
MetaObjectFacility (MOF)
Specification

Version 1.4
April 2002



free,
of the

nfringed
 forth

y
ch a
 of
e users

tails an
cument

ted
ages,
 above

the sole
arks or

 is pro-
sed in

ation
Copyright 1997-1999, DSTC (Cooperative Research Centre for Enterprise Distributed Systems Technology)
Copyright 1997-1999, Electronic Data Systems
Copyright 1997-1999, IBM Corporation
Copyright 1997-1999, International Computers Limited
Copyright 1997-1999, Objectivity, Inc.
Copyright 2002, Object Management Group
Copyright 1997-1999, Oracle Corporation
Copyright 1997-1999, Platinum Technology, Inc.
Copyright 1997-1999, Rational Software Corporation
Copyright 1997-1999, System Software Associates
Copyright 1997-1999, Unisys Corporation

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-
paid up, worldwide license to copy and distribute this document and to modify this document and distribute copies
modified version. Each of the copyright holders listed above has agreed that no person shall be deemed to have i
the copyright in the included material of any such copyright holder by reason of having used the specification set
herein or having conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications ma
require use of an invention covered by patent rights.  OMG shall not be responsible for identifying patents for whi
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope
those patents that are brought to its attention.  OMG specifications are prospective and advisory only.  Prospectiv
are responsible for protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document de
Object Management Group specification in accordance with the license and notices set forth on this page. This do
does not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION  IS BELIEVED TO BE ACCURATE, THE OBJECT MAN-
AGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY WARRANTY OF
TITLE OR OWNERSHIP,  IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF FITNESS FOR
PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the companies lis
above be liable for errors contained herein or for indirect, incidental, special, consequential, reliance or cover dam
including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listed
acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be
entity that may authorize developers, suppliers and sellers of computer software to use certification marks, tradem
other special designations to indicate compliance with these materials. This document contains information which
tected by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or u
any form or by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or inform
storage and retrieval systems--without permission of the copyright owner.



rth in

G IDL,
roup,

 readers
sted on
RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set fo

subdivision (c) (1) (ii) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7013 OMG®and
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OM
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management G
Inc. X/Open is a trademark of X/Open Company Ltd.

The UML logo is a trademark of Rational Software Corp.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage
to report any ambiguities, inconsistencies, or inaccuracies they may find by completing the Issue Reporting Form li
the main web pagehttp://www.omg.org, under Documents & Specifications, Report a Bug/Issue.





TableofContents
ix

1-1

1-1

1-2

1-4

1-6

1-6

-1

2-1

2-1
-2
-3
4

-6
2-6
-9
11
-12
-14
-14
-17
19

-20
-21
Preface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1. MOF Usage Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1.2 Software Development Scenarios . . . . . . . . . . . . . . . . . . .

1.3 Type Management Scenarios  . . . . . . . . . . . . . . . . . . . . . .

1.4 Information Management Scenarios. . . . . . . . . . . . . . . . .

1.5 Data Warehouse Management Scenarios  . . . . . . . . . . . . .

2. MOF Conceptual Overview  . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.2 Metadata Architectures. . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2.1 Four Layer Metadata Architectures  . . . . . . . . 2
2.2.2 The MOF Metadata Architecture  . . . . . . . . . . 2
2.2.3 MOF Metamodeling Terminology  . . . . . . . . . 2-

2.3 The MOF Model - Metamodeling Constructs. . . . . . . . . . 2
2.3.1 Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.3.2 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3.3 Aggregation  . . . . . . . . . . . . . . . . . . . . . . . . . . 2-
2.3.4 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3.5 DataTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3.6 Packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.3.7 Constraints and Consistency . . . . . . . . . . . . . . 2
2.3.8 Miscellaneous Metamodeling Constructs . . . . 2-

2.4 Metamodels and Mappings. . . . . . . . . . . . . . . . . . . . . . . . 2
2.4.1 Abstract and Concrete Mappings . . . . . . . . . . 2
April 2002 OMG-Meta Object Facility, v1.4 i



2
2
2

-1

3-1

3-2
3-3
3-8
3-9
-10
-10
-10
10

-11
11
1

13
4

-15
15
-21
-24
-29
-30
-30
-32
33
34
-35
36
-37
-37
-38
-40
42
-43
-45
-45
-48
-48
2.4.2 The MOF Metamodel to IDL Mapping. . . . . . . 2-2
2.4.3 The MOF Metamodel to XML Mappings. . . . . 2-2
2.4.4 Mappings of the MOF Model . . . . . . . . . . . . . . 2-2

3. MOF Model and Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

3.2 How the MOF Model is Described. . . . . . . . . . . . . . . . . . .
3.2.1 Classes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.2 Associations . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.3 DataTypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
3.2.4 Exceptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.5 Constants  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.6 Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2.7 UML Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . 3-

3.3 The Structure of the MOF Model . . . . . . . . . . . . . . . . . . . . 3
3.3.1 The MOF Model Package. . . . . . . . . . . . . . . . . 3-
3.3.2 The MOF Model Service IDL. . . . . . . . . . . . . . 3-1
3.3.3 The MOF Model Structure . . . . . . . . . . . . . . . . 3-
3.3.4 The MOF Model Containment Hierarchy . . . . . 3-1

3.4 MOF Model Classes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.1 ModelElement  . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.4.2 Namespace . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.3 GeneralizableElement. . . . . . . . . . . . . . . . . . . . 3
3.4.4 TypedElement . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.5 Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.6 Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.7 DataType. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.8 PrimitiveType . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.4.9 CollectionType . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.4.10 EnumerationType . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.11 AliasType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.4.12 StructureType . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.13 StructureField . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.14 Feature  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.15 StructuralFeature  . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.16 Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.4.17 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.18 BehavioralFeature. . . . . . . . . . . . . . . . . . . . . . . 3
3.4.19 Operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.20 Exception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.21 Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
ii OMG-Meta Object Facility, v1.4 April 2002



-51
-54

-55
-58
-59
-62
-63

-66
-66
-68
-69
-70
71
-72
-73
-74
-75
-77

-78
8
8
0
80
-80
81
81

-81
-81
-82

-82
-82
-83

-83

83
84
6

88

5

3.4.22 AssociationEnd. . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.23 Package. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.24 Import . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.25 Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.26 Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.27 Constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.4.28 Tag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.5 MOF Model Associations. . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.1 Contains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.2 Generalizes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.3 RefersTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.4 Exposes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.5 IsOfType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.5.6 CanRaise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.7 Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.8 Constrains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.9 DependsOn . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.5.10 AttachesTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3.6 MOF Model Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.1 PrimitiveTypes used in the MOF Model . . . . . . 3-7
3.6.2 MultiplicityType . . . . . . . . . . . . . . . . . . . . . . . . 3-7
3.6.3 VisibilityKind . . . . . . . . . . . . . . . . . . . . . . . . . . 3-8
3.6.4 DirectionKind . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.6.5 ScopeKind  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.6.6 AggregationKind  . . . . . . . . . . . . . . . . . . . . . . . 3-
3.6.7 EvaluationKind . . . . . . . . . . . . . . . . . . . . . . . . . 3-

3.7 MOF Model Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.7.1 NameNotFound. . . . . . . . . . . . . . . . . . . . . . . . . 3
3.7.2 NameNotResolved  . . . . . . . . . . . . . . . . . . . . . . 3

3.8 MOF Model Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.8.1 Unbounded . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.8.2 The Standard DependencyKinds. . . . . . . . . . . . 3

3.9 MOF Model Constraints. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.9.1 MOF Model Constraints and other M2

Level Semantics . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.9.2 Notational Conventions  . . . . . . . . . . . . . . . . . . 3-
3.9.3 OCL Usage in the MOF Model specification . . 3-8
3.9.4 The MOF Model Constraints  . . . . . . . . . . . . . . 3-
3.9.5 Semantic specifications for some Operations,

derived Attributes and Derived Associations  . . 3-10
April 2002 OMG-Meta Object Facility, v1.4 iii



11

-114
114
114
15
15
15
15

16

-117

1

4-2

4-2

4-2

-3

4-4

4-5
-5
6
4-7
4-7
-7
-8

4-8
4-8
4-9
4-9
4-9

4-10
-10
-11
-11
-12

-13
4
-15
17
7
17
3.9.6 OCL Helper functions. . . . . . . . . . . . . . . . . . . . 3-1

3.10 The PrimitiveTypes Package  . . . . . . . . . . . . . . . . . . . . . . . 3
3.10.1 Boolean. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.10.2 Integer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-
3.10.3 Long . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.10.4 Float . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.10.5 Double  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.10.6 String  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1
3.10.7 IDL for the PrimitiveTypes Package . . . . . . . . . 3-1

3.11 Standard Technology Neutral Tags. . . . . . . . . . . . . . . . . . . 3

4. The MOF Abstract Mapping . . . . . . . . . . . . . . . . . . . . . . . . 4-

4.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.2 MOF Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4.3 Semantics of Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . .

4.4 Semantics of Equality for MOF Values  . . . . . . . . . . . . . . . 4

4.5 Semantics of Class Instances . . . . . . . . . . . . . . . . . . . . . . .

4.6 Semantics of Attributes  . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.1 Attribute name and type . . . . . . . . . . . . . . . . . . 4
4.6.2 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-
4.6.3 Scope  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.4 Is_derived . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.6.5 Aggregation  . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.6.6 Visibility and is_changeable . . . . . . . . . . . . . . . 4

4.7 Package Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.7.1 Package Nesting . . . . . . . . . . . . . . . . . . . . . . . .
4.7.2 Package Generalization. . . . . . . . . . . . . . . . . . .
4.7.3 Package Importation . . . . . . . . . . . . . . . . . . . . .
4.7.4 Package Clustering . . . . . . . . . . . . . . . . . . . . . .

4.8 Extents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.8.1 The Purpose of Extents . . . . . . . . . . . . . . . . . . . 4
4.8.2 Class Extents  . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.8.3 Association Extents  . . . . . . . . . . . . . . . . . . . . . 4
4.8.4 Package Extents  . . . . . . . . . . . . . . . . . . . . . . . . 4

4.9 Semantics of Associations . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.9.1 MOF Associations in UML notation. . . . . . . . . 4-1
4.9.2 Core Association Semantics . . . . . . . . . . . . . . . 4
4.9.3 AssociationEnd Changeability . . . . . . . . . . . . . 4-
4.9.4 AssociationEnd Navigability  . . . . . . . . . . . . . . 4-1
4.9.5 Association Aggregation. . . . . . . . . . . . . . . . . . 4-
iv OMG-Meta Object Facility, v1.4 April 2002



17

4-17
18
18
18

4-19
-19
20

4-21

4-22

-22
4-23

-23

23

24

24

1

5-1

5-2
-2
-4

-6
5-6

10
1
1

5

8
24
25
5
-26
4.9.6 Derived Associations  . . . . . . . . . . . . . . . . . . . . 4-

4.10 Aggregation Semantics. . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.10.1 Aggregation “none”  . . . . . . . . . . . . . . . . . . . . . 4-
4.10.2 Aggregation “composite” . . . . . . . . . . . . . . . . . 4-
4.10.3 Aggregation “shared” . . . . . . . . . . . . . . . . . . . . 4-

4.11 Closure Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4.11.1 The Reference Closure Rule . . . . . . . . . . . . . . . 4
4.11.2 The Composition Closure Rule. . . . . . . . . . . . . 4-

4.12 Recommended Copy Semantics . . . . . . . . . . . . . . . . . . . . .

4.13 Computational Semantics. . . . . . . . . . . . . . . . . . . . . . . . . .
4.13.1 A Style Guide for Metadata Computational

Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4.13.2 Access operations should not change metadata
4.13.3 Update operations should only change the

nominated metadata  . . . . . . . . . . . . . . . . . . . . . 4
4.13.4 Derived Elements should behave like

non-derived Elements . . . . . . . . . . . . . . . . . . . . 4-
4.13.5 Constraint evaluation should not have

side-effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-
4.13.6 Access operations should avoid raising

Constraint exceptions . . . . . . . . . . . . . . . . . . . . 4-

5. MOF to IDL Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-

5.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.2 Meta Objects and Interfaces . . . . . . . . . . . . . . . . . . . . . . . .
5.2.1 Meta Object Type Overview . . . . . . . . . . . . . . . 5
5.2.2 The Meta Object Interface Hierarchy . . . . . . . . 5

5.3 Computational Semantics for the IDL Mapping. . . . . . . . . 5
5.3.1 The CorbaIdlTypes Package . . . . . . . . . . . . . . .
5.3.2 Mapping of MOF Data Types to CORBA

IDL Types. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5-
5.3.3 Value Types and Equality in the IDL Mapping . 5-1
5.3.4 Lifecycle Semantics for the IDL Mapping . . . . 5-1
5.3.5 Association Access and Update Semantics

for the IDL Mapping. . . . . . . . . . . . . . . . . . . . . 5-1
5.3.6 Attribute Access and Update Semantics for the

IDL Mapping  . . . . . . . . . . . . . . . . . . . . . . . . . . 5-1
5.3.7 Reference Semantics for the IDL Mapping. . . . 5-
5.3.8 Cluster Semantics for the IDL Mapping . . . . . . 5-
5.3.9 Atomicity Semantics for the IDL Mapping. . . . 5-2
5.3.10 The Supertype Closure Rule . . . . . . . . . . . . . . . 5
April 2002 OMG-Meta Object Facility, v1.4 v



27

-27
29
30

-33
-33
-34
34

-37

-39
9

41
1

5-43
43

46
8
-48

-48
49
-50
-52
-54

-56
-57
-58
-60
-61
-62
71
-82
-92
-94
-95
-96
-97
98
5.3.11 Copy Semantics for the IDL Mapping  . . . . . . . 5-

5.4 Exception Framework  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.4.1 Error_kind string values . . . . . . . . . . . . . . . . . . 5-
5.4.2 Structural Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-
5.4.3 Constraint Errors  . . . . . . . . . . . . . . . . . . . . . . . 5
5.4.4 Semantic Errors  . . . . . . . . . . . . . . . . . . . . . . . . 5
5.4.5 Usage Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.4.6 Reflective Errors . . . . . . . . . . . . . . . . . . . . . . . . 5-

5.5 Preconditions for IDL Generation  . . . . . . . . . . . . . . . . . . . 5

5.6 Standard Tags for the IDL Mapping . . . . . . . . . . . . . . . . . . 5
5.6.1 Tags for Specifying IDL #pragma directives  . . 5-3
5.6.2 Tags for Providing Substitute Identifiers. . . . . . 5-
5.6.3 Tags for Specifying IDL Inheritance. . . . . . . . . 5-4

5.7 Generated IDL Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
5.7.1 Generated IDL Identifiers . . . . . . . . . . . . . . . . . 5-
5.7.2 Generation Rules for Synthesized

Collection Types . . . . . . . . . . . . . . . . . . . . . . . . 5-
5.7.3 IDL Identifier Qualification  . . . . . . . . . . . . . . . 5-4
5.7.4 File Organization and #include statements . . . . 5

5.8 IDL Mapping Templates. . . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.8.1 Template Notation  . . . . . . . . . . . . . . . . . . . . . . 5-
5.8.2 Package Module Template  . . . . . . . . . . . . . . . . 5
5.8.3 Package Factory Template  . . . . . . . . . . . . . . . . 5
5.8.4 Package Template . . . . . . . . . . . . . . . . . . . . . . . 5
5.8.5 Class Forward Declaration Template  . . . . . . . . 5
5.8.6 Class Template . . . . . . . . . . . . . . . . . . . . . . . . . 5
5.8.7 Class Proxy Template . . . . . . . . . . . . . . . . . . . . 5
5.8.8 Instance Template . . . . . . . . . . . . . . . . . . . . . . . 5
5.8.9 Class Create Template  . . . . . . . . . . . . . . . . . . . 5
5.8.10 Association Template . . . . . . . . . . . . . . . . . . . . 5
5.8.11 Attribute Template  . . . . . . . . . . . . . . . . . . . . . . 5-
5.8.12 Reference Template  . . . . . . . . . . . . . . . . . . . . . 5
5.8.13 Operation Template  . . . . . . . . . . . . . . . . . . . . . 5
5.8.14 Exception Template  . . . . . . . . . . . . . . . . . . . . . 5
5.8.15 Constant Template  . . . . . . . . . . . . . . . . . . . . . . 5
5.8.16 DataType Template . . . . . . . . . . . . . . . . . . . . . . 5
5.8.17 Constraint Template . . . . . . . . . . . . . . . . . . . . . 5
5.8.18 Annotation Template  . . . . . . . . . . . . . . . . . . . . 5-
vi OMG-Meta Object Facility, v1.4 April 2002



-1

6-1

6-3
-3
-5

10
23
-28

30
30
-30

-1
6. The Reflective Module. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.2 The Reflective Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . .
6.2.1 Reflective Argument Encoding Patterns.  . . . . . 6
6.2.2 Reflective::RefBaseObject  . . . . . . . . . . . . . . . . 6
6.2.3 Reflective::RefObject . . . . . . . . . . . . . . . . . . . . 6-
6.2.4 Reflective::RefAssociation . . . . . . . . . . . . . . . . 6-
6.2.5 Reflective::RefPackage . . . . . . . . . . . . . . . . . . . 6

6.3 The CORBA IDL for the Reflective Interfaces. . . . . . . . . . 6-
6.3.1 Introduction  . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-
6.3.2 Data Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Appendix A - Associated Documents  . . . . . . . . . . . . . . . . . . . . . . A

Appendix B - Implementation Requirements. . . . . . . . . . . . . . . . B-1

Appendix C - Future Directions for the MOF . . . . . . . . . . . . . . . C-1
April 2002 OMG-Meta Object Facility, v1.4 vii



viii OMG-Meta Object Facility, v1.4 April 2002



Preface
rted
and
nted

de a
,
ous
p a

d.

s. It
ow
About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization suppo
by over 600 members, including information system vendors, software developers
users. Founded in 1989, the OMG promotes the theory and practice of object-orie
technology in software development. The organization's charter includes the
establishment of industry guidelines and object management specifications to provi
common framework for application development. Primary goals are the reusability
portability, and interoperability of object-based software in distributed, heterogene
environments. Conformance to these specifications will make it possible to develo
heterogeneous applications environment across all major hardware platforms and
operating systems.

OMG’s objectives are to foster the growth of object technology and influence its
direction by establishing the Object Management Architecture (OMA). The OMA
provides the conceptual infrastructure upon which all OMG specifications are base

Associated OMG Documents

The CORBA documentation set includes the following:

• Object Management Architecture Guidedefines the OMG’s technical objectives
and terminology and describes the conceptual models upon which OMG
standards are based. It defines the umbrella architecture for the OMG standard
also provides information about the policies and procedures of OMG, such as h
standards are proposed, evaluated, and accepted.

• CORBA: Common Object Request Broker Architecture and Specificationcontains
the architecture and specifications for the Object Request Broker.

• CORBAservices: Common Object Services Specificationcontains specifications
for OMG’s Object Services.
April 2002 OMG - Meta Object Facility, v1.4 ix



t
be

.

d,
dards
(The

at.
ns,

for

d

d

• CORBAfacilities: Common Facilities Specificationis a collection of services that
many applications may share, but which are not as fundamental as the Objec
Services. For instance, a system management or electronic mail facility could
classified as a common facility. Common Facilities are used by most systems

The OMG collects information for each book in the documentation set by issuing
Requests for Information, Requests for Proposals, and Requests for Comment an
with its membership, evaluating the responses. Specifications are adopted as stan
only when representatives of the OMG membership accept them as such by vote.
policies and procedures of the OMG are described in detail in theObject Management
Architecture Guide.)

OMG formal documents are available from our web site in PostScript and PDF form
To obtain print-on-demand books in the documentation set or other OMG publicatio
contact the Object Management Group, Inc. at:

OMG Headquarters

250 First Avenue, Suite 201

Needham, MA 02494

USA

Tel: +1-781-444-0404

Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

Introduction to OMG Modeling

The OMG family of standards for modeling distributed software architectures and
systems are based on the following complementary specifications:

• The Unified Modeling Language (UML) Specification

• The Meta-Object Facility (MOF) Specification

• The XML Metadata Interchange (XMI) Specification

The Unified Modeling Language (UML) Specification defines a graphical language
visualizing, specifying, constructing, and documenting the artifacts of distributed
object systems. It provides the foundation for specifying and sharing CORBA-base
distributed object models. The specification includes the following:

• a formal definition of the UML metamodel; that is, the abstract language for
specifying UML models,

• a (non-normative) concrete graphic notation for expressing UML models,

• a set of CORBA IDL interfaces for representing and managing UML models, an

• an XMI format for UML model interchange.
x OMG - Meta Object Facility, v1.4 April 2002



els.
es

ard
es
and
en

for

of

ls,

be

ta

lly
ent

ML,

s

The Meta-Object Facility (MOF) Specification defines an abstract language and a
framework for specifying, constructing, and managing technology neutral metamod
A metamodel is in effect an abstract language for some kind of metadata. Exampl
include the metamodels for UML, CWM, and the MOF itself, as well as those in
various OMG specifications in progress.

In addition, the MOF defines a framework for implementing repositories that hold
metadata (e.g., models) described by the metamodels. This framework uses stand
technology mappings to transform MOF metamodels into metadata APIs. This giv
consistent and interoperable metadata repository APIs for different vendor product
different implementation technologies. For example, the MOF IDL mapping has be
applied to the MOF meta-metamodel and the UML metamodel to produce CORBA
APIs for representing MOF metamodels and UML models respectively.

The MOF Specification includes the following:

• a formal definition of the MOF meta-metamodel; that is, the abstract language
specifying MOF metamodels,

• a mapping from arbitrary MOF metamodels to CORBA IDL that produces IDL
interfaces for managing any kind of metadata,

• a set of "reflective" CORBA IDL interfaces for managing metadata independent
the metamodel,

• a set of CORBA IDL interfaces for representing and managing MOF metamode
and

• an XMI format for MOF metamodel interchange.

The XML Metadata Interchange (XMI) Specification defines technology mappings
from MOF metamodels to XML DTDs and XML documents. These mappings can
used to define an interchange format for metadata conforming to a given MOF
metamodel.

UML and MOF are normally viewed in the context of a conceptual layered metada
architecture, as described in Section 2.2, “Metadata Architectures,” on page 2-1.
Further to this, the metamodels for MOF and UML are designed to be architectura
aligned, sharing a common subset of core object modeling constructs. This alignm
allows the MOF to reuse the UML notation for visualizing metamodels.

As the first adopted technologies specified using a metamodeling approach, the U
MOF, and XMI provide the foundation for OMG's Metamodel Driven Architecture
(MDA). Future metamodel standards should reuse MOF and UML’s core semantic
and emulate their systematic approach to architecture alignment.
April 2002 OMG-MOF, v1.4: Introduction to OMG Modeling xi



OF

ML

L

ile

-

s
ing
nd

here
r

n of
Architectural Alignment of UML, MOF, CORBA and other technologies

Introduction

This section explains the architectural alignment of the UML metamodel and the M
meta-metamodel, and their relationships to the OMA and CORBA object models.
While there is considerable sharing of concepts and modeling constructs between U
and MOF, the UML metamodel and the MOF meta-metamodel (also known as the
“MOF Model”) are currently distinct entities. The EDOC specification includes a
“UML Profile for MOF” that defines a one-to-one mapping between a subset of UM
models and corresponding MOF metamodels.

In the future, it is anticipated that OMG processes will eventually accomplish a
merging of the UML and MOF (meta-)metamodels. In the meantime, the UML Prof
for MOF allows UML graphical notation and UML tools to be used to specify MOF
metamodels. UML’s use of the MOF IDL and XMI mappings to produce IDL and
interchange formats assist in this process.

Complete alignment of the UML, MOF, and CORBA will pave the way for future
extensibility of CORBA in key areas such as richer semantics, relationships, and
constraints. Likewise the longer-term benefits to UML and MOF include better
recognition and addressing of distributed computing issues in developing CORBA
compliant systems.

Finally, as new technology mappings are defined for MOF, there will be new option
for interworking between CORBA and other technologies. To aid this, steps are be
taken to remove inherent architectural dependencies between MOF metamodels a
implementation technologies. For example, the MOF 1.4 revision removed MOF’s
dependency on the CORBA data type system.

Metamodel Comparison

The UML and MOF are based on a conceptual layered metamodel architecture, w
elements in a given conceptual layer describe elements in the next layer down. Fo
example,

• the MOF meta-metamodel is the language used to define the UML metamodel,

• the UML metamodel is the language used to define UML models, and

• a UML model is a language that defines aspects of a computer system.

Thus, the UML metamodel can be described an “instance-of” the MOF meta-
metamodel, and a UML model can be described as an “instance-of” the UML
metamodel. However, these entities need not necessarily exist in the same domai
representation types and values1. This approach is sometimes referred to as loose
metamodeling.
xii OMG - Meta Object Facility, v1.4 April 2002



with

d.

rs.
es
In spite of this, the two metamodels are structurally quite similar. The following
sections compare the core MOF and UML modeling concepts, and contrast them
the OMA and CORBA/IDL core object models. The issues related to mapping
metaclasses that are not isomorphic (e.g., Association classes) are also discusse

The following table compares the mappings of concepts across the modeling laye
Where there is no analog for a concept, it will be identified and discussed in “Issu
Related to UML-MOF Mapping”.

1.For example, a program could not necessarily instantiate the MOF’s “Model::Class” to give
“UML::Class,” instantiate that to give a UML Class called “Car” and instantiate that to give
a programming language object that represents a car.

UML Metamodel MOF Meta-metamodel OMA Object Model CORBA IDL

Association (n-ary) Association (binary)

AssociationClass N/A

AssociationEnd AssociationEnd

Attribute Attribute Attribute Attribute

BehavioralFeature BehavioralFeature

Class Class Class Interface (as Class)

Classifier Classifier

N/A Constant Constant

Constraint Constraint

DataType & subtypes DataType subtypes Data type Data types (various)

Dependency (class) N/A2

Exception Exception Exception

Feature Feature

GeneralizableElement GeneralizableElement

Generalization (class) Generalizes (association) Generalization Inheritance

Interface Class (as Interface) Interface Interface

ModelElement ModelElement

Namespace Namespace

Operation Operation Operation Operation

Package Package Module

Parameter Parameter Parameter Parameter
April 2002 OMG-MOF, v1.4: Architectural Alignment of UML, MOF, CORBA and other technologies xiii



nts an
The following table compares the data types available and / or used across the
modeling layers. See also “Relationship to OMG IDL and CORE ‘95”.

N/A1 Reference

StructuralFeature StructuralFeature

Tag Tag

Type (stereotype) Class (as Type) Type Interface (as Type)

1. The UML equivalent of a MOF reference is a derived Attribute with a Constraint tying it to the referenced Association.

2. The UML Dependency class represents an explicitly expressed dependency. By contrast, the MOF DependsOn association represe
amalgam of the dependencies expressed using other associations.

UML Metamodel MOF Meta-metamodel CORBA Object Model and IDL

AggregationKind AggregationKind

N/A N/A Any

Boolean PrimitiveTypes::Boolean Boolean

Class (as structure type) StructureType Struct types

Class (as value type) N/A Value types

Enumeration EnumerationType Enum types

Expression N/A

N/A Primitive::Float
Primitive::Double

Various floating point types.

Integer PrimitiveTypes::Integer
PrimitiveTypes::Long

Various integral types.

N/A1 CollectionType Array and sequence types

Multiplicity 2 MultiplicityType

Name PrimitiveTypes::String

OperationDirectionKind DirectionKind

ScopeKind ScopeKind

String PrimitiveTypes::String Various string and char types

Time N/A Time Service Data Types

N/A N/A TypeCode

N/A3 AliasType Typedefs

Uninterpreted PrimitiveType::String

N/A N/A Union types

VisibilityKind VisibilityKind

UML Metamodel MOF Meta-metamodel OMA Object Model CORBA IDL
xiv OMG - Meta Object Facility, v1.4 April 2002



del

ing

OF
es

s.

lso

the

a
ith

om
's
other
ject

d as
ot
ort

it

to
L

t.
Issues Related to UML-MOF Mapping

In general, the mapping from the UML meta-metamodel to the MOF meta-metamo
is straightforward.

A review of the previous comparison tables indicates that in most cases the mapp
from the UML meta-metamodel to the MOF meta-metamodel is direct. In fact, for
most of the core constructs there is a structural equivalency in the mapping.

The key differences are due to different usage scenarios of MOF and UML. The M
needs to be simpler, directly implementable, and provide a set of CORBA interfac
for manipulating meta objects. The UML is used as a general-purpose modeling
language, with potentially many implementation targets. These differences are
commonly observed in repository, meta-CASE, and modeling-tool implementation
The key differences are:

• The MOF only supports binary associations while UML supports higher-order (a
referred to as 'N-ary') associations. This trade-off was made because N-ary
relationships are rarely used in meta-modeling and the design goal was to keep
MOF interfaces simpler.

• The MOF does not support UML AssociationClasses or qualified Associations.
These constructs can be simulated in a MOF metamodel by introducing an extr
Class to hold the AssociationClasses features and replacing the Association w
two or more Associations

• The MOF supports the concept of a Reference which allows direct navigation fr
one Classifier to another. The UML metamodel uses the Target AssociationEnd
'name' property as a 'pseudo-attribute' for the same purpose, but navigates to an
classifier through an Association. The concept of reference is widely used in ob
repositories, as well as object and object-relational databases and optimizes
navigation across a metamodel.

• Some concepts such as Generalization, Dependency, and Refinement are reifie
classes in UML, but implemented as Associations in the MOF. The MOF does n
require the richness of UML in these areas (for example, the MOF has no supp
for powertypes or discriminators).

• The MOF has no equivalent to UML templates.

• The MOF supports a subset of the CORBA primitive data types and data type
constructors. Use of other primitive types is possible, but not recommended as
makes metamodels technology dependent.

• UML supports a subset of CORBA data types in its semantic model but mapping
a subset of specific CORBA types is clearly possible. The CORBA Profile for ID
addresses this issue.

1. While UML has no collection data types, multiplicities on Attributes, Parameters, and other elements are roughly equivalen

2. A UML Multiplicity is more complicated than a MOF MultiplicityType, since it supports disjoint cardinality subranges.

3. A MOF AliasType is roughly equivalent to a UML subtype of a Class or DataType.
April 2002 OMG-MOF, v1.4: Architectural Alignment of UML, MOF, CORBA and other technologies xv



ese

d
ch
for

cept
hat
he

M-
ny
,

e

face
el

nd

o

d to
use
the

ject

in
F
d

IDL
• UML clearly defines the similarities of the key concepts of Class, Interface, and
Type. The MOF and UML both use the Class concept as the most general of th
in their respective models.

The MOF specification is focused primarily on the specification of meta models an
generation of CORBA interfaces. It does not deal with implementation concepts su
as 'Methods.' UML clearly needs to support these concepts so that it can be used
conceptual, logical, and implementation modeling. In a sense, the MOF Class con
(which supports Operations but not Types) equates to the UML definition of Type; t
is, a stereotype of Class with the constraint that Types cannot contain Methods. T
MOF Class concept is rich enough to define Interfaces, and in fact the MOF
specification itself clearly shows that an MOF Class can be mapped to multiple
CORBA Interfaces.

Relationship to Other Models

A secondary emphasis was placed on the architectural alignment with CDIF and R
ODP, both of which have influenced the metamodel architectures. CDIF offers ma
useful concepts for specifying robust stream-based interchange formats. Similarly
ODP provides many useful ideas for specifying model viewpoints.

Relationship to OMG IDL and CORE ‘95

OMG IDL is used to specify all the interfaces in the Meta Object Facility. A MOF
metamodel repository that supports these IDL interfaces can be used purely using
standard CORBA interfaces. The semantics of the Model IDL interfaces can be
inferred by applying the MOF IDL mapping to the MOF Model. The semantics of th
Reflective IDL is specified directly.

The OMG core object model describes how objects interact; therefore, it is an inter
or interaction model. No specific implementation is implied. The OMG object mod
is not intended to be a metamodel (as described in the OMA). The CORBA object
model is a concrete model with the goal of specifying a mechanism for portability a
distributed object interoperability. The MOF does define a meta-metamodel (for
simplicity, we refer to this as the MOF model). The purpose of the MOF model is t
enable the definition and manipulation of metamodels in various domains, with the
initial focus being on object analysis and design metamodels. The MOF can be use
specify the OMG object model, which it can treat as a meta-model. Likewise, beca
the MOF defines a set of CORBA compliant interfaces, these interfaces conform to
CORBA object model. The MOF can be used to specify additional semantics
(relationships, constraints) that are implied (or expressed in text) in the CORBA ob
model.

The MOF is intended to provide a richer set of modeling constructs that is provided
CORBA IDL. However, in MOF 1.4, a conscious decision was made to remove MO
support for many CORBA data types. This was done to make it easier to define an
implement MOF mappings to technologies such as Java, DCOM, and so on. The
data types and constructors that arenot supported include:

• 8 bit string types and 8 bit or wide characters,
xvi OMG - Meta Object Facility, v1.4 April 2002



pes

he

ics.

r a
• unsigned integral types,

• the long double type,

• TypeCode and Any,

• fixed point types,

• union types,

• value types, and

• “raw” CORBA object references.

The MOF specification includes an optional CorbaIdlTypes meta-metamodel that
defines some additional CORBA IDL primitive types. However, use of these data ty
is not recommended.

Conformance to the MOF Specification

The MOF specification has the following conformance points. These points are
independent of each other.

MOF Model and its IDL Interfaces

This compliance point defines a MOF compliant metamodel service. It has the
following components:

• The service must support the interfaces of the “Model” module as defined in
Chapter 3.

• The service must implement the semantics of the “Model” module defined by
elaborating the MOF to IDL mapping’s semantic specifications in Chapter 5 for t
MOF Model.

• The service must implement the interfaces and semantics of the “Reflective”
module as defined in Chapter 6, in conjunction with the “Model” module semant

MOF to IDL mapping

This compliance point defines the compliance of a CORBA MOF implementation fo
specific metamodel. It has one component:

• A MOF implementation that supports CORBA for a specific metamodel must
support IDL Interfaces that conform to the MOF to IDL mapping templates and
semantics as defined in Chapter 5.

Note – This mapping enables interoperability of conformant implementations.
Automation of this mapping by a product (for example, IDL or code generation) isnot
required for conformance to the MOF to IDL mapping.
April 2002 OMG-MOF, v1.4: Conformance to the MOF Specification xvii



tool

OF
pe

,

of
IDL

data
e
stent

the

l

nts

s

ork
MOF Metamodel Interchange

This compliance point relates to the ability of a metamodel service or some other
to interchange metamodels using XMI. It has two components:

• The tool must be able to externalize a metamodel as an XML document that is
equivalent to the result of elaborating the metamodel according to the XMI
production rules in the context of the MOF Model.

• The tool must be able to internalize a metamodel elaborated as above.

Document Summary

In addition to this Preface, theMOF Specificationcontains the following chapters:

Chapter 1, MOF Usage Scenarios, provides several scenarios of domains where M
is expected to be used. The scenarios discussed include software development, ty
management, information management, and data warehouse management.

Chapter 2, MOF Conceptual Overview, introduces the MOF’s metadata framework
metamodeling constructs and mappings. This chapter is intended to be tutorial in
nature and to provide a conceptual roadmap for the rest of the specification.

Chapter 3, MOF Model and Interfaces, is the core of the MOF specification. Each
the MOF classes, associations, and data types are fully described along with their
interfaces. The well-formedness rules for MOF metamodels are outlined using a
combination of UML notation, textual description, and constraints expressed using
UML’s Object Constraint Language (OCL).

Chapter 4, MOF Abstract Mapping, specifies the meaning of MOF’s metamodeling
constructs, independent of any target technology. For example, it defines the meta
information models implied by the various kinds of Class, Association and Packag
constructs that can be used in a metamodel. Any concrete mapping that is inconsi
with this chapter will not be fully interoperable with (for example) the CORBA IDL
mapping.

Chapter 5, MOF to IDL Mapping, defines the mapping that allows elaboration of
CORBA IDL from MOF metamodels. The chapter includes templates that produce
IDL, and a specification of the IDL’s behavioral semantics including constraint and
other error checking.

Chapter 6, The Reflective Module, defines the IDL and behavior for the metamode
independent base layer for MOF IDL.

Appendix A, Accompanying Documents, gives a roadmap of the electronic docume
that complete the MOF specification; for example the IDL files, the XMI DTD for
metamodel interchange, and the XMI renderings of the MOF meta-metamodel.

Appendix B, Implementation Requirements, includes vendor boundaries as well a
limited implementation requirements.

Appendix C, Future Directions of the MOF, summarizes potential areas of future w
related to the MOF based on feedback of MOF submitters and reviewers.
xviii OMG - Meta Object Facility, v1.4 April 2002



r

Acknowledgments

The following companies submitted and/or supported the MOF 1.0 specification, o
have participated in subsequent MOF Revision Task Forces:

• Adaptive Ltd.

• BEA Systems, Inc.

• Computer Associates

• Distributed Systems Technology Centre (DSTC)

• Data Access

• Digital Equipment Corporation

• Electronic Data Systems

• Hewlett-Packard Company

• IBM Corporation

• International Computers Limited

• Mercury Computer Systems

• MicroFocus

• NIST

• Objectivity Inc.

• Oracle Corporation

• Platinum Technology Inc.

• Rational Software Corporation

• Sprint

• System Software Associates

• Telelogic AB

• Unisys Corporation
April 2002 OMG-MOF, v1.4: Acknowledgments xix



xx OMG - Meta Object Facility, v1.4 April 2002



MOFUsageScenarios 1
To

or

nd
F

Contents

This chapter contains the following topics.

1.1 Overview

The MOF is intended to support a wide range of usage patterns and applications.
understand the possible usage patterns for the MOF, the first thing one needs to
understand is the two distinct viewpoints for the MOF:

1. Modeling viewpoint: The designer’s viewpoint, looking “down” the meta levels.
From the modeling viewpoint, the MOF is used to define an information model f
a particular domain of interest. This definition is then used to drive subsequent
software design and/or implementation steps for software connected with the
information model.

2. Data viewpoint: The programmer’s viewpoint, looking at the current meta-level, a
possibly looking up at the higher meta-levels. From the data viewpoint, the MO
(or more accurately, a product of the MOF) is used to apply the OMA-based

Topic Page

“Overview” 1-1

“Software Development Scenarios” 1-2

“Type Management Scenarios” 1-4

“Information Management Scenarios” 1-6

“Data Warehouse Management Scenarios” 1-6
April 2002 OMG-Meta Object Facility, v1.4 1-1



1

n

a
cts

,
fine

l to

he
ces
ith

rs,
o the
ond
is,
ion
re
gs.

as
ver,
.

a
ing
latter
t in
distributed computing paradigm to manage information corresponding to a give
information model. In this mode, it is possible for a CORBA client to obtain the
information model descriptions and to use them to support reflection.

The second thing one needs to realize is that this MOF specification is intended to
provide an open-ended information modeling capability. The specification defines
core MOF model that includes a relatively small, though not minimal, set of constru
for object-oriented information modeling. The MOF model can be extended by
inheritance and composition to define a richer information model that supports
additional constructs. Alternatively, the MOF model can be used as a model for
defining information models. This feature allows the designer to define information
models that differ from the philosophy or details of the MOF model. In this context
the MOF Model is referred to as a meta-metamodel because it is being used to de
metamodels such as the UML.

Finally, one needs to understand the purpose and the limitations of the MOF mode
the CORBA IDL mapping defined by this specification. The prime purpose of the
mapping is to define CORBA interfaces for information models defined in terms of t
MOF model1 using standard interfaces and interoperable semantics. These interfa
allow a client to create, access, and update information described by the model, w
the expectation that the information will be managed in a way that maintains the
structural and logical consistency constraints specified in the information model
definition.

While we anticipate that some vendors will supply tools (for example, IDL generato
server generators, and so on) to support the development of software conforming t
mapping, provision of these tools is not a requirement of this specification. The sec
limitation is that the mapping is only intended to support the MOF model itself; that
it does not support extensions to the metamodel or to other unconnected informat
models. Furthermore, since the IDL mapping is not itself modeled in the MOF, the
can be no standardized support for extending the mapping or defining new mappin
Finally, the IDL mapping in this specification supports only CORBA IDL. Mappings
from the MOF model to other interface definition languages are certainly feasible,
are direct mappings to programming languages or data definition languages. Howe
these mappings are beyond the scope of the first version of the MOF specification

1.2 Software Development Scenarios

Initially, one of the most likely applications of the MOF will be to support the
development of distributed object-oriented software from high-level models. Such
software development system would typically consist of a repository service for stor
the computer representations of models and a collection of associated tools. The
would allow the programmers and designers to input the models, and would assis
the process of translating these models into software implementations.

1. Both extensions to the MOF meta-model that are expressible in the meta-model itself, and
unconnected information models expressed using the MOF meta-model.
1-2 OMG-Meta Object Facility, v1.4 April 2002



1

ilers
an

ct-

ate

l as

t

l,
d by

ode
OF

d,

ght
cal

the

.
he

nal
ment,
In the simple case, the repository service could be an implementation of the MOF
model interfaces. This service would be accompanied by tools (for example, comp
or graphical editors) that allow the designer to input information models using a hum
readable notation for the MOF model. Assuming that the target for software
development is CORBA based, the system would include an IDL generator that
implements the standard MOF model-to-CORBA IDL mapping.

The usage scenario for this repository service would be along the following lines:

1. The programmer uses the input tools provided by the system to define an obje
oriented information model using the notation provided.

2. When the design is complete, the programmer runs the IDL generator to transl
the model into CORBA IDL.

3. The programmer examines the IDL, repeating steps 1 and 2 to refine the mode
required.

4. The programmer then implements the generated IDL to produce a target objec
server, and implement the applications that use the object server.

The functionality of the development suite described above can be expanded in a
variety of ways. We can:

• Add generator tools to automatically produce the skeleton of an object server
corresponding to the generated IDL. Depending on the sophistication of the too
this skeleton might include code for the query and update operations prescribe
the IDL mapping, and code to check the constraints on the information model.

• Add generator tools to produce automatically stereotypical applications such as
scripting tools and GUI-based browsers.

• Extend the repository service to store the specifications and/or implementation c
for target server and application functionality that cannot be expressed in the M
model.

While the MOF model is a powerful modeling language for expressing a range of
information models, it is not intended to be the ultimate modeling language. Instea
one intended use of the MOF is as a tool for designing and implementing more
sophisticated modeling systems. The following example illustrates how the MOF mi
be used to construct a software development system centered around a hypotheti
“Universal Design Language” (UDL).

Many parallels can be drawn between the hypothetical UDL discussed below and
draft OA&DF UML proposal in that UML is designed to be a general purpose
modeling language for visualizing, designing, and developing component software
The UDL can be thought of as an extension, as well as a refinement, of many of t
concepts in the UML. The extensions are mainly in the area of providing sufficient
detail to complete the implementation framework technologies and defining additio
meta models that address various technology domains such as database manage
transaction processing, etc.
April 2002 OMG-MOF, v1.4: Software Development Scenarios 1-3



1

ng a

ly a
m
L

t

med

igner

ware

have
p"

s;

OF
L)

to
ence,
mly

of
The developer of a software development system based on UDL might start by usi
MOF Model notation to define a meta-model for UDL. Conceivably, the UDL
metamodel could reuse part or all of the MOF Model, though this is not necessari
good idea2. The developer could then use a simple MOF-based development syste
(along the lines described above) to translate the UDL metamodel into CORBA ID
for a UDL repository, and to provide hand-written or generated software that
implements the UDL repository and suitable UDL model input tools.

The hypothetical UDL development system cannot be considered complete withou
some level of support for the process of creating working code that implements
systems described by the UDL models. Depending on the nature of the UDL, this
process might involve a number of steps in which the conceptual design is transfor
into more concrete designs and, finally, into program source code. A UDL
development system might provide a range of tools to assist the target system des
or programmer. These tools would need to be supported by repository functions to
store extra design and implementation information, along with information such as
version histories, project schedules, and so on, that form the basis of a mature soft
development process.

In practice, a software development system implemented along these lines would
difficulty meeting the needs of the marketplace. A typical software engineering "sho
will have requirements on both the technical and the process aspects of software
engineering that cannot be met by a “one-size-fits-all” development system. The
current trend in software development systems is for Universal Repository system
that is, for highly flexible systems that can be tailored and extended on the fly.

A MOF-based universal repository system would be based around the core of the M
Model, and a suite of tools for developing target metamodels (for example, the UD
and their supporting tools. Many of the tools in the universal repository could be
reflective; that is, the tools could make use of information from higher meta-levels
allow them to operate across a range of model types. Functionality, such as persist
replication, version control, and access control would need to be supported unifor
across the entire repository framework.

1.3 Type Management Scenarios

A second area where early use of the MOF is likely is in the representation and
management of the various kinds of type information used by the expanding array
CORBA infrastructure services.

The CORBA Interface Repository (IR) is the most central type-related service in
CORBA. The IR serves as a central repository for interface type definitions in a
CORBA-based system. The current IR essentially provides access to interface
definitions that conform to the implied information model of CORBA IDL. While the

2. The MOF meta-model has specific requirements (e.g., model simplicity and support for
automatic IDL generation) that are not generally applicable. As a consequence, it is unrea-
sonable to expect the MOF metamodel design to be suitable for all kinds of object model-
ing.
1-4 OMG-Meta Object Facility, v1.4 April 2002



1

ant

uld
n

IR
ed

g

ng

ted

rty

e
pe

pe

ent

or
t
vice
.
the

a

g

IR interfaces are tuned fairly well to read-only access, there is no standard update
interface and no way to augment the interface definitions in the IR with other relev
information, such as behavioral semantics.

Given a simple MOF-based development environment (as described above), it wo
be easy to describe the implied information model for CORBA IDL using a notatio
for the MOF Model. The resulting CORBA IDL model could then be translated into
the IDL for an MOF-based replacement for the CORBA IR. While this replacement
would not be upwards compatible with the existing IR, the fact that it was MOF-bas
would provide a number of advantages. The MOF-based IR would:

• Support update interfaces.

• Be extensible in the sense that it would be feasible to extend the CORBA IDL
model specification by (MOF Model) composition and inheritance. This ability
would help smooth the path for future extensions to the CORBA object model.

• Make it easier to federate multiple IR instances and to represent associations
between CORBA interface types and other kinds of type information.

• Automatically include links to its own meta-information definition expressed usin
MOF meta-objects.

Other candidates for use of MOF-based technology among existing and forthcomi
infrastructure services include:

• Trader: The CORBA trader service maintains a database of "service offers" from
services in a CORBA-based distributed environment. These offers have associa
service types that are represented using the
CosTradingRepos::ServiceTypeRepository interface. (A trader service type is
a tuple consisting of a type name, an interface type, and a set of named prope
types. Service types can be defined as subtypes of other service types.)

• Notification: At least one initial submission for the forthcoming Notification servic
includes the notion of an event type. (An event type is a tuple consisting of a ty
name, a set of named property types, and a set of supertypes.)

In both cases, a MOF-based type repository would have the advantages listed
previously for the MOF-based Implementation Repository.

Looking to the future, there are a number of other possible uses for MOF-based ty
repositories in infrastructure services. For example:

• Service interface bridges: As CORBA matures and there is large-scale deploym
as part of enterprise-wide computing infrastructures, it will become increasingly
necessary to cope with legacy CORBA objects; that is, with objects that provide
use out-of-date service interfaces. In situations where statically deployed objec
wrappers are not a good solution, one alternative is to provide an ORB-level ser
that can insert an interface bridge between incompatible interfaces at bind time
Such a service would depend on types that describe the available bridges and
mechanisms used to instantiate them.

• Complex bindings: RM-ODP supports the idea that bindings between objects in
distributed environment can be far more complex than simple RPC, stream or
multicast protocols. RM-ODP defines the notion of a multi-party binding involvin
April 2002 OMG-MOF, v1.4: Type Management Scenarios 1-5



1

nd
for

in of
large

ion
he
ate

to
able
el
be
tion

n
.

mes
ing.
pace

ikely
-data
he
s use
ned

nage
ue
an arbitrary number of objects of various types, in which different objects fill
different roles in the binding. A CORBA service to manage complex bindings
would be based on formally described binding types that specify the numbers a
types of objects filling each role and the allowed interaction patterns (behaviors)
a given binding.

1.4 Information Management Scenarios

The previous sections focused on the use of the MOF to support the software
development life-cycle and the type management requirements of CORBA
infrastructure services. This section broadens the scope to the more general doma
information management; that is, the design, implementation, and management of
bodies of more or less structured information.

First, note that some of the ideas outlined above carry over to the information
management domain. In some cases, it may be appropriate to define the informat
model (that is, the database schema) for the application of interest directly using t
MOF Model. In this case, the technology described previously can be used to autom
the production of CORBA-based servers to store the information and applications
use it. In other situations, the MOF Model can be used to define a metamodel suit
for defining information models for the domain of interest; for example, a metamod
for describing relational database schemas. Then a development environment can
designed and implemented using MOF-based technology that supports the genera
of CORBA-based data servers and applications from information models.

In addition, the MOF potentially offers significant benefits for large-scale informatio
systems by allowing such a system to make meta-information available at run-time
Some illustrative examples follow.

Information discovery: The World-Wide Web contains a vast amount of useful (and
useless) information on any topic imaginable. However, this information is largely
inaccessible. In the absence of other solutions, current generation web indexing
systems or search engines must rely on simple word matching. Unless the user fra
queries carefully, the number of "hits" returned by a search engine are overwhelm
Furthermore, it is now apparent that even the largest search engines cannot keep
with the Web's rate of growth.

In the absence of software that can "understand" English text, the approach most l
to succeed is to build databases of meta-data that describe web pages. If this meta
is represented using MOF-based technology and an agreed base metamodel for t
meta-data, the framework can support local meta-data extensions through judiciou
of MOF-supported reflection. In addition, because the meta-data framework is defi
in the MOF context, it can be accessible to a larger class of generic tools.

1.5 Data Warehouse Management Scenarios

Data warehousing is a recent development in enterprise-scale information
management. The data warehouse technique recognizes that it is impractical to ma
the information of an enterprise as a unified logical database. Instead, this techniq
1-6 OMG-Meta Object Facility, v1.4 April 2002



1

e
only
end
al

to

use
ct the

tion
tools

rns

for
mains.

l use
pact
the
extracts information from logically- and physically-distinct databases, integrates th
information, and stores it in a large-scale "warehouse" database that allows read-
access to possibly non-current data. The extraction and integration processes dep
on a database administrator creating a mapping from the schemas for the individu
databases to the schema of the warehouse. If the meta-information for the various
databases is represented using MOF-based technology, then it should be possible
create sophisticated tools to assist the database administrator in this process.

Meta data is often described as the “heart and soul” of the data warehouse
environment. The MOF can be used to automate meta data management of data
warehouses. Current meta data repositories that manage data warehouses often
static meta data using batch file-based meta data exchange mechanisms. We expe
use of MOF- and standard CORBA-based event and messaging mechanisms and
mobile agent technology (also being standardized by OMG) to drive a new genera
of data warehouse management tools and systems that are more dynamic. These
will enable customers to react in a timelier manner to changing data access patte
and newly discovered patterns, which is the focus of data mining and information
discovery systems.

The MOF interfaces and the MOF Model can be used to define specific metamodels
database, data warehouse, model transformation, and warehouse management do
The integration between these models in a run time data warehouse and the
development environment (which has data models) and UML based object models
(which describes the corporate data models and operational databases) is a typica
of a MOF. The traceability across these environments is enabled by defining an im
analysis metamodel, which builds on the rich model of relationships supported by
MOF.

The OMG CWM specification represents one possible realization of this scenario.
April 2002 OMG-MOF, v1.4: Data Warehouse Management Scenarios 1-7



1

1-8 OMG-Meta Object Facility, v1.4 April 2002



MOFConceptualOverview 2
OF

and
are

ng

The
ew
data
ular
Contents

This chapter contains the following topics.

2.1 Overview

The Meta Object Facility is a large specification. This chapter aims to make the M
specification easier to read by providing a conceptual overview of the MOF.

The chapter starts by explaining the MOF’s conceptual architecture for describing
defining metadata. The next section introduces the metamodeling constructs that
used to describe metadata. This is followed by a section that describes how
metamodels are mapped to implementation technologies, including the IDL mappi
and XMI.

2.2 Metadata Architectures

The central theme of the MOF approach to metadata management is extensibility.
aim is to provide a framework that supports any kind of metadata, and that allows n
kinds to be added as required. In order to achieve this, the MOF has a layered meta
architecture that is based on the classical four layer metamodeling architecture pop

Topic Page

“Overview” 2-1

“Metadata Architectures” 2-1

“The MOF Model - Metamodeling Constructs” 2-6

“Metamodels and Mappings” 2-20
April 2002 OMG-Meta Object Facility, v1.4 2-1



2

s

eta-

tion

t

ing
.

long
del
).

ving

the
within standards communities such as ISO and CDIF. The key feature of both the
classical and MOF metadata architectures is the meta-metamodeling layer that tie
together the metamodels and models.

The traditional four layer metadata architecture is briefly described below. This is
followed by a more detailed description of how this maps onto the MOF metadata
architecture.

2.2.1 Four Layer Metadata Architectures

The classical framework for metamodeling is based on an architecture with four m
layers. These layers are conventionally described as follows:

• The information layer is comprised of the data that we wish to describe.

• The model layer is comprised of the metadata that describes data in the informa
layer. Metadata is informally aggregated as models.

• The metamodel layer is comprised of the descriptions (i.e., meta-metadata) tha
define the structure and semantics of metadata. Meta-metadata is informally
aggregated as metamodels. A metamodel is an “abstract language” for describ
different kinds of data; that is, a language without a concrete syntax or notation

• The meta-metamodel layer is comprised of the description of the structure and
semantics of meta-metadata. In other words, it is the “abstract language” for
defining different kinds of metadata.

The classical four layer meta-modeling framework is illustrated in Figure 2-1. This
example shows metadata for some simple records (i.e., “StockQuote” instances) a
with the “RecordTypes” metamodel for describing and the hard-wired meta-metamo
that defines the metamodeling constructs (e.g., meta-Classes and meta-Attributes

While the example shows only one model and one metamodel, the main aim of ha
four meta- layers is to support multiple models and metamodels. Just as the
“StockQuote” type describes many StockQuote instances at the information level,

StockQuote (“Sunbeam Harvesters”, 98.77)
StockQuote (“Ace Taxi Cab Ltd”, 12.32)

Record ( “StockQuote”,
[ Field ( “company”, String )

Field ( “price”, FixedPoint ) ] )

MetaClass ( “Record”,
[ MetaAttr ( “name”, String),
MetaAttr ( “fields”, List < “Field”> ) ]

MetaClass ( “Field”, ... )

Hard-wired Meta-metamodel

information

model

metamodel

meta-metamodel

...

Figure 2-1 Four Layer Metadata Architecture

MetaModel ( “RecordTypes”,
2-2 OMG-Meta Object Facility, v1.4 April 2002



2

f

imple

and

n
ws a

-

“RecordTypes” metamodel can describe many record types at the model level.
Similarly, the meta-metamodel level can describe many other metamodels at the
metamodel that in turn represent other kinds of metadata describing other kinds o
information.

The classical four layer metadata architecture has a number of advantages over s
modeling approaches. If the framework is designed appropriately:

• it can support any kind of model and modeling paradigm that is imaginable,

• it can allow different kinds of metadata to be related,

• it can allow metamodels and new kinds of metadata to be added incrementally,

• it can support interchange of arbitrary metadata (models) and meta-metadata
(metamodels) between parties that use the same meta-metamodel.

2.2.2 The MOF Metadata Architecture

The MOF metadata architecture1, illustrated by the example in Figure 2-2, is based o
the traditional four layer metadata architecture described above. This example sho
typical instantiation of the MOF metadata architecture with metamodels for
representing UML diagrams and OMG IDL.

1. One could argue that the term “architecture” is an inappropriate in this context. After all, the
MOF metadata “architecture” is little more than a way of conceptualizing relationships
between data and descriptions of data. Certainly, there is no intention the “architecture” be
used as a benchmark for MOF conformance. However, the term has been used in MOF dis
cussion for a long time, so the reader must forgive any perceived inaccuracy.

MOF Model

models

metamodels

meta-metamodel

UML

MOF Model
MOF Model

UML Models

IDL Interface
IDL Interface

IDL Interfaces

Metamodel
IDL

Metamodel

M3 layer

M2 layer

M1 layer

M0 layer

...

...

Figure 2-2 MOF Metadata Architecture
April 2002 OMG-MOF, v1.4: Metadata Architectures 2-3



2

m

s.
ls as

w

d

ted
l to

nces

g.

at
s in

es in
eta-

ions

sed
d to

l

The MOF metadata architecture has a few important features that distinguish it fro
earlier metamodeling architectures:

• The MOF Model (the MOF’s core meta-metamodel) is object-oriented, with
metamodeling constructs that are aligned with UML’s object modeling construct
Hence, the example uses UML package icons to denote MOF-based metamode
well as UML models.

• The meta- levels in the MOF metadata architecture arenot fixed. While there are
typically 4 meta- levels, there could be more or less than this, depending on ho
MOF is deployed. Indeed, the MOF specification does not require there to be
discrete meta- levels at all at the implementation level. MOF meta- levels arepurely
a convention for understanding relationships between different kinds of data an
metadata.

• A model (in the broad sense of a collection of metadata) is not necessarily limi
to one meta- level. For example, in a data warehousing context, it may be usefu
think of the meta-schema “Relational Table” and specific schemas that are insta
of relational tables as being one conceptual model.

• The MOF Model is self-describing. In other words, the MOF Model is formally
defined using its own metamodeling constructs. Hence, the MOF Model is also
denoted by a UML style Package icon.

The self-describing nature of the MOF Model has some important consequences:

• It shows that the MOF Model is sufficiently expressive for practical metamodelin

• It allows the MOF’s interfaces and behavior to be defined by applying the MOF
IDL mapping to the MOF Model. This provides uniformity of semantics between
computational objects that represent models and metamodels. It also means th
when a new technology mapping is defined, the APIs for managing metamodel
that context are implicitly defined as well.

• It provides an architectural basis for extensions and modifications to the MOF
Model. Successive MOF RTFs have thus been able to make incremental chang
the MOF Model to address problems that become apparent. In the future, new m
metamodels may be added to support tasks like specification of modeling notat
and model-to-model transformations.

• Given an appropriate set of implementation generators, it allows new MOF
metamodel repository implementations and associated tools to be created by
bootstrapping.

2.2.3 MOF Metamodeling Terminology

There is enormous scope for confusion if standard metamodeling terminology is u
in the MOF specification. To avoid this and to make it easier to read, we have opte
simplify the terminology. Some particular points of confusion are as follows:

• Since the number of MOF meta-levels is not fixed and meta-levels are
conventionally named upwards from the “information” layer, the “top” meta-leve
of the stack varies. Some people find this idea hard to grasp.
2-4 OMG-Meta Object Facility, v1.4 April 2002



2

ven
in a
is

lly,

e
is

n

In
re 4

s

,

e
n

nd
ly

OF

r

ect

cise

F
a

ons
• There are a number of object modeling concepts that appear at two, three, or e
four levels in a well populated MOF metadata framework. For example, a class
UML is described by an instance of the class “Class” in the UML metamodel. Th
is in turn described by an instance of the class “Class” in the MOF Model. Fina
the class “Class” in the MOF Model is described by itself. This overloading of
names of concepts often confuses people.

• While the “meta-” prefix has a clear meaning in the context of the MOF, evidenc
suggests that people who encounter it for the first time find it very confusing. Th
is particularly the case for forms like “meta-meta-” and “meta-meta-meta-”. Eve
for seasoned experts, “meta-meta-meta-” is cumbersome in conversation.

To avoid some of this confusion, we generally try to avoid using the “meta-” prefix.
particular, while the core of the MOF is a meta-metamodel (assuming that there a
meta- layers), it is referred to as “the MOF Model.” Similarly, rather than using term
like Class, MetaClass, and MetaMetaClass, we use phraseology like “an M1-level
instance of an M2-level Class.”

The meta-level numbering used in the remainder of this specification (for example
M2-level or M1-level) should be read astop downlabelsrelative to the MOF Model at
M3-level. We assume that the reader can mentally relabel the meta-levels to fit th
context; for example, in contexts where the MOF Model is not at M3-level, or whe
applying the IDL mapping to the MOF Model itself.

Note –Even the M1- / M2- terminology above has proved to be confusing to some
readers. However, since changing the terminology again will take significant effort a
cause considerable disruption, further work on this has been deferred until a clear
superior terminology is proposed.

There are three cases where it is convenient to use the “meta-” prefix as part of M
terminology:

1. The term “metadata” is used to refer to data whose purpose is to describe othe
data.

2. The term “metamodel” is used to refer to a model of some kind of metadata.

3. The term “metaobject” is used to refer to an abstract or technology specific obj
that represents metadata.

In each case, the term is used across all meta-levels and has a deliberately impre
meaning.

The core modeling concepts in the MOF use terms that are also used in UML with
similar meanings. For example, a MOF Class corresponds to a UML Class, a MO
Attribute corresponds to a UML Attribute, and a MOF Association corresponds to
UML Association. However the correspondence is not always a direct match. For
example, UML Associations may have many AssociationEnds, but MOF Associati
must have precisely two.
April 2002 OMG-MOF, v1.4: Metadata Architectures 2-5



2

he
re.

ave
es

ir

low
can
2.3 The MOF Model - Metamodeling Constructs

This section introduces the MOF’s core metamodeling constructs (i.e., the MOF’s
“abstract language”) for defining metamodels.

MOF metamodeling is primarily about defining information models for metadata. T
MOF uses an object modeling framework that is essentially a subset of the UML co
In a nutshell, the 4 main modeling concepts are:

1. Classes, which model MOF metaobjects.

2. Associations, which model binary relationships between metaobjects.

3. DataTypes, which model other data (e.g., primitive types, external types, etc.).

4. Packages, which modularize the models.

2.3.1 Classes

Classes are type descriptions of “first class instance” MOF metaobjects. Classes
defined at the M2 level logically have instances at the M1 level. These instances h
object identity, state, and behavior. The state and behavior of the M1 level instanc
are defined by the M2 level Class in the context of the common information and
computational models defined by the MOF specification.

Instances of classes belong to class extents that impact on certain aspects of the
behavior. It is possible to enumerate all instances of a class in a class extent (see
Section 4.8.2, “Class Extents,” on page 4-11).

Classes can have three kinds of features. Attributes and Operations described be
and References described in Section 2.3.4, “References,” on page 2-12. Classes
also contain Exceptions, Constants, DataTypes, Constraints, and other elements.

2.3.1.1 Attributes

An Attribute defines a notional slot or value holder, typically in each instance of its
Class. An Attribute has the following properties.

Property Description

name Unique in the scope of the Attribute’s Class.

type May be a Class or a DataType.

“isChangeable” flag Determines whether the client is provided with an
explicit operation to set the attribute’s value.

“isDerived” flag Determines whether the contents of the notional value
holder is part of the “explicit state” of a Class instance,
or is derived from other state.

“multiplicity”
specification

(see “Attribute and Parameter Multiplicities” on
page 2-7)
2-6 OMG-Meta Object Facility, v1.4 April 2002



2

s do
ead
ed.

n
By
s of

ss

all

be
The aggregation properties of an Attribute depend on the Attribute’s type; see
Section 2.3.3, “Aggregation,” on page 2-11.

2.3.1.2 Operations

Operations are “hooks” for accessing behavior associated with a Class. Operation
not actually specify the behavior or the methods that implement that behavior. Inst
they simply specify the names and type signatures by which the behavior is invok
Operations have the following properties.

2.3.1.3 Attribute and Operation Scoping

Attributes and Operations can be defined as “classifier level” or “instance level.” A
instance-level Attribute has a separate value holder for each instance of a Class.
contrast, a classifier-level Attribute has a value holder that is shared by all instance
the Class in its class extent.

Similarly, an instance-level Operation can only be invoked on an instance of a Cla
and will typically apply to the state of that instance. By contrast, a classifier-level
Operation can be invoked independently of any instance, and can apply to any or
instances in the class extent.

2.3.1.4 Attribute and Parameter Multiplicities

An Attribute or Parameter may be optional-valued, single-valued, or multi-valued
depending on its multiplicity specification. This consists of three parts:

1. The “lower” and “upper” fields place bounds on the number of elements in the
Attribute or Parameter value. The lower bound may be zero and the upper may
“unbounded.”

Property Description

name Unique in the scope of the Class.

list of positional parameters having the following properties:

Parameter name:

Parameter type may be denoted by a Class or a DataType

Parameter direction
of “in,” “out,” or “in
out”

determines whether actual arguments are passed from
client to server, server to client, or both.

Parameter
“multiplicity”
specification

see “Attribute and Parameter Multiplicities” on page 2-7

An optional return type.

A list of Exceptions that can be raised by an invocation.
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-7



2

n
ll
ter

d
to
per

c

e
OF

to
st,

ead

to
ts
s, and
ly to
ub-

that

ment
lass
• A single-valued Attribute or Parameter has lower bound 1 and upper bound 1. A
optional-valued Attribute or Parameter has lower bound 0 and upper bound 1. A
other cases are called multi-valued parameters (since their upper bound is grea
than 1).

Note –Multiplicity bounds are typically notated as one or two numbers, with “*” use
to denote unbounded. For example, a UML bounds specification of “1” translates
lower and upper bounds of 1, and “2..*” translates to a lower bound of 2 and no up
bound.

2. The “is_ordered” flag says whether the order of values in a holder has semanti
significance. For example, if an Attribute is ordered, the order of the individual
values in an instance of the Attribute will be preserved.

3. The “is_unique” flag says whether instances with equal value are allowed in the
given Attribute or Parameter. The meaning of “equal value” depends on the bas
type of the Attribute or Parameter. See Section 4.4, “Semantics of Equality for M
Values,” on page 4-3, and Section 5.3.3, “Value Types and Equality in the IDL
Mapping,” on page 5-11 for additional information.

Note –The bounds and uniqueness parts of a multiplicity specification can give rise
runtime “structural checks” (see “Structural Consistency” on page 2-19). By contra
orderedness does not imply any runtime checking.

2.3.1.5 Class Generalization

The MOF allows Classes to inherit from one or more other Classes. Following the l
of UML, the MOF Model uses the verb “to generalize” to describe the inheritance
relationship (i.e., a super-Class generalizes a sub-Class).

The meaning of MOF Class generalization is similar to generalization in UML and
interface inheritance in CORBA IDL. The sub-Class inherits all of the contents of i
super-Classes (i.e., all of the super-Classes Attributes, Operations and Reference
all nested DataTypes, Exceptions and Constants). Any explicit Constraints that app
a super-Class and any implicit behavior for the super-Class apply equally to the s
Class. At the M1 level, an instance of an M2-level Class is type substitutable for
instances of its M2-level super-Classes.

The MOF places restrictions on generalization to ensure that it is meaningful and
it can be mapped onto a range of implementation technologies:

• A Class cannot generalize itself, either directly or indirectly.

• A Class cannot generalize another Class if the sub-Class contains a model ele
with the same name as a model element contained or inherited by the super-C
(i.e., no over-riding is allowed).
2-8 OMG-Meta Object Facility, v1.4 April 2002



2

rited
us to

es

lass

ose
ds to

and

term
e

nts
ion of

ips
s
e

o

• When a Class has multiple super-Classes, no model elements contained or inhe
by the super-Classes can have the same name. There is an exception (analogo
the “diamond rule” in CORBA IDL) that allows the super-Classes to inherit nam
from a common ancestor Class.

Note – It is also possible to use Tags to specify that the interfaces generated for a C
inherits from pre-existing interfaces.

2.3.1.6 Abstract Classes

A Class may be defined as “abstract.” An abstract Class is used solely for the purp
of inheritance. No metaobjects can ever exist whose most-derived type correspon
an abstract Class.

Note –The MOF uses “abstract Class” in the same sense as UML, and also Java
many other object oriented programming languages. Specifying a MOF Class as
“abstract” does not say how instances are transmitted. In particular, the use of the
“abstract class” has no relationship to the IDL keyword “abstract” introduced by th
Objects-by-value specification.

2.3.1.7 Leaf and Root Classes

A Class may be defined as a “leaf” or “root” Class. Declaring a Class as a leaf preve
the creation of any sub-Classes. Declaring a Class as a root prevents the declarat
any super-Classes.

2.3.2 Associations

Associations are the MOF Model’s primary construct for expressing the relationsh
in a metamodel. At the M1 level, an M2 level MOF Association defines relationship
(links) between pairs of instances of Classes. Conceptually, these links do not hav
object identity, and therefore cannot have Attributes or Operations.

2.3.2.1 Association Ends

Each MOF Association contains precisely two Association Ends describing the tw
ends of links. The Association Ends define the following properties:

Property Description

A name for the end This is unique within the Association.

A type for the end This must be a Class.

Multiplicity specification See “Association End Multiplicities” on page 2-10.
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-9



2

y
es:

f a

y
hey
.

”
re
e

d

2.3.2.2 Association End Multiplicities

Each Association End has a multiplicity specification. While these are conceptuall
similar to Attribute and Operation multiplicities, there are some important differenc

• An Association End multiplicity does not apply to the entire link set. Instead, it
applies to projections of the link set for the possible values of the “other” end o
link. See Figure 2-3.

• Since duplicate links are disallowed in M1-level link sets, “is_unique” is implicitl
TRUE. The check for duplicate links is based on equality of the instances that t
connect; see Section 4.4, “Semantics of Equality for MOF Values,” on page 4-3

.

Figure 2-3 The projections of a link set

Figure 2-3 shows a link set for an Association with an AssociationEnd named “left
whose Class is A, and a second named “right” whose Class is B. Instances of A a
shown as “a1,” “a2,” and “a3” and “b1” and “b2” are instances of B. In this exampl
with five links, the projection of “a1” is the collection {b1}, and the projection of “b1”
is the collection {a1, a2, a3}. If there is another B instance (say “b3”) with no
corresponding links, the projection of that b3 is an empty collection.

An aggregation
specification

See “Association Aggregation” on page 2-12.

A “navigability” setting Controls whether References can be defined for the en
(see Section 2.3.4, “References,” on page 2-12).

A “changeability” setting Determines whether this end of a link can be updated
“in place.”

Property Description

a1

a2

a3

a2

a3

b1

b1

b2

b2

b1

left: Class A right: Class B

Projection of b1

Projection of b2

Projection of a1

Projection of a2

Projection of a3
2-10 OMG-Meta Object Facility, v1.4 April 2002



2

om
n’s

n of

ng
ips

i.e.,

with

ips.

In
es.

e”

er

site
and

nce
The “lower” and “upper” bounds of an Association End constrain the number of
instances in a projection. For example, if the “left” End of the Association has a
bounds “0..3”, then the projection of the link set for any extant instance of B must
contain between zero and three instances of A.

The “is_ordered” flag for the Association End determines whether the projections fr
the other End have an ordering. The MOF Model only allows one of an Associatio
two Association Ends to be marked as “ordered.”

In the above example, this could say whether order of the elements of the projectio
“b1” is significant (i.e., whether {a1, a2, a3} is a set or a unique list).

2.3.3 Aggregation

In a MOF metamodel Classes and DataTypes can be related to other Classes usi
Associations or Attributes. In both cases, aspects of the behavior of the relationsh
can be described as aggregation semantics.

2.3.3.1 Aggregation Semantics

The MOF supports two kinds of aggregation for relationships between instances (
“composite” and “non-aggregate”). A third aggregation semantic - “shared” - is not
supported in this version of the MOF specification.

A non-aggregate relationship is a (conceptually) loose binding between instances
the following properties:

• There are no special restrictions on the multiplicity of the relationships.

• There are no special restrictions on the origin of the instances in the relationsh

• The relationships do not impact on the lifecycle semantics of related instances.
particular, deletion of an instance does not cause the deletion of related instanc

By contrast, a composite relationship is a (conceptually) stronger binding between
instances with the following properties:

• A composite relationship is asymmetrical, with one end denoting the “composit
or “whole” in the relationship and the other one denoting the “components” or
“parts.”

• An instance cannot be a component of more than one composite at a time, und
any composite relationship.

• An instance cannot be a component of itself, its components, its components’
components and so on under any composite relationship.

• When a “composite” instance is deleted, all of its components under any compo
relationship are also deleted, and all of the components’ components are deleted
so on.

• The Composition Closure Rule: an instance cannot be a component of an insta
from a different package extent (see Section 4.11.2, “The Composition Closure
Rule,” on page 4-20).
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-11



2

o
se.
r

ntics.

he

ses
lar
e
ces.

ut

ver

nd to

ph.
2.3.3.2 Association Aggregation

The aggregation semantics of an Association are specified explicitly using the
“aggregation” Attribute of the AssociationEnds. In the case of a “composite”
Association, the “aggregation” Attribute of the “composite” AssociationEnd is set t
true and the “aggregation” Attribute of the “component” AssociationEnd is set to fal
Also, the multiplicity for the “composite” AssociationEnd is required to be “[0..1]” o
“[1..1]” in line with the rule that an instance cannot be a component of multiple
composites.

2.3.3.3 Attribute Aggregation

The effective aggregation semantics for an Attribute depend on the type of the
Attribute. For example:

• An Attribute whose type is expressed as a DataType has “non-aggregate” sema

• An Attribute whose type is expressed as a Class has “composite” semantics.

It is possible to use a DataType to encode the type of a Class. Doing this allows t
metamodel to define an Attribute whose value or values are instances of a Class
without incurring the overhead of “composite” semantics.

2.3.4 References

The MOF Model provides two constructs for modeling relationships between Clas
(i.e., Associations and Attributes). While MOF Associations and Attributes are simi
from the information modeling standpoint, they have important differences from th
standpoints of their computational models and their corresponding mapped interfa

Note –Attributes can also model relationships between Classes and DataTypes, b
that is not relevant to this point.

Associations offer a “query-oriented” computational model. The user performs
operations on an object that notionally encapsulates a collection of links:

• Advantage: The association objects allow the user to perform “global” queries o
all relationships, not just those for a given object.

• Disadvantage: The client operations for accessing and updating relationships te
be more complex.

Attributes offer a “navigation-oriented” computational model. The user typically
performs get and set operations on an attribute.

• Advantage: The get and set style of interfaces are simpler, and tend to be more
natural for typical metadata oriented applications that “traverse” a metadata gra

• Disadvantage: Performing a “global” query over a relationship expressed as an
Attribute is computationally intensive.
2-12 OMG-Meta Object Facility, v1.4 April 2002



2

at
d

a

n.

s

e

a
s.

r

eir

o

ake
The MOF Model provides an additional kind of Class feature called a Reference th
provides an alternative “Attribute like” view of Associations. A Reference is specifie
by giving the following:

• a name for the Reference in its Class,

• an “exposed” Association End in some Association whose type is this Class or
super-Class of this Class, and

• a “referenced” Association End, which is the “other” end of the same Associatio

Defining a Reference in a Class causes the resulting interface to contain operation
with signatures that are identical to those for an “equivalent” Attribute. However,
rather than operating on the values in an attribute slot of a Class instance, these
operations access and update the Association, or more precisely a projection of th
Association. This is illustrated in UML-like notation in Figure 2-4.

Figure 2-4 An example of a Reference

Figure 2-4 shows a Class called My_Class_1 that is related to My_Class_2 by the
Association My_Assoc. My_Class_1 has an Attribute called “attr” whose type is
Integer. In addition, it has a Reference called “ref” that references “end2” of the
Association. This provides an API for “ref” that allows a user to access and update
My_Class_1 instance’s link to a My_Class_2 instance using get and set operation

Note –Strictly speaking, the UML notation in the diagram shows “ref” as a derived
attribute of My_Class_1 with type of My_Class_2.

The example above shows a Reference that “exposes” an Association End with a
multiplicity of “[1..1]”. References can actually expose ends with any valid
multiplicity specification. The resulting Reference operations are similar to those fo
an Attribute with the same multiplicity. However, since MOF Associations do not
allow duplicates, Association Ends and therefore References must always have th
multiplicity “is_unique” flag set to true.

There are some important restrictions on References:

• When the “is_navigable” property of an Association End is false, it is not legal t
define a Reference that “references” that Association End.

• An M1 instance of a Class that “references” an Association cannot be used to m
a link in an instance of the Association in a different extent. This restriction is
described in Section 4.11.1, “The Reference Closure Rule,” on page 4-19.

My_Class_1

attr: Integer
/ref: My_Class_2

My_Class_2

.....1

My_Assoc
end_1 end_2

«exposes»

«references»
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-13



2

that

ks
for

, the

es.
pes,

l.

her
n).

ta.

4,

i.e.,

ay

ting

own
tions
2.3.5 DataTypes

Metamodel definitions often need to use attribute and operation parameter values
have types whose values do not have object identity. The MOF provides the
metamodeling concept of a DataType to fill this need.

DataTypes can represent two kinds of data type:

1. Primitive data types like Boolean, Integer, and String are the basic building bloc
for expressing state. The MOF defines six standard data types that are suitable
technology neutral metamodeling. (Other primitive data types can be defined by
specific technology mappings or as user or vendor-specific extensions. However
core MOF specification says nothing about what they mean.)

2. Data type constructors allow the metamodeler to define more complex data typ
The MOF’s standard data type constructors are enumeration types, structure ty
collection types, and alias types.

See Section 3.4.7, “DataType,” on page 3-32 and the following sections for more
details on how DataTypes subtypes are used to express types.

2.3.6 Packages

The Package is the MOF Model construct for grouping elements into a metamode
Packages serve two purposes.

1. At the M2 level, Packages provide a way of partitioning and modularizing the
metamodel space. Packages can contain most kinds of model element (e.g., ot
Packages, Classes, Associations, DataTypes, Exceptions, Constants, and so o

2. At the M1 level, Package instances act as the outermost containers for metada
Indirectly, they also define the scope boundaries of Association link sets and of
“classifier level” Attributes and Operations on Class instances (see Section 4.8.
“Package Extents,” on page 4-12).

The MOF Model provides four mechanisms for metamodel composition and reuse (
generalization, nesting, importing, and clustering). These are described in the
following subsections.

2.3.6.1 Package Generalization

Packages may be generalized by (inherit from) one or more other Packages in a w
that is analogous to Class generalization described in Section 2.3.1.5, “Class
Generalization,” on page 2-8. When one Package inherits from another, the inheri
(sub-) Package acquires all of the metamodel elements belonging to the (super-)
Package it inherits from. Package inheritance is subject to rules that prevent name
collision between inherited and locally defined metamodel elements.

At the M1 level, a sub-Package instance has the ability to create and manage its
collections of Class instances and Links. This applies to the Classes and Associa
that it defines explicitly, and to those that it acquires by inheritance.
2-14 OMG-Meta Object Facility, v1.4 April 2002



2

s

ckage

s.
del
ve a

are
ular,

e
can
a
.

or

vide
ay

nts
f the
The relationship between instances of the super- and sub-Packages is similar to
relationship between instances of super- and sub-Classes:

• A sub-Package instance is type substitutable for instances of its super-Package
(i.e., the sub-Package instance “IS_A” super-Package instance).

• A sub-Package instance does not use or depend on an instance of the super-Pa
(i.e., there is no “IS_PART_OF” relationship).

Packages may be defined as “root” or “leaf” Packages (with analogous meaning to
“root” and “leaf” Classes), but “abstract” Packages are not supported.

2.3.6.2 Package Nesting

A Package may contain other Packages, which may in turn contain other Package
Model elements defined in nested Packages may be strongly coupled to other mo
elements in the same containment. For example, a Class in a nested Package ha
Reference that links it via an Association in its context, or its semantics could be
covered by a user-defined Constraint that applies to the enclosing Package.

A nested Package is a component of its enclosing Package. Since, in general, the
model elements in a nested Package can be inextricably tied to its context, there
some significant restrictions on how nested Packages can be composed. In partic

• a nested Package may not generalize or be generalized by other Packages.

• a nested Package may not be imported or clustered by other Packages.

Nested Packages are not directly instantiable. No factory objects or operations ar
defined for nested Package instances. An M1 level instance of a nested Package
only exist in conjunction with an instance of its containing Package. Conceptually,
nested Package instance is a component of an instance of its containing Package

Note –The main effect of nesting one Package inside another is to partition the
concepts and the namespace of the outer Package. Nesting is not a mechanism f
reuse. Indeed when a Package is nested, the options for reusing its contents are
curtailed.

2.3.6.3 Package Importing

In many situations, the semantics of Package nesting and generalization do not pro
the best mechanism for metamodel composition. For example, the metamodeler m
wish to reuse some elements of an existing metamodel and not others. The MOF
provides an import mechanism to support this.

A Package may be defined as importing one or more other Packages. When one
Package imports another, the importing Package is allowed to make use of eleme
defined in the imported one Package. As a shorthand, we say that the elements o
imported Package are imported.
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-15



2

orting

d

ith
rting
client

nd
r a

ed
to

f its

luster

ed
art of

of a
trictly

s.
,

is
nce.
Here are some examples of how a Package can reuse imported elements. The imp
Package can declare:

• Attributes, Operations, or Exceptions using imported Classes or DataTypes,

• Operations that raise imported Exceptions,

• DataTypes and Constants using imported DataTypes or Constants,

• Classes whose supertypes are imported Classes, and

• Associations for which the types of one or both Association Ends is an importe
Class.

At the M1 level, an instance of an importing Package has no explicit relationship w
any instances of the Packages that it imports. Unlike a subtype Package, an impo
Package does not have the capability to create instances of imported Classes. A
must obtain any imported Class instances it needs via a separate instance of the
imported Package.

2.3.6.4 Package Clustering

Package clustering is a stronger form of Package import that binds the importing a
imported Package into a “cluster.” As with ordinary imports, a Package can cluste
number of other Packages, and can be clustered by a number of other Packages.

An instance of a cluster Package behaves as if the clustered Packages were nest
within the Package. That is, the lifecycle of a clustered Package instance is bound
the lifecycle of its cluster Package instance. In particular:

• When the user creates an instance of a cluster Package, an instance of each o
clustered Packages is created automatically.

• The instances of the clustered Packages created above all belong to the same c
Package extent.

• Deleting a cluster Package instance automatically deletes its clustered Packag
instances, and the clustered Package instances cannot be deleted except as p
the deletion of the cluster Package instance.

However, unlike a nested Package, it is possible to create an independent instance
clustered Package. Also, in some situations clustered Package instances are not s
nested.

Note – It is possible to cluster or inherit from Packages that cluster other Package
The impact of this on M1 level instance relationships is discussed in Section 4.8.4
“Package Extents,” on page 4-12.

In summary, the relationship between the M1 level instances in a Package cluster
that each clustered Package instance is a component of the cluster Package insta
Unlike nested Packages, there is no composite relationship between the M2 level
Packages.
2-16 OMG-Meta Object Facility, v1.4 April 2002



2

the

cts

ir

e
ta
2.3.6.5 Summary of Package Composition Constructs

The properties of the four Package composition mechanisms defined by the MOF
Model are summarized by Table 2-1.

The symbology of the table is based on UML; that is, a filled diamond means
composition, a hollow diamond means aggregation, a hollow triangle means
inheritance, and a dotted arrow means “depends on”.

Note that P1 and P2 denote different (though related) things in different columns of
table:

• In column 2, they denote conceptual M2 level Packages in a metamodel.

• In column 3, they denote both the conceptual M2 level Packages, and the obje
that represent them in a reified metamodel.

• In column 4, they denote M1 level Package instances (when underlined) or the
types.

2.3.7 Constraints and Consistency

The MOF Model constructs described so far allow the metamodeler to define a
metadata information that comprises nodes (Classes) with attached properties
(Attributes / DataTypes) and relationships between nodes (Associations). While th
above constructs are sufficient to define an “abstract syntax” consisting of metada
nodes and links, this syntax typically needs to be augmented with additional
consistency rules.

This section describes the MOF Model’s support for consistency rules and model
validation.

2.3.7.1 Constraints

The MOF Model defines a element called Constraint that can be used to attach
consistency rules to other metamodel components. A Constraint comprises:

• a constraint name,

Table 2-1 Package Composition Constructs

Metamodel Construct Conceptual
Relationship

M2 level Relationship
Properties

M1 level Relationship
Properties

Nesting P1 contains P2

Generalization / Inheritance P1 generalizes P2

Importing P1 imports P2 none

Clustering P1 clusters P2
or none

P1 P2 P1 P2

P2 P1 P2 P1

P1 P2

P1 P2 P1 P2
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-17



2

,

d” in

by

d in

rule
ple

s

for
.g.,

ange
ns,
until
• a “language” that identifies the language used to express the consistency rules

• an “expression” in the language that specifies a rule,

• an “evaluation policy” that determines when the rule should be enforced, and

• a set of “constrained elements.”

A Constraint expression is an expression in some language that can be “evaluate
the context of a metamodel to decide if it is valid. The MOF specification does not
define or mandate any particular languages for Constraint expressions, or any
particular evaluation mechanisms. Indeed, it is legitimate for Constraints to be
expressed in informal language (e.g., English) and for validation to be implemented
ad-hoc programming. However, the Constraints that are part of the MOF Model
specification itself are expressed in Object Constraint Language (OCL) as describe
the UML specification.

The evaluation policy property of a Constraint determines whether the consistency
should be enforced immediately or at a later time. Figure 2-5 gives a simple exam
that will be used to illustrate the need for evaluation policies.

Figure 2-5 Examples of Constraints

In Figure 2-5, Constraint X constrains only Attribute a while Constraint B constrain
both Attributes a and b.

It is feasible to check the first Constraint (X: “a is odd” on the Attribute “a”) at any
time. It could be checked whenever a value for “a” is supplied (e.g., at instance
creation and when “a” is updated). An exception would be raised if the new value
“a” was even. Alternatively, constraint checking could be deferred to a later point (e
when the user requests validation of a model).

The second constraint (Y: “b equals a * 2” on both Attributes “a” and “b”) is another
matter. If a server enforces Y on every update, the user would never be able to ch
the values of either “a” or “b.” No matter which order the user invoked the operatio
the updates would raise an exception. Instead, enforcement of Y must be deferred
both “a” and “b” have been updated.

My_Class

a: Integer

b: Integer

Constraint X

Constraint Y

b equals a * 2

a is odd
2-18 OMG-Meta Object Facility, v1.4 April 2002



2

les

on
uated.

e
only

l

t a
ed

not
or

ns

o

be
ata

ns

er
Note –The Constraint construct is intended to be used for specifying consistency ru
for models rather than for defining the computation behavior of (for example)
Operations. It is “bad style” to specify Constraint expressions that have side-effects
the state of a model, not least because it is unspecified when Constraints are eval

2.3.7.2 Structural Consistency

As noted previously, a MOF-based metamodel defines an “abstract syntax” for
metadata. Some aspects of the abstract syntax are enforced by the corresponding
metadata server’s IDL. For example, the operation that creates a link for an
Association has a type signature that prevents the user from creating a link with th
wrong kind of Class instances. However, some aspects of the abstract syntax can
be enforced by runtime structural consistency checks. While most of the structura
checks are made immediately, checks for “underflow” often need to be deferred.

It is not practical for a metamodel to specifya priori all possible things that can go
wrong in a MOF-based metadata server. It is therefore necessary to recognize tha
MOF server may need to perform a variety of runtime checks that are neither defin
or implied by the metamodel. These include additional metadata validation that is
specified by the metamodel, resource and access control checks, and internal err
checking.

2.3.7.3 Consistency Checking Mechanisms

The MOF specification provides a lot of latitude for metadata server implementatio
in the area of constraint checking or validation.

• Support for checking of Constraints is not mandatory. In particular, there is no
requirement to support any particular language for Constraint expressions.

• The set of events (if any) that may trigger deferred checking is not specified. N
general APIs are specified for initiating deferred consistency checking.

• Persistence and interchange of metadata, which is in an inconsistent state may
allowed. (Indeed, this would seem to be a prerequisite for some styles of metad
acquisition.)

• There are no specified mechanisms for ensuring that validated metadata remai
valid, or that it does not change.

The one aspect of consistency checking that is mandatory is that a metadata serv
must implement all structural consistency checks that are labeled as immediate.

2.3.8 Miscellaneous Metamodeling Constructs

This section describes the remaining significant elements of the MOF Model.
April 2002 OMG-MOF, v1.4: The MOF Model - Metamodeling Constructs 2-19



2

an
r

he
he

nd
g
me

ids
ags

the

he
2.3.8.1 Constants

The Constant model element allows the metamodeler to define simple bindings
between a name and a constant value. A Constant simply maps onto a constant
declaration in (for example) the IDL produced by the MOF IDL mapping.

2.3.8.2 Exceptions

The Exception model element allows the metamodeler to declare the signature of
exception that can be raised by an Operation. An Exception simply maps onto (fo
example) an IDL exception declaration.

2.3.8.3 Tags

The Tag model element is the basis of a mechanism that allows a “pure” MOF
metamodel to be extended or modified. A Tag consists of:

• a name that can be used to denote the Tag in its container,

• a “tag id” that denotes the Tag’s kind,

• a collection of zero or more “values” associated with the Tag, and

• the set of other model elements that the Tag is “attached” to.

The meaning of a model element is (notionally) modified by attaching a Tag to it. T
Tag’s “tag id” categorizes the intended meaning of the extension or modification. T
“values” then further parameterize the meaning.

As a general rule, the definition of values and meanings for “tag id” strings is beyo
the scope of the MOF specification. The specification recommends a tag id namin
scheme that is designed to minimize the risk of name collision, but use of this sche
is not mandatory; see Section 3.4.28, “Tag,” on page 3-63.

One exception to this is the MOF to IDL Mapping. This defines some standard tag
that allow a metamodel to influence the IDL mapping; see Section 5.6, “Standard T
for the IDL Mapping,” on page 5-39 for the complete list. For example:

• “IDL Substitute Name” provides an alternative IDL identifier for an element in a
metamodel, and

• “IDL Prefix” allows the metamodeler to specify the IDL “prefix” for a top-level
Package.

2.4 Metamodels and Mappings

The previous sections outlined the overall metadata architecture for the MOF, and
metamodeling constructs provided by the MOF Model. This section describes the
Mapping approach that is used to instantiate MOF metamodels and metadata in t
context of a given implementation technology.
2-20 OMG-Meta Object Facility, v1.4 April 2002



2

the
w
the

el

l as

ut

ics

,”

is

for
This section is organized as follows. The first subsection outlines the purpose and
structure of MOF Mappings. The next two subsections give high-level overviews of
OMG MOF technology mappings defined to date. The final subsection explains ho
the standard mappings are applied to the MOF Model to produce the OMG IDL for
MOF Model server and an XML DTD for metamodel interchange.

2.4.1 Abstract and Concrete Mappings

MOF Mappings relate an M2-level metamodel specification to other M2 and M1-lev
artifacts, as depicted in Figure 2-6.

Figure 2-6 The function of MOF Technology Mappings

Figure 2-6 depicts the Mapping derived relationships for an application metamode
follows:

• The Abstract mapping (defined in“The MOF Abstract Mapping” chapter) fleshes
out a MOF metamodel into an abstract information model; that is, by spelling o
the logical structure of the metadata described by the metamodel.

• The IDL Mapping (Section 2.4.2, “The MOF Metamodel to IDL Mapping,” on
page 2-22) produces the standard OMG IDL and associated behavioral semant
for metaobjects that can represent metadata conforming to the metamodel.

• The XML Mapping (see Section 2.4.3, “The MOF Metamodel to XML Mappings
on page 2-22) produces the standard XML DTD for interchanging metadata
conforming to the metamodel.

The Abstract Mapping has two roles: 1) it serves to define the “meaning” of a
metamodel, and 2) it provides a point of alignment for current and future MOF
technology Mappings.

Since the IDL and XML Mappings are both aligned with the Abstract Mapping there
a precise one-to-one correspondence between abstract metadata and metadata
expressed as XMI documents or CORBA metaobjects. This correspondence holds
all metamodels. More significantly, it should also hold for any future metamodel
Mappings (e.g., to Java or DCOM technology) that are aligned with the Abstract
Mapping.

Mof
Model

Application
metamodel Applic’n

IDL + Server

Applic’n

XMI DTD

Application metadata

as CORBA objects

Application metadata

Application

metadata as
an XML doc.

XMI - XML Mapping

M3 level

M2 level

M1 level

IDL Mapping

Abstract Mapping
April 2002 OMG-MOF, v1.4: Metamodels and Mappings 2-21



2

m
ral

data
he

,

The

and

e

n

ive
o

a
r

2.4.2 The MOF Metamodel to IDL Mapping

The MOF IDL Mapping produces a specification for a CORBA metadata service fro
a MOF metamodel specification. The OMG IDL interfaces and associated behavio
semantics are specified in the “MOF to IDL Mapping” chapter and “The Reflective
Module” chapter. These interfaces support creating, updating, and accessing meta
in the form of CORBA objects, either using “specific” interfaces that are tailored to t
metamodel or “generic” interfaces that are metamodel independent.

The MOF IDL Mapping places some additional restrictions in MOF metamodels
beyond those set out in the “MOF Model and Interfaces” chapter. See Section 5.5
“Preconditions for IDL Generation,” on page 5-37 for details.

2.4.3 The MOF Metamodel to XML Mappings

Interchange of MOF-based metadata is defined in a separate OMG specification.
XMI (XML-based metadata Interchange) specification leverages the W3C’s XML
(eXtensible Markup Language) technology to support the interchange of metadata
metamodels between MOF-based and other metadata repositories.

The XMI 1.1 specification (formal/2000-11-02) has two main parts:

1. The “XML DTD Production Rules” define a uni-directional mapping from a MOF
metamodel to an XML DTD (Document Type Definition) for metadata interchang
documents.

2. The “XML Document Production Rules” define a bi-directional mapping betwee
an XML document (structured according to the above DTD) and MOF-based
metadata that (implicitly) conforms to the Abstract Mapping.

2.4.4 Mappings of the MOF Model

The MOF IDL mapping has been applied to the MOF Model to produce the normat
CORBA IDL for a metamodel repository. The XMI specification has been applied t
the MOF Model to produce the normative XMI DTD for metamodel interchange, and
normative rendering of the MOF Model in the interchange format. These and othe
electronic renderings of the MOF metamodel are described in Appendix A.
2-22 OMG-Meta Object Facility, v1.4 April 2002



MOFModeland Interfaces 3
f
ls.
is

for
Contents

This chapter contains the following topics.

3.1 Overview

This chapter describes the model that defines the MOF. The MOF provides a set o
modeling elements, including the rules for their use, with which to construct mode
Specifically, the MOF modeling elements support development of meta-models. Th
focus enables the MOF to provide a more domain-specific modeling environment
defining meta-models instead of a general-purpose modeling environment.

A well-designed modeling tool or facility should be based on a meta-model that
represents the modeling elements and the rules provided by the tool or facility.

Topic Page

“Overview” 3-1

“How the MOF Model is Described” 3-2

“The Structure of the MOF Model” 3-11

“MOF Model Classes” 3-15

“MOF Model Associations” 3-66

“MOF Model Data Types” 3-78

“MOF Model Exceptions” 3-81

“MOF Model Constants” 3-82

“MOF Model Constraints” 3-83
April 2002 OMG-Meta Object Facility, v1.4 3-1



3

he
OF

F

ely
L)

nd

of
dent

int-
le. In

each

uage,
ding

do
, this

ses

el.

the

l are

ses
d.
Every meta-model is also a model. If the MOF Model described in this section is t
meta-model for the MOF, where is the model for this meta-model? Formally, the M
is defined in itself; that is, the modeling elements defined in the MOF Model and
provided by the MOF are used to define the MOF Model itself. In essence, the MO
Model is its own meta-model. However, this circular definition does not support
presentation of the model. Therefore, this specification describes the MOF narrativ
and through the use of UML notation, tables, and Object Constraint Language (OC
expressions.

Note that the use of UML notation is a convenience to the designers of the MOF a
to the readers of the MOF specification. The semantics of the MOF Model are
completely defined in the MOF specification and do not depend on the semantics
any other model. The MOF interfaces used to manipulate meta-models are depen
on CORBA in that these interfaces are specified using CORBA IDL.

A significant amount of the MOF Model syntax and semantics definition is constra
based. This specification describes the constraint expressions as clearly as possib
addition, the specification provides a reference to the OCL expression that defines
constraint.

The OCL, which is defined in the UML 1.4 specification (ad/01-02-14), provides a
small set of language elements used to define expressions. As an expression lang
OCL cannot change the state of objects; however, it can express constraints (inclu
invariants, preconditions, and post-conditions). OCL expressions use operations
defined in the MOF Model with the attribute isQuery set to TRUE. (Such operations
not change the state of the object.) To ensure complete specification of constraints
document provides OCL definitions for MOF-defined operations used in OCL
expressions. In addition, to avoid ambiguity or misinterpretation this specification u
OCL to define a few of the most complex concepts of the MOF Model.

The interfaces through which the MOF is utilized are generated from the MOF Mod
However, these interfaces do not provide the semantic information necessary to
determine the behavior of their operations. Therefore, it is essential to understand
MOF in terms of its model and related semantics, not just its interfaces.

3.2 How the MOF Model is Described

This chapter describes the modeling elements that comprise the MOF Model and
provide the building blocks for meta-models. Because these elements are formally
described with the MOF Model itself, the characteristics used to describe the mode
the same characteristics provided by the model.

The following subsections briefly describe the conventions that this specification u
to define the model elements and their characteristics, with a few exceptions note
3-2 OMG-Meta Object Facility, v1.4 April 2002



3

sses
ss

L.
des

is
for
any

, its
nces,

rder

in

ost
tics

r

e
e on

to
3.2.1 Classes

Classes are the fundamental building blocks of MOF meta-models and the MOF
Model. A Class can have three kinds of features; Attributes, References, and
Operations. They may inherit from other Classes, and may be related to other Cla
by Associations. Classes are presented in detail in Section 4.5, “Semantics of Cla
Instances,” on page 4-4.

The MOF uses the term Class with a meaning that is similar to that of Class in UM
A MOF Class is an abstract specification or classification of meta-objects that inclu
their state, their interfaces, and (at least informally) behavior. A Class specification
sufficient to allow the generation of concrete interfaces with well defined semantics
managing meta-object state. However, a MOF Class specification does not include
methods to implement meta-object behavior.

The Classes that make up the MOF Model are introduced in Section 3.3, “The
Structure of the MOF Model,” on page 3-11 and specified in detail in Section 3.4,
“MOF Model Classes,” on page 3-15. Each Class is defined in terms of its name(s)
super-Classes, the Classes whose instances it can contain, its attributes, its refere
its operations, its constraints, and whether it is abstract or concrete.

Note –Except where stated, the order in which Section 3.4, “MOF Model Classes
introduces Classes and their component features is not normative. The normative o
is defined in the XMI for the MOF Model which may be found in Appendix A. This
order determines the order in which elements appear in the generated IDL, and is
theory significant.

This document uses a hybrid textual and tabular notation to define the important
characteristics of each Class in the MOF Model. The notation defines defaults for m
characteristics, so that the Class definitions need only explicitly specify characteris
that are different from the default. The following text explains the notation used fo
Classes and their characteristic.

3.2.1.1 Class Heading

Each Class in the MOF Model is introduced by a second level section heading. Th
heading defines the standard ModelElement name for the Class. The Classes nam
the heading line can be followed by the word “abstract” or by a “substitute_name” for
some mapping. For example, the following:

3.4.1 ModelElement abstract

introduces a Class called “ModelElement” and defines its Chapter “isAbstract” flag
have the value “true.” On the other hand, the following:

3.4.11 Attributeidl_substitute_name “MofAttribute”
April 2002 OMG-MOF, v1.4: How the MOF Model is Described 3-3



3

and

and
the

lass,

g
ing
erits
ple

ll

nts. If
y be
F
see
n

tain
o

s
is

the
introduces a Class called “Attribute” and defines its substitute name (for the IDL
mapping) as “MofAttribute.” The latter information is encoded using a Tag whose
“tagId” is “idl_substitute_name” and whose “values” consist of the Any-ized string
“MofAttribute.”

Unless stated otherwise each Class in the MOF Model has “isAbstract” set to false,
has no attached Tags.

Note –The MOF uses “abstract Class” in the same sense as UML, and also Java
many other object oriented programming languages. There is no relationship with
IDL keyword “abstract” introduced in CORBA 2.3.

The paragraph or paragraphs following a Class heading give a description of the C
its purpose, and its meaning.

3.2.1.2 Superclasses

The “Superclasses” heading lists the MOF Classes that generalize the Class bein
described. In the MOF context, generalization is another term for inheritance. Say
that a Class A generalizes a Class B, means the same as saying that Class B inh
from Class A. The sub-Class (B) inherits the contents of the super-Class (A). Multi
inheritance is permitted in the MOF.

This heading is always present, since with the sole exception of ModelElement, a
Classes in the MOF Model have super-Classes.

3.2.1.3 Contained Elements

Instances of the sub-Classes of NameSpace can act as containers of other eleme
present, the “Contained Elements” heading lists the Classes whose instances ma
contained by an instance of this container Class. It also gives the index of the MO
Model Constraint that defines the containment rule for the Class. For more details,
Section 3.3.3, “The MOF Model Structure,” on page 3-13. In particular, Table 3-4 o
page 3-9 expresses the MOF Class containment rules in a concise form.

If the “Contained Elements” heading is absent, instances of the Class may not con
other instances. This occurs if the Class is an abstract Class (and therefore has n
instances), or if the Class is not derived from the Namespace Class.

3.2.1.4 Attributes

The “Attributes” heading lists the Attributes for a Class in the MOF Model. Attribute
that are inherited from the super-Classes are not listed. If the “Attributes” heading
missing, the Class has no Attributes.

All Attributes defined in the MOF Model have a “visibility” of “public_vis.” All have
a “type” that is represented using a DataType, and therefore all have aggregation
semantics of “none.” The remaining characteristics of Attributes are defined using
notation described in Table 3-1.
3-4 OMG-Meta Object Facility, v1.4 April 2002



3

n

e. A
ver,
an
tricts

he

.”
3.2.1.5 References

The “References” heading lists the References for a Class in the MOF Model. A
Reference connects its containing Class to an Association End belonging to an
Association that involves the Class. This allows a client to navigate directly from a
instance of the Class to other instance or instances that are related by links in the
Association. If the “References” heading is absent, the Class has no References.

A Class involved in an Association may or may not have a corresponding Referenc
Reference means that a client can navigate to instances of the other Class; howe
this comes at the cost of some restrictions. In particular, if one or both Classes in
Association have References for that Association, the Reference Closure rule res
the creation of links between instances in different “extents” (see Section 4.11.1, “T
Reference Closure Rule,” on page 4-19).

Table 3-1 Notation for Attribute Characteristics

Entry Description

type: This entry defines the base type for the Attribute. It gives either the
name of a DataType defined in Section 3.6 , or the name of a
standard MOF primitive data type (e.g., “Boolean” or “String”)
defined in Section 3.10, “The PrimitiveTypes Package,” on
page 3-114. The base type is represented by the Attribute’s “type

multiplicity: This entry defines the “multiplicity” for the Attribute, consisting of
its “lower” and “upper” bounds, an “isOrdered” flag, and an
“isUnique” flag. See Section 3.6.2, “MultiplicityType,” on
page 3-78, and Section 4.6.2, “Multiplicity,” on page 4-6 for more
details. The multiplicity for an Attribute is expressed as follows:
• The “lower” and “upper” bounds are expressed as “exactly one,” “zero

or one,” “zero or more,” and “one or more.”
• If the word “ordered” appears, “isOrdered” should be true. If it is

absent, “isOrdered” should be false.
• If the word “unique” appears, “isUnique” should be true. If it is absent,

“isUnique” should be false.

changeable: This optional entry defines the “isChangeable” flag for the
Attribute. If omitted, “isChangeable” is true.

derived from: This optional entry either describes the derivation of a derived
Attribute, or if the entry is present, the Attribute’s “isDerived” flag
will be true. If it is absent, the flag will be false.

scope: This optional entry defines the “scope” of an Attribute as either
“instance_level” or “classifier_level.” If the entry is absent, the
Attribute’s “scope” is “instance_level.”
April 2002 OMG-MOF, v1.4: How the MOF Model is Described 3-5



3

ames
es
ely

ll

t

on

t

Note –The modeling of navigation in MOF differs from UML. In UML, mechanisms
for navigating links are available when the “isNavigable” flag is true for a given
AssociationEnd. In this case, stronger uniqueness constraints on AssociationEnd n
mean that they are unique within the namespaces of the Association and all Class
involved and their sub-Classes. This means that the AssociationEnd names uniqu
bind to a “navigator” operation in each context in which navigation might be used.

Most characteristics of References in the MOF Model are either common across a
References or derived from other information:

• The “visibility” of all References in the MOF Model is “public_vis.”

• The “scope” of all References is “instance_scope.”

• The “type” of all References is the same as the “type” of the AssociationEnd it
references.

• The “multiplicity” of all References is the same as the “multiplicity” of the
AssociationEnd it references.

The variable characteristics of References are defined or documented using the
notation described in Table 3-2.

Table 3-2 Notation for Reference characteristics

Entry Description

class: This entry documents the base type of the Reference and is
represented as its “type.” Note that the “type” of a Reference mus
be the same as the “type” of the referenced AssociationEnd.

defined by: This entry defines the Association and AssociationEnd that the
Reference is linked to via a RefersTo link.

multiplicity: This entry documents the “multiplicity” characteristics for the
Reference. These are written the same way as Attribute
“multiplicity” characteristics, except that “unique” is omitted
because its value is predetermined (see Section 3.2.2.2, “Ends,”
page 3-8). Note the following:
• the OCL constraints on MultiplicityType and AssociationEnd mean tha

the “isUnique” field must be “false” if the “upper” bound is 1 and
“true” otherwise, and

• the “multiplicity” settings for an AssociationEnd and its corresponding
Reference(s) must be the same.

changeable: This optional entry defines the setting of the Reference’s
“isChangeable” flag. If the entry is absent, the “isChangeable” flag
is true.

inverse: This optional entry documents the “inverse” Reference for this
Reference; that is, the Reference on the link related Class that
allows navigation back to this Reference’s Class. If this entry is
absent, the Reference does not have an inverse Reference.
3-6 OMG-Meta Object Facility, v1.4 April 2002



3

”

e

s
tic
3.2.1.6 Operations

The “Operations” heading lists the Operations for a Class in the MOF Model. If the
heading is absent, the Class has no Operations.

All Operations for Classes in the MOF Model have “visibility” of “public_vis.” The
remaining characteristics of References are defined using notation described in
Table 3-3.

Table 3-3 Notation for Operation Characteristics

Entry Description

return type: This optional entry defines the “type” and “multiplicity” of the
Operation’s return Parameter; that is, the one with “direction” of
“return_dir”. The “type” is denoted by a name of a Class or
DataType defined the MOF Model, or a name of standard MOF
primitive data type. The “multiplicity” is expressed like an
Attribute “multiplicity” (see Table 3-2 on page 3-6), except that
when it is absent, the “multiplicity” defaults to “exactly one.”

The return Parameter (if it exists) should be the first contained
Parameter of the Operation. If this entry is absent or says “none,
the Operation does not have a return Parameter.

isQuery: This optional entry defines the Operation’s “isQuery” flag. If it is
absent, the “isQuery” flag has the value false.

scope: This optional entry defines the Operation’s “scope.” If it is absent,
the Operation has a “scope” of “instance_level.”

parameters: This entry defines the Operation’s non-return Parameter list in th
the order that they appear in the Operation’s signature. The
“name,” “direction,” “type,” and “multiplicity” are defined for each
Parameter. If the “multiplicity” is not explicitly specified, it
defaults to “exactly one.” If the entry simply says “none,” the
Operation has no non-return Parameters.

exceptions: This optional entry defines the list of Exceptions that this
Operation may raise in the order that they appear in the
Operation’s signature. If it is absent, the Operation raises no
Exceptions.

operation
semantics:

This optional entry simply gives a cross reference to the OCL
defining the Operation’s semantics. Note that the MOF Model doe
not provide a standard way of representing an Operation’s seman
specification, and it is not included in the normative XMI
serialization of the MOF Model.
April 2002 OMG-MOF, v1.4: How the MOF Model is Described 3-7



3

e
F
d is

is
L
For

that

s of

g in

ing

to
.

of

F

le”
tion
3.2.1.7 Constraints

The “Constraints” heading lists the Constraints that are attached to this Class in th
MOF Model. The OCL for the Constraints may be found in Section 3.9.4, “The MO
Model Constraints,” on page 3-88. Each listed Constraint “constrains” the Class, an
also contained by it.

3.2.1.8 IDL

The “IDL” heading shows an excerpt of the MOF Model IDL that corresponds to th
Class. The excerpts, which are part of the “Model” module given in the “MOF to ID
Summary” appendix, consist of a Class proxy interface and an Instance interface.
information on these interfaces, refer to the “MOF to IDL Mapping” chapter.

3.2.2 Associations

The Associations in the MOF Model are defined in Section 3.5, “MOF Model
Associations,” on page 3-66.

Associations describe relationships between instances of Classes. In short, an
Association relates two Classes (or relates one Class to itself) to define a “link set”
contains two-ended “links” between instances of the Classes. The properties of an
Association rest mostly in its two AssociationEnds. Refer to Section 4.9, “Semantic
Associations,” on page 4-13 for a more detailed explanation.

3.2.2.1 Association Heading

Each Association in the MOF Model is introduced by a second level section headin
Section 3.5, “MOF Model Associations,” on page 3-66. The heading defines the
standard ModelElement name for the Association. The Classes name on the head
line can be followed by the word “derived.” For example, the following:

3.5.4 Exposes derived

introduces an Association called “Exposes” and defines its Chapter “isDerived” flag
be true. If the word “derived” is not present, the Association’s “isDerived” flag is false

The paragraph or paragraphs following an Association heading give a description
the Association, its purpose, and its meaning.

3.2.2.2 Ends

The “Ends” heading defines the two AssociationEnds for an Association in the MO
Model. The two AssociationEnds are defined by giving their “name” values and
defining the remaining characteristics in tabular form.

Every AssociationEnd in the MOF Model has both “isNavigable” and “isChangeab
set to true. The remaining characteristics of AssociationEnds are defined using nota
described in Table 3-4.
3-8 OMG-Meta Object Facility, v1.4 April 2002



3

It
n

is
F

F
”
=

pe,
own
in

nd

ss

t

s

3.2.2.3 Derivation

The “Derivation” heading defines how a derived Association should be computed.
may include marker for an OCL rule defined in Section [C-59], “MustHaveFields,” o
page 3-105.

3.2.2.4 IDL

The “IDL” heading shows an excerpt of the MOF Model IDL that corresponds to th
Association. These excerpts, which are part of the “Model” module given in the MO
IDL Summary appendix, consist of an Association interface and related IDL data
types. For more information, refer to the MOF to IDL Mapping chapter.

3.2.3 DataTypes

The DataTypes that form part of the MOF Model are described in Section 3.6, “MO
Model Data Types,” on page 3-78. All DataTypes in the MOF Model have “visibility
of “public_vis.” The settings of the other attributes are “isAbstract” = false, “isRoot”
true, and “isLeaf” = true as required by various MOF Model constraints.

The DataTypes used in the MOF Model are instances of PrimitiveType, StructureTy
or EnumerationType. A StructureType’s StructureFields (and their order) are as sh
in the IDL. Similarly, an EnumerationType’s “labels” and their order are as shown
the IDL.

Table 3-4 AssociationEnds Characteristics

Entry Description

class: This entry specifies the Class whose instances are linked at this e
of the Association. This is represented by the AssociationEnd’s
“name” attribute.

multiplicity: This entry defines the AssociationEnd’s “multiplicity” attribute.
This is expressed in the same way as References (i.e., uniquene
is implicit - see Section 3.2.1.5, “References,” on page 3-5). Note
the following:
• the OCL constraints on MultiplicityType and AssociationEnd mean tha

the “isUnique” field must be “false” if the “upper” bound is 1 and
“true” otherwise, and

• the “multiplicity” settings for an AssociationEnd and its corresponding
Reference(s) must be the same.

aggregation: This optional entry defines the AssociationEnd’s “aggregation”
attribute as one of “composite,” “shared,” or “none” (see
Section 4.9.5, “Association Aggregation,” on page 4-17). If the
entry is absent, the AssociationEnd’s “aggregation” attribute take
the value “none.”
April 2002 OMG-MOF, v1.4: How the MOF Model is Described 3-9



3

the
ge.

F

ge.

F

age.

F
s is
.

s of
rom

g.

ean
The remaining characteristics of a DataType are its “name” which is given in the
section heading, and its container which is given by the “Container” subheading. If
“Container” subheading is absent, the DataType is contained by the Model Packa

3.2.4 Exceptions

The Exceptions that form part of the MOF Model are described in Section 3.7, “MO
Model Exceptions,” on page 3-81.

All Exceptions in the MOF Model have “visibility” of “public_vis” and “scope” of
“classifier_level.”

The remaining characteristics are the Exception’s

• “name” - given in the section heading, and

• Parameters and Container, which are given in the corresponding headings.

If the Container heading is absent, the Exception is contained by the Model Packa

3.2.5 Constants

The Constants that form part of the MOF Model are described in Section 3.9, “MO
Model Constraints,” on page 3-83.

The characteristics of a Constant are its

• “name” - given in the section heading, and

• Container - given under the “Container” heading, and

• “type” and “value” that can be determined from the IDL.

If the “Container” heading is absent, the DataType is contained by the Model Pack

3.2.6 Constraints

The Constraints that form part of the MOF Model are described in Section 3.9, “MO
Model Constraints,” on page 3-83. The notation used for describing the constraint
described in Section 3.9.2.1, “Notation for MOF Model Constraints,” on page 3-84

3.2.7 UML Diagrams

At various points in this chapter, UML class diagrams are used to describe aspect
the MOF Model. To understand these diagrams, the reader should mentally map f
UML modeling concepts to the equivalent MOF meta-modeling constructs.

There is one point in which this document’s use of UML notation requires explainin
In standard UML notation, an arrowhead on an Association line indicates that the
Association is navigable in the direction indicated. Absence of an arrowhead can m
either that the Association is navigable or that it is navigable in both directions,
depending on the context.
3-10 OMG-Meta Object Facility, v1.4 April 2002



3

one
end

are

e
at

s of

re all

el

ng
in
l
e”

,
f.”

id
s

As was explained in Section 3.2.1.5, “References,” on page 3-5, the MOF models
navigable Associations in a different way. Thus in this document, an arrowhead on
end of an Association means that a Reference exists on the Class at the opposite
that allows navigation in the indicated direction. If there are no arrowheads, there
References on the Classes atboth ends of the Association.

3.3 The Structure of the MOF Model

This section gives an overview of the structure of the MOF Model.

3.3.1 The MOF Model Package

The MOF Model, as it is currently defined, consists of a single non-nested Packag
called “Model.” This Package explicitly imports the “PrimitiveTypes” Package so th
it can use the “Boolean,” “Integer,” and “String” PrimitiveType instances.

The class diagram in Figure 3-2 on page 3-13 shows the Classes and Association
the “Model” Package. To aid readability, Class features, Association End names,
DataTypes, and other details have been omitted from the diagram. These details a
specified in later sections of this chapter.

Note –This diagram (like other UML diagrams in this Chapter) is non-normative.

3.3.2 The MOF Model Service IDL

The “Model” Package is used to generate the CORBA IDL for the OMG MOF Mod
service using the MOF to IDL Mapping defined in the “MOF Abstract Mapping”
chapter through the “Reflective Module” chapter. Relevant fragments of the resulti
IDL is embedded in the Class, Association, DataType, and Exception descriptions
Section 3.4, “MOF Model Classes,” on page 3-15 through Section 3.7, “MOF Mode
Exceptions,” on page 3-81. The complete IDL, along with the dependent “Reflectiv
IDL may be found in the MOF IDL Summary appendix.

The IDL for the MOF Model service requires a “prefix” of “org.omg.mof.” To this end
the “Model” Package is defined to have an “idl_prefix” Tag with value “org.omg.mo

The IDL for the MOF Model services requires the “Attribute” and “Exception”
elements to have IDL names “MofAttribute” and “MofException” respectively to avo
collision with IDL keywords. To this end, the “Attribute” Class and “Exception” Clas
have ‘idl_alternate_name” Tags with the values “MofAttribute” and “MofException”
respectively.
April 2002 OMG-MOF, v1.4: The Structure of the MOF Model 3-11



3
-1

2
O

M
G

-M
e

ta
O

b
je

ctFa
cility,v1

.4
A

p
ril2

0
0

2

3

Typed
Element

Parameterre

Reference

Association
End

Refers To
/Exposes

0..*

*

1

0..*

0..*

1

Model
Element

Namespace

Generalizable
Element

Feature

Classifier

Data Type

Behavioural
Feature

Structural
Feature

Import

Package

ClassAssociation

Tag Constraint

Structu
Field

Constant

Exception AttributeOperation

Structure
Type

Enumeration
Type

Collection
Type

Primitive
Type

/Depends On

Generalizes

Contains

Aliases

Can Raise

Is Of Type

Attaches To

Constrains0..*

0..*
ordered

0..*

0..* 0..*

0..*

0..*

1

1..*

0..*

1..*

0..*

0..

0..*0..*
ordered

ordered

ordered

F
ig

u
re

3
-1

T
h

e
M

O
F

M
o

d
e

lP
a

cka
g

e

Alias Type



3

his
ns
3.3.3 The MOF Model Structure

The core structure of the MOF Model is shown in the class diagram in Figure 3-2. T
diagram shows the key abstract Classes in the MOF Model and the key Associatio
between them.

Typed
Element

Generalizable Element

Classifier Is Of Type1 0..*

+type +typedElement

Figure 3-2 The Key Abstractions of the MOF Model

isRoot : Boolean
isLeaf : Boolean
isAbstract : Boolean
visibility : VisibilityKind

allSupertypes()
lookupElementExtended()
findElementsByTypeExtended()

Namespace

lookupElement()
resolveQualifiedName()
findElementsByType()
nameIsValid()

Model Element
name : String
/qualifiedName : String
annotation : String

findRequiredElements()
isRequiredBecause()
isFrozen()
isVisible()

Generalizes

0..*

0..*
ordered

+subtype

+supertype

/Depends On

0..*

0..*
ordered

+provider

+dependent

Contains

+container

+containedElement
0..*

ordered

0..1
April 2002 OMG-MOF, v1.4: The Structure of the MOF Model 3-13



3

OF

port

ains

(i.e.,
Note

its

heir
lass
can
to

re
s are
or

and
3.3.3.1 Key Abstract Classes

The key abstract Classes in the MOF Model are as follows:

• ModelElement - this is the common base Class of all M3-level Classes in the M
Model. Every ModelElement has a “name.”

• Namespace - this is the base Class for all M3-level Classes that need to act as
containers in the MOF Model.

• GeneralizableElement - this is the base Class for all M3-level Classes that sup
“generalization” (i.e., inheritance).

• TypedElement - this is the base Class for M3-level Classes such as Attribute,
Parameter, and Constant whose definition requires a type specification.

• Classifier - this is the base Class for all M3-level Classes that (notionally) define
types. Examples of Classifier include Class and DataType.

3.3.3.2 Key Associations

The key Associations in the MOF Model are as follows:

• Contains - this Association relates a ModelElement to the Namespace that cont
it (see Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-14).

• Generalizes - this Association relates a GeneralizableElement to its ancestors
supertypes) and children (i.e., subtypes) in a model element inheritance graph.
that a GeneralizableElement may not know about all of its subtypes.

• IsOfType - this Association relates a TypedElement to the Classifier that defines
type.

• DependsOn - this derived Association relates a ModelElement to others that its
definition depends on. (It is derived from Contains, Generalizes, IsOfType, and
other Associations not shown here.)

3.3.4 The MOF Model Containment Hierarchy

The most important relationship in the MOF Model is the Contains Association.
Containment is a utility Association that is used to relate (for example) Classes to t
Operations and Attributes, Operations to their Parameters, and so on. While the c
diagram shows that only ModelElement objects which are subtypes of Namespace
contain any other ModelElements, the MOF Model restricts the legal containments
eliminate various nonsensical and problematical cases.

Table 3-5 shows the legal ModelElement containments in matrix form. The rows a
the non-abstract subtypes of Namespace (i.e., possible containers) and the column
the non-abstract subtypes of ModelElements (i.e., possible contained elements). F
each combination of container and contained, a “Y” says that containment is legal
an “N” says that it is not.
3-14 OMG-Meta Object Facility, v1.4 April 2002



3

e

nt is

t,
L

Note –The normative specification of the containments rules is in the OCL rules.

Note –While the MOF Model allows Classes to contain Classes, the MOF to IDL
mapping does not support this. Any metamodel in which Classes are nested insid
Classes must be considered as not technology neutral.

3.4 MOF Model Classes

3.4.1 ModelElement abstract

ModelElement classifies the elementary, atomic constructs of models. ModelEleme
the root Class within the MOF Model.

SuperClasses

None. (While the CORBA IDL for ModelElement inherits from Reflective::RefObjec
this is not generalization in the MOF Model sense. Rather it is an artifact of the ID
mapping.)

Table 3-5 The ModelElement Containment Matrix

P
ac

ka
ge

C
la

ss

P
rim

iti
ve

Ty
pe

S
tr

uc
tu

re
Ty

pe

C
ol

le
ct

io
nT

yp
e

E
nu

m
er

at
io

nT
yp

e

A
lia

sT
yp

e

A
ss

oc
ia

tio
n

A
ttr

ib
ut

e

R
ef

er
en

ce

O
pe

ra
tio

n

E
xc

ep
tio

n

P
ar

am
et

er

A
ss

oc
ia

tio
nE

nd

C
on

st
ra

in
t

C
on

st
an

t

Im
po

rt

S
tr

uc
tu

re
w

F
ie

ld

Ta
g

Package Y Y Y Y Y Y Y Y N N N Y N N Y Y Y N Y

Class N Y Y Y Y Y Y N Y Y Y Y N N Y Y N N Y

Primitive Type N N N N N N N N N N N N N N Y N N N Y

Structure Type N N N N N N N N N N N N N N Y N N Y Y

Collection Type N N N N N N N N N N N N N N Y N N N Y

Enumeration Type N N N N N N N N N N N N N N Y N N N Y

Alias Type N N N N N N N N N N N N N N Y N N N Y

Structure Field N N N N N N N N N N N N N N Y N N N Y

Association N N N N N N N N N N N N N Y Y N N N Y

Operation N N N N N N N N N N N N Y N Y N N N Y

Exception N N N N N N N N N N N N Y N N N N N Y
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-15



3

t

l
e

Attributes

name

qualifiedName

annotation

Provides a meta-modeler supplied name that uniquely identifies the ModelElemen
in the context of the ModelElement’s containing Namespace. When choosing a
ModelElement’s name, the meta-modeler should consider the rules for translating
names into identifiers in the relevant mappings (e.g., Section 5.7.1, “Generated
IDL Identifiers,” on page 5-43). To minimize portability problems, use names that
start with an ASCII letter, and consist of ASCII letters and digits, space and
underscore. Avoid names where capitalization, spaces, or underscores are
significant.

type: String

multiplicity: exactly one

Provides a unique name for the ModelElement within the context of its outermost
containing Package. The qualifiedName is a list of String values consisting of the
names of the ModelElement, its container, its container’s container and so on unti
a non-contained element is reached. The first member of the list is the name of th
non-contained element.

type: String

multiplicity: one or more; ordered; non-unique

changeable: no

derived from: [S-12]

Provides an informal description of the ModelElement.

type: String

multiplicity: exactly one
3-16 OMG-Meta Object Facility, v1.4 April 2002



3

References

container

requiredElements

constraints

Identifies the Namespace that contains the ModelElement. Since the Contains
Association is a Composite Association, any ModelElement can have at most one
container, and the containment graph is strictly tree shaped.

type: Namespace

defined by: Contains::container

multiplicity: zero or one

inverse: ModelElement::contents

Identifies the ModelElements on whose definition the definition of this
ModelElement depends. For a definition of dependency, see Section 3.5.9,
“DependsOn,” on page 3-75.

type: ModelElement

defined by: DependsOn::provider

multiplicity: zero or more

Identifies the set of Constraints that apply to the ModelElement. A Constraint
applies to all instances of the ModelElement and its sub-Classes.

type: Constraint

multiplicity: zero or more

inverse: Constraint::constrainedElements.

defined by: Constrains::provider
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-17



3

,

s

Operations

findRequiredElements

isRequiredBecause

This operation selects a subset of the ModelElements that this one depends on,
based on their dependency categories. The “kinds” argument gives the kinds of
dependency of interest to the caller.

String constants for the standard dependency categories are given in Section 3.8
“MOF Model Constants,” on page 3-82 and their meanings are defined in
Section 3.5.9, “DependsOn,” on page 3-75. In this context, the AllDep pseudo-
category (i.e., “all”) is equivalent to passing all of the standard categories, and the
IndirectDep pseudo-category (i.e., “indirect”) is ignored.

If the “recursive” argument is “false,” the operation return the direct dependents
only. If it is “true,” all dependents in the transitive closure of DependsOn for the
specified “kinds” are returned.

return type: ModelElement (multiplicity: zero or more; unordered,
unique)

isQuery: yes

parameters: kinds: in String (multiplicity: one or more; unordered;
unique)

recursive: in Boolean

operation semantics [S-4]

This operation performs two functions:
• It checks whether this ModelElement directly or indirectly depends on the

ModelElement given by “otherElement.” If it does, the operation’s result is “true;”
otherwise, it is “false.”

• If a dependency exists; that is, the result is “true,” the operation returns a String in
“reason” that categorizes the dependency. String constants for the dependency kind
categories are given in Section 3.8, “MOF Model Constants,” on page 3-82 and their
meanings are defined in Section 3.5.9, “DependsOn,” on page 3-75. If the dependency i
indirect, IndirectDep is returned. If there are multiple dependencies, any category that
applies may be returned in “reason.” If no dependencies exist, an empty string is
returned in “reason.”

return type: Boolean

isQuery: yes

parameters: otherElement: in ModelElement
reason: out String

operation semantics [S-5]
3-18 OMG-Meta Object Facility, v1.4 April 2002



3

]

nnot
isFrozen

isVisible

Constraints

[A ModelElement that is not a Package must have a container. [C-1]]

[The attribute values of a ModelElement which is frozen cannot be changed. [C-2]

[A frozen ModelElement which is in a frozen Namespace can only be deleted, by
deleting the Namespace. [C-3]]

[The link sets that express dependencies of a frozen Element on other Elements ca
be explicitly changed. [C-4]]

IDL

interface ModelElementClass : Reflective::RefObject {
readonly attribute ModelElementSet all_of_type_model_element;
const string MUST_BE_CONTAINED_UNLESS_PACKAGE =

"org.omg.mof:constraint.model.model_element.must_be_contained_unless_package";
const string FROZEN_ATTRIBUTES_CANNOT_BE_CHANGED =

"org.omg.mof:constraint.model.model_element.frozen_attributes_cannot_be_changed";
const string FROZEN_ELEMENTS_CANNOT_BE_DELETED =

"org.omg.mof:constraint.model.model_element.frozen_elements_cannot_be_deleted";
const string FROZEN_DEPENDENCIES_CANNOT_BE_CHANGED =

"org.omg.mof:constraint.model.model_element.frozen_dependencies_cannot_be_changed";
const DependencyKind CONTAINER_DEP = "container";
const DependencyKind CONTENTS_DEP = "contents";
const DependencyKind SIGNATURE_DEP = "signature";
const DependencyKind CONSTRAINT_DEP = "constraint";

Reports the freeze status of a ModelElement. A ModelElement, at any particular
time, is either frozen or not frozen. All ModelElements of a published model are
permanently frozen.

return type: Boolean

isQuery: yes

Returns true. This operation is reserved for future use when the MOF visibility
rules have stabilized. Then it will determine whether the supplied otherElement is
visible to this ModelElement.

return type: Boolean

isQuery: yes

parameters: otherElement: in ModelElement

operation semantics [S-3]
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-19



3

const DependencyKind CONSTRAINED_ELEMENTS_DEP = "constrained elements";
const DependencyKind SPECIALIZATION_DEP = "specialization";
const DependencyKind IMPORT_DEP = "import";
const DependencyKind TYPE_DEFINITION_DEP = "type definition";
const DependencyKind REFERENCED_ENDS_DEP = "referenced ends";
const DependencyKind TAGGED_ELEMENTS_DEP = "tagged elements";
const DependencyKind INDIRECT_DEP = "indirect";
const DependencyKind ALL_DEP = "all";

}; // end of interface ModelElementClass

interface ModelElement : ModelElementClass {
wstring name ()

         raises (Reflective::MofError);
      void set_name (in wstring new_value)
         raises (Reflective::MofError);

::PrimitiveTypes::WStringList qualified_name ()
         raises (Reflective::MofError);

wstring annotation ()
         raises (Reflective::MofError);
      void set_annotation (in wstring new_value)
         raises (Reflective::MofError);
      ModelElementSet required_elements ()
         raises (Reflective::MofError);
      ModelElementSet find_required_elements (in ::PrimitiveTypes::WStringSet kinds, in boolean
recursive)
         raises (Reflective::MofError);

boolean is_required_because (in ModelElement other_element, out wstring reason)
         raises (Reflective::MofError);

Namespace container ()
         raises (Reflective::NotSet, Reflective::MofError);
      void set_container (in Namespace new_value)
         raises (Reflective::MofError);
      void unset_container ()
         raises (Reflective::MofError);
      ConstraintSet constraints ()
         raises (Reflective::MofError);

void set_constraints (in ConstraintSet new_value)
         raises (Reflective::MofError);
      void add_constraints (in Constraint new_element)
         raises (Reflective::MofError);
      void modify_constraints (in Constraint old_element, in Constraint new_element)
         raises (Reflective::MofError);

void remove_constraints (in Constraint old_element)
         raises (Reflective::NotFound, Reflective::MofError);

boolean is_frozen ()
         raises (Reflective::MofError);

boolean is_visible (in ModelElement other_element)
         raises (Reflective::MofError);
   };
3-20 OMG-Meta Object Facility, v1.4 April 2002



3

in

these

eir
ce
nism.
e

ts.

s

hich

to
3.4.2 Namespace abstract

The Namespace Class classifies and characterizes ModelElements that can conta
other ModelElements. Along with containing the ModelElements, a Namespace
defines a namespace, the allowable set of names and the naming constraints, for
elements.

Subclasses of the Namespace Class have mechanisms for effectively extending th
namespace, without actually containing additional ModelElements. Thus Namespa
can be viewed in terms of its two roles, as a container and as a namespace mecha
Because only subclasses extend the namespace, the namespace and contents ar
coincident in the definition of the Namespace Class. Each Namespace has four
collections (the latter three derivable) that are used in the MOF Model’s Constrain
These collections are:

• The contents (also called the direct contents), which are defined by the content
reference.

• All contents, the transitive closure on the contents reference.

• The extended namespace (the contents plus elements included by extension), w
Namespace subclasses accomplish through generalization and importation.

• The extended contents (the transitive closure on the contents reference applied
the extended namespace).

The definitions of these collections may be found in Section 3.9.6, “OCL Helper
functions,” on page 3-111.

SuperClasses

ModelElement

References

contents

Identifies the set of ModelElements that a Namespace contains.

class: ModelElement

defined by: Contains::containedElement

multiplicity: zero or more; ordered

inverse: ModelElement::container
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-21



3

Operations

lookupElement

resolveQualifiedName

findElementsByType

Searches for an element contained by this Namespace whose name is precisely
equal (as a wide string) to the supplied name. The operation either returns a
ModelElement that satisfies the above, or raises the NameNotFound exception.

return type: ModelElement

isQuery: yes

parameters: name : in String

exceptions: NameNotFound

operation semantics: [S-6]

Searches for a ModelElement contained within this Namespace that is identified
by the supplied qualifiedName. The qualifiedName is interpreted as a “path”
starting from this Namespace.

return type: ModelElement (exactly one). If no element is found,
an exception is raised.

isQuery: yes

parameters: qualifiedName : in String (multiplicity one or more;
ordered; not unique)

exceptions: NameNotResolved

operation semantics: [S-7]

Returns a list of the ModelElements contained by this Namespace that match the
Class supplied. If ‘includeSubtypes’ is false, this operation returns only those
elements whose most-derived Class is ‘ofType’. If ‘includeSubtypes’ is true, the
operation also returns instances of subtypes of ‘ofType’. The order of the elements
in the returned list is the same as their order in the Namespace.

For example, “findElementsByType(ModelElement, false)” always returns an
empty list, since ModelElement is an abstract Class. On the other hand,
“findElementsByType(ModelElement, true)” always returns the contents of the
Namespace, since all their Classes are subtypes of ModelElement.

return type: ModelElement (multiplicity zero or more; ordered;
unique)
3-22 OMG-Meta Object Facility, v1.4 April 2002



3

nameIsValid

Constraints

[The names of the contents of a Namespace must not collide. [C-5]]

IDL

interface NamespaceClass : ModelElementClass {
     readonly attribute NamespaceSet all_of_type_namespace;
     const string CONTENT_NAMES_MUST_NOT_COLLIDE =
        "org.omg.mof:constraint.model.namespace.content_names_must_not_collide";
     exception NameNotFound {

wstring name;
     };
     exception NameNotResolved {

wstring explanation;
::PrimitiveTypes::WStringList rest_of_name;

     };
}; // end of interface NamespaceClass

   interface Namespace : NamespaceClass, ModelElement {
      ModelElementUList contents ()
         raises (Reflective::MofError);

void set_contents (in ModelElementUList new_value)
         raises (Reflective::MofError);

void add_contents (in ModelElement new_element)
         raises (Reflective::MofError);
      void add_contents_before (in ModelElement new_element, in ModelElement before_element)
        raises (Reflective::NotFound, Reflective::MofError);

void modify_contents (in ModelElement old_element, in ModelElement new_element)
        raises (Reflective::NotFound, Reflective::MofError);
      void remove_contents (in ModelElement old_element)
         raises (Reflective::NotFound, Reflective::MofError);

isQuery: yes

parameters: ofType : in Class
includeSubtypes : in Boolean

operation semantics: [S-9]

Determines whether the proposedName can be used as the name for a new
member ModelElement in this Namespace. Specifically, it checks that the
Namespace uniqueness rules would still be satisfied after adding such a name.

return type: Boolean

isQuery: yes

parameters: proposedName : in String

operation semantics: [S-8]
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-23



3

can

f the
s of

mes
part

nt
llision

ss /
ent
nt is

s

      ModelElement lookup_element (in wstring name)
         raises (NamespaceClass::NameNotFound, Reflective::MofError);
      ModelElement resolve_qualified_name (in ::PrimitiveTypes::WStringList qualified_name)
         raises (NamespaceClass::NameNotResolved, Reflective::MofError);
      ModelElementUList find_elements_by_type (in Class of_type, in boolean include_subtypes)
         raises (Reflective::MofError);
      boolean name_is_valid (in wstring proposed_name)
         raises (Reflective::MofError);
   };

3.4.3 GeneralizableElement abstract

The GeneralizableElement Class classifies and characterizes ModelElements that
be generalized through supertyping and specialized through subtyping. A
GeneralizableElement inherits the features of each of its supertypes, the features o
supertypes of the immediate supertypes, and so on (in other words all the feature
the transitive closure of all the supertypes of the GeneralizableElement).

When a GeneralizableElement inherits a feature, that feature name effectively beco
part of the namespace for the GeneralizableElement and the feature is considered
of the extended namespace of the Namespace. Therefore, a GeneralizableEleme
cannot have a superclass if it causes an inherited feature to have a namespace co
with its own features - see Constraint [C-8].

To the degree that a GeneralizableElement is defined by its features, the supercla
subclass association defines substitutability. Any instance of a GeneralizableElem
can be supplied wherever an instance of a superclass of that GeneralizableEleme
expected.

SuperClasses

Namespace

Attributes

isRoot

Specifies whether the GeneralizableElement may have supertypes. True indicate
that it may not have supertypes, false indicates that it may have supertypes
(whether or not it actually has any)

type: Boolean

multiplicity: exactly one
3-24 OMG-Meta Object Facility, v1.4 April 2002



3

n

isLeaf

isAbstract

visibility

References

supertypes

Specifies whether the GeneralizableElement may be a supertype of another
Generalizable Element. True indicates that it may not be a supertype, false
indicates that it may be a supertype (whether or not it actually is).

type: Boolean

multiplicity: exactly one

Indicates whether the GeneralizableElement is expected to have instances. Whe
isAbstract is true, any instance that is represented or classified by this
GeneralizableElement is additionally an instance of some specialization of this
GeneralizableElement. No operation that supports creation of instances of this
GeneralizableElement should be available.

type: Boolean

multiplicity: exactly one

In the future, this Attribute will be used to limit the ability of ModelElements
outside of this GeneralizableElement’s container to depend on it; see
Section 3.6.3, “VisibilityKind,” on page 3-80. The rules of visibility of MOF
ModelElements are not currently specified.

type: VisibilityKind

multiplicity: exactly one

Identifies the set of superclasses for a GeneralizableElement. Note that a
GeneralizableElement does not have a reference to its subclasses.

class: GeneralizableElement

defined by: Generalizes::supertype

multiplicity: zero or more; ordered
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-25



3

f
f

s

Operations

allSupertypes

lookupElementExtended

Returns a list of direct and indirect supertypes of this GeneralizableElement. A
direct supertype is a GeneralizableElement that directly generalizes this one. An
indirect supertype is defined (recursively) as a supertype of some other direct or
indirect supertype of the GeneralizableElement. The order of the list elements is
determined by a depth-first traversal of the supertypes with duplicate elements
removed.

return type: GeneralizableElement (multiplicity zero or more,
ordered, unique)

isQuery: yes

parameters: none

operation semantics: [S-1]

Returns an element whose name matches the supplied “name.” Like the
“lookupElement” operation on Namespace, this operation searches the contents o
the GeneralizableElement. In addition, it tries to match the name in the contents o
all direct and indirect supertypes of the GeneralizableElement. For Packages, a
subclass of GeneralizableElement, the operation can also match a Namespace
associated with an Import objects. NameNotFound is raised if no element matche
the name.

return type: ModelElement (multiplicity exactly one)

isQuery: yes

parameters: name : in wstring

exceptions NameNotFound

operation semantics: [S-10]
3-26 OMG-Meta Object Facility, v1.4 April 2002



3

t

of
findElementsByTypeExtended

Constraints

[A Generalizable Element cannot be its own direct or indirect supertype. [C-6]]

[A supertypes of a GeneralizableElement must be of the same kind as the
GeneralizableElement itself. [C-7]]

[The names of the contents of a GeneralizableElement should not collide with the
names of the contents of any direct or indirect supertype. [C-8]]

[Multiple inheritance must obey the “Diamond Rule.” [C-9]]

[If a Generalizable Element is marked as a “root,” it cannot have any supertypes.
[C-10]]

[A GeneralizableElement’s immediate supertypes must all be visible to it. [C-11]]

[A GeneralizableElement cannot inherit from a GeneralizableElement defined as a
“leaf.” [C-12]]

IDL

interface GeneralizableElementClass : NamespaceClass {
   readonly attribute GeneralizableElementUList
   all_of_type_generalizable_element;
   const string SUPERTYPE_MUST_NOT_BE_SELF =
       "org.omg.mof:constraint.model.generalizable_element.supertype_must_not_be_self";
   const string SUPERTYPE_KIND_MUST_BE_SAME =
       "org.omg.mof:constraint.model.generalizable_element.supertype_kind_must_be_same";
   const string CONTENTS_MUST_NOT_COLLIDE_WITH_SUPERTYPES
       "org.omg.mof:constraint.model.generalizable_element”

Provides an extension of the findElementsByType defined for Namespace so tha
contained elements of all superclasses (direct and indirect) of the
GeneralizableElement are included in the search. The order of the returned
elements is determined by the order of the elements contained in the
GeneralizableElements and a depth-first traversal of the superclasses.

Subclasses can include a larger overall area for the lookup. Package, a subclass
GeneralizableElement, also considers the elements brought into this Namespace
through the use of Import.

return type: ModelElement (multiplicity zero or more; ordered;
unique)

isQuery: yes

parameters: ofType : in Class
includeSubtypes : in Boolean

operation semantics: [S-11]
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-27



3

       “.contents_must_not_collide_with_supertypes";
   const string DIAMOND_RULE_MUST_BE_OBEYED =
       "org.omg.mof:constraint.model.generalizable_element.diamond_rule_must_be_obeyed";
   const string NO_SUPERTYPES_ALLOWED_FOR_ROOT =
       "org.omg.mof:constraint.model.generalizable_element.no_supertypes_allowed_for_root";
   const string SUPERTYPES_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.generalizable_element.supertypes_must_be_visible";
   const string NO_SUBTYPES_ALLOWED_FOR_LEAF =
       "org.omg.mof:constraint.model.generalizable_element.no_subtypes_allowed_for_leaf";

}; // end of interface GeneralizableElementClass

interface GeneralizableElement : GeneralizableElementClass, Namespace {
      boolean is_root ()
          raises (Reflective::MofError);
      void set_is_root (in boolean new_value)
         raises (Reflective::MofError);
      boolean is_leaf ()
         raises (Reflective::MofError);
      void set_is_leaf (in boolean new_value)
         raises (Reflective::MofError);

boolean is_abstract ()
         raises (Reflective::MofError);
      void set_is_abstract (in boolean new_value)
         raises (Reflective::MofError);
      VisibilityKind visibility ()
         raises (Reflective::MofError);
      void set_visibility (in VisibilityKind new_value)
         raises (Reflective::MofError);
      GeneralizableElementUList supertypes ()
         raises (Reflective::MofError);

void set_supertypes (in GeneralizableElementUList new_value)
         raises (Reflective::MofError);
      void add_supertypes (in GeneralizableElement new_element)
         raises (Reflective::MofError);
      void add_supertypes_before (in GeneralizableElement new_element,
                                  in GeneralizableElement before_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_supertypes (in GeneralizableElement old_element,
                              in GeneralizableElement new_element)
         raises (Reflective::NotFound, Reflective::MofError);
      void remove_supertypes (in GeneralizableElement old_element)

 raises (Reflective::NotFound, Reflective::MofError);
      GeneralizableElementSet all_supertypes ()
         raises (Reflective::MofError);

ModelElement lookup_element_extended (in wstring name)
         raises (NameNotFound, Reflective::MofError);

ModelElementUList find_elements_by_type_extended (in Class of_type, in boolean
include_subtypes)
         raises (Reflective::MofError);
};
3-28 OMG-Meta Object Facility, v1.4 April 2002



3

part
ith

s

3.4.4 TypedElement abstract

The TypedElement type is an abstraction of ModelElements that require a type as
of their definition. A TypedElement does not itself define a type, but is associated w
a Classifier. The relationship between TypedElements and Classifiers is shown in
Figure 3-3.

SuperClasses

ModelElement

References

type

Provides the representation of the type supporting the TypedElement through thi
reference.

class: Classifier

defined by: IsOfType::type

multiplicity: exactly one

Typed
Element

Generalizable
Element

Classifier

Class Association Data Type

Is Of Type

1

0..*

+type

+typedElement

isSingleton: Boolean isDerived: Boolean

Figure 3-3 MOF Model Classifiers
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-29



3

ins.

and
s,

d in
in

e to
Constraints

[An Association cannot be the type of a TypedElement. [C-13]]

[A TypedElement can only have a type that is visible to it. [C-14]]

IDL

interface TypedElementClass : ModelElementClass {
      // get all typed_element including subtypes of typed_element
      readonly attribute TypedElementSet all_of_type_typed_element;
      const string ASSOCIATIONS_CANNOT_BE_TYPES =

"org.omg.mof:constraint.model.typed_element.associations_cannot_be_types";
      const string TYPE_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.typed_element.type_must_be_visible";
   }; // end of interface TypedElementClass

   interface TypedElement : TypedElementClass, ModelElement {
      Classifier type ()
         raises (Reflective::MofError);
      void set_type (in Classifier new_value)
         raises (Reflective::MofError);
   };

3.4.5 Classifier abstract

A classifier provides a classification of instances through a set of Features it conta

SuperClasses

GeneralizableElement

IDL

interface ClassifierClass : GeneralizableElementClass {
      readonly attribute ClassifierSet all_of_type_classifier;
}; // end of interface ClassifierClass

interface Classifier : ClassifierClass, GeneralizableElement { };

3.4.6 Class

A Class defines a classification over a set of object instances by defining the state
behavior they exhibit. This is represented through operations, attributes, reference
participation in associations, constants, and constraints. Similar concepts are use
other environments for representing Classes and their implementations. However,
the MOF the class characteristics are modeled in an implementation-independent
manner. For instance, an attribute of a Class is specified independently of any cod
3-30 OMG-Meta Object Facility, v1.4 April 2002



3

t its
OF

,

s,
store and manage the attributes value. The implementation simply must insure tha
behavior conforms to behavior specified by the chosen technology mapping. The M
Class construct is more than just an interface specification.

SuperClasses

Classifier

Contained Elements

Class, DataType subtypes, Attribute, Reference, Operation, Exception, Constraint
Constant, Tag; see constraint [C-15].

Attributes

isSingleton

Constraints

[A Class may contain only Classes, DataTypes, Attributes, References, Operation
Exceptions, Constants, Constraints, and Tags. [C-15]]

[A Class that is marked as abstract cannot also be marked as singleton. [C-16]]

IDL

interface ClassClass : ClassifierClass {
   readonly attribute ClassSet all_of_type_class;
   readonly attribute ClassSet all_of_class_class;
   const string CLASS_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.class.class_containment_rules";
   const string ABSTRACT_CLASSES_CANNOT_BE_SINGLETON =
       "org.omg.mof:constraint.model.class.abstract_classes_cannot_be_singleton";

   Class create_class (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility,
/* from Class */ in boolean is_singleton)

raises (Reflective::MofError);

When isSingleton is true, at most one M1 level instance of this Class may exist
within the M1-level extent of the Class.

type: Boolean

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-31



3

a type
pe
}; // end of interface ClassClass

   interface Class : ClassClass, Classifier {
      boolean is_singleton ()
         raises (Reflective::MofError);
      void set_is_singleton (in boolean new_value)
         raises (Reflective::MofError);
 };

3.4.7 DataType abstract

DataType is the superclass of the classes that represent MOF data types and dat
constructors as described in Section 4.2, “MOF Values,” on page 4-2. The DataTy
class, its subclasses and related classes are depicted in Figure 3-4 .

SuperClasses

Classifier

Contained Elements

StructureField (for a StructureType only), Constraint, Tag -- see
[DataTypeContainmentRules [C-17]].

Attributes

none

Data Type

Is Of Type 10..*

+type +typedElement

Figure 3-4 MOF Data Type Elements

Primitive
Type

Enumeration Type Collection Type

Classifier Typed Element

Structure Field

labels: ordered set
         of String

multiplicity :
MultiplicityType

Alias
Type

Structure
Type
3-32 OMG-Meta Object Facility, v1.4 April 2002



3

a
be
ype
0,

ype

port

in
r
y

Constraints

[Inheritance / generalization is not applicable to DataTypes. [C-19]]

[A DataType cannot be abstract. [C-20]]

IDL

interface DataTypeClass : ClassifierClass {
readonly attribute DataTypeSet all_of_type_data_type;
const string DATA_TYPE_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.data_type.data_type_containment_rules";
const string DATA_TYPES_HAVE_NO_SUPERTYPES =

"org.omg.mof:constraint.model.data_type.data_types_have_no_supertypes";
const string DATA_TYPES_CANNOT_BE_ABSTRACT =

"org.omg.mof:constraint.model.data_type.data_types_cannot_be_abstract";

}; // end of interface DataTypeClass

   interface DataType : DataTypeClass, Classifier {
};

3.4.8 PrimitiveType

Instances of the PrimitiveType class are used to represent primitive data types in
meta-model. The MOF has a small number of built-in primitive data types that may
freely used in any meta-model. These types are defined as instances of PrimitiveT
that are contained by the standard “PrimitiveTypes” package. Refer to Section 3.1
“The PrimitiveTypes Package,” on page 3-114 for details of the PrimitiveTypes
package, and to Section 4.2, “MOF Values,” on page 4-2 for more details on data t
semantics.

The MOF built-in primitive data types map to different concrete data types in the
context of each technology mapping. Each technology mapping is expected to sup
all of the standard built-in primitive data types.

Note –A meta-model may contain PrimitiveType instances other than those defined
the “PrimitiveTypes” package. These instances denote technology specific, vendo
specific or user defined primitive data types. They should not be used in technolog
neutral meta-models.

SuperClasses

DataType

Contained Elements

Constraint, Tag -- see [DataTypeContainmentRules [C-17]].
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-33



3

on
ype.
IDL

   interface PrimitiveTypeClass : DataTypeClass {
      readonly attribute PrimitiveTypeSet all_of_type_primitive_type;
      readonly attribute PrimitiveTypeSet all_of_class_primitive_type;
      DataType create_primitive_type (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
}; // end of interface PrimitiveTypeClass

   interface PrimitiveType : PrimitiveTypeClass, DataType {
};

3.4.9 CollectionType

The CollectionType class is a type constructor for MOF collection types. A collecti
type is a data type whose values are finite collections of instances of some base t
The base type for a collection data type is given by the CollectionType instance’s
‘type’ value. The ‘multiplicity’ Attribute gives the collection type’s lower and upper
bounds, and its orderedness and uniqueness properties.

SuperClasses

DataType, TypedElement

Contained Elements

Constraint, Tag -- see [DataTypeContainmentRules [C-17]].

Attributes

multiplicity

IDL

   interface CollectionTypeClass : DataTypeClass, TypedElementClass {
      readonly attribute CollectionTypeSet all_of_type_collection_type;

The multiplicity attribute of a CollectionType specifies upper and lower bounds on the size
of a collection, and gives the ‘isOrdered’ and ‘isUnique’ flags that subclassify collections
into ‘bags,’ ‘sets,’ ‘lists,’ and ‘ordered sets.’

type: MultiplicityType

multiplicity: exactly one
3-34 OMG-Meta Object Facility, v1.4 April 2002



3

      readonly attribute CollectionTypeSet all_of_class_collection_type;
      DataType create_collection_type (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility,
/* from CollectionType */  in ::Model::MultiplicityType multiplicity)

         raises (Reflective::MofError);
}; // end of interface CollectionTypeClass

   interface CollectionType : CollectionTypeClass, DataType, TypedElement {
     ::Model::MultiplicityType multiplicity()
         raises (Reflective::MofError);
     void set_multiplicity(in ::Model::MultiplicityType multiplicity)
         raises (Reflective::MofError);
}; // end of interface CollectionType

3.4.10 EnumerationType

The EnumerationType class is a type constructor for MOF enumeration types. An
enumeration type is a data type whose values are the elements of a finite set of
enumerators. The enumeration type is specified by defining an ordered set of
enumerator labels.

SuperClasses

DataType

Contained Elements

Constraint, Tag -- see [DataTypeContainmentRules [C-17]].

Attributes

labels

IDL

interface EnumerationTypeClass : DataTypeClass {
      readonly attribute EnumerationTypeSet all_of_type_enumeration_type;

The labels attribute of an EnumerationType gives the names of the enumerators for the
type. The label elements must be unique within the collection, and their order in the
collection is significant.

type: String

multiplicity: one or more, ordered, unique
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-35



3

n

      readonly attribute EnumerationTypeSet all_of_class_enumeration_type;
      DataType create_enumeration_type (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility,
/* from EnumerationType */ in ::PrimitiveTypes::WStringUList labels)

         raises (Reflective::MofError);
}; // end of interface EnumerationTypeClass

   interface EnumerationType : EnumerationTypeClass, DataType {
::PrimitiveTypes::WStringUList labels()

raises (Reflective::MofError);
void set_labels(in ::PrimitiveTypes::WStringUList labels)

raises (Reflective::MofError);
}; // end of interface EnumerationType

3.4.11 AliasType

The AliasType class is a type constructor for MOF alias types. An alias type is a
subtype of some other MOF class or data type, given by the ‘type’ value of the
AliasType instance; i.e., a subset of the values of the type given by its ‘type.’ This
subset is typically specified by attaching a Constraint to the AliasType instance. A
alias type may convey a different “meaning” to that of its base type.

SuperClasses

DataType, TypedElement

Contained Elements

Constraint, Tag -- see [DataTypeContainmentRules [C-17]].

IDL

   interface AliasTypeClass : DataTypeClass, TypedElementClass {
      readonly attribute AliasTypeSet all_of_type_alias_type;
      readonly attribute AliasTypeSet all_of_class_alias_type;
      DataType create_alias_type (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
3-36 OMG-Meta Object Facility, v1.4 April 2002



3

ture

nce.
}; // end of interface AliasTypeClass

   interface AliasType : AliasTypeClass, DataType, TypedElement {
};

3.4.12 StructureType

The StructureType class is a type constructor for MOF structure data types. A struc
type is a tuple type (i.e., a cartesian product) consisting of one or more fields. The
fields are defined by StructureField instances contained by the StructureType insta

SuperClasses

DataType

Contained Elements

StructureField, Constraint, Tag -- see [DataTypeContainmentRules [C-17]].

Constraints

[A StructureType must contain at least one StructureField. [C-59]]

IDL

   interface StructureTypeClass : DataTypeClass {
readonly attribute StructureTypeSet all_of_type_structure_type;
readonly attribute StructureTypeSet all_of_class_structure_type;
const string MUST_HAVE_FIELDS =

"org.omg.mof:constraint.model.structure_type.must_have_fields";
DataType create_structure_type (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
}; // end of interface StructureTypeClass

interface StructureType : StructureTypeClass, DataType { };

3.4.13 StructureField

The StructureField class is used to specifiy the fields of a StructureType instance.

SuperClasses

TypedElement
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-37



3

y,
d its
Contained Elements

Constraint, Tag -- see [StructureFieldContainmentRules [C-58]].

IDL

interface StructureFieldClass : TypedElementClass {
readonly attribute StructureFieldSet all_of_type_structure_field;
readonly attribute StructureFieldSet all_of_class_structure_field;
const string STRUCTURE_FIELD_CONTAINMENT_RULES =

"org.omg.mof:constraint.modelstructure_field.structure_field_containment_rule";
StructureField create_structure_field (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation)

raises (Reflective::MofError);
}; // end of interface StructureFieldClass

interface StructureField : StructureFieldClass, TypedElement { );

3.4.14Feature abstract

A Feature defines a characteristic of the ModelElement that contains it. Specificall
Classifiers are defined largely by a composition of Features. The Feature Class an
sub-Classes are illustrated in Figure 3-5.
3-38 OMG-Meta Object Facility, v1.4 April 2002



3

SuperClasses

ModelElement

Figure 3-5 Feature Classes of the MOF Model

Model Element

Namespace Typed ElementFeature
scope : ScopeKind
visibility :

VisibilityKind

Behavioral Feature Structural Feature

multiplicity :
MultiplicityType

isChangeable :
Boolean

Operation
isQuery :

Boolean

Exception

Attribute
isDerived :

Boolean

Reference

CanRaise

0..*
ordered0..*+operation

+except
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-39



3

s it.
for

g
r

ch
Attributes

scope

visibility

IDL

interface FeatureClass : ModelElementClass {
      readonly attribute FeatureSet all_of_type_feature;
}; // end of interface FeatureClass

interface Feature : FeatureClass, ModelElement {
      ScopeKind scope ()
          raises (Reflective::MofError);
      void set_scope (in ScopeKind new_value)
         raises (Reflective::MofError);
      VisibilityKind visibility ()
          raises (Reflective::MofError);
      void set_visibility (in VisibilityKind new_value)
         raises (Reflective::MofError);
};

3.4.15StructuralFeature abstract

A StructuralFeature defines a static characteristic of the ModelElement that contain
The attributes and references of a Class define structural properties, which provide
the representation of the state of its instances.

The scope defines whether a Feature supports the definition of instances of the
Classifier owning the Feature or of the Classifier as a whole. When scope is
instanceLevel, the Feature is accessed through instances of the Feature’s ownin
Classifier; when scope is classifier, the Feature is accessed through the Classifie
itself (or through its instances). For StructuralFeatures, a scope of instanceLevel
indicates that a value represented by the StructuralFeature is associated with ea
instance of the Classifier; a scope of classifierLevel indicates that the
StructuralFeature value is shared by the Classifier and all its instances.

type: ScopeKind

multiplicity: exactly one

In the future, this Attribute will be used to limit the ability of ModelElements
outside of this Feature’s container to make use of it; see Section 3.6.3,
“VisibilityKind,” on page 3-80. The rules of visibility of MOF ModelElements are
not currently specified.

type: VisibilityKind

multiplicity: exactly one
3-40 OMG-Meta Object Facility, v1.4 April 2002



3

n

SuperClasses

Feature, TypedElement

Attributes

multiplicity

isChangeable

IDL

interface StructuralFeatureClass : FeatureClass, TypedElementClass {
       readonly attribute StructuralFeatureSet all_of_type_structural_feature;
   }; // end of interface StructuralFeatureClass

   interface StructuralFeature : StructuralFeatureClass, Feature, TypedElement {

Multiplicity defines constraints on the collection of instances or values that a
StructuralFeature can hold. Multiplicity defines a lower and upper bound to the
cardinality of the collection, although the upper bound can be specified as
Unbounded. Additionally multiplicity defines two other characteristics of the
collection: 1) a constraint on collection member ordering, and 2) a constraint on
collection member uniqueness.

Specifically, Multiplicity contains an isOrdered field. When isOrdered is true, then
the ordering of the elements in the set are preserved. Typically, a mechanism is
provided for adding elements to the collection positionally. Multiplicity also has
an isUnique field. When isUnique is true, then the collection is constrained to hold
no more than one of any value or instance.

type: MultiplicityType

multiplicity: exactly one

The isChangeable attribute places restrictions on the use of certain operations,
which could change the set of values or instances of the StructuralFeature, and o
the operations that will get generated in IDL or other language generation. For any
elaboration, no means are automatically created which provides a means of
altering the attribute value. When IDL is generated, for instance, the operations,
that are normally generated for changing the StructuralFeature, will not be
generated. However, isChangeable does not actually constrain the
StructuralFeature to make it immutable. Any operations explicitly defined in a
model may change the StructuralFeature values or instances (assuming the
operation would have otherwise been able to do so).

type: Boolean

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-41



3

      MultiplicityType multiplicity ()
          raises (Reflective::MofError);
      void set multiplicity (in MultiplicityType new_value)
          raises (Reflective::MofError),
      boolean is_changeable ()
          raises (Reflective::MofError);
      void set_is_changeable (in boolean new_value)
         raises (Reflective::MofError);
   };

3.4.16Attribute idl_substitute_name “MofAttribute”

An Attribute (referred to as a MofAttribute in the mapped IDL) defines a
StructuralFeature that contains values for Classifiers or their instances.

SuperClasses

StructuralFeature

Contained Elements

None (not a Namespace)

Attributes

isDerived

IDL

interface MofAttributeClass : StructuralFeatureClass {
      readonly attribute MofAttributeSet all_of_type_mof_attribute;
      readonly attribute MofAttributeSet all_of_class_mof_attribute;

    MofAttribute create_mof_attribute (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from Feature */ in ::Model::ScopeKind scope,

A derived attribute is one whose values are not part of the state of the object
instance, but whose values can be determined or computed. In a sense, all
attributes are derived, since it is up to the class's implementation to hold or
calculate the values. However, by convention, isDerived indicates that the derived
state is based on other information in the model. Modification of the derived
Attribute causes the information upon which the Attribute is derived to be
updated.

type: Boolean

multiplicity: exactly one
3-42 OMG-Meta Object Facility, v1.4 April 2002



3

te
the
e
e
has
ce,

ing
d.

e

/* from Feature */ in ::Model::VisibilityKind visibility,
/* from StructuralFeature */ in ::Model::MultiplicityType multiplicity,
/* from StructuralFeature */ in boolean is_changeable,
/* from MofAttribute */ in boolean is_derived)

         raises (Reflective::MofError);
   }; // end of interface MofAttributeClass

   interface MofAttribute : MofAttributeClass, StructuralFeature {
      boolean is_derived ()
          raises (Reflective::MofError);
      void set_is_derived (in boolean new_value)
         raises (Reflective::MofError);
   };

3.4.17 Reference

A Reference defines a Classifier's knowledge of, and access to, links and their
instances defined by an Association. Although a Reference derives much of its sta
from a corresponding AssociationEnd, it provides additional information; therefore,
MOF cannot adequately represent some meta-models without this mechanism. Th
inherited attributes defined in StructuralFeature (multiplicity and is_changeable) ar
constrained to match the values of its corresponding AssociationEnd. However, it
its own visibility, name, and annotation defined. For further discussion on Referen
its purpose, and how it derives its attributes, see Section 3.2.2, “Associations,” on
page 3-8.

Note –When creating a Reference, values for the inherited attributes of multiplicity
and is_changeable must be supplied. These must be the same as the correspond
attributes on the AssociationEnd to which the Reference will subsequently be linke

SuperClasses

StructuralFeature

References

exposedEnd

The exposedEnd of a Reference is the AssociationEnd representing the end of th
Reference's owning Classifier within the defining Association.

class AssociationEnd

defined by: Exposes::exposedEnd

multiplicity: exactly one

changeable: yes
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-43



3

nal

ame.

f the

ce.

f
es
referencedEnd

Constraints

[The multiplicity for a Reference must be the same as the multiplicity for the
referenced AssociationEnd. [C-21]]

[Classifier scoped References are not meaningful in the current M1 level computatio
model. [C-22]]

[A Reference can be changeable only if the referenced AssociationEnd is also
changeable. [C-23]]

[The type attribute of a Reference and its referenced AssociationEnd must be the s
[C-24]]

[A Reference is only allowed for a navigable AssociationEnd [C-25]]

[The containing Class for a Reference must be equal to or a subtype of the type o
Reference’s exposed AssociationEnd. [C-26]]

[The referenced AssociationEnd for a Reference must be visible from the Referen
[C-27]]

IDL

interface ReferenceClass : StructuralFeatureClass {
      readonly attribute ReferenceSet all_of_type_reference;
      readonly attribute ReferenceSet all_of_class_reference;
      const string REFERENCE_MULTIPLICITY_MUST_MATCH_END =
       "org.omg.mof:constraint.model.reference.reference_multiplicity_must_match_end";
      const string REFERENCE_MUST_BE_INSTANCE_SCOPED =
       "org.omg.mof:constraint.model.reference.reference_must_be_instance_scoped";
      const string CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE_END =
       "org.omg.mof:constraint.model.reference.changeable_reference_must_have_changeable_end";
      const string REFERENCE_TYPE_MUST_MATCH_END_TYPE =
       "org.omg.mof:constraint.model.reference.reference_type_must_match_end_type";
      const string REFERENCED_END_MUST_BE_NAVIGABLE =

The referencedEnd of a Reference is the end representing the set of LinkEnds o
principle interest to the Reference. The Reference provides access to the instanc
of that AssociationEnd’s class, which are participants in that AssociationEnd’s
Association, connected through that AssociationEnd’s LinkEnds. In addition, the
Reference derives the majority of its state information - multiplicity, etc., from
that Reference.

class: AssociationEnd

defined by: RefersTo::referencedEnd

multiplicity: exactly one

changeable: yes
3-44 OMG-Meta Object Facility, v1.4 April 2002



3

       "org.omg.mof:constraint.model.reference.referenced_end_must_be_navigable";
      const string CONTAINER_MUST_MATCH_EXPOSED_TYPE =
       "org.omg.mof:constraint.model.reference.container_must_match_exposed_type";
      const string REFERENCED_END_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.reference.referenced_end_must_be_visible";

      Reference create_reference (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from StructuralFeature */ in ::Model::MultiplicityType, multiplicity,
/* from StructuralFeature */ in boolean is_changeable)

         raises (Reflective::MofError);
   }; // end of interface ReferenceClass

   interface Reference : ReferenceClass, StructuralFeature {
      AssociationEnd exposed_end ()
         raises (Reflective::MofError);
      void set_exposed_end (in AssociationEnd new_value)
         raises (Reflective::MofError);
      AssociationEnd referenced_end ()
         raises (Reflective::MofError);
      void set_referenced_end (in AssociationEnd new_value)
         raises (Reflective::MofError);
   };

3.4.18BehavioralFeature abstract

A BehavioralFeature defines a dynamic characteristic of the ModelElement that
contains it. Because a BehavioralFeature is partially defined by the Parameters it
contains, it is both a Feature and a Namespace.

SuperClasses

Feature, Namespace

IDL

interface BehavioralFeatureClass : FeatureClass, NamespaceClass {
readonly attribute BehavioralFeatureUList

all_of_type_behavioral_feature;
}; // end of interface BehavioralFeatureClass

interface BehavioralFeature :
BehavioralFeatureClass, Feature , Namespace {};

3.4.19 Operation

An Operation defines a dynamic feature that offers a service. The behavior of an
operation is activated through the invocation of the operation.
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-45



3

te
SuperClasses

BehavioralFeature

Contained Elements

Parameter, Constraint -- see [OperationContainmentRules [C-28]]

Attributes

isQuery

References

exceptions

Defining an Operation with an isQuery value of true denotes that the behavior of
the operation will not alter the state of the object. The state of a Classifier, for this
definition, is the set of values of all of the Classifier’s class-scope and instance-
scope StructuralFeatures.

For instance, an Operation of a Class, defined with a scope of instance, will not
change the values or instances of any instance-scope StructuralFeature of the
Class instance, as a result of invoking this Operation. An Operation of a Class
with a scope of classifier will not change the values or instances of any of the
classifier-scope StructuralFeatures or instance-scope StructuralFeatures.

This attribute does not define a constraint enforced by the model, but rather a
promise that the operation’s implementation is expected to uphold. An operation
which is not defined as isQuery equals false is not guaranteed to change the sta
of its object. The isQuery constraint does not proscribe any specific
implementation, so long as the definition of isQuery above is observed.

type: Boolean

multiplicity: exactly one

An Operation, upon encountering an error or other abnormal condition, may raise
an Exception. The exceptions reference provides the Operation with the set of
Exceptions it is allowed to raise.

class: Exception

defined by: CanRaise::except

multiplicity: zero or more, ordered
3-46 OMG-Meta Object Facility, v1.4 April 2002



3

]]
Constraints

[An Operation may only contain Parameters, Constraints, and Tags. [C-28]]

[An Operation may have at most one Parameter whose direction is “return.” [C-29

[The Exceptions raised by an Operation must be visible to the Operation. [C-30]]

IDL

interface OperationClass : BehavioralFeatureClass {
      readonly attribute OperationSet all_of_type_operation;
      readonly attribute OperationSet all_of_class_operation;
      const string OPERATION_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.operation.operation_containment_rules";
      const string OPERATIONS_HAVE_AT_MOST_ONE_RETURN =
       "org.omg.mof:constraint.model.operation.operations_have_at_most_one_return";
      const string OPERATION_EXCEPTIONS_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.operation.operation_exceptions_must_be_visible";

    Operation create_operation (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility,
/* from Operation */ in boolean is_query)

raises (Reflective::MofError);
}; // end of interface OperationClass

   interface Operation : OperationClass, BehavioralFeature {
      boolean is_query ()
          raises (Reflective::MofError);
      void set_is_query (in boolean new_value)
         raises (Reflective::MofError);
      MofExceptionUList exceptions ()
          raises (Reflective::MofError);

void set_exceptions (in MofExceptionUList new_value)
         raises (Reflective::MofError);
      void add_exceptions (in MofException new_element)
         raises (Reflective::MofError);
      void add_exceptions_before (in MofException new_element, in MofException before_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_exceptions (in MofException old_element,
                              in MofException new_element)
         raises (Reflective::NotFound, Reflective::MofError);
      void remove_exceptions (in MofException old_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-47



3

or

F
is

ch
l if it
3.4.20Exception idl_substitute_name “MofException”

An Exception (referred to as a MofException in the mapped IDL) defines an error
other abnormal condition. The Parameters of an Exception hold a record of an
occurrence of the exceptional condition.

SuperClasses

BehavioralFeature

Contained Elements

Parameter; see [ExceptionContainmentRules [C-31]]

Constraints

[An Exception may only contain Parameters and Tags. [C-31]]

[An Exception’s Parameters must all have the direction “out.” [C-32]]

IDL

interface MofExceptionClass : BehavioralFeatureClass {
      readonly attribute MofExceptionSet all_of_type_mof_exception;
      readonly attribute MofExceptionSet all_of_class_mof_exception;
      const string EXCEPTION_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.mof_exception.exception_containment_rules";
      const string EXCEPTIONS_HAVE_ONLY_OUT_PARAMETERS =
       "org.omg.mof:constraint.model.mof_exception.exceptions_have_only_out_parameters";

     MofException create_mof_exception (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from Feature */ in ::Model::ScopeKind scope,
/* from Feature */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
}; // end of interface MofExceptionClass

interface MofException : MofExceptionClass, BehavioralFeature {};

3.4.21 Association

An association defines a classification over a set of links, through a relationship
between Classifiers. Each link which is an instance of the association denotes a
connection between object instances of the Classifiers of the Association. The MO
restricts associations to binary, restricting each link to two participating objects. Th
restriction also means that the association is defined between two Classifiers (whi
may be the same Classifier). The name of the Association is considered directiona
3-48 OMG-Meta Object Facility, v1.4 April 2002



3

with
e

s as
a
pe”

ce’s
provides a clearer or more accurate representation of the association when stated
one participating class first rather than the other. For instance, Operation CanRais
Exception is correct; Exception CanRaise Operation is incorrect.

An Association contains precisely two AssociationEnds, each of which has a Clas
its “type.” A Class has knowledge of its participation in an Association if it contains
Reference that is related to the Association’s Ends, as shown in Figure 3-6. The “ty
of a Reference must be the “type” of the AssociationEnd that is the Reference’s
“referencedEnd.” The “type” of the Reference’s “exposedEnd” must be the Referen
containing Class, or a supertype of that Class.

SuperClasses

Classifier

Contained Elements

AssociationEnd, Constraint -- see [AssociationContainmentRules [C-33]]

Generalizable
Element

Typed Element

Structural
Feature

Feature

Model Element

Namespace

Classifier

Association
isDerived :

Boolean

Reference

Figure 3-6 MOF Model Elements for Associations

Association End
isNavigable : Boolean
aggregation : AggregationKind
multiplicity : MultiplicityType
isChangeable : Boolean

otherEnd()

+referrer 0..* /Exposes

RefersTo

11

+referent

0..* +referencedEnd +exposedEnd
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-49



3

on
Attributes

isDerived

Constraints

[An Association may only contain AssociationEnds, Constraints, and Tags. [C-33]]

[Inheritance / generalization is not applicable to Associations. [C-34]]

[The values for “isLeaf” and “isRoot” on an Association must be true. [C-35]]

[An Association cannot be abstract. [C-36]]

[Associations must have visibility of “public.” [C-37]]

[An Association must be binary; that is, it must have exactly two AssociationEnds.
[C-38]]

IDL

interface AssociationClass : ClassifierClass {
      readonly attribute AssociationSet all_of_type_association;
      readonly attribute AssociationSet all_of_class_association;
      const string ASSOCIATIONS_CONTAINMENT_RULES =
       "org.omg.mof:constraint.model.association.associations_containment_rules";
      const string ASSOCIATIONS_HAVE_NO_SUPERTYPES =
       "org.omg.mof:constraint.model.association.associations_have_no_supertypes";
      const string ASSOCIATIONS_MUST_BE_ROOT_AND_LEAF =
       "org.omg.mof:constraint.model.association.associations_must_be_root_and_leaf";
      const string ASSOCIATIONS_CANNOT_BE_ABSTRACT =
       "org.omg.mof:constraint.model.association.associations_cannot_be_abstract";
      const string ASSOCIATIONS_MUST_BE_PUBLIC =
       "org.omg.mof:constraint.model.association.associations_must_be_public";
      const string ASSOCIATIONS_MUST_BE_BINARY =
       "org.omg.mof:constraint.model.association.associations_must_be_binary";

   Association create_association (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,

A derived association has no Links as instances. Instead, its Links are derived
from other information in a meta-model. The addition, removal, or modification of
a derived Association's Link causes the information upon which the Association is
derived to be updated. The results of such an update are expected to appear, up
subsequent access of the derived Association’s Links, to have the same effect as
an equivalent operation on an Association that is not derived.

type: Boolean

multiplicity: exactly one
3-50 OMG-Meta Object Facility, v1.4 April 2002



3

s a
the

s

/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility,
/* from Association */ in boolean is_derived)

raises (Reflective::MofError);
}; // end of interface AssociationClass

interface Association : AssociationClass, Classifier {

      boolean is_derived ()
          raises (Reflective::MofError);
      void set_is_derived (in boolean new_value)
         raises (Reflective::MofError);
};

3.4.22 AssociationEnd

An association is composed of two AssociationEnds. Each AssociationEnd define
Classifier participant in the Association, the role it plays, and constraints on sets of
Classifier instances participating. An instance of an AssociationEnd is a LinkEnd,
which defines a relationship between a link, in instance of an Association, and an
instance of the AssociationEnd's Classifier, provided in its type attribute.

SuperClasses

TypedElement

Attributes

isNavigable

The isNavigable attribute determines whether or not the AssociationEnd supports
link “navigation.” This has two implications:
• A Class defined with an appropriate Reference supports navigation of links from one

Class instance to another. If isNavigable is false for an AssociationEnd, no such
References may be created.

• Setting isNavigable to false also suppress as a mapping’s mechanisms for indexing link
based on this AssociationEnd.

type: Boolean

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-51



3

r

.
f

er
aggregation

multiplicity

isChangeable

Certain associations define aggregations - directed associations with additional
semantics (see Section 4.10, “Aggregation Semantics,” on page 4-17). When an
AssociationEnd is defined as composite or shared, the instance at “this” end of a
Link is the composite or aggregate, and the instance at the “other” end is the
component or subordinate.

type: AggregationKind

multiplicity: exactly one

Multiplicity defines constraints on sets of instances. Each instance of the Classifier
defined by the opposite AssociationEnd’s type defines a set which this multiplicity
attribute constrains. Given one of those instances, x, the set is defined as the
instances connected by LinkEnds of this AssociationEnd to that instance x. Refe
to Section 3.6.1, “PrimitiveTypes used in the MOF Model,” on page 3-78 for a
description on how the multiplicity attribute constrains a set. In its use is
describing AssociationEnds, isUnique has been constrained to be true, as a
simplification. This constraint means that the same two instances cannot
participate in more than one Link while participating under the same
AssociationEnd. Normally, two instances cannot be linked by more than one Link
of an Association at all. But when the AssociationEnd types allow the two
instances switch ends, they can form a second Link without violating the isUnique
constraint.

type: MultiplicityType

multiplicity: exactly one

The isChangeable attribute restricts the capability to perform actions that would
modify sets of instances corresponding to this AssociationEnd (the same sets to
which multiplicity is applied). Specifically, the set may be created when the
instance defining the set - the instance at the opposite end of the Links - is created
This attribute does not make the set immutable. Instead, it affects the generation o
operations in Model Elaboration which would allow modification of the set. For
IDL generation, the only operation that allows the set to be modified would be one
or more factory operations that create the instance and create the set. The model
is free to define specific operations that allow modification of the set. Note that
defining this AssociationEnd with isChangeable equals false places restrictions on
the changeability of the other AssociationEnd, due to their interdependence.

type: Boolean

multiplicity: exactly one
3-52 OMG-Meta Object Facility, v1.4 April 2002



3

.

Operations

otherEnd

Constraints

[The type of an AssociationEnd must be Class. [C-39]]

[The “isUnique” flag in an AssociationEnd’s multiplicity must be true. [C-40]]

[An Association cannot have two AssociationEnds marked as “ordered.” [C-41]]

[An Association cannot have an aggregation semantic specified for both
AssociationEnds. [C-42]]

IDL

interface AssociationEndClass : TypedElementClass {
    readonly attribute AssociationEndSet all_of_type_association_end;
    readonly attribute AssociationEndSet all_of_class_association_end;
    const string END_TYPE_MUST_BE_CLASS =
       "org.omg.mof:constraint.model.association_end.end_type_must_be_class";
    const string ENDS_MUST_BE_UNIQUE =
       "org.omg.mof:constraint.model.association_end.ends_must_be_unique";
    const string CANNOT_HAVE_TWO_ORDERED_ENDS =
       "org.omg.mof:constraint.model.association_end.cannot_have_two_ordered_ends";
    const string CANNOT_HAVE_TWO_AGGREGATE_ENDS =
       "org.omg.mof:constraint.model.association_end.cannot_have_two_aggregate_ends";

  AssociationEnd create_association_end (
/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from AssociationEnd */ in boolean is_navigable,
/* from AssociationEnd */ in ::Model::AggregationKind aggregation,
/* from AssociationEnd */ in ::Model::MultiplicityType multiplicity,
/* from AssociationEnd */ in boolean is changeable)

  raises (Reflective::MofError);
}; // end of interface AssociationEndClass

interface AssociationEnd : AssociationEndClass, TypedElement {
      boolean is_navigable ()
          raises (Reflective::MofError);
      void set_is_navigable (in boolean new_value)
         raises (Reflective::MofError);

Provides the other AssociationEnd (i.e., not this one) in the enclosing Association

return type: AssociationEnd

isQuery: yes

parameters: none

operation semantics: [S-2]
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-53



3

ical
      AggregationKind aggregation ()
          raises (Reflective::MofError);
      void set_aggregation (in AggregationKind new_value)
         raises (Reflective::MofError);
      MultiplicityType multiplicity ()
         raises (Reflective::MofError);
      void set_multiplicity (in MultiplicityType new_value)
          raises (Reflective::MofError);
      boolean is changeable ()
         raises (Reflective::MofError);

void set is changeable (in boolean new value);
      AssociationEnd other_end ()
          raises (Reflective::MofError);
}; // end of interface AssociationEnd

3.4.23 Package

A Package is a container for a collection of related ModelElements that form a log
meta-model. Packages may be composed and related in the following ways:

• A Package can contain nested Packages via the Contains association.

• A Package can inherit from other Packages via the Generalizes association.

• A Package can import or cluster other Namespaces, including Packages via an
Import and the Aliases association.

The model elements for representing Packages are shown in Figure 3-7.

SuperClasses

GeneralizableElement

Generalizable
Element

Model Element

Namespace Import

Package

visibility : VisibilityKind
isClustered : Boolean

Aliases 0..*1

+importer
+imported

Figure 3-7 MOF Model Packaging
3-54 OMG-Meta Object Facility, v1.4 April 2002



3

- see

tions,

r

ace

to
age
Contained Elements

Package, Class, Association, DataType, Exception, Import, Constraint, Constant -
[PackageContainmentRules [C-43]]

Operations

none

Constraints

[A Package may only contain Packages, Classes, DataTypes, Associations, Excep
Constants, Constraints, Imports, and Tags. [C-43]]

[Packages cannot be declared as abstract. [C-44]]

IDL

interface PackageClass : GeneralizableElementClass {
readonly attribute PackageSet all_of_type_package;
readonly attribute PackageSet all_of_class_package;
const string PACKAGE_CONTAINMENT_RULES =

"org.omg.mof:constraint.model.package.package_containment_rules";
const string PACKAGES_CANNOT_BE_ABSTRACT =

"org.omg.mof:constraint.model.package.packages_cannot_be_abstract";
Package create_package (

/* from ModelElement */ in wstring name,
/* from ModelElement */ in wstring annotation,
/* from GeneralizableElement */ in boolean is_root,
/* from GeneralizableElement */ in boolean is_leaf,
/* from GeneralizableElement */ in boolean is_abstract,
/* from GeneralizableElement */ in ::Model::VisibilityKind visibility)

         raises (Reflective::MofError);
}; // end of interface PackageClass

   interface Package : PackageClass, GeneralizableElement {
};

3.4.24 Import

An Import allows a Package to make use of ModelElements defined in some othe
Namespace. An Import object is related to another Namespace via the Aliases
association. When a Package contains an Import object, it imports the associated
Namespace. This means that ModelElements defined within the imported Namesp
are visible in the importing Package.

An Import allows the visibility of the imported Package’s contained ModelElements
be further restricted. An Import object represents either Package importing or Pack
clustering, depending on the “isClustered” attribute.
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-55



3

SuperClasses

ModelElement

Attributes

visibility

isClustered

References

importedNamespace

Constraints

[The Namespace imported by an Import must be visible to the Import’s containing
Package. [C-45]]

[It is only legal for a Package to import or cluster Packages or Classes. [C-46]]

[Packages cannot import or cluster themselves. [C-47]]

[Packages cannot import or cluster Packages or Classes that they contain. [C-48]

[Nested Packages cannot import or cluster other Packages or Classes. [C-49]9]

In the future, this Attribute will modify the visibility of imported ModelElements
in the context of the importing Namespace. For a description of visibility kinds,
see Section 3.6.3, “VisibilityKind,” on page 3-80. The MOF rules of visibility are
not currently specified.

type: VisibilityKind

multiplicity: exactly one

The isClustered flags determines whether the Import object represents simple
Package importation, or Package clustering.

type: Boolean

multiplicity: exactly one

The Import knows about the Namespace that it references.

class: Namespace

defined by: Aliases::imported

multiplicity: exactly one
3-56 OMG-Meta Object Facility, v1.4 April 2002



3

IDL

interface ImportClass : ModelElementClass {
      readonly attribute ImportSet all_of_type_import;
      readonly attribute ImportSet all_of_class_import;
    const string IMPORTED_NAMESPACE_MUST_BE_VISIBLE =
       "org.omg.mof:constraint.model.import.imported_namespace_must_be_visible";
    const string CAN_ONLY_IMPORT_PACKAGES_AND_CLASSES =
       "org.omg.mof:constraint.model.import.can_only_import_packages_and_classes";
    const string CANNOT_IMPORT_SELF =
       "org.omg.mof:constraint.model.import.cannot_import_self";
    const string CANNOT_IMPORT_NESTED_COMPONENTS =
       "org.omg.mof:constraint.model.import.cannot_import_nested_components";
    const string NESTED_PACKAGES_CANNOT_IMPORT =
       "org.omg.mof:constraint.model.import.nested_packages_cannot_import";

      Import create_import (
             /* from ModelElement */ in wstring name,
             /* from ModelElement */ in wstring annotation,
             /* from Import */ in ::Model::VisibilityKind visibility,
             /* from Import */ in boolean is_clustered)
         raises (Reflective::MofError);
   }; // end of interface ImportClass

   interface Import : ImportClass, ModelElement {
      VisibilityKind visibility ()
          raises (Reflective::MofError);
      void set_visibility (in VisibilityKind new_value)
          raises (Reflective::MofError);
      boolean is_clustered ()
          raises (Reflective::MofError);
      void set_is_clustered (in boolean new_value)
          raises (Reflective::MofError);
      Namespace imported_namespace ()
         raises (Reflective::MofError);
      void set_imported_namespace (in Namespace new_value)
         raises (Reflective::MofError);
   };
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-57



3

pe.
3.4.25 Parameter

A parameter provides a means of communication with operations and other
BehavioralFeatures. A parameter passes or communicates values of its defined ty

SuperClasses

TypedElement

Attributes

direction

This attribute specifies the purpose of the parameter; to input a value, to output a
value, both purposes, or to provide an operation return value.

type: DirectionKind

multiplicity: exactly one

Model Element

Tag
tagId : String
values : list of String

Constrains
1..*

+modelElement

+tag

Parameter
direction : DirectionKind
multiplicity :

MultiplicityType

Constant
value : String

Constraint
expression : String
language : String
evaluationPolicy :

EvaluationKind

Typed Element

+constraint

0..*
ordered

1..*

0..*

AttachesTo
+constrainedElement

Figure 3-8 MOF Model - Other Elements
3-58 OMG-Meta Object Facility, v1.4 April 2002



3

ents

ny
multiplicity

IDL

interface ParameterClass : TypedElementClass {
      readonly attribute ParameterSet all_of_type_parameter;
      readonly attribute ParameterSet all_of_class_parameter;

      Parameter create_parameter (
           /* from ModelElement */ in wstring name,
           /* from ModelElement */ in wstring annotation,
           /* from Parameter */ in ::Model::DirectionKind direction,
           /* from Parameter */ in ::Model::MultiplicityType multiplicity)

raises (Reflective::MofError);
   }; // end of interface ParameterClass

interface Parameter : ParameterClass, TypedElement {
      DirectionKind direction ()
          raises (Reflective::MofError);
      void set_direction (in DirectionKind new_value)
         raises (Reflective::MofError);
      MultiplicityType multiplicity ()
         raises (Reflective::MofError);
      void set_multiplicity (in MultiplicityType new_value)
          raises (Reflective::MofError);
   };

3.4.26 Constraint

A Constraint defines a rule that restricts the state or behavior of one or more elem
in the meta-model. When a Constraint is attached to a ModelElement, the rule it
encodes applies to all relevant instances of the ModelElement in a model.

A Constraint rule, represented by the “expression” attribute, may be encoded in a
form. The “language” attribute may be used to denote the language and encoding
scheme used.

Multiplicity defines cardinality constraints on the set of instances or values that a
Parameter can hold. Multiplicity defines a lower and upper bound on the set,
although the upper bound can be specified as Unbounded. Additionally,
multiplicity defines two other characteristics of the set: 1) constraints on set
member ordering, and 2) constraints on unique set elements. Specifically,
Multiplicity contains an isOrdered field. When isOrdered is true, the ordering of
the elements in the set are preserved. Multiplicity also has an isUnique field.
When isUnique is true, the set is constrained to hold no more than one of any
value or instance.

type: MultiplicityType

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-59



3

this
te

of
While some Constraints on a model may need to be treated as invariant, it is often
convenient for other Constraints to be relaxed, for instance while a model is being
edited. While, the “evaluationPolicy” attribute is used to represent these two cases,
information is at best advisory, since the MOF specification does not currently sta
how and when Constraints should be enforced.

Note –A Constraint cannot over-ride structural integrity rules defined by other parts
a meta-model (e.g., multiplicity specifications) or the integrity rules defined by a
particular mapping of the meta-model to implementation technology.

SuperClasses

ModelElement

Attributes

expression

language

The Constraint’s expression attribute contains a textual representation of the
constraint. The MOF has no specific requirement that an implementation must be
able to interpret this expression, or to validate it against the language attribute.
The meaning of the expression will depend on the language used.

type String

multiplicity: exactly one

A Constraint’s language attribute gives the name of textual language used in the
constraint expression.

type: String

multiplicity: exactly one
3-60 OMG-Meta Object Facility, v1.4 April 2002



3

its

s

evaluationPolicy

References

constrainedElements

Constraints

[Constraints, Tags, Imports, and Constants cannot be constrained. [C-50]]

[A Constraint can only constrain ModelElements that are defined by or inherited by
immediate container. [C-51]]

IDL

interface ConstraintClass : ModelElementClass {
     readonly attribute ConstraintSet all_of_type_constraint;
     readonly attribute ConstraintSet all_of_class_constraint;
     const string CANNOT_CONSTRAIN_THIS_ELEMENT =
       "org.omg.mof:constraint.model.constraint.cannot_constrain_this_element";

Each constraint can be defined as immediate or deferred. For immediate
Constraints, the constraint violation will be detected and reported within an
operation in the chain of operations between the operation initiated by the MOF
user and the operation that caused the constraint violation. The effect of an
operation that violates an immediate constraint on the state of the object or object
being altered is implementation specific, and possibly undefined. However, if
possible, an implementation should reverse the effects of the operation.

For deferred Constraints, the constraint violation can only be detected when the
Constraint is explicitly evaluated. A technology mapping will typically provide a
verify operation. When a verify operation is invoked on instance of a constrained
element, the Constraint will be checked and any violation will be reported.

type: EvaluationKind

multiplicity: exactly one

The Constraint has access to the ModelElements it constrains, through this
reference. Note that the Constraint may depend on other ModelElements not
represented in this reference. For instance, a Constraint may state that attribute
A::x cannot exceed A::y in magnitude. The Constraint is on A::x, although it also
depends on A::y. The relationship between the Constraint and A::y is not
explicitly stated in the meta-model.

class: ModelElement

defined by: Constrains::constrainedElement

multiplicity: one or more
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-61



3

ls.
     const string CONSTRAINTS_LIMITED_TO_CONTAINER =
       "org.omg.mof:constraint.model.constraint.constraints_limited_to_container";

    enum EvaluationKind {immediate, deferred};

    Constraint create_constraint (
/* from ModelElement */ in wstring name,
/* from ModelElement * in wstring annotation,
/* from Constraint */ in wstring expression,
/* from Constraint */ in wstring language,
/* from Constraint */ in ::Model::ConstraintClass::EvaluationKind

evaluation_policy)
         raises (Reflective::MofError);
   }; // end of interface ConstraintClass

   interface Constraint : ConstraintClass, ModelElement {
wstring expression ()

          raises (Reflective::MofError);
      void set_expression (in wstring new_value)
          raises (Reflective::MofError);

wstring language ()
          raises (Reflective::MofError);
      void set_language (in wstring new_value)
         raises (Reflective::MofError);
      ConstraintClass::EvaluationKind evaluation_policy ()
          raises (Reflective::MofError);
      void set_evaluation_policy (in ConstraintClass::EvaluationKind new_value)
         raises (Reflective::MofError);
      ModelElementSet constrained_elements ()
         raises (Reflective::MofError);

void set_constrained_elements (in ModelElementSet new_value)
          raises (Reflective::MofError);
      void add_constrained_elements (in ModelElement new_element)
          raises (Reflective::MofError);
      void modify_constrained_elements (in ModelElement old_element,
                                    in ModelElement new_element)
         raises (Reflective::NotFound, Reflective::MofError);
      void remove_constrained_elements (in ModelElement old_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.4.27 Constant

Constant provides a mechanism for defining constant values for use in meta-mode
Constants are limited to values of types defined as PrimitiveType instances.

SuperClasses

TypedElement
3-62 OMG-Meta Object Facility, v1.4 April 2002



3

d
l. In

f most

r

Attributes

value

Constraints

[The type of a Constant and its value must be compatible. [C-52]]

[The type of a Constant must be a PrimitiveType. [C-53]]

IDL

interface ConstantClass : TypedElementClass {
    readonly attribute ConstantSet all_of_type_constant;
    readonly attribute ConstantSet all_of_class_constant;
    const string CONSTANTS_VALUE_MUST_MATCH_TYPE =
       "org.omg.mof:constraint.model.constant.constants_value_must_match_type";
    const string CONSTANTS_TYPE_MUST_BE_SIMPLE_DATA_TYPE =
       "org.omg.mof:constraint.model.con-
stant.constants_type_must_be_simple_data_type";

    Constant create_constant (
         /* from ModelElement */ in wstring name,
         /* from ModelElement */ in wstring annotation,
         /* from Constant */ in wstring value)
         raises (Reflective::MofError);
}; // end of interface ConstantClass

    interface Constant : ConstantClass, TypedElement {
wstring value ()

          raises (Reflective::MofError);
      void set_value (in wstring new_value)
         raises (Reflective::MofError);
   };

3.4.28 Tag

Tags provide a light-weight extension mechanism that allows mapping, vendor, an
even customer specific information to be added to, or associated with a meta-mode
essence, Tags are arbitrary name / value pairs that can be attached to instances o
ModelElements.

This Attribute gives the literal value of the constant encoded as text. The syntax
for encoding literal values of the standard MOF primitive data types is given in
Section 3.10, “The PrimitiveTypes Package. Other encodings are mapping, vendo
or user specific.

type String

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-63



3

ther
e or
ed

is:

ags

ser
If a
els

refix

Here

the

e
its
el.
d
the
A Tag has an attribute called “tagId” that denotes a category of meaning, and ano
attribute called “values” that parameterizes that meaning. Each Tag is related to on
more ModelElements by the AttachesTo Association. The Tag need not be contain
within the meta-model of the ModelElement it “tags.”

The MOF specification does not generally define the values for the “tagId” or the
application specific categories of meaning that they denote. The exception to this

• Section 5.6, “Standard Tags for the IDL Mapping,” on page 5-39 defines some T
that tailor the IDL produced by the IDLmapping.

Since “tagId” values are not standardized, there is a risk that different vendors or u
organizations will use the same values to denote different categories of meaning.
“tagId” value is used to mean different things, problems can arise when meta-mod
using the value are exchanged.

To avoid such Tag collisions, it is recommended that “tagId” values should use the
following scheme based on Java package naming. Each value should start with a p
formed by reversing the Internet domain name of a “tagId” naming authority. This
should be followed by a locally unique component. For instance, this might be a
standard or product name followed by a name or names that denotes the meaning.
are some examples:

  "org.omg.mof.idl_prefix"

  "org.omg.mof.some_tag"

  "com.rational.rose.screen_position"

  "au.edu.dstc.elvin.event_type"

It is also recommended that “tagId” values should be spelled in all lower case using
underscore (“_”) character as a word separator.

Note – In defining new Tag categories, the meta-modeler should take account of th
fact that the MOF Model has no Reference for navigating from a ModelElement to
attached Tags. This allows one to attach Tags to elements of a “frozen” meta-mod
On the other hand, it makes it harder for a “client” of the meta-model objects to fin
the Tags for an element. One option is to require relevant Tags to be Contained by
elements they AttachTo, or their parents.

SuperClasses

ModelElement
3-64 OMG-Meta Object Facility, v1.4 April 2002



3

Attributes

tagId

values

References

elements

IDL

interface TagClass : ModelElementClass {
      readonly attribute TagSet all_of_type_tag;
      readonly attribute TagSet all_of_class_tag;

      Tag create_tag (
            /* from ModelElement */in wstring name,
            /* from ModelElement */in wstring annotation,
           /* from Tag */  in wstring tag_id,
           /* from Tag */  in ::PrimitiveTypes::WStringList values)
         raises (Reflective::MofError);
}; // end of interface TagClass

   interface Tag : TagClass, ModelElement {
wstring tag_id ()

raises (Reflective::MofError);
void set_tag_id (in wstring new_value)

raises (Reflective::MofError);
::PrimitiveTypes::WStringList values ()

Gives the category of meaning for the Tag. The values for this attribute and their
associated meanings are not standardized here. See discussion above.

type: String

multiplicity: exactly one

Carries additional information (e.g., “parameters”) associated with the Tag. The
encoding of parameters as String values is tagId specific.

type: String

multiplicity: zero or more; ordered; not unique

The ModelElement or ModelElements that this Tag is attached to.

class: ModelElement

defined by: AttachesTo::modelElement

multiplicity: one or more
April 2002 OMG-MOF, v1.4: MOF Model Classes 3-65



3

has

e

raises (Reflective::MofError);
void set_values (in ::PrimitiveTypes::WStringList new_value)

raises (Reflective::MofError);
void add_values (in wstring new_element)

raises (Reflective::MofError);
void add_values_at(in wstring new_element, in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);
void modify_values (in wstring old_element, in wstring new_element)

raises (Reflective::NotFound, Reflective::MofError);
void modify_values_at(in wstring new_element, in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);
void remove_values (in wstring old_element)

raises (Reflective::NotFound, Reflective::MofError);
void remove_values_at(in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);
ModelElementUList elements ()

         raises (Reflective::MofError);
void set_elements (in ModelElementUList new_value)

          raises (Reflective::MofError);
      void add_elements (in ModelElement new_element)
          raises (Reflective::MofError);
      void add_elements_before (in ModelElement new_element, in ModelElement
before_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_elements (in ModelElement old_element, in ModelElement
new_element)
         raises (Reflective::NotFound, Reflective::MofError);
     void remove_elements (in ModelElement old_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5 MOF Model Associations

3.5.1 Contains

A meta-model is defined through a composition of ModelElements. A Namespace
defines a ModelElement that composes other ModelElements. Since Namespace
several subclasses, there is a sizable combinatorial set of potential Namespace-
ModelElement pairings. However, some of these pairings are not appropriate for
building an object-oriented meta-model, such as a Class containing a Package (se
Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-14). This
approach factors the container mechanisms into one abstraction, and allows the
greatest flexibility for future changes to the MOF Model.
3-66 OMG-Meta Object Facility, v1.4 April 2002



3

Ends

container

containedElement

IDL

interface Contains : Reflective::RefAssociation {
ContainsLinkSet all_contains_links ()

raises (Reflective::MofError);
boolean exists (in Namespace container, in ModelElement contained_element)

         raises (Reflective::MofError);
Namespace container (in ModelElement contained_element)

         raises (Reflective::MofError);
ModelElementUList contained_element (in Namespace container)

         raises (Reflective::MofError);
void add (in Namespace container, in ModelElement contained_element)

          raises (Reflective::MofError);
void add_before_contained_element (in Namespace container,

                                          in ModelElement contained_element,
                                          in ModelElement before)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_container (in Namespace container,
 in ModelElement contained_element,
 in Namespace new_container)

         raises (Reflective::NotFound, Reflective::MofError);
void modify_contained_element (in Namespace container,

                                      in ModelElement contained_element,
                                      in ModelElement new_contained_element)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in Namespace container, in ModelElement contained_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

Each Namespace is a composition of zero or more ModelElements.

class: Namespace

multiplicity: zero or one

aggregation: Namespace forms a composite aggregation of
ModelElements.

Each ModelElement, with the exception of top-level packages participates in the
association as a containedElement.

class: ModelElement

multiplicity: Zero or more; ordered.
April 2002 OMG-MOF, v1.4: MOF Model Associations 3-67



3

hip).
3.5.2 Generalizes

The Association defined on GeneralizableElement. A Link of this Association
represents a supertype/subtype relationship (or a generalizes/specializes relations

Ends

supertype

subtype

IDL

interface Generalizes : Reflective::RefAssociation {
      GeneralizesLinkSet all_generalizes_links ()

raises (Reflective::MofError);
      boolean exists (in GeneralizableElement supertype,
                      in GeneralizableElement subtype)
         raises (Reflective::MofError);
      GeneralizableElementUList supertype (in GeneralizableElement subtype)
         raises (Reflective::MofError);
      GeneralizableElementSet subtype (in GeneralizableElement supertype)
         raises (Reflective::MofError);

void add (in GeneralizableElement supertype,
                in GeneralizableElement subtype)
         raises (Reflective::MofError);
      void add_before_supertype (in GeneralizableElement supertype,
                                 in GeneralizableElement subtype,
                                 in GeneralizableElement before)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_supertype (in GeneralizableElement supertype,
 in GeneralizableElement subtype,
 in GeneralizableElement new_supertype)

         raises (Reflective::NotFound, Reflective::MofError);
      void modify_subtype (in GeneralizableElement supertype,

 in GeneralizableElement subtype,
 in GeneralizableElement new_subtype)

The GeneralizableElement that is more general is the supertype.

class: GeneralizabelElement

multiplicity: Zero or more (a GeneralizableElement may have zero or
more supertypes); ordered.

The subtype is the GeneralizableElement that is more specific. The supertype
Generalizes the subtype.

class: GeneralizableElement

multiplicity: Zero or more (a GeneralizableElement may have zero
or more subtypes).
3-68 OMG-Meta Object Facility, v1.4 April 2002



3

nces
ill be
d.
         raises (Reflective::NotFound, Reflective::MofError);
      void remove (in GeneralizableElement supertype,
                   in GeneralizableElement subtype)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.3 RefersTo

A Reference derives most of its state from the AssociationEnd that it is linked to,
based on this Association. For a Class defined with a Reference, each of its insta
can be used to access the referenced object or objects. Those referenced objects w
of the Class defined by this referencedEnd AssociationEnd, playing the defined en

Ends

referent

referencedEnd

IDL

interface RefersTo : Reflective::RefAssociation {
RefersToLinkSet all_refers_to_links ()

raises (Reflective::MofError);
boolean exists (in Reference referent, in AssociationEnd referenced_end)

         raises (Reflective::MofError);
ReferenceSet referent (in AssociationEnd referenced_end)

         raises (Reflective::MofError);
AssociationEnd referenced_end (in Reference referent)

         raises (Reflective::MofError);
void add (in Reference referent, in AssociationEnd referenced_end)

         raises (Reflective::MofError);
void modify_referent (in Reference referent,

 in AssociationEnd referenced_end,
 in Reference new_referent)

The Reference that is providing the reference through which instances playing the
end-defined by the AssociationEnd can be accessed.

class: Reference

multiplicity: Zero or more; not ordered (an AssociationEnd may or
may not be used by any number of References).

The AssociationEnd which provides the majority of information for the Reference,
including the LinkEnds that supply the referenced instances.

class: AssociationEnd

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Associations 3-69



3

olds
nce

s:

r

         raises (Reflective::NotFound, Reflective::MofError);
void modify_referenced_end (in Reference referent,

 in AssociationEnd referenced_end,
 in AssociationEnd new_referenced_end)

         raises (Reflective::NotFound, Reflective::MofError);
void remove (in Reference referent, in AssociationEnd referenced_end)

         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.4 Exposes derived

A Reference defines a reference for a Class. For an instance of that class, which h
one or more links to some object or objects conforming to the reference, the insta
will be playing the role (end) defined by the AssociationEnd in this Association.

Ends

referrer

exposedEnd

Derivation

See [S-13]. For a given Reference, the Link of this Association is derived as follow

• The referrer’s Reference is the given Reference.

• The exposedEnd’s AssociationEnd is the given Reference’s referent’s containe
Association’s other AssociationEnd.

The Reference that is providing the exposedEnd’s class instances within the
Reference’s Classifier.

class: Reference

multiplicity: Zero or more; not ordered (an AssociationEnd may or
may not be used by any number of References).

changeable: yes

The AssociationEnd representing the Reference’s owning Classifier’s end in the
Association.

class: AssociationEnd

multiplicity: exactly one

changeable: yes
3-70 OMG-Meta Object Facility, v1.4 April 2002



3

the
IDL

interface Exposes : Reflective::RefAssociation {
ExposesLinkSet all_exposes_links ()

raises (Reflective::MofError);
boolean exists (in Reference referrer, in AssociationEnd exposed_end)

         raises (Reflective::MofError);
ReferenceSet referrer (in AssociationEnd exposed_end)

         raises (Reflective::MofError);
AssociationEnd exposed_end (in Reference referrer)

         raises (Reflective::MofError);
void add (in Reference referrer, in AssociationEnd exposed_end)

          raises (Reflective::MofError);
void modify_referrer (in Reference referrer,

 in AssociationEnd exposed_end,
 in Reference new_referrer)

         raises (Reflective::NotFound, Reflective::MofError);
void modify_exposed_end (in Reference referrer,

 in AssociationEnd exposed_end,
 in AssociationEnd new_exposed_end)

         raises (Reflective::NotFound, Reflective::MofError);
void remove (in Reference referrer, in AssociationEnd exposed_end)

         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.5 IsOfType

A Link between a TypedElement subclass and a Classifier supports the definition of
TypedElement.

Ends

type

typedElements

The type defining the TypedElement.

class: Classifier

multiplicity: exactly one

The set of typed elements supported by a Classifier.

class: TypedElement

multiplicity: zero or more
April 2002 OMG-MOF, v1.4: MOF Model Associations 3-71



3

IDL

interface IsOfType : Reflective::RefAssociation {
      IsOfTypeLinkSet all_is_of_type_links ()

raises (Reflective::MofError);
boolean exists (in Classifier type, in TypedElement typed_elements)

         raises (Reflective::MofError);
Classifier type (in TypedElement typed_elements)

         raises (Reflective::MofError);
TypedElementSet typed_elements (in Classifier type)

         raises (Reflective::MofError);
void add (in Classifier type, in TypedElement typed_elements)

          raises (Reflective::MofError);
void modify_type (in Classifier type,

 in TypedElement typed_elements,
 in Classifier new_type)

         raises (Reflective::NotFound, Reflective::MofError);
void modify_typed_elements (in Classifier type,

 in TypedElement typed_elements,
 in TypedElement new_typed_elements)

         raises (Reflective::NotFound, Reflective::MofError);
void remove (in Classifier type, in TypedElement typed_elements)

         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.6 CanRaise

Relates Operations to the Exceptions that they can raise.

Ends

operation

except

Given an Exception, the set of Operations which can Raise that Exception.

class: Operation

multiplicity: Zero or more (an Exception may be defined that is not
currently used by any Operation; an Exception may
be raised by multiple Operations).

The set of Exceptions for an Operation.

class: Exception

multiplicity: Zero or more (an Operation may be defined to raise
no exception, or multiple exceptions); ordered (an
Operation's Exceptions are ordered).
3-72 OMG-Meta Object Facility, v1.4 April 2002



3

IDL

interface CanRaise : Reflective::RefAssociation {
CanRaiseLinkSet all_can_raise_links ()

raises (Reflective::MofError);
boolean exists (in ::Model::Operation operation, in MofException except)

         raises (Reflective::MofError);
OperationSet operation (in MofException except)

         raises (Reflective::MofError);
MofExceptionUList except (in ::Model::Operation operation)

         raises (Reflective::MofError);
void add (in ::Model::Operation operation, in MofException except)

         raises (Reflective::MofError);
void add_before_except (in ::Model::Operation operation,

                              in MofException except,
                              in MofException before)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_operation (in Operation operation,
                             in MofException except,
                             in Operation new_operation)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_except (in ::Model::Operation operation,
                          in MofException except,
                          in MofException new_except)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in ::Model::Operation operation, in MofException except)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.7 Aliases

An Import aliases or imports a single Namespace.

Ends

importer

imported

A Namespace may be aliased by an Import, which is the importer.

class: Import

multiplicity: Zero or more (a Namespace may not be aliased, or
may be aliased by multiple Imports).

The Namespace that an Import imports or aliases.

class: Namespace

multiplicity: exactly one
April 2002 OMG-MOF, v1.4: MOF Model Associations 3-73



3

IDL

interface Aliases : Reflective::RefAssociation {
AliasesLinkSet all_aliases_links ()

raises (Reflective::MofError);
boolean exists (in Import importer, in Namespace imported)

         raises (Reflective::MofError);
ImportSet importer (in Namespace imported)

         raises (Reflective::MofError);
Namespace imported (in Import importer)

         raises (Reflective::MofError);
void add (in Import importer, in Namespace imported)

         raises (Reflective::MofError);
void modify_importer (in Import importer,

                            in Namespace imported,
                            in Import new_importer)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_imported (in Import importer,
                            in Namespace imported,
                            in Namespace new_imported)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in Import importer, in Namespace imported)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.8 Constrains

Each Constraint constrains one or more ModelElements.

Ends

constraint

constrainedElement

A Constraint that constrains a ModelElement.

class: Constraint

multiplicity: Zero or more (a ModelElement need not be
constrained, but could be constrained by more than
one Constraint).

The ModelElements that a Constraint holds its constraint against.

class: ModelElement

multiplicity: One or more (a Constraint must constrain at least one
ModelElement).
3-74 OMG-Meta Object Facility, v1.4 April 2002



3

f

low.

ely

ends
only
IDL

interface Constrains : Reflective::RefAssociation {
ConstrainsLinkSet all_constrains_links ()

raises (Reflective::MofError);
boolean exists (in ::Model::Constraint constraint,

                      in ModelElement constrained_element)
         raises (Reflective::MofError);

ConstraintSet constraint (in ModelElement constrained_element);
         raises (Reflective::MofError)

ModelElementSet constrained_element (in ::Model::Constraint constraint)
         raises (Reflective::MofError);

void add (in ::Model::Constraint constraint,
                in ModelElement constrained_element)
         raises (Reflective::MofError);

void modify_constraint (in ::Model::Constraint constraint,
                               in ModelElement constrained_element,
                               in Constraint new_constraint)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_constrained_element (in ::Model::Constraint constraint,
                                       in ModelElement constrained_element,
                                       in ModelElement new_constrained_element)
         raises (Reflective::NotFound, Reflective::MofError);

void remove (in ::Model::Constraint constraint,
                   in ModelElement constrained_element)
         raises (Reflective::NotFound, Reflective::MofError);
   };

3.5.9 DependsOn derived

DependsOn is a derived Association that allows a client to identify the collection o
ModelElements on which a given ModelElementstructurallydepends. The Association
is derived from a number of other Associations in the MOF Model, as described be

Note –The model of dependency that is embodied in this Association is based sol
on the structural relationships within a meta-model. In some cases, the structural
dependencies have clear semantic parallels (e.g., the meaning of an Attribute dep
on its type). In other cases the semantic parallel is more tenuous (e.g., a DataType
semantically depends on its container in the context of type identity).
April 2002 OMG-MOF, v1.4: MOF Model Associations 3-75



3

Ends

dependent

provider

Derivation

See [S-14]. A ModelElement (ME) depends on:

• “container” - its container Namespace from ModelElement::container

• “constraint” - any Constraints from ModelElement::constraints.

• “contents” - if ME is a Namespace, its contents from Namespace::contents.

• “specialization” - if ME is a GeneralizableElement, its supertypes from
GeneralizableElement::supertypes.

• “import” if ME is an Import, the imported Package or Class from
Import::importedNamespace.

• “signature” - if ME is an Operation, the Exceptions it raises from
Operation::exceptions.

• “type definition” - if ME is a TypedElement, the Classifier from
TypedElement::type.

• “referenced ends” - if ME is a Reference, the two AssociationEnds from
Reference::referencedEnd and Reference::exposedEnd.

• “constrained elements” - if ME is a Constraint, the elements it constrains from
Constraint::constrainedElements.

This End is occupied by ModelElements thatstructurally depend on the
ModelElement at the other End.

class: ModelElement

multiplicity: Zero or more (a ModelElement can have no
ModelElement depend on it, or many may depend on
it).

changeable: no

This End is occupied by ModelElements that have other ModelElements that
structurally depend on them.

class: ModelElement

multiplicity: Zero or more (a ModelElement can depend on no
other ModelElements or multiple ModelElements).

changeable: no
3-76 OMG-Meta Object Facility, v1.4 April 2002



3

ags
he
h

• “tagged elements” - if ME is a Tag, the elements it is attached to from
Tag::elements.

IDL

interface DependsOn : Reflective::RefAssociation {
DependsOnLinkSet all_depends_on_links ()

raises (Reflective::MofError);
boolean exists (in ModelElement dependent, in ModelElement provider)

         raises (Reflective::MofError);
ModelElementSet dependent (in ModelElement provider)

         raises (Reflective::MofError);
ModelElementSet provider (in ModelElement dependent)

         raises (Reflective::MofError);
};

3.5.10 AttachesTo

This association represents Tags attached to ModelElements. A ModelElement's T
are ordered, although the ordering may not be of any significance, depending on t
meaning of the Tags. Ordering is preserved in case some Tags, in conjunction wit
some defined semantics, requires an ordering.

Ends

modelElement

tag

IDL

interface AttachesTo : Reflective::RefAssociation {
AttachesToLinkSet all_attaches_to_links ()

raises (Reflective::MofError);
boolean exists (in ModelElement model_element, in ::Model::Tag tag)

The ModelElements that an attached Tag describes, modifies, or otherwise
associates.

class: ModelElement

multiplicity: One or more (a Tag must be attached to at least one
ModelElement).

The set of Tags attached to a ModelElement.

class: Tag

multiplicity: Zero or more (a ModelElement need not have a Tag),
ordered.
April 2002 OMG-MOF, v1.4: MOF Model Associations 3-77



3

d in

d

tal.
n of
         raises (Reflective::MofError);
ModelElementSet model_element (in ::Model::Tag tag)

         raises (Reflective::MofError);
TagUList tag (in ModelElement model_element)

         raises (Reflective::MofError);
void add (in ModelElement model_element, in ::Model::Tag tag)

          raises (Reflective::MofError);
void add_before_tag (in ModelElement model_element,

 in ::Model::Tag tag,
 in Tag before)

         raises (Reflective::NotFound, Reflective::MofError);
void modify_model_element (in ModelElement model_element,

                                  in ::Model::Tag tag,
                                  in ModelElement new_model_element)
         raises (Reflective::NotFound, Reflective::MofError);

void modify_tag (in ModelElement model_element,
 in ::Model::Tag tag,
 in Tag new_tag)

         raises (Reflective::NotFound, Reflective::MofError);
void remove (in ModelElement model_element, in ::Model::Tag tag)

         raises (Reflective::NotFound, Reflective::MofError);
   };

3.6 MOF Model Data Types

The following data types are part of the MOF Model. Each data type is represente
the MOF Model as an instance of the appropriate DataType subclass.

3.6.1 PrimitiveTypes used in the MOF Model

The only PrimitiveType instances used in the MOF Model are Boolean, Integer, an
String. These are specified in Section 3.10, “The PrimitiveTypes Package.

Note –The PrimitiveTypes package defines 6 standard PrimitiveType instances in to
The other three instances (Long, Float, and Double) are not used in the specificatio
the MOF Model as an instance of itself.

3.6.2 MultiplicityType

MultiplicityType is a structure (record) type that is used to specify the multiplicity
properties of an Attribute, Parameter, Reference, or AssociationEnd.
3-78 OMG-Meta Object Facility, v1.4 April 2002



3

e.
Fields

lower

upper

isOrdered

isUnique

Constraints

[The “lower” bound of a MultiplicityType to be “Unbounded.” [C-54]]

[The “lower” bound of a MultiplicityType cannot exceed the “upper” bound. [C-55]]

[The “upper” bound of a MultiplicityType cannot be less than 1. [C-56]]

[If a MultiplicityType specifies bounds of [0..1] or [1..1]), the “is_ordered” and
“is_unique” values must be false. [C-57]]

IDL

struct MultiplicityType {
long lower;
long upper;
boolean isOrdered;

This field gives the lower bounds on the number of elements allowed for the
Attribute, Parameter, Reference, or AssociationEnd.

type: Integer

This field gives the upper bounds on the number of elements allowed for the
Attribute, Parameter, Reference, or AssociationEnd. A value of Unbounded (see
Section 3.8.1, “Unbounded,” on page 3-82) indicates that there is no upper bound
on the number of elements.

type: Integer

This flag indicates whether the order of the elements corresponding to the
Attribute, Parameter, Reference, or AssociationEnd has any semantic significanc

type: Boolean

This flag indicates whether or not the elements corresponding to the Attribute,
Parameter, Reference, or AssociationEnd are required (or guaranteed) to be
unique.

type: Boolean
April 2002 OMG-MOF, v1.4: MOF Model Data Types 3-79



3

t

so

ble

ion
boolean isUnique;
};

const string LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED =
"org.omg:constraint.model.multiplicity_type.lower_cannot_be_negative_or_unbounded";

const string LOWER_CANNOT_EXCEED_UPPER =
"org.omg:constraint.model.multiplicity_type.lower_cannot_exceed_upper";

const string UPPER_MUST_BE_POSITIVE =
"org.omg:constraint.model.multiplicity_type.upper_must_be_positive";

const string MUST_BE_UNORDERED_NONUNIQUE =
"org.omg:constraint.model.multiplicity_type.must_be_unordered_nonunique";

3.6.3 VisibilityKind

This data type enumerates the three possible kinds of visibility for a ModelElemen
outside of its container. These are:

1. “public_vis,” which allows anything that can use ModelElement’s container to al
use the ModelElement.

2. “protected_vis,” which allows use of the ModelElement within containers that
inherits from this one’s container.

3. “private_vis,” which denies all outside access to the ModelElement.

Note –The rules governing visibility of ModelElements in the MOF are yet to be
specified. As an interim measure, all ModelElements are deemed to be visible,
irrespective of the “visibility” attribute settings. The IDL mapping specification
includes minimal preconditions on visibility to ensure that generated IDL is compila
(see Section 5.5, “Preconditions for IDL Generation,” on page 5-37).

IDL

enum VisibilityKind {public_vis, private_vis, protected_vis};

3.6.4 DirectionKind

DirectionKind enumerates the possible directions of information transfer for Operat
and Exception Parameters.

IDL

enum DirectionKind {in_dir, out_dir, inout_dir, return_dir};

3.6.5 ScopeKind

ScopeKind enumerates the possible “scopes” for Attributes and Operations.
3-80 OMG-Meta Object Facility, v1.4 April 2002



3

”
OF

d
in

to

ed.
IDL

enum ScopeKind {instance_level, classifier_level};

3.6.6 AggregationKind

AggregationKind enumerates the possible aggregation semantics for Associations
(specified via AssociationEnds).

Note –Aggregation semantics in the MOF is intended to be aligned with UML.
Unfortunately, the OMG UML specification does not define the meaning of “shared
aggregation for UML. As an interim measure, the use of “shared” aggregation in M
meta-models is discouraged.

IDL

enum AggregationKind {none, shared, composite};

3.6.7 EvaluationKind

EvaluationKind enumerates the possible models for Constraint evaluation.

Container

Constraint

IDL

enum EvaluationKind {immediate, deferred};

3.7 MOF Model Exceptions

The following exceptions are contained in the MOF Model Package. The generate
IDL interfaces for the MOF Model make use of more exceptions, which are defined
the Reflective Package (see the Reflective Type Packages chapter) and assigned
operations based on criteria determinable during generation.

3.7.1 NameNotFound

TheNameNotFound exception is raised when a lookup of a simple name has fail

parameters

name : out String
April 2002 OMG-MOF, v1.4: MOF Model Exceptions 3-81



3

ce or

as

e

e

her

er
l,”
The name parameter gives the string value that could not be found in the Namespa
extended Namespace searched by the operation.

Container

Namespace

3.7.2 NameNotResolved

TheNameNotResolved exception is raised when resolution of a qualified name h
failed.

parameters

The restOfName parameter contains that part of the qualified name that was not
resolved. The explanation parameter can have the following values with the
corresponding interpretation:

• “InvalidName”: the first name in restOfName was malformed.

• “MissingName”: the first name in restOfName could not be resolved as no nam
binding exists for that name.

• “NotNameSpace”: the first name in restOfName did not resolve to a NameSpac
when a NameSpace was expected.

• “CannotProceed”: the first name in restOfName could not be resolved (for any ot
reason).

Container

Namespace

3.8 MOF Model Constants

The following Constants form part of the MOF Model.

3.8.1 Unbounded

This constant is used in the context of MultiplicityType to represent an unlimited upp
bound on a cardinality (see Section 3.6.1, “PrimitiveTypes used in the MOF Mode
on page 3-78). Its type is Integer.

Container

Model

explanation : out String
restOfName : out String (multiplicity: zero or more; ordered; not unique)
3-82 OMG-Meta Object Facility, v1.4 April 2002



3

.

r kind

-75

are
ey

r in
IDL

const long UNBOUNDED = -1;

3.8.2 The Standard DependencyKinds

These constants (ContainerDep, ContentsDep, SignatureDep, ConstraintDep,
ConstrainedElementsDep, SpecializationDep, ImportDep, TypeDefinitionDep,
ReferencedEndsDep, TaggedElementsDep, IndirectDep, and AllDep) denote the
standard dependency categories and pseudo-categories. Their types are all String

When a ModelElement depends on a second model element under one kind of
dependency; and the second model element depends on a third under some othe
of dependency; then the first ModelElement depends on the third ModelElement.
However, the kind of dependency cannot be specified, based on the other two
dependency kinds, except to categorize the dependency as indirect.

Refer to “ModelElement” on page 3-15 and Section 3.5.9, “DependsOn,” on page 3
for detailed explanations.

Container

ModelElement

IDL

const wstring CONTAINER_DEP = "container";
const wstring CONTENTS_DEP = "contents";
const wstring SIGNATURE_DEP = "signature";
const wstring CONSTRAINT_DEP = "constraint";
const wstring CONSTRAINED_ELEMENTS_DEP = "constrained elements";
const wstring SPECIALIZATION_DEP = "specialization";
const wstring IMPORT_DEP = "import";
const wstring TYPE_DEFINITION_DEP = "type definition";
const wstring REFERENCED_ENDS_DEP = "referenced ends";
const wstring TAGGED_ELEMENTS_DEP = "tagged elements";
const wstring INDIRECT_DEP = "indirect";
const wstring ALL_DEP = "all";

3.9 MOF Model Constraints

3.9.1 MOF Model Constraints and other M2 Level Semantics

This section defines the semantic constraints that apply to the MOF Model. These
expressed as M2-level Constraints and are formally part of the MOF Model (i.e., th
are a required part of a representation of the MOF Model as MOF meta-objects o
the MOF Model / XMI interchange format).
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-83



3

ns,
of
s

does

nt
re,

L

n:

t.

ta-
.

e

.

ent

M3-
The section also provides OCL semantic specifications for most M2-level Operatio
derived Attributes, and derived Associations in the MOF Model, and for a collection
“helper” functions used by them and the Constraints. These semantic specification
need not be present in a representation of the MOF Model. Indeed, this document
not specify how they should be represented.

Note –The use of OCL in the MOF Model specification does not imply a requireme
to use OCL evaluation as part of a MOF Model server’s implementation. Furthermo
if that approach is used, it is anticipated that the implementor may rewrite the OC
rules to make evaluation more efficient. For example, the Constraint OCL could be
rewritten as pre-conditions on the appropriate mapped update operations.

3.9.2 Notational Conventions

3.9.2.1 Notation for MOF Model Constraints

The M2-level Constraints on the MOF Model are described in the following notatio

[C-xxx] ConstraintName
evaluation policy: immediate or deferred
description: brief english description

context  SomeClassifierName
inv : ...

The meaning of the above is as follows:

• “[C-xxx]” is the cross reference tag for the Constraint used elsewhere in this
document.

• “ConstraintName” is the name for the Constraint in the MOF Model. The IDL
mapping uses this name to produce the MofError “kind” string for the Constrain
These strings appear in the generated IDL for the MOF Model, as described in
Section 5.8.17, “Constraint Template,” on page 5-97.

• The “evaluation policy” states whether the Constaint should be checked on any
relevant update operation, or whether checking should be deferred until full me
model validation is triggered. It defines the Constraint’s “evaluationPolicy” value

• The “description” is a brief non-normative synopsis of the Constraint. It could b
used as the Constraint’s “annotation” value.

• The OCL for the Constraint is defined using the OCL syntax defined in UML 1.3

The OCL for the Constraints start with a “context” clause that names a ModelElem
in the MOF Model. This serves two purposes:

1. It defines the context in which the OCL constraint should be evaluated (i.e., the
level Class or DataType whose instances are constrained by the OCL).

2. It defines the “constrainedElements” and “container” for the Constraint.
3-84 OMG-Meta Object Facility, v1.4 April 2002



3

not

s or

f
or
n if

ion

on

ed

he

on
an

n(s)
t-
While the OCL for the Constraints are mostly expressed as invariants, this should
be taken literally. Instead, the Constraint OCL should be viewed as:

• a pre-condition on the relevant IDL operations for “immediate” Constraints, or

• a part of the specification of ModelElement’s “verify” Operation for “deferred”
Constraints.

The Constraints in the MOF Model are expressed as restrictions on either Classe
DataTypes. Each one applies to (“Constrains”) a single Classifier, and each one is
defined to be contained by the Classifier that it applies. The “language” attribute o
each Constraint is either “MOF-OCL” (for those with complete OCL specifications)
“Other.” The “expression” attribute should be the normative OCL defined here, eve
different (but equivalent) OCL is used in a MOF Model server’s implementation.

3.9.2.2 Notation for Operations, derived Attributes and derived Associat

The semantics of M2-level Operations, derived Attributes, and derived Associations
the MOF Model are described in the following notation:

[O-xxx] ModelElementName
kind: classification
description: brief english description

context  ClassifierName::OperationName(...) : ...
post : result  = ...

or

context  ClassName::AttributeName() : ...
post : result  = ...

or

context  ClassName::ReferenceName() : ...
post : result  = ...

The meaning of the above is as follows:

• “[O-xxx]” is the cross reference tag for the semantic description that may be us
elsewhere in this document.

• “ModelElementName” is the name of the Attribute, Operation, or Association in t
MOF Model whose semantics is described.

• The “classification” describes the kind of the ModelElement (e.g., “readonly
derived Attribute” or “query Operation”).

• The “description” is a brief non-normative synopsis of the semantics.

• The OCL is expressed using the OCL syntax defined in the UML 1.4 specificati
(ad/01-02-14). The “context” clause names an “abstract” operation or method on
M1 level interface whose semantics is specified. The name of the real operatio
or method(s) will depend on the mapping. The semantics are expressed as pos
conditions for these methods.
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-85



3

e

able

CL

ss

the
by

d
ed
link
the
3.9.2.3 Notation for Helper Functions.

OCL Helper Functions are described in the following notation:

[S-xxx] HelperName
description: brief english description

context  ClassifierName::HelperName(...) : ...
post : result  = ...

The meaning of the above is as follows:

• “[S-xxx]” is the cross reference tag for the helper function that may be used
elsewhere in this document.

• “HelperName” is the name of the Helper Function.

• The “description” is a brief non-normative synopsis of the Helper’s semantics.

• The OCL for the Helper is defined using the OCL syntax defined in UML 1.3. Th
“context” clause names a notional helper function on a ModelElement whose
semantic is then specified. These notional functions are not intended to be call
by client code.

3.9.3 OCL Usage in the MOF Model specification

The OCL language was designed as a part of the UML specification. As such, the O
semantics are specified in terms of UML concepts and constructs. Some of these
concepts do not match MOF concepts exactly. Accordingly, it is necessary to
reinterpret parts of the OCL specification so that it can be used in MOF Model’s
Constraints and other semantics aspects of the MOF Model.

3.9.3.1 UML AssociationEnds versus MOF References

In the UML version of OCL, the dot (“.”) and arrow (“->”) operators are used to acce
Attribute values, and to navigate Associations. Consider an OCL expression of the
form:

<expr> “.” <identifier>

Assuming that “<expr>” evaluates to an object, the value of the expression is either
value of an Attribute named “<identifier>” for the object or another object obtained
navigating a link in a binary Association which has “<identifier>” as an Association
End name.

In this context (i.e., the definition of the MOF Model), the “<identifier>” is interprete
differently. In the MOF Model, the interfaces for navigating Associations are specifi
using References rather than AssociationEnds. Thus in the MOF version of OCL,
navigation is expressed using the name of a Reference for the “<expr>” object as
“<identifier>”. However, the overall meaning is analogous to the UML case.
3-86 OMG-Meta Object Facility, v1.4 April 2002



3

m:

l
ny
t all

ns
ss
is

ns
an

s
e in

en
kes

s
with
L
n

3.9.3.2 Helper functions are not MOF Operations

In the UML version of OCL, object behavior is invoked by an expression of the for

<expr> “.” <identifier> “(“ ... “)”

where “<identifier>” names a UML Operation or Method on the object obtained by
evaluating “<expr>.”

In the MOF Model specification, the above expression invokes behavior defined by
either a MOF Operation, or a helper function. The distinction between conventiona
UML and its usage here is that helper functions have no defined connection with a
internal or external interfaces in a MOF Model server. Indeed, they need not exist a
as implementation artifacts.

3.9.3.3 Post-conditions on MOF Model objects

Rules [C-2], [C-3], and [C-4] are intended to define post-conditions on all operatio
on ModelElement objects. This is expressed in the MOF Model OCL by giving a Cla
rather than an Operation as the “context” for the OCL rules. It is not clear that this
allowed by UML OCL.

3.9.3.4 OCL evaluation order

The UML OCL specification does not define an evaluation order for OCL expressio
in general, and for boolean operators in particular. This is OK when OCL is used as
abstract specification language, as it is in the UML specification. However it cause
problems when OCL expressions may be directly evaluated. These problems aris
OCL that traverses cyclic graphs (e.g., [O-1]) or raises exceptions (e.g., [S-6]).

The MOF Model semantic specification touches on some of these issues (e.g., wh
traversing a cyclical Imports graph). Therefore, the MOF Model usage of OCL ma
the following assumptions about OCL expression evaluation order:

• In general, a MOF OCL expression is assumed to be evaluated by evaluating it
sub-expressions in order, starting with the leftmost sub-expression and ending
the rightmost. The sub-expressions are delimited according to the standard OC
operator precedence rules. If evaluation of one of the sub-expressions raises a
exception, the remaining sub-expressions are not evaluated.

• The above does not apply to the boolean operators “and,” “ or,” “ implies,” and “if-
then-else.” These are evaluated with short-circuiting as follows:

• In the expression “<expr1>and <expr2>,” “<expr2>” is only evaluated if
“<expr1>” evaluates to true.

• In the expression “<expr1>or <expr2>,” “<expr2>” is only evaluated if
“<expr1>” evaluates to false.

• In the expression “<expr1>implies <expr2>,” “<expr2>” is only evaluated if
“<expr1>” evaluates to true.
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-87



3

if

hat
the
e a

(as

t it

t
as

that

ect
be
to
• In the expression “if <expr1>then <expr2>else<expr3>endif,” “<expr2>” is
only evaluated if “<expr1>” evaluates to true, and “<expr3>” is only evaluated
“<expr1>” evaluates to false.

3.9.3.5 “OclType::allInstances”

In UML OCL, the type.allInstances() is defined to return:

“The set of all instances oftypeand all of its subtypes in existence at the
moment in time that the expression is evaluated.”

In the MOF Model OCL, this expression is used to refer to the set of all instances t
exist within a given outermost Package extent. (Any OCL expression that required
enumeration of all instances in existence “anywhere” would be problematical, sinc
MOF repository does not exist in a closed world.)

3.9.3.6 “OclType::references”

The MOF Model OCL in rule Chapter [C-4] assumes that the signature of OclType
defined in the UML OCL specification) is extended to include an operation called
“references.” This is assumed to behave like the “attributes” operation, except tha
returns the names of an (M3-level) Classes’ References.

3.9.3.7 Foreign types and operations

Some of the MOF Model OCL rules make use of types and operations that are no
predefined in OCL, not defined as Operations in the MOF Model, and not defined
Helper functions. Examples include:

• Rule [C-3] makes uses of the CORBA Object::non_existent operation to assert
an object must continue to exist. This would be expressed differently in other
contexts.

• Rules [C-2] and [C-4] use operations defined in the RefObject and RefBaseObj
interfaces to access the meta-objects that represent the MOF Model. It should
understood that this is not intended to imply that a MOF Model server is required
make these objects available at runtime.

3.9.4 The MOF Model Constraints

[C-1] MustBeContainedUnlessPackage

format1: MUST_BE_CONTAINED_UNLESS_PACKAGE

format2: must_be_contained_unless_package

evaluation policy: deferred

description: A ModelElement that is not a Package must have a container.
3-88 OMG-Meta Object Facility, v1.4 April 2002



3

 be
context  ModelElement
inv :

not  self.oclIsTypeOf(Package) implies
self.container -> size = 1

[C-2] FrozenAttributesCannotBeChanged

format1: FROZEN_ATTRIBUTES_CANNOT_BE_CHANGED

format2: frozen_attributes_cannot_be_changed

evaluation policy: immediate

description: The attribute values of a ModelElement which is frozen cannot be
changed.

context  ModelElement
inv:

self. isFrozen () implies
let  myTypes = self .oclType() -> allSupertypes() ->

includes( self .oclType()) in
let  myAttrs : Set(Attribute) =

self .RefBaseObject::refMetaObject() ->
asOclType(Class) ->
findElementsByTypeExtended(Attribute) in

myAttrs -> forAll(a |
self .RefObject::refValue@ pre (a) =

self .RefObject::refValue(a))

[C-3] FrozenElementsCannotBeDeleted

format1: FROZEN_ELEMENTS_CANNOT_BE_DELETED

format2: frozen_elements_cannot_be_deleted

evaluation policy: immediate

description: A frozen ModelElement which is in a frozen Namespace can only
deleted, by deleting the Namespace.

context  ModelElement
post :

( self .isFrozen@ pre () and
self .container@ pre  -> notEmpty and
self .container.isFrozen@ pre ()) implies

( self .container.Object::non_existent() or
 not self .Object::non_existent())
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-89



3

other
[C-4] FrozenDependenciesCannotBeChanged

format1: FROZEN_DEPENDENCIES_CANNOT_BE_CHANGED

format2: frozen_dependencies_cannot_be_changed

evaluation policy: immediate

description: The link sets that express dependencies of a frozen Element on 
Elements cannot be explicitly changed.

context  ModelElement
post :

self. isFrozen () implies
let  myClasses = self .oclType() -> allSupertypes() ->

includes( self .oclType()) in
let myRefs = Set(Reference) =

self .RefBaseObject::refMetaObject() ->
asOclType(Class) ->
findElementsByTypeExtended(Reference) in

let  myDepRefs = myRefs ->
select(r |

Set{“contents”, “constraints”, “supertypes”,
“type”, “referencedEnd”, “exceptions”,
“importedNamespace”, “elements”} ->

includes(r.name)) in
myDepRefs ->

forAll(r |
self .RefObject::refValue@ pre (r) =

self .RefObject::refValue(r))

[C-5] ContentNamesMustNotCollide

format1: CONTENT_NAMES_MUST_NOT_COLLIDE

format2: content_names_must_not_collide

evaluation policy: immediate

description: The names of the contents of a Namespace must not collide.

context  Namespace
inv: self .contents.forAll(

e1, e2 | e1.name = e2.name  implies  r1 = r2)

[C-6] SupertypeMustNotBeSelf

format1: SUPERTYPE_MUST_NOT_BE_SELF

format2: supertype_must_not_be_self

evaluation policy: immediate

description: A Generalizable Element cannot be its own direct or indirect
supertype.
3-90 OMG-Meta Object Facility, v1.4 April 2002



3

d as

t

context  GeneralizableElement
inv : self .allSupertypes() -> forAll(s | s <> self )

[C-7] SupertypeKindMustBeSame

format1: SUPERTYPE_KIND_MUST_BE_SAME

format2: supertype_kind_must_be_same

evaluation policy: immediate

description: A supertypes of a GeneralizableElement must be of the same kin
the GeneralizableElement itself.

context  GeneralizableElement
inv : self .supertypes -> forAll(s | s.oclType() = self .oclType())

[C-8] ContentsMustNotCollideWithSupertypes

format1: CONTENTS_MUST_NOT_COLLIDE_WITH_SUPERTYPES

format2: contents_must_not_collide_with_supertypes

evaluation policy: immediate

description: The names of the contents of a GeneralizableElement should no
collide with the names of the contents of any direct or indirect
supertype.

context  GeneralizableElement
inv :

let  superContents = self .allSupertypes() ->
collect(s | s.contents) in

self .contents ->
forAll(m1 |

   superContents ->
forAll(m2 |

   m1.name = m2.name implies  m1 = m2))

[C-9] DiamondRuleMustBeObeyed

format1: DIAMOND_RULE_MUST_BE_OBEYED

format2: diamond_rule_must_be_obeyed

evaluation policy: immediate

description: Multiple inheritance must obey the “Diamond Rule.”

context  GeneralizableElement
inv :

let  superNamespaces =
self .supertypes -> collect(s | s.extendedNamespace) in

superNamespaces -> asSet -> isUnique(s | s.name)
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-91



3

ny

e to

ent
[C-10] NoSupertypesAllowedForRoot

format1: NO_SUPERTYPES_ALLOWED_FOR_ROOT

format2: no_supertypes_allowed_for_root

evaluation policy: immediate

description: If a Generalizable Element is marked as a “root,” it cannot have a
supertypes.

context  GeneralizableElement
inv : self .isRoot implies self .supertypes -> isEmpty

[C-11] SupertypesMustBeVisible

format1: SUPERTYPES_MUST_BE_VISIBLE

format2: supertypes_must_be_visible

evaluation policy: deferred

description: A GeneralizableElement’s immediate supertypes must all be visibl
it.

context  GeneralizableElement
inv : self .supertypes -> forAll(s | self .isVisible(s))

[C-12] NoSubtypesAllowedForLeaf

format1: NO_SUBTYPES_ALLOWED_FOR_LEAF

format2: no_subtypes_allowed_for_leaf

evaluation policy: immediate

description: A GeneralizableElement cannot inherit from a GeneralizableElem
defined as a “leaf.”

context  GeneralizableElement
inv : self .supertypes -> forAll(s | not  s.isLeaf)

[C-13] AssociationsCannotBeTypes

format1: ASSOCIATIONS_CANNOT_BE_TYPES

format2: associations_cannot_be_types

evaluation policy: immediate

description: An Association cannot be the type of a TypedElement.

context  TypedElement
inv : not self .type.oclIsKindOf(Association)
3-92 OMG-Meta Object Facility, v1.4 April 2002



3

ces,

eton.

 in
[C-14] TypeMustBeVisible

format1: TYPE_MUST_BE_VISIBLE

format2: type_must_be_visible

evaluation policy: deferred

description: A TypedElement can only have a type that is visible to it.

context  TypedElement
inv : self .isVisible( self .type)

[C-15] ClassContainmentRules

format1: CLASS_CONTAINMENT_RULES

format2: class_containment_rules

evaluation policy: immediate

description: A Class may contain only Classes, DataTypes, Attributes, Referen
Operations, Exceptions, Constants, Constraints, and Tags.

context  Class
inv :

Set{Class, DataType, Attribute, Reference, Operation,
Exception, Constant, Constraint, Tag} ->

includesAll( self .contentTypes())

[C-16] AbstractClassesCannotBeSingleton

format1: ABSTRACT_CLASSES_CANNOT_BE_SINGLETON

format2: abstract_classes_cannot_be_singleton

evaluation policy: deferred

description: A Class that is marked as abstract cannot also be marked as singl

context  Class
inv : self .isAbstract implies not self .isSingleton

[C-17] DataTypeContainmentRules

format1: DATA_TYPE_CONTAINMENT_RULES

format2: data_type_containment_rules

evaluation policy: immediate

description: A DataType may contain only TypeAliases, Constraints, Tags (or
the case of StructureTypes) StructureFields.

context  DataType
inv :

if  self.oclIsOfType(StructureType)
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-93



3

ity
then
Set{TypeAlias, Constraint, Tag, StructureField} ->

includesAll( self .contentTypes())
else

Set{TypeAlias, Constraint, Tag} ->
includesAll( self .contentTypes())

[C-18] <Placeholder for a deleted constraint>

[C-19] DataTypesHaveNoSupertypes

format1: DATA_TYPES_HAVE_NO_SUPERTYPES

format2: data_types_have_no_supertypes

evaluation policy: immediate

description: Inheritance / generalization is not applicable to DataTypes.

context DataType
inv : self .supertypes -> isEmpty

[C-20] DataTypesCannotBeAbstract

format1: DATA_TYPES_CANNOT_BE_ABSTRACT

format2: data_types_cannot_be_abstract

evaluation policy: immediate

description: A DataType cannot be abstract.

context DataType
inv : not self .isAbstract

[C-21] ReferenceMultiplicityMustMatchEnd

format1: REFERENCE_MULTIPLICITY_MUST_MATCH_END

format2: reference_multiplicity_must_match_end

evaluation policy: deferred

description: The multiplicity for a Reference must be the same as the multiplic
for the referenced AssociationEnd.

context  Reference
inv : self .multiplicity = self .referencedEnd.multiplicity
3-94 OMG-Meta Object Facility, v1.4 April 2002



3

1

End

nd
[C-22] ReferenceMustBeInstanceScoped

format1: REFERENCE_MUST_BE_INSTANCE_SCOPED

format2: reference_must_be_instance_scoped

evaluation policy: immediate

description: Classifier scoped References are not meaningful in the current M
level computational model.

context  Reference
inv : self .scope = #instance_level

[C-23] ChangeableReferenceMustHaveChangeableEnd

format1: CHANGEABLE_REFERENCE_MUST_HAVE_CHANGEABLE_
END

format2: changeable_reference_must_have_changeable_end

evaluation policy: deferred

description: A Reference can be changeable only if the referenced Association
is also changeable.

context  Reference
inv : self .isChangeable = self .referencedEnd.isChangeable

[C-24] ReferenceTypeMustMatchEndType

format1: REFERENCE_TYPE_MUST_MATCH_END_TYPE

format2: reference_type_must_match_end_type

evaluation policy: deferred

description: The type attribute of a Reference and its referenced AssociationE
must be the same.

context  Reference
inv : self .type = self .referencedEnd.type

[C-25] ReferencedEndMustBeNavigable

format1: REFERENCED_END_MUST_BE_NAVIGABLE

format2: referenced_end_must_be_navigable

evaluation policy: deferred

description: A Reference is only allowed for a navigable AssociationEnd

context  Reference
inv: self. referencedEnd.isNavigable
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-95



3

e of

rom

s.

is
[C-26] ContainerMustMatchExposedType

format1: CONTAINER_MUST_MATCH_EXPOSED_TYPE

format2: container_must_match_exposed_type

evaluation policy: deferred

description: The containing Class for a Reference must be equal to or a subtyp
the type of the Reference’s exposed AssociationEnd.

context  Reference
inv :

self .container.allSupertypes() -> including( self ) ->
includes( self .referencedEnd.otherEnd.type)

[C-27] ReferencedEndMustBeVisible

format1: REFERENCED_END_MUST_BE_VISIBLE

format2: referenced_end_must_be_visible

evaluation policy: deferred

description: The referenced AssociationEnd for a Reference must be visible f
the Reference.

context  Reference
inv : self .isVisible( self .referencedEnd)

[C-28] OperationContainmentRules

format1: OPERATION_CONTAINMENT_RULES

format2: operation_containment_rules

evaluation policy: immediate

description: An Operation may only contain Parameters, Constraints, and Tag

context  Operation
inv :

Set{Parameter, Constraint, Tag} ->
includesAll( self .contentTypes())

[C-29] OperationsHaveAtMostOneReturn

format1: OPERATIONS_HAVE_AT_MOST_ONE_RETURN

format2: operations_have_at_most_one_return

evaluation policy: immediate

description: An Operation may have at most one Parameter whose direction 
“return.”
3-96 OMG-Meta Object Facility, v1.4 April 2002



3

context  Operation
inv :

self .contents ->
select(c | c.oclIsTypeOf(Parameter)) ->

select(p : Parameter | p.direction = #return_dir) ->
size < 2

[C-30] OperationExceptionsMustBeVisible

format1: OPERATION_EXCEPTIONS_MUST_BE_VISIBLE

format2: operation_exceptions_must_be_visible

evaluation policy: deferred

description: The Exceptions raised by an Operation must be visible to the
Operation.

context  Operation
inv :  self .exceptions -> forAll(e | self .isVisible(e))

[C-31] ExceptionContainmentRules

format1: EXCEPTION_CONTAINMENT_RULES

format2: exception_containment_rules

evaluation policy: immediate

description: An Exception may only contain Parameters and Tags.

context  Exception
inv : Set{Parameter, Tag}) -> includesAll( self .contentTypes())

[C-32] ExceptionsHaveOnlyOutParameters

format1: EXCEPTIONS_HAVE_ONLY_OUT_PARAMETERS

format2: exceptions_have_only_out_parameters

evaluation policy: immediate

description: An Exception’s Parameters must all have the direction “out.”

context  Exception
inv :

self .contents ->
select(c | c.oclIsTypeOf(Parameter)) ->

forAll(p : Parameter | p.direction = #out_dir)
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-97



3

nd

ue.
[C-33] AssociationContainmentRules

format1: ASSOCIATIONS_CONTAINMENT_RULES

format2: associations_containment_rules

evaluation policy: immediate

description: An Association may only contain AssociationEnds, Constraints, a
Tags.

context Association
inv :

Set{AssociationEnd, Constraint, Tag} ->
includesAll( self .contentTypes())

[C-34] AssociationsHaveNoSupertypes

format1: ASSOCIATIONS_HAVE_NO_SUPERTYPES

format2: associations_have_no_supertypes

evaluation policy: immediate

description: Inheritance / generalization is not applicable to Associations.

context Association
inv : self .supertypes -> isEmpty

[C-35] AssociationMustBeRootAndLeaf

format1: ASSOCIATIONS_MUST_BE_ROOT_AND_LEAF

format2: associations_must_be_root_and_leaf

evaluation policy: immediate

description: The values for “isLeaf” and “isRoot” on an Association must be tr

context Association
inv : self .isRoot and self .isLeaf

[C-36] AssociationsCannotBeAbstract

format1: ASSOCIATIONS_CANNOT_BE_ABSTRACT

format2: associations_cannot_be_abstract

evaluation policy: immediate

description: An Association cannot be abstract.

context Association
inv : not self .isAbstract
3-98 OMG-Meta Object Facility, v1.4 April 2002



3

e.
[C-37] AssociationsMustBePublic

format1: ASSOCIATIONS_MUST_BE_PUBLIC

format2: associations_must_be_public

evaluation policy: immediate

description: Associations must have visibility of “public.”

context  Association
inv : self .visibility = #public_vis

[C-38] AssociationsMustBeBinary

format1: ASSOCIATIONS_MUST_BE_BINARY

format2: associations_must_be_binary

evaluation policy: immediate

description: An Association must be binary; that is, it must have exactly two
AssociationEnds.

context  Association
inv : self .contents ->

select(c | c.oclIsTypeOf(AssociationEnd)) -> size = 2

[C-39] EndTypeMustBeClass

format1: END_TYPE_MUST_BE_CLASS

format2: end_type_must_be_class

evaluation policy: immediate

description: The type of an AssociationEnd must be Class.

context  AssociationEnd
inv : self .type.oclIsTypeOf(Class)

[C-40] EndsMustBeUnique

format1: ENDS_MUST_BE_UNIQUE

format2: ends_must_be_unique

evaluation policy: immediate

description: The “isUnique” flag in an AssociationEnd’s multiplicity must be tru

context  AssociationEnd
inv :

(self .multiplicity.upper > 1 or
self .multiplicity.upper = UNBOUNDED) implies

self .multiplicity.isUnique
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-99



3

r

gs.
[C-41] CannotHaveTwoOrderedEnds

format1: CANNOT_HAVE_TWO_ORDERED_ENDS

format2: cannot_have_two_ordered_ends

evaluation policy: deferred

description: An Association cannot have two AssociationEnds marked as
“ordered.”

context  AssociationEnd
inv :

self .multiplicity.isOrdered implies
not self .otherEnd.multiplicity.isOrdered

[C-42] CannotHaveTwoAggregateEnds

format1: CANNOT_HAVE_TWO_AGGREGATE_ENDS

format2: cannot_have_two_aggregate_ends

evaluation policy: deferred

description: An Association cannot have an aggregation semantic specified fo
both AssociationEnds.

context  AssociationEnd
inv :

self .aggregation <> #none implies self .otherEnd = #none

[C-43] PackageContainmentRules

format1: PACKAGE_CONTAINMENT_RULES

format2: package_containment_rules

evaluation policy: immediate

description: A Package may only contain Packages, Classes, DataTypes,
Associations, Exceptions, Constants, Constraints, Imports, and Ta

context  Package
inv :

Set{Package, Class, DataType, Association, Exception,
Constant, Constraint, Import, Tag}) ->

includesAll( self .contentTypes)
3-100 OMG-Meta Object Facility, v1.4 April 2002



3

rt’s

ses.
[C-44] PackagesCannotBeAbstract

format1: PACKAGES_CANNOT_BE_ABSTRACT

format2: packages_cannot_be_abstract

evaluation policy: immediate

description: Packages cannot be declared as abstract.

context  Package
inv : not self .isAbstract

[C-45] ImportedNamespaceMustBeVisible

format1: IMPORTED_NAMESPACE_MUST_BE_VISIBLE

format2: imported_namespace_must_be_visible

evaluation policy: deferred

description: The Namespace imported by an Import must be visible to the Impo
containing Package.

context  Import
inv : self .container.isVisible( self .importedNamespace)

[C-46] CanOnlyImportPackagesAndClasses

format1: CAN_ONLY_IMPORT_PACKAGES_AND_CLASSES

format2: can_only_import_packages_and_classes

evaluation policy: immediate

description: It is only legal for a Package to import or cluster Packages or Clas

context  Import
inv :

self .imported.oclIsTypeOf(Class) or
self .imported.oclIsTypeOf(Package)

[C-47] CannotImportSelf

format1: CANNOT_IMPORT_SELF

format2: cannot_import_self

evaluation policy: deferred

description: Packages cannot import or cluster themselves.

context  Import
inv : self .container <> self .imported
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-101



3

sses.

.

y or
[C-48] CannotImportNestedComponents

format1: CANNOT_IMPORT_NESTED_COMPONENTS

format2: cannot_import_nested_components

evaluation policy: deferred

description: Packages cannot import or cluster Packages or Classes that they
contain.

context  Import
inv :  not self .container.allContents() -> includes( self .imported)

[C-49] NestedPackagesCannotImport

format1: NESTED_PACKAGES_CANNOT_IMPORT

format2: nested_packages_cannot_import

evaluation policy: deferred

description: Nested Packages cannot import or cluster other Packages or Cla

context  Import
inv :

self .container -> notEmpty implies
self .container -> asSequence -> first -> container -> isEmpty

[C-50] CannotConstrainThisElement

format1: CANNOT_CONSTRAIN_THIS_ELEMENT

format2: cannot_constrain_this_element

evaluation policy: immediate

description: Constraints, Tags, Imports, and Constants cannot be constrained

context  Constraint
inv :

self .constrainedElements ->
forAll(c |

   not  Set{Constraint, Tag, Imports, Constant} ->
includes(c.oclType())

[C-51] ConstraintsLimitedToContainer

format1: CONSTRAINTS_LIMITED_TO_CONTAINER

format2: constraints_limited_to_container

evaluation policy: deferred

description: A Constraint can only constrain ModelElements that are defined b
inherited by its immediate container.
3-102 OMG-Meta Object Facility, v1.4 April 2002



3

context  Constraint
inv :

self .constrainedElements ->
forAll(c | self .container.extendedNamespace() ->

includes(c))

[C-52] ConstantsValueMustMatchType

format1: CONSTANTS_VALUE_MUST_MATCH_TYPE

format2: constants_value_must_match_type

evaluation policy: deferred

description: The type of a Constant and its value must be compatible.

context  Constant
inv : ...

[C-53] ConstantsTypeMustBePrimitive

format1: CONSTANTS_TYPE_MUST_BE_PRIMITIVE

format2: constants_type_must_be_primitive

evaluation policy: immediate

description: The type of a Constant must be a PrimitiveType.

context  Constant
inv :

self .type.oclIsOfType(PrimitiveType)

[C-54] LowerCannotBeNegativeOrUnbounded

format1: LOWER_CANNOT_BE_NEGATIVE_OR_UNBOUNDED

format2: lower_cannot_be_negative_or_unbounded

evaluation policy: immediate

description: The “lower” bound of a MultiplicityType to be “Unbounded.”

context  MultiplicityType
inv : self .lower >= 0 and self .lower <> Unbounded
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-103



3

r”
[C-55] LowerCannotExceedUpper

format1: LOWER_CANNOT_EXCEED_UPPER

format2: lower_cannot_exceed_upper

evaluation policy: immediate

description: The “lower” bound of a MultiplicityType cannot  exceed the “uppe
bound.

context  MultiplicityType
inv : self .lower <= self .upper or self .upper = Unbounded

[C-56] UpperMustBePositive

format1: UPPER_MUST_BE_POSITIVE

format2: upper_must_be_positive

evaluation policy: immediate

description: The “upper” bound of a MultiplicityType cannot be less than 1.

context  MultiplicityType
inv : self .upper >= 1 or self .upper = Unbounded

[C-57] MustBeUnorderedNonunique

format1: MUST_BE_UNORDERED_NONUNIQUE

format2: must_be_unordered_nonunique

evaluation policy: immediate

description: If a MultiplicityType specifies bounds of [0..1] or [1..1]), the
“is_ordered” and “is_unique” values must be false.

context  MultiplicityType
inv :

self .upper = 1 implies
( not self .isOrdered and not self .isUnique)

[C-58] StructureFieldContainmentRules

format1: STRUCTURE_FIELD_CONTAINMENT_RULES

format2: structure_field_containment_rules

evaluation policy: immediate

description: A StructureField contains Constraints and Tags.

context  StructureField
inv :

Set{Constraint, Tag}) -> includesAll( self .contentTypes)
3-104 OMG-Meta Object Facility, v1.4 April 2002



3

nd

has

n
t

[C-59] MustHaveFields

format1: MUST_HAVE_FIELDS

format2: must_have_fields

evaluation policy: deferred

description: A StructureType must contain at least one StructureField.

context  StructureType
inv :

self .contents -> exists(c | c.oclIsOfType(StructureField))

3.9.5 Semantic specifications for some Operations, derived Attributes a
Derived Associations

[S-1] allSupertypes

kind: query Operation

description: The value is the closure of the ‘Generalizes’ Association from the
perspective of a subtype. Note that the sequence of all supertypes
a well defined order.

context  GeneralizableElement::allSupertypes() :
Sequence(GeneralizableElement)

post : result  = self .allSupertypes2(Set{})

[S-2] otherEnd

kind: query Operation

description: The value is the other AssociationEnd for this Association.

context  AssociationEnd::otherEnd() : AssociationEnd
post : result  = self .container.contents ->

select(c | c.oclIsKindOf(AssociationEnd) and  c <> self )

[S-3] isVisible

kind: query Operation

description: Determines whether or not “otherElement” is visible for the definitio
of this element. (Note: As an interim measure, the OCL states tha
everything is visible!)

context  ModelElement::isVisible(
otherElement : ModelElement): boolean

post : result  = true
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-105



3

ween
[S-4] findRequiredElements

kind: query Operation

description: Selects a subset of a ModelElement’s immediate or recursive
dependents.

context  ModelElement::isRequiredBecause(
kinds : Sequence(DependencyKind),
recursive : boolean) : Sequence(ModelElement)

post :  result  =
if kinds -> includes(“all”)
then

self. findRequiredElements(
Set{“constraint”, “container”, “constrained elements”,

“specialization”, “import”, “contents”, “signature”,
“tagged elements”, “type definition”,
“referenced ends”})

else
if recursive
then

self. recursiveFindDeps(kinds, Set{ self })
else

kinds -> collect(k : self .findDepsOfKind(k)) -> asSet()
endif

endif

[S-5] isRequiredBecause

kind: query Operation

description: Returns the DependencyKind that describes the dependency bet
this element and “other.”

context  ModelElement::findRequiredElements(
other : ModelElement,
reason : out  DependencyKind) : boolean

post : -- NB, if there is more than one dependency between self
 -- and ‘other’, the selection of the ‘reason’ is defined
 -- to be non-deterministic ... not deterministic as a
 -- left to right evaluation of the OCL implies.

reason = (
if self -> isDepOfKind(“constraint”, other)
then
“constraint”
else
if self  -> isDepOfKind(“container”, other)
then

“container”
else

if self  -> isDepOfKind(“constrained elements”, other)
then

“constrained elements”
else
3-106 OMG-Meta Object Facility, v1.4 April 2002



3

al to
if self  -> isDepOfKind(“specialization”, other)
then
“specialization”

else
if self  -> isDepOfKind(“import”, other)
then
“import”

else
if self -> isDepOfKind(“contents”, other)
then

“contents”
else

if self -> isDepOfKind(“signature”, other)
then

“signature”
else

if self  -> isDepOfKind(“tagged elements”, other)
then
“tagged elements”

else
if self -> isDepOfKind(“type definition”, other)
then

“type definition”
else

if self -> isDepOfKind(“referenced ends”, other)
then

“referenced ends”
else

if self -> dependsOn() -> notEmpty()
then
“indirect”
else
“”
endif

endif
endif

endif
endif

endif
endif

endif
endif

endif
endif )  and

result  = (reason <> “”)

[S-6] lookupElement

kind: query Operation

description: Returns the ModelElement in the Namespace whose name is equ
“name,” or raises an exception.
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-107



3

ses

for
context  Namespace::lookupElement(name : string) : ModelElement
post :  result  =

let  elems =  self .contents -> select(m | m.name = name) in
if  elems -> size = 0
then

-- Raise exception NameNotFound
else

elems -> first  -- should only be one
endif

[S-7] resolveQualifiedName

kind: query Operation

description: Returns the ModelElement that “qualifiedName” resolves to or rai
an exception.

context  Namespace::resolveQualifiedName(
qualifiedName : Sequence(string)) : ModelElement

pre : qualifiedName -> size >= 1
post : result  =

let  elems =  self .contents ->
select(m | m.name = qualifiedName -> first) in

if  elems -> size = 0
then

-- Raise exception NameNotResolved ...
else

if  qualifiedName -> size = 1
then

elems -> first    -- there should only be one
else

if not elems -> first -> oclIsOfKind(Namespace)
then

-- Raise exception NameNotResolved ...
else

let  rest = qualifiedName ->
subSequence(2, qualifiedName -> size) in

elems -> first -> resolveQualifiedName(rest)
endif

endif
endif

[S-8] nameIsValid

kind: query Operation

description: Returns true if “proposedName” is a valid name that could be used
a new containedElement of this Namespace.
3-108 OMG-Meta Object Facility, v1.4 April 2002



3

 is
es
context  Namespace::nameIsValid(
proposedName : string) : boolean

post : result  =
self .extendedNamespace ->

forAll(e | not  e.name = proposedName)

[S-9] findElementsByType

kind: query Operation

description: Returns a subset of the contained elements. If “includeSubtypes”
false, the result consists of instances of “ofType”. If it is true, instanc
of subClasses are included.

context  Namespace::findElementsByType(
ofType : Class,
includeSubtypes : boolean) : Sequence(ModelElement)

post : result  =
if  includeSubtypes
then

self .contents -> select(m | m.oclIsOfKind(ofType))
else

self .contents -> select(m | m.oclIsOfType(ofType))
endif

[S-10] lookupElementExtended

kind: query Operation

description: Returns the ModelElement whose name is equal to “name” in the
extended namespace of this GeneralizableElement, or raises an
exception.

context  Namespace::lookupElementExtended(
name : string) : ModelElement

post :  result  =
let  elems =  self  -> extendedNamespace ->

select(m | m.name = name) in
if  elems -> size = 0
then

-- Raise exception NameNotFound
else

elems -> first  -- should only be one
endif
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-109



3

ts. If

rs of

nd of
[S-11] findElementsByTypeExtended

kind: query Operation

description: Returns a subset of the contained, inherited, or imported elemen
“includeSubtypes” is false, the result consists of instances of
“ofType.” If it is true, instances of subClasses are included.

context  GeneralizeableElement::findElementsByTypeExtended(
ofType : Class,
includeSubtypes : boolean) : Sequence(ModelElement)

post : result  =
if  includeSubtypes
then

self .extendedNamespace -> select(m | m.oclIsOfKind(ofType))
else

self .extendedNamespace -> select(m | m.oclIsOfType(ofType))
endif

[S-12] qualifiedName

kind: readonly derived Attribute

description: The qualified name gives the sequence of names of the containe
this ModelElement starting with the outermost.

context  ModelElement::qualifiedName() : Sequence(ModelElement)
post : result  =

if self .container -> notEmpty
then

self .container.qualifiedName() -> append( self .name)
else

self .name
endif

[S-13] Exposes

kind: derived Association

description: This association relates a Reference to the exposed AssociationE
an Association that corresponds to its referencedEnd.

context  Reference
inv : AssociationEnd.allInstances ->

forAll(
a |
self .references = a implies self .exposes = a.otherEnd and
not self .references = a implies self .exposes <> a.otherEnd)
3-110 OMG-Meta Object Facility, v1.4 April 2002



3

ents

ntents
[S-14] DependsOn

kind: derived Association

description: This association relates a ModelElement to the other ModelElem
whose definition it depends on.

context  ModelElement
inv : self.findRequiredElements(“all”, true)

3.9.6 OCL Helper functions

[O-1] allSupertypes2

description: Helper function for the allSupertypes operation.

context  GeneralizableElement::allSupertypes2(
visited : Set(GeneralizableElement)) :

Sequence(GeneralizableElement)
post : result  =

if  (visited -> includes( self ))
then

Sequence{}
else

let  mySupers : Sequence(GeneralizableElement) =
self .supertypes ->

collect(s |
s.allSupertypes2(visited ->

  including( self ))) in
mySupers ->

iterate(s2 : GeneralizableElement;
a : Sequence(GeneralizableElement) = Sequence{} |
if  a -> includes(s2)
then

a
else

a -> append(s2)
endif )

[O-2] extendedNamespace

description: The extendedNamespace of a Namespace is its contents, the co
of its supertypes, and any Namespaces that it imports.

context  Namespace::extendedNamespace() : Set(ModelElement)
post : result  =

self .contents
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-111



3

bled

BA
context GeneralizableElement::extendedNamespace : Set(ModelElement)
post : result  =

self .contents ->
union( self .allSupertypes() -> collect(s | s.contents))

context  Package::extendedNamespace : Set(ModelElement)
post : result  =

let  ens = self .contents ->
union( self .allSupertypes() -> collect(s | s.contents)) in

let imports = ens -> select(e | e.oclKindOf(Import)) ->
collect(i : Import | i.imported) in

ens -> union(imports)

[O-3] contentTypes

description: The set of OCL types for a Namespace’s contents.

context  Namespace::contentTypes() : Set(OCLType)
post : result  = self .contents -> collect(m | m.oclType()) -> asSet

[O-4] format1Name

description: The simple name of the element converted to words and reassem
according to the “format1” rules; see “IDL Identifier Format 1” on
page 5-39.

context  ModelElement::format1Name() : string
post : result  = ...

[O-5] repositoryId

description: The qualified name of the element converted into a standard COR
repositoryId string.

context  ModelElement::repositoryId() : string
post : result  = ...

[O-6] recursiveFindDeps

description: The set of ModelElements that recursively depend on this one.

context  ModelElement::recursiveFindDeps(
kinds : Sequence(string),
seen : Set(ModelElement)) : Set(ModelElement)

post :  result  =
let  seen2 = seen ->

collect(m | kinds ->
collect(k | m.findDepsOfKind(k)) -> asSet) in
3-112 OMG-Meta Object Facility, v1.4 April 2002



3

y of
if seen2 = seen
then

seen
else

self .recursiveFindDeps(kinds, seen2)
endif

[O-7] isDepOfKind

description: Returns true if this element depends on ‘other’ with a dependenc
‘kind.’

context ModelElement::isDepOfKind(
kind : string,
other : ModelElement) : boolean

post : result = self  -> findDepsOfKind(kind) -> includes(other)

[O-8] findDepsOfKind

description: The set of ModelElements that this one Depends on with “kind”
dependency.

context  ModelElement::findDepsOfKind(
kind : string) : Sequence(ModelElement)

post :  result  =
if kind = “constraint”
then self .constraints()
else if kind = “container”
then self .container()
else if kind = “constrained elements” and

self  -> isOclTypeOf(Constraint)
then self  -> oclAsType(Constraint) -> constrainedElements()
else if kind = “specialization” and

self  -> isOclKindOf(GeneralizableElement)
then self  -> oclAsType(GeneralizableElement) -> supertypes()
else if kind = “import”  and self  -> isOclType(Import)
then self  -> oclAsType(Import) -> importedNamespace()
else if kind = “contents” and self  -> isOclKindOf(Namespace)
then self -> oclAsType(Namespace) -> contents()
else if kind = “signature” and self  -> isOclTypeOf(Operation)
then self  -> oclAsType(Operation) -> exceptions()
else if kind = “tagged elements” and

self  -> isOclTypeOf(Tag)
then self  -> oclAsType(Tag) -> elements()
else if  kind = “type definition” and

self  -> isOclKindOf(TypedElement)
then self -> oclAsType(TypedElement) -> type()
else if  kind = “referenced ends” and

self  -> isOclKindOf(Reference)
then

let  ref = self -> asOclType(Reference) in
ref -> referencedEnd() -> union(ref -> exposedEnd())
April 2002 OMG-MOF, v1.4: MOF Model Constraints 3-113



3

rd
ta-
of

s.”

ive

sed
ed

nd
ute
else
Set{}

endif endif endif endif endif endif endif endif endif endif

3.10 The PrimitiveTypes Package

The MOF defines a package called PrimitiveTypes that contains the MOF’s standa
collection of primitive data types. These types are available for use in all MOF me
models. Some of them (Boolean, Integer, and String) are used in the specification
the MOF Model as an instance of itself.

The PrimitiveTypes Package is a MOF meta-model whose name is “PrimitiveType
The package contains the PrimitiveType instances defined below, and no other
instances. These instances denote the MOF’s standard technology-neutral primit
data types.

Note –Technology mappings shall recognize standard PrimitiveType instances ba
on their qualified names. Multiple PrimitiveType instances with the required qualifi
name shall be deemed to mean the same thing.

The sections below define the 6 standard technology neutral primitive data types a
their value domains. They also define the standard syntax used in the “value’ attrib
of a Constant instance; see Section 3.4.27, “Constant,” on page 3-62.

3.10.1 Boolean

This primitive data type is used to represent truth values.

3.10.2 Integer

This primitive data type is the set of signed (two’s complement) 32 bit integers

value domain The set of the boolean values ‘true’ and ‘false.’

constant value syntax ‘TRUE’, ‘FALSE’ (case sensitive)

value domain The subset of the integers in the range -231 to +231 - 1

constant value syntax CORBA IDL integer literal syntax with an optional leading ‘-
’ character.
3-114 OMG-Meta Object Facility, v1.4 April 2002



3

ee

ee
3.10.3 Long

This primitive data type is the set of signed (two’s complement) 64 bit integers

3.10.4 Float

This primitive data type is the set of IEEE single precision floating point numbers s
ANSI/IEEE Standard 754-1985.

3.10.5 Double

This primitive data type is the set of IEEE double precision floating point numbers; s
ANSI/IEEE Standard 754-1985.

3.10.6 String

This primitive data type is the set of all character strings that consist of 16 bit
characters (excluding NUL).

value domain The subset of the integers in the range -263 to +263 - 1

constant value syntax CORBA IDL integer literal syntax with an optional leading ‘-
’ character.

value domain The subset of the rational numbers that correspond to the
values representable as IEEE single precision floating point
numbers.

constant value syntax CORBA IDL floating point literal syntax with an optional
leading ‘-’ character.

value domain The subset of the rational numbers that correspond to the
values representable as IEEE double precision floating point
numbers.

constant value syntax CORBA IDL floating point literal syntax with an optional
leading ‘-’ character.

value domain The infinite set of all finite sequences of 16 bit characters
(excluding the zero character value).

constant value syntax A sequence of 16-bit characters. (Note: a Constant’s ‘value’
string for a String has no surrounding quotes and contains no
character escape sequences.)
April 2002 OMG-MOF, v1.4: The PrimitiveTypes Package 3-115



3

g
e

3.10.7 IDL for the PrimitiveTypes Package

The IDL for the “PrimitiveTypes” package is given below. It is generated by applyin
the MOF to IDL mapping to the PrimitiveTypes Package. This IDL would typically b
“#included” by IDL for meta-models (e.g., the MOF Model IDL).

Note –This is not the IDL for the MOF objects that represent the primitive types.

#pragma prefix "org.omg.mof"
module PrimitiveTypes {

// Collection types for the six standard MOF primitive data types
typedef sequence < boolean > BooleanBag;
typedef sequence < boolean > BooleanSet;
typedef sequence < boolean > BooleanList;
typedef sequence < boolean > BooleanUList;
typedef sequence < long > LongBag;
typedef sequence < long > LongSet;
typedef sequence < long > LongList;
typedef sequence < long > LongUList;
typedef sequence < long long > LongLongBag;
typedef sequence < long long > LongLongSet;
typedef sequence < long long > LongLongList;
typedef sequence < long long > LongLongUList;
typedef sequence < float > FloatBag;
typedef sequence < float > FloatSet;
typedef sequence < float > FloatList;
typedef sequence < float > FloatUList;
typedef sequence < double > DoubleBag;
typedef sequence < double > DoubleSet;
typedef sequence < double > DoubleList;
typedef sequence < double > DoubleUList;
typedef sequence < wstring > WStringBag;
typedef sequence < wstring > WStringSet;
typedef sequence < wstring > WStringList;
typedef sequence < wstring > WStringUList;

// This interface would be inheritted by IDL for a Package declared as a sub-package of
PrimitiveTypes

interface PrimitiveTypesPackage : Reflective::RefPackage { };

// This interface is present because we can’t declare PrimitiveTypes as an abstract Package.
// There is no point instantiating it.
interface PrimitiveTypesPackageFactory {

PrimitiveTypesPackage create_primitive_types_package()
raises (Reflective::MofError);

};
};
3-116 OMG-Meta Object Facility, v1.4 April 2002



3

f the
a-
L

if
s.
3.11 Standard Technology Neutral Tags

This section defines the standard Tags that apply to all meta-models, irrespective o
technology mappings used. Other Tags may be attached to the elements of a met
model, but the meaning of these Tags is not specified here. Tags relevant to the ID
mapping are defined in Section 5.6, “Standard Tags for the IDL Mapping.

Table 3-6 shows the conventions used to describe the standard Tags and their
properties.

There are no standard technology neutral Tags at this time.

Table 3-6 Notation for Describing Standard Tags

tag id: A string that denotes the semantic category for the tag.

attaches to: Gives the kind(s) of Model::ModelElement that this category of tag
can be meaningfully attached to.

values: Gives the number and types of the tag’s values (i.e., parameters),
any. Parameters are expressed as an ordered sequence of String

meaning: Describes the meaning of the tag in this context.

idl generation: Defines the tag’s impact on the generated IDL.

restrictions: Tag usage restrictions - for example: “at most one tag of this kind
per element,” or “tag must be contained by the meta-model.”
April 2002 OMG-MOF, v1.4: Standard Technology Neutral Tags 3-117



3

3-118 OMG-Meta Object Facility, v1.4 April 2002



TheMOFAbstractMapping 4
Contents

This chapter contains the following topics.

Topic Page

“Overview” 4-2

“MOF Values” 4-2

“Semantics of Data Types” 4-2

“Semantics of Equality for MOF Values” 4-3

“Semantics of Class Instances” 4-4

“Semantics of Attributes” 4-5

“Package Composition” 4-8

“Extents” 4-10

“Semantics of Associations” 4-13

“Aggregation Semantics” 4-17

“Closure Rules” 4-19

“Recommended Copy Semantics” 4-21

“Computational Semantics” 4-22
April 2002 OMG-Meta Object Facility, v1.4 4-1



4

erial

he
OF

c
es.

se.

ata
sing
pe.

l).

he
ts are

d

EEE
4.1 Overview

This chapter describes the MOF’s M1-level information model, and the common
principles underlying mapping specific M1-level computational models. Since it is
intended to be independent of any mapping to implementation technology, the mat
is rather abstract.

4.2 MOF Values

A MOF meta-model is an abstract language for defining the types of meta-data. T
M2-level constructs used in a meta-model map onto M1-level representations as M
values. The types of these M1-level values can be defined using either M2-level
Classes or M2-level DataTypes.

An M2-level Class defines an M1-level Instance type with the following properties:

• Instance typed objects have full object identity; that is, it is always possible to
reliably distinguish one instance (object) from another. Object identity is intrinsi
and permanent, and is not dependent on other properties such as attribute valu

• Instance typed objects can be linked via an Association.

• Null is a valid instance of an M2-level Class, though there are limitations on its u

By contrast, an M2-level DataType defines a type with the following properties:

• Data typed values donot have full object identity; see below.

• Data typed valuescannotbe linked via an Association.

• Null is not a valid instance of an M2-level DataType.

4.3 Semantics of Data Types

Data types in MOF meta-models fall into two groups:

• MOF standard technology neutral data types; that is, the 6 standard primitive d
types (Boolean, Integer, Long, Float, Double, and String) and those produced u
the constructors EnumerationType, CollectionType, StructureType, and AliasTy

• Native types (i.e., other data types. Native data types are not technology neutra

Each data type in a MOF meta-model denotes a finite or infinite set of values. In t
case of the standard technology neutral MOF data types and constructors, these se
as follows:

• The type Boolean consists of two values that are conventionally called “true” an
“false.”

• The type Integer is the subrange of integers from -231 to +231 - 1.

• The type Long is the subrange of integers from -263 to +263 - 1.

• The type Float is the the subrange of the rational numbers whose values are AI
764 single precision floating point numbers.
4-2 OMG-Meta Object Facility, v1.4 April 2002



4

764

pes

at

logy

ity
ets

lity

pe.

e

ame

e
l

tion

and
• The type Double is the subrange of the rational numbers whose values are IEEE
double precision floating point numbers.

• The type String is the set of all possible finite length sequences of the UTF16
characters (excluding the NUL or zero character).

• An enumeration type is the set of the EnumerationType labels or enumerators.

• A structure type is the set of all tuples whose field values are members of the ty
of the StructureType’s respective StructureFields.

• A collection type is the set of all collections of the CollectionType’s type, limited
according to the CollectionType’s multiplicity.

• An alias type is a subset of the AliasType’s type.

Note – Every MOF technology mapping must define a mapping from the standard
MOF technology neutral data types to a concrete type such that every value in the
value domain has a distinct representation using the concrete type. A technology
mapping that does not support all of the data types, or that maps them in a way th
loses information isnot valid.

It is not possible to define the sets of values that comprise native types in a techno
independent way.

4.4 Semantics of Equality for MOF Values

Much of the detail of the MOF computational model depends on a notion of equal
of values. For example, the precise formulation of the “no duplicates” rule for link s
depends on a definition for what it means for object type instances to be equal.

Equality of MOF Values is defined as follows:

1. Instances of Classes are equal if and only if they have the same identity. Equa
doesnot take into account the values of Attributes for the instances or the links
involving the instances. The null Class instance is only equal to itself.

2. Values of all MOF data types are incomparable if they do not have the same ty

3. Values of MOF standard primitive data types are equal if and only if they denot
the same element of the set that defines the primitive type.

4. Values of MOF enumeration data types are equal if and only if they denote the s
enumerator.

5. Values of MOF collection data types are equal if and only if they have the same
number of elements. For a ‘bag’ or ‘set’, there must be a 1-for-1 correspondenc
between the collection elements such that the corresponding elements be equa
according to these rules. For a ‘list’ or ‘ordered set,’ the elements at each posi
in the collection must be equal according to these rules.

6. Values of MOF structure types are equal if and only if they have the same type
the corresponding structure fields are equal according to these rules.
April 2002 OMG-MOF, v1.4: Semantics of Equality for MOF Values 4-3



4

heir

d on

but
ose

that

r,

e

m
t it
y an

o
nce
7. Values of MOF alias types are equal if and only if they have the same type and t
values compare as equal in the context of the alias type’s base type.

8. The meaning of equality for native type values is not specified here. In some
mappings, some native values may be incomparable.

Note – The meaning of equality for values of incomparable types is not defined.
However, this is not an issue since the semantics of MOF metadata do not depen
being able to compare such values.

4.5 Semantics of Class Instances

An M1-level Instance is a value whose type is described by an M2-level Class. An
Instance has the following properties in the MOF computational model:

• It has object identity. This has different implications depending on the mapping,
in general it means that many conceptually distinct Instance values can exist wh
component values are the same.

• It has a definite lifetime. An Instance value is created in response to particular
events in the computational model, and continues to exist until it is deleted in
response to other events.

• It is created in a computational context known as a Class extent, and remains in
extent for its lifetime; see Section 4.8, “Extents,” on page 4-10.

• It can have attribute values defined using M2-level Attributes; see Section 4.6,
“Semantics of Attributes,” on page 4-5.

• It can be linked to other Instances; Section 4.9, “Semantics of Associations,” on
page 4-13.

Not all M2-level Classes can have corresponding M1-level Instances. In particula
Instances can never be created for Classes that have “isAbstract” set to true. In
addition, if an M2-level Class has “isSingleton” set to true, only one Instance of th
class can exist within an extent for the Class.

The null instance of an M2-level Class has a conceptual identity that is distinct fro
other (non-null) instances. Null conceptually exists forever in all Class extents, bu
does not have attribute values and cannot be related to other Instances (or itself) b
Association link.

Note –While null is currently a valid Class instance, some technology mappings d
not support it. Therefore it is inadvisable to rely on being able to use the null insta
value in a technology neutral metamodel.
4-4 OMG-Meta Object Facility, v1.4 April 2002



4

e

e
that

ry
le, an

and
at

se,

s to
4.6 Semantics of Attributes

Attributes are one of two mechanisms provided by the MOF Model for defining
relationships between values at the M1-level. An Attribute of an M2-level Class
defines a relation between each M1-level Instance of the Class, and values of som
other type. The Attribute specification consists of the following properties:

• the Attribute’s “name,”
• the Attribute’s “type” which may be expressed using a Class or DataType,
• a “scope” specification,
• a “visibility” specification,
• a “multiplicity” specification,
• an “isChangeable” flag,
• an “isDerived” flag, and
• an (implicit) aggregation specification.

Many aspects of the M1-level computational semantics of Attributes depend on th
mapping used. The following subsections describe those aspects of the semantics
are mapping independent.

4.6.1 Attribute name and type

The “name” and “type” of an Attribute define the basic signature of a notional bina
relationship between a Class instance and an attribute value or values. For examp
Attribute declaration of the form:

class Class1 {
attribute attr_1 AttrType;

};

defines a notional relation between an M1-level type corresponding to the Class1
an M1-level type corresponding to the AttrType. The three main kinds of relation th
can exist between a Class and an Attribute are illustrated below in Figure 4-1. The
figure shows cases where an Attribute’s “multiplicity” bounds are “[1..1]” (single-
valued), “[0..1]” (optional) and “[m..n]” (multi-valued) respectively. Each notional
relation is distinguishable from others for that Class by the Attribute’s “name.”

Figure 4-1 Notional Class — Attribute Relations

An M2-level Attribute’s “type” can be either a Class or a DataType. In the former ca
the Class — AttrType relation relates M1-level Instances corresponding to the two
Classes. In the latter case, it relates M1-level Instances corresponding to the Clas
M1-level Instances corresponding to the DataType.

single-valued Attribute optional Attribute multi-valued Attribute

Class1 AttrType

attr_1

1
Class2 AttrType

attr_2

Class3 AttrType

attr_3

0..1 m..n
April 2002 OMG-MOF, v1.4: Semantics of Attributes 4-5



4

l
ore

an

l

g.

o

lti-

e
f

te
In the following sections, it is often necessary to talk about the type of the M1-leve
Instances on the AttrType end of a Class — AttrType relation. To make the text m
readable, we will use the phrase “the Attribute’s M1-levelbase type” for this type
rather than referring to it as “the M1-level type corresponding to the M2-level
Attribute’s “type.” As we shall see, the phrase “the Attribute’s M1-leveltype” is best
used for another purpose.

4.6.2 Multiplicity

The “multiplicity” property defines the cardinality, uniqueness, and orderedness of
Attribute as follows:

• The “lower” and “upper” fields set the bounds on the number of elements (i.e.,
cardinality) allowed in an Attribute value; that is, the “(collection of) AttrType” in
Figure 4-1 and Figure 4-2 above. Discussion of multiplicity usually needs to dea
with three cases:

• If the “lower” and “upper” are both 1, the Attribute is single-valued; that is, the
“value” is a single instance belonging to the Attribute’s M1-level base type.

• If the “lower” is 0 and “upper” is 1, the Attribute is optional; that is, the “value”
is either an instance belonging to the Attribute’s M1-level base type, or nothin

• Otherwise, the Attribute is multi-valued; that is, its “value” is a collection of
instances belonging to the Attribute’s M1-level base type.

• The “isUnique” flag specifies whether or not a multi-valued Attribute is allowed t
contain duplicates; that is, elements that are equal according to the definition in
Section 4.4, “Semantics of Equality for MOF Values,” on page 4-3.

• The “isOrdered” flag specifies whether or not the order of the elements in a mu
valued Attribute are significant.

The “multiplicity” settings of an M2-level Attribute have considerable influence on th
M1-level Attributes values. In particular, it determines whether the M1-level type o
the Attribute is the M1-level base type, or a collection of that type. In addition, the
“multiplicity” may also cause:

• runtime checks to ensure that a multi-valued Attribute’s cardinality lies within a
given range,

• runtime checks to ensure that a multi-valued Attribute does not contain duplica
members, and

• mechanisms that allow the user to specify the order of the elements of a multi-
valued Attribute.

The “multiplicity” may also have considerable impact on the APIs that a mapping
provides for accessing and updating Attribute values.

It should be noted that when an M2-level Attribute has “isOrdered” set to true, the
corresponding Class — AttrType relation has an associated partial ordering when
viewed from the Class role.
4-6 OMG-Meta Object Facility, v1.4 April 2002



4

n

ce

l

tics.

s the
ute,
4.6.3 Scope

The “scope” of an Attribute can be either “instance_level” or “classifier_level.” For a
“instance_level” Attribute, independent relationships exist between instances of
MyClass and instances of AttrType. For a “classifier_level” Attribute, a single instan
of AttrType (or a collection of AttrType) is related to all instances of MyClass in the
extent. This is illustrated in Figure 4-2.

Figure 4-2 Instance-level versus Classifier-level scoping

Note –For the classifier-level Attributes, the diagrams are intended to show that al
MyClass instances are related to a single instance or collection of instances of
AttrType.

4.6.4 Is_derived

The “isDerived” flag indicates whether the notional relationship between a Class
instance and the Attribute type instances is stored or computed.

4.6.5 Aggregation

The possible aggregation semantics of an Attribute depend on its type:

• If an Attribute’s type is expressed as a DataType, it has “non-aggregate” seman

• If an Attribute’s type is expressed as a Class, it has “composite” semantics.

In cases where an Attribute has “composite” semantics, the Class instance which i
value of the Attribute is a component of the Class instance that contains the Attrib
not vice-versa.

instance-level scoped attributes classifier-level scoped attributes

MyClass AttrType

my_attr

MyClass AttrType

my_attr

1

1

MyClass AttrType

my_attr

m..n

MyClass AttrType

my_attr

0..1
MyClass 1:AttrType

MyClass 1:AttrType
my_attr

1

0..1

single-valued

optional

multi-valued
my_attr

1 m..n

c

c

1
c

April 2002 OMG-MOF, v1.4: Semantics of Attributes 4-7



4

s

the

or

hese

the

t the
r” of

ass

.

e
a

ing
lared
end

kage

-
th its
e of
Note –The above description reflects the fact that the Attribute model element doe
not have an “aggregation” attribute. A Class-valued Attribute with “non-aggregate”
semantics is currently expressed by making the Attribute’s type a DataType, where
DataType’s “typeCode” is an object reference type that is linked to the Class via a
TypeAlias.

4.6.6 Visibility and is_changeable

The “visibility” property of an Attribute determines whether or not any operations f
the notional relation should be present. Similarly, the “isChangeable” property
determines whether update operations are present. The presence or absence of t
operations do not alter the semantics of the Attribute.

4.7 Package Composition

This section summarizes the meta-model composition mechanisms supported by
MOF Model and discusses their impact on M1-level semantics.

4.7.1 Package Nesting

Package nesting is the simplest of the MOF’s Package composition mechanisms. A
M2-level, Package nesting is expressed by making the outer Package the “containe
the nested Package. The definition of the Contains association in the MOF Model
means that Package nesting is a strict composition relationship.

The main intended function of Package nesting is information hiding. Placing a Cl
or DataType in an inner Package rather than an outer one notionally makes it less
visible to other meta-models. When the MOF visibility rules are defined (in a future
revision of this specification), this information hiding will be more strongly enforced

Nesting of Packages also affects the M1-level interfaces and implementations. Th
meaning of any element of a meta-model is potentially dependent on its context in
variety of ways. Thus, when the element is defined in a nested Package, its mean
may depend on the outer Package; for example, on Constraints or Classifiers dec
therein. This means that anything that uses a nested element will also implicitly dep
on the context. To avoid potential M1-level anomalies caused by this kind of
dependency, the MOF Model does not allow a meta-model to import a nested Pac
or a Classifier defined within a nested Package.

The M1-level semantics of Package nesting are as follows. The behavior of an M1
level instance of a Classifier declared in a nested Package depends on state in bo
immediate Package, and its enclosing Packages. As a result, the M1-level instanc
the nested Classifier is inextricably tied to other instances within the outermost
enclosing Package extent; see Section 4.8.4, “Package Extents,” on page 4-12.
4-8 OMG-Meta Object Facility, v1.4 April 2002



4

of
y
OF
ML

M1-
vel

super-
ent is
e

cing

et

or

L
t

d

m
he
n;
4.7.2 Package Generalization

Package generalization allows an M2-level Package to reuse all of the definitions
another M2-level Package. Package generalization is expressed at the M2-level b
connecting the super-Package and sub-Package using a Generalizes link. (The M
Model’s Constraints mean that Generalization is effectively an aggregation in the U
sense.)

The M1-level semantics of Package generalization are as follows. The behavior of
level instances of the elements of an M2-level Package typically depends on M1-le
behavior for M2-level super-Package elements. Indeed, an M1-level Package
“instance” is substitutable for M1-level Package instances for M2-level super-
Packages.

Package inheritance does not create any relationship between an instance of the
Package and an instance of the sub-Package. Therefore an M1-level Package ext
not related to M1-level super- or sub-Package extents; see Section 4.8.4, “Packag
Extents,” on page 4-12.

4.7.3 Package Importation

Package importing allows an M2-level Package to selectively reuse definitions from
other M2-level Packages. Package importation is expressed at the M2-level by pla
an Import in the importing Package that is related to the imported Package by an
Aliases link. In this case, the M2-level Import object has its “isClustered” attribute s
to false. Since Package importation can be cyclic, it is neither an aggregation or a
composition in the UML sense.

Note –The MOF Model’s Constraints make it illegal for a Package to import itself,
for any Package to import a nested Package. Furthermore, while the MOF Model
allows Package importation to be cyclic, the preconditions for the MOF Model to ID
mapping disallow most dependency cycles, including those between Packages tha
result from cyclic importation.

The M1-level semantics of Package importation are minimal. No substitutability or
state relationships exist between the M1-level instances of an importing or importe
Package, or between their respective extents. Indeed, an importing Package will
typically not even share implementation code with the imported Package.

4.7.4 Package Clustering

Package clustering allows an M2-level Package to selectively reuse definitions fro
other M2-level Packages, and also share M1-level implementation infrastructure. T
M2-level expression of Package clustering is similar to that for Package importatio
see above. The difference is that the Import object has “isClustered” set to true.
April 2002 OMG-MOF, v1.4: Package Composition 4-9



4

ting

tent

e

s
lly

e

all

s
f
ese
The M1-level semantics of Package clustering are similar to those of Package nes
because a cluster Package instance has its clustered Package instances as its
components. However, unlike nested Packages, it is still possible to have a free-
standing M1-level instance of such a Package whose extent is unrelated to any ex
of a cluster Package.

4.8 Extents

This section introduces the concept of an “extent” in more detail, and then gives th
formal definitions of the extent of a Class, an Association, and a Package.

4.8.1 The Purpose of Extents

Current generation middleware systems typically aim to allow clients to use object
without knowledge of their locations or context. However, groups of objects genera
exist in the context of a “server,” which has responsibility for managing them. The
implementation of an object often uses knowledge of its shared context with other
objects to optimize performance, and so forth.

While statements about object location have no place in the MOF specification, th
MOF Computational Model assumes a notion of context in many areas:

• The classifier-scoped features of an M2-level Class are notionally common to “
instances” of the Class.

• Mappings typically allow a client to query over “all links” in an Association
instance.

It is impractical to define “all instances” or “all links” as meaning all instances or link
in the known universe. Therefore, the MOF specification defines logical domains o
M1-level instances that are the basis of these and other “for all” quantifications. Th
domains of M1-level instances are called extents.
4-10 OMG-Meta Object Facility, v1.4 April 2002



4

ple

s).

the
l see
the

ing

e
ce is
e

the
Figure 4-3 shows the extents defined by two “instances” (on the right) of the exam
meta-model on the left. Notice that the static nesting of Packages, Classes and
Associations inside other Packages is mirrored in the extents (i.e., the dotted oval

Figure 4-3 Extents for two meta-model instances

Every Class instance or link belongs to precisely one Class or Association extent.
These extents are part of Package extents, depending on the “lexical” structure of
meta-model. This means that extents are strictly hierarchical in nature. As we shal
in Section 5.2.1, “Meta Object Type Overview,” on page 5-2, extents are related to
intrinsic container semantics of meta-objects.

Note –There is no requirement that extents have any manifestation in the partition
of objects between physical MOF servers. However, there are clear performance
advantages in implementing such a partitioning.

4.8.2 Class Extents

The extent of a Class is defined to be the complete set of M1-level instances of th
Class that share classifier-scoped properties (e.g., Attribute values). A Class instan
created in the context of a Class extent and remains within that extent for its entir
lifetime (i.e., until the instance is explicitly deleted).

4.8.3 Association Extents

The extent of an Association is defined to be the complete set of M1-level links for
Association. A link is created in the context of an Association extent and remains
within that extent for its entire lifetime.

P1

P2

P1::C1

P2::C2

P1::A

P1 extent

P1 extent

A links

A links

C1s

C1s

C2s

C2s

P2 extent

P2 extent
April 2002 OMG-MOF, v1.4: Extents 4-11



4

ns

r the

b-

per-

d

the

s,
tent
4.8.4 Package Extents

The extent of a Package is a conglomeration of the extents of Classes, Associatio
and other Packages according to the following rules:

1. When an M2-level Package contains a Class or Association, an extent for the
Package contains extents for the Classes and Associations.

2. When an M2-level Package contains nested Packages, an extent for the outer
Package contains extents for the inner Packages.

3. When an M2-level Package clusters one or more other Packages, an extent fo
cluster Package aggregates the extents for the clustered Packages.

4. When an M2-level Package inherits from another Package, an extent for the su
Package:

a. contains an extent for each nested Package, Class, or Association in the su
Package,

b. aggregates an extent for each Package clustered by the super-Package, an

c. aggregates or contains extents by recursive application of rule Chapter 4 to
super-Package’s super-Packages.

When a Package inherits from another Package by more than one route, the sub-
Package extent will contain one extent for each directly or indirectly inherited Clas
Association or nested Package. This is illustrated in Figure 4-4. Notice that the ex
for Package P4 contains only one C1 extent.

P1 P1 extent

C1s

P4

P3P2

P4::C4

P1::C1

P2::C2 P3::C3

P2 extent

C1s C2s

P3 extent

C1s C3s

P4 extent

C1s C2s

C3s C4s

Figure 4-4 Extents for Multiply Inheriting Packages
4-12 OMG-Meta Object Facility, v1.4 April 2002



4

er
s is
ter

ct
y

ges

the
1-
for

.
ation
When a Package clusters other Packages by more than one route, the outer clust
Package will contain one extent for all directly or indirectly clustered Packages. Thi
illustrated in Figure 4-5. Notice that the relationship between the extents of a clus

Package and the extents of the clustered Packages is aggregation rather than stri
containment. In particular, in the P4 case, the extent for P1 is not fully contained b
either the P2 or P3 extents.

Note –The extent for an M2 Package that imports (rather than clusters) other Packa
doesnot contain extents for the imported Packages or their contents.

4.9 Semantics of Associations

Associations are the MOF Model’s second mechanism for relating MOF values at
M1-level. A MOF M2-level Association defines a binary relation between pairs of M
level Instances, where the relationships in the relation are called Links. The Links
a given M2-level Association conceptually belong to a Link set.

Note –While the MOF Model appears to support N-ary Associations, this is not so
There is a Constraint that states that an Association must have precisely 2 Associ
Ends; see “AssociationsMustBeBinary” on page 3-99.

An M2-level Association definition specifies the following properties:

• an Association “name,”

Figure 4-5 Extents for Clusters of Clusters

P1 C1s

P4

P3P2

P4::C4

P1::C1

P2::C2 P3::C3

P2 extent

C2s

P4 extent

«clusters»

C1s

P3 extent

C3sC1s

P1 extent

C1s C3sC2s

P2 extent

P1 extent

P3 extent

C4s

P1 extent P1 extent

«clusters»«clusters»

«clusters»
April 2002 OMG-MOF, v1.4: Semantics of Associations 4-13



4

for
ded

n
cts a

r
an

ly)
• a pair of AssociationEnds that each have:

• a “name,”

•a “type,” which must be a Class,
•a “multiplicity” specification,
•an “isNavigable” flag, and
•an “isChangeable” flag.

• an “isDerived” flag that determines whether the Association Links are stored
explicitly or derived from other state.

4.9.1 MOF Associations in UML notation

A MOF Association is represented in UML notation as shown in Figure 4-6.

Figure 4-6 An M2-level Association in UML notation

The connecting line denotes an Association between two Classes. The text of
<Association Name>, <end1 name> and <end2 name> denote the “name” values
the respective Association and AssociationEnds. If the Association name is prece
by a forward slash, the Association has “isDerived” set to true.

The Class boxes denote the respective types of the two ends. If the two ends of a
Association have the same type, the Association line loops around so that it conne
Class box to itself.

The <end1 multiplicity> and <end2 multiplicity> text give the multiplicity settings fo
the respective ends of the Association. The text that can appear here consists of
optional bounds specification with syntax:

<bounds>::= [<number> ‘..’] (<number> | ‘*’)

and the optional keyword “ordered.”

Finally, the navigability and aggregation of the ends of the Association are (partial
specified by the symbols at the respective ends of the line:

• An empty diamond indicates that the Instances at the labeled end “share” the
Instances at other end.

<end1 multiplicity> <end2 multiplicity>

<Class1 Name><end1 name> <end2 name>

<Association Name>

aggregation - none

aggregation - shared

aggregation - composite

navigable in direction indicated

<Class2 Name>
4-14 OMG-Meta Object Facility, v1.4 April 2002



4

” of

the

on
e
of a
the

that

a
ristics

ets

g to

Note

rtial
• A filled diamond indicates that the Instances at the labeled end are “composed
Instances at the other end.

• An arrow head indicates that the Association is navigable from the Instance at
other end to the Instance at the labeled end.

Note –There are a couple of anomalies in the mapping of UML Association notati
to MOF Associations. First, while navigability and aggregation are orthogonal in th
MOF, it is not possible to put both a diamond and an arrow head on the same end
UML Association line. This means, for example, that it is not possible to express (
lack of) navigability from a component end to a composite end. Second, UML is
imprecise about what an Association line with no arrowheads means. It can mean
the Association is not navigable, or alternatively that its navigability is not shown.

4.9.2 Core Association Semantics

This section defines the core semantic model for M1-level Association instances in
rigorous, mapping independent fashion, and enumerates some important characte
that follow from the definition.

4.9.2.1 A Mathematical Model of Association State

Given an M2 Association labeled as in Figure 4-6, the mapping to M1-level Link s
and Links can be modeled as follows:

1. The M1-level Instances of the M2-level Classes <Class1> and <Class2> belon
setsClass1_InstancesandClass2_Instancesthat represent the sets of all possible
instances of <Class1> and <Class2>, except for the respective null instances. (
these sets are not restricted to current extant instances.)

2. The setAll_Links is the Cartesian product of the setsClass1_Instancesand
Class2_Instances. Thus aLink, which is a member ofAll_Links,can be any tuple of
the form “<c1, c2>” where “c1” and “c2” are members ofClass1_Instancesand
Class2_Instancesrespectively.

3. TheLink_Setis a subset of the setAll_Links which consists of thoseLinks that
currently exist in the given M1-level Association.

4. If one or other of the AssociationEnds has “isOrdered” set to true, there is a pa
orderingBeforeover the elements ofLink_Setdefined as follows. Assuming that
<End1> of the Association is the one that is flagged as ordered:

a. For each Instance “i” in Class2_Instances, we can define a subsetEnd2_Linksi
of Link_Setconsisting of thoseLinks in Link_Setfor which the second tuple
member is “i”.

b. Given theEnd2_Linksi sets as defined in item a. above, theBeforeordering is
defined between any pair of differentLinks in anEnd2_Linksi set with 2 or more
members. In other words, for any distinctLinkj andLinkk in End2_Linksi, we
can say eitherLinkj Before Linkk, or Linkk Before Linkj.
April 2002 OMG-MOF, v1.4: Semantics of Associations 4-15



4

in

l

l

ing

an

er
The
sure

s

ing

oth
c. TheBeforeordering is NOT defined between any pair ofLinks that belong to
different End2_Linkssets.

d. Where it is defined, theBeforeordering is required to be:

i. transitive; i.e.,Li Before Lj andLj Before Lk implies thatLi Before Lk, and

ii. anti-reflexive; i.e.,Li Before Lj implies not Lj Before Li.

(If <End2> of the Association is ordered, substitute End2 for End1 and vice versa
the above.)

5. A Stateof an M1-level instance of an Association consists of theLink_Setand (if
the Association is ordered) theBeforeordering.

6. A Well-formed Stateis a Statein which:

a. TheLinks set is a subset ofValid_Links, whereValid_Linksis the subset of
All_Links where the connected Instances currently exist.

b. TheEnd_Linksi sets as defined in item a. above conform to their respective
Association End upper and lower bounds; that is,

i. the number ofLinks in eachEnd1_Linksi set must be greater than or equa
to <End2.lower>, and less than or equal to <End2.upper>, and

ii. the number ofLinks in eachEnd2_Linksi set must be greater than or equa
to <End1.lower>, and less than or equal to <End1.upper>.

Ideally, the computational semantics of M1-level Associations for a particular mapp
should be describable as transformations from oneWell-formed Stateto another.
However, some mappings must be defined such that theStateof an Association
instances is not always a well-formed. For example, in the IDL mapping, deletion of
Instance may cause anEnd_Linksset to contain too fewLinks.

The general model of an M1-level Association’sStatemay be further constrained by
M2-level Constraints on the Association or other elements of the meta-model. Oth
systematic restrictions may apply in some mappings; for example, Section 4.11.1, “
Reference Closure Rule,” on page 4-19 and Section 4.11.2, “The Composition Clo
Rule,” on page 4-20.

4.9.2.2 Characteristics of M1-level Associations

The definitions ofLinksandLink_Setsabove mean that M1-level Association instance
have the following characteristics:

• Links only exist between existing Instances in aWell-formed State. When an
Instance ceases to exist, anyLinks involving the Instance in anyLink_Setcease to
be universally meaningful.

• A Link “<a, b>” is distinct from aLink “<b, a>”. In other words,Linksare directed.
(Whether or not the “direction” of a Link has a meaning depends on the underly
semantics of the reality that the M2-level Association describes.)

• Linksdo not have object identity, but are uniquely identified by the Instances at b
ends.
4-16 OMG-Meta Object Facility, v1.4 April 2002



4

elf).

a
.

his

for

uld

tion
,

on

he

at
• A Link cannot connect a null Class instance to any other instance (including its

• Since aLink_Setis defined to be a set, it cannot contain more than one copy of
given Link. In other words, M1-level Associations cannot contain duplicate links

• The Beforeordering on theLinks in an End_Linksset (where defined) can be
represented by arranging theLinks in a strictly linear sequence.

• There can be multipleStatesfor a given M2-level Association, each corresponding
to a different M1-level Association instance in separate Package instances. In t
scenario:

• a givenLink can be a member of multipleLink_Sets, and

• the Beforeorderings of differentStateswill be independent.

4.9.3 AssociationEnd Changeability

The “isChangeable” flag for an AssociationEnd determines whether or not the APIs
the Association should allow clients to change Links in an M1-level Association
instance. The precise interpretation of this flag is mapping specific.

4.9.4 AssociationEnd Navigability

The “isNavigable” flag for an AssociationEnd determines whether or not clients sho
be able to “navigate” the Links in an M1-level Association instance. The flag also
determines whether or not the AssociationEnd can be used as a “key.” This flag’s
interpretation (i.e., its impact on APIs) will depend on the mapping used.

4.9.5 Association Aggregation

The “aggregation” attributes of an Association’s two ends determines the aggrega
semantics for the corresponding M1-level Association instances; see Section 4.10
“Aggregation Semantics,” on page 4-17. The impact of aggregation semantics are
largely mapping specific. However, “composite” aggregation does place constraints
the Link_Setof a Well-formed State.

4.9.6 Derived Associations

When an M2-level Association has “isDerived” set to true, the resulting M1-level
Association’sLink_Setis calculated from other information in the M1-level model.
The M1-level semantics of derived Association instances is beyond the scope of t
MOF specification.

4.10 Aggregation Semantics

As noted previously, the MOF Model provides two ways of relating MOF values; th
is, Associations and Attributes. In both cases, a relation has a property known as
aggregation that determines how strongly related values are tied together.
April 2002 OMG-MOF, v1.4: Aggregation Semantics 4-17



4

-

cific.

r

of

at

In

of
The MOF Model currently supports three aggregation semantics; that is, “none,”
“shared,” and “composite” in order of increasing strength.

Note – In practice, the semantics of aggregation are mostly concerned with the life
cycles of related values. Since different mappings will use different strategies for
managing the life-cycles of values, aggregation semantics are largely mapping spe

4.10.1 Aggregation “none”

An Attribute or Association with aggregation of “none” has the weakest form of
relation between values. This will typically correspond to independent life-cycles fo
both parties and the use of shallow copy semantics in a mapping.

4.10.2 Aggregation “composite”

An Attribute or Association with aggregation of “composite” has the strongest form
relation between values. A “composite” relation involving two types is asymmetric,
with one “end” labeled as the “composition” type and the other end labelled the
“component” type. An instance of the first type is “composed of” instances of the
second type.

An M1-level “composite” relation is defined to have information model semantics th
can be loosely described as containment semantics:

1. If a value “v1” is a component of some other value “v2” in a given composite
relation, “v1” may not be a component of any other value “v3” in any composite
relation. In short, a value can haveat mostone container in any “composite”
relation. (This restriction does not apply when “v1” is a null instance.)

2. A value may not be related to itself in the closure of any “composite” relations.
short, a value may not directly or indirectly contain itself.

Other restrictions may apply to “composite” relations in some mappings (e.g.,
Section 4.11.2, “The Composition Closure Rule,” on page 4-20).

4.10.3 Aggregation “shared”

An Attribute or Association with aggregation of “shared” corresponds to a relation
between values that is between “none” and “shared.”

Note –The semantics of “shared” aggregation should correspond to the semantics
an Aggregate in UML. Unfortunately, the OMG UML specification gives no clear
guidance on what these semantics should be. As an interim measure, the use of
“shared” aggregation in the MOF is discouraged.
4-18 OMG-Meta Object Facility, v1.4 April 2002



4

les

nce
lue
et

ces.
nce
lar

ge
the
nce
ve
e

4.11 Closure Rules

The MOF’s support for multiple Package “instances” introduces some potential
anomalies into the computational model. These are resolved by three “closure” ru
based on the definitions of extents in Section 4.8, “Extents,” on page 4-10.

4.11.1 The Reference Closure Rule

Recall that a Reference value is defined as a projection of an M1-level Class insta
in an Association. Given that Association link sets are not global, a reference’s va
must be a projection in a particular link set. There is an “obvious” candidate link s
for typical M1-level Class instances, namely the link set belonging to the Package
“instance” that contains the Class instance. This is shown in Figure 4-7.

Figure 4-7 References for multiple Package instances

Figure 4-7 shows the Y instances visible to each X instance in two Package instan
Notice that the link set in the second Package instance contains a link to a Y insta
belonging to the first Package instance; that is, “<x5,y2>”. This presents no particu
problems, since the “x5” object can find the link to “y2” by looking in the A link set
for its containing Package instance.

However, suppose that the “<x5,y2>” had been in the A link set for the first Packa
instance. Now an instance of the X Class has to look in the link sets of both (or in
general case, all) Package instances to find all of the links. Alternatively, an X insta
might only look in the link set for its owning Package instance, leading to non-intuiti
computational semantics for Reference values. (Consider the case where there ar
References for both Association Ends.)

X A

Package P

Meta-model

Y

x1, x2,
x3, x4

y1, y2 <x1,y1> <x1,y2>
<x2,y1> <x3,y2>

x5, x6 y3
<x5,y3> <x6,y3>

Package P instance #1

Package P instance #2

/ref : Y

<x5,y2>
April 2002 OMG-MOF, v1.4: Closure Rules 4-19



4

al
atic

by

tion

nent
d, all

n is

a
her
To avoid such non-intuitive (and arguably anomalous) semantics, the computation
semantics for Associations includes a runtime restriction that prevents the problem
links from being created. This restriction is called theReference Closure Rule:

“If Class C has a Reference R that exposes an Association End E in an
Association A, then it is illegal to cause a link to be constructed such that
an instance of C (or a sub-class of C) at the exposed End belongs to a
different outermost extent to the A link set containing the link.”

The Reference Closure Ruleis shown graphically by Figure 4-8 for the case of an
Association with a Reference to one end. The Reference Closure Rule is enforced
runtime checks on M1-level operations that construct links (e.g., the link add and
modify operations). This can be achieved by using the
“outermost_containing_package” operations on the respective meta-objects; see
Section 6.2, “The Reflective Interfaces,” on page 6-3.

Figure 4-8 The Reference Closure Rule

4.11.2 The Composition Closure Rule

The MOF Model provides constructs for declaring that the instances of one meta-
model element are “composed of” instances of another; see Section 4.10, “Aggrega
Semantics,” on page 4-17.

One of the key properties of composites is that a composite instance and its compo
instances have the same lifetime; that is, when a composite meta-object is delete
of its components are also deleted. This is not difficult to implement when the
composite instance and its components all belong to the same Package instance.
However, a range of problems can arise when a composition crosses one or more
outermost Package extent boundaries. For instance:

• How do the server implementations for the respective extents ensure that deletio
reliable in the face of server crash, network partition, and so on?

• What are the access control implications of compositions? For example, should
client of one server / extent be able to implicitly delete components held in anot
server / extent?

X A

Meta-model

Y

/ref : Y

x1

y2x2

y1 <x1, y1>
<x1, y2>
<x2, y1>
<x2, y2>

OK
OK
Illegal
Illegal

A

A
A

A

4-20 OMG-Meta Object Facility, v1.4 April 2002



4

el
led

e

s
and
ite
nd

the

he
ns.
is

ated
To avoid having to deal with these difficult questions, the MOF computational mod
restricts the situations in which compositions may be formed. This restriction is cal
the Composition Closure Rule:

“The composite and component instances in a composition along with any
links that form the composition must all belong to the same outermost
Package extent.”

TheComposition Closure Ruleis shown graphically by Figure 4-3. This shows the rul
as it applies to both composite Attributes and composite Associations.

Figure 4-9 The Composition Closure Rule

The Composite Closure Rule is enforced by runtime checks on M1-level operation
that construct links in an Association with Composite semantics; e.g. the link add
modify operations. Similar checks are required for operations that update compos
Attributes. The checks can be implemented by using the “immediate_container” a
“outermost_containing_package” operations on the relevant meta-objects; see
Section 6.2, “The Reflective Interfaces,” on page 6-3.

Since the null instance of a Class is defined to notionally belong to all extents for
Class, the Composition Closure Rule does not apply to Attributes with null values.

4.12 Recommended Copy Semantics

It is envisaged that some MOF mappings will provide APIs for copying metadata. T
purpose of this section is to recommend a semantic model for such copy operatio
Suggested semantics are given for “shallow” and “deep” copying. (A shallow copy
one in which conceptual components of an object are copied and other connected
objects are not. A deep copy is one in which both components and more loosely rel
objects are copied.)

YA

Meta-model

x1

y3

y1 <x1, y1>
<x1, y3>

OK
Illegal

X

Z

my_z : Z

z1

z2

my_z : z1

x2

my_z : z2

<x2, y2> Illegal

y2

A

A

A

OK

Illegal
April 2002 OMG-MOF, v1.4: Recommended Copy Semantics 4-21



4

r

e

vel
nly
rvers
-
ll in

de
own
The following table details what objects should and should not be copied. The
semantics are defined from the perspective of an object being copied.

Unless otherwise stated, copying of a group of Instances related by Association o
Attributes should give a 1-to-1 mapping between original Instances and copied
Instances, and their respective relationships.

Note –The above suggested semantics do not cover copying of MOF values whos
type is a native type. Those semantics will depend on whether or not the values in
question are copyable.

4.13 Computational Semantics

4.13.1 A Style Guide for Metadata Computational Semantics

While the MOF specification gives the required computational semantics for M1-le
metadata, it does not (and should not) state that these semantics constitute the o
behavior. It is envisaged that vendor and end-user implementations of metadata se
may support additional semantics. In addition, the computational semantics of M2
level derived Attributes, derived Associations and Operations are not specified at a
the standardized part of the MOF Model.

In theory, the complete computational semantics of a meta-model server can inclu
any behavior that the implementor chooses. The purpose of the section is to set d
some conventions to guide the implementor.

Table 4-1 Copy semantics for different kinds of relationships.

Construct Target type Aggregation Shallow Copy Deep Copy

Attribute Instance none
The Attribute value in the copy
will be the same Instance value as
in the original.

The Attribute value in the copy will
be the same Instance value as in the
original.

Attribute MOF data type none

The Attribute value in the copy
will be the same data value as in
the original. Embedded Instance
values will be the same as in the
original.

The Attribute value in the copy will
be the same data value as in the
original. Embedded Instance values
will be the same as in the original.

Attribute Instance composite
The Attribute value in the copy
will be a shallow copy of the
Instance value as in the original.

The Attribute value in the copy will
be a deep copy of the Instance
value in the original.

Association Instance none No link is created. A link is created from the copy to
the original link target.

Association Instance shared A link is created from the copy to
the original link target.

A link is created from the copy to a
deep copy of the original link
target.

Association Instance composite
A link is created from the copy to
a shallow copy of the original link
target.

A link is created from the copy to a
deep copy of the original link
target.
4-22 OMG-Meta Object Facility, v1.4 April 2002



4

the
ns
rd
nding

have

a
is

s

t

.

.
nt
in

tely
4.13.2 Access operations should not change metadata

Many operations on Instance and Associations are provided to support access to
public state of a model; e.g. the “get” operations for Attributes, the “query” operatio
for Associations. For normal (non-derived) Attributes and Associations, the standa
computational semantics of an access operations are to simply return the correspo
value or collection. For derived Attributes and Associations, there are no standard
semantics at all.

In general, it is bad style for an access operation to have observable side-
effects on the primary metadata. Similarly, it is bad style for an Operation
with “isQuery” true to have such side-effects.

The rationale for this rule is that the user would not expect an access operation to
visible side-effects.

Note – It may be reasonable (for example) for an Attribute “get” operation to update
private counter Attribute that records the number of accesses. The legitimacy of th
kind of behavior depends on whether or not the state modified can be classified a
“primary” metadata.

4.13.3 Update operations should only change the nominated metadata

The standard semantics of metadata update operations define which metadata is
expected to be modified by the operation. However, there is no explicit requiremen
that other metadata should not be changed.

It is bad style for an update operation for a non-derived Attribute,
Reference, or Association to change any primary metadata other than that
which is identified by the standard semantics.

The rationale for this rule is that the user would not expect such changes to occur

Note –This rule is not intended to apply to operations for derived Attributes,
References or Associations, or to Operations with “isQuery” false.

4.13.4 Derived Elements should behave like non-derived Elements

M2-level Attributes and Associations can be defined as being derived from other
information in a meta-model (i.e., by setting the respective “isDerived” flag to true)
The required M1-level behavior of derived Elements is identical to that for equivale
non-derived Elements. Behavior that contradicts the semantics in this chapter and
the relevant mapping specification is non-conformant.

However, since derived Attributes and Associations have to be implemented using
mechanisms that are beyond the scope of the MOF Model, conformance is ultima
the responsibility of the meta-model implementor.
April 2002 OMG-MOF, v1.4: Computational Semantics 4-23



4

nts
)

ect.

can

ing
e
es),

d
ss

d
y
ct it.

the
It is recommended that implementor defined M1-level operations for derived Eleme
should have MOF conformant behavior. The alternative (non-conformant behavior
tends to break the illusion that the Attribute or Association is “real,” and should be
avoided. If the required semantics are unimplementable, the meta-model is incorr

4.13.5 Constraint evaluation should not have side-effects

The MOF specification does not define how Constraints defined in a meta-model
should be evaluated. In particular, it does not define whether Constraint evaluation
change the metadata.

It is bad style for the evaluation of a Constraint to change metadata.

The rationale is two fold. First, Constraints are provided as mechanism for specify
metadata correctness, not as a mechanism for defining behavior. Second, since th
MOF specification does not say when Constraint evaluation should occur (in all cas
side-effects in Constraint evaluation could be a major source of interoperability
problems.

4.13.6 Access operations should avoid raising Constraint exceptions

The MOF specification does not define when deferred Constraint evaluation shoul
occur. In theory, it can occur at any time, including when the user invokes an acce
operation.

It is bad style for an access operation on a non-derived Attribute,
Reference, or Association to raise an exception to indicate that the
metadata is structurally inconsistent or that a Constraint has been violated.

The rationale is that an application program that is reading metadata (rather than
updating it) is typically not in a position to do anything about the violation of deferre
structural constraints or model specific Constraint. Alternatively, an application ma
try to access the metadata, knowing that it is inconsistent, so that it can then corre

It is bad style for an access operation on a derived Attribute, Reference, or
Association to raise a similar exceptionunlessthe inconsistency makes it
impossible to calculate the required derived value(s). The same rule
applies to Operations with “isQuery” true.

The rationale being less prescriptive about derived access operations is that the
formulae used to derive the value(s) will typically have certain assumptions about
consistency of the metadata.
4-24 OMG-Meta Object Facility, v1.4 April 2002



MOFto IDLMapping 5
del

the
r a

ion.
Contents

This chapter contains the following topics.

5.1 Overview

This chapter defines the standard mapping from a model defined using the MOF Mo
onto CORBA IDL. The resulting interfaces are designed to allow a user to create,
update, and access instances of the model using CORBA client programs. While
standard IDL mapping implies detailed functional semantics for an object server fo
mapped model, it does not define the implementation.

Note that while the mapping specification is defined to be easy to automate, a
conformant MOF implementation is not required to support automatic IDL generat

Topic Page

“Overview” 5-1

“Meta Objects and Interfaces” 5-2

“Computational Semantics for the IDL Mapping” 5-6

“Exception Framework” 5-27

“Preconditions for IDL Generation” 5-37

“Standard Tags for the IDL Mapping” 5-39

“Generated IDL Issues” 5-43

“IDL Mapping Templates” 5-48
April 2002 OMG-Meta Object Facility, v1.4 5-1



5

ed

tric
ts,
ry”

five

kage
do

ata.
c
n

5.2 Meta Objects and Interfaces

This section describes the different kinds of meta-objects that represent MOF-bas
meta-data in a CORBA environment.

5.2.1 Meta Object Type Overview

The MOF to IDL mapping and the Reflective module share a common, object-cen
model of meta-data with five kinds of M1-level meta-object; that is, “instance” objec
“class proxy” objects, “association” objects, “package” objects, and “package facto
objects. The relationships between M2-level concepts and M1-level objects is
illustrated by the example in Figure 5-1.

Figure 5-1 Relationships between M1 and M2 level

The example shows how a simple M2-level meta-model (on the left) maps onto the
kinds of M1-level meta-object (in the center). The right of the diagram shows the
intrinsic conglomeration relationships that exist between the meta-objects in a Pac
“instance.” (As noted, in Section 4.8, “Extents,” on page 4-10, these relationships
not always have strict containment semantics.)

Note –These intrinsic conglomeration relationships exist for all M1-level meta-
objects. They have no explicit meaning in connection with the represented meta-d
Rather, they are provided to assist the management of meta-objects. (The intrinsi
conglomeration relationships should not be confused with the M1-level compositio
relationships that correspond to M2-level composite Associations and Attributes.)

M2-level

C
A

Package P

C_Class

A

P

C

P_Factory

Instance

Class

Association

Package

Package

Proxy

Factory

M1-level Interfaces M1-level Instances

A

P_Factory

C_Class

P

C

1
*

1

«creates»

Conceptual
Meta-model
5-2 OMG-Meta Object Facility, v1.4 April 2002



5

ckage

y the

M1-

nce

kage
d by
d via

e
jects.

t for
er of

ting
ifier-

nce
ed by
5.2.1.1 Package objects and Package Factory objects

The instances of an M2-level Package are represented as Package objects. A Pa
object is little more than a “directory” of read-only attributes that give access to a
collection of meta-objects described by a meta-model. The attributes of a Package
object refer to “static” objects. In particular, there is

• one Package attribute for each M2-level Packages that is nested or clustered b
Package (none are present in the example above),

• one Class Proxy attribute for each M2-level Class in the Package, and

• one Association attribute for each M2-level Association in the Package.

The number and types of the static objects, and the corresponding attributes in an
level Package interface is determined by the M2-level Package specification. The
objects cannot be directly created, destroyed, added, or removed by a client.

While there is usually a one-to-one correspondence between the Packages’ refere
attributes and the static objects, this need not be the case. The correspondence is
actually determined by the extent relationships as described in Section 4.8.4, “Pac
Extents,” on page 4-12. Thus, for example, when an M2-level Package is clustere
more than one route, there should be one M1-level Package object that is accesse
two attributes.

A Package object is typically obtained by invoking a “create” operation on Packag
Factory objects. This creates the Package object, and all of the necessary static ob
The arguments to the “create” operation are used to initialize any classifier-scoped
Attributes defined within the M2-level Package.

5.2.1.2 Class Proxy objects

As stated above, a Package object contains one (and only one) Class Proxy objec
each M2-level Class in the M2-level Package. A Class Proxy object serves a numb
purposes:

• it is a factory object for producing Instance objects in the Package “instance,”

• it is the intrinsic container for Instance objects, and

• it holds the state of any classifier-scoped Attributes for the M2-level Class.

The interface of a Class Proxy object provides operations for accessing and upda
the classifier-scoped attribute state. Other operations allow a client to invoke class
scoped Operations.

The interface also provides a factory operation that allows the client to create Insta
objects. It also gives read-only access to the set of extant Instance objects contain
the Class Proxy object.
April 2002 OMG-MOF, v1.4: Meta Objects and Interfaces 5-3



5

nce
the

ct.
es
bject

ts.
)
ct
ide:
5.2.1.3 Instance objects

The instances of an M2-level Class are represented by Instance objects. An Insta
object holds the state corresponding to the instance-scoped M2-level Attributes for
Class, and any other “hidden” state implied by the Class specification. Generally
speaking, many Instance objects can exist within a given Package “instance.”

As described above, Instance objects are always contained by a Class Proxy obje
The Class Proxy provides a factory operation for creating Instance objects that tak
initial values for the instance-scoped Attributes as parameters. When an Instance o
is created, it is automatically added to the Class Proxy container. An Instance is
removed from the container when it is destroyed.

The interface for an Instance object inherits from the corresponding Class Proxy
interface. In addition it provides:

• operations to access and update the instance-scoped Attributes,

• operations to invoke the instance-scoped Operations,

• operations to access and update Associations via Reference,

• operations that support object identity for the Instance, and

• an operation for deleting the Instance object.

5.2.1.4 Association objects

Links that correspond to M2-level Associations are not represented as meta-objec
Instead, an M1-level Association object holds a collection of links (i.e., the link set
corresponding to an M2-level Association. The Association object is a “static” obje
that is contained by a Package object, as described previously. Its interfaces prov

• operations for querying the link set,

• operations for adding, modify and removing links from the set, and

• an operation that returns the entire link set.

5.2.2 The Meta Object Interface Hierarchy

This section describes the patterns of interface inheritance in the CORBA IDL
generated by the MOF to IDL mapping. The patterns are illustrated in Figure 5-2.
5-4 OMG-Meta Object Facility, v1.4 April 2002



5

at
d C2,

ed

up
ese

t is,
.

and
erns
Figure 5-2 shows an example MOF meta-model expressed in UML (on the left) th
consists of two Packages P1 and P2. The first Package P1 contains Classes C1 an
where C2 is a subclass of C1 and an Association A that connects C1 and C2. The
second Package P2 is then defined as a subpackage of P1.

The UML class diagram (on the right) shows the inheritance graph for the generat
interfaces corresponding to the example meta-model.

The root of the inheritance graph is a group of four predefined interfaces that make
the Reflective module; see Section 6.2, “The Reflective Interfaces,” on page 6-3. Th
interfaces collectively provide:

• operations that implement meta-object identity,

• operations for finding a meta-object’s containing package instance(s),

• an operation for finding a meta-object’s M2-level description, and

• operations for exercising the functionality of a meta-object independent of its
generated interface.

Note –The interfaces in the Reflective module are all designed to be “abstract;” tha
it is not anticipated that they should be the “most derived” type of any meta-object

The interfaces for the Package objects, Association objects, Class Proxy objects,
Instance objects provide functionality as described previously. The inheritance patt
are as follows:

Figure 5-2 Generated IDL Inheritance Patterns

C2

C1

Package P1

P1 P2

A

Meta-model Definition

C1Class

P2

P1

C2

C1C2Class

A

c1_ref : C1Class
c2_ref : C2Class
a_ref : A

RefPackage RefAssociation RefObject

RefBaseObject

Inheritance in Generated Interfaces
April 2002 OMG-MOF, v1.4: Meta Objects and Interfaces 5-5



5

face

ss
nd

s

fined
54,
te,”

r 4,

f

of
lier.
BA

thing.
• All Package object interfaces inherit (directly or indirectly) from RefPackage.

• All Association object interfaces inherit from RefAssociation.

• All Class Proxy interfaces inherit (directly or indirectly) from RefObject.

• All Instance interfaces inherit from the corresponding Class Proxy interfaces.

• When an M2-level Package P2 inherits from another P1, the corresponding inter
P2 inherits from P1.

• When an M2-level Class C2 inherits from another C1:

• the Class Proxy interface for C2 inherits from the Class Proxy for C1, and

• the Instance interface for C2 inherits from the Instance for C1.

The diamond pattern of interface inheritance is virtually unavoidable. The C2’s Cla
Proxy needs to inherit the interface features for C1’s classifier-scoped Attributes a
Operations. Similarly, C2’s Instance interface needs to inherit the instance-scoped
interface features.

Note –The IDL mapping supports some Tags for specifying addition IDL supertype
of various generated interfaces; see Section 5.6.3, “Tags for Specifying IDL
Inheritance,” on page 5-41. The effect of these Tags on the inheritance graph is de
by the relevant IDL templates; see Section 5.8.4, “Package Template,” on page 5-
Section 5.8.6, “Class Template,” on page 5-57, Section 5.8.7, “Class Proxy Templa
on page 5-58, and Section 5.8.10, “Association Template,” on page 5-62.

5.3 Computational Semantics for the IDL Mapping

This section specializes the MOF’s general computational semantics (see Chapte
“The MOF Abstract Mapping”) for the MOF to IDL mapping.

5.3.1 The CorbaIdlTypes Package

The IDL mapping defines PrimitiveType instances that can be used to represent
CORBA specific data types in a MOF meta-model. The IDL mapping maps each o
these PrimitiveType instances into CORBA IDL data types, but other technology
mappings typically will not map them.

Please note the following:

1. The types in the CorbaIdlTypes package are provided solely to ease migration
“legacy” meta-models and meta-data defined in the context of MOF 1.3 and ear
Use of these types in new meta-models is discouraged as it will make them COR
specific.

2. Implementations of the IDL mapping shall recognize the CORBA specific
PrimitiveType instances based on their qualified names. Multiple PrimitiveType
instances with the required qualified name shall be deemed to mean the same
5-6 OMG-Meta Object Facility, v1.4 April 2002



5

It
The CorbaIdlTypes package is a MOF package whose name is “CorbaIdlTypes.”.
contains the PrimitiveType instances defined below, and no other instances. The
information below defines the value domain (set) for each type, and the syntax for
encoding values for use in the Model::Constant “value” attribute.

CorbaOctet

This primitive data type represents the CORBA IDL ‘octet’ type.

CorbaShort

This primitive data type represents the CORBA IDL ‘short’ type.

CorbaUnsignedShort

This primitive data type represents the CORBA IDL ‘unsigned short’ type.

CorbaUnsignedLong

This primitive data type represents the CORBA IDL ‘unsigned long’ type.

CorbaUnsignedLongLong

This primitive data type represents the CORBA IDL ‘unsigned long long’ type.

value domain The subset of integers in the range 0 to 255.

constant value syntax CORBA IDL integer literal syntax.

value domain The subset of the integers in the range -215 to +215 - 1

constant value syntax CORBA IDL integer literal syntax with an optional leading
‘-’ character.

value domain The subset of the integers in the range 0 to 216 - 1

constant value syntax CORBA IDL integer literal syntax.

value domain The subset of the integers in the range 0 to 232 - 1

constant value syntax CORBA IDL integer literal syntax.

value domain The subset of the integers in the range 0 to 264 - 1

constant value syntax CORBA IDL integer literal syntax.
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-7



5

or

.

CorbaLongDouble

This primitive data type is the set of IEEE extended double precision floating point
numbers (see ANSI/IEEE Standard 754-1985). This is the minimum requirement f
the CORBA IDL ‘long double’ type.

CorbaString

This primitive data type represents the CORBA IDL ‘string’ type.

CorbaChar

This primitive data type represents the CORBA IDL ‘char’ type.

CorbaWChar

This primitive data type represents the CORBA IDL ‘wchar’ type.

value domain The subset of the rational numbers that correspond to the
values representable as IEEE extended double precision
floating point numbers (96 bit).

constant value syntax CORBA IDL floating point literal syntax with an optional
leading ‘-’ character.

value domain The infinite set of all finite sequences of 8 bit characters
(excluding the zero character value).

constant value syntax A sequence of 8-bit characters. (Note: a Constant’s ‘value’
string for a CorbaString has no surrounding quotes and
contains no character escape sequences.)

value domain The set of 8 bit characters.

constant value syntax One 8-bit character. NUL is represented as an empty String.
(Note: a Constant’s ‘value’ string for a CorbaChar has no
surrounding quotes and contains no character escape
sequences.)

value domain The set of 16 bit characters.

constant value syntax One 16-bit character. NUL is represented as an empty String
(Note: a Constant’s ‘value’ string for a CorbaWChar has no
surrounding quotes and contains no character escape
sequences.)
5-8 OMG-Meta Object Facility, v1.4 April 2002



5

IDL for the CorbaIdlTypes module

The IDL for the CorbaIdlTypes package is given below. The IDL is produced by
applying the IDL Mapping to the package. It would typically be “#included” by the
IDL for meta-models that import the CorbaIdlTypes package.

#pragma prefix "org.omg.mof"
module CorbaIdlTypes {

typedef sequence < octet > OctetBag;
typedef sequence < octet > OctetSet;
typedef sequence < octet > OctetList;
typedef sequence < octet > OctetUList;
typedef sequence < short > ShortBag;
typedef sequence < short > ShortSet;
typedef sequence < short > ShortList;
typedef sequence < short > ShortUList;
typedef sequence < unsigned short > UShortBag;
typedef sequence < unsigned short > UShortSet;
typedef sequence < unsigned short > UShortList;
typedef sequence < unsigned short > UShortUList;
typedef sequence < unsigned long > ULongBag;
typedef sequence < unsigned long > ULongSet;
typedef sequence < unsigned long > ULongList;
typedef sequence < unsigned long > ULongUList;
typedef sequence < unsigned long long > ULongLongBag;
typedef sequence < unsigned long long > ULongLongSet;
typedef sequence < unsigned long long > ULongLongList;
typedef sequence < unsigned long long > ULongLongUList;
typedef sequence < long double > ULongDoubleBag;
typedef sequence < long double > ULongDoubleSet;
typedef sequence < long double > ULongDoubleList;
typedef sequence < long double > ULongDoubleUList;
typedef sequence < string > StringBag;
typedef sequence < string > StringSet;
typedef sequence < string > StringList;
typedef sequence < string > StringUList;
typedef sequence < char > CharBag;
typedef sequence < char > CharSet;
typedef sequence < char > CharList;
typedef sequence < char > CharUList;
typedef sequence < wchar > WCharBag;
typedef sequence < wchar > WCharSet;
typedef sequence < wchar > WCharList;
typedef sequence < wchar > WCharUList;

// This interface would be inheritted by any the Package interface for any Package
// that inheritted the CorbaIdlTypes package
interface CorbaIdlTypesPackage : Reflective::RefPackage { };

// This interface is here for completeness only. There is no point in instantiating
// the CorbaIdlTypesPackage interface.
interface CorbaIdlTypesPackageFactory {
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-9



5

e

CorbaIdlTypesPackage create_corba_idl_types_package()
raises (Reflective::MofError);

};
};

5.3.2 Mapping of MOF Data Types to CORBA IDL Types

The following MOF PrimitiveType instances are mapped to CORBA IDL types in th
IDL mapping. Other PrimitiveType instances have no defined mapping:

Note –The MOF to IDL mappingdoes notdefine a standard mapping to the following
CORBA IDL primitive data types: Principal, TypeCode, Any.

The MOF constructed data types are mapped to CORBA IDL types as follows:

Table 5-1 Mapping of PrimitiveTypes to CORBA IDL Types

PrimitiveType instance Corresponding IDL type

PrimitiveTypes::Boolean boolean

PrimitiveTypes::Integer long

PrimitiveTypes::Long long long

PrimitiveTypes::Float float

PrimitiveTypes::Double double

PrimitiveTypes::String wstring

CorbaIdlTypes::CorbaOctet octet

CorbaIdlTypes::CorbaShort short

CorbaIdlTypes::CorbaUnsignedShort unsigned short

CorbaIdlTypes::CorbaUnsignedLong unsigned long

CorbaIdlTypes::CorbaUnsignedLongLong unsigned long long

CorbaIdlTypes::CorbaLongDouble long double

CorbaIdlTypes::CorbaString string

CorbaIdlTypes::CorbaChar char

CorbaIdlTypes::CorbaWChar wchar

Table 5-2 Mapping of other DataTypes to CORBA IDL Types

DataType subtype Corresponding IDL type

StructureType(name, fields) structname{ fields};.

CollectionType(name, type, ...) typedef sequence <type> name;

EnumerationType(name, labels) enumname{ labels};

AliasType(name, type) typedeftype name;
5-10 OMG-Meta Object Facility, v1.4 April 2002



5

nded
pes

d
for

he
rns

to
ay

a
ion
t the

ion
ntly

ing
reate
ed

,

ong
Note –The MOF to IDL mappingdoes notdefine a standard mapping to the following
CORBA IDL constructed types: arrays, bounded sequences, bounded strings, bou
wide strings, fixed types, union types, value types, boxed value types, interface ty
or abstract interface types.

5.3.3 Value Types and Equality in the IDL Mapping

The IDL mapping defines all MOF Instance types as CORBA object types that are
descended from the “RefObject” interface; see Section 6.2.4,
“Reflective::RefAssociation,” on page 6-23. Equality of Instance objects should be
implemented as follows:

• Existing Instance objects are equal if and only if the “refMofId” operation define
by Section 6.2.3, “Reflective::RefObject,” on page 6-10 returns the same string
both objects.

• Non-existent Instance objects are deemed to be equal if and only if they have t
same object reference; that is, when the “Object::_is_equivalent” operation retu
true.

Note –An implementation must take care when comparing Instance object values
distinguish between non-existent (i.e., deleted) Instance objects and objects that m
only be temporarily inaccessible. An operation should only raise an exception for
non-existent Instance object when it cannot be performed. In particular, an operat
that replaces or removes defunct links or Instance values should not complain tha
Instance being removed is defunct.

5.3.4 Lifecycle Semantics for the IDL Mapping

This section defines the IDL mapping’s computational model for meta-object creat
and deletion. It also gives definitions of copy semantics, though these should curre
be viewed as indicative rather than normative.

5.3.4.1 Package object creation and deletion semantics

An M1-level Package object for a non-nested M2-level Package is created by invok
the create operation provided by the corresponding PackageFactory object. This c
operation requires the caller to supply the values for all non-derived classifier-scop
Attributes. If the supplied initial values do not have the correct multiplicity or if they
individually or collectively violate immediate Constraints defined in the metamodel
the create operation should raise an exception.

Instances of the following dependent M1-level objects are automatically created al
with each M1-level Package object:

• An M1-level Package object is created for each nested Package within the
outermost Package extent.
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-11



5

ref”

-level

e
user
have
on a
e

nt.

g
nd

ard.

must

jects

d to
• An M1-level Package object is created for each clustered Package within the
outermost Package extent.

• An M1-level Class Proxy object is created for each Class within the outermost
Package extent.

• An M1-level Association object is created for each Association within the
outermost Package extent.

The object references for the dependent Package and Class objects provide the “
attributes in the respective Package objects. The objects are initialized so that the
outermost_package and enclosing_package operations return the appropriate M1
Package objects.

Note – If an M2-level Package P2 clusters an existing top-level M2 Package P1, th
above rules mean that two kinds of M1-level P1 Package objects can exist. If the
calls create on a P2 Package Factory object, the resulting P2 Package object will
its own dependent P1 Package object. On the other hand, if the user calls create
P1 Package Factory, the resulting P1 Package object will be an outermost Packag
object. These two kinds of P1 Package objects behave identically, apart from their
respective “refOutermostPackage” and “refOutermostPackage” operations; see
Section 6.2.3, “Reflective::RefObject,” on page 6-10.

When an M1-level Class Proxy object is created, the values of the non-derived
classifier-level Attributes are initialized from the corresponding create operation
arguments. The “all_of_type” and “all_of_kind” collections will initially be empty,
since no M1-level Instance objects will have been created in the Class Proxy exte

Note –An implementation may support other mechanisms for creating or recreatin
outermost M1-level Package objects. Any such mechanism must also (re-)create a
initialize the necessary dependent objects as above.

An outermost M1-level Package object can be destroyed using the “refDelete”
operation; see Section 6.2.3, “Reflective::RefObject,” on page 6-10. The required
computational semantics for deleting an outermost Package object are straightforw
The following things must occur (in an unspecified order):

• The binding between the outermost Package object and its object reference(s)
be revoked.

• The bindings between all dependent Package, Association, and Class Proxy ob
and their object references must be revoked.

• All Instance objects within the extent of the outermost Package object must be
destroyed as described below.

Note –A typical implementation will delete the metadata and reclaim the space use
store it. However, this behavior is not essential and in some situations it could be
undesirable.
5-12 OMG-Meta Object Facility, v1.4 April 2002



5

lass

by
on,

jects
. A

oped

se

rtype
d an

her

xy

or

his
Dependent M1-level Package objects, M1-level Association objects and M1-level C
Proxy objects cannot be directly destroyed by the user. An implementation of the
“refDelete” operation for these objects is required to raise an exception when called
client code. (The operations may be used to implement outermost Package deleti
but this is beyond the scope of this specification.)

5.3.4.2 Instance object lifecycle semantics

An M1-level Instance object can be created by invoking the appropriate create
operation. Suitable create operations are present on both M1-level Class Proxy ob
and M1-level Instance objects, depending on the M2-level Class inheritance graph
create operation requires the caller to supply values for all non-derived instance-sc
Attributes for the Instance object. If any value does not conform to the Attribute’s
multiplicity or if they individually or collectively violate any immediate Constraints on
the meta-model, an exception is raised.

An Instance object is created within the extent of a Class Proxy object for the
Instance’s M2-level Class. The Class Proxy can be found as follows:

1. Find the outermost Package extent containing the object on which the create
operation was invoked.

2. Within that extent, find the one and only Class Proxy object for the M2 Class who
instance is being created.

If no Class Proxy can be found by the above, the create request violates the Supe
Closure Rule (see Section 5.3.10, “The Supertype Closure Rule,” on page 5-26) an
exception is raised.

Creation of an Instance object will also fail if the corresponding M2-level Class is
abstract. Similarly, it will fail if the M2-level Class is a “singleton” Class and an
Instance object for that Class already exists within the Class Proxy’s extent. In eit
case, an exception is raised.

When an Instance object is (successfully) created within the extent of a Class Pro
object, it becomes part of a collection returned by the Class Proxy object’s
“all_of_kind” operation. The Instance object remains a member of that collection f
its lifetime (i.e., until it is deleted).

An Instance object will be deleted in the following three situations:

1. When a client invokes the “refDelete” operation on the Instance object; see
Section 6.2.3, “Reflective::RefObject,” on page 6-10.

2. When the Package object for the Instance object’s outermost Package extent is
deleted (see above), and

3. When the Instance is a component of a “composite” Instance that is deleted. T
applies to composites formed by both Associations and Attributes.

When an Instance object is deleted the following things must occur:
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-13



5

”

o be

n

in

ural

,

cts;
,”

12,

e

a

e
ain
vel
ks
• The binding between the Instance object and its object reference(s) must be
revoked.

• The Instance object must be removed from its Class Proxy object’s “all_of_type
collection.

• Any Instance objects that are components of the object being deleted must als
deleted.

• Links involving the deleted Instance object should be deleted as per the “Link
lifecycle semantics” specification below.

An implementation will typically delete the state of an Instance object that has bee
deleted, and reclaim any associated space.

Note –When an Instance object is deleted, corresponding object reference values
non-composite Attributes of other objects become “dangling” references. These
dangling referencesshould notbe automatically expunged or converted to nil object
references, since doing so potentially destroys information and creates new struct
errors. Instead, it is the user’s responsibility to ensure that dangling references in
Attributes are tidied up in the most appropriate way.

5.3.4.3 Link lifecycle semantics

Links can be created and deleted in various ways. These include:

• by the user operations on M1-level Association objects; see Section 5.3.5,
“Association Access and Update Semantics for the IDL Mapping,” on page 5-15

• by the user operations corresponding to References on M1-level Instance obje
see Section 5.3.6, “Attribute Access and Update Semantics for the IDL Mapping
on page 5-18,

• by the user copying metadata (using some vendor specific API); see Section 4.
“Recommended Copy Semantics,” on page 4-21,

• by the user deleting one or other linked Instance objects; see Section 5.3.4.2,
“Instance object lifecycle semantics,” on page 5-13, and

• when the server notices that a linked Instance object no longer exists.

A link is created within the extent of an Association object, and becomes part of th
collection returned by the Association object’s “links()” operation. A link remains
within the extent in which it was created for the lifetime of the link (i.e., until it is
deleted). When a link is deleted, it is removed from the “links” collection. Removing
link does not affect the lifecycle of the linked Instance objects.

According to Section 4.9.2.2, “Characteristics of M1-level Associations,” on
page 4-16, deletion of an Instance object causes any links for that object to becom
meaningless. Ideally, a well-formed M1-level Association instance should not cont
such links. In practice, the immediate removal of meaningless links from an M1-le
Association instance cannot always be implemented, in particular in the case of lin
that cross outermost Package extent boundaries.
5-14 OMG-Meta Object Facility, v1.4 April 2002



5

hin

in

ss

n

an

ks
a

of
lar

ce
Instead, a meta-object server is required to behave as follows. When an Instance
object is deleted:

• all links referring to the Instance object that belong to Association instances wit
the same outermost Package extent as the Instance objectmustalso be deleted, and

• any links referring to the Instance object that belong to Association instances in
another outermost Package extent as the Instance objectmayalso be deleted.

Note –The above semantics means that an Association instance can legally conta
links that refer to defunct Instance objects in other extents.

5.3.5 Association Access and Update Semantics for the IDL Mapping

This section describes the computational semantics of the Association object acce
and update operations defined in the MOF to IDL Mapping and the Reflective
interfaces. With a couple of exceptions, these semantics transform oneWell-formed
State(as defined in Section 4.9.2.1, “A Mathematical Model of Association State,” o
page 4-15) to another. The exceptions are as follows:

• Deletion of an Instance object in another outermost Package extent may cause
Association instance to contain links that are not members ofValid_Links.

• Deletion of an Instance object can cause anEnd_Linksset to contain fewer links
than is required.

M1-level Instance objects are passed as CORBA object reference values in IDL
mapped operations. However, since the Association State model requires that Lin
connect Instances, it is not legal to pass the CORBA nil object reference value as
parameter to any operation on an M1-level Association.

Note –While the semantics of Associations are described (below) in terms of sets
pairs of M1-level Instance objects, this should not be read as implying any particu
implementation approach.

5.3.5.1 Access Operations

There are three kinds of link access operations in the M1-level Association interfa
generated by the IDL mapping:

• The “all_links” operation returns the currentLink_Setfor an Association object.

• The “<end_name>” operations return a projection of the correspondingEnd_Links
sets.

• The “exists” operation tests for the existence of a givenLink in the Link_Set.

These operations are defined to be side-effect free; that is, they do not modify theState
of the Association instance.
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-15



5

her

he

of
on
er
5.3.5.2 Link Addition Operations

The operations for adding links to an M1-level Association vary, depending on whet
it has an ordered M2-level AssociationEnd:

• For an unordered Association, the “add” operation adds aLink to theLink_Set.

• For an ordered Association, the “add” and “add_before” operations both add aLink
between a pair of Instances to theLink_Set. In the “add” case, the new Link is
added after existing Links. In the “add_before” case, the new Link is added
immediately before the link selected by the “before” argument.

More precisely, assuming that the first AssociationEnd is the ordered one and t
new Link connects Instancesi and j. TheBeforemapping is updated as follows:

• For “add,” all Links that were inEnd2_Linksj prior to the operation areBeforethe
new Link when it completes.

• For “add_before,” theBefore_Linkconnects the“before” and j Instances. For all
Links that were inEnd2_Linksj and wereBeforethe Before_Linkprior to the
operation, the pre-existing Link isBeforethe newLink after the operation. For all
other Links that were inEnd2_Linksj prior to the operation, the newLink is
Beforethe pre-existingLink after the operation.

• In both cases, the ordering of the otherEnd2_Linkssets are unchanged.

A number of constraints apply to the link addition operations:

• A new Link can only be added between extant Instances; that is, the newLink must
be a member ofValid_Links.

• An operation cannot add aLink that is already a member of theLink_Set.

• An operation cannot add aLink if it would make the number of members of either
End1_Linksi or End2_Linksj greater than the respective AssociationEnd’s “upper”
bound.

• An operation cannot add aLink that creates a Composition cycle, or that violates
the Composition or Reference Closure rules.

5.3.5.3 Link Modification Operations

There are two “modify” operations for replacing an existingLink in theLink_Setof an
M1-level Association. One operation (in effect) modifies the Instance at the first end
a Link, and the second modifies the Instance at the second end. While the operati
signatures do not vary, the semantics of the “modify” operations depend on wheth
the M2-level Association has an ordered AssociationEnd.

• In the non-ordered case, a “modify” operation is almost identical to a “remove”
operation followed by an “add” operation. The only difference is in the bounds
checking; see below.

• In the ordered case, a “modify” operation can differ from an “add” followed by a
“remove” in the way that theBeforeordering is handled. Specifically, if we assume
that the first AssociationEnd is the ordered one, theBeforemapping is updated as
follows:
5-16 OMG-Meta Object Facility, v1.4 April 2002



5

f

2-
ue.
• For “modify_<end1_name>(i, j, k)”, the newLink (betweenk and j) occupies the
same position in theBeforeordering ofEnd2_Linksj as theLink (betweeni and j)
that it replaces.

• For “modify_<end2_name>(i, j, k)”, the newLink (betweeni andk) becomes the
last Link in the Beforeordering ofEnd2_Linksk.

• In both cases, the ordering of the otherEnd2_Linkssets are unchanged.

A number of constraints apply to the link modification operations:

• TheLink that is replaced by the “modify” operation must be a member ofLink_Set.
However, it need not be a member ofValid_Links.

• The replacementLink that is created by a “modify” operation must be a member o
Valid_Links.

• The replacementLink cannot already be a member of theLink_Set.

• A “modify” operation cannot produce aLink that would make the number of
members in either theEnd1_Linksk or End2_Linksk sets greater than the respective
AssociationEnd’s “upper” bound.

• A “modify” operation cannot remove aLink if doing so would make the number of
members ofEnd1_Linksi or End2_Linksj less than the respective AssociationEnd’s
“lower” bound. (However, aLink can be produced in this situation.)

• A “modify” operation cannot produce aLink that creates a Composition cycle, or
that violates the Composition or Reference Closure rules.

Note –A modify operation of the form “modify_<end1_name>(i, j, i)” is treated as a
“no-op.” In particular, it does not trigger checking of “lower” or “upper” bounds.

5.3.5.4 Link Removal Operations

The “remove” operation can be used to delete an existLink (betweeni and j) from the
Link_Setof an M1-level Association. The constraints that apply to the link removal
operation are:

• The operation cannot remove aLink if doing so would make the number of
members ofEnd1_Linksi or End2_Linksj less than the respective AssociationEnd’s
“lower” bound.

• The operation cannot remove aLink that is not a member of theLink_Set. However,
it should succeed if theLink is a member ofLink_Setbut not ofValid_Links.

5.3.5.5 Changeability, Navigability, and Derivedness

The operation descriptions given above assume that the AssociationEnds of the M
level Association have been defined with “isChangeable” and “isNavigable” set to tr
If this is not so, the main impact is that certain operations are suppressed:
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-17



5

its
ate
f
e>”
with

ts
ns
it

ns.

l

ed
se,
ns
ent

d

ults

n

or

L
nt

l
lar
• If an AssociationEnd of an Association is defined as non-changeable (i.e., when
“isChangeable” flag is set to false), the IDL mapping suppresses various link upd
operations. The “add,” “add_before,” and “remove” operations are suppressed i
either AssociationEnd is non-changeable. Furthermore, the “modify_<end_nam
operation is suppressed for any AssociationEnd that is non-changeable, along
any related Reference-based operations.

• If an AssociationEnd of an Association is defined as non-navigable (i.e., when i
“isNavigable” flag is set to false) the IDL mapping suppresses any link operatio
that depend on the ability to search based on that AssociationEnd. Specifically,
suppresses the “<assoc_end>”, “add_before_<end>”, “modify_<end>” operatio

Setting “isDerived” to be true for an M2-level Association is a “hint” that an M1-leve
Association’sLink_SetandBeforemapping should be computed from other M1-level
information. Apart from this, the IDL mapping makes no distinction between deriv
and non-derived Associations. Equivalent IDL interfaces are generated in each ca
and the semantics are defined to be equivalent. If a derived Association’s operatio
are coded by hand, it is the programmer’s responsibility to ensure that they implem
the required semantics.

Some combinations of the Association and AssociationEnd flags result in generate
interfaces that are of little use. For example:

• Setting “isChangeable” to be false on one AssociationEnd and not the other res
in an M1-level Association that supports one “modify” operation but no “add” or
“remove” operations.

• Setting “isChangeable” to be false on an Association that has “isDerived” set to
false results in a “stored” Association with no operations to update theLink_Set.

5.3.6 Attribute Access and Update Semantics for the IDL Mapping

The IDL mapping maps M2-level Attributes to a variety of operations, depending o
the Attribute’s “multiplicity” settings. There are three major cases:

1. single-valued with bounds of [1..1]),

2. optional with bounds of [0..1], and

3. multi-valued.

Unlike Associations, the CORBA “nil” object reference is a legal (and logically
distinct) value for any Class or object reference-valued Attribute. When an access
operation returns a “nil” object reference, this does not necessarily mean that the
Attribute has no value(s). In addition, the lifecycle semantics for Attributes in the ID
mapping mean that an accessor operation can return a reference for a non-existe
object.

Note –While the semantics of Attributes are described (below) in terms of notiona
relations between M1-level values, this should not be read as implying any particu
implementation approach.
5-18 OMG-Meta Object Facility, v1.4 April 2002



5

ribe.
e)

n
e
of
1-

—

for
e of

ct or

t of

most
d).

r”

ase
5.3.6.1 Single-valued Attributes

The interfaces and semantics for single-valued Attributes are the simplest to desc
A single-valued Attribute (i.e., one whose “lower” and “upper” bounds are set to on
is mapped to these IDL operations:

• “<attr_name>”

• “set_<attr_name>”.

The “<attr_name>” operation returns the current value of the named Attribute for a
M1-level Instance object. In the single-valued case, this is a single Instance of th
Attribute’s M1-level base type as mapped by the IDL mapping. In the terminology
Section 4.6.1, “Attribute name and type,” on page 4-5, the operation returns the M
level value that is related to the Instance object by the notional “<attr_name>” Class
AttrType relation.

The “set_<attr_name>” operation replaces the current value of the named Attribute
an M1-level Instance with a new value. As before, the new value is a single Instanc
the Attribute’s M1-level base type as mapped by the IDL mapping. The operation
replaces the existing Class — AttrType relationship with a new one between the
Instance object and the new value.

The behavior of “set_<attr_name>” for a Class-valued Attribute (i.e., one with
“composite” aggregation semantics) is constrained as follows:

• The new value supplied must be either a reference to an existing Instance obje
a nil object reference.

• The new value (i.e., the component Instance) must not already be a componen
another Instance object.

• The composite and component Instance objects must belong to the same outer
M1-level Package extent (i.e., the Composition Closure rule must not be violate

• Creating the new Class — AttrType relationship must not create a composition
cycle.

5.3.6.2 Optional Attributes

The interfaces and semantics for optional Attributes are also relatively straight-
forward. An optional Attribute (i.e., one whose “lower” bound is 0 and whose “uppe
bound is 1) maps to three operations:

1. “<attr_name>”

2. “set_<attr_name>”

3. “unset_<attr_name>”

The IDL mapping treats an M1-level optional Attribute as having two states. In the
“set” state, the Attribute has a value that is an instance of the Attribute’s M1-level b
type. In the “unset” state, the Attribute has no value.
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-19



5

for
is

e

ral

it

,
ue”

’s
tions
ng,

vel
e is

of

nce
tion
tion.
he
is a

e

In the single-valued case, “<attr_name>” simply returns the current M1-level value
the Attribute. In the optional case, the semantics depend on whether the Attribute
currently “set” or “unset.”

• If the Attribute is “set” (i.e., there is a Class — AttrType relationship between th
Instance object and some other value), the “<attr_name>” operation returns the
related value.

• If the Attribute is “unset” (i.e., there is no Class — AttrType relationship with the
Instance object in the “class” role), the “<attr_name>” operation raises an
exception.

The “set_<attr_name>” operation behaves exactly as in the single-valued case; it
replaces the existing Class — AttrType relationship (if any) with a relationship with
the new value. As a consequence, the Attribute enters the “set” state. The structu
constraints for “set_<attr_name>” in the single-valued case apply here as well.

The “unset_<attr_name>” operation removes the Class — AttrType relationship, if
exists, leaving the Attribute in the “unset” state.

5.3.6.3 Multi-valued Attributes

The interfaces and semantics for multi-valued Attributes are relatively complicated
and depend to a considerable extent on the settings of the “isOrdered” and “isUniq
fields of the M2-level Attribute’s “multiplicity” property.

M1-level operations on multi-valued Attributes can be divided into two groups. The
“<attr_name>” and “set_<attr_name>” operations access and update the Attribute
state as a single value, transferring it as a CORBA sequence type. The other opera
treat the Attribute’s state as a collection of values, and update it by adding, modifyi
or removing individual elements of the collection.

The “<attr_name>” and “set_<attr_name>” operations transfer an Attribute’s M1-le
state using a “collection” type. This is a named IDL sequence type whose base typ
the Attribute’s M1-level base type, and whose name is determined by the “name”
the Attribute’s “type” and the settings of the “isOrdered” and “isUnique” flags. For
details, see Section 5.7.1.5, “Literal String Values,” on page 5-46.

The “<attr_name>” operation returns the multi-valued Attribute’s value as a seque
using the IDL type described above. The contents of the result comprise the collec
of base type instances related to the Instance object by the Class — AttrType rela
If “isOrdered” is true, the order of the Class — AttrType relationships determines t
order of the elements in the sequence. If the collection is empty, the returned value
zero length sequence.

The “set_<attr_name>” operation replaces the multi-valued Attribute’s value with a
new collection of base type instances. If the Attribute is ordered, the order of the
elements in the parameter value determines the order of the new Class — AttrTyp
relationships.

A number of restrictions apply to the “set_<attr_name>” operation for multi-valued
Attributes. These are as follows:
5-20 OMG-Meta Object Facility, v1.4 April 2002



5

e

ing

t be

ion

te.
ion,
ble
el

ing,
e is
lse,
ed.
• If the Attribute’s “multiplicity” has the “isUnique” flag set to true, no two base type
instances in the collection may be equal.

• If the Attribute’s “multiplicity” has a “lower” value greater than zero, there must b
at least that many elements in the collection.

• If the Attribute’s “multiplicity” has an “upper” value other than the
“UNBOUNDED” value (i.e., -1), there can be at most that many elements in the
collection.

If the Attribute has composite semantics (i.e., the Attribute’s “type” is expressed us
a Class) the following restrictions also apply:

• Each element (i.e., Instance object) in the new value collection must be either a
reference to an existing Instance object or a nil object reference.

• No element of the new value collection can already be a component of another
Instance object.

• The composite and every component Instance object must belong to the same
outermost M1-level Package extent (i.e., the Composition Closure rule must no
violated).

• Creating the new Class — AttrType relationships must not create any composit
cycles.

The IDL mapping can define up to 7 additional operations for a multi-valued Attribu
There are up to 3 operations for adding new element values to an Attribute collect
up to 2 for modifying them and up to 2 for removing them. The subset that is availa
for a given Attribute depends on the “isUnique” and “isOrdered” flags in the M2-lev
Attribute’s “multiplicity.” This is shown in Table 5-3.

When “isOrdered” is set to false, the operations provided are the basic ones for add
modifying, or removing element values. Given that the collection is unordered, ther
no need to specify the position at which a new element value is added, or (in the fa
false case) which of a number of equal element values should be modified or remov
The semantics of the operations for an unordered Attribute are as follows:

Table 5-3 Element Update Operations for Multi-valued Attributes

isOrdered isUnique Operations available

false false add_<attr_name>, modify_<attr_name>,
remove_<attr_name>

false true add_<attr_name>, modify_<attr_name>,
remove_<attr_name>

true false add_<attr_name>, add_<attr_name>_before,
add_<attr_name>_at, modify_<attr_name>,
modify_<attr_name>_at, remove_<attr_name>,
remove_<attr_name>_at

true true add_<attr_name>, add_<attr_name>_before,
modify_<attr_name>, remove_<attr_name>
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-21



5

o the

p
d

ip
d

i-

d

l
e
in

e an
n is

he

by
n
der
• The “add_<attr_name>” operation creates a new Class — AttrType relationship
between the Instance object and the M1-level base type instance being added t
Attribute collection.

• The “modify_<attr_name>” operation replaces the Class — AttrType relationshi
between the Instance object and the M1-level base type instance being modifie
with another for the new element value.

• The “remove_<attr_name>” operation removes the Class — AttrType relationsh
between the Instance object and the M1-level base type instance being remove
from the Attribute collection. Removing the instance decreases the Attribute
collection’s length rather than leaving a “hole.”

These three operations must also respect the restrictions listed above for the mult
valued “set_<attr_name>” operation.

When “isOrdered” is set to true, the “add_<attr_name>,” “modify_<attr_name>,” an
“remove_<attr_name>” operations take on additional semantics:

• The “add_<attr_name>” operation must ensure that the newly added element
appears as the last element in the Attribute collection.

• The “modify_<attr_name>” operation must ensure that the replacement M1-leve
base type instance appears in the same position in the Attribute collection as th
value that it replaces. When “isUnique” is set to false, the collection may conta
duplicates. In this case, the operation should replace the first example of the
instance in the ordered Attribute collection.

• When “isUnique” is set to false, the “remove_<attr_name>” operation should
removes the first example of the instance in the ordered Attribute collection.

In addition, the client is provided with extra operations for order sensitive element
update:

• The “add_<attr_name>_before” operation is similar to the “add_<attr_name>”
operation, except that the new instance is added to the Attribute collection befor
existing element designated by the caller. When “isUnique” is false, the operatio
defined to replace the first example of the instance in the Attribute collection.

• When “isOrdered” is true and “isUnique” is false, the “add_<attr_name>_at,”
“modify_<attr_name>_at,” and “remove_<attr_name>_at” are provided to allow t
client to update the collection in the presence of duplicates. These operations
specify an element insertion point or an element to be modified to be removed
giving a position index. For the purposes of these operations, the elements in a
Attribute collection are numbered starting from zero according to the defined or
of the members of the collection. The operations are as follows:

• add_<attr_name>_at- inserts the new M1-level base type instance so that it
appears at the position given. The instance originally at that position, and all
instances will have their position indexes increased by one.

• modify_<attr_name>_at - replaces the M1-level base type instance at the
position.
5-22 OMG-Meta Object Facility, v1.4 April 2002



5

e
t

the

ble”
this

all
not

e
y are
by

red

t to
e

se

sed

l

olds
this

2-
• remove_<attr_name>_at- removes the M1-level base type instance at the
position given. Any instances in the collection that follow the removed instanc
will have their position indexes decreased by one (i.e., the operation does no
leave a “hole” in the Attribute collection).

These five additional operations must also respect the restrictions listed above for
multi-valued “set_<attr_name>” operation.

5.3.6.4 Changeability and Derivedness

The previous semantic descriptions assume the M2-level Attribute has “isChangea
set to true and “isDerived” set to false. This subsection describes what happens if
is not the case.

If an Attribute has “isChangeable” set to false, the effect on the IDL mapping is that
generated operations for updating the Attribute’s state are suppressed. This does
preclude the existence of other mechanisms for updating the Attribute’s state.

Setting an Attribute’s “isDerived” flag to true, has no effect on the IDL mapping. Th
operations generated for the derived and non-derived cases are equivalent and the
defined to have equivalent semantics. If a derived Attribute’s operations are coded
hand, it is the programmer’s responsibility to ensure that they implement the requi
semantics.

5.3.6.5 Classifier scoped Attributes

The previous semantic descriptions assume the M2-level Attribute has “scope” se
“instance_level.” When an Attribute’s “scope” is “classifier_level,” we can model th
notional relation that defines the M1-level Attribute state as a relation between the
Class extent and the AttrType; see Section 4.6.3, “Scope,” on page 4-7. In the IDL
mapping, this translates to a notional relation between a Class Proxy object and
instances of the Attribute’s M1-level base type.

On this basis, an Attribute whose “scope” is “classifier_level” differs from one who
“scope” is “instance_level” in the following respects:

• The notional Class Proxy — AttrType relation supplies the value or values acces
and updated by “classifier_level” scoped Attribute operations.

• When the Attribute has aggregation semantics of “composite”:

• the Composition Closure rule means that the Class Proxy object and M1-leve
Attribute value Instances must belong to the same extent, and

• checking for composition cycles is unnecessary. The Class Proxy object that h
the Attribute value(s) is not an Instance, and thus cannot be a “component” in
sense.

5.3.6.6 Inherited Attributes

The previous semantic descriptions apply equally to Attributes defined within an M
level Class, and Attribute inherited from supertypes of the Class.
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-23



5

tial
”
ed

1-
e>”

ips

n
its

ation

ce
.

e)
5.3.6.7 Life-cycle Semantics for Attributes

The previous semantic descriptions say nothing about how an Attribute gets its ini
value or values. (With the exception of the single-valued case of the “<attr_name>
operation, the semantic descriptions would “work” if no notional relationships exist
initially.) In fact, the IDL mapping ensures that all M1-level Attributes get a client-
supplied initial value:

• All “instance_level” scoped Attribute values for an M1-level Instance object are
initialized from the parameters to the “create_<class_name>” operation.

• All “classifier_level” scoped Attribute values within the extent of an outermost M
level Package are initialized from the parameters to the “create_<package_nam
operation.

An M1-level Attribute only exists while the M1-level Instance object or Class Proxy
object that it belongs to exists. When the object is deleted, the notional relationsh
disappear as well.

Attributes with “composite” aggregation semantics have special life-cycle. When a
object with a composite Attribute is deleted, the Instance object or objects that form
value are also deleted.

Note that unlike Associations, when an Instance object is deleted, the delete oper
should make no attempt to tidy up “dangling references” to it.

5.3.7 Reference Semantics for the IDL Mapping

The IDL mapping maps References into a hybrid that combines an Attribute style
interface with Association access and update semantics. In each case, a Referen
operation maps fairly directly onto an Association operation as shown in Table 5-4

Table 5-4 Semantic mapping of Reference operations to Association Operations

Multiplicity Reference Operation Association Operation(s)
(assuming that the referenced AssociationEnd is the 2nd on

optional i.<reference_name>() temp = a.<referenced_end_name>(i)
if temp.size > 0 then

temp[0]
else

raise NotSet

single- and
multi-valued

i.<reference_name>() a.<referenced_end_name>(i)

optional i.set_<reference_name>(new) old = a.<reference_end_name>(i)
if old.size > 0 then

a.modify_<reference_end_name>(i, old[0], new)
else

a.add(i, new)
5-24 OMG-Meta Object Facility, v1.4 April 2002



5

In
ot

ere.
erms
t
ge

e)
In practice, an implementation also needs to transform exceptions reported for the
Association operations into exceptions that apply from the Reference perspective.
addition, a “quality” implementation would ensure that Reference operations did n
leave the Association object in a half way state following an exception.

Note –The above semantic mapping description is not intended as implying any
particular implementation approach.

5.3.8 Cluster Semantics for the IDL Mapping

The impact of clusters on the IDL mapping semantics are largely described elsewh
At the M1-level, a clustered Package behaves identically to a nested Package in t
of life-cycle and extent rules. The only significant difference is that clustering is no
always a strict composition relationship at the M1-level; see Section 4.8.4, “Packa
Extents,” on page 4-12. In the IDL mapping, this means that two or more Package
“ref” attributes point at the same clustered Package instance.

5.3.9 Atomicity Semantics for the IDL Mapping

All operations defined by the IDL mapping (including the Reflective versions) are
required to be atomic and idempotent:

• If an operation succeeds, state changes required by the specification should be
made, except as noted below:

optional i.unset_<reference_name>() old = a.<reference_end_name>(i)
if old.size > 0 then

a.remove(i, old[0])

single-valued i.set_<reference_name>(new) old = a.<ref_end_name>(i)
a.modify_<ref_end_name>(i, old, new)

multi-valued i.set_<reference_name>(new) old = a.<ref_end_name>(i)
for j in 0 .. (old.size - 1) do

a.remove(i, old[j])
for j in 0 .. (old.size - 1) do

a.add(i, new[j])

multi-valued i.add_<reference_name>(new) a.add(i, new)

multi-valued i.add_before_<reference_name>(new,
before)

a.add_before_<referenced_end_name>(i, new, before)

multi-valued i.modify_<reference_name>(old, new) a.modify_<referenced_end_name>(i, old, new)

multi-valued i.remove_<reference_name>(old) a.remove_<referenced_end_name>(i, old)

Table 5-4 Semantic mapping of Reference operations to Association Operations

Multiplicity Reference Operation Association Operation(s)
(assuming that the referenced AssociationEnd is the 2nd on
April 2002 OMG-MOF, v1.4: Computational Semantics for the IDL Mapping 5-25



5

cts

ject

s

t

ding
2-

M2-

er,

-27.
tion
to

e

Class

k
type
• When an Instance object is deleted, deletion of any component Instance obje
may occur asynchronously.

• When an Instance object is deleted, removal of links to the deleted Instance ob
may occur asynchronously.

• If an operation fails (e.g., by raising an exception), no externally visible change
should be caused by the failed operation.

• When the invocation of two or more operations overlaps in time, the resultant
behavior should be semantically equivalent to the sequential invocation of the
operations in some order.

Note –The IDL mapping specification does not require a transactional or persisten
implementation of a meta-data server.

5.3.10 The Supertype Closure Rule

The inheritance pattern for Instance and Class Proxy interfaces has an important
consequence when one M2-level Class is a sub-Class of a second one.

Recall that each Class Proxy interface defines a factory operation for the correspon
Instance object, and that it also inherits from the Class Proxy interfaces for any M
level super-Classes. Taken together, this means that any Class Proxy object has
operations for creating Instance objects for both the M2-level Class, and all of its
level super-Classes.

Normally, this artifact of the IDL inheritance hierarchy is just a convenience. Howev
problems arise when an M2-level Class (e.g., P2::C2) has a super-Class that is
imported from another M2-level Package (e.g., P1::C1); see Figure 5-3 on page 5
The Class Proxy interface corresponding to the C2 Class now has a factory opera
to create instances of a Class from another Package, and therefore would appear
require all of the mechanisms for creating, accessing, updating, and deleting thes
instances. This is not what Package importing is defined to mean.

The adopted solution to this problem is to add an extra restriction to the MOF
computational semantics. This restriction is known as theSupertype Closure Rule.

Supertype Closure Rule

Suppose that the Package extent for a non-nested M2-level Package P contains a
Proxy object, which has a create operation for instances of Class C. This create
operation can be used if and only if the M2-level closure of the Package P under
generalization and clustering includes the M2-level Class C.

In other words, a factory operation for instances of an M2-level Class will only wor
within a Package instance with the machinery for supporting the Class. The Super
Closure Rule is illustrated in Figure 5-3.
5-26 OMG-Meta Object Facility, v1.4 April 2002



5

s

:

-5,

e

5.3.11 Copy Semantics for the IDL Mapping

The IDL mapping currently defines no APIs for copying meta-data. Copy semantic
are therefore beyond the scope of this chapter.

5.4 Exception Framework

This section describes the way that Exceptions are organized in the MOF to IDL
mapping. These exceptions are raised in a variety of CORBA interfaces, including

• Reflective interfaces: (see Section 6.2.2, “Reflective::RefBaseObject,” on page 6
Section 6.2.3, “Reflective::RefObject,” on page 6-10, Section 6.2.4,
“Reflective::RefAssociation,” on page 6-23, Section 6.2.5,
“Reflective::RefPackage,” on page 6-28, and

• Model interfaces (see Section 3.4, “MOF Model Classes,” on page 3-15 and
Section 3.5, “MOF Model Associations,” on page 3-66).

• Specific interfaces produced by the mapping templates (see Section 5.8, “IDL
Mapping Templates,” on page 5-48).

The exceptional conditions that arise in the context of the MOF to IDL mapping ar
classified into 5 groups:

Figure 5-3 Supertype Closure Rule

P1::C1

P1

P2

Meta-model Definition

«imports»

P3

P2::C2 P3::C3

«clusters»

P1 Instance P2 Instance

C2
extent

C1
Proxy

C2
Proxy

C1
Proxy

C1
extent

C1
Proxy

C1
extent

C3
Proxy

C3
extent

P3 Instance
April 2002 OMG-MOF, v1.4: Exception Framework 5-27



5

en

OF

tion

t
just

ex.

to

nil
1. Structural errors - this group covers those situations where the basic structural
consistency rules for the metadata are (or would be) violated. For example, wh
there are too many or too few elements in a collection value.

2. Constraint errors - this group covers violations of metadata consistency rules
specified in the metamodel using Constraints.

3. Usage errors - this group covers those situations where a client tries to use the M
interfaces in a meaningless way. For example, giving a ‘position’ for a collection
element that is outside of the collection bounds.

4. Reflective errors - this group covers errors that can only occur when using the
Reflective interfaces. For example, calling “refInvokeOperation” on an Attribute.
These errors are the notional equivalent of runtime type errors.

5. Semantic errors - this group covers errors not covered above (i.e., implementa
specific errors).

The complexity of the MOF means that the number of exceptional conditions is (a
least in theory) unbounded. The precise set of possible exceptional conditions for
one operation in the mapped interfaces can be very hard to define. Constraint and
Semantic errors are particularly difficult to tie down. Furthermore, including lots of
exceptions in an IDL operation signature can make client code inordinately compl

To solve these problems, the MOF IDL mapping defines theMofError exception that
covers most of the exceptional conditions that might arise.

struct NamedValueType {
wstring name;
any value;

};
typedef sequence < NamedValueType > NamedValueList;
exception MofError {

wstring error_kind;
RefBaseObject element_in_error;
NamedValueList extra_info;
wstring error_description;

};

The fields of theMofError exception are defined as follows:

• error_kind is a wide string that denotes the particular kind of exceptional
condition that is being raised. The formation of values for this field is discussed
below.

• element_in_error is the DesignatorType for the object or feature that is deemed
be in error for this error condition. The detailed specifications of the error
conditions below define which meta-object should be returned in each case. In
situations where no M2-level meta-objects are available, this field may contain a
object reference.

• extra_info is a list of name / value pairs that provides the client with extra
information about the error condition.
5-28 OMG-Meta Object Facility, v1.4 April 2002



5

ny
e of
lows
ded
of

he

l

r the
The list consists of zero or more standardized name / value pairs, followed by a
implementation specific pairs. For the standardized part of the list, the sequenc
the pairs and the values (including casing) of the names are mandatory. This al
clients to extract list elements by position or by matching names. It is recommen
that implementers take the same approach for the implementation specific part
the list.

• error_description is a human readable diagnostic message in a wide string. T
contents of this field are not specified by this document.

Note –The standardized name / value pairs for theextra_info field represent a
compromise between the anticipated cost of implementation and the provision of
useful information to the caller. Implementors are encouraged to provide additiona
information. Similarly, implementors are encouraged to provide detailed and
informative diagnostics in theerror_description field.

5.4.1 Error_kind string values

The values of theerror_kind field or MofError are structured using Java’s reversed
domain name syntax:

“org.omg.mof:structural.composition_cycle”

“au.edu.dstc.mofamatic:botched_assertion”

The values for each group of errors are as follows:

• Structural and Reflective errors: the prefix“org.omg.mof:” followed by either
“structural.” or “reflective.” and then the specific error name in lowercase with
underscores between words. These values are defined as constants in the IDL fo
Reflective module.

• Constraint errors: the IDL prefix for the metamodel (if any), followed by
“:constraint.” followed by the qualified constraint name using the Format2
convention. For example, a Constraint named “MyConstraint” declared in
“PackageA::ClassB,” the error kind string value is:

“:constraint.package_a.class_b.my_constraint”

or with an IDL prefix of “com.acme”

it is:

“com.acme:constraint.package_a.class_b.my_constraint”

See Section 5.8.17, “Constraint Template,” on page 5-97 for the definitive
specification.

• Usage errors: not applicable. None of these error conditions are signalled using
MofError.
April 2002 OMG-MOF, v1.4: Exception Framework 5-29



5

he

).

,”
tions
• Semantic errors: an implementation specific prefix, followed by“:semantic.”
followed by an implementation specific string. It is strongly recommended that t
implementation specific part follow the conventions above (i.e., reverse domain
names, all lowercase, periods for qualification and underscores between words

5.4.2 Structural Errors

All structural errors are signalled using MofError. With the exception of “Underflow
the consistency rules covered by the structural errors are either pre- or post-condi
on operations.

The MOF IDL mapping defines the structural errors as defined in Table 5-6.

Table 5-6 Structural Errors signalled using MofError

Structural error “Element_in_error” Standard “extra_info” Description

Underflow Attribute, Parameter, or
Association End defining
the Multiplicity that is
violated.

none "Underflow" arises when a collection or
projection contains fewer values than is
required by the corresponding
Multiplicity.lower.

Note that the evaluation “underflow” is
context dependent. For an operation that
takes a collection value as a parameter, or
whose net effect is to decrease the
number of elements in a multi-valued
Attribute or a projection of a Link set,
“underflow” is treated as an immediate
constraint. In other cases, “underflow” is
treated as a deferred constraint.

Overflow Attribute, Parameter, or
Association End defining
the Multiplicity that is
violated.

none "Overflow" arises when a collection or
projection contains more values than is
allowed by the corresponding
Multiplicity.upper.
5-30 OMG-Meta Object Facility, v1.4 April 2002



5

.

Table 5-6 Structural Errors signalled using MofError (continued)

Structural error “Element_in_error” Standard “extra_info” Description

Duplicate Attribute, Parameter, or
Association End defining
the Multiplicity that is
violated.

“duplicate” : Any(<Value>)
A value that appears more
than once in the unique
collection / projection.

"Duplicate" arises when a collection or
projection whose corresponding
Multiplicity.is_unique is true contains
duplicate values. For example, when two
or more values at different positions in
the collection or projection that are
“equal” according to the definitions in
Section 4.4, “Semantics of Equality for
MOF Values,” on page 4-3.

Reference Closure Reference for which the
closure rule is violated.

“external” : Any(<Instance>)
An Instance that violates a
closure rule with respect to
the Association being
updated.

"Reference Closure" can arise when an
Association extent contains a link for an
Instance object belonging to another
outermost Package extent. More
particularly, this happens when the
Instance object's M2-level Class (or a
super-Class ancestor) has a Reference to
the M2-level Association. See
Section 4.11.1, “The Reference Closure
Rule,” on page 4-19.

Composition Closure Attribute or Association for
which the closure rule is
violated.

“external” : Any(<Instance>)
An Instance that was passed
as or within in an operation
parameter that violates the
closure rule.

"Composition Closure" arises when an
Instance object is member of a composite
that crosses an outermost Package extent
boundary. See Section 4.11.2, “The
Composition Closure Rule,” on
page 4-20.

Supertype Closure Class of the object that
cannot be created.

none "Supertype Closure" arises when a client
attempts to create an Instance object in a
Package extent that does not support its
M2-level Class. See Section 5.3.10, “The
Supertype Closure Rule,” on page 5-26.

Composition Cycle Attribute, Reference or
Association that is being
updated to form the cycle.

“cyclic” : Any(<Instance>)
A composite Instance passed
as or within a parameter that
would become cyclic as a
result of this operation.

"Composition Cycle" arises when an
Instance object is a component of itself
via one or more relationships defined by
composite Associations or composite
Attributes.

Nil Object Reference or Association
End for which the nil object
reference was supplied.

none "Nil Object" arises when an Association
operation is passed a CORBA nil object
reference.
April 2002 OMG-MOF, v1.4: Exception Framework 5-31



5

lt to
ate
Note –There are no mandatory‘extra_info’ pairs for "Overflow" and "Underflow"
because the error conditions occur in such a wide range of contexts that it is difficu
come up with a set that is universally applicable. Vendors are encouraged to innov
by defining non-standard pairs.

The following IDL constants define the correspondingerror_kind strings.

const string UNDERFLOW_VIOLATION =
"org.omg.mof:structural.underflow";

const string OVERFLOW_VIOLATION =
"org.omg.mof:structural.overflow";

const string DUPLICATE_VIOLATION =
"org.omg.mof:structural.duplicate";

const string REFERENCE_CLOSURE_VIOLATION =
"org.omg.mof:structural.reference_closure";

const string SUPERTYPE_CLOSURE_VIOLATION =
"org.omg.mof:structural.supertype_closure";

const string COMPOSITION_CYCLE_VIOLATION =
"org.omg.mof:structural.composition_cycle";

const string COMPOSITION_CLOSURE_VIOLATION =
"org.omg.mof:structural.composition_closure";

const string NIL_OBJECT_VIOLATION =
"org.omg.mof:structural.nil_object";

const string INACCESSIBLE_OBJECT_VIOLATION =
"org.omg.mof:structural.inaccessible_object";

const string INVALID_OBJECT_VIOLATION =
"org.omg.mof:structural.invalid_object";

const string ALREADY_EXISTS_VIOLATION =
"org.omg.mof:structural.already_exists";

Inaccessible Object Attribute, Parameter,
Reference, or Association
End for which the
inaccessible object was
detected.

“inaccessible” :
Any(<RefObject>)
An Instance object that was
inaccessible.

"Inaccessible Object" arises when an
operation tries to use an Instance object
only to find that it is currently
inaccessible.

Invalid Object Attribute, Parameter,
Reference, or Association
End for which the invalid
object was detected.

“invalid” :
Any(<RefBaseObject>)

An object reference for a
MOF meta-object that does
not exist.

"Invalid Object" can arise when an object
operation detects a reference for a non-
existent (i.e.,deleted) object.

Already Exists Class of the object that
already exists.

“existing” : Any(<Instance>)
The pre-existing singleton
Instance object for the extent.

“Already Exists” arises when a client
attempts to create a second Instance
object for an M2-level Class with
“isSingleton” of true.

Table 5-6 Structural Errors signalled using MofError (continued)

Structural error “Element_in_error” Standard “extra_info” Description
5-32 OMG-Meta Object Facility, v1.4 April 2002



5

t
he
e

e

In

hen

ion

n

rn
5.4.3 Constraint Errors

Constraint errors occur when a consistency rule is defined as a Constraint in the
metamodel.

All Constraint errors are signalled by raisingMofError. The fields of theMofError
exception are defined as follows:

• The error_kind string is defined by the IDL mapping rules (see Section 5.8.17,
“Constraint Template,” on page 5-97).

• The element_in_error is the designator for the ModelElement whose Constrain
has been violated. In the case of Constraint on a DataType, the designator is t
Parameter or Attribute for the context in which the erroneous DataType instanc
occurred.

• The value of theextra_info field is implementation specific. Where possible, the
implementation should provide the constrained object(s) or value(s) for which th
constraint is violated.

Constraints can be defined with an “evaluationPolicy” of “immediate” or “deferred.”
the former case, violations of the rule are likely to be reported when a constrained
object is created or updated. In the latter case, violations are likely to be reported w
deferred Constraint checking is triggered.

Note –The above statements assume that constraint checking is implemented
according to the spirit of Section 4.8, “Extents,” on page 4-10.

5.4.4 Semantic Errors

The Semantic error group is the “catch all” for otherwise unclassified implementat
specific errors. Semantic errors are signaled by raising theMofError exception when
appropriate. Possible sources of this error include:

• additional metadata consistency rules that are not specified in the metamodel,

• implementation specific access control violations,

• resource limitations in a metadata server, and

• internal errors in a metadata server.

The values of theMofError exception fields for a Semantic error are implementatio
specific:

• Implementors should define a unique string for theerror_kind field to distinguish
the different kinds of Semantic error. These values should conform to the patte
described in Section 5.4.1, “Error_kind string values,” on page 5-29.”

• The values and meanings of theelement_in_error andextra_info fields should
be defined as appropriate.
April 2002 OMG-MOF, v1.4: Exception Framework 5-33



5

y

by

d by

es.
the
rated

d
t

n

on
5.4.5 Usage Errors

The Usage error group indicates inappropriate use of the MOF IDL interfaces. The
can arise when a client is using either the Reflective interfaces, or the interfaces
generated by the IDL mapping.

The Usage errors are signalled using their own exceptions.

Note –The members of a collection value containingsizeelements are numbered {0,
1,... size - 1} for the purposes of the positional update operations. The positional
modify / remove operations are defined to modify or remove the member indexed
the position (i.e., position values in the range0 to size - 1inclusive are valid). The
positional add operation is defined to insert a member before the member indicate
the position . In this case, position values in the range0 to sizeinclusive are valid,
with sizemeaning "insert at the end."

The IDL declarations for theUsage error exception are as follows:

exception NotFound {};
exception NotSet {};
exception BadPosition {

unsigned long current_size;
};

5.4.6 Reflective Errors

Reflective error conditions occur exclusively in operations in the Reflective interfac
They occur when a Reflective operation is invoked with parameters that contradict
target object's description in the metamodel. When the client uses interfaces gene
by the IDL mapping, the static type checking based on the specific IDL signatures
should prevent the equivalent errors from occurring.

Table 5-7 Usage Exceptions

Usage
Exception

Arguments Description

NotFound none NotFound is raised by modify and remove operations on multi-valued
Attributes, References, and Associations when the argument that shoul
identify the member or link to be removed does not match any value tha
is currently there.

NotSet none NotSet is raised when a client attempts to read the element value of a
optional collection (i.e., one with bounds of [0..1]) when the collection is
empty.

BadPosition none BadPosition is raised when a positional add, modify, or remove operati
is supplied with a ‘position ’ argument whose value is out of range. The
collection’s current size is returned in the exception’s ‘current_size ’
field. This will be 0 if the collection is empty, 1 if it contains a single
member, and so on.
5-34 OMG-Meta Object Facility, v1.4 April 2002



5

lists
d
.

In most cases, the MofError exception is used to signal reflective errors. Table 5-8
the Reflective errors that are signalled using MofError, along with the MofError fiel
specifications and descriptions. All are pre-conditions for the respective operations

Table 5-8 Reflective Errors signalled using MofError

Reflective
error

“Element_in_error” Standard “extra_info” Description

Invalid
Designator

ModelElement that is
invalid

none "Invalid Designator" arises when a "feature"
parameter:
• is not a Model::ModelElement, or
• does not denote an accessible, non nil

CORBA object.

Wrong
Designator
Kind

ModelElement that has the
wrong kind

none "Wrong Designator Kind" arises when the
supplied designator has an inappropriate most-
derived type. For example, when a
Model::Attribute is supplied where a
Model::Operation is required.

Unknown
Designator

ModelElement that is not
known.

none "Unknown Designator" arises when the supplied
designator does not belong in this context. For
example, when a Model::Attribute is not a
member of this Instance’s Class or its
superClasses.

Abstract Class Class that is abstract. none “Abstract Class” arises when a client calls
“refCreateInstance” for a Class that is defined as
abstract.

Not Changeable ModelElement that has
“isChangeable” = false

none "Not Changeable" arises when an update
operation is attempted on something that is
defined by the metamodel to be not changeable.

Not Navigable AssociationEnd that has
“isNavigable” = false

none "Not Navigable" arises when RefAssociation
operations are attempted for an AssociationEnd
that is defined by the meta-model to be not
navigable.

Not Public ModelElement that has
“visibility” = "private_vis"
or "protected_vis"

none "Not Public" arises when an operation is
attempted for a "private" or "protected" feature.

Wrong Scope Attribute or Operation
with “scope” =
“instance_level”

none "Wrong Scope" arises when an attempt is made
to use an instance-level Attribute or Operation
from a Class proxy object.

Wrong
Multiplicity

Reference or Attribute
used in error.

none "Wrong Multiplicity" arises when a reflective
operation is requested where the corresponding
specific operation does not exist for this feature’s
multiplicity. For example:
• a member update on a [0..1] or [1..1] feature,
• a unset on a feature that is not [0..1],
• an add_value_at on an unordered feature.
April 2002 OMG-MOF, v1.4: Exception Framework 5-35



5

The following IDL defines theerror_kind strings for the above Reflective errors:

const string INVALID_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.invalid_designator";

const string WRONG_DESIGNATOR_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.wrong_designator_kind";

const string UNKNOWN_DESIGNATOR_VIOLATION =
"org.omg.mof:reflective.unknown_designator";

const string ABSTRACT_CLASS_VIOLATION =
"org.omg.mof:reflective.abstract_class";

const string NOT_CHANGEABLE_VIOLATION =
"org.omg.mof:reflective.not_changeable";

const string NOT_NAVIGABLE_VIOLATION =
"org.omg.mof:reflective.not_navigable";

const string NOT_PUBLIC_VIOLATION =
"org.omg.mof:reflective.not_public";

const string WRONG_SCOPE_VIOLATION =
"org.omg.mof:reflective.wrong_scope";

const string WRONG_MULTIPLICITY_VIOLATION =
"org.omg.mof:reflective.wrong_multiplicity";

const string WRONG_TYPE_VIOLATION =
"org.omg.mof:reflective.wrong_type";

const string WRONG_NUMBER_PARAMETERS_VIOLATION =
"org.omg.mof:reflective.wrong_number_parameters";

const string INVALID_DELETION_VIOLATION =
“org.omg.mof:reflective.invalid_deletion”;

Wrong Type Attribute, Reference,
AssociationEnd, or
Parameter for the value
that is in error.

“invalid_value” : Any

The value or object whose
type is incorrect in this
context. (The first version is
used when the value in error
was passed as an Any, and the
second when it was passed as
a RefObject.)

“expected_type” :
Any(TypeCode)
The CORBA TypeCode that
the value should have been.

“Wrong Type” arises when a RefObject or an
Any value has the wrong type for context in
which it was supplied. For example;
• A RefObject whose most derived type is

incorrect; for example, has the wrong M2-
level Class or is a Class proxy instead of
Instance, or vice versa.

• An Any value that contains a single value
where a sequence is required, or vice versa.

• An Any value that contains a single value or
sequence of values of the wrong CORBA
type.

Wrong Number
Parameters

Class or Operation for
which the wrong number
of actual parameters was
supplied.

“number_expected” :
Any(Unsigned Long)
The expected number of
actual parameters.

“Wrong Number Parameters” arises when a
client calls “refCreateInstance” or
“refInvokeOperation” with too few or too many
parameters.

Invalid Deletion A nil object reference none “Invalid Deletion” arises when a client calls
“refDelete” on a meta-object that cannot be
deleted this way; that is, an Association object, a
Class Proxy object, or a dependent Package
object.

Table 5-8 Reflective Errors signalled using MofError

Reflective
error

“Element_in_error” Standard “extra_info” Description
5-36 OMG-Meta Object Facility, v1.4 April 2002



5

s an

s

a
all

t

DL

ted

s are
le
Other Exception

There is one exception to this. When an Operation defined in the metamodel raise
Exception that is also defined in the metamodel; see below.

TheOtherException exception is raised when a call to “refInvokeOperation” result
in an error condition that corresponds to an M2-level Exception defined for the
Operation in the metamodel.

exception OtherException {
DesignatorType exception_designator;
ValuesType exception_args;

};

The arguments to theOtherException exception are as follows:

• exception_designator gives the designator for the M2-level Exception raised.

• exception_args is an ordered list of CORBA Any values that represent the
arguments of the Exception raised. The encoding of this field is defined in the
specification of the “refInvokeOperation” on page 6-20.

Note –When an error condition could be expressed as either a Reflective error or
Structural error, the latter takes precedence. For example, if one end of Link in a c
to “refAddLink” is a nil object reference, this should be signalled as “Nil Object”
rather than “Wrong Type.”

5.5 Preconditions for IDL Generation

The IDL mapping may not produce valid CORBA IDL if any of the following
preconditions on the input meta-model is not satisfied:

• The MOF Model constraints, as defined above, must all be satisfied for the inpu
meta-model.

• The input meta-model must be structurally consistent.

• The visible names within a NameSpace must conform to the standard CORBA I
identifier syntax:

“An identifier is an arbitrarily long sequence of ASCII alphabetic, digit
and underscore (“_”) characters. The firstd character must be an ASCII
alphabetic character.”

Names of Model Elements that have a valid “idl_substitute_name” Tag are excep
from this precondition; (see Section 5.6.2.1, “Substitute Name,” on page 5-41).

Note –No such requirement applies to Model Elements such as Tags whose name
not visible in the IDL mapping. However, for these “invisible” elements it is advisab
to use a naming convention that minimizes the risk of name collision within the
Namespace itself.
April 2002 OMG-MOF, v1.4: Preconditions for IDL Generation 5-37



5

rs
the

ling

are

ed

l

the

ws:

all

t can

ule
or
• The visible ModelElement names must map to contextually unique IDL identifie
after name substitution (see Section 5.6.2.1, “Substitute Name,” on page 5-41),
application of the Format1, Format2 or Format3 name rewriting algorithms (see
Section 5.7.1, “Generated IDL Identifiers,” on page 5-43) and other name mang
as specified in the mapping templates.

• An AliasType, CollectionType, or StructureType may not depend on itself via a
chain of ‘IsOfType’ and ‘Contains’ links between DataType or StructureField
instances. For example, MOF DataTypes that map to IDL recursive data types
not supported.

• A nested Package may not be used as a subtype or supertype.

• A nested Package may not import or be imported by another Package.

• The following interim visibility definitions and constraints apply to the IDL
mapping:

• A ModelElement is visible to another ModelElement only if the former has
visibility of “public_vis.”

• A ModelElement declared within another top-level Package is visible within a
top-level Package only if the former Package is imported, clustered, or inherit
by the latter Package.

• One ModelElement can only depend on another (in the sense of the M2-leve
DependsOn Association) if the latter is visible from the former within the
definition of visibility immediately above.

• After name substitution (see Section 5.6.2.1, “Substitute Name,” on page 5-41),
name of an Import must equal the name of its “importedNamespace.”

• A Class may not be nested within another Class.

• A Class may not be imported.

• If a Constraint is contained by a DataType or Operation, its name must also be
unique in the DataType or Operation’s container Namespace.

• Model Elements in a meta-model cannot be cyclically dependent except as follo

• A dependency cycle consisting of one or more Classes is legal, provided they
have the same container.

• A dependency cycle consisting of one or more Classes and one or more
DataTypes or Exceptions, is legal provided they all have the same container.

Note –This precludes circular importing and circular clustering. It also precludes
recursion between “pure” DataTypes. (The two exceptions correspond to cases tha
be expressed in OMG IDL using forward interface declarations.)

CORBA 2.3 adds an additional IDL restriction: “The name of an interface or a mod
may not be redefined within the immediate scope of the interface of the module.” F
example:

module M {
typedef short M; // Error: M is the name of the module

// in the scope of which the typedef is
5-38 OMG-Meta Object Facility, v1.4 April 2002



5

is
d its
asses,

of its

her
Tags
low

117.

he
s
be

DL
s.

s

interface I {
void i (in short j);

// Error: i clashes with the interface
};

};

The IDL templates in this specification do not contain any patterns of this form.
However, poor choice of names in a meta-model may generate IDL that violates th
restriction. In particular, the same name should not be used for both a container an
contents. For example, a Package should not have the same name as one of its Cl
DataTypes, or Associations. A Class should not have the same name as one of its
Attributes or References. An Association should not have the same name as one
AssociationEnds.

5.6 Standard Tags for the IDL Mapping

This section defines the standard Tags that apply to the Model to IDL mapping. Ot
Tags may be attached to the elements of a meta-model, but the meaning of these
is not specified. Similarly, this section does not specify the meaning of the Tags be
in contexts apart from the Model to IDL mapping.

All standard Tag identifiers for the IDL mapping start with the prefix string:

“org.omg.mof.idl_”

The notation used below for defining the Tags is described in Table 3-6 on page 3-

Note –Many of the IDL mapping Tags significantly alter the interface signatures of t
generated IDL. It is prudent for an IDL generator to only respect IDL mapping Tag
when they are contained within the respective meta-model. Otherwise, it may not
possible to determine which Tags were in effect when the meta-data server was
generated. This would make it hard for a client to infer the meaning of generated I
at runtime. It would also make problems for automatic server and client generator

5.6.1 Tags for Specifying IDL #pragma directives

5.6.1.1 IDL Prefix

This tag allows the meta-modeler to specify the CORBA Interface Repository
Identifier prefix for the generated IDL. This is essential when a MOF meta-model i
used as the authoritative source for IDL for some other OMG standard.

tag id: “org.omg.mof.idl_prefix”

attaches to: Model::Package

values: one String
April 2002 OMG-MOF, v1.4: Standard Tags for the IDL Mapping 5-39



5

he
, it is
d
ching

.

e

gs
r

."
5.6.1.2 IDL Version

When a MOF metamodel is modified it will often result in generated IDL that has t
same module and interface names but different interface signatures. In such cases
strictly necessary to use different IDL version numbers for all types, interfaces, an
exceptions whose signatures have changed. In MOF 1.4, this can be done by atta
an Version tag to the appropriate model elements.

meaning: This tag supplies a RepositoryId prefix that is used for the entire
module generated for the Package.

idl generation: A #pragma prefix is inserted into the IDL before the “module”
declaration for the Package.

restrictions: [1] A Prefix tag should only be attached to a non-nested Package
[2] A Prefix tag should have a value that is a valid OMG IDL
prefix, consisting of ASCII letters, digits, underscore (‘_’), hyphen
(‘-’) and period (‘.’) as specified in the CORBA Core specification.
[3] A Prefix tag contained by a Package takes precedence over on
that is not contained.

tag id: “org.omg.mof.idl_version”

attaches to: Model::Package, Model::Class, Model::Association,
Model::Attribute, Model::Operation, Model::Reference,
Model::StructureType, Model::AliasType, Model::CollectionType,
Model::EnumerationType, Model::Exception, Model::Constant,
Model::Constraint

values: one String

meaning: This tag supplies a version number that is used for selected IDL
declarations corresponding to the tagged element.

idl generation: A #pragma version is inserted into or following selected IDL
declaration for modules, interfaces, data types, constants, and
exceptions generated from the tagged model element. Version ta
on Attributes, Operations, and References result in version tags fo
the corresponding IDL operations. Refer to the respective
templates for details.

restrictions: [1] A Version tag value must have the form “<major>.<minor>”
where <major> and <minor> are unsigned 16 bit decimal integers
[2] It is not meaningful to attach a Version tag to an
AssociationEnd, Import, Parameter, Tag, StructureField, or
PrimitiveType.

tag id: “org.omg.mof.idl_prefix”
5-40 OMG-Meta Object Facility, v1.4 April 2002



5

o
n.

of

e,

e

5.6.2 Tags for Providing Substitute Identifiers

There are some situations when the IDL identifiers produced by the IDL mapping
templates will result in name collisions. The following tag allows a meta-modeler t
provide a substitute for a model element’s name that will be used in IDL generatio

5.6.2.1 Substitute Name

5.6.3 Tags for Specifying IDL Inheritance

The following tags allow the meta-modeler to specify that a generated interface
inherits from one or more additional IDL interfaces. These tags allow the definition
MOF-based meta-models that are upwards compatible with pre-existing meta-data
interfaces expressed in CORBA IDL.

tag id: “org.omg.mof.idl_substitute_name”

attaches to: Model::ModelElement

values: one String

meaning: The value is a name to be used in place of the model element’s
name.

idl generation: Wherever the IDL mapping makes use of a model element’s nam
the substitute name will be used in its place. This substitution
occurs before the application of Format1, Format2, or Format3
rewriting and other name mangling.

restrictions: The preconditions described in Section 5.5, “Preconditions for IDL
Generation,” on page 5-37 apply to the substitute name. For
example:
[1] The identifier formatting rules must produce a syntactically
valid OMG IDL identifier from the value.
[2] All identifiers produced from it must be unique in their
respective scopes after formatting and name mangling, as per th
IDL mapping specification.
[3] There can be at most one Substitute Name tag for any given
ModelElement.
April 2002 OMG-MOF, v1.4: Standard Tags for the IDL Mapping 5-41



5

.

ss.
5.6.3.1 Instance Supertypes

5.6.3.2 Class Proxy Supertypes

5.6.3.3 Association Supertypes

tag id: “org.omg.mof.idl_instance_supertypes”

attaches to: Model::Class

values: one or more Strings (order is significant)

meaning: The values give the fully qualified OMG IDL identifiers for
additional interfaces that the “instance” interface for this Class
should inherit from.

idl generation: The specified interfaces are added to the “instance” interface’s
inheritance list following the other supertypes defined by the
templates. They appear in the order given.

restrictions: [1] The values must be fully qualified identifiers for OMG IDL
interfaces.
[2] There can be at most one Instance Supertypes tag per Class

tag id: “org.omg.mof.idl_class_proxy_supertypes”

attaches to: Model::Class

values: one or more Strings (order is significant)

meaning: The values give the fully qualified OMG IDL identifiers for
additional interfaces that the “class proxy” interface for this Class
should inherit from.

idl generation: The specified interfaces are added to the “class proxy” interface’s
inheritance list following the other supertypes defined by the
templates. They appear in the order given.

restrictions: [1] The values must be fully qualified identifiers for OMG IDL
interfaces.
[2] There can be at most one Class Proxy Supertypes tag per Cla

tag id: “org.omg.mof.idl_association_supertypes”

attaches to: Model::Association

values: One or more Strings (order is significant).
5-42 OMG-Meta Object Facility, v1.4 April 2002



5

re

ers.

nd

ge.
5.6.3.4 Package Supertypes

5.7 Generated IDL Issues

During the design of the MOF Model to IDL mapping, several design decisions we
made which are explained in this section.

5.7.1 Generated IDL Identifiers

Identifier naming is an important issue for automatically generated IDL, especially
when that IDL is intended to be used by applications written by human programm
The mapping has to reach a balance between conflicting requirements:

• Syntactic correctness - all identifiers in the mapped IDL must conform to the
defined CORBA IDL syntax, and they must all conform to the CORBA scoping a
upper/lower casing restrictions.

• User friendliness - identifiers should convey as much information as possible
without being overly long.

meaning: The values give the fully qualified OMG IDL identifiers for
additional interfaces that the interface for this Association should
inherit from.

idl generation: The specified interfaces are added to the “association” interface’s
inheritance list following the other supertypes defined by the
templates. They appear in the order given.

restrictions: [1] The values must be fully qualified identifiers for OMG IDL
interfaces.
[2] There can be at most one Association Supertypes tag per
Association.

tag id: “org.omg.mof.idl_package_supertypes”

attaches to: Model::Package

values: One or more Strings (order is significant).

meaning: The values give the fully qualified OMG IDL identifiers for
additional interfaces that the interface for this Package should
inherit from.

idl generation: The specified interfaces are added to the “package” interface’s
inheritance list following the other supertypes defined by the
templates. They appear in the order given.

restrictions: [1] The values must be fully qualified identifiers for OMG IDL
interfaces.
[2] There can be at most one Package Supertypes tag per Packa
April 2002 OMG-MOF, v1.4: Generated IDL Issues 5-43



5

)
e

nt of
rds

ists

n
are

me

"

ata

ple,
fiers.

ens
ing

.
.

tax
• Conformance to existing conventions - identifiers should conform to existing
stylistic conventions.

The OMG conventions for IDL identifiers (see “OMG IDL Style Guide: ab/98-06-03”
are based on the notion that an identifier is formed from one or more words in som
natural language. The conventions allow digits to be used in words and take accou
acronyms. The Style Guide then specifies three different styles for putting some wo
together as an identifier. In particular:

• Identifiers for IDL module, interface, and types are capitalized. If the name cons
of multiple words, each word is capitalized in the identifier.

• Identifiers for IDL operations, attributes, formal parameters, struct, and exceptio
members are all lower-case. If the name consists of multiple words, the words
separated by underscores (“_”) in the identifier.

• Identifiers for IDL constant and enumerator names are all upper-case. If the na
consists of multiple words, the words are separated by underscores (“_”) in the
identifier.

5.7.1.1 Rules for splitting MOF Model::ModelElement names into "words

The MOF Model represents the “name” of a ModelElement using the MOF String d
type; that is, as UTF-16 strings. The IDL mapping typically needs to convert these
names (or alternates provided using an “idl_substitute_name” tag) into OMG IDL
identifiers for use in a variety of IDL contexts.

Since the MOF Model (like the UML meta-model) does not restrict ModelElement
name strings, not all names can be mapped to legal OMG IDL identifiers. For exam
names that include graphic characters or accented letters do not map to IDL identi

Names that are subject to mapping must consist only of ASCII letters, digits, hyph
(‘-’), underscores (‘_’) and white-space characters, and must conform to the follow
syntax:

word ::= [A-Z][A-Z0-9]*[a-z0-9]*

| [a-z][a-z0-9]*

white-space::= SP, CR, LF, HT, VT

non-sig ::= { ‘_’ | ‘-’ | white-space }*

identifier ::= [non-sig] word { non-sig word }* [non-sig]

The above syntax defines a heuristic for splitting names into a sequence of words
They can then be reassembled into OMG IDL identifiers using the 3 formats below
The “non-sig” characters are non-significant and are discarded.

Note –The behavior of the IDL mapping for names that do not match the above syn
is not specified.
5-44 OMG-Meta Object Facility, v1.4 April 2002



5

ters

ces.

fiers.

,
uct
5.7.1.2 IDL Identifier Format 1

In Format 1, the first letter of each word is converted into upper case, and other let
remain the same case as input. The words are not separated by other characters.
Table 5-9 lists some examples of Format 1 identifiers.

Format 1 is used by the IDL mapping to produce the names of modules and interfa

5.7.1.3 IDL Identifier Format 2

In Format 2, all letters in each word are converted into lower case. Each word is
separated by an underscore "_". Table 5-10 lists some examples of Format 2 identi

Format 2 is used by the IDL mapping for identifiers for IDL operations, exceptions
attributes, formal parameters, exception members, and members of generated str
types.

Table 5-9 Format 1 Identifiers

Name Name split into words Identifier in Format 1

foo "foo" Foo

foo_bar "foo" "bar" FooBar

ALPHAbeticalOrder "ALPHAbetical" "Order" ALPHAbeticalOrder

-a1B2c3-d4- "a1" "B2c3" "d4" A1B2c3D4

DSTC pty ltd "DSTC" "pty" "ltd" DSTCPtyLtd

Table 5-10Format 2 Identifiers

Name Name split into words Identifier in Format 2

foo "foo" foo

foo_bar "foo" "bar" foo_bar

ALPHAbeticalOrder "ALPHAbetical" "Order" alphabetical_order

-a1B2c3_d4_ "a1" "B2c3" "d4" a1_b2c3_d4

DSTC pty ltd "DSTC" "pty" "ltd" dstc_pty_ltd
April 2002 OMG-MOF, v1.4: Generated IDL Issues 5-45



5

ifiers.

nd
ith

to
pe

t
izes

e of
n.

ld

ue
’s

hus
5.7.1.4 IDL Identifier Format 3

In Format 3, all letters in each word are converted into upper case. Each word is
separated by an underscore "_". Table 5-11 lists some examples of Format 3 ident

Format 3 is used by the IDL mapping for identifiers for IDL constants.

5.7.1.5 Literal String Values

Literal string values (in String valued Constants) are not subject to word splitting a
reformatting. They should be output in the generated IDL as wide-string literals w
character escape sequences as required to express the String value as legal IDL.

5.7.2 Generation Rules for Synthesized Collection Types

The MOF Model allows Attributes, AssociationEnds, References, and Parameters
being single-, optional-, or multi-valued depending on the ModelElement’s base ty
and its multiplicity.

At various places in the mapped interfaces, it is necessary to pass collections tha
represent values for the optional- or multi-valued cases. The IDL mapping synthes
an IDL type for representing these collections. This type is atypedef (i.e., an alias)
for an unbounded CORBA sequence of the collection’s base type, where the nam
the typedef depends on the corresponding ModelElement’s multiplicity specificatio

For example, for an ordered unique collection, the synthesized collection type wou
be a “unique list” (or UList) type. The typedef name for a unique list takes the form
<ClassifierType>UList (i.e., the name of the collection base type followed by the
characters “UList”). For example, if an M2-level Operation returns an ordered, uniq
list of some Class called "Foo," then the IDL type for the corresponding operation
result is declared as follows:

interface Foo;
typedef sequence <Foo> FooUList;

Similar collection kind naming conventions are used for constructed data types. T
for a non-ordered unique collection of an enumeration type, the mapping would
produce the following:

Table 5-11Format 3 Identifiers

Name Name split into words Identifier in Format 3

foo "foo" FOO

foo_bar "foo" "bar" FOO_BAR

ALPHAbeticalOrder "ALPHAbetical" "Order" ALPHABETICAL_ORDER

-a1B2c3_d4_ "a1" "B2c3" "d4" A1_B2C3_D4

DSTC pty ltd "DSTC" "pty" "ltd" DSTC_PTY_LTD
5-46 OMG-Meta Object Facility, v1.4 April 2002



5

f

ty
OF
nds
the

the
enum SomeEnum {e1, e2};
typedef sequence <SomeEnum> SomeEnumSet;

There are four distinct collection type suffixes corresponding to the combinations o
the "isOrdered" and "isUnique" flags for an element’s “multiplicity” attribute. The
appropriate suffix should be generated whenever<CollectionKind> appears in the IDL
templates below.

Note that the MOF Model specification includes a relevant Constraint on multiplici
values; see the “MustBeUnorderedNonunique” constraint in Section 3.9.4, “The M
Model Constraints,” on page 3-88. This states that when a feature’s multiplicity bou
are [0..1], both the “isOrdered” and “isUnique” are set to false. As a consequence,
<CollectionKind> suffix for a [0..1] collection type is always “Bag.”

When the base DataType maps to a built-in CORBA data type, the base name for
synthesized collection type is defined as shown in Table 5-13.

Table 5-12Collection Kinds

Multiplicity Flags Collection Kind Suffix

none bag Bag

ordered list List

unique set Set

ordered, unique unique list (ordered set) UList

Table 5-13Base Names for Synthesized Collections of built-in IDL types

MOF PrimitiveType CORBA data type Base name

PrimitiveTypes::Boolean boolean Boolean

PrimitiveTypes::Integer long Long

PrimitiveTypes::Long long long LongLong

PrimitiveTypes::Float float Float

PrimitiveTypes::Double double Double

PrimitiveTypes::String wstring WString

CorbaIdlTypes::CorbaShort short Short

CorbaIdlTypes::CorbaUnsignedShort unsigned short UShort

CorbaIdlTypes::CorbaUnsignedLong unsigned long ULong

CorbaIdlTypes::CorbaUnsignedLongLong unsigned long long ULongLong

CorbaIdlTypes::CorbaLongDouble long double LongDouble

CorbaIdlTypes::CorbaOctet octet Octet
April 2002 OMG-MOF, v1.4: Generated IDL Issues 5-47



5

that
nts.
that

lly

.

the

vel
ts
in

to

ibed
s

same
Declarations for the collection types appear following the IDL declaration for a
DataType or the forward IDL declaration for a Class. Declarations for synthesized
collection types for technology neutral and CORBA specific primitive data types
appear in the "PrimitiveTypes" and "CorbaIdlTypes" modules respectively. The
corresponding IDL files will typically be “#included” as required.

Operations produced by the IDL mapping with collection parameters must ensure
the sequence values supplied and returned have an appropriate number of eleme
When collection parameters are sets or unique lists, operations must also ensure
the sequence values contain no duplicates.

5.7.3 IDL Identifier Qualification

To avoid scoping errors within the mapped IDL, identifier names must be either fu
qualified, or partially qualified to an appropriate level. This specification leaves the
choice between the use of fully or partially qualified identifiers to the implementor.

5.7.4 File Organization and #include statements

This specification does not prescribe how the generated IDL is organized into files
Therefore, the generation rules do not contain any “#include” statements. An
implementor must decide how to organize the generated IDL into files, and must
generate appropriate “#include” statements to ensure that the resultant IDL can
compile. Similarly, the implementor must generate “#ifndef” guards as required by
OMG style rules.

5.8 IDL Mapping Templates

Model specific IDL is produced by traversing the containment hierarchy of a top-le
M2-level Package. The CORBA module structure of the resulting IDL directly reflec
the containment hierarchy of the source Package. If element X contains element Y
the source model, then the IDL corresponding to X will have the IDL corresponding
Y embedded in it (assuming that IDL is produced for Y).

The IDL mapping supports the containment hierarchy for ModelElements as descr
in Section 3.3.4, “The MOF Model Containment Hierarchy,” on page 3-14, except a
stated in Section 5.5, “Preconditions for IDL Generation,” on page 5-37. Further
restrictions on meta-models that can be successfully mapped are described in the
section.

CorbaIdlTypes::CorbaChar char Char

CorbaIdlTypes::CorbaString string String

CorbaIdlTypes::CorbaWChar wchar WChar

Table 5-13Base Names for Synthesized Collections of built-in IDL types

MOF PrimitiveType CORBA data type Base name
5-48 OMG-Meta Object Facility, v1.4 April 2002



5

ibes
ny

y"
ad,
rator

as
iate
ics
en
6.

d or
The mapping rules are described in terms of IDL templates. Each Template descr
the maximum IDL that could be generated when mapping MOF Model objects. In a
specific case, the actual IDL generated will depend on the properties of the
corresponding MOF Model object.

Throughout the following Template descriptions, the IDL is said to be "generated b
the Templates. Clearly the Templates do not generate IDL in a literal sense. Inste
the reader should imagine that each Template is a parameter to a hypothetical gene
function. When it is called with the appropriate kind of MOF ModelElement object
a second parameter, the function "elaborates" the template to produce an appropr
fragment of CORBA IDL. A similar “elaboration” process gives the required semant
for the IDL from the descriptions following the templates and the specifications giv
earlier in Section 5.3, “Computational Semantics for the IDL Mapping,” on page 5-

Note –The Template approach used here is a notational convenience, not a require
suggested implementation strategy.

5.8.1 Template Notation

The following table is a guide to interpreting the IDL generation templates.

Table 5-14IDL Generation Templates Guide

Appearance (by example) Meaning

typedef The literal characters in bold font should be
generated.

<AttributeType> The characters should be substituted for the
described identifier using Identifier Format 1. The
<> do not appear in the generated IDL.

<attribute_name> The characters should be substituted for the
described identifier using the Identifier Format 2.
The <> do not appear in the generated IDL.

<CONSTANT_NAME> The characters should be substituted for the
described identifier using the Identifier Format 3.
The <> do not appear in the generated IDL.

<CONSTANTVALUE> The characters should be substituted for the
described identifier without formatting (i.e., as is).
Typically, these are literal values. The <> do not
appear in the generated IDL.

<<XYZ TEMPLATE>> Apply the named template. The <<>> do not
appear in the generated IDL.
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-49



5

IDL

IDL

M1-

t

r

5.8.2 Package Module Template

This section describes the rules for mapping a MOF Package object to a CORBA
module as expressed in the Package Module Template.

The Package Module Template generates a CORBA IDL module that contains the
for each of the M2-level Constants, DataTypes, Exceptions, Constraints, Imports,
Classes, and Associations in an M2-level Package. It also contains the IDL for the
level Package and Package Factory interfaces, and type declarations for various
collection types. Most of this is defined in subsidiary templates. IDL generation is
suppressed if the Package “visibility” is not “public_vis.”

Template

<<ANNOTATION TEMPLATE>>

// if this Package has visibility of private or protected, no IDL is

// generated for it

module <PackageName> {

// if this Package has an idl_version Tag

#pragma version <PackageName> <version>

interface <PackageName>Package;     // forward declaration

// for each Class contained in the Package

<<CLASS FORWARD DECLARATION TEMPLATE>>

// for each Package, DataType, Exception, Class, Association, Constraint,

// and Constant contained by the Package, generate the appropriate IDL

<<PACKAGE MODULE TEMPLATE>>

<<DATATYPE TEMPLATE>>

<<EXCEPTION TEMPLATE>>

some phrase, . . . The ellipsis characters “. . .” following the “,”
indicate that this generates a comma separated lis
of “some phrase.” It is implicit that there is no
comma at the end of the list.

[ some phrase ] The square bracket characters “[]” surrounding a
phrase in a template indicate that the phrase may o
may not be required, depending on context.

// for each parameter Gives the rules on when and how to perform the
IDL generation, or some general commentary on
the process. The rules themselves do not appear in
the generated IDL.

Table 5-14IDL Generation Templates Guide
5-50 OMG-Meta Object Facility, v1.4 April 2002



5

d

ard

ws:

ule

,” on

e,”

,” on

te,”
<<CLASS TEMPLATE>>

<<ASSOCIATION TEMPLATE>>

<<CONSTRAINT TEMPLATE>>

<<CONSTANT TEMPLATE>>

// Generate the Package Factory interface

<<PACKAGE FACTORY TEMPLATE>>

// Generate the Package interface

<<PACKAGE TEMPLATE>>

}; // end of module <PackageName>

Description

The Package Module Template starts by rendering the M2-level Package’s
“annotation” attribute as a comment using the Annotation Template. This is followe
by the IDL module header for the Package’s module. The module name is
<PackageName>.

The template generates forward declarations for some IDL interfaces. First, it forw
declares the M1-level Package interface, giving it the name<PackageName>Package.
Then, it forward declares the Class proxy and Instance interfaces for all M2-level
Classes in the current M2-level Package’s “contents” using the template defined in
Section 5.8.5, “Class Forward Declaration Template,” on page 5-56.

Next, IDL must be generated for the current M2-level Package’s “contents” as follo

• For nested Packages, use the template defined in Section 5.8.2, “Package Mod
Template,” on page 5-50.

• For Classes, use the template defined in Section 5.8.6, “Class Template,” on
page 5-57.

• For Associations, use the template defined in Section 5.8.10, “Association
Template,” on page 5-62.

• For Constants, use the template defined in Section 5.8.13, “Operation Template
page 5-92.

• For Exceptions, use the template defined in Section 5.8.14, “Exception Templat
on page 5-94.

• For DataTypes, use the template defined in Section 5.8.16, “DataType Template
page 5-96.

• For Constraints, use the template defined in Section 5.8.17, “Constraint Templa
on page 5-97.
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-51



5

cts
IDL

ge
d in
age

ects,”
.

face
The IDL for the contained ModelElements must be generated in an order that refle
their dependencies. For example, the IDL for a DataType should appear before the
for other ModelElements that use it.

Finally, the Package Module Template generates the Package Factory and Packa
interfaces for the current M2-level Package using the templates respectively define
Section 5.8.3, “Package Factory Template,” on page 5-52 and Section 5.8.4, “Pack
Template,” on page 5-54.

5.8.3 Package Factory Template

The Package Factory Template defines the IDL generation rules for the Package
Factory interface; see Section 5.2.1.1, “Package objects and Package Factory obj
on page 5-3 and Section 5.2.2, “The Meta Object Interface Hierarchy,” on page 5-4

A Package Factory interface is generated for top-level M2 Packages only. The inter
is named<PackageName>PackageFactoryand it contains a single "factory"
operation, as described below.

Template

// if the this Package is top-level

interface  <PackageName> PackageFactory

{

      // if this Package has an idl_version Tag

      #pragma version <PackageName>PackageFactory <version>

      <PackageName> Package create_ <package_name> _package (

// for each non-derived class-level Attribute of any directly or

// indirectly contained Class within this Package and its closure

// under Package generalization and clustering.

in <AttributeType>[<CollectionKind>]

<qualified_attribute_name> , ...

)

raises (Reflective::MofError);

};

IDL Supertypes

none
5-52 OMG-Meta Object Facility, v1.4 April 2002



5

any
l

ersal
pes

s”

ation.

d

n.

e

ct
Operations

create_<package_name>_package

The parameters for “create_<package_name>_package” give the initial values for
non-derived classifier-scoped Attributes for all Classes that belong to this M2-leve
Package’s extent.

As Attributes in different Classes can have the same name, the parameter name
<qualified_attribute_name>is qualified relative to the Package (e.g.,
“class1_attribute1”).

When the Attribute multiplicity is not [1..1], the<AttributeType>has an appropriate
CollectionKind suffix appended; see Section 5.7.1.5, “Literal String Values,” on
page 5-46.

The parameters are declared in a sequence defined by a recursive depth-first trav
of the Package's ancestors clusters and components, visiting a Package's superty
before its contents. The following ordering rules apply:

1. A Package’s supertype Packages are processed before the “contents” of the
Package.

2. The supertype Packages are processed in the order defined by the “Generalize
association.

3. Classes, Imports (with “isClustered” set to true) and nested Packages within a
Package are processed in the order of the “Contains” association.

4. A Class’s superclasses are processed before the “contents” of the Class.

5. Any Class superclasses are processed in the order of the “Generalizes” associ

6. An Import with “isClustered” set to true is processed by processing the clustere
Package.

7. Attributes within a Class are processed in the order of the “Contains” associatio

8. When an Attribute is encountered that has already been encountered during th
traversal, generation of another initialization parameter is suppressed.

The “create_<package_name>_package” operation creates a new Package obje
that is an instance of this M2-level Package.

reflective analog: none

return type: <PackageName>Package

parameters: <qualified_attribute_name> :
in <AttributeType>[<CollectionKind>],
...

exceptions: MofError (Overflow, Underflow, Duplicate)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-53



5

ntic

a

The MofError exception can be raised if there is a Structural, Constraint, or Sema
error. In particular, “Overflow,” “Underflow,” and “Duplicate” occur if an Attribute
initialization parameter does not conform to the respective Attribute’s multiplicity
specification.

5.8.4 Package Template

The Package Factory Template defines the IDL generation rules for the Package
interface; see Section 5.2.1.1, “Package objects and Package Factory objects,” on
page 5-3 and Section 5.2.2, “The Meta Object Interface Hierarchy,” on page 5-4.

A Package interface is named<PackageName>Packageand it contains read-only IDL
attributes giving the dependent Package, Association, and Class proxy objects for
Package object.

Template

interface <PackageName>Package :

// if Package has no super-Packages

Reflective::RefPackage

// else for each public super-Package (in order)

<SuperPackage> Package, ...

// if Package has a “Package Supertypes” Tag

//     for each supertype defined by the Tag (in order)

,  <PackageSupertypeName> ,  ...

{

// if this Package has an idl_version Tag

#pragma version <PackageName>Package <version>

// for each Package for an Import where:

//    is_clustered == true and

//    Import.visibility == public and

//    importedNamespace.visibility == public

readonly attribute <ClusteredPackageName >Package

<clustered_package_name> _ref;

// for each public contained Package

readonly attribute <NestedPackageName> Package

<nested_package_name> _ref;

// for each public contained Class

readonly attribute <ClassName> Class <class_name> _ref;

// for each public contained Association

readonly attribute <AssociationName> <association_name> _ref;

};
5-54 OMG-Meta Object Facility, v1.4 April 2002



5

r-

s for

rent

red

vel
or
Supertypes

If the M2-level Package inherits from other M2-level Packages with “visibility” of
“public_vis,” the Package interface inherits from the interfaces corresponding supe
Packages. Otherwise, the Package interface inherits fromReflective::RefPackage.

If the M2-level Package has a “Package Supertypes” Tag (see Section 5.6.3, “Tag
Specifying IDL Inheritance,” on page 5-41), the generated Package interface also
inherits from the IDL interfaces specified by the Tag.

Attributes

clustered_package_name>_ref
An attribute of this form is generated for each public clustered Package of the cur
M2-level Package. The attribute is generated if and only if:

1. the Import’s “isClustered” flag is true,

2. the Import’s “visibility” is “public_vis,”

3. the Import’s “importedNamespace” is a Package, and

4. the clustered Package has “visibility” of “public_vis.”

The attribute holds the object reference for the M1-level Package’s M1-level cluste
Package object.

<nested_package_name>_ref
An attribute of this form is generated for each nested Package in the current M2-le
Package whose “visibility” is “public_vis.” The attribute holds the object reference f
the M1-level Package’s M1-level nested Package object.

reflective analog: ref_package_ref(<clustered_package_designator>);
Section 6.2.5, “Reflective::RefPackage,” on page 6-28.

type: <ClusteredPackageName>Package

multiplicity: exactly one

changeable: no

reflective analog: ref_package_ref(<nested_package_designator>);
Section 6.2.5, “Reflective::RefPackage,” on page 6-28.

type: <NestedPackageName>Package

multiplicity: exactly one

changeable: no
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-55



5

-

.”
<class_name>_ref
An attribute of this form is generated for each Class in the current Package whose
“visibility” is “public_vis.” The attribute holds the object reference for the M1-level
Package’s M1-level Class Proxy object.

<association_name>_ref
An attribute of this form is generated for each Association in the current Package
whose “visibility” is “public_vis.” The attribute holds the object reference for the M1
level Package’s M1-level Association object.

Operations

none

5.8.5 Class Forward Declaration Template

The Class Forward Declaration Template defines the IDL generation rules for the
forward interface declarations for an M2-level Class whose “visibility” is “public_vis
It also produces any Class collection type declarations required by the IDL of the
containing Package(s).

Template

// if the Class has visibility of protected or private, no IDL

// is generated.

interface <ClassName> Class;

interface <ClassName> ;

typedef sequence <  <ClassName> > <ClassName> Set;

       // if this Class has an idl_version Tag

       #pragma version <ClassName> Set <version>

reflective analog: ref_class_ref(<class_designator>)

type: <ClassName>Class

multiplicity: exactly one

changeable: no

reflective analog: ref_package_ref(<association_designator>);

type: <AssociationName>

multiplicity: exactly one

changeable: no
5-56 OMG-Meta Object Facility, v1.4 April 2002



5

iers

lass

s

typedef sequence < <ClassName> > <ClassName> Bag;

       // if this Class has an idl_version Tag

       #pragma version <ClassName> Bag <version>

typedef sequence < <ClassName> > <ClassName> List;

       // if this Class has an idl_version Tag

       #pragma version <ClassName> List <version>

typedef sequence < <ClassName> > <ClassName> UList;

       // if this Class has an idl_version Tag

       #pragma version <ClassName> UList <version>

Description

The Class Forward Declaration Template generates a forward declaration for the
Instance and Class proxy interfaces for an M2-level Class. These have IDL identif
<ClassName>and<ClassName>Classrespectively. The synthesized collection type
declarations for the Class follow the forward declarations.

5.8.6 Class Template

The Class Template defines the IDL generation rules for an M2-level Class whose
“visibility” is “public_vis.” The IDL is generated within the module for the Class’s
containing Package and consists of a comment followed by the complete Classes C
Proxy and Instance interfaces.

Template

// if the Class has visibility of protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

<<CLASS PROXY TEMPLATE>>

<<INSTANCE TEMPLATE>>

Description

See Section 5.8.7, “Class Proxy Template,” on page 5-58 and Section 5.8.6, “Clas
Template,” on page 5-57.
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-57



5

y

, and
5.8.7 Class Proxy Template

The Class Proxy Template defines the IDL generation rules for the<ClassName>Class
interface for an M2-level Class whose “visibility” is “public_vis.” This interface has
operations for any classifier-scoped Attributes and Operations, along with a factor
operation and IDL attributes that give access to the extant Instance objects. It also
contains IDL declarations corresponding to any DataTypes, Exceptions, Constants
Constraints in the M2-level Class.

Template

interface <ClassName> Class :

// if Class has no super-Classes

Reflective::RefObject

// else for each super-Class

<SuperClass> Class,  ...

// if Class has a “Class Proxy Supertypes” Tag

//     for each supertype defined by the Tag (in order)

,  <ClassProxySupertypeName> ,  ... {

    // if this Class has an idl_version Tag

           #pragma version <ClassName> Class <version>

    // all <ClassName> including subclasses of <ClassName>

readonly attribute <ClassName> Set all_of_type _<class_name> ;

// if the Class is not abstract

// all <ClassName> excluding subclasses of <ClassName>

readonly attribute <ClassName> Set all_of_class_ <class_name> ;

// for each Constant, DataType, Exception, Constraint,

// classifier-scoped Attribute and classifier-scoped Operation

// in the Class, generate the appropriate IDL

<<DATATYPE TEMPLATE>>

<<CONSTRAINT TEMPLATE>>

<<CONSTANT TEMPLATE>>

<<EXCEPTION TEMPLATE>>

<<ATTRIBUTE TEMPLATE>> // public classifier-level only

<<OPERATION TEMPLATE>> // public classifier-level only

// if the Class is not abstract

<<CLASS CREATE TEMPLATE>>
5-58 OMG-Meta Object Facility, v1.4 April 2002



5

oxy
ise,

for
lso

t

ude

ude
}; // end of interface <ClassName> Class

Supertypes

If the M2-level Class inherits from other M2-level Classes, the generated Class Pr
interface inherits from the corresponding supertype Class Proxy interfaces. Otherw
the Class Proxy interface inherits fromReflective::RefObject.

If the M2-level Class has a “Class Proxy Supertypes” Tag (see Section 5.6.3, “Tags
Specifying IDL Inheritance,” on page 5-41), the generated Class Proxy interface a
inherits from the IDL interfaces specified by the Tag.

Attributes

all_of_class_<class_name>
The “all_of_class_<class_name>” attribute gives all Instance objects in the curren
extent for the corresponding M2-level Class. The attribute is only generated if
“isAbstract” is false for the Class.

The value of this attribute mirrors the definition of Instance object lifetimes; see
Section 5.3.4.2, “Instance object lifecycle semantics,” on page 5-13. It does not incl
any deleted Instance objects.

all_of_type_<class_name>
The “all_of_type_<class_name>” attribute gives all Instance objects in the current
extent for the corresponding M2-level Class or for any M2-level subClasses.

The value of this attribute mirrors the definition of Instance object lifetimes; see
Section 5.3.4.2, “Instance object lifecycle semantics,” on page 5-13. It does not incl
any deleted Instance objects.

reflective analog: ref_all_objects(<class_designator>, false)

type: <ClassName> (multiplicity zero or more, unique, non
ordered)

multiplicity: exactly one

changeable: no

reflective analog: ref_all_objects(<class_designator>, true)

type: <ClassName> (multiplicity zero or more, unique, non
ordered)

multiplicity: exactly one

changeable: no
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-59



5

long

for
Operations

The operations for a <ClassName>Class interface are produced by the Attribute,
Operation and Class Create Templates. Note that the operations for the M2-level
Classes instance-scoped features do not appear in this interface.

5.8.8 Instance Template

The Instance Template defines the IDL generation rules for the<ClassName>interface
for an M2-level Class whose “visibility” is “public_vis.” This interface contains
operations for the M2-level Classes instance-scoped Attributes and Operations, a
with any References.

Template

interface <ClassName> :

// (The Instance interface inherits the Class Proxy interface

// for the Class and Instance interfaces for any super-Classes)

<ClassName> Class

// for each super-Class of this Class (in order)

, <SuperClassName> ,  ...

// if Class has an “Instance Supertypes” Tag

//     for each supertype defined by the Tag (in order)

,  <InstanceSupertypeName> ,  ... {

    // if this Class has an idl_version Tag

           #pragma version <ClassName> <version>

// for each Attribute, Reference, Operation contained in

// this Class, generate the appropriate IDL

<<ATTRIBUTE TEMPLATE>> // public instance-level only

<<REFERENCE TEMPLATE>>// public only

<<OPERATION TEMPLATE>>// public instance-level only

}; // end of interface <ClassName>

Supertypes

The Instance interface for an M2-level Class inherits from the Class’s Class Proxy
interface, along with the Instance interfaces for all of its M2-level super-Classes.

If the M2-level Class has an “Instance Supertypes” Tag (see Section 5.6.3, “Tags
Specifying IDL Inheritance,” on page 5-41), the generated Instance interface also
inherits from the IDL interfaces specified by the Tag.
5-60 OMG-Meta Object Facility, v1.4 April 2002



5

, and

ry

vel

efined
Attributes

none

Operations

The operations for an Instance interface are generated by the Attribute, Reference
Operation Templates. Note that the operations for instance-scoped Attributes and
Operations only appear here.

5.8.9 Class Create Template

The Class Create Template defines the IDL generation rules for the Instance facto
operation for a non-abstract M2-level Class whose “visibility” is “public_vis.”

Template

<ClassName> create_ <class_name> (

// for each non-derived direct or inherited attribute

in <AttributeType>[<CollectionKind>] <attribute_name> ,  ...

)

raises (Reflective::MofError);

Operations

create_<class_name>

The “create_<class_name>” operation creates new Instance objects for the M2-le
Class (i.e., instances of the Class's <ClassName> interface).

The parameters to “create_<class_name>” provide initial values for the M2-level
Class's non-derived attributes. Parameter declarations are generated in an order d
by a recursive depth-first traversal of the inheritance graph. More precisely,

1. a Classes’ super-Classes are processed before the Classes’ Attributes,

2. super-Classes are processed in the order of the “Generalizes” association,

reflective analog: ref_create_instance(<class_designator>,
<attr_name>,...)

return type: <ClassName>

parameters: in <AttrTypeName>[<CollectionType>] <attr_name>,
...

exceptions: MofError (Overflow, Underflow, Duplicate,
Composition Closure, Supertype Closure, Already
Created)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-61



5

s
re

nce

is

e

M1-
the
3. the Attributes of each Class or super-Class are processed in the order of the
“Contains” association,

4. when an Attribute is encountered with a “scope” value of “classifier_level” or an
“isDerived” value of true no parameter is generated, and

5. when an Attribute is encountered a second or subsequent time, no additional
parameter is generated.

When an Attribute has multiplicity bounds other than [1..1], the type of the
corresponding initial value parameter’s type will be a collection type; see
Section 5.7.1.5, “Literal String Values,” on page 5-46.

“Overflow,” “Underflow,” and “Duplicate” occur if an argument that gives the initial
value for an Attribute does not match the Attribute’s multiplicity specification.

“Composition Closure” occurs if the initial value for a “composite” Attribute contain
an Instance object in another extent; see Section 4.11.2, “The Composition Closu
Rule,” on page 4-20.

“Supertype Closure” occurs if the extent for the current object cannot create Insta
objects for this super-Class; see Section 5.3.10, “The Supertype Closure Rule,” on
page 5-26.

“Already Created” occurs if the M2-level Class has “isSingleton” set to true, and th
object’s extent already includes an Instance object for the Class.

5.8.10 Association Template

The Association Template defines the generation rules for the Association interfac
corresponding to an M2-level Association whose “visibility” is “public_vis.” This
interface contains the IDL operations for accessing and updating the Association's
level link set. It also contains IDL declarations corresponding to any Constraints in
M2-level Association.

Template

// If the Association has visibility of protected or private,

// no IDL is generated

// data types for Association  <AssociationName>

struct <AssociationName> Link  {

<AssociationEnd1ClassName> <associationend1_name> ;

<AssociationEnd2ClassName> <associationend2_name> ;

};

// if this Association has an idl_version Tag

       #pragma version <AssociationName> Link <version>

typedef sequence < <AssociationName> Link >

<AssociationName> LinkSet;
5-62 OMG-Meta Object Facility, v1.4 April 2002



5

// if this Association has an idl_version Tag

       #pragma version <AssociationName> LinkSet <version>

<<ANNOTATION TEMPLATE>>

interface <AssociationName>  : Reflective::RefAssociation

// if Association has an “Association Supertypes” Tag

//     for each supertype defined by the Tag (in order)

,  <AssociationSupertypeName> ,  ... {

    // if this Association has an idl_version Tag

           #pragma version <AssociationName> <version>

    // for each Constraint in the Association, generate the IDL

    <<CONSTRAINT TEMPLATE>>

// list of associated elements

<AssociationName> LinkSet all_ <association_name> _links ()

raises (Reflective::MofError);

boolean exists (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> )

raises (Reflective::MofError);

// if association_end1 is_navigable

<AssociationEnd1Class>[<CollectionKind>] <association_end1_name> (

in <AssociationEnd2Class> <association_end2_name> )

raises (Reflective::MofError);

// if association_end2 is_navigable

<AssociationEnd2Class>[<CollectionKind>] <association_end2_name> (

in <AssociationEnd1Class> <association_end1_name> )

raises (Reflective::MofError);

// if association_end1 is_changeable

// and association_end2 is_changeable

void add (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> )

raises (Reflective::MofError);
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-63



5

// if association_end1 is_changeable and is_navigable

// and association_end2 is_changeable

// and association_end1 has upper > 1 and is_ordered

void add_before_ <association_end1_name>  (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> ,

in <AssociationEnd1Class> before)

raises (Reflective::NotFound, Reflective::MofError);

// if association_end1 is_changeable

// and association_end2 is_changeable and is_navigable

// and association_end2 has upper > 1 and is_ordered

void add_before_ <association_end2_name> (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> ,

in <AssociationEnd2Class> before)

raises (Reflective::NotFound, Reflective::MofError);

// if association_end1 is_navigable and is_changeable

void modify_ <association_end1_name> (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> ,

in <AssociationEnd1Class> new_<association_end1_name> )

raises (Reflective::NotFound, Reflective::MofError);

// if association_end2 is_navigable and is_changeable

void modify_ <association_end2_name> (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> ,

in <AssociationEnd2Class> new_<association_end2_name> )

raises (Reflective::NotFound, Reflective::MofError);

// if association_end1 is_changeable

// and association_end2 is_changeable

void remove (

in <AssociationEnd1Class> <association_end1_name> ,

in <AssociationEnd2Class> <association_end2_name> )

raises (Reflective::NotFound, Reflective::MofError);

};
5-64 OMG-Meta Object Facility, v1.4 April 2002



5

a link

gs

e

,”

e a
ks.

of
Data Types

The Association Template generates data type declarations that are used to pass
set for the M2-level Association. The<AssociationName>Link and
<AssociationName>LinkSet type declarations precede the Association interface
declaration.

Supertypes

Every generated Association interface inherits fromReflective::RefAssociation. If the
M2-level Association has an “Association Supertypes” Tag (see Section 5.6.3, “Ta
for Specifying IDL Inheritance,” on page 5-41), the generated Association interface
also inherits from the IDL interfaces specified by the Tag.

Attributes

none

Operations

all_<association_name>_links

The “all_<association_name>_links” operation creates new Instance objects for th
M2-level Class (i.e., instances of the Class's <ClassName> interface).

The “all_<association_name>_links” operation returns the current link set for this
Association expressed using the <AssociationName>LinkSet type.

While the definitions in Section 4.9.2.1, “A Mathematical Model of Association State
on page 4-15 state that an ordered Association implies a partial ordering over the
LinkSet, the result of the “all_<association_name>_links” operation is defined to b
Set. A client should not draw any conclusions from the ordering of the returned lin

The operation’s signature raisesReflective::MofError to allow Constraint error and
Semantic error conditions to be signalled.

exists

The “exists” operation queries whether a link currently exists between a given pair
Instance objects in the current M1-level Association extent.

reflective analog: ref_all_links()

return type: <AssociationName>LinkSet

parameters: none

query: yes

exceptions: MofError()
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-65



5

riate

that
ion

r

The parameters to the “exists” operation are a pair of Instance values of the approp
type for the Association. Since MOF link relationships are implicitly directional, the
order of the parameters is significant.

“Invalid Object,” “Nil Object,” and “Inaccessible Object” occurs if either of the
parameters is a non-existent, nil or inaccessible Instance object.

<association_end1_name>

The “<association_end1_name>” operation queries the Instance object or objects
are related to a particular Instance object by a link in the current M1-level Associat
extent. When “isNavigable” is set to false for the AssociationEnd, the
“<association_end1_name>” operation is suppressed.

The <association_end1_name> parameter is the Instance object from which the calle
wants to “navigate.” “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur
when the parameter is a non-existent, nil object or inaccessible Instance object.

The result type of the operation depends on the multiplicity of <AssociationEnd2>. If
it has bounds of [1..1], the result type is the Instance type corresponding to the
AssociationEnd’s “type.” Otherwise, it is a collection of the same Instance type, as
described in Section 5.7.1.5, “Literal String Values,” on page 5-46.

reflective analog: ref_link_exists(
Link{ <assoc_end1_name>, <assoc_end2_name>})

return type: boolean

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>

query: yes

exceptions: MofError (Invalid Object, Nil Object, Inaccessible
Object)

reflective analog: ref_query(
<assoc_end1_designator>, <assoc_end1_name>)

return type: <AssocEnd2ClassName>[<CollectionType>]

parameters: in <AssocEnd1ClassName> <assoc_end1_name>

query: yes

exceptions: MofError (Invalid Object, Nil Object, Inaccessible
Object, Underflow)
5-66 OMG-Meta Object Facility, v1.4 April 2002



5

tent.
e is

e
ll
nce
nce
rder

d

’s

s of

be
d.

of
site
“Underflow” occurs when <AssociationEnd2> has bounds [0..1] or [1..1] and the
Instance object given by the parameter is not related in the current Association ex
It should not occur in other cases where the result type is a collection type. (If ther
a multiplicity underflow, it is signalled by returning a collection value with too few
elements as opposed to raising an exception.)

The result of the operation gives the object or collection of objects related to the
parameter object by a Link or Links in this Association. If the multiplicity is [1..1], th
result will be a non-nil object reference. If the multiplicity is [0..1], the operation wi
return a non-nil object reference if there is a related object, and a nil object refere
otherwise. In other cases, the operation will return a (possibly zero length) seque
of non-nil object references. If the association end being queried is ordered, the o
of the contents of the returned collection is significant.

<association_end2_name>

This operation is the equivalent of “<association_end1_name>,” with the “end1” an
“end2” interchanged.

add

The “add” operation creates a link in this Association between a pair of Instance
objects. When “isChangeable” is set to false for either of the M2-level Association
AssociationEnd, the “add” operation is suppressed.

The two parameters to the “add” operation give the Instance objects at the two end
the new link. “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur if either
of the parameter values is a non-existent, nil or inaccessible Instance object.

If one or other end of the Association has “isOrdered” set to true, the new link must
added so that it is the last member of the projection for the ordered AssociationEn
The operation must also preserve ordering of the existing members of the ordered
projection.

“Overflow” occurs when adding the new link would cause the size of the projection
either the first or second parameter object to exceed the upper bound for the oppo
AssociationEnd. “Duplicate” occurs when the link set for the current Association
extent already contains the link whose creation is requested.

reflective analog: ref_add_link(
Link{< assoc_end1_name>, <assoc_end2_name>})

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>

exceptions: MofError (Invalid Object, Nil Object, Inaccessible
Object, Overflow, Duplicate, Reference Closure,
Composition Closure, Composition Cycle)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-67



5

the
he

o
ame

ers is
n

pair

rst

give
d
or

t

re
“Reference Closure” occurs when either (or both) of the AssociationEnds has
References, and the corresponding Instance object parameter does not belong to
same outermost Package extent as the Association object; see Section 4.11.1, “T
Reference Closure Rule,” on page 4-19.

“Composition Closure” occurs when either AssociationEnd has “aggregation” set t
“composite”, and either of the Instance object parameters does not belong to the s
outermost Package extent as this Association object; see Section 4.11.2, “The
Composition Closure Rule,” on page 4-20.

“Composition Cycle” occurs when adding the new link would create a cycle of
composite / component relationships such that one of the Instance object paramet
a (ultimately) component of itself; see Section 4.10.2, “Aggregation “composite”,” o
page 4-18.

add_before_<association_end1_name>

The “add_before_<association_end1_name>” operation creates a link between a
of Instance objects at a given place in this Association. This operation is only
generated when “isChangeable” is true for both AssociationEnds, and when the fi
AssociationEnd is multi-valued, ordered, and navigable.

The first two parameters to the “add_before_<association_end1_name>” operation
the Instance objects at the two ends of the new link. “Invalid Object,” “Nil Object,” an
“Inaccessible Object” occur if either of the parameter values is a non-existent, nil,
inaccessible Instance object.

The third parameter (“before”) gives an Instance object that determines the point a
which the new link is inserted. “Invalid Object,” “Nil Object,” and “Inaccessible
Object” also apply to the “before” parameter value.

The “before” value should be present in the projection of the “<assoc_end2_name>”
parameter value. If this is so, the insertion point for the new link is immediately befo
the “before” value, otherwise the “NotFound” error occurs.

reflective analog: ref_add_link_before(
Link{< assoc_end1_name>, <assoc_end2_name>},
<assoc_end1_designator>,
before);

(See Section 6.2.4, “Reflective::RefAssociation,” on
page 6-23).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>
in <AssociationEnd1ClassName>before

exceptions: NotFound, MofError (Invalid Object, Nil Object,
Inaccessible Object, Overflow, Duplicate, Reference
Closure, Composition Closure, Composition Cycle)
5-68 OMG-Meta Object Facility, v1.4 April 2002



5

the

e>”
e of

of
ject.

uld
t,”
nil

e

“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure,” and
“Composition Cycle” occur as described for the “add” operation above.

add_before_<association_end2_name>

This operation is the equivalent of “add_before_<association_end1_name>,” with
“end1” and “end2” interchanged.

Note –The preconditions for generating the “add_before_<association_end1_nam
and “add_before_<association_end2_name>” operations are such that at most on
them may appear in an Association interface.

modify_<association_end1_name>

The “modify_<association_end1_name>” operation updates a link between a pair
Instance objects, replacing the Instance at AssociationEnd1 with a new Instance ob
When AssociationEnd1 has “isChangeable” or “isNavigable” set to false, this
operation is suppressed.

The first two parameters to the “modify_<association_end1_name>” operation sho
give the Instance objects at the ends of an existing link. “Invalid Object,” “Nil Objec
and “Inaccessible Object” occur if either of the parameter values are non-existent,
or inaccessible Instance objects. “NotFound” occurs if the link does not exist in th
current extent.

The third parameter (“new_<assoc_end1_name>”) gives the Instance object that is to
replace the Instance at AssociationEnd1 for the selected link. “Invalid Object,” “Nil
Object,” and “Inaccessible Object” also occurs if this parameter’s value is a non-
existent, nil or inaccessible Instance object.

reflective analog: ref_modify_link(
Link{< assoc_end1_name>, <assoc_end2_name>},
<assoc_end1_designator>
new_<assoc_end1_name>);

(see Section 6.2.4, “Reflective::RefAssociation,” on
page 6-23).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>
in <AssocEnd2ClassName>new_<assoc_end1_name>

exceptions: NotFound, MofError (Invalid Object, Nil Object,
Inaccessible Object, Overflow, Underflow, Duplicate,
Reference Closure, Composition Closure, Composition
Cycle)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-69



5

on’s

a

e a
nce
on

In
If the “<assoc_end1_name>” and “new_<assoc_end1_name>” parameters give the
same Instance object, this operation is required to have no effect on the Associati
link set.

Note –The following error conditions apply to the state of the M1-level Association
after the completion of the operation, not to any intermediate states.

“Underflow” occurs if completion of the operation would leave the M1-level
Association in a state where

size(Projection(< assoc_end1_name >)) less than < AssocEnd2 >.lower

“Overflow” occurs if completion of the operation would leave the M1-level
Association in a state where

size(Projection(new_< assoc_end1_name >)) greater than

<AssocEnd2 >.upper

Note that the “Underflow” condition for the “new_<assoc_end1_name>” Instance
should be treated as a deferred constraint.

“Duplicate” occurs if the operation would create a duplicate link in this M1-level
Association extent. Similarly, “Composition Cycle” occurs if the operation creates
link that (on completion of the operation) would make the “<assoc_end2_name>” or
“new_<assoc_end1_name>” objects components of themselves.

“Reference Closure” and “Composition Closure” occur if the operation would creat
link that violates the corresponding closure rules; see Section 4.11.1, “The Refere
Closure Rule,” on page 4-19 and Section 4.11.2, “The Composition Closure Rule,”
page 4-20.

If either AssociationEnd has “isOrdered” set to true, this operation must preserve
ordering of the remaining members in the relevant projections of the ordered end.
addition:

• If AssociationEnd1 is ordered, the projection of “<assoc_end2_name>” must have
“new_<assoc_end1_name>” in the position taken by “<assoc_end1_name>”.

• If AssociationEnd2 is ordered, the projection of “new_<assoc_end1_name>” must
have “<assoc_end2_name>” as the last member.

modify_<association_end2_name>

This operation is the equivalent of “modify_<association_end1_name>” with the
“end1” and “end2” interchanged.

remove

The “remove” operation removes a link between a pair of Instance objects in the
current Association extent. When either AssociationEnd or AssociationEnd2 has
“isChangeable” set to false, the “remove” operation is suppressed.
5-70 OMG-Meta Object Facility, v1.4 April 2002



5

link

n

ave
ually
are

ble

er
The two parameters to this operation give the Instance objects at both ends of the
that is to be removed from the current Association object’s link set. “Nil Object”
occurs if either parameter value is a nil object reference.

“NotFound” occurs if the link to be deleted does not exist in the current Associatio
extent.

Note – “Invalid Object” and “Inaccessible Object” does occur here. The “remove”
operation needs to be capable of deleting links that involve Instance objects that h
been deleted or that are inaccessible. In the latter case, an implementation can us
fall back on local comparison of object references. If that fails (e.g., because there
multiple references for an Instance object) the implementation will typically be una
to distinguish the case from “NotFound.”

“Underflow” occurs if deleting the link would cause the size of the projection of eith
the “<assoc_end1_name>” or “<assoc_end2_name>” parameter value to be less than
the corresponding “lower” bound.

If either AssociationEnd1 or AssociationEnd2 has “isOrdered” set to true, the
“remove” operation must preserve the ordering of the remaining members of the
corresponding projection.

5.8.11 Attribute Template

The Attribute Template defines the generation rules for M2-level Attributes whose
“visibility” is “public_vis.” The Attribute Template declares operations to query and
update the value of an Attribute. These operations appear on different interfaces,
depending on the Attribute’s “scope”:

• IDL operations for instance-scoped Attributes appear in the Instance
(“<ClassName>”) interface for the Attribute’s containing Class.

• IDL operations for classifier-scoped Attributes appear in the Class Proxy
(“<ClassName>Class”) interface for the Attribute’s containing Class, and are
inherited by the Instance interface.

reflective analog: ref_remove_link(
Link{< assoc_end1_name>, <assoc_end2_name>});

(see Section 6.2.4, “Reflective::RefAssociation,” on
page 6-23).

return type: none

parameters: in <AssocEnd1ClassName> <assoc_end1_name>
in <AssocEnd2ClassName> <assoc_end2_name>

exceptions: NotFound, MofError (Nil Object, Underflow)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-71



5

the
The operations generated for an Attribute and their signatures depend heavily on
Attribute’s properties. For the purposes of defining the generated IDL, Attribute
multiplicities fall into three groups:

• single-valued Attributes: multiplicity bounds are [1..1],

• optional-valued Attributes: multiplicity bounds are [0..1], and

• multi-valued Attributes: any other multiplicity.

Template

// if Attribute visibility is private or protected no IDL

// is generated

<<ANNOTATION TEMPLATE>>

// if lower = 0 and upper = 1

<AttributeType> <attribute_name> ()

raises (Reflective::NotSet, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version <attribute_name> <version>

// if lower = 1 and upper = 1

<AttributeType> <attribute_name> ()

raises (Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version <attribute_name> <version>

// if upper > 1

<AttributeType><CollectionKind> <attribute_name> ()

raises (Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version <attribute_name> <version>

// if upper = 1 and is_changeable

void set_ <attribute_name> (in  <AttributeType> new_value)

raises (Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version set_ <attribute_name> <version>

// if upper > 1 and is_changeable

void set_ <attribute_name> (
in <AttributeType><CollectionKind> new_value)

raises (Reflective::MofError);
5-72 OMG-Meta Object Facility, v1.4 April 2002



5

// if this Attribute has an idl_version Tag

       #pragma version set_ <attribute_name> <version>

// if lower = 0 and upper = 1 and is_changeable

void unset_ <attribute_name> ()

raises (Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version unset_ <attribute_name> <version>

// if upper > 1 and is_changeable

void add_ <attribute_name> (in <AttributeType> new_element)

raises (Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version add_ <attribute_name> <version>

// if upper > 1 and is_changeable and is_ordered

void add_ <attribute_name> _before (

in <AttributeType> new_element,

in <AttributeType> before_element)

raises (Reflective::NotFound, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version add_ <attribute_name> _before <version>

// if upper > 1 and is_changeable and is_ordered and not is_unique

void add_ <attribute_name> _at (

in <AttributeType> new_element,

in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version add_ <attribute_name> _at <version>

// if upper > 1 and is_changeable

void modify_ <attribute_name> (

in <AttributeType> old_element,

in <AttributeType> new_element)

raises (Reflective::NotFound, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version modify_ <attribute_name> <version>

// if upper > 1 and is_changeable and is_ordered and not is_unique
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-73



5

void modify_ <attribute_name> _at (

in <AttributeType> new_element,

in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version modify_ <attribute_name> _at <version>

// if upper > 1 and upper != lower and is_changeable

void remove_ <attribute_name> (

in <AttributeType> old_element)

raises (Reflective::NotFound, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version remove_ <attribute_name> <version>

// if upper > 1 and upper != lower and is_changeable and

// is_ordered and not is_unique

void remove_ <attribute_name> _at (in unsigned long position)

raises (Reflective::BadPosition, Reflective::MofError);

// if this Attribute has an idl_version Tag

       #pragma version remove_ <attribute_name> _at <version>

Operations

<attribute_name>

The “<attribute_name>” operation returns the value of the named Attribute.

The signature of the “<attribute_name>” operation depends on the Attribute’s
multiplicity as indicated above. Its behavior is as follows:

reflective analog: ref_value(<attribute_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: [0..1] - <AttributeType>
[1..1] - <AttributeType>
other- <AttributeType><CollectionKind>

parameters: none

query: yes

exceptions: [0..1] - Unset, MofError
[1..1] - MofError
other - MofError
5-74 OMG-Meta Object Facility, v1.4 April 2002



5

e
ro.

cts,
is

for
ifier

ors
lly
s

iven
• In the [0..1] case, the operation either returns the Attribute’s optional value, or
raises the NotSet exception to indicate that the optional value is not present.

• In the [1..1] case, the operation simply returns the Attribute’s single value.

• In other cases, the operations returns the Attribute’s collection value. In the cas
where the collection is empty the result value will be a sequence with length ze
No exception is raised in this case.

If the Attribute is instance-scoped, the operation is only available on Instance obje
and invoking it returns a value that is related to this Instance object. If the Attribute
classifier-scoped, the operation can be invoked on both Class Proxy and Instance
objects. In both cases, the operation returns a value that is related to all Instances
the Attribute’s Class in the current extent. For a more detailed comparison of class
versus instance-scoped Attributes, see Section 4.6, “Semantics of Attributes,” on
page 4-5.

TheMofError exception may be raised to signal meta-model defined Constraint err
and implementation specific Semantic errors. However, an implementation genera
should avoid doing this, for the reasons given in Section 4.13.6, “Access operation
should avoid raising Constraint exceptions,” on page 4-24.

set_<attribute_name>

The “set_<attribute_name>” operation sets the value of the named Attribute.

The signature of the “set_<attribute_name>” operation depends on the Attribute’s
multiplicity as indicated above. Its behavior is as follows:

• In the single and optional-valued cases, the operation assigns the single value g
by “new_value” to the named Attribute.

• In the multi-valued case, the operation assigns the collection value given by
“new_value” parameter to the named Attribute.

reflective analog: ref_set_value(<attribute_designator>, new_value);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: [0..1] - in <AttributeType> new_value
[1..1] - in <AttributeType> new_value
other - in <AttributeType><CollectionKind> new_value

exceptions: [0..1] - MofError (Invalid Object, Inaccessible Object,
Composition Closure, Composition Cycle)

[1..1] - MofError (Invalid Object, Inaccessible Object,
Composition Closure, Composition Cycle)

other - MofError (Overflow, Underflow, Duplicate,
Invalid Object, Inaccessible Object,
Composition Closure, Composition Cycle)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-75



5

e

.

f

ct.

g

s

”

nd
ese
on

ute
s.

ued

rors
When the Attribute has a lower bound of 0, its value can legally be empty:

• In the optional-valued case, the Attribute’s value is set to “empty” by invoking th
“unset_<attribute_name>” operation described below.

• In the [0..N] case (whereN is not 1), the Attribute’s value is set to empty by
invoking “set_<attribute_name>” with a zero length sequence as the parameter

“Composition Closure” and “Composition Cycle” are only possible when the type o
the Attribute is a Class, and the Attribute has “composite” aggregation semantics:

• “Composition Closure” occurs when “new_value” or one of its members (in the
multi-valued case) belongs to a different outermost Package extent to this obje

• “Composition Cycle” occurs when the operation would result in this object havin
itself as a direct or indirect component.

“Overflow,” “Underflow,” and “Duplicate” can only occur in the case of a multi-valued
Attribute:

• “Overflow” occurs if the number of members in the “new_value” collection is
greater than the Attribute’s upper bound.

• “Underflow” occurs if the number of members in the “new_value” collection is les
than the Attribute’s lower bound.

• “Duplicate” occurs if the Attribute has “isUnique” set to true and the “new_value
collection contains duplicate values.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is fou
to be non-existent or inaccessible. An implementation should only signal one of th
conditions when it prevents other consistency checking (e.g., testing for compositi
cycles).

unset_<attribute_name>

The “unset_<attribute_name>” operation sets the value of an optional-valued Attrib
to empty. This operation is suppressed in the single-valued and multi-valued case

The “unset_<attribute_name>” operation is the only way to update an optional-val
Attribute to the “empty” state.

The MofError exception may be raised to signal meta-model defined Constraint er
and implementation specific Semantic errors.

Table 5-15

reflective analog: ref_unset_value(<attribute_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: none

exceptions: MofError
5-76 OMG-Meta Object Facility, v1.4 April 2002



5

a
and

t
.

f

f

a

nd
ese
on

n is
add_<attribute_name>

The “add_<attribute_name>” operation updates a multi-valued Attribute by adding
new member value to its collection value. This operation is suppressed for optional
single-valued Attributes and for Attributes with “isChangeable” set to false.

The “add_<attribute_name>” operation adds “new_element” to the collection of a
changeable multi-valued Attribute. If the Attribute’s “multiplicity” has “isOrdered” se
to true, the “new_element” is added after that current last element of the collection

“Overflow” occurs if adding another element to the collection makes the number o
elements it contains greater than the Attribute’s upper bound.

“Duplicate” occurs if the Attribute’s “multiplicity” has “isOrdered” set to true, and the
“new_element” value is equal to an element of the Attribute’s current value.

“Composition Closure” and “Composition Cycle” are only possible when the type o
the Attribute is a Class, and the Attribute has “composite” aggregation semantics:

• “Composition Closure” occurs when “new_element” belongs to a different
outermost Package extent to this object.

• “Composition Cycle” occurs when the operation would result in this object being
direct or indirect component of itself.

“Invalid Object” and “Inaccessible Object” occur when some Instance Object is fou
to be non-existent or inaccessible. An implementation should only signal one of th
conditions when it prevents other consistency checking (e.g., testing for compositi
cycles).

add_<attribute_name>_before

The “add_<attribute_name>_before” operation updates a multi-valued Attribute by
adding a new element at given position in its current collection value. The operatio
suppressed for optional and single-valued Attributes, and for Attributes with
“isChangeable” or “isOrdered” set to false.

Table 5-16

reflective analog: ref_add_value(<attribute_designator>, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <AttributeType>new_element

exceptions: MofError (Overflow, Duplicate, Invalid Object,
Inaccessible Object, Composition Closure, Composition
Cycle)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-77



5

n at

nts.

on
the

t in

nd
ese
on

ing
on-

th
The “add_<attribute_name>_before” operation adds “new_element” to the collectio
a given place within the collection value of an ordered, changeable, multi-valued
Attribute. Insertion is required to preserve the initial order of the collection’s eleme

The “new_element” is inserted before the first occurrence in the Attribute’s collecti
of the value supplied as the “before_element” parameter (i.e., the occurrence with
smallest index). “NotFound” occurs when the “before_element” value is not presen
the collection.

“Overflow,” “Duplicate,” “Composition Closure,” and “Composition Cycle” occur in
equivalent situations to those for “add_<attribute_name>” above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is fou
to be non-existent or inaccessible. An implementation should only signal one of th
conditions when it prevents other consistency checking (e.g., testing for compositi
cycles).

add_<attribute_name>_at

The “add_<attribute_name>_at” operation updates a multi-valued Attribute by add
a new element at a given position in its current collection value. It is provided for n
unique Attributes where an insertion point must be specified using an index. The
operation is suppressed for optional and single-valued Attributes, for Attributes wi
“isChangeable” or “isOrdered” set to false, and for Attributes with “isUnique” set to
true.

reflective analog: ref_add_value_before(
<attribute_designator>, new_element, before_element);

(see Section 6.2.3, “Reflective::RefObject,” on page 6-10).

return type: none

parameters: in <AttributeType>new_element
in <AttributeType>before_element

exceptions: NotFound, MofError (Overflow, Duplicate, Invalid Object,
Inaccessible Object, Composition Closure, Composition Cycle)

reflective analog: ref_add_value_at(
<attribute_designator>, new_element, position);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).
5-78 OMG-Meta Object Facility, v1.4 April 2002



5

hin

ex
o
of

nts
ng

nd
ese
on

for
The “add_<attribute_name>_at” operation adds “new_element” at a given point wit
the collection value of an ordered, non-unique changeable, multi-valued Attribute.
Insertion is required to preserve the initial order of the collection’s elements.

The insertion point is given by the value of the “position” parameter. This is the ind
of the collection member before which “new_element” should be inserted, with zer
being the index for the first member. A “position” value equal to the current number
elements means that “new_element” should be added to the end of the collection.
“BadPosition” occurs when the “position” value is greater than the number of eleme
in the collection. (It is not possible to create a collection value with “gaps” by addi
elements with “position” values larger that the collection size.)

“Overflow,” “Duplicate,” “Composition Closure,” and “Composition Cycle” occur in
equivalent situations to those described for “add_<attribute_name>” above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is fou
to be non-existent or inaccessible. An implementation should only signal one of th
conditions when it prevents other consistency checking (e.g., testing for compositi
cycles).

modify_<attribute_name>

The “modify_<attribute_name>” operation updates a multi-valued Attribute by
replacing an existing member of its collection value. This operation is suppressed
optional and single-valued Attributes and for Attributes with “isChangeable” set to
false.

return type: none

parameters: in <AttributeType>new_element
in unsigned long position

exceptions: BadPosition, MofError (Overflow, Duplicate, Invalid
Object, Inaccessible Object, Composition Closure,
Composition Cycle)

reflective analog: ref_modify_value(
<attribute_designator>,
old_element, new_element);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <AttributeType>old_element
in <AttributeType>new_element

exceptions: NotFound, MofError (Duplicate, Invalid Object,
Inaccessible Object, Composition Closure, Composition
Cycle)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-79



5

sed
rs

e
he

nd
ese
on

-
ex.

e
”
tion.
The “modify_<attribute_name>” operation replaces an occurrence of the value pas
in the “old_element” parameter with the value of “new_element.” “NotFound” occu
if the “old_element” value is not present in the Attribute’s initial collection value.

If the Attribute has “isOrdered” set to true, the operation is required to preserve th
initial order of the collection’s elements. If it also has “isUnique” set to false, then t
operation is defined to replace the first occurrence (i.e., the one with the smallest
index).

“Duplicate,” “Composition Closure,” and “Composition Cycle” occur in similar
situations to those described for “add_<attribute_name>” above.

“Invalid Object” and “Inaccessible Object” occur when some Instance object is fou
to be non-existent or inaccessible. An implementation should only signal one of th
conditions when it prevents other consistency checking (e.g., testing for compositi
cycles).

modify_<attribute_name>_at

The “modify_<attribute_name>_at” operation updates a multi-valued Attribute by
replacing a member of its collection value at a given position. It is provided for non
unique Attributes where the member to be modified must be specified using an ind
This operation is suppressed for optional and single-valued Attributes and for
Attributes with “isChangeable” set to false.

The “modify_<attribute_name>_at” operation replaces the value whose index in th
collection is given by the “position” parameter. “BadPosition” occurs if the “position
parameter is greater than or equal to the number of elements in the Attribute collec

The replacement value is given by the “new_value” parameter. The operation is
required to preserve the order of the collection’s elements.

“Duplicate,” “Composition Closure,” and “Composition Cycle” occur in similar
situations to those described for “add_<attribute_name>” above.

reflective analog: ref_modify_value_at(
<attribute_designator>,
new_element, position);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <AttributeType>new_element
in unsigned long position

exceptions: BadPosition, MofError (Duplicate, Invalid Object,
Inaccessible Object, Composition Closure, Composition
Cycle)
5-80 OMG-Meta Object Facility, v1.4 April 2002



5

nd
ese
on

ulti-
tes

ssed
t

e
he

f it
tion
e

ition
-
or
“Invalid Object” and “Inaccessible Object” occur when some Instance object is fou
to be non-existent or inaccessible. An implementation should only signal one of th
conditions when it prevents other consistency checking (e.g., testing for compositi
cycles).

remove_<attribute_name>

The “remove_<attribute_name>” operation removes an existing member from a m
valued Attribute. This operation is suppressed for optional and single-valued Attribu
and for Attributes with “isChangeable” set to false. It is also suppressed when the
lower and upper bounds are equal.

The “remove_<attribute_name>” operation removes an occurrence of the value pa
in the “old_element” parameter. “NotFound” occurs if the “old_element” value is no
present in the Attribute’s collection value.

If the Attribute has “isOrdered” set to true, the operation is required to preserve th
initial order of the collection’s elements. If it also has “isUnique” set to false, then t
operation is defined to remove the first occurrence (i.e., the one with the smallest
index).

“Underflow” occurs if removing an element makes the number of elements in the
collection less than the Attribute’s lower bound.

Note –The “remove_<attribute_name>” operation should not signal an exception i
finds that some Instance object is non-existent or inaccessible. If the object in ques
is the object to be removed from the Attribute, it should be removed. Otherwise, th
condition should be silently ignored.

remove_<attribute_name>_at

The “remove_<attribute_name>_at” operation removes the member at a given pos
from a multi-valued Attribute. This operation is suppressed for optional and single
valued Attributes, and for Attributes with “isChangeable” or “isOrdered” set to false
“isUnique” set to true. It is also suppressed when the lower and upper bounds are
equal.

reflective analog: ref_remove_value(<attribute_designator>,
old_element);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <AttributeType>old_element

exceptions: NotFound, MofError(Underflow)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-81



5

’s

of

e

res
ject

the
ence
to

and

as
if
The “remove_<attribute_name>_at” operation removes the element of an Attribute
collection value whose (zero based) index is given by the “position” parameter.
“BadPosition” occurs if the “position” value is greater than or equal to the number
elements in the Attribute’s collection value.

“Underflow” occurs if removing an element makes the number of elements in the
collection less than the Attribute’s lower bound.

5.8.12 Reference Template

The Reference Template defines the IDL generation rules for a Reference whose
“visibility” is “public_vis.” The IDL generated for a Reference is declared within the
scope of<ClassName>Classinterface definition. The IDL generated by the Referenc
Template provides the operations to return the value of the Reference as well as
operations to modify it. The IDL generated is dependent upon the multiplicity,
mutability, and ordering of the specified Reference.

The Reference Template defines the IDL generation rules for References. It decla
operations on the Instance interface to query and update links in the Association ob
for the current extent.

The operations generated for a Reference and their signatures depend heavily on
properties of the referenced AssociationEnd, which are also mirrored on the Refer
itself. For the purposes of defining the generated IDL, Reference multiplicities fall in
three groups:

• single-valued References: multiplicity bounds are [1..1],

• optional-valued References: multiplicity bounds are [0..1], and

• multi-valued References: any other multiplicity.

The generated operations for a Reference are designed to have similar signatures
behaviors to those for an instance-scoped Attribute with the same multiplicity and
changeability settings.

Note –Recall that Reference is only well formed if the referenced AssociationEnd h
“isNavigable” set to true. Similarly, a Reference’s “isChangeable” can only be true
the referenced AssociationEnd’s “isChangeable” is also true.

reflective analog: ref_remove_value_at(<attribute_designator>, position);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in unsigned long position

exceptions: BadPosition, MofError(Underflow)
5-82 OMG-Meta Object Facility, v1.4 April 2002



5

Template

// If the Reference has visibility of protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

// operations to return the Reference value

// if lower = 0 and upper = 1

<ReferenceClass> <reference_name> ()

raises (Reflective::NotSet, Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version <reference_name> <version>

// if lower = 1 and upper = 1

<ReferenceClass> <reference_name> ()

raises (Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version <reference_name> <version>

// if upper > 1

<ReferenceClass><Multiplicity> <reference_name> ()

raises (Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version <reference_name> <version>

/ / operations to modify the Reference value

// if upper = 1 and is_changeable

void set_ <reference_name> (

in <ReferenceClass> new_value)

raises (Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version set_ <reference_name> <version>

// if upper > 1 and is_changeable

void set_ <reference_name> (

in <ReferenceClass><Multiplicity> new_value)

raises (Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version set_ <reference_name> <version>
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-83



5

// if lower = 0 and upper = 1 and is_changeable

void unset_ <reference_name> ()

raises (Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version unset_ <reference_name> <version>

// if upper > 1 and is_changeable

void add_ <reference_name> (

in <ReferenceClass> new_element)

raises (Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version add_ <reference_name> <version>

// if upper > 1 and is_changeable and is_ordered

void add_ <reference_name> _before (

in <ReferenceClass> new_element,

in <ReferenceClass> before_element)

raises (Reflective::NotFound, Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version add_ <reference_name> _before <version>

// if upper > 1 and is_changeable

void modify_ <reference_name> (

in <ReferenceClass> old_element,

in <ReferenceClass> new_element)

raises (Reflective::NotFound, Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version modify_ <reference_name> <version>

// if upper > 1 and lower != upper and is_changeble

void remove_ <reference_name> (

in <ReferenceClass> old_element)

raises (Reflective::NotFound, Reflective::MofError);

// if this Reference has an idl_version Tag

       #pragma version remove_ <reference_name> <version>

<reference_name>
5-84 OMG-Meta Object Facility, v1.4 April 2002



5

f the

the

the

one,

ver,

he

rned.

nil
The “<reference_name>” operation reads the value of Reference. The signature o
operation depends on the multiplicity of the Reference.

The “<reference_name>” operation’s signature is determined by the multiplicity of
Reference, and hence the referenced AssociationEnd, as shown above.

In each case, the operation calculates and returns the projection of “this” object in
link set of the referenced AssociationEnd’s Association for the current outermost
extent:

• In the [0..1] case, the operation returns the projected Instance object if there is
and raises theReflective::NotSet exception if there is not.

• In the [1..1] case, the operation normally returns a single Instance object. Howe
if the projection contains no elements, this is signalled as aReflective::MofError
exception with “error_kind” of “Underflow.”

• In other cases, the operation returns the projection using a sequence value. If t
projection is empty, the result is a sequence of length zero. If it contains fewer
elements than the Reference’s lower bound, those that it does contain are retu

Note –Under no circumstances should the “<reference_name>” operation return a
object reference or a sequence that includes a nil object reference.

set_<reference_name>

The “set_<reference_name>” operation assigns a new value to a Reference. The
signature of the operation depends on the multiplicity of the Reference. If
“isChangeable” is set to false for the Reference, this operation is suppressed.

reflective analog: ref_value(<reference_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: [0..1] - <ReferenceClass>
[1..1] - <ReferenceClass>
other - <ReferenceClass><CollectionKind>

parameters: none

exceptions: [0..1] - NotSet, MofError
[1..1] - MofError (Underflow)
other - MofError
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-85



5

of

d

t are
links

the

tting

no

the
ust
The “set_<reference_name>” operation’s signature is determined by the multiplicity
the Reference, and hence the referenced AssociationEnd, as shown above.

In each case, the operation replaces the set of links in the extent for the reference
AssociationEnd’s Association. The behavior is as follows:

• In the [0..1] and [1..1] case, the caller passes a single Instance object in the
“new_value” parameter that is used to create the replacement link.

• In other cases, the “new_value” parameter is a sequence of Instance objects tha
used to create the replacement links. If the sequence is empty, no replacement
will be created.

The projection for an optional-valued Reference can only be set to “empty” using
“unset_<reference_name>” operation; see below.

The ordering semantics of the “set_<reference_name>” operation depend on the se
of “isOrdered” in the “multiplicity” for the Reference’s “referencedEnd” and
“exposedEnd” AssociationEnds:

• If neither of the AssociationEnds has “isOrdered” set to true, the Association has
ordering semantics.

• If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the order of
elements of the projection of “this” Instance after the operation has completed m
be the same as the order of the elements of the “new_value” parameter.

reflective analog: ref_set_value(<reference_designator>, new_value);
(see Section 6.2.3, “Reflective::RefObject,” on page 6-10).

return type: none

parameters: [0..1] - in <ReferenceClass> new_value
[1..1] - in <ReferenceClass> new_value
other - in <ReferenceClass><CollectionKind> new_value

exceptions: [0..1] - MofError (Overflow, Underflow, Invalid Object,
Nil Object, Inaccessible Object,
Composition Closure, Composition Cycle,
Reference Closure)

[1..1] - MofError (Overflow, Underflow, Invalid Object,
Nil Object, Inaccessible Object,
Composition Closure, Composition Cycle,
Reference Closure)

other - MofError (Overflow, Underflow, Duplicate,
Nil Object, Inaccessible Object,
Invalid Object, Composition Closure,
Composition Cycle, Reference Closure)
5-86 OMG-Meta Object Facility, v1.4 April 2002



5

e
d,
ed

ith

on

ent
d

ter

er

er
r

of
”

ere

of
• If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the order of th
elements of the “new_value” parameter (if it is multi-valued) are irrelevant. Instea
the operation is required to preserve the ordering of the projections that contain
“this” object, both before and after the update, as follows:

• If “this” object is in a projection of some other Instance object before the
operation but not afterwards, the order of the projection must be preserved, w
“this” object removed.

• If “this” object is in a projection of some other Instance object after the operati
but not before, the order of the projection must be preserved,and “this” object
must be added at the end of the projection.

• If “this” object is in a projection of some other Instance object both beforeand
after the operation, the “before” and “after” versions of the projection must be
identical.

• It is impossible for both of the AssociationEnds to have “isOrdered” set to true.

A large number of error conditions can occur, depending on “new_value,” the curr
state of the Association and the multiplicity of the Reference’s “referencedEnd” an
“exposedEnd” AssociationEnds:

• “Invalid Object,” “Nil Object,” and “Inaccessible Object” occur if any of the
supplied Instance objects is a non-existent, nil or inaccessible Instance object.

• “Overflow” can occur in two cases. First, it occurs when the “new_value” parame
contains more elements than is allowed by the “referencedEnd”’s upper bound.
Second, it occurs when the projection of an element of “new_value” after
completion of the operation would have more elements than is allowed by the
“exposedEnd”’s upper bound.

• “Duplicate” occurs for a multi-valued Reference when the “new_value” paramet
collection contains two or more occurrences of the same Instance object.

• “Underflow” can also occur in two cases. First it occurs when the “new_value”
parameter contains fewer elements that is allowed by the “referencedEnd”’s low
bound. Second, it occurs when the projection of an element of “new_value” afte
completion of the operation would have fewer elements than is allowed by the
“exposedEnd”’s lower bound,and fewer elements than it had before the operation
commenced.

• “Reference Closure” occurs when “new_value” (in the [0..1], [1..1] case) or one
its elements (in the “other” case) belongs in a different outermost extent to “this
object.

• “Composition Closure” occurs in the same situation as “Reference Closure,” wh
the referenced Association has composite aggregation semantics.

• “Composition Cycle” occurs when the referenced Association has composite
aggregation semantics, and the update would make “this” object a component
itself.
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-87



5

pty.
his

link
ion

t.

lti-
ink

uld
ct.

ew
he
ther
unset_<reference_name>

The “unset_<reference_name>” operation sets an optional-valued Reference to em
If “isChangeable” is set to false for the Reference, or if the bounds are not [0..1], t
operation is suppressed.

The “unset_<reference_name>” operation removes the link for this object from the
set of the referenced Association, should it exist. If no such link exists, the operat
does nothing.

If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the operation
preserves the ordering of the projection that initially contains “this” Instance objec

add_<reference_name>

The “add_<reference_name>” operation adds the “new_element” Instance to a mu
valued Reference collection by creating a link in the corresponding Association’s l
set. “Invalid Object,” “Nil Object,” or “Inaccessible Object” occur if the
“new_element” parameter is a non-existent, nil or inaccessible Instance object.

If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the new link sho
be created so that “new_element” is the last element of the projection of “this” obje
Alternatively, if the “exposedEnd” AssociationEnd has “isOrdered” set to true, the n
link should be created so that “this” object is the last element of the projection of t
“new_element” object. In either case, the operation should preserve the order of o
elements in the respective ordered projections.

reflective analog: ref_reset_value(<reference_designator>);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: none

exceptions: MofError

The “add_<reference_name>” operation adds an Instance object to a Reference
collection. If “isChangeable” is set to false for the Reference, or the Reference’s
upper bound is 1, this operation is suppressed.

reflective analog: ref_add_value(<reference_designator>, new_element);
(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <ReferenceClass> new_element

exceptions: MofError (Overflow, Duplicate, Invalid Object, Nil
Object, Inaccessible Object, Reference Closure,
Composition Closure, Composition Cycle)
5-88 OMG-Meta Object Facility, v1.4 April 2002



5

s

e
e of

tion.

he

ted

”

t”

,

the
“Overflow” occurs if the number of elements in the projections of either the “this”
object or the “new_element” object already equals the respective AssociationEnd’
upper bound.

“Duplicate” occurs if the operation would create a duplicate link in the link set for th
referenced Association. For example, when the “new_element” value is a duplicat
a value in the current Reference collection.

“Reference Closure,” “Composition Closure,” and “Composition Cycle” all occur in
similar situations to those described above for the “set_<reference_name>” opera

add_<reference_name>_before

The “add_<reference_name>_before” operation is a more specialized version of t
“add_<reference_name>” operation described previously. It creates a link between
“this” object and the “new_element” Instance object so that it appears in a designa
place in “this” object’s projection.

The “before_element” parameter gives the Instance object in the projection of “this
before which the “new_element” object should be inserted. “Invalid Object,” “Nil
Object,” and “Inaccessible Object” occur if either “new_element” or “before_elemen
is a non-existent, nil or inaccessible Instance object. “Not Found” occurs if
“before_element” is not present in the projection of “this” object.

The new link is created such that the “new_element” object appears immediately
before the “before_element” value in the projection of “this” object. Apart from this
the order of the projection’s elements is unchanged.

“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure” and
“Composition Cycle” all occur in equivalent situations to those described above for
“add_<reference_name>” and “set_<reference_name>” operations.

The “add_<reference_name>_before” operation adds an Instance object at a
particular place in an ordered Reference collection. If “isChangeable” or
“isOrdered” is set to false for the Reference, this operation is suppressed.

reflective analog: ref_add_value_before(
<reference_designator>,
new_element, before_element);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <ReferenceClass> new_element
in <ReferenceClass> before_element

exceptions: NotFound, MofError (Overflow, Duplicate, Invalid
Object, Nil Object, Inaccessible Object, Reference
Closure, Composition Closure, Composition Cycle)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-89



5

ing
”

tion

ct

is,
is
the

ring

the
nt”
modify_<reference_name>

The “modify_<reference_name>” operation updates a Reference collection, replac
one element with another. If the Reference is not multi-valued or its “isChangeable
multiplicity flag is set to false, this operation is suppressed.

The “modify_<reference_name>” operation updates the link set so that the projec
of “this” object has “new_element” in place of “old_element.” The operation is
notionally equivalent to either

<the_association >.modify_< association_end1 >(

old_element, < this >, new_element)

or

<the_association >.modify_< association_end2 >(

<this >, old_element, new_element)

where <the_association> is the current outermost extent’s M1-level Association obje
for the referenced M2-level Association.

The “old_element” and “new_element” parameters must both give usable Instance
objects. “Invalid Object,” “Nil Object,” or “Inaccessible Object” occur if either is a
non-existent, nil or inaccessible object.

The “old_element” object must be an element of the projection of “this” object; that
a link must already exist between “this” and “old_element.” “NotFound” occurs if th
is not the case. If “old_element” and “new_element” are the same Instance object,
operation is required to do nothing at all.

If the referenced Association is ordered, the operation is required to preserve orde
as follows:

• If the “referencedEnd” AssociationEnd has “isOrdered” set to true, the order of
elements in the projection of “this” object should be preserved, with “new_eleme
occupying the same position as “old_element” did before the update.

reflective analog: ref_modify_value(
<reference_designator>,
old_element, new_element);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <ReferenceClass> old_element
in <ReferenceClass> new_element

exceptions: NotFound, MofError (Underflow, Overflow, Duplicate,
Invalid Object, Nil Object, Inaccessible Object,
Reference Closure, Composition Closure, Composition
Cycle)
5-90 OMG-Meta Object Facility, v1.4 April 2002



5

e

the

t”

d”
e

ce
nd.)

in

nd

the

a

• If the “exposedEnd” AssociationEnd has “isOrdered” set to true, the order of th
elements in the projections of “old_element” and “new_element” should be
preserved, except that “this” is removed from the former projection and added to
end of the latter projection.

“Overflow” occurs when the number of elements in the projection of “new_elemen
would be greater than the upper bound for the “exposedEnd” AssociationEnd.

“Underflow” occur when the number of elements in the projection of “old_element”
would be decreased, and it would be less than the lower bound of the “exposedEn
AssociationEnd. (In the case where “old_element” and “new_element” are the sam
object, the operation does not alter the number of elements in the projection. Hen
“Overflow” cannot be signalled, even if the number of elements is less than the bou

“Duplicate” occurs if the “modify_<reference_name>” operation would introduce a
duplicate into the projection. (Care should be taken to avoid signalling “Duplicate”
the case where “old_element” and “new_element” are the same object.)

“Reference Closure,” “Composition Closure,” and “Composition Cycle” all occur in
equivalent situations to those described above for the “add_<reference_name>” a
“set_<reference_name>” operations.

remove_<reference_name>

The “remove_<reference_name>” operation updates a Reference collection by
removing an element. If the Reference is not multi-valued or its “isChangeable”
multiplicity flag is set to false, this operation is suppressed. It is also suppressed if
Reference’s lower and upper bounds are equal.

The “remove_<reference_name>” operation updates the link set (i.e., by removing
link) so that the projection of “this” object no longer contains “old_element.”
“NotFound” occurs if there is no link to be deleted.

Note –The “remove_<reference_name>” operation should be able to cope with
removal of a link when the object at the other end of a link is non-existent or
inaccessible.

If the referenced Association is ordered, the operation is required to preserve the
ordering of the projection with the ordered collection value.

reflective analog: ref_remove_value(
<reference_designator>, old_element);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: none

parameters: in <ReferenceClass> old_element

exceptions: NotFound, MofError (Underflow)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-91



5

t”
.

n
ion.
“Underflow” occur when the number of elements in the projections of “old_elemen
and “this” would be less than the lower bounds of the respective AssociationEnds

5.8.13 Operation Template

The Operation Template defines the IDL generation rules for M2-level Operations
whose “visibility” is “public_vis.” It generates an IDL operation within the scope of a
Instance or Class Proxy interface, depending on the scope of the M2-level Operat

Template

// If the Operation has visibility of protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

// if Operation contains no “return” Parameter

void <operation_name> (

// else

<ReturnParamType >[ <CollectionKind >]  < operation_name >(

// for each contained “in”, “out” or “inout” Parameter

<direction > < ParamType >[< CollectionKind >] < param_name>,  ...

)

raises (

 // for each Exception raised by the Operation

<ExceptionName> ,  ... // (a trailing comma is required)

Reflective::MofError);

// if this Operation has an idl_version Tag

       #pragma version <operation_name> <version>

// for each Constraint contained by this Operation

<<CONSTRAINT_TEMPLATE>>

<operation_name>

An “<operation_name>” operation invokes an implementation specific method to
perform the behavior implied by the M2-level Operation model element.
5-92 OMG-Meta Object Facility, v1.4 April 2002



5

ile

ter

vel
ject

:

rom
ach
e>”

6.
An “<operation_name>” operation invokes an implementation specific method. Wh
the behavior of the method itself is beyond the scope of the IDL mapping, the
signature of the IDL operation is defined by the mapping, along with some parame
checking semantics.

The return type for an “<operation_name>” operation is generated from the M2-le
Operation’s (optional) return Parameter. For example, the contained Parameter ob
whose “direction” attribute has the value “return_dir.” The return type is as follows

• If there is no return Parameter, the return type is “void.”

• If the return Parameter has “multiplicity” bounds of “[1..1],” the return type is the
“type” of the Parameter; i.e. <ParameterType>.

• If the return Parameter some other “multiplicity” bounds, the return type is a
collection type determined by the bounds. For example,
<ParameterType><CollectionKind>, as described in Section 5.7.1.5, “Literal String
Values,” on page 5-46.

The parameter declarations for an “<operation_name>” operation are generated f
the M2-level Operation’s Parameter, excluding the return Parameter (if any). For e
non-return Parameter of the Operation, in the defined order, the “<operation_nam
declaration has a parameter declaration consisting of the following:

• The “<direction>” is produced by rendering the Parameter’s “direction” as “in,”
“out,” or “inout” as appropriate.

• The “<ParameterType>[<CollectionKind>] ” is produced from the Parameter’s
“type” and “multiplicity” as follows:

• If the Parameter has “multiplicity” bounds of “[1..1]”, the <CollectionKind> is
omitted.

• If the Parameter has “multiplicity” bounds other than “[1..1]”, <CollectionKind>
is generated according to Section 5.7.1.5, “Literal String Values,” on page 5-4

reflective analog: ref_invoke_operation(
<reference_designator>, old_element);

(see Section 6.2.3, “Reflective::RefObject,” on
page 6-10).

return type: no return param - void
[0..1] return param - <ParamType>Bag
<param_name>
[1..1] return param - <ParamType> <param_name>
other return param - <ParamType><CollectionKind>

<param_name>

parameters: <direction> <ParamType>[<CollectionKind>], ...

exceptions: <ExceptionName>, ...
MofError (Overflow, Underflow, Duplicate, Invalid
Object, Semantic Error)
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-93



5

m

MG

ns

er

er

to
g to

t is
n

>”

e

f
nce
• The “<parameter_name>” is produced by rendering the Parameter’s name.

The list of exceptions raised by an “<operation_name>” operation is generated fro
the M2-level Operation’s “exceptions.” The generated “raises” list consists of an
appropriately qualified identifier for each M2-level Exception in the Operation’s
“exceptions” list, followed by the qualified identifier for the MofError exception. The
“raises” list should of course be comma separated as required by the syntax for O
IDL.

While meta-model specific error conditions should be signalled by raising exceptio
corresponding to the Operation’s “exceptions” list, MofError is used to signal the
following structural errors relating to the values supplied by the caller for “in” and
“inout” parameters.

• “Overflow” occurs when the supplied collection value for a multi-valued paramet
has more elements than is allowed by the M2-level Parameter’s upper bound.

• “Underflow” occurs when the supplied collection value for a multi-valued
parameter has fewer elements than is allowed by the M2-level Parameter’s low
bound.

• “Duplicate” occurs when a multi-valued M2-level Parameter has “isUnique” set
true, and the supplied collection value contains members that are equal accordin
the definitions in Section 4.11, “Closure Rules,” on page 4-19.

• “Invalid Object” can occur if an Instance object typed parameter value or elemen
a reference to a non-existent (i.e., deleted) or inaccessible object. This conditio
will occur if duplicate checking finds an Instance object that it cannot test for
equality. It can also occur if the semantics of the Operation require an Instance
object reference to be usable.

Like all other operations that have MofError in their signature, an “<operation_name
operation can useMofError to signal Constraint errors and Semantic errors.

If an Operation has a multi-valued ’out,’ ’inout,’ or ’return’ Parameter, or if it can rais
an Exception with a multi-valued field, its implementation shall ensure that the
returned collection or collections satisfy the Parameters’ multiplicity constraints. I
they do not, the implementation shall use MofError to signal a Semantic Error. (Si
this case is deemed to be an error in the implementation, “Overflow,” “Underflow,”
“Duplicate,” or “Invalid” Object mustnot be signalled here.)

5.8.14 Exception Template

The Exception template defines the IDL generation rules for M2-level Exceptions
whose “visibility” is “public_vis.”

Template

// If the Exception has visibility of protected or private, no IDL

// is generated
5-94 OMG-Meta Object Facility, v1.4 April 2002



5

vel
t the

a

rom

L
r. In
<<ANNOTATION TEMPLATE>>

exception <ExceptionName> {

// for each Parameter

<ParameterType>[<CollectionKind>] <parameter_name> ;  ...

};

// if this Exception has an idl_version Tag

       #pragma version <ExceptionName> <version>

Description

The generated IDL for an M2-level Exception is an IDL exception. The declaration
appears within an IDL interface or module corresponding to the Exception’s M2-le
container. In the case of an M2-level Class, this is the Class Proxy interface so tha
IDL exception is available to be raised by classifier-scoped Operations.

The fields of the IDL exception are generated from the Exception’s Parameters in
way that is similar to Operation Parameters:

• An Exception Parameter whose multiplicity has a “[1..1]” bound is mapped to a
field whose type is “<ParameterType>”.

• An Exception Parameter whose multiplicity has any other bound is mapped to a
field whose type is of the form “<ParameterType><CollectionKind>,” generated
according to the rules in Section 5.7.1.5, “Literal String Values,” on page 5-46.

5.8.15 Constant Template

The Constant Template defines the rules for generating IDL constant declarations f
M2-level Constants.

Template

<<ANNOTATION TEMPLATE>>

const <ConstantType> <CONSTANT_NAME> = <CONSTANTVALUE>;

// if this Constant has an idl_version Tag

       #pragma version <CONSTANT_NAME> <version>

The generated IDL for an M2-level Constant is an IDL constant declaration. The ID
appears an interface or module corresponding to the Constant’s M2-level containe
the container is a Class, the declaration appears within the Class Proxy interface.

The IDL generation process needs to produce a valid IDL literal value of the
appropriate type from the Constant’s “value.”
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-95



5

pe

, as

y
te.
5.8.16 DataType Template

The DataType Template defines the rules for generating IDL for an M2-level DataTy
subtypes whose “visibility” is “public_vis.” This typically consists of an IDL type
declaration for the data type, followed by one or more collection type declarations
required.

Note – If the IDL mapping preconditions are strictly observed, the template will onl
generate IDL declarations for the DataType’s type in cases where this is appropria

Template

// If the DataType’s visibility is protected or private, no IDL

// is generated

<<ANNOTATION TEMPLATE>>

// generate the DataType’s type declaration

// if the DataType is an AliasType

typedef  <type.TYPESPEC> <DatatypeName> ;

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> <version>

// else if the DataType is a CollectionType

typedef sequence < <type.TYPESPEC> > <DatatypeName> ;

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> <version>

// else if the DataType is an EnumerationType

enum <DatatypeName> { <label> , ... };

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> <version>

// else if the DataType is a StructureType

struct <DatatypeName> {

// for each StructureField of the StructureType

<StructField.type.TYPESPEC> <struct_field.name> ; ...
};

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> <version>

// else no declaration. The PrimitiveTypes do not require IDL

// declarations.  All supported PrimitiveTypes map to builtin
5-96 OMG-Meta Object Facility, v1.4 April 2002



5

ns.)

traint

ring
// CORBA IDL types.

// For each Constraint contained by this DataType

<<CONSTRAINT_TEMPLATE>>

typedef sequence < <DataTypeName> > <DataTypeName> Bag;

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> Bag <version>

typedef sequence < <DataTypeName> > <DataTypeName> Set;

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> Set  <version>

typedef sequence < <DataTypeName> > <DataTypeName> List;

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> List  <version>

typedef sequence < <DataTypeName> > <DataTypeName> UList;

// if this DataType has an idl_version Tag

       #pragma version <DatatypeName> UList  <version>

Description

A DataType template generates IDL M2-level DataType subclass instances for the
technology neutral and CORBA specific data types. The template produces the
following declarations:

• If the DataType is a CollectionType, AliasType, StructureType, or
EnumerationType, the template produces an IDL declaration for the type. (The
PrimitiveTypes that are supported for the IDL mapping do not require declaratio

• If the DataType has Constraints, the template generates the corresponding cons
string declarations.

• Finally, the template also generates synthesized collection types according to
Section 5.7.2, “Generation Rules for Collection Types,” on page 5-41.

5.8.17 Constraint Template

The Constraint template defines the rules for generating the requisite error kind st
declaration for an M2-level Constraint.

Template

<<ANNOTATION TEMPLATE>>

const string <CONSTRAINT_NAME>= " <constraint.string> ";

// if this Constraint has an idl_version Tag
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-97



5

n the
or
t
the

d

y

ed

f.

r

       #pragma version <CONSTRAINT_NAME> <version>

Description

The Constraint template generates an IDL string constant whose name is based o
M2-level Constraint name. If the Constraint is contained by an M2-level DataType
Operation, the constant declaration is generated within the scope of the Constrain
container’s container. If this results in a name collision, the meta-modeler can solve
problem using a substitute name tag as described in Section 5.6.2.1, “Substitute
Name,” on page 5-41.

The “<constraint. string>” value is generated to match the following syntax (expresse
in EBNF):

<constraint.string > ::= [ < IDL prefix > ] ‘ :constraint. ’

( < container_name > ‘.’ ) + < constraint_name >

The components of the error kind string value are as follows:

• If the meta-model has an IDL prefix (see Section 5.6.1.1, “IDL Prefix,” on
page 5-39), the string starts with the value of this prefix.

• Next there is a colon (“:”) to separate the prefix from the rest of the string.

• Next there is the fixed string “constraint” to indicate the class of error, followed b
a period (“.”).

• Next there are a series of Format 2 renderings of the names of the Constraint’s
enclosing containers. These are separated by period (“.”) characters, and follow
by another period.

• The value ends with the Format 2 rendering of the name of the Constraint itsel

5.8.18 Annotation Template

The Annotation template optionally generates IDL comments for an M2-level
ModelElement’s “annotation.” This template should be regarded as indicative rathe
than normative.

Template

// Annotation comments may optionally be suppressed by the IDL

// generator

// Annotation comments may use the "/*…*/" style

/*  < line 1 of the ANNOTATION>

   <line 2 of the ANNOTATION>

   . . .

   <line N of the ANNOTATION> */
5-98 OMG-Meta Object Facility, v1.4 April 2002



5

n
tor
// or the "//" style

// <line 1 of ANNOTATION>

// <line 2 of ANNOTATION>

//  . . .

// <line N of the ANNOTATION>

Description

The Annotation template optionally includes the “annotation” for a ModelElement i
the generated IDL as an IDL comment. It is anticipated that a vendor’s IDL genera
would give some control over the way that these comments are generated. For
example, allowing the user to

• suppress the comments completely,

• choose between the two styles of comments, and

• choose whether or not to respect embedded line breaks and other markup.
April 2002 OMG-MOF, v1.4: IDL Mapping Templates 5-99



5

5-100 OMG-Meta Object Facility, v1.4 April 2002



TheReflectiveModule 6
OF
of

jects,
Contents

This chapter contains the following topics.

6.1 Introduction

One of the advantages of meta-objects (in the general sense) is that they allow a
program to use objects without prior knowledge of the objects' interfaces. In the M
context, an object's M2-level meta-object allows a program to “discover” the nature
any M1-level MOF object, both at a syntactic level and at a deeper level. With this
information in hand, the MOF’s Reflective interfaces allow a program to:

• create, update, access, navigate and invoke operations on M1-level Instance ob

• query and update links using M1-level Association objects, and

• navigate an M1-level Package structure

without using meta-model specific interfaces.

Topic Page

“Introduction” 6-1

“The Reflective Interfaces” 6-3

“The CORBA IDL for the Reflective Interfaces” 6-30
April 2002 OMG-Meta Object Facility, v1.4 6-1



6

es
not

utes

OF
not

,
cher
the
d
e

y
DL

vel

el

OF

y

Note –The functionality above is all available through the "model specific" interfac
defined by the IDL mapping described in this chapter. The Reflective interfaces do
allow a program to access or update MOF objects contrary to their meta-object
descriptions. For example, they cannot be used to create, access or update Attrib
that do not exist, or to bypass Constraint checking.

In addition, the Reflective interfaces allow the program to:

• find a M1-level object's M2-level meta-object,

• find a MOF object’s container(s) and enclosing Package(s),

• test for MOF object identity, and

• delete a MOF object.

Note –While many of these capabilities are correctly described as reflective, the M
does not offer the full repertoire of reflective programming features. Since it does
define object behavior, the MOF does not define interfaces for reflective behavior
modification. Even if it did, these interfaces could not be implemented in many
CORBA contexts.

The CORBA Interface Repository (IR) and the Dynamic Invocation Interface (DII),
provide similar capabilities in the context of a CORBA object's Interface. However
using the IR and DII for this purpose means that the user cannot make use of the ri
semantic information in models defined using the MOF meta-model. For example,
IR can tell the user that the “Model::Contains” IDL interface has an operation calle
“exists;” however, it is only by using MOF meta-objects that the user knows that th
“exists” operation tests whether one object “contains” another one.

The MOF Reflective module contains four "abstract" interfaces that are inherited b
the M1-level interfaces for a model that are generated from a meta-model by the I
mapping.

1. The Reflective::RefObject interface provides common operations for M1-level
Instance objects and Class Proxy objects.

2. The Reflective::RefAssociation interface provides common operations for M1-le
Association objects.

3. The Reflective::RefPackage interface provides a common operations for M1-lev
Package objects.

4. The Reflective::RefBaseObject interface provides common operations for all M
objects.

Since the M2-level interfaces for the MOF Model are generated by this means, the
also inherit from the Reflective interfaces.
6-2 OMG-Meta Object Facility, v1.4 April 2002



6

he

ject.
e

eter
the

e

For

ram

used

in
ses

be
t be
l if
6.2 The Reflective Interfaces

This section describes the interfaces defined in the "Reflective" module. These
interfaces are modeled on the interfaces that are produced by the IDL mapping.
However, there are some important differences:

• Reflective operations pass the values of Attributes and References, and of the
Parameters to Operations and Exceptions as CORBA Any values. The mapped
versions of these operations pass the values using precise types according to t
meta-model.

• Reflective operations on Associations pass Instance objects with the type RefOb
The mapped versions of these operations pass Instance objects using their tru
types.

• The "target" feature for a Reflective operation is passed as a "designator" param
whose type is a MOF meta-object. In the mapped case, the target is implicit in
mapped operation name.

As stated previously, the Reflective versions of operations, which are defined in th
mapped IDL, do not allow a program to violate the information and computational
models implied by the meta-model definition. This includes not allowing operations
that, while meaningful for a model, are not possible using the mapped interfaces.
example, while it might be meaningful to call “refSetValue” on an optional Attribute
passing an "empty" argument (encoded appropriately), this is not allowed: the prog
must use “refSetValue.”

This section consists of a subsection that explains some common patterns that are
for encoding parameters used by many Reflective operations. The remaining four
subsections describe each Reflective interface in turn.

6.2.1 Reflective Argument Encoding Patterns.

The Reflective module make heavy use of the CORBA Any type to provide meta-
model independent interfaces. This section defines some common patterns used
throughout the Reflective interfaces for encoding parameter values in Anys.

Note – It is important that the type information (expressed as CORBA TypeCodes)
the encoded Anys be precisely as specified below. In particular, collection type alia
and their names are mandatory.

If the base type of the value-defining feature is a DataType, the TypeCode in the
encoded Any must be the full TypeCode for the base type. Type aliases must not
optimized away, and all optional names (e.g., of struct types, fields, and so on) mus
present. (Optimization of type information in Anys should be done at the ORB leve
at all.)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-3



6

ost
ment
is
and

he
t
sed

the
an

an
on
6.2.1.1 The Standard Value Encoding Pattern

This pattern is used for encoding complete values as CORBA Anys. It is used in m
cases where a reflective operation requires or provides a complete value for an ele
that may be collection valued (depending on the multiplicity). Examples that use th
pattern are values for Operation arguments and results, values for Exception fields
Attribute initial values in a create operation.

6.2.1.2 The Alternate Value Encoding Pattern

The standard pattern for encoding complete values (above) does not fit well with t
IDL templates for the specific "get" and "set" operations. To improve the alignmen
between the reflective and specific interfaces, the following alternative pattern is u
for the “refValue” and “refSet Value” operations for Attributes and References.

“The operation fetches the current value of the Attribute or Reference denoted by
"feature" argument. If this object is a Class proxy, only classifier scoped Attributes c
be fetched.”

“The “refSetValue” operation assigns a new value to an Attribute or Reference for
object. The assigned value must be a single value or a collection value depending
the feature’s multiplicity.” .

Table 6-1 Standard Value Encoding Pattern

Bounds CORBA Any Encoding Notes

[0..1] Any(alias(seq(<type>, 0)))
where the alias name is
<typeName>Bag

An "optional" feature value with no elements
is encoded as zero length sequence.

[1..1] Any(<type>)

others Any(alias(seq(<type>, 0)))
where the alias name is
<typeName><CollectionKind>

A "multi-valued" feature value with no
elements is encoded as a zero length
sequence.

Table 6-2 Alternate Value Encoding Pattern

Bounds CORBA Any Encoding Notes

[0..1] Any(<type>) An "optional" feature value with no elements is handled
as follows:
• the ref_get_value() raises Unset when the value is empty
• the ref_unset_value() is used to set value to no elements

[1..1] Any(<type>)

others Any(alias(seq(<type>, 0)))
where the alias name is
<typeName><CollectionKind>

A "multi-valued" feature value with no elements is
encoded as a zero length sequence.
6-4 OMG-Meta Object Facility, v1.4 April 2002



6

ve

to
e
.

per

ents

eta-
ral
6.2.1.3 The Value Member Encoding Pattern

The following pattern is used in the reflective versions of the add, modify and remo
operations that operate on the individual members of a multi-valued Attribute or
Reference. The pattern is simply to encode the member as an Any containing an
instance of the feature’s base type. For example:

Any(< type >)

6.2.1.4 The Link Encoding Pattern

Some of the operations in the RefAssociation interface use the "generic" Link type
pass link values; see Section 6.3.2, “Data Types,” on page 6-30. While the Link typ
uses RefObject rather than Any, a pattern is still required to describe the encoding

The "generic" Link type is declared as a sequence of RefObject values with an up
bound of 2. The standard encoding of a link for a given Association is:

Link(< assocEnd1Type >, < assocEnd2Type >)

In other words, the sequence value contains precisely two elements, and the elem
appear in the order of the corresponding AssociationEnds in the Association.

6.2.2 Reflective::RefBaseObject abstract

The RefBaseObject interface is inherited by the other three reflective interfaces. It
provides common operations for testing for object identity, returning an object's m
object, and returning its "repository container" as required for implementing structu
constraints such as the MOF's type closure rule and composition restrictions.

Supertypes

none (root object)

Operations

refMofId

The “refMofId” operation returns this object’s permanent unique identifier string.

specific analog: none

return type: string

isQuery: yes

parameters: none

exceptions: none
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-5



6

to

ve
n. A

e

his

r

ded
be

for
is are
ID
ce

es
Every MOF object has a permanent, unique MOF identifier associated with it. This
identifier is generated and bound to the object when it is created and cannot be
changed for the lifetime of the object. The primary purpose of the MOF identifier is
serve as a label that can be compared to definitively establish an object’s identity.

A MOF implementation must ensure that no two distinct MOF objects within the
extent of an outermost Package object ever have the same MOF identifier. This
invariant must hold for the lifetime of the extent.

A group of outermost Package extents can only be safely federated if the respecti
implementations can ensure the above invariant applies across the entire federatio
federation of extents in which the invariant does not hold is not MOF compliant.

The MOF specification does not mandate a scheme for achieving this. Instead, th
following approach is recommended:

1. Choose an appropriate scheme (or schemes) for allocating unique identifiers. T
will depend on the nature of the federation.

2. Define a textual syntax for MOF identifier strings of the form:

<scheme-prefix> " : " <scheme-specific-part>

where<scheme-prefix> is either standardized elsewhere, or a vendor or use
specific string that is unlikely to clash with other prefixes.

In the absence of a more appropriate identifier generation scheme, it is recommen
that the following scheme based on the DCE UUID algorithm and textual encoding
used. The recommended DCE UUID-based identifier syntax is:

" DCE" " : " <printable-form-of-dce-uuid> [" : " <decimal-digits>]

For example:

" DCE:d62207a2-011e-11ce-88b4-0800090b5d3e "

" DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:1234 "

The first case would be used when it is acceptable to generate a new DCE UUID
each MOF object. The second case might be used when the overheads of doing th
too large, or the required rate of UUID generation is too high. In this case, the UU
would denote an extent incarnation, and the suffix would be a local object sequen
number for the extent incarnation does not repeat during the latter’s lifetime.

refMetaObject

The “refMetaObject” operation returns the Model::ModelElement object that describ
this object in its metamodel specification.

specific analog: none

return type: DesignatorType
6-6 OMG-Meta Object Facility, v1.4 April 2002



6

ect

ded

le.

kage

bject
. In
e
w,”

age
If the object’s meta-object is unavailable, the return value may be a CORBA nil obj
reference.

refItself

The “refItself” operation tests whether this object and another RefBaseObject provi
as an argument are the same CORBA object.

"Invalid Object" occurs if the "otherObject" is not a valid object, or if it is inaccessib

refImmediatePackage

The “RefImmediatePackage” operation returns the RefPackage object for the Pac
that most immediately contains or aggregates this object.

If this object has no containing or aggregating Package (i.e., it is the RefPackage o
for an outermost Package), then the return value is a CORBA nil object reference
complex cases where there is more than one immediate aggregating Package (se
Section 4.8, “Extents,” on page 4-10 and Section 5.2.1, “Meta Object Type Overvie
on page 5-2, the return value may be any of them.

refOutermostPackage

The “refOutermostPackage” operation returns the RefPackage object for the Pack
that ultimately contains this object.

isQuery: yes

parameters: none

exceptions: none

specific analog: none

return type: boolean

isQuery: yes

parameters: otherObject : in RefBaseObject

exceptions: MofError (Invalid Object)

specific analog: none

return type: RefPackage

isQuery: yes

parameters: none

exceptions: none
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-7



6

alue

tly

; see

e

ted;
5-11.
If this object is the RefPackage object for an outermost Package, then the return v
is this object.

refDelete

The “refDelete” operation destroys this object, including the objects it contains direc
or transitively (see Section 5.3.4, “Lifecycle Semantics for the IDL Mapping,” on
page 5-11 and Section 4.10, “Aggregation Semantics,” on page 4-17).

The semantics of this operation depend on this RefBaseObject’s most derived type
Section 5.2.1, “Meta Object Type Overview,” on page 5-2. Five sub-cases of
RefBaseObject need to be considered here:

• outermost (i.e., non-nested, non-dependent) Package objects,

• nested or dependent Package objects,

• Association objects,

• Class proxy objects, and

• Instance objects.

Ordinary clients may only use “refDelete” to delete instances of outermost Packag
objects and Instance objects.

• Deletion of an outermost Package causes all objects within its extent to be dele
see Section 5.3.4.1, “Package object creation and deletion semantics,” on page

• Deletion of an Instance object deletes it and its component closure; see
Section 5.3.4.2, “Instance object lifecycle semantics,” on page 5-13.

"Invalid Deletion" occurs if an ordinary client invokes “refDelete” on a nested or
dependent Package object, an Association object, or a Class proxy object.

specific analog: none

return type: RefPackage

isQuery: yes

parameters: none

exceptions: none

specific analog: none

return type: none

parameters: none

exceptions: MofError (Invalid Deletion)
6-8 OMG-Meta Object Facility, v1.4 April 2002



6

on
,

to

ay
r

is
ted

f

t

any
As part of the deletion of an outermost Package, a Package object’s implementati
may use the “refDelete” operation to delete nested or dependent Package objects
Association objects, and Class proxy objects as well as Instance objects.

refVerifyConstraints

The “refVerifyConstraints” operation triggers verification of the Constraints attached
the target object’s meta-object.

The operation should attempt to check any Constraints for the target object that m
possibly fail, including any deferred structural constraints. If all constraints hold fo
the target, the result is true, and an empty set will be returned in ’problems.’
Otherwise, the result is false.

If ’deepVerify’ is false, just the Constraints attached to this object’s meta-object are
evaluated. Otherwise any Constraints attached to the meta-objects of this object’s
component objects (direct or indirect) are also evaluated. For example, if a Class
defined with Constraints attached to one of its Attributes, these will only be evalua
if ’deepVerify’ is true.

The ’maxProblems’ parameter allows the caller to specify the maximum number o
ViolationType instances to be returned in ’problems.’ If ’maxProblems’ is zero, no
ViolationType instances will be returned. When an implementation detects more
constraint violations that can be reported, it should cease checking and return the
results that it can. If ’maxProblems’ is UNBOUNDED (-1), or any other negative
number, the implementation should return ViolationType instances for all constrain
violations detected.

The ’problems’ parameter is used to return ViolationType descriptors for any
constraints that do not currently hold. The ’maxProblems’ parameter says how m
descriptors may be returned by the call. Refer to Section 6.3.2, “Data Types,” on
page 6-30 for description of ViolationType and how it is used.

Interface

interface RefBaseObject {
string ref_mof_id ();
DesignatorType ref_meta_object ();
boolean ref_itself (in RefBaseObject other_object);
RefPackage ref_immediate_package ();
RefPackage ref_outermost_package ();

specific analog: none

return type: boolean

parameters: deepVerify : in boolean
maxProblems : in long
problems : out ViolationTypeSet

exceptions: MofError (Semantic Error)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-9



6

rits

n

g

y the

ed as
void ref_delete ()
raises (MofError);

boolean refVerifyConstraints(
in boolean deepVerify,
in long maxProblems,
out ViolationTypeSet problems)

raises (MofError)
}; // end of RefBaseObject

6.2.3 Reflective::RefObject abstract

The RefObject interface provides the meta-object description of an object that inhe
from it, provides generic operations for testing for object identity and type
membership, and a range of operations for accessing and updating the object in a
model independent way.

The model assumed by the interface is that an object has structural features and
operations. The model allows structural features to have single values or collectio
values. In the latter case, the collection values may have ordering or uniqueness
semantics. There is provision for creation of new object instances, and for obtainin
the set of objects that exist in a context.

Supertypes

RefBaseObject

Operations

refIsInstanceOf

This operation tests whether this RefObject is an instance of the Class described b
“someClass” meta-object. If the “considerSubtypes” argument is TRUE, an object
whose Class is a subclass of the Class described by “someClass” will be consider
an instance of the Class.

specific analog: none

return type: boolean

isQuery: yes

parameters: someClass : in DesignatorType
considerSubtypes : in boolean

exceptions: MofError (Invalid Designator, Wrong Designator Kind)
6-10 OMG-Meta Object Facility, v1.4 April 2002



6

d
ct.

d,

c
lue

f an

el

s,
refCreateInstance

This operation creates a new instance of the Class for the RefObject’s most derive
interface. The operation can be called on a Class proxy object or an Instance obje
The “args” list gives the initial values for the new Instance object’s instance scope
non-derived Attributes.

The members of the "args" list correspond 1-to-1 to the parameters for the specifi
create operation. They must be encoded as per Section 6.2.1.1, “The Standard Va
Encoding Pattern,” on page 6-4. “Wrong Type” and “Wrong Number Parameters”
when the “args” list has the wrong length or is incorrectly encoded.

“Abstract Class” occurs when “refCreateInstance” is called to create an instance o
“abstract Class.” The remaining error conditions are directly equivalent to error
conditions for the specific “create” operation.

refAllObjects

The “refAllObjects” operation returns the set of all Instances in the current extent
whose type is given by this object’s Class. The operation can be called on a Class
proxy object or an Instance object.

If “includeSubtypes” is true, the Instance objects for any subClasses of the M2 lev
Class are also included in the result set. This case is equivalent to the specific
“all_of_type_<class_name>.”

If the M2 level Class has “isAbstract” set to true, the result of

ref_all_objects(false)

is an empty set.

specific analog: create_<class_name>(...); (see Section 5.8.9, “Class Create
Template,” on page 5-61).

return type: RefObject

parameters: args : in Any (multiplicity: zero or more; ordered)

exceptions: MofError (Overflow, Underflow, Duplicate, Composition
Closure, Supertype Closure, Already Created, Abstract Clas
Wrong Type, Wrong Number Parameters)

specific analog: attribute all_of_type_<class_name>;
attribute all_of_class_<class_name>;
(See Section 5.8.6, “Class Template,” on page 5-57).

return type: RefObject (multiplicity zero or more; unique; unordered)

isQuery: yes

parameters: includeSubtypes : in boolean

exceptions: none
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-11



6

an

e an

s

n
on
refValue

The “refValue” operation fetches the current value of the Attribute or Reference
denoted by the “feature” argument. If this object is a Class proxy, only classifier
scoped Attributes can be fetched.

The result for the “refValue” operation is encoded as per Section 6.2.1.2, “The
Alternate Value Encoding Pattern,” on page 6-4.

“NotSet” occurs when the feature’s multiplicity is [0..1] and its value is unset (i.e.,
empty collection). This should not occur with other multiplicities.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
and “Wrong Scope” all occur in cases where the “feature” argument does not denot
Attribute or Reference accessible from this object.

“Underflow” occurs when the feature is a Reference with multiplicity is [1..1] and it
value has not been initialized. This should not occur for an Attribute or with other
multiplicities.

refSetValue

The “refSetValue” operation assigns a new value to an Attribute or Reference for a
object. The assigned value must be a single value or a collection value depending
the feature’s multiplicity.

specific analog: <reference_name>(); (see Section 5.8.13, “Operation
Template,” on page 5-92).

<attribute_name>(); (see Section 5.8.11, “Attribute
Template,” on page 5-71).

return type: Any

isQuery: yes

parameters: feature : in DesignatorType

exceptions: NotSet, MofError (Invalid Designator, Wrong Designator
Kind, Unknown Designator, Not Public, Wrong Scope,
Underflow)

specific analog: set_<reference_name>(newValue); (see Section 5.8.12,
“Reference Template,” on page 5-82).

set_<attribute_name>(newValue); (see Section 5.8.11,
“Attribute Template,” on page 5-71).
6-12 OMG-Meta Object Facility, v1.4 April 2002



6

e
is

from

no

h

End
The “newValue” parameter must be encoded as per Section 6.2.1.2, “The Alternat
Value Encoding Pattern,” on page 6-4. “Wrong Type” occurs when this parameter
incorrectly encoded.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” and “Not Changeable” all occur in situations where the “feature”
parameter does not denote a changeable Attribute or Reference that is accessible
this object.

The remaining error conditions are directly equivalent to error conditions for the
“set_<feature_name>” operation.

refUnsetValue

The “refUnsetValue” operation resets an optional Attribute or Reference to contain
elements. This operation can only be used when the feature’s multiplicity is [0..1].

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur in situations
where the “feature” parameter does not denote an Attribute or Reference for whic
“unset_<feature_name>” is allowed.

“Underflow” occurs in the same situation as for the “unset_<feature_name>”
operation. For example, when “feature” is a Reference whose exposed Association
has a non-zero lower bound.

return type: none

parameters: feature : in DesignatorType
newValue : in Any

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not
Changeable, Underflow, Overflow, Duplicate, Reference
Closure, Composition Closure, Composition Cycle, Invalid
Object, Nil Object, Inaccessible Object, Wrong Type)

specific analog: unset_<reference_name>(); (see Section 5.8.12, “Reference
Template,” on page 5-82).

unset_<attribute_name>(); (see Section 5.8.11, “Attribute
Template,” on page 5-71).

return type: none

parameters: feature : in DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not
Changeable, Wrong Multiplicity, Underflow)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-13



6

te
e

ype.

r

d
ade
.

refAddValue

The “refAddValue” operation adds a new element to the current value of an Attribu
or Reference with multiplicity that allows multiple values. If the Attribute or Referenc
is ordered, the new element is added at the end of the current value.

The “newElement” parameter should contain a single value of the feature’s base t
“Wrong Type” occurs when it does not.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when the
“feature” parameter does not designate a Reference or Attribute for which the
“add_<feature_name>” operation is allowed.

The remaining error conditions are directly equivalent to error conditions for the
“add_<feature_name>” operation.

refAddValueBefore

The “refAddValueBefore” operation is similar to “refAddValue” except that the calle
specifies an existing element before which the new element is to be added. This
operation can only be used for Attributes and References that are multi-valued an
ordered. If the feature is non-unique (and therefore an Attribute), the insertion is m
before the first element that matches, starting from the beginning of the collection

specific analog: add_<reference_name>(newElement); (see Section 5.8.12,
“Reference Template,” on page 5-82).

add_<attribute_name>(newElement); (see Section 5.8.11,
“Attribute Template,” on page 5-71).

return type: none

parameters: feature : in DesignatorType
newElement : in Any

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not
Changeable, Wrong Multiplicity, Overflow, Duplicate,
Invalid Object, Nil Object, Inaccessible Object, Reference
Closure, Composition Closure, Composition Cycle, Wrong
Type)
6-14 OMG-Meta Object Facility, v1.4 April 2002



6

alue

to
The “newElement” and “beforeElement” parameters should each contain a single v
of the feature’s base type. “Wrong Type” occurs when it does not.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when the
“feature” parameter does not designate a Reference or Attribute for which the
“add_<feature_name>_before” operation is allowed.

The remaining error conditions are directly equivalent to error conditions for the
“add_<feature_name>_before” operation.

refAddValueAt

The “refAddValueAt” operation is similar to “refAddValueBefore” except that the
caller explicitly gives the position of the insertion. The operation is only applicable
multi-valued ordered, non-unique Attributes.

specific analog: add_<ref_name>_before(newElement, beforeElement);
(see Section 5.8.12, “Reference Template,” on page 5-82)

add_<attr_name>_before(newElement, beforeElement);
(see Section 5.8.11, “Attribute Template,” on page 5-71)

return type: none

parameters: feature : in DesignatorType
newElement : in Any
beforeElement : in Any

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Overflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

specific analog: add_<ref_name>_at(newElement, position);
(see Section 5.8.12, “Reference Template,” on page 5-82)

add_<attr_name>_at(newElement, position);
(see Section 5.8.11, “Attribute Template,” on page 5-71
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-15



6

cific
s

f

r
fore
The “newElement” parameter should contain a single value of the Attribute’s base
type. “Wrong Type” occurs if it is not.

The “position” parameter is interpreted the same way as for the corresponding spe
operation. “Bad Position” occurs if the position parameter’s value is out of range, a
defined for the “add_<feature_name>_at” operation (i.e., if it is greater than the size o
the collection before the operation is invoked).

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when “feature”
does not designate an Attribute for which the “add_<feature_name>_at” operation is
allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific “add_<feature_name>_at” operation.

refModifyValue

The “refModifyValue” operation replaces one element of a multi-valued Attribute o
Reference with a new value. If the feature is an ordered and non-unique (and there
an Attribute), the element modified is the first one that matches, starting from the
beginning of the collection.

return type: none

parameters: feature : in DesignatorType
newElement : in Any
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Overflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

specific analog: modify_<ref_name>(oldElement, newElement);
(see Section 5.8.12, “Reference Template,” on page 5-82)

modify_<attr_name>(oldElement, newElement);
(see Section 5.8.11, “Attribute Template,” on page 5-71)

return type: none

parameters: feature : in DesignatorType
oldElement : in Any
newElement : in Any

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Overflow, Duplicate, Invalid Object,
Nil Object, Inaccessible Object, Reference Closure, Composition
Closure, Composition Cycle, Wrong Type)
6-16 OMG-Meta Object Facility, v1.4 April 2002



6

the

ly
The “newElement” and “oldElement” parameters should contain a single value of
feature’s base type. “Wrong Type” occurs if it is not.

The “oldElement” parameter should be an existing element of the collection being
updated. “Not Found” occurs if it is not.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when the
“feature” parameter does not designate a Reference or Attribute that supports the
“modify_<feature_name>” operation.

The remaining error conditions are directly equivalent to error conditions for the
“modify_<feature_name>” operation.

refModifyValueAt

The “refModifyValueAt” operation is similar to the “refModifyValue” operation,
except that the element to be modified is specified by position. The operation is on
applicable to multi-valued, ordered, non-unique Attributes.

The “newElement” parameter should contain a single value of the Attribute’s base
type. “Wrong Type” occurs if it is not.

The “position” parameter is interpreted in the same way as for the corresponding
specific operation. “Bad Position” occurs if the position parameter’s value is out of
range, as defined for the “modify_<feature_name>_at” operation (i.e., if it is greater
than or equal to the size of the collection).

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when “feature”
does not designate an Attribute for which the “modify_<feature_name>_at” operation
is allowed.

specific analog: modify_<ref_name>_at(newElement, position);
(see Section 5.8.12, “Reference Template,” on page 5-82)

modify_<attr_name>_at(newElement, position);
(see Section 5.8.11, “Attribute Template,” on page 5-71)

return type: none

parameters: feature : in DesignatorType
newElement : in Any
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Overflow, Duplicate, Invalid Object,
Nil Object, Inaccessible Object, Reference Closure, Composition
Closure, Composition Cycle, Wrong Type)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-17



6

r
the

ute)
e

pe.

he
The remaining error conditions are directly equivalent to error conditions for the
specific “modify_<feature_name>_at” operation.

refRemoveValue

The “refRemoveValue” operation removes an element of a multi-valued Attribute o
Reference. The operation is only applicable when the upper bound is not equal to
lower bound. When the feature is ordered and non-unique (and therefore an Attrib
the element removed is the first one in the collection that matches, starting from th
beginning of the collection.

The “oldElement” parameter should contain a single value of the Attribute’s base ty
“Wrong Type” occurs if it is not.

“Not Found” occurs if the value in the “oldElement” parameter is not a member of t
collection.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” "Not”
Public,” “Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when
“feature” does not designate an Attribute or Reference for which the
“remove_<feature_name>” operation is allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific “remove_<feature_name>” operation.

refRemoveValueAt

The “refRemoveValueAt” operation is similar to the “refRemoveValue” operation
except that the element to be modified is specified by position. Furthermore, the
operation is only applicable to ordered, non-unique Attributes.

specific analog: remove_<reference_name>(oldElement); (see Section 5.8.12,
“Reference Template,” on page 5-82)

remove_<attribute_name>(oldElement); (see Section 5.8.11, “Attribute
Template,” on page 5-71)

return type: none

parameters: feature : in DesignatorType
oldElement : in Any

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)
6-18 OMG-Meta Object Facility, v1.4 April 2002



6

for

t

,

The “position” parameter is interpreted in the same way as for the corresponding
specific operation. “Bad Position” occurs if the position parameter’s value is out of
range, as defined for the “remove_<feature_name>_at” operation (i.e., if it is greater
than or equal to the size of the collection before the operation is called).

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
“Wrong Scope,” “Not Changeable,” and “Wrong Multiplicity” all occur when “feature”
does not designate an Attribute for which the “remove_<feature_name>_at” operation
is allowed.

The remaining error conditions are directly equivalent to error conditions for the
specific “remove_<feature_name>_at” operation.

refImmediateComposite

The “refImmediateComposite” operation returns the "immediate composite" object
this Instance as specified below.

The immediate composite object C returned by this operation is an Instance objec
such that:

• C is related to this object via a relation R defined by an Attribute or Association

• the aggregation semantics of the relation R are "composite," and

• this object fills the role of "component" in its relationship with C.

specific analog: remove_<reference_name>_at(position); (see Section 5.8.12,
“Reference Template,” on page 5-82)

remove_<attribute_name>_at(position); (see Section 5.8.11, “Attribute
Template,” on page 5-71)

return type: none

parameters: feature : in DesignatorType
position : in unsigned long

exceptions: BadPosition, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Public, Wrong Scope, Not Changeable,
Wrong Multiplicity, Underflow, Duplicate, Invalid Object, Nil Object,
Inaccessible Object, Reference Closure, Composition Closure,
Composition Cycle, Wrong Type)

specific analog: none

return type: RefObject

isQuery: yes

exceptions: none
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-19



6

2-
at

such
If the immediate object C does not exist, or if “this” object is a Class proxy object
rather than an Instance object, a CORBA nil object reference is returned.

Note – If the composite relationship R corresponds to a “classifier-level” scoped M
level Attribute, the immediate composite object C will be the Class Proxy object th
holds the Attribute value.

refOutermostComposite

The “refOutermostComposite” operation returns the “outermost composite” for this
object as defined below.

The outermost composite object C returned by this operation is an Instance object
that:

• There is a chain ofzero or moreimmediate composite relationships (as described
for “The “refImmediateComposite”) connecting "this" object to C, and

• C does not have an immediate composite.

The above definition is such that if “this” object is not a component of any other
object, it will be returned.

If “this” object is a Class proxy object, a CORBA nil object reference is returned.

Note –As with “refImmediateComposite” if the last composite relationship in the
chain corresponds to a “classifier-level” scoped M2 level Attribute, the outermost
composite object C will be the Class Proxy object that holds the Attribute value.

refInvokeOperation

The “refInvokeOperation” operation invokes a metamodel defined Operation on the
Instance or Class proxy object with the arguments supplied.

specific analog: none

return type: RefObject

isQuery: yes

exceptions: none
6-20 OMG-Meta Object Facility, v1.4 April 2002



6

rs
t

t,”

per

er
as

t the

lt
on
ult
as
e

ion
the
The “args” parameter is used to pass the values of all of the Operation’s Paramete
that have directions “in,” “out,” or “inout” but not the “return” Parameter. There mus
be a distinct parameter value (real or dummy) in the “args” list for every “in,” “out,”
and “inout” Parameter. “Wrong Number Parameters” occurs if this is not so.

The parameter values in “args” must appear in the order of the Operation’s “in,” “ou
and “inout” Parameters as defined in the metamodel.

The “args” member values provided by the caller for “in” and “inout” Parameter
positions must be encoded depending on the Parameter’s type and multiplicity as
the Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. "Wrong
Type" occurs if any of these values have the wrong type for the corresponding
Parameter. “Underflow,” “Overflow,” or “Duplicate” occur when one of the supplied
values does not fit the multiplicity specified by the corresponding Parameter.

The caller must provide a dummy “args” member value in each “out” Parameter
position. This value may be any legal CORBA Any value.

The “args” member values passed back to the caller for “out” and “inout” Paramet
positions are likewise encoded depending on the Parameter’s type and multiplicity
per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. Note tha
values passed back to the caller the “in” Parameter positions of the “args” list are
dummies whose content is undefined.

If the Operation defines a result (i.e., a Parameter with direction “return”), the resu
for a “The “refInvokeOperation” operation invokes a metamodel defined Operation
the Instance or Class proxy object with the arguments supplied.” call gives the res
value. This is encoded depending on the "return" Parameter’s type and multiplicity
per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on page 6-4. When th
Operation does not define a result, the result of a “The “refInvokeOperation” operat
invokes a metamodel defined Operation on the Instance or Class proxy object with
arguments supplied.” call is a dummy value whose content is undefined.

specific analog: none

return type: Any (multiplicity: zero or more; ordered; not unique)

parameters: requestedOperation : in DesignatorType
args : inout Any (multiplicity: zero or more; ordered; non-
unique)

exceptions: OtherException, MofError (Invalid Designator, Wrong
Designator Kind, Unknown Designator, Not Public, Wrong
Scope, Overflow, Underflow, Duplicate, Wrong Number
Parameters, Wrong Type, Semantic Error)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-21



6

light
se
DR

n
”
for
h

pe
Note – In the cases above where dummy values are used, it is recommended that “
weight” Any values are used. (We would recommend the use of an Any value who
type kind is tk_null. However, there is currently some question as to whether the C
standard defines an encoding for this value.)

“OtherException” occurs when a “refInvokeOperation” invocation needs to signal a
Operation specific Exception. The “exception_designator” field of “OtherException
will denote the Exception raised, and the “exception_args” list will give the values
any Exception fields. The “exception_args” list will have one member value for eac
Parameter of the Exception in the order defined by the meta-model. The member
values will be encoded depending on the corresponding Exception Parameter’s ty
and multiplicity as per Section 6.2.1.1, “The Standard Value Encoding Pattern,” on
page 6-4.

A “Semantic Error” will occur if the invoked Operation tries to return a collection
value as a result, out or inout parameter that violates the Parameter’s structural
constraints. This will also occur if an Exception Parameter’s value is similarly
incorrect.

“Invalid Designator,” “Wrong Designator Kind,” “Unknown Designator,” “Not Public,”
and “Wrong Scope” all occur when “requestedOperation” does not designate an
Operation that can be invoked using this object.

Interface

interface RefObject : RefBaseObject {
    boolean ref_is_instance_of (in DesignatorType some_class,
                                in boolean consider_subtypes);
    RefObject ref_create_instance (in AnyList args)
      raises (MofError);
    RefObjectSet ref_all_objects (in boolean include_subtypes);
    void ref_set_value (in DesignatorType feature,
                        in any new_value)
      raises (MofError);

any ref_value (in DesignatorType feature)
      raises (NotSet, MofError);
void ref_unset_value ()
      raises (MofError);
void ref_add_value (in DesignatorType feature,
                        in any new_element)
      raises (MofError);
    void ref_add_value_before (in DesignatorType feature,
                               in any new_element,
                               in any before_element)
      raises (NotFound, MofError);
void ref_add_value_at (in DesignatorType feature,
                           in any new_element,
                           in unsigned long position)
      raises (BadPosition, MofError);
void ref_modify_value (in DesignatorType feature,
                           in any old_element,
6-22 OMG-Meta Object Facility, v1.4 April 2002



6

n
nks

ther

no
that
are

s

                           in any new_element)
      raises (NotFound, MofError);
    void ref_modify_value_at (in DesignatorType feature,
                              in any new_element,
                              in unsigned long position)
      raises (BadPosition, MofError);
void ref_remove_value (in DesignatorType feature,
                           in any old_element)
      raises (NotFound, MofError);
    void ref_remove_value_at (in DesignatorType feature,
                              in unsigned long position)
      raises (BadPosition, MofError);
RefObject ref_immediate_composite ();
     RefObject ref_outermost_composite ();
any ref_invoke_operation (
              in DesignatorType requested_operation,
              inout AnyList args)
       raises (OtherException, MofError);
}; // end of interface RefObject

6.2.4 Reflective::RefAssociation abstract

The RefAssociation interface provides the meta-object description of an associatio
that inherits from it. It also provides generic operations querying and updating the li
that belong to the association.

The model of association supported by this interface is of collection of two ended
asymmetric links between objects. The links may be viewed as ordered on one or o
of the ends, and there may be some form of cardinality constraints on either end.

The RefAssociation interface is designed to be used with associations that contain
duplicate links, though this is not an absolute requirement. There is no assumption
different association objects for a given association type are mutually aware. Links
modeled as having no object identity.

A data model that required “heavy weight” links with object identity (e.g., so that
attributes could be attached to them) would need to represent them as RefObject
instances.The RefAssociation interface could be used to manage light weight links
between heavy weight link objects and the objects they connect. Similar technique
could be used to represent N-ary associations. However, in both cases better
performance would be achieved using a purpose built reflective layer.

Supertypes

RefBaseObject

Operations

refAllLinks
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-23



6

t.

ned
.1.4,

er

to
he
The “refAllLinks” operation returns all links in the link set for this Association objec

This operation returns the current link set for the current Association extent as defi
for the specific version of this operation. The links are encoded as per Section 6.2
“The Link Encoding Pattern,” on page 6-5. MofError may be raised to signal a
semantic error.

refLinkExists

The “refLinkExists” operation returns true if and only if the supplied link is a memb
of the link set for this Association object.

The “someLink” parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. “Wrong Type” occurs if the link encoding is not
correct.

refQuery

The “refQuery” operation returns a list containing all Instance objects that are linked
the supplied “queryObject” by links in the extent of this Association object, where t
links all have the “queryObject” at the "queryEnd."

specific analog: all_links(); (see Section 5.8.10, “Association Template,” on
page 5-62)

return type: Link (multiplicity zero or more, unordered, unique)

isQuery: yes

parameters: none

exceptions: MofError

specific analog: link_exists(someLink); (see Section 5.8.10, “Association
Template,” on page 5-62)

return type: boolean

isQuery: yes

parameters: someLink : in Link

exceptions: MofError(WrongType)

specific analog: <endName> (queryObject); (see Section 5.8.10,
“Association Template,” on page 5-62)

return type: RefObject (Multiplicity zero or more; ordered; unique)
6-24 OMG-Meta Object Facility, v1.4 April 2002



6

e

g

cts.
-

The “queryEnd” parameter must designate an AssociationEnd for this Association
object. “Invalid Designator,” “Wrong Designator Kind,” and “Unknown Designator”
occur in cases where this is not so. “Not Navigable” is raised if the “queryEnd”
parameter designates an AssociationEnd that has “isNavigable” set to false.

The “queryObject” parameter must be an Instance object whose type is compatibl
with the type of the “queryEnd” of the Association. “Wrong Type” is raised if the
parameter has the wrong type.

“Invalid Object,” “Nil Object,” or “Inaccessible Object” is raised if the “queryObject”
parameter is a non-existent, nil, or inaccessible Instance object.

While the result of this operation is declared as an ordered set of links, the orderin
only has meaning if the other AssociationEnd (i.e., not the “queryEnd”) is defined
ordered.

refAddLink

The “refAddLink” operation adds “newLink” into the set of links in the extent of this
Association object. If one or other of the Association’s Ends is ordered, the link is
inserted after the last link with respect to that ordering.

The “newLink” parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. “Wrong Type” occurs if the link encoding is not
correct.

Both RefObject members of the “newLink” parameter should be valid Instance obje
“Invalid Object,” “Nil Object,” or “Inaccessible Object” is raised if either one is a non
existent, nil, or inaccessible Instance object.

“Not Changeable” occurs if this operation is invoked on an Association that has
“isChangeable” set to false on either Association End.

isQuery: yes

parameters: queryEnd : in DesignatorType
queryObject : in RefObject

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Wrong Type, Invalid Object, Nil
Object, Inaccessible Object, Not Navigable)

specific analog: add(newLink[0], newLink[1]); (see Section 5.8.10,
“Association Template,” on page 5-62)

return type: none

parameters: newLink : in Link

exceptions: MofError (Not Changeable, Overflow, Duplicate, Reference
Closure, Composition Closure, Composition Cycle, Wrong
Type, Invalid Object, Nil Object, Inaccessible Object)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-25



6

ng

e

the
is
“Overflow,” “Duplicate,” “Reference Closure,” “Composition Closure,” and
“Composition Cycle” are directly equivalent to error conditions for the correspondi
specific “add” operation.

refAddLinkBefore

The “refAddLinkBefore” operation adds “newLink” into the link set of an ordered
Association object. The link insertion point is immediately before the link whose
“positionEnd” matches the "before" Instance.

The “newLink” parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. “Wrong Type” occurs if the link’s encoding is not
correct.

The “positionEnd” parameter should denote an AssociationEnd of this object’s
Association. One of “Invalid Designator,” “Wrong Designator Kind,” or “Unknown
Designator” occurs if thus is not the case.

“Not Changeable” occurs if this operation is invoked on an Association that has
“isChangeable” set to false on either Association End. “Not Navigable” occurs if th
“positionEnd” AssociationEnd has “isNavigable” set to FALSE.

The “before” parameter should be an Instance object that is type compatible with
type of the AssociationEnd denoted by “positionEnd.” “Wrong Type” occurs if this
not the case.

The remaining error conditions are directly equivalent to error conditions for the
corresponding “add_before_<endName>” operation.

refModifyLink

The “refModifyLink” operation updates the “oldLink” in the Association object’s link
set, replacing the Instance object at “positionEnd” with “newObject.”

specific analog: add_before_<endName>(newLink[0], newLink[1], before);
(see Section 5.8.10, “Association Template,” on page 5-62)

return type: none

parameters: newLink : in Link
positionEnd : in DesignatorType
before : in RefObject

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Changeable, Not Navigable, Overflow,
Duplicate, Reference Closure, Composition Closure, Wrong Type,
Invalid Object, Nil Object, Inaccessible Object)
6-26 OMG-Meta Object Facility, v1.4 April 2002



6

le”

ith
is

te
The “oldLink” parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. “Wrong Type” occurs if the link’s encoding is not
correct.

The “positionEnd” parameter should denote an AssociationEnd of this object’s
Association. One of “Invalid Designator,” “Wrong Designator Kind,” or “Unknown
Designator” occurs if thus is not the case.

"Not Changeable" occurs if the "positionEnd" AssociationEnd that has “isChangeab
set to false. "Not Navigable" occurs if it has “isNavigable” set to false.

The “newObject” parameter should be an Instance object that is type compatible w
the type of the AssociationEnd denoted by “positionEnd.” “Wrong Type” occurs if th
is not the case.

The remaining error conditions are directly equivalent to error conditions for the
corresponding “modify_<endName>” operation. Note that any structural constraints
notionally apply to the final state following the operation, and not to any intermedia
states.

refRemoveLink

The “refRemoveLink” operation removes the “oldLink” from the association.

“Not Changeable” occurs if this operation is invoked on an Association that has
“isChangeable” set to false for either AssociationEnd.

specific analog: modify_<endName>(oldLink[0], oldLink[1], newObject);
(see Section 5.8.10, “Association Template,” on page 5-62)

return type: none

parameters: oldLink : in Link
positionEnd : in DesignatorType
newObject : in RefObject

exceptions: NotFound, MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator, Not Changeable, Not Navigable, Underflow,
Overflow, Duplicate, Reference Closure, Composition Closure,
Wrong Type, Invalid Object, Nil Object, Inaccessible Object)

specific analog: remove(oldLink[0], oldLink[1]); (see Section 5.8.11,
“Attribute Template,” on page 5-71)

return type: none

parameters: oldLink : in Link

exceptions: NotFound, MofError (Not Changeable, Underflow, Wrong
Type, Nil Object)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-27



6

le

nd

proxy
The “oldLink” parameter should be encoded as per Section 6.2.1.4, “The Link
Encoding Pattern,” on page 6-5. “Wrong Type” occurs if the link’s encoding is not
correct.

“NotFound,” “Nil Object,” and “Underflow” are directly equivalent to error conditions
for the corresponding specific “remove” operation. “Invalid Object” and “Inaccessib
Object” cannot occur, as in the specific operation.

Interface

interface RefAssociation : RefBaseObject {
    LinkSet ref_all_links ()

taises (MofError);
boolean ref_link_exists (in Link some_link)
      raises (MofError);
RefObjectUList ref_query (in DesignatorType query_end,
                              in RefObject query_object)
      raises (MofError);
    void ref_add_link (in Link new_link)
      raises (MofError);
    void ref_add_link_before (in Link new_link,
                              in DesignatorType position_end,
                              in RefObject before)
      raises (NotFound, MofError);
    void ref_modify_link (in Link old_link,
                          in DesignatorType position_end,
                          in RefObject new_object)
      raises (NotFound, MofError);
    void ref_remove_link (in Link old_link)
      raises (NotFound, MofError);
  }; // end of interface RefAssociation

6.2.5 Reflective::RefPackage abstract

The RefPackage interface is an abstraction for accessing a collection of objects a
their associations. The interface provides an operation to access the meta-object
description for the package, and operations to access the package instance's class
objects (one for each Class) and its association objects.

Supertypes

RefBaseObject

Operations

refClassRef
6-28 OMG-Meta Object Facility, v1.4 April 2002



6

ct is

,”
The “refClassRef” operation returns the Class proxy object for a given Class.

The “class” parameter should designate the M2 level Class whose Class proxy obje
to be returned. “Invalid Designator,” “Wrong Designator Kind,” “Unknown
Designator” occur in various situations where this is not the case.

refAssociationRef

The “refAssociationRef” operation returns an Association object for a given
Association.

The “association” parameter should designate the M2 level Association whose
Association object is to be returned. “Invalid Designator,” “Wrong Designator Kind
“Unknown Designator” occur in various situations where this is not the case.

refPackageRef

The “refPackageRef” operation returns a Package object for a nested or clustered
Package.

specific analog: readonly attribute <ClassName>_class_ref; (see
Section 5.8.10, “Association Template,” on page 5-62)

return type: RefObject

isQuery: yes

parameters: class : in DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator)

specific analog: readonly attribute <AssociationName>_ref; (see
Section 5.8.10, “Association Template,” on page 5-62)

return type: RefAssociation

isQuery: yes

parameters: association : DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator)

specific analog: readonly attribute <PackageName>_ref; (see Section 5.8.10,
“Association Template,” on page 5-62)

return type: RefPackage

isQuery: yes

parameters: package : DesignatorType

exceptions: MofError (Invalid Designator, Wrong Designator Kind,
Unknown Designator)
April 2002 OMG-MOF, v1.4: The Reflective Interfaces 6-29



6

ge

e

es,

this
The “package” parameter should designate the M2 level Package whose Package
object is to be returned. It must either be nested within the Package for this Packa
object, or imported with “isClustered” set to true. “Invalid Designator,” “Wrong
Designator Kind,” “Unknown Designator” occur in the situations where this is not th
case.

Interface

interface RefPackage : RefBaseObject {

   RefObject ref_class_ref (in DesignatorType type)
      raises (MofError);

   RefAssociation ref_association_ref (
        in DesignatorType association)
      raises (MofError);

    RefPackage ref_package_ref (in DesignatorType package)
      raises (InvalidDesignator)

}; // end of interface RefPackage

6.3 The CORBA IDL for the Reflective Interfaces

This section describes the relevant excerpts of the CORBA IDL for the Reflective
module.

6.3.1 Introduction

The Reflective module starts with forward declarations of the three object types
RefObject, RefAssociation, and RefPackage.

module Reflective {
  interface RefBaseObject;

  interface RefObject;
  typedef sequence < RefObject > RefObjectUList;

  interface RefAssociation;

  interface RefPackage;

6.3.2 Data Types

Operations on the Reflective interfaces need to identify the elements (e.g., attribut
operations, roles, classes, etc.) that they apply to. Some exceptions have similar
requirements. The type DesignatorType is used to denote uses of RefObject with
meaning.
6-30 OMG-Meta Object Facility, v1.4 April 2002



6

pe
d

n;

a

typedef RefObject DesignatorType;

Links are expressed as bounded sequences of (two) RefObject values.

typedef sequence <RefObject, 2> Link;
typedef sequence <Link> LinkSet;

The following type is used to pass multiple CORBA Any values.

typedef sequence < any > AnyList;

The ’refVerifyConstraints’ operation uses an instance of ViolationTypeSet to return
descriptions of any constraints that do not hold. This type and the ViolationType ty
are defined below. The fields called ’error_kind,’ ’element_in_error,’ ’extra_info,’ an
’error_description’ of ViolationType are equivalent to fields of the MofError exceptio
see Section 5.4, “Exception Framework. The ’object_in_error’ field gives the MOF
object (if any) whose state violates the constraint reported. When a Constraint on
DataType is violated, ’object_in_error’ will refer to the MOF object, which has the
erroneous DataType instance as an attribute value.

struct ViolationType {
wstring error_kind;
RefBaseObject object_in_error;
RefObject element_in_error;
NamedValueList extra_info;
wstring error_description;

};

typedef sequence < ViolationType > ViolationTypeSet;
April 2002 OMG-MOF, v1.4: The CORBA IDL for the Reflective Interfaces 6-31



6

6-32 OMG-Meta Object Facility, v1.4 April 2002



AssociatedDocuments A
-

odels

t

d. If

e
s
L

on-
This Appendix lists the electronic documents that variously specify the MOF meta
models and MOF IDL APIs and the XMI DTD for MOF meta-model interchange.
These documents may be downloaded from the OMG’s Web server at:

http://www.omg.org/models/

Other renderings of the MOF metamodels may be added in the future.

The directory naming scheme used here is recommended as a pattern for metam
and related documents for other OMG standards:

• The first directory’s name should be a coloquial name or acronym for the paren
standard, with its version number appended; e.g. MOF 1.4.

• The second directory’s name should be the name of the language or format use
the format requires a version number this is appended; e.g. "XMI1.1".

• A third directory is used when the language / format needs qualification; e.g.
"XMI1.1/Model1.4" will contain metamodels rendered in XMI 1.1 elaborated for
Model 1.4; i.e. the standard MOF meta-metamodel.

• The final file name gives the name of the artifact with a suitable suffix.

Acknowledgments: The XMI and DTD documents in the MOF 1.4 document set wer
produced using tools generated by DSTC’s dMOF 1.1 toolset. The Model IDL wa
generated using a prototype MOF 1.4 IDL generator developed by DSTC. The MD
file was produced using Rational Rose, and the Unisys MOF add-in.

A.1 List of Documents

MOF1.4/XMI1.1/Model1.4/Model.xml

This document (ptc/2001-10-05) isnormative.  It expresses the MOF 1.4 Model package
as  using the XMI 1.1 for  MOF Model 1.4 interchange format. The XMI document  c
tains cross-links to the PrimitiveTypes.xml document.  It was generated from the
April 2002 OMG-Meta Object Facility, v1.4 A-1



A

itory

nt
tomat-

nt
tomat-

to
a

ces
Model.modl file below using an automatically generated MOF 1.4  metamodel repos
and an automatically generated XMI serializer.

MOF1.4/XMI1.1/Model1.4/PrimitiveTypes.xml

This document (ptc/2001-10-06) isnormative.  It expresses the MOF 1.4 PrimitiveTypes
package using the XMI 1.1 for MOF Model 1.4 interchange format. The XMI docume
was produced by serializing a hard-coded representation of the package using an au
ically generated XMI serialiser.

MOF1.4/XMI1.1/Model1.4/CorbaIdlTypes.xml

This document (ptc/2001-10-07) isnormative.  It expresses the MOF 1.4 CorbaIdlTypes
package using the XMI 1.1 for MOF Model 1.4 interchange format. The XMI docume
was produced by serialising a hard-coded representation of the package using an au
ically generated XMI serialiser.

MOF1.4/XMI1.1/Model.dtd

This document (ptc/2001-08-09) isnormative. It is the standard DTD for XMI 1.1
interchange of MOF 1.4 metamodels.

MOF1.4/CORBA/Model.idl

This document (ptc/2001-08-10) isnormative. It gives the standard MOF 1.4 Model
module. The IDL is conceptually the result of applying the MOF 1.4 IDL mapping
the MOF 1.4 Model metamodel. It was generated from the MODL file below using
MOF 1.3 metamodel repository and a prototype MOF 1.4 IDL generator that interfa
to the repository.

MOF1.4/CORBA/PrimitiveTypes.idl

This document (ptc/2001-08-11) isnormative. It gives the standard MOF 1.4
PrimitiveTypes module. The IDL is conceptually the result of applying the MOF 1.4
IDL mapping to the MOF 1.4 PrimitiveTypes metamodel. The IDL is hand written.

MOF1.4/CORBA/CorbaIdlTypes.idl

This document (ptc/2001-08-12) isnormative. It gives the standard MOF 1.4
CorbaIdlTypes module. The IDL is conceptually the result of applying the MOF 1.4
IDL mapping to the MOF 1.4 CorbaIdlTypes metamodel. The IDL is hand written.

MOF1.4/CORBA/Reflective.idl

This document (ptc/2001-08-13) isnormative. It gives the standard MOF 1.4
Reflective module. The IDL is hand written.
A-2 OMG-Meta Object Facility, v1.4 April 2002



A

s a
’s
is is
e.

data

L

ing
l"
MOF1.4/MODL/Model.modl

This document (ptc/2001-10-13) isnot normative. It expresses the MOF 1.4 Model
using DSTC’s MODL metamodel specification language, and is the primary human
readable source from which most of the other documents were generated.

MODL is a human readable textual notation for specifying MOF metamodels. It ha
syntax based loosely on CORBA IDL, and has a direct correspondence with MOF
metamodeling constructs. This document uses the MODL language version 3. Th
closely based on the MODL version 2 as specified in DSTC’s dMOF 1.1 User Guid
This can be downloaded from:

http://www.dstc.com/Downloads/CORBA/MOF/dMOF1_1.UserGuide.pdf

There are minor differences between the way that MODL versions 2 and 3 express
types and tags, but these should be self evident.

Note – The PrimitiveTypes and CorbaIdlTypes Packages are not included as MOD
files because they are inexpressible in MODL. The language does not provide
constructs that allow a metamodel to define new MOF primitive data types.

MOF1.4/MDL/Model.mdl

This document (ptc/2001-10-14) isnot normative. It expresses the MOF 1.4 Model,
PrimitiveTypes and CorbaIdlTypes metamodels expressed as UML models accord
to the UML Profile for MOF. The UML models are rendered in the proprietary "md
file format generated by Rational Rose.
April 2002 OMG-Meta Object Facility, v1.4 A-3



A

A-4 OMG-Meta Object Facility, v1.4 April 2002



ImplementationRequirements B
on
r, to

o

er

e

e a
ches

all
se

ns.
B.1 Introduction

This specification seeks to avoid any undue implementation requirements, relying
the experience and ingenuity of vendors to exceed any proscribed design. Howeve
support interoperability of implementations, there are a few places where specific
approaches are required. The MOF specification expects interoperability among
facilities developed and provided from different vendors. This interoperability
includes:

• Model interoperability. The ability to transfer a model developed in one facility t
another facility, with no loss or corruption of information.

• Repository interoperability. The ability of a model under development in one
facility to import and use Packages and elements of Packages owned by anoth
facility.

• Client interoperability. The ability of tools or other software developed to use on
vendor's MOF to make use of another vendor's MOF without change.

B.2 Vendor Boundaries

The implementation requirements are needed to ensure that different vendors tak
compatible approach to implementing certain features, when incompatible approa
risk the loss of interoperability. This required compatibility almost always involves
object interactions. Yet, it is recognized that the great majority of these object
interactions will remain within one vendor's boundary - the interacting objects will
have implementations from the same vendor. Rather than saddle vendors with the
implementation requirements unilaterally, they are only required across vendor
boundaries. This relaxation of requirements is born from the recognition that these
implementation requirements will likely not end up being the optimal implementatio
April 2002 OMG - Meta Object Facility, v1.4 B-1



B

m

s
ome

be
el to
g

Determining vendor boundaries will be left to implementations. However, at a
minimum, a MofRepository defines the vendor boundary. If an implementation can
safely identify a more inclusive boundary, they are welcome to do so. Within an
individual MofRepository; however, the implementation is insured to be provided fro
a single vendor.

B.3 Requirements to Support Associations Across Vendor Boundaries

Due to the nature of composition, it is not possible for a model to contain element
from other Repositories. A Package cannot contain a Package or a Type found in s
Repository outside its own. However, through the Import mechanism, a model can
make use of most model elements in other Repositories.

Although there are multiple ways in which Associations, References, and Links can
implemented, it is necessary to define a consistent implementation to the object lev
ensure interoperability. Because at least one participant in an Association crossin
repository boundaries will not have a Reference defined for the Association, the
responsibility for maintaining Links falls to the Association.

For any Association which crosses Repository boundaries to another Repository
implementation, any invocation of a Reference of that Association will result in a
corresponding invocation to the Association itself. For AssociationX of Type A and
TypeB, with corresponding AssociationEndsae andbe , and a reference in TypeA of
bref, use of:

a.addBref(b)

results in:

X.add(a, b).

A call of:

a.removeBref(b)

results in:

X.remove(a, b).

Calling:

a.addBrefBefore(b, b1)

results in:

X.add_before_be(a, b, b1)

The operation:

a.bref()

must provide the same results as:

X.with_ae(a)
B-2 OMG - Meta Object Facility, v1.4 April 2002



FutureDirections for theMOF C
d on
ies

such

the

ation

nts
n

with

ols
els

le
tions
C.1 Introduction

This appendix summarizes potential areas of future work related to the MOF base
feedback of MOF submitters and reviewers. Note that as with most OMG technolog
that are being standardized an abundance of ideas are proposed. Some simple
extensions such as the support of higher order associations to more complex ones
as MOF model versioning have been proposed.

Additional work is anticipated in extending the proposed MOF standard to address
related standards such as EIA CDIF and RM-ODP.

C.2 Extending the MOF to Support Ternary and Higher
Order Associations

The decision to support only binary associations was based on patterns of associ
use in industry modeling, the additional encumbrances placed on interfaces when
ternary and higher-order associations are introduced, and the additional requireme
for completely specifying cardinality constraints (multiplicity). In the tradeoff betwee
simplicity and expressive power, the submitters chose simplicity. The submitters
believe that the MOF can be extended in the future to support N-ary associations
minimal impact to current MOF applications.

C.3 Support of Stream based Interchange Format

A stream based interchange mechanism as has been defined by CDIF is a useful
mechanism to exchange MOF and UML compliant models - especially for legacy to
which have traditionally not supported programmatic interfaces for exchanging mod
and model fragments. The MOF designers have anticipated the need for such a
mechanism and expect to accommodate this requirement in an upwardly compatib
manner. The Package class in the MOF includes internalize and externalize opera
to support this capability.
April 2002 OMG - Meta Object Facility, v1.4 C-1



C

ta
the

ues
The

and
e

f
ring

nent

of
tend
y

an
tion
The MOF and OA&DF submitters recommend that a stream based interchange
mechanism be the subject of a future OMG RFP.

C.4 Support for MOF Evolution and Versioning

The MOF and MOF Compliant metamodels will evolve over time. The issue of me
model and instance evolution can be solved using a variety of techniques including
use of versioning. This (and related issues like Interface Versioning) are critical iss
that needs to be addressed in enterprise development and runtime environments.
MOF submitters recommend that this topic be a subject of a future RFP.

C.5 Support for Mapping between Models

Transformation between metamodels and models is of interest to the tool vendor
end user community to provide interoperability between multiple type systems. Th
MOF specification defines mappings between MOF and CORBA IDL. A desirable
direction for the MOF is to provide a more general purpose framework and a set o
interfaces for transformation between meta models. A related topic suggested du
the MOF evaluation period is that of generating IDL for "extensions" to the MOF
model.

C.6 Interoperability with Microsoft Repository

Microsoft has efforts underway to create a series of COM based repository and
information model (metamodel) interfaces in a number of application development
technology domains such as object modeling(UML), database management, compo
management etc. Similar efforts are already underway at the OMG based on the
OA&DF, MOF, BOF and the CORBA Component model efforts creating a critical
mass of component software enabling standards.

While the OA&DF (UML meta model) specification has 'universal' support (in terms
endorsements from the OMG community and Microsoft), such support does not ex
to the corresponding CORBA interfaces. It is also possible that these models ma
diverge in the future leading to interoperability problems for users of UML and the
MOF. A similar problem with COM/CORBA and more recently DCOM/CORBA
interoperability has resulted in related OMG RFPs to address the problem.

Future OMG RFPs to address repository and meta model interoperability between
CORBA and DCOM environments is crucial for customers and vendors who have
invested in both the technologies. Of course if Microsoft technologies supported
CORBA based information models as well (as is partially the case with UML), such
RFP would be unnecessary and the user community would have consistent informa
models, components, and compatible tools.
C-2 OMG - Meta Object Facility, v1.4 April 2002



Glossary
and
cific

se
all

hat

ced.

lled-
This glossary defines the terms that are used to describe the Unified Modeling
Language (UML) and the Meta Object Facility (MOF). In addition to UML and MOF
specific terminology, it includes related terms from OMG standards and object-
oriented analysis and design methods, as well as the domain of object repositories
meta data managers. Glossary entries are organized alphabetically and MOF spe
entries are identified as ‘[MOF]’.

Notation Conventions

The entries in the glossary usually begin with a lowercase letter. An initial upperca
letter is used when a word is usually capitalized in standard practice. Acronyms are
capitalized, unless they traditionally appear in all lowercase.

When one or more words in a multi-word term is enclosed in brackets, it indicates t
those words are optional when referring to the term. For example,use case [class]may
be referred to as simplyuse case.

The following conventions are used in this glossary:

• Contrast: <term>
Refers to a term that has an opposed or substantively different meaning.

• See: <term>
Refers to a related term that has a similar, but not synonymous meaning.

• Synonym: <term>
Indicates that the term has the same meaning as another term, which is referen

• Acronym: <term>
Indicates that the term is an acronym. The reader is usually referred to the spe
out term for the definition, unless the spelled-out term is rarely used.
April 2002 OMG-Meta Object Facility, v1.4 1



r

of
e
ject

e

ith
Glossary Terms

abstract class A class that cannot be directly instantiated. Contrast:concrete class.

abstraction The essential characteristics of an entity that distinguish it from all othe
kinds of entities. An abstraction defines a boundary relative to the
perspective of the viewer.

action The specification of an executable statement that forms an abstraction
a computational procedure. An action typically results in a change in th
state of the system, and can be realized by sending a message to an ob
or modifying a link or a value of an attribute.

action sequence An expression that resolves to a sequence of actions.

action state A state that represents the execution of an atomic action, typically the
invocation of an operation.

activation The execution of an action.

active class A class whose instances are active objects. See:active object.

active object An object that owns a thread and can initiate control activity. An instanc
of active class. See:active class, thread.

activity graph A special case of a state machine that is used to model processes
involving one or more classifiers. Contrast:statechart diagram.

actor [class] A coherent set of roles that users of use cases play when interacting w
these use cases. An actor has one role for each use case with which it
communicates.

actual parameter Synonym:argument.

aggregate [class] A class that represents the “whole” in an aggregation (whole-part)
relationship. See:aggregation.

aggregation A special form of association that specifies a whole-part relationship
between the aggregate (whole) and a component part. See:composition.
2 OMG-Meta Object Facility, v1.4 April 2002



is

re

,

:

s

es

.

m,
analysis The part of the software development process whose primary purpose
to formulate a model of the problem domain. Analysis focuses what to
do, design focuses on how to do it. Contrast:design.

analysis time Refers to something that occurs during an analysis phase of the softwa
development process. See:design time, modeling time.

architecture The organizational structure and associated behavior of a system. An
architecture can be recursively decomposed into parts that interact
through interfaces, relationships that connect parts, and constraints for
assembling parts. Parts that interact through interfaces include classes
components and subsystems.

argument A binding for a parameter that resolves to a run-time instance. Synonym
actual parameter. Contrast:parameter.

artifact A piece of information that is used or produced by a software
development process. An artifact can be a model, a description, or
software. Synonym:product.

association The semantic relationship between two or more classifiers that specifie
connections among their instances.

association class A model element that has both association and class properties. An
association class can be seen as an association that also has class
properties, or as a class that also has association properties.

association end The endpoint of an association, which connects the association to a
classifier.

attribute A feature within a classifier that describes a range of values that instanc
of the classifier may hold.

behavior The observable effects of an operation or event, including its results.

behavioral feature A dynamic feature of a model element, such as an operation or method

behavioral model
aspect

A model aspect that emphasizes the behavior of the instances in a syste
including their methods, collaborations, and state histories.
April 2002 OMG-Meta Object Facility, v1.4 3



ts

e

ns,
ces

rs

s,

is
ed
binary association An association between two classes. A special case of an n-ary
association.

binding The creation of a model element from a template by supplying argumen
for the parameters of the template.

boolean An enumeration whose values are true and false.

boolean expression An expression that evaluates to a boolean value.

cardinality The number of elements in a set. Contrast:multiplicity.

child In a generalization relationship, the specialization of another element, th
parent. See:subclass, subtype. Contrast:parent.

call An action state that invokes an operation on a classifier.

class A description of a set of objects that share the same attributes, operatio
methods, relationships, and semantics. A class may use a set of interfa
to specify collections of operations it provides to its environment. See:
interface.

classifier A mechanism that describes behavioral and structural features. Classifie
include interfaces, classes, datatypes, and components.

classification The assignment of an object to a classifier. Seedynamic classification,
multiple classificationandstatic classification.

class diagram A diagram that shows a collection of declarative (static) model element
such as classes, types, and their contents and relationships.

client A classifier that requests a service from another classifier. Contrast:
supplier.

collaboration The specification of how an operation or classifier, such as a use case,
realized by a set of classifiers and associations playing specific roles us
in a specific way. The collaboration defines an interaction. See:
interaction.
4 OMG-Meta Object Facility, v1.4 April 2002



ion
:

te

pts

t

th
collaboration diagram A diagram that shows interactions organized around the structure of a
model, using either classifiers and associations or instances and links.
Unlike a sequence diagram, a collaboration diagram shows the
relationships among the instances. Sequence diagrams and collaborat
diagrams express similar information, but show it in different ways. See
sequence diagram.

comment An annotation attached to an element or a collection of elements. A no
has no semantics. Contrast:constraint.

compile time Refers to something that occurs during the compilation of a software
module. See:modeling time, run time.

component A physical, replaceable part of a system that packages implementation
and provides the realization of a set of interfaces. A component
represents a physical piece of implementation of a system, including
software code (source, binary or executable) or equivalents such as scri
or command files.

component diagram A diagram that shows the organizations and dependencies among
components.

composite [class] A class that is related to one or more classes by a composition
relationship. See:composition.

composite
aggregation

Synonym:composition.

composite state A state that consists of either concurrent (orthogonal) substates or
sequential (disjoint) substates. See:substate.

composition A form of aggregation association with strong ownership and coinciden
lifetime as part of the whole. Parts with non-fixed multiplicity may be
created after the composite itself, but once created they live and die wi
it (i.e., they share lifetimes). Such parts can also be explicitly removed
before the death of the composite. Composition may be recursive.
Synonym:composite aggregation.

concrete class A class that can be directly instantiated. Contrast:abstract class.
April 2002 OMG-Meta Object Facility, v1.4 5



g

ed

n

ts,

o

e.

se

e

concurrency The occurrence of two or more activities during the same time interval.
Concurrency can be achieved by interleaving or simultaneously executin
two or more threads. See:thread.

concurrent substate A substate that can be held simultaneously with other substates contain
in the same composite state. See:composite state.Contrast:disjoint
substate.

constraint A semantic condition or restriction. Certain constraints are predefined i
the UML, others may be user defined. Constraints are one of three
extensibility mechanisms in UML. See:tagged value, stereotype.

container 1. An instance that exists to contain other instances, and that provides
operations to access or iterate over its contents. (for example, arrays, lis
sets). 2. A component that exists to contain other components.

containment
hierarchy

A namespace hierarchy consisting of model elements, and the
containment relationships that exist between them. A containment
hierarchy forms a graph.

context A view of a set of related modeling elements for a particular purpose,
such as specifying an operation.

datatype A descriptor of a set of values that lack identity and whose operations d
not have side effects. Datatypes include primitive pre-defined types and
user-definable types. Pre-defined types include numbers, string and tim
User-definable types include enumerations.

defining model [MOF] The model on which a repository is based. Any number of repositories
can have the same defining model.

delegation The ability of an object to issue a message to another object in respon
to a message. Delegation can be used as an alternative to inheritance.
Contrast:inheritance.

dependency A relationship between two modeling elements, in which a change to on
modeling element (the independent element) will affect the other
modeling element (the dependent element).
6 OMG-Meta Object Facility, v1.4 April 2002



d
s

is

is

er
,

t:

e

d

s

deployment diagram A diagram that shows the configuration of run-time processing nodes an
the components, processes, and objects that live on them. Component
represent run-time manifestations of code units. See:component
diagrams.

derived element A model element that can be computed from another element, but that
shown for clarity or that is included for design purposes even though it
adds no semantic information.

design The part of the software development process whose primary purpose
to decide how the system will be implemented. During design strategic
and tactical decisions are made to meet the required functional and
quality requirements of a system.

design time Refers to something that occurs during a design phase of the software
development process. See:modeling time. Contrast:analysis time.

development process A set of partially ordered steps performed for a given purpose during
software development, such as constructing models or implementing
models.

diagram A graphical presentation of a collection of model elements, most often
rendered as a connected graph of arcs (relationships) and vertices (oth
model elements). UML supports the following diagrams: class diagram
object diagram, use case diagram, sequence diagram, collaboration
diagram, state diagram, activity diagram, component diagram, and
deployment diagram.

disjoint substate A substate that cannot be held simultaneously with other substates
contained in the same composite state. See: composite state. Contras
concurrent substate.

distribution unit A set of objects or components that are allocated to a process or a
processor as a group. A distribution unit can be represented by a run-tim
composite or an aggregate.

domain An area of knowledge or activity characterized by a set of concepts an
terminology understood by practitioners in that area.

dynamic
classification

A semantic variation of generalization in which an object may change it
classifier. Contrast:static classification.
April 2002 OMG-Meta Object Facility, v1.4 7



or

hat

ng
t to

ion
element An atomic constituent of a model.

entry action An action executed upon entering a state in a state machine
regardless of the transition taken to reach that state.

enumeration A list of named values used as the range of a particular attribute type. F
example, RGBColor = {red, green, blue}. Boolean is a predefined
enumeration with values from the set {false, true}.

event The specification of a significant occurrence that has a location in time
and space. In the context of state diagrams, an event is an occurrence t
can trigger a transition.

exit action An action executed upon exiting a state in a state machine
regardless of the transition taken to exit that state.

export In the context of packages, to make an element visible outside its
enclosing namespace. See:visibility. Contrast:export [OMA], import.

expression A string that evaluates to a value of a particular type. For example, the
expression “(7 + 5 * 3)” evaluates to a value of type number.

extend A relationship from an extension use case to a base use case, specifyi
how the behavior defined for the extension use case augments (subjec
conditions specified in the extension) the behavior defined for the base
use case. The behavior is inserted at the location defined by the extens
point in the base use case. The base use case does not depend on
performing the behavior of the extension use case. Seeextension point,
include.

facade A stereotyped package containing only references to model elements
owned by another package. It is used to provide a ‘public view’ of some
of the contents of a package.

feature A property, like operation or attribute, which is encapsulated within a
classifier, such as an interface, a class, or a datatype.

final state A special kind of state signifying that the enclosing
composite state or the entire state machine is completed.

fire To execute a state transition. See:transition.

focus of control A symbol on a sequence diagram that shows the period of time during
which an object is performing an action, either directly or through a
subordinate procedure.
8 OMG-Meta Object Facility, v1.4 April 2002



of
t is

,
of

ose

g

ng
formal parameter Synonym:parameter.

framework 1. A stereotyped package consisting mainly of patterns. See:pattern.

2. An architectural pattern that provides an extensible template for for
applications within a specific domain.

generalizable element A model element that may participate in a generalization relationship.
See:generalization.

generalization A taxonomic relationship between a more general element and a more
specific element. The more specific element is fully consistent with the
more general element and contains additional information. An instance
the more specific element may be used where the more general elemen
allowed. See:inheritance.

guard condition A condition that must be satisfied in order to enable an associated
transition to fire.

implementation A definition of how something is constructed or computed. For example
a class is an implementation of a type, a method is an implementation
an operation.

implementation
inheritance

The inheritance of the implementation of a more specific element.
Includes inheritance of the interface. Contrast:interface inheritance.

import In the context of packages, a dependency that shows the packages wh
classes may be referenced within a given package (including packages
recursively embedded within it). Contrast:export.

include A relationship from a base use case to an inclusion use case, specifyin
how the behavior for the base use case contains the behavior of the
inclusion use case. The behavior is included at the location which is
defined in the base use case. The base use case depends on performi
the behavior of the inclusion use case, but not on its structure (i.e.,
attributes or operations). Seeextend.

inheritance The mechanism by which more specific elements incorporate structure
and behavior of more general elements related by behavior. See
generalization.

instance An entity to which a set of operations can be applied and which has a
state that stores the effects of the operations. See:object.
April 2002 OMG-Meta Object Facility, v1.4 9



.

e
e

t.

e

e,

to

s.
interaction A specification of how stimuli are sent between instances to perform a
specific task. The interaction is defined in the context of a collaboration
Seecollaboration.

interaction diagram A generic term that applies to several types of diagrams that emphasiz
object interactions. These include collaboration diagrams and sequenc
diagrams.

interface A named set of operations that characterize the behavior of an elemen

interface inheritance The inheritance of the interface of a more specific element. Does not
include inheritance of the implementation. Contrast:implementation
inheritance.

internal transition A transition signifying a response to an event without changing the stat
of an object.

layer The organization of classifiers or packages at the same level of
abstraction. A layer represents a horizontal slice through an architectur
whereas a partition represents a vertical slice. Contrast:partition.

link A semantic connection among a tuple of objects. An instance of an
association. See:association.

link end An instance of an association end. See:association end.

message A specification of the conveyance of information from one instance to
another, with the expectation that activity will ensue. A message may
specify the raising of a signal or the call of an operation.

metaclass A class whose instances are classes. Metaclasses are typically used to
construct metamodels.

meta-metamodel A model that defines the language for expressing a metamodel. The
relationship between a meta-metamodel and a metamodel is analogous
the relationship between a metamodel and a model.

metamodel A model that defines the language for expressing a model.

metaobject A generic term for all metaentities in a metamodeling language. For
example, metatypes, metaclasses, metaattributes, and metaassociation
10 OMG-Meta Object Facility, v1.4 April 2002



ce

d.

re

h

ee:
method The implementation of an operation. It specifies the algorithm or
procedure associated with an operation.

model

[MOF]

An abstraction of a physical system, with a certain purpose.. See:
physical system.

Usage note: In the context of the MOF specification, which describes a
meta-metamodel, for brevity the meta-metamodel is frequently to as
simply the model.

model aspect A dimension of modeling that emphasizes particular qualities of the
metamodel. For example, the structural model aspect emphasizes the
structural qualities of the metamodel.

model elaboration The process of generating a repository type from a published model.
Includes the generation of interfaces and implementations which allows
repositories to be instantiated and populated based on, and in complian
with, the model elaborated.

model element

[MOF]

An element that is an abstraction drawn from the system being modele
Contrast:view element.

In the MOF specification model elements are considered to be
metaobjects.

modeling time Refers to something that occurs during a modeling phase of the softwa
development process. It includes analysis time and design time. Usage
note: When discussing object systems, it is often important to distinguis
between modeling-time and run-time concerns. See:analysis time, design
time. Contrast:run time.

module A software unit of storage and manipulation. Modules include source
code modules, binary code modules, and executable code modules. S
component.

multiple classification A semantic variation of generalization in which an object may belong
directly to more than one classifier. See:static classification, dynamic
classification.

multiple inheritance A semantic variation of generalization in which a type may have more
than one supertype. Contrast:single inheritance.
April 2002 OMG-Meta Object Facility, v1.4 11



ed
r,

t:

n

,
n

in

m
e.

t

multiplicity A specification of the range of allowable cardinalities that a set may
assume. Multiplicity specifications may be given for roles within
associations, parts within composites, repetitions, and other purposes.
Essentially a multiplicity is a (possibly infinite) subset of the non-
negative integers. Contrast:cardinality.

multi-valued [MOF] A model element with multiplicity defined whose Multiplicity Type::
upper attribute is set to a number greater than one. The term multi-valu
does not pertain to the number of values held by an attribute, paramete
etc. at any point in time. Contrast:single-valued.

n-ary association An association among three or more classes. Each instance of the
association is an n-tuple of values from the respective classes. Contras
binary association.

name A string used to identify a model element.

namespace A part of the model in which the names may be defined and used. Withi
a namespace, each name has a unique meaning. See:name.

node A node is classifier that represents a run-time computational resource,
which generally has at least a memory and often processing capability.
Run-time objects and components may reside on nodes.

object An entity with a well-defined boundary and identity that encapsulates
state and behavior. State is represented by attributes and relationships
behavior is represented by operations, methods, and state machines. A
object is an instance of a class. See:class, instance.

object diagram A diagram that encompasses objects and their relationships at a point
time. An object diagram may be considered a special case of a class
diagram or a collaboration diagram. See:class diagram, collaboration
diagram.

object flow state A state in an activity graph that represents the passing of an object fro
the output of actions in one state to the input of actions in another stat

object lifeline A line in a sequence diagram that represents the existence of an objec
over a period of time. See:sequence diagram.
12 OMG-Meta Object Facility, v1.4 April 2002



t

. A
ed

he

tor

el

ed

er
operation A service that can be requested from an object to effect behavior. An
operation has a signature, which may restrict the actual parameters tha
are possible.

package A general purpose mechanism for organizing elements into groups.
Packages may be nested within other packages.

parameter The specification of a variable that can be changed, passed, or returned
parameter may include a name, type, and direction. Parameters are us
for operations, messages, and events. Synonyms:formal parameter.
Contrast:argument.

parameterized
element

The descriptor for a class with one or more unbound parameters.
Synonym:template.

parent In a generalization relationship, the generalization of another element, t
child. See:subclass, subtype. Contrast:child.

participate The connection of a model element to a relationship or to a reified
relationship. For example, a class participates in an association, an ac
participates in a use case.

partition 1. activity graphs: A portion of an activity graphs that organizes the
responsibilities for actions. See:swimlane.
2. architecture: A set of related classifiers or packages at the same lev
of abstraction or across layers in a layered architecture. A partition
represents a vertical slice through an architecture, whereas a layer
represents a horizontal slice. Contrast:layer.

pattern A template collaboration.

persistent object An object that exists after the process or thread that created it has ceas
to exist.

postcondition A constraint that must be true at the completion of an operation.

precondition A constraint that must be true when an operation is invoked.

primitive type A pre-defined basic datatype without any substructure, such as an integ
or a string.
April 2002 OMG-Meta Object Facility, v1.4 13



ing

to

.

,
se.

g

process 1. A heavyweight unit of concurrency and execution in an operating
system. Contrast:thread, which includes heavyweight and lightweight
processes. If necessary, an implementation distinction can be made us
stereotypes.
2. A software development process—the steps and guidelines by which
develop a system.
3. To execute an algorithm or otherwise handle something dynamically

projection A mapping from a set to a subset of it.

property A named value denoting a characteristic of an element. A property has
semantic impact. Certain properties are predefined in the UML; others
may be user defined. See: tagged value.

pseudo-state A vertex in a state machine that has the form of a state, but doesn’t
behave as a state. Pseudo-states include initial and history vertices.

physical system 1. The subject of a model.
2. A collection of connected physical units, which can include software
hardware and people, that are organized to accomplish a specific purpo
A physical system can be described by one or more models, possibly
from different viewpoints. Contrast: system.

published model
[MOF]

A model which has been frozen, and becomes available for instantiatin
repositories and for the support in defining other models. A frozen
model’s model elements cannot be changed.

qualifier An association attribute or tuple of attributes whose values partition the
set of objects related to an object across an association.

receive [a message] The handling of a stimulus passed from a sender instance. See:sender,
receiver.

receiver [object] The object handling a stimulus passed from a sender object. Contrast:
sender.

reception A declaration that a classifier is prepared to react to the receipt of a
signal.

reference 1. A denotation of a model element.
2. A named slot within a classifier that facilitates navigation to other
classifiers. Synonym:pointer.
14 OMG-Meta Object Facility, v1.4 April 2002



s
n

ps

, a

t:

y
ce.

a
e.

e.
refinement A relationship that represents a fuller specification of something that ha
already been specified at a certain level of detail. For example, a desig
class is a refinement of an analysis class.

relationship A semantic connection among model elements. Examples of relationshi
include associations and generalizations.

repository A facility for storing object models, interfaces, and implementations.

requirement A desired feature, property, or behavior of a system.

responsibility A contract or obligation of a classifier.

reuse The use of a pre-existing artifact.

role The named specific behavior of an entity participating in a particular
context. A role may be static (e.g., an association end) or dynamic (e.g.
collaboration role).

run time The period of time during which a computer program executes. Contras
modeling time.

scenario A specific sequence of actions that illustrates behaviors. A scenario ma
be used to illustrate an interaction or the execution of a use case instan
See:interaction.

schema [MOF] In the context of the MOF, a schema is analogous to a package which is
container of model elements. Schema corresponds to an MOF packag
Contrast:metamodel, package.

semantic variation
point

A point of variation in the semantics of a metamodel. It provides an
intentional degree of freedom for the interpretation of the metamodel
semantics.

send [a message] The passing of a stimulus from a sender instance to a receiver instanc
See:sender, receiver.

sender [object] The object passing a stimulus to a receiver object. Contrast:receiver.
April 2002 OMG-Meta Object Facility, v1.4 15



t
es

ilar

e

r,

t.

e

sequence diagram A diagram that shows object interactions arranged in time sequence. In
particular, it shows the objects participating in the interaction and the
sequence of messages exchanged. Unlike a collaboration diagram, a
sequence diagram includes time sequences but does not include objec
relationships. A sequence diagram can exist in a generic form (describ
all possible scenarios) and in an instance form (describes one actual
scenario). Sequence diagrams and collaboration diagrams express sim
information, but show it in different ways. See:collaboration diagram.

signal The specification of an asynchronous stimulus communicated between
instances. Signals may have parameters.

signature The name and parameters of a behavioral feature. A signature may
include an optional returned parameter.

single inheritance A semantic variation of generalization in which a type may have only on
supertype. Synonym:multiple inheritance[OMA]. Contrast:multiple
inheritance.

single valued [MOF] A model element with multiplicity defined is single valued when its
Multiplicity Type:: upper attribute is set to one. The term single-valued
does not pertain to the number of values held by an attribute, paramete
etc., at any point in time, since a single-valued attribute (for instance,
with a multiplicity lower bound of zero) may have no value. Contrast:
multi-valued.

specification A declarative description of what something is or does. Contrast:
implementation.

state A condition or situation during the life of an object during which it
satisfies some condition, performs some activity, or waits for some even
Contrast:state[OMA].

statechart diagram A diagram that shows a state machine. See:state machine.

state machine A behavior that specifies the sequences of states that an object or an
interaction goes through during its life in response to events, together
with its responses and actions.

static classification A semantic variation of generalization in which an object may not chang
classifier. Contrast:dynamic classification.
16 OMG-Meta Object Facility, v1.4 April 2002



ses

e

g

nd

m,

ic

.

stereotype A new type of modeling element that extends the semantics of the
metamodel. Stereotypes must be based on certain existing types or clas
in the metamodel. Stereotypes may extend the semantics, but not the
structure of pre-existing types and classes. Certain stereotypes are
predefined in the UML, others may be user defined. Stereotypes are on
of three extensibility mechanisms in UML. See:constraint, tagged value.

stimulus The passing of information from one instance to another, such as raisin
a signal or invoking an operation. The receipt of a signal is normally
considered an event. See:message.

string A sequence of text characters. The details of string representation depe
on implementation, and may include character sets that support
international characters and graphics.

structural feature A static feature of a model element, such as an attribute.

structural model
aspect

A model aspect that emphasizes the structure of the objects in a syste
including their types, classes, relationships, attributes, and operations.

subactivity state A state in an activity graph that represents the execution of a non-atom
sequence of steps that has some duration.

subclass In a generalization relationship, the specialization of another class; the
superclass. See:generalization. Contrast:superclass.

submachine state A state in a state machine which is equivalent to a
composite state but its contents is described by another state machine

substate A state that is part of a composite state. See:concurrent state, disjoint
state.

subpackage A package that is contained in another package.

subsystem A grouping of model elements that represents a behavioral unit in a
physical system. A subsystem offers interfaces and has operations. In
addition, the model elements of a subsystem can be partitioned into
specification and realization elements. Seepackage. See:physical system.

subtype In a generalization relationship, the specialization of another type; the
supertype. See:generalization. Contrast:supertype.

superclass In a generalization relationship, the generalization of another class; the
subclass. See:generalization.Contrast:subclass.
April 2002 OMG-Meta Object Facility, v1.4 17



st:

e

e

red.

nt

em

n
r

supertype In a generalization relationship, the generalization of another type; the
subtype. See:generalization. Contrast:subtype.

supplier A classifier that provides services that can be invoked by others. Contra
client.

swimlane A partition on a activity diagram for organizing the responsibilities for
actions. Swimlanes typically correspond to organizational units in a
business model. See:partition.

synch state A vertex in a state machine used for synchronizing the
concurrent regions of a state machine.

system A top-level subsystem in a model. Contrast: physical system.

tagged value The explicit definition of a property as a name-value pair. In a tagged
value, the name is referred as the tag. Certain tags are predefined in th
UML; others may be user defined. Tagged values are one of three
extensibility mechanisms in UML. See:constraint, stereotype.

template Synonym:parameterized element.

thread [of control] A single path of execution through a program, a dynamic model, or som
other representation of control flow. Also, a stereotype for the
implementation of an active object as lightweight process. Seeprocess.

time event An event that denotes the time elapsed since the current state was ente
See:event.

time expression An expression that resolves to an absolute or relative value of time.

timing mark A denotation for the time at which an event or message occurs. Timing
marks may be used in constraints.

top level A stereotype of package denoting the top-most package in a containme
hierarchy. The topLevel stereotype defines the outer limit for looking up
names, as namespaces “see” outwards. For example, opLevel subsyst
represents the top of the subsystem containment hierarchy.

trace A dependency that indicates a historical or process relationship betwee
two elements that represent the same concept without specific rules fo
deriving one from the other.
18 OMG-Meta Object Facility, v1.4 April 2002



n

of

hin

e.

se

a

transient object An object that exists only during the execution of the process or thread
that created it.

transition A relationship between two states indicating that an object in the first
state will perform certain specified actions and enter the second state
when a specified event occurs and specified conditions are satisfied. O
such a change of state, the transition is said to fire.

type A stereotype of class that is used to specify a domain of instances
(objects) together with the operations applicable to the objects. A type
may not contain any methods. See:class, instance. Contrast:interface.

type expression An expression that evaluates to a reference to one or more types.

uninterpreted A placeholder for a type or types whose implementation is not specified
by the UML. Every uninterpreted value has a corresponding string
representation. See:any [CORBA].

usage A dependency in which one element (the client) requires the presence
another element (the supplier) for its correct functioning or
implementation.

use case [class] The specification of a sequence of actions, including variants, that a
system (or other entity) can perform, interacting with actors of the
system. See:use case instances.

use case diagram A diagram that shows the relationships among actors and use cases wit
a system.

use case instance The performance of a sequence of actions being specified in a use cas
An instance of a use case. See:use case class.

use case model A model that describes a system’s functional requirements in terms of u
cases.

utility A stereotype that groups global variables and procedures in the form of
class declaration. The utility attributes and operations become global
variables and global procedures, respectively. A utility is not a
fundamental modeling construct, but a programming convenience.

value An element of a type domain.
April 2002 OMG-Meta Object Facility, v1.4 19



.

f

w

vertex A source or a target for a transition in a state machine. A vertex can be
either a state or a pseudo-state. See:state, pseudo-state.

view A projection of a model, which is seen from a given perspective or
vantage point and omits entities that are not relevant to this perspective

view element A view element is a textual and/or graphical projection of a collection o
model elements.

view projection A projection of model elements onto view elements. A view projection
provides a location and a style for each view element.

visibility An enumeration whose value (public, protected, or private) denotes ho
the model element to which it refers may be seen outside its enclosing
namespace.
20 OMG-Meta Object Facility, v1.4 April 2002



Index
A
addLink 6-25
addLinkBefore 6-26
addValue 6-14
addValueAt 6-15
addValueBefore 6-15
aggregation 3-52
AggregationType 3-81
all_links 6-23, 6-24
allObjects 5-61, 5-65, 5-66, 5-74, 5-75, 5-76, 6-11
allSupertypes 3-26
annotation 3-16
Annotation Template 5-98
Architecture, four layer metamodel 2-2
Association 3-48
Association Template 5-62
Associations 3-8
Attribute Template 5-71
Attributes 3-4

B
BehavioralFeature 3-45

C
Class 3-30
Class Template 5-57
Collection Kinds 5-46
Common Exceptions 5-27
Complex bindings 1-5
Constant Template 5-95
constrainedElement 3-74
constrainedElements 3-61
constraint 3-17, 3-59, 3-74
Constraint Template 5-97
Constraint-Constrains-ModelElement 3-74
Contained Elements 3-4
containedElement 3-67
container 3-17, 3-67
contents 3-21
CORBA

documentation set ix
CORBA IDL for the Reflective Interfaces 6-30
createInstance 6-11

D
Data Type Template 5-96
Data Types 6-30
Data viewpoint 1-1
Data warehouse management scenarios 1-6
delete 6-8, 6-9
dependent 3-76
direction 3-58
DirectionType 3-80

E
elements 3-65
Ends 3-8, 3-67
evaluationPolicy 3-61
EvaluationType 3-81
exception 3-72
Exception Template 5-94
exceptions 3-46

exposedEnd 3-43, 3-70
expression 3-60
Extending the MOF to Support Ternary and Higher Order

Associations C-1
externalize 3-55

F
Feature 3-33
findElementsByType 3-22
findElementsByTypeExtended 3-27
findRequiredElement 3-18
Format 5-45, 5-46

G
GeneralizableElement type 3-24
GeneralizableElement-Generalizes-GeneralizableElement 3-68
Generation Rules for Collection Kinds 5-46
getAssociation 6-29
getClassRef 6-28
getNestedPackage 6-29

I
Identifier Format  5-45, 5-46
Identifier Name Scoping 5-48
Identifier Naming 5-43
IDL for the Reflective Interfaces 6-30
IDL mapping 5-1
immediate_containing_package 6-7
Import 3-55
Import-Aliases-Namespace 3-73
imported 3-73
importedNamespace 3-56
importer 3-73
Information management scenarios 1-6
Interface Repository (IR) 1-4
Interoperability with Microsoft Repository C-2
interpreting IDL templates 5-49
invokeOperation 6-20, 6-21
isAbstract 3-25
isChangeable 3-41, 3-52
isDerived 3-42, 3-50
isFrozen 3-19
isInstanceOf 6-10
isLeaf 3-25, 3-79
isNavigable 3-51
isQuery 3-46
isRequiredBecause 3-18
isRoot 3-24
isSingleton 3-31, 3-34, 3-35
isVisible 3-19

L
language 3-60
link_exists 6-24
Literal String Values 5-46
lookupElement 3-22
lookupElementExtended 3-26

M
mapping 5-1
Mapping Rules 5-48
Metamodel architecture 2-2
April 2002 OMG-Meta Object Facility, v1.4 Index-1



Index
metaObject 6-6
ModelElement 3-15
modelElement 3-77
ModelElement Containment Rules 3-13
ModelElement-DependsOn-ModelElement 3-75
Modeling viewpoint 1-1
modifyLink 6-26
modifyValue 6-16
modifyValueAt 6-17
MOF Implementation Requirements B-1
MOF Model Associations 3-66
MOF Model Data Types 3-78
MOF Model Exceptions 3-81
MOF model types 3-3, 3-15
MOF to IDL Mapping 4-1, 5-1
MofAttribute 3-42
MofException 3-48
multiplicity 3-41, 3-52, 3-59, 5-55, 5-56, 5-59
MultiplicityType 3-78

N
name 3-16
nameisValid 3-23
NameNotResolved 3-82
Namespace type 3-21
Namespace-Contains-ModelElement 3-66
Notation 5-49

O
Object Management Group ix

address of x
OCL Representation of the MOF Model Constraints 3-83
operation 3-72
Operation Template 5-92
Operation-CanRaise-MofException 3-72
Operations 3-7
otherEnd 3-53
outermost_container 6-20
outermost_containing_package 6-7, 6-8

P
Package 3-54
Package Create Template 5-52
Package Template mapping rules 5-50
Preconditions for Successful IDL mapping 5-37
provider 3-76

Q
qualified Name 3-16
query 6-24

R
Reference 3-43
referencedEnd 3-44
referenceEnd 3-69
Reference-Exposes-AssociationEnd derived 3-70
Reference-RefersTo-AssociationEnd 3-69
References 3-5
referent 3-69
referrer 3-70

refItself 6-7
Reflective

RefAssociation 6-22
RefBaseObject 6-5
RefPackage 6-28

Reflective Exceptions 5-34
Reflective Module 6-3
refVerifyConstraints 6-9
removeLink 6-27
removeValue 6-18
removeValueAt 6-18, 6-19
repository service 1-3
requiredElements 3-17
Requirements to Support Associations Across Vendor

Boundaries B-2
resolveQualifiedName 3-22
Rules 5-48
Rules for Splitting MOF Model Names into "Words" 5-44
Rules of ModelElement Containment 3-13

S
scope 3-40
ScopeType 3-80
Service interface bridges 1-5
setValue 6-12, 6-13
Software development scenarios 1-2
Stereotypes xii, B-1, C-1
StructuralFeature 3-40
subtype 3-68
Successful IDL mapping 5-37
supertypes 3-4, 3-25, 3-68
Support for Mapping between Models C-2
Support for MOF Evolution and Versioning C-2
Support of Stream based Interchange Format C-1

T
Tag 3-63
tag 3-77
Tag-AttachesTo-ModelElement 3-77
tagId 3-65
type 3-29, 3-71
Type Create Template 5-61
Type Forward Declaration Template 5-54
Type management scenarios 1-4
TypedElement type 3-29
TypedElement-IsOfType-Classifier 3-71
typedElements 3-71
Types 3-3

U
UDL development system 1-4
usage scenario for repository service 1-3

V
value 3-63, 6-12
values 3-65
Vendor Boundaries B-1
visibility 3-25, 3-40, 3-56
VisibilityType 3-80
Index-2 OMG-Meta Object Facility, v1.4 April 2002


	Preface
	1.  MOF Usage Scenarios
	1.1 Overview
	1.2 Software Development Scenarios
	1.3 Type Management Scenarios
	1.4 Information Management Scenarios
	1.5 Data Warehouse Management Scenarios

	2.  MOF Conceptual Overview
	2.1 Overview
	2.2 Metadata Architectures
	2.2.1 Four Layer Metadata Architectures
	2.2.2 The MOF Metadata Architecture
	2.2.3 MOF Metamodeling Terminology

	2.3 The MOF Model - Metamodeling Constructs
	2.3.1 Classes
	2.3.2 Associations
	2.3.3 Aggregation
	2.3.4 References
	2.3.5 DataTypes
	2.3.6 Packages
	2.3.7 Constraints and Consistency
	2.3.8 Miscellaneous Metamodeling Constructs

	2.4 Metamodels and Mappings
	2.4.1 Abstract and Concrete Mappings
	2.4.2 The MOF Metamodel to IDL Mapping
	2.4.3 The MOF Metamodel to XML Mappings
	2.4.4 Mappings of the MOF Model


	3.  MOF Model and Interfaces
	3.1 Overview
	3.2 How the MOF Model is Described
	3.2.1 Classes
	3.2.2 Associations
	3.2.3 DataTypes
	3.2.4 Exceptions
	3.2.5 Constants
	3.2.6 Constraints
	3.2.7 UML Diagrams

	3.3 The Structure of the MOF Model
	3.3.1 The MOF Model Package
	3.3.2 The MOF Model Service IDL
	3.3.3 The MOF Model Structure
	3.3.4 The MOF Model Containment Hierarchy

	3.4 MOF Model Classes
	3.4.6 Class
	3.4.8 PrimitiveType
	3.4.9 CollectionType
	3.4.10 EnumerationType
	3.4.11 AliasType
	3.4.12 StructureType
	3.4.13 StructureField
	3.4.17 Reference
	3.4.19 Operation
	3.4.21 Association
	3.4.22 AssociationEnd
	3.4.23 Package
	3.4.24 Import
	3.4.25 Parameter
	3.4.26 Constraint
	3.4.27 Constant
	3.4.28 Tag

	3.5 MOF Model Associations
	3.5.1 Contains
	3.5.2 Generalizes
	3.5.3 RefersTo
	3.5.5 IsOfType
	3.5.6 CanRaise
	3.5.7 Aliases
	3.5.8 Constrains
	3.5.10 AttachesTo

	3.6 MOF Model Data Types
	3.6.1 PrimitiveTypes used in the MOF Model
	3.6.2 MultiplicityType
	3.6.3 VisibilityKind
	3.6.4 DirectionKind
	3.6.5 ScopeKind
	3.6.6 AggregationKind
	3.6.7 EvaluationKind

	3.7 MOF Model Exceptions
	3.7.1 NameNotFound
	3.7.2 NameNotResolved

	3.8 MOF Model Constants
	3.8.1 Unbounded
	3.8.2 The Standard DependencyKinds

	3.9 MOF Model Constraints
	3.9.1 MOF Model Constraints and other M2 Level Semantics
	3.9.2 Notational Conventions
	3.9.3 OCL Usage in the MOF Model specification
	3.9.4 The MOF Model Constraints
	3.9.5 Semantic specifications for some Operations, derived Attributes and Derived Associations
	3.9.6 OCL Helper functions

	3.10 The PrimitiveTypes Package
	3.10.1 Boolean
	3.10.2 Integer
	3.10.3 Long
	3.10.4 Float
	3.10.5 Double
	3.10.6 String
	3.10.7 IDL for the PrimitiveTypes Package

	3.11 Standard Technology Neutral Tags

	4.  The MOF Abstract Mapping
	4.1 Overview
	4.2 MOF Values
	4.3 Semantics of Data Types
	4.4 Semantics of Equality for MOF Values
	4.5 Semantics of Class Instances
	4.6 Semantics of Attributes
	4.6.1 Attribute name and type
	4.6.2 Multiplicity
	4.6.3 Scope
	4.6.4 Is_derived
	4.6.5 Aggregation
	4.6.6 Visibility and is_changeable

	4.7 Package Composition
	4.7.1 Package Nesting
	4.7.2 Package Generalization
	4.7.3 Package Importation
	4.7.4 Package Clustering

	4.8 Extents
	4.8.1 The Purpose of Extents
	4.8.2 Class Extents
	4.8.3 Association Extents
	4.8.4 Package Extents

	4.9 Semantics of Associations
	4.9.1 MOF Associations in UML notation
	4.9.2 Core Association Semantics
	4.9.3 AssociationEnd Changeability
	4.9.4 AssociationEnd Navigability
	4.9.5 Association Aggregation
	4.9.6 Derived Associations

	4.10 Aggregation Semantics
	4.10.1 Aggregation “none”
	4.10.2 Aggregation “composite”
	4.10.3 Aggregation “shared”

	4.11 Closure Rules
	4.11.1 The Reference Closure Rule
	4.11.2 The Composition Closure Rule

	4.12 Recommended Copy Semantics
	4.13 Computational Semantics
	4.13.1 A Style Guide for Metadata Computational Semantics
	4.13.2 Access operations should not change metadata
	4.13.3 Update operations should only change the nominated metadata
	4.13.4 Derived Elements should behave like non-derived Elements
	4.13.5 Constraint evaluation should not have side-effects
	4.13.6 Access operations should avoid raising Constraint exceptions


	5.  MOF to IDL Mapping
	5.1 Overview
	5.2 Meta Objects and Interfaces
	5.2.1 Meta Object Type Overview
	5.2.2 The Meta Object Interface Hierarchy

	5.3 Computational Semantics for the IDL Mapping
	5.3.1 The CorbaIdlTypes Package
	5.3.2 Mapping of MOF Data Types to CORBA IDL Types
	5.3.3 Value Types and Equality in the IDL Mapping
	5.3.4 Lifecycle Semantics for the IDL Mapping
	5.3.5 Association Access and Update Semantics for the IDL Mapping
	5.3.6 Attribute Access and Update Semantics for the IDL Mapping
	5.3.7 Reference Semantics for the IDL Mapping
	5.3.8 Cluster Semantics for the IDL Mapping
	5.3.9 Atomicity Semantics for the IDL Mapping
	5.3.10 The Supertype Closure Rule
	5.3.11 Copy Semantics for the IDL Mapping

	5.4 Exception Framework
	5.4.1 Error_kind string values
	5.4.2 Structural Errors
	5.4.3 Constraint Errors
	5.4.4 Semantic Errors
	5.4.5 Usage Errors
	5.4.6 Reflective Errors

	5.5 Preconditions for IDL Generation
	5.6 Standard Tags for the IDL Mapping
	5.6.1 Tags for Specifying IDL #pragma directives
	5.6.2 Tags for Providing Substitute Identifiers
	5.6.3 Tags for Specifying IDL Inheritance

	5.7 Generated IDL Issues
	5.7.1 Generated IDL Identifiers
	5.7.2 Generation Rules for Synthesized Collection Types
	5.7.3 IDL Identifier Qualification
	5.7.4 File Organization and #include statements

	5.8 IDL Mapping Templates
	5.8.1 Template Notation
	5.8.2 Package Module Template
	5.8.3 Package Factory Template
	5.8.4 Package Template
	5.8.5 Class Forward Declaration Template
	5.8.6 Class Template
	5.8.7 Class Proxy Template
	5.8.8 Instance Template
	5.8.9 Class Create Template
	5.8.10 Association Template
	5.8.11 Attribute Template
	5.8.12 Reference Template
	5.8.13 Operation Template
	5.8.14 Exception Template
	5.8.15 Constant Template
	5.8.16 DataType Template
	5.8.17 Constraint Template
	5.8.18 Annotation Template


	6.  The Reflective Module
	6.1 Introduction
	6.2 The Reflective Interfaces
	6.2.1 Reflective Argument Encoding Patterns.

	6.3 The CORBA IDL for the Reflective Interfaces
	6.3.1 Introduction
	6.3.2 Data Types


	Appendix A - Associated Documents
	Appendix B - Implementation Requirements
	Appendix C - Future Directions for the MOF
	Glossary
	Index

