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Preface

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer in-

dustry standards consortium that produces and maintains computer industry specifications for interoperable, portable

and reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information

Technology vendors, end users, government agencies and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG’s

specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle ap-

proach to enterprise integration that covers multiple operating systems, programming languages, middleware and

networking infrastructures, and software development environments. OMG’s specifications include: UML®(Unified

Modeling Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse

Meta-model); and industry-specific standards for dozens of vertical markets. More information on the OMG is avail-

able at https://www.omg.org.

OMG Specifications

As noted, OMG specifications address middleware, modeling and vertical domain frameworks. All OMG Specifica-

tions are available from the OMG website at: http://www.omg.org/spec

Specifications are organized by categories; listing selected major categories below:

Fundamental Information Modeling Technologies

• Unified Modeling Langue (UML)

• Systems Engineering Modeling Language (SysML)

• Interface Definition Language (IDL)

Domain-Specific Technologies

• Business and Enterprise Modeling

• Industrial Engineering and Manufacturing

• Space, Control and Transportation Technologies

• Robotics

• Software and Systems Modernization

• Information Security
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• Healthcare

• Retail

Middleware and Real-Time Technologies

• Common Object Request Broker (CORBA)

• Data Distribution Service (DDS)

• Middleware Services

• Real-Time and Embedded Systems

• Signal Processing and Communication

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing

OMG specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF

format, may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group,

Inc. at:

OMG Headquarter

109 Highland Avenue

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Typographical Conventions

The type styles shown below are used in this document to distinguish programming statements from ordinary English.

However, these conventions are not used in tables or section headings where no distinction is necessary.

Times/Times New Roman - 10 pt.: Standard body text

Helvetica/Arial - 10 pt. Bold: OMG Interface Definition Language (OMG IDL) and syntax elements.

Courier - 10 pt. Bold: Programming language elements.

Helvetica/Arial - 10 pt: Exceptions

NOTE: Terms that appear in italics are defined in the glossary. Italic text also represents the name of a document,

specification, or other publication.

Issues

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage

readers to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting

Form listed on the main web page https://www.omg.org, under Documents, Report a Bug/Issue.
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1 Scope

The Metamodel Extension Facility (MEF), part of the Meta Object Facility (MOF) family of specifications, provides

structure, operations and interchange for adding extended structured capabilities to existing metamodels.

It builds on, and provides more control compared to, the Semantic Structures for MOF (SMOF) specification: specif-

ically it allows the same capabilities provided by UML Profiles to be applied to any other metamodel. For example,

it makes explicit the application of metamodels to a model and allows the application of additional metaclasses to be

constrained.

And, for UML, it provides a more flexible and convenient Profile application, manipulation and interchange capa-

bility, while remaining compatible with existing UML (2.5.x) Profile definitions. By making use of SMOF multiple

classification it avoids the need to create an additional element and link for each attached Stereotype.
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2 Conformance

This specification defines the following conformance points:

• UML Profile MEF Conformance: Conformant products must provide exactly the profile definition and applica-

tion modeling capabilities specified by UML, though they must also provide import and export of models in the

XMI format specified in this MEF specification (this may be instead of or in addition to the UML format).

• Non-filtering UML Profile MEF Conformance: As for UML Profile MEF Conformance but without support

for the profile filtering capability specified by UML. In other words the isStrict parameter to applyProfile() is

assumed to be false.

• Non-Profile MEF Conformance: Conformant products need only support the ability to apply and unapply meta-

models to models: they do not need to support Profiles and Stereotypes.

• Full MEF Conformance: Conformant products shall implement all parts of this specification.
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3 References

3.1 Normative References

The following normative documents contain provisions which, through reference in this text, constitute provisions of

this specification. For dated references, subsequent amendments to, or revisions of, any of these publications do not

apply.

