
Mobile Agent Facility Specification

New Edition: January 2000



Copyright 1999, GMD FOKUS
Copyright 1999, IBM

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, 
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified 
version.  Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyright 
in the included material of any such copyright holder by reason of having used the specification set forth herein or having 
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require use 
of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for which a license may be 
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are 
brought to its attention.  OMG specifications are prospective and advisory only.  Prospective users are responsible for 
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an 
Object Management Group specification in accordance with the license and notices set forth on this page.  This document does 
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT 
MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE  MAKE NO WARRANTY OF ANY KIND, 
EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY 
WARRANTY OF TITLE OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF 
FITNESS FOR  PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the 
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover 
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed 
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be the 
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or 
other special designations to indicate compliance with these materials. This document contains information which is protected 
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form or 
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and 
retrieval systems--without permission of the copyright owner. 

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in 
subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and 
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL, 
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc. 
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers to 
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at 
http://www.omg.org/library/issuerpt.htm.



Contents
1
1

1

2

2

-1

1-1

-2
1-3

3

1-4

1-4
-5

-5

1-5
-5

-5
1-5

-6
1-6

1-7
-8

1-8
1-9

-9
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
0.1 About the Object Management Group . . . . . . . . . . . . . . . .

0.1.1 What is CORBA? . . . . . . . . . . . . . . . . . . . . . . .

0.2 Associated OMG Documents . . . . . . . . . . . . . . . . . . . . . . .

0.3 Acknowledgments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. Common Conceptual Model . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Interoperability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1.1 What Should Be Standardized Now? . . . . . . . . 1
1.1.2 What Should Be Standardized Later? . . . . . . . .

1.1.3 MAF Interoperability Summary . . . . . . . . . . . . 1-

1.2 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.1 Agent  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.2 Stationary Agent. . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.3 Mobile Agent . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.4 Agent State . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.5 Agent Execution State  . . . . . . . . . . . . . . . . . . . 1

1.2.6 Agent Authority . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.7 Agent Names  . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.8 Agent Location . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2.9 Agent System . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.10 Agent System Type. . . . . . . . . . . . . . . . . . . . . .
1.2.11 Agent System to Agent System Interconnection 1

1.2.12 Place . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1.2.13 Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2.14 Region to Region Interconnection  . . . . . . . . . . 1
Mobile Agent Facility V1.0                  January 2000 i



Contents

10
-11

11
11

-12

-12
-12

13

-13
13

-16

16

-16
16

17

-22

2-1

2-1

2-4

2-4

2-5
-6

-7
-7

2-7
-9

-9
-10

-1

3-1

3-3

3-3
3-4

3-5
-6

-9
1.2.15 Serialization/Deserialization. . . . . . . . . . . . . . . 1-
1.2.16 Codebase  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2.17 Communications Infrastructure  . . . . . . . . . . . . 1-
1.2.18 Locality  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-

1.3 Agent Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3.1 Remote Agent Creation  . . . . . . . . . . . . . . . . . . 1
1.3.2 Agent Transfer  . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3.3 Agent Method Invocation . . . . . . . . . . . . . . . . . 1-

1.4 Functions of an Agent System . . . . . . . . . . . . . . . . . . . . . . 1
1.4.1 Transferring an Agent. . . . . . . . . . . . . . . . . . . . 1-

1.4.2 Creating an Agent. . . . . . . . . . . . . . . . . . . . . . . 1
1.4.3 Providing Globally Unique Names and 

Locations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-

1.4.4 Supporting the Concept of a Region . . . . . . . . . 1
1.4.5 Finding a Mobile Agent . . . . . . . . . . . . . . . . . . 1-

1.4.6 Ensuring a Secure Environment for Agent 
Operations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-

1.5 Agent System Interoperability Scenarios . . . . . . . . . . . . . . 1

2.  CORBA Services. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.1 Naming Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Lifecycle Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Externalization Service  . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.4 Security Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.4.1 Agent Naming  . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.4.2 Client Authentication for Remote Agent Creation 2
2.4.3 Mutual Authentication of Agent Systems. . . . . 2

2.4.4 Access to Authentication Results and Credentials
2.4.5 Agent Authentication and Delegation. . . . . . . . 2

2.4.6 Agent and Agent System Defined Security 
Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.4.7 Security Features  . . . . . . . . . . . . . . . . . . . . . . . 2

3.  MAF IDL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 The MAFFinder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Name, Class Name, and Location  . . . . . . . . . . . . . . . . . . .
3.3.1 Name  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.3.2 Class Name. . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.3.3 Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.4 OMG Naming Authority Identifiers . . . . . . . . . . . . . . . . . . 3
ii Mobile Agent Facility V1.0                  January 2000



Contents

-10

-11
-14

15
-16

-17
18

18
19

19
20

-20
-22

-23
-24

-24

-25

-26
-27

28
-29

-30
-30

-31
-32

-32

4-1

4-1

4-2

4-2

4-2

4-3

-3

-1

B-1

C-1
3.5 MAFAgentSystem Interface . . . . . . . . . . . . . . . . . . . . . . . . 3

3.5.1 create_agent() . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.2 fetch_class() . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.5.3 find_nearby_agent_system_of_profile() . . . . . . 3-
3.5.4 get_agent_status(). . . . . . . . . . . . . . . . . . . . . . . 3

3.5.5 get_agent_system_info()  . . . . . . . . . . . . . . . . . 3
3.5.6 get_authinfo() . . . . . . . . . . . . . . . . . . . . . . . . . . 3-

3.5.7 get_MAFFinder() . . . . . . . . . . . . . . . . . . . . . . . 3-
3.5.8 list_all_agents()  . . . . . . . . . . . . . . . . . . . . . . . . 3-

3.5.9 list_all_agents_of_authority(). . . . . . . . . . . . . . 3-
3.5.10 list_all_places()  . . . . . . . . . . . . . . . . . . . . . . . . 3-

3.5.11 receive_agent() . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.12 resume_agent() . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.5.13 suspend_agent() . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.14 terminate_agent() . . . . . . . . . . . . . . . . . . . . . . . 3

3.5.15 terminate_agent_system(). . . . . . . . . . . . . . . . . 3

3.6 MAFFinder Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.6.1 lookup_agent() . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.2 lookup_agent_system () . . . . . . . . . . . . . . . . . . 3

3.6.3 lookup_place() . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.6.4 register_agent () . . . . . . . . . . . . . . . . . . . . . . . . 3

3.6.5 register_agent_system (). . . . . . . . . . . . . . . . . . 3
3.6.6 register_place ()  . . . . . . . . . . . . . . . . . . . . . . . . 3

3.6.7 unregister_agent () . . . . . . . . . . . . . . . . . . . . . . 3
3.6.8 unregister_agent_system () . . . . . . . . . . . . . . . . 3

3.6.9 unregister_place ()  . . . . . . . . . . . . . . . . . . . . . . 3

4.  MAF Scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2  The Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3  The Solution Today . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 The Solution Tomorrow . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.5 Behind The Scenes ....  . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.6 Overview of Interaction with MAF  . . . . . . . . . . . . . . . . . . 4

Appendix A - OMG IDL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A

Appendix B - Assigned Numbers  . . . . . . . . . . . . . . . . . . . . . . . 

Appendix C - References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Mobile Agent Facility V1.0               January 2000 iii



Contents
iv Mobile Agent Facility V1.0                  January 2000



Preface 
rted 
 and 
nted 

ide a 
, 
ous 
p a 
 

ed. 

ted, 
ey 
bject 
nd 

ing 
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 800 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the 
establishment of industry guidelines and object management specifications to prov
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems. 

OMG's objectives are to foster the growth of object technology and influence its 
direction by establishing the Object Management Architecture (OMA).  The OMA 
provides the conceptual infrastructure upon which all OMG specifications are bas

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object 
Management Group's answer to the need for interoperability among the rapidly 
proliferating number of hardware and software products available today. Simply sta
CORBA allows applications to communicate with one another no matter where th
are located or who has designed them. CORBA 1.1 was introduced in 1991 by O
Management Group (OMG) and defined the Interface Definition Language (IDL) a
the Application Programming Interfaces (API) that enable client/server object 
interaction within a specific implementation of an Object Request Broker (ORB). 
CORBA 2.0, adopted in December of 1994, defines true interoperability by specify
how ORBs from different vendors can interoperate. 
Mobile Agent Facility  V1.0                           January 2000 1



ards 
o 

 

only 
e 

mat. 
ons, 
Associated OMG Documents

The CORBA documentation is organized as follows:

• Object Management Architecture Guide defines the OMG’s technical objectives 
and terminology and describes the conceptual models upon which OMG stand
are based. It defines the umbrella architecture for the OMG standards. It als
provides information about the policies and procedures of OMG, such as how
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specification contains 
the architecture and specifications for the Object Request Broker. 

• CORBAservices: Common Object Services Specification contains specifications 
for OMG’s Object Services. 

The OMG collects information for each specification by issuing Requests for 
Information, Requests for Proposals, and Requests for Comment and, with its 
membership, evaluating the responses. Specifications are adopted as standards 
when representatives of the OMG membership accept them as such by vote. (Th
policies and procedures of the OMG are described in detail in the Object Management 
Architecture Guide.) 

OMG formal documents are available from our web site in PostScript and PDF for
To obtain print-on-demand books in the documentation set or other OMG publicati
contact the Object Management Group, Inc. at: 

 
OMG Headquarters

492 Old Connecticut Path

Framingham, MA 01701

USA

Tel: +1-508-820 4300

Fax: +1-508-820 4303

pubs@omg.org

http://www.omg.org

Acknowledgments

The following companies submitted and/or supported parts of this specification:

• Crystaliz, Inc.

• General Magic, Inc.

• GMD FOKUS

• IBM

• The Open Group
2 Mobile Agent Facility  V1.0                           January 2000



Common Conceptual Model 1
s 
When 
tions 
lly 

ent 

t are 
 

Contents

This chapter contains the following sections. 

1.1 Interoperability

An important goal in mobile agent technology is interoperability between various 
manufacturer’s agent systems. Interoperability becomes more achievable if action
such as agent transfer, class transfer, and agent management are standardized. 
the source and destination agent systems are similar, standardization of these ac
can result in interoperability. However, when the two agent systems are dramatica
different, only minimal interoperability can be achieved.

Interoperability in this document is not about language interoperability. Mobile Ag
System Interoperability Facilities (also called MAF, an acronym for the original 
proposal, Mobile Agent Facility) is about interoperability between agent systems 
written in the same language, but potentially by different vendors and systems tha
expected to go through many revisions within the life time of an agent. Language
interoperability for active objects that carry “continuations” around is technically 
difficult to achieve. Furthermore, it is not needed, since the support for different 
languages can be replicated at each node.

Section Title Page

“Interoperability” 1-1

“Basic Concepts” 1-4

“Agent Interaction” 1-12

“Functions of an Agent System” 1-13

“Agent System Interoperability Scenarios” 1-22
Mobile Agent Facility V1.0                          January 2000 1-1



1

as 
tions 
gent 

nity 

nt 

ent. 
s via 

for the 
in a 
r to 

n 
 

 net 
r 
 are 

task 
tform 
r the 
This specification does not define standardization of local agent operations such 
agent interpretation, serialization, execution, or deserialization. However, these ac
are implementation specific, and there is currently no compelling reason to limit a
system implementations to a single architecture.

1.1.1 What Should Be Standardized Now?

There are several areas of mobile agent technology that the mobile agent commu
should standardize now to promote interoperability:

• Agent management

• Agent transfer

• Agent and agent system names

• Agent system types

• Location syntax

This section discusses the reasons for standardizing these aspects of mobile age
technology now.

1.1.1.1 Agent Management

There is interest within the mobile agent community to standardize agent managem
One can envision a system administrator managing agent systems of different type
standard operations. It should be possible to create an agent given a class name 
agent, suspend an agent’s thread of execution, resume its thread, or terminate it 
standard way. Defining common management functions permits one administrato
manage agent systems of various types.

1.1.1.2 Agent Transfer

It is advantageous for two agents to communicate at the same location rather tha
across a network for two reasons: 1) number of network transactions and 2) data
monitoring. Allowing a source agent to travel to an agent system close to the 
destination agent system achieves the benefit of locality. 

If the network between the two agents has low bandwidth, filtering data across the
can be expensive and time consuming when compared to local data transfers. Fo
example, if the two agents are using RPC, multiple operations across the network
usually necessary to transfer the data that one agent needs from the other.

Data monitoring (for example, waiting for a certain stock to go up ten points) is a 
that can continue for days. It may be preferable to send a mobile agent to the pla
providing the data, rather than use a stationary agent to send periodic inquiries fo
latest stock price. For this type of application, using a mobile agent is cost- and 
resource-efficient.
1-2 Mobile Agent Facility V1.0                          January 2000



1

, the 
gent 

tified; 
ame 

o 

m type 
d 
pport 

m 

ld be 
 of the 
 or 
s that 

urity 
e 
ns, 
g 
.

nd 

ilar, 
es. In 
d 

 the 
 

1.1.1.3 Agent and Agent System Names

In addition to standardizing operations for interoperability between agent systems
syntax and semantics of various parameters must be standardized. Specifically, a
name, agent system name, and location should be standardized.

When invoking a management operation, the agent being managed must be iden
therefore, the agent name syntax should be standardized. A standardized agent n
syntax also provides two other benefits: 1) it allows an agent system to quickly 
determine whether it can support an incoming agent and 2) it allows two agents t
identify each other by name.

1.1.1.4 Agent System Type and Location Syntax

The location syntax must be standardized so that an agent can access agent syste
information from the desired destination agent system, and so that the source an
destination agent systems can identify each other. If the agent system type can su
the source agent, the agent transfer can happen.

It is also important to provide a naming authority (an organization that assigns a 
unique identifier) for each agent system type. Ensuring uniqueness of agent syste
type names prevents two companies from duplicating agent system type values.

1.1.2 What Should Be Standardized Later?

The previous section discussed the aspects of mobile agent technology that shou
standardized now to ensure agent system interoperability. There are other aspects
technology that should be standardized, but not until the industry is more mature,
related de facto standards are available. This section describes some of the area
will need standardization in the future.

When an agent takes a multi-hop travel which travels between more than two sec
domains (see Section 1.2.13, “Regions,” on page 1-9), the security issues becom
complex. Most security systems today deal only with security between two domai
which is single-hop travel. The mobile agent community should delay standardizin
multi-hop security of mobile agents until security systems can handle the problem

Today’s mobile agent systems use several different languages (for example, Tcl a
Java). Therefore, the effort to convert from one agent encoding to another is too 
complex. When the serialization formats for agent code and execution state are sim
it should be possible to build standard bridges between different agent system typ
the future, features are likely to be added to MAF that improve interoperability an
minimize the need for bridges.

1.1.3 MAF Interoperability Summary

Interoperability is an important goal of the MAF Specification. Table 1-1 describes
types of interoperability MAF addresses, and estimates the complexity that agent
systems require to support it.
Mobile Agent V1.0        Interoperability           Jan. 2000 1-3



1

stem. 

ing 

ely 
is 

hing 

ount 

 

s 
When 
tions 
lly 

 uses 
that 

 
(for 
 so 
Agent management allows an agent system to control agents of another agent sy
MAF addresses this interoperability by defining interfaces for actions such as 
suspending, resuming, and terminating agents. This interoperability is relatively 
straightforward for most agent systems to implement.

Agent tracking permits the tracing of agents registered with MAFFinders (i.e., Nam
Services) of different agent systems. This interoperability is also relatively 
straightforward for most agent systems to implement.

Agent communication is outside the scope of the MAF specification. It is extensiv
addressed by CORBA as object communication; therefore, agent communication 
omitted from this specification. 

MAF addresses agent transport by defining methods for receiving agents and fetc
their classes. 

Agent transport interoperability is not simple to achieve and requires a certain am
of cooperation between implementors of different agent systems to achieve. 

This chapter presents an overview of interoperability and discusses the details of
achieving interoperability later in the chapter.

An important goal in mobile agent technology is interoperability between various 
manufacturer’s agent systems. Interoperability becomes more achievable if action
such as agent transfer, class transfer, and agent management are standardized. 
the source and destination agent systems are similar, standardization of these ac
can result in interoperability. However, when the two agent systems are dramatica
different, only minimal interoperability can be achieved.

1.2 Basic Concepts

This section defines the major mobile agent concepts. Note that this specification
object terminology to describe mobile agent concepts. For mobile agent systems 
are not object oriented, substitute the word ‘code’ for class in the definitions.

1.2.1 Agent

An agent is a computer program that acts autonomously on behalf of a person or
organization. Currently, most agents are programmed in an interpreted language 
example, Tcl and Java) for portability. Each agent has its own thread of execution
tasks can be performed on its own initiative.

Table 1-1 MAF Functions and Support

Function Addressed by MAF Level of Complexity to Support

agent management YES straightforward

agent tracking YES straightforward

agent communication NO N/A

agent transport YES complex
1-4 Mobile Agent Facility V1.0                          January 2000



1

gent 
n a 
 such 

ect 

ique 
n is 

 that 
ay 

 A 
d 

the 
rmine 
t 
e to 

e 

. An 

be 
gent 
 that 
1.2.2 Stationary Agent

A stationary agent executes only on the system where it begins execution. If the a
needs information that is not on that system, or needs to interact with an agent o
different system, the agent typically uses a communications transport mechanism
as Remote Procedure Calling (RPC).

The communication needs of stationary agents are met by current distributed obj
systems such as CORBA, DCOM, and RMI.

1.2.3 Mobile Agent

A mobile agent is not bound to the system where it begins execution. It has the un
ability to transport itself from one system in a network to another. This specificatio
primarily concerned with mobile agents.

The ability to travel permits a mobile agent to move to a destination agent system
contains an object with which the agent wants to interact. Moreover, the agent m
utilize the object services of the destination agent system.

Although current distributed object systems meet the communications needs of 
stationary agents, they do not meet the communications needs of mobile agents.
mobile agent has more capabilities and requirements than many current distribute
object systems can address at this time.

1.2.4 Agent State

When an agent travels, its state and code are transported with it. In this context, 
agent state can be either its execution state, or the agent attribute values that dete
what to do when execution is resumed at the destination agent system. The agen
attribute values include the agent system state associated with the agent (e.g., tim
live).

1.2.5 Agent Execution State

An agent’s execution state is its runtime state, including program counter and fram
stacks.

1.2.6 Agent Authority

An agent’s authority identifies the person or organization for whom the agent acts
authority must be authenticated.

1.2.7 Agent Names

Agents require names that can be identified in management operations, and can 
located via a naming service. Agents are named by their authority, identity, and a
system type. An agent’s identity is a unique value within the scope of the authority
Mobile Agent V1.0        Basic Concepts           Jan. 2000 1-5



1

ntity 
e is 

 refer 

,” on 
n 
es and 
ation 

inate 
es the 
ystem 
s.

 one 
identifies a particular agent instance. The combination of an agent’s authority, ide
and agent system type is always a globally unique value. Because an agent’s nam
globally unique and immutable, the name can be used as a key in operations that
to a particular agent instance.

1.2.8 Agent Location

The location of an agent is the address of a place (refer to Section 1.2.12, “Place
page 1-8 for more information). A place resides within an agent system. Therefore, a
agent location should contain the name of the agent system where the agent resid
a place name. Note that if the location does not contain a place name, the destin
agent system chooses a default place.

1.2.9 Agent System

An agent system is a platform that can create, interpret, execute, transfer, and term
agents. Like an agent, an agent system is associated with an authority that identifi
person or organization for whom the agent system acts. For example, an agent s
with authority Bob implements Bob's security policies in protecting Bob's resource

An agent system is uniquely identified by its name and address. A host can contain
or more agent systems. Figure 1-1 illustrates an Agent System.
1-6 Mobile Agent Facility V1.0                          January 2000



1

t 
 the 
its 
le 

 a 
stem 
ality.
.

Figure 1-1 Agent System

1.2.10 Agent System Type

An agent system type describes the profile of an agent. For example, if the agen
system type is Aglet, the agent system is implemented by IBM, supports Java as
Agent Language, uses Itinerary for travel, and uses Java Object Serialization for 
serialization. This specification recognizes agent system types that support multip
languages, and languages that support multiple serialization methods. Therefore,
client requesting an agent system function must specify the agent profile (agent sy
type, language, and serialization method) to uniquely identify the desired function

Agent
System

Operating
System

Communication
Infrastructure

Place

Place

Agent

Agent
Agent

Agent
Agent

Agent
Agent
Mobile Agent V1.0        Basic Concepts           Jan. 2000 1-7



1

tra-
ent 

called 
te. 

tems 

dress 
or 
1.2.11 Agent System to Agent System Interconnection

All communication between agent systems is through the Communication 
Infrastructure (CI). The region administrator defines communication services for in
region and inter-region communications. Figure 1-2 illustrates Agent System to Ag
System Interconnection. 

Figure 1-2 Agent System to Agent System Interconnection

1.2.12 Place

When an agent transfers itself, the agent travels between execution environments 
places.  A place is a context within an agent system in which an agent can execu
This context can provide functions such as access control. The source place and the 
destination place can reside on the same agent system, or on different agent sys
that support the same agent profile.

A place is associated with a location, which consists of the place name and the ad
of the agent system within which the place resides. An agent system can contain one 
more places and a place can contain one or more agents. Even though a place is 
defined as the environment where an agent executes, if agent system does not 
implement places, then place is still defined as the default place.

Operating
System

Operating
System

Agent
System

Communication
Infrastructure

Place

Agent

Agent
System

Communication
Infrastructure

Place

Agent

Network
1-8 Mobile Agent Facility V1.0                          January 2000



1

ce 

sarily 
nt 
cause 

ns. 
ent’s 
 an 
 agent 
stem 

r 
cher 

e 
 of 

y 

point-

twork. 

ervice 
on of 
s 
.

of the 
, 
oints.
When a client requests the location of an agent, it receives the address of the pla
where the agent is executing.

1.2.13 Regions

A region is a set of agent systems that have the same authority, but are not neces
of the same agent system type. The concept of region allows more than one age
system to represent the same person or organization. Regions allow scalability be
you can distribute the load across multiple agent systems.

A region provides a level of abstraction to clients communicating from other regio
A client wishing to contact an agent or agent system may not be aware of the ag
location. Instead, a client has an address for the region (basically, the address of
agent system that is designated as the region access point), and the name of the
or place. It is now possible to contact and communicate with an agent or agent sy
with only this information.

An agent may also have the same authority as the region in which it is currently 
residing and executing. This means that the agent represents the same person o
organization as the region. Normally, the configuration of the region may grant a ri
set of privileges to such an agent than to another resident agent with a different 
authority. For example, an agent that has the same authority as the region may b
granted administrative privileges. A region can be the same as an identity domain
CORBA security if the authority of the region is equal to the identity of the identit
domain.

A region fully interconnects agent systems within its boundaries and enables the 
to-point transfer of information between them. Each region contains one or more 
region access points and by these means, regions are interconnected to form a ne
Figure 1-3 on page 1-10 illustrates region architecture.

1.2.14 Region to Region Interconnection

Regions are interconnected via one or more networks and may share a Naming S
based on an agreement between region authorities and the specific implementati
these regions. A non-agent system may also communicate with the agent system
within any region as long as the non-agent system has the authorization to do so

A region contains one or more agent systems. Agent systems and clients outside 
region access the region via agent systems that are exposed to the outside world
similar to a firewall situation. These agent systems are defined as region access p
Mobile Agent V1.0        Basic Concepts           Jan. 2000 1-9



1

 in 

to 

n is 

 
orm 

f 
Figure 1-3 Region Architecture

Access rights are allocated to agents, based on the same authority as the region
which they are currently running. Using this definition, a region is regarded as a 
security domain in the context of MAF. Figure 1-4 on page 1-11 illustrates region 
region interconnection. 

1.2.15 Serialization/Deserialization

Serialization is the process of storing the agent in a serialized form. Deserializatio
the process of restoring the agent from its serialized form.

The key to storing and retrieving agents is representing the state of an agent in a
serialized form that is sufficient to reconstruct the agent. Note that the serialized f
must be able to identify and verify the classes from which the fields were saved.

For agent systems that are not object oriented, the agent state is the extraction o
runtime data for the agent, and classes are the code that implements the agent.

Agent
System

CI

Agent
System

CI

Agent
System

CI

Region

from
another
region

Agent
System

CI

Agent
System

CI

Agent
System

CI
1-10 Mobile Agent Facility V1.0                          January 2000



1

gent 
nsible 
 to 

 is not 
lass 

., 

n 
Figure 1-4 Region to Region Interconnection

1.2.16 Codebase

Codebase specifies the locations of the classes used by an agent. It can be an a
system or a non-CORBA object such as a Web server. If an agent system is respo
for providing the necessary classes, the codebase must have enough information
locate the agent system. Such an agent system is called a class provider.

It is possible for an agent to move to such an agent system in which the codebase
directly accessible (for example, because of a firewall). Refer to Section 1.4.1.3, “C
Transfer,” on page 1-14 in Section 1.3.1, “Remote Agent Creation, for more 
information.

1.2.17 Communications Infrastructure

A communications infrastructure provides communications transport services (e.g
RPC), naming, and security services for an agent system.

1.2.18 Locality

In the context of mobile agents, locality is defined as being close to the destinatio
agent system either in the same host or the same network.

Agent
System

CI

Agent
System

CI

Agent
System

CI

Agent
System

CI

Region

Agent
System

CI

Region

Non-
Agent
System
Mobile Agent V1.0        Basic Concepts           Jan. 2000 1-11



1

stem 

em.

.

hority 

nt.

agent 

vel 
 
 of 

tors 

 agent 
the 
ication 

te, 

 in 
 is 
 agent, 
1.3 Agent Interaction

Three common types of agent interactions are defined that are related to 
interoperability: 

1. remote agent creation

2. agent transfer

3. agent method invocation.

Note that only agent transfer is mobile-agent specific.

1.3.1 Remote Agent Creation

In remote agent creation, a client program interacts with the destination agent sy
to request that an agent of a particular class be created. A client program is:

• a program in a non-agent system.

• an agent in an agent system of a different type than the destination agent syst

• an agent in an agent system of the same type as the destination agent system

The client authenticates itself to the destination agent system, establishing the aut
and credentials that the new agent will possess. The client supplies initialization 
arguments and, if necessary, the class needed to instantiate and execute the age

An agent system can also choose to create agents on its own initiative. The new 
will generally have the same authority as the agent system.

1.3.2 Agent Transfer

When an agent transfers to another agent system, the agent system creates a tra
request. As part of the travel request, the agent provides naming and addressing
information that identifies the destination place. The agent also specifies a quality
communication service required for agent transfer. The quality of communication 
service is not specified by MAF standard, it is left open to agent system implemen
to specify it.

If the source agent system reaches the destination agent system, the destination
system must fulfill the travel request, or return a failure indication to the agent. If 
source agent system cannot reach the destination agent system, then a failure ind
must be returned to the source agent system.

When the destination agent system agrees to the transfer, the source agent’s sta
authority, security credentials, and, if necessary, its code are transferred to the 
destination agent system (refer to Section 1.4.1.3, “Class Transfer,” on page 1-14
Section 1.3.1, “Remote Agent Creation,” on page 1-12 for a discussion of when it
necessary to transfer code). The destination agent system reactivates the source
and then execution is resumed.
1-12 Mobile Agent Facility V1.0                          January 2000



1

rence 
ty of 
pen 
oke 

 the 
t’s 
.

an 

.

ving 
steps.

 
f the 

nt 
This 
t 

 

1.3.3 Agent Method Invocation

An agent invokes a method of another agent or object, if authorized and has a refe
to the object. As with agent transfer, the agent specifies the required level for quali
service. Similarly to agent transfer, this is not specified by MAF. Instead it is left o
to application developers to specify it. The communications infrastructure must inv
the indicated method and return the result of the invocation, or return a failure 
indication. When an agent invokes a method, the security information supplied to
communications infrastructure executing the method invocation must be the agen
authority. Note that most distributed object systems currently support this function

1.4 Functions of an Agent System

Common actions among agent systems are:

• Transferring an agent, which can include initiating an agent transfer, receiving 
agent, and transferring classes.

• Creating an agent.

• Providing globally unique agent names and locations.

• Supporting the concept of a region.

• Finding a mobile agent.

• Ensuring a secure environment for agent operations.

The remainder of this section discusses these areas, defining terms as necessary

1.4.1 Transferring an Agent

In the previous section, transferring an agent included initiating the transfer, recei
an agent, and transferring classes. The following sections discuss each of these 

1.4.1.1 Initiating an Agent Transfer

When a mobile agent is preparing for a trip, the agent must be able to identify its
destination. If the place is not specified, the agent executes in the default place o
destination agent system.

When the location of the destination agent system is established, the mobile age
requests the source agent system for a transfer to the destination agent system. 
message is relayed using an internal API between the agent and the source agen
system.

When the destination agent system receives the agent’s trip request, the following
actions are initiated:

• Suspend the agent (halt the agent’s execution thread)

• Identify the pieces of the agent’s state that will be transferred

• Serialize the instance of the Agent class and state
Mobile Agent V1.0        Functions of an Agent System           Jan. 2000 1-13



1

t 
n 

 
d 

obile 

t 
oes 
t be 

 

nt 
 for 
t 
ource 
• Encode the serialized agent for the chosen transport protocol

• Authenticate client

• Transfer the agent

1.4.1.2 Receiving an Agent Transfer

Before an agent is received into a destination agent system, the destination agen
system must determine whether it can interpret the agent. If the agent system ca
interpret the agent, it accepts the agent, then:

• Authenticates client

• Decodes the agent

• Deserializes the Agent class and state

• Instantiates the agent

• Restores the agent state

• Resumes agent execution

1.4.1.3 Class Transfer

Class transfer is the ability to transfer class information from one agent system to
another. This ability is a requirement in agent systems that support object-oriente
agents. Not all agents are object-oriented programs (for example, AgentTcl). 

There are three reasons why class transfer is necessary during the life span of a m
agent.

1. Agent instantiation as a part of remote agent creation (Agent class needed)

When an agent is created remotely by invoking a create operation at the agen
system, the Agent class is needed to instantiate the agent. If the Agent class d
not exist at the agent system that creates the agent, the class information mus
transferred from the source agent system.

2. Agent instantiation as a part of agent transfer (Agent class needed)

After an agent travels to another agent system, the Agent class is needed to 
instantiate the agent. If the Agent class does not exist at the destination agent
system, the class must be transferred from the source agent system.

3. Agent execution after instantiation (classes other than Agent class needed)

After an agent is instantiated due to remote creation or agent transfer, the age
often creates other objects. Obviously, the classes of these objects are needed
their instantiation. If any of these objects’ classes are not available at the agen
system that creates or receives the agent, they must be transferred from the s
agent system. 
1-14 Mobile Agent Facility V1.0                          January 2000



1

the 

sses 
st. 

 more 
 than 

on 

 each 

lasses 

he 
 
ested 
est to 
ave a 

ible 
nt as 

reation 
ce 

y.

 is 
ter). 
 

ource 

 
the 
lasses 
res 
g the 
 is 
The common conceptual model is flexible enough to support variations of class 
transfer so that implementors have more than one method available. Specifically, 
model supports:

• Automatic transfer of all possible classes

The source agent system (the class provider or the agent sender) sends all cla
needed to execute the agent with each remote agent creation or transfer reque
This approach eliminates the need for the destination agent system to request
classes. However, automatically sending all classes consumes more bandwidth
necessary if any of the transferred classes are already cached at the destinati
agent system.

• Automatic transfer of the Agent class only, other classes transferred on 
demand.

The source agent system sends the class needed to instantiate the agent with
remote agent creation or transfer request. If more classes are needed after 
instantiating the agent, the destination agent system issues requests for these c
to the class provider. If the class provider is not directly accessible from the 
destination agent system, the destination agent system issues the request to t
sender agent system by calling fetch_class method along with the codebase of the
classes. In this case, the sender agent system must be able to locate the requ
classes either by using the codebase information, or by sending a further requ
another agent system associated with the codebase. The sender agent may h
cache for the classes.

This approach does not require the source agent system to determine all poss
classes necessary before creating or transferring an agent. It is also more efficie
more classes are cached at the destination agent system. However, the agent c
or transfer request fails if the destination agent system cannot access the sour
agent system to transfer the necessary classes. This failure could happen, for 
example, if the source agent system is a portable computer that has been 
disconnected since the agent creation or transfer request was sent successfull

• Automatic transfer of the Agent class and on-demand transfer of all other 
classes when transferring an agent, coupled with transferring all classes 
automatically when creating an agent remotely.

This approach is a combination of the first two. When a remote agent creation
launched by a client that is not always connected (for example, a laptop compu
Therefore, if all classes are automatically transferred for remote agent creation
operations, then the problem of losing access to the classes available at the s
agent system may be avoided.

• Transfer a list of the names of all possible classes with the agent creation or 
transfer request.

This approach is another combination of the first two. The source agent system
sends a list of class names that includes all the classes necessary to perform 
specific agent operation. The destination agent system then requests only the c
on that list that have not been cached. This approach is efficient, but still requi
the source agent system to know which classes the agent needs before makin
agent creation or transfer request. This technique is most effective when there
Mobile Agent V1.0        Functions of an Agent System           Jan. 2000 1-15



1

so the 
n.

the 

t. This 
e of the 
gent 
an 

m all 

s. It 

e 
 is in 

 the 
cular 

ystems 
es.
cooperation between the agent language compiler and the agent system. For 
example, the compiler can provide a list of classes associated with each agent 
agent system does not parse the agent’s code at run time to get this informatio

When an agent system requests a class transfer, the agent system must identify 
class to another agent system.

1.4.2 Creating an Agent

For each agent, there is a class from which the agent system instantiates an agen
class is defined as Agent. To create an agent, an agent system creates an instanc
Agent class within a default place or a place the client application specifies. The A
class specifies both the interface and the implementation of the agent. To create 
agent, an agent system should:

• Start a thread for the agent

• Instantiate the Agent class

• Generate (if necessary) and assign a globally unique agent name that can be 
authenticated

• Start execution of the agent within its thread

Since an agent executes on its own thread, the agent executes independently fro
other agents.

1.4.3 Providing Globally Unique Names and Locations

An agent system must generate a unique name for itself, and the places it create
also has to generate a unique name for the agents it creates if required.

1.4.4 Supporting the Concept of a Region

An agent system supports a region by cooperating with other agent systems of th
same authority and by supporting a region access point. The region access point
charge of routing external travel requests to internal agent systems.

1.4.5 Finding a Mobile Agent

When an agent wants to communicate with another agent, it must be able to find
destination agent system to establish communication. The ability to locate a parti
mobile agent is also important for agent management.

Because a mobile agent travels, an agent name must be unique across all agent s
within regions. Agent systems may provide a naming service based on agent nam
1-16 Mobile Agent Facility V1.0                          January 2000



1

ems, a 
to 
uding 
 local 

fy the 
 
s 

eet 
stance 

ld 

inly 

uter 

 

ty to 

or 
 

y 
can 

on.
1.4.6 Ensuring a Secure Environment for Agent Operations

Because a mobile agent is a computer program that can travel among agent syst
mobile agent is often compared to a virus. So, it is imperative for agent systems 
identify and screen incoming agents. An agent system must protect resources incl
its operating system, file system, disks, CPU, memory, other agents, and access to
programs.

To ensure the safety of system resources, an agent system must identify and veri
authority that sent the agent. The agent system must also know what access the
authority is allowed. The ability to identify the authority of an agent enables acces
control and agent authentication within an agent system.

Another aspect of security is confidentiality. For example, one agent traveling to m
another agent might want to keep both the occurrence of the meeting and the sub
of the interaction confidential.

This section outlines security threats and countermeasures. It also discusses the 
required security services that the underlying communications infrastructure shou
provide.

1.4.6.1 Threats and Attacks

Agent systems may be vulnerable to security threats due to weaknesses in the 
communications infrastructure and programming languages. This document is ma
concerned with communications security threats, including:

• Denial of service, which is a reduction of the availability of an agent or agent 
system to legitimate users.

• Unauthorized access or use that occurs when an unauthorized person or comp
program invokes operations of an agent or agent system.

• Unauthorized modification or corruption of data that occurs when an agent’s or
agent system’s data are altered or destroyed, or false data is added.

An attacker can use a number of techniques to attack agent and agent system 
communications. Some possible attack techniques are:

• Spamming, which is flooding a service with illegitimate (or even legitimate) 
requests.

• Spoofing or masquerade, which is an agent or agent system falsifying its identi
get access to information and services.

• Trojan horse, which is an agent or agent system posing as a legitimate agent 
agent system that can potentially receive private information from unsuspecting
clients.

• Replay, which is recording and replaying a communications session. If a repla
attack is not detected, and the repeated operations are cumulative, the attack 
have a disastrous effect on the provided service.

• Eavesdropping, which is monitoring communications to obtain private informati
Mobile Agent V1.0        Functions of an Agent System           Jan. 2000 1-17



1

curity 
s that 
vide 

agent 
 
 the 
, 

ding
using
time

 disk
ctions
ge or

at an
ations
guage

nts 

from 

 
 that 
tion 

ection 
.

1.4.6.2 Strategies for Countering Threats and Attacks

To ensure that agents act responsibly, sets of rules are created and defined as se
policies. These rules govern an agent’s activities. The security and safety service
the underlying communications infrastructure and the programming language pro
enforce the rules.

Both agents and agent systems can have security policies. The authority that the 
or agent system represents sets the policies. An agent or agent system can have
multiple security policies. The particular policy to enforce is determined based on
authenticity of the communicating parties credentials, agent class, agent authority
and/or other factors.

Security policies contain rules for various purposes, including:

• Restricting or granting agent capabilities.

The affected capabilities could include creating new agents, traveling, or spen
digital money (for example, Cybercash). Enforcing these rules is generally done 
capability checks that are built into the agent programming language or run
environment.

• Setting agent resource consumption limits.

The region administrator can limit resources, including CPU usage, memory and
consumption, the number of new agents created, and the number of network conne
allowed. Generally, resource metering is built into the agent programming langua
runtime environment to enforce resource limits.

• Restricting or granting access.

The region administrator can control access to travel destinations, operations th
agent can invoke, and data that an agent can view, alter, or provide. Communic
security mechanisms (for example, access control lists) or agent programming lan
features enforce access control.

1.4.6.3 Specifying the Level of Network Communications Security

When an agent invokes an operation or wishes to travel, the agent specifies its 
requirements for the quality of network communication security. These requireme
include:

• Confidentiality - The agent may require the communications channel be secure 
eavesdropping. The agent may also specify the strength of the encryption.

• Integrity - The agent may require integrity checks to detect any corruption or 
unauthorized modification of data during network communications.

• Authentication - The agent may require authentication of the destination agent
system before it begins transmission. Communicating only with agent systems
it can authenticate helps an agent prevent unauthorized access to the informa
that it is carrying.

• Replay detection - The agent may require an agent system to use a replay det
algorithm to prevent duplication of the agent during a communications session
1-18 Mobile Agent Facility V1.0                          January 2000



1

ated 

ual 
 
must 
, 

ry 

 that 
 
gent 

must 

 

rce 
nt 
. If 
, the 
B. If 
 is not 

sfer is 

 
d in 

es.
1.4.6.4 Authentication

Usually, agent systems are easily authenticated where the agent system is co-loc
with the information that their authority uses to authenticate itself. Authentication 
services normally available in secure communications infrastructures include this 
functionality.

Agent systems use communication transport calls (e.g., RPC) to transfer agents 
between systems. To satisfy the destination agent system’s security policies, mut
authentication of agent systems may be required. Agent systems operate without
human supervision. Therefore, both agent systems involved in the agent transfer 
participate in the authentication process without human intervention (for example
without entering a password).

Agent authentication differs from agent system authentication. Agents cannot car
their encryption key with them when they travel (for example, private keys).

Instead, agent authentication uses authenticators. An authenticator is an algorithm
determines an agent’s authenticity. An authenticator uses information such as the
authenticity of the source agent system or launching client, the authorities of the a
and agent system involved, and possibly information about which authorities are 
trusted in order to authenticate an agent.

Authenticators, like agent systems, have types. Furthermore, authenticator types 
be registered with a naming authority.

Authenticators are divided into two types: one-hop and multi-hop. It is currently 
possible to specify the behavior of and requirements for a one-hop authenticator.
However, due to the limits of current security technology, specifying a multi-hop 
authenticator must be postponed.

A one-hop authenticator can authenticate an agent traveling one hop from its sou
agent system. For example, an agent of authority A is executing on a source age
system of Authority A, then migrates to a destination agent system of authority B
destination agent system B can successfully authenticate source agent system A
agent retains its source agent system A authenticity on destination agent system 
destination agent system B cannot authenticate source agent system A, the agent
defined as authenticated.

If an agent has a different authority than the source agent system, the agent tran
considered a multi-hop operation. This specification does not address multi-hop 
authentication. 

1.4.6.5 Countering Threats

This section presents several examples of how to use security policies to counter
threats to the integrity of agent communications. The two general problems covere
these scenarios are denial of service and unauthorized access of data and servic
Mobile Agent V1.0        Functions of an Agent System           Jan. 2000 1-19



1

. When 
ode 

trator 
urces.

ly a 
e 
hat 

ven if 
d and 

nario. 
curity.

 

t 

sents 

nd 
s to any 

red 

lf of 
r to 
 
ent 
Suppose an agent executes code that attempts to consume all system resources
resources are not available, services are denied to other agents and possibly to c
running on the agent system host. To resist an attack like this, the region adminis
can impose resource constraints on agents or code originating from untrusted so

In most cases, including CORBA, the level of trust assigned to an agent is partial
function of the agent’s authority and whether that authority was authenticated. Th
trust level may also depend on digital signatures (generated strings or numbers t
identify the author), or other techniques.

If a security method such as digital signatures is used, an agent can be trusted e
it arrives from an untrusted node. In such cases, the signed pieces can be truste
only the pieces the untrusted node modified are suspect.

The communications infrastructure is responsible for authenticating the agent’s 
authority. The agent system can supply any other safety services used in this sce
In addition, the agent language can supply safety features that further enhance se

Another possible attack on system resources can occur when an agent system is
flooded with communications traffic. Usually, the lower-level communications 
equipment deals with this type of attack. An agent system might have no inheren
defense against such an attack.

In an agent-based application, there may be an infinite number of techniques for 
gaining unauthorized access to data or services. The remainder of this section pre
two possible threats to data and service integrity, and the defenses against them.

Suppose an attacker can monitor communications traffic that transports agents a
decodes their state data. Once the state data is decoded, the attacker has acces
private information that the agent is carrying.

To counter this attack, an agent carrying sensitive information may demand 
confidentiality services as a condition for transport. If the level of protection requi
is not available, the agent transport should fail.

Suppose an attacker establishes an agent system that claims to operate on beha
some trusted authority. Faking the identity of a trusted authority allows the attacke
receive agents that may be carrying information meant for only trusted parties. To
counter this type of attack, an agent may demand that it only be transferred to ag
systems that are authenticated.

1.4.6.6 Security Service Requirements

This section defines and describes the requirements for secure mobile agent 
communications, which are:

• Client authentication for remote agent creation

• Mutual authentication of agent systems

• Agent system access to authentication results and credentials

• Agent authentication and delegation
1-20 Mobile Agent Facility V1.0                          January 2000



1

es. 

 
t may 
 
n.

le the 
ticity. 
ult of 

 be 
ened 

’s 
 client 
server 
rver 

on its 
h that 

iated 
t 
t’s 
ation 
• Agent and agent system security policies

• Integrity, confidentiality, replay detection, and authentication.

Authentication of Clients for Remote Agent Creation

Security services must provide for the authentication of non-agent system client 
applications. This authentication might be done using passwords or smart cards. 
Authenticating a client establishes the credentials of agents that the client launch
Client credentials also determine which security policy is used.

Mutual Authentication of Agent Systems

Agent systems, operating without human intervention, must be capable of 
authenticating each other. This authentication is accomplished by proving that the
agent system is in possession of some secret information such as a private key. I
be acceptable for a human to enter a password at the time of the agent system’s
initialization to authorize the agent system to have access to the secret informatio

Agent System Access to Authentication Results and Credentials

When agent communication takes place, the destination agent system must samp
credentials of both the agent and the source agent system, and verify their authen
An agent authenticator can use this information to authenticate an agent. The res
the authentication process determines which security policy to apply to the 
communications between the agent and the hosting agent system.

Agent Authentication and Delegation

If an agent is migrating to destination agent system, the agent’s credentials must
transferred with the agent if the migration succeeds. The credentials may be weak
depending on the results of the authentication.

If the communication taking place is a remote method invocation, the client agent
credentials are passed along to the server agent for charging or auditing. When a
agent makes an RPC call, the client agent’s credentials are made available to the 
agent. If the server agent makes an RPC call on behalf of the client agent, the se
agent should be able to pass the client agent’s credentials.

An agent uses its thread of execution to take actions (such as making RPC calls) 
own initiative. When an agent takes such an action, the credentials associated wit
action must be those of the agent so that the correct security policy is applied.

Agent and Agent System Security Policies

An agent should be able to control access to its methods. The agent or its assoc
agent system must both set and enforce the access controls. If the agent or agen
system’s access controls are both self-defined and self-enforced, the source agen
credentials must be available to the destination agent system, because this inform
is needed for access control decisions.
Mobile Agent V1.0        Functions of an Agent System           Jan. 2000 1-21



1

truct 

ions 

pport 
ent 

 B 

 take 

o 
tem 
ee 

 

d 
ame 
ct 
gent 
et 
Alternatively, the agent or agent system set the access controls, then require the 
communications infrastructure to enforce them. For example, an agent could cons
an access control list, then deliver it to the communications infrastructure for 
enforcement.

Integrity, Confidentiality, Replay Detection, and Authentication

For any communication, the requestor must be able to specify its integrity, 
confidentiality, replay detection, and authentication requirements. The communicat
infrastructure must honor these requirements, or return a failure indication to the 
requestor.

1.5 Agent System Interoperability Scenarios

Each agent system has a type (for example, Aglets), and can only create and su
agents of that type. An agent of one type communicates with an agent of a differ
type by several cases involving agent system interoperability.

Case 1: Agent X wants to communicate with Agent Y

Agent X initially resides in Agent System A and Agent Y resides in Agent System
(see Figure 1-6 on page 1-24). Because the communication involves a complex 
transaction, Agent X wants to transfer to the same host or network as Agent Y to
advantage of locality.

If Agent System A and Agent System B support the same agent profile, there is n
interoperability problem to solve. Agent X simply requests a transfer to Agent Sys
B, gets whatever information it needs, then returns to its original agent system (s
Figure 1-6).

Figure 1-5 Agent Transfer Where Both Agents Systems Are of the Same Type

However, if Agent System A and Agent System B support different agent profiles,
there are two ways for the agents to communicate. In one of the two cases local 
communication is possible, in the other case it is not.

Case 2: Agent can take advantage of locality

In this case, a new agent system is added (Agent System C). Agent System A an
Agent System C supports the same agent profile, and Agent System C is local (s
host/network) to Agent Y (see Figure 1-6 on page 1-24). Agent X discovers this fa
via a call to Agent System B, then requests a transfer to Agent System C. Once A
X travels to Agent System C, it can communicate locally with Agent Y via RPC, g
the information it needs, then return to Agent System A.
1-22 Mobile Agent Facility V1.0                          January 2000



1

d 
ve 
-24).
Case 3: Agent cannot take advantage of locality

In this case, Agent X cannot find an agent system local to Agent System B that 
supports the same agent profile as Agent System A. So, it remains on HostA, an
communicates with Agent Y across the network via RPC. Although it does not ha
the advantage of locality, communication can still occur (see Figure 1-7 on page 1

Agent

System A

HostA

Agent

System B

���
���

�������������������������������
�������������������� ������������

HostB

X X Y

Network
Mobile Agent V1.0        Agent System Interoperability Scenarios           Jan. 2000 1-23



1

 

Figure 1-7 Agent Unable to Find Compatible Local Agent System

Agent

System A

Agent

System C

Agent

System B

RPC

������������
����
����

������
�����������������
�������������������������

HostBHostA

X Y

Network

X

Figure 1-6 Agent Transfer Where the Source and Destination Agent Systems Support the
Same Agent Profile
1-24 Mobile Agent Facility V1.0                          January 2000



1

Agent

System A

HostA

Agent

System B

HostB

X Y

Network

RPC
Mobile Agent V1.0        Agent System Interoperability Scenarios           Jan. 2000 1-25



1

1-26 Mobile Agent Facility V1.0                          January 2000



 CORBA Services 2
 

-to-

ch 

ges. A 
Contents

This chapter contains the following sections. 

This chapter contains brief descriptions of the CORBA services that are related to
mobile agent technology (see Figure 2-1 on page 2-2):

• Naming Service

• Lifecycle Service

• Externalization Service

• Security Service

2.1 Naming Service

The CORBA Naming Service binds names to CORBA objects. The resulting name
object association is called a name binding, which is always related to a naming 
context. A naming context is an object that contains a set of name bindings in whi
each name is unique. Naming contexts can be combined to a naming graph. This 
directed graph consists of nodes (represented by naming contexts) and labeled ed
specific object can be addressed by a sequence of names (called a compound name) that 
builds one specific path in the naming graph.

Section Title Page

“Naming Service” 2-1

“Lifecycle Service” 2-4

“Externalization Service” 2-4

“Security Service” 2-5
Mobile Agent Facility V1.0                          January 2000 2-1



2

ct 

 
ired. 

ice to 

s 
ject 

h the 
Applications use the Naming Service to publish named objects, or to find an obje
given only the name. To obtain a reference to a naming service, an application 
typically bootstraps a reference to a naming context using the 
ORB::resolve_initial_references  operation.

This MAF specification describes two CORBA object interfaces: MAFAgentSystem
and MAFFinder. These objects may be published in the Naming Service if it is des
It is not mandatory that the user does this, but it may offer some programming 
convenience. For example, an agent entering a region may use the Naming Serv
get a reference to the MAFFinder.

Figure 2-1 CORBA Services and Facilities

Agents that wish to act as CORBA objects may also choose to publish themselve
using the Naming Service. Doing so gives applications a way to dynamically get ob
references to remote agents. Using this reference, an application can interact wit
agent using CORBA RPC.

ORB

��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������
��������������������������������������������������������

���

Facilities

����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������
����������������������������������������������������������

�

Services

Client

Security

Naming

Lifecycle

Externalization

Mobile Agent

Other Facility
Other Facility

Other Facilities

Facility
2-2 Mobile Agent Facility V1.0                          January 2000



2

RBA 
an 
 after 
omes 
ts 

 the 
d by 
er-

 

ent 
R). 
cess 

ss 
 
 

t the 
nce at 

 
he 

 the 
hich 

 time. 
re, 

h is 
n 

e 

he 
Stationary agents as well as mobile agents may publish themselves. Since a CO
object reference (IOR) comprises, among others, the name of the host on which 
object resides and the corresponding port number, a mobile agent gets a new IOR
each migration. In this case, the IOR that is kept by the accessing application bec
invalid. However, this problem can be solved in different ways. The following bulle
show three possible solutions:

• The first solution is that the ORB itself is responsible for keeping the IOR of 
moving objects constant. The mapping of the original IOR to the actual IOR of
migrated agent is managed by a corresponding proxy object which is maintaine
the ORB. Although this capability is described by CORBA (see the General Int
ORB Protocol chapter of the Common Object Request Broker: Architecture and 
Specification), it is not a mandatory feature of an ORB. Thus, the MAF standard
does not rely on this feature.

• The second solution is to update the name binding associated to the mobile ag
after each migration (i.e., to supply the Naming Service with the actual agent IO
This can be done by the agent systems which are involved in the migration pro
or by the migrating agent itself. In this way, the Naming Service maintains the 
actual IOR during the whole lifetime of the agent. If an application tries to acce
the agent after the agent has changed its location, the application retrieves an
exception (e.g., invalid object reference). In this case, the application contacts the
Naming Service in order to get the new agent IOR.

• When a mobile agent migrates for the first time, the original instance remains a
home agent system and forwards each additional access to the migrated insta
the new location. In this way, the original IOR remains valid, and the clients 
accessing the agent need not care about tracking it. They still interact with the
original instance, called proxy agent, which only exists to forward requests to t
actual (migrating) agent.

One disadvantage of this solution is that the proxy agent must be contacted by
migrating agent after each migration step in order to retrieve the new IOR to w
each access request must be forwarded.

Another disadvantage is that the home agent system must be accessible at any
If the home agent system is terminated, the agent cannot be accessed anymo
since the actual IOR is only maintained by the proxy agent. This problem is 
essential, since it should be possible to create mobile agents on a device whic
not permanently available (e.g., a laptop), to send the agents to another locatio
and, after this, to separate the device from the network.

To uniquely identify MAF agent systems and agents, the following components ar
used:

• Authority: defines the person or organization which the agent or agent system 
represents.

• Agent System Type: defines the type of an agent system. In case of an agent 
identification, this component represents the type of that agent system where t
agent has been created.
Mobile Agent V1.0        Naming Service           Jan. 2000 2-3



2

ame 

F. In 
d by 

ven 
hich 
hout 
in this 
ming 
e 

f an 
e for 
gent 

. 
r to 
sed 
pose 

 

ding 
ta 
lize an 
od 

d 
• Identity: distinguishes agent systems or agents, respectively, which have the s
authority and the same agent system type values.

The combination of these three components must be unique in the context of MA
the context of the CORBA Naming Service, each of the components is represente
one CosName.Name object.

The MAFFinder object is independent of specific authorities. The identification of 
such an object is managed by means of a single CosName.Name  object 
corresponding to the CORBA Naming Service.

2.2 Lifecycle Service

The CORBA Life Cycle Service defines services and conventions for creating, 
deleting, copying, and moving CORBA objects.

The CORBA objects defined by the MAF standard (i.e., MAFAgentSystem  and 
MAFFinder ) can be created and deleted using the Life Cycle Service. If desired, e
copying or moving these objects is possible. This may be desired if the host on w
an agent system is running must be shut down or separated from the network wit
disturbing the executing agents. Note that some management effort is necessary 
case - the address of the agent system that is maintained by the MAFFinder or Na
Service must be modified, and the residing agents must be supplied with the sam
runtime environment on the new host.

Mobile agents are active objects with the capability to move through the network. I
agent is represented as CORBA object, it is possible to use the Life Cycle Servic
its creation, deletion, copying, and migration. Since it is necessary to transfer the a
state, the Life Cycle Service must be combined with the CORBA Externalization 
Service. 

As mentioned above, the Life Cycle Service can only be used for CORBA objects
Regarding the MAF standard, agents need not be CORBA objects. Thus, in orde
provide a uniform interface for the creation, deletion, and migration of CORBA-ba
and non-CORBA-based agents, new operations have been introduced for this pur
(cf. IDL specification of MAFAgentSystem ). However, the create_agent and 
terminate_agent operations of the MAFAgentSystem  interface can use the Life Cycle
Service internally for CORBA-based agents.

2.3 Externalization Service

The CORBA Externalization Service provides a standardized mechanism for recor
an object’s state onto a data stream, and for restoring an object’s state from a da
stream. An agent system uses this service when it needs to serialize and deseria
agent’s state. However, the agent system implementor is free to choose any meth
(including non-CORBA mechanisms such as Java Object Serialization) for agent 
serialization and deserialization. (Note that in this section, we use serialization an
externalization interchangeably. Deserialization and internalization are also 
synonymous.)
2-4 Mobile Agent Facility V1.0                          January 2000



2

be 
gent 

m an 

 
m 

bes 
s in 

 its 

s 
By using the Externalization Service to serialize an agent, the agent’s state must 
represented by a CORBA object that implements the Streamable interface. The a
system would also implement a MemoryStream  object that has two purposes: 1) 
output an in-memory octet sequence when externalizing the agent and 2) read fro
in-memory octet sequence when internalizing an agent.

A MemoryStreamFactory  interface allows for the creation of MemoryStream  
objects. A suggested set of interface definitions is given below:

#include <CosExternalization.idl>
typedef sequence<octet> OctetString;
//MemoryStream externalizes objects to an in-memory
//octet sequence. After calling externalize() and
//flush(), the octet sequence representation may be
//accessed by calling get_octets().
interface MemoryStream : CosExternalization::Stream{

OctetString get_octets();
};

//Use the MemoryStreamFactory to create a MemoryStream
//object. Call create() to make an empty MemoryStream
//for object externalization. Call create_from_octets()
//to make a MemoryStream that can internalize the objects
//from the supplied octet sequence.
interface MemoryStreamFactory {

MemoryStream create();
MemoryStream create_from_octets(OctetString octets);

};

Once an agent is externalized and the octet sequence is retrieved from the 
MemoryStream , the octet sequence can be passed to the remote agent system’s
receive_agent()  operation to transmit the agent’s state. The receiving agent syste
constructs a MemoryStream  from the received octet sequence using the 
create_from_octets()  operation. The receiving agent system then calls the 
MemoryStream’s internalize()  operation to reconstitute the agent’s state.

2.4 Security Service

This section describes how CORBA (ORB) implementations may fulfill the agent 
security requirements discussed in the security section of the chapter entitled 
“Common Conceptual Model” earlier in this specification. This section also descri
how current CORBA security specifications fall short of agent security requirement
some areas.

Although CORBA security does not currently meet all the needs of mobile agent 
technology, the MAF implementation must use available CORBA security to satisfy
security needs. Future versions of CORBA security should address these issues.

The security capabilities of current CORBA implementations can be categorized a
follows:
Mobile Agent V1.0        Security Service           Jan. 2000 2-5



2

re 

ally, 

t of 
 may 
aces. 
 an 

s). 
2 as 
urity 

nd 3 
 

t is 
 
te 

t an 
ed 
1. No security services. The implementation includes neither proprietary nor 
standardized security interfaces. This type of implementation is limited to secu
environments (protected either physically or by a firewall from unauthorized 
access), or to applications that contain no data or services worth protecting. Usu
Intranet applications provide no security services.

2. Proprietary security services. The implementation includes a vendor-defined se
security capabilities such as authentication and access control. These services
be transparent to the application, or may be accessed via vendor-defined interf
Note that these services do not involve the ORB, and therefore do not provide
acceptable level of safety.

3. Conforming implementation of CORBA security services (refer to the CORBA 
Security Services Specification and the Common Secure Interoperability 
Specification (CSI) for more information about CORBA-defined security service
The implementation includes security services that conform to CSI level 0, 1 or 
defined in the CSI document, and interfaces that are defined in the CORBA Sec
Services Specification.

The security requirements for agents and agent systems in CORBA are:

• Agent naming

• Client authentication for remote agent creation

• Mutual authentication of agent systems

• Agent system access to authentication results and credentials

• Agent authentication and delegation

• Agent and agent system security policies

• Integrity, confidentiality, replay detection, and authentication

This section of the specification describes agent security in terms of categories 1 a
of CORBA implementations. The analysis given here could also be performed for
category 2 of CORBA implementations on a case-by-case basis.

2.4.1 Agent Naming

The destination agent system must identify the principal on whose behalf an agen
acting. This is true even when that principal is not authenticated, because certain
applications may find it acceptable to use application-defined heuristics to evalua
authenticity.

An agent system can provide the following information to an authorized user abou
agent that it is hosting (in the context of CORBA security, the term “principal” is us
instead of “authority”):

• The agent's name (principal and identity)

• Whether or not the principal has been authenticated (authenticity)

• The authenticator (algorithm) used to evaluate the agent’s authenticity
2-6 Mobile Agent Facility V1.0                          January 2000



2

tions 
m, as 

he 

are 
e the 

e 
entials 

s 

nt in 
ill be 

 of 
both 

nt 

e 

gent 
ent 

ss to 

tials 
Secure ORBs exchange security information about principals when remote opera
are invoked. This information is available to an application, such as an agent syste
a Credential object. If an ORB does not support security services, however, or a 
principal is not authenticated, the principal identity information is not available (if t
Credential is available, the only identity will be the Public identity).

It is necessary for agent systems to exchange principal information when agents 
transferred. The information in the Credential, if available, may be used to evaluat
authenticity of the information exchanged. If the Credentials is not available, the 
agent’s authenticity is automatically false.

2.4.2 Client Authentication for Remote Agent Creation

CORBA security services offer client authentication services via the 
PrincipalAuthenticator  object. Note that these services are not agent-specific. 

The client invokes the authenticate operation to establish its credentials. When th
client makes a request to an agent system to create an agent, it makes the Cred
object, which was obtained via the PrincipalAuthenticator  object, available to the 
destination agent system. The principal for the new agent is then obtained via thi
Credentials object. The agent system uses this information to find and apply the 
appropriate security policies.

A non-secure ORB does not provide client authentication. If a client creates an age
such an environment, the client may supply a name for the agent, but the agent w
marked as “not authenticated.”

2.4.3 Mutual Authentication of Agent Systems

CORBA security services allow administrators to require the mutual authentication
agent systems by setting the association options for agent systems. Specifically, 
the EstablishTrustInClient  and EstablishTrustInTarget  association options are 
required for agent systems.

Both the source and destination agent systems transfer credentials before an age
transfer occurs. This transfer makes it possible to apply security policy before 
transferring the agent. This policy protects against agents being transferred to 
illegitimate agent systems, and against agent systems giving access to illegitimat
agents.

A non-secure ORB does not provide mutual authentication of agent systems. An a
that is initially marked as “authenticated” is marked as “not authenticated” if the ag
visits an agent system that cannot be authenticated.

2.4.4 Access to Authentication Results and Credentials

At the destination end of an agent transfer, CORBA security services provide acce
the credentials of the source via the SecureCurrent  interface. The get_credentials  
operation may be used to obtain a reference to a Credentials object. The Creden
object includes the sender’s principal if the sender was authenticated. For agent 
Mobile Agent V1.0        Security Service           Jan. 2000 2-7



2

ansfer 
nticity 

eeds 
he 
e 

 agent 
cure 

f 

e 
 and 

ls 

for a 
e 

ials for 
ent 
 

.

gent 
 and 

more 

ipal.

y 
ystem 
e, 
te the 

ent 

may 
 

transfer, both sender and receiver are agent systems. The receiver of an agent tr
request may evaluate the sender’s credentials to determine the identity and authe
of the sender.

On the other hand, if an agent invokes operations on CORBA objects, the agent n
to have the credentials of its principal for secure invocations. This is true even if t
agent is defined as a non-CORBA object. In this case, the credentials object of th
agent should be available at the destination. Therefore, the credentials of both the
systems and the agents must be available at the destination in order to build a se
agent system.

If a secure ORB supports CSI level 2 with composite delegation, the credentials o
both the agent’s principal and the sender agent system’s principal can be made 
available on the receiver side. These credentials are obtained by using the 
SecurityLevel2:Current  interface. The agent’s credentials are then used to secur
subsequent invocations by the agent. Refer to Section 2.4.5, “Agent Authentication
Delegation,” on page 2-9 for more information.

If composite delegation is not supported, it is not possible to make both credentia
available at the new agent system. If a secure ORB supports only the Security 
Functionality level 1, an agent system cannot control which credentials are used 
transfer request issued by the agent system; instead the choice is governed by th
security policy defined by the security authority.

It is possible for a sender agent system to set and use the agent system’s credent
the agent transfer if a secure ORB supports Security Functionality level 2. The ag
system may use the SecurityLevel2:Current  interface to set its credentials, or it may
use the override_default_credentials  on the reference of the target agent system

If the agent system’s credentials are used for the agent transfer, the destination a
system can evaluate the sender agent system’s principal to determine the identity
authenticity of the sender. However, the invocation credentials for the agent may 
become those of the agent system that is hosting the agent. This makes it much 
difficult to secure operation invocations performed by the agent, because object 
invocations by any agent appear to have the authority of the agent system’s princ

For an agent system to secure such invocations without having CSI level 2, it ma
choose to use the agent’s credentials for the agent transfer. The receiver agent s
can then use that credentials object for the agent’s secure invocations. In this cas
however, the sender’s credentials are not available and the receiver cannot evalua
sender agent system’s principal.

Note that the secure agent system can be built on top of CSI level 0 or 1 if an ag
does not invoke operations on CORBA objects. In a non-secure ORB, all agent 
transfers and agent operation invocations are anonymous. The only identifying 
information available is the unauthenticated principal value that an agent system 
include during an agent transfer. The ORB does not transfer or support access to
credentials.
2-8 Mobile Agent Facility V1.0                          January 2000



2

ent's 
ly be 

m (see 

ystem 

h the 

 
ent's 

ose to 

y 
ons 

s of 
n an 

r the 
een 
t’s 
t 

 are 
or 

 
 the 
cess 
2.4.5 Agent Authentication and Delegation

When possible, it is desirable that secure ORB implementations propagate the ag
credentials along with the agent as it moves between agent systems. This may on
possible using composite delegation, which involves both parties in the transfer 
request, then propagates the credentials of the agent and the sending agent syste
the following diagram).

The diagram shows the call flow beginning with an agent making a request to its 
hosting agent system (Agent System 1) for a transfer to Agent System 2. When 
composite delegation is supported, the credentials of both the agent and Agent S
1 are available to Agent System 2.

Upon receiving an agent's credentials, the receiving agent system should establis
agent's credentials as the invocation credentials of the agent. As a result, any 
operations invoked by the agent will be subject to the policies associated with the
agent's principal. This approach also ensures the continued propagation of the ag
credentials when the agent makes other transfers.

If an agent system receives an agent from an untrusted agent system, it may cho
weaken the agent's credentials. For example, it may wish to treat the agent as 
unauthenticated.

The propagation of both agent’s credentials and agent system’s credentials is onl
possible with composite delegation, which is only available with ORB implementati
that conform to CSI level 2. Furthermore, it is not known whether ORB 
implementations will support delegation of credentials to application-created thread
execution. Delegation of credentials is needed to identify an agent’s principals whe
agent invokes a method on CORBA objects.

In CSI level 0 and level 1 implementations, either of the credentials of the agent o
credentials of the agent system can be transmitted. If mutual authentication betw
agent systems is not required (as in the case of a trusted environment), the agen
credentials may be propagated to the destination agent system in lieu of the agen
system’s credentials. In non-secure ORB implementations, an agent’s credentials
not propagated between agent systems; thus, there are no available credentials f
agents that travel.

2.4.6 Agent and Agent System Defined Security Policies

Any CORBA object implementation may refuse to service a request. Secure ORB
implementations (CSI levels 0,1, and 2) can provide the object implementation with
credentials of the requestor, allowing object implementations to make their own ac

      go                  transfer
 Agent---->Agent System 1--------------->Agent System 2
Mobile Agent V1.0        Security Service           Jan. 2000 2-9



2

non-
ased 

y 
decisions. Typically, when a CORBA object implementation throws an exception 
CORBA::NO_PERMISSION of a type, it indicates that a security violation was 
attempted and refused.

The requestor’s credentials are not available in object implementations based on 
secure ORBs. However, these implementations may refuse to service a request b
on other criteria, such as the values of the request parameters.

2.4.7 Security Features

Secure ORB implementations allow applications to specify the quality of security 
service when they invoke operations. To specify the security level, set the securit
features of the invoker's credentials, or set the quality of protection in an object 
reference.

Security features that are set via the invoker's credentials include:

• Integrity

• Confidentiality

• Replay detection

• Misordering detection

• Target authentication (establish trust)

Security features that are set via the quality of protection in an object reference 
include:

• Integrity

• Confidentiality
2-10 Mobile Agent Facility V1.0                          January 2000



 MAF IDL 3
d 

cribed 
2” 
Contents

This chapter contains the following sections. 

3.1 Overview

The Mobile Agent Facility (MAF) is a collection of definitions and interfaces that 
provide an interoperable interface for mobile agent systems. MAF is as simple an
generic as possible to allow for future advances in mobile agent systems.

Reasons for standardizing certain areas of mobile agent technology have been des
in the section Section 1.5, “Agent System Interoperability Scenarios,” on page 1-2
earlier in this specification. Please refer to that section for a discussion of the 
advantages and design goals of MAF.

The MAF module contains two interfaces:

1. MAFAgentSystem  interface

2. MAFFinder  interface

Section Title Page

“Overview” 3-1

“The MAFFinder” 3-3

“Name, Class Name, and Location” 3-3

“OMG Naming Authority Identifiers” 3-9

“MAFAgentSystem Interface” 3-10

“MAFFinder Interface” 3-25
Mobile Agent Facility V1.0                          January 2000 3-1



3

te, 
 

 and 
3.3, 
 

t level 
re not 
e the 
 that 

 
r 
n 

ame 

ate 
ent 
The MAFAgentSystem  interface defines agent operations, including receive, crea
suspend, and terminate. The MAFFinder  interface defines operations for registering,
unregistering, and locating agents, places, and agent systems.

Before each of these interfaces is discussed in detail, some predefined structures
definitions used in these modules will be discussed. This discussion is in Section
“Name, Class Name, and Location,” on page 3-3, and Section 3.4, “OMG Naming
Authority Identifiers,” on page 3-9.

The interfaces have been defined at the agent system level rather than at the agen
to address interoperability concerns. Both agent systems and agents may be, but a
necessarily, CORBA objects. However, agents live in agent systems, and therefor
implementation of an agent depends upon the implementation of the agent system
creates it.

Currently, several agent systems have been built, including IBM’s Aglets, General
Magic’s Telescript, and Dartmouth College’s AgentTcl. These agent systems diffe
from each other. For example, they use different languages, encoding/serializatio
methods, and authentication mechanisms.

Figure 3-1 The Relationship Between MAF and an ORB

Because agents travel only from one agent system to another that supports the s
agent profile, there is no need to unify the agent interface. Instead, the agent 
management operations defined in MAF, such as suspend, unregister, and termin
agent are standardized. These operations form a basic set that is sufficient for ag
inter-system travel.

MAF Implementation

MAFAgentSystem

MAFFinder

MAF Client

ORB
3-2 Mobile Agent Facility V1.0                          January 2000



3

ices, 

s as 
nt 

for 
the 

 the 
ther 
The CORBA services are designed for static objects. When CORBA naming serv
for example, are applied to mobile agents, they may not handle all cases well. 
Therefore, an MAFFinder interface is also declared here. The MAFFinder function
an interface of a dynamic name and location database of agents, places, and age
systems.

Figure 3-2 The Relationship between MAF and an ORB

3.2 The MAFFinder

The MAFFinder is a naming service. It may be shared among regions. However, 
simplicity of definition, there is one MAFFinder for each region. Figure 3-3 shows 
two region scenario used in describing the MAFFinder concepts.

.

Before a client can request the MAFFinder to find an object, the client must obtain
object reference to the MAFFinder. To get the object reference, the client uses ei
the CORBA Naming Service or the method AgentSystem.get_MAFFinder() .

3.3 Name, Class Name, and Location

typedef short AgentSystemType;

typedef sequence<octet> OctetString;
struct ClassName{

string name; 
OctetString discriminator;

};
typedef sequence<ClassName> ClassNameList;
typedef sequence<OctetString> OctetStrings;

MAF Implementation

MAFAgentSystem

MAFFinder

MAF Client

ORB
Mobile Agent V1.0        The MAFFinder           Jan. 2000 3-3



3

s: 

he 

s. 

sed.

ities. 
the 
ay 
in 
 in 
typedef OctetString Authority;
typedef OctetString Identity;

struct Name{
Authority authority; 
Identity identity;
AgentSystemType agent_system_type;

};
typedef string Location;

3.3.1 Name

In the MAF module, Name is defined as a structure that consists of three attribute
authority , identity , and agent_system_type . These attributes create a globally-
unique name for an agent or agent system.

When Name is an agent name, the agent_system_type  is the type of agent system 
that generated the identity of the agent. When Name is an agent system name, t
agent_system_type  is the agent system’s type.

Authority defines the person or organization the agent or agent system represent
CORBA uses the term principal instead of authority. The authority of the agent must 
be equivalent to the principal of the agent’s credentials if the CORBA security is u

Agent systems of different types may use different mechanisms to generate ident
Therefore, it is possible that two agent systems of different types might generate 
same authority and identifier. In addition, the responsibility for naming an agent m
also differ for each agent system type. The client may be responsible for naming 
some agent system, while the agent system must generate a name for the agent

Agent
System A

Agent
System B

MAFFinder

Agent
System C

Agent
System D

MAFFinder

Region 1

Region 2

Figure 3-3 Two Region Scenario
3-4 Mobile Agent Facility V1.0                          January 2000



3

ype 
r. 

 a 
ique 

 
ique. 

nique 
others. The MAF specification allows these two approaches. The agent_system_t
distinguishes one agent system from another with the same authority and identifie
The Name structure defines the syntax for an agent or agent system name.

3.3.2 Class Name

The ClassName structure defines the syntax for a class name. A class name has
human-readable name and an octet string that ensures that the class name is un
within the scope.

This specification does not provide any mechanism to make class names globally
unique. So, an agent system should not assume that class names are globally un
Therefore, MAF implementors are responsible for ensuring that class names are u
within the scope of the source agent system for either a receive_agent()  or 
create_agent()  call.

Figure 3-4 Class Name Uniqueness within an Agent System

Agent
System A

Agent
System D

Agent
System C

Agent
System B

ClassOne

ClassOne

ClassOne

ClassOne

ClassOne
Mobile Agent V1.0        Name, Class Name, and Location           Jan. 2000 3-5



3

 is 

ld be 
ests 
e of 

 of an 

sOne 

gent 

 two 
stem D 
ne to 
d in 

 It is 

ms 
s for 
 in 

 had 

 on 

he 

n (a 
d.

ent. 
ents 
Figure 3-4 illustrates the minimum requirement for class name uniqueness, which
uniqueness within an agent system.

When Agent System C requests ClassOne from Agent System A, ClassOne shou
unique within the scope of Agent System A. Similarly, when Agent System C requ
ClassOne from Agent System B, this ClassOne should be unique within the scop
Agent System B.

Agent System C must distinguish between the two versions of ClassOne. This is 
necessary, for example, if Agent System D needs ClassOne to create an instance
Agent System A type of agent.

Suppose Agent System C wants to create an agent on Agent System D. If a Clas
is involved in this creation, Agent System C uses the class_names parameter in 
Create_Agent to specify for Agent System D which ClassOne is necessary. Once A
System D receives the class, it can rename it.

Note that the difference between names for the same version of ClassOne on the
agent systems can cause an unnecessary class transfer. For example, if Agent Sy
later attempts to transfer an agent that uses the Agent System A version of ClassO
Agent System C, Agent System C might not recognize that the ClassOne specifie
the class list for the call is the same as the class A:ClassOne that it already has.
not within the scope of this specification to address this situation, however.

If the region administrators of the communicating(source/destination) agent syste
agree on a globally-unique class naming scheme, the problem of duplicate name
the same class can be avoided. For example, if class names were globally unique
Figure 3-4 on page 3-5, Agent System C would never encounter two classes that
the same name.

3.3.3 Location

In the MAFFinder interface, Location specifies the path to an agent system based
the name of an agent system, agent, or place. For example, when 
MAFFinder.lookup_agent() is called using an agent name, a Location specifying t
agent system that contains the agent is returned.

Once the client gets the Location of an agent system, it must convert the Locatio
String) to the object reference of the agent system to invoke the operations offere

The Location String is in one of two forms:

1. a URI containing a CORBA name

2. a URL containing an Internet address

The advantage of using the CORBA Naming Service is that it is protocol independ
The advantage of using an internet address is that it is better suited to mobile ag
and the Internet.
3-6 Mobile Agent Facility V1.0                          January 2000



3

 first 

 

630, 
n 

 key 

 

ping 
ashes 
 

ted 
 

ssed 
e a 
To determine which format the Location is in, the client parses the string up to the
colon (:). If the characters preceding the colon are “CosNaming,” the string is a 
CORBA name. If the characters preceding the colon are “mafiiop,” the string is an
Internet address.

3.3.3.1 COSNaming Location String Format

When the Location is in a CORBA name format, the client must convert the URI 
containing the CORBA name to the syntax of a CosNaming.Name (refer to RFC 1
“Universal Resource Identifiers in WWW” for URI format details). Once the Locatio
is converted to a CosNaming.Name, the client uses the CosNaming.Name as the
for a search that returns the agent system object reference.

The format of a CosNaming.Name is an ordered sequence of components. Each 
component consists of two attributes: the identifier and the kind, which are both 
strings.

The location for an agent system or a place can be written in URI form using the
following syntax (refer to RFC 1630 for a definition of xpalphas):

mafuri :=scheme”:”location
scheme :=“CosNaming”
location :=components | “/”location
components :=component | component”/”components
component :=id”!”kind
id :=xpalphas
kind :=xpalphas

Conversion of a CosNaming URI to a CosNaming.Name is a straightforward map
from one to the other. In a CosNaming URI, the components are separated with sl
(/), and the identifier and kind attributes of each component are separated with an
exclamation mark (!).

For example, the Location containing URI:

CosNaming:/user!domain/user_name!u3

can be converted to the following CosNaming.Name.

{{“user”, “domain”}, {“u3”, “user_name”}}

3.3.3.2 Internet-Specific (MAFIIOP) Location Conversion Method

If IIOP is used, an IOR for an agent system in another domain could be construc
directly from the location information. The requirements for an IIOP IOR are host
name, port number, and an object key (an octet string defined in the CORBA 
Interoperation description of IIOP IOR). The host and port number might be expre
as part of the location information, and the object key for the agent system can b
string value (for example, “AgentSystem1” represented as an octet string).
Mobile Agent V1.0        Name, Class Name, and Location           Jan. 2000 3-7



3

jects 
map 
d 

n. 

ion 
 to 
lied 

 
f 

the 

laces 

RL. If 
passed 

luded 
value 

e for 
 via 
Note that such references may not be actual object references, since CORBA ob
may migrate and thus change their IOR. The IIOP redirection capability is used to 
a received reference to an actual reference. The client’s ORB caches the correcte
version of the reference. The requesting client object is oblivious to the redirectio
This mechanism works for getting a reference to any CORBA object, and is not 
specific to MAF objects. However, regarding the CORBA specification, the redirect
capability is not a mandatory ORB capability. Therefore, clients also must be able
get actual IORs (e.g., by contacting a Naming Service which is continuously supp
with the actual IORs of mobile objects).

The location for an agent system or a place can be written in URL form using the
following syntax (refer to RFC1738, “Uniform Resource Locators,” for definitions o
hostname, hostnumber, digit, and uchar).

mafurl := scheme “:” location
scheme := “mafiiop”
location := “//” [hostport “/”] agentsystem [“/” place]*
hostport := host “:” port
host := hostname | hostnumber
port := digit+
agentsystem := uchar+
place := uchar+
components := component [“&” components]
component := tagname “=” tagvalue
tagname := “TAG_ORB_TYPE” |

“TAG_CODE_SETS” |
“TAG_SEC_NAME” |
“TAG_ASSOCIATION_OPTIONS” |
“TAG_GENERIC_SEC_MECH”

tagvalue := uchar+

URLs of this type can define locations accessible via IP-based networks such as 
Internet.

Even though a place is addressable via this scheme, it is not a requirement that p
be first class CORBA objects. To get a reference to an agent system, a client 
manufactures an IOR using the host, port, and agent system components of the U
there is a place component (a path separated by one or more slashes), then it is 
as an argument to any agent system operations that may require it. If there are 
components (equations separated by “&”), then it denotes tagged components inc
an IIOP version 1.1 IOR. A tagname represents a tag of the component, and a tag
represents a value of the component.

Because locations can be written as strings, there need not be a special data typ
them. The URL format given above can be used for defining locations accessible
the Internet or an Intranet.
3-8 Mobile Agent Facility V1.0                          January 2000



3

r to 

 
ed.

tor 
roup 
the 
 the 
 

3.3.3.3 Additional Location Conversion Method

For non-IP networks that do not use the CORBA Naming Service, other URIs (refe
RFC1630, “Universal Resource Identifiers in WWW”) could be developed. Those 
URIs are distinguished from the URL defined above by choosing different scheme
tags. The location specification and how it can be mapped to an IOR will be defin

3.4 OMG Naming Authority Identifiers

The identifiers assigned to parameters such as agent system type and authentica
should be unique across all implementations of MAF. It is necessary that some g
assigns and maintains these parameters; therefore, OMG has agreed to become 
naming authority for mobile agent technology. Having a naming authority benefits
interoperability and unambiguous exchange of information between different MAF
applications.

OMG will assign values and manage the parameters of the following definitions:

typedef short LanguageID;
typedef short AgentSystemType;
typedef short Authenticator;
typedef short SerializationID;
typedef sequence<SerializationID> SerializationIDList;

These parameters are used in the following definitions:

typedef any Property; 
typedef sequence<Property> PropertyList;

struct LanguageMap {
LanguageID language_id;
SerializationIDList serializations;

};
typedef sequence<LanguageMap> LanguageMapList;

struct AgentSystemInfo {
Name system_name;
AgentSystemType system_type;
LanguageMapList language_maps;
string system_description;
short major_version;
short minor_version;
PropertyList properties;

};

struct AuthInfo {  //authentication information
boolean is_auth;
Authenticator authenticator;

};
Mobile Agent V1.0        OMG Naming Authority Identifiers           Jan. 2000 3-9



3

tion 
stems. 

by a 
fined 

while 
d of 
nt 
ty. 
he 

nt. 
struct AgentProfile {
LanguageID language_id;
AgentSystemType agent_system_type;
string agent_system_description;
short major_version;
short minor_version;
SerializationID serialization;
PropertyList properties;

};

This specification does not dictate which agent system types, languages, serializa
mechanisms, and authentication methods must be used to accommodate new sy
The OMG naming authority should begin with these initial values:

• Languages: Java, Tcl, Scheme, and Perl

• Agent system type: Aglets, MOA, and AgentTcl

• Authenticator type: none, one-hop authentication

• Serialization methods: Java Object Serialization

The property names specified in the Property structure should also be managed 
naming authority. However, this is a future task, because there are currently no de
property names in the MAF specification.

Agents and agent systems provides application specific properties. A client may 
specify these properties. For example, to restrict the scope of a search operation 
looking for a specific agent or agent system using the corresponding lookup metho
the MAFFinder interface (see “MAFFinder Interface”). To specify a property, a clie
must support the application specific format of the value component of the proper
The semantics and syntax of the value are identified by the name component of t
property.

3.5 MAFAgentSystem Interface 

The MAFAgentSystem interface defines methods and objects that support agent 
management tasks such as fetching an agent system name and receiving an age
These methods and objects provide a basic set of operations for agent transfer.

interface MAFAgentSystem {

Name create_agent(
in Name agent_name,
in AgentProfile agent_profile,
in OctetString agent,
in string place_name,
in Arguments arguments,
in ClassNameList class_names,
in string code_base,
in MAFAgentSystem class_provider) raises (ClassUnknown,

ArgumentInvalid, DeserializationFailed, 
3-10 Mobile Agent Facility V1.0                          January 2000



3

g to a 
n be 

ing.
MAFExtendedException);
OctetStrings fetch_class(in ClassNameList class_name_list, in string

code_base, in AgentProfile agent_profile) raises (ClassUnknown, 
MAFExtendedException);

Location find_nearby_agent_system_of_profile (in AgentProfile profile)
raises (EntryNotFound);

AgentStatus get_agent_status(in Name agent_name) raises 
(AgentNotFound);

AgentSystemInfo get_agent_system_info();
AuthInfo get_authinfo(in Name agent_name) raises (AgentNotFound);
MAFFinder get_MAFFinder() raises (FinderNotFound);
NameList list_all_agents();
NameList list_all_agents_of_authority(in Authority authority);
Locations list_all_places();
void receive_agent(

in Name agent_name,
in AgentProfile agent_profile,
in OctetString agent,
in string place_name,
in ClassNameList class_names,
in string code_base,
in MAFAgentSystem agent_sender) raises (

ClassUnknown, DeserializationFailed, MAFExtendedException);

void resume_agent(in Name agent_name) raises (AgentNotFound, 
ResumeFailed, AgentIsRunning);

void suspend_agent(in Name agent_name) raises (AgentNotFound,
SuspendFailed, AgentIsSuspended);

void terminate_agent(in Name agent_name) raises (AgentNotFound,
TerminateFailed);

void terminate_agent_system() raises (TerminationFailed);
};

3.5.1 create_agent()

An agent system performs the create_agent operation to create an agent accordin
remote client’s request. The actual name of the created agent is returned. This ca
the same as the name given as the parameter if the client is responsible for nam

3.5.1.1 Syntax

Name create_agent(in Name agent_name, in AgentProfile agent_profile,
in OctetString agent, in string place_name,
in Arguments arguments, in ClassNameList
class_names, in string code_base, in MAFAgentSystem class_provider)
raises (ClassUnknown, ArgumentInvalid, DeserializationFailed,
MAFExtendedException);
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-11



3

tem 
t be 
 has 

 is 

it, and 
he 
re 

 can 

and 

t with 
 

vey to 
od. 
 
 of the 

d to, 
sses 

the 
3.5.1.2 Parameters

agent_name

Name of the new agent. The agent’s authority is the client’s authority. Its 
agent_system_type  is either the client’s agent_system_type , if the client is an 
agent system, or it is NonAgentSystem (value 0, refer to Appendix B, “Agent Sys
Types”, for more information) if the client is not an agent system. The identity mus
provided if the client is responsible for naming the new agent. If the agent system
the responsibility, the identity field is ignored. The actual name for the new agent
given as the return value.

agent_profile

Contains information about the agent, such as the agent system type that created 
the method used to serialize it for transfer. Based on agent profile and profile of t
target system, the latter can discover if agent requirements and system support a
“similar” enough in order to accept agent at the site. 

“Similar” is defined and interpreted by the system that accepts the agent. “Similar”
be defined by the type of the manufacturer. In certain cases there might not be 
interoperability between certain manufacturers, while at the same time there is 
interoperability with other manufacturers.

For example, it is possible to envision that Aglets can interoperate with Odyssey 
Magenta with MOA. “Similar” can also be defined by the versions of the system. 
Agent might have been created at the agent system of the same manufacturer bu
an obsolete or incompatible version. “Non-similar” is certainly implied for different
languages.

agent

This parameter is opaque and can contain anything that the sender needs to con
the remote agent system that is not covered in the other parameters to this meth
This parameter contains information that is unique to agents of a particular agent
profile. The agent system creating the agent must be able to decode the meaning
information in this parameter.

The kinds of information that can be in this parameter include, but are not restricte
the agent class definition, the agent’s states, and definitions of some or all the cla
needed to instantiate the agent at the remote agent system.

place_name

Name of the place where the agent will reside. If this parameter is not specified, 
agent system creates the agent in a default place within the system.

arguments

This parameter specifies the arguments for the agent constructor.
3-12 Mobile Agent Facility V1.0                          January 2000



3

at the 
cept 

e the 
null 

 

 and 

r the 
ether 

x of 
ility. 

s 
trieve 

 that 
ent 
class_names

List containing the name of each class necessary to instantiate the agent. Note th
class list is optional, which means it can be empty. Because CORBA does not ac
null as a passed-in argument for a parameter specified as classNameList, the 
classNameList with the name field set to an empty string must be used to indicat
case where no class name is required. MAF implementors can provide a special 
class name for convenience.

The list may or may not be necessary depending on the class transfer mechanism
chosen. Refer to “Class Transfer” in Section 1.3.1, “Remote Agent Creation,” on 
page 1-12 earlier in this specification for a discussion of the various mechanisms
their requirements.

Classes listed here may or may not need to be transferred depending on whethe
agent system caches classes. In fact, the receiving agent system must decide wh
fetch_class()  is needed.

code_base

Reference to the code base containing the necessary class definitions. The synta
this parameter can vary between agent system types without affecting interoperab
It is returned to the requesting client via fetch_class() , if necessary. Therefore, only 
the class provider needs to know the syntax of this string if the source of the clas
definitions is an agent system. It is possible for the destination agent system to re
the class definitions directly by using the codebase information.

class_provider

Reference to the client source that provides the necessary class definitions. Note
the class_provider  parameter should be void if the classes are provided by non ag
system.
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-13



3

thod. 

nt 
ws 

n 

x of 
ility. 
3.5.1.3 Exceptions

3.5.1.4 Usage Notes

Even a remote client without agent capabilities can create an agent using this me
Because the client is not required to have agent capabilities, it can minimize its 
footprint. The size of the footprint is very important for a client in a handheld 
computer such as a Pilot or a MagicLink.

The destination agent system is free to queue the agent or route it to another age
system within its region. This is an implementation detail that the specification allo
but does not mandate.

3.5.2 fetch_class()

The method fetch_class()  returns definitions of one or more classes. In case of no
object oriented agent system, fetch_class()  method is used for fetching code.

3.5.2.1 Syntax

OctetStrings fetch_class(in ClassNameList class_name_list, in string
code_base, in AgentProfile agent_profile) raises (ClassUnknown, 
MAFExtendedException);

3.5.2.2 Parameters

class_name_list

Names of the class definitions requested.

code_base

Reference to the code base containing the necessary class definitions. The synta
this parameter can vary between agent system types without affecting interoperab
The client provides the code_base  in create_agent()  or receive_agent() . It is 
returned to the client via fetch_class() , if necessary. Therefore, only the class 
provider needs to know the syntax of this string.

ClassUnknown Failed to find class definition.

ArgumentsInvalid Arguments passed did not match any agent 
constructor’s signature.

DeserializationFailed The agent system could not instantiate the agent 
because it could not decode the agent OctetString.

MAFExtendedException This is a generic exception. Use it only if no other 
exception applies to the error condition.
3-14 Mobile Agent Facility V1.0                          January 2000



3

rrent 

ining 
sses if 
detail 

. This 
 

class_provider

Contains information about the language and serialization method used for the cu
context of create_agent()  or receive_agent() .

3.5.2.3 Exceptions

3.5.2.4 Usage Notes

Use this method to retrieve classes from the specified code base and client. The 
requested agent system can know whether it is the class provider or not by exam
the given codebase. If not, the requested agent system may return the cached cla
any, or may route this request to another agent system. This is an implementation 
that the specification allows but does not mandate.

3.5.3 find_nearby_agent_system_of_profile()

The find_nearby_agent_system_of_profile()  method requests the MAFFinder to 
find a nearby agent system that can execute the agent that the client wants to send
is an interface on the MAFAgentSystem, which in turn relies on the MAFFinder to
locate the nearby agent system of the correct type. The implementation of the 
MAFAgentSystem must achieve this functionality using the MAFFinder.

3.5.3.1 Syntax

Location find_nearby_system_of_profile (in AgentProfile profile) raises
(EntryNotFound);

3.5.3.2 Parameters

profile

The profile of the agent being sent.

ClassUnknown Failed to find class definition.

MAFExtendedException This is a generic exception. Use it only if no other 
exception applies to the error condition.
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-15



3

ent 
ofile 
agent 
 it 

). In 

 

 take 

nt 
3.5.3.3 Exceptions

3.5.3.4 Usage Notes

Sometimes an agent wishes to communicate with an object that resides in an ag
system of a different type (in other words, one that does not support the agent pr
of the traveling agent), or in a non-agent system. This method lets the requesting 
look for an agent system of the correct type that is closer to the object with which
wants to communicate, which resides on an incorrect type (not supporting MAF 
AgentSystem, not supporting the same version required, different languages, etc.
order to be able to optimize communication with that object, another 
MAFAgentSystem of the correct type (the same version as required by the mobile
agent) is located. 

This interface is highly application specific. It would be extremely difficult to 
generalize on the metric for closeness; therefore, the application must define and
advantage of this interface.

3.5.4 get_agent_status()

The get_agent_status()  method returns the status of the specified agent.

3.5.4.1 Syntax

Agent_Status get_agent_status (in Name agent_name) raises (AgentNot-
Found);

3.5.4.2 Parameters

agent_name

Name of the agent whose status the caller wants to know.

3.5.4.3 Exceptions

3.5.4.4 Usage Notes

The return parameter Agent_Status can have one of three values:

1. running, which means the agent is currently executing

EntryNotFound The specified agent is not in the agent list for the current age
system.

AgentNotFound The agent system could not find the specified agent.
3-16 Mobile Agent Facility V1.0                          January 2000



3

 to 

d the 

gent 

hich 

r 

 

2. suspended, which means the agent is not currently executing.

3. terminated, which means the agent finished executing.

Refer to the definition for ClassName (Appendix A - “IDL Listing”) for the 
enumeration values of Agent_Status .

This method is useful in management applications. It allows the system manager
monitor the status of an agent.

3.5.5 get_agent_system_info()

The get_agent_system_info()  method returns the AgentSystemInfo  structure. 
This structure contains information about the agent system, including its name an
agent profile it supports.

3.5.5.1 Syntax

AgentSystemInfo get_agent_system_info();

3.5.5.2 Parameters

There are no parameters for this method. It returns information about the current a
system.

3.5.5.3 Exceptions

None.

3.5.5.4 Usage Notes

An agent can use this method to find out information about an agent system to w
it wants to travel.

The AgentSystemInfo structure 

This method provides the following information about the agent system:

system_name Name of the agent system.

system_type Identifies the agent system type (for example, Aglets, MOA, o
AgentTcl).

language_maps The programming language the agent system supports (for 
example, Java, Tcl, Scheme, or Perl), and the serialization 
schemes that each of these languages uses (for example, 
JavaObjectSerialization, ASN1_BER, ASN1_DER).

system_description Short description of the agent system. The information in this
parameter is not standardized; it is implementation dependent.
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-17



3

 this 

ms.

r 
3.5.6 get_authinfo()

The get_authinfo()  method returns information about whether an agent was 
authenticated, and what authentication method was used.

3.5.6.1 Syntax

AuthInfo get_authinfo(in Name agent_name) raises (AgentNotFound);

3.5.6.2 Parameters

agent_name

Name of the agent whose authentication information is requested.

3.5.6.3 Exceptions

3.5.6.4 Usage Notes

If security is desired, the client should authenticate the agent system before calling
method. 

3.5.7 get_MAFFinder()

Returns a reference to an MAFFinder for locating agents, places, and agent syste

3.5.7.1 Syntax

MAFFinder get_MAFFinder() raises (MAFFinderNotFound);

3.5.7.2 Parameters

None.

major_version Version information about the agent system implementation.

minor_version Version information about the agent system implementation.
get_authinfo().

serializations Identifies the serialization schemes the agent system uses (fo
example, JavaObjectSerialization, ASN1_BER, ASN1_DER).

AgentNotFound The agent system could not find the specified agent.
3-18 Mobile Agent Facility V1.0                          January 2000



3

find 

ts 

 

3.5.7.3 Exceptions

3.5.7.4 Usage Notes

Once you get the MAFFinder reference, you can use the MAFFinder methods to 
agents, places, and agent systems within the region.

3.5.8 list_all_agents()

The list_all_agents()  method lists all agents registered within the agent system.

3.5.8.1 Syntax

NameList list_all_agents();

3.5.8.2 Parameters

None.

3.5.8.3 Exceptions

None.

3.5.8.4 Usage Notes

This is a management operation that allows a system manager to track the agen
within an agent system.

3.5.9 list_all_agents_of_authority()

The list_all_agents_of_authority()  method lists all agents within the agent system
that have the specified principal (authority).

3.5.9.1 Syntax

NameList list_all_agents_of_authority (in Authority authority);

3.5.9.2 Parameters

authority

Identifies the authority whose agents you want to list.

FinderNotFound Could not find the MAFFinder of the current region.
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-19



3

s of a 

laces 
3.5.9.3 Exceptions

None.

3.5.9.4 Usage Notes

This is a management operation that allows a system manager to track the agent
specific authority within an agent system.

3.5.10 list_all_places()

The list_all_places()  method lists all places within the agent system.

3.5.10.1 Syntax

Locations list_all_places();

3.5.10.2 Parameters

None.

3.5.10.3 Exceptions

None.

3.5.10.4 Usage Notes

This is a management operation that allows a system manager to get the list of p
registered with the MAFFinder.

3.5.11 receive_agent()

An agent system uses receive_agent()  to receive and instantiate an agent.

3.5.11.1 Syntax

void receive_agent(in Name agent_name, in AgentProfile agent_profile,
in OctetString agent, in string place_name, in ClassNameList
class_names, in string code_base, in MAFAgentSystem agent_sender)
raises (ClassUnknown, DeserializationFailed, MAFExtendedException);
3-20 Mobile Agent Facility V1.0                          January 2000



3

he 

it, and 

vey to 
od. 
 
g of 

d to 
ll the 

o the 
r, it 

the 

at the 
cept 

mpty 

 
f the 

ains a 

 in 
3.5.11.2 Parameters

agent_name

Unique identifier for an agent. This identifier should include the authority of the 
person or organization the agent is representing, and the agent identity to make t
agent name unique.

agent_profile

Contains information about the agent, such as the agent system type that created 
the method used to serialize it for transfer.

agent

This parameter is opaque and can contain anything that the sender needs to con
the remote agent system that is not covered in the other parameters to this meth
This parameter contains information that is unique to agents of a particular agent
profile. The agent system receiving the agent must be able to decode the meanin
the information in this parameter.

The kinds of information that can be in this parameter include, but are not restricte
the agent class definition, the agent’s execution state, and definitions of some or a
classes needed to instantiate the agent at the remote agent system.

Note that the class definitions included in this parameter affect the parameter 
class_names. If a class is included in the definition, it is not necessary to add it t
class_names list. Alternatively, if a class definition is not included in this paramete
should be in the class_names list.

place_name

Name of the place where the agent will reside. If this parameter is not specified, 
agent system creates the agent in a default place within the system.

class_names

List containing the name of each class necessary to instantiate the agent. Note th
class list is optional, which means it can be empty. Because CORBA does not ac
null as a passed-in argument for a parameter specified as classNameList , MAF 
implementors must create a special null class name with the name field set to an e
string.

The list may or may not be necessary depending on the class transfer mechanism
chosen. Refer to Section 1.4.1.3, “Class Transfer,” on page 1-14 for a discussion o
various mechanisms and their requirements.

This parameter and the parameter agent are related. If the parameter agent cont
class definition that class does not need to be in the class_names  list. Alternatively, 
any class required to instantiate the agent should be in this list if it is not included
the parameter agent.
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-21



3

r the 
ether 

x of 
ility. 

 
.

agent 

nt 
ws 
Classes listed here may or may not need to be transferred depending on whethe
agent system caches classes. In fact, the receiving agent system must decide wh
fetch_class()  is needed.

code_base

Reference to the code base containing the necessary class definitions. The synta
this parameter can vary between agent system types without affecting interoperab
It is returned to the requesting client software via fetch_class() , if necessary. 
Therefore, only the client software needs to know the syntax of this string.

agent_sender

Reference to the agent system initiating the agent transfer.

3.5.11.3 Exceptions

3.5.11.4 Usage Notes

One possible algorithm for the implementation of this method is:

• Check whether the classes required to instantiate the agent are included in the
receive_agent  input parameter agent, or cached on the agent system platform

• Call fetch_class() , if necessary, to retrieve any required classes that are not 
available. 

• Deserialize and instantiate the agent at the place specified in the call, or in the 
system’s default place if no place is specified. 

The destination agent system is free to queue the agent or route it to another age
system within its region. This is an implementation detail that the specification allo
but does not mandate.

3.5.12 resume_agent()

The resume_agent()  method resumes execution of the specified agent.

3.5.12.1 Syntax

void resume_agent(in Name agent_name) raises (AgentNotFound, 
ResumeFailed, AgentIsRunning);

ClassUnknown Failed to find class definition.

DeserializationFailed The agent system could not instantiate the agent 
because it could not decode the agent OctetString.

MAFExtendedException This is a generic exception. Use it only if no other 
exception applies to the error condition.
3-22 Mobile Agent Facility V1.0                          January 2000



3

3.5.12.2 Parameters

agent_name

Name of the agent to restart.

3.5.12.3 Exceptions

3.5.12.4 Usage Notes

This method provides the management function of restarting an agent that was 
suspended, with suspend_agent() .

3.5.13 suspend_agent()

The suspend_agent()  method suspends execution of the specified agent.

3.5.13.1 Syntax

void suspend_agent(in Name agent_name) raises (AgentNotFound, 
SuspendFailed, AgentIsSuspended);

3.5.13.2 Parameters

agent_name

Name of the agent to suspend.

AgentNotFound Agent system could not find the specified agent.

ResumeFailed The agent could not resume execution.

AgentIsRunning The agent is already running, it does not need to be 
resumed.
Mobile Agent V1.0        MAFAgentSystem Interface           Jan. 2000 3-23



3

ent. 

 states.

 can 
nd an 

ution 
3.5.13.3 Exceptions

3.5.13.4 Usage Notes

This method provides the management function of suspending execution of an ag
Use resume_agent  to restart agent execution when desired. To implement this 
method, you should suspend the agent’s execution thread and maintain the agent

There are several reasons for suspending an agent’s execution. For example, you
suspend an agent to give resources to a higher priority thread. You can also suspe
agent if it is suspected of a security violation.

3.5.14 terminate_agent()

The terminate_agent()  method stops execution of the specified agent.

3.5.14.1 Syntax

void terminate_agent(in Name agent_name) raises (AgentNotFound, 
TerminateFailed);

3.5.14.2 Parameters

agent_name

Name of the agent to terminate.

3.5.14.3 Exceptions

3.5.14.4 Usage Notes

This method provides the management function of permanently stopping the exec
thread of an agent.

3.5.15 terminate_agent_system()

The terminate_agent_system()  method stops execution of the agent system.

AgentNotFound Agent system could not find the specified agent.

SuspendFailed Could not stop agent execution.

AgentIsSuspended The agent is already suspended.

AgentNotFound Agent system could not find the specified agent.

TerminateFailed Could not stop agent execution.
3-24 Mobile Agent Facility V1.0                          January 2000



3

 

ictate 
ents, 

 agent

 going.
should

as the
 new
tabase

n the
a brute
3.5.15.1 Syntax

void terminate_agent_system () raises (TerminateFailed);

3.5.15.2 Parameters

None.

3.5.15.3 Exceptions

3.5.15.4 Usage Notes

Depending on implementation of terminate_agent_system() , the agent system may
store important information, and inform all hosted agents about the intended 
termination.

3.6 MAFFinder Interface

The MAFFinder interface provides methods for maintaining a dynamic name and 
location database of agents, places, and agent systems. The interface does not d
what method a client uses to find an agent. Instead, it provides ways to locate ag
agent systems, and places that supports a wide range of location techniques.

There are many possible ways of locating an agent. Here are four possibilities:

1. Brute force search

Find every agent system in the region, then send an agent to travel through every
system to find the agent.

2. Logging

Whenever an agent leaves an agent system, it leaves a mark that says where it is
Therefore, an agent system can always follow the logs to locate that agent. There 
also be a way to garbage collect the logs after the agent dies.

3. Agent registration

Every agent registers its current location in a database. This database always h
latest information available about an agent’s location. Note that registering the
location of an agent does add overhead to the agent go() operation. Therefore, da
operations can be a bottleneck.

4. Agent advertisement 

Register all the stationary places only. An agent’s location is registered only whe
agent advertises itself. To find a non-advertised agent, the agent system can use 
force search or logging.

TerminateFailed Could not stop agent system execution.
Mobile Agent V1.0        MAFFinder Interface           Jan. 2000 3-25



3

t of 
n 
s.

od 
match 
Although the MAFFinder interface does not restrict implementations to a certain se
agent location schemes, it does assume an underlying database structure that ca
support registering, unregistering, and locating agents, agent systems, and place

interface MAFFinder {
void register_agent (

in Name agent_name,
in Location agent_location,
in AgentProfile agent_profile,) raises (NameInvalid);

void register_agent_system (
in Name agent_system_name,
in Location agent_system_location,
in AgentSystemInfo agent_system_info) raises (NameInvalid);

void register_place (
in string place_name, 
in Location place_location) raises (NameInvalid);

Locations lookup_agent (
in Name agent_name,
in AgentProfile agent_profile) raises (EntryNotFound);

Locations lookup_agent_system (
in Name agent_system_name,
in AgentSystemInfo agent_system_info) 

raises (EntryNotFound);
Location lookup_place (in string place_name) 

raises (EntryNotFound);
void unregister_agent (in Name agent_name) 

raises (EntryNotFound);
void unregister_agent_system (in Name agent_system_name) 

raises (EntryNotFound);
void unregister_place (in string place_name) 

raises (EntryNotFound);
};

3.6.1 lookup_agent()

The lookup_agent  method returns the locations of the specified agents. This meth
can search for a specific agent by name, or it can search for a set of agents that 
a specific agent profile.

3.6.1.1 Syntax

Locations lookup_agent (
in Name agent_name,
in AgentProfile agent_profile) raises (EntryNotFound);
3-26 Mobile Agent Facility V1.0                          January 2000



3

 to 

ized. 

e 
 

ame 
 for 

ecify 
e 
ot 
g, for 

re it 

move 

od 
nt 
3.6.1.2 Parameters

agent_name

Name of the agent the client or agent wants to find.

agent_profile

Agent profile information that can be used to specify search criteria (defined in 
Section 3.4, “OMG Naming Authority Identifiers,” on page 3-9).

3.6.1.3 Exceptions

3.6.1.4 Usage Notes

An agent can use this method to find another agent or agents with which it wants
communicate.

This is also very application specific and relates to how naming semantics is organ
In particular, various MAF implementations can organize names of families and 
generations of agents in different ways. Having both agent name and agent profil
allows richer search semantics. For example, it would be possible to search for a
specific family of agents, or a generation (defined by agent name) with a certain 
characteristic (defined by agent profile). Therefore, it is possible that both agent n
and profile are non-null. That’s why there is not a union, but rather two parameters
this method.

The invoking agent can either specify the demanded agent by name, or it can sp
one or more agents by using the agent_profile  parameter. Note that in the latter cas
not all components of agent_profile  must be specified. However, the components n
restricted in the search must be set to zero, for an integer type, or an empty strin
types other than integer.

This method cannot guarantee that an agent will be in the Location the method 
returned for any specified time interval. Only an agent can control when and whe
travels.

There is also a potential source of false locations. If the agent system does not re
terminated agents from the system with unregister_agent , a call to lookup_agent  
for that agent returns the location of an agent that is no longer available.

3.6.2 lookup_agent_system ()

Returns the location of an agent system registered with the MAFFinder. The meth
can search for a specific agent system by name, or it can search for a set of age
systems that match the specified AgentSystemInfo  parameter.

EntryNotFound No agent could be found which matches the specified criteria.
Mobile Agent V1.0        MAFFinder Interface           Jan. 2000 3-27



3

 

 can 

teger 

.

3.6.2.1 Syntax

Locations lookup_agent_system (
in Name agent_system_name,
in AgentSystemInfo agent_system_info) 

raises (EntryNotFound);

3.6.2.2 Parameters

agent_system_name

Name of the agent system to locate.

agent_system_info
Agent system information that can be used to specify search criteria (refer to 
Section 3.4, “OMG Naming Authority Identifiers,” on page 3-9 for a definition).

3.6.2.3 Exceptions

3.6.2.4 Usage Notes

This method can be used to search for agent systems that are registered with the
MAFFinder.

The invoking client can either specify the demanded agent system by name, or it
specify one or more agent systems by using the agent_system_info  parameter. Note 
that in the latter case not all components of agent_system_info  must be specified. 
However, the components not restricted in the search must be set to zero for an in
type, or an empty string for types other than integer.

3.6.3 lookup_place()

Returns the location of a place registered with the MAFFinder.

3.6.3.1 Syntax

Location lookup_place (in string place_name) raises (EntryNotFound);

3.6.3.2 Parameters

place_name

Name of the place to locate.

EntryNotFound No agent could be found that matches the specified criteria
3-28 Mobile Agent Facility V1.0                          January 2000



3

 send 

se a 
n its 
 
le) 
3.6.3.3 Exceptions

3.6.3.4 Usage Notes

Sometimes the client software has only the name of the place to which it wants to
an agent. The client uses this method to get the location of the specified place.

3.6.4 register_agent ()

Adds the named agent to the list of agents registered with the MAFFinder. Becau
mobile agent travels, this operation may be invoked very frequently by an agent i
lifetime. If this operation is invoked with an agent_name that already exists in the
MAFFinder, this operation replaces the associated information (location and profi
with the information in the most recent invocation.

3.6.4.1 Syntax

void register_agent (
in Name agent_name,
in Location agent_location,
in AgentProfile agent_profile,) raises (NameInvalid);

3.6.4.2 Parameters

agent_name

Name of the agent to add to the list.

agent_location

Location of the agent.

agent_profile

Agent profile information that can be used to specify search criteria (defined in 
Section 3.4, “OMG Naming Authority Identifiers,” on page 3-9).

3.6.4.3 Exceptions

3.6.4.4 Usage Notes

This method provides the registration of an agent with the MAFFinder.

EntryNotFound The specified place is not registered with the MAFFinder.

NameInvalid The request to update the MAFFinder has failed.
Mobile Agent V1.0        MAFFinder Interface           Jan. 2000 3-29



3

 
ionary 
e 
in 

 
me. 
he 

me 
3.6.5 register_agent_system ()

The register_agent_system()  method adds the named agent system to the list of
agent systems registered with the MAFFinder. Because an agent system is a stat
object, the MAFFinder does not allow multiple invocations of this operation with th
same name. When moving an agent system, unregister it before registering it aga
with the new location.

3.6.5.1 Syntax

void register_agent_system (
in Name agent_system_name,
in Location agent_system_location,
in AgentSystemInfo agent_system_info) raises (NameInvalid);

3.6.5.2 Parameters

agent_system_name

Name of the system to add to the list.

agent_system_location

Location of the system to add.

agent_system_info

Agent system information that can be used to specify search criteria (refer to 
Section 3.4, “OMG Naming Authority Identifiers,” on page 3-9 for a definition).

3.6.5.3 Exceptions

3.6.5.4 Usage Notes

This method provides agent system registration.

3.6.6 register_place ()

The register_place()  method adds the location of the named place to the list of 
places registered with the MAFFinder. Because a place is a stationary object, the
MAFFinder does not allow multiple invocations of this operation with the same na
If a place is moved, unregister it from its initial location before registering it with t
new location.

NameInvalid There is already an agent system registered that has the sa
name.
3-30 Mobile Agent Facility V1.0                          January 2000



3

 with 

e.
3.6.6.1 Syntax

void register_place (
in string place_name, 
in Location place_location) raises (NameInvalid);

3.6.6.2 Parameters

place_name

Name of the place to add to the list.

place_location

Location of the place.

3.6.6.3 Exceptions

3.6.6.4 Usage Notes

This method is one of a group of methods you can use to maintain a list of places
the MAFFinder.

3.6.7 unregister_agent ()

Removes the specified agent from the list of agents that are registered with the 
MAFFinder.

3.6.7.1 Syntax

void unregister_agent (in Name agent_name) raises (EntryNotFound);

3.6.7.2 Parameters

agent_name

Name of the agent to remove from the list of agents.

NameInvalid There is already a place registered that has the same nam
Mobile Agent V1.0        MAFFinder Interface           Jan. 2000 3-31



3

s 

h the 

 

r.
3.6.7.3 Exceptions

3.6.7.4 Usage Notes

This method is one of a group of methods you can use to maintain a list of agent
within an agent system.

3.6.8 unregister_agent_system ()

Removes the specified agent system from the list of agent systems registered wit
MAFFinder.

3.6.8.1 Syntax

void unregister_agent_system (in Name agent_system_name) raises
(EntryNotFound);

3.6.8.2 Parameters

agent_system_name

Name of the system to remove from the list.

3.6.8.3 Exceptions

3.6.8.4 Usage Notes

This method is one of a group of methods you can use to maintain a list of agent
systems registered with the MAFFinder.

3.6.9 unregister_place ()

Removes the specified place from the list of places registered with the MAFFinde

EntryNotFound The specified agent is not registered with the MAFFinder.

EntryNotFound The specified agent is not registered with the MAFFinder.
3-32 Mobile Agent Facility V1.0                          January 2000



3

s 
3.6.9.1 Syntax

void unregister_place (in string place_name) raises (EntryNotFound);

3.6.9.2 Parameters

place_name

Name of the place to remove from the list.

3.6.9.3 Exceptions

3.6.9.4 Usage Notes

This method is one of a group of methods you can use to maintain a list of place
registered with the MAFFinder.

EntryNotFound The specified place is not registered with the MAFFinder.
Mobile Agent V1.0        MAFFinder Interface           Jan. 2000 3-33



3

3-34 Mobile Agent Facility V1.0                          January 2000



 MAF Scenario 4
most 

ly by 
ozen 
 stores 
ce, 

 the 
 IT 
e 
Contents

This chapter contains the following sections. 

This chapter presents a real world scenario for agent deployment. It incorporates 
of the interfaces described in this specification.

4.1  Overview 

FAM Corp has grown rapidly and expanded its retail business into every state, part
building new stores and partly by acquiring smaller companies. They now have a d
major regional centers, and each one of these has close ties with a dozen or more
in the region. FAM offers a wide range of products and services for home and offi
and has recently added software rental to its services.

Each regional center has its own inventory system, more or less coordinated with
stores in its region. However, part numbers are not fully standardized, and central
says it will be years before the different systems are fully integrated. Adding to th
problem is the continuing fast growth of the corporation. 

Section Title Page

“Overview” 4-1

“The Problem” 4-2

“The Solution Today” 4-2

“The Solution Tomorrow” 4-2

“Behind The Scenes ....” 4-3

“Overview of Interaction with MAF” 4-3
Mobile Agent Facility V1.0                          January 2000 4-1



4

ks 
h all 
 
ecks 

is 
 
that 
new 
he 

he 
He 
ent 
ther 
e 
tem, 

 the 
xed. 
 he 
 him 

eek. 

he 
The 
ts in 
about 
d that 
ch at 

ore in 
 

 but 
 the 
he 
4.2  The Problem 

Quality, price, and above all, service is the FAM corporate credo. If a customer as
for an item in a store that is not in stock, the CEO insists that the store check wit
other stores to see if it is in stock or on order elsewhere. But with their continuing
growth and disparate computer systems, this is difficult to do. Sometimes these ch
are aggravated by problems such as a communications link in their network that 
down, heavy traffic on their network due to the daily replication and update of the
databases in several regional centers, and legacy systems on multiple platforms 
have inconsistent part number and vendor number assignments. New stores and 
services are not being integrated quickly enough to maintain the level of service t
CEO demands, and their customers expect.

4.3  The Solution Today 

A customer comes into the Boston store and asks for twenty blue widgets. Joe, t
salesperson in the store, checks the local inventory on his terminal. Not in stock. 
also checks other regional stores on-line, although that doesn’t reflect replenishm
orders recently placed, but nothing there either. He calls his contact Susan at ano
regional center, who looks up the inventory there (no luck), and while Joe is on th
phone, she calls two other stores just acquired last month. One of them has the i
but only five of them, not the twenty the customer wants.

Joe calls three more regional centers without success, though a person at one of
regional centers says he will call back in the afternoon when his computer link is fi
Joe knows the remaining regional centers are very unlikely to have this item, and
has other customers waiting. He asks the customer to call him tomorrow and tells
that he should have more information for him then. If they locate the widgets in 
another regional center, they can be shipped to this store for pickup in about a w
The customer leaves the store and never calls back.

4.4 The Solution Tomorrow 

A customer comes into the Boston store and asks for twenty blue widgets. Joe, t
salesperson in the store, checks the local inventory on his terminal. Not in stock. 
terminal tells him it is starting to search other stores to see if they have blue widge
stock or on order. Does he want to cancel the search? Does he want information 
similar items, other colors, or different sizes? Joe answers that he does. He is tol
he will be given partial results every two minutes, and a chance to modify the sear
that time.

Two minutes later Joe sees that a store in Atlanta has five of the widgets, and a st
Charlotte has forty green ones in a smaller size. The customer says yellow or red
would be okay, but not green. Joe modifies the search criteria and waits.

The customer meanwhile has just called his spouse on his cellphone. He is sorry
red is not okay. Joe suspends the search. After a few minutes, the customer says
widgets must be blue or green. Joe modifies the search criteria again, then tells t
system to restart the search from the prior point.
4-2 Mobile Agent Facility V1.0                          January 2000



4

 
 

t day.

heir 

e are 
rate, 
ent. 

th 

hers 

e 

 is the 
 

er, 
nary 
ws 
inder 

y 

entire 
s the 
ext.
After four minutes, the terminal displays information that a store in Dallas has fifty
blue widgets. The customer asks for them to be shipped directly to his home. Joe
enters the order, which will be filled by the Dallas store, and shipped UPS the nex

4.5 Behind The Scenes ....

The IT group has decided that mobile agent technology, combined with better 
collection and integration of data within a store or regional group of stores, offers t
company the best opportunity for handling rapid growth while maintaining and 
improving customer service. Each store has installed an MAF agent system. Ther
several different hardware platforms involved, but the MAF agent systems interope
providing the infrastructure to support mobile agents in a heterogeneous environm
Within this environment, agents can efficiently find information, and coordinate wi
each other and the controlling user.

The MAF services this scenario uses are:

• locating an agent system for agent creation (using the MAFFinder interface).

• creating an agent to begin the query for twenty widgets (using the 
MAFAgentSystem interface).

• the agent registers itself as it moves (using the MAFFinder interface), so that ot
can find it.

• the agent goes from place to place to look for the requested widgets (using th
MAFAgentSystem interface).

• finding the search agent to request status (using the MAFFinder interface).

• suspending or resuming the agent (using the MAFAgentSystem interface).

The main actors in the scenario are described in Figure 4-1. Joe our salesperson
authority. The user application interacting with Joe at his terminal is the stationary
client (SC). The SC will control/monitor all agent activity in this scenario.

As shown in Figure 4-1, the following entities are involved: agents execute on top of 
agent systems; agents and agent systems use the MAFFinder  to locate other agent 
systems; the stationary client, using interfaces for an agent system and MAFFind
can create an agent with Joe’s authority to perform specific tasks for it; the statio
client can also monitor and control the agent it created, because FAM’s policy allo
agents of the same authority to manage each other. The agent system and MAFF
interfaces can be invoked by the following ‘clients’: a mobile agent, or a stationar
client (user application) that monitors/controls agents, or other agent systems. 

4.6 Overview of Interaction with MAF

Joe’s request starts a series of actions. This section provides an overview of the 
interaction. The indented text describes the underlying actions of the SC, and list
MAF services that are invoked. Further details are presented in double-indented t
Mobile Agent V1.0        Behind The Scenes ....           Jan. 2000 4-3



4

 
 

s.

bject 
ose 
on 
ne 

 

he 

ring 
nly 

 
m by 
The overview shows how Joe and his customer get the information they need in a
timely manner, when the user application (SC) working on their behalf invokes the
MAF services to dispatch and control mobile agents going to the appropriate site

Please note that in all cases where an MAFFinder is used to locate a stationary o
such as stationary agents, agent systems, and places, the client actually can cho
between the CORBA naming service and the MAFFinder. For simplicity, this secti
only mentions MAFFinder. In the case where an MAFFinder should be located, o
can get the object reference of the MAFFinder via 
MAFAgentSystem::get_MAFFinder() , or via the CORBA naming service.

Joe is informed that the item is not in stock locally, and a search has started....

1. [Locate]. The SC begins by obtaining a reference to a ‘finder’ (MAFFinder) by 
invoking a get_MAFFinder()  method on behalf of an agent system 
(MAFAgentSystem). This method takes no parameters. A finder can be shared
among multiple agent systems. An agent system and MAFFinder can be 
implemented in a single module or in two separate modules. It is left open to t
reference implementation how/whether to combine them.

The SC obtains the locations of available agent systems and places using the 
MAFFinder methods lookup_agent_system()  and lookup_place() . This 
information is used to decide where to start an agent, and where to move it du
its lifetime. To locate other agent systems and places, the SC needs to know o
their names, which are provided as parameters to the methods 
lookup_agent_system()  and lookup_place() . Location transparency is achieved
this way. The SC can also obtain additional information about each agent syste
invoking the get_agent_system_info()  method (MAFAgentSystem interface). 

Agent
System A

Agent
System B

MAFFinder

Figure 4-1  Key Actors in the Scenario

������
������
������

(host 1)

(host 2)

(host 3)

agent

Stationary
Client (SC)

(authority)
Joe

Boston

Dallas

Atlanta

search for widgets
4-4 Mobile Agent Facility V1.0                          January 2000



4

nd it 
stem 

he 
ent 
n 
h 
lf 
nt 

g 

reates 

ofile 
tion, 
he 
’s 
 to 

agent 
uctor. 

ny 
t its 

eeds 
is 
 
ation. 
g a 
re, 

voked 
This information is agent-system specific. This method takes no parameters, a
returns agent-system-specific information. The lookup operation of an agent sy
is based either on the agent system name or the agent system information.

When a new agent system starts up, it registers itself with the MAFFinder using t
register_agent_system()  method. This method takes the agent system name, ag
system information, and the location as parameters. The agent system informatio
parameter (agent_system_info ) is used during lookup to identify agent systems wit
specific characteristics. It is an internal matter of the MAFFinder to announce itse
available to other MAFFinders, as well as to announce availability of the new age
system. Similarly, if the agent system is terminated, or if its services cease to be 
available for clients, the agent system can be unregistered at the MAFFinder usin
unregister_agent_system() , which requires only the agent system name as a 
parameter. If a client has a reference only to an agent system, it can obtain the 
reference to MAFFinder by invoking the get_MAFFinder()  method on behalf of the 
agent system. An agent system can be located using its name, by invoking the 
lookup_agent_system()  method on the MAFFinder. Similarly, multiple agent 
systems can be found by searching based on agent system information.

2. [Create]. Based on the availability of other agent systems and places, the SC c
an agent on a selected agent system by invoking the create_agent()  method of the 
MAFAgentSystem interface.

As a part of this invocation, the SC provides various parameters. The agent_pr
parameter specifies the agent and the originating agent system specific informa
such as the type of the agent system, and the way the agent was serialized. T
agent parameter contains agent state, such as the serialized state of an agent
objects, and agent class definitions. The receiving agent system uses this data
create a new instance of the agent. If specified, the place_name  is the destination 
of the agent on the receiving host. Otherwise, the agent is associated with the 
system’s default place. The Arguments parameter is passed to the agent constr
class_names , code_base  and class_provider  are used to retrieve agent 
classes. The create_agent()  method returns the name of the agent created.

3. [Register]. Once a new agent is created, the SC (as well as the agent) has ma
interfaces available to control the activity and movement of the agent throughou
life. The agent can also control the activity of other agents.

To allow other SCs and other agents to be aware of it and locate it, the agent n
to register itself with the MAFFinder (if the controlling SC wants registration). Th
is achieved using the register_agent()  method of the MAFFinder interface, which
takes as parameters the agent name, agent profile, and the agent’s current loc
Agent profile specifies agent characteristics that can be useful for filtering durin
lookup operation. Similarly, if the agent does not want to publicize itself anymo
it can remove itself from the MAFFinder by invoking unregister_agent() . This 
method takes only the agent name as a parameter. Similar methods can be in
for registering and looking up a place at an MAFFinder, using methods 
register_place()  and unregister_place()  respectively. The register_place()  
method takes the place name as a parameter, and the unregister_place()  method 
takes the location.
Mobile Agent V1.0        Overview of Interaction with MAF           Jan. 2000 4-5



4

d get 
ecide 
fore 
 an 
ist 

 the 
e 

agent 

rent 
e 

e 

from 
 

uires 
4-2 
st.

2. (1) 

evant 
oads 
t 
The SC acting on behalf of Joe wants the agent to go to each regional center an
information about relevant stock items. Once at a regional center, the agent may d
(based on the information found at that site) to visit other stores in that region be
going to the next regional site. When the SC creates the agent, it gives the agent
initial list of sites to visit (its itinerary). Either the SC or the agent can modify this l
later, based on information it gathers or receives from an agent system.

4. [Move]. When the agent completes its work at the first site (host), it migrates to
next host on its list. Note that it is the agent itself that initiates migration, not th
SC or agent system. While it is possible to achieve an agreement between an 
and other clients, whereby they can initiate migration in some cases, the MAF 
specification makes neither provisions nor guarantees for this.

An agent initiates its migration by contacting its current agent system. The cur
agent system then invokes the receive_agent()  method on the agent system wher
the agent wants to go.

The agent_name  is passed as a parameter. This is the name obtained when th
agent was created. The parameters agent, place_name , agent_profile , 
class_names , and code_base  have the same meaning as in create_agent() . 
Finally, the agent_sender  represents the agent system the agent is leaving 
(source). When attempting to receive an agent, the destination needs to fetch 
the source agent system the classes the agent requires that do not exist at the
destination system. This is achieved using the method fetch_class , which uses as 
parameters class_names  and code_base . Previously, these parameters were 
passed to the destination host as parameters of the receive_agent()  method. The 
destination agent system must either fetch all the classes the agent’s code req
immediately, or fetch these classes as the agent’s code requires them. Figure 
describes the scenario of migrating an agent from the source to destination ho

Agent
System A

Agent
System B

Figure 4-2 This shows the sequence of events during agent’s migration from host1 to host
The agent requests from the Agent System A on the source host to migrate to 
destination host, to Agent System B (2). The Agent System A invokes a 
receive_agent method on the Agent System B, passing various parameters rel
for migration. (3) When agent successfully migrates, the Agent System B downl
leftover classes from the source host, by invoking fetch_class method on Agen
System A. 

agent

source host1 

(1) request to go to 
Agent System B

(2) receive_agent 

(3) fetch_class

destination host2(optional)
4-6 Mobile Agent Facility V1.0                          January 2000



4

tion 

ation 
 done 
eral 
d 

nt 
ces. 

e 

 by 

to 

prior 
ods, 

n 
e or 
t by 
After a set period of time (about two minutes), the SC wants to retrieve the informa
the agent has gathered so far, then pass it on to Joe.

5. [Status]. The agent has visited several sites so far and gathered relevant inform
from those sites about the particular stock items. Some of these stock searches
locally by the agent are in fact quite complex, processing a lot of data from sev
databases on interconnected systems, and making a summary of the requeste
information for later transmission to the SC.

The SC must find and interrogate the agent for its status and obtain any releva
data that the agent wants to send back to the SC through the non-MAF interfa
The SC obtains the status by invoking get_agent_status() , and using as a 
parameter the name of the agent in question. It is also possible to find out if th
agent was authenticated and which authentication method was used. This is 
achieved by invoking the get_authinfo()  method.

The SC can also find out all the places and agents residing at an agent system
invoking the methods list_all_agents()  and list_all_places() , respectively. These 
two methods return the lists of the agent and place names. It is also possible 
obtain all the agents that belong to a user (distinguished by its principal) by 
invoking the method list_all_agents_of_authority() , passing the authority as a 
parameter.

In some cases, however, it is required that the invoking client be authenticated 
to being allowed to invoke this method. Prior to being able to invoke these meth
the client needs to resolve the agent’s current location, by invoking the 
lookup_agent()  method (MAFFinder). The agent must maintain this informatio
by updating appropriate MAFFinders. Lookup can be based either on agent nam
on agent profile. Figure 4-3 describes the steps involved in monitoring an agen
its authority.
Mobile Agent V1.0        Overview of Interaction with MAF           Jan. 2000 4-7



4

t 
out 
en 

 five 

h 

as on 
time. 
agent 

 agent 

 
his 
e 

C in 
e, 
.

Figure 4-3 To monitor an agent, its authority first must locate an agent by contacting the 
MAFFinder. Once the agent’s location is found, the authority contacts the agen
system where the agent currently resides. Before providing any information ab
the agent, it might be required to authenticate the requesting client first. Only th
is the information about the agent provided.

Joe sees new information on his terminal after two minutes. A store in Atlanta has
of the widgets, and one in Charlotte has forty green ones in a smaller size. The 
customer says yellow or red would be okay, but not green. Joe modifies the searc
criteria and waits.

The SC sees from the data that the agent was not able to visit the Miami site. It w
the itinerary, but the agent system in Miami was not able to receive agents at that 
The SC therefore locates another store in the Miami region that has a compatible 
system, and instructs the agent to go there.

In order to access an object on an agent system that cannot receive the agent, the
can invoke a method find_nearby_agent_system_of_profile()  on the incompatible 
agent system. This method takes as a parameter the profile describing the agent
system. It returns the location of the closest agent system of compatible type, if t
information/system is available. This type of information is useful for improving th
locality of reference between the object and the agent in question. Using the 
find_nearby_agent_system_of_profile()  method is described in Figure 4-4.

To relay the modified search criteria (yellow or red is okay, but green is not), the S
fact passes the new data to the agent directly, using the agent application interfac
which MAF does not cover.

Agent
System B

agent y

������
������
������

������
stationary
client

authority

Agent
System C

agent z

Agent
System A

agent x
MAFFinder

(1) lo
okup_agent z

(2) A
gent System

 C

(3) get_agent_status
(4) client authentication

(5) return status
4-8 Mobile Agent Facility V1.0                          January 2000



4

an 
est 
ty of 

 but 
t must 
estart 

rch 

y 

 
 
 day.
Figure 4-4 If the agent cannot migrate for compatibility reasons to a host (host 2) where 
object of interest resides, then the agent can obtain information about the clos
compatible system, migrate to that system (host 3), then benefit from the locali
reference in accessing object X.

The customer meanwhile has just called his spouse on his cellphone. He is sorry
red is not okay. Joe suspends the search. After a few minutes, the customer says i
be blue or green. Joe modifies the search criteria again, then tells the system to r
the search from the prior point.

Using the agent name, the SC suspends the agent by invoking the method 
suspend_agent() . Note that clients other than the SC (the owner) need to be 
authenticated and authorized to be able to invoke the suspend()  and resume()  
methods.

Some time later, the SC tells the agent to go back to the prior site (where the sea
with the ‘yellow or red is okay’ criteria started) and resume the search with the 
modified search criteria. This is done by invoking application specific methods 
followed by the resume_agent()  method on behalf of the agent. Then, the agent 
invokes a receive_agent()  method to move back to a specified checkpoint stored b
the agent, and continues the search using the new criteria.

After four minutes the terminal displays information that a store in Dallas has fifty
blue widgets. The customer asks for them to be shipped directly to his home. Joe
enters the order, which will be filled by the Dallas store and shipped UPS the next

Agent
System A

Agent
System B

host 1
host 2

agent object
X(1) find_nearby_agent_system_of_profile

Agent
System C

host 3

agent

(3) migrate

(2) Agent System C
Mobile Agent V1.0        Overview of Interaction with MAF           Jan. 2000 4-9



4

ith 
er 
The order transaction is sent directly from the SC to a static agent which deals w
orders at the Dallas site. The mobile agent has fulfilled its duty, so the SC (or oth
authorized client) can now terminate it by invoking the terminate_agent()  method. 
This is the end of the agent life cycle.
4-10 Mobile Agent Facility V1.0                          January 2000



OMG IDL A
A.1 IDL Listing

module CfMAF {

/******************************************************************/
/*Data Types */
/******************************************************************/

typedef sequence<octet> OctetString;
typedef sequence<OctetString> OctetStrings;

typedef OctetString      Authority;
typedef OctetString      Identity;

typedef short LanguageID;
typedef short AgentSystemType;
typedef short Authenticator;
typedef short SerializationID;
typedef sequence<SerializationID> SerializationIDList;

typedef any Property;
typedef sequence<Property> PropertyList;

struct Name {
Authority authority; 
Identity identity;
AgentSystemType agent_system_type;

};
typedef sequence<Name>  NameList;

struct AuthInfo { 
boolean is_authenticated;
Mobile Agent Facility V1.0                 January 2000 A-1



A

Authenticator authenticator;
};

struct LanguageMap {
LanguageID language_id;
SerializationIDList serializations;

};
typedef sequence<LanguagedMap> LanguageMapList;
struct AgentSystemInfo {

Name agent_system_name;
AgentSystemType agent_system_type;
LanguageMapList language_maps;
string agent_system_description;
short major_version;
short minor_version;
PropertyList properties;

};
struct AgentProfile{

LanguageID language_id; 
AgentSystemType agent_system_type;
string agent_system_description;
short major_version;
short minor_version;
SerializationID serialization;
PropertyList properties;

};

struct ClassName{
string          name; 
OctetString discriminator;

};
typedef sequence<ClassName> ClassNameList; 
typedef sequence<octet>    Arguments;
typedef string           Location;
typedef sequence<Location> Locations;
enum AgentStatus {

CfMAFRunning, CfMAFSuspended, CfMAFTerminated
};

/******************************************************************/
/*Exceptions */
/******************************************************************/

exception AgentNotFound {};
exception AgentIsRunning {};
exception AgentIsSuspended {};
exception ArgumentInvalid {};
exception ClassUnknown {};
exception DeserializationFailed {};
exception EntryNotFound {};
exception FinderNotFound {};
A-2 Mobile Agent Facility V1.0                 January 2000



A

exception MAFExtendedException {};
exception NameInvalid {};
exception ResumeFailed {};
exception SuspendFailed {};
exception TerminateFailed {};

/******************************************************************/
/*Interface Definitions*/
/******************************************************************/

interface MAFFinder {

void register_agent (
in Name agent_name,
in Location agent_location,
in AgentProfile agent_profile,) raises (NameInvalid);

void register_agent_system (
in Name agent_system_name,
in Location agent_system_location,
in AgentSystemInfo agent_system_info) raises (NameInvalid);

void register_place (
in string place_name, 
in Location place_location) raises (NameInvalid);

Locations lookup_agent (
in Name agent_name,
in AgentProfile agent_profile) raises (EntryNotFound);

Locations lookup_agent_system (
in Name agent_system_name,
in AgentSystemInfo agent_system_info) 

raises (EntryNotFound);
Locations lookup_place (in string place_name) 

raises (EntryNotFound);
void unregister_agent (in Name agent_name) 

raises (EntryNotFound);
void unregister_agent_system (in Name agent_system_name) 

raises (EntryNotFound);
void unregister_place (in string place_name) 

raises (EntryNotFound);
};
interface MAFAgentSystem {

Name create_agent (in Name agent_name,
in AgentProfile agent_profile,
in OctetString agent,
in string place_name,
in Arguments arguments,
in ClassNameList class_names, 
in string code_base,
in MAFAgentSystemclass_provider) raises (ClassUnknown, 

ArgumentInvalid, DeserializationFailed, 
MAFExtendedException);
Mobile Agent Facility V1.0                  January 2000 A-3



A

OctetStrings fetch_class(in ClassNameList class_name_list, 
in string code_base, in AgentProfile agent_profile) raises 
(ClassUnknown, MAFExtendedException);

Location find_nearby_agent_system_of_profile (in AgentProfile
profile) raises (EntryNotFound);

AgentStatus get_agent_status(in Name agent_name) 
raises(AgentNotFound);

AgentSystemInfo get_agent_system_info();

AuthInfo get_authinfo(in Name agent_name) raises
 (AgentNotFound);

MAFFinder get_MAFFinder() raises (FinderNotFound);
NameList list_all_agents();

NameList list_all_agents_of_authority(in Authority authority);
Locations list_all_places();

void receive_agent(in Name agent_name,
in AgentProfile agent_profile,
in OctetString agent,
in string place_name,
in ClassNameList class_names,
in string code_base,
in MAFAgentSystemagent_sender) raises (ClassUnknown,     

ArgumentInvalid, DeserializationFailed, 
MAFExtendedException);

void resume_agent(in Name agent_name) raises (AgentNotFound,
ResumeFailed, AgentIsRunning);

void suspend_agent(in Name agent_name) raises (AgentNotFound,
SuspendFailed, AgentIsSuspended);

void terminate_agent(in Name agent_name) raises (AgentNotFound, 
TerminateFailed);

};
};

 

A-4 Mobile Agent Facility V1.0                 January 2000



Assigned Numbers B
tly 
ion 
This appendix recommends to the OMG Naming authority numbers for the curren
available agent system types, languages, encoding mechanisms, and authenticat
methods.

B.1 Languages

The assigned numbers for languages are:

• LanguageNotSpecified (0)

• Java (1)

• Tcl (2)

• Scheme (3)

• Perl (4)

B.2 Agent System Types

The assigned numbers for agent system types are:

• NonAgentSystem (0)

• Aglets (1)

• MOA (2)

• AgentTcl (3)

B.3 Encoding Mechanisms

The assigned numbers for authenticator types are:

• none (1)
Mobile Agent Facility V1.0                 January 2000 B-1



B

• one-hop (2)

B.4 Serialization Methods

The assigned numbers for encoding mechanisms are:

• SerializationNotSpecified (0)

• Java Object Serialization (1)
B-2 Mobile Agent Facility V1.0                 January 2000



References C
95.
1. OMG, The Common Object Request Broker: Architecture and Specification,
   Revision 2.0, July 1995.

2. OMG, Common Facilities RFP 3, OMG TC Document 95-11-3, November 3, 19

3. Aglets Workbench (http://www.trl.ibm.co.jp/aglets).

4. Mubot: (http://www.crystaliz.com).

5. Odyssey: (http://www.genmagic.com/agents/).

6. Mobile Objects and Agents (http://www.opengroup.org/RI/java/moa/index.htm).
Mobile Agent Facility V1.0                 January 2000 C-1



C

C-2 Mobile Agent Facility V1.0                 January 2000



Index
A
Access to Authentication Results and Credentials 2-7
Additional Location Conversion Method 3-9
agent 3-12, 3-21
Agent advertisement 3-25
Agent and Agent System Defined Security Policies 2-9
Agent Authentication and Delegation 2-9
Agent Naming 2-6
Agent registration 3-25
Agent System Types B-1
agent_name 3-12, 3-16, 3-18, 3-21, 3-23
agent_profile 3-12, 3-21
agent_sender 3-22
Agent_Status get_agent_status (in Name agent_name) raises 

(AgentNotFound) 3-16
AgentSystemInfo get_agent_system_info() 3-17
arguments 3-12
Assigned Numbers B-1, C-1
AuthInfo get_authinfo(in Name agent_name) raises 

(AgentNotFound) 3-18
authority 3-19

B
Brute force search 3-25

C
Class Name 3-5
class_name_list 3-14
class_names 3-13, 3-21
class_provider 3-13, 3-15
Client Authentication for Remote Agent Creation 2-7
code_base 3-13, 3-14, 3-22
Codebase 1-11
Confidentiality 2-10
Consolidated OMG IDL B-1, C-1
CORBA

contributors 2
documentation set 2

CORBA OMG IDL based Specification of the Trading 
Function A-1, B-1, C-1

COSNaming Location String Format 3-7
create_agent() 3-11

D
Deserialization 1-10

E
Encoding Mechanisms B-1
Externalization Service 2-4

F
fetch_class() 3-14
find_nearby_agent_system_of_profile() 3-15

G
get_agent_status() 3-16
get_agent_system_info() 3-17
get_authinfo() 3-18
get_MAFFinder() 3-18

I
Integrity 2-10

Internet-Specific (MAFIIOP) Location Conversion Method 3-7

L
Languages B-1
Lifecycle Service 2-4
list_all_agents() 3-19
list_all_agents_of_authority() 3-19
list_all_places() 3-20
Location 3-6
Locations list_all_places() 3-20
Logging 3-25
lookup_agent() 3-26
lookup_agent_system () 3-27
lookup_place() 3-28

M
MAF IDL Interfaces A-1, B-1, C-1
MAFAgentSystem Interface 3-10
MAFFinder 3-3
MAFFinder get_MAFFinder() raises (MAFFinderNotFound) 3-18
MAFFinder Interface 3-25
Misordering detection 2-10
Mutual Authentication of Agent Systems 2-7

N
Name 3-4
NameList list_all_agents() 3-19
NameList list_all_agents_of_authority (in Authority authority) 3-

19
Naming Service 2-1

O
Object Management Group 1

address of 2
OMG Naming Authority Identifiers 3-9
OMG Trading Function Module B-1

P
place_name 3-12, 3-21
profile 3-15

R
receive_agent() 3-20
register_agent () 3-29
register_agent_system () 3-30
register_place () 3-30
Replay detection 2-10
resume_agent() 3-22

S
Security Service 2-5
Security Service Requirements 1-20
Serialization 1-10
Serialization Methods B-2

T
Target authentication 2-10
terminate_agent() 3-24
terminate_agent_system() 3-24
The AgentSystemInfo structure 3-17

U
unregister_agent () 3-31
                                              Mobile Agent Facility V1.0                             January 2000     Index-1



Index

nd, 
unregister_agent_system () 3-32
unregister_place () 3-32
Usage Notes 3-14

V
void resume_agent(in Name agent_name) raises (AgentNotFound, 

ResumeFailed, AgentIsRunning) 3-22

void suspend_agent(in Name agent_name) raises (AgentNotFou
SuspendFailed, AgentIsSuspended) 3-23

void terminate_agent(in Name agent_name) raises (AgentNot-
Found, TerminateFailed) 3-24

void terminate_agent_system () raises (TerminateFailed) 3-25
Index-2 Mobile Agent Facility V1.0                        January 2000


	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1.  Common Conceptual Model
	1.1 Interoperability
	1.1.1 What Should Be Standardized Now?
	1.1.2 What Should Be Standardized Later?
	1.1.3 MAF Interoperability Summary

	1.2 Basic Concepts
	1.2.1 Agent
	1.2.2 Stationary Agent
	1.2.3 Mobile Agent
	1.2.4 Agent State
	1.2.5 Agent Execution State
	1.2.6 Agent Authority
	1.2.7 Agent Names
	1.2.8 Agent Location
	1.2.9 Agent System
	1.2.10 Agent System Type
	1.2.11 Agent System to Agent System Interconnection
	1.2.12 Place
	1.2.13 Regions
	1.2.14 Region to Region Interconnection
	1.2.15 Serialization/Deserialization
	1.2.16 Codebase
	1.2.17 Communications Infrastructure
	1.2.18 Locality

	1.3 Agent Interaction
	1.3.1 Remote Agent Creation
	1.3.2 Agent Transfer
	1.3.3 Agent Method Invocation

	1.4 Functions of an Agent System
	1.4.1 Transferring an Agent
	1.4.2 Creating an Agent
	1.4.3 Providing Globally Unique Names and Locations
	1.4.4 Supporting the Concept of a Region
	1.4.5 Finding a Mobile Agent
	1.4.6 Ensuring a Secure Environment for Agent Operations

	1.5 Agent System Interoperability Scenarios

	2.  CORBA Services
	2.1 Naming Service
	2.2 Lifecycle Service
	2.3 Externalization Service
	2.4 Security Service
	2.4.1 Agent Naming
	2.4.2 Client Authentication for Remote Agent Creation
	2.4.3 Mutual Authentication of Agent Systems
	2.4.4 Access to Authentication Results and Credentials
	2.4.5 Agent Authentication and Delegation
	2.4.6 Agent and Agent System Defined Security Policies
	2.4.7 Security Features


	3.  MAF IDL
	3.1 Overview
	3.2 The MAFFinder
	3.3 Name, Class Name, and Location
	3.3.1 Name
	3.3.2 Class Name
	3.3.3 Location

	3.4 OMG Naming Authority Identifiers
	3.5 MAFAgentSystem Interface
	3.5.1 create_agent()
	3.5.2 fetch_class()
	3.5.3 find_nearby_agent_system_of_profile()
	3.5.4 get_agent_status()
	3.5.5 get_agent_system_info()
	3.5.6 get_authinfo()
	3.5.7 get_MAFFinder()
	3.5.8 list_all_agents()
	3.5.9 list_all_agents_of_authority()
	3.5.10 list_all_places()
	3.5.11 receive_agent()
	3.5.12 resume_agent()
	3.5.13 suspend_agent()
	3.5.14 terminate_agent()
	3.5.15 terminate_agent_system()

	3.6 MAFFinder Interface
	3.6.1 lookup_agent()
	3.6.2 lookup_agent_system ()
	3.6.3 lookup_place()
	3.6.4 register_agent ()
	3.6.5 register_agent_system ()
	3.6.6 register_place ()
	3.6.7 unregister_agent ()
	3.6.8 unregister_agent_system ()
	3.6.9 unregister_place ()


	4.  MAF Scenario
	4.1 Overview
	4.2 The Problem
	4.3 The Solution Today
	4.4 The Solution Tomorrow
	4.5 Behind The Scenes ....
	4.6 Overview of Interaction with MAF

	Appendix A - OMG IDL
	Appendix B - Assigned Numbers
	Appendix C - References
	Index

