
MDMI Beta 2 Specification

Date: March 2008August 2009

Model Driven Message Interoperability
(MDMI), Beta 12

OMG Adopted Specification

Previously known as Conversion Models for Payment Messages (CM4PMMDMI)

OMG Document Number: dtc/2008-08-01
Standard document URL: http://www.omg.org/spec/MDMI/1.0/PDF Associated File*:
http://www.omg.org/spec/MDMI/20070901

** original file: finance/07-09-03

This OMG document replaces the submission document (finance/2007-09-02, Alpha). It is an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this
document are welcome, and should be directed to issues@omg.org by August 25, 2008.

You may view the pending issues for this specification from the OMG revision issues web page

http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on October 15, 2008. If you
are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

Copyright © 2007, FireStar Software, Inc.
Copyright © 2007, IBM Corporation
Copyright © 2007, Informatica Corporation
Copyright © 2007, IP Commerce
Copyright © 2008, Object Management Group, Inc.
Copyright © 2007, Visa International, Inc.

http://www.omg.org/spec/MDMI/1.0/PDF�
http://www.omg.org/spec/MDMI/20070901�
mailto:issues@omg.org�
http://www.omg.org/issues/�

USE OF SPECIFICATION -— TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means-- – graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems-- – without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED

MDMI Beta 2 Specification

BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management GroupTM, OMGTM , Unified Modeling
LanguageTM, Model Driven Architecture LogoTM, Model Driven Architecture DiagramTM, CORBA logosTM, XMI
LogoTM, CWMTM, CWM LogoTM, IIOPTM , MOFTM , OMG Interface Definition Language (IDL)TM , and OMG SysMLTM
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure
All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

http://www.omg.org/�
http://www.omg.org/technology/agreement.htm).�

 Model Driven Message Interoperability v

Table of Contents
Preface ... v
1Scope .. 1
 Scope ... 1
2 Conformance ... 1
3 Normative References .. 1
4 Terms and Definitions ... 2
5 Additional Information ...6 4

5.1 Acknowledgements ...6 4

6 Overview ..11 5

6.1 UNIFI ... 11

6.1 Relationship to ISO 20022 .. 6

6.2 CM4PM, UNIFI and .Different Ways to Use the Current Standard
.. . 6

6.2.1 Moving Data From One Message to Another 6
6.2.2 Versioning ... 6
6.2.3 Data From an Internal Enterprise Message Format to an
 External Standard ... 7
6.2.4 Bilateral mapping ... 7

6.3 Basic Approach for the Use of This Standard7
6.3.1 Stage 1 ...7
6.3.2 Stage 2 ... 7

6.4 Future Benefits of the Standard ... 8
6.4.1 Dealing With (Near) Synonyms ... 8
6.4.2 Mapping Between Data Dictionaries ...12 8
6.4.3 Use of theHandling Lossless Conversion Models for Payment
Message Standards .12.. 8
6.3.1 Moving data from one message to another .. 12
6.3.2 Versioning .. 13

6.3.3 7Use of MDMI Artifacts Overview
 9

7.1 Informal Overview of artifacts ... 9
7.1.1 Step 1 - Remove the Syntax... 10
7.1.2 Step 2 - Mapping a Source Semantic Element to Business Element

Through a Unique Identifier ..11
7.1.3..Direct Mapping
.. 13

6.4 Basic approach of the Conversion Models for Payment
Message Standards ..13

6.4.1 Stage 1 .. 13
6.4.2 Stage 2 ...13

6.5 Future of the Conversion Models for Payment Message
Standard ... 14

6.5.1 Use of Semantic Mapping for Structuring ... 14
6.5.2Bilateral Mapping between Data Dictionaries .. 14
 11
6.5.3 Handling lossless conversion ...14

 7 8 UML Semantics Overview
 5

7.1 Informal Overview of artifacts ... 5

 vi Model Driven Message Interoperability

7.1.1 Step 1 - Remove the Syntax.. 6
7.1.2 Step 2 - Mapping a Source Message Element to Business Element7
7.1.3 Step 3 - Reversing the process ..7
7.1.4 Direct Bilateral Mapping ..7
7.1.5 Message Aggregates ..7

8 UML Semantics -– Normative Definition 912
8.1 MessageModels, MessageGroup, MessagePackage9

MDMIDictionaryReference .. 12
8.1.1 .1 Overview ...912
8.1.2. Abstract Syntax .. 1012
8.1.3 MessageModel --- Detailed Semantics .. 1012
8.1.4 MessageGroup - Detailed semantics 11Semantics
8.1.5 MessagePackage 8.1.5MDMIDomainDictionaryReference

8.2 MessageSyntaxModel, Node, Bag, Choice,
LeafSyntaxTranslator ...14

8.2.1 Overview ..14
8.2.2 Abstract Syntax ..15
8.2.3 MessageSyntaxModel - Detailed Semantics 1115

8.2 MessageSyntaxModel, Node, Set, SetChoice, LeafSyntaxTranslator
.. 11

8.2.1 Overview ..11
8.2.2 Abstract Syntax ...12
8.2.3 MessageSyntaxModel -- Detailed Semantics ... 12

8.2.4 Node - Detailed Semantics ... 1215
8.2.5 Set ..Bag - Detailed Semantics
8.2.6 SetChoice...Choice - Detailed Semantics
8.2.7 LeafSyntaxTranslator .. 1317

8.3 MessageElementSet, MessageElement8.3SemanticElementSet, Sem
Keyword .. 17

8.3.1 Overview ..1417
8.3.2 Abstract Syntax ..519
8.3.3 SemanticElementSet - Detailed Semantics ... 19
8.3.3 MessageElementSet --4.................SemanticElement - Detailed Semantics
8.3.4 MessageElement5 Keyword - Detailed Semantics

8.3.5 Keyword - Detailed Semantics .. 16
8.3.6 SimpleMessageComposite - Detailed Semantics1621
8.3.7 MessageComposite - Detailed Semantics 1622

8.4 Datatype, DatatypeRules ... 17DataRules

 vi Model Driven Message Interoperability

8.4.1 Overview ..1722
8.4.2 Complex Datatypes ..22
8.4.3 MDMIDatatype, DataRules - Abstract Syntax 1723
8.4.3 Datatype8.4.4 MDIMDatatype - Detailed Semantics
8.4.5 DataRules - Detailed Semantics .. 1824

8.4.4 DatatypeRules --8.5MDMIBusinessElementReference, Conversion Ru
8.5.1 Overview ..25
8.5.2 Abstract Syntax ..25
8.5.3 MDMIBusinessElementReference - Detailed Semantics 18

8.4.5 ApplicableDatatypeRules - Detailed Semantics 18

8.5 Conversion Rule, UnqualifiedBusinessElement 18
8.5.1 Overview ..18
8.5.2 Abstract Syntax ...19

MDMI Beta 2 Specification

 Model Driven Message Interoperability v

8.5.3 UnqualifiedBusinessElement -- Detailed Semantics 19
8.5.4 8.5.4 .. ConversionRule - Detailed Semantics
 2026

8.5.5 Unqual ifiedBusinessElementToMessageElement -
8.5.5 ToSemanticElement - Detailed Semantics.. 27
8.5.6 ToBusinessElement .. 27
8.5.7 MDMIBusinessElementRule .. 27

8.6 SemanticElementRelationship ... 28
8.6.1 Overview .. 28
8.6.2 Abstract Syntax .. 28
8.6.3 SemanticElementRelationship - Detailed Semantics29

8.7 SemanticElementBusinessRule ... 29
8.7.1 Overview .. 29
8.7.2 Abstract Syntax .. 30
8.7.3 MDMIBusinessElementRule - Detailed Semantics 20
 30

8.5.6 MessageElementToUnqualifiedBusinessElement 20

8.6 MessageElementRelationship - Detailed Semantics20
8.6.1 Overview ..20
8.6.2 Abstract Syntax .. 21
8.6.3 MessageElementRelationship -- Detailed Semantics21

8.7 MessageElementBusinessRule ...21
8.7.1 Overview ..21
8.7.2 Abstract Syntax .. 22
8.7.3 Business Detailed Semantics - Detailed Semantics 22

8.8 Message Element, MessageModel and Unqualified Business Element
Instances ..22

8.8.1 Overview ..22
8.8.2 Abstract Syntax .. 23
8.8.3 MessageInstances - Detailed Semantics .. 23
8.8.4 MessageElementInstance ..23
8.8.5 UnqualifiedBusinessElementI nstance ..24

8.9 8.8 ... Summary of Complete Metamodel
.. 2431

8.9.8.1 Overview .. 2431
8.98.2 Abstract Syntax ..2531

Annex A - List of Acronyms ... 2732

 vi Model Driven Message Interoperability

MDMI Beta 2 Specification

 Model Driven Message Interoperability v

Preface
About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications
As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications
• UML

• MOF

• XMI

• CWM
• Profile specifications

OMG Middleware Specifications
• CORBA/IIOP

• IDL/Language Mappings
• Specialized CORBA specifications

• CORBA Component Model (CCM)

http://www.omg.org/�
http://www.omg.org/technology/documents/spec_catalog.htm�

 vi Model Driven Message Interoperability

Platform Specific Model and Interface Specifications
• CORBAservices

MDMI Beta 2 Specification

Model Driven Message Interoperability i

• • CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications
• OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions
The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note –: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues
The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.

mailto:pubs@omg.org�
http://www.iso.org/�

 Model Driven Message Interoperability 1

1 Scope
Complete financial transactions often involve multiple steps that require the transmission of information across
financial systems in multiple enterprises. Each step of a transaction usually relies on the transmission of
information via standardized messages. Some examples of standardized message formats utilized in financial services
are MDDL, FIX, FpML, IFX, TWIST, SWIFT messages, Visa messages, RosettaNet, OAGi, ACORD, and CIDX.
Each of these standards provides a particular type of functionality within the financial service industry. For example,
FIX deals with front-office transactions in the securities sector, while a certain group of SWIFT messages will deal
with back-office security transactions, such as clearing and settling, in the same sector. Each set of financial message
standards is usually supported by a separate industry standards body, e.g., SWIFT for SWIFT messages, Visa for Visa
Messages, the FIX Protocol committee for the FIX standard, etc. The messages created by these groups have evolved
over many years with little or no coordination between groups.

To get true Straight Though Processing (STP), information must be correctly interpreted and processed by each
involved financial system at each step of the financial transaction. This implies – amongst other things -- that
information must be accurately moved from one system to the next. This may require moving information from one
message format to another. For example, data in , e.g., from a FIX messages to data inpre-trade message into a SWIFT
messages.settlement message. In addition, a financial institution will often have theirits own internal data elements
used either in internal data stores or in internal messages. These internal data elements must also be appropriately
mapped to and from the industry standard messages if information is to be transmitted from one institution to another.
Currently, the mapping of financial data from one format to another is not standardized. The mappings are usually
done in an ad hoc procedural manner. The complicated and complex maze of existing formats and hard-coded
transformations has created an environment where every introduction of new message formats, and even changes to
older messages, is very expensive. The goal of the Conversion Models for Payment Message (CM4PM)current
standard (MDMI) is to provide a declarative, model-driven mechanism to perform message data transformation - – not
only to handle the movement of data between different message formats, but also to create a support versioning by
providing a mechanism so that to map information between a new version of a message can be mapped to and an older
version. of the same message. Thus, the Conversion Models for Payment Messagecurrent standard can help reduce the
barriers that prevent the introduction of new versions of messages and thereby greatly reduce the cost of change..

The Finance Domain Task Force wishes to emphasize that this specification is intended for use by the financial services
community, and has been developed with its specific needs and requirements in mind. While it can certainly be
envisioned that the concepts, models, and mechanisms described in this specification can be applied or adapted to other
application domains, it is not the intent of this document to cover other than the financial services domain.

2 Conformance
To be compliant with the specification, an implementation would need to be able to create and consume, as applicable,
the artifacts that are shown in figures 1 and 2 of the model specification (“overview of proposed runtime specification”),
and (OMG document # 2009-09-09); to utilize expression languages that are elaborated upon in detail in this
specification. In particularconsistent with the constraints described in section “8.1.4 MessageGroup – Detailed”; to
utilize MDMIDatatypes that are consistent with the description and constraints in section 8.4, and to utilize a central
dictionary that provides a function delivering a unique identifier as described in section 8.1.5. In addition, an
implementation needs to support a design-time activity with all of the steps involved in generating the conversion maps,
and the runtime application of, as described in figures 7.1 and 7.2, (See section 7.1 Informal Overview of artifacts) that
can consume the generated maps to and match unique identifiers to provide a transformation of a Semantic Element
from a source physical message in order to create a target physical message. The runtime aspects of the implementation
form the normative part of this specification.

3 Normative References
NOTE: If applicable, this needs to be completed.

 3 Model Driven Message Interoperability Model Driven Message Interoperability v

This specification references ISO 20022. A complete reference for ISO 20022 can be found at www.ISO20022.com.

4 Terms and Definitions
Autonomy

Autonomy is defined when each domain authority retains or delegates management and share-ability control over the
resources it offers for sharing.

Business analyst

An actor who is familiar with the area of interest of a message set, for example payments, and who can design semantic
maps.

Business Element
A Business Element is a refinement of a Semantic Element that represents a the smallest semantic unit in an external
dictionary. For example, in ISO20022 Business Elements are the attributes of Business Component (or their
related Message) classes and represent a “business concept. A Business Element is associated with a Domain Data
Dictionary.”.

Business rule

A Business Rule is associated with a Semantic Element and describes constraints on the value of any instance of that
Semantic Element.

Composition

A configuration of related entities that resultresults in a new entity at a different level of abstraction. That that is, a
composition is a grouping of two or more entities that can be referred to as a single entity at a different level of
abstraction from its component entities..

Conversion Rule

A feature of a semantic map that describes a rule that is to be applied to a conversion betweenconvert a value inof a
source message element andSemantic Element into a value inof a target business element or a target message
element.Semantic Element

Datatype

A prescription of the form of the data that has no specific business or message format related semantic content, for
example an address, a date, etc.

Domain

A domain is a particular form of group in which the particular aspect of the behavior of the objects in the group is
controlled by the same authority.

Domain Data Federated Dictionary

That section of a Domain Repository that contains the reusable items, specifically business elements, qualified business
elements, qualifiers.