[MOF] Meta Object Facility (MOF) Core, version 2.5.1, OMG Specification

https://www.omg.org/spec/MOF/2.5.1

[SMOF] MOF Support for Semantic Structures (SMOF), version 1.0, OMG Specification

https://www.omg.org/spec/SMOF/1.0

[UML] Unified Modeling Language (UML), version 2.5.1, OMG Specification

https://www.omg.org/spec/UML/2.5.1

[XMI] XML Metadata Interchange (XMI), version 2.5.1, OMG Specification

https://www.omg.org/spec/XMI/2.5.1

3.2 Non-normative References

None.
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4 Terms and Definitions

For the purposes of this specification, the following terms and definitions apply.

Profile

A metamodel designed to extend a reference metamodel with the purpose of adapting the metamodel to a specific

platform or domain. As such it is more constrained than a general metamodel.

Stereotype

A metaclass designed to be added to an element already classified with another metaclass (from a specified set).
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5 Symbols

The following symbols and/or abbreviations are used throughout this specification.

None.
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6 Additional Information
(informative)

6.1 How to read this Specification

Clause 7 is an informative overview of the principles of operation. Clause 8 defines the abstract architecture. As

such it shows also the positioning of the Metamodel Extension Facility in relation to the MOF Facility and Object

Lifecycle and MOF Versioning and Development Lifecycle specifications, even though those specifications are not

used or referenced by this specification. Clause 9 specifies the new metaclasses and operations. Clause 10 provides a

step-by-step example of how to use the Metamodel Extension Facility.

All clauses of this document are normative unless explicitly marked “(informative)”. The marking “(informative)” of

a particular clause also applies to all contained sub-clauses of that clause.

6.2 Acknowledgments

The following organizations submitted this specification:

• 88solutions Corporation

• Adaptive, Inc

• Microsoft Corporation

• Model-Driven Solutions, Inc

• No Magic, Inc

• SOFTEAM Group
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7 Principles of Operation
(informative)

Creating information models using a modeling language, like the Unified Modeling Language (UML), means to cre-

ate an arrangement of representations of modeling language elements. In a UML Class Diagram, this would be an

arrangement of class boxes, connected by representations of relationship elements, like associations, dependencies,

or generalizations. Such a model is logically situated at the model level, also referred to as the “M1 metalevel”. The

set of available model elements to create M1 models is defined by another model logically situated above the model

level at the “M2 metalevel”, and is usually called the (modeling language) metamodel. Metamodels are comparably

small, use only a limited set of modeling elements and are usually closed, except for dedicated extension mechanisms,

if any. OMG provides the Meta Object Facility (MOF) as the common modeling language and modeling environment

to specify metamodels. This MOF modeling language, though it reuses a subset of UML, is logically situated at the

“M3 metalevel”, and is self-defining (reflective), so no further metalevel is needed.

Each model element at a certain metalevel, for example the definition (often called “type”) of a user-created UML

element of type Class or type Association at M1 level is defined by (or is an instance of) a class named “Class” or a

class named “Association” at the M2 level. These classes are typically referred to as “metaclasses” and are defined by

the MOF language (“metametamodel”) at level M3. While the model management capabilities of the MOF Core and

its extension by the MOF Support for Semantic Structures (SMOF) are primarily intended to construct and maintain

metamodels, the provided capabilities can be equally applied to any metalevel. The capabilities of MOF can be used

to manipulate and/or extend any metamodel, however not every metamodel is prepared to tolerate such manipulations

without becoming inconsistent or invalid. A common approach to control alterations and/or extensions of metamodels

is the use of “Profiles”. A profile is a collection of metamodel elements, together with related rules, constraints, and a

well defined mechanism for applying the profile to the base model to achieve the intended alteration or extension effect.

This mechanism is most prominent in UML and UML-derived languages like the Systems Engineering Modeling

Language (SysML), but is also a common approach used by other modeling systems. MOF itself lacks a Profile

concept, this is now provided by the Metamodel Extension Facility (MEF).

To freely allow the application and un-application (removal) of Profiles, UML provides a form of metaclass extension

called “Stereotype”. Stereotypes are the UML-way to add additional classifications to regular UML elements, how-

ever burdened with limitations and restrictions resulting from the underlying mechanisms of UML. Among others,

Stereotypes can only extend existing metaclasses, they cannot represent new independent metaclasses. Even if they

are defined to extend multiple metaclasses, they can extend only one of those metaclasses at any given point of time.

