MDMI Beta 2 Specification

Date: Mareh-2008August 2009

Model Driven Message Interoperability
(MDMI), Beta 12

OMG Adopted Specification

Previously known as Conversion Models for Payment Messages (EM4RPMMDMI)

OMG Document Number: dtc/2008-08-01

Standard document URL: http:/mww.omg.org/spec/MDMI/1.0/PDF Associated File*:
http://www.omg.org/spec/MDMI/20070901

= orlglna| |||e: ||nance/0 /-09-035

This OMG document replaces the submission document (finance/2007-09-02, Alpha). Itis an OMG
Adopted Beta Specification and is currently in the finalization phase. Comments on the content of this
document are welcome, and should be directed to issues@omg.org by August 25, 2008.

You may view the pending issues for this specification from the OMG revision issues web page
http://www.omg.org/issues/.

The FTF Recommendation and Report for this specification will be published on October 15, 2008. If you
are reading this after that date, please download the available specification from the OMG
Specifications Catalog.

Copyright © 2007, FireStar Software, Inc.
Copyright © 2007, IBM Corporation

Copyright © 2007, Informatica Corporation
Copyright © 2007, IP Commerce

Copyright © 2008, Object Management Group, Inc.
Copyright © 2007, Visa International, Inc.

http://www.omg.org/spec/MDMI/1.0/PDF�
http://www.omg.org/spec/MDMI/20070901�
mailto:issues@omg.org�
http://www.omg.org/issues/�

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means— — graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems-- — without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED

MDMI Beta 2 Specification

BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management GroupTM, OMGTM , Unified Modeling
LanguageTM, Model Driven Architecture LogoTM, Model Driven Architecture DiagramTM, CORBA logosTM, XMl
LogoTM, CWMTM, CWM LogoTM, HIOPTM , MOFTM , OMG Interface Definition Language (IDL)TM , and OMG SysMLTM
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification, but may not claim compliance or conformance with this specification. In the
event that testing suites are implemented or approved by Object Management Group, Inc., software developed using this
specification may claim compliance or conformance with the specification only if the software satisfactorily completes
the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page http://www.omg.org, under Documents, Report a Bug/Issue
(http://www.omg.org/technology/agreement.htm).

http://www.omg.org/�
http://www.omg.org/technology/agreement.htm).�

Table of Contents

(=] = 107 < S v
610 ————.. 1
SCOPE ittt 1
A ©70] 01 (0] 118 7=110 [0 =T 1
3 Normative REfErenCeSoooveieeeeiieeeieeeeeeeeeee e 1
4 Terms and DefinitioNScooovvveeiiiiveiiiiiieee e 2
5 Additional INnformationoceeeeiiiviiiiiiieieiee e 64
5.1 AcCknowledgementscccouiiiiiiiii i 64
IO V< V1=V 115
6.1 Relationship to ISO 20022cooviiiiiiiieiie e, 6
6.2-CM4RM-UNIFland . Different Ways to Use the Current Standard
.. . 6
6.2.1 Moving Data From One Message to Anothercoooeivviiiineenn. 6
ST Y £ = 1 o] 1 o T 6

6.2.3 Data From an Internal Enterprise Message Format to an
External Standardooooviiiiiii e 7
6.2.4 Bilateral MapPiNg ...c..oceeie e 7
6.3 Basic Approach for the Use of This Standardcccceeeuneee. 7
B.3.1 SHAOE L oo 7
LI T - o 1= 2 7

6-3 2 \/ersioning 12

OV CToToTTHTT 1> B =4

Maodel Driven Messane Interonerahilitv \Y

8331 eeeeee e Use of MDMI Artifacts Overview

7.1 Informal Overview of artifactsccoeiviiiiiiiii e 9
7.1.1 Step 1 - Remove the SYNtaX........ccovieiiiiiiiiici e e 10

7.1.2 Step 2 - Mapping a Source Semantic Element to Business Element
Through a Unique 1dentifiercooiiiiiiiiie e 11

6.5:2Bilateral Mapping
11

y UML. Semantics VK .

O
)

Q12

8.1 MessageModels, MessageGroup; 9
MDMIDictionaryReferenCecooveviviiiiiiiiiiieieeeeee e .12
S J0 Nt R @ 1 =T o 1 912
8.1.2. ADSIIACE SYNTAX ...eeiiiiiiiiiiiiiiiie it 1012
8.1.3 MessageModel --- Detailed Semanticscccceeeeeiieiiiiii e, 1012
8.1.4 MessageGroup - Detailed semanticsS s 11Semdgntics
815-MessagePackage-8.1.5o..eel. MDMIDomainDictionaryRefergnce
8.2 MessageSyntaxModel, Node, Bag, Choice,
LeafSyntaxTranslatorccccvvvieeiiicciiieeeee e .14
S FZ Nt R O 1Y =T VT ...14
8.2.2 ADSIIACE SYNTAX ..ciiiiiiiiiiiiii et ... 15
8.2.3 MessageSyntaxModel - Detailed Semanticscccceeeeiiicciiiicnnnnnes 215

11
-- [
Q 2 1 Overdaw, 11

A=y ampps mp N R | W I I I) = =

Q 2 2 Ahctract Suntayx 12

O 71 U AT L4 LI & % ¥ A W I I I [my ==

8.2.4 Node - Detailed SEMANTICSccooeeeiieeieeee e -1+215
B.2. 5581 Lottt Bag - Detailed Semantics
8.2.6-SetChOIEE ... Choice - Detailed Semantics
8.2.7 LeafSyntaxTranSIatoreuueeueeimimmmieiiiiiiiieiiieieeeeneseeneeeenneneeenees 4317
8-3-MessageElementSet-MessageElement8.3SemanticElementSet, Sem
S YATLY] (o PP .17
B.3. 1 OVEIVIEW .ottt e e e e e e e e e e e ean e ees $417
8.3.2 ADSIIACE SYNTAX .ieiuiiiiiiii e .519
8.3.3 SemanticElementSet - Detailed Semanticsccccceeeeeeiieeeeennn, . 19
8.3.3-MessageElementSet—-4................. SemanticElement - Detailed Semantics
8.3.4MessageElement ... Keyword - Detailed Semantics
8.3.6 SimpleMessageComposite - Detailed Semanticsccccceeeeeeeenn. 21
8.3.7 MessageComposite - Detailed Semanticsccceeveieiiiiiiiieieeennn. 22

8.4 Datatype,

Model Driven Messaae Interoperabilitv |

I T @ 1YY o VP 1722

8.4.2 CompleX DatatyPeSccuiiiiiiiiiiiii e 22
8.4.3 MDMIDatatype, DataRules - Abstract Syntaxccccc.oeeeevvuineeenns 1723
843 Batatype8. 4.4 MDIMDatatype - Detailed Semantics
8.4.5 DataRules - Detailed SEMANLICSeeeveiieeiiiiiiiiiieeee e 1824
8.4-4 batatypeRules—-8.5MDMIBusinessElementReference, Conversion Ru
8.5.1 OVEIVIEW ...ttt ettt e e et eeeeaanas 25
8.5.2 ADSIraCt SYNIAX ..ccuiiiiiiiicii e 25
8.5.3 MDMIBusinessElementReference - Detailed SemanticS———— 18

Model Driven Messaae Interoperabilitv

MDMI Beta 2 Specification

B54-8.5.4 ... ConversionRule - Detailed Semantics
2026
8.5.5 ToSemanticElement - Detailed SemantiCS........ccccoeviiiiiiiiiiiiiiieenn. 27
8.5.6 TOBUSINESSEICMENT ... ceieieieee e 27
8.5.7 MDMIBUSINESSEIEMENTRUIE ... 27
8.6 SemanticElementRelationshipcccooiiiiiiiiiiii e, 28
SIS T N @ VTV T AP 28
S T IZA Y o 1S i = (o S} V= D 28
8.6.3 SemanticElementRelationship - Detailed Semanticsc.cccceeevinneen. 29
8.7 SemanticElementBusin€SSRUIEcoeveieiiiiiieeeeeieeeen, 29
T T @ V=Y &V T\, P 29
IOV A\ o 1S i = T) 4 = D RSP 30
8.7.3 MDMIBusinessElementRule - Detailed SemanticS————————r 20
30

fa 29

T TN s s s s s s s s a6 88 580 80 5 0806858586008 0860808 5808080880888 58858%8588858886888688888888888sssaEsssssssssssnsnasaasn ey ==
2 92 1 Ovan/jiaww 292

A= DA™ F= "aa = A) B4 | e I —

9 2 ANhctract Svntax 22
OO MOUTAACU O LILLY —J

B.9:8.LOVEIVIEW .ttt 2431
8.98.2 ADSIIACE SYNTAX ...ouveeiirieiiiee ettt 2531
Annex A - List of ACronymsoooovvccciiiiiiiieceeeeeeeeee, 2432

Model Driven Messane Interonerahilitv \Y |

Model Driven Messaae Interoperabilitv

MDMI Beta 2 Specification

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG's specifications include: UML® (Unified Modeling
LanguageTM); CORBA® (Common Object Request Broker Architecture); CWMTM (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at _http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

. UML
. MOF
. XMl

. CWM

. Profile specifications

OMG Middleware Specifications
o CORBA/IIOP
. IDL/Language Mappings
. Specialized CORBA specifications
. CORBA Component Model (CCM)

Maodel Driven Messane Interonerahilitv \Y

http://www.omg.org/�
http://www.omg.org/technology/documents/spec_catalog.htm�

Platform Specific Model and Interface Specifications
. CORBAservices

Model Driven Messaae Interoperabilitv

MDMI Beta 2 Specification

CORBAfacilities
. OMG Domain specifications

. OMG Embedded Intelligence specifications
. OMG Security specifications.

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing
OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF
format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,
Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as 1SO standards. Please consult_http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.
However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

Note—: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,
specification, or other publication.

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to_http://www.omg.org/
technology/agreement.htm.

Model Driven Message Interoperability

mailto:pubs@omg.org�
http://www.iso.org/�

1 Scope

Complete financial transactions often involve multiple steps that require the transmission of information across
financial systems in multiple enterprises. Each step of a transaction usually relies on the transmission of
information via standardized messages. Some examples of standardized message formats utilized in financial services
are MDDL, FIX, FpML, IFX, TWIST, SWIFT messages, Visa messages, RosettaNet, OAGi, ACORD, and CIDX.
Each of these standards provides a particular type of functionality within the financial service industry. For example,
FIX deals with front-office transactions in the securities sector, while a certain group of SWIFT messages will deal
with back-office security transactions, such as clearing and settling, in the same sector. Each set of financial message
standards is usually supported by a separate industry standards body, e.g., SWIFT for SWIFT messages, Visa for Visa
Messages, the FIX Protocol committee for the FIX standard, etc. The messages created by these groups have evolved
over many years with little or no coordination between groups.

To get true Straight Though Processing (STP), information must be correctly interpreted and processed by each
involved financial system at each step of the financial transaction. This implies —amongst other things -- that
information must be accurately moved from one system to the next. This may require moving information from one
message format to another—Ferexampledata-in-, e.g., from a FIX messages-to-data-inpre-trade message into a SWIFT
messages:settlement message. In addition, a financial institution will often have theirits own internal data elements
used either in internal data stores or in internal messages. These internal data elements must also be appropriately
mapped to and from the industry standard messages if information is to be transmitted from one institution to another.
Currently, the mapping of financial data from one format to another is not standardized. The mappings are usually
done in an ad hoc procedural manner. The complicated and complex maze of existing formats and hard-coded
transformations has created an environment where every introduction of new message formats, and even changes to
older messages, is very expensive. The goal of the Conversion-MeodelsforPaymentMessage(CM4PM)current
standard (MDMI) is to provide a declarative, model-driven mechanism to perform message data transformation - — not
only to handle the movement of data between different message formats, but also to ereate-a-support versioning by
providing a mechanism se-that-to map information between a new version-efa-message-can-be-mapped-to-and an older
version: of the same message. Thus, the Conversion-Models-forPayment-Messagecurrent standard can help reduce the

barriers that prevent the introduction of new versions of messages and thereby greatly reduce the cost of change-.

The Finance Domain Task Force wishes to emphasize that this specification is intended for use by the financial services
community, and has been developed with its specific needs and requirements in mind. While it can certainly be
envisioned that the concepts, models, and mechanisms described in this specification can be applied or adapted to other
application domains, it is not the intent of this document to cover other than the financial services domain.

2 Conformance

To be compliant with the specification, an implementation would need to be able to create and-censume;-as-applicable;

the artifacts that are shown in figures-1-and-2-of the model specification {“everview-of propesed-runtime-specification™);

and-(OMG document # 2009-09-09); to utilize expression languages that are elaberated-upon-in-detai-in-this
specification—n-particylarconsistent with the constraints described in section “8.1.4 MessageGroup — Detailed”; t

utilize MDMIDatatypes that are consistent with the description and constraints in section 8.4, and to utilize a central
dictionary that provides a function dellverlng a unlque |dent|f|er as descrlbed in sectlon 8.1.5. In addition, an
implementation needs to support a de
and-the-runtime application-of, as described in flgures 7 1 and 7. 2 (See sectlon 7 l Informal Overwew of artlfacts) that
can consume the generated maps te-and match unique identifiers to provide a transformation of a Semantic Element

from a source physical-message in-order-to-create a target physicalmessage. Fhe-runtime-aspects-of the-implementation
form the normative part of this specification.

Model Driven Message Interoperability 1

3 Normative References

This specification references 1SO 20022. A complete reference for ISO 20022 can be found at www.1SO20022.com.

4 Terms and Definitions

Business Element

A Business Element is a+efinement-of-a-Semantic-Element-thatrepresents-a-the smallest semantic unit in an external
dictionary. For example, in ISO20022 Business Elements are the attributes of Business Component (or their
related Message) classes and represent a “business concept—-A-Business-Element-is-associated-with-a-Demain-Data

Composition

A configuration of related entities that resultresults in a new entity at a different level of abstraction—Fhat that is, a
composition is a grouping of two or more entities that can be referred to as a single entity at a different level of
abstraction from its component entities:.

Conversion Rule

A feature-of a-semantic-map-that deseribes-a-rule that is to be applied to a-cenversion-betweenconvert a value iof a
source message-elementandSemantic Element into a value #rof a target business element or a target message
element.Semantic Element

Datatype

A prescription of the form of the data that has no specific business-er-message format related semantic content, for
example an address, a date, etc.

Bladal Drivan Massana Interanarahility Model Driven Message Interoperability

http://www.iso20022.com/�

4 Model Driven Message Interoperability

Maodel Drivaen Massaae Intaroperabiliby

VoG e it oottt Hherobtraiohty

Vi

A-message-formatdefinesA collection of physical Data Dictionaries, whereby each data dictionary contains Business
and Semantic Elements that are relevant to a particular domain of the financial industry and whereby the collection of
all Business and Semantic Elements represents a single logical data dictionary for the financial industry.

Message Format

Definition of the syntax and semantics of a class of messages. Can be defined in many ways including paper
documentation

MXXX

Message Greup

SWHFT-message-sets-that-utilize-a-standard XMlformat-based-on-1SO 20022 specification.
MTxx

SWHET-message-sets-that-are-based-orMessage format developed according to the SWIFT defired-EDI
fermatsspecification, including the 1SO 15022 messages.

B

Vi

MDMI Beta 2 Specification

Near Synonym

A Semantic Element that can be mappedderived using prescribed mapping rules tefrom a set of other Semantic
Elements-Nede-D, thus lying within a clearly bounded semantic distance from those Semantic Elements.

Physical Message Instance

An instance of a message that is used to transmit information from a source to a target application —Qualified
Zoohnoos Elomont

ntity in a message format that represents a “smallest” business concept
specific to that message format. The easiest way to describe is by analogy. If the information in a message were used
to define a denormalzed table in a database table, then the Semantic Elements would represent the columns of that
table.

Semantic Element Set

A set of SemanticElements, MessageComposites and Simple MessageComposites and SemanticElementRelationships
that represent the semantics contained in a message format.

Semantic Map

A map that describes the relationship between a MessageSemantic Element in a MessageSemantic Element Set and a
Business Element in a Domain Data Dictionary or between a MessageSemantic Element in one Message Model and a
MessageSemantic Element in another Message Model.

Synonym

A Semantic Element that can be mapped to another semantic-elementSemantic Element by simple equivalence, i.e.,
A=B.

TCxx

Fhesetof Visa-message-formatsMessage format developed according to the VISA EDI specifications for retail banking
transactions:applications.

Technicalanalyst
I i lols.

Vi

MDMI Beta 2 Specification

MDMI Beta 2 Specification

5 Additional Information
5.1 Acknowledgements

The following companies submitted and/or supported this specification:
FireStar Software, Inc.

IBM Corporation

Informatica Corporation

IP Commerce

Visa International, Inc.

Adaptive

The authors wish to acknowledge the contributions of Gabriel Oancea, David Frankel, and Christian Nentwich for their
work in refining the standard. We would like to acknowledge Kris Ketels, Pete-Rivet;Said Tabet and Frank Vandamme
nreviewingfor thrit careful and constructive review the materials. The authors also would like to make a special
acknowledgement for Pete Rivett for very careful review and suggestions for both the documents and the specification and
for Sridhar lyengar for his patience and guidance.

1

mailto:bsteer@earthlink.net�

6 Overview

Given the lack of a financial industry-mapping standard, data is usually mapped directly from one message format to
another. It is a well-known principle in the field of system architecture that as the number of interfaces in a “system”
increases linearly the cost of maintaining point-to-point mappings increases geometrically. In addition, since many of
these mappings are done locally and procedurally, errors are easily introduced. All financial organizations face this
situation.-lt-is-estimated Certainly, financial organizations eurrenthr-spend seme-20-40%a good deal of their software
development budget on developing new interfaces and mappings or extending existing ones. In addition, it is very hard
to introduce any changes into existing message formats or introduce new formats because of the tremendous cost of
changing applications that process the older message formats.

The goal of the EM4PMMDMI standard is to provide a standard framework and methodology for the financial services
industry, which will alleviate the mapping problem.

This standard will:

e Reduce significantly the cost and time needed to define conversion rules to map data from one message
format to another;.

e Handle versioning issues as particular message standards-change;formats evolve over time.

o Allow the expedited adoption of new standards -— as mapping the new standard to the existing standard
will allow applications to continue to use the legacy standards thus greatly reducing the introduction cost of
new standards.

e Improve the interoperability and STP in end-to-end financial transactions that are based on multiple
message formats.

The SM4RPMMDMI standard's framework is based on two concepts:

e First, removing any syntax associated with a message format, revealing the set of core “message-elementsSemantic
Elements” contained in that message format. A message-elementSemantic Element is the smallest semantic unit
defined in a message format.

e Second, specifying a semantic map of those message—elementsSemantic Elements to an industry accepted data
dictionary made up of “business—elements:”Business Elements.” A business—elementBusiness Element is the
smallest semantic-elementSemantic Element that is an entry in the dictionary and representing a-business concept
for the industry sector.

The easiest way to recognize message-elementsSemantic Elements or business elements is that they cannot be
constructed from other message-elementsSemantic Elements or business elementelements, respectively, i.e., they are

represented by a class, whose enby-primary property is a general data type—{See-section-4-4).

Providing semantic maps to a central data dictionary creates a “hub and spoke” approach to mapping as each standards
body need only develop maps to the standard data dictionary. A mapping then will have two steps, utilizing a map
from a source to the data dictionary and then utilizing a map from the data dictionary to the target. Thus, the mapping
process is reduced from being geometric to being linear with the number of message formats.

6.1 UNIHRelationship to ISO 20022

To be effective, there needs to be an industry-wide consensus on the semantic content of the business elements in the
data dictionary and there needs to be an organization that will take on responsibility for maintaining its integrity. In the
financial services industry the respon5|ble orgamzatlon is TC68 and its working groups as outlined in part 2 of the 1SO

MDMI Beta 2 Specification

13

For-example:

In the ISO 20022 Data Dictionary, Message Elements, which are properties of Message Components (where Message
Components, in turn, are related to Business Components), are the equivalent of the Business Elements as defined in
this specification. Thus, Semantic Elements can be mapped to the Message Elements in ISO_20022.

Examples of Message Elements:
e The amount in a client's retail bank account

e The name of a bank branch

e The name of the sender of a wire transfer

62 CM4PM-UNIFand-6.2Different Ways to Use the Current Standard

6.2.1 Moving Data Bietionaries

from One Message Standards-s.z.1

Moving-data-from-one-message-to-anotherto Another

The primary focus of the SM4RPMMDMI standard is moving some information from a source message in a message
format that has been defined by one standards body to a target message in a message format independently defined by
another standards body utilizing an industry defined central data dictionary.

For example:

One message format may define a “client address” field while another message format may have separate fields for
“client street,” “client city,” “client state,” etc.

A Maodel Drivaen Massaae Intaroperabiliby
vt vege-DHYeR-viesSSaaeHteroberaphity

MDMI Beta 2 Specification

One message format may define a bank ID number as a BIC number while another message format may define a bank
ID as an ABA routing number.

FwoeThe key is that the fields in each message are mapped to the same central dictionary element. There are two
important benefits of mapping to a central data dictionaries such as the UNOI-l-data-dictionary-are:ISO 20022
Repository:

1. Only-The central dictionary creates a hub and spoke architecture for transformations. Therefore, only a linear set of
transformation must be created among a-different message format groups- instead of the n> mappings required for bilateral
transformations. For example, by using a central data dictionary for payments, only feursix maps need to be created to
map payment information among SWIFT MT messages, SWIFT MX messages, FIX messages, Visa TC messages,
RosettaNet messages and FRB-ACH messages, whereas six-direct15 bilateral conversion maps would be needed-.

2. =Moere-importanthy-givenGiven that a standards body or enterprise takes responsibility for creating standard
conversion maps to a central dictionary, it need only be expert in its own message formats and the well-defined semantics
of the central data dictionary, rather than needing to understand the semantics and syntax of many other message groups
if the direct-mappingbilateral element method is employed.

6.3-2.2 Versioning

A second costly problem in the financial services space is versioning. The market continually requires changes in
message formats. Given the legacy of existing software, even a small change in a message format can be prohibitively
costly to implement. Thus, required changes are often implemented very slowly and, in the worse case, not
implemented at all. By providing EM4RMMDMI maps efbetween new versions and older versions, new message
formats can be introduced without requiring that existing message formats be abandoned or that legacy applications be
re-coded, as long as the legacy applications do not utilize the new information in the new version.

CM4PM6.2.3 Moving Data from an Internal Enterprise Message Format to an External Standard

Another important value of MDMI is moving information from an enterprise’s internal message or data formats to an
external message standard. It is important to note that a record definition in a database schema can be considered to be
a “message format” and maps can be generated that transform data from that internal database to an external standard.
Currently large staffs are devoted to creating bilateral maps between their internal standard and the external standard.
Whenever either message format changes, these maps must be changed. With MDMI maps, the Semantic Elements in
is internal message formats are mapped to a central dictionary, such as the ISO 20022 Data Dictionary. Given that a
standards body, such as SWIFT, distributes new MDMI maps to account for the change in their standard, then the
internal enterprise maps do not have to be changed. This will result in very significant savings.

6.2.4 Bilateral mapping

MDMI can be used to model and define conversion maps directly between two message formats. In this case, the semantic

mapping is between the message-elementsSemantic Elements in a source message format and the message-elementsSemantic
Elements in a target message format. (The ConversionRules, which define the relationship between Semantic Elements must

be as complicated as required to accomplish a mapping whereas conversion rules mapped to a central dictionary will have a
restricted set of operators.)

6.4-3 Basic approach-ofthe-Conversion-MeodelsApproach for Rayment
Message-Standardsthe Use of This Standard

First-the-The artifacts defined for the ; : i i
conversions-as-a-mappirg-datathis standard are deS|gned to map data (i.e., sets of Semantlc Elements) from one message
format to another rather than the wholesale conversion of a complete message in one message format to another message
format. With this focus, each data field conversion needs to be atomic, containing all the meta-data necessary to move

Model Driven Message Interoperability 15

the data in the field to a target field (or fields) with as little reference to additional meta-er-data such as a complete
model of the message format-.

The Conversion-MedelsforPayment-Message-standards-standard is a declarative standard based on a MOF-comphiant
UML model that definedefines the artifacts necessary to define a standardized conversion. These artifacts represent a
two-stage process:, as described below.

6.43.1 Stage 1

The first stage artifacts utilize a Message Syntax Model to create a syntax-neutral set of Message-Semantic Element
classes. Message Semantic Elements are the smallest Semantic-Elements-semantic entities contained in thata message
typeformat, for which further parsing would lose semantic meaning leaving only generic data-type values.

6.43.2 Stage 2

The second stage provides semantic mapping- to a central dictionary. It does this by specifying To and From
Conversion Rules for source MessageSemantic Elements either to target MessageSemantic Elements in another
message format erto Business Elements in a the central data dictionary such as UNH=lthe 1SO 20022 Repository.

In many cases, this mapping will amount to a simple isomorphic mapping; in other cases, simple transformations will

be required, such as splitting-er-concatenating-Message-Elementsdefining an arithmetic expression, doing a table

lookup, or splitting or concatenating a string. Separate transform may need to be defined for the mapping 1) from a
source Semantic Element to a Business Element as compared to 2) from a Business Element to a Semantic Element.

For example:

«“Name™e Mapping “Primary Client Identifier” element in the source message #aps-to the two elements
“GivenName™, “Primary Client Name” and “FamilyName”Primary Client BIC”, in the target.dictionary

e Mapping “Primary Account Beginning Balance” and “Primary Account Ending Balance” in the seureedictionary to
“Primary Account Beginning Balance” and “Primary Account Debited Amount” in the target:

Note: There may be no simple or reasonable Conversion Rule frembetween a source MessageSemantic Element teand
a-target Business Element in an industry data dictionary-tike-JNHFE, such as the 1SO 20022 repository. This indicates
that the MessageSemantic Element represents a concept not yet included in the industry data dictionary. In thatthis
case, a submission should be made to the governing body to enhance the industry data dictionary, rather than include a
complex or convoluted mapping.)

6.5-4 Future Benefits of the Cenversion-ModelsforRPaymentMessage
Standard

There are a number of future-extensions to the Cenversion-Meodels-forPayment-MessageMDMI standard that can-add

should enhance the value of the standard.
6.5 eo et Somnnte Massine o Shonenene Dealing With (Near) Synonyms

A key feature of the Coenversion-Medels-forPayment-MessageMDMI standard is the semantic mapping is-that it is carried
out between the financialinstitutions-Message-Semantic Elements and the-Business Elements contained in an industry

data dictionary, such as UNHFHhrough-a-the ISO 20022 Data Dictionary. These conversions should be restrictive to a
small set of direct conversion rules—, e.g., only allowing arithmetic and logical expressions and limiting external
functions to table lookups.

In effect, establishing such a set of rules definescan be used to define the semantic proximity between the Message
Elementand-the-Business Elements: (or in the case of ISO 20022 the Message Elements) in a data dictionary. This
semantic proximity can be characterized as defining synonyms and “near synonyms.” Fhe-same-mechanism This is
accomplished because terms that can be used%ep;ewde%we#stme&wed—md&stwda&dmﬂen&w—@n%mapped to the
dictionary;-enby using the conversion rules must be synonyms or “near synonyms.” Only terms that are not synonyms
or near synonyms of other Business Elements would be allowed in the basic dictionary itself. The synonyms and near
synonyms with their mappings could be kept in an auxiliary catalogue. The allowable rules established for the
Conversion Rules in effect define the minimum semantic distance that is allowed for dictionary entries, resulting in a
“measurable” well-structured dictionary. The future work would involve defining appropriate sets of conversion rules
and understanding their implication on the dictionary structure.

6.54.2 Mapping between Data Dictionaries

The current standard is focused on supporting message-elementSemantic Element conversions among one or more
message standards within Financial Services by mapping message-elementsSemantic Elements to one large, central Data
dictionary. However, the Conversion-MeodelsforPayment-Message-semanticMDMI Semantic mappings could be applied
to create maps between data dictionaries. Thus, the CM4PMMDMI standard could be used to effectively support
federated dictionaries. This, in turn, will allow content aware standards groups to manage dictionaries for specific
subsectionsubsections of the financial services industry, as opposed to one group being responsible for a large data
dictionary. A federated set of dictionaries wilmight be more effective to maintain-.

6.54.3 Handling lessless-coenversionLossless Conversion

An important need in messaging is dealing with the loss of information when performing Message-elementSemantic
Element conversions. While this problem can never be completely solved improvements in lossless conversions will be
a great benefit. The proposed artifacts for the SM4PMMDMI standard can provide a strong basic framework for
creating lossless conversions, e.g., syntax incompatibilities can be traced and accommodated; auxiliary storage for lost
information can be created with additional MessageSemantic Elements, etc-.

. i

7-UMLSemantics Use of MDMI Artifacts Overview

The focus of the Conversion-Medelsfor-Payment-MessageMDMI standards is to create a template for machine-readable

maps that standardize the conversion of data from a source message instance based on one message format to data in a
target message instance based on another message format. This may involve the movement of as little as one data
element or it may involve the conversion of a complete physical-message. The standard can be used to eenvertmap data for
message formats within a Message Group or across Message Groups.

7.1 Informal Overview of artifactsArtifacts

Before presenting the artifacts in the EM4PMMDMI standard, an overview and example of the use of the key artifacts
in performing a conversion may be helpful.

Figure 7.1 and Figure 7.2 present an implementation of a conversion utilizing the key artifacts in the Conversion

-MDMI Standard. The rectangles in the diagram represent these artifacts. In
addition, it should be understood that the Busmess EIements in Figure 7.1 are the same Business Elements as in Figure
7.2 and waythat these Business Elements are defined in a central
dictionary.

6 Model Driven Message Interoperability

MDMI Beta 2 Specification

Source Physical Message
Source Message Strip syntax from indicated
Syntax Model subset of Semantic Elements
Instance of Semantic
Element Set

Map and convert Semantic Element
Source Message .
B i Rl w s value to relevant Business Element
PPINg Reference Datatype value.

Source Message Business Ma-tch uniqueldentifiers of
Element Reference Business Element Reference

with target unigueldentifiers

Figure 7.1 - Overview of proposed run-time conversion methodology from Source-to-UNH=

Model Driven Message Interoperability

Target Message Business
Element Reference

o

- -
TargetMessage ,
J Semantic Mapping L

Target Message |
\ . J—— ' Syntax Model

Figure 7.2 - Overview of proposed run-time conversion methodeology-UNIFHo Target

The following step descriptions annotate this conversion example.
7.1.1 Step 1 - Remove the Syntax

The first step of a conversion is to convert the targeted data in a physical message instance (e.g., a SWIFT
MTF102MT103, a Visa TCO5, etc.) from its existing format to a syntax-neutral format. The conversion involves the
extraction of data from the existing Message using a syntax translation process. This process utilizes the Cenversien
MedelsforPayment-Message-StandardsMDMI Standard artifact, “Message Syntax Model.” The Message Syntax
Model provides a syntactic description that contains the necessary information to extract or insert any particular data
item from/to a physical message instance.

A data item in a message is defined as the smallest semantic unit in a message for which further parsing would lose
semantic meaning leaving only generic Datatype-values—Normalhy-the-smallest semantic-unit-is-a—field-"datatype
values. For example, in a SWIFT MT102 there is a field representing a Settlement Date. If further parsing was done,
the value left would simply be a date and indistinguishable, in a business semantic context, from any other date.
Therefore, Settlement Date is a data item that is a smallest semantic unit. The data item “Settlement Date” has a
datatype of date.

Setﬂemem—DatH&Normally the smallest semantlc un|t whese—aata—type%date

in a message is a field but in many overloaded message formats, a semantic unit can be a sub-field or a combination of
fields. In existing message formats, there-are-many “fields”-that have been subdivided into numerous semantic units.
For example, a field may contain beth-a list of “Primary Account ID”s separated by commas. In that case, each

o
N
-
=
©
bl
(23
\»)
E.
®
5
L
=
®
o
i
D

MDMI Beta 2 Specification

“primary account bala
uritsID” is a separate data |tem even though they appear in the—one fleld

When the data is extracted-from-thephysicalstripped of its specific message format syntax, its value isplaced-inte-will
be represented by an instance of the artifact “MessageSemantic Element=". There will be a MessageSemantic Element

class defined for every semantic unit contained in that-a message’s message format. All of these the MessageSemantic
Element classes relate-toare contained in the artifact“Message“Semantic Element Set” by composition.

7.1.2 Step 2 - Mapping a Source MessageSemantic Element to Busiress-Elementa Target Semantic
Element through the use of a Unique Identifier acquired from a central dictionary

The second step for the conversion ueesleverages a maepmg—preeess—te—eenvert—the—dataﬂte—data—ean—be—etther

da central drctronary—Busmess to
defrne the relatronshrp between a Source Semantic Element and one or more Target Semantic Elements.

The Source and Target Semantic Elements are the-smalest-semantic-units-contained-in-an-ndustry-dataassociated with

a central dictionary Business Element through a Business Element Reference class. That association may be a simple
isomorphic mapping or it may involve a more complex map utilizing various artifacts in the MDMI specification such
as the- 15020022 UNIFH-which-cover-the-business-coeneeptsa computed Semantic Element or a Conversion rule. Each
element in the central dictionary has to provide a unique identifier for thatindustry-sector—{Fhe-its Business Elements
deseribed. That unique identifier will be stored in this-decument-are-duplicates-ef-the Business Element elass
definitionsreferences that are associated with Semantic Elements. The appropriate Unique Identifiers will have been

stored in the MDMI map for all Semantic Elements in 1S0-20022v2 comphant-data-dictionariesithe both the Source

and Target message formats.

r-the-ease-whereAn MDMI runtime application can locate a complete definition of a transformation by lining up the
Source and Target maps by for the Semantic Elements that have matching Unique Identifiers.

However knowing the direct mapping instructions is often not enough information to insert a value into a Target message, as
the validity of that insertion often depends on other Semantic Elements in a message. For example, it may be invalid to store
“Prrmary Account Balance amount" |f there is no value for a “Prrmary Account ID ” Therefore the mappmg%denetean
message—Element—teaBu&nessmaps for each Semantlc Element—treman%eases—thﬁmappmgMH#ameurHea—srmple
isomorphic-mapping—tnthis-case-the- Message include a set of Semantic Element and-BusinessRelationships that describe
the relationship of a particular Semantic Element are-synenyms—tawith all other eases;-simple-transformations-with-be
wqu%d—suehasepl%ngeee%eatenaﬂng%e#alewethe—MessageSemantlc Elements in the message A runtrme

appllcatlon uses the Semantrc Element.

target mapping to make sure that no constrarnts are vrolated and that the mserted value is valrd |n relatronshrp to other
elements in the Message. ;
D"

Model Driven Message Interoperability 9

10 Model Driven Message Interoperability

Model Driven Message Interoperability

MDMI Beta 2 Specification

11

8 UML Semantics - Normative Definition

The following is the formal Meta-Object Facility (MOF) model of the Conversion Models for Payment Messages
Standards. It is first presented as a set of annotated views followed by the presentation of all the “elements” brought
together in a single view.

8.1 MessageModels, MessageGroup, MessagePRackage
MDMIDictionaryReference

8.1.1 Overview

This view presents the MessageModel, the MessageGroup;-the-MessagePackage and the
MessageMedel.MDMIDictionaryReference. A MessageModel is a formal representation of a message format. A
MessageGroup is composed of a set of Message Models that are usually grouped together because they focus on a
particular messaging domain.-A-Me
to-be-used-by-the-conversionprocessors For example the set of SWIFT MTxx payment messages the set of SWIFT
MXxx fund messages, the set of Visa TCxx retail payment messages. An MDM IDictionaryReference provides a
reference to the central dictionary to which the Semantic Elements for all MessageModels in the MessageGroup will be
mapped.

Eermamsle:
hosobe SR T e s e 0 FREESTERS
The-set-of SWHFT- Moo fund-messages

12 Model Driven Message Interoperability

MDMI Beta 2
Specification

8.1.2 Abstract Syntax

MessageGroup
+messageGroup 1
validMessageModel
|
fonacifichti
+messageModel 1
validMessageElementSet +messadeElementSet 1
+messageModel—1 b e
+messageElementSet 1
e
MessageSyntaxMedel 1 validM yrtaxModel
+messageSyntaxModel
MessageGroup MDMIDomainDictionaryReference
: icti +name : Strin

MessageModel !+mode| +group|+name : String +group +dictionary +descripton :gString 0.1]
+messageModelName : String, —, 1 +description : String [0..1] 1 1 |+reference : URI
+description : String [0..1] - +defaultLocationExpressionLanguage : String
+source : URI[0..1] +defaultConstraintExpressionLanguage : String

+defaultRuleExpressionLanguage : String
1 +defaultFormatExpressionLanguage : String
+model +model| 1 +defaultOrderingExpressionLanguage : String
+defaultMDMIEXxpresionLanguage : String

+syntakModel

1 +elementSeq 1

MessageSyntaxModel SemanticElementSet
+syntaxModel +elementSe

+name : String

+name : String

+description : String [0..1]| 1

1

+description : String [0..1]
+/messageModelname : String

Figure 8.1 - Message Model, Mess

Model Driven Message
Interoperability

hgeGroup, MDMIDictionaryReference

13

8.1.3 MessageModel --- Detailed Semantics

A-MessageModel has-ene-propertydescription:

ha nrope “ma aeModelName
6P \/ VoG v 0

nameThe MessageModel is the parent class that contains the MDMI model of a message format. The database
schema of a record in a table can also be considered a message format as well as most XML documents.

MessageModel properties:

1. A “messageModelName” property, of type String, names the model of the message format itis-medeling:being

modeled. For example, the value of a messageModelName for a MT103 MessageModel could undoubtedly be
“MT103.”

2. ThisviewAn optional “description” property, of type String, contains a description of the message model.

3. A*source” is a property, of type URI, which contains a reference to the definition of the message format whose
elements are being mapped. This reference can take many forms, for example, the reference might be to a

machine-readable definition, such as the location of the message definition in the 1ISO 20022 repository, or it
might reference a paper document.

MessageModel has-four-associations:

1. A MessageModel has a MessageSyntaxModel by composition.

14 Model Driven Message Interoperability

8.14

MDMI Beta 2 Specification

MessageGroup - Detailed semantiecsSemantics

A-MessageGroup has-ene-prepertydescription:

1-The property-is—hameThe-value-of rame-is-the-name-of the-MessageGroup-—A- class contains a set of message
models that are considered in the same grouping, e.g., SWIFT MX messages, SWIFT 15022 messages, FIX

security messages, etc. The MessageGroup has-eneclass is useful for setting various defaults for closely related
message formats.

The MessageGroup properties:

1.

(o]

The property “name” of type String, names the MessageGroup.
The optional property “description”, of type String, provides a description of MessageGroup.

The property “defaultLocationExpressionLanguage” of type String identifies the location language to be
used as a default for specifying location for all the messages in the MessageGroup. The value must be
recognized by a runtime transformation application. The location of any field or sub-field in a message must
be expressible in the chosen locationExpressionLanguage. For example, a location language for an XML
message format would be “XPath 2.0”.

The property “defaultConstraintExpressionLanguage” of type String identifies the constraint language to be
used as a default for specifying the constraints in the Choice class for all the messages in the MessageGroup.
The constraintExpressionLanguage must be able to reference nodes. An appropriate language, which has
been used in an example implementation, is NRL 1.0.

The property “defaultRuleExpressionLanguage” of type String identifies the rule language to be used as a
default for specifying rules in all classes with the property “rule” for all the messages in the MessageGroup.
This rule language must be able to access the values of any SemanticElement and thus it must be able to
access the fields in complex datatypes. An appropriate language, which has been used in an example
implementation, is NRL 1.0[c46].

The property “defaultFormatExpressionLanguage”, of type String, identifies the format language to be used
as a default for specifying formats in the LeafSyntaxTranslator class for all the messages in the
MessageGroup. The formatExpressionLanguage must be able to describe fields as well as sub-fields, in
particular the proper termination character for a field or sub-field. Appropriate languages, which have been
used in an example implementation, are the SWIFT 150022 regular expression format language and XSD
format attributes.

The property “defaultOrderingExpressionLanguage”, of type String, identifies the ordering language to be
used as a default for specifying the ordering of multiple instances of Semantic Elements in which the
Boolean property “mutiplelnstances” is “True”. The ordering language should provide expressions evaluate
to both cardinal and ordinal positioning. For example, NRL is a language that can be used to specify
ordering.

. The property “defaultMDMIExpressionLanguage”, of type String, identifies the computational language to be

used as a default for specifying the computational expression in computed Semantic Elements that are of
type MDMIExpression. For example, NRL, with its declarative and action language, can be used as a
MDMI Expression Language.

MessageGroup associations:

An association-

1.

1-A-MessageGroup-has with one or more MessageModels, which comprise the MessageGroup —Fhere-are
SEedsrse st e e lnsenonl nodn o

Model Driven Message Interoperability 15

2. 8:2-An association with zero or more DataRules that are utilized by the Message models within the group.

3. An association with the MDMIDictionaryReference that identifies the central dictionary utilized by the group
8.1.5 MDMIDomainDictionaryReference
MDMIDomainDictionaryReference description:

The MDMIDomainDictionaryReference class provides a reference to the central dictionary that contains the
Business Elements to which the Semantic Elements in the MessageModels in the MessageGroup are mapped. This
class is purely informational as the URI reference to the dictionary does not have be machine-readable. The
dictionary could reside on paper, for example. However, there must be a function or method associated with the
dictionary that will provide: 1) a uniqueldentifier for all Business Elements, and 2) a reference to a datatype that is
compatible with the set of MDMIDatatype.

MDMIDomainDictionaryReference properties:

1. A “name” property, of type string, that provides a name for the referenced central dictionary.
2. An optional “description” property, of type String, that provides a description of the referenced central
dictionary.

3. A “reference” property, of the type URI, that provides a reference to the central dictionary, such as a URL.
MDMIDomainDictionaryReference associations:

1. MDMIDomainDictionaryReference has a one-to-one association with MesssageGroup to indicate the central
dictionary that will be used for the maps in MessageModels in the MessageGroup.

2. MDMIDomainDictionaryReference has a one-to-many relationship to the MDMIBusinessElementReference
class so that a reference to the parent dictionary, to which a Business Element belongs, is easily found.

8.2 MessageSyntaxModel, Node, Set-SetCheiceBag, Choice,
LeafSyntaxTranslator

8.2.1 Overview

The MessageSyntaxModel and related classes prevides-provide syntax information that will alew-a-Message-Syntax
Franslatorenable a process to either extract or insert a data value into or from an instance of a message. It does this by
providing a description of the location and format of every semantic-unitSemantic Element in the message format.

The MessageSyntaxModel class acts-asis the root of a-the syntax tree. The syntax tree prowdes a map for navigating a
message format. Each-leaf The leafs of the tree;

sorRnRt e tRlisAthemessagetermal—he are LeafSyntaxTransIator nodes The LeafSyntaxTranslator has location
and format properties, which eentainrs-the-contain information that defines how to move a data item from/to the-value

propertyan instance of a Messagemessage and associate the data item with a Semantic Element-tnastance-to/from-the
leeamand—ﬁe#ma{—ﬁer—that—value%a—p#we%messaga The GM4I2MI\/IDMI standard does not requwe a specmc

language

deﬁned—thapmferenee#leuexpwssren%nguage#uapw%bausedto descrlbe leeaneaand—fennapa Iocatlon ora format for

16 Model Driven Message Interoperability

MDMI Beta 2 Specification

the properties in the LeafSyntaxTranslator. Instead, language properties are included that provide a reference the
expression language that will be used to describe location and format. This flexibility was chosen given the variety of
different types of message formats --— for example: XML, EDIFACT, Object models, etc., which-must-be
accommeodatedand the legacy languages already out there to express location and format.

The other classes associated with the MessageSyntaxModel are used to construct the branches of the syntax tree. They
are:

e Node — an abstract class that represents the branches and leaf nodes of the syntax tree
e Set-Bag —a branch Node that identifies a set of Nodes that are aggregated in a message format

e SetCheice-Choice — a branch Node that defines rules to identify the conditions for which elementsvalues in a-setits
children nodes should appear in a physical message instance.

Model Driven Message Interoperability 17

8.2.2 Abstract Syntax

18

MessageSyntaxModel
¢ et
e
Node
fonacificatinnl
. . e
[+ locationExpressionLanguage: String
|+ datatype: Datatype
J E— |+ description: String {0..1}
B — itioR-Stri
Set - . - St
B
. : = ralidLSTTolM Ek At
T
SetCheice LeafSyntaxTranstator +eafSyntaxFransiator
I I 1
+format: String
+ con {rnin!l: P L anauage:String ! ‘ R .
+ formatExpressionLanguage: String

Model Driven Message Interoperability

MessageSyntaxModel
+name : String SemanticElement
+description : String [0..1] +name : String
+description : String [0..1]
+synt %/Iodel +semanticElemen :sl:tr:t;ggype : MessageElementType = NORMAL
0.1 | +propertyQualifier : String [0..1]
+multiplelnstances : Boolean = false
+root| 1 +syntaxNode|0..1 +ordering : String [0..1]
Node +oderingLanguage : String [0..1]
- +computedValue : MDMIExpression [0..1] +parent
+name : String +computedinValue : MDMIExpression [0..1]
+description : String [0..1] +computedOutValue : MDMIExpression [0..1]
+minOccurs : Integer = 1
+maxOccurs : Integer = 1 0.*

+location : String +children

+locationExpressionLanguage : String [0..1

+fieldName : String [0..1] LeafSyntaxTranslator
+/isSyntacticField : Boolean = false < e
+format : String
+nodes|L.*x & 1. +formatExpressionLanguage : String [0..1
+nodes
+owner (0.1 0.1
+owner
Bag Choice
+isUnique : Boolean = true +contraint : String [0..1]
+isOrdered : Boolean = false +constraintExpressionLanguage : String [0..1]

Figure 8.2 - Message Syntax Model

8.2.3 MessageSyntaxModel —- Detailed Semantics

A-MessageSyntaxModel elass-has-one-propertydescription:

1-The MessageSyntaxModel contains a syntax tree that describes how each Semantic Element can be either inserted into
or extracted from a message based on that message’s message format.

MessageSyntaxModel properties:

1. A “name” property, whesevalde-of type String, is the name of the MessageSyntaxModel---. This name will
often be similar to the MessageModel name, e.g., “MT103 Syntax Tree.”

2. 1-One-to-many-Nodes-canbe-asseciated-with-a-The optional property “description” of type String provides a

description of MessageGroup.
MessageSyntaxModel associations:

1. An associations with one-to-many Nodes as it is the parent class of the syntax tree.
2. An association with its parent MesssageModel

3. An association with its sibling SemanticElement Set
8.2.4 Node - Detailed Semantics

19 Model Driven Message Interoperability

1-ANode description:
The Node class is an abstract class that is inherited by all nodes in the syntax tree. It primarily contains location
information so that any field or data item in a message can be located.

Node properties:

1. The “name” property, wheose-value-is-of type String, provides a name for the Node—. This name can be
useful to label a section or element in a message format. The name property is important because it should

provide aan addressable reference to a-nede-forthe-the node, which can be used in an expression-languages

used-in-the syntax tree.

20 Model Driven Message Interoperability

MDMI Beta 2 Specification

2. Anr=The optional” “description” property, wheose-value-is-a-Boolean-true-or-false I the-optional-of type String,

describes the Node’s purpose.

3. The “minOccurs” property-i i , i i i
false-then-the-nede, of type Integer has a value of 0..1. The value of “0” |nd|cates that the Node is optlonal
whereas the value “1” indicates that the Node is required-in-the-physical-message.

4. An optional “maxOccurs” property, of type Integer, puts an upper limit on the number of instances allowed
for the node.

5. A “location” property-whese-value, of type String, describes the location of the Node in the physical
message. The location is often in reference to, or anchored by, the URI that defines the location of the
physical message instance.

6. A “locationExpressionLanguage” property-whese-value, of type String, defines a reference to the expression
language used in the location property The languageusedrlocatlonExpressananguage must havee

a&a—byte—ee&nt—and—lengthlsatlsfy the same constramts descrlbed for the

“defaultLocationExpressionLanguage in section 8.1.5.

7. AldeseriptionAn optional “fieldname” property, whose-value-is-a-string-containing-a-deseription-of the-nede:
Fhisview-efof type String, provides the field name of a simple datatype that is part of a complex

MDMIDatatype. The data item, whose location is indicated by the Node-shews-twe, has the datatype
associated with the “fieldname”.

8. A derived property “isSyntaticField”, of type Boolean, indicates, if the property’s value is “True”, that this
node corresponds to a data item that is part of an MDMIComplexDatatype. “isSyntaxField” will be “True”
if the optional “fieldname” is present.

Node class generalizations:
Three classes that-inherit from the Node Setabstract class: Bag, Choice and LeafSyntaxTranslator.
Node class associations

1. Node has a many-to-one association with the Bag class as a Bag can have Node children.
2. Node has a many-to-one association with the Choice class as a Choice can have Node children.

3. Node has a one-to-one relationship with a SemanticElement. This is the key association that links a
SemanticElement to its syntax.

8.2.5-Set Bag - Detailed Semantics
A-Set-class-has-three-additionatBag description:

The Bag class represents a set of syntax nodes. The nodes in a Bag can be a unique set or a bag, and the nodes can
be ordered or unordered.

Bag properties:

1. An-The“isUnique” Beolean-property-whese, of type Boolean, indicates, if its value is true-H-“True”, that the
bag is a set is-composed of unique items-and-false-ifthe-set. If its value is “False”, the bag of nodes can
contain duplicates-.

2. AnThe “isOrdered” Beolean-property-whese, of type Boolean indicates, if its value is true-H-"“True” that the
nodes in the bag must be in an ordered sequence-and-false-iftheset. If the value is “False”, the nodes in the bag

Model Driven Message Interoperability 21

can be unordered. This view-ofthe-Set-showsproperty is useful for parsing a message. The actual ordering
of SemanticElements is handled 1) using the “location” property in the Node class that-inherits-from-Set—-
SetCheiceand 2) using the “ordering” property in the SemanticElement class.

Bag associations:

1. The Bag class has a one-to-many association with some other classes that inherits from Node. Thus, it becomes
a branch in the syntax tree. Since it must have at least one association with another class by composition, it
cannot be a leaf of the syntax tree.

8.2.6-SetChoice Choice - Detailed Semantics

Choice description:

The Choice class contains the conditions that can identify the subset of its children nodes that will be present in a
particular message instance. The subset is determined by a constraint expression.

Choice properties:

1. A “constraint” property whose value is an expression that can be used to determine which of the set of nodes
should be in a physical message instance.

2. AAn optional “constraintExpressionLanguage™preperty-whose-valuereferences-”, of type String .that is a reference
to the language used in the SetCheiee-“constraint” property. The constraintExpressionLanguage must be able to

reference nedesany node in the syntax tree.
Choice associations:

1. The Choice class has a one-to-many association with some other class that inherits from Node. Thus, it
becomes a branch in the syntax tree. Since it must have at least one association with another class by
composition, it cannot be a leaf of the syntax tree.

8.2.7 LeafSyntaxTranslator
Fhe-LeafSyntaxTranslator elass-has-taodescription:

The LeafSyntaxTranslator class is represents a leaf of the syntax tree. There is a LeafSyntaxTranslator
corresponding to every field, sub-field or data item in the message format. The LeafSyntaxTranslator inherits
location information from the Node and has additional properties in-addition-to-these-it-inheritsfrom-Nedethat
describe the format of the data item with which it is associated.

LeafSyntaxTranslator properties:

1. The “format” property, whese-value-deseribesof type String, provides the specific format of a field or subfield in
the semantic-unitira-physical-message nstance-thatis-assectated-with-a-Message-Element-format.

2. The “formatExpressionLanguage” property, Whese#ateeof type Strlng isa reference to the expressmn Ianguage
used in the format property- cect N guag
For example, SWIFT has a defined regular expressmn Ianguage for the format of ltseemantrc—unﬁ&flelds in MT
messages. The formatExpressionLanguage must be able to reference and fully describe the format of data item. An
example would be being able to specify the proper termination character for list of fields that occur within a string.
While the SM4RPMMDMI standard does not require a specific formatExpressionLanguage, if no
formatExpressionLanguage exists for a particular message format, the SM4RPMMDMI standard is recommending
the use of a small subset of DFDL as a general solution.

22 Model Driven Message Interoperability

MDMI Beta 2 Specification

8.3-MessageElementSet-MessageElement; SemanticElementSet,

SemanticElement SimpleMessageComposite, MessageComposite,
Keyword

8.3.1 Overview

The MessageElementSetSemanticElementSet contains a set of MessageSemantic Element classes. Each
MessageElementSemanticElement represents a smallest semantic unit in a message format. The
MessageElementSetSemanticElementSet and the MessageSyntaxModel, which are the two entities that comprise a
Message model, can provide a complete specification of a message format.-Fhis-is-because If all the semantic
writsSemantic Elements in a message are stored in the MessageElementSetSemanticElementSet and instructions on
how to insert or extract each of those elements are contained in the MessageSyntaxModel-, then a complete model of a
message format will be created. However, one of the advantages of MDMI is subsets of a message format can also be
mapped. For example, given a specification such as RosettaNet and a goal of executing a payment, only the payment
data-items that are to be moved into a SWIFT payment message need to be mapped.

The MessageElementSetSemanticElementSet represents the “flattening” or the “linearization” of a message format.
This flattening is important, since a primary goal of SM4RPMMDMI is to expedite the insertion or extraction of as little
as one semantic unit of a message. For processing efficiency, it is very important that the information needed to
convert one item from/to a message does not require complete information about the structure of the entire message
format.

The primary constituents of the MessageElementSetSemanticElementSet are MessageSemantic Elements. A couple of
additional classes are provided primarily for the ease of the designer, but they do not play a major role in the
conversion process. These are SimpleMessageComposites and MessageComposites. These classes are conveniences
for bundling MessageElementsSemanticElements in the design process.

A SimpleMessageComposite is an “aggregation” that only contains MessageElements.SemanticElements. It is
important, as this first level of aggregation is a very common design mechanism.

A MessageComposite is an aggregation that contains MessageElementsSemanticElements, SimpleMessageComposites
and MessageComposites. It is possible therefore to create exceedingly complicated MessageComposite structures.
However, these structuring mechanisms should be used with considerable caution. Such complicated structures are far
away from the desired linearization or flattening of semantic units, which is a core design principle of the
CSM4APMMDMI standard.

An important property of MessageElementsSemanticElements merits further discussion. This is the attributeproperty
“multiplelnstances.” Multiplelnstances indicates that the-semantic-unitrepresented-by-that MessageElementinstances of
a particular SemantrcEIement can appear multlple tlmes ina phy3|cal message instance—ta-its-simplest-form—a

o 7+, usually in the form of repeating fields or a
Ilst In effect, the SemantlcEIement isa vector and not a smgular value As expected, the fact that SemanticElements can

srmplyrepresee%be an array ephse——ieeexampleﬁme#eedeshaﬂhseof Humem:—enme%aaelsaemHewevePa

Model Driven Message Interoperability 23

Todalll o iz
g g

+reference : String

e‘ajwessaeeEtememSe&’ """""""" ElamnantGnt | MMT—‘
1
Atext: ! tSet B
validCimnlalMaceana ~Amnncita v Self Aadal — "
o ame s B e
£l .
!)
")) essageElement
scimnlaMaceanaComnacita .
SimpleMessageComposite - fement e —
P— ¢ g
T x [-datatype—Datatype Eam—
FRame—StRg : Amnasita deseription:_String {01} imaceanal Elamant
Lah - n |- multiplelnsiances: Boolean = False + |
emassanacomnncie b + i [ccitiont string
MessageComposite lidSimple B nositionE: anauaae—String
+ [F sTavaen O leavannrd i *
{Constraint B STEE
+messageComposite oo onsime o
1 jcontext-MessageElement
Av-—Self- delN. = T
Aodal g dall y d\Laluy 3 e3a1
vnlidhacanna FAmnncita [—reference—String
+computedValue : MDMIExpression [0..1] +parent
+computedinValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]
Keyword
" : 0.*
+description : String .
+keyword : String Heywords +owner |1 +children
+keywordValue : String [0..1]
0.*

24

Model Driven Message Interoperability

MDMI Beta 2 Specification

Figure 8.3 - Message-Element-Set-SemanticElementSet and associated classes
8.3.3-MessageElementSet—- SemanticElementSet - Detailed Semantics
Fhe-MessageElementSemanticElement Set description:

The SemanticElement Set contains the smallest Semantic Elements contained in a message format. The set only
holds Semantic Elements. All of the message-specific syntax of selected elements from a particular message
format has fwebeen removed.

SemanticElementSet properties:

A “name” property-wheose-value-s, of type String, contains the name of the MessageElementSet:

Model Driven Message Interoperability

25

2.

3.

An-optional “description™” property, wheose-value-isof type String, provides a string-that-deseribesdescription of
the MessageElementSemanticElement Set.

The derived “MessageModelName” property, of type string, contains the name of the MessageModel to which
theSemanticElementSet belongs. This derived property is included for implementation convenience.

SemanticElementSet associations:

1.
2.

The SemanticElementSet has a one-to-many association by composition to SemanticElements.

The SemanticElementSet has a zero-to-many association with SimpleMessageComposites. A
SimpleMessageComposite is a convenient mechanism for grouping SemanticElements.

3. The SemanticElementSet has a one-to-one relationship to its parent MessageModel.

4,

8.3.4

The SemanticElementSet has a one-to-one relationship to its sibling, the MessageSyntaxModel.

SemanticElement - Detailed Semantics

SemanticElement description:

The SemanticElement class is the core of the MDMI message map. SemanticElements represent the smallest
semantic units in a message format, stripped of any complicating syntax considerations. Each SemanticElement is
unique in the context of its message format, i.e., it must have an individual semantic meaning. As example,
“address” cannot be a SemanticElement; “address” is a datatype that can be repeated in many message fields.
“Primary Debtor Address” is a SemanticElement as it refers to a particular unique address in a message format.

The SemanticElement properties:

1.
2.
3.

26

A “name” property, of type String, contains the name of the SemanticElement.
The optional “description” property, of type String, contains a description of the SemanticElement.

An “elementType” property, of the enumerated type MessageElementType, can have three values each of
which defines the type of Semantic Element.

e NORMAL -a“NORMAL” Semantic Element is equivalent to the current definition of a
SemanticElement, i.e., a Semantic Element, contained in a message format, which is to be mapped to
a central dictionary.

e LOCAL -a “LOCAL Semantic Element contains some technical information that is needed to
correctly map NORMAL Semantic Elements, e.g., it may contain an index that is used to provide the
ordering for a child Semantic Element that has multiple instances.

e COMPUTED -a “COMPUTED” Semantic Element is to be mapped to the central dictionary but
contains a value that is not directly contained in a message. Instead, a “COMPUTED” Semantic
Element’s value is computed using.

A “datatype” property, of type MDMIDatatype, defines the simple or complex datatype of the Semantic
Element.

A zero-to-many “propertyQualifier” property, of type String, is a list of keywords that contains reference
keywords of interest that are associated with the message format, such as a “tag” associated with a
SemanticElement.

A “multiplelnstances” property, of type Boolean-preperty-whese-value-, which if true indicates that instances of
this MessageElementSemanticElement can be repeated in a physical message instanee-as a list or array. Fhe

Model Driven Message Interoperability

MDMI Beta 2 Specification

7. A—pesrhenAn "orderrng" property, Whese—valeeof type Strlng contalns an expression that describes how the
Semantic Element instances are

ordered |f that—MessageElementsthe SemantrcEIement S multrplelnstances property is pet-false-“True".

8. A“pesitionExpressionkanguageAn optional “orderingExpressionLanguage” property, whese-valueof type
Strrng that isa reference to the expressron Ianguage used for the value of the “posmonorderrng” property

3 ant: The orderrng language must be
abIe to descrlbe ordlnal and cardlnal posrtlonlng as WeII as expressions that when evaluated will provide an
index. As an example, a language that can be used is NRL 1.0.

9. A “MessageModelName™-derivedcomputedValue” property, whese-of type MDMIexpression, contains an
expression that computes the value is-censtrained-to-be-the-same-asfor the “pame™SemanticElement. The

expression can refer to the value of other SemanticElements. This property in-the-MessageModeHn-whichis most
often used for SemanticElements of the type LOCAL.

10. A “computedinValue” property, of type MDMIexpression, contains an expression to compute a value for the
SemanticElement when it is eentainreda target, based on the values of one or more BusinessElements and
SemanticElements. The value when it is a source is directly mapped.

11. Fhisview-of MessageElementhas-three A “computedOutValue” property, of MDMlIexpression, contains an

expression to computes value for a SemanticElement, when it is a source, based on the values of one or more
SemanticElements. The value when it is a target is directly mapped.

The SemanticElement associations:

. ha Me amean ala

asseerated—wth—a—femral—enteleg%many assocratlon Wrth any chlldren through a parent assocratlon Thrs

allows the SemanticElementSet to include container Semantic Elements, which are identified by “parent”.
Explicit container Semantic Elements allow the hierarchical structure of a message format to be maintained in
the SemanticElementSet. In the case where a container SemanticElement has no message-based properties
itself, that container should be of type Computed with a simple index as the computed value.

Model Driven Message Interoperability 27

2. A zero-to-many association—by-compesition-with-a-MessageElementSet to the SemanticElementRelationship

class. The SemanticElementRelationship provide the valid context for each SemanticElement.

A zero-or-one-association-with-MessageElements:

8.3.7 MessageComposite - Detailed Semantics

A4 DA

A zero-to-m

MessageCompos

ite description:

The MessageComposite class inherits from the SimpleMessageComposite class, allowing the construction of a
complex object tree. MessageComposite are an informative artifact that can be useful when there is a desire to
associate SemanticElements with a complex object model.

MessageComposite associations:

A zero to many association with other MessageComposites that are the children of .the MessageComposite,
thus providing a mechanism to specify a tree of MessageComposites.

tatvnap
CLAT ' AY]

DatateypeRule

O

A

+datatypeRule | 0.

validDatatype

Wa&ociaﬂowmﬂmﬁﬁmm%

ysHa
thed

AppheableDatetypeRules]

e
Datal_

nessage formats deg

Datatype

foo—hoocoiondosd Datnb e aoe notcopeidornd ot o
for 1l lofiniti is includ

zlass—The-Datatyy

ule class, which §

+datetypeSource: String

hia-type-of the-value-ina-MessageElement-instance—A

s associated-with-it—TFhese—rules-are-defined-by-the¢lass;

DatatypeRques—A—set—ef—the—Funles—mH—that apply to each MessageElement, that set-is-defined by the-in-the class,
ApplicableDataRules-DataRules-are-used-on-extraction-for

28

3.

icableRules

1 +the datatype——z of the SemanticElement.

PP

Model Driven Message Interoperability

MDMI Beta 2 Specification

Model Driven Message Interoperability

29

4, A-Datebmesassociatedbpin-from-zero-to-many Mescage=slemenisasthevalue-inzere-to-many
MessageElementsassociation with a keyword |ISt WhICh can be used to |dent|fy the SemantlcEIement for searches
and WhICh can be associated with a p -

5. A“rule”property-A zero-to-many association with a SemanticElementBusinessRule, which provides for a
specific set of rules that helds-should apply to the value of the SemanticElement.

6. A one-to-many association with the ToBusinessElement class that describes the conversion of the value of the
SemanticElement to conform to the reference value of the business element referenced by the
MDMIBusinessElementReference class.

7. A one-to-many association with the ToSemanticElement Semantic class that describes the conversion of the
reference value of the business element referenced by the MDMIBusinessElementReference class to the value of the
SemanticElement.

8.3.5 Keyword - Detailed Semantics

Keyword description:

The keyword class contains either a keyword or a keyword/value pair. The set of Keywords can be used to profile
a SemanticElement, to provide a mechanism to search for a SemanticElement, and to associate a SemanticElement
with an external ontology or taxonomy.

Keyword properties:

1. The optional “description” property, of type string, describes the Keyword and/or the set of Keyword associated
with a SemanticElement.

A “keyword” property, of type String, used to describe or profile a SemanticElement.

3. An optional “keywordValue”, of type string, that is associated with the keyword creating a keyword/value
pair.

4. An optional reference, of type String, identifies the origin set for the keywords, for example a formal ontology.

Keyword associations:

1. An optional many-to-one association with the SemanticElement it is describing.

30 Model Driven Message Interoperability

MDMI Beta 2 Specification

8.3.6 SimpleMessageComposite - Detailed Semantics
SimpleMessageComposite description:

SimpleMessageComposite represent aggregations of SemanticElements. SimpleMessageComposite is an
informative artifact that can be useful when a group of SemanticElements are associated with a class in an object
model. Usually the attributes of an object will be equivalent to a SemanticElement and the object itself equivalent
to a SimpleMessageComposite.

SimpleMessageComposite properties:

1. A “name” property, of type String, names the SimpleMessageComposite.
2. An optional “description” property, of type String, describes SimpleMessageComposite.

SimpleMessageComposite generalization:
MessageComposite inherits from SimpleMessageComposite.
SimpleMessageComposite associations:

1. A zero-to-many association with a SemanticElementSet by composition.
2. A (zero or one)-to-many association with SemanticElements.

8.3.7 MessageComposite -- Detailed Semantics
MessageComposite description:

The MessageComposite class inherits from the SimpleMessageComposite class, allowing the construction of a
complex object tree. MessageComposite are an informative artifact that can be useful when there is a desire to
associate SemanticElements with a complex object model.

MessageComposite properties:

1. The optional “owner” property” of type MessageComposite identifies the parent of a MessageComposite or
SimpleMessageComposite.

2. The zero-to-many “composites” property of type MessageComposite identifies children[c77]
MessageComposites of this MessageComposite.

MessageComposite associations:

Through inheritance, MessageComposite will have the same associations as SimpleMessageComposite.

8.4 MDMIDatatype, DataRules

8.4.1 Overview

The MDM I Datatype references a datatype used in the model. These MDMIDatatypes are not considered part of the
MDMI standard. While the specification does not deal with datatypes directly, some restrictions on MDM IDatatype
definitions are necessary for syntactic modeling and to ensure that a runtime engine will do proper transformations.
These restrictions include: 1) that the simple datatypes be from a known standard, such as the XML simple datatypes.
2) that complex datatypes are ultimately composed of simple datatypes and that every simple datatypes has an
identified “fieldname”. Associated with any value can be DataRules that describe constraints for that datatype, e.g., a
zip code value must be in a table of legal zip codes. DataRules must be written in an appropriate Rule Expression
Language that can access the components of a complex MDMIDatatype using “fieldnames”.[C79]

Model Driven Message Interoperability 31

8.4.2 An example of Complex Datatype

A Semantic Element can be composed of complex datatypes that actually span a number of fields (or sub-fields) in a
message format. Each such field, by itself, does not have a specific semantic meaning in the message but is rather a
syntactic artifact that when combined with other fields represent a complete datatype. For example, an address is can
be composed of many fields and is a complex datatype. The Syntax Model must be able to associate each component
of a complex datatype with a field in the message.

An example of a modeled MDMI complex datatype is shown in figure 8.4.2 and is posted as OMG document # 2009-09-10.
This complex datatype model is composed of classes, where the classes themselves can be complex datatypes or a class with a
single valued simple datatype. Ultimately, all complex datatypes resolve to a set of simple datatypes, which correspond to
fields (or subfields) in a message format. Therefore, to accommodate Semantic Elements that are complex datatypes, a
“fieldname” attribute is a property of the Node abstract class, which holds the name of the simple datatype class. For
computational efficiency, a derived attribute is also added that says this node instance contains a syntactic element that is part
of a complex datatype.

32 Model Driven Message Interoperability

MDMI Beta 2 Specification

package MDMI specification| MDMI Datatypes]J

<<specification>>
MDMiIDatatype

<<specification>>

+name : String
+description : String [0..1]

ExternalDatatype

+typeSpecification : UR

]

name = "dateTime"
referenceURI = "http://www.w3.0rg/2001/XML Schema#dateTime"

<<specification>>
decimal : PrimitiveDatatype

name = "decimal"
referenceURI = "http://www.w3.0rg/2001/XML Schemat#decimal"

<<specification>>
integer : PrimitiveDatatype

name = "integer"
referenceURI = "http:/iwww.w3.0rg/2001/XML Schemat#integer"

<<specification>>
string : PrimitiveDatatype

name = "string"
referenceURI = "http://www.w3.0rg/2001/XMLSchemat#string”

+description : String [0..1] |

+code : String

A structure consisting of one
or more named fields of a
specified datatype (simple or
complex). Recursion is
allowed.Field names are
unique within the structure.
Each field may appear
between 0 and unbound
times. Order/sorting are not
implied,

A choice is a complex type that
represents exactly one selection
between two or more fields.
Each field has a unique name, a
datatype (simple or complex),
and may appear between 1 and
unbound times. Recursion is
allowed. Note that a field of a
choice cannot have
minOccurs=0 - that is it should
appear at least once, to avoid
ambiguity.

<<specification>> <<specification>>
SimpleDatatype ComplexDatatype
<<specification>> <<specification>> <<specification>>
PrimitiveDatatype DerivedDatatype EnumeratedDatatype
+referenceURI : String +baseType : SimpleDatatype <<specification>> <<specification>>
+restriction : String StructuredDatatype ChoiceDatatype
\
<<specification>> / \
binary : PrimitiveDatatype | \
name = "binary" A type derived from another | |
referenceURI = "http:/www.w3.0rg/2001/XMLSchema#hexBinary" simple type by means of a
restriction (constraint on the Ii I
—— possible values the base type | +ields| 1..* +ields1..* |
<<§peg|f!gatlon>> may ha_/e). For e_xample a <<specification>> |
boolean : PrimitiveDatatype string with a maximum length | Field
name = "hoolean" of 35. +iterals | o I
referenceURI = "http://www.w3.0rg/2001/XMLSchema#boolean” 1.* HIER & Sl |
_ | +description : String [0..1]
<<specification>> +datatype : MDMIDatatype [0..1] |
<<specification>> EnumerationLiteral / +minOccurs : int=1 |
i o (i - +maxOccurs : int = 1
dateTime : PrimitiveDatatype +name : String | |

Figure 8.4.2 Complex Datatype

Model Driven Message Interoperability

33

8.4.3 MDMIDatatype, DataRules — Abstract Syntax

DataRule MDMIDatatype
+name : String +description : String [0..1]
+description : String [0..1] +name : String
+rule : String +reference : URI
+ruleExpressionLanguage : String [0..1]
+datatype [1..¥]

+dataRules|0..*

+semanticE|ement
1

SemanticElement

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMA
+datatype

+propertyQualifier : String [0..*]
+multiplelnstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1] +parent
+computedinValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

=

+children|0..*

Figure 8.4.2 — MDMIDatatypes, DataRule

MDMlIDatatype — Detailed Semantics
MDMIDatatype description:

The MDM I Datatype class contains a reference to a conformant datatype, i.e., one that can be processed by the
DataRule language. This class is used as a property type.

MDMIDatatype properties:

1. A *name” property, of type string, names of the MDMIDatatype
2. An optional “description” property, of type string, describes the MDMIDatatype
3. A “reference” property, of type URI, contains a reference to the MDMIDatatype definition

8.4.5 DataRules - Detailed Semantics
DataRule description:

The DataRule class contains a rule that is a constraint on the MDM IDatatype that are used in the MessageGroup, to
ensure that values extracted or inserted are valid[C80].

DataRules properties:

1. A *“name” property of type String whose value is the name of the DataRule.

2. An optional “description” property, of type String, contains a description of the DataRule.

34 Model Driven Message Interoperability

MDMI Beta 2 Specification

3. A *“rule” property, of type String, contains an expression for a rule or constraint associated with an
asseciated-DatatypeMDM I Datatype either for the entire MessageGroup or for the particular use of an
MDMIDatatype in .a SemanticElement class.

4. A “ruleExpressionLanguage”that-has-areferenceto”, of type String, references the language in which the
“rule” property is expressed—- The standard does not requrre any partrcular rule Ianguage sethls—preperty

teﬂa—\lava—.%epresaen—lzangeagebut the Ianguage has to allow access to flelds represented by S|mple datatype
classes within a complex datatype.

5. TFhisview DatatypeRules-hastwoA “datatype” property, of type MDMIDatatype and multiplicity of one-to-
many, explicitly identifies the MDMIDatatypes that are referenced in a DataRule’s “rule”. The “datatype”

references the complete structure of an MDMIDatatype, so that its structure and simple datatype fields are
known. The “datatype” property is used to assist in the parsing and runtime processing of complex data[cs2].

DataRules associations:
1. Zero-to-many BatatypeRulesDataRules can be associated with a BatatypeMessageGroup.
Zero-to-many BatatypeRulesDataRules can be associated with an-ApphicableDatatypeRulesa SemanticElement class:

8.5 MDMIBusinessElementReference, Conversion Rule,

UngualifiedBusinessElement ToSemanticElement, To BusinessElement,

MDMIBusinessElementRule

8.5.1 Overview

The classes in this view describe the semantic-mapping-bebaeen-a-MessageElement-and-the

twemapplng between a SemantrcEIement and an MDMIBusmessEIementReference An
MDMIBusinessElementReference class references a Business Element in a dictionary. No assumption is made about
the format of the business element in the central dictionary. Because the format of the dictionary is not known and can
even be a reference to documentation, an MDMIBusinessElementRules class is included in the specification so that
rules and constraints concerning the business element can be specified.

semantic-entities—TFhe-mappingsGiven the BusinessElementReference, a conversion between it and a

SemanticElement can be made. This conversron may not be symmetric soa mapplng must be defined for each
direction -
MessageElement—SemantlcElement to MDMIBusrnessEIement and MDMIBusrnessEIement to SemantrcEIement

(Mappings for both directions must be defined, one way mappings are not allowed in the standard.) These mappings

Model Driven Message Interoperability 35

are specified in a ToSemanticElement class and a ToBusinessElement class. Both of these classes inherit from a
ConversionRule abstract class that defines how conversion rules are to be specified.

A key feature of thisthe conversion is the restrictions that are implied in the ConversionRules ruleExpressionLanguage.
These restrictions define the allowed semantic distance for which mapping can be done. In effect, they define the
domain of “near-synonyms” that are allowed in a mapping. For example, a set of allowed conversion rules may
include, simple arithmetic expressions, aggregation of a set of elements, the removal or inclusion of qualifierss-ete, etc.
If a SemanticElement cannot be mapped it implies that is not in the dictionary and should be added to the dictionary.

8.5.2 Abstract Syntax

MDMIBusinessElementRule

MDMIDomainDictionaryReference

+name : String
+description : String [0..1]
clace CMADMS CRiryle : String

+ruleExpressionLanguage : String [0..1.

+name : String
+description : String [0..1]
+reference : URI

MessageElement T UngualifiedBusinessElement
rame—Strin MBNMB RS EIEmentReference
SemantiCElement = =z
+nandke SEHPIgon-String
+name : Stri) +description :. Stri X
+descriptidesciptioid. String [0..1] 1 +r§é§%§W§m
+e|ementT¥pe,: %gssageElemgntT%Ee :_NQEMA L +utridget@etier : String
+data ~TVICHY By ’ +referenceDatatype.: MDMIDatatype
+properypasiiien:-Sthngdo.. Hemnie%mng:
+mu|tip|e|nstapces : Boolean = false s e et
+ordering™> String [0.2]° """ T T 1)
+oderingLanguage : String [0..14 .. 1 A 1 L+~ | thusinessElement
+computedValue : MDMIExpression [0..1] +parent
+computedinValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1] |0..1
+children|0..*
+toMdmi
1.*
ToBugipessElement ToSemanticElement .
1 *
+description [0..1] +description : String [0..1] |1 *

™" |

ConversionRule

+name : String
+descriptiom~Striagif0-i2] 1~

+rule : String [0..1]
+ruleExpressionLanguage : String

4+ nraonertyOualifiar: Strina [0 _*1 Iardaradl
Propey < ST Tt 7
- ifier:Stri [*] E }

36 Model Driven Message Interoperability

MDMI Beta 2 Specification

Figure 8.5 - Conversion-RuleMDMIBusinessReference and ConversionRule
8.5.3-UnqualifiedBusinessElement— MDMIBusinessElementReference - Detailed Semantics

Model Driven Message Interoperability

37

MDMIBusinessElementReference description:

The MDMIBusinessElementReference is a class that references a business element in a dictionary. No assumption
is made about the format of the business element in the central dictionary. Therefore, the reference can only be
informational. However a function must be available that, given the reference, will return a uniqueldentifier and a
reference MDMIDatatype.

MDMIBusinessElementReference properties:

1. The “name” property, of type String, names the MDM IBusinessElementReference
2. The optional “description” property, of type String, describes the MDMIBusinessElementReference

3. The “reference” property, of type URI, identifies the location of the BusinessElement in a central dictionary.
(URIs are very general addresses, i.e., the URI could even point to a line in a page in a document therefore
the “reference’ property is informational.)

4. The “uniqueldentifier”, of type String, provides a unique identifier for all MDMIBusinessElementReference
instances that reference the same business element in the central dictionary. There must be a function
associated with the central dictionary that provides this identifier. Runtime transformation engines recognize
the matching source and target mappings for a Semantic Element because they will each have the same
“uniqueldentifier”.

5. The “referenceDatatype” property, of type MDMIDatatype, provides a reference datatype for each business
element in the central dictionary. There must be a function associated with the central dictionary that will
deliver the “referenceDatatype”. Maps to/from this reference datatype to the “datatype” in the
SemanticElement should be provided as a ConversionRule.

MDMIBusinessElementReference associations:

1. MDMIBusinessElementReference has a one-to-many association with the ToSemantic class.
2. MDMIBusinessElementReference has a one-to-many association with the ToBusinessElement class.

3. MDMIBusinessElementReference has a (zero or one)-to-many association with the
MDMIBusinessElementRule class.

4. MDMIBusinessElementReference has a many-to-one relationship with the MDMIDomainDictionaryReference
class.

8.5.4 ConversionRule — Detailed Semantics
Fhe-ConversionRule elass-description:
ConversionRule is an abstract class that hasfeurdefines a rule used to convert values.

ConversionRule properties:

ConversionRule.

2. A“datatypeAn optional “description” property-whese-value-coentains-the list, of gualifiers-assoeiated-with-the
unqualrl#ledBusmessElement_edata%ypetype Strlng describes the ConversionRule.

3. A“rule” property-w .
UHqHalmedBuslmseElemene of type Strmg, holds an expressmn for convertlng one value to another

4. A “ruleExpressionLanguage” property-wheose-vatue, of type String, is a reference to the expression language
used to define the rule. The scope of the language allowed in conversions should be limited so that only very

24 Maodel Driven Massa
=4 wegerHYeR—veSSaH

MDMI Beta 2 Specification

straightforward transformations are possible. This is because these ConversionRules can be used to define
the semantic distance between business elements in a central dictionary by identifying “near synonyms”. It
is important that the “near synonyms” do not turn out to be far synonymes.

The-ConversionRule Classgeneralizations:

The abstract ConversionRule class is inherited by two classes—the-UngualifiedBusinessElementFoMessageElement
class-and-the-MessageElementTeUnqualifiedBusinessElement-class:, the “ToBusinessElement” and the

“ToSemanticElement”.

8.5.5-UnqualifiedBusinessElementToMessageElement ToSemanticElement - Detailed Semantics

ToSemanticElement description:

The UnqualifiedBusinessElementToMessageElementToSemanticElement associates an
UngualifiedBusinessElementMDMIBusinessElementReference to a MessageElementSemanticElement, describing
the directed conversion rule for converting the reference value of the- UnqualifiedBusinessElementa Business

Element to the value in the-MessageElement—-An-YUnqualifiedBusinessElementa SemanticElement.
MDMIBusinessElementReferences may be related to more than one MessageElementSemanticElement but will

have a separate UngualifiedBusinessElementToMessageElementToSemanticElement class with individual rules for

each relationship.

ToSemanticElement properties:

“description” property, of type String, descrlbes the ToSemantlcEIement

ToSemanticElement associations:

1. Anr-A many-to-one association with ene
MDMIBusinessElementReference.

2. Anr-A many-to-one association with ene-MessageElementforwhich-a-value-isto-be-inserteda

SemanticElement.

8.5.6-MessageElementFeUnqualifiedBusinessElement ToBusinessElement

Fhe-MessageElementTFoUngualifiedBusinessElementToBusinessElement description:

The ToBusinessElement associates an UngualifiedBusinessElementMDMIBusinessElementReference with a
MessageElementSemanticElement, describing the directed conversion rule for converting the value of the Message
ElementSemanticElement to the reference value of the UngualifiedBusinessElement.referenced business element.
A Message-Element-SemanticElement may be related to more than one
UngualifiedBusinessElementMDMIBusinessElementReference but will have a separate
MessageElementFeUnqualifiedBusinessElement ToBusinessElement class with individual rules for each

relationship.

ToBusinessElement properties:

1.

tweoptlonal “description” property, of type String, descrlbes the ToBusmessEIement

ToBusinessElement associations:

1. Ana-A many-to-one association with ene
MDMIBusinessElementReference.

2. An-A many-to-one association with ene-MessageElementa SemanticElement.

Model Driven Message Interoperability 39

8.5.7 MDMIBusinessElementRule
MDMIBusinessElementRule description:

Given that the MDMI standard does not provide a specification for which-a-valuea the hub dictionary and allows
mapping to any appropriate dictionary, such as the 1ISO 20022 Data Dictionary, then some business rules may have
to be specified within a map to make sure that the mapping is correct. Instances of the
MDMIBusinessElementRule maintain these rules.

MDMIBusinessElementRule properties:

1. A “name” property, of type String, contains a name of the rule.
An optional “description” property, of type String, provides a description of the rule.

3. A “rule” property, of type String, is te-an expression defining the rule that applies to an associated
MDMIBusinessElementReference.

4. An optional “ruleExpressionLanguage”, of type String, provides a reference to the language used in the “rule”
property. This language must be extractedable to describe the context in which the rule applies. The
language should be able to reference the value of any Semantic Element instance and it should allow external
function calls. If this property is not specified the default ruleExpressionLanguage will be used.

MDMIBusinessElementRule associations:

1. The MDMIBusinessElementRule has a many-to-one association with an MDMIBusinessElementReference.

8.6-MessageElementRelationship - Detailed Semantics

SemanticElementRelationship

8.6.1 Overview

The MessageElementRelationshipSemanticElementRelationship classes define all the allowed contexts for

MessageElementSemanticElement in a message format. For example, a MessageElementSemanticElement that is
“ClientAccountBalance” may not be wvalid in a message instance unless there is also a value in the

MessageElementSemanticElement “ClientAccountlD.” The MessageElementRelationshipSemanticElementRelationship
class would define this ree:

40 Model Driven Message Interoperability

MDMI Beta 2 Specification

relationship. On the other hand, “ClientAccountID” may exist without a value for “ClientAccountBalance,” in which
case there will be no constraint-defined-forSemanticElementRelationship associating “ClientAccountID” in+elatienship

toewith “ClientAccountBalance.”

8.6.2 Abstract Syntax

class CM4PMS-MER
Sl el
%#desenpﬂen%mng{@#l-}
B
+relatedMessageElement 0..*
o=
1 validMessageElementRelationship
e e
: S

Model Driven Message Interoperability 41

SemanticElement

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMA
+datatype : MDMIDatatype

+propertyQualifier : String [0..¥]
+multiplelnstances : Boolean = false

+ordering : String [0..1]

+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1] +parent
+computedinValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1]

=

+relatedSemanticElement 1

children|0..*

1 +context

+relationships
1 0.*

SemanticElementRelationship

+name : String

+description : String [0..1]

+rule : String
+ruleExpressionLanguage : String [0..1]
+minOccurs : int = 1

+maxOccurs : int = 1
+sourcelsInstance : boolean = true
+argetlsinstance : boolean = true

Figure 8.6 - MessageElementRelationshipSemanticElementRelationship
8.6.3-MessageElementRelationship—- SemanticElementRelationship - Detailed Semantics
The-MessageElementRelationship-has-twoeSemanticElementRelationship description:

The SemanticElementRelationship class is a key artifact in the MDMI standard. It provides all the context and
dependency relationships for each SemanticElement. SemanticElementRelationship make it possible to extract and
insert SemanticElement values in a valid manner.

SemanticElementRelationship properties:

1.

A “ralename” property, whese-value-expresses-a-vahdity-constraintof type String, assigns a name to the rule.

An optional “description” property, of type String, provides a description of the rule

A “rule” property, of type String, defines a relationship between a MessageElementsource SemanticElement and other
MessageElementsSemanticElements in the MessageElementSetSemanticElementSet.

A “ruleExpressionLanguage” property, whese-valdeof type String, that contains a reference to the expression
language used in the “rule” property. This rule language must be able to access the values of any SemanticElement
and to do that it must be able to access the fields in complex datatypes.

“minOccurs” property, of type integer, indicates how many instances of the target at a minimum must be involved in
the relationship.

A “maxQOccurs” property of type integer, which says how many instances, at most can be involved in the relationship.

A “sourcelsinstance” property of type Boolean. When the sourcelsinstance is true, the defined relationship is for
each Instance of the source SemanticElement. (The association with the “source” Semantic Element is labeled
“relatedSemanticElement. The relatedSemanticElement owns the relationship by composition. This source is the

24 Model Driven- Massa
= wegerHHYeRviesSSa

MDMI Beta 2 Specification

SemanticElement whose context is being modeled) When the sourcelsinstance is false, the defined relationship is
for the source SemanticElement class as a whole

8. A “targetlsinstance” property of type Boolean. When the targetlsinstance is true, the defined relationship is for
each Instance of the target SemanticElement. (The association with the set of one-to-many “targets” is labeled
“context. (Thus, a SemanticElementRelationship describes a relationship between a source and the other
SemanticElements, which are then targets.) When the targetlsinstance is false, the defined relationship is for the
SemanticElement class as a whole

SemanticElementRelationship associations:

1. The SemanticElementRelationship has a (zero or many)-to-one association with its source SemanticElement.
2. The SemanticElementRelationship has one to-one association with a target SemanticElement.

8.7-MessageElementBusinessRule- SemanticElementBusinessRule

8.7.1 Overview

The MessageElementBusinessRuleSemanticElementBusinessRule class contains a rule that is to be applied to a specific
MessageElementSemanticElement in the context of the MessageModel that contains the MessageElementSemanticElement.

8.7.2 Abstract Syntax

Model Driven Message Interoperability 43

SemanticElementBusinessRule

+name : String

+description : String [0..1]

+rule : String
+ruleExpressionLanguage : String [0..1]

0. .*
+businessRules

+semanticElement
1

SemanticElement

+name : String
+description : String [0..1]
+elementType : MessageElementType = NORMA
+datatype : MDMIDatatype
+propertyQualifier : String [0..%]
+multiplelnstances : Boolean = false
+ordering : String [0..1]
+oderingLanguage : String [0..1]
+computedValue : MDMIExpression [0..1] +parent
+computedinValue : MDMIExpression [0..1]
+computedOutValue : MDMIExpression [0..1] ~ [0..1

=

+children|0..*

Figure 8.7 - BusiressSemanticElementBusiness Rule

8.7.3-Business. SemanticElementBusinessRule - Detailed Semantics—-DBetalled-Semanties
. le.cl . s

A-ruleSemanticElementBusinessRule description:

The SemanticElementBusinessRule holds a rule that is to be applied to a SemanticElement to make sure that the
SemanticElement is valid. SemanticElementBusinessRule usually do not refer to other SematicElements in a
message. They are meant to provide rules that reflect an external context, e.g., a “Primary AcountID”
SemanticElement must be from an EU bank, etc.

SemanticElementBusinessRule properties:

A “name” property, whese-value-isa-Boelean-expressions-of type String, assigns a name to the rule.

An optional “description” property, of type String, provides a description of the rule.
A “rule” property, of type String, is an expression defining a business rule or constraint.

A “ruleExpressionLanguage” property, whese-vatueof type String, is a reference to the expression language used in
the “rule” property.

N

44 Model Driven Message Interoperability

MDMI Beta 2 Specification

Model Driven Message Interoperability

45

Model Driven Message Interoperability

MDMI Beta 2 Specification

Fhe-MessageElementinstance-has-one-propertySemanticElementBusinessRule associations:

1. A “value” oroperb/whosevalue is the valueinthe ohysical- message-instance—which-i

Fhe-MessageElementinstance-has-(zero or many)-to-one association: with the SemanticElement to which the
MDMIBusinessElementRule applies.

Model Driven Message Interoperability

47

8-9-8.8

Summary of Complete Metamodel

8.98.1 Overview

The complete metamodel is shown fercoempleteness-in Figure 8.108.
8.9-8.2 Abstract Syntax

MDMI Beta 2 Specification

i - essageElementBusinessRule
MessageGroup
A ; -
wwuuaaa‘} +messageModel— 41 PR P . R .
B MessagePackage
| - context: MessageElementSet
rrTe Inv: Self.messaaeModelName = e
+messageElementSel-1
Messagelnstance T o - MessageElementinstance
+00t- UR} it Keyword Datatype
s Sy - - § B
+—keyword:-String-{0-* +-hame: String
- . * dval tring
.) [ESS
UnqualifiedBusinessElementinstanc
SimpleMessageComposite . pe——
messageSlement [.
— PSS
- - 1] .
Fi g
e . T datatype-Datatyp: UnqualifiedBusinessElement
+description: String [0.-1] L messageElemen
MessageComposite message Boolean= +-name:String
+isOptionak:-String-{0-1}
1= | False+position:Sting
+location: String ==t B cn s
-~ “wmessageElement
+permissibleValues:
+ Dt s Sl
+essageComposie
o con) +varsianld: Strina
= LeafSyntaxTranslator
PR +leafSyntaxTranslator
+node: Node {27 +format-String
+isUniaua: Baolean = False

ConversionRule

+ propertyQualifier- String {07} {ordered) [

+datatypeQualifier: String {0} {ordered}
+rule: String

package MDMI specification{ E]MDMI specwicanonu

——— MessageGroup +group +dictionary| MDMIDomainDictionaryReference
i +model +group | tname : String 1 1 |+name : String
A . jon : String [0..1] Keyword +description : String [0..1]
" ESC"P_'?JF;?-I 0”';9[LA L 1 |4defaultLocationExpressionLanguage : String +description : String +reference : URI
source : URI [0..1] +defaultConstraintExpressionLanguage : String +keyword : String
+defaultRuleExpressionLanguage : String +keywordValue - String [0..1] inDicti
1 +modell1 +defaultFormatExpressionLanguage : String ﬂ:fg:,:ce ?;leriﬁg g 0.1] +domainDictionaryReference {1
+model +defaultOrderingExpressionLanguage : String
+defaultMDMIExpresionLanguage : String +keywords |0..*
MD
+scope|1 DataRule
B st +name : String +name : String
+dataRules| fName : ."'".gSlr, A +description : String [0..1] +description : String [0..1]
+syntakModel 0 linge string' ing [0..1] +rule : String +rule : String
| i ..] : e . ar
1 +uleExpressionLanguage : String [0..1] - anguage : Sting 0.1] anguage :String 0.1

MessageSyntaxModel SemanticElementSet +datatype [1.4] 0
+name : Sting +syntaxModel +elementSet +name : String +elementSet o +businessRules +businessRules |0..*
+description : String [0..1]| 1 1 |+description : String [0..1] 1 "
+/messageModelname : String
1
+syntaxModel +semanticElements . +owner +husinessElemenjtReferences
+elementSet |1 1.* 1 1 . +businessElement| 1 15
+composite| 0..* SemanticElement +ouner MDMIBusinessElementReference
+owner |0..1 i T e +name : String I +name : String
+composites| ; iption : String [0..1] +description : String [0..1]
0 MessageComposite +name) 0.1 L.* | +elementType : MessageElementType = NORMAL +owner +businessElemeng | Freference : URI
- : String [0..1] +semanticElements datatype 1 i fier : String
+root| 1 +propertyQualifier : String [0..] 1 +referenceDatatype
Node +multiplelnstances : Boolean = false
+ordering : String [0..1] 1
+name : String +oderingLanguage : String [0..1] .
+description : String [0..1] +syntaxNode i putedValue : MDI ion [0..1] +parent +husinessElement
+minOccurs : Integer = 1 lue : MD 0..1]
+maxOccurs : Integer = 1 0.1 0.1 |+computedOutValue : MDMIExpression [0..1]
+location : String Mdmi
+IucatiunExpres_sionLanguage 2 String [0..1] +relatedSemanticElement 1 rotMdmi +uz mi
+fieldName : String [0..1] LeafSyntaxTranslator 1 +context 1.+ +rule|1.* L
+fisSyntacticField : Boolean = false format JSiing - - -
1. 1.% +formatExpressionLanguage : String [0..1] P P +rule
tnodes modes +description : String [0..1] +description : String [0..1] 1«
0.*
SemanticElementRelationship
0.1 . o i .
+owner 0- +name; String ConversionRule
+owner +description : String [0..1] 1 . S
" +rule : String name: String
Bag Choice +ruleExpressionLanguage : String [0..1] MDMIDatatype +description : String [0..1]
+isUnique : Boolean = true +contraint : String [0..1] +minOceurs : Integer = 1 e T +ule ; String [0..1] o
+isOrdered : Boolean = false +constraintExpressionLanguage : String [0..1] +maxOccurs : Integer = 1 + escnpllon. tring [0..1] +ruleExpressionLanguage : String [0..1]
+sourcelsinstance : Boolean = true +name : String
+argetisinstance : Boolean = true +reference : URI

Figure 8.208 - Summary: Complete Metamodel

Model Driven Message Interoperability

51

Annex A - List of Acronyms

Abbreviation

Notes

Chips

CoosasEeuseatoeEanlc Paaonis Sostos

CLS

FATF

FIX Financial Information eXchange
http://www.fixprotocol.org

FpML Financial products Markup Language is the industry-standard protocol for complex financial
products.
htto://www.fpml.org

| FX Interactive Financial eXchange

www.ifxforum.org

GioevanniniM DDL

M-BBE

NRL and NRL 1.0

Natural Rule Language — Open source constraint and action language based on OCL The

MiFHBSwift

user guide can be found at http://nrl.sourceforge.net/userguide/userguide.htm

Twist

Transaction Workflow Innovation Standards Team
www.twiststandards.org

http://www.chips.org/�
http://www.cls-services.com/�
http://www.fixprotocol.org/�
http://www.fpml.org/�
http://www.ifxforum.org/�
http://www.mddl.org/�
http://www.omgeo.com/�
http://www.twiststandards.org/�
http://rixml.org/�
http://www.rixml.org/�
http://www.swift.com/�

MDMI Beta 2 Specification

Model Driven Message Interoperability

http://www.twiststandards.org/�
http://www.iso20022.org/�
http://www.xbrl.org/�

