerKind « dataType »
Sporadic edf: EDFParameters kind: PeriodicServerKind « tupleType »
Deferrable fp: le?danntyParameters !;)a_ul:kgroundf’nonty: NFP._Integer PoolingParameters
Undef polling: PoolingParameters initialBudget: NFP_Duration
Other server: PeriodicServerParameters replenishPeriod: NFP_Duration period: NFP_Duration
tableEntryKey: OpaqueExpression[0..*] maxPendingReplenish: NFP_Integer overhead: NFP_Duration [0..*]
« dataType »
« dataType » « dataType » « tupleType »
« choiceType » « tupleType » TableEntryType
ScheduleSpecification TableDrivenSchedule
- entryKey: OpaqueExpression
ttd: TableDrivenSchedule frameCycleTime: NFP_Duration timeSlot: NFP_Duration {ordered} [1..*]
other: OpaqueExpression entries: TableEntryType [1.."] offset: NFP_Duration {ordered} [1..*]

Figure D.11 - Details of the MARTE model library for GRM

D.4.1 EDF_Parameters

This dataType is a tupleType that defines the parameter used to characterize an EDF schedulable resource.

Attributes

* deadline: NFP_Duration [0..1]
Relative deadline used to schedule each activation of the schedulable resource in the
context of an EDF scheduler.

D.4.2 FixedPriorityParameters
This dataType is a tupleType that defines the parameter used to characterize a fixed priority schedulable resource.
Attributes

» priority: NFP_Integer [0..1]
Priority used to schedule the schedulable resource in a fixed priority scheduler.

512 UML Profile for MARTE, V1.2

D.4.3 NoParams
This is an empty utility dataType used in choiceTypes to indicate the absence of a value.
D.4.4 PeriodicServerKind

This enumeration defines the kind of periodic server.

Literals
* sporadic
Indicates the sporadic server scheduling algorithm.

» deferrable
Indicates the deferrable server scheduling algorithm.

* undef
Indicates the scheduling algorithm of the server is not defined.

* other
The scheduling algorithm of the server is None of the described in this enumerated.

D.4.5 PeriodicServerParameters

This is a TupleType that contains the scheduling parameters that are necessary to schedule the kinds of periodic servers
defined.

Generalizations

* FixedPriorityParameters

Attributes
* kind: PeriodicServerKind [0..1]
Indicates the type of periodic server.

* backgroundPriority: NFP_Integer [0..1]
Is the priority used to run the server when it is in the background.

* initialBudget: NFP_Duration [0..1]
Is the full amount of execution time available for a cycle of the server.

» replenishPeriod: NFP_Duration [0..1]
Is the replenishment period defined for the server.

+ maxPendingReplenish: NFP_Integer [0..1]
Is the maximum number of replenishments that can be stored in the queue of pending replenishments, it limits the
number of times a schedulable resource may block itself in the time frame of a cycle period.

D.4.6 PoolingParameters

This is a TupleType that contains the scheduling parameters that are necessary to schedule a schedulable resource with the
polling policy kind. It represents the scheduling mechanism by which there is a periodic task that polls for the arrival of
its input event. Thus, execution of the actions associated to the event may be delayed until the next period.

UML Profile for MARTE, V1.2 513

Generalizations

* FixedPriorityParameters

Attributes

» period: NFP_Duration [0..1]
Is the polling period, the time between successive inquiries for the arrival of an activation event.

» overhead: NFP_Duration [0..*]
List of duration time values that characterize the polling overhead, it is typically characterized by the minimum,
maximum and average values.

D.4.7 ProtectProtocolKind

This is an enumerated type that lists the kinds of protection protocols to use in the access to shared resources. It
corresponds to the homonymous concept of the domain view, whose class description is described in Annex F.

Literals

« FIFO
This means basically exclusive access with no protection.

* NoPreemption
No other concurrent activity may be executed while the resource is in use

* PriorityCeiling
Uses the immediate priority ceiling resource protocol. This is equivalent to Ada’s Priority Ceiling, or the
POSIX priority protect protocol. It requires the specification of an integer value to indicate the ceiling.

* PriorityInheritance
It uses the basic priority inheritance protocol.

» StackBased
It uses the Stack Resource Protocol (SRP). This is similar to the priority ceiling protocol but works
for non-priority-based policies. It requires the specification of the preemption level.

* Undef
The protocol is not specified.
* Other

The protocol is not included in this enumerated type, but it is specified using a user-defined string.
D.4.8 SchedParameters

This is a ChoiceType that contains the different kinds of parameters that are necessary to specify the contention privileges
of a schedulable resource in comparison to others under the same scheduler. It maps to the SchedulingParameters concept
of the domain view, whose class description is described in Annex F.

Attributes

+ edf: EDF Parameters [0..1]
Parameters used in the earliest deadline first scheduling policy.

» fp: FixedPriorityParameters [0..1]
Parameters used in the fixed priority scheduling policy.

514 UML Profile for MARTE, V1.2

* polling: PollingParameters [0..1]
Parameters used when a polling mechanism is used to start schedulable resources running under a fixed priority
scheduling policy.

» server: PeriodicServerParameters [0..1]
Parameters used when the schedulable resources are scheduled in a periodic server that runs under a fixed
priority scheduling policy.
+ tableEntryKey: OpaqueExpression [0..*]
Identification of the corresponding entry (entries) in the schedule table used for the particular SchedulableResource in
a time-triggered, table-based scheduler.

D.4.9 SchedPolicyKind

This enumeration defines the kinds of scheduling policies defined. It maps to the homonymous concept of the domain
view, whose class description is described in Annex F.

Literals
» EarliestDeadlineFirst
The scheduler applies the earliest deadline first algorithm.

« FIFO
The activations of schedulable resources are served in a first come first served basis.

* FixedPriority
The scheduler applies the fixed priority policy.

* LeastLaxityFirst
The scheduler applies the least laxity first algorithm to do the scheduling.

* RoundRobin
The scheduler shares the processing resource in a round robin way.

* TimeTableDriven
The scheduler applies a predefined fixed repetitive schedule.

* Undef
The scheduling policy in not specified.
* Other

The scheduling policy is None. of the included in this enumerated type, but it is specified using a
user-defined string.

D.4.9.1 ScheduleSpecification

This is a ChoiceType that contains the two alternative mechanisms to express an offline time trable driven schedule. It
maps to the ScheduleSpecification concept of the domain view, whose class description is described in Annex F.
Attributes

- ttd: TableDriveSchedule [0..1]
A table with the necessary data.

« other: String [0..1]
A String representing the corresponding opaque expression.

UML Profile for MARTE, V1.2 515

D.4.9.2 TableDrivenSchedule

This is a Tuple that contains the specification of the time used for repeating the schedule and the list of partitions in which
this time is divided for its assignment to schedulable resources. It maps to the TableDrivenSchedule concept of the
domain view, whose class description is described in Annex F.

Attributes

+ frameCycleTime: NFP_Duration
The time used as frame for repetition of the schedule

- entries: TableEntryType [1..*]
List of definitions for the partitions in which the schedule time is divided.

D.4.9.3 TableEntryType

This is a Tuple that contains the identification and description of the capacity reserved in the schedule that shares it in a
static way. It maps to the TableEntryType concept of the domain view, whose class description is described in Annex F.
Attributes

 entryKey: OpaqueExpression
Id of the table entry. It is used by the SchedParameters to link the SchedulableResources with its corresponding
entry in the static table of the schedule.

« timeSlot: NFP_Duration {ordered} [1..*]
List of reserved slots that conform this partition specification.

« offset: NFP_Duration {ordered} [1..*]
List of offsets relative to the start of the schedule that match the starting of the time slots of the partition that is
being specified.

Constraint

[1] the timeslots and offset attributes must be equal in number and are match one to the other in the same order they
appear.

D.5 MARTE Model Library for RTOSs

D.5.1 OSEK/VDX OS

D.5.1.1 Overview

OSEK/VDX is the result of an harmonized specification between both a German automotive project named OSEK
("Offene Systeme und deren Schnittstellen fiir die Elektronik im Kraftfahrzeug" (English: Open Systems and the
Corresponding Interfaces for Automotive Electronics)) and a French one named VDX (Vehicle Distributed eXecutive). It
aim to provide to the automotive industry a standard for an open-ended architecture for distributed control units in
vehicles

The open architecture introduced by OSEK/VDX comprises these three main areas:

« OSEK COM : Communication (data exchange within and between control units)

516 UML Profile for MARTE, V1.2

» OSEK OS : Operating System (real-time execution of ECU software and base for the other OSEK/VDX modules)
+ OSEK NM : Network Management (Configuration determination and monitoring)

We mainly focus on OSEK OS 2.2.2 in this sub clause.

The specification of the OSEK operating system is to represent a uniform environment, which supports efficient
utilization of resources for automotive control unit application software. The OSEK operating system is a single processor
operating system. It describes a static RTOS where all kernel objects are created at compile time.

D.5.1.2 Osek/VDX Model library

Library Overview

<<modelLibrary>>
Osek/VDXLibrary
(OSEKNVDX_Platform)

1
OsekDataType

(OSEKNDX_Platform.Osek/\VDXLibrary)

<<impor

<<impor>> <<impar

Concurrency Interaction
(OSEKNDX_Platform.Osek/VDXLibraryj (OSEK/VDX_Platform. Osek/VDXLibrar System
|] (OSEK/VDX _Platform. Osek/\VDXLibrar:
ConcurrencyDataType InteractionDataType
(OSEKNDX_Platform. Osek/VDXLibrary.Concurrency (OSEK/VDX_Platform. Osek/VDXLibrary.Interaction|
1 T <<import>> —| <<import>>
ConcurrencyCore InteractionCore

(OSEKNDX_Platform.Osek/VVDXLibrary .Concurrencyj (OSEK/VDX_Platform. Osek/VDXLibrary.Interaction|

Figure D.12 - OSEK/VDX library overview

Generic Data Type package

OsekDataType
(OSEK/VDX Platform.Osek/VDXLibrary|
<<primitive>>| | <<primitive>>| | <<primitive>>| |<<dataType>>| | <<dataType>>]
UINT64 FLOAT INT32 tickRefType tickType
<<primitive>>| | <<primitive>>| | <<dataType>> |<<dataType>>
UINT 32 INT64 appModeType | statusType

Figure D.13 - OSEK/VDX generic dataType package

UML Profile for MARTE, V1.2 517

518

Concurrency package

ConcurrencyDataT ype
(OSEK/VDX Platform.Osek/VDXLibrary.Concurrency

<<dataType>> <<dataType>> <<enumeration>>
taskType taskRefType AlarmActionKind
ACTIVATETASK
<<enumeration>> <<dataType>> SETEVENT
SCHEDULE alarmType ALARMCALLBACK
NON
FULL <<dataType>> <<dataType>>
alarmB aseRefType taskStateRefType

Figure D.14 - OSEK/VDX ConcurrencyDataType package

UML Profile for MARTE, V1.2

ConcurrencyCore
(OSEKN/DX_Platform.Osek/VDXLibrary. Concumrency)

Task

<<SwSchedulableResource>>

+activation : UINT32{)

+autostart : boolean{readOnly}
+prioity : UINT32{read Only}
+schedule : SCHEDUL E{réad Only}

readOnly}

TaskService O

+ernminateTask() : statusType

+getTaskD(TaskID : taskRefType) :statusType
+declareTask(TaskiD : taskType)
+getTaskState(TaskiD : taskType, State : taskStateRefType) : status Typs
+chainTask(TaskID: taskType) : statusType
+activateTask(TaskD : taskType) : status Type

+schedulg() : statusType

<<SwMutualExclusionResource>>
Ressource
(OSEKNDX_Platform. Osek/VDXLibrary.Interaction.Interaction Core)

<<NotificationResource>>
<<SwSchedulableResource>> <<SwSdhedulableResource>> Event
BasicTask ExtendedTask (OSEK/VDX_Platform Osek/VDXLibrary.Interaction. InteractionCore)
Extended tasks are frambasic tasks by being dlowedto usethe

operatingsystem call WaiEvent, which may resuit in a waiting state. The waiing state
allows the processor to be released andto be reassigned to a loner-priority task
withoutthe need to terminate the running extended task.

<<InteruptResource>>
Interrupt

<<SwMutualExclusionResource>>

Ressource

(OSEKNDX_Platform.Osek/ VDXL brary.Interaction.InteractionCore)

An ALARM may be used to cdhronously inform or activate a spedfic task.

<«<SvComptitResaros®>
suspendServices =
Counter <<Alarn>> AlarmService [0
- Alarm +SeRdAlarm(AamiD : alamType, Increment: tickType, Cycle : tickType) : statusType
:mltf;ﬁ%\{ﬁ% UINT32 - - +GetAlarm(AlamiD : alamType, Tick : tickRefType) : statusType
ik Py:rBas JUINT32 +Adion : AlarmActionKind +DedareAlarm(AlamlD : alamType)
ticks e +Autostart : booleanfreadOnly} +CancelAlarm(AlamiD : alarnType) : status Type

+GetAlarmBase(AlamlD : alarmType, Info : alarmBaseRefType) : statusType
+SetAbsAlarm(AlarmiD : alarmType, Start :tickType, Cycle : tickType) : statusType

Figure D.15 - OSEK/VDX ConcurrencyCore package

UML Profile for MARTE, V1.2

519

Interaction package

InteractionDataType
(OSEK/VDX Platform.Osek/VDXLibrary.Interaction

<<enumeration>> <<dataType>> <<dataType>>
ResourcePropertyKind eventMaskType resourceType
STANDARD
LINKED <<dataType>> <<dataType>>
INTER NAL eventType eventMaskRefType

Figure D.16 - OSEK/VDX InteractionDataType package

InteractionCore
(OSEKN/DX_Platform.Os ek/VDXLibrary.Interaction)

<<SwMutualExclusionResource>>

ResourceService
Ressource O

+releaseResource(ResID : resourceType) : status Type
+resourceProperty : ResourcePropertyKind [1] +dedareResource(Res|ID : resourceType)

+getResource(ResD :resourceType) : statusType

The event mechanism
+ isa means of synchronisafon
:is znltey Mui:td for :xm:fe; ;S(tso . " ncstate <<NofificationResource>> EventService O
Intiates s rans :;lisdi § stoa »: e wa state. Event +SetEveni TaskiD : taskType Mask : eventMaskType) : status Type
e . _ alataresaice> - +DedareEvent(EvertID : eventType)
clearServices = +mask : UINT64 +GetEvent(TaskID : taskType, Event : eventMaskRefType) : statusTypp
+WaitEvent(Mask : eventMaskType) : statusT ype
+ClearEvent(Mask : eventMaskType) : statusType
<<8mViutualExdusionResource>>

RES SCHEDULER : Ressource

Figure D.17 - OSEK/VDX InteractionCore package

520 UML Profile for MARTE, V1.2

System Package

System
(OSEK/VDX_Platform.Osek/VDXLibrary

HookService O

+PostTaskHook()

+PreTaskHook()
+ShutdownHook(Error : status Type)
+ErrorHook(Error : statusType)

OsControlService o

OsControl
_ Y| +StartOS(Mode : appModeT ype)

+ShutdownOS(Error : statusT ype)

Figure D.18 - OSEK/VDX System package
D.5.2 ARINC-653

D.5.2.1 Overview

The Apex interface, defined in the ARINC 653 standard, provides avionics application software with a set of basic
services to access the operating system and other system-specific resources. Its definition relies on the Integrated Modular
Avionics (IMA) approach.

A main feature of IMA architectures is that several avionics applications (possibly with different critical levels) can be
hosted on a single, shared computer system. A critical issue is to ensure safe allocation of shared computer resources in
order to prevent fault propagations from one hosted application to another. This is addressed through a functional
partitioning of the applications with respect to available time and memory resources. The allocation unit that results from
this decomposition is the partition.

A partition is composed of processes that represent the executive units (an ARINC partition/process is akin to a Unix
process/task). When a partition is activated, its owned processes run concurrently to perform the functions associated with
the partition. The process scheduling policy is priority preemptive.

Each partition is allocated to a processor for a fixed time window within a major time frame maintained by the operating
system. Suitable mechanisms and devices are provided for communication and synchronization between processes (e.g.,
buffer, event, semaphore) and partitions (e.g., ports and channels).

Here after, we will describe how MARTE will be used to design the services of the ARINC 653 Apex interface. Theses
services will be used after inside the avionics applications has a MARTE model library. These services can also be used
by a designer to generate code for ARINC 653 operating system.

In the following model; you can see the relationship between APEX Types and ARINC-653 API services. Due to the
complexity of this model and for a better comprehension, we have decided to present it in 2 parts. The part 1 regroups the
first 5 ARINC-653 API services (Time Management, Process Management, Partitions Management, Queuing Ports and
Sampling Ports).

UML Profile for MARTE, V1.2 521

APEX_TYPES APEX_PROCESS

Sampling Ports .
zimport: - =
7 7SR A B N
: - ' ST Tyl el
- #: T ; - : rts
«lmpDrE»J) e ~_eimports ; = - simports «l_[n\pu
L simpotts | .- <import: \‘n s wimports Tl R4
E o —_ﬁ Queuing Ports
Time Management Process Management Partitions Management g

Figure D.19 - Relationship between APEX Types and ARINC-653 API services (part 1)

As described above, the following figure describes the relationship between APEX types and the last five ARINC-653
API services (Buffers, Blackboard, Semaphores, Events, and Health Monitoring).

APEX_TYPES APEX_PROCESS

] Thmwrla S~ wimports
T LTl ~.
] - v =i, -

Jeimports __“*-H‘ ", simports = -

,// =imports -7 -
«import»,l e . =import - 7

2 o= T simports !
BUFFERS

sifnports T =~ "~

simport ~ -

imparts T =
BLACKBOARD SEMAPHORES * EVENTS HEALTH_MONITORING

Figure D.20 - Relationship between APEX Types and ARINC-653 API services (part 2)

D.5.2.2 ARINC-653 Model Library
The ARINC standard 653 defines two kinds of types: Generic Types (APEX Types) and Process Types that we can model.

[(ARINCESS_Model)
APEX_TYPES

«enumerations «enumerstion:: wenumeration: wdataTvpes
RETURN_CODE_TYPE PORT_DIRECTION_TYPE QUEUING_DISCIPLINE_TYPE SYSTEM_ADDRESS_TYPE
= NO_ERROR El SoURCE EE] FIFO wdataTypes

MNO_ACTION ESl DESTIMNATION =l PRIORITY MESSAGE ADDR _TYPE

MOT_&NAILABLE
MM ALID PARAR
El IrALID_COMNFIG |
El IrvALID _MODE
= sclataTypes |

= TIMED_OUT T
SYSTEM_ADDRESS_TYPE MESSAGE_RANGE_TYPE

adataTypes

NAME_TYPE

wdataTvpes
| MESSAGE_SIZE_TYPE

«dataTypes |
SYSTEM_TIME_TYPE

Figure D.21 - ARINC-653 Generic APEX Types package

522 UML Profile for MARTE, V1.2

(ARINGESS_ Moded)
APEX_PROCESS

«enurmerations

MAX NUMBER_OF PROCESSES

sdataTypes

zdataTypes ‘ |
STACK SIZE TYPE

PROCESS_ID_TYPE

«enumerations
MIN_PRIORITY_VALUE

PROCESS NAME TYPE

sdataTypes ‘ «dataTypes

WAITING_RANGE_TYPE

«enumerations
MAX_PRIORITY_VALUE

«dataTypes

«dataTypes
LOCK_LEVEL_TYPE

PRIORITY_TYPE

«enumerations
MAX _LOCK_LEVEL

«enumerations
PROCESS_STATE_TYPE

E] DORMANT
E] READY
El RUMNING
El WAITING

«enurmerations
DEADLINE_TYPE

E soFT
E] HARD

sdataTypes
PROCESS_ATTRIBUTE_TYPE

onpnonogm

PERIOD: SYSTEM TIME_TYPE [1]
TIME_CAPACITY: SYSTEW_TIME_TYPE [1]
ENTRY_POINT: S¥STEMADRESS TYPE [1]
STACK_SIZE: STACK_SIFE TYPE [1]
BASE PRIORITY: PRIORITY TYPE [1]
DEADLINE: DEADLINE_TYPE [1]

MNAME: PROCESS_NAME_TYPE [1]

adataTypes:
PROCESS_STATUS_TYPE

noom

DEADLINE_TIME: SYSTEM_TIME_TYPE [1]
CURRENT _PRIORITY: PRICRITY_T¥PE [1]
PROCESS STATE: PROCESS STATE TYPE [1]
ATTRIBUTES: PROCESS_ATTRIBUTE_TYPE [1]

[ARINCESS Mode))
Time Management

Figure D.22 - ARINC-653 APEX PROCESS Types package

zinterface, swTimerResources
TIMING

& TIMED WAIT(in SYSTEM_TIME_T¥PE, out RETURN_CODE_TYFE)
@ PERIODIC_WAIT{out RETURN_CODE_TYPE)

@ GET_TIME(n SYSTEM_TIME_TYPE, out RETURN_CODE_TYFPE)
@ REPLENISH(in SYSTEM_TIME_TYPE, out RETURN_CODE_TYFE)

UML Profile for MARTE, V1.2

Figure D.23 - ARINC-653 Time Management package

For the description of all ARINC-653 functions describes here below please refer to the [ARINC-653] ARINC-653-2
Specification (Avionics Application Software Interface, Part 1 - Required Services).

The following model describes the Time Management API defined in the ARINC 653.

The following model describes the Process Management API defined in the ARINC 653.

523

(A RINTGESS_ Moder)
Process Management

zinterface, swSchedulableResources
PROCESS MANAGEMENT SERVICE

% SET_PRIORITY(in PROCESS_ID_TYPE, in PRIORITY_TYPE, out RETURN_CODE_TYPE)
SUSPEND_SELF(in SYSTEM_TIME_TYPE, out RETURN_CODE_TYPE)

% SUSPEND(n PROCESS_ID_TYPE, out RETURN_CODE TYPE)

RESUME(in PROCESS_ID_TYPE, out RETURN_CODE_TYPE)

& STOP_SELF()

STOP(in PROCESS_ID_TYPE, aut RETURN_CODE_TYPE)

& START(in PROCESS_ID_TYPE, out RETURN_CODE_TYPE)

% DELAYED_START(in PROCESS_ID_TYFE, in SYSTEM_TIME_T¥PE, out RETURN_CODE_TYPE)
& LOCK_PREEMPTION(out LOCK_LEVEL_TYPE, out RETURN_CODE_TYPE)

% UNLOCK_PREEMPTION{out LOCK_LEVEL TYPE, aut RETURN_CODE_TY¥PE)

& GET_MY_ID{out PROCESS_ID_TYPE, out RETURN_CODE_TYFE)

& GET_PROCESS_ID(in PROCESS_NAME _TYPE, aut PROCESS_ID_TYPE, out RETURN_CODE TYFE)

@ CREATE_PROCESS(in FROCESS_ATTRIBUTE_TYPFE, out PROCESS_ID_TYPE, out RETURM_CODE_TYFE)

GET_PROCESS_STATUS(in PROCESS ID_TYPE, out PROCESS_STATUS_TYPE, out RETURMN_CODE_TYPE)

Figure D.24 - ARINC-653 PROCESS package

The following model describes the Partitions Management API defined in the ARINC 653.

[ARINGESS Moda])
Partitions Management

genumerations «enumeration:s
OPERATING_MODE_TYPE START_CONDITION_TYPE

E] IDLE E] NORMAL _START

] COLD_START £ PARTITION_RESTART

E] WARM_START £ HM_MODULE_RESTART
= MORMAL £ HM_PARTITION_RESTART

zdataTypes
PARTITION_ID_TYPE

wdataTypes
PARTITION_STATUS_TYPE

= PERIOD: S¥STEM_TIME_TYFE [1]

= DURATION: S¥STEM_TIME_TYFE [1]

= IDENTIFIER: PARTITION_ID_TYFE [1]

= LOCK_LEVEL: LOCK_LEVEL TYFE [1]

= CQPERATING_MODE: OPERATING_MODE_TYFE [1]
= START_COMNDITION: START_COMNDITION_TYFE [1]
= Property_0: <Undefined= [1]

sinterface, swIchedulahlsResources

PARTITION_MANAGEMENT_SERVICE

@ GET_PARTITION_STATUS(out PARTITION_STATUS_TYPE, out RETURN_CODE_TYPE)
SET_PARTITION_MODE(in OPERATING_MODE_TYPE, aut RETURN_CODE_TYPE)

Figure D.25 - ARINC-653 PARTITION package

The following model describes the Sampling Ports API defined in the ARINC 653.

524

UML Profile for MARTE, V1.2

(ARINGES3 Mode))

Sampling Ports
«dataTypes edataTypes cenumerations «dataTyper
| SAMPLING PORT NAME TYPE SAMPLING PORT ID TYPE VALIDITY_TYPE SAMPLING_PORT_STATUS_TYPE
] vALID o REFRESH_PERIOD: SYSTEM_TIME_TYRE [1]
E INvALID MAK MESSAGE_SIZE: MESSAGE_SIZE_TYPE [1]

PORT_DIRECTION: PORT_DIRECTION_TYPE [1]
5 LAST_MSG_VALIDITY: YALIDITY_TYPE [1]

3
]

=l
sinterface, messageComResources
SAMPLING_PORT_SERVICE
& CREATE_SAMPLING_PORT(in SAMPLING_PORT_NAME_TYPE, in MESSAGE_SIZE_TYPE, in PORT_DIRECTION_TYPE, in SYSTEM_TIME_TYPE, out SAMPLING_PORT_ID_TYPE, out RETURN_CODE_TYPE)
& WRITE_SAMPLING PORT(n SAMPLING PORT ID TYPE, in MESSAGE ADDR TYFE, in MESSAGE SIZE TYPE, out RETURN CODE TYPE)
& READ_SAMPLING_PORT(in SAMPLING_PORT_ID_TYPE, in MESSAGE_ADDR_TYPE, out MESSAGE_SIZE_TYPE, out VALIDITY_TYPE, out RETURN_CODE_TYPE)
& GET SAMPLING PORT(in SAMPLING PORT ID_TYPE, out SAMPLING PORT MAME TYPE, out RETURN CODE TYPE)
& GET SAMPLING PORT STATUS(n RETURN_CODE TYPE, in SAMPLING PORT ID_TYPE, in SAMPLING PORT STATUS TYPE)
Figure D.26 - ARINC-653 Sampling Ports package
The following model describes the Queuing Ports API defined in the ARINC 653.
(ARINGES3_Mods)
Queuing Ports
«dataTypes —
QUEUING_PORT STATUS TYPE ‘ aataypes dalaTypes
QUEUING_PORT ID_TYPE QUEUING_PORT_NAME_TYPE

£ NB_MESSAGE: MESSAGE_RANGE TYRE[!] —

o MAX_NE_MESSAGE: MESSAGE_RANGE_TYPE [1]

o PORT_DIRECTION: PORT_DIRECTION_TVPE [1]

o WATING_PROCESSES: WATING_RANGE TYPE 1]

T MAX_MESSAGE_SIZE: MESSAGE_SITE_TVPE 1]

=

«interface, messageComResources
QUEUING PORTS

& CREATE_QUEUING PORT(n QUEUNG_PORT_NAME TYPE, in MESSAGE_SIZE TYPE, in MESSAGE RANGE TVPE, in PORT DIRECTION_TYPE, in QUEUNG_DISCIPLINE_TYPE, out QUEUING_PORT ID_TYRE, out RETURN _CODE_T¥PE)
& SEND_QUEUNG MESSAGE(n QUEUING PORT D TYPE, in MESSAGE_ADDR TYPE, in MESSAGE_SIZE_TYPE, in SYSTEM TIME_TVPE, out RETURN_CODE_TVYPE)

& RECEWVE_QUEUING MESSAGE(n QUEUING_PGRT ID_TYRE, in SYSTEM TIME_TYPE, in MESSAGE_ADDR_TYPE, aut MESSAGE BIZE TYPE, out RETURN _CODE_TYPE)

& GET_QUEUNG_PORT IDjn QUEUING_PORT NAME_TFPE, out QUEUNG PORT ID_TYPE, aut RETURN_CODE TYPE)

& GET QUEUNG_PORT_STATUSin GUEUNG PORT ID_TYPE, out GUEUNG_PORT STATUS TYPE, aut RETURN_CODE_TYPE)

Figure D.27 - ARINC-653 Queuing Ports package

The following model describes the Buffers API defined in the ARINC 653.

| UML Profile for MARTE, V1.2 525

(ARINCE53_Moded)
BUFFERS

sdataTypes «dataTypes ‘ edataTypes
BUFFER_NAME_TYPE BUFFER_ID_TYPE BUFFER_STATUS_TYPE

= MNE_MESSAGE: MESSAGE_RANGE_TYPE[1]

= MAY_NE_MESSAGE: MESSAGE_RANGE_TYPE [1]
= MAY MESSAGE_SIZE: MESSAGE_SIZE TYPE [1]
= WAITING_PROCESSES: WAITING_RANGE_TYPE [1]

zinterface, sharedDataComResources
BUFFERS

@ CREATE_BUFFER(in BUFFER_NAME_TYFE, in MESSAGE_SIZE_TYPE, in MESSAGE_RANGE_TYPE, in QUEUING_DISCIPLINE_TYPE, out BUFFER_ID_TYPE, out RETURN_COD...
@ SEND_BUFFER(in BUFFER_ID_TYPE . in MESSAGE_ADDR_TYPE, in MESSAGE_SIZE_TYPE, in SYSTEM_TIME_TYPE, out RETURN_CODE_TYPE)

@ GET_BUFFER_ID(in BUFFER_NAME_TYPE, out BUFFER_ID_TYPE, out RETURN_CODE_TYFE)

@ RECEIVE_BUFFER(in BUFFER_ID_TYPE, in SYSTEM_TIME_TYPE in MESSAGE_ADDR_TYPE, aut MESSAGE_SIZE_TYPE, aut RETURN_CODE_TYPE)

@ GET_BUFFER_STATUS(in BUFFER_ID_TYPE, out BUFFER_STATUS_TYPE, out RETURN_CODE_TYPE)

Figure D.28 - ARINC-653 Buffers package

The following model describes the Blackboard API defined in the ARINC 653.

(ARINCESS Mode))
BLACKBOARD
. cdataTypes
‘ cdataTypes senumerations BLACKBOARD STATUS TYPE
EMPTY_INDICATOR_TYPE

= EMPTY_INDICATOR: EMPTY_INDICATOR_TYPE [1]
o T MAY_MESSAGE_SIZE: MESSAGE_SIZE_TYPE [1]
2 WATING_PROCESSES: WAITING_RANGE_TYPE [1]

il
S =
11

‘ «dataTypes ‘ =
BLACKBOARD ID TYPE

v+v
]

m

(=]
ginterface, messageComResources

BLACKBOARD

§i: CREATE_BLACKBOARD(in BLACKBOARD MAME_TYPE, in MESSAGE_SIFE_TYPE, out BLACKBOARD_ID_TYPE, out RETURN_CODE_TYPE)

DISPLAY_BLACKBOARD{in BLACKBOARD_ID_TYPE, in MESSAGE_ADDR_TYPE, in MESSAGE_SIZE_TYPE, out RETURN_CODE_TYPE)

READ_BLACKBOARD(in BLACKBOARD_ID_TYPE, in SYSTEM_TIME_TYPE, in MESSAGE_ADDR_TYPE, out MESSAGE_SIZE_TYPE, out RETURN_CODE_TYFE)
§# CLEAR_BLACKBOARD(in BLACKBOARD_ID_TYPE, out RETURN_CODE_TYPE)

§ GET_BLACKBOARD_STATUS(in BLACKBOARD_ID_TYPE, out BLACKBOARD _STATUS_TYPE, out RETURN_CODE_TYPE)

GET_BLACKBOARD_|D(in BLACKBOARD_MAME_TYPE, out BLACKBOARD_ID_TYPE, out RETURN_CODE_TYPE)

Figure D.29 - ARINC-653 Blackboard package

The following model describes the Semaphores API defined in the ARINC 653.

[ARINGESS Model)
SEMAPHORES

«dataTypes | sdataTypes edataTypes
SEMAPHORE_NAME_TYPE | | SEMAPHORE VALUE_TYPE SEMAPHORE_STATUS_TYPE

«dataTypes 5 CURRENT_WALUE: SEMAPHORE WALUE _TYPE [1]
SEMAPHORE_ID TYPE = WATING_PROCESESES: WAITING_RANGE_TYPE [1]

= MARMUM_WALUE: SEMAPHORE MALUE _TYPE [1]

ginterface, swhutualExclusionResources
SEMAPHORE

@ CREATE_SEMAPHORE(n SEMAPHORE_NAME_TYPE, in SEMAPHORE_VALUE_TYPE, in SEMAPHORE_VALUE_TYPE, in QUEUING_DISCIPLINE_TYPE, out SEMAPHORE_ID_TYFE, out RETURN_CODE_TYPE)
@ WAT_SEMAPHORE(n SEMAPHORE_ID_TYPE, in SYSTEM_TIME_TYFE, out RETURN_CODE_TYPE)

@ SIGNAL_SEMAPHORE(in SEMAPHORE_ID_TYPE, out RETURN_CODE_TYFE)

@ GET_SEMAPHORE_STATUS(in SEMAPHORE_ID_TYPE, out SEMAPHORE_STATUS_TYFE, out RETURN_CODE_TYFE)

@ GET_SEMAPHORE_ID(in SEMAPHORE_NAME_TYPE, out SEMAPHORE_ID_TYPE, out RETURN_CODE_TYPE)

Figure D.30 - ARINC-653 Semaphores package

526 UML Profile for MARTE, V1.2

The following model describes the Events API defined in the ARINC 653.

(BRINCESS Model]

EVENTS
edataTypes cenumerations sdataTypes
EVENT_NAME_TYPE EVENT_STATE_TYPE EVENT_STATUS_TYPE
«dataTypes % DO £ EYENT_STATE: EVENT_STATE_TYPE [1]
EVENT ID_TYPE El up £ WAITING_PROCESSES: WAITING_RANGE_TYPE [1]

AP

ginterface, notificstionResources

EVENTS

@ CREATE_EVENT(in EVENT_NAME_T¥FE, out EVENT ID_TYPE, out RETURN_CODE_TYRE)
& SET EVENT{in EVENT ID TYPE, out RETURN CODE TYPE)

@ RESET_EVENT(in EVENT ID_T¥PE, out RETURN_CODE_TYPE)

@ WAIT EVENT(in EVENT ID TYPE, in SYSTEM_TIME TYPE, out RETURN_CODE_TYPE)

@ GET_EVENT_STATUS(in EVENT_ID_TYPE, out EVENT_STATUS_TYPE, out RETURN_CODE_TYPE)
@ GET_EYENT_ID(in EYENT_NAME_TYPE, out EVENT_ID_TYPE, out RETURN_CODE _TYPE)

Figure D.31 - ARINC-653 Events package

The Health Monitor is Operating System function for hardware reporting and system monitoring. The following figure
describes the UML model of the health monitoring ARINC-653 API service.

(ARINCES3 Mode)
HEALTH_MONITORING

«dataTypes «enumerations «dataTypes
ERROR_MESSAGE_SIZE_TYPE ERROR_CODE_TYPE ERROR_STATUS_TYPE

edtalynes = e ADEINE MisskD = ERROR_CODE: ERROR_CODE_TYFE [1
‘ ERROR_MESSAGE TYPE ‘ = ehbLea N ERRER B LENGTH ERROR_MESS’AGE_S’EE_T\JP]E 1]

s 5 FALED PROCESS_ID: PROCESS_ID_TYPE [1]
Bl 5 FALED_ADDRESS. SYSTEM ADDRESS TYPE [1]
L 5 MESSAGE: ERROR_MESSAGE _TYPE [1]
o >
= HARDWARE_FAULT
= POWER_FAIL

+

ginterfaces
HEALTH_MONITORING

@ REPORT_APPLICATION_MESSAGE(n MESSAGE_ADDR_TYPE, in MESSAGE_SIZE_TYPE, out RETURN_CODE_TYPE)
@ CREATE_ERROR_HANDLER(in MESSAGE_ADDR_TYPE, in STACK_SIZE_TYFE, out RETURN_CODE_TYPE)

@ GET ERROR_STATUS(out ERROR_STATUS TYPE, out RETURN_CODE_TYPE)

@ RAISE_APPLICATION ERROR(in ERROR_CODE_TYPE, in MESSAGE_ADDR_TYPE, in ERROR_MESSAGE_SIZE_TYPE, aut RETURN_CODE TYFE)

Figure D.32 - ARINC-653 Health monitoring package

| UML Profile for MARTE, V1.2 527

528 UML Profile for MARTE, V1.2

Annex E
Repetitive Structure Modeling (RSM)

E.1 Overview

Application domains such as signal processing, image processing, or mobile devices usually require intensive data
computations to be performed, possibly in a parallel way, and with the help of several computation units. In the field of
embedded systems, we call this kind of systems “intensive computation embedded systems.” The purpose of this clause is
to propose high level modeling constructs that enable to take into account this kind of systems. More precisely, it
describes a compact way to express the regularity of such a system's structure or topology. The structures considered are
composed of repetitions of structural elements, interconnected via a regular connection pattern. We call this kind of
structure “repetitive structure.”

The mechanisms are oriented toward two aspects:

« The first aspect concerns the possibility to specify the shape of a repetition specified by a multiplicity, and basically
enables to see the collection of potential link ends represented by a multiplicity as a multidimensional array. The
purpose is twofold: ease the expression of link topologies, and improve the power of expression of the topology
description mechanism.

+ The second aspect concerns a way to add topological information on relations expressed between design-time entities
in order to specify the topologies of links that will exist between run-time entities in the context of these relations.

These mechanisms can be used in a common way for:

+ Hardware execution platform modeling: in order to express all the available parallelism of the platform precisely and in
a compact way.

+ Application modeling: in order to express the potential parallelism (task and data parallelism) of the application.

+ Allocation: Regular temporal and spatial mapping of the application onto the hardware execution platform.

E.2 Domain View

E.2.1 Package Overview

The RSM package extends the basic constructs of the MARTE metamodel by providing shaped multiplicities and link
topologies. Figure E.1 presents the global structure of this RSM package.

| UML Profile for MARTE, V1.2 529

MARTE::VSL MARTE::Foundations MARTE :Alloc
7
l,/
~
» —'
A Y4
«merge » « merge » MARTE: :MARTE_Library::
H s MARTE_DataTypes
.'I // /"j
\ y / ""'
MARTE:RSM ‘ N -~
b ‘1'/ I
Shape LinkTopology

Figure E.1 - Repetitive Structure package

A multiplicity usually enables to determine some instantiation directives about the design time element it is attached to.
These directives concern the number of elements that can potentially be instantiated at run time. As described in the
MARTE foundations via the MultiplicityElement domain class, a multiplicity is defined as an inclusive interval of non-
negative integers, beginning with a lower bound, and ending with a possibly infinite upper bound. It defines the range of

allowable cardinalities that a set may assume.

Shape

PP Extends MARTE: CoreElements::Foundations::MultiplicityElement
MuitiplicityEiement (through merge increment) Ij

shape I 0.1

« collectionType »
{collectionAtirib = size}
ShapeSpecification

size : UnlimitedMatural [0..%]

Figure E.2 - Shape modeling concepts

A model element and its associated multiplicity can be seen as a mono dimensional collection of elements. We propose to
precise this point of view, and to enable specifying a multidimensional shape for this collection: a model element can be
seen as a multidimensional array of model elements via the shape associated to its multiplicity. The concepts used for this

shape specification are presented in Figure E.2.

In order to take into account the modeling of link topologies, we introduce the abstract concept of LinkTopology.
LinkTopology defines an optional set of information that can be associated to a connector. Basically two use cases are
identified. In the first case, links are expressed between potential instances playing the same role. In the second case, links

530 UML Profile for MARTE, V1.2

are expressed between potential instances playing different roles. These two use cases lead to the definition of four
refinements of the LinkTopology concept: InterRepetition and DefaultLink for the first case and Tiler and Reshape for the
second case. Figure E.3 presents these concepts.

LinkTopology

MATE::CoreElements:

GeneralComponentModei:Connector allocAllocats

topology| 0..1 topology | 0..1
LinkTopology
InterRepetition DefaultLink

repetitionSpaceDependence: MARTE_DataTypes:IntegerVector
isModulo: Boolean

Ti
Reshape ’% Tiler

patternShape : Shape::ShapeSpecification targetTier_ | O7igin : Library:MARTE DataTypes:integerVector

repetitionSpace : Shape::ShapeSpecification 1 paving :Library:MARTE_D ataTypes::IntegerMatrix

fitting : Library.:MARTE_D ataTypes::IntegerMatrix

Figure E.3 - Link topology modeling concepts

The design idea is to identify sub-arrays, called patterns, of points inside each array (defined by a shape specification),
and then to relate the points (i.e., link ends) contained in these patterns. The considered patterns are multidimensional
arrays themselves described by a shape. We call tile a pattern when it is considered as a set of points of an array. The
considered tiles are sets of regularly spaced points and the tiles themselves are regularly spaced in the array. The
description of the regular spacing of the points of a tile is called fitting and the description of the regular spacing of the
tiles in the array is called paving. The complete description of the tiling of an array by tiles necessitates the description of
the shape of the pattern, the fitting, the paving, an origin, and a repetition space. The repetition space gives the number of
tiles. It is itself characterized by a shape. The fitting describes the coordinates of the points of the tile in the array
relatively to a reference point. The paving describes the set of reference points of the tiles relatively to the origin. So the
origin is the point of index [0, ..., 0] of the tile of index [0, ..., 0] in the repetition space. The tiling process is described
by a Tiler having the attributes: origin, a Vector of Integers, fitting, a Matrix of Integers and paving, a Matrix of Integers.
The points of the tile of index r in the repetition space are enumerated as follows: Given the point of index i in the
pattern, the coordinates of the corresponding point of in the array is (origin + paving x r + fitting x i) mod array_shape.
This formula ensures that the points of the tile are regularly spaced because they are built from the reference point of the
tile by the linear combination of the column vectors of the fitting matrix; that the reference points of the tiles are regularly
spaced because they are built by the linear combination of the column vectors of the paving matrix; and that all points of
the tiles are points of the array thanks to the computation modulo the shape of the array. This is inspired by the Array-OL
language [1,2,3].

UML Profile for MARTE, V1.2 531

E.2.2 Class Description

DefaultLink

The DefaultLink allows specifying a default source or destination for an InterRepetition dependence.

Generalizations

« LinkTopology

Semantics

When some links are not created at run time because of the specification of the InterRepetition topology, a connector with
a DefaultLink topology can be specified and connected to one end of the connector having the InterRepetition topology.
It defines a link whenever the other one is not present. This allows specifying default values.

Constraints

One connector end must be connected to the same connectable element as a connector having an InterRepetition topology.
The connected elements must have the same shape if specified.

InterRepetition

The concerned systems are composed of the repetition of a single element, such as in a grid or cube topology. Each
potential instance of this element is connected to other potential instances of the same element. For example, in the case
of a cyclic grid, each instance is connected to neighbors located at north, south, east, and west. The InterRepetition
topology enables to specify the position of every neighbor of every potential instance of a model element with a
multidimensional shape.

Generalizations

« LinkTopology

Attributes

+ repetitionSpaceDependence: IntegerVector
The repetitionSpaceDependence attribute is a translation vector on the space of the
multidimensional array. It identifies the position of a given neighbor.

* modulo: Boolean [0..1] = false
The modulo attribute indicates if the translation is applied modulo the size of the multidimensional
array defined by the shape of the repeated element or not. If the modulo attribute is equal to false,
the translation is not applied if the target is out of the bounds of the array, and the corresponding
links won’t be created at run time. This allows to model cyclic grids as well as non cyclic ones.

Semantics

Each potential instance is implicitly associated to one point of the multidimensional array described by the shape
associated to the multiplicity of the model element. The coordinates of the neighbor is the addition of the coordinates of
the considered point and the repetitionSpaceDependence. The considered point is the source of the topology and the
neighbor the destination.

532 UML Profile for MARTE, V1.2

Constraints

If the connector having an InterRepetition topology connects two ports, these two ports must belong to the same part. The
repetition space is defined by the multiplicity of that part. If the ports have themselves a multiplicity, the links are
established between the sets of instances defined by these multiplicities. The connected elements must have the same
shape if specified.

LinkTopology

Each repeated element has a multidimensional shape. Each point of the multidimensional arrays (identified by the
multidimensional shapes) corresponds to a potential link end. The mechanism proposed via the LinkTopology concept
enables to specify in a compact way all the links existing between potential link ends contained in each of the two arrays.
As a consequence, it enables to identify all the links that will exist at run time.

Semantics

This concept is abstract. Its semantics are detailed by its specializations.

MultiplicityElement

The MultiplicityElement defines an interval of number of potential instances. It is extended to support the definition of
the shape of the set of the potential instances of the element considered as a multidimensional array of instances.

Attributes

* /upper: UnlimitedNatural [0..1]
Upper bound of the multiplicity.

+ /lower: Integer [0..1]
Lower bound of the multiplicity.

* shape: ShapeSpecification [0..1]
Defines the number of dimensions and the size of the dimensions of the multidimensional array of
the potential instances of the element.

Constraints

The shape of a collection has a meaning only if the number of elements of this collection is fixed (the upper bound of the
multiplicity interval equals its lower bound). Furthermore the isOrdered attribute of the element has to be set to true in
order to index the potential instances.

Reshape

This link topology specifies the set of runtime links connecting multidimensional arrays. It defines the tiling of the arrays
by an identical pattern. It establishes links between tiles of the arrays.

Generalizations

« LinkTopology

Attributes

» patternShape: ShapeSpecification [1]
Specifies the shape of the pattern used to tile all the arrays.

UML Profile for MARTE, V1.2 533

» repetitionSpace: ShapeSpecification [1]
Defines how many tiles there are.

» srcTiler: Tiler [1]
Specifies the tiling of the source array.

» targetTiler: Tiler [1]
Specifies the tiling of the target array.

Issue 15727 - udpate text

Semantics

A Reshape topology defines a repetition space shape and the shape of the pattern (the same for all link ends). A Tiler has
to be associated to each link end. These Tilers describe how the collection of structural features connected to this end is
tiled by the tiles. The tiles of both ends correspond to the same patterns, thus the connection between the points of two
tiles corresponding to the same repetition index are point-to-point. For example if the patternShape is {2}, then, for a
given repetition index the only connections are between the point of index 0 of the source end tile and the point of index
0 of the target end tile, and the point of index 1 of the source end tile and the point of index 1 of the target end tile.

ShapeSpecification

A ShapeSpecification is the list of the size of the dimensions of an array.

Attributes

» value: UnlimitedNatural[*] {ordered}
Defines the shape of an array.
Constraints

At most one dimension of a shape can be infinite.

Tiler

A tiler is used in the case when complex topologies are modeled between different potential entities playing different
roles. It is based on the tiling of arrays by patterns mechanism.

Generalizations

» LinkTopology

Attributes

» origin: IntegerVector [0..1]
The origin is the coordinates of the reference point of the reference tile. When not specified, it defaults to the zero
vector.

+ fitting: IntegerMatrix [0..1]
The fitting matrix defines the regular spacing of the tile points in the array from the reference element of the tile.
When not specified, it defaults to the identity matrix.

* paving: IntegerMatrix [1]
The paving matrix defines the regular spacing of the reference elements of the tiles from the origin.

534 UML Profile for MARTE, V1.2

Semantics

This is used for example to express the data parallel repetition of an application component. Such a repetition is
composed of a repetition component having the repeated component as a part and Tilers connecting the ports of the
repetition component to those of the repeated part. The number of repetitions (and the shape of the repetition space) is
specified as the multiplicity (and the shape) of the repeated part. As this repetition space is shared by all the Tilers, such
a construction establishes links between the tiles of the various ports of the repetition component. Indeed, the tiles of the
same repetition index are connected to patterns of the same repeated component part.

E.3 UML Representation

E.3.1 Profile Diagrams

This package stereotyped profile defines the stereotypes and data types needed to model repetitive structures. The
possibility to model the shape of multidimensional collection of elements is provided by the shaped stereotype and the
specification of the topology of the links between such multidimensional collections is provided by the linkTopology
abstract stereotype and its specializations. The distribute stereotype provides a way to specify regular allocations of
multidimensional collections of elements to other multidimensional collections of elements, for example a repetition of
tasks to a set of processing elements. Figure E.4 presents the Shaped stereotype use to specify the shape of a collection of
model elements. Figure E.5 presents the data types needed to specify shapes and tiling parameters. Figure E.6 presents the
stereotypes used to specify the various link topologies for composite structures and Figure E.7 presents the link topology
provided for repetitive allocations, called distributions.

« profile»
RSM

« metaclass »
UML::MultiplicityElement

A

« stereotype »
Shaped

shape : ShapeSpecification [1]

Figure E.4 - Profile diagram for shape modeling

UML Profile for MARTE, V1.2 535

« modelLibrary »
RS_Library

« dataType»
« tupleType»
TilerSpecification

origin : IntegerVector
paving : IntegerMatrix [1]
fitting : IntegerMatrix

« dataType»
« collectionType»
{collectionAttrib = size}
ShapeSpecification

size : UnlimitedN atural [0..7]

Figure E.5 - Model library defining the data types used by the RSM profile

« profile »
RSM

« stereotype»

« metaclass » « metaclass »
UML::Connector UML::ConnectorEnd
y A

DefaultLink | ——— |

« stereotype»
LinkTopology

« stereotype»
InterRepetition

repetitionSpaceDependence : IntegerVector [1]
isModulo : Boolean = false

« stereotype»
Reshape

patternShape : ShapeSpecification [1]
repetitionSpace : ShapeSpecification [1]

« stereotype»
Tiler

origin : IntegerVector
paving : IntegerMatrix
fitting : IntegerMatrix
tiler : TilerSpecification

Figure E.6 - Profile diagram for link topology modeling in composite structures

536

UML Profile for MARTE, V1.2

« profile»
RS M

« stereotype »
Alloc::Allocate

T

« stereotype »
Distribute

patternShape: ShapeSpecification [1]
repetitionS pace : ShapeSpecification [1]
fromTiler : TilerSpecification [1]

toTiler: TilerS pecification [1]

Figure E.7 - Profile diagram for distribution modeling
E.3.2 Profile Elements Description

DefaultLink

This stereotype maps the DefaultLink domain element defined on page 532.

DefaultLink specifies a default value for an inter-repetition dependence. When such a dependence would refer to a non-
existent value, the default value is taken.

Extensions

 Connector (fromUML::InternalStructures)

Generalizations

+ LinkTopology

Attributes

+ None

Associations

+ None

Constraints

[1] One end of the connector has to be connected to the same port than the end of a connector stereotyped
interRepetition.

Distribute

The Distribute stereotype maps the Reshape domain element defined on page 537 to allocations. It adds support of
multidimensional distributions to allocations.

A distribute allocation distributes regularly a multidimensional array of elements on another multidimensional array of
elements. The repartition of the elements is done exactly in the same way as in the reshape connector (see below).

UML Profile for MARTE, V1.2 537

Extensions

« Abstraction (from UML::Dependencies)

Generalizations

« Allocate (from MARTE::Alloc)

« LinkTopology

Attributes

» kind: AllocationKind [0..1]
Inherited from MARTE::Alloc::Allocate.

* nature: AllocationNature [0..1]
Inherited from MARTE::Alloc::Allocate.

» patternShape: ShapeSpecification [1]
Specifies the shape of the pattern used to tile both from and to arrays.

» repetitionSpace: ShapeSpecification [1]
Specifies the repetition space.

» fromTiler: TilerSpecification [1]
Specifies the tiling of the from array.

» toTiler: TilerSpecification [1]
Specifies the tiling of the to array.
Associations

+ None

Constraints

+ None

InterRepetition

The InterRepetition stereotype maps the InterRepetition domain element defined on page 538. It specifies a uniform
translation in a repetition space.

If the connected ports are directed, then the direction of the translation is from the output port to the input port, else, the
translation is considered in both directions, allowing specifying undirected or duplex links.

If the connector is directed, the coordinates of the destination are those of the source plus the repetitionSpaceDependence
vector. This addition is considered modulo the shape of the repetition space if the modulo attribute is true, else some links
do not exist. In that case, a defaultLink may be specified.

Extensions

 Connector (fromUML::InternalStructures)

Generalizations

+ LinkTopology

538 UML Profile for MARTE, V1.2

Attributes

» repetitionSpaceDependence: MARTE::MARTE Library::MARTE DataTypes::IntegerVector [1]
Specifies the translation vector in the repetition space.

* isModulo: Boolean [0..1]= false
Specifies if the translation is taken modulo the shape of the repetition space or not.

Associations

» None

Constraints

[1] Both ends of the connector must be connected to the same component. This component must have a shape that
defines the repetition space.

[2] The size of the repetitionSpaceDependence has to be the same as that shape as it is a vector in the space defined by
that shape.

[3] Both connector ends must have the same shape.

LinkTopology (abstract)
The LinkTopology abstract stereotype maps the LinkTopology domain element of page 539.

It allows specifying the topology of the potential link instances linking shaped elements. See the tiler stereotype definition
below for a full description of the semantics of a reshape connector.
Extensions

 Connector (fromUML::InternalStructures)

« Abstraction (from UML::Dependencies)

Attributes

* None

Associations

+ None

Constraints

* None

Reshape

This stereotype maps the Reshape concept of page 539 to assembly connectors. It allows specifying a set of potential
connector instances between multidimensional arrays of potential port instances. If the shapes of these arrays of port
instances are identical and the connection topology is a direct point-to-point topology, the Reshape stereotype can be
omitted. If the shapes are different and no Reshape stereotype is specified, the link topology is indeterminate.

Extensions

« Connector (fromUML::InternalStructures)

UML Profile for MARTE, V1.2 539

Generalizations

« LinkTopology

Attributes

» patternShape: ShapeSpecification [1]
The shape of the pattern used to tile all the arrays.

» repetitionSpace: ShapeSpecification [1]
Defines how many tiles there are.
Associations

« None
Constraints
[1] The reshape stereotype can only be applied to assembly connectors.

[2] A tiler stereotype has to be applied to each connector end to specify how each multidimensional array is tiled.

Shaped
The Shaped stereotype maps the MultiplicityElement domain element defined on page 540.

It enables to provide a multidimensional view of a collection of elements. We allow profile users to specify a value only
for the shape tag of a shaped MultiplicityElement, without specifying a value for the multiplicity property of the
MultiplicityElement.

Extensions

« MultiplicityElement (from UML::Kernel)

Generalizations

* None

Attributes

» shape: ShapeSpecification [1]
Allows specifying the shape of a collection (i.e., the number of dimensions and the size of each dimension).

Associations

+ None

Constraints

[1] If both a multiplicity and its associated shape are specified, then the product of the elements of the sizes of all the
dimensions must be equal to the value of the multiplicity property.

[2] A shaped stereotype can only be applied on an element with a fixed multiplicity, not an interval. If the multiplicity of
the element is *, then one of the dimensions of the shape has to be infinite.

540 UML Profile for MARTE, V1.2

Notation

Instead of using the shaped stereotype, the user can write the shape in place of the multiplicity. Whenever a multiplicity
is between curly brackets, it has to be understood as a shape specification.

To refer to a specific Element that is part of a multidimensional collection specified by a shape, one can use the
ElementName[index] notation where index is the index of this element in the collection. The index is a vector of n
naturals where n is the number of dimensions of the shape. The indexes are numbered from O to the size of the
corresponding dimension minus 1. For example if a part is declared as PE: ProcessingElement [{10,10}] one can refer to
the specific PE of index {0,6} by PE[{0,6}].

ShapeSpecification
This data type supports the notation of a shape. It is a vector of unlimited naturals. Each element of the collection is the

size of one dimension of a multidimensional array.

Attributes
» size: UnlimitedNatural [0..*]

size of each dimension
Constraints

[1] At most one element of the collection can be infinite.

Notation

As specified in the Value Specification Language (VSL) annex, the shape is a comma separated collection of unlimited
naturals between curly brackets, for example: {10, 5, *}.

Tiler

The Tiler stereotype maps the Tiler domain element of page 541.

It expresses how a multidimensional array is tiled by multidimensional tiles. In the case when the tiler stereotype is
applied to a delegation connector, it connects an external port with a port of an internal part. The shape of the array is
given by the shape of the external port. The shape of the pattern is given by the shape of the port of the internal part. And
the shape of the repetition space is given by the shape of this part.

When it is applied to a ConnectorEnd, it belongs to a reshape connector and connects a port of an internal part. The
shapes of the repetition space and of the pattern are given by tags of the reshape sterecotype. The shape of the array is the
concatenation of the shape of the part and the shape of the port. Indeed, the number of potential instances of the port is
the product of the multiplicity of the part by the multiplicity of the port. For example the shape of the array of a connector
end connected to a port of shape {10, 4} (multiplicity: 40) of a part of shape {25} (multiplicity: 25) is {25, 10, 4}
(multiplicity: 1000).

The points of the tile of index r in the repetition space are enumerated as follows: Given the point of index i in the
pattern, the coordinates of the corresponding point in the array is (origin + paving x r + fitting x i) mod array_shape.

Extensions

+ Connector (from UML::InternalStructures)

+ ConnectorEnd (from UML::InternalStructures)

UML Profile for MARTE, V1.2 541

Generalizations

« LinkTopology

Attributes

» origin: MARTE Library::MARTE DataTypes::IntegerVector [0..1]
Specifies the origin of the reference tile in the array. If it is absent, the origin is the zero vector of dimension the
dimension of the array.

» fittingt MARTE Library::MARTE DataTypes::IntegerMatrix [0..1]
Specifies how the pattern is mapped to a tile in the array with respect to a reference element. If it is not specified, the
fitting matrix is the identity matrix.

* paving: MARTE Library::MARTE DataTypes::IntegerMatrix [0..1]
Specifies how an index in the repetition space is mapped to the reference point of a tile with respect to the reference
tile.

+ tiler: TilerSpecification [0..1]
Can be used as an alternative to the three previous attributes to specify the origin, fitting, and paving using a Tiler
object.

Associations

« None
Constraints
[1] The tiler stereotype can be applied only to delegation connectors.
[2] It can be applied to connector ends only if they belong to a connector with the reshape stereotype.
[3] The tiler attribute can be used only if the origin, fitting, and paving attributes are not specified.

[4] The number of elements of the origin vector, the number of lines of the paving and fitting matrices must be equal to
the dimension of the array.

[5] The number of columns of the paving matrix must be equal to the dimension of the repetition space and the number
of columns of the fitting matrix must be equal to the dimension of the pattern.

Issue 15660- udpate text

f6}Notation

A The vectors of the paving and fitting matrices are column vectors. For example a {{1},{0},{0}} matrix has to be
interpreted as the [1 0 0] matrix.

TilerSpecification

This data type supports the notation of a tiler (see the tiler stereotype above for more details on its semantics).

542 UML Profile for MARTE, V1.2

Attributes

« origin: MARTE Library::MARTE_DataTypes::IntegerVector [0..1]
Specifies the origin of the reference tile in the array. If it is absent, the origin is the zero vector of
dimension the dimension of the array.

« fitting: MARTE_ Library::MARTE DataTypes::IntegerMatrix [0..1]
Specifies how the pattern is mapped to a tile in the array with respect to a reference element. If it is
not specified, the fitting matrix is the identity matrix.

* paving: MARTE Library::MARTE DataTypes::IntegerMatrix [1]
Specifies how an index in the repetition space is mapped to the reference point of a tile with respect
to the reference tile.

Associations

» None

Constraints

« See the Tiler stereotype above

Notation

The notation is as specified in the Value Specification Language (VSL) annex. For example, a tiler specifying a paving of
a 2D array by blocks of 5 by 10 elements would be specified as {origin = {0,0}, fitting = {{1,0},{0,1}}, paving = {{5,
0}, {0, 10}}}, or even simply by {paving = {{5, 0}, {0, 10}}}.

E.4 Examples

This sub clause is illustrated with the distribution of a repetitive application onto a repetitive hardware architecture.

FftStage
« tiler »
{origin={0,0},
fitting={{0,1}},
paving={{1,0},{0,32}} [{128)] [{512,128,1)]
0 f:FFT[{512,%] [0

[{512%} [{128}] « tiler »
{origin={0,0,0},
fitting={{0,1,0}},

paving={{1,0,0},{0,0,1}}}

Figure E.8 - 2D repetition of a FFT component

The application, as described by Figure E.8 is the first task of a sonar application. It consists of the repetition of a fast
Fourier transform on samples recorded by hydrophones distributed around a submarine. This repetition is two-
dimensional: a sliding window on time (128 samples every 32 time steps) and a basic repetition on the 512 hydrophones.
It consumes a 2D array and produces a 3D array.

UML Profile for MARTE, V1.2 543

« HWISA » {type = SIMD}
SIMDUnit

« interRepetition »
{repetitionSpaceDependence ={1,0},
modulo = true}

L

« HwComputingResource » C
p : ElementaryProc [{4,4}] e

LT

1

T
« interRepetition »
{repetitionSpaceDependence ={0,1},
modulo=true}

Figure E.9 - 4x4 cyclic grid of processors example

The hardware architecture, as described by Figure E.9, is an SIMD unit built as a cyclic grid of 4 by 4 processors. Each
elementary processor of the grid is connected to its north, east, south, and west neighbors.

« distribute »

{patternShape = {32},
repetitionSpace = {4,4,%},
fromTiler = {origin = {0,0},

fitting = {{1,0}},

paving={{32,0},{128,0},{0,1}}},
toTiler = {origin = {0,0},

fitting = {{0,0}},

FftStage:f : FFT | _ _ _ _ _pa_\llrE;:{_ﬂ_O}_{O:}_{O_O}_}}}_ — SimdUnit::p :

[(512,4] ElementaryProc [{4,4}]

Figure E.10 - Bloc distribution example

The allocation, as described by Figure E.10, distributes the computations by blocs of 32 FFTs on the 16 processors of the
grid.

As a complement to illustrate the other notations described in this clause, we suggest the following example.

544 UML Profile for MARTE, V1.2

« shaped »
{shape = {5}} L
myMemory : RAMModule « tiler »
aving = {{1}}

« reshape »
{repetitionSpace = {5},
patternShape = {}}

« tiler »
{origin = {2},
paving = {{1}}}

myBus : Bus
slave [{8}]

Here the two forms of shape specification are shown: the shape of the myMemory part is specified by the way of the
shaped stereotype while the shape of the slave port is specified with the shape specification in place of the multiplicity.

A reshape connector links these two parts. As to build the shape of a port of a shaped part one has to concatenate both
shapes, the shape of the port of the myMemory part is then understood as {5} because there are {5} parts with each one
port of shape {}. The shape of the slave port is understood as {8} because there is one part of shape {} with one port of
shape {8}.

The reshape connector indicates that each memory module is connected to one port of the bus in such a way that memory
module number i is connected to the slave port of index i+2 of the bus. The way to specify this link topology is to say that
there are 5 patterns of shape {} (see the attributes of the reshape stereotype) which are used to tile both port arrays. The
definition of the tiles is done by the tiler stereotypes on the connector ends. The tiler on the memory end is noted using
the default values. Its complete specification would be {fitting = {{}}, origin = {0}, paving = {{1}}} that means that the
tile of index i corresponds to the port of index i. The tiler on the bus end is also noted using the default values. Its
complete specification would be {fitting = {{}}, origin = {2}, paving = {{1}}} that means that the tile of index i
corresponds to the port of index i+2. The link between both sets of port tiles is thus maintained by the mean of the
repetition space defined by the reshape stereotype on the connector.

| UML Profile for MARTE, V1.2 545

546 UML Profile for MARTE, V1.2

Annex F
Domain Class Descriptions

F.1 Core Elements

F.1.1 Action (from Causality::CommonBehavior)
An Action is the fundamental unit of behavior specification.

Generalizations

« Behavior (from Causality::CommonBehavior).

Associations

* None

Attributes

* None

Semantics

An Action is the fundamental unit of behavior specification. An action takes a set of inputs and converts them into a set
of outputs, though either or both sets may be empty. Actions are contained in compositeBehaviors, which provide their
context. CompositeBehaviors provide constraints among actions to determine when they execute and what inputs they
have.

F.1.2 ActionExecution (from Causality::RunTimeContext)

An ActionExecution is a kind of behaviorExecution that corresponds to an instance of an Action, and consequently
expresses an atomic piece of behaviorExecution.

Generalizations

+ BehaviorExecution (from Causality::RunTimeContext).

Associations

* action: Causality::CommonBehavior::Action [0..1] {subset type}
Type of behavior of which the CompBehaviorExecution is an instance.

Attributes

» None

UML Profile for MARTE, V1.2 547

Semantics

An ActionExecution is a kind of behaviorExecution that corresponds to an instance of an Action, and consequently
expresses an atomic piece of behaviorExecution. The context in which an actionExecution is performed is obtained by
means of the host association inherited from behaviorExcecution, which relates the action to its container
CompBehaviorExecution, and transitively to the instance of the behavioredClassifier in which it is effectively performed.

F.1.3 AggregationKind (from Foundations)

It is an enumeration type that defines literals used to specify the kind of aggregation between a classifier and its
properties.

Literals

* None
Indicates that there is no aggregation, the property is defined by itself.

* shared
Indicates that the property is defined by itself and it may be used by one or more classifiers as part
of their respective specifications.

e composite
Indicates that the property is owned by one classifier as part of its definition.

F.1.4 Behavior (from Causality::CommonBehavior)

A Behavior defines how a system, or an entity defining a part of it, changes over time.

Generalizations

« ModelElement (from Foundations)

Associations

» context: Causality::CommonBehavior::BehaviorClassifier [1]
Holds the behaviorClassifier that defines the context in which the behavior is defined.

» Parameter: Causality::CommonBehavior::Parameter [0..*]
Indicates the optional set of parameters whose values characterize the behavior.
Attributes

* None

Semantics

A Behavior defines how a system or entity changes over time. From a modeling point of view, this concept defines the
behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context classifier.
It is a specification of how its context classifier as well as the state of the system that is in the scope of the behavior may
change over time. A behavior may have Parameters whose values may be used for evaluating a behavior. Two kinds of
Behavior may be defined: CompositeBehavior and Action.

548 UML Profile for MARTE, V1.2

F.1.5 BehavioredClassifier (from Causality::CommonBehavior)

A behavioredClassifier is a kind of classifier that represents the context in which behaviors may be specified.

Generalizations

+ Classifier (from Foundations)

Associations

» ownedTrigger: Causality::CommonBehavior:: Trigger [0..*]
Specifies the trigger or triggers that filter events that may affect the execution of behaviors of the classifier.

* ownedBehavior: Causality::CommonBehavior::Behavior [0..*]
Specifies the different behaviors that may expose and hold the behavioredClassifier.

* mainBehavior: Causality::CommonBehavior::Behavior [0..1] {subset ownedBehaviort}
Specifies the behavior that is launched after creation and initialization of any instance of the
behavioredClassifier.

* modeBehavior: ModeBehavior [*] {subsets ownedBehavior}
The sets of modal behaviors of this behaviored classifier.

» activeln: Mode [*]
The set of modes in which an entity is participating.
Attributes

* None

Semantics

A behavioredClassifier represents the context in which behaviors may be specified. It exposes concrete behavior
specifications to illustrate specific scenarios of interest associated with that classifier, such as the start-up scenario. The
particular behavior specification used to represent the behavior that starts executing when instances of that classifier are
created and started is called main behavior. For many real-time concurrent systems, this can be, for example, the behavior
that initiates the activity of a thread, which continues until the thread is terminated.

F.1.6 BehaviorExecution (from Causality::RunTimeContext)

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers.
Generalizations

+ Instance (from Foundations)

Associations

* host: Causality:: RunTimeContext::CompBehaviorExecution [1]
Is used to designate the context in which the behavior is being executed.

» cause: Causality::RunTimeContext::EventOccurrence [1]
Designates the concrete occurrence of an event that causes the behaviorExecution to take effect.

UML Profile for MARTE, V1.2 549

Attributes

» None

Semantics

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers. Hence, they are run-time instances of the behavior and action concepts.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A
behavior execution specification describes how the states of these instances change over time. Behavior executions, as
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is
obtained from the host instance.

In UML2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior
specification is performed by an instance specification (its host) and is the description of the behavior of this instance.
Emergent behavior execution specification results from the interaction of one or more participant instance specifications.
MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2
Behavior Performance concept described in the overview sub clause of its common behavior clause.

On one hand, a behavior execution specification is thus directly caused by the invocation of a behavioral feature of an
instance specification or by its creation. In either case, it is a consequence of the execution of an action by some related
classifier instance. A behavior has access to the structural features of its host instance specification.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating
classifier instances are parts of a larger composite classifier instance, a behavior execution can be seen as indirectly
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing
behaviors of the participant instances. This form of behavior is of interest since the behavior that is to be analyzed and
observed at the system level, in order to predict its timing properties, is normally described as an abstract view of the run-
time emergent behavior due to the combination of the behavior executions of all its constituent parts.

F.1.7 Classifier (from Foundations)

An abstract concept representing some kind of design-time specification. This concept includes all kinds of descriptors
such as classifiers, collaborations, data types, etc.
Generalizations

« ModelElement (from Foundations)

Associations

* instance: Instance [0..*]
Indicates the set of run-time instances that are incarnated based on this classifier.

» ownedProperties: Property [0..*]
Holds the possible execution behaviors of the instance.

Attributes

» None

550 UML Profile for MARTE, V1.2

Semantics

In the context of the duality classifier-instance, a classifier represents a generic pattern that acts as a design-time
specification to which any instance made from it must conform. This concept includes all kinds of descriptors such as
classifiers, collaborations, data types, etc. It is generally assumed that every instance element in the domain model may
have an implicit or explicit classifier. Properties are used to describe particular aspects of a Classifier.

F.1.8 CompBehaviorExecution (from Causality::RunTimeContext)

A CompBehaviorExecution is a kind of behaviorExecution that corresponds to an instance of a compositeBehavior, and
consequently is expressed in terms of other behaviorExecutions.
Generalizations

+ BehaviorExecution (from Causality::RunTimeContext)

Associations

* behavior: Causality::CommonBehavior::CompositeBehavior [1] {subset type}
Type of behavior of which the CompBehaviorExecution is an instance.

* exAction: Causality::RunTimeContext::BehaviorExecution[0..1]
Set of internal behaviorExecutions that define the CompBehaviorExecution. They may be
ActionExecutions or other CompBehaviorExecutions.

* host: CoreElements::Foundations::Instance [1]
Context in which the behavior is being executed. The associated element corresponds to an instance
of a BehavioralClassifier to which the descriptive behavior belongs.

* invoker: CoreElements::Foundations::Instance [0..1]
Instance responsible for the invocation of the composite behavior execution.

» participant: CoreElements::Foundations::Instance [1..*]
Set of instances that are involved in the execution of the composite behavior.

Attributes

» None

Semantics

A CompBehaviorExecution is a kind of behaviorExecution that corresponds to an instance of a compositeBehavior, and
consequently may be expressed in terms of other behaviorExecutions.

The set of participants gives access to the instances that interact to make emerge and are involved in the execution of the
composite behavior. This set may include the interacting structural features of its host instance specification.

F.1.9 CompositeBehavior (from Causality::CommonBehavior)

A CompositeBehavior is a kind of Behavior that may contain other Behaviors.

Generalizations

 Behavior (from Causality::CommonBehavior)

UML Profile for MARTE, V1.2 551

Associations

* action: Causality::CommonBehavior::Behavior [0..*]
Set of atomic or compositeBehaviors used to specify the behavior.

Attributes

* None

Semantics

A CompositeBehavior is a kind of Behavior that may contain other Behaviors, which in turn may be either composite or
atomic.

F.1.10 Configuration

A Configuration characterizes a set of participating entities associated to a system, sub-system or whatever composite
element. A configuration prescribes the properties that the participating entities exhibit in the configuration context.

Generalizations

* None

Associations

* mode: CoreElements::Mode [*]
The operational modes that are represented by this configuration.

Attributes

* None

Semantics

A system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional
parameters). A configuration can also represent a particular deployment plan of application components in platform
entities.

F.1.11 Event (from Causality::CommonBehavior)

An Event is the specification of a kind of change of state that may happen in the modeled system.

Generalizations

+ ModelElement (from Foundations)

Associations

+ None

Attributes

» None

552 UML Profile for MARTE, V1.2

Semantics

An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are
often generated as a result of some action either within the system or in the environment surrounding the system.

F.1.12 EventOccurrence (from Causality::RunTimeContext)

An EventOccurrence is an instance of an Event, representing a potential change of state in the modeled system.

Generalizations

« Instance (from Foundations)

Associations

» event: Causality::CommonBehavior::Event [1] {subset type}
Type of event of which the eventOcurrence is an instance.

+ effect: Causality::RunTimeContext::BehaviorExecution [0..1]
Concrete instance of a behavior whose execution is an effect of the eventOccurrence.
Attributes

» None

Semantics

An EventOccurrence is an instance of an Event. They are used to represent a change of state in the modeled system.
Event occurrences are often generated as a result of some action or combination of them, either within the system or in
the environment surrounding the system.

F.1.13 Instance (from Foundations)

An abstract concept representing some kind of run-time instance that is created based on one or more type specifications
(descriptors). This concept includes all kinds of instances, including objects, data values, etc.
Generalizations

« ModelElement (from Foundations)

Associations

* type: Classifier [0..*]
Set of types to which the instance is conformant. These are design-time descriptors that are used to
specify all the aspects necessary to run this instance

* exBehavior: RunTimeContext::CompBehaviorExecution [0..*]
Holds the possible execution behaviors of the instance.

Attributes

» None

UML Profile for MARTE, V1.2 553

Semantics

In the context of the duality classifier-instance, an instance represents a concrete reification of a classifier. The classifier
is referred to as the type of the instance. An instance may have multiple types, which can be used either to represent
different viewpoints of the model element or a composition of partial descriptions, including multiple inheritance for
example. An instance may expose a number of concrete behaviors at run time; these are expressed by means of a set of
composite behavior executions.

F.1.14 InvocationOccurrence (from Causality::Communication)

An InvocationOccurrence is a run time instance that represents the start of a communication in transit between a sender
instance and a receiver instance, through the inquiry of an actionExecution.
Generalizations

« EventOccurrence (from Causality::RunTimeContext)

Associations

» effect: Causality::Communication::Request [1..*]
Event that will be considered the descriptor of the instance represented by the
terminationOccurrence.

» sender: Foundations::Instance [1]
Instance that starts the invocartion.

» execution: Causality::RunTimeContext::ActionExecution [1]
actionExecution that initiates the invocation.
Attributes

* None

Semantics

An InvocationOccurrence is a run time instance that represents the start of a communication in transit between a sender
instance and a receiver instance, through the inquiry of an actionExecution. This actionExecution, representing the
invocation of a behavioral feature, is executed by a sender instance resulting in the InvocationOccurrence. The invocation
event may represent the sending of a signal or the call to an operation. As a result of the invocationOccurrence a Request
is generated. An InvocationOccurrence may result in a number of requests being generated (as in a signal broadcast).

F.1.15 Mode

A Mode identifies an operational segment within the system execution that is characterized by a given configuration.

Generalizations

» None

Associations

* participatingEntity: BehavioredClassifier [*]
The set of participant entities that are active in the mode.

554 UML Profile for MARTE, V1.2

* /outgoing: ModeTransition [*]
The set of outgoing mode transitions that have this mode as source state.

* /incoming: ModeTransition [*]
The set of incoming mode transitions that have this mode as target state.
Attributes

» None

Semantics

Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier. A BehavioredClassifier can be active in zero or more
operational modes. Furthermore, a BehavioredClassifier that represents a system, subsystem, or any composite entity can
have a set of modes modeled as a ModeBehavior.

F.1.16 ModeBehavior

A ModeBehavior specifies a set of modes mutually exclusive, i.e., only one mode can be active in a given time instant.
Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions.

Generalizations

+ Behavior (from CommonBehavior)

Associations

» composite: BehavioredClassifier [0..1] {subsets context}
The composite element (e.g., a system or subsystem) that owns this ModeBehavior.

* mode: Mode [*]
The set of mutually exclusive modes participating in this ModeBehavior.

* Transition: ModeTransition [*]
The set of owned mode transitions modeled in this ModeBehavior.

Attributes

* None

Semantics

Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier. A BehavioredClassifier can be active in zero or more
operational modes. Furthermore, a BehavioredClassifier that represents a system, subsystem, or any composite entity can
have a set of modes modeled as a ModeBehavior.

F.1.17 ModeTransition

A mode transition describes the modeled system or subsystem under mode switching.

UML Profile for MARTE, V1.2 555

Generalizations

» None

Associations

+ trigger: Trigger [*]
The set of triggers that produce this mode transition.

* source: Mode [1]
The mode that is the initial state of this transition.

e target: Mode [1]
The mode that is the final state of this transition.
Attributes

» None

Semantics

The dynamics of modes is represented by connecting modes by means of ModeTransitions. A mode transition describes
the modeled system or subsystem under mode switching. A mode transition can be produced in response to a Trigger. A
Trigger is related to an Event that determines the conditions causing the triggering action.

F.1.18 ModelElement (from Foundations)

Abstract root modeling element.

Generalizations

» None

Associations

» ownedElement: ModelElement [0..*]
Set of other modeling elements that are part of or define the modelElement in which they are
inserted.

* owner: ModelElement [0..1]
Modeling element to which this belongs.

Attributes
* name: String [0..1]

Identifies the element.
Semantics

This abstract class defines a root for most of the concepts defined in this specification. It plays a role similar to the
NamedElement concept in the UML metamodel. The ownedElement - owner association is used to bring it containing
capabilities, which can be used to define composite model elements.

556 UML Profile for MARTE, V1.2

F.1.19 MultiplicityElement (from Foundations)

A multiplicity is a definition of an inclusive interval of non-negative integers beginning with a lower bound and ending
with a (possibly infinite) upper bound, specifying the range of valid cardinalities for instantiation of this element.
Generalizations

« ModelElement (from MARTE::CoreElements::Foundations)

Attributes

+ /lower : Integer [0..1]
The Integer value derived from the lowerValue specification.

» /upper : UnilimitedNatural [0..1]

The UnlimitedNatural value derived from the upperValue specification.

Associations

* lowerValue : ValueSpecification [0..1]
Specifies the lower bound of the multiplicity. It can be as simple as a literal or as complex as an expression.

* upperValue : ValueSpecification [0..1]
Specifies the upper bound of the multiplicity. It can be as simple as a literal or as complex as an expression.

Semantics

This concept matches the definition of the MultiplicityElement metaclass defined in UML.
F.1.20 Parameter (from Causality::CommonBehavior)

It is a typed element that may be owned by a behavior.

Generalizations

+ ModelElement (from Foundations)

Associations

» type: Classifier [0..1]
Type of the parameter by means of a classifier.

Attributes

« None

Semantics

A parameter is a typed element that may be owned by a behavior. Values assigned to parameters are to be consistent with
its type, and are used to characterize the different scenarios and variations of a behavior.

F.1.21 Property (from Foundations)

It is a typed element that may be owned by a classifier.

UML Profile for MARTE, V1.2 557

Generalizations

« MultiplicityElement (from Foundations)

Associations

* type: Classifier [0..1]
Type of the property by means of a classifier.

Attributes
+ aggregation: AggregationKind [1] = None.
Kind of aggregation used to include the property in a classifier.

Semantics

As the UML homonymous concept a property is a typed element that may be owned by a classifier. It has a multiplicity
in terms of upper and lower bounds, an aggregation kind, and a type. It is used to describe particular aspects of a
Classifier, by giving to it concrete values at instantiation time. This concept is consistent with the
UML::Classes::Kernel::Property element of the UML2 metamodel.

F.1.22 ReceiveOccurrence (from Causality::Communication)

A ReceiveOccurrence is a run time instance that represents the reception of a communication in transit between a sender
instance and a receiver instance.

Generalizations

« EventOccurrence (from Causality::RunTimeContext)

Associations

* cause: Causality::Communication::InvocationOccurrence [1]
received request

» receiver: Foundations::Instance [1]
Instance that receives the request.

Attributes

» None

Semantics

A ReceiveOccurrence is a run time instance that represents the reception of a communication in transit between a sender
instance and a receiver instance. Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs,
which according to the triggers expected may subsequently launch the behaviors of the receiver instance or of any of its
internal instances. Like in the Common Behaviors Domain Model of UML, two kinds of requests are determined
according to the kind of invocation occurrence that caused it: the sending of a signal, and the invocation of an operation.
The former is used to trigger a reaction in the receiver in an asynchronous way without a reply. The latter applies an
operation to an instance, which may be synchronous or asynchronous and may require a reply from the receiver to the
sender.

558 UML Profile for MARTE, V1.2

F.1.23 Request (from Causality::Communication)
A Request is an instance of a communication in transit between a calling instance and a called one.

Generalizations

+ Instance (from Foundations)

Associations

» effect: Causality::Communication::ReceiveOccurrence [1]
receiveOccurrence that will handle the reception of the request.

» cause: Causality::Communication::InvocationOccurrence [1]
invocationOccurrence that originates the request.

» sender: Foundations::Instance [1]
Instance that starts the invocation.

» receiver: Foundations::Instance [1]
Instance that receives the request.

Attributes

* None

Semantics

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature);
information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and
receiver instances; as well as sufficient information about the behavior execution to enable the return of a reply from the
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

Each request is targeted at exactly one receiver instance and caused by exactly one sending instance, but an occurrence of
an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be the
same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of
the different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

F.1.24 StartEvent (from Causality::Invocation)

A StartEvent represents the start of a Behavior.

Generalizations

« Event (from Causality::CommonBehavior)

UML Profile for MARTE, V1.2 559

Associations

* Dbehavior: Causality::CommonBehavior::BehaviorExecution [1]
Behavior whose start is represented by the StartEvent.

Attributes

* None

Semantics

A StartEvent represents the start of a Behavior. The event is tied to the start of the associated behavior.
F.1.25 StartOccurrence (from Causality::Invocation)

A StartOccurrence represents the start of a BehaviorExecution.

Generalizations

« EventOccurrence (from Causality::RunTimeContext).

Associations

+ startEvent: Causality::Invocation::StartEvent [1] {subset event}
Event that will be considered the descriptor of the instance represented by the startOccurrence.

* execution: Causality::RunTimeContext::BehaviorExecution [1]
behaviorExecution whose start is represented by the startOccurrence.

Attributes

* None

Semantics

A StartOccurrence represents the start of a BehaviorExecution. The occurrence is tied to the start of the associated
behaviorExecution.

F.1.26 TerminationEvent (from Causality::Invocation)

A TerminationEvent represents the finalization of a Behavior.

Generalizations

« Event (from Causality::CommonBehavior)

Associations

* Dbehavior: Causality:: CommonBehavior::BehaviorExecution [1]
Behavior whose termination is represented by the terminationEvent.

Attributes

» None

560 UML Profile for MARTE, V1.2

Semantics

A TerminationEvent represents the finalization of a Behavior. The event is tied to the finalization of the associated
behavior.

A TerminationOccurrence represents the finalization of a BehaviorExecution.

Generalizations

« EventOccurrence (from Causality::RunTimeContext)

Associations

» endEvent: Causality::Invocation::TerminationEvent [1] {subset event}
Event that will be considered the descriptor of the instance represented by the terminationOccurrence.

* execution: Causality::RunTimeContext::BehaviorExecution [1]
behaviorExecution whose termination is represented by the terminationOccurrence.
Attributes

* None

Semantics

A TerminationOccurrence represents the finalization of a BehaviorExecution. The occurrence is tied to the finalization of
the associated behaviorExecution.

F.1.27 TerminationOccurrence (from Causality::Invocation)

A TerminationOccurrence represents the finalization of a BehaviorExecution.

Generalizations

« EventOccurrence (from Causality::RunTimeContext)

Associations

* endEvent: Causality::Invocation:: TerminationEvent [1] {subset event}
Event that will be considered the descriptor of the instance represented by the terminationOccurrence.

* execution: Causality::RunTimeContext::BehaviorExecution [1]
behaviorExecution whose termination is represented by the terminationOccurrence.

Attributes

» None

Semantics

A TerminationOccurrence represents the finalization of a BehaviorExecution. The occurrence is tied to the finalization of
the associated behaviorExecution.

UML Profile for MARTE, V1.2 561

F.1.28 Trigger (from Causality::CommonBehavior)

A Trigger specifies the event and conditions that may trigger a behavior execution.

Generalizations

+ ModelElement (from Foundations)

Associations

» event: Causality::CommonBehavior::Event [1]
Event that will be considered to start the associated BehavioredClassifier.
Attributes

« None

Semantics

A Trigger specifies the event and conditions that may trigger a behavior execution. It handles as well any necessary
constraints on the event to filter out event occurrences not of interest. Indeed, a Trigger is the concept that relates an
Event to a Behavior that may affect instances of the behavioral classifier. Triggers specify what can cause execution of
behaviors (e.g., the execution of the effect activity of a transition in a state machine).

F.2 NFP

F.2.1 AbstractNFP (abstract, from NFP_Nature)

AbstractNFP defines the abstract concept of Non-Functional Property (NFP) as quantitative or qualitative information.

Semantics

A non-functional property (NFP) is also called extra-functional property or even quality of service depending on the
application domain. It describes how a computing system behaves.

F.2.2 AnnotatedElement (abstract, from NFP_Annotation)

An annotated model element is a model element with additional annotations implemented by standard modeling
mechanisms (for instance, the UML profile extension mechanism). An annotated model element describes certain of its
non-functional aspects by means of NFP annotations.

Generalizations

ModelElement (from CoreElements::Foundations)

Associations

* owner: AnnotatedModel [1]
Modeling context of the annotated element.

* nfpValue : MARTE::VSL::ValueSpecification [*]
Set of value annotations associated with non-functional properties.

562 UML Profile for MARTE, V1.2

* nfpDeclaration: NFP [*]
Set of NFP declarations owned by the annotated element.

Semantics

Annotated Elements are model elements extended by standard modeling mechanisms. For example, some typical
performance analysis-related annotated elements are: Step (a unit of execution), Scenario (a sequence of Steps), Resource
(an entity that offers one or more services), Service (offered by a Resource or by a component of some kind). An
annotated element describes certain of its non-functional aspects by means of NFP value annotations.

F.2.3 AnnotatedModel (abstract, from NFP_Annotation)

An annotated model is a model with additional semantic expressing concepts from a given modeling concern or domain
viewpoint. An annotated model contains annotated model elements.

Associations

* owns: AnnotatedElement [*]
Annotated elements owned by the model.

+ annotationConcern: ModelingConcern [1..*]
Modeling concerns for which the model is created.

+ ownedRule: NFP_Constraint [*]
Set of Constraints owned by this model.
Semantics

An annotated model is a model with additional semantic required for a given modeling concern or domain. An annotated
model may contain annotated model elements.

F.2.4 BasicQuantity (abstract, from NFP_Nature)

Basic quantities are primitive quantities. Many other quantities can be derived out of the combination of the basic
quantities (see Derived Quantity). Example of basic quantities are length, mass, time, current, temperature, and luminous
intensity. The units of measure for the basic quantities are organized in systems of measures, such as the universally
accepted Systéme International (SI) or International System of Units.

Generalizations

Quantity (from NFP_Nature)

Semantics

Basic quantities are primitive quantities. They may be used to obtain derived quantities. Example of basic quantities are
length, mass, time, current, temperature, and luminous intensity. The units of measure for the basic quantities are
organized in systems of measures, such as the universally accepted Systéme International (SI) or International System of
Units.

UML Profile for MARTE, V1.2 563

F.2.5 ConstraintKind

Kind of constraints qualifies NFP constraints by either required, offered, or contract nature.

Literals
+ required
+ offered

* contract
F.2.6 DerivedQuantity (abstract, from NFP_Nature)

Derived Quantities (e.g., area, volume, force, frequency) may be obtained from the basic quantities by known formulas.

Generalizations

 Quantity (from NFP_Nature) on page 51.

Associations

+ None

Semantics

Derived physical quantities (which are the majority of quantities) are defined by a mathematical expression involving
either the fundamental (basic) quantities or other derived quantities.

F.2.7 Dimension

A Dimension is relationship between a quantity and a set of base quantities in a given system of quantities.

Associations

* baseDimension: Dimension [*] {ordered}
The base dimensions by which the dimension of a derived quantity unit is created. Basic dimensions do not require
this attribute.

Attributes

* symbol: String [0..1]
This attribute represents the symbol used to designate the dimension.

* baseExponent: Integer [*] {ordered}
This attribute represents the exponents that characterize the base dimensions used to define the dimension of a
derived quantity. Basic dimensions do not require this attribute.

Semantics

The dimension of a derived quantity is expressed using the base dimension and base exponents properties. Both properties
represent ordered collections. The correspondence between the referenced base dimension and its exponent is done thanks
to collection indices.

564 UML Profile for MARTE, V1.2

F.2.8 DirectionKind

The direction kind (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed value
domain of NFPs.

Literals

+ increasing

+ decreasing
F.2.9 Measure (abstract, from NFP_Nature)

A Measure is a (statistical) function (e.g., mean, max, min, mean) characterizing the set of sample realizations.

Associations
* physicalQuantity: Quantity [1]
Physical magnitude of a measure.

* measurementUnit: Unit [0..1]
Measurement unit associated with the physical quantity used for expressing a measure.

* domain: SampleRealization [1..*]
Set of sample realizations used for obtaining a measure.

Semantics

A Measure is a (statistical) function (e.g., mean, max, min, median, variance, standard deviation, histogram, etc.)
characterizing a set of samples realizations. Measures may be computed either directly by applying one function to the set
of realization values, or by using theoretical functions of the probability distribution given for the respective quantitative
NFP.

F.2.10 ModelingConcern (from NFP_Annotation)

Concerns are those interests which pertain to the system’s development, its operation or any other aspects that are critical
or otherwise important to one or more stakeholders at a given point of the development process.

Associations

* relevantNfp: NFP [*]
Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a
certain Modeling Concern. In other words, a given modeling concern uses a set of NFPs which
establishes the ontology of the domain.

Attributes

* description : String [0..1]
Name of the concern that is expressed by a model. (This name may refer to a profile definition.)

UML Profile for MARTE, V1.2 565

Semantics

Concerns are those interests that pertain to the system’s development, its operation or any other aspects that are critical or
otherwise important to one or more stakeholders at a given point of the development process.

F.2.11 NFP (from NFP_Declaration)

Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a
value or values.

Generalizations

« ValueType

Attributes

» None

Semantics

Functional properties, which are primarily concerned with the purpose of an application (i.e., what it does); and non-
functional properties (NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to
do it). NFPs are specified by the designer in the models and attached to different model elements.

F.2.12 NFP_Constraint (from NFP_Annotation)

NFP Constraints are conditions or restrictions to modelled elements providing the ability to define if these are of
“required,” “offered,” or “contract” nature.

Associations

+ constrainedElement: AnnotatedElement [*]
Set of Annotated Elements referenced by this NFP Constraint.

+ context: AnnotatedModel [0..1]
Namespace that is the context for evaluating this constraint.

» specification: ValueSpecification [1]
Condition that must be true when evaluated in order for the constraint to be satisfied.

* mode: Mode [*]
The set of modes in which the NFP constraint annotations are valid.

Attributes
* kind: ConstraintKind [0..1]

Tagged definition qualifies NFP constraints by either required, offered, or contract nature.
Semantics

NFP Constraints are conditions or restrictions to modeled elements. Specifically, NFP constraints support textual
expressions to specify assertions regarding performance, scheduling, and other embedded systems’ features, and their
relationship to other features by means of variables, mathematical, logical, and time expressions.

566 UML Profile for MARTE, V1.2

F.2.13 NFP_Type (abstract, from NFP_Declaration)

An NFP type is a type whose instances are identified only by NFP value specifications. An NFP Type contains specific
attributes to support the modeling of NFP tuple types.
Generalizations

+ TupleType (from VSL::DataTypes) on page 568.

Semantics

An NFP Type constrains the values represented by an NFP. If an NFP type has attributes, then instances of that NFP type
will contain attribute values matching the attributes.

F.2.14 QualitativeNFP (abstract, from NFP_Nature)

Qualitative NFP refer to inherent or distinctive characteristics that may not be measured directly. More specifically, a
qualitative NFP takes a value from a list of allowed values, where each value identifies a possible alternative.
Generalizations

+ AbstractNFP (from NFP_ Nature)

Associations
* parameter: AbstractNFP [*]

Set of parameters of a qualitative NFP.
Semantics

A Qualitative NFP is a non-functional property that is not a quantitative NFP. Especially, a qualitative NFP is not
physically measurable. In general, a qualitative NFP is denoted by a label representing a high-level of abstraction
characterization that is meaningful to the analyst and the analysis tools.

F.2.15 QuantitativeNFP (abstract, from NFP_Nature)

Quantitative NFP are measurable, countable, or comparable properties. A given quantitative NFP may be characterized by
a set of Sample Realizations and Measures.
Generalizations

 AbstractNFP (from NFP_Nature)

Associations

* measure: Measure [0..*]
Set of measures defining a quantitative NFP.

» realizationValues: SampleRealization [0..*]
Set of sample values used to define a quantitative NFP.

UML Profile for MARTE, V1.2 567

Semantics

A Quantitative NFP is a non-functional property that is measurable, countable, or comparable, and can be represented by
an amount that is a numerical value.

F.2.16 Quantity (abstract, from NFP_Nature)

A physical property characterizing some aspect of nature that can be measured.

Attributes

* allowedUnits: Unit [*]
Set of measure units valid for the physical quantity.

* dimension: Dimension [1]
The dimension related to this quantity.
Semantics

A physical quantity is either a quantity within physics that can be measured (e.g., mass, volume) or the result of a
measurement. Physical quantities are usually associated with a set of valid measure units.

F.2.17 SampleRealization (abstract, from NFP_Nature)

A Sample Realization represents a set of values that occur for the quantitative NFP under consideration at run-time.

Associations

» function: Measure [0..¥]
Set of functions applied to a set of values to obtain separated measures.
Semantics

Sample Realizations represent a set of values that occur for the Quantitative NFP under consideration at run-time (for
instance, measurements collected from a real system or a simulation experiment). A Quantitative NFP may be sampled
once or repeated times over an extended run. In a cyclic deterministic system, in which each execution cycle has the same
values, a single sample is sufficient to characterize completely the Quantitative NFP.

F.2.18 StatisticalQualifierKind

A statistical qualifier kind lists the type of “statistical” measure of a given property.

Literals
* max
s min
¢ mean

+ range

568 UML Profile for MARTE, V1.2

« percentile
« distribution

+ deterministic
F.2.19 Unit (from NFP_Nature)

A unit defines a quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated.

Associations

e baseUnit: Unit [0..1]
Base unit by which a measurement unit is derived. Basic units of the International System of
Measures do not define this attribute.

Attributes

* convFactor: Real [0..1]
Parameter that allows referencing measurement units to other base units by a numerical factor.

* convOffset: Real [0..1]
Parameter that allows referencing measurement units to other base units by applying an offset value
to them.

Semantics

A unit defines a quantity in terms of which the magnitudes of other quantities that have the same dimension can be stated.
A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of length such as meter may
be specified as a multiple of a particular wavelength of light. A unit may also specify less stable or precise ways to
express some value, such as a cost expressed in some currency, or a severity rating measured by a numerical scale.

F.2.20 ValueProperty (from NFP_Declaration)

Value property declares an attribute of one or more instances in terms of a named relationship to a value or values.

Associations

* type: ValueType [1]
ValueType that constraints the space of possible values.

* defaultValue : MARTE::VSL::ValueSpecification [0..1]
Value specification that is evaluated to give a default value for the NFP when an instance of the owning Annotated
Element is created.

Attributes

» None

Semantics

Value properties declare an attribute of one or more instances in terms of a named relationship to a value or values.

UML Profile for MARTE, V1.2 569

F.2.21 ValueType (abstract, from NFP_Declaration)

A ValueType is a type whose instances are identified only by value specifications. A ValueType contains specific
attributes to support the modeling of tuple types representing physical quantities.

Generalizations

+ TupleType (from VSL::DataTypes) on page 568.

Associations

* allowedUnit: Unit [*]
Set of measure units valid for the Value Types.

* defaultUnit: Unit [0..1]
Measure unit valid as a default value for all the value specifications of this Value Type.

* valueAttribute: UML::Classes::Kernel::Property [1]
Tuple attribute representing the resulting value after evaluating the expression of the data type.

» exprAttribute: UML::Classes::Kernel::Property [0..1]
Tuple attribute representing an expression. MARTE uses the VSL language to define expressions.

* unitAttribute: UML::Classes::Kernel::Property [0..1]
Tuple attribute representing a measurement unit of a data type for physical properties.

» qualifierAttributed: UML::