Domain Repository

http://www.iso20022.com/�

 4 Model Driven Message Interoperability

An ISO20022 compatible repository that focuses on a domain such as Banking, Securities, eCommerce, etc.

 vi Model Driven Message Interoperability

Entity

Any abstract or concrete thing.

Environment

All those entities that are not part of the modeled entities.

Federated dictionary

A federated dictionary is a collection of multiple domains that shares definitions while retaining autonomy over the
resources.

Federate

To Federate is the action of federating a configuration of components.

Group

A Group is a set of objects or models grouped together for structural reasons or because the behavior of the objects or
models have common features.

Keyword List

A Keyword List is a list of name-value pairs, which may include a reference to a formal taxonomy.

Leaf Format

The attribute of the Leaf Syntax Translator that contains a description of the physical format of the associated Message
Element in its Physical Message.

Leaf Format Expression Language

An attribute in a Leaf Syntax Translator that identifies the language used to define a format

Location

The attribute of the Leaf Syntax Translator that contains a description of the location of its associated Node in its Physical
Message.

Location Expression Language

An attribute in a Leaf Syntax Translator that identifies the language used to define a Leaf Location.

Leaf Syntax Translator

A class whose properties provide the necessary to extract or insert the value of a Message Element Instance to or from a
Physical Message.

Message Element

A Message Element is a refinement of a Semantic Element that represents a smallest semantic concept in a message
format

 6 Model Driven Message Interoperability vi Model Driven Message Interoperability

Message Element Relationship Model

A model of the directed associations between a Message Element and one or more Message Elements, in the same
Message Element set.

Message Composite

A Message Composite represents a composition of Message Composites, Simple Message Composites or Message
Elements.

Message format

A message format definesA collection of physical Data Dictionaries, whereby each data dictionary contains Business
and Semantic Elements that are relevant to a particular domain of the financial industry and whereby the collection of
all Business and Semantic Elements represents a single logical data dictionary for the financial industry.

Message Format

Definition of the syntax and semantics of a class of messages. Can be defined in many ways including paper
documentation

MXxx

Message Group

A message group consists of all allowable Message Models that are categorized together in a setformat developed
according to reflect a domain of interest usually created by a standards body, e.g. all SWIFT 15022 messages, all Visa
TCxx messages, etc.

Message Element Set

A set of Message Elements, Message Composites and Simple Message Composites and Message Element Relationship
Model that represent the semantics contained in a message format.

Message Model

A Message Model models a message format and is composed of a Message Element Set and a Message Syntax Model.

Message Syntax Model

A Message Syntax Model is associated with a Message Element set and models the syntax of a message format.

Message Syntax Translator

The combination of a defined process and a set of specifications that, when executed, can insert or extract data from a
message.

MSxx

SWIFT message sets that utilize a standard XML format based on ISO 20022 specification.

MTxx

SWFT message sets that are based onMessage format developed according to the SWIFT defined EDI
formatsspecification, including the ISO 15022 messages.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 7 Model Driven Message Interoperability v

Near Synonym

A Semantic Element that can be mappedderived using prescribed mapping rules tofrom a set of other Semantic
Elements Node ID, thus lying within a clearly bounded semantic distance from those Semantic Elements.

A Node ID is a unique identifier for each node in a syntactic model, e.g., the path from the root to that node. All Nodes
in a Syntactic Model have a Node id.

 8 Model Driven Message Interoperability vi Model Driven Message Interoperability

Physical Message Instance

An instance of a message that is used to transmit information from a source to a target application . Qualified
Business Element

A UML class representing a business element that has been qualified, i.e., specialized to reflect a business context. E.g.,
a given unqualified business element = client account; qualified business element = primary client account, where
primary is a qualifier

Qualifier

Prescriptive predicate defined in an approved structured set that can be used to refine a Semantic Element.

Runtime Application

A set of processes that can perform transformations by utilizing instances of artifacts such as those defined for the
CM4PM standard.

Semantic Element

An object that represents a concept whose properties are datatype and value. It may also have optional properties that
include a description and a Keyword List.entity in a message format that represents a “smallest” business concept
specific to that message format. The easiest way to describe is by analogy. If the information in a message were used
to define a denormalzed table in a database table, then the Semantic Elements would represent the columns of that
table.

Semantic Element Set

A set of SemanticElements, MessageComposites and Simple MessageComposites and SemanticElementRelationships
that represent the semantics contained in a message format.

Semantic Map

A map that describes the relationship between a MessageSemantic Element in a MessageSemantic Element Set and a
Business Element in a Domain Data Dictionary or between a MessageSemantic Element in one Message Model and a
MessageSemantic Element in another Message Model.

Simple Message Composite

A Simple Message Composite is a composite of one or more Message Elements.

Synonym

A Semantic Element that can be mapped to another semantic elementSemantic Element by simple equivalence, i.e.,
A=B.

TCxx

The set of Visa message formatsMessage format developed according to the VISA EDI specifications for retail banking
transactions.applications.

Technical analyst

An actor that has the ability to create Message Models.

Type

MDMI Beta 2 Specification

 Model Driven Message Interoperability 9 Model Driven Message Interoperability v

A conceptualization of a property of one or more entities. Type is a predicate.

U NI FI

The name associated with the ISO 20022 message sets associated with the financial service domain

MDMI Beta 2 Specification

 Model Driven Message Interoperability 11 Model Driven Message Interoperability v

Wire format

The physical syntax of a Physical Message as it is transmitted “over the wire” e.g., XML, Edifact, flat-file record, etc.

5 Additional Information
5.1 Acknowledgements
The following companies submitted and/or supported this specification:

FireStar Software, Inc.

IBM Corporation

Informatica Corporation

IP Commerce

Visa International, Inc.

Barry Steer acted as a consultant to Visa International, Inc. and was a co-author of this work. Barry’s contact information
is: SteerConsulting, bsteer@earthlink.net, 650-375-0424.

Adaptive

The authors wish to acknowledge the contributions of Gabriel Oancea, David Frankel, and Christian Nentwich for their
work in refining the standard. We would like to acknowledge Kris Ketels, Pete Rivett,Said Tabet and Frank Vandamme
in reviewingfor thrit careful and constructive review the materials. The authors also would like to make a special
acknowledgement for Pete Rivett for very careful review and suggestions for both the documents and the specification and
for Sridhar Iyengar for his patience and guidance.

mailto:bsteer@earthlink.net�

 12 Model Driven Message Interoperability vi Model Driven Message Interoperability

6 Overview
Given the lack of a financial industry-mapping standard, data is usually mapped directly from one message format to
another. It is a well-known principle in the field of system architecture that as the number of interfaces in a “system”
increases linearly the cost of maintaining point-to-point mappings increases geometrically. In addition, since many of
these mappings are done locally and procedurally, errors are easily introduced. All financial organizations face this
situation. It is estimated Certainly, financial organizations currently spend some 20-40%a good deal of their software
development budget on developing new interfaces and mappings or extending existing ones. In addition, it is very hard
to introduce any changes into existing message formats or introduce new formats because of the tremendous cost of
changing applications that process the older message formats.

The goal of the CM4PMMDMI standard is to provide a standard framework and methodology for the financial services
industry, which will alleviate the mapping problem.

This standard will:

• Reduce significantly the cost and time needed to define conversion rules to map data from one message
format to another;.

• Handle versioning issues as particular message standards change;formats evolve over time.

• Allow the expedited adoption of new standards --– as mapping the new standard to the existing standard
will allow applications to continue to use the legacy standards thus greatly reducing the introduction cost of
new standards.

• Improve the interoperability and STP in end-to-end financial transactions that are based on multiple
message formats.

The CM4PMMDMI standard's framework is based on two concepts:

• First, removing any syntax associated with a message format, revealing the set of core “message elementsSemantic
Elements” contained in that message format. A message elementSemantic Element is the smallest semantic unit
defined in a message format.

• Second, specifying a semantic map of those message elementsSemantic Elements to an industry accepted data
dictionary made up of “business elements.”Business Elements.” A business elementBusiness Element is the
smallest semantic elementSemantic Element that is an entry in the dictionary and representing a business concept
for the industry sector.

The easiest way to recognize message elementsSemantic Elements or business elements is that they cannot be
constructed from other message elementsSemantic Elements or business elementelements, respectively, i.e., they are
represented by a class, whose only primary property is a general data type. (See section 4.4).

Providing semantic maps to a central data dictionary creates a “hub and spoke” approach to mapping as each standards
body need only develop maps to the standard data dictionary. A mapping then will have two steps, utilizing a map
from a source to the data dictionary and then utilizing a map from the data dictionary to the target. Thus, the mapping
process is reduced from being geometric to being linear with the number of message formats.

6.1 UNIFIRelationship to ISO 20022
To be effective, there needs to be an industry-wide consensus on the semantic content of the business elements in the
data dictionary and there needs to be an organization that will take on responsibility for maintaining its integrity. In the
financial services industry the responsible organization is TC68 and its working groups as outlined in part 2 of the ISO
20022 standard under the rubric “UNIversal Financial Industry message scheme” or UNIFI..

MDMI Beta 2 Specification

 Model Driven Message Interoperability 13 Model Driven Message Interoperability v

Currently UNIFI working groups are redesigning the framework of its data dictionary. The CM4PM standard is designed
to accommodate this new framework. They have embraced the concept of a data dictionary made up of a set of business
elements, where a business element is the smallest semantic element that defines a business concept in a particular
domain of Financial Services.

 vi Model Driven Message Interoperability

For example:

In the ISO 20022 Data Dictionary, Message Elements, which are properties of Message Components (where Message
Components, in turn, are related to Business Components), are the equivalent of the Business Elements as defined in
this specification. Thus, Semantic Elements can be mapped to the Message Elements in ISO_20022.

Examples of Message Elements:

• The amount in a client's retail bank account

• The name of a bank branch

• The name of the sender of a wire transfer

These common business elements can be derived from independent modeling of financial processes, from the reverse
engineering of existing messages or from the specific request for inclusion of a new element that responds to a new
market requirement. A user should be able to use the set of business elements as Lego-blocks, to build new syntax-
independent message formats models, which can then be transformed into syntax specific message formats according to
any desired syntax. Applications that are “aware” of the UNIFI business elements would then be able to process these
new messages without further coding. Mapping from UNIFI data dictionary and thus any of these new messages to data
defined in existing messages would be accomplished based on maps developed using the CM4PM standard.

6.2 CM4PM, UNIFI and 6.2 Different Ways to Use the Current Standard

6.2.1 Moving Data Dictionaries
UNIFI includes a number of working groups that define various industry-wide messaging standards and maintains the
UNIFI repository. The WG4 working group of ISO 20022 is responsible for creating the framework and criteria for what
elements should be entered into the UNIFI data dictionary. It is currently defining a next generation reference framework
for the data dictionary. A key aspect of the new framework will be to make sure that there is not redundancy or
ambiguity among the business elements in the dictionary.

The CM4PM standard can play an important part in creating this robust UNIFI data dictionary. Given a business element
candidate, if there is redundancy, it should be possible to map the submitted business element to existing business
elements in the dictionary using the semantic mapping component of the CM4PM standard (see section 4.5.) If a
mapping is not possible, the business element has enough semantic “distance” from the other business elements to be
entered as a new business element in the UNIFI dictionary.

(The combination of the semantic mapping in the CM4PM standard and the new reference framework for the UNIFI Data
dictionary defines a methodology that can be generally applied to the creation of robust data dictionaries for message
groups. This is an extra benefit of the CM4PM standard.)

6.3 Use of the Conversion Models for Paymentfrom One Message Standards 6.3.1
Moving data from one message to anotherto Another

The primary focus of the CM4PMMDMI standard is moving some information from a source message in a message
format that has been defined by one standards body to a target message in a message format independently defined by
another standards body utilizing an industry defined central data dictionary.

For example:

One message format may define a “client address” field while another message format may have separate fields for
“client street,” “client city,” “client state,” etc.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 15

One message format may define a bank ID number as a BIC number while another message format may define a bank
ID as an ABA routing number.

TwoThe key is that the fields in each message are mapped to the same central dictionary element. There are two
important benefits of mapping to a central data dictionaries such as the UNOIFI data dictionary are:ISO 20022
Repository:

1. Only The central dictionary creates a hub and spoke architecture for transformations. Therefore, only a linear set of
transformation must be created among a different message format groups. instead of the n2 mappings required for bilateral
transformations. For example, by using a central data dictionary for payments, only foursix maps need to be created to
map payment information among SWIFT MT messages, SWIFT MX messages, FIX messages, Visa TC messages,
RosettaNet messages and FRB ACH messages, whereas six direct15 bilateral conversion maps would be needed..

2. • More importantly, givenGiven that a standards body or enterprise takes responsibility for creating standard
conversion maps to a central dictionary, it need only be expert in its own message formats and the well-defined semantics
of the central data dictionary, rather than needing to understand the semantics and syntax of many other message groups
if the direct mappingbilateral element method is employed.

6.3.2.2 Versioning

A second costly problem in the financial services space is versioning. The market continually requires changes in
message formats. Given the legacy of existing software, even a small change in a message format can be prohibitively
costly to implement. Thus, required changes are often implemented very slowly and, in the worse case, not
implemented at all. By providing CM4PMMDMI maps ofbetween new versions and older versions, new message
formats can be introduced without requiring that existing message formats be abandoned or that legacy applications be
re-coded, as long as the legacy applications do not utilize the new information in the new version.

6.3.3 Direct Mapping

CM4PM6.2.3 Moving Data from an Internal Enterprise Message Format to an External Standard

Another important value of MDMI is moving information from an enterprise’s internal message or data formats to an
external message standard. It is important to note that a record definition in a database schema can be considered to be
a “message format” and maps can be generated that transform data from that internal database to an external standard.
Currently large staffs are devoted to creating bilateral maps between their internal standard and the external standard.
Whenever either message format changes, these maps must be changed. With MDMI maps, the Semantic Elements in
is internal message formats are mapped to a central dictionary, such as the ISO 20022 Data Dictionary. Given that a
standards body, such as SWIFT, distributes new MDMI maps to account for the change in their standard, then the
internal enterprise maps do not have to be changed. This will result in very significant savings.

6.2.4 Bilateral mapping
MDMI can be used to model and define conversion maps directly between two message formats. In this case, the semantic
mapping is between the message elementsSemantic Elements in a source message format and the message elementsSemantic
Elements in a target message format. (The ConversionRules, which define the relationship between Semantic Elements must
be as complicated as required to accomplish a mapping whereas conversion rules mapped to a central dictionary will have a
restricted set of operators.)