Also, Stereotypes can only subclass other Stereotypes, not regular metaclasses, they can only participate in binary

associations, and more restrictions. See the Profile clause of the UML specification [UML] for the full list of restric-

tions. The root of these restrictions is the fact that Stereotypes are defined at the M1 level, using M1 level capabilities

for creation and management of M2 level constructs. SMOF, on the other hand, can freely alter the classifications of

any element at any metalevel with nearly no restrictions. MEF uses the the power of SMOF while closely resembling

the UML Profile structure and semantics. MEF Profiles therefore replace UML Profiles to eliminate the Stereotype-

born restrictions while preserving the specific profile semantics. Due to the close resemblance, and identical abstract

syntax, MEF Profiles may reuse the graphical notation, and UML tooling, of Stereotype definition as a pure matter of

convenience, while the actual metaclass extension will be the result of a MEF or SMOF operation. MEF Profiles are

pure MOF and SMOF metamodels, and have no dependency on UML (besides the portion of the metamodel shared

between MOF and UML, see the MOF Core specification [MOF] for details). MEF Profiles may therefore be used

with any MOF metamodel.
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8 Abstract Syntax Architecture

8.1 Introduction

MOF shares part of the UML metamodel, adding reflection, factory, and extended model management. Further detail

on this is laid out in the MOF Core specification [MOF]. SMOF extends MOF Core with the ability to dynamically

reclassify elements.

Figure 8.1: All MOF Packages

This specification provides the new package MOF::MEF, which merges with SCMOF. This new package provides

a version of Profile that complements the implicit profile application and removal operations with a pair of explicit

8 Metamodel Extension Facility (MEF) - Beta 2



operations that perform profile application and removal by executing a sequence of SMOF reclassification opera-

tions. Package MOF::MEF also extends MOF::SEMOF::Element with new operations required by the explicit profile

application and removal operations. The extensions to Profile and Element are incorporated using PackageMerge.

8.2 MOF Family of Specifications

The Package diagram in Figure 8.1 provides an architectural overview of the family of MOF specifications, and their

interrelationships. Since version 2.4, MOF and UML share the underlying metamodel. Details about this shar-

ing can be found in the description of the Essential MOF (EMOF) and Complete MOF (CMOF) within the MOF

Core specification [MOF]. UML 2.5 eliminated the split of UML into Infrastructure and Superstructure and simpli-

fied the package structure of the UML metamodel. In addition, all UML sub-packages are imported into the top-

level package UML. The Package diagram in Figure 8.1 shows that only the four sub-packages UML::Classification,

UML::CommonStructure, UML::StructuredClassifiers, and UML::Packages contain metaclasses shared with, and ex-

tended by MOF. The extensions provided by MOF are introduced into the shared metamodel by applying Package-

Merge.

8.2.1 MOF Core

The packages MOF::Common, MOF::Reflection, MOF::Identifiers, and MOF::Extension constitute the inner core of

MOF, and lead to the basic MOF functionality, the Essential MOF (package MOF::EMOF). EMOF is then expanded

to the full capabilities of the Complete MOF (package CMOF) by merging the packages MOF::CMOFReflection and

MOF::CMOFExtension into EMOF. See the MOF Core specification [MOF] for details.

8.2.2 SMOF

The MOF Support for Semantic Structures (SMOF) specification extends EMOF with the ability to dynamically

reclassify and/or multiple-classify any element. These capabilities are added to EMOF via a single structural change

and additional operations on Element. This leads to package SEMOF, and with the additional CMOF capabilities

merged in, to package SCMOF. See the MOF Support for Semantic Structures specification [SMOF] for details.

8.2.3 MEF

This document contains the Metamodel Extension Facility specification, which extends SCMOF with additional op-

erations on Element, Package and Factory to provide the metamodel management and extension capabilities using the

combined capabilities of MOF, SMOF and MEF.

8.2.4 Facility and Versioning

The packages for these two members of the MOF family of specification are shown in Figure 8.1 only for completeness

and for their positioning relative to other MOF packages. Facility and Versioning are not directly used or referenced

by the Metamodel Extension Facility (MEF).
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9 Metamodel Extension Facility

9.1 Introduction

The Metamodel Extension Facility (MEF) reproduces and extends the metamodel extension mechanism provided

by UML, using Profiles and Stereotypes, for any MOF metamodel, including, but not limited to, UML. Replacing

the traditional stereotype application method of UML by SMOF reclassification operations, nearly all restrictions on

Stereotype are removed. MEF is independent of UML, reusing the Stereotype definition abstract and concrete syntaxes

is a pure convenience. From MEF perspective, a Stereotype is a regular metaclass with a specific association to one or

multiple base-metaclasse(s).

Figure 9.1: MEF extension to MOF and SMOF

9.2 Class Descriptions

9.2.1 MOF::MEF::Package

MEF::Package extends UML::Package (from the metamodel shared between UML and MOF) with a pair of operations

for the explicit application and removal of Profiles following the UML extension semantics, and a second generic

pair of operations to add or remove MOF metamodels. These four operations make Profile-based and Profile-alike

extensions available to all MOF metamodels.

applyProfile()

applyProfile( profile : Profile [1], strict : Boolean [0..1] = false )
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The applyProfile() operation is defined on MOF::MEF::Package and applies the Profile specified in the profile param-

eter to the current Package. If the optional parameter “strict” is present and set to “strict = true”, then the Profile is

applied in strict mode, which will invoke the filtering rules as specified in the UML specification [UML]. The Pro-

file and the Package are connected via an instance of ProfileApplication, with links to the Profile and the Package.

The Profile is not automatically applied to nested and imported Packages, it must be applied to these individually.

Reapplying the same Profile has no effect, even if the Profile has changed. To correctly reapply a Profile, the Profile

must be reapplied using the reapplyProfile operation (see below), which performs additional consistency checks. For

each Stereotype owned by the Profile that has an Extension with “isRequired = true”, the whole Package is searched

for elements classified by the base-metaclass(es) associated with the Stereotype. For each element found, the Stereo-

type classification is then added to that element using the MEF operation attachStereotype() with the Stereotype as

argument.

removeProfile()

removeProfile( profile : Profile [1] )

The removeProfile() operation is defined on MOF::MEF::Package and removes the Profile specified in the profile

parameter from this Package. All instances of the stereotypes owned by the specified Profile are detached from

elements in this Package using the detachStereotype() operation, which will in turn invoke the removeMetaClass()

SMOF operation to remove the classification associated with the Stereotype. The ProfileApplication linkage between

the Profile and Package is destroyed.

reapplyProfile()

reapplyProfile( profile : Profile [1], strict : Boolean [0..1] = false )

The reapplyProfile() operation is defined on MOF::MEF::Package and applies the Profile specified in the profile pa-

rameter to the current Package. If the optional parameter “strict” is present and set to “strict = true”, then the profile

is applied in strict mode, which will invoke the filtering rules as specified in the UML specification [UML]. The

reapplyProfile operation will compare the profile provided in the profile argument with the profile discovered through

the connected instance of ProfileApplication to ensure that existing Stereotype attachments based on the previous ap-

plication of the Profile are consistent with the reapplication of the Profile. In particular, correct application of any

{required} Stereotypes needs to be assured. The Profile is not automatically applied to nested and imported packages,

it must be applied to these individually. Reapplying the same profile has no effect, even if the profile had changed. For

each Stereotype owned by the profile that has an Extension with “isRequired = true”, the whole package is searched

for elements classified by the base-metaclass(es) associated with the Stereotype. For each element found, the Stereo-

type classification is then added to that element using the MEF operation attachStereotype() with the Stereotype as

argument.

applyMetamodel()

applyMetamodel( metamodel : Package [1])

The applyMetamodel() operation is defined on MOF::MEF::Package and applies the metamodel specified in the meta-

model parameter to the current Package. The metamodel and the package are connected via the MetamodelApplication
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Association, creating a link from the target package to the package containing the metamodel to be applied. The meta-

model is not automatically applied to nested and imported packages, it must be applied to these individually. Reap-

plying the same metamodel has no effect, even if the metamodel had changed. To correctly reapply a metamodel, the

metamodel must be reapplied using the reapplyMetamodel operation, which performs additional consistency checks.

removeMetamodel()

removeMetamodel ( metamodel : Package [1] )

The removeMetamodel() operation is defined on MOF::MEF::Package and removes the metamodel specified in the

profile parameter from this Package. All classifications by metaclasses contained in the metamodel to be removed

are detached from elements in this package using the removeMetaClassOrDelete operation, which will remove the

classification associated with the metaclass, or will deep delete the element and all its dependent elements if the

removed classification was the final classification of the element. The link between the metamodel and package is

destroyed.

reapplyMetamodel()

reapplyMetamodel( metamodel : Package [1] )

The reapplyMetamodel() operation is defined on MOF::MEF::Package and reapplies the metamodel specified in the

metamodel parameter to the current Package. The reapplyMetamodel operation will compare the metamodel provided

in the metamodel argument with the metamodel discovered through the established link as instance of the Meta-

modelApplication Association, and perform actions to preserve consistency, if required. Note, the metamodel is not

automatically applied to nested and imported packages, it must be applied to these individually.

9.2.2 MOF::MEF::Element

MOF::MEF::Element extends MOF::SEMOF::Element with additional classification operations related to the profile-

based extension mechanism.

attachStereotype()

attachStereotype( stereotype : Stereotype [1] )

This operation adds the classification by a Stereotype to the Element. The element must already be classified by

the base-metaclass, or one of the set of base-metaclasses if the Stereotype extends multiple base-metaclasses. For

MEF, a Stereotype is a regular metaclass, the restrictions on UML Stereotypes do not apply. As the first step, the

attachStereotype() operation verifies that the element is in fact classified by the, or one of the, base-metaclass(es) of

the Stereotype. If this is not the case, then that is an error situation and no action is performed. If the element is

classified by the base-metaclass, or one of the base metaclasses, then the classification by the Stereotype is added

using the addNewMetaClass() SMOF operation. In case the Stereotype classification is already present at the element,

then invocation of addNewMetaClass() by the attachStereotype() operation causes no effect.
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detachStereotype()

detachStereotype( stereotype : Stereotype [1] )

This operation removes the classification by a Stereotype from the Element. As first step, the classification by the

Stereotype and the base-metaclass of the Stereotype, or one of the base-metaclasses, is verified to ensure that the

element is in fact classified by the Stereotype. Then the classification introduced by the Stereotype is removed using

the SMOF operation removeMetaClass. The classification by the applicable base-metaclass is not removed.

attachMetaClass()

attachMetaClass ( metaclass : Class [1..*] )

This operation adds the classification by one or multiple metaclass(es) to the element. Every Metaclass listed in the

metaclass parameter is tested if it is the base-metaclass of a {required} Stereotype. If so, then the classification by

that Stereotype is also added. The actual classification of the element is performed by invoking the SMOF operation

addNewMetaClass(). In case the element is already classified by any of the metaclasses listed in the metaclass param-

eter of attachMetaClass(), or by any of the implicit Stereotype classifications, than those classifications are ignored

and not added again by invoking the addNewMetaClass() SMOF operation.

detachMetaClass()

detachMetaClass ( metaclass : Class [1..*] )

This operation removes the classification by one or multiple metaclass(es) from the element. If, after removal of the

specified metaclasses, the element has attached to it one or more Stereotypes no longer supported by one of their

base metaclasses (or a subclass) then those Stereotypes are detached. The actual reclassification of the element is

performed by invoking the SMOF operation removeMetaClassOrDelete(), which is a variant of the SMOF operation

removeMetaClass(). While the original SMOF operation removeMetaClass() operation does not allow the removal

of all classifications from an element, and would signal an error in that attempt, the remove MetaClassOrDelete()

operation performs a deep delete of the element when its last classification is removed.

removeMetaClassOrDelete()

removeMetaClassOrDelete ( metaclass : Class [1..*] )

This operation is a variation of the removeMetaClass() SMOF operation. Like the original operation, it will remove

the classifications by the Metaclasses listed in the metaclass parameter from the element it is executing on. However,

instead of refusing to remove the last remaining classification of the element, and signalling an error condition on

that attempt, removeMetaClassOrDelete() will initiate a deep delete of the element, deleting the element itself and all

compositely contained elements.
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9.2.3 MOF::MEF::Factory

MEF extends the semantics of the createElement operation defined by MOF::CMOFReflection to make it aware of

potential Stereotypes that have “isRequired = true” set on their Extension.

createElement

createElement( class , arguments : Argument [0..*] ) : Element [1]

This operation extends the MOF::CMOFReflection::Factory::createElement() operation with a test checking if the

specified metaclass in the class parameter is the base-metaclass of a {required} Stereotype. If so, then the classification

by that Stereotype is also added. The actual classification of the element after creation is performed by invoking the

SMOF operation addNewMetaClass().
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10 Example
(informative)

10.1 Introduction

This informative clause demonstrates a step-by-step example of the use of MEF capabilities, utilizing a test profile

developed by the Model Interchange Working Group of the Object Management Group. The model is shown in

Figure 10.1 below, the application of the MEF capabilities is then detailed in several steps. Prefix “TP” will be used

for the test profile.

Figure 10.1: MIWG Test Case 3: A Profile

For each step, the user action is shown first, then the resulting model as instance diagram, and as the XMI serialization.

Changes in the XMI resulting from the corresponding step are shown in bold font.
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10.2 Step-by-Step Example

10.2.1 Step 1

Create a Package and apply the Test Profile TP.

1 f a MOF:: Factory

2 pkg = f.createElement(UML:: Package)

3 pkg.applyProfile(TP)

MEF and SMOF Operations for Step 1

Figure 10.2: Resulting model for Step 1

1 <uml:Package xmi:id="pkg1" xmi:uuid="omg.org/mef/example/pkg1"

2 xmi:type="uml:Package"/>

3 <packagedElement xmi:id="pa1" xmi:uuid="omg.org/mef/example/pkg1/pa1"

4 xmi:type="uml:ProfileApplication ">

5 <appliedProfile href="omg.org/mef/example/TP"/>

6 </packagedElement >

7 </uml:Package >

XMI Serialization for Step 1

10.2.2 Step 2

Create a Property (instance of the UML metaclass)(Stereotype2 is automatically added)

1 f a MOF:: Factory

2 p = f.createElement(UML:: Property)

3 (implicit p.attachStereotype(TP:: Stereotype2 ))

MEF and SMOF Operations for Step 2
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Figure 10.3: Resulting model for Step 2

(Note: the top level Package is not shown in the following and subsequent XMI listings)

1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property"/>

3 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example/e1"

4 xmi:type="tp:Stereotype2 "/>

XMI Serialization for Step 2

10.2.3 Step 3

Set value for attribute4 to a new random class named Class1

1 c = f.createElement(UML:: Class)

2 c.setValue(name , "Class1 ")

MEF and SMOF Operations for Step 3

Figure 10.4: Model for Step 3

1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property"/>

3 <packagedElement xmi:id="c1" xmi:uuid="omg.org/mef/example/c1"

4 xmi:type="uml:Class" name=" C1ass1" />

5 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example/e1"

6 xmi:type="tp:Stereotype2">

7 <attribute4 xmi:idref ="c1"/>

8 </tp:Stereotype2 >

XMI Serialization for Step 3
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10.2.4 Step 4

Add Stereotype1 as an additional stereotype

1 p.attachStereotype(Stereotype1)

MEF and SMOF Operations for Step 1

Figure 10.5: Model for Step 4

1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property"/>

3 <packagedElement xmi:id="c1" xmi:uuid="omg.org/mef/example/c1"

4 xmi:type="uml:Class" name=" C1ass1" />

5 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example/e1"

6 xmi:type="tp:Stereotype2">

7 <attribute4 xmi:idref ="c1"/>

8 </tp:Stereotype2 >

9 <tp:Stereotype1 xmi:id="p2" xmi:uuid="omg.org/mef/example/e1"

10 xmi:type="tp:Stereotype1 "/>

XMI Serialization for Step 4

10.2.5 Step 5

Set attribute1 of Stereotype1

1 p.setValue(attribute1 , "a string ")

MEF and SMOF Operations for Step 5

Figure 10.6: Model for Step 5
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1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property"/>

3 <packagedElement xmi:id="c1" xmi:uuid="omg.org/mef/example/c1"

4 xmi:type="uml:Class" name=" C1ass1" />

5 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example/e1"

6 xmi:type="tp:Stereotype2">

7 <attribute4 xmi:idref ="c1"/>

8 </tp:Stereotype2 >

9 <tp:Stereotype1 xmi:id="p2" xmi:uuid="omg.org/mef/example/e1"

10 xmi:type="tp:Stereotype1" attribute1 ="a string"/>

XMI Serialization for Step 5

10.2.6 Step 6

Set name of the Property to E1

1 p.setValue(name , "E1")

MEF and SMOF Operations for Step 6

Figure 10.7: Model for Step 6

1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property" name="E1"/>

3 <packagedElement xmi:id="c1" xmi:uuid="omg.org/mef/example/c1"

4 xmi:type="uml:Class" name=" C1ass1" />

5 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example/e1"

6 xmi:type="tp:Stereotype2">

7 <attribute4 xmi:idref ="c1"/>

8 </tp:Stereotype2 >

9 <tp:Stereotype1 xmi:id="p2" xmi:uuid="omg.org/mef/example/e1"

10 xmi:type="tp:Stereotype1" attribute1 ="a string"/>

XMI Serialization for Step 6

Metamodel Extension Facility (MEF) - Beta 2 19



10.2.7 Step 7

Change the base class to Operation

1 p.reclassify(oldMetaClass=uml:Property , newMetaClass=uml:Operation)

MEF and SMOF Operations for Step 7

Figure 10.8: Model for Step 7

1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property" xmi:type="uml:Operation" name="E1"/>

3 <packagedElement xmi:id="c1" xmi:uuid="omg.org/mef/example/c1"

4 xmi:type="uml:Class" name=" C1ass1" />

5 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example/e1"

6 xmi:type="tp:Stereotype2">

7 <attribute4 xmi:idref ="c1"/>

8 </tp:Stereotype2 >

9 <tp:Stereotype1 xmi:id="p2" xmi:uuid="omg.org/mef/example/e1"

10 xmi:type="tp:Stereotype1" attribute1 ="a string"/>

XMI Serialization for Step 7

10.2.8 Step 8

Detach Stereotype2 (it’s no longer required)

1 p.reclassify(oldMetaClass=uml:Property , newMetaClass=uml:Operation)

MEF and SMOF Operations for Step 8

Figure 10.9: Model for Step 8
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1 <packagedElement xmi:id="e1" xmi:uuid="omg.org/mef/example/e1"

2 xmi:type="uml:Property" xmi:type="uml:Operation" name="E1"/>

3 <packagedElement xmi:id="c1" xmi:uuid="’omg.org/mef/example/c1"

4 xmi:type="uml:Class" name=" C1ass1" />

5 <tp:Stereotype2 xmi:id="p1" xmi:uuid="omg.org/mef/example /e1"

6 xmi:type="tp:Stereotype2">

7 <attribute4 xmi:idref ="c1"/>

8 </tp:Stereotype2 >

9 <tp:Stereotype1 xmi:id="p2" xmi:uuid="omg.org/mef/example/e1"

10 xmi:type="tp:Stereotype1" attribute1 ="a string"/>

XMI Serialization for Step 8
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