Model Driven Message Interoperability
(MDMI), v2.0 — beta 1

Date January 2021

OMG Document Number: dtc/2021-01-02
Standard document URL.: https://www.omg.org/spec/MDMI/2.0/

Normative Machine Consumable Files:
https://www.omg.org/spec/MDMI/20200301/health-20-03-06.xmi

Informative Machine Consumable Files:
https://www.omg.org/spec/MDMI/20200301/MDMIGenericStatementModel.rdf
https://www.omg.org/spec/MDMI/MDMIGenericStatementModel.rdf
https://www.omg.org/spec/MDMI/20200301/MDMIExampleHealthcareDomainModel.rdf
https://www.omg.org/spec/MDMI/MDMIExampleHealthcareDomainModel.rdf

This OMG document replaces the submission document (health/20-03-02). It is an OMG Adopted Beta Specification and is currently
in the finalization phase. Comments on the content of this document are welcome and should be directed to issues@omg.org by July

31,2021.

You may view the pending issues for this specification from the OMG revision issues web page
https://issues.omg.org/issues/lists.

The FTF Recommendation and Report for this specification will be published in October 2021. If you are reading this after that date,

please download the available specification from the OMG Specifications Catalog.

https://www.omg.org/spec/MDMI/2.0/
https://www.omg.org/spec/MDMI/20200301/health-20-03-06.xmi
https://www.omg.org/spec/MDMI/20200301/MDMIGenericStatementModel.rdf
https://www.omg.org/spec/MDMI/MDMIGenericStatementModel.rdf
https://www.omg.org/spec/MDMI/20200301/MDMIExampleHealthcareDomainModel.rdf
https://www.omg.org/spec/MDMI/MDMIExampleHealthcareDomainModel.rdf

Copyright © 2019, MDIX, Inc.
Copyright © 2019, Model Driven Solutions, Inc.
Copyright © 2021, Object Management Group, Inc.

USE OF SPECIFICATION — TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms, conditions and
notices set forth below. This document does not represent a commitment to implement any portion of this specification in any
company's products. The information contained in this document is subject to change without notice.

LICENSES

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-paid
up, non-exclusive, nontransferable, perpetual, worldwide license (without the right to sublicense), to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy, and
distribute this specification as provided under the Copyright Act; provided that: (1) both the copyright notice identified above
and this permission notice appear on any copies of this specification; (2) the use of the specifications is for informational
purposes and will not be copied or posted on any network computer or broadcast in any media and will not be otherwise resold
or transferred for commercial purposes; and (3) no modifications are made to this specification. This limited permission
automatically terminates without notice if you breach any of these terms or conditions. Upon termination, you will destroy
immediately any copies of the specifications in your possession or control.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for protecting
themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations and
statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this work
covered by copyright herein may be reproduced or used in any form or by any means — graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retrieval systems — without permission of the copyright
owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED "AS IS" AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

The entire risk as to the quality and performance of software developed using this specification is borne by you. This
disclaimer of warranty constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 9C Medway Road, PMB 274, Milford, MA 01757 U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management GroupTM, OMGTM , Unified Modeling
LanguageTM, Model Driven Architecture LogoTM, Model Driven Architecture DiagramTM, CORBA logosTM, XMI
LogoTM, CWMTM, CWM LogoTM, IIOPTM , MOFTM , OMG Interface Definition Language (IDL)TM , and OMG SysMLTM
are trademarks of the Object Management Group. All other products or company names mentioned are used for
identification purposes only, and may be trademarks of their respective owners.

COMPLIANCE

The copyright holders listed above acknowledge that the Object Management Group (acting itself or through its
designees) is and shall at all times be the sole entity that may authorize developers, suppliers and sellers of computer
software to use certification marks, trademarks or other special designations to indicate compliance with these materials.

Software developed under the terms of this license may claim compliance or conformance with this specification if and
only if the software compliance is of a nature fully matching the applicable compliance points as stated in the
specification. Software developed only partially matching the applicable compliance points may claim only that the
software was based on this specification but may not claim compliance or conformance with this specification. If testing
suites are implemented or approved by Object Management Group, Inc., software developed using this specification may
claim compliance or conformance with the specification only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting
Form listed on the main web page Attps./www.omg.org, under Documents, Report a Bug/Issue
(https://www.omg.org/technology/agreement.htm).

https://www.omg.org/
https://www.omg.org/technology/agreement.htm).

N Kb W N =

6

Table of Contents

1 4 1
013 114 9 11T 1 1 1T 1
Normative References....ooueiiittiieteiietetstetsntessstesssccssssessscesssccnnncns 1
Terms and Definitions...ccceviieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiitiiitiiietiiiettieeteisetcssstesssccsssccsssccsssccnnaces 2
Additional INformation........ceviieiiitiiitttittiieettiastitnsitentisensttnnsens 3
5.1 ACKNOWICAGEIMENLSeviiiieiiiiieeeiiee e ettt e ettt e e ettt eeetaeeeesetaeeeeabaeeesssseeeesssseeeasssaeeassssaeeassssaeeassseesanssseeeassseessnssses 3
L0 0 a4 Ty 4
6.1 Different Ways to Use the Current Standard.............cccoeeieeiiiiiiiiiie ettt e e e e seaee e e e 5
6.1.1 Message Transformation: Moving Data from One Message to Another...........cccevvveiiiiiieciieeiiiee e, 5
Lo N V< ¢ (o) U1 =SSR 5
6.1.3 Moving Data from an Internal Enterprise Message Format to an External Standard................cccceeveiveernnnnen. 5
6.1.4 Design Considerations in Applications Requiring Message Transformationcccccceeeeeeiiiieiieenieenieenenen. 5
6.2 Basic Approach for the Use of This Standardcceeveeiiiiieiiiiiciie ettt e e e e e 6
6.2.1 Developing artifacts using the UML moOdelcocoiiiiiiiiiii ettt 6
6.3 Adding a new MDMI Business Element to a MDMI Domain SEERcccoooiiiiiiiiiiiiieee e 6
6.3.1 No Synonyms in a MDMI Domain SEER (MDMI Uniqueness Test)........ccoccvuiiirriiiireeiiiiieeriieeeeieeeesveee e 7
6.3.2 No Hypernyms or Hyponyms (MDMI PreciSion TeSt)cccecuiiiiriiieiiiiiieeeiiie ettt e sieee e seeeee e 7
6.4 Future Benefits of the Standardccooiiiiiiiiii ettt 7
6.4.1 360° View Of divVerse IT €CO-SYSIEIM ...c.ocviveviiriiriieeeetietieteeeeteete et et eteete et eeeteeteese s esseteesesessesseseesesseseesessensenis 7
6.4.2 Support of Business Processes AULOMAION.cccuiiieriiiieeriiieeeriieeeeetteeerrteeeeereeessssaeeessssaeaesnsseeessnsaeesssseeans 7
6.4.3 Handling LoSSIESS CONVEISIONcc.uuirieiriieeeiiieeeiieeeeeiteeeestaeeeeseseeessssaeeessssaeessssseeeasssseesssssessessssessssssesesssseeens 8
Use of MDMI Artifacts Overview 9
7.1 INformal OVETrVIEW OF ATTIFACES ...c..iiiiiiiiiiiiiee ettt ettt et e s e e st e st e s bt e e e e e saeeenaees 9
711 Step 1 —RemMOVE the SYNTAX.....coiiiiiiiiiiii et e et e et e e ettt e e et e e et eeeneeeas 10
7.1.2 Step 2 — Mapping a Source MDMI Semantic Element to a Target MDMI Semantic Element using a Unique
Identifier acquired from MDMI Domain SEERccccciiiiiiiiiiiiiiiiiite ettt 11
UML Semantics — Normative Definition 12
8.1 MessageModels, MessageGroup, MDMIDomainSEERREferenceccoeevieiiiiiiiiiiiieiieiieeeiee e 12
BLil OVETVICW ..ttt ettt ettt ettt ettt e et ettt e b et e bt e bt e e at e e ettt ettt ettt e st e e bt e e eabe e sttt sabeeebeeenateenareens 12
E T VAN o 3 T 4 L . QOO PPPOURTUPRUPRPO 12
8.1.3 MessageModel — Detailed SEMANTICS.......cccuviiieriiiieeeiiiieeeiiee et ee et e e ertte e e sttt e e e eaeeeseteeeesnsaeesanseeesansseeans 13
8.1.4 MessageGroup — Detailed SeMANTICSccccuiiieriiiieeeiiiieeeiieeeeieee ettt e e esreeeestbee e e ebaeesssseeeesssseesassseeessssseenns 13
8.1.5 MDMIDOmMAaINSEERRETEIEICEcceeiuuiiiiiiiieiiiie ettt e ettt e e et te e et e e eaneeeeeeneeeeeneneeeas 14
8.1.6 DatatypeMap — Detailed SemMANTICSccecvuiiiiiiiiieeiiiiieeeiiee e eieeeestteeeesteeeestaeeesssbaeesssseeessssseessssseeensssseenns 14
8.2 MessageSyntaxModel, Node, Bag, Choice, LeafSyntaxTranslator............coeceeeiiiiiiiiniieiiie e 15

B.2.1 OVEIVICW .t e e e e e e e e e e e e e e e e eeeee e e e e e e e eeeeeeeeeeeeeeeeeeeeeaaaees 15

LI AN o 13 T A 4 11 - PSSP 16

8.2.3 MessageSyntaxModel — Detailed SemaNntiCs.........uiiecviiiiiiiiieiiiiieeecieeeeeiteeeeieeeeetaeeeeebeeeessseeeessseeessnsseeens 16
8.2.4 Node — Detailed SEMANTICSeiiiiiieeeiiiiiiieeeeieeiiiiieeeeeeeeittteeeeeeesssearaeeeeeeaaaassssaeeessassssssssseeesssssssssssseseesssssssne 16
8.2.5 Bag — Detailed SEMANTICS.......ceiiiciiieeiiiieeeiieeeeeiteeeeiteeeestteeestteeessesaeeeasseeeasssseeeassaeessssseesasssseesasseeeassseeenns 17
8.2.6 Choice — Detailed SEMANTICS.cccuviiiiiiiieeeieieecieee e ettt e e eeitee e e ettt e e e steeeeeetbeeeesabaeeeaesaeeasssseeeessseesassseeeasseeeans 18
8.2.7 LeafSyntaXTTanSIatorcccccuiiiiiiiieeeciiieeeiee ettt e et ee e ettt e e et ee e s etaeeessteeeesssaeeeannsaeeensseesannsaeesnnsseesannsaeenns 18
8.3 MDMISemanticElementSet, MDMISemanticElement, SimpleMessageCompositeccceeeeeeeeerieeeieeennee. 18
LI T B ©) v/ o V4 1o USSP PRSP UUPUPRPRRUURNE 18
8.3.2 ADSIIACT SYNEAX 1eiuviiiiieiiiieeeiiieeeeitee e ettt e e stteeeestbeeessstaeeeastsaeeeassseeeasssseesanssaeeasssseesasssasessssseesassseeesnssseesasssenenns 19
8.3.3 MDMISemantiCEICIMENTSELcccceiiiiiiiiieeieeciiiieee e ettt e e e e e ettt e e e e e eessaerbaaeeeeeessssssaaeeaessssssssseaeeesassnsnes 20
8.3.4 MDMISemanticElement — Detailed SemMantiCs.........ccuuiiiriuiiieiriiiieeeiiieeeeiiee et e et e eree e e seeeeeesseeeeeeneeeeens 20
8.3.5 Keyword — Detailed SEMANTICScccuiiiiieiitiieiie ettt et ettt ettt ettt e sate e e et e eteeaaseeeaneeeanseeaneeeenseaanneenn 22
8.3.6 SimpleMessageComposite — Detailed SEMANTICS.........oiveeuiiiiiriiiieeeciiee ettt e eee e e eeree e e sneaeeeenaeeens 22
8.3.7 MessageComposite -- Detailed SEMANTICScccviieeiiiiiiiiiiieeeiieeeeiee ettt eesbeeeesraeeesebeeeesssaeeessseeeesssseeens 22
8.4 MDMIDatatype, DataRULESeeiiiiiiiieiee ettt e ettt e e et e e e ettt e e et e e eanneeeeeneeeeeanneeas 23
LI B B © A s 1< PRSPPI 23
8.4.2 An example of COMPIEX DAtatyPe......ccouiiiiieiiiieiieeie ettt ettt ettt et e et e e bt e e bt e eabeeeaneeeaneeeanseeenseeaneean 23
8.4.3 MDMIDatatype, DataRules — ADSIrACt SYNEAXoeeercuiieieiiiieeeiiieeeieeeeeieeeeeiee e et e e sereeeesnaeeeesnsneeeesseeans 25
8.4.4 MDMIDatatype — Detailed SEMANTICSc.ceiiiiiiiiiiiieiiie ettt ettt ettt et e et ee e bt e esseeesseeeanteeaneeaeseeeaneean 25
8.4.5 DataRules — Detailed SEMANTICSuviiiiiiiieiiiiiiiiee et e e e e e eeiiree e e e e e e ssebbreeeeeseesssssaeeeeesesssssssseaeeeeassssnses 27
8.5 MDMIBusinessElementReference, Conversion Rule, To MDMISemanticElement, To BusinessElement,
MDMIBUSINESSELEMENTRULC.ccoiiiiiiiiiiie ettt e ettt e et e e e et e e e e snaee e e nsaeeeannseeeennseeeennseeesnnseeas 27
LT T B ©)V o V4 1o S UPR P UPUPRRRRRRNE 27
TR0 AN o 13 T A 4 1 - PSSP 28
8.5.3 MDMIBusinessElementReference — Detailed Semanticsccveeeeviieieiiiieiiiiiieecieee e e eree e reeeeeeveee s 28
8.5.4 ConversionRule — Detailed SEMANTICScceeeeuviiiiieeeeiiciiiiiee e e e eecitte e e e e e eetbbeeeeeeeessebraeeeaeeesssssssseeeeeasssnnnes 29
8.5.5 ToMDMISemanticElement — Detailed SEMAantiCsccccuiiiiriuiieriiiiiieeriieeeeieeeeeiieeeeireeeesereeeeeseeeesnsseeens 29
8.5.6 TOMDMIBUSINESSEICINENLcccuiiiiiiiiiieiciiee ettt e et e e e taee e e sataeeeeebaeeesnsseeeesseeeeassseaeesssaeeans 30
8.5.7 MDMIBUSINESSEICMENTRULE.........oiiiiiiiiieiiiiie ettt e e e e e stae e e st aeeeeneteeeennaeesannseeennnsaeeens 30
8.6 MDMISemanticElementRelationSNIP.cccuviiiiiiiiiiiiiiie ettt eesira e e e e areeeenrseeeeneneas 31
B.0.1 OVETVIEW ...vviiiieeiieiiiiiiieeeeeeeetiteeeeeeeeeetaaeeeeaeesaaasaaaeaaeeasasssssaeeaeaaaassssssssaasaeassnssssssaassasssssssssaaeeessnssssseseaeesannsssnns 31
8.0.2 ADSIIACT SYNEAX 1eiuiviiiiiiiiieieiiieeesiieeeecteeeeetteeeestbeeessstaeeeessaeeeassseeeassseesansseeeassseesasssaseasssaesassseeesnsssessassseeenns 32
8.6.3 MDMISemanticElementRelationship — Detailed SemMantics............ccveeiriiiriiiiiiiiriiiee e 32
8.7 MDMISemanticElementBusinesSRULCcooiiiiiiiiiiieiciice ettt e e e seae e e e neeeeeenneeeeenneas 33
B.7.1 OVETVIEW ..vviiiieeieeiiitieee e e eee ittt e e e e e e eetbaeeeeeeesanaataaeeeeeeaanssssaeaaeseaansssssaaesseasansssssaaessasassssssaaeesansnssssnsaeessanssssnns 33
LI AN o 13 T A 4 11 - PSSP 34
8.7.3. MDMISemanticElementBusinessRule — Detailed Semantics..........cccceeeeciieiiriiiieeeiieee e e esieee e 34
8.8 Summary of Complete Metamodel.........c..ooiiiiiiiiiiie et e e e et e e e e eeeeeeeas 35
881 OVEIVIEW .eeiiiiiiiieieiiiieeeitieeeeteee e ettt e s etae e e e etaeeeessbaee e ssaeeeassseeaasssaeeasssaeeanssaeeasssaeeaasssaeeanssseesassseeeassaaesassseeeans 35
882 ADSIIACT SYIMEAX . ..eeuuiteetieeitieeetie et ie ettt ettt e ettt e et e e bt e ettt ettt eaueeeaaeeeamteaemseeaaeeeeasee e seeeaneeeanseeemseeaaneeeneeeneeeanseeanreean 35
ANNEX A - LiSt Of ACIOMYIS..ctiiuuuuntiiiiiiettiiiieettiiiiiettititessttesteesstecsesssssssesssssssssssssosssssssssssenssssssssnss 36

ANNEX B - Informative Healthcare EXamples....ccoceeeiiiiiiieiiiiiiineiiiiieeeriiesessssiossssssscsssssssscssssssssssssssscnes 37

Developing the MDMI Healthcare Concept MOAELooieiiiiiiiiiiieieiiee ettt e et eeeeree e s ennaeeeenneeas 37

Step 1: Scope of MDMI Business Elements for informative model.............cccoviivoiiiiiiiiiiiiieiceiee e 37
Step 2: Select the MDMI Reference MOdel.........ooooiiiiiiiiiiieiee ettt e e e e et e e eneeeeean 37
Step 3: Assigning the MDMI StatementContext property and the DataElementConcept property in the
MDMIBuUSINESSEIEMENtRETEIENICEcouuiiiiiiiiiiiiiiiieiic ettt s e ettt ebae e e e naeee 37
Step 4: Running the MDMI ACCePLanCe TESt......ccoiiuuiiiiiiiiiiiiiie ettt e ettt ettt e e et e e et eeeneeeeeas 38
MDMI Healthcare Concept MOMEL............iiiiiiiieeeiiie ettt ettt e e ettt e e s tae e e e ntaeeesnsaeesansaeeeanssaeeeansseeeannsaeesannees 39
S P = TSR PRUP 40

Example of the StatementContext and DataElementConcept properties for MDMI Business Elements....................... 40

Preface

About the Object Management Group

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer
industry standards consortium that produces and maintains computer industry specifications for interoperable,
portable and reusable enterprise applications in distributed, heterogeneous environments. Membership includes
Information Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process.
OMG's specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-
lifecycle approach to enterprise integration that covers multiple operating systems, programming languages,
middleware and networking infrastructures, and software development environments. OMG’s specifications
include: UML® (Unified Modeling Language™); CORBA® (Common Object Request Broker Architecture);
CWM™ (Common Warehouse Meta-model); and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at Attps:/ www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG
Formal Specifications are available from this URL: Attps.//www.omg.org/spec

All of OMG*s formal specifications may be downloaded without charge from our website. (Products
implementing OMG specifications are available from individual suppliers.) Copies of specifications, available
in PostScript and PDF format, may be obtained from the Specifications Catalog cited above or by contacting
the Object Management Group, Inc. at:

OMG Headquarters

9C Medway Road, PMB 274
Milford, MA 01757

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO/IEC standards. Please consult: http://www.iso.org

Issues

The reader is encouraged to report and technical or editing issues/problems with this specification to:
https://www.omg.org/report_issue.htm

Model Driven Message Interoperability (MDMI) 2.0 i

https://www.omg.org/
mailto:pubs@omg.org
http://www.iso.org/
https://www.omg.org/report_issue.htm

1 Scope

The transmission of information across systems in multiple enterprises may rely on standardized messages.
Different industry domains involve different standardized messages and different versions of standardized
messages. Some examples of standardized information formats utilized in healthcare services are CDA, HL
V2, FHIR, and X.12. Some examples of standardized information formats utilized in financial services are
FIX, FpML, IFX, TWIST, SWIFT, Visa, and ACORD.

This information must be correctly interpreted and processed by each system involved at each step of the
transaction. This implies — among other things — that information must be accurately moved from one system
to the next. This may require moving information from one format to another (e.g., from a HL7 V2.5.1 ADT
message into a FHIR 4 Bundle, or from a FIX pre-trade message into a SWIFT settlement message). In
addition, an institution will often have its own internal data elements used either in internal data stores or in
internal messages. These internal data elements must also be appropriately mapped to and from the industry-
standard messages if information is to be transmitted from one institution to another. Historically, the mapping
of data from one format to another is not standardized. The mappings are usually done in an ad hoc procedural
manner. The complicated and complex maze of existing formats and hard-coded transformations has created
an environment where every introduction of a new message format, and even changes to older messages, is
very expensive. The goal of the MDMI standard is to provide a declarative, model-driven mechanism to
perform message data transformation to handle the movement of data between different message formats as
well as to support versioning by providing a mechanism to map information between a new and an older
version of the same message. Thus, the MDMI standard can help reduce the barriers that prevent the
introduction of new versions of messages and thereby greatly reduce the cost of change.

The Healthcare Domain Task Force wishes to emphasize that this specification is intended for use by both the
healthcare community and other communities (e.g., the financial-services community) and has developed
MDMI with these requirements in mind. The concepts, models, and mechanisms described in this
specification can be applied or adapted to other application domains.

2 Conformance

To be compliant with the specification, an implementation would need to be able to create the artifacts that are
shown in the model specification ; to utilize expression languages that are consistent with the constraints
described in section “8.1.4 MessageGroup — Detailed”; to utilize MDMIDatatypes that are consistent with the
description and constraints in section 8.4; and to utilize a central repository that provides a function delivering
a unique identifier as described in section 8.1.5. In addition, an implementation needs to support a runtime
application, as described in figures 7.1 and 7.2 (see section 7.1 Informal Overview of artifacts), that can
consume the generated maps and match unique identifiers to provide a transformation of a MDMI Semantic
Element from a source message to a target message.

3 Normative References

The following normative documents contain provisions which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of these
publications do not apply.

OMG2016 https:/www.omg.org/spec/MOF

OMG2017 https:/www.omg.org/spec/UML/

Model Driven Message Interoperability (MDMI) 2.0 1

https://www.omg.org/spec/MOF
https://www.omg.org/spec/UML/

The following informative documents, through reference in this text, contain starting points or material in
assisting this document in achieving its goals and objectives. For dated references, subsequent amendments to,
or revisions of, any of these publications do not apply.

This specification references ISO 20022. A complete reference for ISO 20022 can be found at
www.ISO20022.com.

This specification references ISO 11179. A complete reference for ISO 11179 can be found at
https://www.iso.org/standard/60341.html

This specification references HL7 Analysis Normal Form (ANF), information about HL7 ANF can be
found at https://confluence.hl7.org/display/CIMI/Analysis+Normal+Form+%28 ANF%29+Project

This specification does not specifically reference, although the following were informative in the development
of this specification:

The OMG ODM Standard formal/14-09-02 that can be found at http://www.omg.org/spec/ODM/1.1.

The ISO 704 Standard, Terminology work — Principles and methods, second edition, Reference number ISO
704:2000(E)

4 Terms and Definitions

MDMI Business Element

A MDMI Business Element are a unit representing the smallest business concept exchanged between a source
format and a target format. . In healthcare, a MDMI Business Element in models such as ANF, CDA, and
FHIR are for business concepts such as PatientID or MedicationAdministeredDateTime. In [ISO20022, MDMI
Business Elements are the attributes of Business Component (or their related Message) classes and represent a
“business concept.”

CDA
HL7 Clinical Document Architecture Standard, defines construct for e-health documentation.
Composition

A configuration of related entities that results in a new entity at a different level of abstraction that is, a
composition is a grouping of two or more entities that can be referred to as a single entity at a different level of
abstraction from its component entities.

Conversion Rule

A rule that is to be applied to convert a value of a source MDMI Semantic Element into a value of a target
MDMI Business Element or a target MDMI Semantic Element.

Datatype

A prescription of the form of the data that has no specific message format related business concept. (e.g., an
address, a date, etc.).

FHIR (Fast Health Interoperability Resources)

A REST-based standard from HL7 for data access and representation of health information.

HL7 V2

2 Model Driven Message Interoperability (MDMI) 2.0

http://www.iso20022.com/
https://www.iso.org/standard/60341.html
https://confluence.hl7.org/display/CIMI/Analysis+Normal+Form+%28ANF%29+Project
http://www.omg.org/spec/ODM/1.1

This HL7 messaging standard allows the exchange of clinical data between systems.

MDMI Acceptance Test

A set of tests to determine if MDMI Business Elements in a MDMI Domain SEER have a synonym, hypernym, or
hyponym.

MDMI Domain Semantic Element Exchange Registry (SEER)

A repository of MDMI Business Elements that contains the set of MDMI Business Elements that represent the
business concepts that have been identified in transforming messages for an identified domain. An example of the
MDMI Domain SEER is the MDMI Healthcare SEER.

MDMI Healthcare Concept Model

Provided as an informative model used to define the StatementContext and the DataElementConcept properties in the
MDMIBusinessElementReference Class in the MDMI Healthcare SEER.

Message Format

Definition of the syntax and information of a class of messages. It can be defined in many ways including
paper documentation.

MXxx

Message format developed according to the ISO 20022 specification.
MTxx

Message format developed according to the SWIFT EDI specification, including the ISO 15022 messages.
Physical Message Instance

An instance of a message that is used to transmit information from a source to a target application
MDMI Semantic Element
An entity in a message format that represents a “smallest” business concept specific to that message format.

The easiest way to describe is by analogy. If the information in a message were used to define a denormalized
table in a database table, then the MDMI Semantic Elements would represent the columns of that table.

MDMI Semantic Element Set

A set of MDMI Semantic Elements, Message Composites and Simple Message Composites and MDMI
Semantic Element Relationships in a message format.

MDMI Semantic

The term MDMI semantic is used as an adjective in this specification should not be interpreted as formal. It should
be understood to represent a textual representation.

MDMI Semantic Map

A map that describes the relationship between a MDMI Semantic Element in a MDMI Semantic Element Set
and a MDMI Business Element in a MDMI Domain SEER.

Synonym

A MDMI Business Element that is a simple equivalence to another MDMI Business Element, i.e., A=B.
TCxx

Message format developed according to the VISA EDI specifications for retail banking applications.

5 Additional Information
5.1 Acknowledgements

The following companies submitted and/or supported this specification:
MDIX, Inc.

Model Driven Message Interoperability (MDMI) 2.0 3

Model Driven Solutions, Inc.

The submitters would like to acknowledge and thank those that have contributed to the submission: Veterans
Health Administration: Elisa Kendall of Thematix, Inc, Ken Rubin and Robert Lario of the US Veterans
Administration, Davide Sattoro of Mayo Clinic, Thomas Beale of OpenEHR, Richard Beatch of Bloomberg,
Matt Lord and Sean Muir of MDIX, and Mathew Horridge of Book Zurman.

6 Overview

Given the lack of mapping standards for both the healthcare and financial industries, data is usually mapped
directly from one information format to another. It is a well-known principle in the field of system architecture
that as the number of interfaces in a “system” increases linearly, the cost of maintaining point-to-point
mappings increases geometrically. In addition, errors are easily introduced since many of these mappings are
done locally and procedurally.

The result of current mapping practices leads to a lack of interoperability, high costs, and/or inaccurate
information for the consumer of the mapping transaction. Virtually all organizations face this situation and
they may spend a good deal of their software-development budgets on creating new interfaces and mappings or
extending existing ones. Or, they may resist introducing any changes into existing message formats. Adoption
of new formats becomes more difficult due to the cost of changing applications that process the older message
formats.

The goal of the MDMI standard is to provide a standard framework and methodology for the mapping between
information models in the healthcare, financial, and other industries, which will alleviate the mapping problem.

This standard will:

e Reduce significantly the cost and time needed to define conversion rules to map data from one
message format to another.

e Handle versioning issues as particular message formats evolve over time.

o Allow the expedited adoption of new standards — as mapping the new standard to the existing
standard will allow applications to continue to use the legacy standards thus greatly reducing the
introduction cost of new standards.

e Improve the interoperability in workflow applications involving multiple services that are based
on multiple information formats or versions of formats.

The MDMI standard's framework is based on two concepts:

e First, removing any syntax associated with a message format, revealing the set of core “MDMI Semantic
Elements” contained in that message format. A MDMI Semantic Element is the smallest unit of a
business concept defined in a message format.

e Second, specifying a MDMI Semantic Map of those MDMI Semantic Elements to an industry-accepted
repository consisting of MDMI Business Elements. A MDMI Business Element represents the smallest
business concept for the industry sector that is an entry in the repository. As a business concept used in
transformations, the MDMI Business Element is a representation of the context in which was recorded
(e.g., a patient visit or requesting a bank wire) as well as the data element concept (e.g., date or location
of the visit; who the doctor was in the patient visit or the amount to be sent in a bank wire; the account
receiving the wire; or the account where the money is to be sent from).

The easiest way to recognize MDMI Semantic Elements or MDMI Business Elements is that they cannot be
constructed from other MDMI Semantic Elements or MDMI Business Elements, respectively (i.e., they are
represented by a class, whose primary property is a general data type).

4 Model Driven Message Interoperability (MDMI) 2.0

Providing mapping between the MDMI Semantic Element to a MDMI Domain SEER creates a “hub and
spoke.” A mapping then will have two steps, utilizing a map from a source to the MDMI Domain SEER and
then utilizing a map from the MDMI Domain SEER to the target. Thus, the mapping process is reduced from
being geometric to being linear with the number of message formats.

6.1 Different Ways to Use the Current Standard

6.1.1 Message Transformation: Moving Data from One Message to Another

The primary focus of the MDMI standard is moving information from a source in one format to a target in a
different format. For example: One format may define a “patient address™ field while another format may
have separate fields for “patient street,” “patient city,” “patient state,” etc. One format may define a bank ID
number as a BIC number while another format may define a bank ID as an ABA routing number.

The key is that the fields in each format are mapped to the same repository element or a canonical
representation: the MDMI Business Element. There are two important benefits of mapping to a canonical
representation:

1. This approach creates a hub-and-spoke architecture for transformations. Therefore, only a linear set of
transformations must be created among different message format groups instead of the n?> mappings
required for bilateral transformations. For example, by using a central data repository for payments, only
six maps need to be created to map payment information among SWIFT MT messages, SWIFT MX
messages, FIX messages, Visa TC messages, and ACH messages, whereas 15 bilateral conversion
maps would be needed.

2. Using MDMI one only needs to be expert in its own message formats and the well-defined semantics of
the canonical representations in the MDMI Domain SEER, rather than needing to understand the business
concepts and syntax of many other message groups to perform message transformations.

6.1.2 Versioning

A second costly problem in the healthcare and financial services spaces is versioning. Given the legacy of
existing software, even a small change in a message format can be costly to implement. Thus, required
changes are often implemented very slowly and, in the worst case, not implemented at all. By providing
MDMI maps between new versions and older versions, new message formats can be introduced without
requiring that existing message formats be abandoned or that legacy applications be recoded.

6.1.3 Moving Data from an Internal Enterprise Message Format to an External
Standard

Another important value of MDMI is moving information from an enterprise’s internal message or data
formats to an external message standard. It is important to note that a record definition in a database schema
can be an “information format” and maps can be generated that transform data from that internal database to an
external standard. Whenever either message format changes, these maps must be changed. With MDMI
maps, the MDMI Semantic Elements in internal formats are mapped to a canonical representation and
therefore can be isolated from external changes.

6.1.4 Design Considerations in Applications Requiring Message
Transformation

MDMI can be used to produce artifacts that assist development teams implementing applications requiring
transformations. For example, a new healthcare application built using a new message model may need to
interact with existing data stores and/or existing industry messaging standards. MDMI has been used to
produce gap analysis and traceability reports for design teams even before the implementation phase.

Model Driven Message Interoperability (MDMI) 2.0 5

6.2 Basic Approach for the Use of This Standard

The artifacts defined for this standard are designed to map data (i.e., sets of MDMI Semantic Elements) from
one format to another rather than the wholesale conversion from one format to another. With this focus, each
data field conversion needs to be atomic, containing all the meta-data necessary to move the source data in the
field to a target field (or fields) with as little reference to additional meta-data (e.g., a complete model of the
format).

The standard is a declarative standard based on a UML model that defines the artifacts necessary to define a
standardized conversion. These artifacts represent a two-stage process, as described below.

6.2.1 Developing artifacts using the UML model

6.2.1.1 Stage 1

The first stage artifacts utilize a Message Syntax Model to create a syntax-neutral set of MDMI Semantic
Element classes. MDMI Semantic Elements are the business conceptsentities contained in a message format,
for which further parsing would leave only generic data-type values.

6.2.1.2 Stage 2

The second stage provides a mapping of these MDMI Semantic Elements to a MDMI Business Element. It
does this by specifying To and From Conversion Rules for source MDMI Semantic Elements to MDMI
Business Elements in MDMI Domain SEER.

In most cases, this mapping will amount to a simple isomorphic mapping; in other cases, simple
transformations will be required, such as defining an arithmetic expression, doing a table lookup, or splitting or
concatenating a string. Separate transforms may need to be defined for the mapping 1) from a source MDMI
Semantic Element to a MDMI Business Element as compared to 2) from a MDMI Business Element to a
MDMI Semantic Element.

Examples in healthcare are:
* Mapping the “MRN” element in the source message to the Business Element, “Patient Identifier” in the
repository
* Mapping “MedicationAdministeredDateTime””” in the MDMI Healthcare SEER to
“MedicationEffectiveTimeLow” and setting “MedicationEffectiveTimeHigh” to a null value in the target

For example, in financial services:

* Mapping “Primary Client Identifier” element in the source message to the two elements, “Primary Client
Name” and “Primary Client BIC,” in the repository

e Mapping “Primary Account Beginning Balance” and “Primary Account Ending Balance” in the
repository to “Primary Account Beginning Balance” and “Primary Account Debited Amount” in the target

6.3 Adding a new MDMI Business Element to a MDMI Domain
SEER

In the above Section 6.2.1.2 Stage 2, the MDMI Semantic Element may represent a concept not yet included in
the MDMI Domain SEER. If this is the situation, a new MDMI Business Element may need to be added to the
MDMI Domain SEER. For a MDMI Domain SEER, there are important principles for adding a MDMI
Business Element. The business reason for these principles is independent organizations can and have
developed MDMI Maps for their specific Message Models. It is a fundamental precept that it should not be
possible to correctly map their MDMI Semantic Element to different MDMI Business Elements. The MDMI
Acceptance Test is processed using the computable Statement Concept property and the DataElementConcept

6 Model Driven Message Interoperability (MDMI) 2.0

property of the MDMIBusinessElementReference Class to ensure this fundamental precept there is only one
correct mapping between MDMI Semantic Elements and MDMI Business Elements is maintained. (See also
Annex B: Informative: Healthcare Examples for more information on the process used for adding a new
MDMI Business Element.)

There are two different functional tests in the MDMI Acceptance Test:

6.3.1 No Synonyms in a MDMI Domain SEER (MDMI Uniqueness Test)

If there were two MDMI Business Elements that are synonyms, it would be possible for one organization to
correctly associate a MDMI Semantic Element to one MDMI Business Element (“BE_A”) and another
organization to correctly associate their MDMI Semantic Element to a different MDMI Business Element
(“BE_Z”). An MDMI runtime engine would not be able to execute a transformation because the
transformation requires alignment of the source and target MDMI Semantic Elements to the same MDMI
Business Element to complete the transform. In this example, MDMI would not be able to move the data in
the source format into the target format.

6.3.2 No Hypernyms or Hyponyms (MDMI Precision Test)

There is a second scenario, similar to the above but different, that is to avoid correctly mapping a MDMI
Semantic Element to two different MDMI Business Elements. This can occur when there are two different
MDMI Business Elements that have the same meaning and one MDMI Business Element is more precise than
the other. An example of this would be if there were one MDMI Business Element called PatientAddress and
another called PatientHomeAddress. The MDMI Precision Test is to ensure that this scenario is not possible.

6.4 Future Benefits of the Standard

There are several future uses and extensions to the MDMI standard that should enhance the value of the
standard.

6.4.1 360° View of diverse IT eco-system

Using the MDMI Domain SEER, one can query using the StatementContext property and the
DataElementConcept to find the set of MDMI Business Elements. Using available MDMI Maps, it will be
possible for these MDMI Business Elements to be traced to multiple sources where that business concept is
used by the enterprise or even eco-system of multiple enterprises. This will be possible because within each
MDMI Map there is a direct association from the MDMI Business Element to the MDMI Semantic Element to
the MDMI Syntax Node that has the property of physical location of the data element in that file.

6.4.2 Support of Business Processes Automation

In the design of business processes using the OMG BPM+ Standard as well as other OMG business process
standards (e.g., BPMN, CMMN, and DMN), data objects and data files are specified. These objects files can
be either the source or target format. The StatementContext property and the DataElementConcept are
searchable metadata to discover the appropriate MDMI Business Element and make a direct association
between the item in a Data Object or Data File to the MDMI Business Element. It is then possible to create
MDMI maps for these process models that can be used to as part of a transformation with other MDMI Maps
(e.g., industry-standard MDMI Maps or propriectary MDMI Maps). This enables these business process
models to be Platform Independent Models and the MDMI standard provides an MDA approach to create
Platform Specific Models (PSMs) .

Model Driven Message Interoperability (MDMI) 2.0 7

6.4.3 Handling Lossless Conversion

An important need in messaging is dealing with the loss of information when performing conversions. This
problem likely will never be completely solved but improvements in lossless conversions will be a great benefit.
The proposed artifacts for the MDMI standard can provide a strong basic framework for creating lossless
conversions (e.g., syntax incompatibilities can be traced and accommodated; auxiliary storage for lost
information can be created with additional MDMI Semantic Elements; etc.).

8 Model Driven Message Interoperability (MDMI) 2.0

7 Use of MDMI Artifacts Overview

The focus of the MDMI standard is to create a template for machine-readable maps that standardize the
conversion of data from a source message instance based on one message format to data in a target message
instance based on another message format. This may involve the movement of as little as one data element or
it may involve the conversion of a complete message involving thousands of data elements. The standard can
be used to map data for message formats within a Message Group or across Message Groups.

7.1 Informal Overview of Artifacts

Before presenting the artifacts in the MDMI standard, an overview and example of the use of the key artifacts
in performing a conversion may be helpful.

Figure 7.1 and Figure 7.2 present an implementation of a conversion utilizing the key artifacts in the MDMI
Standard. The rectangles in the diagram represent these artifacts. In addition, the MDMI Business Elements
in Figure 7.1 are the same MDMI Business Elements as in Figure 7.2 and that these MDMI Business Elements
are defined in a MDMI Domain SEER.

Source Physical Message
Source Message Strip syntax from indicated subsets
Syntax Maodel of MDMI Semantic Elements

Instance of
MDMI Semantic Element Set

Map and convert MDMI Semantic
Element value to relevant MDMI
Business Element Datatype value

Source Message

Semantic Mapping

Source Message Map uniqueld of MDMI Business
MODMI Business Element Reference with MDMI

Element Reference Semantic Element

Figure 7.1 — Overview of run-time conversion methodology from Source

Model Driven Message Interoperability (MDMI) 2.0 9

Map unigueldentifier of
MDMIBusinessElementReference

Sfm ree M Ee with source uniqueldentifiers
MDMIBusinessElementReference

Map and convert
Target Message MDMIBusinessElementReference
Semantic Mapping value to relevant
MDMISemanticElement walue

Instance of
MDMI Semantic Element Set

Target Message Conform MDMISemanticElement
Syntax Model to syntax and insert

Target Physical
Message

Figure 7.2 — Continuation of Overview of run-time conversion to Target

The following steps describe this conversion example.

7.1.1 Step 1 — Remove the Syntax

The first step of a conversion is to convert the source data in a physical message instance (e.g., a HL7 V2.5.1
ADT-AO01, a Visa TCO05, etc.) from its existing format to a syntax-neutral format. The conversion involves the
extraction of data from the existing Message using a syntax-translation process. This process utilizes the
MDMI Standard artifact, “Message Syntax Model.” The Message Syntax Model provides a syntactic
description that contains the necessary information to extract or insert any data item from/to a physical
message instance.

A data item in a message is defined as the smallest business concept in a message for which further parsing
would lose meaning, leaving only generic datatype values. For example, in a HL7 V2.8.2 ADT-AO1 there is a
field representing Admit Date/Time. If further parsing was done, the value left would simply be a date and
indistinguishable, in a business context, from any other date. Therefore, Admit Date/Time is a data item that
is a smallest business concept.

Normally, the smallest business concept in a message is a field but in many overloaded message formats, a
business concept can be a sub-field. In existing message formats, many “fields” have been subdivided into
numerous business concepts. In healthcare, a field may represent a MedicationDate; however, depending on
another field, the MoodCode, the MedicationDate may represent the date the medication was administered, or
it may represent the date the medication was ordered. In a financial-services example, a field may contain a
list of “Primary Account IDs” separated by commas. In that case, each “primary account ID” is a separate data
item even though they appear in one field.

10 Model Driven Message Interoperability (MDMI) 2.0

When the data is stripped of its specific message format syntax, its value will be represented by an instance of
the artifact “MDMI Semantic Element.” There will be a MDMI Semantic Element class defined for every
business concept contained in a message’s message format. All these the MDMI Semantic Element classes are
contained in the “MDMI Semantic Element Set” by composition.

7.1.2 Step 2 — Mapping a Source MDMI Semantic Element to a Target MDMI
Semantic Element using a Unique Identifier acquired from MDMI Domain
SEER

The second step for the conversion leverages a MDMI Domain SEER to define the relationship between one or
more Source MDMI Semantic Elements and one or more Target MDMI Semantic Elements.

The Source and Target MDMI Semantic Elements are associated with a MDMI Business Element in a MDMI
Domain SEER through a MDMI Business Element Reference class. That association may be a simple
isomorphic mapping or it may involve a more complex map utilizing various artifacts in the MDMI
specification such as a computed attribute in the MDMI Semantic Element class, a Data Relationship Rule, or
a Conversion rule. Each element in the MDMI Domain SEER must provide a unique identifier for its MDMI
Business Elements. That unique identifier will be stored in the MDMI Business Element references that are
associated with MDMI Semantic Elements. The appropriate Unique Identifiers will have been stored in the
MDMI map for all MDMI Semantic Elements in the both the Source and Target message formats.

An MDMI runtime application can locate a complete definition of a transformation by lining up the Source and
Target maps the MDMI Semantic Elements that have matching Unique Identifiers.

Knowing the direct mapping instructions is often not enough information to insert a value into a Target
message, as the validity of that insertion often depends on other MDMI Semantic Elements in a message. For
example, it may be invalid to store an “Account Balance amount” if there is no value for an “Account ID.”
Therefore, the maps for each MDMI Semantic Element can include a set of MDMI Semantic Element
Relationships that describe the relationship of a MDMI Semantic Element with all other MDMI Semantic
Elements in the message. A runtime application uses the MDMI Semantic Element Relationships in its target
mapping to ensure that no constraints are violated and that the inserted value is valid in relationship to other
elements in the Message.

Model Driven Message Interoperability (MDMI) 2.0 11

8

UML Semantics — Normative Definition

The following is the formal Meta-Object Facility (MOF) model of the Model Driven Message Interoperability
standard. It is first presented as a set of annotated views followed by the presentation of all the “elements”
brought together in a single view.

8.1

MDMIDomainSEERReference

8.1.1 Overview

MessageModels, MessageGroup,

This view presents the MessageModel, the MessageGroup and the MDMIDomainSEERReference. A
MessageModel is a formal representation of a message format. A MessageGroup is composed of a set of
Message Models that are usually grouped together because they focus on a messaging domain. An
MDMIDomainSEERReference provides a reference to the MDMI Domain SEER Reference to which the
MDMI Semantic Elements for all MessageModels in the MessageGroup will be mapped.

8.1.2 Abstract Syntax

package MDMI[MDMIZ. 1.2]J

MessageModel

source : Ulil. .. 1]
messageModelName : String [1]

description : String [0..1] 0.* group.

modelyl modelyl

gives structure

syntaxModelf1

Message SyntaxModel gives meaning

name : éﬁ'lng [1
description : String [0..1]

elementSet 41

uses

repository

MDMIDomain SEERReference

model groups

1 gruup%

MessageGroup

!

reference :- 1
description : String [0..1]
name : String [1]

ps SEER datatypes

= MDCM : URI[1]
name : String [1]
defaultRuleExpressionLanguage : String [1]
+description : String [0..1]
defaultLocationExpressionLanguage : String [1]
defautMDMIExpressionLanguage : String [1]
defaultFormatExpressionLanguage : String [1]
+defaulttOrderingExpressionLanguage : String [1] MDMIDatatype
defaultConstraintExpressionLanguage : String [1] tes
3 description : String [0..1]
name : String [1]
messagelatatype |1
mdmidatatype
provides reusable artifact
datatypemap DatatypeMap
0.1 att 5 mi
language ing [1]
1

MDMISemanticElementSet

name : String [1]

messﬁgemﬁaelhﬂa—n}e: String [1]
description : String [0..1]

name : String [1
description : String [0..1]
fromMDMI - String [1]
toMDMI : String [1]

maps message datatype

Figure 8.1 — Message Model, MessageGroup, MDMIDomainSEERReference

12

Model Driven Message Interoperability (MDMI) 2.0

8.1.3 MessageModel — Detailed Semantics

MessageModel description: The MessageModel is the parent class that contains the MDMI model of a
message format. The database schema of a record in a table can also be considered a message format as well
as most XML documents, JSON files, and UML documents.

MessageModel properties:

1. A “messageModelName” property, of type String, names the model of the message format being
modeled. For example, the value of a messageModelName for a HL7 V2.8.2 ADT-A01
MessageModel could undoubtedly be “ADT-A01-2.8.2.”

An optional “description” property, of type String, contains a description of the message model.

3. A “source” is a property, of type URI, that contains a reference to the definition of the message
format whose elements are being mapped. This reference can take many forms; for example, the
reference might be to a machine-readable definition, such as the location of the message definition
in the HL7 FHIR or ISO 20022, or it might reference a paper document.

MessageModel associations:
1. A MessageModel has a MessageSyntaxModel by composition.
2. A MessageModel has a MDMISemanticElementSet by composition.
3. A MessageModel is associated with a MessageGroup.

8.1.4 MessageGroup — Detailed Semantics

MessageGroup description: The MessageGroup class contains a set of message models that are considered in
the same grouping (e.g., HL7 V2 ADT messages, CDA documents, FHIR profiles, SWIFT 15022 messages,
FIX security messages, etc.). The MessageGroup class is useful for setting various defaults for closely related
message formats.

The MessageGroup properties:
1. The property “name,” of type String, names the MessageGroup.
2. The optional property “description,” of type String, provides a description of MessageGroup.

3. The property “defaultLocationExpressionLanguage,” of type String, identifies the location
language to be used as a default for specifying location for all the messages in the MessageGroup.
The value must be recognized by a runtime transformation application. The location of any field
or sub-field in a message must be expressible in the chosen locationExpressionLanguage. For
example, a location language for an XML message format would be “XPath 2.0”.

4. The property “defaultConstraintExpressionLanguage,” of type String, identifies the constraint
language to be used as a default for specifying the constraints in the Choice class for all the
messages in the MessageGroup. The constraintExpressionLanguage must be able to reference
nodes.

5. The property “defaultRuleExpressionLanguage,” of type String, identifies the rule language to be
used as a default for specifying rules in all classes with the property “rule” for all the messages in
the MessageGroup. This rule language must be able to access the values of any
MDMISemanticElement and thus it must be able to access the fields in complex datatypes.

6. The property “defaultFormatExpressionLanguage,” of type String, identifies the format language
to be used as a default for specifying formats in the LeafSyntaxTranslator class for all the
messages in the MessageGroup. The formatExpressionLanguage must be able to describe fields as
well as sub-fields, the proper termination character for a field or sub-field. Appropriate languages,
which have been used in an example implementation, are the SWIFT 150022 regular expression
format language and XSD format attributes.

7. The property “defaultOrderingExpressionLanguage”, of type String, identifies the ordering
language to be used as a default for specifying the ordering of multiple instances of

Model Driven Message Interoperability (MDMI) 2.0 13

MDMISemanticElements in which the Boolean property “multiplelnstances” is “True.” The
ordering language should provide expressions that can be evaluated to both cardinal and ordinal
positioning.

8. The property “defaultMDMIExpressionLanguage,” of type String, identifies the computational
language to be used as a default for specifying the computational expression in computed
MDMISemanticElements that are of type MDMIExpression.

MessageGroup associations:
1. An association with one or more MessageModels, which comprise the MessageGroup;

2. An association with zero or more DataRules that are utilized by the Message models within the
group;

3. An association with the MDMIDomainSEERReference that identifies the registry utilized by the
group;

4. An association with one or more Datatype Maps.

8.1.5 MDMIDomainSEERReference

MDMIDomainSEERReference description: The MDMIDomainSEERReference class provides a reference to
the MDMI Domain SEER that contains the MDMI Business Elements to which the MDMISemanticElements
in the MessageModels in the MessageGroup are mapped. This class is purely informational as the URI
reference to the repository does not have be machine-readable. The repository could reside on paper, for
example. However, there must be a function or method associated with the repository that will provide: 1) a
uniqueldentifier for all MDMI Business Elements, and 2) a reference to a datatype that is compatible with the
set of MDMIDatatype.

MDMIDomainSEERReference properties:
1. A “name” property, of type string, that provides a name for the referenced MDMI Domain SEER.
2. An optional “description” property, of type String, that provides a description of the MDMI Domain
SEER.
3. A “reference” property, of type URI, that provides a reference to a MDMI Domain SEER, such as a
URL.

4. The MDCM property, of type URI, references the MDCM that is used to define the
StatementContext property and the DataElementConcept property in the
MDMIBusinessElementReference Class. See Annex B for an example of MDCM for Healthcare.

MDMIDomainSEERReference associations:

1. MDMIDomainSEERReference has a one-to-one association with MesssageGroup to indicate the
MDMI Domain SEER that will be used for the maps in MessageModels in the MessageGroup.

2. MDMIDomainSEERReference has a one-to-many relationship to the
MDMIBusinessElementReference class so that a reference to the MDMI Domain SEER, to which a
MDMI Business Element belongs, is easily accessed.

8.1.6 DatatypeMap — Detailed Semantics
DatatypeMap description:

The DatatypeMap provides the ability to roll up simple datatypes contained in a message format into a
complex Datatype that has been defined for the message format. This is an optional capability. As an example,
a complex message format, because of different roles and contexts, may have hundreds of different persons
and organizations who have an address represented by properties of streetl, street2, city, state, county, postal
code and country. The DatatypeMap allows mapping of these attributes to a complex datatype of Address
containing these seven properties.

14 Model Driven Message Interoperability (MDMI) 2.0

The DatatypeMap properties:
1. A “name” property, of type string, that provides a name for the DatatypeMap.
2. An optional “description” property, of type String, that provides a description of the DatatypeMap.

3. A “ToMDMI” property, of type string, using the language property to create a one-to-one mapping
from the datatype in the message format to MDMIDatatype.

4. A “FromMDMI” property, of type string, using the language property to create a one-to-one
mapping from the MDMIDatatype to messageDatatype in the message format.

5. A “mdmiDatatype” property, of type MDMIDatatype, used in the ToOMDMI property and the
FromMDMI property.

6. A “messageDatatype” property, of type MDMIDatatype, used in the ToOMDMI property and the
FromMDMI property.

7. A “language” property, of type string, is a reference to the expression language used in the “To” and
“From” property of the DatatypeMap class.

8.2 MessageSyntaxModel, Node, Bag, Choice,
LeafSyntaxTranslator

8.2.1 Overview

The MessageSyntaxModel and related classes provide syntax information that will enable a process to either
extract or insert a data value into or from an instance of a message. It does this by providing a description of
the location and format of every MDMISemanticElement in the message format.

The MessageSyntaxModel class is the root of the syntax tree. The syntax tree provides a map for navigating a
message format. The leaves of the tree are LeafSyntaxTranslator nodes. The LeafSyntaxTranslator has
location and format properties, which contain information that defines how to move a data item from/to an
instance of a message and associate the data item with a MDMISemanticElement. The MDMI standard does
not require a specific language to describe a location or a format for the properties in the
LeafSyntaxTranslator. Instead, language properties are included that provide a reference to the expression
language that will be used to describe location and format. This flexibility was chosen given the variety of
different types of message formats: XML, JSON, FHIR path, EDIFACT, Object models, etc., and the legacy
languages already out there to express location and format.

The other classes associated with the MessageSyntaxModel are used to construct the branches of the syntax tree.
They are:

e Node — an abstract class that represents the branches and leaf nodes of the syntax tree

e Bag — abranch Node that identifies a set of Nodes that are aggregated in a message format

e Choice — a branch Node that defines rules to identify the conditions for which values in its children nodes
should appear in a physical message instance.

Model Driven Message Interoperability (MDMI) 2.0 15

8.2.2 Abstract Syntax

class MDMDatatype [[&] MDMDatatype]J
Message SyntaxMode! | syntaxlodel _represent message format
aftrbutes 0.1
name : String [1] E‘emmm% MDMISemanticElement
description : String [0..1] atinbutes
MOMISer entSet gl
syntaxilodelyl attnbutes __contains slements element | computedValue : MDMExpression [0..1]
String [1] == 1 orderingLanguage : String [0..1
description : String [0.1) elemeniType : String [1] children
part of name : String [1] computedinValue : MDMIExpression [0..1]
— +ordering String [0..1]
propertyQualifier : String [0..1]
+multiplelstances : Boolean [0..1] = false
description : String [0..1]
node {1 +computedOutvalue : MDMExpression [0..1]
Hode
stirbuies parent
locationExpressionLanguage : String [0..1]
isSyntacticField : Boolean [1] = false
description - String [0..1]
fiekdName : String [0..1]
minOccurs : Integer [1] = 1
name : String [1]
location : String [1]
e it [1]= 1 nodes LeafSyntaxTranslator
.2 stinbuies
nodedyt . formatExprassionLanguage : String [0..1]
format : String [1]
represents set gives possbiitieg
bag |0.1
Bag
isUnique : Boolean [1] = trus
isOrdered : Boolean [1] = false
owiner (0.1
Choice
constraintExpressionLanguage * String [0..1]
constraint : String [0..1]

Figure 8.2 — Message Syntax Model

8.2.3 MessageSyntaxModel — Detailed Semantics
MessageSyntaxModel description:

The MessageSyntaxModel contains a syntax tree that describes how each MDMISemanticElement can be
either inserted into or extracted from a message based on that message’s message format.

MessageSyntaxModel properties:

1. A “name” property, of type String, is the name of the MessageSyntaxModel. This name will often
be similar to the MessageModel name (e.g., “MT103 Syntax Tree”)

2. The optional property “description,” of type String, provides a description of MessageGroup.
MessageSyntaxModel associations:

1. An association with one-to-many Nodes as it is the parent class of the syntax tree.

2. An association with its parent MesssageModel

3. An association with its sibling MDMISemanticElement Set

8.2.4 Node — Detailed Semantics

Node description:

The Node class is an abstract class that is inherited by all nodes in the syntax tree. It primarily contains
location information so that any field or data item in a message can be located.

Node properties:

16 Model Driven Message Interoperability (MDMI) 2.0

The “name” property, of type String, provides a name for the Node. This name can be useful to
label a section or element in a message format. The name property is important because it should
provide an addressable reference to the node, which can be used in an expression.

The optional “description” property, of type String, describes the Node’s purpose.

The “minOccurs” property, of type Integer, has a value of 0..1. The value of “0” indicates that the
Node is optional whereas the value “1” indicates that the Node is required.

An optional “maxOccurs” property, of type Integer, puts an upper limit on the number of instances
allowed for the node.

A “location” property, of type String, describes the location of the Node in the physical message.
The location is often in reference to, or anchored by, the URI that defines the location of the
physical message instance.

A “locationExpressionLanguage” property, of type String, defines a reference to the expression
language used in the location property. The locationExpressionLanguage must satisfy the same
constraints described for the “defaultLocationExpressionLanguage in section 8.1.5.

An optional “fieldname” property, of type String, provides the field name of a simple datatype that
is part of a complex MDMIDatatype. The data item, whose location is indicated by the Node, has
the datatype associated with the “fieldname.”

A derived property “isSyntacticField,” of type Boolean, indicates that if the property’s value is
“True,” then this node corresponds to a data item that is part of an MDMIComplexDatatype.
“isSyntaxField” will be “True” if the optional “fieldname” is present.

Node class generalizations:

Three classes inherit from the Node abstract class: Bag, Choice and LeafSyntaxTranslator.

Node class associations

1.

Node has a many-to-one association with the Bag class as a Bag can have Node children.
Node has a many-to-one association with the Choice class as a Choice can have Node children.

Node has a one-to-one relationship with a MDMISemanticElement. This is the key association that
links a MDMISemanticElement to its syntax.

8.2.5 Bag - Detailed Semantics

Bag description:

The Bag class represents a set of syntax nodes. The nodes in a Bag can be a unique set or a bag, and the
nodes can be ordered or unordered.

Bag properties:

1.

The “isUnique” property, of type Boolean, indicates, if its value is “True,” then the bag is a set
composed of unique items. If its value is “False,” the bag of nodes can contain duplicates.

The “isOrdered” property, of type Boolean indicates, if its value is “True” that the nodes in the bag
must be in an ordered sequence. If the value is “False,” the nodes in the bag can be unordered. This
property is useful for parsing a message. The actual ordering of MDMISemanticElements is
handled 1) using the “location” property in the Node class and 2) using the “ordering” property in
the MDMISemanticElement class.

Bag associations:

1.

The Bag class has a one-to-many association with some other classes that inherits from Node. Thus, it
becomes a branch in the syntax tree. Since it must have at least one association with another class by
composition, it cannot be a leaf of the syntax tree.

Model Driven Message Interoperability (MDMI) 2.0 17

8.2.6 Choice — Detailed Semantics

Choice description:

The Choice class contains the conditions that can identify the subset of its children nodes that will be
present in a message instance. The subset is determined by a constraint expression.

Choice properties:

1. A “constraint” property whose value is an expression that can be used to determine which of the set of
nodes should be in a physical message instance.

2. An optional “constraintExpressionLanguage,” of type String, that is a reference to the language used in the
“constraint” property. The constraintExpressionLanguage must be able to reference any node in the
syntax tree.

Choice associations:

1. The Choice class has a one-to-many association with some other class that inherits from Node. Thus,
it becomes a branch in the syntax tree. Since it must have at least one association with another class
by composition, it cannot be a leaf of the syntax tree.

8.2.7 LeafSyntaxTranslator

LeafSyntaxTranslator description:

The LeafSyntaxTranslator class is represents a leaf of the syntax tree. There is a LeafSyntaxTranslator
corresponding to every field, sub-field, or data item in the message format. The LeafSyntaxTranslator
inherits location information from the Node and has additional properties that describe the format of the
data item with which it is associated.

LeafSyntaxTranslator properties:

1. The “format” property, of type String, provides the specific format of a field or subfield in the
message format.

2. The “formatExpressionLanguage” property, of type String, is a reference to the expression language
used in the format property. For example, SWIFT has a defined regular expression language for the
format of fields in MT messages. The formatExpressionL.anguage must be able to reference and fully
describe the format of data item. An example would be being able to specify the proper termination
character for a list of fields that occur within a string. The MDMI standard does not require a specific
formatExpressionLanguage.

8.3 MDMISemanticElementSet, MDMISemanticElement,
SimpleMessageComposite, MessageComposite, Keyword

8.3.1 Overview

The MDMISemanticElementSet contains a set of MDMISemanticElement classes. Each
MDMISemanticElement represents a smallest business concept in a message format. The
MDMISemanticElementSet and the MessageSyntaxModel, which are the two entities that comprise a
Message model, can provide a complete specification of a message format. If all the
MDMISemanticElements in a message are stored in the MDMISemanticElementSet and instructions on how
to insert or extract each of those elements are contained in the MessageSyntaxModel, then a complete model
of a message format will be created. However, one of the advantages of MDMI is subsets of a message
format can also be mapped. For example, given a specification such as CDA and a goal of healthcare

18 Model Driven Message Interoperability (MDMI) 2.0

interoperability, only data items in the document like a HospitalSummaryDischarge that are to be moved into
a FHIR composition need to be mapped.

The MDMISemanticElementSet represents the “flattening,” or “linearization,” of a message format. This
flattening is important since a primary goal of MDMI is to expedite the insertion or extraction of as little as
one semantic unit of a message. For processing efficiency, it is very important that the information needed to
convert one item from/to a message does not require complete information about the structure of the entire
message format.

The primary constituents of the MDMISemanticElementSet are MDMISemanticElements. A couple of
additional classes are provided primarily for the ease when creating an MDMI Map but they do not play a
major role in the conversion process. These are SimpleMessageComposites and MessageComposites. These
classes are conveniences for bundling MDMISemanticElements in the design process.

A SimpleMessageComposite is an “aggregation” that only contains MDMISemanticElements. It is
important, as this first level of aggregation is a very common design mechanism.

A MessageComposite is an aggregation that contains MDMISemanticElements, SimpleMessageComposites
and MessageComposites. It is therefore possible to create exceedingly complicated MessageComposite
structures. However, these structuring mechanisms should be used with considerable caution. Such
complicated structures are far away from the desired linearization or flattening of business concepts, which is
a core design principle of the MDMI standard.

An important property of MDMISemanticElements merits further discussion. This is the property
“multipleInstances.” MultipleInstances indicates that instances of a MDMISemanticElement can appear
multiple times in a physical message instance, usually in the form of repeating fields or a list. In effect, the
MDMISemanticElement is a vector and not a singular value. As expected, the fact that
MDMISemanticElements can be an array of values increases the complexity of the model.

8.3.2 Abstract Syntax
package MDMI[MDMISECTION@.3.5]

Message SyntaxModel

represent message format elementget IRNEESCEMHCElCment Set

name : String [1] 0.1 . 1
description * String [0.1] provides

Name : String [1)
description * String [0..1]
0.1 | name : String [}

memisemanticelementsety1

contains elements
MDMISemanticElement

mdmisemanticeigment
77| name : String [1]
computedValue - MM
orderingLar

Expression [0..11
0.1]

composite semanticEleme:
0.1 1

chidren

String [1]
description : Siring [0..1)

provides keyword owner
1

psrenlf 1 —

keywords{0.1
Keyword

description - String (1]
reference : Strng [1

ing
keywordValue : String [0..1]
keyword : String [1]

Figure 8.3 — MDMISemanticElementSet and associated classes

Model Driven Message Interoperability (MDMI) 2.0 19

8.3.3 MDMISemanticElementSet - Detailed Semantics

MDMISemanticElementSet description:

The MDMISemanticElementSet contains the smallest MDMISemanticElements contained in a message
format. The set only holds MDMISemanticElements. All the message-specific syntax of selected elements
from a message format has been removed.

MDMISemanticElementSet properties:
1. A “name” property, of type String, contains the name of the MDMISemanticElementSet.
2. The optional “description” property, of type String, provides a description of the
MDMISemanticElement Set.

3. The derived “MessageModelName™ property, of type string, contains the name of the MessageModel to
which the MDMISemanticElementSet belongs. This derived property is included for implementation
convenience.

MDMISemanticElementSet associations:

1. The MDMISemanticElementSet has a one-to-many association by composition to
MDMISemanticElements.

2. The MDMISemanticElementSet has a zero-to-many association with SimpleMessageComposites. A
SimpleMessageComposite is a convenient mechanism for grouping MDMISemanticElements.

3. The MDMISemanticElementSet has a one-to-one relationship to its parent MessageModel.

4. The MDMISemanticElementSet has a one-to-one relationship to its sibling, the MessageSyntaxModel.

8.3.4 MDMISemanticElement — Detailed Semantics

MDMISemanticElement description:

The MDMISemanticElement class is the core of the MDMI map. MDMISemanticElements represent the
smallest business concepts in a message format, stripped of any complicating syntax considerations.
Each MDMISemanticElement is unique in the context of its message format, i.c., it must have an
individual semantic meaning. As example, “address” cannot be a MDMISemanticElement; “address” is
a datatype that can be repeated in many message fields. “Primary Debtor Address” or “Patient Address”
is a MDMISemanticElement as it refers to a unique address in a message format.

The MDMISemanticElement properties:
1. A “name” property, of type String, contains the name of the MDMISemanticElement.
2. The optional “description” property, of type String, contains a description of the
MDMISemanticElement.

3. An “elementType” property, of the enumerated type MessageElementType, can have three values,
each of which defines the type of MDMI Semantic Element.

e NORMAL — A “NORMAL” MDMI Semantic Element is equivalent to the current
definition of a MDMISemanticElement contained in a message format, which is to be
mapped to a central repository.

e LOCAL - A “LOCAL MDMI Semantic Element contains some technical information that
is needed to correctly map NORMAL MDMI Semantic Elements, e.g., it may contain an

index that is used to provide the ordering for a child MDMI Semantic Element that has
multiple instances.

e COMPUTED — A “COMPUTED” MDMI Semantic Element is to be mapped to the central
repository but contains a value that is not directly contained in a message. Instead, a
“COMPUTED” MDMI Semantic Element’s value is computed using a MDMIExpression.

20 Model Driven Message Interoperability (MDMI) 2.0

10.

11.

A “datatype” property, of type MDMIDatatype, defines the simple or complex datatype of the
MDMI Semantic Element.

A zero-to-many “propertyQualifier” property, of type String, is a list of keywords that contains
reference keywords of interest that are associated with the message format, such as a “tag”
associated with a MDMISemanticElement.

A “multipleInstances” property, of type Boolean, which if true indicates that instances of this
MDMISemanticElement can be repeated in a physical message as a list or array.

An "ordering” property, of type String, contains an expression that describes how the MDMI Semantic
Element instances are ordered, if the MDMISemanticElement's multipleInstances property is “True".

An optional “orderingExpressionLanguage” property, of type String, that is a reference to the
expression language used for the value of the “ordering” property. The ordering language must be
able to describe ordinal and cardinal positioning as well as expressions that when evaluated will
provide an index.

A “computedValue” property, of type MDMIexpression, contains an expression that computes the
value for the MDMISemanticElement. The expression can refer to the value of other
MDMISemanticElements. This property is most often used for MDMISemanticElements of the type
LOCAL.

A “computedInValue” property, of type MDMIexpression, contains an expression to compute a value
for the MDMISemanticElement when it is a target, based on the values of one or more MDMI
Business Elements and MDMISemanticElements. The value when it is a source is directly mapped.

A “computedOutValue” property, of MDMIexpression, contains an expression to computes value
for a MDMISemanticElement, when it is a source, based on the values of one or more
MDMISemanticElements. The value when it is a target is directly mapped.

The MDMISemanticElement associations:

1.

10.

A one-to-many association with any children through a parent association. This allows the
MDMISemanticElementSet to include container Semantic Elements, which are identified by
“parent.” Explicit container MDMI Semantic Elements allow the hierarchical structure of a
message format to be maintained in the MDMISemanticElementSet. In the case where a container
MDMISemanticElement has no message-based properties itself, that container should be of type
Computed with a simple index as the computed value.

A zero-to-many association to the MDMISemanticElementRelationship class. The
MDMISemanticElementRelationship provide the valid context for each MDMISemanticElement.

A one-to-one relationship to a syntax Node. The Node provides the syntax information associated
with the MDMISemanticElement.

A many-to-one (or -zero) association with a SimpleMessageComposite. SimpleMessageComposites
provide a convenient mechanism for grouping MDMISemanticElements.

A many-to-one association with its parent MDMISemanticElementSet.

. A zero-to-many association with the DataRule class, which specifies a set of rules that apply to the

datatype of the MDMISemanticElement.

A zero-to-many association with a keyword list, which can be used to identify the
MDMISemanticElement for searches and which can be associated with a formal ontology.

A zero-to-many association with a MDMISemanticElementBusinessRule, which provides for a
specific set of rules that should apply to the value of the MDMISemanticElement.

A one-to-many association with the ToOMDMIBusinessElement class that describes the conversion
of the value of the MDMISemanticElement to conform to the reference value of the MDMI Business
Element referenced by the MDMIBusinessElementReference class.

A one-to-many association with the ToMDMISemanticElement class that describes the conversion
of the reference value of the MDMI Business Element referenced by the
MDMIBusinessElementReference class to the value of the MDMISemanticElement.

Model Driven Message Interoperability (MDMI) 2.0 21

8.3.5 Keyword — Detailed Semantics

Keyword description:

The keyword class contains either a keyword or a keyword/value pair. The set of Keywords can be used
to profile a MDMI Semantic Element, to provide a mechanism to search for a MDMI Semantic Element,
and to associate a MDMI Semantic Element with an external ontology or taxonomy. See also Section
8.x.x for an alternative approach mechanism for searching.

Keyword properties:
1. The optional “description” property, of type string, describes the Keyword and/or the set of Keyword
associated with a MDMI Semantic Element.
2. A “keyword” property, of type String, used to describe or profile a MDMI Semantic Element.

An optional “keywordValue”, of type string, that is associated with the keyword creating a
keyword/value pair.

4. An optional reference, of type String, identifies the origin set for the keywords, for example a formal
ontology.
Keyword associations:
1. An optional many-to-one association with the MDMI Semantic Element it is describing.

8.3.6 SimpleMessageComposite — Detailed Semantics

SimpleMessageComposite description:

SimpleMessageComposite represent aggregations of MDMI Semantic Elements.
SimpleMessageComposite is an informative artifact that can be useful when a group of MDMI Semantic
Elements are associated with a class in an object model. Usually the attributes of an object will be
equivalent to a MDMI Semantic Element and the object itself equivalent to a SimpleMessageComposite.

SimpleMessageComposite properties:
1. A “name” property, of type String, names the SimpleMessageComposite.
2. An optional “description” property, of type String, describes SimpleMessageComposite.

SimpleMessageComposite generalization:
MessageComposite inherits from SimpleMessageComposite.

SimpleMessageComposite associations:
1. A zero-to-many association with a MDMISemanticElementSet by composition.
2. A (zero or one)-to-many association with MDMI Semantic Elements.

8.3.7 MessageComposite -- Detailed Semantics
MessageComposite description:

The MessageComposite class inherits from the SimpleMessageComposite class, allowing the construction of a
complex object tree. MessageComposite are an informative artifact that can be useful when there is a desire to
associate MDMI Semantic Elements with a complex object model.

MessageComposite associations:

A zero-to-many association with other MessageComposites that are the children of the MessageComposite,
thus providing a mechanism to specify a tree of MessageComposites.

22 Model Driven Message Interoperability (MDMI) 2.0

8.4 MDMIDatatype, DataRules

8.4.1 Overview

The MDMIDatatype reference a datatype used in the model. These MDMIDatatypes are not considered part of
the MDMI standard. The specification does not deal with datatypes directly but some restrictions on
MDMIDatatype definitions are necessary for syntactic modeling and to ensure that a runtime engine will do
proper transformations. These restrictions include: 1) that the simple datatypes be from a known standard,

such as the XML simple datatypes; and 2) that complex datatypes are ultimately composed of simple datatypes
and that every simple datatype has an identified “fieldname.” Associated with any value can be DataRules that
describe constraints for that datatype (e.g., a ZIP code value must be in a table of legal ZIP codes). DataRules
must be written in an appropriate Rule Expression Language that can access the components of a complex
MDMIDatatype using the simple datatype fieldname.

8.4.2 An example of Complex Datatype

A Semantic Element can be composed of complex datatypes that span a number of fields (or sub-fields) in a
message format. Each such field, by itself, does not have a specific meaning in the message but is rather a
syntactic artifact that — when combined with other fields — represent a complete datatype. For example, an
address is can be composed of many fields and is a complex datatype. The Syntax Model must be able to
associate each component of a complex datatype with a field in the message.

An example of a modeled MDMI complex datatype is shown in figure 8.4.2. This complex datatype model is
composed of classes, where the classes themselves can be complex datatypes or a class with a single valued
simple datatype. Ultimately, all complex datatypes resolve to a set of simple datatypes, which correspond to
fields (or subfields) in a message format. Therefore, to accommodate MDMI Semantic Elements that are
complex datatypes, a “fieldname” attribute is a property of the Node abstract class, which holds the name of
the simple datatype class. For computational efficiency, a derived attribute is also added that says this node
instance contains a syntactic element that is part of a complex datatype.

Model Driven Message Interoperability (MDMI) 2.0 23

package MDMI specification{ MDMI Datatypesu

<<specification>> <<specificafi
specification>>
MDMSIDataty pe < ExternalDatatype
+name : String I
+description : String [0..1] *typeSpecification : UR!

]

<<specification>> <<specification>>
SimpleDatatype ComplexDatatype
<<specification>> <<specification>> <<specification>>
PrimitiveDatatype DerivedDatatype EnumeratedDatatype
+referenceURI : String +bangype : SimpIeDatatype <<specification>> <<specification>>
*restriction : String StructuredDatatype ChoiceDatatype
\\\ i \
<<specification>> \ / \
binary : PrimitiveDatatype / \
name = "binary" A type derived from another
referenceURI = "http://www.w3.0rg/2001/XMLSchema#hexBinary" simple type by means of a /
restriction (constraint on the /
— possible values the base type |+fields1..* +ields|1..*
<<spe<.:|f|.c.at|on>> may ha\(e). For e)(ample a <<specification>>
boolean : PrimitiveDatatype string with a maximum length / Field
name = "boolean" of 35. +literals St
referenceURI = "http://www.w3.0rg/2001/XMLSchema#fboolean” 1. [I © Sl
— / +description : String [0..1]
<<specification>> +datatype : MDMIDatatype [0..1
<<specification>> EnumerationLiteral +minOccurs : int = 1
dateTime : PrimitiveDatatype +name : String / +maxOccurs : int = 1
name = "dateTime" +description : String [0..1] /
referenceURI = "http://www.w3.0rg/2001/XMLSchematidateTime" +code : String / /
/ /
/ /
<<specification>> //
/ /

decimal : PrimitiveDatatype

A choice is a complex type that

name = "decimal”
referenceURI = "http://www.w3.0rg/2001/XMLSchemat#decimal” |
"\, |represents exactly one selection
between two or more fields.

<<specification>> A structure consisting of one u
integer : PrimitiveDatatype or more named fields of a EaCh field has Ia unique nfmev a
i i atatype (simple or complex),
name = "integer" specified datatyp§ (S|mple o and n};’;y gppepar betweerﬁ 1 ;nd
ferenceURI = "hitp:/jwww.w3.0rg/2001/XMLSchematinteger” complex). Recursion is i ion i
rete Up: RWot lemaiinteger allowed.Field names are unbound times. Recursion is
unique within the structure. | |allowed. Note that a field of a
. Each field may appear choice cannot have
<<specification>> between 0 and unbound minOccurs=0 - that is it should
stiingEiRTinltiveDatatyps times. Order/sorting are not | |appear at least once, to avoid
ambiguity.

implied

name = "string"

referenceURI = "http://www.w3.0rg/2001/XMLSchemat#string"

Figure 8.4.2 — Complex Datatype

24 Model Driven Message Interoperability (MDMI) 2.0

8.4.3 MDMIDatatype, DataRules — Abstract Syntax

package MDMI[[ES MOMIB.4.3])

DatatypeMap

DataRule
dllnbuies
rule : String [1]
name : String [1]

alnbuies
language : String [1]
name : String [1]
description : String [0..1]
fromMDHKI : String [1]
toMDMI : String [1]

semanticElement

=

MDMISemanticElement

alinbures
name : String [1]
computedValue : MDMExpression [0..1]
orderingLanguage : String [0..1]
elementType : String [1]

1

description : String [0..1]
ruleExpressionLanguage : String [1] 1 1
datatype : MDMIDatatype [1]
dataRules+0..*
maps SEER datatygesdatatype MDMIDatatype
1 alinbures
censtrains values maps mgszage datatepaageDatatyvpe description : String [0..1]
name : String [1]

children

computedinValue : MDWIExpression [0..1]
+ordering : String [0..1] 0
propertyQualifier : String [0..1]
+multipleinstances : Boclean [0..1] = falze
description : String [0..1]
+computedOutValue . MDMIExpression [0..1]
datatype : MDMIDatatype [1]

parentyd..1

*

oW n3

Figure 8.4.2 — MDMIDatatypes, DataRule

8.4.4 MDMIDatatype — Detailed Semantics

MDMIDatatype description:

Model Driven Message Interoperability (MDMI) 2.0

25

The MDMIDatatype class contains a reference to a conformant datatype (i.e., one that can be processed by the
DataRule language). This class is used as a property type.

MDMIDatatype properties:
1. A “name” property, of type string, names of the MDMIDatatype.
2. An optional “description” property, of type string, describes the MDMIDatatype..
3. A “reference” property, of type URI, contains a reference to the MDMIDatatype definition

26 Model Driven Message Interoperability (MDMI) 2.0

8.4.5 DataRules — Detailed Semantics
DataRule description:

The DataRule class contains a rule that is a constraint on the MDMIDatatype that are used in the
MessageGroup, to ensure that values extracted or inserted are known.

DataRules properties:
1. A “name” property of type String whose value is the name of the DataRule.
2. An optional “description” property, of type String, contains a description of the DataRule.

3. A “rule” property, of type String, contains an expression for a rule or constraint associated with an
MDMIDatatype either for the entire MessageGroup or for the particular use of an MDMIDatatype
in a MDMI Semantic Element class.

4. A “ruleExpressionLanguage,” of type String, references the language in which the “rule” property is
expressed. The standard does not require any rule language but the language must allow access to
fields represented by simple datatype classes within a complex datatype.

5. A “datatype” property, of type MDMIDatatype and multiplicity of one-to-many, explicitly identifies
the MDMIDatatypes that are referenced in a DataRule’s “rule.” The “datatype” references the
complete structure of an MDMIDatatype, so that its structure and simple datatype fields are known.
The “datatype” property is used to assist in parsing and runtime processing.

DataRules associations:
1. Zero-to-many DataRules can be associated with a MessageGroup.

2. Zero-to-many DataRules can be associated with a MDMI Semantic Element class.

8.5 MDMIBusinessElementReference, Conversion Rule, To
MDMISemanticElement, To BusinessElement,
MDMIBusinessElementRule

8.5.1 Overview

The classes in this view describe the mapping between a MDMI Semantic Element and an
MDMIBusinessElementReference. An MDMIBusinessElementReference class references a MDMI Business
Element in a MDMI Domain SEER. No assumption is made about the format of the MDMI Business Element
in the MDMI Domain SEER. Because the format of the registry is not known and can even be a reference to
documentation, an MDMIBusinessElementRules class is included in the specification so that rules and
constraints concerning the MDMI Business Element can be specified.

Given the MDMIBusinessElementReference, a conversion between it and a MDMI Semantic Element can be
made. This conversion may not be symmetric so a mapping must be defined for each direction: MDMI
Semantic Element to MDMI Business Element and MDMI Business Element to MDMI Semantic Element.
(Mappings for both directions must be defined; one-way mappings are not allowed in the standard.) These
mappings are specified in a ToMDMISemanticElement class and a ToMDMIBusinessElement class. Both
classes inherit from a ConversionRule abstract class that defines how conversion rules are to be specified.

A key feature of the conversion is the restrictions that are implied in the ConversionRules
ruleExpressionLanguage. These restrictions define the allowed differences between MDMISemanticElements
for which mapping can be done. In effect, they define the domain of “near-synonyms” that are allowed in a
mapping. For example, a set of allowed conversion rules may include simple arithmetic expressions,
aggregation of a set of elements, the removal or inclusion of qualifiers, etc. If a MDMISemanticElement
cannot be mapped it implies that is not in the MDMI Domain SEER and should be added to it. The MDMI 2.0
Standard supports this ability. However, since MDMI Maps are generally developed independently, a MDMI
Domain SEER has added the requirement to eliminate hyponyms and hypernyms in a MDMI Domain SEER.
This should reduce the use of the MDMIConversionRule Class.

Model Driven Message Interoperability (MDMI) 2.0 27

8.5.2 Abstract Syntax

class DatatypelMap[DatatypeMap]J

MDMIBusinessElementRule MDMIDomainSEERReference

reference :‘UR\ [1-]-
description : String [0..1]
name : String [1]

description : 5
name : String [1]

ruleExpressionLanguage : String [0..1]
ule - Siring [1] MDCH : URIT1]
businessRulesy?
d SEERRef: A
MDMISemanticElement ESEEE S
at contains
name : String [1]
computedValue : MDMIExpression [0..1]
orderingLanguage : String [0..1]
elementType : String [1] children P *
computedinValue : MDMIExpression [0..1] 7S businessElementReferences 1.
=ordering : String [0..1] : specifies Busif mapping | MDMIBusi ElementReference
propertyQualifier : String [0..1] businessElement =
+multipleinstances : Beolean [0..1] = false iqueidentifier - St E 1
description - String [0..1] 1 e - Siring [
+computedOuti/alue : MDMIExpression [0..1] :‘:f’:fe":;g‘aﬂét}[e11]
datatype : MDMIDatatype [1] Ciaerony Slrinpg 0.1
mdmisemanticelement | Opdrenty0..1 ‘rjeftarEelnce t%RI i it - URI[1]
awner |1 ataElementConcept :
own! statementContext : URI[1]
1 businessElement |1
defines transform to messages

) describes conversion rule
defines transform from messages

rule |1.%

ToBusinessElement

tobDNI rule 1.2
ToMDMISemanticElement

1| deseription : String [0..1] -
‘ description : String [0..1]

ConversionRule

+rule : String [0..1]

name : String [1]

description : String [0..1]
ruleExpressionLanguage : String [0..1]

Figure 8.5 — MDMIBusinessElementReference and ConversionRule

8.5.3 MDMIBusinessElementReference — Detailed Semantics
MDMIBusinessElementReference description:

The MDMIBusinessElementReference is a class that references a MDMI Business Element in a MDMI
Domain SEER. No assumption is made about the format of the MDMI Business Element in the MDMI
Domain SEER. Therefore, the reference can only be informational. However, a function must be available
that, given the reference, will return a uniqueldentifier and a reference MDMIDatatype.

MDMIBusinessElementReference properties:
1. The “name” property, of type String, names the MDMIBusinessElementReference.

2. The optional “description” property, of type String, describes the
MDMIBusinessElementReference.

3. The “reference” property, of type URI, identifies the location of the
MDMIBusinessElementReference in a SEER. (URIs are very general addresses; i.e., the URI could
even point to a line in a page in a document; therefore, the “reference” property is informational.)

4. The “uniqueldentifier,” of type String, provides a unique identifier for all
MDMIBusinessElementReference instances that reference the same MDMI Business Element in the
SEER. There must be a function associated with the SEER that provides this identifier. Runtime
transformation engines recognize the matching source and target mappings for a MDMI Semantic
Element because they will each have the same “uniqueldentifier.”

5. The “referenceDatatype” property, of type MDMIDatatype, provides a reference datatype for each
MDMI Business Element in the SEER. There must be a function associated with the SEER that

28 Model Driven Message Interoperability (MDMI) 2.0

will deliver the “referenceDatatype.” Maps to/from this reference datatype to the “datatype” in the
MDMISemanticElement should be provided as a ConversionRule.

6. The StatementContext property shall be a URI referencing an OWL property in the MDMI MDCM.
The StatementContext property the context for the MDMI Business Element in the message format.
The statement context must be precise and unambiguous. It shall have no subtypes as subtypes
could introduce variation in the meaning. StatementContext may have “qualifiers.” Qualifiers are
properties intended to narrow the meaning of a context to make it precise and unambiguous. As a
healthcare example, a Medication Activity is a context but it is not precise or unambiguous. It is
not known whether the Medication Activity was an administration of a medication or an order for a
medication. Where the statement context has qualifiers, the restricted range of that qualifier shall
have no subtypes. (See Annex B: Informative:)

7. The DataElementConcept property shall be a URI referencing an OWL property in the MDMI
MDCM that identifies an atomic datum, such as a name or measurement value. It is expected that
data property concepts will reference datatype properties but MDMI does not make this restriction
to allow for representation flexibility and reified values. The referenced property must be precisely
and unambiguously defined. It must have a domain that is the same as or a supertype of the
StatementContext. It must have no sub-properties. It may have super-properties and such super-
properties may be useful in the process of locating MDMI Business Elements. It is frequently
useful to define a data property concept as a “path” or “chain” though other properties, such as
traversing from the statement context to its author to the author’s legal name. To ensure
uniqueness, properties referenced in a chain may not have sub-properties. (See also Annex B.)

MDMIBusinessElementReference associations:

1. MDMIBusinessElementReference has a one-to-many association with the ToMDMISemantic
class.

2. MDMIBusinessElementReference has a one-to-many association with the
ToMDMIBusinessElement class.

3. MDMIBusinessElementReference has a (zero or one)-to-many association with the
MDMIBusinessElementRule class.

4. MDMIBusinessElementReference has a many-to-one relationship with the
MDMIDomainSEERReference class.

8.5.4 ConversionRule — Detailed Semantics
ConversionRule description:
ConversionRule is an abstract class that defines a rule used to convert values.

ConversionRule properties:
1. A “name” property, of type String, names the ConversionRule.

2. An optional “description” property, of type String, describes the ConversionRule.
3. A “rule” property, of type String, holds an expression for converting one value to another.

A “ruleExpressionLanguage” property, of type String, is a reference to the expression language
used to define the rule. The scope of the language allowed in conversions should be limited so that
only very straightforward transformations are possible.

ConversionRule generalizations:

The abstract ConversionRule class is inherited by two classes, the “ToMDMIBusinessElement” and the
“ToMDMISemanticElement.”

8.5.5 ToMDMISemanticElement — Detailed Semantics
ToMDMISemanticElement description:

Model Driven Message Interoperability (MDMI) 2.0 29

The ToMDMISemanticElement associates an MDMIBusinessElementReference to a MDMISemanticElement,
describing the directed conversion rule for converting the reference value of a MDMI Business Element to the
value in a MDMISemanticElement. MDMIBusinessElementReferences may be related to more than one
MDMISemanticElement but will have a separate ToMDMISemanticElement class with individual rules for
each relationship.

ToMDMISemanticElement properties:

1. The optional “description” property, of type String, describes the ToMDMISemanticElement.

ToMDMISemanticElement associations:
1. A many-to-one association with an MDMIBusinessElementReference.
2. A many-to-one association with a MDMISemanticElement.

8.5.6 ToMDMIBusinessElement

ToMDMIBusinessElement description:

The ToMDMIBusinessElement associates an MDMIBusinessElementReference with a
MDMISemanticElement, describing the directed conversion rule for converting the value of the
MDMISemanticElement to the reference value of the referenced MDMI Business Element. A
MDMISemanticElement may be related to more than one MDMIBusinessElementReference but will have a
separate ToMDMIBusinessElement class with individual rules for each relationship.

ToMDMIBusinessElement properties:

1. The optional “description” property, of type String, describes the ToBusinessElement.
ToMDMIBusinessElement associations:

1. A many-to-one association with an MDMIBusinessElementReference.

2. A many-to-one association with a MDMISemanticElement.

8.5.7 MDMIBusinessElementRule

MDMIBusinessElementRule description:

Given that the MDMI standard allows mapping to any appropriate MDMI MDCM then some business rules
may have to be specified within a map to make sure that the mapping is correct. Instances of the
MDMIBusinessElementRule maintain these rules.

MDMIBusinessElementRule properties:
1. A “name” property, of type String, contains a name of the rule.
2. An optional “description” property, of type String, provides a description of the rule.

3. A “rule” property, of type String, is an expression defining the rule that applies to an associated
MDMIBusinessElementReference.

4. An optional “ruleExpressionLanguage,” of type String, provides a reference to the language used in
the “rule” property. This language must be able to describe the context in which the rule applies.
The language should be able to reference the value of any MDMI Semantic Element instance and it
should allow external function calls. If this property is not specified the default
ruleExpressionLanguage will be used.

MDMIBusinessElementRule associations:

1. The MDMIBusinessElementRule has a many-to-one association with an
MDMIBusinessElementReference.

30 Model Driven Message Interoperability (MDMI) 2.0

8.6 MDMISemanticElementRelationship

8.6.1 Overview

The MDMISemanticElementRelationship classes define all the allowed contexts for MDMISemanticElement
in a message format. For example, a MDMISemanticElement that is “ClientAccountBalance” may not be
valid in a message instance unless there is also a value in the MDMISemanticElement “ClientAccountID.”
The MDMISemanticElementRelationship class would define this relationship. On the other hand,
“ClientAccountID” may exist without a value for “ClientAccountBalance,” in which case there will be no
MDMISemanticElementRelationship associating “ClientAccountID” with “ClientAccountBalance.”

An important relationship is the parent-child relationship. For example, the MDMI Semantic Element of
MedicationAdministrationActivity is the parent of many MDMI Semantic Element siblings, such as MDMI
Business Elements that describe the who, what, where, why, and when data concepts within a
MedicationAdministrationActivity. This pattern is found throughout all industries.

Model Driven Message Interoperability (MDMI) 2.0 31

8.6.2 Abstract Syntax

class WODMISemanticElementRelationship [MDMISemanticElementRelationship]/J

MDMISemanticElementRelationship

description : String [0..1]
targetizinstance : Boolzan [1]
ruleExpressionLanguage : String [0..1]
minJccurs : Integer [1]

rule : String [1]

name : String [1]

sourcelsinstance : Boolean [1]
maxOccurs : Integer [1]

relationship 1 1

mdmisemanticelementrelationship

relateg defines context reguirements

relateMDNMISemanticElementddntext | 1
MDMISemanticElement

name : String [1]

computedi/alue : MDMIExpression [0..1]
orderingLanguage : String [0..1]
elementType : String [1] children
computedinyalue : MDMIExpression [0..1] 3
+ordering : String [0..1] 0..
propertyQualifier : String [0..1]
+multipleinstances : Boolean [0..1] = false
description : String [0..1]
+computedOutValue : MOMIExpression [0..1]

parenty0..1

owng

Figure 8.6 — MDMISemanticElementRelationship

8.6.3 MDMISemanticElementRelationship — Detailed Semantics
MDMISemanticElementRelationship description:

The MDMISemanticElementRelationship class is a key artifact in the MDMI standard. It provides all the
context and dependency relationships for each MDMISemanticElement. MDMISemanticElementRelationship
makes it possible to extract and insert MDMISemanticElement values in a valid manner.

MDMISemanticElementRelationship properties:
1. A “name” property, of type String, assigns a name to the rule.
2. An optional “description” property, of type String, provides a description of the rule.

3. A “rule” property, of type String, defines a relationship between a source MDMI Semantic Element
and other MDMI Semantic Elements in the MDMISemanticElementSet.

32 Model Driven Message Interoperability (MDMI) 2.0

A “ruleExpressionLanguage” property, of type String, that contains a reference to the expression
language used in the “rule” property. This rule language must be able to access the values of any
MDMI Semantic Element and to do that it must be able to access the fields in complex datatypes.

“minOccurs” property, of type integer, indicates how many instances of the target at a minimum must
be involved in the relationship.

A “maxOccurs” property, of type integer, that says how many instances — at most — can be involved in
the relationship.

A “sourcelsInstance” property, of type Boolean. When the sourcelsInstance is true, the defined
relationship is for each Instance of the source MDMI Semantic Element. (The association with the
“source” MDMI Semantic Element is labeled “relatedMDMISemanticElement.” The
relatedMDMISemanticElement owns the relationship by composition. This source is the
MDMISemanticElement whose context is being modeled. When the sourcelsInstance is false, the
defined relationship is for the source MDMISemanticElement class as a whole.

A “targetlsInstance” property, of type Boolean. When the targetlsInstance is true, the defined
relationship is for each Instance of the target MDMISemanticElement. (The association with the
set of one-to-many “targets” is labeled “context.” Thus, a MDMISemanticElementRelationship
describes a relationship between a source and the other MDMISemanticElements, which are then
targets.) When the targetIsInstance is false, the defined relationship is for the
MDMISemanticElement class as a whole.

MDMISemanticElementRelationship associations:

1.

8.7

The MDMISemanticElementRelationship has a zero- or many-to-one association with its source
MDMISemanticElement.

The MDMISemanticElementRelationship has a one to-one association with a target
MDMISemanticElement.

MDMISemanticElementBusinessRule

8.7.1 Overview

The MDMISemanticElementBusinessRule class contains a rule that is to be applied to a specific
MDMISemanticElement in the context of the MessageModel that contains the MDMI Semantic
Element.

Model Driven Message Interoperability (MDMI) 2.0 33

8.7.2 Abstract Syntax

class MDMIB

Rule[[£) MOMIBusi Rl]J

MDMISemanticElement
name : String [1]
computedValue : MDMIExpression [0..1]
orderingLanguage : String [0..1]
elemeniType : String [1] children
computedinValue | MDMIExpression [0..1] 3
+ordering : String [0..1] 0.
propertyQualifier : String [0..1]
+multipleinstances : Boolean [0..1] = false
description : String [0..1]
+computedOut\alue : MDMIExpression [0..1]
datatype : MDMIDatatype [1]

semanticElementy0..1 parenty0..1

own

provides business context

businessRules #1
MDMISemanticElementBusinessRule

name : String [1]

rule : String [1]

description : String [0..1]
ruleExpressionLanguage : String [1]

8.7.3.

Figure 8.7 — MDMISemanticElementBusiness Rule

MDMISemanticElementBusinessRule — Detailed Semantics

MDMISemanticElementBusinessRule description:

The MDMISemanticElementBusinessRule holds a rule that is to be applied to a MDMISemanticElement to
make sure that the MDMISemanticElement is valid. MDMISemanticElementBusinessRule usually do not
refer to other MDMISemanticElements in a message. They are meant to provide rules that reflect an external

context,

e.g., a “Primary AcountID” MDMISemanticElement must be from an EU bank, etc.

MDMISemanticElementBusinessRule properties:

1.

2.
3.
4

A “name” property, of type String, assigns a name to the rule.
An optional “description” property, of type String, provides a description of the rule.
A “rule” property, of type String, is an expression defining a business rule or constraint.

A “ruleExpressionLanguage” property, of type String, is a reference to the expression language used
in the “rule” property.

MDMISemanticElementBusinessRule associations:

34

Model Driven Message Interoperability (MDMI) 2.0

1. A zero- or many-to-one association with the MDMISemanticElement to which the
MDMIBusinessElementRule applies.

8.8 Summary of Complete Metamodel

8.8.1 Overview
The complete metamodel is shown in Figure 8.8.

8.8.2 Abstract Syntax

eckage O WOW621]

reterence - URI

WoCH - URIF]

descrpton - Strma 0.1]
name ' Sirno 1]

MOMIDomainSEERReference

[

ton: Sting 011
Sinng (1)

maps message datatype

language : Sting 1]

oDl Stng (1

Gatstypernap]o 1

WiessageGroun

name : Stng 1)
GefstRueEressonLanguage S 1]

ne

1

domsinSEERRaference

businessElementReterences {1,

q

repostory
7

oroup
T riangisge Sy
sssbrlabosse Si%o St

uan

ot
Aoy aspospe - S¥g]

P akes unforn

choee I)

consraint - Sting [0.1)

isOrderea: Sookean [- ase

rap SeER dtatypes
saurce URITD 1]
e st
e — Geseroion” Seng D
B modelf1 model
gves smcure
synaaioceft
[E——TE
gues neanng
name :Sung 1~
rovies reusale arfact Pt o)
A symaiodefo 1 e
represent message frmat
o srows
s angiage” Svva.] [
cenentse cenentseft
I o]

e e st ‘
S S

it

pression anguage - Srna 1
Gattye. NOHDatae (1]

e

constrans values

JE——

MOWIsemanicEiement

name s 1]
Compusdvale HOlEsrsson 0.1
ng 0.

mputedOut/aie - HOEspression [0.1]

erwion “Sing 0.1]

partor

noge

owner|0.1 bag [0.1

gnes possbites [repeserts se

o
g

resteDSemanscEament
7

uniquedentter Sng 1]
name Sima 1]

SinemaniConiext - U1

MDMIBusinessEiementisterence

busnesstementl

spacifes Busnesagiement mappng

businessiues {1

descrpton Sima 0.1
nams g 11

nisExpressionLanguage :Srng 0.1)
e Srmg 1

descrves converson re

Conversiondule

e preson asguage: S 011

retes

onou 1

1 tobusiesseiement
ment

d

ToNoMISemanticElement ‘ [

1

NOMISemanticElementRelationship

reatonsng

goscrpion: Sin

901
ance Sescsn (1
U xpression anguage - S 0. 1]

TOGGurs. meger

e S 1)
hame S

(]

1]
Sourcelsstance - Booean (1]
maxGccur - nisger (1]

keywards

usinessRus
Keyword T

[
name : Sirng 1]
i Sirng 1)
ueunwnn Sirng (0.1)
JeExpressinlanguage : Srng 1

descrpion Sing 1)
roerence - Sing (1]
KeywordVaie Sing 0.1)
keyword - St [1

i
maxOceurs : tegeq (1= 1
“provies Wormay

Leatsyntaxtransiator
fornatExpressionLanguage - Srna 0. 1]
format Sing (1]

Figure 8.8 — Summary: Complete Metamodel

Model Driven Message Interoperability (MDMI) 2.0

35

Annex A - List of Acronyms

Abbreviation Notes
ANF Analysis Normal Form
Clinical Document Architecture
Ccba http.://’www.hl7.org/
Health Level 7
L0 http.://’www.hl7.org/
Health Level 7 messaging standard
HL7 V2 http.://'www.hl7.org/
FHIR® Fast Healthcare Interoperability Resources
https.//www.hl7.org/fhir/
FIX Financial Information eXchange
http://www.fixprotocol.org
Financial products Markup Language is the industry-standard protocol for complex financial
FpML products.
http://www.fpml.org
Interactive Financial eXchange
IFX ;
www.ifxforum.org
MDDL Market Data Definition Language
www.mddl.org
Society for Worldwide Interbank Financial Telecommunication supplies secure messaging
Swift services.
http://’www.swift.com
. Transaction Workflow Innovation Standards Team
Twist .
www.twiststandards.org
36 Model Driven Message Interoperability (MDMI) 2.0

http://www.hl7.org/
http://www.hl7.org/
http://www.hl7.org/
https://www.hl7.org/fhir/
http://www.fixprotocol.org/
http://www.fpml.org/
http://www.ifxforum.org/
http://www.mddl.org/
http://www.swift.com/
http://www.twiststandards.org/

ANNEX B - Informative Healthcare Examples

The following describes how the MDMI Healthcare Concept Model was developed and used to assign
StatementContext and DataElementConcept properties for MDMI Business Elements, a diagram of the
informative model, and examples developing the StatementContext and DataElementConcept properties. The
MDMI Healthcare Concept Model is the domain-specific MDMI Domain Concept Model.

Developing the MDMI Healthcare Concept Model
The process used to develop the MDMI Healthcare Concept Model was:

1. Define the scope of the MDMI Business Element set in the MDMI Healthcare SEER.
2. Select the MDMI Reference Ontology(-ies) and terminologies (‘“Reference Models™) for the MDMI
Healthcare Concept Model .
Develop an initial MDMI Healthcare Concept Model.
4. Refactor the model based on input from healthcare industry subject matter experts and experience in
creating StatementContext and DataElementConcept properties for MDMI Healthcare Business
Elements.

W

Step 1: Scope of MDMI Business Elements for informative model
The present domain of interest for the MDMI Healthcare Domain is any business concepts exchanged
among the industry-standard message standards of FHIR R4, CCDA 2.1, and HL7V2.x. For this example,
the scope has been further limited to MDMI Business Elements are those MDMI Business Elements that
have the StatementContext property of Clinical Statement.

Step 2: Select the MDMI Reference Model

There was no single ontology or terminology identified that could be used as a MDMI Reference Model..
Multiple industry ontologies and terminologies are required. The informative section has chosen the HL7
ANF standard as the primary Reference Model for the following reasons:

e [t has a well-defined definition for a Clinical Statement that is fundamental for specializing
the StatementContext property.

e [t provides a broad range of properties and classes for specializing the DataElementConcept
property.

e It provides a broad foundation that can and has references to industry standard ontologies and
terminologies. The ANF standard and related technologies has the mission to harmonize the
ontologies and terminologies used in clinical statements. This includes SNOMED-CT from
the International Health Terminology Standards Development Organization (IHTSDO)
containing more than 300,000 concepts and 1.6 million relationships between the concepts;
LOINC from the Reigenstreif Institute with more than 71,000 terms; and RxNorm from the
U.S. National Library of Medicine.

e Other healthcare ontologies and terminologies were used to complement ANF as required.
The primary sources were terminologies produced by the HL7.

Step 3: Assigning the MDMI StatementContext property and the
DataElementConcept property in the MDMIBusinessElementReference

This was achieved manually by members of the proposal team. The basic processes were to:

1. Select the existing MDMI Business Elements in the MDMI Healthcare SEER based on the
scoping criteria.

Model Driven Message Interoperability (MDMI) 2.0 37

2. Using the MDMI Healthcare Concept Model, assign a StatementContext property to the
MDMIBusinessElementReference.

3. Using the MDMI Healthcare Concept Model , assign a DataElementConcept property to the
MDMIBusinessElementReference.

Step 4: Running the MDMI Acceptance Test

It is anticipated that the MDMI Acceptance Test will be used to add new MDMI Business Elements to the
MDMI Healthcare SEER. There are two components of the MDMI Acceptance Test: the Uniqueness Test
and the Precision Test.

Step 4.1 — The Uniqueness Test
The Uniqueness Test ensures there are no MDMI Business Elements are synonyms in a MDMI Domain
SEER. Iftwo different MDMI Business Elements have the same StatementContext property and
DataElementConcept property, these MDMI Business Elements are synonyms. If the MDMI Business
Elements were determined to be synonyms, only one of the MDMI Business Elements was included in the
MDMI Healthcare SEER.

Acceptance Criteria for Uniqueness Test: If the new MDMI Business Element does not have any other
MDMI Business Elements with the same StatementContext property and DataElementConcept property,
the MDMI Business Element has passed the Uniqueness Test.

If the new MDMI Business Element did not pass the Uniqueness Test, the following actions was taken.
e Those MDMI Business Elements that were determined to be synonyms were discarded.
e Ifit determined the duplicate MDMI Business Element were not synonyms but have duplicate
StatementContext and DataElementConcept properties, then:

o if it were determined that the StatementContext and DataElementConcept properties were
not specified correctly, they were re-factored and the more accurate representations were
assigned for these properties.

o if it were determined that the StatementContext and DataElementConcept properties had
been specified correctly, the MDMI Healthcare Concept Model was reviewed to
determine if it needed to be refactored. If this were the case, the MDCM was refactored
and more accurate StatementContext and DataElementConcept properties are assigned
for the MDMI Business Element based on the refactored the MDMI HEALTHCARE
CONCEPT MODEL. Also reviewed were the existing MDMI Business Elements to
determine if the refactored MDMI HEALTHCARE CONCEPT MODEL may have
impacted any other MDMI Business Element. If this were the case, new
StatementContext properties and DataElementConcept properties were assigned.

o The Uniqueness Test was repeated for entire scope of MDMI Business Elements repeated
until all MDMI Business Elements passed.

Step 4.2 — The Precision Test

The Precision Test is to ensure that the MDMI Business Elements are not a hyponym or hyponym of
another MDMI Business Element. The practical meaning of this is that different values in the
MDMIBusinessElementReference in the StatementContext property and the DataElementConcept cannot
be used to accurately describe the same MDMI Business Element. As an example, having MDMI Business
Elements of PatientPhone, PatientHomePhone, and PatientCellPhone could lead to loss of information in a
transformation.

Acceptance Criteria for Precision Test: The StatementContext property and the DataElementConcept
properties are compared for all MDMI Business Elements. If the condition was found that there was a set
of MDMI Business Elements that had a hypernym/hyponym relationship, the StatementContext property
and DataElementConcept property were refactored until the MDMI Business Element passed the Precision
Test.

38 Model Driven Message Interoperability (MDMI) 2.0

The Precision Test was repeated for entire scope of MDMI Business Elements until all MDMI Business
Elements passed.

Step 4.3 — Final Test
A final test is to repeat for all the MDMI Business Elements to ensure they passed the Uniqueness Test
and the Precision Test.

MDMI Healthcare Concept Model

The MDMI Healthcare Concept Model is depicted below. This model was developed based on the above
process, although the Acceptance Test was executed on a very small subset of MDMI Business Elements. The
model can be found at https://www.omg.org/spec/MDMI/2/ health/20-02-04

The model has been segmented into two different diagrams below. The first diagram is a generic model
intended to be applicable across different industry domains.

package DI Generic Statement Hodell (2] MDMI Generio Statement Wodel 1 |

about | wAnythings
Thing
wRestrictions entity
{redefnes about}| has name : name (0.7
L [esi0
Tneomplete, disjoint}

«Facet Ofn

“Rolen

e hysicatocstion | | substance | [ty methoa
has start date time - date [0..1]
has end date time : date [0..1]
occurs on : date [0..1]

has method

device activity method

is statement about situation has paicipant ————-

<Roler
{subsets about | has status - siatus 0. cFacstofy responsible actor
has classificalion : classificaton (0.7 about participant participant =
is opinion about pR— has legal name - name [0, Tisubsels has name
tsubscts about} Tincomplte, dsjoni}
=
T = mpacts

observes Roes “Roles
| cFacetOfs ion | [software agent

has device 0.
device

{subsets impacis}

performer subject

{ncomplete, disjointy

state of affairs held by 0.+ |has performer
. repetitive {subsets has participant} [tsubsets has participant}
repetion frequency : duration [0.] (subsets nas legal name}
ity repeition separation - duration (0] has person legal name [0~

repetition duration ° duration [0.] Occurrence |
lquaity valve - valve [1] repetiion count - quantiy 0. - |

=

its iny

B s
o i s mpac

hes purpose : classiicaton 0.1] |

1
| =
compicte, overlapping}
statement wenumerations

[statement has mode - statement mod [0.] statement mode mplete, disjpint}

Qe s «Restrictions.

assertion request —‘

)

| e
incuiry i

result
J— o j— reference range [classification has numeric value - quantiy [1]
. e Resiricton J *‘E e \—s[\—I

Figure B-1.
Generic component of the MDMI Healthcare Concept Model

The second diagram contains healthcare specific concepts that are required to precisely and accurately describe
information exchange in the healthcare domain. In this diagram, those classes in a pale shading are also
represented in the generic model, Figure B-1.

Model Driven Message Interoperability (MDMI) 2.0 39

https://www.omg.org/spec/MDMI/2/

package MDMIExample Healthcare Domain Model [[& MDM| Example Healthcare domain model 1) =
Anything

Thing

about

T{mcnmplﬂe_ disioint}
iatement Model

date [0.1]
date [0.1]
1

body structure
= has method
lateraliy - value [0.]
person

«Facet O

substance

has ingredient| 1.+

activity method
device activity method

situation has site 0.1 has participant

Role

- status 0.7 i

n - classification [0.] participan
obse

Uit in
subsets impacts}
g B2 don {subsets hag participant]
Occurrence

Role
subject
(MDMLMDMI Generic Statement Hode
<Restrictions
[redesnes abouty

medication

has strength : quantty [0.7]
has dose form: value [0.]

consumes 0.7

health condition

allergy Dmmoﬂ
{redefines is
opinion about}
i > \ w .

I

quality allergic reaction observation [[[|
Quaty value - vaiue 1] ‘ consult | ‘nrooedurel ‘ ‘encounter ‘ medication activity
7 s route - vabue [0.°]
has dosage : quanity [0.]

vital sign E vital sign observation

K
5 gefnes observes}

has vial I tey [1subsets qualty valus}

[y 1 Y21 observes vilal sign value - quantity

{redefines about)
Restrictio

Figure B-2.
Healthcare specific component of the MDMI Healthcare Concept Model

Example of the StatementContext and DataElementConcept
properties for MDMI Business Elements

A healthcare professional takes the systolic blood pressure for the patient. Although there are many more
MDMI Business Elements necessary to completely and precisely describe this Situation, the MDMI Business
Elements used for this example is VitalSignObservationActionFocus.

The StatementContext property for the MDMI Business Element.

Graph description: The StatementContext property for the MDMI Business Element of
VitalSignObservationActionFocus: “ is a Statement about a Situation that is an Occurrence of an
Event which was the Activity of an Observation about a Health Condition that is Vital Sign.”

StatementContext property: VitalSignObservation

The DataElementConcept property for the MDMI Business Element. (The actual value is Systolic Blood
Pressure)

Graph description: DataElementConcept property for the MDMI Business Element of

VitalSignObservationActionFocus: has a Value that is ActionFocus.
DataElementConcept property: ActionFocus

40 Model Driven Message Interoperability (MDMI) 2.0

	1 Scope
	2 Conformance
	3 Normative References
	4 Terms and Definitions
	5 Additional Information
	5.1 Acknowledgements

	6 Overview
	6.1 Different Ways to Use the Current Standard
	6.1.1 Message Transformation: Moving Data from One Message to Another
	6.1.2 Versioning
	6.1.3 Moving Data from an Internal Enterprise Message Format to an External Standard
	6.1.4 Design Considerations in Applications Requiring Message Transformation

	6.2 Basic Approach for the Use of This Standard
	6.2.1 Developing artifacts using the UML model
	6.3 Adding a new MDMI Business Element to a MDMI Domain SEER
	6.3.1 No Synonyms in a MDMI Domain SEER (MDMI Uniqueness Test)
	6.3.2 No Hypernyms or Hyponyms (MDMI Precision Test)

	6.4 Future Benefits of the Standard
	6.4.1 3600 View of diverse IT eco-system
	6.4.2 Support of Business Processes Automation
	6.4.3 Handling Lossless Conversion

	7 Use of MDMI Artifacts Overview
	7.1 Informal Overview of Artifacts
	7.1.1 Step 1 – Remove the Syntax
	7.1.2 Step 2 – Mapping a Source MDMI Semantic Element to a Target MDMI Semantic Element using a Unique Identifier acquired from MDMI Domain SEER

	8 UML Semantics – Normative Definition
	8.1 MessageModels, MessageGroup, MDMIDomainSEERReference
	8.1.1 Overview
	8.1.2 Abstract Syntax
	8.1.3 MessageModel – Detailed Semantics
	8.1.4 MessageGroup – Detailed Semantics
	8.1.5 MDMIDomainSEERReference
	8.1.6 DatatypeMap – Detailed Semantics

	8.2 MessageSyntaxModel, Node, Bag, Choice, LeafSyntaxTranslator
	8.2.1 Overview
	8.2.2 Abstract Syntax
	8.2.3 MessageSyntaxModel – Detailed Semantics
	8.2.4 Node – Detailed Semantics
	8.2.5 Bag – Detailed Semantics
	8.2.6 Choice – Detailed Semantics
	8.2.7 LeafSyntaxTranslator
	8.3.1 Overview
	8.3.2 Abstract Syntax
	8.3.4 MDMISemanticElement – Detailed Semantics
	8.3.5 Keyword – Detailed Semantics
	8.3.6 SimpleMessageComposite – Detailed Semantics
	8.3.7 MessageComposite -- Detailed Semantics

	8.4 MDMIDatatype, DataRules
	8.4.1 Overview
	8.4.2 An example of Complex Datatype
	8.4.3 MDMIDatatype, DataRules – Abstract Syntax
	8.4.4 MDMIDatatype – Detailed Semantics
	8.4.5 DataRules – Detailed Semantics

	8.5 MDMIBusinessElementReference, Conversion Rule, To MDMISemanticElement, To BusinessElement, MDMIBusinessElementRule
	8.5.1 Overview
	8.5.2 Abstract Syntax
	8.5.3 MDMIBusinessElementReference – Detailed Semantics
	8.5.4 ConversionRule – Detailed Semantics
	8.5.5 ToMDMISemanticElement – Detailed Semantics
	8.5.6 ToMDMIBusinessElement
	8.5.7 MDMIBusinessElementRule

	8.6 MDMISemanticElementRelationship
	8.6.1 Overview
	8.6.2 Abstract Syntax
	8.6.3 MDMISemanticElementRelationship – Detailed Semantics

	8.7 MDMISemanticElementBusinessRule
	8.7.1 Overview
	8.7.2 Abstract Syntax
	8.7.3. MDMISemanticElementBusinessRule – Detailed Semantics

	8.8 Summary of Complete Metamodel
	8.8.1 Overview
	8.8.2 Abstract Syntax

	Annex A - List of Acronyms
	ANNEX B - Informative Healthcare Examples
	Developing the MDMI Healthcare Concept Model
	Step 1: Scope of MDMI Business Elements for informative model
	Step 2: Select the MDMI Reference Model
	Step 3: Assigning the MDMI StatementContext property and the DataElementConcept property in the MDMIBusinessElementReference
	Step 4: Running the MDMI Acceptance Test

	MDMI Healthcare Concept Model
	Figure B-2.
	Example of the StatementContext and DataElementConcept properties for MDMI Business Elements