6.4 3 Basic approach of the Conversion ModelsApproach for Payment
Message Standardsthe Use of This Standard
First, the The artifacts defined for the Conversion Models for Payment Message standards are influenced by viewing
conversions as a mapping datathis standard are designed to map data (i.e., sets of Semantic Elements) from one message
format to another rather than the wholesale conversion of a complete message in one message format to another message
format. With this focus, each data field conversion needs to be atomic, containing all the meta-data necessary to move

 16 Model Driven Message Interoperability vi Model Driven Message Interoperability

the data in the field to a target field (or fields) with as little reference to additional meta on-data such as a complete
model of the message format..

The Conversion Models for Payment Message standards standard is a declarative standard based on a MOF compliant
UML model that definedefines the artifacts necessary to define a standardized conversion. These artifacts represent a
two-stage process:, as described below.

6.43.1 Stage 1

The first stage artifacts utilize a Message Syntax Model to create a syntax-neutral set of Message Semantic Element
classes. Message Semantic Elements are the smallest Semantic Elements semantic entities contained in thata message
typeformat, for which further parsing would lose semantic meaning leaving only generic data-type values.

6.43.2 Stage 2

The second stage provides semantic mapping. to a central dictionary. It does this by specifying To and From
Conversion Rules for source MessageSemantic Elements either to target MessageSemantic Elements in another
message format or to Business Elements in a the central data dictionary such as UNIFIthe ISO 20022 Repository.

In many cases, this mapping will amount to a simple isomorphic mapping; in other cases, simple transformations will
be required, such as splitting or concatenating Message Elementsdefining an arithmetic expression, doing a table
lookup, or splitting or concatenating a string. Separate transform may need to be defined for the mapping 1) from a
source Semantic Element to a Business Element as compared to 2) from a Business Element to a Semantic Element.

For example:

 Model Driven Message Interoperability 23

• “Name” • Mapping “Primary Client Identifier” element in the source message maps to the two elements
“GivenName” , “Primary Client Name” and “FamilyName”Primary Client BIC”, in the target.dictionary

• Mapping “Primary Account Beginning Balance” and “Primary Account Ending Balance” in the sourcedictionary to
“Primary Account Beginning Balance” and “Primary Account Debited Amount” in the target.

Note: There may be no simple or reasonable Conversion Rule frombetween a source MessageSemantic Element toand
a target Business Element in an industry data dictionary like UNIFI., such as the ISO 20022 repository. This indicates
that the MessageSemantic Element represents a concept not yet included in the industry data dictionary. In thatthis
case, a submission should be made to the governing body to enhance the industry data dictionary, rather than include a
complex or convoluted mapping.)

6.5 4 Future Benefits of the Conversion Models for Payment Message
Standard
There are a number of future extensions to the Conversion Models for Payment MessageMDMI standard that can add
should enhance the value of the standard.

6.5.1 Use of Semantic Mapping for Structuring4.1 Dealing With (Near) Synonyms

A key feature of the Conversion Models for Payment MessageMDMI standard is the semantic mapping is that it is carried
out between the financial institutions Message Semantic Elements and the Business Elements contained in an industry
data dictionary, such as UNIFI through a the ISO 20022 Data Dictionary. These conversions should be restrictive to a
small set of direct conversion rules. , e.g., only allowing arithmetic and logical expressions and limiting external
functions to table lookups.

In effect, establishing such a set of rules definescan be used to define the semantic proximity between the Message
Element and the Business Elements. (or in the case of ISO 20022 the Message Elements) in a data dictionary. This
semantic proximity can be characterized as defining synonyms and “near synonyms.” The same mechanism This is
accomplished because terms that can be used to provide a well-structured industry data dictionary. Given amapped to the
dictionary, only using the conversion rules must be synonyms or “near synonyms.” Only terms that are not synonyms
or near synonyms of other Business Elements would be allowed in the basic dictionary itself. The synonyms and near
synonyms with their mappings could be kept in an auxiliary catalogue. The allowable rules established for the
Conversion Rules in effect define the minimum semantic distance that is allowed for dictionary entries, resulting in a
“measurable” well-structured dictionary. The future work would involve defining appropriate sets of conversion rules
and understanding their implication on the dictionary structure.

6.54.2 Mapping between Data Dictionaries

The current standard is focused on supporting message elementSemantic Element conversions among one or more
message standards within Financial Services by mapping message elementsSemantic Elements to one large, central Data
dictionary. However, the Conversion Models for Payment Message semanticMDMI Semantic mappings could be applied
to create maps between data dictionaries. Thus, the CM4PMMDMI standard could be used to effectively support
federated dictionaries. This, in turn, will allow content aware standards groups to manage dictionaries for specific
subsectionsubsections of the financial services industry, as opposed to one group being responsible for a large data
dictionary. A federated set of dictionaries willmight be more effective to maintain..

6.54.3 Handling lossless conversionLossless Conversion

An important need in messaging is dealing with the loss of information when performing Message elementSemantic
Element conversions. While this problem can never be completely solved improvements in lossless conversions will be
a great benefit. The proposed artifacts for the CM4PMMDMI standard can provide a strong basic framework for
creating lossless conversions, e.g., syntax incompatibilities can be traced and accommodated; auxiliary storage for lost
information can be created with additional MessageSemantic Elements, etc..

 6 Model Driven Message Interoperability

7 UML Semantics Use of MDMI Artifacts Overview
The focus of the Conversion Models for Payment MessageMDMI standards is to create a template for machine-readable
maps that standardize the conversion of data from a source message instance based on one message format to data in a
target message instance based on another message format. This may involve the movement of as little as one data
element or it may involve the conversion of a complete physical message. The standard can be used to convertmap data for
message formats within a Message Group or across Message Groups.

7.1 Informal Overview of artifactsArtifacts
Before presenting the artifacts in the CM4PMMDMI standard, an overview and example of the use of the key artifacts
in performing a conversion may be helpful.

Figure 7.1 and Figure 7.2 present an implementation of a conversion utilizing the key artifacts in the Conversion
Models for Payment Message Standards.MDMI Standard. The rectangles in the diagram represent these artifacts. In
addition, it should be understood that the Business Elements in Figure 7.1 are the same Business Elements as in Figure
7.2 and bundled together in some technologically appropriate waythat these Business Elements are defined in a central
dictionary.

Source Sem antic Mapping Source Semanti Mapping and Conversion Rules and Conversion Rule

Source MessageSource MessageSyntax Model
Syntax Mode

use

Start

use

Translate Relevant Subset ofTranslate Relevan Subse oSource Phy sical Message intoSource Physica Message intoRelevant Message Element SetRelevant Message Elemen Se

Map and Convert MessageMap an Conver MessagElement Set to RelevantE lement Se to RelevanBusiness Elem ents Busines Element

Source Physical Message Source Physica Messag

Message Element Set Message Elemen Se

Business Elements Busines Element

MDMI Beta 2 Specification

 Model Driven Message Interoperability 7

Figure 7.1 - Overview of proposed run-time conversion methodology from Source to UNIFI

 24 Model Driven Message Interoperability

Figure 7.2 - Overview of proposed run-time conversion methodology UNIFI to Target

The following step descriptions annotate this conversion example.

7.1.1 Step 1 - Remove the Syntax

The first step of a conversion is to convert the targeted data in a physical message instance (e.g., a SWIFT
MT102MT103, a Visa TC05, etc.) from its existing format to a syntax-neutral format. The conversion involves the
extraction of data from the existing Message using a syntax translation process. This process utilizes the Conversion
Models for Payment Message StandardsMDMI Standard artifact, “Message Syntax Model.” The Message Syntax
Model provides a syntactic description that contains the necessary information to extract or insert any particular data
item from/to a physical message instance.

A data item in a message is defined as the smallest semantic unit in a message for which further parsing would lose
semantic meaning leaving only generic Datatype values. Normally the smallest semantic unit is a “field.”datatype
values. For example, in a SWIFT MT102 there is a field representing a Settlement Date. If further parsing was done,
the value left would simply be a date and indistinguishable, in a business semantic context, from any other date.
Therefore, Settlement Date is a data item that is a smallest semantic unit. The data item “Settlement Date” has a
datatype of date.

For example, in a SWIFT MT102 there is a field representing a Settlement Date. If further parsing was done, the value
left would simply be a Date and indistinguishable, in a business semantic context, from any other date. Therefore the
Settlement Date is Normally the smallest semantic unit whose Data-type is date.

in a message is a field but in many overloaded message formats, a semantic unit can be a sub-field or a combination of
fields. In existing message formats, there are many “fields” that have been subdivided into numerous semantic units.
For example, a field may contain both a list of “Primary Account ID”s separated by commas. In that case, each

Target Semantic Mapping Target Semantic Mapping and Conversion Rules and Conversion Rule

Target Message Target Message Syntax Model
Syntax Mode

End

use

use
Map and Convert Business

Map and Conver Business
Elements into Message Element
Elem ent into Message Elemen

Set

Translate Message Elem ent SetTranslate Message Elemen Seinto Relevant Subset of Target into Relevant Subset of Targe
Physical Message
Physica Message

Target Physical Message Targe Physica Message

Message Element Set Message Element Se

Business Elements Busines Element

MDMI Beta 2 Specification

 Model Driven Message Interoperability 9

“primary account balance” followed by a “balance currency code.” In this case there would be two smallest semantic
unitsID” is a separate data item even though they appear in the one field.

When the data is extracted from the physicalstripped of its specific message format syntax, its value is placed into will
be represented by an instance of the artifact “MessageSemantic Element.””. There will be a MessageSemantic Element
class defined for every semantic unit contained in that a message’s message format. All of these the MessageSemantic
Element classes relate toare contained in the artifact “Message“Semantic Element Set” by composition.

7.1.2 Step 2 - Mapping a Source MessageSemantic Element to Business Elementa Target Semantic
Element through the use of a Unique Identifier acquired from a central dictionary

The second step for the conversion usesleverages a mapping process to convert the data. The data can be either
directly moved into a Message Element Instance in the Message Element Set of another message format or, preferably,
moved into an instance of a Business Element defined in the industry-defined datacentral dictionary. Business to
define the relationship between a Source Semantic Element and one or more Target Semantic Elements.

The Source and Target Semantic Elements are the smallest semantic units contained in an industry dataassociated with
a central dictionary Business Element through a Business Element Reference class. That association may be a simple
isomorphic mapping or it may involve a more complex map utilizing various artifacts in the MDMI specification such
as the ISO20022 UNIFI, which cover the business conceptsa computed Semantic Element or a Conversion rule. Each
element in the central dictionary has to provide a unique identifier for that industry sector. (The its Business Elements
described. That unique identifier will be stored in this document are duplicates of the Business Element class
definitionsreferences that are associated with Semantic Elements. The appropriate Unique Identifiers will have been
stored in the MDMI map for all Semantic Elements in ISO 20022v2 compliant data dictionaries.)the both the Source
and Target message formats.

In the case whereAn MDMI runtime application can locate a complete definition of a transformation by lining up the
Source and Target maps by for the Semantic Elements that have matching Unique Identifiers.

However knowing the direct mapping instructions is often not enough information to insert a value into a Target message, as
the validity of that insertion often depends on other Semantic Elements in a message. For example, it may be invalid to store
a “Primary Account Balance amount” if there is no value for a “Primary Account ID.” Therefore, the mapping is done to an
industry data dictionary, the mapping processor will utilize the artifact “Conversion Rule” to map data from the source
message Element to a Businessmaps for each Semantic Element. In many cases, this mapping will amount to a simple
isomorphic mapping. In this case the Message include a set of Semantic Element and BusinessRelationships that describe
the relationship of a particular Semantic Element are synonyms. Inwith all other cases, simple transformations will be
required, such as splitting or concatenating the value in the MessageSemantic Elements in the message. A runtime
application uses the Semantic Element. For example, a “Client Name” element may be parsed into two elements “Client
GivenName,” and “Client FamilyName.” These straightforward semantic mappings define “near synonyms” between a
Message Element and a set of Business Elements.

(If there is no simple or reasonable transformation to/from a Message Element to a Business Element, this probably
indicates that a submission should be made to enhance a industry data dictionary such as UNIFI, as it reveals that a
business concept is not adequately represented in that dictionary.)

7.1.3 Step 3 - Reversing the process

Given a value stored in a Business Element Instance, the above two steps are reversed, using the same artifacts with one
modification. The mapping processor uses the “MessageElementRelationship” Relationships in its mapping. A
MessageElementRelationship class describes dependencies between the target Message Element and other Message
Element in the target message’s MessageElementSet. The message processor uses the MessageElementRelationships
target mapping to make sure that no constraints are violated and that the inserted value is valid in relationship to other
elements in the Message. For example, it may be invalid to store an “account balance amount” if there is no “account
ID.”

 10 Model Driven Message Interoperability

7.1.4 Direct Bilateral Mapping

The CM4PM standard can be used to directly covert data from one message format to another message format. In this
case the ConversionRules, which define the relationship between a MessageElement in the Source MessageElementSet
and a MessageElement in the target Message Element Set must be as complicated as required by the mapping processor
to accomplish a mapping.

7.1.5 Message Aggregates

A MessageSyntaxModel and its associated MessageElementSet comprise a MessageModel, which is complete, machine-
readable specification for a message format. In turn a set of MessageModels that are meant to cover a specific sector of
Financial Service are associated with a MessageGroup. A MessageGroup follow the natural grouping of message
formats, usually as defined by an industry standards body. For example, Visa has a set of retail payment messages
referred to as TCxx messages, which would make up a MessageGroup. There will be a MessageModel, for every
message format in that retail payment set of messages, for example a MessageModel for the TC05 message format.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 11

 12 Model Driven Message Interoperability

8 UML Semantics - Normative Definition
The following is the formal Meta-Object Facility (MOF) model of the Conversion Models for Payment Messages
Standards. It is first presented as a set of annotated views followed by the presentation of all the “elements” brought
together in a single view.

8.1 MessageModels, MessageGroup, MessagePackage
MDMIDictionaryReference
8.1.1 Overview

This view presents the MessageModel, the MessageGroup, the MessagePackage and the
MessageModel.MDMIDictionaryReference. A MessageModel is a formal representation of a message format. A
MessageGroup is composed of a set of Message Models that are usually grouped together because they focus on a
particular messaging domain. A MessagePackage is a formal structuring of the metadata for a particular MessageGroup,
to be used by the conversion processors For example, the set of SWIFT MTxx payment messages, the set of SWIFT
MXxx fund messages, the set of Visa TCxx retail payment messages. An MDMIDictionaryReference provides a
reference to the central dictionary to which the Semantic Elements for all MessageModels in the MessageGroup will be
mapped.

For example:

The set of SWIFT MTxx payment messages

The set of SWIFT MXxx fund messages

The set of Visa TCxx retail payment messages

MDMI Beta 2
Specification

 Model Driven Message
Interoperability 13

8.1.2 Abstract Syntax

MessageGroup
{specification}

+ name: String

+messageGroup 1

validMessageModel

+messageModel 1..*

MessagePackage
{specification}

+ name: String

MessageMode
l

{specification}

+ messageModelName: String

+messageModel 1

validMessageElementSet +messageElementSet 1

MessageElementSet
{specification}

+ name: String
+/ messageModelName: String

+messageElementSet 1

MessageSyntaxModel
{specification}

+ name: String

1 validMessageSyntaxModel

+messageSyntaxModel

+name : String
+description : String [0..1]
+defaultLocationExpressionLanguage : String
+defaultConstraintExpressionLanguage : String
+defaultRuleExpressionLanguage : String
+defaultFormatExpressionLanguage : String
+defaultOrderingExpressionLanguage : String
+defaultMDMIExpresionLanguage : String

MessageGroup
+name : String
+description : String [0..1]
+reference : URI

MDMIDomainDictionaryReference

+name : String
+description : String [0..1]
+/messageModelname : String

SemanticElementSet

+messageModelName : String
+description : String [0..1]
+source : URI [0..1]

MessageModel

+name : String
+description : String [0..1]

MessageSyntaxModel

+group
1

+model
1..*

+elementSet 1

+model 1

+elementSet
1

+syntaxModel
1

+dictionary
1

+group
1

+syntaxModel
1

+model
1

Figure 8.1 - Message Model, MessageGroup, MDMIDictionaryReference

+messagePackage 1

validMessageModel

+messageModel 1..*

+messageModel 1

validMessageSyntaxModel

+messageSyntaxModel 1

 14 Model Driven Message Interoperability

8.1.3 MessageModel --- Detailed Semantics

A MessageModel has one propertydescription:

1. The property is “messageModelName.” The messageModelName property is a string that is usually similar to the

nameThe MessageModel is the parent class that contains the MDMI model of a message format. The database
schema of a record in a table can also be considered a message format as well as most XML documents.

MessageModel properties:

1. A “messageModelName” property, of type String, names the model of the message format it is modeling.being
modeled. For example, the value of a messageModelName for a MT103 MessageModel could undoubtedly be
“MT103.”

2. This viewAn optional “description” property, of type String, contains a description of the message model.

3. A “source” is a property, of type URI, which contains a reference to the definition of the message format whose
elements are being mapped. This reference can take many forms, for example, the reference might be to a
machine-readable definition, such as the location of the message definition in the ISO 20022 repository, or it
might reference a paper document.

MessageModel has four associations:

1. A MessageModel has a MessageSyntaxModel by composition.

2. A MessageModel has a MessageElementSetSemanticElementSet by composition. Together the MessageModel’s
composed MessageSyntaxModel and the MessageElementSet uniquely define a message format.

3. A MessageModel is associated with a MessageGroup.

A Message model is associated, by composition, with a MessagePackage.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 15

8.1.4 MessageGroup - Detailed semanticsSemantics

A MessageGroup has one propertydescription:

1. The property is “name.” The value of name is the name of the MessageGroup. A class contains a set of message
models that are considered in the same grouping, e.g., SWIFT MX messages, SWIFT 15022 messages, FIX
security messages, etc. The MessageGroup has oneclass is useful for setting various defaults for closely related
message formats.

The MessageGroup properties:

1. The property “name” of type String, names the MessageGroup.

2. The optional property “description”, of type String, provides a description of MessageGroup.

3. The property “defaultLocationExpressionLanguage” of type String identifies the location language to be
used as a default for specifying location for all the messages in the MessageGroup. The value must be
recognized by a runtime transformation application. The location of any field or sub-field in a message must
be expressible in the chosen locationExpressionLanguage. For example, a location language for an XML
message format would be “XPath 2.0”.

4. The property “defaultConstraintExpressionLanguage” of type String identifies the constraint language to be
used as a default for specifying the constraints in the Choice class for all the messages in the MessageGroup.
The constraintExpressionLanguage must be able to reference nodes. An appropriate language, which has
been used in an example implementation, is NRL 1.0.

5. The property “defaultRuleExpressionLanguage” of type String identifies the rule language to be used as a
default for specifying rules in all classes with the property “rule” for all the messages in the MessageGroup.
This rule language must be able to access the values of any SemanticElement and thus it must be able to
access the fields in complex datatypes. An appropriate language, which has been used in an example
implementation, is NRL 1.0[C46].

6. The property “defaultFormatExpressionLanguage”, of type String, identifies the format language to be used
as a default for specifying formats in the LeafSyntaxTranslator class for all the messages in the
MessageGroup. The formatExpressionLanguage must be able to describe fields as well as sub-fields, in
particular the proper termination character for a field or sub-field. Appropriate languages, which have been
used in an example implementation, are the SWIFT 150022 regular expression format language and XSD
format attributes.

7. The property “defaultOrderingExpressionLanguage”, of type String, identifies the ordering language to be
used as a default for specifying the ordering of multiple instances of Semantic Elements in which the
Boolean property “mutipleInstances” is “True”. The ordering language should provide expressions evaluate
to both cardinal and ordinal positioning. For example, NRL is a language that can be used to specify
ordering.

8. The property “defaultMDMIExpressionLanguage”, of type String, identifies the computational language to be
used as a default for specifying the computational expression in computed Semantic Elements that are of
type MDMIExpression. For example, NRL, with its declarative and action language, can be used as a
MDMI Expression Language.

MessageGroup associations:

An association.

1. 1. A MessageGroup has with one or more MessageModels, which comprise the MessageGroup . There are
various reasons to group MessageModels

8.1.5 MessagePackage - Detailed Semantics

 16 Model Driven Message Interoperability

A MessagePackage has one property

1. The property is “name.” The value of name is the name of the MessagePackage.

A MessagePackage has one association.

1. A MessagePackage has, by composition, one or more MessageModels, which comprise the MessagePackage.

2. 8.2 An association with zero or more DataRules that are utilized by the Message models within the group.

3. An association with the MDMIDictionaryReference that identifies the central dictionary utilized by the group

8.1.5 MDMIDomainDictionaryReference

MDMIDomainDictionaryReference description:

The MDMIDomainDictionaryReference class provides a reference to the central dictionary that contains the
Business Elements to which the Semantic Elements in the MessageModels in the MessageGroup are mapped. This
class is purely informational as the URI reference to the dictionary does not have be machine-readable. The
dictionary could reside on paper, for example. However, there must be a function or method associated with the
dictionary that will provide: 1) a uniqueIdentifier for all Business Elements, and 2) a reference to a datatype that is
compatible with the set of MDMIDatatype.

MDMIDomainDictionaryReference properties:

1. A “name” property, of type string, that provides a name for the referenced central dictionary.

2. An optional “description” property, of type String, that provides a description of the referenced central
dictionary.

3. A “reference” property, of the type URI, that provides a reference to the central dictionary, such as a URL.

MDMIDomainDictionaryReference associations:

1. MDMIDomainDictionaryReference has a one-to-one association with MesssageGroup to indicate the central
dictionary that will be used for the maps in MessageModels in the MessageGroup.

2. MDMIDomainDictionaryReference has a one-to-many relationship to the MDMIBusinessElementReference
class so that a reference to the parent dictionary, to which a Business Element belongs, is easily found.

8.2 MessageSyntaxModel, Node, Set, SetChoiceBag, Choice,
LeafSyntaxTranslator
8.2.1 Overview

The MessageSyntaxModel and related classes provides provide syntax information that will allow a Message Syntax
Translatorenable a process to either extract or insert a data value into or from an instance of a message. It does this by
providing a description of the location and format of every semantic unitSemantic Element in the message format.

The MessageSyntaxModel class acts asis the root of a the syntax tree. The syntax tree provides a map for navigating a
message format. Each leaf The leafs of the tree, i.e., a LeafSyntaxTranslator, is associated with a Message Element (the
semantic units in the message format). The are LeafSyntaxTranslator nodes. The LeafSyntaxTranslator has location
and format properties, which contains the contain information that defines how to move a data item from/to the value
propertyan instance of a Messagemessage and associate the data item with a Semantic Element Instance to/from the
location and format for that value in a physical message.. The CM4PMMDMI standard does not require a specific
language for the properties in the LeafSyntaxTranslator, which describe a location or a format. Instead, properties are
defined that reference the expression language that will be used to describe location and format.a location or a format for

MDMI Beta 2 Specification

 Model Driven Message Interoperability 17

the properties in the LeafSyntaxTranslator. Instead, language properties are included that provide a reference the
expression language that will be used to describe location and format. This flexibility was chosen given the variety of
different types of message formats --– for example: XML, EDIFACT, Object models, etc., which must be
accommodatedand the legacy languages already out there to express location and format.

The other classes associated with the MessageSyntaxModel are used to construct the branches of the syntax tree. They
are:

• Node -– an abstract class that represents the branches and leaf nodes of the syntax tree

• Set -Bag – a branch Node that identifies a set of Nodes that are aggregated in a message format

• SetChoice -Choice – a branch Node that defines rules to identify the conditions for which elementsvalues in a setits
children nodes should appear in a physical message instance.

 18 Model Driven Message Interoperability

8.2.2 Abstract Syntax
MessageSyntaxModel

{specification}

+ name: String

+messageSyntaxModel 1

validNode

+node 1..*

Node
{specification}

+ name: String

+ isOptional: Boolean = False

+ location: String

+ locationExpressionLanguage: String
+ d i ti St i

Set

{specification}

+ node: Node [2..*]

+ isUnique: Boolean = False
+ isOrdered: Boolean = False

MessageElement

{specification}

+ name: String

+ datatype: Datatype
+ description: String [0..1]

+ multipleInstances: Boolean = False
+ position: String

+ positionExpressionLanguage: String

+messageElement

validLSTToMessageElement

SetChoice
{specification}

+ constraint: String

+ constraintExpressionLanguage: String

LeafSyntaxTranslator
{specification}

+ format: String

+ formatExpressionLanguage: String

+leafSyntaxTranslator

1

1

 19 Model Driven Message Interoperability

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+contraint : String [0..1]
+constraintExpressionLanguage : String [0..1]

Choice

+name : String
+description : String [0..1]
+minOccurs : Integer = 1
+maxOccurs : Integer = 1
+location : String
+locationExpressionLanguage : String [0..1]
+fieldName : String [0..1]
+/isSyntacticField : Boolean = false

Node

+format : String
+formatExpressionLanguage : String [0..1]

LeafSyntaxTranslator

+isUnique : Boolean = true
+isOrdered : Boolean = false

Bag

+name : String
+description : String [0..1]

MessageSyntaxModel

+semanticElement
0..1

+syntaxNode 0..1

+nodes 1..*

+owner 0..1

+nodes
1..*

+owner
0..1

+parent
0..1

+children
0..*

+syntaxModel
1

+root 1

 Figure 8.2 - Message Syntax Model

8.2.3 MessageSyntaxModel --- Detailed Semantics

A MessageSyntaxModel class has one propertydescription:

1. The MessageSyntaxModel contains a syntax tree that describes how each Semantic Element can be either inserted into
or extracted from a message based on that message’s message format.

MessageSyntaxModel properties:

1. A “name” property, whose value of type String, is the name of the MessageSyntaxModel --. This name will
often be similar to the MessageModel name, e.g., “MT103 Syntax Tree.”

This view of the MessageSyntaxModel has one association:

2. 1. One-to-many Nodes can be associated with a The optional property “description” of type String provides a
description of MessageGroup.

MessageSyntaxModel associations:

1. An associations with one-to-many Nodes as it is the parent class of the syntax tree.

2. An association with its parent MesssageModel

3. An association with its sibling SemanticElement Set

8.2.4 Node - Detailed Semantics

A Node class has five properties:

 20 Model Driven Message Interoperability

1. ANode description:

The Node class is an abstract class that is inherited by all nodes in the syntax tree. It primarily contains location
information so that any field or data item in a message can be located.

Node properties:

1. The “name” property, whose value is of type String, provides a name for the Node --. This name can be
useful to label a section or element in a message format. The name property is important because it should
provide aan addressable reference to a node for the the node, which can be used in an expression languages
used in the syntax tree.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 21

2. An “The optional” “description” property, whose value is a Boolean true or false -- If the optional of type String,
describes the Node’s purpose.

3. The “minOccurs” property is true, then the node can optionally appear in a physical message. If the property is
false, then the node, of type Integer, has a value of 0..1. The value of “0” indicates that the Node is optional
whereas the value “1” indicates that the Node is required in the physical message.

4. An optional “maxOccurs” property, of type Integer, puts an upper limit on the number of instances allowed
for the node.

5. A “location” property whose value, of type String, describes the location of the Node in the physical
message. The location is often in reference to, or anchored by, the URI that defines the location of the
physical message instance.

6. A “locationExpressionLanguage” property whose value, of type String, defines a reference to the expression
language used in the location property. The language used locationExpressionLanguage must have a
reference. The language may be a formally defined language, such as XPath, or a simple local language, such
as a “byte-count and length.”satisfy the same constraints described for the
“defaultLocationExpressionLanguage in section 8.1.5.

7. A “descriptionAn optional “fieldname” property, whose value is a string containing a description of the node.
This view of of type String, provides the field name of a simple datatype that is part of a complex
MDMIDatatype. The data item, whose location is indicated by the Node shows two, has the datatype
associated with the “fieldname”.

8. A derived property “isSyntaticField”, of type Boolean, indicates, if the property’s value is “True”, that this
node corresponds to a data item that is part of an MDMIComplexDatatype. “isSyntaxField” will be “True”
if the optional “fieldname” is present.

Node class generalizations:

Three classes that inherit from the Node Setabstract class: Bag, Choice and LeafSyntaxTranslator.

Node class associations

1. Node has a many-to-one association with the Bag class as a Bag can have Node children.

2. Node has a many-to-one association with the Choice class as a Choice can have Node children.

3. Node has a one-to-one relationship with a SemanticElement. This is the key association that links a
SemanticElement to its syntax.

8.2.5 Set Bag - Detailed Semantics

A Set class has three additionalBag description:

The Bag class represents a set of syntax nodes. The nodes in a Bag can be a unique set or a bag, and the nodes can
be ordered or unordered.

Bag properties:

A “node” property, whose value is an association of two-to-many Nodes -- The location and
locationExpressionLanguage properties of a Set must indicate the mechanism for identifying the beginning of the
Set, the end of the Set, and the separator between Nodes in the message format.

1. An The“isUnique” Boolean property whose, of type Boolean, indicates, if its value is true if “True”, that the
bag is a set is composed of unique items and false if the set . If its value is “False”, the bag of nodes can
contain duplicates..

2. AnThe “isOrdered” Boolean property whose, of type Boolean indicates, if its value is true if “True” that the
nodes in the bag must be in an ordered sequence and false if the set. If the value is “False”, the nodes in the bag

 22 Model Driven Message Interoperability

can be unordered. This view of the Set showsproperty is useful for parsing a message. The actual ordering
of SemanticElements is handled 1) using the “location” property in the Node class that inherits from Set -
SetChoiceand 2) using the “ordering” property in the SemanticElement class.

Bag associations:

1. The Bag class has a one-to-many association with some other classes that inherits from Node. Thus, it becomes
a branch in the syntax tree. Since it must have at least one association with another class by composition, it
cannot be a leaf of the syntax tree.

8.2.6 SetChoice Choice - Detailed Semantics

The SetChoice class has two additional properties beyond the properties inherited from Node and Set.

Choice description:

The Choice class contains the conditions that can identify the subset of its children nodes that will be present in a
particular message instance. The subset is determined by a constraint expression.

Choice properties:

1. A “constraint” property whose value is an expression that can be used to determine which of the set of nodes
should be in a physical message instance.

2. AAn optional “constraintExpressionLanguage” property whose value references ”, of type String .that is a reference
to the language used in the SetChoice “constraint” property. The constraintExpressionLanguage must be able to
reference nodesany node in the syntax tree.

Choice associations:

1. The Choice class has a one-to-many association with some other class that inherits from Node. Thus, it
becomes a branch in the syntax tree. Since it must have at least one association with another class by
composition, it cannot be a leaf of the syntax tree.

8.2.7 LeafSyntaxTranslator

The LeafSyntaxTranslator class has twodescription:

The LeafSyntaxTranslator class is represents a leaf of the syntax tree. There is a LeafSyntaxTranslator
corresponding to every field, sub-field or data item in the message format. The LeafSyntaxTranslator inherits
location information from the Node and has additional properties in addition to those it inherits from Nodethat
describe the format of the data item with which it is associated.

LeafSyntaxTranslator properties:

1. The “format” property, whose value describesof type String, provides the specific format of a field or subfield in
the semantic unit in a physical message instance that is associated with a Message Element.format.

2. The “formatExpressionLanguage” property, whose valueof type String, is a reference to the expression language
used in the format property -- There are a number of good choices for the formatExpressionLanguage values. --.
For example, SWIFT has a defined regular expression language for the format of its semantic units.fields in MT
messages. The formatExpressionLanguage must be able to reference and fully describe the format of data item. An
example would be being able to specify the proper termination character for list of fields that occur within a string.
While the CM4PMMDMI standard does not require a specific formatExpressionLanguage, if no
formatExpressionLanguage exists for a particular message format, the CM4PMMDMI standard is recommending
the use of a small subset of DFDL as a general solution.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 23

8.3 MessageElementSet, MessageElement, SemanticElementSet,
SemanticElement SimpleMessageComposite, MessageComposite,
Keyword

8.3.1 Overview

The MessageElementSetSemanticElementSet contains a set of MessageSemantic Element classes. Each
MessageElementSemanticElement represents a smallest semantic unit in a message format. The
MessageElementSetSemanticElementSet and the MessageSyntaxModel, which are the two entities that comprise a
Message model, can provide a complete specification of a message format. This is because If all the semantic
unitsSemantic Elements in a message are stored in the MessageElementSetSemanticElementSet and instructions on
how to insert or extract each of those elements are contained in the MessageSyntaxModel., then a complete model of a
message format will be created. However, one of the advantages of MDMI is subsets of a message format can also be
mapped. For example, given a specification such as RosettaNet and a goal of executing a payment, only the payment
data-items that are to be moved into a SWIFT payment message need to be mapped.

The MessageElementSetSemanticElementSet represents the “flattening” or the “linearization” of a message format.
This flattening is important, since a primary goal of CM4PMMDMI is to expedite the insertion or extraction of as little
as one semantic unit of a message. For processing efficiency, it is very important that the information needed to
convert one item from/to a message does not require complete information about the structure of the entire message
format.

The primary constituents of the MessageElementSetSemanticElementSet are MessageSemantic Elements. A couple of
additional classes are provided primarily for the ease of the designer, but they do not play a major role in the
conversion process. These are SimpleMessageComposites and MessageComposites. These classes are conveniences
for bundling MessageElementsSemanticElements in the design process.

A SimpleMessageComposite is an “aggregation” that only contains MessageElements.SemanticElements. It is
important, as this first level of aggregation is a very common design mechanism.

For example:

An “account owner address” in a message format may be defined to be composed of separate fields (or semantic units) for
“account owner street,” “account owner city,” “account owner state,” etc. By definition, each one of these individual
fields will be a separate MessageElement, e.g., there will be a MessageElement for AccountOwnerStreet, a
MessageElement for AccountOwnerCity, and a MessageElement for AccountOwnerState and so on. However, at design
time it may be more convenient to deal with the aggregation of the fields and have a SimpleMessageComposite that
represents an AccountOwnerAddress.

A MessageComposite is an aggregation that contains MessageElementsSemanticElements, SimpleMessageComposites
and MessageComposites. It is possible therefore to create exceedingly complicated MessageComposite structures.
However, these structuring mechanisms should be used with considerable caution. Such complicated structures are far
away from the desired linearization or flattening of semantic units, which is a core design principle of the
CM4PMMDMI standard.

An important property of MessageElementsSemanticElements merits further discussion. This is the attributeproperty
“multipleInstances.” MultipleInstances indicates that the semantic unit represented by that MessageElementinstances of
a particular SemanticElement can appear multiple times in a physical message instance. In its simplest form, a
MessageElement, which has a value of true for its multipleInstance property,, usually in the form of repeating fields or a
list. In effect, the SemanticElement is a vector and not a singular value. As expected, the fact that SemanticElements can
simply represent be an array or list -- for example, a list of codes, a list of numeric entries, and so on. However, a
MessageElement marked with “multipleInstances” can also be a component of a more complex structure. Thus in the
above example of AccountOwnerAddress, if the message format allowed multiple account owner addresses, each
MessageElement invalues increases the address, such as “AccountOwnerStreet” would have its multipleInstances property

 24 Model Driven Message Interoperability

as true. It would be up to complexity of the “location” property in the LeafSyntaxTranslator that is associated
“AccountOwnerStreet” to know where each of the instances of AccountOwnerStreet should be placed so they go into or
can be retrieved from the right address structure in a message. (Even though AccountOwnerAddress may be a
SimpleMessageComposite, at run time each Message Element of that composite is handled independently, i.e., the
SimpleMessageComposite is only a design time convenience.)model

8.3.2 Abstract Syntax

class CM4PMS_MES

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+name : String
+description : String [0..1]
+/messageModelname : String

SemanticElementSet

+name
+description : String [0..1]

SimpleMessageComposite

+description : String
+keyword : String
+keywordValue : String [0..1]
+reference : String

Keyword

+name : String
+description : String [0..1]

MessageSyntaxModel

MessageComposite

+keywords
0..*

+owner 1

+composites
0..*

+owner 0..1

+elementSet
1

+syntaxModel
1

+composite

0..1
+semanticElements

1..*

+semanticElements
1..*

+elementSet
1

+parent
0..1

+children
0..*

+composite
0..*

+elementSet 1

+messageElementSet 1 +messageElementSet 1 +messageElementSet 1

+messageElement

MessageElement

{specification}

+ name: String

+ datatype: Datatype

+ description: String [0..1]

+ multipleInstances: Boolean = False +
position: String

+ positionExpressionLanguage: String

1

+messageElement

validKeyword

+ name: String

+/ messageModelName: String

context: MessageElementSet

Inv: Self.messageModelName =
messageModel .messageModel Name

validMessageElement

+messageElement 1 *

+keyword 1 *

{Constraint}

context: MessageElement

Inv: Self.messageModelName =
messageElementSet.messageModel .messageModelName

validMessageComposite

+messageComposite 0 *
+simpleMessageComposite 1 *

validSimpleMessageComposite

0..1

SimpleMessageComposite
{specification}

+ name: String

0 * +simpleMessageComposite

validMessageComposite

0..1 validMessageElement

+simpleMessageComposite
1 *

MessageComposite

{specification}

+ name: String

+messageComposite
0 1

0 *

validSimpleMessageComposite

Keyword
{specification}

+ keyword: String [0..*]
+ keywordValue: String
+ reference: String

MessageElementSet
{specification}

MDMI Beta 2 Specification

 Model Driven Message Interoperability 25

Figure 8.3 - Message Element Set SemanticElementSet and associated classes

8.3.3 MessageElementSet -- SemanticElementSet - Detailed Semantics

The MessageElementSemanticElement Set description:

The SemanticElement Set contains the smallest Semantic Elements contained in a message format. The set only
holds Semantic Elements. All of the message-specific syntax of selected elements from a particular message
format has twobeen removed.

SemanticElementSet properties:

A “name” property whose value is, of type String, contains the name of the MessageElementSet.

A “MessageModelName” property, whose value is constrained to be the same as the name property in the
MessageModel that contains the MessageElementSet.

This view of the MessageElementSet shows three associations:

1. The MessageElement Set will contain, by composition, one-to-many MessageElements. A MessageElement is the
primary entity in the MessageElementSetSemanticElementSet.

The MessageElementSet can contain, by composition, zero-to-many SimpleMessageComposites. A
SimpleMessageComposite, is a convenient mechanism for grouping MessageElements.

The MessageElementSet can contain, by composition, zero-to-many MessageComposites. A MessageComposite is a
convenient mechanism for grouping MessageComposites, SimpleMessageComposite, and MessageElements.

8.3.4 MessageElement - Detailed Semantics

The MessageElement class has seven properties:

1. A “name” property, whose value is the name of the MessageElement.

 26 Model Driven Message Interoperability

A “datatype” property, whose value is associated with a Datatype.

2. An optional “description”” property, whose value isof type String, provides a string that describesdescription of
the MessageElementSemanticElement Set.

3. The derived “MessageModelName” property, of type string, contains the name of the MessageModel to which
theSemanticElementSet belongs. This derived property is included for implementation convenience.

SemanticElementSet associations:

1. The SemanticElementSet has a one-to-many association by composition to SemanticElements.

2. The SemanticElementSet has a zero-to-many association with SimpleMessageComposites. A
SimpleMessageComposite is a convenient mechanism for grouping SemanticElements.

3. The SemanticElementSet has a one-to-one relationship to its parent MessageModel.

4. The SemanticElementSet has a one-to-one relationship to its sibling, the MessageSyntaxModel.

8.3.4 SemanticElement - Detailed Semantics

SemanticElement description:

The SemanticElement class is the core of the MDMI message map. SemanticElements represent the smallest
semantic units in a message format, stripped of any complicating syntax considerations. Each SemanticElement is
unique in the context of its message format, i.e., it must have an individual semantic meaning. As example,
“address” cannot be a SemanticElement; “address” is a datatype that can be repeated in many message fields.
“Primary Debtor Address” is a SemanticElement as it refers to a particular unique address in a message format.

The SemanticElement properties:

1. A “name” property, of type String, contains the name of the SemanticElement.

2. The optional “description” property, of type String, contains a description of the SemanticElement.

3. An “elementType” property, of the enumerated type MessageElementType, can have three values each of
which defines the type of Semantic Element.

• NORMAL – a “NORMAL” Semantic Element is equivalent to the current definition of a
SemanticElement, i.e., a Semantic Element, contained in a message format, which is to be mapped to
a central dictionary.

• LOCAL – a “LOCAL Semantic Element contains some technical information that is needed to
correctly map NORMAL Semantic Elements, e.g., it may contain an index that is used to provide the
ordering for a child Semantic Element that has multiple instances.

• COMPUTED – a “COMPUTED” Semantic Element is to be mapped to the central dictionary but
contains a value that is not directly contained in a message. Instead, a “COMPUTED” Semantic
Element’s value is computed using.

4. A “datatype” property, of type MDMIDatatype, defines the simple or complex datatype of the Semantic
Element.

5. A zero-to-many “propertyQualifier” property, of type String, is a list of keywords that contains reference
keywords of interest that are associated with the message format, such as a “tag” associated with a
SemanticElement.

6. A “multipleInstances” property, of type Boolean property, whose value , which if true indicates that instances of
this MessageElementSemanticElement can be repeated in a physical message instance as a list or array. The

MDMI Beta 2 Specification

 Model Driven Message Interoperability 27

multipleInstances property, if true, also can indicate that this MessageElement can be repeated as part of a more
complex structure defined in that message’s message format.

7. A “positionAn "ordering” property, whose valueof type String, contains an expression that describes how the
position or index of an instance of the MessageElement in the set of multipleSemantic Element instances are
ordered, if that MessageElement'sthe SemanticElement's multipleInstances property is not false.“True".

8. A “positionExpressionLanguageAn optional “orderingExpressionLanguage” property, whose valueof type
String, that is a reference to the expression language used for the value of the “positionordering” property.
The flexibility of a “positionExpressionLanguage” is needed as the position property needs to be richer than
an integer index. For example, it might include key words such as “first,” “last,” or “next.” The position
attribute might also be a calculated variable as opposed to an integer constant. The ordering language must be
able to describe ordinal and cardinal positioning as well as expressions that when evaluated will provide an
index. As an example, a language that can be used is NRL 1.0.

9. A “MessageModelName” derivedcomputedValue” property, whose of type MDMIexpression, contains an
expression that computes the value is constrained to be the same asfor the “name” SemanticElement. The
expression can refer to the value of other SemanticElements. This property in the MessageModel in whichis most
often used for SemanticElements of the type LOCAL.

10. A “computedInValue” property, of type MDMIexpression, contains an expression to compute a value for the
SemanticElement when it is containeda target, based on the values of one or more BusinessElements and
SemanticElements. The value when it is a source is directly mapped.

11. This view of MessageElement has three A “computedOutValue” property, of MDMIexpression, contains an
expression to computes value for a SemanticElement, when it is a source, based on the values of one or more
SemanticElements. The value when it is a target is directly mapped.

The SemanticElement associations:

1. A one-to-one association with a keyword list that is used to identify the MesssageElement for searches and can be
associated with a formal ontology.many association with any children through a parent association. This
allows the SemanticElementSet to include container Semantic Elements, which are identified by “parent”.
Explicit container Semantic Elements allow the hierarchical structure of a message format to be maintained in
the SemanticElementSet. In the case where a container SemanticElement has no message-based properties
itself, that container should be of type Computed with a simple index as the computed value.

A one-to-many association, by composition, with the MessageElementSet.

A one-to-many association with a SimpleMessageComposite.

8.3.5 Keyword - Detailed Semantics

The Keyword class has three properties.

A “keyword” property and a “keywordValue” property, whose value is a list of keyword value pairs used to
categorize this MessageElement.

An optional reference that identifies the origin set for the keywords, for example a formal ontology.

8.3.6 SimpleMessageComposite - Detailed Semantics

The SimpleMessageComposite has one property:

1. A “name” property, whose value is the name of the SimpleMessageComposite.

This view of the SimpleMessageComposite shows two associations:

 28 Model Driven Message Interoperability

2. A zero-to-many association, by composition, with a MessageElementSet to the SemanticElementRelationship
class. The SemanticElementRelationship provide the valid context for each SemanticElement.

A zero-or-one association with MessageElements.

8.3.7 MessageComposite - Detailed Semantics

The MessageComposite has one property:

1. A “name” property whose value is the name of the MessageComposite. This view of the MessageComposite shows
three associations:

A zero-to-manyassociation, by composition, with a MessageElementSet.

A zero-or-one association with SimpleMessageComposites.

MessageComposite description:

The MessageComposite class inherits from the SimpleMessageComposite class, allowing the construction of a
complex object tree. MessageComposite are an informative artifact that can be useful when there is a desire to
associate SemanticElements with a complex object model.

MessageComposite associations:

A zero to many association with other MessageComposites that are the children of .the MessageComposite,
thus providing a mechanism to specify a tree of MessageComposites.

.

A zero-to-many reflexive associations with other Message Composites.

8.4 Datatype, DatatypeRules
8.4.1 Overview

The Datatype class is associatedassociation with the data types allowed for a particular message format. They are
usually consistent for all message formats defined in a MessageGroup. These standard Datatypes are not considered part of
the Conversion Model for Payment Message standard, but a reference for the data type definition source is included as a
property in the Datatype class. The Datatype class defines the data type of the value in a MessageElement Instance. A
Datatype can haveDataRule class, which specifies a set of rules associated with it. These rules are defined by the class,
DatatypeRules. A set of the rules will that apply to each MessageElement, that set is defined by the in the class,
ApplicableDataRules. DataRules are used on extraction for

3. +applicableRules 1 +the datatype 1 of the SemanticElement.

+datatypeRule

1..*

DatateypeRule
{specification}

+ rule: String
+ ruleExpressionLanguage: String

validDatatypeRule +datatypeRule 0..*

validDatatype

+applicableRules 1

ApplicableDatetypeRules

+ name: String

+datatype 1

Datatype
{specification}

+ name: String
+ datetypeSource: String

MDMI Beta 2 Specification

 Model Driven Message Interoperability 29

validDatatype

+messageElement 0..*

validApplicableDatatypeRules
 MessageElement

{specification}

+messageElement

1

+ name: String
+ datatype: Datatype
+ description: String [0..1]
+ multipleInstances: Boolean = False
+ position: String

+ positionExpressionLanguage: String
/ M d lN St i

Figure 8.4 - Datatype Rules, DataType

 30 Model Driven Message Interoperability

8.4.3 Datatype - Detailed Semantics

A Datatype has two properties:

A “name” property whose value is the standard name of the data type it represents.

A “DatatypeSource” property whose value is a reference to a source that defines the named data type.

This view of Datatype shows two associations:

4. A Datatype is associated with from zero-to-many MessageElements, as the value in zero to many
MessageElementsassociation with a keyword list, which can be used to identify the SemanticElement for searches
and which can be associated with a particular Datatype. For example, the Datatype named “integer” will be
associated with many MessageElements. (There is of course, the constraint that the Datatype property in a
MessageElement be associated with one and only one Datatype class.)formal ontology.

A Datatype can be associated with zero to many DatatypeRules, which can be executed to make sure that a value
associated with that Datatype is valid.

8.4.4 DatatypeRules -- Detailed Semantics

DatatypeRules have two properties:

5. A “rule” property A zero-to-many association with a SemanticElementBusinessRule, which provides for a
specific set of rules that holds should apply to the value of the SemanticElement.

6. A one-to-many association with the ToBusinessElement class that describes the conversion of the value of the
SemanticElement to conform to the reference value of the business element referenced by the
MDMIBusinessElementReference class.

7. A one-to-many association with the ToSemanticElement Semantic class that describes the conversion of the
reference value of the business element referenced by the MDMIBusinessElementReference class to the value of the
SemanticElement.

8.3.5 Keyword - Detailed Semantics

Keyword description:

The keyword class contains either a keyword or a keyword/value pair. The set of Keywords can be used to profile
a SemanticElement, to provide a mechanism to search for a SemanticElement, and to associate a SemanticElement
with an external ontology or taxonomy.

Keyword properties:

1. The optional “description” property, of type string, describes the Keyword and/or the set of Keyword associated
with a SemanticElement.

2. A “keyword” property, of type String, used to describe or profile a SemanticElement.

3. An optional “keywordValue”, of type string, that is associated with the keyword creating a keyword/value
pair.

4. An optional reference, of type String, identifies the origin set for the keywords, for example a formal ontology.

Keyword associations:

1. An optional many-to-one association with the SemanticElement it is describing.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 31

8.3.6 SimpleMessageComposite - Detailed Semantics

SimpleMessageComposite description:

SimpleMessageComposite represent aggregations of SemanticElements. SimpleMessageComposite is an
informative artifact that can be useful when a group of SemanticElements are associated with a class in an object
model. Usually the attributes of an object will be equivalent to a SemanticElement and the object itself equivalent
to a SimpleMessageComposite.

SimpleMessageComposite properties:

1. A “name” property, of type String, names the SimpleMessageComposite.

2. An optional “description” property, of type String, describes SimpleMessageComposite.

SimpleMessageComposite generalization:

MessageComposite inherits from SimpleMessageComposite.

SimpleMessageComposite associations:

1. A zero-to-many association with a SemanticElementSet by composition.

2. A (zero or one)-to-many association with SemanticElements.

8.3.7 MessageComposite -- Detailed Semantics

MessageComposite description:

The MessageComposite class inherits from the SimpleMessageComposite class, allowing the construction of a
complex object tree. MessageComposite are an informative artifact that can be useful when there is a desire to
associate SemanticElements with a complex object model.

MessageComposite properties:

1. The optional “owner” property” of type MessageComposite identifies the parent of a MessageComposite or
SimpleMessageComposite.

2. The zero-to-many “composites” property of type MessageComposite identifies children[C77]
MessageComposites of this MessageComposite.

MessageComposite associations:

Through inheritance, MessageComposite will have the same associations as SimpleMessageComposite.

8.4 MDMIDatatype, DataRules
8.4.1 Overview

The MDMIDatatype references a datatype used in the model. These MDMIDatatypes are not considered part of the
MDMI standard. While the specification does not deal with datatypes directly, some restrictions on MDMIDatatype
definitions are necessary for syntactic modeling and to ensure that a runtime engine will do proper transformations.
These restrictions include: 1) that the simple datatypes be from a known standard, such as the XML simple datatypes.
2) that complex datatypes are ultimately composed of simple datatypes and that every simple datatypes has an
identified “fieldname”. Associated with any value can be DataRules that describe constraints for that datatype, e.g., a
zip code value must be in a table of legal zip codes. DataRules must be written in an appropriate Rule Expression
Language that can access the components of a complex MDMIDatatype using “fieldnames”.[C79]

 32 Model Driven Message Interoperability

8.4.2 An example of Complex Datatype

A Semantic Element can be composed of complex datatypes that actually span a number of fields (or sub-fields) in a
message format. Each such field, by itself, does not have a specific semantic meaning in the message but is rather a
syntactic artifact that when combined with other fields represent a complete datatype. For example, an address is can
be composed of many fields and is a complex datatype. The Syntax Model must be able to associate each component
of a complex datatype with a field in the message.

An example of a modeled MDMI complex datatype is shown in figure 8.4.2 and is posted as OMG document # 2009-09-10.
This complex datatype model is composed of classes, where the classes themselves can be complex datatypes or a class with a
single valued simple datatype. Ultimately, all complex datatypes resolve to a set of simple datatypes, which correspond to
fields (or subfields) in a message format. Therefore, to accommodate Semantic Elements that are complex datatypes, a
“fieldname” attribute is a property of the Node abstract class, which holds the name of the simple datatype class. For
computational efficiency, a derived attribute is also added that says this node instance contains a syntactic element that is part
of a complex datatype.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 33

MDMI specification MDMI Datatypespackage []

name = "binary"
referenceURI = "http://www.w3.org/2001/XMLSchema#hexBinary"

<<specification>>
binary : PrimitiveDatatype

name = "dateTime"
referenceURI = "http://www.w3.org/2001/XMLSchema#dateTime"

<<specification>>
dateTime : PrimitiveDatatype

name = "decimal"
referenceURI = "http://www.w3.org/2001/XMLSchema#decimal"

<<specification>>
decimal : PrimitiveDatatype

name = "boolean"
referenceURI = "http://www.w3.org/2001/XMLSchema#boolean"

<<specification>>
boolean : PrimitiveDatatype

name = "integer"
referenceURI = "http://www.w3.org/2001/XMLSchema#integer"

<<specification>>
integer : PrimitiveDatatype

name = "string"
referenceURI = "http://www.w3.org/2001/XMLSchema#string"

<<specification>>
string : PrimitiveDatatype

+name : String
+description : String [0..1]
+datatype : MDMIDatatype [0..1]
+minOccurs : int = 1
+maxOccurs : int = 1

<<specification>>
Field

+referenceURI : String

<<specification>>
PrimitiveDatatype

+baseType : SimpleDatatype
+restriction : String

<<specification>>
DerivedDatatype

+name : String
+description : String [0..1]
+code : String

<<specification>>
EnumerationLiteral

+name : String
+description : String [0..1]

<<specification>>
MDMIDatatype

<<specification>>
EnumeratedDatatype

+typeSpecification : URI

<<specification>>
ExternalDatatype

<<specification>>
StructuredDatatype

<<specification>>
ComplexDatatype

<<specification>>
SimpleDatatype

<<specification>>
ChoiceDatatype

A choice is a complex type that
represents exactly one selection
between two or more fields.
Each field has a unique name, a
datatype (simple or complex),
and may appear between 1 and
unbound times. Recursion is
allowed. Note that a field of a
choice cannot have
minOccurs=0 - that is it should
appear at least once, to avoid
ambiguity.

A structure consisting of one
or more named fields of a
specified datatype (simple or
complex). Recursion is
allowed.Field names are
unique within the structure.
Each field may appear
between 0 and unbound
times. Order/sorting are not
implied.

A type derived from another
simple type by means of a
restriction (constraint on the
possible values the base type
may have). For example a
string with a maximum length
of 35. +literals

1..*

+fields 1..*+fields 1..*

Figure 8.4.2 Complex Datatype

 34 Model Driven Message Interoperability

8.4.3 MDMIDatatype, DataRules – Abstract Syntax

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]
+datatype [1..*]

DataRule
+description : String [0..1]
+name : String
+reference : URI

MDMIDatatype

+parent
0..1

+children 0..*

+semanticElement
1

+dataRules 0..*

Figure 8.4.2 – MDMIDatatypes, DataRule

MDMIDatatype – Detailed Semantics

MDMIDatatype description:

The MDMIDatatype class contains a reference to a conformant datatype, i.e., one that can be processed by the
DataRule language. This class is used as a property type.

MDMIDatatype properties:

1. A “name” property, of type string, names of the MDMIDatatype

2. An optional “description” property, of type string, describes the MDMIDatatype

3. A “reference” property, of type URI, contains a reference to the MDMIDatatype definition

8.4.5 DataRules - Detailed Semantics

DataRule description:

The DataRule class contains a rule that is a constraint on the MDMIDatatype that are used in the MessageGroup, to
ensure that values extracted or inserted are valid[C80].

DataRules properties:

1. A “name” property of type String whose value is the name of the DataRule.

2. An optional “description” property, of type String, contains a description of the DataRule.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 35

3. A “rule” property, of type String, contains an expression for a rule or constraint associated with an
associated DatatypeMDMIDatatype either for the entire MessageGroup or for the particular use of an
MDMIDatatype in .a SemanticElement class.

4. A “ruleExpressionLanguage” that has a reference to”, of type String, references the language in which the
“rule” property is expressed --. The standard does not require any particular rule language, so this property
is needed. For example, two “ruleExpressionLanguage” values would be a reference to OCL and or a reference
to a Java Expression Languagebut the language has to allow access to fields represented by simple datatype
classes within a complex datatype.

5. This view DatatypeRules has twoA “datatype” property, of type MDMIDatatype and multiplicity of one-to-
many, explicitly identifies the MDMIDatatypes that are referenced in a DataRule’s “rule”. The “datatype”
references the complete structure of an MDMIDatatype, so that its structure and simple datatype fields are
known. The “datatype” property is used to assist in the parsing and runtime processing of complex data[C82].

DataRules associations:

1. Zero-to-many DatatypeRulesDataRules can be associated with a DatatypeMessageGroup.

Zero-to-many DatatypeRulesDataRules can be associated with an ApplicableDatatypeRulesa SemanticElement class.

8.4.5 ApplicableDatatypeRules - Detailed Semantics

ApplicableDatatypeRules has one property:

1. A “name” property whose value is the name of the ApplicableDatatypeRules.

ApplicableDatatypeRules have two associations:

A one-to-one association, by composition, with the MessageElement for which the identified DatatypeRules apply.

2. A one-to-many association to the DatatypeRules that are to apply to this particular MessageElement.

8.5 MDMIBusinessElementReference, Conversion Rule,
UnqualifiedBusinessElement ToSemanticElement, To BusinessElement,
MDMIBusinessElementRule

8.5.1 Overview

The classes in this view describe the semantic mapping between a MessageElement and the
UnqualifiedBusinessElement
that will be a data dictionary entry in an ISO 20022v2-compatible industry repository, for example UNIFI v2. The core
of the relationship is a ConversionRule class, which contains the expressions that describe the mapping between the
twomapping between a SemanticElement and an MDMIBusinessElementReference. An
MDMIBusinessElementReference class references a Business Element in a dictionary. No assumption is made about
the format of the business element in the central dictionary. Because the format of the dictionary is not known and can
even be a reference to documentation, an MDMIBusinessElementRules class is included in the specification so that
rules and constraints concerning the business element can be specified.

semantic entities. The mappingsGiven the BusinessElementReference, a conversion between it and a
SemanticElement can be made. This conversion may not be symmetric so a mapping must be defined for each
direction - MessageElement to UnqualifiedBusinessElement and UnqualifiedBusinessElement to
MessageElement.SemanticElement to MDMIBusinessElement and MDMIBusinessElement to SemanticElement.
(Mappings for both directions must be defined, one way mappings are not allowed in the standard.) These mappings

 36 Model Driven Message Interoperability

are specified in a ToSemanticElement class and a ToBusinessElement class. Both of these classes inherit from a
ConversionRule abstract class that defines how conversion rules are to be specified.

A key feature of thisthe conversion is the restrictions that are implied in the ConversionRules ruleExpressionLanguage.
These restrictions define the allowed semantic distance for which mapping can be done. In effect, they define the
domain of “near-synonyms” that are allowed in a mapping. For example, a set of allowed conversion rules may
include, simple arithmetic expressions, aggregation of a set of elements, the removal or inclusion of qualifiers., etc, etc.
If a SemanticElement cannot be mapped it implies that is not in the dictionary and should be added to the dictionary.

If a bilateral mapping is being defined, then a MessageElement will be associated with MessageElements in the
MessageElementSet for a different MessageModel. This association is not explicitly shown in this view.

8.5.2 Abstract Syntax

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype : MDMIDatatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+name : String
+description : String [0..1]
+rule : String [0..1]
+ruleExpressionLanguage : String [0..1]

ConversionRule

+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]

MDMIBusinessElementRule

+name : String
+description : String [0..1]
+reference : URI
+uniqueIdentifier : String
+referenceDatatype : MDMIDatatype

MDMIBusinessElementReference

+name : String
+description : String [0..1]
+reference : URI

MDMIDomainDictionaryReference

+description [0..1]
ToBusinessElement

+description : String [0..1]
ToSemanticElement

1

+toMdmi
1..*

1..*

+businessElement
1

+parent
0..1

+children 0..*

class CM4PMS CR

UnqualifiedBusinessElementToMessageElement
{ ifi ti }

+ name: String
+ datatype: Datatype
+ description: String [0..1]
+ multipleInstances: Boolean = False
+ position: String

+ positionExpressionLanguage: String
+to 1

1 *

MessageElement
{ ifi ti }

+from

+ propertyQualifier: String [0..*] {ordered}
+ datatypeQualifier: String [0..*] {ordered}
+ rule: String

S

1

1 *

ConversionRule

MessageElementToUnqualifiedBusinessElement
{ ifi ti }

{specification}

+ name: String
+ description: String
+ permissibleValues: String
+ id: String

+ versionId: String
+/ propertyTerm: String

UnqualifiedBusinessElement
{ ifi ti }

1 *

+from 1 +to 1

1 *

MDMI Beta 2 Specification

 Model Driven Message Interoperability 37

Figure 8.5 - Conversion RuleMDMIBusinessReference and ConversionRule

8.5.3 UnqualifiedBusinessElement -- MDMIBusinessElementReference - Detailed Semantics

The UnqualifiedBusinessElement is defined in the framing document for ISO 20022. The CM4PM standard will link to
any ISO2022 compliant data dictionary. UnqualifiedBusinessElements must conform to their definition in that standard.

 24 Model Driven Message Interoperability

MDMIBusinessElementReference description:

The MDMIBusinessElementReference is a class that references a business element in a dictionary. No assumption
is made about the format of the business element in the central dictionary. Therefore, the reference can only be
informational. However a function must be available that, given the reference, will return a uniqueIdentifier and a
reference MDMIDatatype.

MDMIBusinessElementReference properties:

1. The “name” property, of type String, names the MDMIBusinessElementReference

2. The optional “description” property, of type String, describes the MDMIBusinessElementReference

3. The “reference” property, of type URI, identifies the location of the BusinessElement in a central dictionary.
(URIs are very general addresses, i.e., the URI could even point to a line in a page in a document therefore
the “reference’ property is informational.)

4. The “uniqueIdentifier”, of type String, provides a unique identifier for all MDMIBusinessElementReference
instances that reference the same business element in the central dictionary. There must be a function
associated with the central dictionary that provides this identifier. Runtime transformation engines recognize
the matching source and target mappings for a Semantic Element because they will each have the same
“uniqueIdentifier”.

5. The “referenceDatatype” property, of type MDMIDatatype, provides a reference datatype for each business
element in the central dictionary. There must be a function associated with the central dictionary that will
deliver the “referenceDatatype”. Maps to/from this reference datatype to the “datatype” in the
SemanticElement should be provided as a ConversionRule.

MDMIBusinessElementReference associations:

1. MDMIBusinessElementReference has a one-to-many association with the ToSemantic class.

2. MDMIBusinessElementReference has a one-to-many association with the ToBusinessElement class.

3. MDMIBusinessElementReference has a (zero or one)-to-many association with the
MDMIBusinessElementRule class.

4. MDMIBusinessElementReference has a many-to-one relationship with the MDMIDomainDictionaryReference
class.

8.5.4 ConversionRule -– Detailed Semantics

The ConversionRule class description:

ConversionRule is an abstract class that has fourdefines a rule used to convert values.

ConversionRule properties:

1. A “propertyqualifier” property whose value is a string of qualifiers that specialize the MessageElement in
relationship to its associated UnqualifiedBusinessElementname” property, of type String, names the
ConversionRule.

2. A “datatypeAn optional “description” property whose value contains the list, of qualifiers associated with the
UnqualifiedBusinessElement's datatypetype String, describes the ConversionRule.

3. A “rule” property whose value describes the required mapping between the MessageElement and the
UnqualifiedBusinessElement., of type String, holds an expression for converting one value to another.

4. A “ruleExpressionLanguage” property whose value, of type String, is a reference to the expression language
used to define the rule. The scope of the language allowed in conversions should be limited so that only very

MDMI Beta 2 Specification

 Model Driven Message Interoperability 39

straightforward transformations are possible. This is because these ConversionRules can be used to define
the semantic distance between business elements in a central dictionary by identifying “near synonyms”. It
is important that the “near synonyms” do not turn out to be far synonyms.

The ConversionRule Classgeneralizations:

The abstract ConversionRule class is inherited by two classes - the UnqualifiedBusinessElementToMessageElement
class and the MessageElementToUnqualifiedBusinessElement class., the “ToBusinessElement” and the
“ToSemanticElement”.

8.5.5 UnqualifiedBusinessElementToMessageElement ToSemanticElement - Detailed Semantics

ToSemanticElement description:

The UnqualifiedBusinessElementToMessageElementToSemanticElement associates an
UnqualifiedBusinessElementMDMIBusinessElementReference to a MessageElementSemanticElement, describing
the directed conversion rule for converting the reference value of the UnqualifiedBusinessElementa Business
Element to the value in the MessageElement. An UnqualifiedBusinessElementa SemanticElement.
MDMIBusinessElementReferences may be related to more than one MessageElementSemanticElement but will
have a separate UnqualifiedBusinessElementToMessageElementToSemanticElement class with individual rules for
each relationship.

ToSemanticElement properties:

1. The UnqualifiedBusinessElementToMessageElement, which inherits from ConversionRule, has twooptional
“description” property, of type String, describes the ToSemanticElement.

ToSemanticElement associations:

1. An A many-to-one association with one UnqualifiedBusinessElement from which a value is to be extractedan
MDMIBusinessElementReference.

2. An A many-to-one association with one MessageElement for which a value is to be inserteda
SemanticElement.

8.5.6 MessageElementToUnqualifiedBusinessElement ToBusinessElement

The MessageElementToUnqualifiedBusinessElementToBusinessElement description:

The ToBusinessElement associates an UnqualifiedBusinessElementMDMIBusinessElementReference with a
MessageElementSemanticElement, describing the directed conversion rule for converting the value of the Message
ElementSemanticElement to the reference value of the UnqualifiedBusinessElement.referenced business element.
A Message Element SemanticElement may be related to more than one
UnqualifiedBusinessElementMDMIBusinessElementReference but will have a separate
MessageElementToUnqualifiedBusinessElementToBusinessElement class with individual rules for each
relationship.

ToBusinessElement properties:

1. The MessageElementToUnqualifiedBusinessElement class, which inherits from ConversionRule, has
twooptional “description” property, of type String, describes the ToBusinessElement.

ToBusinessElement associations:

1. An A many-to-one association with one UnqualifiedBusinessElement to which a value is to be insertedan
MDMIBusinessElementReference.

2. An A many-to-one association with one MessageElementa SemanticElement.

 40 Model Driven Message Interoperability

8.5.7 MDMIBusinessElementRule

MDMIBusinessElementRule description:

Given that the MDMI standard does not provide a specification for which a valuea the hub dictionary and allows
mapping to any appropriate dictionary, such as the ISO 20022 Data Dictionary, then some business rules may have
to be specified within a map to make sure that the mapping is correct. Instances of the
MDMIBusinessElementRule maintain these rules.

MDMIBusinessElementRule properties:

1. A “name” property, of type String, contains a name of the rule.
2. An optional “description” property, of type String, provides a description of the rule.
3. A “rule” property, of type String, is to an expression defining the rule that applies to an associated

MDMIBusinessElementReference.
4. An optional “ruleExpressionLanguage”, of type String, provides a reference to the language used in the “rule”

property. This language must be extractedable to describe the context in which the rule applies. The
language should be able to reference the value of any Semantic Element instance and it should allow external
function calls. If this property is not specified the default ruleExpressionLanguage will be used.

MDMIBusinessElementRule associations:

1. The MDMIBusinessElementRule has a many-to-one association with an MDMIBusinessElementReference.

8.6 MessageElementRelationship - Detailed Semantics
 SemanticElementRelationship

8.6.1 Overview

The MessageElementRelationshipSemanticElementRelationship classes define all the allowed contexts for
MessageElementSemanticElement in a message format. For example, a MessageElementSemanticElement that is
“ClientAccountBalance” may not be valid in a message instance unless there is also a value in the
MessageElementSemanticElement “ClientAccountID.” The MessageElementRelationshipSemanticElementRelationship
class would define this rule.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 41

relationship. On the other hand, “ClientAccountID” may exist without a value for “ClientAccountBalance,” in which
case there will be no constraint defined forSemanticElementRelationship associating “ClientAccountID” in relationship
towith “ClientAccountBalance.”

8.6.2 Abstract Syntax

class CM4PMS_MER

MessageElement
{specification}

validMessageElementRelationship

+context

1

+ name: String
+ datatype: Datatype
+ description: String [0..1]
+ multipleInstances: Boolean =
False + position: String

+ positionExpressionLanguage:
String +/ messageModelName: String

+relatedMessageElement 0..*
0..*

1 validMessageElementRelationship MessageElementRelationship
{specification}

+ rule: String
+ ruleExpressionLanguage: String

 24 Model Driven Message Interoperability

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype : MDMIDatatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]
+minOccurs : int = 1
+maxOccurs : int = 1
+sourceIsInstance : boolean = true
+targetIsInstance : boolean = true

SemanticElementRelationship

+relatedSemanticElement
1

1
+relationships

0..*

+context
1

+parent
0..1

+children 0..*

Figure 8.6 - MessageElementRelationshipSemanticElementRelationship

8.6.3 MessageElementRelationship -- SemanticElementRelationship - Detailed Semantics

The MessageElementRelationship has twoSemanticElementRelationship description:

The SemanticElementRelationship class is a key artifact in the MDMI standard. It provides all the context and
dependency relationships for each SemanticElement. SemanticElementRelationship make it possible to extract and
insert SemanticElement values in a valid manner.

SemanticElementRelationship properties:

1. A “rulename” property, whose value expresses a validity constraintof type String, assigns a name to the rule.
2. An optional “description” property, of type String, provides a description of the rule
3. A “rule” property, of type String, defines a relationship between a MessageElementsource SemanticElement and other

MessageElementsSemanticElements in the MessageElementSetSemanticElementSet.
4. A “ruleExpressionLanguage” property, whose valueof type String, that contains a reference to the expression

language used in the “rule” property. This rule language must be able to access the values of any SemanticElement
and to do that it must be able to access the fields in complex datatypes.

5. “minOccurs” property, of type integer, indicates how many instances of the target at a minimum must be involved in
the relationship.

6. A “maxOccurs” property of type integer, which says how many instances, at most can be involved in the relationship.

7. A “sourceIsInstance” property of type Boolean. When the sourceIsInstance is true, the defined relationship is for
each Instance of the source SemanticElement. (The association with the “source” Semantic Element is labeled
“relatedSemanticElement. The relatedSemanticElement owns the relationship by composition. This source is the

MDMI Beta 2 Specification

 Model Driven Message Interoperability 43

SemanticElement whose context is being modeled) When the sourceIsInstance is false, the defined relationship is
for the source SemanticElement class as a whole

8. A “targetIsInstance” property of type Boolean. When the targetIsInstance is true, the defined relationship is for
each Instance of the target SemanticElement. (The association with the set of one-to-many “targets” is labeled
“context. (Thus, a SemanticElementRelationship describes a relationship between a source and the other
SemanticElements, which are then targets.) When the targetIsInstance is false, the defined relationship is for the
SemanticElement class as a whole

SemanticElementRelationship associations:

1. The SemanticElementRelationship has a (zero or many)-to-one association with its source SemanticElement.
2. The SemanticElementRelationship has one to-one association with a target SemanticElement.

8.7 MessageElementBusinessRule SemanticElementBusinessRule
8.7.1 Overview
The MessageElementBusinessRuleSemanticElementBusinessRule class contains a rule that is to be applied to a specific
MessageElementSemanticElement in the context of the MessageModel that contains the MessageElementSemanticElement.

8.7.2 Abstract Syntax

class CM4PMS_BR_KW

MessageElementBusinessRule

{specification}

+ rule: String

+ ruleExpressionLanguage: String

+businessRule 0..*

validBusinessRule

+messageElement 1

MessageElement

{specification}

+ name: Str ing

+ datatype: Datatype

+ description: String [0..1]

+ multipleInstances: Boolean = False
+ position: String

+ positionExpressionLanguage: String

 44 Model Driven Message Interoperability

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype : MDMIDatatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]

SemanticElementBusinessRule

+parent
0..1

+children 0..*

+semanticElement
1

+businessRules
0..*

Figure 8.7 - BusinessSemanticElementBusiness Rule

8.7.3 Business. SemanticElementBusinessRule - Detailed Semantics - Detailed Semantics

The BusinessRule class contains two properties:

A “ruleSemanticElementBusinessRule description:

The SemanticElementBusinessRule holds a rule that is to be applied to a SemanticElement to make sure that the
SemanticElement is valid. SemanticElementBusinessRule usually do not refer to other SematicElements in a
message. They are meant to provide rules that reflect an external context, e.g., a “Primary AcountID”
SemanticElement must be from an EU bank, etc.

SemanticElementBusinessRule properties:

1. A “name” property, whose value is a Boolean expressions of type String, assigns a name to the rule.
2. An optional “description” property, of type String, provides a description of the rule.
3. A “rule” property, of type String, is an expression defining a business rule or constraint.
4. A “ruleExpressionLanguage” property, whose valueof type String, is a reference to the expression language used in

the “rule” property.

The BusinessRule class contains one association:

1. A zero-to-many association with the MessageElement to which the BusinessRule applies.

MDMI Beta 2 Specification

 Model Driven Message Interoperability 45

8.8 Message Element, MessageModel and Unqualified Business Element
Instances

8.8.1 Overview

The artifacts discussed above provide a complete description of a message format. However there also need to be
artifacts that relate to a specific physical message instance so, that the instance can be located and also the values to be
converted can be stored in a syntax neutral mode. There are three classes defined to hold relevant information needed for
the conversion of a physical message instance:

1. A MessageInstance that identifies the location of the physical message instance;

 46 Model Driven Message Interoperability

a MessageElementInstance that holds the value on any MessageElements appearing in the physical message
instance; and

an UnqualifiedBusinessElementInstance, which holds the converted value of those MessageElements.

8.8.2 Abstract Syntax

class CM4PMS_Instances

MessageModel
{specification}

+ messageModelName: String

+messageModel 1

validMessageInstance

+messageInstance 1

MessageInstance
{specification}

+ root: URI
+ description: String

MessageElement

{specification}

+ name: String
+ datatype: Datatype
+ description: String [0..1]
+ multipleInstances: Boolean =
False + position: String

+ positionExpressionLanguage:
String +/ messageModelName:
String

+messageElement 1

validMessageElementInstanc

e +messageElementInstance

1..*

MessageElementInstance
{specification}

+ value: Value

+unqualifiedBusinessElement 1
valid UnqualifiedBusinessElementInstance

+unqualifiedBusinessElementInstance 1..*

UnqualifiedBusinessElementInstance
{specification}

+ value: Value

Figure 8.8 - Message Element, Message Model and Unqualified Business Element Instances

8.8.3 MessageInstances - Detailed Semantics

The MessageElement has two properties:

UnqualifiedBusinessElement
{specification}

+ name: String
+ description: String
+ permissibleValues: String
+ id: String

+ versionId: String
+/ propertyTerm: String

MDMI Beta 2 Specification

 Model Driven Message Interoperability 47

A “root” property whose value is a URI indicating the location of the message instance.

A “description” property whose value provides a description of the instance

location. The Message Element has one association:

1. A one-to-one association with the a MessageModel that describes its message format.

8.8.4 MessageElementInstance

The MessageElementInstance has one propertySemanticElementBusinessRule associations:

1. A “value” property whose value is the value in the physical message instance, which is associated with a particular
MessageElement.

The MessageElementInstance has (zero or many)-to-one association: with the SemanticElement to which the
MDMIBusinessElementRule applies.

1. A one-to-many association with the MessageElement to which it belongs.

 24 Model Driven Message Interoperability

8.8.5 UnqualifiedBusinessElementInstance

The UnqualifiedBusinessElementInstance has one property:

1. A “value” property whose value is the value in converted from a MessageElementInstance value using the
ConversionRule.

The UnqualifiedBusinessElementInstance has one association:

1. A one-to-many association with the UnqualifiedBusinessElement that is associated with a particular
MessageElement.

There is a constraint associated with instances as presented in the figure below. It is if the Message Element is not allowed
to have Multiple Instances, then there can only be One MessageElementInstance associated with a MessageElement.

class CM4PMS_Instances

if
(MessageElement.multipleInstances == False)

then
(valueOf(MessagElement.messageElementInstance) = 1)

elseif
(MessageElement.multipleInstances == True)

then
(val ueOf(MessagEl ement.messageEl ementInstance) = 1 ..*)

else
Error

end

Figure 8.9 - MessageElelementInstance Constraint

8.9 8.8 Summary of Complete Metamodel
8.98.1 Overview

The complete metamodel is shown for completeness in Figure 8.108.

8.9.8.2 Abstract Syntax

MDMI Beta 2 Specification

 Model Driven Message Interoperability 23

l CM4PMS

+messageInstance 1

+ constraint: String

+messageModel 1

+ node: Node [2..*]

+ isUnique: Boolean = False

+ name: String

+ isOptional: String [0..1]

+ location: String

+ messageModelName: String

+ name: String

+ root: URI

+messageSyntaxModel

MessageInstance
{specification}

MessageSyntaxModel

S tCh i

+messageSyntaxModel

N d

S t

+ d 1 *

+messageModel 1

{specification}

{specification}

{specification}

MessageModel

1

1
+messageElementSet

1

+messageSyntaxModel

+messageModel 1

+messageElementSet 1

+ format: String

{specification}

+ name: String

LeafSyntaxTranslator

1

+messageModel
1 *

1 *

+messageModel

+messageElementSet 1

+messagePackage

+messageGroup

+ name: String

MessageElementSet

SimpleMessageComposite

+ name: String

MessageComposite

+messageComposite
0 1

+leafSyntaxTranslator

1

0 * +simpleMessageComposite

1

1

{Constraint}

context: MessageElement

Inv: Self messageModelName =

+ name: String

+ name: String

MessagePackage

MessageGroup

+messageElementSet 1

+ rule: String

0 *

0 1

MessageElementRelationship

{specification}

0 * +datatypeRule

+

context: MessageElementSet

Inv: Self.messageModelName =

+ keyword: String [0..*]
+ keywordValue: String
+ reference: String

0 *

+keyword 1 *

Keyword
{specification}

+messageElement

1 *

+messageElement

1

+messageElement

1..*

+messageElement

1

+context

+relatedMessageElement 0 *

1

UnqualifiedBusinessElementToMessageElement

+messageElement 0 *

+datatypeRule 0 *

+ name: String

+ datatype: Datatype

+ description: String [0..1]

+ multipleInstances: Boolean =
False + position: String

+datatype

0 *

+ name: String

+datatype 1

+ rule: String

Datatype

MessageElement

1

+messageElement 0 *

DatatypeRule

+datatypeRule 0 *

+t 1

elementScopeRule

+ propertyQualifier: String [0..*] {ordered}
+ datatypeQualifier: String [0..*] {ordered}
+ rule: String

1 *

f 1

{specification}

+messageElement

ConversionRule

1 *

1

MessageElementToUnqualifiedBusinessElement

+messageElemen
t 1

+messageElementInstance 1

+unqualifiedBusinessElementInstance 1

+ rule: String

MessageElementBusinessRule

UnqualifiedBusinessElementInstanc
e

+ l V l

+businessRule 0 *

+unqualifiedBusinessElement 1

+ name: String

+ description: String

+ permissibleValues:
String + id: String

+ versionId: String

UnqualifiedBusinessElement

MessageElementInstance

l V l

1 *

+f 1 +to 1

1 *

 24 Model Driven Message Interoperability

MDMI specification MDMI specificationpackage []

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMAL
+datatype
+propertyQualifier : String [0..*]
+multipleInstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1]
+computedInValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

SemanticElement

+name : String
+description : String [0..1]
+defaultLocationExpressionLanguage : String
+defaultConstraintExpressionLanguage : String
+defaultRuleExpressionLanguage : String
+defaultFormatExpressionLanguage : String
+defaultOrderingExpressionLanguage : String
+defaultMDMIExpresionLanguage : String

MessageGroup

+contraint : String [0..1]
+constraintExpressionLanguage : String [0..1]

Choice

+name : String
+description : String [0..1]
+minOccurs : Integer = 1
+maxOccurs : Integer = 1
+location : String
+locationExpressionLanguage : String [0..1]
+fieldName : String [0..1]
+/isSyntacticField : Boolean = false

Node

+format : String
+formatExpressionLanguage : String [0..1]

LeafSyntaxTranslator

+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]

SemanticElementBusinessRule
+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]

MDMIBusinessElementRule

+name : String
+description : String [0..1]
+rule : String [0..1]
+ruleExpressionLanguage : String [0..1]

ConversionRule+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]
+minOccurs : Integer = 1
+maxOccurs : Integer = 1
+sourceIsInstance : Boolean = true
+targetIsInstance : Boolean = true

SemanticElementRelationship

+name : String
+description : String [0..1]
+rule : String
+ruleExpressionLanguage : String [0..1]
+datatype [1..*]

DataRule

+name : String
+description : String [0..1]
+reference : URI
+uniqueIdentifier : String
+referenceDatatype

MDMIBusinessElementReference

+name : String
+description : String [0..1]
+reference : URI

MDMIDomainDictionaryReference

+name : String
+description : String [0..1]
+/messageModelname : String

SemanticElementSet

+name
+description : String [0..1]

SimpleMessageComposite

+description : String [0..1]
ToBusinessElement

+messageModelName : String
+description : String [0..1]
+source : URI [0..1]

MessageModel

+description : String
+keyword : String
+keywordValue : String [0..1]
+reference : String

Keyword

+isUnique : Boolean = true
+isOrdered : Boolean = false

Bag

+description : String [0..1]
ToSemanticElement

+description : String [0..1]
+name : String
+reference : URI

MDMIDatatype

+name : String
+description : String [0..1]

MessageSyntaxModel

MessageComposite

+dictionary
1

+group
1

+semanticElement
0..1

+syntaxNode
0..1

+group
1

+model
1..*

+semanticElements
1..*

+elementSet
1

+businessElementReferences

1..*

+domainDictionaryReference 1

+owner
1

+toMdmi
1..*

+keywords 0..*

+owner
1

+elementSet 1

+model 1

+elementSet
1

+syntaxModel
1

+context
1

+relationship
1

+fromMdmi
1..*

+owner
1

+businessElement
1

+rule 1..*

+composites
0..*

+owner 0..1

+syntaxModel
1

+root 1

+rule
1..*

+businessElement
1

+syntaxModel
1

+model
1

+composite

0..1
+semanticElements

1..*

+nodes
1..*

+owner
0..1

+nodes
1..*

+owner
0..1

+relationships 0..*

+relatedSemanticElement
1

+dataRules
0..*

+scope 1

+parent
0..1

+children
0..*

+businessElement 1

+businessRules 0..*

+semanticElement
1

+businessRules
0..*

+semanticElement
1

+dataRules 0..*

+composite 0..*

+elementSet 1

Figure 8.108 - Summary: Complete Metamodel

Model Driven Message Interoperability 25

 Model Driven Message Interoperability 51

 24 Model Driven Message Interoperability

Annex A - List of Acronyms
Abbreviation Notes

Clearing House Inter-Bank Payments System
www.chips.org

Chips

Continuous Linked Settlement
http://www.cls-services.com

CLS

FATF The FATF is an inter-governmental body whose purpose is the development and
promotion of national and international policies to combat money laundering and terrorist
fi i
Financial Information eXchange
http://www.fixprotocol.org

FIX

Financial products Markup Language is the industry-standard protocol for complex financial
products.
http://www.fpml.org

FpML

Interactive Financial eXchange
www.ifxforum.org

I FX

GiovanniniM DDL The Giovannini Group is a group
of financial-market participants,

M DDL Market Data Definition Language www.mddl.org

 NRL and NRL 1.0 Natural Rule Language – Open source constraint and action language based on OCL The
user guide can be found at http://nrl.sourceforge.net/userguide/userguide.htm

MiFI DSwift MiFID will replace the existing Investment Services Directive (ISD), the most significant
European Union legislation for investment intermediaries and financial markets since
1995.Society for Worldwide Interbank Financial Telecommunication supplies secure

Omgeo
Omgeo plays a core role as the orchestrator of post-trade pre-settlement trade management
within the global securities industry

www.omgeo.com

Twist Transaction Workflow Innovation Standards Team
www.twiststandards.org

RTGS Real-Time Gross Settlement

RIXML
RIXML.org is a consortium of buy-side and sell-side firms that has established an open standard
for investment and financial research.

www.rixml.org

Sepa Single Euro Payments Area

Society for Worldwide Interbank Financial Telecommunication supplies secure messaging
services.
http://www.swift.com

Swift

http://www.chips.org/�
http://www.cls-services.com/�
http://www.fixprotocol.org/�
http://www.fpml.org/�
http://www.ifxforum.org/�
http://www.mddl.org/�
http://www.omgeo.com/�
http://www.twiststandards.org/�
http://rixml.org/�
http://www.rixml.org/�
http://www.swift.com/�

MDMI Beta 2 Specification

Model Driven Message Interoperability 1

TARGET2 is to become a system that provides extensively harmonized services via an
integrated IT infrastructure, improves cost-efficiency, is prepared for swift adaptation to future
developments, including the enlargement of the Eurosystem.
http://www ecb int/paym/target/target2/html/index en html

Target2

Transaction Workflow Innovation Standards Team
www.twiststandards.org

Twist

UNIversal Financial Industry message scheme (ISO20022) www.iso20022.orgUnifi

XBRL is a language for the electronic communication of business and financial data.
http://www.xbrl.org

XBRL

http://www.twiststandards.org/�
http://www.iso20022.org/�
http://www.xbrl.org/�

