Date: June 2023

OBJECT MANAGEMENT GROUP

UML Profile for MARTE: Modeling and
Analysis of Real-Time Embedded Systems

(Convenience document with change bar)

Version 1.3

OMG Document Number: ptc/2023-05-03

Standard document URL: http://www.omg.org/spec/MARTE/1.3

Associated Files™: http://www.omg.org/spec/MARTE/20230505
http://www.omg.org/spec/MARTE/20230506

Original files: ptc/2010-02-04 (XMI), ptc/2010-02-05 (model library XMI)

Copyright © 2001-2023, Airbus

Copyright © 2001-2023, Alcatel-Lucent

Copyright © 2001-2023, Commissariat a I’Energie Atomique et Aux Energies Alternatives
Copyright © 2001-2023, International Business Machines Corporation

Copyright © 2003-2023, Lockheed Martin Corporation

Copyright © 1997-2023, Object Management Group

Copyright © 2001-2023, SOFTEAM

Copyright © 2010-2023, Simula Research Laboratory

Copyright © 2003-2023, THALES

Copyright © 2001-2023, Universidad de Cantabria

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions
and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free,
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies of the
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed
the copyright in the included material of any such copyright holder by reason of having used the specification set forth
herein or having conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this
specification to create and distribute software and special purpose specifications that are based upon this specification, and
to use, copy, and distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright
notice identified above and this permission notice appear on any copies of this specification; (2) the use of the
specifications is for informational purposes and will not be copied or posted on any network computer or broadcast in any
media and will not be otherwise resold or transferred for commercial purposes; and (3) no modifications are made to this
specification. This limited permission automatically terminates without notice if you breach any of these terms or
conditions. Upon termination, you will destroy immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ | [IMM™ MOF™ | OMG Interface Definition Language (IDL)™, and
SysML™ are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

1Preface v
2Scope 1

2.1 Introduction 1
3Conformance 1

3.1 Overview 1
3.2 Extension Units and Features 2
3.3 Conformance of MARTE with UML 2
3.4 Conformance with MARTE 3
3.4.1 Compliance Cases 3
3.4.2 Extension Units in each Compliance Case 4
3.4.3 Special additional compliance case and extension units 4

4Normative References 4
5Terms and Definitions 4
6Symbols 5

7Additional Information 6

7.1 Scope of OMG RT/E Related Standards 6
7.2 Rationale and General Principles 7
7.2.1 Real-time and embedded domain 7
7.2.2 Guiding principles 9
7.2.3 How to use this specification 10
7.3 Approach and Structure 13
7.3.1 Profile Architecture 13
7.3.2 A Foundation for Model Driven Techniques 14
7.3.3 Approach to Modeling RT/E Systems 14
7.3.4 Approach to Annotating for Model Analysis 15
7.3.5 MDA and MARTE 15
7.4 How to Read this Specification 16
7.4.1 Structure of the Document 16
7.4.2 Extension Specification Rationale and Format Convention 16
7.4.3 Conventions and Typography 17
7.5 Acknowledgements 17

8Core Elements (CoreElements) 21

8.1 Overview 21
8.2 Domain View 22
8.2.1 The Foundations Package 22
8.2.2 The Causality::CommonBehavior Package 24
8.2.3 The Causality::RunTimeContext Package 27
8.2.4 The Causality::Invocation Package 28
8.2.5 The Causality::Communication Package 29
8.3 UML Representation 31
8.3.1 Profile Diagrams 32
8.3.2 Profile Elements Description 32

UML Profile for MARTE, V1.3

8.3.3 Examples 34
9Non-functional Properties Modeling (NFPs) 37

9.1 Overview 37
9.2 Domain View 38
9.2.1 Overview 38
9.2.2 The NFP_Nature package 39
9.2.3 The NFP_Annotation Package 40
9.2.4 The NFP_Declaration Package 42
9.3 UML Representation 43
9.3.1 Profile Diagrams 44
9.3.2 Profile elements description 44
9.3.3 Graphical Syntax of NFP Value Specification 48
9.3.4 Examples 48

10Time Modeling (Time) 57

10.1 Overview 57
10.2 Domain View 58
10.2.1 The BasicTimeModels Package 59
10.2.2 The MultipleTimeModels Package 61
10.2.3 The TimeAccesses Package 63
10.2.4 The TimeRelatedEntities Package 68
10.3 UML Representation 75
10.3.1 Profile Diagrams 75
10.3.2 Profile Elements Description 78
10.3.3 Examples 87

11Generic Resource Modeling (GRM) 91

11.1 Overview 91
11.2 Domain View 92
11.2.1 The ResourceCore Package 92
11.2.2 The ResourceTypes Package 94
11.2.3 The ResourceManagement Package 97
11.2.4 The Scheduling Package 98
11.2.5 The ResourceUsage Package 100
11.3 UML Representation 101
11.3.1 Profile Diagrams 101
11.3.2 Profile Elements Description 105
11.3.3 GRM model library elements description 117
11.4 Examples 117

12Allocation Modeling (Alloc) 121

12.1 Overview 121
12.2 Domain View 123
12.3 UML Representation 124
12.3.1 Profile Diagrams 125
12.3.2 Profile elements description 127
12.4 Examples 133
12.4.1 Unix process 133

UML Profile for MARTE, V1.3

12.4.2 System on Chip 134
12.4.3 Allocate activity group 135

13Generic Component Model (GCM) 139

13.1 Overview 139
13.2 Domain View 139
13.2.1 The GenericComponentModel Package 139
13.2.2 On the MARTE Causality Model for GCM 143
13.3 UML Representation 146
13.3.1 Profile Diagrams 146
13.3.2 Profile Elements Description 147
13.4 Examples 169

13.4.1 Example of Model Patterns lllustrating the Usage of Flow Ports 169

13.4.2 Automotive Example 174
13.4.3 Avionics Example 176

14High-Level Application Modeling (HLAM) 179

14.1 Overview 179
14.2 Domain View 179
14.3 UML Representation 183
14.3.1 Profile Diagrams 183
14.3.2 Profile Elements Description 185
14.4 Examples 192
14.4.1 Notational Examples 192
14.4.2 Avionics Example 194

15Detailed Resource Modeling (DRM) 197

15.1 Software Resource Modeling (SRM) 197
15.1.1 Overview 197
15.1.2 Domain View 198
15.1.3 UML Representation 206
15.1.4 Profile Diagrams 207
15.1.5 Profile Elements Descriptions 211
15.1.6 Examples 229
15.2 Hardware Resource Modeling (HRM) 235
15.2.1 Overview 235
15.2.2 Domain View 237
15.2.3 UML Representation 247
15.2.4 Examples 276

16Generic Quantitative Analysis Modeling (GQAM) 285

16.1 Overview 285
16.2 Domain View 287
16.2.1 The GQAM package 287
16.2.2 The GQAM_Workload Package 288
16.2.3 GQAM_Observers Package 291
16.2.4 The GQAM_Resource Package 292
16.2.5 Common NFP Attributes for Analysis 294
16.3 UML Representation 295

UML Profile for MARTE, V1.3

16.3.1 Profile Diagrams 295
16.3.2 Profile Elements Description 299

17Schedulability Analysis Modeling 311

17.1 Overview 311
17.2 Domain View 311
17.2.1 The SAM Root Package 312
17.2.2 The SAM Workload package 313
17.2.3 The SAM Observers Package 316
17.2.4 The SAM Resources Package 317
17.3 UML Representation 319
17.3.1 Profile Diagrams 320
17.3.2 Profile Elements Description 322
17.3.3 Examples 328

18Performance Analysis Modeling (PAM) 335

18.1 Overview 335
18.2 Domain View 335
18.2.1 The PAM_Workload Package 335
18.2.2 Outline of Domain Concepts 338
18.3 UML Representation 344
18.3.1 Profile Diagrams 344
18.3.2 Profile Elements Description 346
18.4 Examples for Performance Analysis 352
18.4.1 Example 1: A Simple Web Application 352
18.4.2 Example 2: An Electronic Bookstore Home Page Interaction 355
18.4.3 Example 3: a building surveillance system 358
18.4.4 Example 4: Communications example, a layer subsystem 362
18.4.5 Example 5: Services by component subsystems 364
18.4.6 Example 6: State machine annotations 368

19Annex A 373

19.1 Open-source Tool Support for MARTE 373
19.2 AADL-like Models with MARTE 373
19.2.1 MARTE for AADL Summary Table 374
19.2.2 Packages, Components Declaration, and Implementation 377
19.2.3 Software Components 379
19.2.4 Execution Platform Components 391
19.2.5 System 396
19.2.6 Features and Shared Access 398
19.2.7 Mode 405
19.2.8 Flows 409
19.2.9 Properties 412
19.3 EAST/ADL2.0 Models with MARTE 412
19.3.1 MARTE for EAST-ADLZ2 Functional Modeling Summary Table 414
19.3.2 EAST-ADL2 End-to-end Flow Modeling with MARTE 416
19.3.3 Examples 419
19.3.4 Marking EAST-ADL2 end-to-end flows with timing information 425

20Annex B 433

UML Profile for MARTE, V1.3

20.1 Overview 433
20.2 Domain View 433
20.2.1 Overview 433
20.2.2 The Datatypes Package 434
20.2.3 The LiteralValues package 436
20.2.4 The Expressions package 437
20.2.5 The CompositeValues package 438
20.2.6 The TimeExpression package 439
20.3 UML Representation 441
20.3.1 Profile Diagrams 442
20.3.2 Profile elements description 443
20.3.3 Concrete syntax of value specification 451
20.3.4 Examples 466

21Annex C 471

21.1 Overview 471
21.2 Clocked Value Specification 471
21.2.1 Domain view 471
21.2.2 Concrete Syntax 478
21.2.3 Examples of clocked value specifications 480
21.3 Clock Constraint Specification Language 481
21.3.1 Domain View 481
21.3.2 CCSL concrete syntax 488

22Annex D
Normative MARTE Model Libraries
(MARTE_Library) 493

22.1 MARTE Model Library for Primitive Types 493
22.1.1 Real 493
22.1.2 Integer 494
22.1.3 UnlimitedNatural 495
22.1.4 String 495
22.1.5 Boolean 495
22.1.6 DateTime 496
22.1.7 Precedence Rules 496
22.2 MARTE model library for extended datatypes 496
22.2.1 AperiodicPattern 501
22.2.2 ArrivalPattern 501
22.2.3 BurstPattern 501
22.2.4 ClosedPattern 502
22.2.5 IrregularPattern 502
22.2.6 NFP_Boolean 502
22.2.7 NFP_CommonType 503
22.2.8 NFP_DataTxRate, NFP_Frequency, NFP_Length, NFP_Area, NFP_Power,
NFP_DataSize, NFP_Energy, NFP_Weight 504
22.2.9 NFP_DateTime 504
22.2.10 NFP_Duration 504
22.2.11 NFP_Integer 505
22.2.12 NFP_Natural 505

UML Profile for MARTE, V1.3

Vi

22.2.13 NFP_Percentage 505
22.2.14 NFP_Price 505
22.2.15 NFP_Real 506
22.2.16 NFP_String 506
22.2.17 OpenPattern 506
22.2.18 PeriodicPattern 506
22.2.19 SporadicPattern 507
22.2.20 TransmModeKind 507

22.3 MARTE Model Library for Time 507
22.3.1 TimeTypesLibrary Library 508
22.3.2 TimeLibrary 509

22.4 MARTE Model Library for GRM 511
22.4.1 EDF_Parameters 511
22.4.2 FixedPriorityParameters 511
22.4.3 NoParams 512
22.4 4 PeriodicServerKind 512
22.4.5 PeriodicServerParameters 512
22.4.6 PoolingParameters 512
22.4.7 ProtectProtocolKind 513
22.4.8 SchedParameters 513
22.4.9 SchedPolicyKind 514

22.5 MARTE Model Library for RTOSs 515
22.5.1 OSEK/VDX OS 515
22.5.2 ARINC-653 520

23Annex E 529

23.1 Overview 529
23.2 Domain View 529
23.2.1 Package Overview 529
23.2.2 Class Description 532
23.3 UML Representation 535
23.3.1 Profile Diagrams 535
23.3.2 Profile Elements Description 537
23.4 Examples 543

24Annex F 547

24.1 Core Elements 547
24.1.1 Action (from Causality::CommonBehavior) 547
24 .1.2 ActionExecution (from Causality::RunTimeContext) 547
24 .1.3 AggregationKind (from Foundations) 548
24 1.4 Behavior (from Causality::CommonBehavior) 548
24 1.5 BehavioredClassifier (from Causality::CommonBehavior) 549
24 .1.6 BehaviorExecution (from Causality::RunTimeContext) 549
24 1.7 Classifier (from Foundations) 550
24.1.8 CompBehaviorExecution (from Causality::RunTimeContext) 551
24.1.9 CompositeBehavior (from Causality::CommonBehavior) 551
24.1.10 Configuration 552
24.1.11 Event (from Causality::CommonBehavior) 552
24 .1.12 EventOccurrence (from Causality::RunTimeContext) 553
24.1.13 Instance (from Foundations) 553

UML Profile for MARTE, V1.3

24.1.14 InvocationOccurrence (from Causality::Communication) 554
24.1.15 Mode 554
24.1.16 ModeBehavior 555
24.1.17 ModeTransition 555
24.1.18 ModelElement (from Foundations) 556
24.1.19 MultiplicityElement (from Foundations) 557
24.1.20 Parameter (from Causality::CommonBehavior) 557
24.1.21 Property (from Foundations) 557
24 .1.22 ReceiveOccurrence (from Causality::Communication) 558
24 .1.23 Request (from Causality::Communication) 559
24 .1.24 StartEvent (from Causality::Invocation) 559
24 .1.25 StartOccurrence (from Causality::Invocation) 560
24.1.26 TerminationEvent (from Causality::Invocation) 560
24 .1.27 TerminationOccurrence (from Causality::Invocation) 561
24.1.28 Trigger (from Causality::CommonBehavior) 562
24.2 NFP 562
24.2.1 AbstractNFP (abstract, from NFP_Nature) 562
24 .2.2 AnnotatedElement (abstract, from NFP_Annotation) 562
24 2.3 AnnotatedModel (abstract, from NFP_Annotation) 563
24 2.4 BasicQuantity (abstract, from NFP_Nature) 563
24.2.5 ConstraintKind 564
24 2.6 DerivedQuantity (abstract, from NFP_Nature) 564
24.2.7 Dimension 564
24 .2.8 DirectionKind 565
24.2.9 Measure (abstract, from NFP_Nature) 565
24.2.10 ModelingConcern (from NFP_Annotation) 565
24.2.11 NFP (from NFP_Declaration) 566
24.2.12 NFP_Constraint (from NFP_Annotation) 566
24.2.13 NFP_Type (abstract, from NFP_Declaration) 567
24.2.14 QualitativeNFP (abstract, from NFP_Nature) 567
24 .2.15 QuantitativeNFP (abstract, from NFP_Nature) 567
24.2.16 Quantity (abstract, from NFP_Nature) 568
24.2.17 SampleRealization (abstract, from NFP_Nature) 568
24.2 .18 StatisticalQualifierKind 568
24.2.19 Unit (from NFP_Nature) 569
24.2.20 ValueProperty (from NFP_Declaration) 569
24.2.21 ValueType (abstract, from NFP_Declaration) 570
24.3 Time 570
24.3.1 ChronometricClock (from TimeAccesses::ChronometricClocks) 570
24.3.2 Clock (from TimeAccesses::Clocks) 571
24 3.3 ClockConstraint (from TimeRelatedEntities::ClockConstraints) 572
24.3.4 ClockConstraintSpecification (from TimeRelatedEntities::ClockConstraints) 572
24.3.5 CoincidenceRelation (from MultipleTimeModels) 573
24.3.6 Delay (from TimeRelatedEntities:: TimedProcessingModels::TimedProcessings)
573
24.3.7 DiscreteTimeBase (from BasicTimeModels) 574
24.3.8 DurationIntervalValue (from TimeAccesses::DurationValues) 574
24 .3.9 DurationPredicate (from TimeRelatedEntities::TimedConstraints) 575
24.3.10 DurationValue (from TimeAccesses::DurationValues) 575
24 .3.11 EventKind (from TimeRelatedEntities:: TimedElements:: TimeObservations) 576
24 .3.12 Instant (from BasicTimeModels) 576

UML Profile for MARTE, V1.3 vii

viii

24.3.13 InstantPredicate (from TimeRelatedEntities::TimedConstraints) 577

24 .3.14 InstantValue (from TimeAccesses::TimeValues) 577

24.3.15 JunctionInstant (from BasicTimeModels) 578

24.3.16 LogicalClock (from TimeAccesses::Clocks) 578

24.3.17 MultipleTimeBase (from MultipleTimeModels) 579

24.3.18 PhysicalTime (from TimeAccesses::ChronometricClocks) 580

24.3.19 PrecedenceRelation (from MultipleTimeModels) 580

24.3.20 SimultaneousOccurrenceSet (from TimeRelatedEntities:: TimedEvent

Models:: TimedEventOccurrences) 581

24.3.21 TimeBase (from BasicTimeModels and MultipleTimeModels) 581

24.3.22 TimeBaseRelation (from MultipleTimeModels) 582

24.3.23 TimedAction (from TimeRelatedEntities:: TimedProcessingModels::Timed
Processings) 582

24.3.24 TimedBehavior (from TimeRelatedEntities:: TimedProcessingModels:: Timed
Processings) 583

24.3.25 TimedConstraint (from TimeRelatedEntities::TimedConstraints) 583

24.3.26 TimedDurationConstraint (from TimeRelatedEntities::TimedConstraints) 584
24.3.27 TimedDurationObservation (from TimeRelatedEntities:: TimedObservations) 584
24.3.28 TimedElement (from TimeRelatedEntities:: TimedElements) 585

24.3.29 TimedEvent (from TimeRelatedEntities:: TimedEventModels:: TimedEvents) 585
24.3.30 TimedEventOccurrence (from TimeRelatedEntities:: TimedEventModels:: Timed
EventOccurrences) 586

24.3.31 TimedExecution (from TimeRelatedEntities:: TimedProcessingModels::Timed
Executions) 587

24 .3.32 TimedInstantConstraint.......... (from TimeRelatedEntities:: TimedConstraints) 588
24.3.33 TimedInstantObservation ... (from TimeRelatedEntities::TimedObservations) 588
24.3.34 TimedMessage (from TimeRelatedEntities::TimedProcessingModels:: Timed
Processings) 589

24.3.35 TimedObservation (from TimeRelatedEntities:: TimedObservations) 589
24.3.36 TimedProcessing (from

TimeRelatedEntities:: TimedProcessingModels::TimedProcessings) 590

24.3.37 TimelnstantRelation (from MultipleTimeModels) 590

24.3.38 Timelnterval (from MultipleTimeModels) 591

24.3.39 TimelntervalMembership (from MultipleTimeModels) 592

24.3.40 TimelntervalValue (from TimeAccesses::TimeValues) 592

24.3.41 TimeNatureKind (from BasicTimeModels) 593

24.3.42 TimeStandardKind (from TimeAccesses::ChronometricClocks) 593

24.3.43 TimeStructureRelation (from MultipleTimeModels) 594

24.3.44 TimeValue (from TimeAccesses:: TimeValues) 594

24.4 GRM 595

24 .4.1 AccesControlPolicy (from MARTE:GRM::ResourceManagement) 595
24 .4.2 AccesControlPolicy (from MARTE:GRM::ResourceManagement) 595
24 .4 .3 Acquire(from MARTE:GRM::ResourceTypes) 596

24 .4 4 Activate (from MARTE:GRM::ResourceTypes) 596

24 4.5 ClockResource (from MARTE:GRM::ResourceTypes) 596

24.4.6 CommunicationEndPoint (from MARTE::GRM::ResourceTypes) 597
24 4.7 CommunicationMedia (from MARTE::GRM::ResourceTypes) 597
24.4.8 CommunicationResource (from MARTE::GRM::ResourceTypes) 598
24.4.9 ComputingResource (from MARTE:GRM::ResourceTypes) 598
24.4.10 ConcurrencyResource (from MARTE:GRM::ResourceTypes) 599
24.4 11 DeviceResource (from MARTE:GRM::ResourceTypes) 600

UML Profile for MARTE, V1.3

24.4.12 DynamicUsage (from MARTE::GRM::ResourceUsages) 600
24 .4.13 GetAmountAvailable (from MARTE:GRM::ResourceTypes) 600
24.4.14 MutualExclusionProtocol (from MARTE::GRM::Scheduling) 601
24.4.15 MutualExclusionResource (from MARTE::GRM::Scheduling) 601
24.4.16 ProcessingResource (from MARTE::GRM::Scheduling) 602
24.4.17 ProtectParameters (from MARTE::GRM::Scheduling) 603
24.4.18 ProtectProtocolKind (from MARTE::GRM::Scheduling) 603
24.4.19 Release (from MARTE:GRM::ResourceTypes) 603
24.4.20 Resource (from MARTE::GRM::ResourceCore) 604
24.4.21 ResourceAmount (from MARTE::GRM::ResourceCore) 605
24 .4.22 ResourceBroker (from MARTE:GRM::ResourceManagement) 606
24.4.23 Resourcelnstance (from MARTE::GRM::ResourceCore) 606
24 .4.24 ResourceManager (from MARTE:GRM::ResourceManagement) 607
24 .4.25 ResourceReference (from MARTE:GRM::ResourceCore) 607
24.4.26 ResourceService (from MARTE::GRM::ResourceCore) 608
24.4.27 ResourceUsage (from MARTE::GRM::ResourceUsages) 608
24.4.28 SchedPolicyKind (from MARTE:GRM::Scheduling) 609
24.4.29 SchedulableResource...........ccccceveeeeennnen. (from MARTE::GRM::Scheduling) 609
24.4.30 Scheduler (from MARTE:GRM::Scheduling) 610
24 .4.31 SchedulingParameters (from MARTE::GRM::Scheduling) 611
24.4.32 SchedulingPolicy (from MARTE:GRM::Scheduling) 612
24.4.33 SecondaryScheduler (from MARTE:GRM::Scheduling) 612
24.4.34 ScheduleSpecification 613
24.4.35 StaticUsage (from MARTE::GRM::ResourceUsages) 613
24.4.36 StorageResource (from MARTE:GRM::ResourceTypes) 613
24.4.37 SynchResource (from MARTE:GRM::ResourceTypes) 614
24.4.38 TableDrivenSchedule 614
24.4.39 TableEntryType 615
24.4.40 TimerResource (from MARTE:GRM::ResourceTypes) 615
24 .4.41 TimingResource (from MARTE:GRM::ResourceTypes) 616
24.4.42 UsageDemand (from MARTE::GRM::ResourceUsages) 616
24 .4.43 UsageTypedAmount (from MARTE::GRM::ResourceUsages) 617
24.5 Alloc 618
24.5.1 Allocation (from Allocations) 618
24.5.2 AllocationEnd (from Allocations) 618
24.5.3 ApplicationAllocationENd.............coeiiiiiiiiiiiiiieeeee, (from Allocations) 619
24.5.4 ExecutionPlatformAllocationEnd (from Allocations) 619
24.5.5 Refinement (from Allocations) 620
246 GCM 620
24.6.1 AssemblyPart 620
24.6.2 BroadcastSignalAction 621
24.6.3 CallOperationAction 621
24.6.4 ClientServerFeature (abstract) 621
24.6.5 ClientServerKind 622
24.6.6 ClientServerPort 622
24.6.7 ClientServerSpecification 623
24.6.8 Connector 623
24.6.9 ConnectorEnd 624
24.6.10 ConnectorKind 624
24.6.11 FlowDirectionKind 624
24.6.12 FlowPort 625

UML Profile for MARTE, V1.3 ix

24.6.13 FlowProperty 625
24.6.14 FlowSpecification 626
24.6.15 InteractionPort (abstract) 626
24.6.16 InvocationAction (abstract) 627
24.6.17 Reception 627
24.6.18 Operation 627
24.6.19 SendDataAction 628
24.6.20 SendSignalAction 628
24.6.21 StructuredComponent 629
24.7 HLAM 629
24.7.1 CallConcurencyKind 629
24.7.2 CompResPolicy 630
24.7.3 ConcurencyKind 630
24.7.4 ExecutionKind 630
24.7.5 InMsgQueue 630
24.7.6 PoolMgtPolicy 631
24.7.7 PpUnit 632
24.7.8 RtAction 632
24.7.9 RealTimeFeature 633
24.7.10 RtService 633
24.7.11 RtUnit 634
24.7.12 SynchronizationKind 635
24.8 DRM::SRM 636
24.8.1 Alarm (from SRM::SW_Concurrency) 636
24.8.2 AccessPolicyKind (from SRM::SW_Brokering) 636
24.8.3 ConcurrentAccessProtocolKind (from SRM::SW __Interaction) 637
24 .8.4 DeviceBroker (from SRM::SW_Brokering) 637
24 .8.5 EntryPoint (from SRM::SW_Concurrency) 638
24.8.6 InterruptResource (from SRM::SW_Concurrency) 638
24 .8.7 InterruptKind (from SRM::SW_Concurrency) 639
24 .8.8 MemoryBroker (from SRM::SW_Brokering) 639
24.8.9 MemoryPartition (from SRM::SW_Concurrency) 640
24.8.10 MessageComResource (from SRM::SW _Interaction) 641
24.8.11 MessageResourceKind (from SRM::SW_ Interaction) 641
24.8.12 MutualExclusionResourceKind (from SRM::SW__Interaction) 642
24.8.13 NotificationKind (from SRM::SW _Interaction) 642
24.8.14 NotificationResourceKind (from SRM::SW_ Interaction) 642
24.8.15 NotificationResource (from SRM::SW _Interaction) 643
24.8.16 QueuePolicyKind (from SRM::SW_Interaction) 643
24.8.17 SharedDataComResource (from SRM::SW_ Interaction) 644
24.8.18 SwAccessService (from SRM::SW_ResourceCore) 644
24.8.19 SwCommunicationResource (abstract) (from SRM::SW__Interaction) 645
24.8.20 SwConcurrentResource (abstract) (from SRM::SW_Concurrency) 645
24.8.21 SwinteractionResource (abstract) (from SRM::SW_ Interaction) 646
24.8.22 SwMutualExclusionResource (from SRM::SW_ Interaction) 647
24.8.23 SwResource (abstract) (from SRM::SW_ResourceCore) 647
24.8.24 SwSchedulableResource (from SRM::SW_Concurrency) 648
24.8.25 SwSynchronizationResource (abstract) (from SRM::SW_Interaction) 649
24.8.26 SwTimerResource (from SRM::SW_Concurrency) 649
24.9 DRM::HRM 650

UML Profile for MARTE, V1.3

24.9.1 CacheStructure 650

24.9.2 CacheType 650

24.9.3 ComponentState 651

24.9.4 ConditionType 651

24.9.5 Env_Condition 651

24.9.6 FifoLocationSpecification 652

24.9.7 HW_Actuator 652

24.9.8 HW_Arbiter 653

24.9.9 HW_ASIC 653

24.9.10 HW_Battery 654

24.9.11 HW_BranchPredictor 654

24.9.12 HW_Bridge 655

24.9.13 HW_Bus 655

24.9.14 HW_Cache 656

24.9.15 HW_Card 657

24.9.16 HW_Channel 657

24.9.17 HW_Chip 658

24.9.18 HW_Clock 658

24.9.19 HW_CommunicationResource 659
24.9.20 HW_Component (from HW_Layout) 659
24.9.21 HW_Component (from HW_Power) 661
24.9.22 HW_ComputingResource 661

24.9.23 HW_CoolingSupply 662

24.9.24 HW_Device 662

24.9.25 HW_DMA 663

24.9.26 HW_Drive 663

24.9.27 HW_EndPoint 664

24.9.28 HW_1/O 664

24.9.29 HW_ISA 665

24.9.30 HW_McProcessorHW _1/O 666
24.9.31 HW_Media 666

24.9.32 HW_Memory 667

24.9.33 HW_MMU 667

24.9.34 HW_PLD 668

24.9.35 HW_Port 669

24.9.36 HW_PowerDescriptor 670

24.9.37 HW_PowerSupply 670

24.9.38 HW_ProcessingMemory 671

24.9.39 HW_Processor 671

24.9.40 HW_RAM 673

24.9.41 HW_Resource (from HW_General) 673
24.9.42 HW_Resource (from HW_Logical) 674
24.9.43 HW_ResourceService (from HW_General) 675
24.9.44 HW_ResourceService (from HW_Physical) 675
24.9.45 HW_ROM 676

24.9.46 HW_Router 676

24.9.47 HW_Sensor 677

24.9.48 HW_StorageManager 677

24.9.49 HW_StorageMemory 678

24.9.50 HW_Support 679

24.9.51 HW_Timer 679

UML Profile for MARTE, V1.3

xi

24.9.52 HW_TimingResource 680
24.9.53 HW_Unit 680
24.9.54 HW_Watchdog 681
24.9.55 ISA_Type 681
24.9.56 MemoryOrganization 682
24.9.57 PLD_Class 682
24.9.58 PLD_Organization 683
24.9.59 PLD_Technology 683
24.9.60 PortType 683
24.9.61 Repl_Policy 684
24.9.62 ROM_Type 684
24.9.63 SwitchingType 684
24.9.64 Timing 685
24.9.65 WritePolicy 685
2410 GQAM 686
24.10.1 AcquireStep 686
24.10.2 AnalysisContext 686
24.10.3 BehaviorScenario 687
24.10.4 CommunicationChannel (from GQAM::GQAM_Resources) 688
24.10.5 CommunicationHost (from GQAM::GQAM_Resources) 688
24.10.6 CommunicationStep 689
24.10.7 EventTrace 689
24.10.8 ExecutionHost 689
24.10.9 ExecutionStep 690
24.10.10 LatencyObserver 691
24.10.11 LaxityKind 691
24.10.12 PrecedenceRelation 692
24.10.13 ReleaseStep 692
24.10.14 RequestedService 692
24.10.15 RequestedService 693
24.10.16 ResourcesPlatform 693
24.10.17 Step 694
24.10.18 TimedObserver 694
24.10.19 WorkloadBehavior 695
24.10.20 WorkloadEvent 695
24.10.21 WorkloadGenerator 696
24.11 SAM 696
24.11.1 EndToEndFlow 696
24.11.2 SaAnalysisContext 697
24.11.3 SaStep 698
24.11.4 SaCommunicationStep 699
24.11.5 SaExecutionHost 699
24.11.6 SaCommunicationHost 700
24.11.7 SchedulingObserver 701
24.11.8 SharedResource 701
24.12 PAM 702
24.12.1 Perf_Workload_Behavior 702
24 .12.2 Perf_ResourcesPlatform 702
24 .12.3 PRequestEventStream 703
24.12.4 PWorkloadGenerator 703

Xii UML Profile for MARTE, V1.3

24.12.5 PStep 704
24.12.6 PExecutionStep 704
24.12.7 PResourcePassStep 705
24.12.8 PCommunicationStep 706
24.12.9 PRequestedService 707
24.12.10 PBehaviorDemand 708
24.12.11 PExtOpDemand 708
24.12.12 PProcess 708
24.12.13 LogicalResource 709

2413 VSL 709
24.13.1 Behavior 709
24.13.2 BehaviorCallExpression (from Expressions) 710
24.13.3 BoundedSubtype (from DataTypes) 710
24.13.4 ChoiceSpecification (from CompositeValues) 711
24.13.5 CollectionSpecification (from CompositeValues) 711
24.13.6 CollectionType (from DataTypes) 712
24.13.7 CompositeType (from DataTypes) 712
24.13.8 ConditionalExpression (from Expressions) 712
24.13.9 DataType (from DataTypes) 713
24.13.10 DurationExpression (from TimeExpressions) 713
24.13.11 DurationIntervalSpecification (from TimeExpressions) 713
24.13.12 EnumerationSpecification (from LiteralValues) 714
24.13.13 EnumerationType (from DataTypes) 714
24.13.14 EnumerationLiteral (from DataTypes) 714
24.13.15 Expression (from Expressions) 715
24.13.16 ExpressionContext (from Expressions) 715
24.13.17 InstantExpression (from TimeExpressions) 715
24.13.18 InstantintervalSpecification (from TimeExpressions) 716
24.13.19 IntervalSpecification (from CompositeValues) 716
24.13.20 IntervalType (from DataTypes) 717
24.13.21 Jitter (from TimeExpressions) 717
24.13.22 LiteralSpecification (abstract, from LiteralValues) 717
24 .13.23 LiteralBoolean (from LiteralValues) 717
24 .13.24 LiteralDateTime (from LiteralValues) 718
24 .13.25 LiteralDefault (from LiteralValues) 718
24 .13.26 LiteralInteger (from LiteralValues) 718
24 .13.27 LiteralNull (from LiteralValues) 719
24 .13.28 LiteralReal (from LiteralValues) 719
24 .13.29 LiteralString (from LiteralValues) 719
24 .13.30 LiteralUnlimitedNatural (from LiteralValues) 720
24.13.31 ObservationCallExpression (from Expressions) 720
24.13.32 OpaqueExpression (from Expressions) 720
24 .13.33 Operation (from DataTypes) 721
24.13.34 OperationCallExpression (from Expressions) 721
24 .13.35 Parameter (from DataTypes) 722
24 .13.36 PrimitiveType (from DataTypes) 722
24 .13.37 Property (from DataTypes) 722
24.13.38 PropertyCallExpression (from Expressions) 723
24 .13.39 Subtype (from DataTypes) 723
24.13.40 TimeExpression (from TimeExpressions) 723
24.13.41 TupleltemValue (from CompositeValues) 724

UML Profile for MARTE, V1.3 xiii

24.13.42 TupleSpecification (from CompositeValues) 724
24.13.43 TupleType (from DataTypes) 724

24.13.44 ValueSpecification (abstract, from VSL) 725
24.13.45 Variable (from Expressions) 725

24.13.46 VariableCallExpression (from Expressions) 726

25Annex G
Bibliography 725
26Annex H 731

Xiv UML Profile for MARTE, V1.3

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attp:/www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A listing of all OMG
Specifications is available from the OMG website at:

http.//www.omg.org/spec/index.htm

Specifications are organized by the following categories:
Business Modeling Specifications

Middleware Specifications
« CORBAI/IIOP
. Data Distribution Services
. Specialized CORBA

IDL/Language Mapping Specifications

Modeling and Metadata Specifications
. UML, MOF, CWM, XMI
. UML Profile

Modernization Specifications

UML Profile for MARTE, v1.3 Y

Platform Independent Model (PIM), Platform Specific Model (PSM), Interface Specifications
« CORBAServices
* CORBAFacilities

OMG Domain Specifications
CORBA Embedded Intelligence Specifications

CORBA Security Specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
109 Highland Avenue
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult Attp./www.iso.org.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http.//www.omg.org/
report_issue.htm.

Vi UML Profile for MARTE, v1.3

1 Scope

1.1 Introduction

This specification of a UML™ profile adds capabilities to UML for model-driven development of Real Time and
Embedded Systems (RTES). This extension, called the UML profile for MARTE (in short MARTE for Modeling and
Analysis of Real-Time and Embedded systems), provides support for specification, design, and verification/validation
stages. This new profile is intended to replace the existing UML Profile for Schedulability, Performance and Time
(formal/03-09-01).

MARTE defines foundations for model-based descriptions of real time and embedded systems. These core concepts are
then refined for both modeling and analyzing concerns. Modeling parts provides support required from specification to
detailed design of real-time and embedded characteristics of systems. MARTE concerns also model-based analysis. In this
sense, the intent is not to define new techniques for analyzing real-time and embedded systems, but to support them.
Hence, it provides facilities to annotate models with information required to perform specific analysis. Especially,
MARTE focuses on performance and schedulability analysis. But, it defines also a general analysis framework that
intends to refine/specialize any other kind of analysis.

Among others, the benefits of using this profile are thus:

 Providing a common way of modeling both hardware and software aspects of an RTES in order to improve
communication between developers.

+ Enabling interoperability between development tools used for specification, design, verification, code generation, etc.

+ Fostering the construction of models that may be used to make quantitative predictions regarding real-time and
embedded features of systems taking into account both hardware and software characteristics.

2 Conformance

2.1 Overview

The range of applications and areas of knowledge that are inside the scope of this specification is largely broader than the
current usage of traditional tools in the real-time and embedded systems market. Though all of them are related from the
system perspective and will benefit from having a common place for notations, vocabulary, and semantics inside MARTE,
it is a fact that a number of different specialized actors are involved. Consequently, the tools that are currently in the
market, which are those expected to evolve to support this specification, have different users and specific target
applications sub-domains. For this reason, and in order to ease its adoption process, this specification defines a modular
approach for conformance. This is similar to the UML compliance strategy, but in this case the compliance points are not
defined as stratified horizontal layers. Here they are defined as Compliance Cases, whose constitutions depend closely on
the expected use cases of the specification.

Though it is recognized that the ability to exchange models between tools is extremely important, this is not compromised
in this approach since interchange is only deemed useful between tools for similar and/or complementary purposes. When
such purposes are similar, the exchanging tools will likely satisfy the same conformance cases. If they are complementary,
model transformations and/or a broader scope of compliance cases will be required at least in one of the tools involved.

UML Profile for MARTE, V1.3 1

2.2 Extension Units and Features

In order to properly identify the elements of MARTE that will be required in each compliance case, the following

definition is made:

EXTENSION UNITS: These are the concrete separated UML profiles or Model Libraries in which the language
extensions that MARTE proposes are packaged. Some of them may require others to be complete or meaningful.
Extension Units play the role of language units and/or individual meta-model packages as they are used in the

definition of conformance in UML.

The Extension Units defined in this specification are listed in the following table.

Table 2.1 - Extension Units Defined

Acronym Name, description Clause
Sub clause

NFP Non-Functional Properties Clause 8

Time Enhanced Time Modeling Clause 9

GRM Generic Resource Modeling Clause 10
Alloc Allocation Modeling Clause 11
GCM Generic Component Model Clause 12
HLAM High-Level Application Modeling Clause 13
SRM Software Resource Modeling Sub clause 14.1
HRM Hardware Resource Modeling Sub clause 14.2
RTM Real-Time objects Modeling (RTE MoCC) Clause 13
GQAM Generic quantitative Analysis Modeling Clause 15
SAM Schedulability Analysis Modeling Clause 16
PAM Performance Analysis Modeling Clause 17

VSL Value Specification Language Annex B

CHF Clock Handling Facilities Annex C

RSM Repetitive Structure Modeling Annex E

2.3 Conformance of MARTE with UML

For many of the extension units considered, the Level 2 of conformance with UML may be sufficient. Though there are
some extensions for which several language units in Level 3 of conformance with UML are necessary, in particular

Templates.

UML Profile for MARTE, V1.3

2.4 Conformance with MARTE

Tools vendors and MARTE implementers require a set of conformance definitions that allow them to better target their
particular user needs without having to implement the complete MARTE Specification.

The target usages of the profile (its use cases and/or the actors involved) are good conceptual entities to look for groups
of Extension Units that may lead to useful compliance definitions.

241 Compliance Cases

Considering the Use cases of this specification, (described in Clause 6), the compliance cases defined are:

+ Software Modeling
* Constructs for modeling real-time and embedded (RTE) software applications and its non functional properties
(NFP).
+ Hardware Modeling

* Constructs for modeling the high level hardware aspects of RTE systems, including its NFP.

+ System Architecting

* It includes both Software Modeling and Hardware Modeling compliance cases mentioned before, plus the
allocation extension units.

« Performance Analysis

* It includes the extension units necessary to address the performance evaluation of RTES.

 Schedulability Analysis

* It includes the extension units necessary to address the schedulability analysis of RTES.

+ Infrastructure Provider

* It includes the extension units necessary to address the definition and/or usage of platform specific services (like
OS services for example). This may be used to create RTOS services model libraries, as well as to specify the
services required to a platform in order to support higher level RT design methodologies.

« Methodologist

* Tools conforming to this compliance case are expected to support all the extension units required for the other
compliance cases, which in practice means to support all the mandatory features of MARTE.

In order to manage complexity and speed up the adoption process, Compliance Cases are defined at two compliance
levels: Base and Full. Each level indicates a concrete set of extension units that are considered as mandatory at that level.
The Base level is defined as a subset of the Full level. Extension units that are included in the Full level, but are not in
the Base level, are considered as optional at the Base level.

UML Profile for MARTE, V1.3 3

2.4.2 Extension Units in each Compliance Case

The Extension Units that must be supported in each Compliance Cases are assigned as depicted in the next table:

Table 2.2 - Extension Units that must be supported in each Compliance Case

CASE Level GRM | NFP | VSL | Time | CHF | SRM | HRM | GCM | Alloc | HLAM | GQAM | PAM SAM | RSM
Software Base X X X X

Full X X X X
Hardware Base X X X X

Full X X X X X
System Base X X X X X

Full X X X X X X
Performance Base X X X X X

Full X X
Schedulability Base X X X X X

Full X X
Infrastructure Base X X X X

Full X X X X
Methodologist Base X X X X X X

Full X X X X X X X X

2.4.3 Special additional compliance case and extension units

Tools that wish to serve AADL users should implement A.3 in Annex A of this specification

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of this
specification. Refer to the OMG site for subsequent amendments to, or revisions of any of these publications:

« UML 2.1.2 Superstructure Specification (OMG document number formal/2007-11-02)
« UML 2.1.2 Infrastructure Specification (OMG document number formal/2007-11-04)

« XMI 2.1 Specification (OMG document number formal/2005-09-01)

4 Terms and Definitions

There are no formal definitions in this specification that are taken from other documents.

UML Profile for MARTE, V1.3

5 Symbols

Acronym Meaning

AADL Architecture Analysis and Design Language
AHB AMBA High-performance Bus

AMBA Advanced Microcontroller Bus Architecture
ARM Advanced RISC Machines

CAN Controller Area Network

CCM Corba Component Model

CORBA Common Object Request Broker Architecture
CPU Central Processing Unit

DMA Direct Memory Access

DPRAM Double-Port RAM

DRAM Dynamic Random Access Memory
EAST-ADL2 EAST Architecture Description Language 2
EDF Earliest Deadline First

EQN Extended Queueing Network

FIFO First In First Out

GQAM Generic Quantitative Analysis Modeling
GRM Generic Resource Modeling

GUI Graphical User Interface

LQN Layered Queueing Network

Lw-CCM Lightweight CCM

MARTE UML profile for Modeling and Analysis of Real-Time and Embedded systems
MDA Model-Driven Architecture

NFP Non-Functional Properties modeling

OCL Object Constraint Language

(0N Operating System

PAM Performance Analysis Modeling

QN Queueing Network

QoS Quality of Service

QoS&FT UML Profile for Quality of Service and Fault Tolerance specification
RISC Reduced Instruction-Set Computer

RMA Rate Monotonic Analysis

RSM Repetitive Structure Modeling

RTOS Real-Time Operating System

UML Profile for MARTE, V1.3

SAM Schedulability Analysis Modeling

SI Systéme International

SPT UML Profile for Schedulability, Performance and Time specification
SysML Systems Modeling Language

TCP Transmission Control Protocol

TPC-W Transaction Processing Council Web benchmark

TVL Tag Value Language

UML Unified Modeling Language

VSL Value Specification Language

WCET Worst Case Execution Time

6 Additional Information

6.1 Scope of OMG RT/E Related Standards

The MARTE profile, which replaces the current profile for Schedulability, Performance, and Time, is one of a group of
related OMG specifications (Figure 6.1). The most obvious of these is the UML 2 Superstructure specification, which is
the basis for any UML profile. It also uses the OCL 2.0 specification for all constraints specified in OCL.

« profile » «replace » « profile »
Marte SPT
rd S
P ~eal
K e

« uses »/, s« uses »

// TS

)
yd |

MOF 2.0 QVT « metamodel » ocL 2

i UML2 Superstructure (L3)

Figure 6.1 - Informal description of the MARTE dependencies with other OMG standards

Note that the Superstructure is dependent on UML compliance level 3 (L3), which is the complete UML metamodel.

In addition, MARTE is related to the following other OMG specifications:

+ The UML profile for Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms. This
specification provides, among other things, a generic metamodel for defining different qualities of service and is used
for specifying any such characteristics defined in the MARTE profile.

« The UML profile for Systems Engineering (SysML), which deals with many of the same areas, such as the modeling of
platforms and their constituent elements (hardware resources) and the allocation of software to platforms (i.e.,

UML Profile for MARTE, V1.3

deployment). In areas where there is conceptual overlap, MARTE is either reuses the corresponding SysML
stereotypes, or defines elements that are conceptually and terminologically aligned with SysML.

+ The Executable UML Foundation specification (currently in progress) defines, among other things, a model of
causality for UML that is at the core of various scenario-based analysis methods (such as performance and
schedulability analyses). The MARTE causality model must be fully consistent with the model specified in the
Executable UML Foundation specification.

« The RTCORBA and CCM specifications address issues related to software execution platforms, real-time constraints,
composition mechanisms, etc. (i.e., issues that are all in the scope of the MARTE specification). All these computing
platforms may be then considered as specific resources for executing MARTE model-based application.

The following OMG specifications deal with similar subject matter but are not considered relevant to this specification:
« The UML for SoC profile
« The EDOC UML profile

6.2 Rationale and General Principles

Since the adoption of the UML standard and its new advanced release UML2, this modeling language has been used for
development of a large number of time-critical and resource-critical systems (a significant number of these can be found
in the various books, papers, and reports listed in the bibliography at the end of this specification). Based on this
experience, a consensus has emerged that, while a useful tool, UML is lacking in some key areas that are of particular
concern to real-time and embedded system designers and developers. In particular, it was noticed that first the lack of a
quantifiable notion of time and resources was an impediment to its broader use in the real-time and embedded domain.
Second, the need for rigorous semantics definition is also a mandatory requirement for a widespread usage of the UML
for RT/E systems development.

Fortunately, and contrary to an often expressed opinion, it was discovered that UML had all the requisite mechanisms for
addressing these issues, in particular through its extensibility faculties. This made the job much easier, since it was
unnecessary to add new fundamental modeling concepts to UML — so-called “heavyweight” extensions. Rather, the work
being done in the specification consisted of defining a standard way of using these capabilities to represent concepts and
practices from the real-time and embedded domain.

6.2.1 Real-time and embedded domain

The main intent of this sub clause is to describe the domain of interest for this current profile; i.e., the real-time and
embedded domain. There is no general consensus about the definition of both real-time and embedded terms. So, it is not
straight forward to define this domain. Nevertheless, it is possible to give some general descriptions of five main sub
categories included in the RT/E domain category and representative of most of RT/E systems.

Embedded domain

Embedded systems are generally defined as interconnected devices that contain software and hardware (mainly
electronics based) parts, but which are not computers in the classic sense. Embedded systems are computer-based systems
that are deployed into an environment (part of the physical world) with which they interact.

Embedded systems development implies designing a system in which resources are usually limited, and which may need
to run without manual intervention. So all errors need to be handled. As the resources are constrained (in memory size,
power consumption, etc.) the design of embedded systems requires optimization.

UML Profile for MARTE, V1.3 7

The designed system will be embedded in a real application, either software or hardware. Therefore, the produced code
must be easily interfaced with a software environment such as a real-time operating system (RTOS), middleware, a micro-
controller or onto specific hardware (e.g., ASIC, FPGA).

Embedded systems distinguish themselves especially by following specific characteristics: heterogeneity (hardware /
software), distribution (on potential multiple and heterogeneous hardware resources), ability to react (supervision, user
interfaces modes), criticality, real-time, and consumption constraints.

Reactive domain

Systems are generally tagged as “reactive” to stress the fact that they are meant to react to information inputs coming
from some environment. The main goal of such reactive systems is actually to control, supervise, or simply collaborate or
interact with this environment. Of course such systems may perform heavy data computation, but this aspect is played
down and abstracted somehow in the system description.

The behavior of reactive systems usually consists of reaction cycles: first, input events are gathered from the environment
(through sensors); second, a reaction is computed and decided upon; third, the proper outputs are emitted back in a timely
manner in response to environment stimuli through actuators for example. The reactions may depend on a local or global
state, defining the current mode of operation of the reactive system.

Reactive systems can be found in transportation (automotive, aircrafts), factory automation, in hardware/software
controllers, in various embedded electronic appliances, including mobile communications.

Control/Command domain

Applications for control/command domain are usually dedicated to manage the execution of a process or object of the
physical world. The command synthesis matches the production of commands toward actuators from a given request.

A request is generated after measures have been done on one or several sensors. A measure is packaged (i.e., processing
the signal coming from the sensor) and then managed (i.e., taking into account the process state) in order to build the
corresponding request. From a given request, it is possible to distinguish three kinds of command synthesis: (1) the
regulating or the request is fixed; (2) serving that means the adaptation of a command following the order variations; (3)
the trajectory monitoring in case of variable request.

The command synthesis may be achieved either in open loop or in closed loop mode. The command synthesis in open
loop mode consists in designing a function that depends on the request values and parameters of the actuators. The
command synthesis in closed loop mode is relying on an additional measure requiring to evaluate the level at which the
request is considered and to adjust the command if needed.

Moreover, real case studies demonstrate that, in addition to the usual functions for command synthesis and measuring, it
is necessary to have user information functions (via a specific API or network) and trace functions.

Systems dedicated to process control consist of three main activities: measuring, command synthesis, and information
output. Three components involved in the development of control/command systems may be also identified: Sensors
(buttons, serial input devices, etc.) related to measuring activities; Actuators (motors, printers, etc.) related to command
synthesis in open and closed loop; and output devices (e.g., screen, files, networks, etc.) related to information output.

Intensive data flow computation domain

Intensive data flow computation is mainly encountered in signal processing, image processing, and mobile devices. A
common scenario is a radio signal tuned by a receiver, filtered, and decoded. These different stages require intensive data
computation to be performed, possibly in parallel, with the help of several computation units.

8 UML Profile for MARTE, V1.3

Many signal and image processing applications follow an organization in two high level stages: systematic signal
processing and intensive data processing.

The systematic signal processing is the very first part of a signal processing application. It mainly consists of a chain of
filters and regular processing applied on the input signals independently of the signal values. It results in a
characterization of the input signals with values of interest.

The intensive data processing is the second part of a signal processing application. It applies irregular computations on
the values issued by the systematic signal processing. Those computations may depend on the signal values.

Software Defined Radio receiver is a concrete industrial example of such a domain. This emerging application is
structured with front end systematic signal processing including signal digitalization, channel selection, and application of
filters to eliminate interferences. The data is decoded in a second and more irregular phase (synchronization, signal
demodulation, etc.).

Intensive data-flow computation is an important class of embedded applications requiring hardware architectures
description. It requires mainly being able to express potential parallel processing of data and parallel hardware
architectures, preferably in simple ways that allow for factorization of repeated elements.

Best-effort service domain

Real-time systems sometimes include elements that do not deliver services in a totally safe or time-constrained way (such
as web application servers in an IP telephony system). These systems nonetheless have properties (delay distribution,
probability of failure of a service) that need to be understood.

Best-effort services supply one or more responses as data, to a request. They often make subsidiary requests to other
services, particularly to data services (databases, caches, file servers, disk storage). Best-effort services are not
distinguishable from systems that are not primarily designated “real-time” systems.

To a certain extent most computer systems have some aspect of requirements for real-time responses, which are affected
by system resources. This profile provides some capabilities for describing and analyzing those real-time aspects of any
system.

6.2.2 Guiding principles

This sub clause aims in defining what have been the main guiding principles used to write this specification. The main
guiding principles are then as follows:

+ The profile should support independent modeling of both software or hardware parts of RT/E systems and the
relationships between them.

 The profile has to provide modeling constructs covering the development process of RT/E systems. Such features may
be categorized into qualitative (parallelism, synchronization, communication) or quantitative (deadline, periodicity).
The profile must provide high-level modeling constructs for specification purposes, for example, but also low-level
construct for implementation purposes.

« As much as possible, modelers should not be hindered in the way they use UML to represent their systems just to be
able to do model analysis. That is, rather than enforcing a specific approach or modeling style for real-time systems, the
profile should allow modelers to choose the style and modeling constructs that they feel are the best fit to their needs of
the moment.

« Modelers should be able to take advantage of different types of model analysis techniques without requiring a deep
understanding of the inner workings of those techniques. The steep learning curve behind many of the current model

UML Profile for MARTE, V1.3 9

analysis methods has been one of the major impediments to their adoption.

+ The profile must support all the current mainstream real-time technologies, design paradigms, and model analysis
techniques. However, it should also be fully open to new developments in all of these areas.

« It must foster construction of UML models that can be used to make quantitative and partitioning predictions and
analysis regarding hardware and software characteristics of the RT/E system. In particular, it is important to be able to
perform such analyses early in the development cycle. For that, it has to be possible to analyze partial models. It should
be possible to automatically construct different analysis-specific models directly from a given UML model. Such tools
should be able to read the model, process it, and feed the results back to the modeler in terms of the original UML
model.

6.2.3 How to use this specification

This sub clause describes which potential actors may use this specification and how they can do it. Of course, neither the
actors nor use cases described represent an exclusive set for how this specification can be used, but rather reflect on some
of the ways that we expect it to be used or (in most cases) expanded.

Figure 6.2 describes a set of potential actors that may use this specification for designing RT/E systems.

A

Marte User

T

Modd Amalyst E xecution Platform Provider Methodology P rovider

7

Model Designer

T

Softw are Modeler R T/E SystemArchitect Hadvare Mocler Analysis Methoddogy Provider D esign Methadology Provider
Softw ae A rchitect H ardware Architect

Figure 6.2 - Possible actors using the MARTE specification

+ Model Designer: These are modelers that design models dedicated to be applied in the context of the development
process of RT/E systems. Models may be used for usual specification, design, or implementation stages. But models
may be also used for analyzing in order to determine whether they will meet their performance and schedulability
requirements.

* RT/E Systems Architect: These are specific modelers concerned with the overall architecture and they usually
make trade-offs between implementing functionality in hardware, software, or both.

10 UML Profile for MARTE, V1.3

* Hardware Modeler: These are modelers specifically dedicated to hardware aspects of the RT/E systems
development.

» Hardware Architect: These are modelers concerned by designing hardware architecture.

 Software Modeler: These are modelers specifically dedicated to software aspects of the RT/E systems
development.

* Software Architect: These are modelers concerned with designing software architecture.

« Model Analyst: These are modelers concerned with annotating system models in order to perform specific analysis
methodologies.

« Execution Platform Provider: These are developers and vendors of run-time technologies (hardware- or/and software-
based platforms) such as Real-Time CORBA, real-time operating systems, and specific hardware components.

+ Methodology Provider: These are the individuals and teams who are responsible for defining model-based
methodology for RT/E domain. This category includes UML tool providers.

* Design Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based methodology for specifying, designing or/and implementing RT/E systems.

* Analysis Methodology Provider: These are specialized methodology providers who are responsible for defining
model-based analysis methodology such as RMA or queuing theory, as well as technology provider such as tool
vendors providing tools and processes for supporting particular model analysis methods.

Common possible usages of the MARTE profile are specified in the use case diagram depicted in Figure 6.3.

Marte specification

define Meth odology
- build Model

indud
« noude 2e Methodology Provider

adapt Marte Sped@

«indude » ™~

Model D esigner

annotate Modelfor Analysis
build Execution PlatformModel

analyze Model

1
|

Model Analyst provide Execution Platform

Execution Platform Provider

Figure 6.3 - Common use cases of the MARTE specification
Details of the use case “build Model”
+ Actor: Modeler

+ Description: A modeler builds a model iterating it through several stages defined in an appropriate development
process. According to a given methodology (see the “define Methodology” use case), a modeler uses appropriate UML
extensions or specific model libraries defined in the MARTE specification in order to describe the RT/E aspects in the
model of their system.

« Deliverable: The result of this use case is a model of the user system containing all its RT/E specificities.

UML Profile for MARTE, V1.3 1"

Details of the use case “adapt MARTE Specification”

+ Actor: Methodology Provider and Execution Platform Provider

+ Description: This use case consists in defining a specific MARTE sub-profile. The motivations to adapt MARTE may

be either to deal with a specific domain not covered by MARTE or to define restrictions on the usage of MARTE
modeling constructs. In the former case, the actor may either specialize MARTE modeling constructs in order to adapt
them suitably to their needs or introduce new concepts not available in MARTE. The second way to adapt the MARTE
specification is to define modeling rules in order to constraint the usage of the specification.

Deliverable: The outcome of this use case is a definition of MARTE extension that takes the form a UML profile based
on the MARTE specification. The dependencies with the MARTE profile may be merge, import or specialization.

Details of the use case “define Methodology”

Actor: Methodology Provider

Description: This use case consists in defining how to use the MARTE specification for a given purpose. For example,
one may define a specific methodology for the design of electronic automotive systems (cf. the EAST-ADL annex) or
for avionics (see AADL annex). One may also define model-based analysis methodology such as schedulability or
performance analysis.

Deliverable: The outcome of this use case is a model-based methodology. This latter may include a process description,
a set of constraint rules and a set of required techniques that applies to the methodology. If necessary, this use case may
also include the definition of an extension of the MARTE profile (include of the “extend MARTE Specification” use
case).

Details of the use case “annotate Model for Analysis”

Actor: Model Analyst

Description: The model analyst uses appropriate MARTE extensions, as defined for example in a specific analysis
methodology, in order to annotate appropriately models in order to perform a given analysis techniques.

Deliverable: The outcome of this use case is a model annotated with MARTE extensions and ready for performing
specific analysis.

Details of the use case “analyze Model”

Actor: Model Analyst

Description: The model analyst perform a given analysis techniques on a model. The purpose of the analysis may be
varied depending of the nature of the analysis techniques used. Some examples of analysis are: schedulability or
performance analyses.

Deliverable: The outcomes of this use case are analysis results.

Details of the use case “build Execution Platform Model”

12

Actor: Execution Platform Provider

Description: This use case consists in building model of execution platform for MARTE based developments of RT/E
systems.

Deliverable: The outcome of this use case is a MARTE compatible execution platform model.

UML Profile for MARTE, V1.3

Details of the use case “provide Execution Platform”

+ Actor: Execution Platform Provider
+ Description: This use case consists in providing execution platform conform to a given model of platform.

« Deliverable: The outcome of this use case is an execution platform.

6.3 Approach and Structure

6.3.1 Profile Architecture

The profile is structured around two main concerns, one to model the features of real-time and embedded systems and the
other to annotate application models so as to support analysis of system properties. These are shown by the RTEM
package named “MARTE design model” in Figure 6.4, and the cluster of three packages, respectively. These two major
parts share common concerns with describing time and the use of concurrent resources, which are contained in the shared
package named “MARTE foundations.” Finally the “AnalysisModeling” features are broken into a foundational generic
part in the package GQAM, and two packages for specific analysis domains, as shown. These first two specific analysis
domains are entirely concerned with time, however the profile structure allows for adding additional analysis domains,
such as power consumption, memory use, or reliability. It is the intention to encourage modular sub profiles like the two
analysis packages, for such domains.

MARTE foundations |
]] —1 1 —1
« profile » « profile » « profile » « profile » « profile »
CoreElements NFP Time GRM Alloc
A A
] 1
1 i
H H
MARTE design madal MARTE analysis model
1 |]
« profile » « profile » « profile »
GCM HLAM GQAM
—1 1 —1 —1
« profile » « profile » « profile » « profile »
SRM HRM SAM PAM
MARTE annexes
1 1 1
« profile » « profile » « modelLibrary =
V5L RSM MARTE_Library

Figure 6.4 - Architecture of the MARTE Profile

| UML Profile for MARTE, V1.3 13

6.3.2 A Foundation for Model Driven Techniques

The profile is intended to provide a foundation for applying transformations from UML models into a wide variety of
analysis models. The environment for exploiting the profile would consist of a set of tools, including model transformers,
as shown in Figure 6.5. Prototypes of such tool chains have been produced based on SPT.

The forward path shows the way the model is expected to be transformed via the XMI output, to a format readable by an
analysis tool. The dashed line indicates a potential feedback path to re-import the analysis results into the UML diagrams.

Another feedback path clearly exists from the analysis to the modeler.

A

Model Designer Model Analyst

b ui Id analyzei
_ Transformation
UML Tool Annotated to Analysis | Analy sis Analysis Tool
UML Model Model Model

XMI

'
Y

-
Ann o tated

Plat form
Model Librar

Diagnostic/
F eedback

- —— .

Analy sis
Re s ults

Gl

Figure 6.5 - A Tool Chain for Carrying out Analysis of a Model
6.3.3 Approach to Modeling RT/E Systems

Embedded systems are becoming increasingly heterogeneous. This is true of applications, which combine intensive, often
heavily pipelined, data computation for signal processing, together with control mode switches and communication
protocols. This is true also of execution platforms, which comprise flexible or custom-made hardware, multi-core
processors, cache and bus hierarchies, and so on. This is reflected in the design of such systems, which must try to fit best
applications onto existing platforms, or even adjust and dimension again execution platforms for pre-existing applications.
The main criteria governing this allocation of application functions to HW/SW execution resources are stringent real-time
requirements, but power- and area-consumption or cost also play a role. Adequate modeling can of course be of great help
with this design activity by providing the support for design and analysis. The modeling support should also encompass
early global timing budget and maximal latency requirements, as well as scheduling results display expressing the explicit
quality of allocation in a traceable manner.

Application modeling is based on interacting component blocks for structural aspects. As for behavior, data-intensive
pipe-lined computations are generally represented with block-diagrams amenable to activity charts, while control-flow
parts and communication protocols use hierarchical finite-state machines. This functionality is complemented with timing
aspects, based on appropriate time/cycle descriptions (see time model below). Application modeling is further described
in Clause 9.

14 UML Profile for MARTE, V1.3

Execution platform modeling comprises the description of both dedicated hardware and (middleware) software layers and
interconnects composing the platform. It can be described at the same level of abstraction as the application, and contains
timing information along with structural and behavioral aspects. Explicit detailed modeling can be needed in as far as the
appropriate match between application and architecture is to be studied (hierarchical cache structure or Instruction Set
Simulators for instance). Execution platform modeling is further described in both Clauses 10 and 14.

The allocation model describes the association matching applicative functions onto execution platform resources. It is
sometimes mandatory to provide timing information on this allocation link itself, rather than on its constituents, for
reasons of modular abstraction (for instance one may indicate that a complex filter function can be realized at a given cost
on a given specific processor, without going back to individual statements and instructions). Allocation modeling is
further described in Clause 12.

Note: allocation is here reminiscent of the similar notion in the SysML specification.

Regular iterative constructs, that are often encountered in the embedded world to represent signal-processing applications
or dedicated DSP operator blocks, or processor arrays, are best modeled using dedicated iterative model representations
such as described in Annex E.

6.3.4 Approach to Annotating for Model Analysis

Annotations use stereotypes that permit us to map model elements into the semantics of an analysis domain such as
schedulability, and give values for properties that are needed in order to carry out the analysis. We may distinguish
“input” properties that are needed to carry out the analysis, and “output” properties that are determined by the analysis.
However the modeler may also input required values of output properties, which can be used to determine how well the
system meets its requirements (another output property).

Analysis is not always simply “pass/fail,” and the particular goals of analysis are specific to its domain. Output properties
to be reported may include details of how and where time and resources are consumed, in order to diagnose problems, and
may include sensitivity studies to explore the importance of parameters whose values are uncertain.

6.3.5 MDA and MARTE

The MARTE profile defines precise semantics for time and resource modeling. These precise semantics allow automatic
transformations of models to lower abstraction level models such as UML for SoC for hardware / software simulation or
into C++ for implementation purposes.

One of the goals of this profile is to support common design flows for RT/E systems. One of these design flows is to
define in different views or models the application (including functional and non functional characteristics), the hardware
architecture and the allocation of the application onto the hardware architecture. Starting from this allocation model, if the
semantics is precise enough, one can automate code generation for simulation at different abstraction levels or synthesis
of specific hardware parts.

Another use of MDA (or MDE, “Model Driven Engineering”) with the MARTE profile is the integration of tools. Indeed,
some analysis or verification tools can be coupled with the modeling tools if the semantics of the models correspond to
the semantics of the analysis or verification tool. Model transformation techniques can then be used to enable this
coupling.

UML Profile for MARTE, V1.3 15

6.4 How to Read this Specification

6.4.1 Structure of the Document

The MARTE specification consists of five blocks of clauses:
 Block one gathers the introduction clauses (from Clauses 1 to 6).

+ Block two is Part I of the MARTE specification and it is intended to define the MARTE foundations. It conflates
clauses 7 to 12 respectively focused on: Clause 7, Core Elements, defines the basic elements for model-based approach
and specially for real-time embedded domains such as a causality model; Clause 8, Non-Functional Properties
modeling, defines a common framework for annotating models with quantitative and qualitative non-functional
information; Clause 9, Time modeling, defines the time as used within MARTE; Clause 10, Generic Resource
Modeling, specifies how to describe at system level resource models; finally, Clause 11, Allocation modeling, defines
concepts required to describe allocation concerns.

+ The third block is Part II of the MARTE specification. It is intended to define the MARTE concepts for model-based
design of RTES. It consists of the following clauses: Clause 12, General Component Model, introduces a general
component model suitable for RTES. This component model, called GCM, is build on top of the composite structure of
the UML, and it is compatible with well-known component models such as the one of SysML, CCM, AADL and
EAST-ADL; Clause 13, High-Level Application Modeling, defines high-level concepts for designing qualitative and
quantitative concerns of RTES (e.g., concurrency and synchronization); Clause 14, Detailed Resource Modeling, is
split into two sub-clauses respectively dedicated to detailed modeling of software (sub clause 14.1, SRM, “Software
Resource Modeling”) and hardware (sub clause 14.2, HRM, “Hardware Resource Modeling”) resources.

 The fourth block is Part III and focuses on model-based analysis. It does not intend to define new analysis technologies,
but to define the information required for annotation models on which external analysis techniques may be applied. It
consists of three clauses: Clause 15, Generic Quantitative Analysis Modeling, defines basis concept for specific
analysis technics; Clause 16, Schedulability Analysis Modeling, specializes the generic framework for performing
schedulability analysis, whereas Clause 17, Performance Modeling, is the specialization for model-based performance
analysis.

Issue MARTE13-26: update text

» The last block, Part IV, contains all the MARTE annexes. The main information contained within these annexes is
about additional useful value specification languages provided by MARTE (Annex B and Annex C): the Value
Specification Language (VDL), the Clocked Value Specification Language (CVSL) and the Clock Constraint
Specification Language (CCSL). Another important added value contained is a predefined MARTE model library
(Annex D). This latter annex described predefined primitive and data types required for defining the UML profile for
MARTE itself ;-but-while also being usefull for user models. The annex part owns also a UML extension definition
(Annex E, the Repetitive Structure Modeling MARTE subprofile) intended to support specific system modeling
consisting of repetitions of structural elements, interconnected via a regular connection pattern. We call this kind of
structure “repetitive structure.” Finally, the annex block of MARTE owns an annex dedicated to describe the detailed
semantics of each domain concepts introduced within the specification (see following sub clause which relates on how
to use this Annex F).

6.4.2 Extension Specification Rationale and Format Convention

16 UML Profile for MARTE, V1.3

Extensions proposed by MARTE have been conflated around one main concern and detailed in separate clauses: Clause 7
to Clause 17 and Annex F. Such clauses are then organized following the same patterns. The way to define each sub
profile contained within MARTE rely on a two stage process: a domain model specification and its underlying UML
profile design.

The first stage consists of defining the required concepts (also called domain elements) related to one specific concern
(e.g., non-functional properties modeling and time modeling). The output of this stage is then called the domain model,
which formalized through the definition of a meta-model and the detailed semantics descriptions of each of its elements.
In order to reduce the bulk of this document, we decided to gather all these detailed descriptions within a common place,
Annex F.

The second stage of the process we adopted for MARTE aims at designing a UML profile (sub clauses called “UML
representations”). Our purpose is then to define UML extensions (i.e., mainly stereotypes, tagged values, specific
notations, and OCL rules) for supporting within the UML the specific concepts introduced within each MARTE domain
model for supporting RTES model-based engineering.

Issue MARTE13-26: update text

In order to minimize the impact of the MARTE extensions on the model readability, firstly we try to reduce the size of
stereotype names as much as possible, but without searifiringsacrificing their meaning too much. Secondly, we decided to
prefix the stereotypes only when required. A typical example was when we define stereotype that was inherited by other
stereotypes.

6.4.3 Conventions and Typography

In the description of this specification, the following conventions have been used:

+ While referring to stereotypes, metaclasses, metaassociations, metaattributes, etc. in the text, the exact names as they
appear in the model are always used.

 No visibilities are presented in the diagrams, since all elements are public.
« Ifa sub clause is not applicable, it is not included.

- Stereotype, metaclass and meta-association names: initial embedded capitals are used (e.g., ‘ModelElement,’
‘ElementReference’).

« Boolean meta-attribute names always start with ‘is’ (e.g., ‘isComposite’).
+ Enumeration types always end with “Kind” (e.g., ‘DependencyKind’).

+ In diagrams described in the rest of this document, the way of identifying an element external to the package being
described will be its name preceded by the hierarchy of containing packages/namespaces; the root element to use for
this sequence shall be the closest ancestor in the hierarchy that is common to both the imported element, and the
package being described.

6.5 Acknowledgements

The following companies submitted and/or supported parts of this specification:

+ Adaptive

UML Profile for MARTE, V1.3 17

Alcatel

ARTISAN Software Tools
Carleton University
Commissariat a I’Energie Atomique
ESEO

ENSIETA

France Telecom

International Business Machines
INRIA

INSA from Lyon

Lockheed Martin

MathWorks

Mentor Graphics Corporation
NASA

No Magic

Software Engineering Institute (Carnegie Mellon University)

Softeam

Telelogic AB

Thales

Tri-Pacific Software Inc.

Universidad de Cantabria

The following persons were members of the core team that originally designed and wrote this specification (sorted in
alphabetical order): Charles André, Jean-Philippe Babau, Pierre Boulet, Irv Badr, Arnaud Cuccuru, Gérard Cristau,
Jérome Delatour, Cédric Dumoulin, Sébastien Demathieu, Robert De Simone, Huascar Espinoza, Madeleine Faugere,
Sébastien Gérard, Mark Gerhardt, Peter Kortmann, Frédéric Mallet, Julio Medina, Alan Moore, Chokri Mraidha, Dorina
Petriu, Laurent Rioux, Bran Selic, Safouan Taha, Jean-Pierre Talpin, Frédéric Thomas, Murray Woodside and Ben
Watson.

In addition, the following persons contributed valuable ideas and feedback that significantly improved the content and the
quality of this specification (sorted in alphabetical order): Jérome Blanc, Joel Champeau, Jos¢ Maria Drake, Thierry

Gautier, Michael Gonzalez Harbour, Jack Low, Benoit Masson, and Yves Sorel.

18

UML Profile for MARTE, V1.3

Subpart | - MARTE Foundations

This subpart contains the following clauses:
* 7 - Core Elements (CoreElements)
* 8 - Non-functional Properties Modeling (NFPs)
* 9 - Time Modeling (Time)

* 10 - Generic Resource Modeling (GRM)

11 - Allocation Modeling (Alloc)

UML Profile for MARTE, V1.3

19

20

UML Profile for MARTE, V1.3

7 Core Elements (CoreElements)

7.1 Overview

The concepts presented in this clause serve as a general basis for the description of most elements of the rest of this
specification. They are a comprehensive set of related concepts that are useful to define those others more elaborated,
which are used to build the subsequent clauses of this specification. They are split in two packages for convenience. The
Foundations package holds the basic elements used to represent the dual descriptor-instance nature of any modeling
entity. These concepts may serve different purposes for modeling and analysis, and are the basis for structural modeling.
The Causality package describes the basic elements necessary for behavioral modeling, and their run-time semantics.
Figure 7.1 shows these packages and their relationship.

MARTE::CoreEle ments

Foundations ——————- — Causality

Figure 7.1 - Dependencies between packages for the CoreElements package

The Causality package is a specification of how things happen at run time. The purpose of this model is to provide a very
high-level view of the run-time semantics for those modeling elements that are suitable for real-time and embedded
systems, and will be later used when required to point out the various elements of that view that are covered and
specialized in the domain models of the MARTE specification. The term “run-time” is used to refer to the execution
environment. Run-time semantics are therefore specified as a mapping of modeling concepts into corresponding program
execution phenomena.

This model is used as a basis for any dynamic model description associated with the MARTE profile. It captures the
essentials of the cause-effect chains in the behavior of run-time instances. The model is inspired from (and hence
compliant with) the Common Behavior model of the UML superstructure. But, it is more detailed and precise in certain
aspects, in particular for its further use as the basis for the definition of a richer timing model, which includes the timing
constraints induced by the real-time annotations. A complete model and a language for timed expressions are provided at
full length in Clause 9. Other dedicated attribute properties for time-related concepts are also introduced further along this
specification. Figure 7.2 presents the internal sub-packages of the causality model. The purpose and contents of each sub
package are described in the next sub clauses.

| UML Profile for MARTE, V1.3 21

C ausality

CommonBehavior

RunTimeC ontext
) t
" -
1 3 H
Invocation Communication

Figure 7.2 - Architecture of the Causality package
7.2 Domain View

7.21 The Foundations Package

The domain models presented in this specification will use a consistent set of modeling elements, which in spite of being
non-normative, form a large meta-model that covers all the modeling requirements imposed by the RFP.

For modeling and analysis purposes, it is fundamental to distinguish between design-time classifier elements, such as
classes and types, and run-time instance elements that are created on the basis of those classifiers. All modeling elements
at any level of specification will represent either one or the other of these two fundamental aspects, based on their
purpose.

This basic partitioning into classifiers and instance is reflected in the diagram depicted in Figure 7.3. Any number of
instances can be created from a given classifier. This latter is referred to as the type of the instance. Notice that an
instance may have multiple types (which can be used either to represent different viewpoints of the model element) or a
composition of partial descriptions, including multiple inheritance for example).

The concept of Instance may be in practice represented in UML not only as InstanceSpecifications but also by those other
elements that are described in terms of role-based models (like UML::ConnectableElement in collaborations or internal
structure diagrams, parts, ports, or roles).

22 UML Profile for MARTE, V1.3

Foundations

MaodalElamant

W
oA
owned Elemant

name: String [0..1]

0. 0.*
Instance - Classifier
instance type

Figure 7.3 - Instance and Classifier root diagram of the Foundations package

As described in Clause 8, values of non-functional properties (NFP) may be annotated on any model element designated
as such. In this way, further specializations of Classifiers or Instances may become kinds of AnnotatedElements. In
particular, time-based analysis methods operate on annotated models that are usually described over a number of specific
instances of the system. However, it is also useful to be able to associate NFP values with classifiers. In this case it
simply means that such values apply by default to all instances created on the basis of those descriptors, and not that the
classifier itself has that value. These default values can be further overridden in specific instance cases. But, this uniform
annotation of instances requires special care and may not always be appropriate. In case of interface specifications, for
example, there could be many realizations of the same interface, each with different service characteristics described by
means of NFP.

For practical reasons, most concepts and modeling elements in the domain views of this specification as well as the
stereotypes in the UML representation will be defined and described using the classifier root concept, but it should be
noted that a corresponding instance may also exist. However, instance based elements will be defined to stress its nature,
when appropriate. This semantic variation will also be taken into account in the UML views of the specification firstly to
define the applicability of the required consistency rules, and secondly in the subsequent adoption of the proper semantics
when the corresponding stereotype is applied to extend user defined modeling elements.

UML Profile for MARTE, V1.3 23

Foundations

Classifiar

ownedFroperties

ModelElerment

i

MultiplicityElemant

fupper : UnlimitedMatural [0..1]
fower - Integer [0..1)

I

Property

type'|" 0.1

aggregation : Aggregationkind [1] = none

owningUpper upperyValue

MARTE::\VSL::
ValueSpecification

0.1 0.1
owvninglower lowery alue
"D..'I 0.1
« enumeration »
AggregationkKind
none
shared
composite

Figure 7.4 - Property diagram of the Foundations package

A Property is a MultiplicityElement, so that it can have an upper and lower bound specifying the valid range of
cardinalities for this property. Additionally, it has an aggregation kind and a type (as a classifier).

7.2.2 The Causality::CommonBehavior Package

7.2.2.1 Basic Behavior

This model states the relationships between classifier element models and their instances from a behavioral viewpoint. It
is aligned to the UML semantics basis, in the sense that there is no disembodied behavior: all behavior emanates from the
actions of structural entities. In particular since in UML a behavior is a kind of class, it is possible for a behavior to be its
own structural context. For many of the UML behavioral concepts mentioned here you may find the corresponding UML2
semantics description in Clause 13 of the OMG document ptc/06-04-02. For those that reify the UML2 concepts,

analogous definitions have been extracted from that OMG document.

24

UML Profile for MARTE, V1.3

CommonBehavior
CoreElements. Foundations:: CoreElements: Foundations:: type
ModelElerment Classifier 0.1
ownedTrigger , ,
Befn assif
avioredClassifier CoreClements:: Foundations::
. " ModelElemeant
context 11
) ImainBehavior
event | 1 ownedBehavior |+ 0.1 ¢ {subset ownedBehavior} ,J
action . .
Evant Eeafavior
- .%ﬁ' A paramelexr Parameter E—
0.1 43 I
ComposifeBahawvor Action

Figure 7.5 - The CommonBehavior package

A Behavior defines how some system or entity changes over time. From a modeling point of view, this concept defines
the behavior of some classifier, specifically, a Behaviored Classifier. A behavior captures the dynamic of its context
classifier. It is a specification of how its context classifier as well as the state of the system that is in the scope of the
behavior may change over time. A behavior may have Parameters whose values may be used for evaluating a behavior.
A behaviored classifier may have behavior specifications that illustrate specific scenarios of interest associated with that
classifier, such as the start-up scenario. In particular, the behavior specification used to represent the behavior that starts
executing when instances of that classifier are created and started is called main behavior. For many real-time concurrent
systems, this can be, for example, the behavior that initiates the activity of a thread, which continues until the thread is
terminated. Two kinds of Behavior may be defined: CompositeBehavior and Action. Action is an atomic behavior, and
CompositeBehavior may contain other Behaviors, which in turn may be either composite or atomic.

An Action is the fundamental unit of behavior. An action takes a set of inputs and converts them into a set of outputs,
though either or both sets may be empty. Actions are contained in behaviors, which provide their context. Behaviors
provide constraints among actions to determine when they execute and what inputs they have.

An Event is the specification of a kind of change of state that may happen in the modeled system. Event occurrences are
often generated as a result of some action either within the system or in the environment surrounding the system.
Consistently with UML 2, Triggers are specification of what can cause execution of behavior (e.g., the execution of the
effect activity of a transition in a state machine).

A Trigger specifies the event that may trigger a behavior execution as well as any constraints on the event to filter out
event occurrences not of interest. Indeed, a Trigger is the concept that relates an Event to a Behavior that may affect any
instance of the behavioral classifier.

The Timed versions of these concepts are introduced in Clause 9, under the name of TimedProcessing (for Actions) and
TimedEvents (for Events and Triggers).

UML Profile for MARTE, V1.3 25

7.2.2.2 Modal Behavior

The previous sub clause described the main concepts to describe basic system behavior. This basic behavior is aligned
with UML, and hence, it represents a common conceptual basis for further extensions required in the real-time and
embedded systems. There is however, a kind of behavior that is not particularly distinguished in UML and that requires
specific consideration when modeling time and safety-critical systems. This behavior is related to the notion of
operational mode, and for this reason we call it modal behavior.

An operational mode can represent different things:

« An operational system (or subsystem) state that is managed by reconfiguration mechanisms (e.g., fault-tolerance
management middleware) according to fault conditions.

« A state of system operation with a given level of QoS that can be handled by resource management infrastructures (e.g.,
middleware that assign resources at run time according to load demand, timing constraints, or resource usage).

+ A phase of a system operation (e.g., starting, stopping, launching, in a mission-critical aerospace system).

CommonBehavior |
Behawior
[f‘ {subseats context}
. composite
a - ModeBehavior = BahavioradClassifier
! {subsets ownedBehavior} 0.1
0.1 odeBehavior « | participatingEntity
mode
activeln
Mode made
Configuration
source | q 1 | target
foutgoing | * * iincoming
i trigpgper
transition .
- ModeTransition (e < Trigger
0.1

Figure 7.6. Domain model of Modal Behavior

A mode identifies an operational segment within the system execution that is characterized by a given configuration. The
system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional
parameters).

Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier. A BehavioredClassifier can be active in zero or more
operational modes. Furthermore, a BehavioredClassifier that represents a system, subsystem or any composite entity can
have a set of modes modeled as a ModeBehavior.

26 UML Profile for MARTE, V1.3

A ModeBehavior specifies a set of modes mutually exclusive, i.e., only one mode can be active in a given time instant.
Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions. A mode transition
describes the modeled system under mode switching. A mode transition can be produced in response to a Trigger. Thus,
as described before in the Basic Behavior sub clause, a Trigger is related to an Event that determines the conditions
causing the triggering action.

7.2.3 The Causality::RunTimeContext Package

A BehaviorExecution is a specification of the execution of a unit of behavior or action within the instances of
BehavioredClassifiers. Hence, behavior executions are run-time instances of the behavior and action concepts. For this
reason, in this domain model, this concept is specialized into both important concepts: CompBehaviorExecution and
ActionExecution. Correspondingly, events have instances called EventOccurrences.

Any behavior execution is the direct consequence of the action execution of at least one instance of a classifier. A
behavior execution specification describes how the states of these instances change over time. Behavior executions, as
such, do not exist by their own, and they do not communicate. If a behavior execution operates on data, that data is
obtained from the host instance.

In UML2, there are two kinds of behaviors at run-time, emergent behavior and executing behavior. An executing behavior
is performed by an instance (its host) and is the description of the behavior of this instance. Emergent behavior execution
results from the interaction of one or more participant instance(s).

MARTE does not highlight this difference on the nature of behaviors. Indeed, it deals only with behavior execution as the
general concept to express a behavior instance. Hence, the MARTE BehaviorExecution notion corresponds to the UML2
Behavior Performance concept described in the overview of its Common Behavior clause.

On one hand, a behavior execution is thus directly caused by the invocation of a behavioral feature of an instance or by
its creation. In either case, it is a consequence of the execution of an action by some related classifier instance. A behavior
has access to the structural features of its host instance.

On the other hand, behavior execution may result from the interaction of various participant instances. If the participating
classifier instances are parts of a larger composite classifier instance, a behavior execution can be seen as indirectly
describing the behavior of the container instance also. Nevertheless, a behavior execution can result from the executing
behaviors of the participant instances.

This latter form of behavior is of interest since the behavior that is to be analyzed and observed at the system level, in
order to predict its timing properties, is normally described as an abstract view of the run-time emergent behavior due to
the combination of the behavior executions of all its constituent parts.

UML Profile for MARTE, V1.3 27

RunTimeC ontext

Causality::CommonBehavior:: Causaltty::CommonBehavior:: Causality::CommonBehavior::
Event CompositeBehavior Action
event | 4 behavior |1 effect | 0..1 0..1 | action
subset type
{subset type} {subset type} exAdtion . ‘ { ype}
y BehaviorExecution
host A1 | A |
cause
EventOccurrence CompBehaviorExecution ActionExecution
1

exBehavior|*

14 Nost 0..1| invoker
CoreElements::Foundations:: 1.7
Instance participant

1

Figure 7.7 - The RunTimeContext package

There is a variety of behavior specification mechanisms supported by the UML, such as automata, activities (data-flow
like description), Petri-net like graphs, informal descriptions (e.g., Use Cases), or partially-ordered sequences of event
occurrences (Interactions), each corresponding to the concrete subtypes of Behavior that it provides.

This model supports not only scenario-based style for behavioral specification, by describing the observable event
occurrences resulting from the execution of one possible situation of behavior execution, but it also extends the behaviors
supported by the specification to state-based and activity-based approaches. The latter describes behaviors by specifying
a state machine that does not describe observable event occurrences, but that would implicitly induce event occurrences.
This intends to extend the domain of applicability of the MARTE profile to modeling and analysis techniques as Timed
Automata and Petri-nets.

Nevertheless, the relationship between a specified behavior and its hosting or participating instances is independent of the
specification mechanism chosen. The choice of specification mechanism is one of convenience and purpose; typically, the
same kind of behavior could be described by any of the different mechanisms. Note that not all behaviors can be
described by each of the different specification mechanisms, because behaviors do not have the same expressive power.
However, for many behaviors, the choice of specification mechanism depends on the formalism used to analyze the
system.

7.2.4 The Causality::Invocation Package

As shown in Figure 7.7, the execution of a behavior may be caused by an event occurrence. Events can occur from the
direct invocation of a behavior through an action or from a trigger occurrence representing an indirect invocation of a
behavior, such as through an operation call.

28 UML Profile for MARTE, V1.3

In a number of analyses, it is also useful to consider the events that occur when a behavior starts and ends its execution.

A start occurrence marks the beginning of a behavior execution, while its completion is accompanied by a termination
occurrence.

These and further defined concepts specialized from EventOccurrence will be considered eligible to be extended by

timing annotations, though for simplicity in the domain model these annotations may be defined in the form of extensions

to their common ancestor EventOccurrence.

Invocation
1 Causality::RunTimeContext: 1
execution BehaviorExecution execution
Causality::RunTimeC ontext:
EventOccurrence
finish | 1 ‘ A ‘ 1 | start
—@{ TerminationOccurrence StartOccurrence
endEvent startEvent
1 |{subset event} {subset event}| 1
: Causalty:: ;
1 beha beha
TeminationEvent 0% CommonBehavior:: %10 StartEvent
‘ 1 Behavior ‘
C ausality::CommonBehavior::Event

Figure 7.8 - The Invocation package
7.2.5 The Causality::Communication Package

The Communication sub package of the Causality package adds the infrastructure to communicate between classifier

instances and to invoke behaviors. The domain model in Figure 7.8 shows how a communication takes place. This domain

model specifies the general semantics of communication between concurrent units.

UML Profile for MARTE, V1.3

29

Communication
Causality::RunTimeContext:: CoreElements::Foundations:: C ausality::RunTimeContext:
EventOccurrence Instance EventOccurrence
) cause effect 1 effect)
InvocationOccurrence Request R eceiveOccurrence
1 1.* cause 1
invocation | *
sender.| 1 receiver |1
sender.
execution | 1 1 CoreElements::Foundations:: receiver
Instance 1
Causalty::RunTimeContext::
ActionE xecution

Figure 7.9 - The Communication package

In real time systems, the basic unit of logical concurrency is commonly known as a thread!. Threads are the root of a
special case of instances, usually called active, or real-time or even reactive objects. In fact, the recommended way of
adding concurrency into an object model is to identify the desired concurrent units (logical or physical depending on the
detail level of the model) through the application of concurrency identification strategies. Once the threads are identified,
the developer may create an active object for each. According to the level of specification other forms of expressing
concurrency in UML may be used, like the fork in an activity, or a state with orthogonal regions. Other objects, i.e. those
that are not identified as concurrent units, are then usually called passive objects. These latter objects are then associated
to the active objects via a composition or shared relationships. The role of the active object is to run when appropriate and
call or delegate actions to the passive objects that it owns. Passive objects execute usually using the concurrent resource
of the caller active object.

Instances respond to messages that are generated by others executing communication actions. When these messages
arrive, the receivers eventually respond by executing the behavior that is matched to that message. The dispatching
method by which a particular behavior is associated with a given message depends on the higher-level formalism used
and is not defined here (hence, it is an open-variation semantics point of UML).

Figure 7.8 shows the general communication model. An action representing the invocation of a behavioral feature is
executed by a sender instance resulting in an InvocationOccurrence. The invocation event may represent the sending of a
signal or the call to an operation. As a result of the invocation event occurrence a Request is generated.

A Request, which fully corresponds to the Request concept of UML 2, is an instance of a communication in transit
between a calling instance and a called one. In fact, a request is an instance capturing the data that was passed to the
action causing the invocation event (the arguments that must match the parameters of the invoked behavioral feature);

1. It should be noted here that from the concurrency point of view, there is no distinction between threads, tasks, and processes. They all
are variations of the very same concept, though they may differ in some aspects of their detailed properties (such as the context switch
time and whether low-cost pointers can be used across the concurrency boundary).

30 UML Profile for MARTE, V1.3

information about the nature of the request (i.e., the behavioral feature that was invoked); the identities of the sender and
receiver instances; as well as sufficient information about the behavior execution to enable the return of a reply from the
invoked behavior, where appropriate. Eventually the request may include additional information, like a time stamp.

While each request is targeted at exactly one receiver instance and caused by exactly one sending instance, an occurrence
of an invocation event may result in a number of requests being generated (as in a signal broadcast). The receiver may be
the same instance that is the sender, it may be local (i.e., an instance held inside the currently executing instance, or the
currently executing instance itself, or the instance owning the currently executing instance), or it may be remote. The
manner of transmitting the request, the amount of time required to transmit it, the order in which the transmissions reach
their receiver instances, and the path for reaching the receiver instances are to be defined and annotated by using any of
the different communication mechanisms available, like rendezvous, message queuing, interrupts, etc.

Once the generated request arrives at the receiver instances, a ReceiveOccurrence occurs, which according to the triggers
expected may subsequently launch the behaviors of the receiver instance or of any of its internal instances. Like in the
Common Behaviors Domain Model of UML, two kinds of requests are determined according to the kind of invocation
occurrence that caused it: the sending of a signal, and the invocation of an operation. The former is used to trigger a
reaction in the receiver in an asynchronous way without a reply. The latter applies an operation to an instance, which may
be synchronous or asynchronous and may require a reply from the receiver to the sender.

Observe that modeling elements like invocation occurrence and receive occurrence shown in this domain model are not
explicitly represented in the specification of a system, but they are implicit in the dynamic semantics of the constructs
used.

7.3 UML Representation

A certain impact on the representation of modeling elements is envisioned according to their classifier/instance dual
nature.

The modeling elements defined in this specification may adopt the nature of Classifier or Instance presented here, or both.
This quality of being may be of course specifically stated as part of their definition, but it may be also left to the user to
be decided according to the purpose of the annotation, and the intended semantics.

In most of the cases the concepts defined in the domain view are proposed to be represented in UML by means of a
stereotype extending a concrete UML modeling element. When this is the case, the Classifier or Instance intrinsic nature
of the UML annotated element may lead to identify the corresponding nature, semantics, or concrete variations of the
MARTE concept that is intended to be represented with the annotation. Hence, the explicit different semantics that may
be defined for each MARTE modeling concept, when it is considered as an instance or as a classifier, may be inferred
directly from the fundamental nature of the corresponding UML element that is annotated.

When a stereotype is applied on an instance, and provided it can be also applied on classifiers, the value of the attributes
not explicitly assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype
definition, but they might be overridden by those in its corresponding classifier, if it happens to be annotated with the
same stereotype.

This sub clause describes the UML extensions required to support the concepts defined in the previous domain view. The
set of extensions, to support Core Elements modeling with UML, is organized according to the application context of the
domain concepts. In particular note that not every domain concept will result directly in a UML stereotype or tagged
value. In CoreElements, only the concepts related to the ModalBehavior domain model are concretized as stereotypes.

UML Profile for MARTE, V1.3 31

7.3.1 Profile Diagrams

Figure 7.10 shows the UML extensions for CoreElements. The CoreElements package (stereotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following sub clause.

« profile »
CoreElements
UML::StateMachines:: UML:: StateMachines:: UL StateMachines::
BehaviorStateMachines:: BehaviorStateMachines: BehaviorStateMachines::
State Transition StateMachine
A A
« stereotype » « siereotype » « Steractype »
Mode ModeTransition ModeBehavior
mode

UML::CompositeStructures:: . . .
|nternalSILcires:: UML: Classes: Kemel:

StructuredClassifier Fackage

=

« stereotype »
Configuration

Figure 7.10 - UML profile diagram for CoreElements modeling
7.3.2 Profile Elements Description

7.3.2.1 Configuration
The Configuration stereotype maps the Configuration domain element denoted in Annex F (F.1.10, *Configuration’).

A system configuration may be defined by a set of active system elements (e.g., application components, platform
components, hardware resources), and/or by a set of operation parameters (e.g., QoS parameters or functional
parameters).

Extensions
« StructuredClassifier (from UML::CompositeStructure::InternalStructures)

+ Package (from UML::Classes::Kernel)

Generalizations

* None

32 UML Profile for MARTE, V1.3

Associations

« mode: CoreElements::Mode [*]
The operational modes that are represented by this configuration.

Attributes

» None

Constraints
« None
7.3.2.2 Mode
The Mode stereotype maps the Mode domain element denoted in Annex F.

A Mode identifies an operational segment within the system execution that is characterized by a given configuration.
Working in a given mode may imply that a set of system entities are active during that operational fragment. We factorize
such mode-sensitive system entities in BehavioredClassifier domain concepts. However, since BehavioredClassifier is an
abstract concept (there is not a corresponding stereotype), we add the relationship of the different mode-sensitive system
entities to a mode directly in the concrete stereotypes. See for example, Clause 8 - NFP where a mode is associated to the
NFPs::NfpConstraint stereotype.

Extensions
« State (from UML::UML::StateMachines::BehaviorStateMachines)

Generalizations

* None

Associations

» None

Attributes

+ None

Constraints

[1] Transitions between modes must be stereotyped as ModeTransition.

7.3.2.3 ModeBehavior
The ModeBehavior stereotype maps the ModeBehavior domain element denoted in Annex F (F.1.16, "ModeBehavior’).

A ModeBehavior specifies a set of modes mutually exclusive (i.e., only one mode can be active in a given time instant).
Particularly, the dynamics of modes is represented by connecting modes by means of ModeTransitions.

Extensions
- StateMachine (from UML:: UML::StateMachines::BehaviorStateMachines)

UML Profile for MARTE, V1.3 33

Generalizations

* None

Associations

» None

Attributes

» None

Constraints

[1] Owned States must be stereotyped as Mode, and Owned Transitions must be stereotyped as ModeTransition.

7.3.2.4 ModeTransition
The ModeTransition stereotype maps the ModeTransition domain element denoted in Annex F.

A ModeTransition describes the modeled system under mode switching. A mode transition can be produced in response
to a UML::Trigger. Thus, a UML::Trigger is related to a UML::Event that determines the conditions causing the
triggering action.

Extensions
« Transition (from UML:: UML::StateMachines::BehaviorStateMachines)

Generalizations

* None

Associations

* None

Attributes

» None

Constraints

[1] Owned States must be stereotyped as Mode, and Owned Transitions must be stereotyped as ModeTransition.

7.3.3 Examples

We illustrate a reconfigurable system that uses the concepts of operational mode and configuration.

34 UML Profile for MARTE, V1.3

stm « modeBehavior » Systeml'il'lodes)

/’_ « modeBehavior »
SystemModes

« modaTransiion =
[ModeCrash] ReconfigToDegraded

« mode »
NominalMode

« mode »
DegradedMode

« configuration »
{mo
DegradedMade_SystemConfiguration

de= Degradad Maode)

: Application_RobotArm
col: Commandintespreien eenme Coanmand ban s

0 [p———— 5 d

dpr: GUIRaleashar | LT rinp: Repaster
[B—
cablcales s9ROCHE salochtes calrales o ghociles T
H : Rabet_RessarcesPladorm i

+ Rabat_SwPlatdorm

ez SenwsConsredies

k| h | A Y . | h |
skl hask2 chanceil thannet! nuekl taskd taekS
¥ ¥ : L v - -
RO dloches alprate wallccabinn gipegre, *HICHEN EHI00IE
' g + Fahot_HwPlatiom . J >
T " {7
LR

Figure 7.11 - Modeling Modes and Configurations

In Figure 7.11 we can see that the software application has two possible modes: a NominalMode and a DegradedMode.
We specify the modal behavior by using state machines. For instance, reconfiguration properties, such as mode transitions

and causing events are modeled with UML::Transition and guards/actions notation.

Then, the system configuration under DegradedMode is represented by using a composite structure. The composite

structure represents an allocation scenario of application components into a set of platform resources (for further details

on the allocation, see Clause 11, ’Allocation Modeling (Alloc)’). We say that this configuration is valid for the

DegradedMode by using the mode attribute in Configuration.

| UML Profile for MARTE, V1.3

35

36

UML Profile for MARTE, V1.3

8 Non-functional Properties Modeling (NFPs)

8.1 Overview

This clause describes both domain model and its UML representation for specifying Non-Functional Properties (NFPs). It
also describes how NFPs may be attached to UML modeling elements. This sub package of the MARTE specification
provides a general framework for annotating UML models with NFPs. It is especially focused on formalizing a set of
modeling constructs in order to specify this kind of property in a detailed way.

The NFP modeling framework deals with the following requirements:
« How NFPs are to be described, and particularly what NFPs should be considered.
« How particular instances of NFPs are to be attached to UML model elements.
« How relationships between different NFPs are to be defined.

« How to express constraints on or between NFPs in order to express requirements on the system model.

« Usability of the annotations should minimize the designer efforts?.

+ To provide an open modeling framework, i.e., not tailored towards specifications of a particular modeling concern or a
restricted set of NFPs.

Although the UML Profile for “Modeling Quality of Service and Fault Tolerance Characteristics and Mechanisms”
(QoS&FT) already defines a framework to express a similar concept to NFP, there are some reasons to define a different
one in the context of this specification.

For instance, the QoS&FT profile relies on a two-step annotation process: a) derive a Quality Model for each application
model by instantiating template classes from the QoS Catalogs and, b) annotate UML models with QoS Constraints and
QoS Values, which implies catalog binding and either the creation of extra objects (instantiated from the Quality Model),
or the specification of long OCL expressions. This two-step process requires too much effort for the users and may induce
not readable models.

The QoS&FT profile provides a flexible mechanism to store pre-defined QoS Characteristics. It supports declaring the
most common QoS characteristics for different application domains by means of QoS Catalogs. A particular QoS Catalog
may contain qualifiers of QoS properties including statistical qualifiers and measurement units. At the level of QoS value
specifications, however, QoS&FT ignores some important attributes such as measurement sources, precision, and time
expressions. These properties are required for the domain of MARTE and are therefore supported by the NFPs introduced
in this specification and the Value Specification Language (VSL) defined in Annex B.

In general, the term Quality of Service (QoS) is the aptitude of a service for providing a quality level to the different
demands of its clients. In the computer systems domain, the term QoS is frequently associated specifically with network
issues, such as throughput and bandwidth (and in conjunction with multimedia applications). But it has more recently
begun to be applied to NFPs of more general services. There is still no common consensus about the concepts of NFP and

2. One of the major constraints that drove the definition of this specification has been to minimize the required efforts to apply the profile.
But since our purpose was to enrich UML with capacities to describe formally and efficiently the real-time and embedded features of a
system, applying the profile hence requires some additional effort with regard to a common usage of the UML.

UML Profile for MARTE, V1.3 37

QoS. Anyhow, the NFPs considered here have a larger extent than only quality levels. NFPs may describe the internals
and externals of the system, and some of them directly relate to the users of resource services and their QoS perception
and others not.

Besides, the UML profile for “Schedulability, Performance, and Time Specification” (SPT) provides a straightforward
annotation mechanism specifying a set of predefined stereotypes and tagged values. Moreover, it supports already some
of the requirements for NFP annotations, such as support for symbolic variables and expressions through its specialized
Tag Value Language (TVL). However, its approach was not defined formally enough to allow for new user-defined NFP
or for different specialized domains. Indeed, SPT defines a grammar for powerful concepts, as for instance
“RTtimeValue” expressions, but does not define a mechanism to extend or refine these constructs for more specific needs.

The MARTE NFP modeling framework has reused some useful structural concepts suggested in the UML profile for
QoS&FT. However, some considerations to reduce the inherent usage complexity of the UML profile for QoS&FT and to
facilitate the modeling process have been taken into account and led to a new proposal. Additionally, as much as possible,
features of the SPT profile have been reused. For instance, The Value Specification Language (VSL) introduced in
MARTE extends and formalizes (by means of a metamodel and its associated concrete syntax) some concepts supported
by TVL to annotate constant, variable, tuple, and expression values. In this manner, we provide a flexible and
straightforward framework for supporting a wide variety of NFPs annotations while adopting the best modeling practices
of both UML profiles.

The NFP modeling framework provides the capability to describe various kind of values related to physical quantities,
such as Time, Mass, Energy. These values are used to describe the non-functional properties of a system. This notion of
value is introduced and used in a broader sense in the context of another OMG specification: Systems Modeling Language
(SysML) by the means of value properties and value types.

8.2 Domain View

8.2.1 Overview

The model of a computing system describes its architecture and behavior by means of model elements (e.g., resources,
resources services, behavior features, logical operations, configurations modes, modeling views), and the properties of
those model elements. It is convenient to group application properties into two categories: functional properties, which
are primarily concerned with the purpose of an application (i.e., what it does at run-time); and non-functional properties
(NFPs), which are more concerned with its fitness for purpose (i.e., how well it does it or it has to do it). Both functional
and non-functional property are specialization of a more general concept of value property, related to a quantity.

In the context of model-driven development approaches for real-time and embedded systems, modeling NFPs is of
fundamental relevance and implies a number of design decisions. NFPs provide information about different
characteristics, as for example throughput, delays, overheads, scheduling policies, deadline, or memory usage.

In this and subsequent sub clauses, we will use metamodels to describe the domain viewpoint. Note that, although the
intent of this domain model is to be precise, it is not fully formal since its purpose is primarily to provide profile’s users
with the minimal knowledge to understand the concepts and relationships of the domain.

The NFP annotation framework has many facets that are grouped into individual sub-packages. The overall package
structure of the NFP framework is shown in Figure 8.1.

38 UML Profile for MARTE, V1.3

MARTE::CoreElements:: MARTE:
Foundations VSL
A A
« import » :
i «import »
NFPs i
1
« IM POt Ym = NFP_Nature
i
[
(
H
NFP_Declaration teseemeimport y=====x=- NFP_Annotation

Figure 8.1 - Structure and dependencies of the NFPs modeling package

The purpose and contents of each sub package denoted in Figure 8.1 are described in subsequent sub clauses.

8.2.2 The NFP_Nature package

From an abstract viewpoint, an NFP (4bstractNFP) can be either qualitative or quantitative, as shown in Figure 8.2.

QuantitativeNFPs are measurable properties. A given quantitative NFP may be characterized by a set of
SampleRealizations and Measures.

SampleRealizations represent a set of values that occur for the QuantitativeNFP under consideration at run-time (for
instance, measurements collected from a real system or a simulation experiment). A QuantitativeNFP may be sampled
once or repeated multiple times over an extended run. In a cyclic deterministic system, in which each execution cycle has
the same value, a single sample is sufficient to characterize completely the QuantitativeNFP.

A Measure is a (statistical) function (e.g., mean, max, min) characterizing the set of sample realizations. Measures may be
computed either directly by applying the desired function to the set of realizations values, or by using theoretical
functions of the probability distribution given for the respective QuantitativeNFP.

According to measurement theory (JCGM 200:2008, International Vocabulary of Metrology - Basic and General Concepts
and Associated Terms (VIM), 3rd edition, 2008, BIPM, Paris, France.), measures are defined as a Quantity expressed in
terms of a specific Unit. Quantities can be basic or derived for a given system of quantities. BasicQuantities are for
example length, mass, time, current, temperature, or luminous intensity. The units of measure for the basic quantities are
organized in systems of measures, such as the universally accepted Systeme International (SI) or International System of
Units. Quantities expressed in the same unit can be compared. DerivedQuantities (e.g., area, volume, force, frequency)
may be obtained from basic quantities by explicit formulas known as Dimension relationships. This notion of dimension
is useful for dimensional analysis of non-functional properties: for a given system of quantities, a derived quantity can be
expressed as a set of base quantities in a dimension equation. Additionally, different units of the same physical quantity
may be transformed to, or expressed in terms of, existing base units through a given conversion factor and an offset
factor.

UML Profile for MARTE, V1.3 39

NFP_Mature

AbstractNFFP
realizationValues pararmeber
SampleRealization % é}
domain | 1.7 1 | L
-
QuantitativeNFP QualitativeNFP
0." | function 1
0.*
Measure
MEasUra
9 baseQuantity
Quantity BaseQuarntity
physicalQuantity = |orderad}
1
0.4}, measuramentnit
Unit allowad Units DerivedQuantity

convFactor: Real [0..1]
conviffset Real [0..1]

baselnit / fu__1 Dimension
1

. - symbol: String [0..1]
dimension | haseExponents: Integer ['] fordarad}

Figure 8.2 - Domain Model for NFP Nature

QualitativeNFP refers to inherent or distinctive characteristics that may not be measured directly. In general, a qualitative
NFP is denoted by a label (e.g., “bronze,” “silver,” and “gold” level of service) representing a high-level of abstraction
characterization that is meaningful to the analyst and the analysis tools. More specifically, a qualitative NFP takes a value
from a list of allowed values, where each value identifies a possible alternative.

When looking in more detail at a qualitative NFP, it may be possible to define it in function of a set of criteria, which may
be in turn qualitative or quantitative. Some qualitative NFPs have known meanings that can be interpreted by particular
domains, for example:

« the choice of a scheduler type for a processor, or
« the choice of a statistical distribution for the latency of a network.

In both examples, the full specification of the property requires not only a qualitative value, but also some quantitative
parameters, as for instance: scheduler-type = roundRobin (quantumSize) or latency-value = gamma (mean, variance).

8.2.3 The NFP_Annotation Package

Figure 8.3 shows a domain model for NFP annotations. A model of a system (which is considered in this specification to
be expressed in UML) can be extended by annotated models with additional semantic expressing concepts from a given
modeling concern or domain viewpoint. An annotated model contains annotated elements, which are model elements
extended by standard modeling mechanisms. For example, some typical performance analysis-related annotated elements
are: step (a unit of execution), scenario (a sequence of steps), resource (an entity that offers one or more services), service
(offered by a resource or by a component of some kind) 3,

40 UML Profile for MARTE, V1.3

An annotated element describes certain of its non-functional aspects (i.e., the ones that are directly related to the
annotation concern) by means of NFP value annotations. These annotations are specified by the designer in the models
and attached to model elements. Thus, the role nfpValue on ValueSpecification (Figure 8.3) indicates that an annotated
model element has a value or values for a specific NFP. ValueSpecification is used to define the value expressions
associated with NFPs. The values must conform to the defining NFP in type and multiplicity. Examples of NFPs are: the

total delay of a step when executed (including queuing delays), the utilization of a resource, and the response time and
throughput of a service.

3. The Step and Scenario model elements are defined in GQAM (Clause 15), whilst the Resource and Service model elements are intro-
duced in GRM (Clause 10).

| UML Profile for MARTE, V1.3 41

Issue MARTE13-11: update figure

NFP_Annotation |

CoreElements:: « enumeration »
Foundations:: CanstraintKind
Model/Element required
offerad
f f coalract
Annotated owns 1 Annotated annotationConcemn | ModelingCencern
Element - Model
- owner 1. description: string [0..1]
. 0.1 ¢ context
consirainedElemant
NFP_Constraint made | CoreElements::
CommonBahavior::
kind: Constrainikindg [0..1] * Mode
0.1
speciication 1
" MARTE::W5L::
nfpWalus ValueSpecification
. NFPs::
NFP_Declaration:: =1
nfpDeclaration NFP relevanthiip
NFP_Annotation
CoreElements:: « enumeration »
Foundations:: ConstraintKind
ModelElement required
offered
contract
Annotated owns 1 Annotated annotationConcern | ModelingConcern
I —
Element * owner Model 1.* description: string [0..1]
0.1 context

’ constrainedElement
* ownedRule mode

NFP_Constraint . CoreElements::

I————=={ CommonBehavior::
Mode

kind: ConstraintKind [0..1]
criticality: NFP_Criticality [*]

0..1
specification 1
* MARTE::VSL::
nfoValue ValueSpecification
* NFPs:: .
- NFP_Declaration::
nfpDeclaration NFP relevantNfp

Figure 8.3 - Domain model for NFP annotations

1
UML Profile for MARTE, V1.3

| 42

Due to the abstraction involved in the construction of a model, only some NFPs are relevant to a certain modeling
concern. In other words, a given modeling concern uses a set of NFPs, which establishes the ontology of the domain. For
instance, specific analysis techniques (e.g., performance or schedulability analysis) deal with distinctive non-functional
annotations.

Issue MARTE13-26: update text

An NFP_Constraint is a condition (a Boolean expression) on the non-functional properties associated with model
elements. In general, NFP_Constraints are assertions that indicate restrictions that must be satisfied by a real-time system.
The annotated model defines the context of the constraints for interpreting names used in the value specification. Kind of
constraints qualifies NFP constraints by either required, offered, or contract nature. When a constraint is defined as
required, the values specified in the NFP_Constraint indicate the minimum quantitative or qualitative level that the
constrained elements demand (these elements are usually clients of resources). An example of required constraints for a
step element is the maximum latency for execution. Offered constraints establish the space of NFP values that can support
a model element, as for example the throughput of a CPU (elements in this case are commonly software or hardware
resources). Contract constraints define conditional expressions that specify relationships between offered and required
non-functional values. For instance, if a given model element (e.g., a computing resource) does not support a condition on
one or many of its NFP values (e.g., a processing capacity), other model elements might change one or many of NFP
values accordingly (e.g., the delay to execute a piece of code). In 8.3.2.5, "NfpConstraint’ we give a detailed example of
NFP_Constraints usage.

Multiple NFP_Constraints may serve to specify different levels of qualities for the same services. For instance, in a
component-based architecture, components can support different operational modes, and these operational modes may
provide different non-functional values or qualities for the same component services. This is represented by the
association of NFP_Constraint to Mode. A given NFP_Constraint may also represent the quality level in more than one
Mode. The level of quality modeled by a given NFP_Constraint depends on the resources available and functional
parameters such as state variables that identify the mode configuration. For instance, in a reconfigurable system, resources
may offer different quality depending on the load that they have.

Issue MARTE13-11: update text

Criticality levels can be associated to constraints by using its attribute criticality. These values would indicate the
criticality level of the final deployment at which the constraint must hold. Multiple values of criticality can be associated

each indicating the criticality of the constraint at the corresponding operational mode.

8.2.4 The NFP_Declaration Package

NFP declaration is intended to qualify and assign extended data types to NFP values (Figure 8.4).

This package introduces the notion of value property, further specialized by the notion of non-functional property. A value
property represents any kind of physical quantity relevant in the design of the system. A non-functional property (NFP) is
a kind of value property, which focuses on fitness for purpose aspects. These NFPs are used in other clauses of the
specification for design and analysis of RTES.

UML Profile for MARTE, V1.3 43

Value properties have a TupleType (see Annex D for MARTE extended data types), called ValueType. Two attributes
define the body of value types: valueAttribute and exprAttribute. ExprAttribute is used to specify expressions associated
with value properties. Hence, we are able to assign variables, literals, intervals, and other expressions. The return value of
the expression must conform to the associated value attribute of the value type.

ValueType adds the ability to carry a measurement unit (by means of unitAttribute) and additional qualifiers to values
(qualifierAttributes).

A ValueType with a measurement unit is associated with physical measures. In sub clause 8.3.3.1, we show some pre-
declared units largely used in the domain (e.g., time units, data size units, transmission speed units) that can be used when
specifying values.

NFP and NFP_Type are direct specialization of ValueProperty and ValueType to describe non-functional aspect of a
system.

Examples of qualifiers are statisticalQualifier, direction, value source, measurement precision, and (see NFP Types
Library in sub clause 8.3.2.4). A statisticalQualifier indicates the type of statistical measure of a given property (e.g.,
maximum, minimum, mean, percentile, distribution). The direction attribute (i.e., increasing or decreasing) defines the
type of the quality order relation in the allowed value domain of NFPs. Indeed, this allows multiple instances of NFP
values to be compared with the relation “higher-quality-than” in order to identify what value represents the higher quality
or importance. Source is a peculiarity of non-functional properties associated with the origin of specifications. Precision
is the degree of refinement in the instruments and methods used to obtain a result.

NFP_Declaration

MARTE::VSL:: NFPs:: MARTE::VSL::
ValueSpecification NFP_Nature:: DataTypes::
Unit TupleType
0.1 defaultyslue 0.1 " Pallcwedunits
etaultLing
valughtribute 1
(subsets wpleAtributes)
unitAtiribute 0.1 MARTE::VSL::
ype > Esetsmplemtnnuteg, o
ValueProperty oo ValueType = DataTypes::

1 .—1‘} Proparty
expritiibute 0.

{subsets tupladtributes}

qualifieritibutes "=
fl‘}\ {subsets pleAttributes)

NFP NFP_Type

Figure 8.4 - Domain Model of NFP Declaration

Notice that the set of concepts supporting the declaration of NFPs provides means to annotate NFPs in a first phase, but
the concrete infrastructure for specifying values is supported by VSL (Annex B). Nevertheless, default measurement units
and values may be assigned when declaring NFPs and NFP types.

The ability to specify all the kinds of values supported by VSL is a key concern for NFP annotations. Indeed, NFP

specifications need to be composable. That means, it should be possible to specify NFP values at a fine-grained level and
compose them into higher-level specifications. Conversely, a high-level NFP specification should be decomposable such
that fine-grained NFP specifications can be refined. The refinement relationship between two levels of NFP specification

44 UML Profile for MARTE, V1.3

must ensure consistency between both levels. The process of composition and decomposition should be carried out in
such a manner as to guarantee this consistency. NFP specifications should be able to be refined so that new NFP
specifications can be based on existing ones.

8.3 UML Representation

This clause describes the UML extensions required to support the concepts defined in the previous domain view. The set
of extensions to support NFP modeling with UML is organized according to the application context of the domain
concepts. In particular, in the NFP modeling framework, note that not every domain concept will result directly in a UML
stereotype or tagged value. This is because some domain concepts are abstract, representing generalizations that will not
appear directly in any UML model.

For instance, the abstract notion of a “Measure” is very useful as an abstraction in our framework, but will only be
manifested in its concrete forms (e.g., delay, throughput, capacity) in MARTE models. While a corresponding stereotype
could have been defined for this abstract concept, it would never be used in practice. Therefore, we have chosen to only
define stereotypes for concepts that we envisage are actually going to be used in practical modeling situations. This
results in a simpler and more compact profile.

Thus, we first describe the extensions concretized in stereotypes. In Annex D, a set of NFP Types is predefined, which is
used extensively in MARTE to type and qualify non-functional properties.

In sub clause 8.3.3, we will describe some examples that use the whole extensions for NFP annotations with both tagged
values and UML constraints.

8.3.1 Profile Diagrams

Figure 8.5 shows the UML extensions for NFP modeling. The NFP Modeling package (stercotyped as profile) defines
how the elements of the domain model extend metaclasses of the UML metamodel. These stereotypes are listed in
alphabetical order. The semantic descriptions corresponding to these stereotypes and their properties are provided in the
following sub clause.

UML Profile for MARTE, V1.3 45

Issue MARTE13-11: update figure

« profile »
NFPs
« metaclass » « metaclass » « metaclass »
UML::Classes::Kernel:: UML::Classes::Karnel:: UML::Classes::Kernel::
EnumerationLiteral Property Constraint
A A A
* sterectype » « stereotype » « stereotype »
Unit Nfp NfpConstraint
canvFactos: Real [0.1] kind: Constraintking [0..1]
canvOffsat: Real [0..1]
_ o
* |mode
« metaclass » « stereotype » « stereotype »
UML::Classes::Kernel:: VSL::DataTypes:: TupleType MARTE::CoreElements::
SOy tupleAttrib: Property [7] Mode
f) [P
« stereotype » « stereotype » « enumeration »
Dimension NipType ConstraintKind
symbal: String [0.1] valuealirit: Propery [0..1] {subsets bupleAllrib) fegirid
baseDimension: Difmansion [] {ordered) unitattrib: Fropary [0..1] {subsets tupleAtiris) offarad
basaExpanent; Intager [] fordsred) wxpraltib: Property [0..1] {subsets uple Attris} contract

« profile »
NFPs

« metaclass »

« metaclass »

« metaclass »
UML::Classes::Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel::
EnumerationLiteral Property Constraint
A A A
« stereo_type » « stereotype » « stereotype »
Unit Nfp NfpConstraint
convFactor: Real [0..1] kind: ConstraintKind [0..1]
convOffset: Real [0..1] criticality: NFP_Criticality [*]
baseUnit: Unit [0..1]
* |mode

« stereotype »
MARTE::CoreElements::
Mode

« stereotype »

« metaclass »
VSL::DataTypes::TupleType

UML.::Classes::Kernel::
Lt tupleAttrib: Property [*]

| 7

« stereotype » « stereotype » « enumeration »
Dimension NfpType ConstraintKind
symbol: String [0..1] valueAttrib: Property [0..1] {subsets tupleAttrib} required
baseDimension: Dimension [*] {ordered} unitAttrib: Property [0..1] {subsets tupleAttrib} offered
baseExponent: Integer [*] {ordered} exprAttrib: Property [0..1] {subsets tupleAttrib} contract

Figure 8.5 - UML profile diagram for NFPs modeling

| 46 UML Profile for MARTE, V1.3

8.3.2 Profile elements description

8.3.2.1 ConstraintKind

ConstraintKind is an enumeration type that defines literals used to specify the nature of constraint assertions by either
required, offered, or contract nature.

Literals

* required
It indicates the minimum quantitative or qualitative level that the constrained elements demand (these elements are
usually clients of resources).

» offered
It establishes the space of values that can support a model element (elements in this case are commonly software or
hardware resources).

. contract

It defines conditional expressions that specify relationships between offered and required non-functional values.

8.3.2.2 Dimension

A Dimension is a relationship between a quantity and a set of base quantities in a given system of quantities.

Extensions

+ Enumeration (StructuredClasses::Kernel)

Generalizations

* None

Associations

* None

Attributes

* symbol: String [0..1]
This attribute represents the symbol used to designate the dimension.

* baseDimension: Dimension [*] {ordered}
This attribute represents the base dimensions by which the dimension of a derived quantity unit is created. Basic
dimensions do not require this attribute.

* baseExponent: Integer [*] {ordered}
This attribute represents the exponents that characterize the base dimensions used to define the dimension of a
derived quantity. Basic dimensions do not require this attribute.

Constraints

* None

8.3.2.3 Nfp

UML Profile for MARTE, V1.3 47

The Nfp stereotype maps the NFP domain element denoted in Annex F (F.2.10, "ModelingConcern (from
NFP_Annotation)’).

Non-Functional Properties (NFPs) declares an attribute of one or more instances in terms of a named relationship to a
value or values. Nfp is intended to declare, qualify, and assign extended data types to NFP values.

Extensions

+ Property (from UML::StructuredClasses::Kernel)

Generalizations

» None

Associations

« None

Attributes

* None

Constraints

* None

8.3.2.4 NfpType

This NfpType stereotype maps the NFP_Type domain element denoted in Annex F (F.2.12, ’NFP_Constraint (from
NFP_Annotation)’). Note, however, that the qualifierAttributes role is not implemented in the UML view. In practical
terms, the tupleAttribute inherited from TupleType is sufficient to define qualifier attributes.

An Nfp type is a type whose instances are identified only by NFP value specifications. An Nfp Type contains specific
attributes to support the modeling of NFP tuple types.

Extensions
+ DataType (from UML::StructuredClasses::Kernel)

Generalizations
+ TupleType (from VSL::DataTypes) in Annex B, sub clause B.3.2.5.

Associations

* None

Attributes

» valueAttrib: Property [1]
both physical and non-physical NFP types have a value attribute, which serves as
placeholder to specify a value of NFPs.

* unitAttrib: Property [0..1]
measurement unit declaration that apply to all the value specifications of the NFP.
Usually, it is an enumeration data type with a list of the valid measurement units.

48 UML Profile for MARTE, V1.3

* exprAttrib: Property [0..1]
attributes representing an expression. MARTE uses the VSL language to define expressions.

Constraints

- None

Issue MARTE13-11: update text

8.3.2.5 NfpConstraint

This NfpConstraint stereotype maps the NFP_Constraint domain concept denoted in Annex F (F.2.11, "NFP (from
NFP_Declaration)’).

NfpConstraint extends the UML mechanism for applying a condition or restriction to modeled elements. Specifically,
NFP constraints support textual expressions to specify assertions regarding performance, scheduling, and other embedded
systems’ features, and their relationship to other features by means of variables, mathematical, logical, and time
expressions.

Extensions

 Constraint (from UML::StructuredClasses::Kernel)

Generalizations

« None

Associations

* mode: Mode [*]
The set of modes in which the NFP constraint annotations are valid.

Attributes

* kind: ConstraintKind [0..1]
Tagged definition qualifying NFP constraints by either required, offered, or contract nature.

» criticality: NFP_Criticality [*]
This attribute indicates the level of criticality at which the NFPConstraint must hold. Multiple levels can correspond
to multiple corresponding modes of the configuration of the model.

Constraints

* None
8.3.2.6 Unit

This Unit stereotype maps the Unit domain element denoted in Annex F (F.2.18, ’StatisticalQualifierKind’).

Unit is a qualifier of measured values in terms of which the magnitudes of other quantities that have the same physical
dimension can be stated. A unit often relies on precise and reproducible ways to measure the unit. For example, a unit of
length such as a meter may be specified as a multiple of a particular wavelength of light. A unit may also specify less
stable or precise ways to express some value, such as a cost expressed in some currency, or a severity rating measured by
a numerical scale.

UML Profile for MARTE, V1.3 49

Unit is defined as a stereotype of EnumerationLiteral. This allows modelers to assign a list of allowed units to a particular
physical NFP type by means of a related Enumeration element. In this way, we bound the universe of legal units that
apply to a specific kind of NFPs.

Units can be declared with a parameter representing the Conversion Factor that is applied to a Base Unit to determine the
value in terms of the specified measurement unit.

Extensions

« EnumerationLiteral (StructuredClasses::Kernel)

Generalizations

» None

Associations

» None

Attributes

* convFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by a numerical factor.

» offsetFactor: Real [0..1]
This parameter allows referencing measurement units to other base units by applying an offset value
to them.

* baseUnit: Unit [0..1]
This attribute represent the base unit by which a derived measurement unit is created
Basic units do not require this attribute.

Constraints

« None
8.3.3 Graphical Syntax of NFP Value Specification

In this sub clause, we define an alternative graphical syntax for value specifications having NfpType as data type. This
syntax consists of a pair of a value and a unit:

<nfp-value> ::= <value-specification> [' ' <unit-enumeration>]
The following are typical examples:

5 ms # a duration value

50 kHz # a frequency value

Note that this notation is for the graphical view of models only. The tuple notation (see sub clause B.3.3.9) is still valid
for NFP values (NfpType inherits from VSL::TupleType), both in graphical models and in the repository as well. For
instance, the NFP value: '50 kHz' can be specified in the model repository as: '(50, -, kHz, max, -, est, -)' or '(value=50,
expr=null, unit=kHz, statQ=max, dir=null, source=est, precision=null)".

50 UML Profile for MARTE, V1.3

The main rationale of the “value-unit” notation is readability of graphical models. Specific tools could provide more
flexibility in the graphical notation. For instance, users may be able to customize the elements of a tuple in an NFP value
specification that should be displayed. However, because of its common usage in engineering models in general, the
“value-unit” notation is normative (although not mandatory) in MARTE.

8.3.4 Examples

A requirement for NFP annotations is a trade-off between usability and flexibility. Usability suggests the merit of
declaring a set of standard NFPs for a given modeling domain, so they can be easily referred to and, consequently, every
user of the annotations means the same thing. For NFPs with well-known variants, a set of declarations can be
standardized, which cover the important cases with differently-named measures; these can be translated if necessary by
domain specialists for the use of a specific tool with different names. However there are some NFPs whose meaning is
domain- or even project-dependent. This requires a capability for users to define their own NFPs. Thus flexibility and
expressive power requires that the users have the capability to define their own NFPs, but usability requires a set of
standard measures that can be used in a straightforward way.

The following sub clauses will describe respectively an example of NFP model library and examples of usage of such
library.

8.3.4.1 Example of NFP model library definition

This sub clause provides an example of NFP types model library definitions. This example corresponds to an excerpt of a
more complete model library predefined for MARTE and specified in detail in Annex D.1. This MARTE library includes
predefined data types supporting NFP annotations commonly used in the real-time and embedded system domain.

NFP Types are implemented in MARTE through UML data types. UML data types (DataType metaclass) are a special
kind of classifier, similar to classes. A data type differs from a class in that instances of a data type are identified only by
their values. Like a class, data type may have attributes. In VSL, we define four kinds of composite data types (data types
allowing attributes): IntervalType, CollectionType, ChoiceType, and TupleType. A data type with attributes of different
types is called TupleType (see Annex D for MARTE extended data types). If a tuple type has attributes with different
types, then instances of that data type will contain attribute values matching the types of their corresponding attributes.
Particularly in MARTE, we define a set of pre-declared NFP types that are useful for the other sub-profiles. However,
other domain-specific libraries can be defined either using the NFP profile or specializing the MARTE libraries.

Figure 8.6 shows the package pre-declaring NFP types. Note that we import the MARTE primitive types defined in the
VSL annex (Annex B). The list of MARTE primitive types includes Real and DateTime in addition to the pre-declared
UML primitive types. However, note that the set of UML primitive types are completely redefined within MARTE in
order to allow specifying operators on these types (more rationales on this are provided in Annex D.1).

General MARTE data types that are not NFP types are declared in the MARTE DataTypes library (Annex D). This library
uses stereotypes of the VSL Profile for data types (see Annex B).

General MARTE NFP types are declared in the BasicNFP_Types library (Annex D). A root NFP type called
NFP _CommonType is defined to factorize common NFP type attributes.

In addition to value, expression, and unit attributes, NFP types are declared specifying a set of qualifier attributes required
to precisely specify and qualify NFP values.

The semantic of the provided qualifier attributes is the following:

UML Profile for MARTE, V1.3 51

52

source: SourceKind [0..1]
peculiarity of NFPs associated with the origin of specifications. Predefined kind of sources for values
are estimated, calculated, required, and measured.

precision: Real [0..1]
degree of refinement in the performance of a measurement operation, or the degree of perfection in the
instruments and methods used to obtain a result. Precision is characterized in terms of a Real value, which
is the standard deviation of the measurement.

statQ: StatisticalQualifierKind [0..1]
statistical qualifier indicates the type of “statistical” measure of a given property (e.g., maximum, minimum,
mean, percentile, distribution).

dir: DirectionKind [0..1]
direction attribute (i.e., increasing or decreasing) defines the type of the quality order relation in the allowed
value domain of NFPs. Indeed, this allows multiple instances of NFP values to be compared with the
relation “higher-quality-than” in order to identify what value represents the higher quality or importance.

UML Profile for MARTE, V1.3

« modelLibrary »
MARTE_Library::MeasurementUnits

« dimension »
TimeUnitKind
{symbol =T}

« dimension »
DataSizeUnitKind
{symbol = D}

«unit» s

«unit» tick

«unit» ms {baseUnit=s, convFactor=0.001}
«unit» us {baseUnit=ms, convFactor=0.001}
«unit» min {baseUnit=s, convFactor=60}
«unit» hr {baseUnit=min, convFactor=60}
«unit» day {baseUnit=hrs, convFactor=24}

«unit » bit

« unit » Byte {baseUnit=bit, convFactor=8}
« unit » KB {baseUnit=Byte,
convFactor=1024}

«unit » MB {baseUnit=KB,
convFactor=1024}

«unit » GB {baseUnit=MB,
convFactor=1024}

« dimension »
FrequencyUnitKind
{baseDimension = {T}
baseExponent = {-1}}

« unit » Hz

« unit » kHz {baseUnit=Hz,
convFactor=1E3}

« unit » MHz {baseUnit=Hz,
convFactor=1E6}

« unit » GHz {baseUnit=Hz,
convFactor=1E9}

« unit » rpm {baseUnit=Hz,

convFactor=0.0167}

« dimension » « dimension »
PowerUnitKind DataTxRateUnitKind
{baseDimension = {L, M, T}, {baseDimension = {D, T},
baseExponent = {2, 1, -3}} baseExponent = {1, -1}}

« unit » b/s
« unit » Kb/s {baseUnit=b/s, convFactor=1024}
« unit » Mb/s {baseUnit=Kb/s, convFactor=1024}

«unit » W
« unit » mW {baseUnit=W, convFactor=1E-3}
« unit » kW {baseUnit=W, convFactor=1E3}

A
| « modelLibrary »
« import » MARTE_Library::MARTE_PrimitiveTypes
|
« modelLibrary » .
MARTE_Library::MARTE_DataTypes « import »
« dataType » « dataType » « dataType »
« collectionType » « collectionType » « intervalType » « primitive »
{ collectionAttrib= vectorElement } { collectionAttrib= matrixElement } { intervalAttrib = bound } VSL_Expression
IntegerVector IntegerMatrix Integerinterval -
vectorElem: Integer [0..*] matrixElem: IntegerVector [0..*] bound: Integer [2]
A
i
« modelLibrary » « imFIJOﬂ »
MARTE_Library::BasicNFP_Types |
i
- « dataType » « enumeration »
« enumeration » i
SourceKind « e_num_eratl_on » « nfpType » StatisticalQualifierKind
DirectionKind { exprAttrib= expr }
est incr NFP_CommonType 2?::(
meas decr . i
calc expr: VSL_Expression mean
req source: SourceKind variance
statQ: StatisticalQualifierKind range
dir: DirectionKind percent
mode: String [*] distrib
determ
Z> other
[I [T T 1
« dataType » « dataType » « dataType » « dataType » « dataType » « dataType »
« nfpType » « nfpType » « nfpType » « nfpType » « nfpType » « nfpType »
{ valueAttrib= value } { valueAttrib= value } { valueAttrib= value } { valueAttrib= value } { valueAttrib= value } { valueAttrib= value }
NFP_Boolean NFP_Natural NFP_String NFP_Real NFP_Integer NFP_DateTime
value: Boolean value: UnlimitedNatural value: String value: Real value: Integer value: DateTime
«dataType » « dataType » « dataType » « dataType » « dataType »
«nfpType » « nfpType » « nfpType » « nfpType » « nfpType »
{ uni'Atlrib.= unit } { unitAttrib= unit } { unitAttrib= unit } { unitAttrib= unit } { unitAttrib= unit }
NFP_Duration NFP_DataTxRate NFP_Frequency NFP_Power NFP_DataSize
unit: TimeUnitKind unit: DataTxRateUnitKind unit: FrequencyUnitKind unit: PowerUnitKind unit: DataSizeUnitKind
clock: String precision: Real precision: Real precision: Real precision: Real
precision: Real
worst: Real
best: Real

Figure 8.6 - Extract of the model library defining the pre-declared Basic NFP Types and measure units

| UML Profile for MARTE, V1.3

The NFP_CommonType (parent of all the other NfpTypes) includes a set of probability distribution operations that are
defined in Annex D, sub clause D.2.2 (NFP_CommonType). This list of probability distributions is certainly not
exhaustive but it includes the more common distributions used in state-of-the-art performance analysis and simulation
tools. Further probability distributions can be added in specialized libraries without needing any modification in the
MARTE profile or VSL. Probability distribution is a fundamental concept to specify stochastic values. A probability
distribution assigns to every interval of the real numbers a probability, so that the probability axioms are satisfied. In
technical terms, a probability distribution is a probability measure whose domain is the Borel algebra on the reals. A
probability distribution is modeled in MARTE as the name of the function and a set of parameters allowing estimating the
function in terms of the standard form of the distribution.

Probability distributions are defined as operations of NFP types, each with particular parameters. The included
probability distribution function values are described by the following:

e Dbernoulli (prob: Real)
Bernoulli distribution has one parameter, a probability (a real value no greater than 1).

* binomial (prob: Real, trials: Integer)
Binomial distribution has two parameters: a probability and the number of trials (a positive integer).

* exp (mean: Real)
Exponential distribution has one parameter, the mean value.

+ gamma (k: Integer, mean: Real)
Gamma distribution has two parameters (“k” a positive integer and the “mean”).

* normal (mean: Real, standDev: Real)
Normal (Gauss) distribution has a mean value and a standard deviation value (greater than 0).

* poisson (mean: Real)
Poisson distribution has a mean value.

* geometric (p: Real)
The Geometric distribution is a discrete distribution bounded at 0 and unbounded on the high side.

* triangular (min: Real, max: Real, mode: Real)
The Triangular distribution is often used when no or little data is available; it is rarely an accurate representation
of a data set.

* logarithmic (theta: Real)
The Logarithmic distribution is a discrete distribution bounded by [1,...]. Theta is related to the sample size and
the mean.

For example, consider a property typed by NFP_CommonType:
distribution: NFP_CommonType

The values of this property can be constructed by using a special VSL expression called CallOperationExpression (see the
VSL annex, package Expressions, for further details). For instance, the following expression:

distribution= normal (50, 7)

is a CallOperationExpression that calls the probability distribution operation “normal” of the defining NfpType
(NFP_CommonType) and provides the arguments for its parameters “mean: Real" and “standDev: Real.”

Two kinds of data types are defined: physical dimension types and dimensionless types. In this latter group, we define all
the data types supporting NFP literal values (e.g., NFP_Real, NFP_DateTime, NFP_Boolean). For dimensionless types,
the value attribute is typed according to the related primitive type. For dimension types, the value attribute has the

54 UML Profile for MARTE, V1.3

primitive type Real. This has a practical definition intended to allow modelers representing measured NFP values in the
domain of real numbers. Note that this set of dimension types is not a complete one, since in Annex D, we include
additional time and non-time specific NFP types as predeclared MARTE data types.

The time at which a VSL expression is evaluated depends on different factors. For example, some expressions could be
evaluated when a resource allocation at modeling level is done. Other properties may be evaluated when a given “real
time situation” is modeled. Analysis tools could also provide evaluation of certain expressions.

Notice that dimension types have measurement units. The BasicMeasurementUnits package (stereotyped «modelLibraryy)
define a set of measurement units that are useful for the MARTE scope. We apply to this package the «unity stereotype
defined in the NFP profile. As illustrative examples, we show in Figure 8.6 some units used in the MARTE domain (a
complete MARTE library for measurement Units is shown in Annex D.1). It holds a set of self-defined units, as for
example: “s” denoting the time unit for “seconds.” Other derived units are defined with basis on basic units. For instance,
“ms” denotes a time unit obtained with basis on “seconds” by a conversion factor of “0.001.” Modelers are able to define
further units in the same way.

8.3.4.2 Usage example of NFP model libraries

We consider three annotation mechanisms: Tagged Values, Constraints, and (Instance Specification) Slots. Tagged values
are a kind of value slots associated with attributes of specific UML stereotypes. Hence, one tagged value characterizes
just one model element. On the other hand, a constraint is a condition expressed in natural language text or in a machine-
readable language (e.g., OCL) for declaring some semantics of one or various model elements. This is useful if we define
NFPs that involve more than one element (for instance, a delay between two different events). On the other hand, NFP
annotations in instance specification slots are related to classifier-defined NFPs. Thus, while the stereotype attribute
mechanism implies the creation of UML profiles, the two latter are mainly aimed at supporting user-defined NFPs.

We explore the capabilities of the NFP modeling framework to annotate NFPs by means of stereotypes and tagged values.
In Figure 8.7, we show a generic scheme to define and apply NFPs. The Basic NFP_Types package (stereotyped
modelLibrary) corresponds to that presented in Figure 8.6. It encloses the general NFP types and their default
measurement units supporting NFP annotations through all the UML profile for MARTE. Additionally, we depict an
extract of the UML sub-profile for GQAM (Generic Quantitative Analysis Modeling) (detailed in Clause 15), which uses
the basic NFP Types. To illustrate annotation examples we present a small example of modeling for quantitative analysis.

« modelLibrary»
BasicNFP_Types

i

« import»
i

1]

« profile »
GQAM
(Generic Quantitative
Analysis Modeling

«apply UserModelForAnalysis

Figure 8.7 - General Structure for Declaring and Annotating NFPs
In the GQAM “profile” package (Figure 8.8), we illustrate a description of one of the stereotypes defined in Clause 15
and some of its property definitions. The example’s intent is to show some particulars of the extension mechanisms used

in the NFP modeling framework. These arise from the fact that we use NFP annotations for defining most of types of the

UML Profile for MARTE, V1.3 55

stereotype attributes. This feature provides more flexibility to the profile and full compliance with the profile extension
mechanism provided by UML2. The «gaExecHost» stereotype, which represents an execution resource with annotations
for analysis, has efficiency properties (e.g., utilization), and overhead properties as for example cntxtSwT (context switch
time), clockOvh (clock overhead). These attributes are then typed with the NFP Types defined in the Basic NFP_Types
model library (e.g., NFP_Duration, NFP_Real), which, in turn, contains the tuple information of NFPs. At this stage, we
use the NFP qualifiers statQ (statistical qualifier), dir (direction), and unit (measurement unit) as default values of NFPs
to define the exact semantic of the non-functional attributes. However, this does not prevent modifying these attributes for
specific instances.

« profile»
GQAM

« metaclass »
UML:: InstanceSpecification

/

« stereotype»
GaExecHost

utilization: NFP_Real (statQ= percent, dir= decr)

clockOvh NFP_Duration= (statQ= max, unit= us)
cntxtSWT. NFP_Duration= (stat Qe max)

Figure 8.8 - An example of declaration of NFPs in stereotype attributes

The use of this profile definition is shown in the package named UserModelforAnalysis (Figure 8.9). In this model, an
instance of a node model element is stereotyped «gaExecHost». The associated tagged values of this stereotype are shown
in a compartment (see notation alternatives in the UML Superstructure document, Clause of Profiles). We can see that
tagged values are specified as structured data types. For example, clockOvh is a tuple value that has expression and source
item values. The expression: “normal(50,7)” is a CallOperationExpression (see the VSL annex, package Expressions, for
further details) which calls the probability distribution operation of the defining NFP type (NFP_Duration). The
utilization tagged value is specified as an expression string making reference to a variable $u/. As a methodological rule
that we adopted in the analysis sub clauses, variables indicate to analysis tools that these attributes must be computed and
returned to the UML model. Note that the default values defined in the stereotype attribute declarations can be overridden
in the tagged values if required. For instance, the measurement unit of clockOvh has been overridden in our example.

56 UML Profile for MARTE, V1.3

UserModelForAnalysis

UserModelForAnalysis

UserModelForAnalysis

« gaExecHost»
uC: Controller

« gaExecHost»
utilization= (value=$u1, source= calc)
clockOvh= (value= normal (50, 7), source= est)
cntxtSwT= (value= 8, unit= us, source= meas)

« gaExecHost»
uC: Controller

« gaExecHost »

utilization= ($u1, -, -, -, calc, -)
clockOvh= (normal(50, 7), -, -, -, est, -)
cntxtSwT= (8, us, -, -, -, meas, -)

« gaExecHost»
uC: Controller

« gaExecHost »
utilization= $u1
clockOvh= normal (50, 7)
cntxtSwT= 8 us

(a) Extended Notation

Figure 8.9 - Example of user model for analysis with NFP annotations

The second mechanism considered to annotate UML models with non-functional aspects is through NFP Constraints.

(b) Reduced Notation

(c) Graphical Value-Unit
Notation

Constraints commonly define relational expressions between two terms containing parameters, specified by means of
VSL variables or UML properties, and possibly numeric values. Such constraints can be used to identify critical
performance parameters and their relationships to other parameters on the system modeled.

The third NFP annotation mechanism is by using slots of UML Instance Specifications. For this purpose, NFPs are to be
declared at classifier level and NFP values are specified within the related slots. This mechanism has the disadvantage
that annotations are confined to classifiers’ instances.

Figure 8.10 shows an example for using the two latter annotation mechanisms (constraints and slots). An important aspect
to have in mind regarding this particular example is that we declare NFPs at user model level, instead of defining NFPs
as stereotype attributes like in the formerly illustrated mechanism. Our aim is to show how modelers can define their
owns NFPs and use them to specify NFP values by means of NfpConstraints and Slots. Hence, in such cases, the

semantics of the defined NFPs is user-dependent4.

4. Note that, in general, if modelers will use the different MARTE sub-profiles, they should follow the annotation mechanism of stereotype
attributes and tagged values to specify NFPs and NFP values. The approach illustrated in the second example has been included in
MARTE in order to support user model-defined (or library-defined) NFPs.

UML Profile for MARTE, V1.3

57

Controller

«nfp» procUtiliz NFP_Real= (percent, decr)
«nfp» schedUtiliz NFP_Real= (percent, decr)
«nfp» contextSwitch NF P_Duration= (max)
«nfp» clockF req: NFP_F requency= (max, us)

Internal Composite Structure ofa
specific Controllerinstance

A
«computingResource»
uC: Controller

proc Utiliz= ($u1, calc)

« scheduler »

« clockResource » {schedPolicy = F e dPriority}

p1 /procClock s 1/sysSched
w\\‘ 1
- .

“ « nfpContraint » {kind=offered }
\‘ {contextSwitch== (8, us, meas) and

S s ched Utiliz== (5, percent) }

\‘-
« nfpContraint » {kind= contract}

{ procUtiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq== (20, MH2z) }

VSL Conditional

/ Expression

Condition If-True Expression If-False Expression

e

procU tiliz > (90, percent) ? clockFreq==(60, MHz) : clockFreq==(20, MH z)

VSL OperationCallExpression VSL PropertyCallExpres sion VSL Tuple Specific ation
(VSL infix notation: (call to a property of (related to the
call to the operation > *, ‘Controller) ‘NFP_Frequency’ NFP type)

‘greater than’)
Figure 8.10 - Example of user model with NfpConstraint and Slot annotations

We defined a classifier, named Controller, that owns a set of properties stereotyped as «nfp». Note that we have declared
similar NFPs as in the previous example, but we intentionally changed their names to emphasize the fact that, in this case,
the declared NFPs have user-specific meaning. As for the stereotype annotation mechanism, in this example we use
NFP_Types to define the structure of NFP value specifications. We also defined default values for NFPs, which state the
predefined value qualifiers: statistical qualifier, direction, and unit.

Issue MARTE13-26: update text

58 UML Profile for MARTE, V1.3

We created a uC instance of Controller and then specified its internal structure by means of a Composite Structure
diagram. These instance-level model elements are stereotyped with high-level modeling constructs,
«computingResourcey», «scheduler», and «clockResource», which are formally introduced in the GRM sub-profile, sub
clause 10.3. At this stage, we specify a set of NFP values by means of two NfpConstraints attached to the specific
constrained elements. In both cases, the constrainedElement (association end from the UML Constraint metaclass to UML
Element metaclass) are the specific model elements to which the non-functional annotations apply, and the context
(association end from the UML Constraint metaclass to the UML Namespace metaclass) is the Controller node element,
which actuates as a namespace context for VSL expressions.

For instance, one of the NFP_Constraints is attached to the sysScheduler part element. This one defines an “offered” non-
functional constraint written in VSL (see Annex B for details on the VSL textual language). The VSL expression is a
three-level nested boolean expression. In the first level, an infix CallOperationExpression makes reference to the “and”
operation (see the list of operations in Annex D) by specifying two operands. These operands are in turn other
CallOperationExpressions making reference to the equalTo (“==") operation, which has two operands. The first operand
in both cases is PropertyCallExpression (calling to the contextSwitch and schedUtiliz properties of Controller) and the
second operand in both expressions is a particular value that is conform to the defining property. In simple words, VSL
allows for specifying NFP values by using (NFP) properties previously declared in the model.

In order to complement this basic annotation, a more complex NFP_Constraint has been specified for the procClock par
(processor clock instance). We illustrate a non-functional contract assertion that is intended to be allowed at run time.
When the Controller utilization becomes greater than 90%, the clock’s frequency increase from 20 MHz to 60 MHz. In
this example, we do not make any assumption about the run-time mechanisms supporting this assertion. The contract has
been specified by using a VSL Conditional Expression, whose structure is detailed in Figure 8.10.

The third proposed annotation mechanism is depicted by defining a procUtiliz slot within the uC instance of Controller.
As in the first example (Figure 8.9), the utilization slot is specified by a variable $u/. The methodological rule indicates,
again, that this variable should be computed by analysis tools and returned to the UML model.

Additional examples of VSL time expressions and the constraint annotation mechanism are given in Annex B.

UML Profile for MARTE, V1.3 59

60

UML Profile for MARTE, V1.3

9 Time Modeling (Time)

This clause contains both domain and UML viewpoints for time modeling. The clause describes a general framework for
representing time and time-related concepts and mechanisms that are appropriate for modeling real-time and embedded
systems. These serve as a base for the standard modeling elements defined in subsequent clauses of the MARTE profile.

Since Real-time systems are specifically concerned with the cardinality of time (e.g., delay, duration, clock time),
(chrono-) metric time will be considered. Embedded systems may also require logical time models. Thus, both logical and
metric times are covered in this specification.

9.1 Overview

The time domain model described in this clause identifies the set of time-related concepts and semantics that are
supported by this profile. The model is quite general, and a given application may need to use only a subset of its
concepts and semantics.

Time can be differently perceived at the different phases of the development of an embedded real-time system (modeling,
design, performance analysis, schedulability analysis, implementation, etc.). The concept of ordering (i.e., something
occurring before or after another thing) is common to many Time representations. MARTE adopts models of time that
rely on partial ordering of instants. The temporal ordering of behavior activities can be represented in many ways,
depending on the level of precision required. There are three main classes of time abstraction used to represent behavioral
flows (with minor variations at each level). They are known under different names in different contexts, and these names
are also often used with different meanings elsewhere (so there is no general consensus).

« Causal (untimed): in such models, one is only concerned about instruction precedence/dependency. These relations
can be partial in presence of concurrency. Cooperation between concurrent entities takes place as communications (i.e.,
through events). Communications themselves can be fully asynchronous, blocking (with the emitter awaiting a returned
reply), or hand-shake synchronization.

« Synchronous (partially timed): this class of time abstraction adds a notion of simultaneity, and divides the time scale
in a discrete succession of instants. Rich causal dependencies can take place inside an instant, leading to the
“instantaneous reaction” abstraction. When the clock(s) is (are) linked to a regular pulse, clock ticks become the unit
scale of a discrete-time model (but this need not be the case in any “synchronous” temporal model). This level is used
in hardware modeling (at RTL level) where instantaneous propagation corresponds to “combinatorial” behaviors, in

simulation formalisms (as in MATLAB® / SIMULINK®, or in Hardware Description Languages such as SystemC/
VHDL/Verilog with &-cycles representing causal zero-delay dependencies), or in software modeling when relying on
synchronous languages semantics (such as Esterel or SCADE or Signal). A generalization of the synchronous domain
allows clocked entities to be linked in a looser, asynchronous network where no single-clock domain is defined. It leads
to the notion of GALS (Globally-Asynchronous/Locally-Synchronous) domains. These are used in the field of system-
level models, for instance for SoC (System-on-Chip) design, where several levels of modeling — either software or
hardware — can be combined during the course of the design.

 Physical (real-time): this class of time abstraction demands the precise accurate modeling of real-time duration values,
for scheduling issues in critical systems. Physical time models refine the partially timed models by adding reference(s)
to one or more physical dimensions, for instance to derive the admissible speed of a reaction.

In embedded real-time systems modeling, time should not be considered as an external model: Time and Behavior are
strongly coupled. The Time domain model identifies concepts that relate time and behavior. The Causality package in the
CoreElements clause of MARTE has provided a high-level view of the run-time semantics of real time and embedded
systems. The Time modeling clause enriches this view with explicit references to time-related concepts. The Invocation

UML Profile for MARTE, V1.3 57

package in the CoreElements clause is also extended with the concept of SimultaneousOccurrenceSet. The notion of
instant has also to be revisited to deal with simultaneity. This is done in the TimeStructure®, which represents Time as a
partial ordering of instants. A timed event occurrence refers to one instant. An object may be bound to a time structure by
a time base. A time base is a set of instants at which the executions hosted by the object may take place. Time may be the
physical time, with its presumed regularity, but it can also be some endogenous time linked to some repetitive event, not
directly bound to physical time. Hence, the idea is to associate time structure with events, behaviors, and objects, or more
generally instances of the concrete subtypes of the BehavioredClassifier metaclass.

To capture the influence of Time on behaviors, we suggest that objects, behavior executions, and event occurrences may

explicitly refer to clocks considered as accessors to the time structure.

9.2 Domain View

This clause covers different concerns about time modeling and usage, informally shown in Figure 9.1. This figure is not
a UML diagram. It only gives an overview of the concepts covered by the Time Modeling clause and their logical

grouping.

Optional access to time
structure

TimeValueS pecification

TimeAccess

Concepts

Time bases

Multiple Time Bases
Instants

Time structure relations

Concepts

Clodcks

L ogical clocks

C hronometric clocks
Currenttime

TimeU sage

4
L)

Figure 9.1 - Overview of the time model concerns

Concepts

Timed elements
Timed events
Timed adions
Timed constraints

These concerns are reflected in the structure of the time domain model, which is partitioned into the following separate

but related groups of concepts:

+ Concepts for modeling a simple form of time structured as a totally ordered set of instants owned by a time base
(TimeStructure concern as depicted in Figure 9.1).

+ Concepts for modeling multiple time base models (7imeStructure concerns as depicted in Figure 9.1).

+ Concepts for accessing to time structure, including clocks and time values (TimeAccess and TimeValueSpecification
concerns as depicted in Figure 9.1.

+ Concepts for modeling entities bound to time (7imeUsage concerns as depicted in Figure 9.1).

5. TimeStructure is refined into both BasicTimeModels and MultipleTimeModels packages in the rest of the clause.

58

UML Profile for MARTE, V1.3

MA RTE::Time

Basic TimeModels rwg
h
<<merge>>
~aaas
-
MultipleTimeModels
,_"‘7
<<imp ort>>
'_-‘——
Time Acce sses
'G-__
<<imp ort>>
—aee
~a

TimeRe lat edEn titie s

Figure 9.2 - Structure of the Time domain model

The BasicTimeModels and MultipleTimeModels packages provide a structural model of time (the TimeStructure) that
constitutes the semantic foundation of our approach to time. These two packages are merged because the concept of
TimeBase introduced in the former is enriched in the latter. Both packages are used by the TimeAccesses and
TimeRelatedEntities packages that contain concepts and constructs effectively used by the standard user of the profile.

9.2.1 The BasicTimeModels Package

The BasicTimeModels package (Figure 9.3) provides a structural view of time as an ordered set of instants. This model
does not refer to any notion of physical time. Hence, it can conveniently support logical time, which is widely used in
distributed systems and synchronous languages. This model of time focuses on the ordering of instants, while ignoring the
physical duration between successive instants.

A TimeBase is a container of Instants. The structure of time is specified by the nature attribute that takes its values in the
enumeration TimeNatureKind. Possible values are discrete or dense. In dense time, for any given pair of instants there
always exists at least one instant between the two. A TimeBase owns an ordered set of /nstants. We consider only
countable sets. For a discrete time base, instants can be indexed by positive integers. For a dense time base, instants can
be indexed by rational number. Notice that continuous time models, whose indices would be real numbers, cannot be fully
represented by countable sets. Since UML behavioral semantics only deal with discrete behaviors, the countable nature of
sets is not a limitation for practical uses.

In order to avoid duplication of concepts based on a distinction between dense and discrete representations, all the
numbers are given using a unique predefined data type Real, which expresses the mathematical concept of a number,
covering integer, rational and real numbers. A real represents a count or a measurement. The primitive type Real does not
impose any restrictions on the precision and the scale of the representation.

Since discrete time bases play a central role in the time structure model, it is convenient to distinguish a special class for
discrete time bases, which subclasses TimeBase. Junction instants are specialized instants (their name will be justified in
the MultipleTimeModels package). A discrete time base owns junction instants only. This does not preclude a dense time
base from owing junction instants.

UML Profile for MARTE, V1.3 59

The association between a discrete time base and a time base optionally enables to link a discrete time base to a dense
time base. In this case, the former results from a discretization of the latter.

BasicTimeModels

<<enumeration>>
TimeNatureKind

discrete
dense

coveringTB

1

TimeBase

nature:TimeNatureKind

tb 1

{ordered}

1 instants

currentinstant
{subsets instants}

Instant

date: Real

DiscreteTimeBase
{nature = discrete }

Junctionlnstant

Figure 9.3 - Basic time diagram of the time model

Physical time is considered as a continuous and unbounded progression of physical instants. Physical time is assumed to
progress monotonically (with respect to any particular observer) and only in the forward direction. For a given observer,
it can be modeled as a dense time base. A convenient model for Physical Time as perceived in MARTE is the

mathematical concept of real line R.

60

UML Profile for MARTE, V1.3

9.2.2 The MultipleTimeModels Package

MultipleTimeModels ‘

0..1 L parentMTB

0.* tsRe lations

MultipleTimeB ase > o Time StructureRelation

nestedMTBs

1 ’owningMTB $

TimeBaseRelation TimelnstantRelation
0.* . {union,ord ered}
ownedTBs - 0. Irelated Jis
A 2.7 A
BasicTimeModels: : BasicTimeModels :
Time Base {union,o rde red} Junctionnstant
/related TBs

Figure 9.4 - Multiple time diagram of the time model

The linear vision of time presented in the BasicTimeModels is not sufficient for most of the applications, especially in the
case of distributed systems. Multiple time bases are then used. A time structure contains a tree of multiple time bases. A
MultipleTimeBase consists of one or many time bases. A time base is owned by one and only one multiple time base.

Time bases are a priori independent. They become dependent when instants from different time bases are linked by
relations (Time Instant Relations). Note that the word relation has been preferred to relationship in order to stress on the
mathematical meaning of this word. The instants involved in such relations are special instants called junction instants,
previously introduced in the BasicTimeModels package (Figure 9.3). All the instants of a discrete time base are also
junction instants, because they are potentially observable instants (see sub clause 9.2.3 about Time Access, page 74).

A multiple time base owns a possibly empty set of time structure relations. These relations specify the time structure.
TimeStructureRelation is an abstract class. It is subclassed into TimeBaseRelation and TimelnstantRelation, which are
also abstract classes. A time base relation relates 2 or more time bases. A time instant relation relates 0 or more junction
instants. Notice that the relatedTBs and relatedJIs properties are derived union (i.e., the effectively related elements are
defined in concrete subclasses, as illustrated in the next 2 sub clauses).

| UML Profile for MARTE, V1.3 61

9.2.2.1 Concrete time instant relations

TimelinstantRelation

/\

CoincidenceRelation

PrecedenceRelation

{ subsets relatedJls }

after 1 1 b efore

2.7

{subsets relatedJls }

BasicTimeModels:
TimeBase

coincide ntJls

BasicTimeModels: :

{ subsets relatedJls }

TimelntervalMembership

0.

Junctionnstant

up oer 1 low er 1

ase

Timelnterval

members
{ subsetsrelatedJls }

1

isLow er Ope n: Boolean[1]
isUpperOpen: Boolean[1]

Figure 9.5 - TimelnstantRelation diagram of the time model

timelnterval

As shown in Figure 9.5, three concrete subclasses of the abstract TimelnstantRelation class are defined:
CoincidenceRelation, PrecedenceRelation, and TimelntervalMembership.

CoincidenceRelation is a strong form of time instant relation: junction instants belonging to different time bases can be
coincident (i.e., same time and same place). In modeling, coincidence has not necessarily this strict relativistic meaning.
It may represent clock synchronizations or design choices, for instance. The coincidence relation must be symmetric and
transitive. Moreover, we assume that any junction instant is coincident with itself, so that the coincidence relation is an
equivalence relation over instants. A strong requirement is that adding coincidence does not introduce cyclic
dependencies in the temporal ordering. In mathematical words, the set of instants quotiented by the coincidence relation
must be a partially ordered set. For convenience, the coincidence relation is often represented in diagrams by linking
pairs of coincident instants. The actual relation is obtained by computing the transitive closure of the relation. Figure 9.6
shows an example for a multiple time base made of three time bases. Junction instants a2 and b2 are coincident. So are
b2 and c2. Even if not drawn in the picture, a2 and c2 are also coincident junction instants (by transitivity).

ATimeBase

:MultipleTimeBase

B:TimeBase

C TimeBase

c2

c1 c3 c4

Figure 9.6 - Example of multiple time base with coincidences

62

&0
&0

Legend: AN
Q instance of
Instant
D
Instance of
CoincidenceRelation

UML Profile for MARTE, V1.3

PrecedenceRelation between junction instants from different time bases is a time instant relation weaker than coincidence.
It expresses a directional dependency: a junction instant owned by a time base may precede or follow junction instants
owned by other time bases.

A time interval on a time base is a convex set of junction instants owned by this time base. The convexity is the property
that ensures that any junction instant between two junction instants of the interval is also in the interval. Two Boolean
attributes specify whether the lower and upper bounds of the interval are in the interval or not. By default, the interval is
closed on both boundaries. The bounds and the closure attributes must specify a non empty set of instants. The time
interval is specified by its two bound junction instants. The TimelntervalMembership is a relation that characterizes
junction instants (members) that are either in the given time interval or are coincident with junction instants in this time
interval.

9.2.2.2 Concrete time base relations

As explained in the previous sub clause, time instant relations induce relations on time bases of a multiple time base. Time
base relations are a higher level way to impose dependencies between junction instants. A time base relation specifies a
set of time instant relations. As shown in Figure 9.7, for any two time bases A and B, one defines a relation B is
subClock of A) if for each junction instant in B there exists one and only one coincident junction instant in A. This
relation can be characterized by a mapping M from the coarser time base B to the finer time base A. This mapping is
injective and order-preserving (i.e., if bl and b2 are two junction instants of B, and b1 is before b2, then al = M(b1) and
a2 = M(b2) are such that al is before a2 in time base A). Notice that the specific association between DiscreteTimeBase
and TimeBase (Figure 9.3) represents a subClock relationship.

al a2 a3 2 a3 af al -1])] alt all

A: TimeBase

B is subClock ofﬂ
0, 0, ol

bl b2 B3 b4 kS
More precisely, B is periodic on A, period 2, Qf.fE.E.Lll

B: TimeBase

Figure 9.7 - Example of time relations between two time bases

A more precise relations can be specified. For instance, in the figure 9.7, B is a subClock of A and B is periodic on A
with a period 'p' and an offset '0'; for any two consecutive instants in B, there exist p-1 instants between the corresponding
coincident instants in A. Figure 9.7 illustrates such periodicity with p=2 and o=1.

Other time base relations are suggested in the Clock Constraint Specification Language section, in annex C.3.

9.2.3 The TimeAccesses Package

In real technical systems, special devices, called clocks, are used to measure the progress of physical time. In MARTE we
adopt a more general point of view: a clock is considered as a means to access to time, be it physical or logical. In the
TimeAccesses package, we introduce the concepts of Clock, TimeValue, and DurationValue. These concepts are
introduced without any specific reference to physical time. Thus, they can be applied also to logical time. Clocks that
refer to physical time will be considered as specialized clocks.

UML Profile for MARTE, V1.3 63

The TimeAccesses package is subdivided into four packages, as shown in Figure 9.8:
« The Clocks package introduces a general concept of clock.
+ The TimeValues package defines the concepts of time value and instant value.
+ The DurationValues package defines the concept of duration value.

+ The ChronometricClocks package contains a specialization of the initial clock concept.

TimeA ccesses
C locks ESsasass <M POl t> > emcceaws Time Values
<<import>>
— E— g
ChronometricClocks mem-<<impo rt>>s=== DurationValues

Figure 9.8 - Subpackage diagram of the TimeAccesses package

“Value Specification Language” (Annex B) provides detailed definitions of abstract and concrete syntax for specifying
time expressions in MARTE.

9.2.3.1 The Clocks Package

As indicated in Figure 9.9, Clock is an abstract class. A concrete clock is either a logical clock or a chronometric clock.
The latter is defined in another package (ChronometricClocks package on page 78).

A Clock refers to a discrete time base (its timeBase) and therefore indirectly to a set of junction instants. The timeBase
discrete time base allows access to the time structure. A clock, whose nature is dense, may indirectly refer to a dense time
base through the coveringTB property of its base.

A Clock accepts units (acceptedUnits property). Unit is defined in the NFP_Nature package. One of these accepted units
is the defaultUnit. The default unit is the unit attached to the currentTime value. The resolution property specifies the
readout granularity of the clock, expressed in defaultUnit unit. Its default value is 1.

The optional attribute maximalValue expresses the limited capability of usual clocks to represent arbitrary large instant
values: the clock “rolls over” when the currentTime value gets to the maximalValue. Note that in this case currentTime
maps on many junction instants.

A clock may own an event (clockTick). This event occurs at each change of the current time of the clock.

A LogicalClock is a concrete subclass of Clock. It may be defined by an event (definingEvent property); in this case, the
logical clock ticks at each occurrence of the definingEvent. Logical time is usually counted in the number of ticks. So, tick
is a predefined unit often used as the defaultUnit for a logical clock, and then the resolution of the clock is 1 (the default
value).

64 UML Profile for MARTE, V1.3

Clocks

BasicTimeModels: 1 Clock NFPs::N FP_Annotation:

DiscreteTimeBase = AnnotatedElement

timeBase nature: TimmeNatureKind
resolution: Real=1.0

acceptedUnits

N FPs:: currentTime: Real P —
NFP_Nature: 1..* maximalValue : R eal[0..1]
Unit 0..1 CoreElements::
defaultUnit 1 clockTick Causality::
{subsets 0..1 CommonBehavior:
acceptedUnits} definingEvent Event

LogicalC lock

Figure 9.9 - Clocks diagram of the time model

9.2.3.2 The TimeValues package

TimeV alues

NFPs:: un it

NFP_Nature::Unit E0__1
TimeValue

nature: Time N atureKind
TimeAccesses:: 1
Clocks::Clo ck Zﬁ

onClock

. . *
BasicTimeModels:: 0..

Jun ctionlnstant Instan tValue

denotedInstant

TimelntervalValue

MultipleT imeMod els:: 0..”
Timelnterval denoted Timelnterval isMinOpen: Boolean[1]
isMaxOpen: Boolean[1]

Figure 9.10 - TimeValues diagram of the time model

An application may use time in two ways: either as a reference to a time instant, or as a time span. The TimeValues
package deals with the first usage, while the DurationValues package addresses the latter.

Since the access to time is done through clocks, a TimeValue refers to a Clock (the onClock property). A TimeValue may
also have a unit property. When unit is given, it must be in the acceptedUnits set of the onClock, and used instead of its
defaultUnit. The attribute nature specifies whether the time values associated with the clock take their values in a dense
or discrete domain. Since computers work with finite precision numbers, the distinction between discrete and dense sets
is blurred by the limited precision of the representation: ultimately all values are discrete. Since the distinction between
dense and discrete sets has a semantic meaning, we retain this distinction in the model, and we use “real” numbers for
dense time values and integer numbers for discrete ones.

In the MARTE time model, logical clocks are always discrete, and their time values are integer numbers.

UML Profile for MARTE, V1.3 65

An InstantValue, which is a TimeValue, may refer to 0, 1, or many junction instants of a discrete time base. The multiple
denotation of junction instants is due to the bounded nature of the representation of values. There may exist a folding of
the time representation due to clock roll-over.

A TimelntervalValue is defined as a pair of instant values and denotes 0 or many time intervals (many results from

possible folding of the time representation). The min InstantValue refers to the lower instant of the time interval; the max
InstantValue refers to the upper instant of the time interval. The closure properties of the interval are specified by the two
Boolean attributes isMinOpen and isMaxOpen. By default, the interval is closed (i.e., it includes the min and max values).

When used in a time value specification, a time interval value indicates any time value in the interval.

The TimeValue class is abstract. It generalizes InstantValue and DurationValue, which is introduced next.

9.2.3.3 The DurationValues package

DurationValues

TimeAccesses:: intervalValue TimeAccesses::
TimeValues:: DurationValue — Time Values::
TimelntervalValue 1 TimeValue
minD 1 1 maxD

DurationintervalValue

isMinDOpen: Boolean[1]
isMaxDOpen: Boolean[1]

Figure 9.11 - DurationValues diagram of the time model

The DurationValues package introduces the concept of duration value (Figure 9.11). Duration is a “distance” between two
instants. It characterizes the “extension” of a time interval. From the user’s point of view, a time interval is specified by
a TimelntervalValue. As explained in “The TimeValues package” on page 65, a TimelntervalValue may denote 0, 1 or
many time intervals, due to possible clock roll-over. In the simple case when the clock has no defined maximalValue, the
DurationValue of a TimelntervalValue is defined by the difference between the max and min instant values of this time
interval value. When the maximalValue property is defined, the DurationValue is defined as the difference modulo
maximalValue between the max and min instant values of this time interval value.

A DurationIntervalValue is defined by a pair of duration values, which specifies an interval of values. When used in
specification, a duration interval value indicates any duration value in the interval.

66 UML Profile for MARTE, V1.3

9.2.3.4 The ChronometricClocks Package

ChronometricC loc ks

. <<enumeration>>
vl @AE 60 550 555 Tim eStandardK ind
Clocks::Clock
TAI
U TO
UT1
UTC
TT
TDB
ChronometricClock $8S
Sidereal
referenceC lock standard: Time StandardKind[0..1] L ocal
0.1 sta bility : Real [0 ..1] GPS
offsett DurationValue [0..1]
skew:Real[0..1] "'i
drift: Real[0 ..1] l

‘ PhysicalTime

Figure 9.12 - ChronometricClocks diagram of the time model

In “The BasicTimeModels Package” on page 59, physical time has been characterized as a continuous and unbounded
progression of physical instants. The progression of physical time is perceived through event occurrences. Some events
are considered as better candidates to represent the (assumed) uniform progression of physical time. For instance, one
may choose the period of the radiation corresponding to the transition between the two hyperfine levels of the ground
state of the cesium 133 atom (see the definition of the second time unit). Today, this is the best known reference. More
conveniently, one considers cyclic events, whose occurrences are (more or less) periodic. Periodicity should be checked
against the above mentioned best reference. Usually, periodic event generators are called clocks. We have already used
this term in a broader sense: there is no reference to periodicity in clocks defined in sub clause 9.2.3. Therefore, we name
ChronometricClock a clock that implicitly refers to physical time.

The ChronometricClocks package introduces the main concepts related to clocks bound to physical time (Figure 9.12). A
chronometric clock provides quantitative information about time. Numerous non functional time-related properties can be
defined for chronometric clocks. Only a few are presented below.

Figure 9.13 represents, in an informal way, the dependency of chronometric clocks on physical time. Physical time is
modeled as a dense time base (the Real line). The instants of the discrete time base associated with a chronometric clock
are coincident with physical instants regularly interspaced on the real line. In a chronometric clock, the resolution
property is the duration value of physical time elapsed between two consecutive instants of this clock. Real chronometric
clocks do not perfectly reflect evolution of physical time. Possible defects are characterized by non functional properties.
For instance, stability is the ability for a clock to report consistent intervals of time. Stability is measured by derivatives
of the clock rate, derivation against time or against environmental factors.

When many clocks are present in a system, other non functional time properties are considered. They are time-dependent
pair-wise characteristics. Usually, one clock is taken as a reference clock against which the other clock is matched. When
omitted, the reference clock is supposed to be an “almost perfect clock.” Two clocks with the same rate may present an
offset. This duration value may vary along time. The rate of change of the offset (i.e., its first derivative against time)
between two clocks is called the skew. This skew itself may change over time. The derivative of the skew is called the
drift.

UML Profile for MARTE, V1.3 67

Physical time :C hrono m etricC lock :C hronom etricClock

‘ c1 ‘ ‘ c2 ‘

\LcoveringTB ‘ base base
R T B Y Ti > Di gl
‘ {de nse} ‘ Base ‘ ‘ Base ‘
/FcoveringTB ‘
offse t
q i T L

00000101010

Figure 9.13 - Dependency example of chronometric clocks on physical time

9.2.4 The TimeRelatedEntities Package

TimeR elate dEntities
ClockConstraints - TimedObservations
~o_ <<impo‘r't>>
h_f ,—
<<impo rt>> I - 1
TS vay
TimedEle ments =—-<<import>-—=«4 TimedEventModels
__-‘7
<<imp orf>> See
1 e <<import>
e N,
Y
TimedConstraints Sy TimedProcessingM odels

Figure 9.14 - Subpackages of the TimeEntities package

Time can be used for observation or for control. Typical examples of the first usage are observations of event occurrences
in interactions diagrams. Time events triggering behaviors are examples of the second usage. MARTE explicitly relates
events, actions, messages... to time. The TimeRelatedEntities package is subdivided into the following subpackages
(Figure 9.14):

68 UML Profile for MARTE, V1.3

« TimedElements package defines the key concept of TimedElement;

+ ClockConstraints package introduces constraints on clocks;

» TimedObservations package provides concepts related to observation of timed entities;
« TimedConstraint package specifies constraints on time-related observations;

« TimedEventModels package deals with events whose occurrences are bound to time;

+ TimedProcessingModels package addresses executions bound to time.

9.2.41 The TimedElements Package

TimedElements

. * CoreElements::
TimeAccesses:: 1.

.. SSpra— TimedElement 1 Foundations:

Clocks::Clock on ModelE lement

Figure 9.15 - TimedElement diagram of the time model
A timed element, introduced in the TimedElements package (Figure 9.15), is a most general concept. TimedElement is an
abstract class generalization of all other timed concepts. It associates a non empty set of clocks with a model element. The

semantics of the association with clocks depends on the kind of timed element.

9.2.4.2 The ClockConstraints package

ClockCo nstraints
NFPs::
NFP_An notation:
NfpCo nstraint
TimeAccesses:: 2.7 . 1 ccs::
. ClockConstraint . . A m ey
Clocks::Clock constraine dClocks specification ClockConstraintSpecification
{subsets { redefines
constrainedElement } specffication }

Figure 9.16 - ClockConstraints diagram of the time model
A clock constraint constrains two or more clocks. The specification of the constraint is expressed by a

ClockConstraintSpecification. Clock constraint specifications are special value specifications described in Annex C.3
(Clock Constraint Specification Language). An example of clock constraint is given in section 9.2.2.2.

UML Profile for MARTE, V1.3 69

9.2.4.3 The TimedObservations Package

TimedObservations
CoreElements::
TimedElements: : Timed Observation observationContext Causality:
Timed Element 0.. RunTimeContext:
ZF CompBehaviorExecution
TimedinstantObservation TimedDurationObservation CoreElements::
0.. Causalty:
. ; . . exc RunTimeContext:
obsKind:EventKind[0..1] obsKind:EventKind[0..2] BehaviorExecution
<<enumeration>>
EventKind
1 eocc 0..1 | stim
start
CoreElements: CoreElements: finish
Causality: 0.2 Causality: send
RunTimeContext: eocc Communication:: receive
EventOccurmrence Request consume

Figure 9.17 - TimedObservations diagram of the time model

TimedObservation is an abstract superclass of TimedInstantObservation and TimedDurationObservation. A
TimedObservation is a TimedElement. As a TimedElement it has associated clocks, used for observing time. A
TimedObservation is made in the runtime context of a (sub)system behavior execution (the observationContext property).

The enumeration literals of the EventKind enumeration allow the user to specify the kind of events considered in a
TimedObservation. For a behavior, observed events can be either its start event or its finish event. For a Request, the
possible events are its sending, its receipt, or the start of its processing by the receiver.

A TimedInstantObservation denotes an instant in time, associated with an event occurrence (eocc property) and observed
on a given clock. The obsKind property of the TimedInstantObservation may specify the kind of observed event.

A TimedDurationObservation denotes some interval of time, associated with execution, request, or two event occurrences,
and observed on one clock or two clocks. The exc property associates the duration observation with a BehaviorExecution,
which is an abstraction of CompBehaviorExecution and ActionExecution. The duration is the time elapsed between the
occurrences of the start and the finish events of an execution of this BehaviorExecutionSpecification (i.e., a
CompBehaviorExecution or an ActionExecution). The stim property associates the duration observation with a Request.
A Message is a kind of Request. The duration can be observed between two of the three events associated with a request
(its sending, its receipt or the start of its processing). The precise kind of event can be given by the obsKind attribute.
Finally, a duration can be observed between two event occurrences (eocc property), not necessarily observed on the same
clock.

70 UML Profile for MARTE, V1.3

9.2.4.4 The TimedConstraints Package

TimedCanstralnts |
VSL::TimeExpressions::
InstantExpression
ZF\ { NFP_Modeling::
InstantPredicate & TimedinstantConstraint NFP_Annatatian::
. specification NfpConstraint
1. | observation pec
- { redefines
specification } z;:"
Tima::TimeRelatedEntitias::
TimedObservations:: — TimedConstraint
TimedObservation
1.* | cbservation {7
1 i =
DurationPredicate b= 4 TimedDurationConstraint TimedElements::
specification TimedElement
{ redefines
%’, specification }
VSL::TimeExpressions::
DurationExpression

Figure 9.18 - TimedConstraints diagram of the time model

A TimedConstraint is a constraint imposed on the occurrence of an event (TimedInstantConstraint), or on the duration of
some execution, or even on the temporal distance between two events (TimedDurationConstraint). The constraints are
specified by predicates (InstantPredicate for instants and DurationPredicate for durations). A usual form of predicate is
“the constrained instant value belongs to a given time interval value” or “the constrained duration value belongs to a
given duration interval value.” Instant and duration predicates contain usages of timed observations.

9.2.4.5 The TimedEventModels package

This package consists of two packages: TimeEventOccurrences and TimedEvents (Figure 9.19).

TimedEventModels

TimedEventOccurrences TimedEvents

Figure 9.19 - The TimeEventModels package

UML Profile for MARTE, V1.3 7

9.2.4.5.1 The TimeEventOccurrences package

An event occurrence can be associated with time instants. MARTE introduces the concept of TimedEventOccurrence
(Figure 9.20), which is both a TimedElement and an EventOccurrence. The at property specifies the instant value of this
timed event occurrence on one of its clocks. Since a timed event occurrence may refer to several clocks (on property),
several instant values (at property) are possible. Usually, there is one clock only, but several are allowed at least to cover
the case of simultaneous occurrence set, introduced below.

This package also introduces the concept of SimultaneousOccurrenceSet. In the Causality Modeling clause, an execution
of a behavior may be caused by an event occurrence. In some situations, several events have to be considered as a whole
because their collective effect cannot reduce to the serialization of their individual effects. The concept of
SimultaneousOccurrenceSet is introduced to address this issue. A SimultaneousOccurrenceSet is an EventOccurrence, and
as such, it can be the cause of a behavior execution. This concept is useful at design-time when different views of a same
event, which have been introduced earlier, have to be merged into one event. It is also of common use in reactive
synchronous modeling.

TimedEventModels
::Timed EventOccurrences

CoreElements::

Causality:: TimedElements::
RunTimeContext: Timed Element
EventOccurrence

0.* | occSet 4
0..1
SimultaneousOccurrenceSet TimedEventOccurrence
0..1
1.7 at

TimeAccesses::
TimeValues::
InstantValue

Figure 9.20 - TimedEventOccurrences diagram of the time model

9.2.4.5.2 The TimedEvents package

A TimedEvent is an event the occurrences of which are bound to clocks. A TimedEvent may have several occurrences.
The when property specifies when the first occurrence occurs. The Boolean attribute isRelative specifies whether the time
value is relative (the when property is a time duration value) or absolute (the when property is a time instant value). The
every optional property permits repetitive occurrences of the timed event. When every is present, its value is the duration
that separates the successive occurrences of the timed event. The number of occurrences can be limited by the repetition
attribute. The time values are specified by CVS expressions. CVS (Clocked Value Specification) is defined in Annex C.
A CVS::ClockedValueSpecification specifies a TimeValue, a CVS::DurationValueSpecification a DurationValue, and a
CVS::InstantValueSpecification an InstantValue.

72 UML Profile for MARTE, V1.3

TimedEventModels
::TimedEvents
CoreElements:
TimedElements:: Causality::
Timed Element CommonBehavior:
Event
TimedEvent

isRelative : Boolean

repetition: Integer[0..1]

1 when 0..1 |every
CVs:: CVs::
ClockedValueSpecification DurationValueSpecification

Figure 9.21 - TimedEvents diagram of the time model

9.2.4.6 The TimedProcessingModels package

This package consists of two packages: TimedExecutions and TimedProcessings.

TimedProcessingModels

TimedExecutions TimedProcessings

Figure 9.22 - The TimedProcessingModels package

9.2.4.6.1 The TimedExecutions package

A TimedExecution is a TimedElement that is a specialization of the

CoreElements::Causality::RunTimeContext::BehaviorExecution. As a TimedElement, a timed execution makes explicit
reference to clocks.

Two instant values, startInstant and finishInstant, are associated with an execution and they correspond to the occurrence
instants of its StartOccurrence and TerminationOccurrence, respectively. A DurationValue may also characterize an
execution. Since a timed execution may refer to several clocks (on property), several time values are possible.

UML Profile for MARTE, V1.3 73

In the CoreElements::Causality::RunTimeContext package, CompBehaviorExecution and ActionExecution are concrete
subclasses of BehaviorExecution, so that timed behavior executions and timed action executions also make explicit
reference to clocks. A message transfer can also be assimilated to a timed execution (the sending instant being the
startInstant of the communication and the receipt instant being its finishInstant). In what follows, Behavior, Action, and
Message are collectively designated as timed processing, even if this assimilates a Message to its transfer.

TimedProcessingModels
::TimedExecutions

CoreElements::
Causality : Timed Elements :
RunTimeContext: Timed Element
BehaviorExecution

—— 1

Timed Execution

executionDuration | 1. startinstant | 1..* finishinstant | 1..*
TimeAccesses:: TimeAccesses::
DurationValues:: TimeValues::

DurationValue InstantValue

Figure 9.23 - TimedBehaviorExecutions diagram of the time model

9.2.4.6.2 The TimedProcessings package

TimedProcessing (Figure 9.24) is a generic concept for modeling activities that have known start and finish times, or a
known duration. In fact, two out of the three time values suffice to characterize a particular execution of the processing.
For a timed message, start and finish events are respectively named as sending and receipt events.

A delay is a special kind of timed action that represents a null operation lasting for a given duration.

74 UML Profile for MARTE, V1.3

TimedProcessingModels ‘

::TimedProcessings
CoreElements:: CoreElements:: CoreElements::
Causality:: Causality:: Causality::
CommonBehavior:: Communication:: CommuonBehaviar::
Behavior Request Action
TimedBehavior TimedMessage TimedAction
1 | A
v
TimedProcessing
0.1 duration start | 0.1 0.1 |finish
) . CoreElements:;
|:|T - met.ﬁoo\?s;ses..._ Causality:: TimedElements::
[l;::ﬂ al'lio:n:' ;’:f:: : Communication:: TimedElement
Request

Figure 9.24 - TimedProcessings diagram of the time model

9.3 UML Representation

This sub clause describes the UML extensions required to support the concepts defined in the Time Modeling domain
view. Some concepts result in new stereotypes, others specialize stereotypes defined for NFPs modeling, and still others
need no extensions at all. Most of the time-related stereotypes extend metaclasses from UML::Classes::Kernel,
UML::CommonBehaviors, and the SimpleTime package of CommonBehaviors.

9.3.1 Profile Diagrams

The Time profile depends on the NFPs profile as shown in Figure 9.25.

« profile» « modelLibrary»
NFPs TimeTypesLibrary
. 7 A
. P ~e
<< i?ﬁport» <<impo?t>> <<import>>
AN >~
N, 'o' \\
] 47\. "I A—‘
« profile» i —— « profile » | tomeseand ¢ Modellibrary»
VSL::DataTypes [<=———<<import>> Time r== <<apply>> TimeL ibrary

Figure 9.25 - Time profile dependencies diagram

For convenience, the Time profile is represented as a collection of diagrams. Each diagram gathers tightly related model
elements. The actual Time profile consists of all these diagrams. The libraries are presented in Annex D.

UML Profile for MARTE, V1.3 75

9.3.1.1 TimedElement and Clock stereotypes

In the Time domain view, the concepts related to the time structure have been introduced in the BasicTimeModels and
MultipleTimeModels packages. These concepts constitute the semantic domain of the Time model. The corresponding
concepts in the UML view are ClockType and TimedDomain. The TimedDomain stereotype of the UML view maps to
MultipleTimeBase and the ClockType stereotype maps to TimeBase.

TimedElement is an abstract stereotype that must be used to associate one (or many when dealing with multiple time
references) clock(s) to a UML model element. The concrete specializations of TimedElement make it clear which model
element can or cannot be associated with clocks. When the property “on” is not specified, (its size is 0), the modeling tool
should add to the property to the idealClk clock (available in the library TimeLibrary, Appendix D.3.2 on page 500). This
means that a designer that does not specify the "on" property refers, by default, to a dense chronometric clock with no
flaws that represent the physical time.

« metaclass »
UML::Classes::
Kernel::Property

!

« metaclass »
UML::Classes::Kernel::
InstanceSpecification

A

« Metaclass »
UML::CommonBehaviors:: &

Communications::Event

« Stereotype » unit

« stereotype »
Clock

standard: TimeStandardKind[0..1]

NFP_Profile::Unit 0.1

Figure 9.26 - UML extensions for Time modeling (1)

9.3.1.2 Timed value specification stereotypes

« stereotype »
TimedElement

1. | on type

1

<<metaclass>>
Class

« metaclass »
UML::Classes::Kernel::
Namespace

[

A

« stereotype »
ClockType

nature: TimeNatureKind[1]
unitType: Enumeration[0..1]
isLogical: Boolean[1] = false
resolAttr: Property[0..1]
maxValAttr: Property[0..1]
offsetAttr: Property[0..1]
getTime: Operation[0..1]
setTime: Operation[0..1]
indexToValue: Operation[0..1]

« stereotype »
TimedDomain

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a
TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of
the value as duration or instant specification.

<<metaclas s>>
UM L::Classes::Kernel::
Value Specification

Figure 9.27 - UML extensions for Time modeling (2)

<<stereoty pe>>
TimedValueSpecification

interpretation: Time Inte rpr etation Kind[0..1]

9.3.1.3 Constraint stereotypes

76

<<stereotype>>
TimedElement

UML Profile for MARTE, V1.3

Time Modeling introduces two stereotypes specializing the NfpConstraint stereotype, which is itself an extension to the
UML Constraint. TimedConstraint deals with constraints imposed on either instant value or on duration value, according
to the value given to the interpretation attribute. ClockConstraint imposes dependency between clocks or between clock

types. As TimedElement, both stereotypes refer to clocks. Additional OCL rules specify the constrained elements, the
specification, and the context of the constraint. Note that VSL is convenient to express various timed constraints.

«Stereotype»
NfpConstraint

«Stereotype»
TimedElement

«Stereotype»
TimedConstraint ||
+ interpretation : Timelnterpretationkind [0..1]

q_
«Stereotype»
ClockConstraint
+ isCausal : Boolean
—— + isSynchronous : Boolean
+ isPhysical : Boolean
q_

Figure 9.28 - UML extensions for Time modeling (3)

9.3.1.4 Observation Stereotypes

As specializations of TimedElement, TimedInstantObservation, and TimedDurationObservation refer to clocks. The
optional obsKind attribute may specify the kind of the observed event(s). The Enumeration EventKind is part of the

TimeTypesLibrary (Annex D.3.1)

Issue MARTE13-14: update figure

1
« stereotype » @ MOTAcTass »
« Stareotype » 1 TimedinstantObservation | UML:CommonBehaviors::
TimedElement o SimpleTime::
obskind : eventkind[0_1] TimeObservation
« enumeration »
Suiaaticia
start
finksh
send & stereotype » « metaclass »
recalve || TimedDurationObservation _ | UML:CommonBehaviors::
consume - SimpleTime::
abskind : eventKind[0..2] DurationObservation

UML Profile for MARTE, V1.3

7

<<stereotype>>

TimedInstantObservation

obsKind: EventKind [0..1]

A

<<metaclass>>
UML::CommonBehaviors::
SimpleTime::
TimeObservation

[0..1] | value « enumeration »
EventKind
<<metaclass>>
<< >> start
Tirsnt::iolgr?:nt <)7 UML::Classes::Kernel:: finish
ValueSpecification send
receive
consume
value | [0..1]
<<stereotype>> <<metaclass>>

TimedDurationObservation

UML::CommonBehaviors::
SimpleTime::
DurationObservation

obsKind: EventKind [0..2]

Figure 9.29 - UML extensions for Time modeling (4)

9.3.1.5 Timed event stereotype

The TimedEvent stereotype represents Event whose occurrences are explicitly bound to clocks.

<<metaclass>>
UML:C ommonB ehaviors:
SimpleTime::
TimeEvent

A

<<stere oty pe>>

<<meta cl >>
meta cla ss TimedEvent

UML::Classes: Kernel:
ValueSpecification 0.1 0.1

ewry <<s tereotyp e>>

TimedElement

repetition: Integer[0 .. 1]

Figure 9.30 - UML extensions for Time modeling (5)

9.3.1.6 Timed processing stereotype

The TimedProcessing stereotype represents activities that have know start and finish times or a known duration, and
whose instants and durations are explicitly bound to clocks.

78 UML Profile for MARTE, V1.3

Issue MARTE13-39: update figure

<< >>

<<metaclass>> <<me taclass>> um Lwlzttaeilaacstsionr
UML::Actions:: UML: :CommonB ehaviors: : Basi.cllnteractions:

Action Be havior Messa ge -

f ‘ T
<<metaclass>> ran
. f << >>
UML::CommonB ehaviors:: 0.1 <<stereotype> > du ration UML--(r:nlztszzl,:-?;ernel--

Communica tion:: finish TimedProcessing 0.1 0.1 Va lu eSp ecific ation

Ev ent

0.1
<< stereotype> >
TimedElement

<<metaclass>> << me taclass>> U;tmjentécrlaacstsi:;s.
UML::Actions:: UML::CommonB ehaviors:: Basi.clnteractions:

Action Behavior Neeen I ’

? A T
start
<<metaclass>> =
UML::CommonB ehaviors:: 0.1 <<stereotype> > duration_ UM L‘\:f?;z;:gl:;?fs(::ne:--

Commu n ica tio n:: finish TimedProcessing .17 ValueSp ecification

Event ::0 1 P

Il

<<stereotype >
TimedElement

Figure 9.31 - UML extensions for Time modeling (6)
9.3.2 Profile Elements Description

9.3.2.1 Clock

The Clock stereotype maps the Clock domain element denoted in Annex F (sub clause F.3.2). It also relates to the
ChronometricClock domain element (sub clause F.3.1).

A Clock is a model element that represents an instance of ClockType. A Clock gives access to time. A Clock exists in a
TimedDomain. A Clock maps to a TimeBase in the semantic domain. The stereotype specifies the unit of the Clock. A
Clock is also characterized by its resolution, and optionally by its offset (its initial instant value) and its maximal value.
The values of these attributes are contained in the slots of the stereotyped InstanceSpecification.

A Clock can also be a stereotyped Property, so that it can be used in composite structure and interactions.

UML Profile for MARTE, V1.3 79

Alternatively, any UML event can be handled as a clock since the stereotype Clock extends the metaclass Event. This
extension maps to the domain concept of definingEvent (sub clause F.3.16) and allows for defining clock constraints on
any event, not just TimeEvent. When using this choice, the type MUST be logical.

9.3.2.1.1 Extensions
* Event (UML::CommonBehaviors::Communications::Event)
* Property (from UML::Classes::Kernel)

* InstanceSpecification (from UML::Classes::Kernel).

9.3.2.1.2 Generalizations

« None

9.3.2.1.3 Associations

» type: ClockType[1]
Specifies the ClockType whose this Clock is an instance.

e unit: NFPs::Unit[0..1]
Defines the unit used by this Clock. If unit is not defined, then this Clock uses the anonymous
tick unit. When defined, this unit must be of the unitType specified in the ClockType.

9.3.2.1.4 Attributes

» standard: TimeStandardKind[0..1]
References the system of time adopted by the clock. This property is not defined for a logical clock.

9.3.2.1.5 Constraints
[1] The base_InstanceSpecification of the Clock must be an InstanceSpecification of the base Class of its type property.

not self.base_InstanceSpecification.ocllsUndefined() implies
self.base_InstanceSpecification.classifier->includes(self.type.base Class)

[2] The base Property of the Clock must be a Property of the base_Class of its type property.
not self.base_Property.ocllsUndefined() implies self.base Property.type = self.type.base Class
[3] The unit must be an ownedLiteral of the unitType enumeration of the ClockType.
self.unit->notEmpty() implies self.type.unitType.ownedLiteral->includes(self.unit)
[4] A logical clock does not have a defined standard.
self.type.isLogical implies self.standard->isEmpty()
[5] When clock extends an event, its type must be logical.

not self.base_Event.oclUndefined() implies self.type.isLogical = true

9.3.2.2 ClockConstraint

The ClockConstraint stereotype maps the ClockConstraint domain element denoted in Annex F (sub clause F.3.3).

80 UML Profile for MARTE, V1.3

A ClockConstraint is a Constraint that imposes dependency between clocks or between clock types. A ClockConstraint
refers to a set of clocks or clock types, and possibly to other model elements. The clocks in the constrained elements must
belong to the on clock set of this ClockConstraint; the constrained clock types must be types of clocks in the on clock set.
The specification of the constraint is usually an opaque expression using a dedicated language: CCSL (Clock Constraint
Specification Language) defined in Annex C.

A ClockConstraint may define one or several clock relations and relies on many, often infinitely many, instant relations.
When relying on coincidence instant relations, the attribute “isSynchronous” must be set to true. When relying on
precedence instant relations, the attribute “isCausal” must be set to true. Note that they are not exclusive. However, when
only “isSynchronous” is true, the constraint is purely synchronous, when only “isCausal” is true, the constraint is purely
asynchronous. Apart from these distinctions, a ClockConstraint may also define a constraint related to chronometric
aspects of the clocks (like stability, skew, offset ...). In such cases, the attribute “isPhysical” must be set to true.

9.3.2.2.1 Extensions

* None

9.3.2.2.2 Generalizations
* NfpConstraint (from NFPs)

e TimedElement

9.3.2.2.3 Associations

e None

9.3.2.2.4 Attributes

* isSynchronous: Boolean [1]
Specifies whether this ClockConstraint enforces synchronous instant relations.

* isCausal: Boolean [1]
Specifies whether this ClockConstraint enforces causal/asynchronous instant relations.

» isPhysical: Boolean [1]
Specifies whether this ClockConstraint relies on chronometric aspects of physical clocks (such as stability, offset,
skew).

9.3.2.2.5 Constraints

[1] The constrained clocks are members of the on clock set of the ClockConstraint.
self.on->includesAll(self.base_Constraint.constrainedElement->select(c|c.ocllsTypeOf(Clock))

[2] The constrained clock types are types of clock members of the on clock set of the ClockConstraint.

self.on->includesAll(self.base_Constraint.constrainedElement->select(c|c.ocllsTypeOf(ClockType).type)

9.3.2.3 ClockType

The ClockType stereotype maps the TimeBase domain element denoted in Annex F (sub clause F.3.21). It also relates
indirectly to Clock (sub clause F.3.2) and ChronometricClock (sub clause F.3.1).

UML Profile for MARTE, V1.3 81

A ClockType is a classifier for Clock. The attributes of the stereotype define the nature of the represented time (discrete
or dense), the type of units, and whether its instances are logical clocks or chronometric clocks.

9.3.2.3.1 Extensions
* Class (from UML::Classes::Kernel)

Note: The ClockType stereotype the UML Class. This metaclass goes through several merge increments in the UML
specification. Using UML::Classes::Kernel::Class does not preclude usage of Class from UML::StructuredClasses.

9.3.2.3.2 Generalizations

« None

9.3.2.3.3 Associations

* None

9.3.2.3.4 Attributes

* nature: TimeNatureKind [1]
Specifies the nature dense or discrete of the time represented by this ClockType.

* unitType: UML::Classes::Kernel::Enumeration [0..1]
Is the type of units supported by this ClockType.

» isLogical: Boolean [1] = false
Specifies whether this ClockType reads a logical time or not. When isLogical is false, the ClockType reads a
chronometric time, i.e., a time bound to physical time.

* maxValAttr: Property [0..1]
The maxValAttr property refers to a property of the base class. This property declares a read only attribute which
determines the maximalValue of the associated Clock, value at which the clock rolls over. The maximal value is
expressed with the clock's unit as a unity.

» offsetAttr: Property [0..1]
The offsetAttr property refers to a property of the base class. This property declares a read only attribute which
determines the offset (initial instant) of the associated Clock. The offset is expressed with the clock’s unit as a
unity.

* resolAttr: Property [0..1]
The resolAttrib property refers to a property of the base class. This property declares a read only attribute which

determines the resolution of the associated Clock. The resolution is expressed with the clock’s unit as a unity.
When resolution is not defined, the granularity is arbitrarily small. This is the case for dense time.

» getTime: UML::Classes::Kernel::Operation [0..1]
The getTime property refers to an operation of the base class that returns the current time.

» setTime: UML::Classes::Kernel::Operation [0..1]
The setTime property refers to an operation of the base class that sets the current time.

* indexToValue: UML::Classes::Kernel::Operation [0..1]
The indexToValue property refers to an operation of the base class that yields the instant value associated with an
instant specified by its index.

82 UML Profile for MARTE, V1.3

9.3.2.3.5 Constraints

« None

9.3.2.4 TimedConstraint

The TimedConstraint stereotype maps the TimedConstraint domain element denoted in Annex F (sub clause F.3.25). It
also relates indirectly to TimedInstantConstraint (sub clause F.3.32) and TimedDurationConstraint (sub clause F.3.26).

A TimedConstraint imposes constraints on either instant value or duration value associated with model elements bound to
clocks. If interpretation is set to the enumeration literal instant, then the constraint is interpreted as a constraint on instant
value. If interpretation is set to the enumeration literal duration, then the constraint is interpreted as a constraint on
duration value. There is no other case. The specification of the constraint itself can be conveniently expressed in VSL.

9.3.2.4.1 Extensions

* None

9.3.2.4.2 Generalizations
* NfpConstraint (from NFPs)

e TimedElement

9.3.2.4.3 Associations

e None

9.3.2.4.4 Attributes

* interpretation: TimelnterpretationKind [1]
Specifies whether the constraint applies to an instant value or to a duration value.

9.3.2.4.5 Constraints

[1] The owner of a constraint stereotyped by TimedConstraint must be a Package stereotyped by TimedDomain
base Constraint.owner.ocllsTypeOf(TimedDomain)

[2] The interpretation property is either instant or duration

[3] self.interpretation <> TimelnterpretationKind::any

9.3.2.5 TimedDomain
The TimedDomain stereotype maps the MultipleTimeBase domain element denoted in Annex F (sub clause F.3.17).

A TimedDomain is a container of Clocks. Model elements of the TimeDomain may refer to Clocks to express that their
behavior depends on time. A TimedDomain is also a context for a ClockConstraint. A TimedDomain may own nested
TimedDomains. A TimedDomain maps to a MultipleTimeBase in the semantic domain.

9.3.2.5.1 Extensions

* Namespace (from UML::Classes::Kernel::Namespace)

UML Profile for MARTE, V1.3 83

9.3.2.5.2 Generalizations

¢ None

9.3.2.5.3 Associations

« None

9.3.2.5.4 Attributes

« None

9.3.2.5.5 Constraints

* None

9.3.2.6 TimedDurationObservation

The TimedDurationObservation stereotype maps the TimedDurationObservation domain element denoted in Annex F (sub
clause F.3.27).

A TimedDurationObservation denotes some interval of time, observed on one or two clocks. The duration may be the
time elapsed between the occurrences of the start and the finish events of an execution. The duration may also be the time
elapsed between two of the three events associated with a message (its sending, its receipt, and the start of its processing
by the receiver). More generally, the duration may be the time elapsed between the occurrences of two distinct events.

9.3.2.6.1 Extensions

* DurationObservation (from UML::CommonBehaviors::SimpleTime::DurationObservation).

9.3.2.6.2 Generalizations

* TimedElement

Issue MARTE13-14: update text

9.3.2.6.3 Associations

e Nenevalue: UML ::Classes ::Kernel ::ValueSpecification [0..1]
Time value of the TimedDurationObservation.

9.3.2.6.4 Attributes

* obsKind: EventKind [0..2]
Specifies the kind of the observed events.

9.3.2.6.5 Constraints

* None

9.3.2.7 TimedElement (abstract)

The TimedElement stereotype maps the TimedElement domain element denoted in Annex F (sub clause F.3.28).

The TimedElement stereotype is an abstract stereotype that does not extend UML meta classes. It stands for model
elements referencing Clocks. Only concrete specializations of TimedElement can be applied.

84 UML Profile for MARTE, V1.3

9.3.2.7.1 Extensions

« None

9.3.2.7.2 Generalizations

¢ None

9.3.2.7.3 Associations

e on: Clock [1..%]
References a set of Clocks. When no clock is explicitly specified, a reference to an implicit dense chronometric clock
(like idealClk, see D.3.2) is intended.

9.3.2.7.4 Attributes
* None

9.3.2.7.5 Constraints

e None

9.3.2.8 TimedEvent

The TimedEvent stereotype maps the TimedEvent domain element denoted in Annex F (sub clause F.3.29). It also relates
indirectly to TimedEventOccurrence (sub clause F.3.30).

The TimedEvent stereotype represents events whose occurrences are explicitly bound to a Clock. When this stereotype is
applied to an Event, this Event specifies the first occurrence of this Event (isRelative and when properties). The when

value is considered read on the on Clock of this TimedEvent, and with the unit of this Clock. The every property specifies
the duration between successive occurrences, if any. The number of occurrences can be limited by the repetition property.

9.3.2.8.1 Extensions

* TimeEvent (from CommonBehaviors::SimpleTime)

9.3.2.8.2 Generalizations

* TimedElement

9.3.2.8.3 Associations

» every: UML::Classes::Kernel::ValueSpecification [0..1]
Is an optional owned specification of the duration value between two successive occurrences
of this TimedEvent. By default this duration is read on the on Clock of this TimedEvent. By applying
the TimedValueSpecification stereotype to this ValueSpecification, another Clock can be chosen.

9.3.2.8.4 Attributes

» repetition: Integer[0..1]
Is an optional repetition factor. When defined, repetition is the number of successive
occurrences of the TimedEvent. Its absence is interpreted as an unbounded repetition.

9.3.2.8.5 Constraints

UML Profile for MARTE, V1.3 85

[1] A TimedEvent is bound to one Clock.
on->size() =1

[2] The optional repetition property of a TimedEvent must be not defined when every is not defined.
every->isEmpty() implies repetition->isEmpty()

9.3.2.9 TimedinstantObservation

The TimedInstantObservation stereotype maps the TimedInstantObservation domain element denoted in Annex F (sub
clause F.3.33).

A TimedInstantObservation denotes an instant in time, associated with an event occurrence, and observed on a clock. The
obsKind attribute may specify the kind of the observed event.

9.3.2.9.1 Extensions

* TimeObservation (from UML::CommonBehaviors::SimpleTime:: TimeObservation)

9.3.2.9.2 Generalizations

* TimedElement

Issue MARTE13-14: update text

9.3.2.9.3 Associations

e Nenevalue: UML ::Classes ::Kernel ::ValueSpecification [0..1]
Time value of the TimedInstantObservation.

9.3.2.9.4 Attributes

* obsKind: EventKind [0..1]
specifies the kind of the observed event.

9.3.2.9.5 Constraints

« None

9.3.2.10 TimedProcessing

The TimedProcessing stereotype maps the TimedProcessing domain element denoted in Annex F (sub clause F.3.36). It
also relates indirectly to TimedEventOccurrence (sub clause F.3.30), TimedBehavior (sub clause F.3.24), TimedAction
(sub clause F.3.23), TimedMessage (sub clause F.3.34), and TimedExecution (sub clause F.3.31).

The TimedProcessing stereotype represents activities that have known start and finish times or a known duration, and
whose instants and durations are explicitly bound to Clocks.

9.3.2.10.1 Extensions
* Action (from UML::Actions)

86 UML Profile for MARTE, V1.3

* Behavior (from UML::CommonBehaviors)

* Message (from UML::Interactions::BasicInteractions)

9.3.2.10.2 Generalizations

* TimedElement

9.3.2.10.3 Associations

e duration: UML::Classes::Kernel::ValueSpecification [0..1]
Is an optional owned specification of the duration of an execution for Action and Behavior, or the
duration of a transmission for a Message. By default this duration is read on the on Clock of this
TimedProcessing, if it is unique. By applying the TimedValueSpecification stereotype to this
ValueSpecification, another Clock can be chosen.

* finish: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the end of execution of the processing, for Action or Behavior;
the receipt for a Message.

« start: UML::CommonBehaviors::Communication::Event [0..1]
the event whose occurrence determines the start of execution of the processing, for Action or Behavior;
the sending for a Message.

9.3.2.10.4 Attributes

* None

9.3.2.10.5 Constraints

[1] Not all three properties are empty.

duration->notEmpty() or (start->notEmpty() and finish->notEmpty())

9.3.2.11 TimedValueSpecification

The TimedValueSpecification stereotype maps the TimeValue domain element denoted in Annex F (sub clause F.3.44),

InstantValue domain element (sub clause F.3.14), and DurationValue domain element (sub clause F.3.10).

A TimedValueSpecification is the specification of a set of instances of time values. As a TimedElement, a

TimedValueSpecification makes reference to Clocks. The optional interpretation property may force the interpretation of

the value as duration or instant specification.

9.3.2.11.1 Extensions

* ValueSpecification (from UML::Classes::Kernel:: ValueSpecification)

9.3.2.11.2 Generalizations

e TimedElement

9.3.2.11.3 Associations

« None

9.3.2.11.4 Attributes

UML Profile for MARTE, V1.3

87

* interpretation: TimelnterpretationKind[0..1]
Specifies whether the time values are instant values or duration values.

9.3.2.11.5 Constraints

« None

9.3.2.12 TimelnterpretationKind (from TimeTypesLibrary)

TimelnterpretationKind is an enumeration type that defines literals used to specify the way to interpret a time expression.

9.3.2.12.1 Literals

* duration
Indicates that the typed elements are time spans.

* instant
Indicates that the typed elements are instants.

* any
Indicates that the typed elements can be durations or instants.

9.3.2.13 TimeNatureKind (from TimeTypesLibrary)

TimeNatureKind is an enumeration type that defines literals used to specify the nature discrete or dense of a time value.

9.3.2.13.1 Literals

» discrete
Indicates that the typed elements are from a discrete set.

* dense
Indicates that the typed elements are from a dense set.

9.3.3 Examples

9.3.3.1 Chronometric clocks

The MARTE::TimeLibrary contains the description (IdealClock, a class stereotyped by ClockType) and an instance
(idealClk) of an “ideal” clock. Starting with this clock, the user can define new chronometric clocks, as shown in Figure
9.32. These chronometric clocks may present deviations with respect to the ideal clock.

88 UML Profile for MARTE, V1.3

«mMARTE::MARTE_Foundations::Time::ClockType:» «MARTE::MARTE_Foundations::Time::ClockTyp...
Chronometric (MARTE _Library::TimeLibrary)
«ClockTy pes IdealClock
nature=discrete «ClockTypes
unitType=TimeUnitkind nature=dense
isLogical=false unitType=TimeUnitKind
resolAttr=reselution isLogical=false
getTime=currentTime getTime=currentTime
+ resolution : Real + currentTime(): Real
+ currentTime(): Real

imported from the TimeLibra
«timedDomain: P id ﬁ

= ApplicationTimeDomain

«mARTE::MARTE_Foundations::Time::Clock=

. wclocks»
o £cl: Chronametric idealClk: IdealClock
e iocks «Clockn
standard=UTt. standard=TAl
Ly pe_—Chrcnomel ric type=ldealClock
Ll unit=s
resolution: 0.1 \‘-\
- = - «ClockCanstraint=
«mARTE::MARTE_Foundations::Time::Clock» on=[idealClk, cc1, cc2]
cc2: Chronometric kind=required
«Clock» o
standard=UTC
type=Chronometric {Clock localClock = idealClk discretized by 0.1;
unit=min ccl is periodic on localClock period 10;
«c2 Is perliodic on ccl perlod 60;
reselution: 0.166 ccl has stability 1le-5;
}

Figure 9.32 - Example of chronometric clocks

First, the user specifies a new ClockType: Chronometric, which is discrete, not logical (i.e., chronometric), and with a
read only attribute (resolution).

Instances of clocks belong to timed domains. In this example only one time domain is considered, and it owns 3 clocks:
idealClk, which is an instance of IdealClock, ccl, and cc2, which are two instances of Chronometric.

ccl uses s (second) and cc2 uses min (minutes) as their unit of time: they have a resolution of 0.01 s for ccl and 0.166
(1/60) min for cc2. They both adopt the UTC system of time. Clock constraints are expressed using a simple declarative
language, called CCSL (Clock Constraint Specification Language), described in Annex C.3. The first line, in the body of
the constraint in Figure 9.32, declares a clock localClock, local to the constraint and not part of the system. localClock is
defined as an ideal clock with a discretization factor of 0.001 s = 1 ms. The other lines are constraints. They impose to
ccl and cc2 to be almost periodic (stability of cc1=10-5), with respectively a period of 1 second and 1 minute. Note that
cc2 is specified with regards to ccl. Figure 9.33 represents a time structure that satisfies the given clock constraint.

| UML Profile for MARTE, V1.3 89

. jia——10m 1 ms—»
idealClk n >

(c)—0O<

cc1 O O >

cc2 O O >

offset of -
cc1vs.cc2
cc1.period -

Figure 9.33 - Instants of clocks cc1 and cc2

9.3.3.2 Logical Clocks

In this simplified example, a processor executes the same code for several controllers (Figure 9.34). The processor is a
Voltage Scaling processor: its frequency can be dynamically controlled. For simplicity, only two frequencies are
considered: the frequency in the full power mode, and the frequency in the low power mode, which is half the former. The
Boolean attribute inLowPower indicates the running mode of the processor. The control must be applied periodically (the
period attribute of the Controller) by executing some code (pidCode which is an OpaqueBehavior). The behavior of the
controller is specified by a state machine (ctrlBeh).

stm ctriBeh (p: NFP_Duration y

<<clockType >>

{nature=discrete, afterp
re sol/?\ttr=r'esoluhon, ; 0.+ Controller
isLo gical } -
Processor proc ctrl period: NFP_Duration

inLow Pow er: Boole an -
re so lution: R eal {re adO nly} enty pid Code

Figure 9.34 - Example of timed control

pidCode is a behavior that is executed in a fixed and known number of processor cycles. This can be modeled with a
logical clock. To this end, the class Processor is stereotyped by ClockType. This mixture of physical time (period of
activation) and logical time (execution duration expressed in processor cycles) is usual in control applications. Figure
9.35 represents instances and a clock constraint. The TimedDomain is not explicitly represented. There are two instances
of Controller, with periods of activation equal to 1 and 2 ms, respectively. Each execution of pidCode takes 100 cycles of
the processor, which is expressed by a TimedProcessing. The dependency between the processor cycle duration and the
physical time is specified by a ClockConstraint. The constraint specification indicates that the local Clock c is a discrete
clock with a period of 1 us (1E-6 s). Clock pr is derived from c. The period of pr is 20 us when running in the low power
mode, and 10 us in the full power mode. The trigger of the transition labeled “after p” in the state machine, implicitly
declares a TimeEvent with isRelative = true and when = p. This TimeEvent is stereotyped by TimedEvent with on =
idealClk.

90 UML Profile for MARTE, V1.3

c1: Controller

<<clock>>
pr:Processor

period = (value=1,unit=ms)

<<clock >>

{unit=s} Pame =

idealClk:ldealClock

resolution = 1

c2: Controller

period = (value =2 unit=ms)

<<clockConstraint>>
{Clock cis idealClk discretizedBy 1E- 6;
pr =c filteredByOB(1.0"19)if pr.inLowPower,
pr =cfilteredByO0B(1.079)if notpr.inLowPower;

}

<<time dProcessing >>
{on = pr,
duration =100 }
<<opaqueBehavior>>
pidCode

Figure 9.35 - Clocks and TimedProcessing

UML Profile for MARTE, V1.3

91

92

UML Profile for MARTE, V1.3

10 Generic Resource Modeling (GRM)

10.1 Overview

The objective of this package is to offer the concepts that are necessary to model a general platform for executing real-
time embedded applications. The generic resource model (GRM) includes the features that are required for dealing with:

« Modeling of executing platforms at different level of details. The level of granularity needed for platform modeling
depends on the concern motivating the description of the platform, as for example the type of the platform, the type of
the application, or the type of analysis to be carried out on the model.

« Modeling of both “hardware” (e.g., memory units or physical communication channels) and “software” (e.g., real-time
operating systems) platform.

 Providing foundational modeling constructs that are later refined to support design (SRM & HRM) as well as analysis
(GQAM, SAM & PAM) models.

Both 14.1, ’Software Resource Modeling (SRM)’ and 14.2, "Hardware Resource Modeling (HRM)’ provide a
specialization of this general resource model for software and hardware related platforms respectively.

Figure 10.1 describes the dependencies of the GRM package with other sub-packages of MARTE.

1
MARTE::MARTE_Library::
Basic_NFP_Types

1 ‘?" 1 1
MARTE::] MARTE:: MARTE::
NFP_Modeling | Time CoreElements
F B R
GRM

Figure 10.1 - Dependencies of the GeneralResourceModel (GRM) package

The different facets of the GRM are grouped in individual packages, following the structure shown in Figure 10.2:
+ The ResourceCore package defines the basic elements and their relationships.
« The ResourceTypes package defines fundamental types of resources as well as the basic services that they provide.

« The ResourceManagement package defines specific management resources and their associated services.

UML Profile for MARTE, V1.3 91

GRM
1
ResourceCore)‘n
a A R A
:‘ 1 \ "\
I 1 1 A
i 1 Y
’r; — ! 3 "
; \
/ ResourceTypes % | ResourceUsages
. ~l
/ 7 53 !
4 - " %
n’| o ——
ResourceManagement fe= - -~ Scheduling

Figure 10.2 - Architecture of the GeneralResourceModel (GRM) package

The purpose and contents of each sub-package are described in the following sub clauses.

10.2 Domain View

10.2.1 The ResourceCore Package

The basic partitioning into classifiers and instances made in the Foundations package is used here to describe the nature
of the basic resource elements, depicted in the class diagram in Figure 10.3. The central concept of the GRM is the notion
of a Resource. A Resource represents a physically or logically persistent entity that offers one or more ResourceServices.
Resources and its services are the available means to perform the expected duties and/or satisfy the requirements for

which the system under consideration is aimed.

Causality::Commo nBehavior

MARTE::CoreElements::

::Behavior

Figure 10.3 - Instance/Classifier nature of core resource elements

92

MARTE:.Core Eements: 0.” 1.* | MARTE CoreElements:
Foundations::Instance instance type Foundations :Classifier
MARTE:CoreElements:: MARTE:CoreElements:Causality :: gntext
Causality::RunTimeContext Common Be havior: :Beh avioredClassifier 1
::BehaviorExecution Z}
ownedbehavior
* * Resource
0.. 1.
Resourcelnstance
instance type | resMut: Integer [0..1]
context 1 context 1
. p Services
exeServices 1.% {subset ownedbehavior}
instance 1.
e Resource ServiceExecution 0 : ResourceService
L ype

UML Profile for MARTE, V1.3

As shown in Figure 10.4, Resources and their respective instances are also kinds of AnnotatedElements, hence values of
non-functional properties (NFPs) may be annotated on them. In particular, as a type of classifier, Resources may have
NFPs declared on it. As it is also shown in Figure 10.4, besides the NFP specifications, a resource has an optional set of
referenced clocks, normally only one, but more in general.

MARTE::NFPs::NFP_Annotation::

AnnotatedElement
0.* ownedElement
owner
0.* 1.* Resource o
Resourcelnstance - E 0.1
instance type | resMutt: Integer [0..1]
MARTE:NFPs:: provided

NFP_declaration:NFP {subset value}

required
{subset value}

*

MARTE:: Time::
TimeAccesses ::Clocks::Clock | reference Clocks

Figure 10.4 - NFP annotations and reference Clocks of a Resource

A second orthogonal aspect, which is also very important, is the necessity to differentiate between application and
platform elements. The latter are considered either as resources or resource services. Resources are used to model the
execution platform from a structural point of view, while the resource services supply the behavioral point of view. A
resource may be structurally described in terms of its internal resources - this is represented by the “owner-
ownedElement” association in Resource inherited from the ModelElement meta-class. For example, a processing resource
may be refined as a processor connected to a memory through a bus, if such level of detail is of interest for the modeler
or for the analysis method to be applied to the model.

The reference clock of a resource may be either a chronometric (i.e., “physical”) clock or a logical clock. In any case, a
clock is used as the reference unit for time related characteristics of the services provided by the resource. For example,
considering chronometric clocks, the “processing time” associated with functions in a computation library may be
expressed in terms of processor cycles rather than absolute time values. The reference clock (typically the processor
clock) would then allow translating such values into physical times.

The optional attribute resMult (resource multiplicity) is used to express the limited nature of an aggregated multi
elementary resource. When used it indicates the maximum number of instances of the elementary units of a particular
type of resource that are available through its corresponding services.

Resource and ResourceService, as well as their corresponding instance-based concepts, Resourcelnstance and
ResourceServiceExecution respectively, may also provide and/or require non-functional properties. A
ResourceServiceExecution is a kind of BehaviorExecution that represents a concrete instance of the realization of a
service, in the context of the instance of a resource.

UML Profile for MARTE, V1.3 93

MAR TE::C oreElements::
Foundations::ModelElement

7

ResourceReference ResourceAmount

Figure 10.5 - Resource Reference, and ResourceAmount of the ResourceCore package

For convenience, as shown in Figure 10.5, two more abstract concepts are defined in this ResourceCore package:
« ResourceReference, to be used when modeling the dynamic creation of resources is required.

+ ResourceAmount, representing a generic quantity of the “amount” provided by the resource. This may be mapped to
any significant quantification of the resource, like memory units, utilization, power, etc.

A resource can be a “black box,” in which case only the provided services are visible, or a “white box,” in which case its
internal structure, in terms of lower level resources, may be visible, and the services provided by the resource may be
detailed based on collaborations of these lower level resources.

Note that in the case of the platform provider for example, it is up to the modeler to represent it as:

+ One black box resource (e.g., a real-time operating system), which abstracts the hardware hence considered as internal
elements.

A collaboration between a software layer and a hardware layer.

A collaboration between basically hardware elements. In this case, software features of the execution platform may be
represented by overheads on raw hardware performance figure.

« Any combination of these previous approaches depending on the type of development and analysis method applied by
the user.

The rationale for deciding if an element in the execution platform should be represented as a resource in the platform
model is more related to its criticality in terms of real-time behavior, rather than to its software or hardware nature.
Therefore, the interface (i.e., the set of services) provided by the execution platform as a whole may be much simpler than
the API (Application Programming Interface) visible to the application software. Of course, a model library describing a
given platform may provide several views, corresponding to different anticipated use cases for the platform.

As it occurs with classifiers, the execution platform may be represented as a hierarchical structure of resources.

10.2.2 The ResourceTypes Package

Figure 10.6 presents the basic resource types defined along with their specific attributes. Next a description of each of
them is provided, including the interpretation of the resource base clock when necessary. A first characterization of
resources can be done using the two additional attributes shown, isProtected and isActive. Each of the specialized kinds
may be defined by considering the Boolean values for them. isProtected implies the necessity to arbitrate access to the
resource or its services, while isActive means that it has its own course of action.

94 UML Profile for MARTE, V1.3

GRM::ResourceCore::
Resource

resMult: Integer
isProtected :Boolean
isActive : Boolean

StorageResource

CommunicationResource TimingResource

SynchResource

ConcurrencyResource ComputingResource DeviceResource

Figure 10.6 - Types of resources in the ResourceTypes package

+ A StorageResource represents memory, and its capacity is expressed in number of elements; the size of an individual

element in bits must be given. The reference clock corresponds to the pace at which data is updated in it, and hence it
determines the time it takes to access to one individual memory element. The level of granularity in the amount of
storage resources represented is up to the model designer. For example, if the storage resource represents a hard disk
drive, the element could be a block or a sector, and the speed of the clock to access such element would be directly
related to the disk rotation speed. The services provided by a storage resource are intended to move data between
memory and a processing unit (which can be a computing resource or a communication endpoint).

A TimingResource represents a hardware or software entity that is capable of following and evidencing the pace of
time. It is defined as a kind of chronometric clock, and may represent a clock itself or a timer, in which case it acts
according to the clock that it has as a reference. This concept is used to model the SPT TimingMechanism. According
to the concrete kind of resource or timing mechanism that it represents, the referenced clock may be another
chronometric clock or a logical clock, as defined in the Time clause. A timing resource may have concrete services for
its management and operation. Figure 10.7 shows these services in the form of roles of associations with
ResourceService in the model of timing resources.

GRM::ResourceCore: Resource e

referenceClocks MARTE:: Time: TimeArcasses::

Clocks::Clack
L? slarl
set
. gel .
TimingResource RasourceService
reset
i‘% pause

ClockResource TimerResource

Dwration: NFP_Durafion

isPariadic: Boolsan

Figure 10.7 - Timing resources

UML Profile for MARTE, V1.3

95

« A SynchResource represents the kind of protected resources that serve as the mechanisms used to arbitrate concurrent
execution flows, and in particular the mutual exclusive access to shared resources. This general concept is further
specialized inside the context of the GRM in the Scheduling package.

+ A ComputingResource represents either virtual or physical processing devices capable of storing and executing
program code. Hence its fundamental service is to compute, what in fact is to change the values of data without
changing their location. It is active and protected.

+ A ConcurrencyResource is a protected active resource that is capable of performing its associated flow of execution
concurrently with others, all of which take their processing capacity from a potentially different protected active
resource (eventually a ComputingResource). Concurrency may be physical or logical, when it is logical, the supplying
processing resource needs to be arbitrated with a certain policy. This root concept is further specialized in the
Scheduling package.

« A DeviceResource typically represents an external device that may require specific services in the platform for its
usage and/or management. Active device resources may also be used to represent external specific purpose processing
units, whose capabilities and responsibilities are somehow abstracted away. The implicit assumption is that their
internal behavior is not a relevant part of the model under consideration.

« As shown in Figure 10.8, two kinds of CommunicationResources are defined. A communication media has an attribute
for defining the size of the elements transmitted; as expected, this definition is related to the resource base clock. For
example, if the communication media represents a bus, and the clock is the bus speed, “element size” would be the
width of the bus, in bits. If the communication media represents a layering of protocols, “element size” would be the
frame size of the uppermost protocol. It has also an attribute indicating the capacity of the communication element
when it is applicable. For timing evaluations, it holds also the time it takes to transmit the element used as a
communication quantum, usually called a packet, the size in bits of this quantum is described by the attribute
elementSize. It may have also the specification of the time the communicationMedia is blocked and cannot transmit
due to the transmission of one communication quantum, and the transmission mode available (simplex, half-duplex, or
full-duplex). A communication endpoint acts as a terminal for connecting to a communication media, and it is
characterized by the size of the packet handled by the endpoint. This size may or may not correspond to the media
element size.

CommunicationResource

I Q |

CommunicationEndPoint CommunicationMedia

packetSize : Integer elementSize : Integer
capacity: NFP_DataTxRata
packetTime: NFP_Duration
blacking Time: MFP_Curation
transmMode: Transmbdodekind

Figure 10.8 - Kinds of Communication resource
in the ResourceTypelResourceTypes package

Concrete services provided by CommunicationEndPoint include the sending and receiving of data, as well as a
notification service able to trigger an activity in the application. The fundamental service of a CommunicationMedia is to
transport information (e.g., message of data) from one location to another location.

Figure 10.9 denotes some other basic services that may be provided by resources.

96 UML Profile for MARTE, V1.3

*

GRM::ResourceCore:: 1.
ResourceService

4 +service
Acquire Release ‘ GetAmountAvailable Activate
isBlocking: Boolean

+amount

1.* | GRM::ResourceCore | 1.

1.* ::Resource Amount

+amount

+amount

Figure 10.9 - Basic resource services of the ResourceTypeResourceTypes package

« Both Acquire and Release services correspond respectively to the allocation and de-allocation of some “amount" from
the resource. For example, for a resource representing storage, the amount could be the memory size. As another
example, a resource could represent a single element (maximum amount available is “1”), and acquire/release would be
used to model mutual exclusive access.

« Activate corresponds to the application of a service on a given quantity. For example, activate a communication service
with the amount of data to be transferred as a parameter.

+ GetAmountAvailable returns the amount of the resource that is currently available.
The behavior shown by each service (acquire, release, activate, etc.) of a concrete resource that offers it, shall be

described to the extent needed by the modeling concerns of that specific resource.

10.2.3 The ResourceManagement Package

The elements in this package serve for modeling various resource management services, such as those found in most
operating systems. Figure 10.10 shows both types of resources that hold management services.

broke dResource GRM::ResourceCore: managedResource

1.% Resource

.

ResourceBroker ResourceManager

broker

manag er

* *

accCtrlPolicy | 1..* 1..*|, resCtriPolicy

AccessControlPolicy ResourceControlPolicy

Figure 10.10 - Resource management

UML Profile for MARTE, V1.3 97

The ResourceBroker is a kind of resource that is responsible for allocation and de-allocation of a set of resource instances
(or their services) to clients according to a specific access control policy. For example, a memory manager will allocate

memory from a heap upon request from a client and also return it back into the heap once the client no longer needs it.

The access control policy determines the criteria for determining and making effective the provision of resources, it can
impose limitations on the prioritization of competing requests, or on the amount of memory provided to individual clients,
etc.

On the other hand, the ResourceManager is responsible for creating, maintaining, and deleting resources according to a
resource control policy. For example, a buffer pool manager is responsible for creating a set of buffers from one or more
chunks of heap memory. Once created and initialized, the resources are typically handed over to a resource broker. In
most practical cases, the resource manager and the resource broker are the same entity. However, since this is not always
true the two concepts are modeled separately (they can be easily combined by designating the same entity as serving both
purposes).

10.2.4 The Scheduling Package

Scheduling is the way of arranging behavior at run-time. At this level of description a Scheduler is defined as a kind of
ResourceBroker that brings access to its brokered ProcessingResource or resources following a certain scheduling policy.
The concept of scheduling policy as it is presented here corresponds to the scheduling mechanism described in sub clause
6.1.1 of SPT, since it refers specifically to the order to choose threads for execution. A ProcessingResource generalizes
the concepts of CommunicationMedia, ComputingResource, and active DeviceResource. It introduces an element that
abstracts the fundamental capability of performing any behavior assigned to the active classifiers of the modeled system.
Fractions of this capacity are brought to the SchedulableResources that require it.

A SchedulableResource is defined as a kind of ConcurrencyResource with logical concurrency. This means that it takes
the processing capacity from another active protected resource, usually a ProcessingResource, and competes for it with
others linked to the same scheduler under the basis of the concrete scheduling parameters that each SchedulableResource
has associated. These scheduling parameters need to be compatible with the Sheduling Policy of the scheduler that
arbitrates access to the underlying processing resources.

In the case of hierarchical scheduling, schedulers other than the main scheduler are represented by the
SecondaryScheduler concept. This kind of schedulers do not receive processing capacity directly from a processing
resource, instead they receive it from a SchedulableResource, which is in its turn effectively scheduled by another
scheduler. These intermediate SchedulableResource, play the role of a virtual processing resource, conducting the fraction
of capacity they receive from their host scheduler to its dependent secondaryScheduler.

Figure 10.11 shows the relationships between all these elements, as well as the various kinds of scheduling policies and
the corresponding scheduling parameters.

98 UML Profile for MARTE, V1.3

Issue MARTE13-26: update text (typo: brokedResource)

Scheduling

GRM::ResourceManagem
ent::AccessControlPolicy

accCtrlPolicy

SchedulinglPolicy

policy: SchedPolicyKind
otherSchedPolicy: String

policy

wvx

*

GRM::ResourceManage
ment::ResourceBroker

broker

brokedResource

GRM::ResourceCore::

* 1.

* Resource

0..1\/ mainScheduler

Scheduler

processingUnits
* {subset brokedResource}

ProcessingResource

schedule:ScheduleSpecification

1.*

speedFactor: NFP_Real = {value = 1.0}

T IIKM 1

« enumeration »
SchedPolicyKind

SecondaryScheduler

EarliestDeadlineFirst

FixedPriority
LeastLaxityFirst
RoundRobin
TimeTableDriven
Undef

Other

GRM::ResourceTypes::
ConcurrencyResource

FIFO dependentScheduler | 0..1

virtualProcessingUnits|

1.x 0.7

Lﬁ

1 GRM::ResourceTypes::
host ComputingResource

GRM::ResourceTypes::
CommunicationMedia

schedulableResource

SchedulableResource

>

*

GRM::ResourceTypes::
DeviceResource

{isActive=True}

1 schedParams

SchedulingParameters

UML Profile for MARTE, V1.3

99

Scheduling

GRM::ResourceManagem
ent::AccessControlPolicy

1.0 *

.

GRM::ResourceManage
ment::ResourceBroker

broker brokeredResource

accCtrlPolicy

SchedulinglPolicy

* 1.7

GRM::ResourceCore::
Resource

0..1

policy: SchedPolicyKind
otherSchedPolicy: String

Scheduler

mainScheduler

processingUnits
{Subset brokeredResource}

ProcessingResource

policy

schedule:OpaqueExpression

{subset accCtrIPolicy}

ZF host | 1

« enumeration »
SchedPolicyKind

SecondaryScheduler

EarliestDeadlineFirst
FIFO

FixedPriority
LeastLaxityFirst
RoundRobin
TimeTableDriven
Undef

Other

GRM::ResourceTypes::
ConcurrencyResource

dependentScheduler

virtualProcessingUnits

0..1

1.x 0.

schedulableResource

SchedulableResource

.

1.7

speedFactor: NFP_Real

p

1 GRM::ResourceTypes::
ComputingResource

host

GRM::ResourceTypes::
CommunicationMedia

GRM::ResourceTypes::
DeviceResource

*

1 schedParams

{isActive=True}

SchedulingParameters

Figure 10.11 - The Scheduling package

For a scheduler, the description of an offline schedule is expressed either by an opaque expression or by a table with the
timeslots corresponding to the different schedulable resources that will represent the partitioned available capacity.

When the executionBehaviors of concurrencyResources need to access common protected resources, the underlying
scheduling mechanisms are typically implemented using some form of synchronization resource, (semaphore, mutex, etc.)
with a protecting protocol to avoid priority inversions. Other solutions avoid this concurrency issue by creating specific
schedules that order the access in advance. Whichever mechanism is used, the pertinent abstraction at this level of
specification requires at least the identification of the common resource, its protecting mechanism, and the associated
protocol; this is what the MutualExclusionResource defines. Figure 10.12 shows this element. Its associated protocol,
represented by MutualExclusiveProtocol, is derived from the policy associated to the scheduler that manages it, and the
parameters required by the protocol are represented by the ProtectionParameters element.

100

UML Profile for MARTE, V1.3

Scheduling

GRM::Res ourceManagement GRM::ResourceManage ment GRM::ResourceTypes:
::AccessControlPolicy ::ResourceBroker SynchResource

scheduler /|'0..1

‘ *

«enumerated »
ProtectProtocolKind MutualExclusionProtocol 1 *
> MutualExclusionResource

FIFO protocol: ProtectProtoc olKind protocol
NoPreemption otherProtectProtocol:String
PriorityCeiling *
Prioritylnheritance
StackBased
Undef ProtectionParameters N
Other

priorityCeiling: Integer

preemptionLevel: UnlimitedNatural proteciparams

Figure 10.12 - The MutualExclusionResources in the Scheduling Package
10.2.5 The ResourceUsage Package

When resources are used, their usage may consume part of the “amount” provided by the resource. Taking into account
these usages when reasoning about the system operation is a central task in the evaluation of its feasibility. Figure 10.13
shows the model of a ResourceUsage, it links resources with concrete demands of usage over them. The concept of
UsageDemand represents the dynamic mechanism that effectively requires the usage of the resource. Two general forms
of usage are defined; the StaticUsage and the DynamicUsage, each used according to the specific needs of the model. A
few concrete forms of usage are defined at this level of specification under the concept of UsageTypedAmount; those are
aimed to represent the consumption or temporary usage of memory, the time taken from a CPU, the energy from a power
supply, and the number of bytes to be sent through a network.

UML Profile for MARTE, V1.3 101

Issue MARTE13-33: update figure_+ typo MARTE 13-26 (Causality)

ResourceUsages

MARTE::CoreElements::
Causaility::CommonBehavior::

GRM::ResourceCore::

GRM::ResourceCore::Resource

Resource
Event
event | 0..1 usedResource | 0..* Z}
UsageTypedAmount
execTime: NFP_Duration [*]
0.* usage «_ requiredAmount msgSize: NFP_DataSize [*]
UsageDemand Koad 0" ResourceUsage 0 | allocatedMemory: NFP_DataSize [*]
workloa ” ” usedMemory: NFP_DataSize [*]
powerPeak: NFP_Power [*]
energy: NFP_Energy [*]
StaticUsage StaticUsage GRM::R_esourceTypes::
DeviceResource
ResourceUsages
c MAI?;I’I%:(:;CoreEIeg err: 1555 5 GRM::ResourceCore:: GRM::ResourceCore::Resource
ausality:: CommonBehavior:: R
Event
event | 0.1 usedResource | 0..* Z}
UsageTypedAmount
* execTime: NFP_Duration [*]
0.* usage requiredAmount 0..* | msgSize: NFP_DataSize [*]
UsageDemand N ResourceUsage allocatedMemory: NFP_DataSize [*]
workload 0.. usedMemory: NFP_DataSize [*]
powerPeak: NFP_Power [*]
energy: NFP_Energy [*]
carbonFootprint: NFP_Weight [*]
StaticUsage StaticUsage GRM::ResourceTypes::
DeviceResource

Figure 10.13 - Resource usage

10.3 UML Representation

This sub clause describes the UML extensions provided to support the concepts defined in the presented domain view.
The stercotypes here provided are generic and may be used at different levels of specification.

In order to get the maximum flexibility in the ways of applying the proposed stereotypes, most of the UML elements
extended, are extended by the generic stereotype Resource. Then, through inheritance the large majority of stereotypes in
GRM may extend elements like Property, InstanceSpecification, Classifier, Lifeline, and ConnectableElement. In
particular, they might be applied for example to Classifiers, as well as to InstanceSpecifications of those very same
Classifiers. In this case it is worth to consider the rules described in Section 7.3 for the usage of a stereotype in such

102

UML Profile for MARTE, V1.3

situations. According to this rule when a stereotype is applied on an instance, the value of the attributes not explicitly
assigned in the annotation of the instance are taken in principle from the defaults in the profile stereotype definition, but
they might have to be taken from the annotation of the same stereotype on its corresponding classifier, which may have
overwrote them, making effective with it the classifier nature of the annotation.

10.3.1 Profile Diagrams

The UML extensions for the modeling of resources at this level of specification are provided in the MARTE::GRM
profile and the MARTE::MARTE Library::GRM_BasicTypes model library. They are shown in separate figures for
convenience.

Figure 10.14 shows the stereotypes defined for the root concepts defined for the modeling of resources. Figure 10.16
shows the relationships between stereotypes defined for scheduling. Figure 10.17 shows the UML elements that may be
extended with the GrService stereotype. And Figure 10.19 shows for convenience the model library that collects all the
utilitarian types defined for the GRM profile and which is formally presented in Annex D.

The MARTE::GRM package (stereotyped as profile) defines how the elements of the domain model extend metaclasses
of the UML metamodel. All the stereotypes defined in the GRM profile are then listed and described in alphabetical order.
The semantic descriptions of the concepts that these stereotypes represent are provided along 10.2 ”Domain View” on
page 92. And the detailed descriptions of their corresponding concepts in the domain view are presented in Annex F.
Finally the elements in the GRM_Basic_Types model library are also described in alphabetical order.

UML Profile for MARTE, V1.3 103

« profile »

GRM
metaclass « metaclass » metaclass metaclass et
« » « » « » .
UML::CompositeStructures::
UML::Classes::Kernel:: UML::Classes::Kernel:: UML::Classes::Kernel:: UML.::Interaction::Basic InternapIStructureS"
Property InstanceSpecification Classifier Interactions::Lifeline ConnectableElement
A A A
« stereotype»
Resource
resMult: NFP_Integer = 1
« stereotype » isProtected: Boolean « stereotype »
CommunicationEndPoint isActive: Boolean StorageResource
elementSize: NFP_Integer

packetSize: NFP_Integer

« stereotype » «

SynchronizationResource

ConcurrencyResource

stereotype »

« stereotype »
Scheduler

« stereotype »
MutualExclusionResource

« stereotype »
SchedulableResource

isPreemptible: Boolean = true

schedPolicy: SchedPolicyKind = FixedPriority
otherSchedPolicy: String

schedule: ScheduleSpecification

protectKind: ProtectProtocolKind=prioritylnheritance
ceiling: NFP_Integer

schedParams: schedParameters|0..*]
isActive:Boolean=true{lsReadOnly}

otherProtectProtocol: String
isProtected:Boolean=true{lsReadOnly}

« metaclass » « stereotype »

UML::CompositeStructures::

ProcessingResource

InternalStructures:: speedFactor: NFP_Real
Connector
« stereotype » « stereotype » « stereotype »
CommunicationMedia ComputingResource DeviceResource

elementSize: NFP_Integer

« stereotype »
SecondaryScheduler

Figure 10.14 - UML extensions for GeneralResourceModeling

104

UML Profile for MARTE, V1.3

« profile »
GRM

W Slerectypes
Resource

1

« slereolype »
TimingResource

4

& stereotype » « steraolype »
TimerResource ClockResource

duration:MFF_duration
IsPeriodic: Boolaan

Figure 10.15 - UML Extensions for timing mechanisms in the GRM profile

« profile »
GRM

« stereotype »
ComputingResource

« stereotype »
ProcessingResource

host | 0..1

mainScheduler

processingUnits

0..1

0.*

« stereotype »
MutualExclusionResource

protectKind: ProtectProtocolKind=PriorityInheritance
ceiling: Integer

otherProtectProtocol: String
isProtected:Boolean=true{ReadOnly, redefines isProtected}

protectedSharedResources

*

« stereotype »
Scheduler

scheduler
0..1

isPreemptible: Boolean = true
schedPolicy: SchedPolicyKind = FixedPriority
otherSchedPolicy: String

schedule: ScheduleSpecification

host
0..1

« stereotype »
SecondaryScheduler

dependentScheduler | 0..1

schedulabledResources

« stereotype »
SchedulableResource

schedparams: SchedParameters[0..*]
isActive:Boolean=true{ReadOnly, redefines isActive}

0..* | virtualProcessingUnits

Figure 10.16 - Relationships between UML Extensions for scheduling in the GRM Profile

UML Profile for MARTE, V1.3

105

« profile
GRM
+ metaclass »
UML::Classes: Kemel:
BehavioralFeature ey
Y UML::CommonBehaviors::
BasicBehaviors:: Behavior
1
i« rlnetadassl ») i Ee;s?ﬂg: " « metaclass »
UML:: Interactions: Basicinteractions f-— | UML:ComposiiaStruciures::
::ExecutionSpecification awner: Resourca(0..1] Collaborations::Collaboration
« metaclass »
UML: CompositeStruciures::
Collaborations:: CollaborationUse
¥ Hlrele « stereot "
Acquire Ralaajsr.ge
isBlocking: Boolean

Figure 10.17 - UML Extensions for Services in the GRM Profile

106 UML Profile for MARTE, V1.3

Issue MARTE13-33: update figure + typo MARTE13-26 (energy)

GRM

« profile »

« metaclass »
UML::Classes::Kernel::NamedElement

A

*

« stereotype»
ResourceUsage

execTime: NFP_Duration {ordered} [*]
msgSize: NFP_DataSize {ordered} [*]
allocatedMemory: NFP_DataSize {ordered} [*]
usedMemory: NFP_DataSize {ordered} [*]

{ordered}
usedResources

powerPeak:NFP_Power {ordered} [*]

« stereotype»

B Resource
(S?ES;ZZL enery:NFP_Energy {ordered} [*]
« profile »
GRM
« metaclass »
UML::Classes::Kernel::NamedElement
A
« stereotype»
ResourceUsage
execTime: NFP_Duration {ordered} [*]
msgSize: NFP_DataSize {ordered} [*]
allocatedMemory: NFP_DataSize {ordered} [*] {ordered}
* usedMemory: NFP_DataSize {ordered} [] usedResouces « stereotype»
subUsags powerPeak:NFP_Power {ordered} [*] - Resource
9 energy:NFP_Energy {ordered} [*]
carbonFootprint:NFP_Weight {ordered} [*]

Figure 10.18 - UML Extensions for resource usage

UML Profile for MARTE, V1.3

in the GRM Profile

107

« model library »
MARTE::MARTE_Library::

GRM_BasicTypes

« enumeration » « enumeration » « dataType » « dataType »
SchedPolicyKind ProtectProtocolKind « tupleType » « tupleType »
EarliestDeadlineFirst o EDFParameters FixedPriorityParameters
FIFO S . .
FixedPriority NoPreemption deadline: NFP_Duration priority: NFP_Integer
LeastLaxityFirst F’I'!OI‘!tyCelllnlg
RoundRobin Prioritylnheritance
TimeTableDriven StackBased
Undef
Undef
Other Other
« dataType » « dataType »
- « choiceType » « tupleType »
« enumeration » SchedParameters PeriodicServerParameters
PeriodicServerKind « dataType »
Sporadic edf: EDFParameters kind: PeriodicServerKind « tupleType »
Deferrable fp: leedPrlqutyParameters pal(l:kgroundPnonty: NFPTInleger PoolingParameters
Undef polling: PoolingParameters initialBudget: NFP_Duration
Other server: PeriodicServerParameters replenishPeriod: NFP_Duration period: NFP_Duration
tableEntryKey: OpaqueExpression[0..*] maxPendingReplenish: NFP_Integer overhead: NFP_Duration [0..*]
« dataType »
« dataType » « dataType » « tupleType »
« choiceType » « tupleType » TableEntryType
ScheduleSpecification TableDrivenSchedule
N entryKey: OpaqueExpression
td: TableDrivenSchedule frameCycleTime: NFP_Duration timeSlot: NFP_Duration {ordered} [1..*]
other: OpaqueExpression entries: TableEntryType [1..*] offset: NFP_Duration {ordered} [1..*]

Figure 10.19 - Model library defining types used in the GRM profile (extract of Annex D)
10.3.2 Profile Elements Description

10.3.2.1 Acquire
The Acquire stereotype maps the Acquire domain element denoted in Annex F (sub clause F.4.3).
At this level of specification the amount to acquire is by default one and refers to the owner protected resource.

Extensions
e None

Generalizations
* QGrService

Attributes

» isBlocking: Boolean [0..1]
If true, it indicates that any attempt to acquire the resource may result in a blocking situation if it is not
available. If false, it indicates that the unavailability of the protected resource will not block the caller but it will
be returned as part of the service results instead.

Associations

* None

108 UML Profile for MARTE, V1.3

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).
10.3.2.2 ClockResource

The ClockResource stereotype maps the ClockResource domain element denoted in Annex F (sub clause F.4.5).

Extensions

¢ None

Generalizations

» TimingResource

Attributes

« None

Associations
e None

Constraints
e None

10.3.2.3 CommunicationEndPoint

The CommunicationEndPoint stereotype maps the CommunicationEndPoint domain element denoted in Annex F (sub
clause F.4.6).

Extensions

e None

Generalizations

« Resource

Attributes

» packetSize: NFP_Integer[0..1]
The size of the packet handled by the endpoint.

Associations
e None

Constraints

* None

10.3.2.4 CommunicationMedia

The CommunicationMedia stereotype maps the CommunicationMedia domain element denoted in Annex F (sub clause
F.4.7).

UML Profile for MARTE, V1.3 109

Extensions

* Connector (from UML::CompositeStructures::InternalStructures).

Generalizations

* ProcessingResource

Attributes

* clementSize: NFP_Integer[0..1]
Characterizes the size of the elements to be transmitted.

» capacity: NFP_DataTxRate [0..1]
Capacity of the communication element when applicable link.

» packetT: NFP_Duration [0..1]
Time to transmit the element used as a communication quantum, usually called a packet, the size in bits of this
quantum is described by the attribute elementSize.

* blockT: NFP_Duration [0..1]
Time the communicationMedia is blocked and cannot transmit due to the transmission of one communication
quantum.

» transmMode: MARTE Library::MARTE DataTypes::TransmModeKind [0..1]
Defines the transmission mode, one of the following values: {simplex, half-duplex, full-duplex}.

Associations

« None

Constraints
e None

10.3.2.5 ComputingResource

The ComputingResource stereotype maps the ComputingResource domain element denoted in Annex F (sub clause F.4.9).

Extensions
e None

Generalizations

* ProcessingResource

Attributes

* None

Associations

e None

Constraints

[1] The attribute isActive inherited from Resource is always true.

110 UML Profile for MARTE, V1.3

10.3.2.6 ConcurrencyResource

The ConcurrencyResource stereotype maps the ConcurrencyResource domain element denoted in Annex F (sub clause
F.4.10).

Extensions

* None

Generalizations

* Resource

Attributes

e None

Associations

« None

Constraints
e None

10.3.2.7 DeviceResource
The DeviceResource stereotype maps the DeviceResource domain element denoted in Annex F (sub clause F.4.11).

When it is active it can be considered as an external processing resource whose responsibilities will not be described in
detail in the model under consideration.

Extensions

e None

Generalization

* Resource

Attributes

« None

Associations

« None

Constraints
e None

10.3.2.8 GrService
The GrService stereotype maps the ResourceService domain element denoted in Annex F (sub clause F.4.26).

It is a very general concept that helps in the definition of generic resource models able for further refinement.

UML Profile for MARTE, V1.3 1M1

Extensions

* Behavior (from UML::CommonBehaviors::BasicBehaviors)

* BehaviorExecutionSpecification (from UML::Interactions::BasicInteractions)
* BehavioralFeature (from UML::Classes::Kernel)

* Collaboration (from UML::CompositeStructures::Collaborations)

* CollaborationUse (from UML::CompositeStructures::Collaborations)

Generalizations

e None

Attributes

* owner: Resource [0..1]
Refers to the resource that owns the represented service.

Associations

« None

Constraints
e None

10.3.2.9 MutualExclusionResource

The MutualExclusionResource stereotype maps the MutualExclusionResource domain element denoted in Annex F (sub
clause F.4.15).

Extensions

e None

Generalizations

* Resource

Attributes

» ceiling: NFP_Integer [0..1]
Determines the concrete parameter used to characterize the protection access protocol, it is used for the
PriorityCeiling and the StackBased protocols. For the latter only positive values are to be used. It holds the
concept of ProtectionParameters of the domain model.

» otherProtectProtocol: String [0..1]
Is used to annotate a protocol that is not included among the values of the
ProtectProtocolKind enumerated type.

» protectKind: ProtectProtocolKind [0..1]=PriorityInheritance
Determines the type of protection protocol used to access the resource.

* isProtected: Boolean = true {readOnly, redefines isProtected}

112 UML Profile for MARTE, V1.3

Associations

» scheduler: Scheduler [0..1]
Refers to the scheduler that will implement the protection protocol.

Constraints
[1] The attribute isProtected inherited from Resource is always true.

[2] The scheduling policy of the scheduler must be compatible to the kind of protectKind given to the
MutualExclusionResource.

10.3.2.10 ProcessingResource

The ProcessingResource stereotype maps the ProcessingResource domain element denoted in Annex F (sub clause
F.4.16).

It is an active, protected, executing-type resource that is allocated to the execution of schedulable resources, and hence
any actions that use those schedulable resources to execute. In general, they abstract the processing capabilities of a
computing resource, a communication media, or an active external device.

Extensions
e None

Generalizations

* Resource

Attributes

» speedFactor: Real [0..1] = (value=1.0)
Is a relative factor for annotating the processing speed expressed as a ratio to the speed of the
reference processingResource for the system under consideration. The amount of resource usages
specified for the entities in further usage models (like execution times for schedulability) assume a
normative value of 1.0, which means that they have been measured or estimated either in respect to
the reference system platform or directly over the platform used if it has speedFactor equal to 1.0.

Associations

* mainScheduler: Scheduler [0..1]
Is the scheduler that controls the access to its processing capacity.

Constraints

¢ None

10.3.2.11 Release
The Release sterecotype maps the Release domain element denoted in Annex F (F.4.19).

At this level of specification the amount release is by default one and refers to the owner protected resource.

Extensions

« None

UML Profile for MARTE, V1.3 13

Generalizations

* GrService

Attributes

e None

Associations

e None

Constraints

[1] The resource that owns the service must be a protected resource (i.e., its attribute isProtected must be true).

10.3.2.12 Resource

The Resource stereotype maps both Resource denoted in Annex F (F.4.20) and Resourcelnstance domain elements
(F.4.23).

It is provided for further refinement and for the representation of generic resources from a holistic system wide
perspective. The nature of the concrete element extended defines the domain concept that it represents.

Extensions

* InstanceSpecification (from UML::Classes::Kernel)

* Classifier (from UML::Classes::Kernel)

* Property (from UML::Classes::Kernel)

» Lifeline (from UML::Interactions::BasicInteractions)

* ConnectableElement (from UML::CompositeStructures::InternalStructures)

Generalizations

« None

Attributes

* resMult: NFP_Integer [0..1] =1
Indicates the multiplicity of a resource. For a classifier it may specify the maximum number of instances of the
resource considered as available. By default only one instance is available.

* isProtected: Boolean [0..1]
If true, it indicates that the access to the resource is protected by some kind of brokeringResource.

* isActive: Boolean [0..1]
If true, it indicates that the resource has an initial behavior associated that allows it to possibly perform its
services autonomously or by the triggering and animation of behaviors on others.

Associations
e None

114 UML Profile for MARTE, V1.3

Constraints

* None

Issue MARTE13-33: update text

10.3.2.13 ResourceUsage

The ResourceUsage stereotype maps both ResourceUsage denoted in Annex F (F.4.27) and UsageTypedAmount (F.4.43)
domain elements.

Extensions
* NamedElement (from UML::Classes::Kernel)

Generalizations
e None

Attributes

+ execTime: NFP_Duration {ordered} [*]
Time that the resource is in use due to the usage.

* msgSize: NFP_DataSize {ordered} [*]
Amount of data transmitted by the resource.

+ allocatedMemory: NFP_DataSize {ordered} [*]
Amount of memory that is demanded from or returned to the resource. It may be a positive or
negative value.

* usedMemory: NFP_DataSize {ordered} [*]
Amount of memory that will be used from a resource but that will be immediately returned, and
hence should be available while the usage is in course. This may be used to specify the required
free space in the stack for example.

+ powerPeak:NFP_Power {ordered} [*]
Power that should be available from the resource for its usage.

* energy:NFP_Energy {ordered} [*]
Amount of energy that will be permanently consumed from a resource due to the usage.

» carbonFootprint: NFP_Weight {ordered} [*]
Amount of carbon (CO2) emmission induced by the usage of the resource. This amount is expressed in CO2
equivalent (CO2eq).

Associations
» usedResources: Resource [0..*] {ordered}
List of resources that are used.

* subUsages: ResourceUsage {ordered} [0..*]
List of resourceUsages used to complement the description of the resourceUsage and generate
composite descriptions.

UML Profile for MARTE, V1.3 115

Constraints

(1]

(2]

(3]

To consider the ResourceUsage fully specified, if the list usedResources is empty, the list subUsages should not be
empty and vice versa. Further refinements of ResoureUsage may define additional attributes that may bring implicit
elements into the usedResources list.

If the list usedResources has only one element, all the optional lists of attributes (execTime, msgSize,
allocatedMemory, usedMemory, powerPeak and energy) refer to this unique Resource and at least one of them
must be present.

If the list usedResources has more than one element, all of the optional lists of attributes (execTime, msgSize,
allocatedMemory, usedMemory, powerPeak, and energy) that are present, must have that number of elements,
and they will be considered to match one to one.

If the list subUsages is not empty, and any of the optional lists of attributes (execTime, packetSize, allocatedMemory,
usedMemory, powerPeak, and energy) is present, then more than one annotation for the same resource and kind of
usage may be expressed. In this case, if the annotations have also the same source and statistical qualifiers they will
be considered in conflict, and hence the ResourceUsage inconsistent.

10.3.2.14 SchedulableResource

The

It is

SchedulableResource stereotype maps the SchedulableResource domain element denoted in Annex F (F.4.29).

an active resource able to perform actions using the processing capacity brought from a processing resource by the

scheduler that manages it.

Extensions

None

Generalizations

Resource

Attributes

schedParams: SchedParameters [0..*]
Parameters used to compete for processing capacity.

isActive: Boolean = true {readOnly, redefines isActive}.

Associations

116

dependentScheduler: SecondaryScheduler [0..1]
This scheduler takes its capacity from the schedulable resource, and in its turn shares it among its
nested served schedulable resources.

host: Scheduler [0..1]
Is the scheduler that controls the processing capacity that will be shared among the demanding
schedulable resources.

UML Profile for MARTE, V1.3

Constraints

[1] The policy used by the scheduler (host) must be compatible with the scheduling parameters (schedparams) of the
schedulable resource. The following table establishes the rules for such compatibility.

SchedulingPolicy

choiceAttribute(s) of the SchedulingParameters used

EarliestDeadlineFirst

edf

FixedPriority fp, polling, or server
LeastLaxityFirst edf (combined with)/plus server
TimeTableDriven tableEntry

UML Profile for MARTE, V1.3

117

10.3.2.15 Scheduler

The Scheduler stereotype maps the Scheduler domain element denoted in Annex F (F.4.30).

Extensions
e None

Generalizations
¢« Resource

Attributes

» isPreemptible: Boolean [0..1] = true
Qualifies the capacity of the scheduler for preempting schedulable resources once the access to the
processing capacity has been granted upon the arrival of a new situation where a different
schedulable resource has to execute.

» otherSchedPolicy: String
Is used to annotate a scheduling policy that is not included among the values of the
schedPolicyKind enumerated type.

» schedPolicy: schedPolicyKind [0..1] = fixedPriority
Scheduling policy implemented by the scheduler.

* schedule: OpaqueExpression [0..1]
Is the concrete schedule to use in the case of time table driven strategies. The format for expressing
the times for activation and suspension, the cycle time as well as the number and identification of
schedulable resources is user dependent.

Associations

* host: ComputingResource [0..1]
Refers to the computing resource on which the scheduler runs. It may or may not be the same computing
resource whose processing capacity it will control and share among the demanding schedulable
resources.

» processingUnits: ProcessingResources [0..*]
List of ProcessingResources whose processing capacity is shared by the scheduler among the
schedulableResources it has associated.

» protectedSharedResources: MutualExclusionResource[0..*]
List of the MutualExclusionResources to which access must be protected using the corresponding
protocol.

* schedulableResources: SchedulableResource [0..*]
List of schedulable resources that demand processing capacity from the scheduler.
Constraints

[1] The scheduling policy of the scheduler must be compatible with the scheduling parameters of all the schedulable
resources that it has associated.

[2] The scheduling policy of the scheduler must be compatible with the ProtectProtocolParameters of all the associated
MutualExclusionResources.

118 UML Profile for MARTE, V1.3

10.3.2.16 SecondaryScheduler
The SecondaryScheduler stereotype maps the SecondaryScheduler domain element denoted in Annex F (F.4.33).

A scheduler of this kind takes its capacity from the set of schedulable resources collected as virtual processing units, and
in its turn shares it among its nested served schedulable resources.

Extensions

* None

Generalizations
e Scheduler

Attributes

e None

Associations

» virtualProcessingUnits: SchedulableResource [0..*]
Set of virtual processing resources to whose processing capacity the secondary scheduler controls access.

Constraints

[1T A SecondaryScheduler takes its capacity from the virtualProcessingUnits list of schedulable resources, so it is not
possible to have processing resources capacity through the processingUnits list inherited from Scheduler.

10.3.2.17 StorageResource

The StorageResource stereotype maps the StorageResource domain element denoted in Annex F (F.4.36).

Extensions

e None

Generalizations

* Resource

Attributes

* elementSize: NFP_Integer [0..1]
Size in bits of the basic storage unit.

Associations

« None

Constraints
e None

UML Profile for MARTE, V1.3 19

10.3.2.18 SynchronizationResource
The SynchronizationResource stereotype maps the SynchResource domain element denoted in Annex F (F.4.37).

Extensions
e None

Generalizations
¢« Resource

Attributes

* None

Associations

e None

Constraints

* None

10.3.2.19 TimerResource

The TimerResource stereotype maps the TimerResource domain element denoted in Annex F (F.4.40).

Extensions

¢ None

Generalizations

* TimingResource

Attributes

* duration: NFP_Duration [0..1]
Interval after which the timer will make evident the elapsed time.

* isPeriodic: Boolean [0..1]
If true, the timer will indicate the arrival of a new finalization of the programmed interval in a periodic
repetitive way. If false, it will do it only one time after it is started.

10.3.2.20 TimingResource

The TimingResource stereotype maps the TimingResource domain element denoted in Annex F (F.4.41).

Extensions

* None

Generalizations

* Resource

120 UML Profile for MARTE, V1.3

Attributes

* None

Associations

e None

Constraints

* None
10.3.3 GRM model library elements description

The description of all the elements in the model library for GRM are in Annex DA4.

10.4 Examples

The general resource model is planned to be used not only for further extension in the software and hardware platform
models, or in the analysis models of this specification, but also as a way to describe resources and platform architectures
at a very high level, when design choices and analysis techniques to use for the verification are probably still undecided.
The illustration in Figure 10.20 shows a simple example of the platform description for a teleoperated robot using a
deployment diagram. This example is further revisited to illustrate the usage of schedulability analysis annotations in
Section 16.3.3.

The system platform is composed of two processors interconnected through a CAN bus, and a robot arm whose servo
control cards are connected by means of a backpanel VME bus.

<<CommunicationMedia>>

{speedFactor=(1.0)}

. ’ ’
<<ComputingResource> 4 <<ComputingResource>
{speed Factor=(1.0)} <& CA N_Bus——————— {speedFactor=(0.6)}
NT _Station Controller

)
4
)
] ——
4 _on—--“
A —————T VME Bus
K4 <<CommunicationMedia>
{speedFactor=(8.5)}

<<StorageResource>>
{elementSize=1024x1024x8,
resMult256}

<<DeviceResource>>
{speedFactor=(1.0)}
Robot Arm

Figure 10.20 - Simple example of usage of the GRM Profile at a high architectural level

| UML Profile for MARTE, V1.3 121

The first processor is a teleoperation station (NT_Station); it hosts a GUI application, where the operator commands the
robot and where information about the system status is displayed. The second processor (Controller) is an embedded
microprocessor that implements the controller of the robot servos and its associated instrumentation. Figure 10.21 shows
a possible software architecture for this example.

. « computingResource »
« comp:t::ngtResc;u;ce» {speedFactor=(0.6)}
(SP(;:T gtaotrij)(n' " Controller
« allogate » « allacate »
\ tialAllocati
| {spatialAllocation} «allodate » {spatiallocation}
«alfcate » - « ajocate » {spatialAJlocation} | Controller_Communication
{spatialAllocation} | « mutualExclusionResource » {spatidlAllocation) « allogate »
Display_Data {spatialAflocation} +Send SausE: Saws)
« ?"00' te »_ + Await Command(): Command
« allacate » +Read(): Data {spatialAllgcation}
{spatialjlocation} + Write(D: Data) W\
/ \ « schedulableResource » « sc(r;gdulable%em)urce »
« schedulableResource » « schedulableResource » Reporter mmand_Manager
Display Refresher Command_Interpreter - T Task - T Task
- T: Task - T: Task - Report() - Manage()
- Update_Display() - FgloceSTS_l_Evint() i
- i = Plan_Trajectol
Update_Graphics() ~ Tralectont) / «schedulableResource »
« mutualExclusionResource » Servos_Controller
Servos_Data
. - < T Task
Station_Communication
" + Get(): Data - Control_Servos()
+Send_Command(C: Command) + Set(D: Data) - Control_Algorithms()
+ Await Status(): Status - Do_Control()

Figure 10.21 - Example of usage of the GRM Profile to annotate initial structural architectural choices

The software of the Controller processor contains three active classes and a passive one that is used by the active classes
to communicate. Servo_Controller is a periodic task that is triggered by a ticker timer with a period of 5 ms. The Reporter
task periodically acquires, and then notifies about, the status of the sensors. Its period is 100 ms. The Command Manager
task is aperiodic and is activated by the arrival of a command message from the CAN bus.

The software of processor Station has the typical architecture of a GUI application. The Command Interpreter task
handles the events that are generated by the operator using the GUI control elements. The Display Refresher task updates
the GUI data by interpreting the status messages that it receives through the CAN bus. Display Data is a protected object
that provides the embodied data to the active tasks in a safe way. Both processors have a specific communication software
library and a background task for managing the communication protocol.

According to the initial specification the system has at least three end-to-end flows of independent stimuli subject to hard
real-time requirements. Each one interferes with the others by sharing the processing resources (Station, Controller, and
CAN_Bus) and by accessing the protected objects.

One is the basic control algorithm that executes the Control _Servos procedure with a period (and expectably a deadline)
of 5 ms. The second is the Report procedure that transfers the sensors and servos status data across the CAN bus, to
refresh the display with a period (and deadline) of 100 ms. Finally, the user commands that typically have a sporadic
triggering pattern, but whose minimum inter-arrival time between events could be bounded to 1 s.

For illustration purposes Figure 10.22 shows a closer view of the end-to-end flow that makes the periodic reports every
tenth of a second by means of a sequence diagram. There, they have been annotated the deadline specification as well as
the periodic timing stimuli and the lifelines instances of the resources involved.

122 UML Profile for MARTE, V1.3

<<TimerResource>> %

<< CommunicationMedia>
elementsize=64

duration=(0.15) <<MutualExclusionResource>> % ,ll <<MutualExclusionResource>> %
7]
/‘\'l o ; ‘\‘-o
Controller | | . :Servos :Controller :Station :Display :Display
— | :Reporter - - | :CAN_Bus - N -
Clock P Data Comm . Lomm Refresher Data
\ \ =
Report Await_Statuis

il

{Init..Init+(0.1,s)}

Status

<<SchedulableResource >>¥

<< SchedulableResource >>¥

’
4

’l

’ ‘

Ve
-

Vs

<<SchedulableResource>> %

Transmit

I

ransmit_Command

{return Await_Status

<<ResourceUsage>>
msgSize=(80,Bytes,max)
usedResource=CAN_Bus

Update_Display

Figure 10.22 - Use of the GRM Profile to annotate behavioral specification instances

UML Profile for MARTE, V1.3

123

124 UML Profile for MARTE, V1.3

11 Allocation Modeling (Alloc)

11.1 Overview

This clause contains both domain and UML viewpoints for allocation modeling.

Allocation of functional application elements onto the available resources (the execution platform) is the main concern of
real-time embedded system design. This comprises both spatial distribution and temporal scheduling aspects, in order to
map various algorithmic operations onto available computing and communication resources and services.

The MARTE profile defines relevant application and execution platform models (Clause 13 and Clause 14). A MARTE
allocation is an association between a MARTE application and a MARTE execution platform. Application elements may
be any UML element suitable for modeling an application, with structural and behavioral aspects. An execution platform
is represented as a set of connected resources, where each resource provides services to support the execution of the
application. So resources are basically structural elements, while services are rather behavioral elements.

Application and execution platform models are built separately, before their pairing through the allocation process. Often
this requires prior adjustment (inside each model) to abstract/refine its components to allow a direct match. Allocation can
be viewed as a “horizontal” association, and abstraction/refinement layering as a “vertical” one, with the abstract version
relying on constructs introduced in the more refined model. While different in role, allocation and refinement share a lot
of formal aspects, and so both will be described here. This dual function was recognized in SPT, where allocation was
called realization, while refinement was used as such.

Application and execution platform elements can be annotated with time information based on logical or physical clocks.
Allocation and refinement should provide relations between these timing under the form of constraints between the clocks
and their ticks. Other similar non-functional properties definable from the NFPs package (such as space requirement, cost,
or power consumption) can also be considered.

Note — we do not use here the UML notion of deployment, but rather a SysML-inspired notion of allocation to emphasize the
fact that Execution Platform models should themselves be abstract and not seen as concretization models.

In the simplest case application elements are untimed without explicit logical clocks attached. Asynchronous parts can
also be attached to fully independent virtual clocks. In this simple case the timed allocation provides a physical duration
(and maybe other constraints) to the execution of this given application function on this given execution platform service
or resource. In the more general case timed allocations provide constraints between the virtual logical clocks on the
application side and the more physical technical clocks on the platform side. Clocks on the application side can be
important as they allow the user for visualizing a possible scheduling, maybe computed by subsequent tools and
respecting the provided scheduling constraints, rather than being provided by the user himself.

Refinement (or its inverse abstraction) should also relate the more abstract clocks to the mode refined. On the application
side, abstraction grouping could amount to performing a number of operations in a single instruction (by parallelization,
vectorization, or by replacing a task body by a simple call to it). Atomic instants at some level can be subdivided into
many micro-steps at a more refined level. On the execution platform side, abstraction can help define new services built
as collaborations between resource elements and lower-level services; these services can be generic, or ad-hoc to help
represent simply the allocation of application functions using them. Again here the clocks can be subdivided to represent
the division of service calls into more atomic services.

UML Profile for MARTE, V1.3 121

Allocation can be specified in different kinds: Structural, behavioral, or hybrid. Structural allocation is an association
between a group of structural elements and a group of resources. Behavioral allocation is an association between a set of
behavioral elements and a service provided by the execution platform. When clear from context, hybrid allocations can
also be allowed (for instance when an implicit service is uniquely defined for a resource). At the finer level of detail,
behavioral allocation deals with the mapping of UML actions to resources and services.

The next sub clause considers how resources can be grouped to collaborate and provide a given service, possibly with a
given scenario. The following sub clause describes the principles of the Allocation process (between two previously
independent models). The last part deals with NFP annotations.

Grouping process (Abstraction/Refinement)

Allocations concerns groups of elements. Such grouping of resources was already included in the service definition. The
intention is as follows: grouping, together with the associations already existing at each side (application or platform),
should provide a way to represent a change of atomicity level (abstraction/refinement) inside each model. If a number of
application actions (sets of instructions or subprogram) can be realized atomically as a platform service, itself being made
of several resources collaborating according to a given scenario, then this scheme allows for linking them by an atomic
mapping between the two models. The preliminary process of constructing the entities to be matched is conducted
separately, inside each model. This shows a separation of concern between service definition and actual mapping of
matching elements.

Groups of services could themselves be viewed as compound services. Keeping the two levels is useful to discriminate
between generic services, built on the platform in full isolation, and ad-hoc services, only introduced to cover specific
needs of a particular application.

Allocation process

Allocation results in both spatial distribution and temporal scheduling. Spatial distribution is the allocation of
computations to processing elements, of data to memories, and of data/control dependencies to communication resources.
Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource. Scheduling is represented as a relation between the respective time bases of
application and platform elements.

In turn, the potential analysis performed due to allocation mapping may refine “back” the temporal aspects of
applications, to reflect the results of constraints (scheduling, resource allocation, and sharing) imposed by the execution
platform. It may do so according to a possible refinement of the Time model at the application level.

Structural allocation enforces the corresponding behavioral allocation of encapsulated behaviors, so that contained
elements “inherit” the allocation of compound structures unless otherwise stated at their level (and then the proper
execution platform communication pattern should be feasible). For example, if a Behavior is executed in the context of a
particular object, and this object is allocated to a particular ComputingResource C1 for execution, then any
uml::CallBehaviorAction would by default use the “Call” service provided by C1. However, if the called Behavior
belongs to an object to which another ComputingResource is allocated, it uses the “RemoteProcedureCall” service
provided by C1 to reach C2 - assuming a communication path exists between C1 and C2.

The allocation model could offer different allocation alternatives for a given application element, so that there is an actual
choice on how to map application functions and objects to various parts of the execution platform. The mapping can then
be refined and made more precise in several ways by model transformations directed by analysis techniques.

Both spatial and temporal allocations have to be mutually and globally consistent to ensure a correct execution of the
application by its deployment on the execution platform. This is in general the topic of analysis techniques that the
current MARTE profile aims to offer. But the profile itself only describes the means to describe (total or partial)

122 UML Profile for MARTE, V1.3

allocations, some of which may be provided by users, some computed by advanced analysis techniques in any advanced
design methodology associated with the profile. In usage the allocation model can be made to represent relations that are
issued to the user from an analysis tool, not just provided by human edition.

Allocations should also comply with, or at least not contradict, the local associations and dependencies internal to both
the application and the execution platform. For instance two actions connected by a dependency link should not be
mapped to disconnected parts of the platform. Other well-formedness rules for maintaining structural and behavioral
consistency are listed below.

Application actions and services both derive from TimedAction, hence have “start” and “end” time value specifications
(related to different or to the same logical clock).

When an application action is allocated to an execution platform service, it implies a coincidence relation between all
“start” events on the time base supporting the application action, and all “start” events on the time base supporting the
execution platform service.

The same coincidence relation is implied for the “end” events on respective time bases. This enforces relations between
logical clocks defined by the application, and logical clocks defined by the execution platform.

11.2 Domain View

Figure 11.1 shows a general view of allocation, while Figure 11.2 shows the refinement relations. Both the Allocations
and the refinement are annotated with NFP_Constraints as built from the NFP clause. Time constraints can also be
associated since the metaclass NFP_Constraints is a generalization of the metaclass ClockConstraint defined in Clause 9.
Allocations provide links between independent models, while refinement/abstraction works by changing the focus on an
underlying similar structure.

Allocations
source
ApplicationAllocationEnd
1 *
target
Allocation ExecutionPlatformAllocationEnd

1 *

impliedConstraint | NFP_Annotation::

“ NFP_Constraint

Figure 11.1 - The allocation model

Allocations are used to associate individual application elements to individual execution platform elements. The role of
the time constraints in such case is to provide correlations of some sort between the logical/virtual time bases used as
activation conditions on the application side, and the more technical/physical time bases used as processor rates in the
execution platform side.

UML Profile for MARTE, V1.3 123

Allocation as from SysML can map structural to structural, and behavioral to behavioral or structural elements. The
refinement process generally involves the definition of additional constraints to precise links between the general element
and the refined ones. For instance, one may want to specify how the time bases relates, how the bandwidth (or power
consumption ...) is spread among refined elements. The association with some NFPs::NFP_Annotations::NfpConstraint is
a provision for defining such links.

Allocations J
genaral
Refinement refined AllocationEnd
1
« | constraint
NFP:;__B;FEBAHZE';?I?O":: Application ExecutionPlatform
= AllocationEnd AllocationEnd

Figure 11.2 - The Refinement model

Refinement can deal with both application models and execution platform model. A single element on the more abstract
side can be associated with a number of elements (a group) in the more refined side. In case a group of (structural)
resources and (behavioral) services are grouped to form a more abstract behavioral element (a higher-level service), then
a collaboration use scenarios or something similar should be introduced to indicate how the cooperation of the more basic
entities form the more abstract service is implemented.

For instance on the application side a “task™ call can be refined as its body, or arrange of operations can be parallelized
(or vectorized) as a single instruction. On the execution platform side a service or transaction can be realized by a
sequence of protocol steps.

11.3 UML Representation

The UML view for allocation is strongly inspired from the SysML solution. The SysML solution is satisfactory, but we
wanted to emphasize three important points:

1. The allocation is a mechanism aiming at defining a mapping from the logical parts (the application model elements)
of the model to some more physical parts (the execution platform).

2. There can be several possible allocations and all of them imply a cost that affects the time budget, the power budget
or the budget of any other non functional property.

3. There can be at least two reasons to make an allocation: to perform a spatial distribution of artifacts onto resources or
resource services, or to schedule algorithmic parts onto available resources.

The allocation package includes all these three points.

124 UML Profile for MARTE, V1.3

11.3.1 Profile Diagrams

The first step is to identify what can be allocated, the logical view (behavior or structure), and what can serve as a target
of an allocation, the physical view (a resource or a service). The stereotype Allocated (Figure 11.3) is used for this matter.

Alloc

« anumeration »
AllocationEndKind

astercotypes
Allocated

undef

application
executionPlatform
both

fallocatedTao @ Allocatad [*]
fallocatedFrom : Allocated []
kind : AllocationEndKind

ametaclass»
NamedElement

Figure 11.3 - The stereotype "allocated"

The second step is to identify what is allocated onto what and what are the reasons for such an allocation and what are the

constraints implied by this allocation, hence the definition of the stereotype Allocate.

UML Profile for MARTE, V1.3

125

Issue

MARTE13-39: update figure

Alloc

«metaclass»
UML::Abstraction

«enumeration»
AllocationNature

«enumeration»
AllocationKind

spatialDistribution structural
Iy timeScheduling behavioral
hybrid
impliedConstraint| ~ «stereotype»
«SZGIFIE?:ZEG» NFP_Modeling::

kind : AllocationKind
nature : AllocationNature

NfpConstraint

Alloc

«metaclass»
UML::Abstraction

«enumeration»
AllocationNature

«enumeration»
AllocationKind

A

spatialDistribution
timeScheduling

«stereotype»
Allocate

structural
behavioral
hybrid

impliedConstraint| «stereotype»

kind : AllocationKind
nature : AllocationNature

NfpConstraint

NFP_Modeling::

Figure 11.4 - The stereotype "allocate"

In addition, we define an alternative UML representation of the Allocation domain view metaclass, via the Assign
stereotype. The Assign stereotype extends a UML metaclass: Comment with neutral semantics (instead of leveraging the
semantics of Abstraction). It defines “from” / “to” attributes to indicate the ends of the assignment. Like an allocation, an
assignment can be characterized by its “nature” (spatial or time distribution) and its “kind” (structural, behavioral, or
hybrid). The optional body property of the Comment meta-class can be used to provide the justification of the assignment.

126

UML Profile for MARTE, V1.3

Issue MARTE13-39: update figure

Alloc

ametaclasss
UML::Comment
e
imgliedConstraints ustereotypes
* NFP_Modeling::NfpConstraint
astaraotypen
Allocate

from

UML::Classes::Kernel::Element

kind : Allocationkind
nature : AllocationMature 1.”

Alloc

«metaclass»
UML::Comment

impliedConstraint «stereotype»
* NFP_Modeling::NfpConstraint

«stereotype»
Allocate

from
1.%

UML.::Classes::Kernel::Element

kind : AllocationKind to
nature : AllocationNature 1.

*

Figure 11.5 - The stereotype Assign

As in SysML, a special attention is given to activities since the notation is natural to allocate a set of actions to a
structural element (classifier, instance or part). We define the stereotype AllocateActivityGroup (Figure 11.6), which
name is less misleading than AllocateActivityPartition that would suggest an actual partition of activity nodes. We intend
to represent possible allocations; we anticipate several cases where activity nodes will be shared by several allocate
activity groups. In this case, that means the shared activity nodes can be allocated either to one activity partition (an
instance of the classifier, the instance itself, or the instance playing the part represented by the activity partition) or to the

UML Profile for MARTE, V1.3 127

other. The isUnique property explicitly prevents an activity node from being allocated to several groups. This does not
mean the node cannot be shared by several groups, it only means that once we have made the final decision of the
allocation, the node is actually allocated to only one group.

Alloc

«stereotype»
AllocateActivityGroup «metaclass»
UML ::ActivityPartition

isUnique : Boolean = false

Figure 11.6 - The stereotype AllocateActivityGroup

For the purpose of specifying refinement, the abstraction mechanism offered by UML and the UML keyword refine are
enough. Defining abstractions is useful in bottom-up approaches while making refinement is useful in top-down approach.

Alloc J

ametaclasss
UML:: Dependency

[

constraint astersotypes
NFPs::
NfpConstraint

astereotypes
NipRefine

Figure 11.7 - The stereotype NfpRefine

Concerning the refinement we also think it is important to emphasize the fact that the refinement process implies some
additional constraints. It could be ClockConstraints to relate clocks at the different abstraction level or any other
NfpConstraint.

11.3.2 Profile elements description

11.3.2.1 Allocate (from Alloc)
The Allocate stereotype maps the Allocation domain element denoted in Annex F (F.5.1).

Allocate is a dependency based on UML::Abstraction. It is a mechanism for associating elements from a logical context,
application model elements, to named elements described in a more physical context, execution platform model elements.

The dependency Allocate can be used either to specify one possible allocation, in which case, a space exploration tool
may determine what the best allocations are, or to specify an actual allocation in the system. The context in which the
allocate dependency is used should be sufficient to know in which case we are.

128 UML Profile for MARTE, V1.3

As a named element, a dependency can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
allocation is required, offered, etc.

When the nature is TimeScheduling, the allocate dependency represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation amongst the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions

* Abstraction (from Dependencies)

Associations

» impliedConstraints: NFPs::NfpConstraint [*]
The set of constraints owned by the allocation. Allocating an application model element on a resource
has a cost. This cost is described using a set of non functional property constraints.

Attributes
* kind: AllocationKind [0..1]

This differentiates the kind of allocations, whether both allocated elements on each side are structural, behavioral,
or whether this is a hybrid allocation.

* nature: AllocationNature [0..1]
This identifies the purpose of the allocation, whether the allocation is equivalent to a spatial distribution, where
several application model elements are distributed to different resources or whether timed elements are
scheduled according to a given scheduler.

Constraints

[1] When the kind is structural, suppliers, and clients must all be structural elements: classes, instance specifications, or
packages. When the kind is behavioral, suppliers must be UML::Behavior or UML::Action and the clients must be
behavioral elements, a UML::BehavioralFeature for example. When the kind is hybrid, suppliers must be behavioral
elements while the clients must be structural elements.

[2] When the nature is TimeScheduling, supplier and the clients must be Time::TimedElement and the
NFPs::NfpConstraint shall include Time::ClockConstraint.

Notation

The “allocate” relationship is a dashed line with an open arrow head. The arrow points in the direction of the allocation.
In other words, the directed line points “from” the elements being allocated “to” the elements that are the targets of the
allocation

11.3.2.2 AllocateActivityGroup (from Alloc)

AllocateActivityGroup is used to depict an allocation relationship on an Activity. It is an extension of the metaclass
UML:: ActivityPartition.

UML Profile for MARTE, V1.3 129

AllocateActivityGroup is a standard UML:: ActivityPartition, with modified constraints such that any actions within the
partition must result in an “allocate” dependency between the activity used by the action, and the element that the
partition represents.

Since we also intend to represent possible allocations, we anticipate several cases where activity nodes will be shared by
several allocate activity groups (Figure 11.10). In this case, that means the shared activity nodes can be allocated either to
one activity partition (an instance of the classifier, the instance itself or the instance playing the part represented by the
activity partition) or to the other. The isUnique property explicitly prevents an activity node from being allocated to
several groups. This does not mean the node cannot be shared by several groups, it only means that once we have made
the final decision of the allocation, the node is actually allocated to only one group.

Extensions

» ActivityPartition (from IntermediateActivities).

Attributes

* isUnique: Boolean=false
This specifies whether or not the actions contained in the partition can actually be allocated to several partitions
(the default) or can only be allocated to only one.

Constraints

[1] All Actions appearing in an AllocateActivityGroup will be the /suppliers (from) end of a single Allocate dependency.
The element represented by the AllocateActivityGroup will be the /client (to) end of the same Allocate dependency.
This allows for defining non functional property constraints applying to all contained actions.

Notation

For brevity, the keyword used on an AllocateActivityGroup is “allocate,” rather than the stereotype name
(“allocateActivityGroup”).

11.3.2.3 Allocated (from Alloc)
The Allocated stereotype maps the AllocationEnd domain element denoted in Annex F (F.5.2).

The stereotype Allocated applies to any named element that has at least one allocation relationship with another named
element. Allocated named elements may be designated by either the /from or /to end of an “allocate” dependency.

The stereotype Allocated provides a mechanism for a particular model element to conveniently retain and display the
element at the opposite end of any allocation. With this stereotype you can allocate anything on anything. To make it clear
you want to allocate something logical, from the application model, use the meta-attribute kind (application,
executionPlatform).

The attribute kind is not available in SysML.

Extensions

* NamedElement (from Dependencies)

Associations

¢ None

130 UML Profile for MARTE, V1.3

Atrributes

+ /allocatedTo: Allocated [*]
Named elements that are suppliers of an “allocate” whose client is extended by this stereotype. This property is the
union of all suppliers to which this instance is the client. This association is derived from any “allocate” dependency.

+ /allocatedFrom: Allocated [*]
Named elements that are clients of an “allocate” whose supplier is extended by this stereotype. The allocatedFrom
elements are not necessarily derived from the same “allocate” dependency. A given element can be the supplier of
several application model elements, each of which is allocated using a separate “allocate” dependency. The
association is derived from any “allocate” dependency.

» kind: AllocationEndKind [1] = undef
Specifies the kind of allocation end.

11.3.2.4 AllocationEndKind (from Alloc)

AllocationEndKind is an enumeration type that differentiates the application allocation end from the execution platform
allocation end.

Literals

* undef
Should be used when no differentiation is to be made on the nature of the allocation end. It could be either an
application allocation end or an execution allocation end or something else (as in SysML, where no distinction is
made).

+ application
Identifies an allocation end as being on the application side of the allocation. This allocation end must be the source
(the client) of an allocate dependency.

» executionPlatform
Identifies an allocation end as being on the execution platform side of the allocation. This allocation end must be the
target (the supplier) of an allocate dependency.

* both
Identifies an allocation end as being both on the application and the execution platform side of the allocation. This
allocation must be the source (the client) of an allocate dependency and the target (the supplier) of an (another)
allocate dependency.

11.3.2.5 AllocationNature (from Alloc)

AllocationNature is an enumeration type that defines literals used to specify the purpose of the allocation.

Literals

» spatialDistribution
It indicates that the suppliers are distributed on the clients. Spatial distribution is the allocation of computations to
processing elements, of data to memories, and of data/control dependencies to communication resources.

* timeScheduling
It indicates that the allocation consists in a temporal/behavioral ordering of the suppliers, the order being given by
the clients. Scheduling is the temporal/behavioral ordering of the activities (computations, data storage movements or
communication) allocated to each resource.

11.3.2.6 AllocationKind (from Alloc)

UML Profile for MARTE, V1.3 131

AllocationKind is an enumeration type that defines literals used to specify the kind of named elements that are used as
clients and suppliers.

Literals
» structural
Indicates that the suppliers and the clients are all structural named elements.

* behavioral

Indicates that the suppliers and the clients are all behavioral named elements.
* hybrid

Indicates that the suppliers and the clients are not of the same kind.

11.3.2.7 Assign (from Alloc)
The Assign stereotype maps the Allocation domain element denoted in Annex F (F.5.1).

Assign is an alternative UML representation for the Allocation domain element based on semantically neutral
UML::Comment. It is a mechanism for associating elements from a logical context, application model elements, to named
elements described in a more physical context, execution platform model elements.

The Assign stereotype can be used either to specify one possible allocation, in which case, a space exploration tool may
determine what the best allocations are, or to specify an actual allocation in the system. The context in which the Assign
stereotype is used should be sufficient to know in which case we are.

As a named element, an assignment can be constrained by any kind of UML::Constraint including NfpConstraint. The
purpose of the impliedConstraint association is to explicitly identify what are the constraints that only apply if or when
the allocation is performed. When it is not the case, the kind of the constraints may help in determining whether the
allocation is required, offered, etc.

When the nature is timeScheduling, the Assign stereotype represents a set of timed application model elements (the
supplier)-that may be grouped using the stereotype RefineClock-scheduled on to timed execution platform model
elements. The relation among the clocks of the suppliers and the clients-the scheduling-is given by a set of clock
constraints.

Extensions

« Comment

Associations

+ impliedConstraints: NFPs::NfpConstraint [*]
The set of constraints owned by the assignment. Assigning an application model element on a resource has a cost.
This cost is described using a set of non functional property constraints.

Attributes

* kind: AllocationKind [0..1]
This differentiates the kind of assignment, whether both allocated elements on each side are structural, behavioral, or
whether this is a hybrid assignment.

* nature: AllocationNature [0..1]
This identifies the purpose of the assignment, whether the assignment is equivalent to a spatial distribution, where

132 UML Profile for MARTE, V1.3

several application model elements are distributed to different resources or whether timed elements are scheduled
according to a given scheduler.

Associations

* from : Element [*]