

 Date: March 2010

MOF Facility Object Lifecycle (MOFFOL)

Version 2.0

OMG Document Number: formal/2010-03-04
Standard Specification URL: http://www.omg.org/spec/MOFFOL/2.0/
Associated Schema File(s)*: http://www.omg.org/spec/MOFFOL/20070901

* Original source document: ad/2007-09-01 (XMI)

http://www.omg.org/spec/SysML/1.2/

Copyright © 2003-2007, Adaptive, Inc.
Copyright © 2003-2007, Compuware Corporation
Copyright © 2003-2007, Interactive Objects Software GmbH
Copyright © 2010, Object Management Group, Inc.
Copyright © 2003-2007, Sun Microsystems Inc.

USE OF SPECIFICATION - TERMS, CONDITIONS & NOTICES

The material in this document details an Object Management Group specification in accordance with the terms,
conditions and notices set forth below. This document does not represent a commitment to implement any portion of this
specification in any company's products. The information contained in this document is subject to change without notice.

The specification customizes the Unified Modeling Language (UML) specification of the Object Management Group
(OMG) to address the requirements of Systems Engineering as specified in the UML for Systems Engineering RFP, OMG
document number ad/2003-03-41. This document includes references to and excerpts from the UML 2 Superstructure
Specification and UML 2 Infrastructure Specification with copyright holders and conditions as noted in those documents.

LICENSES

Redistribution and use of this specification, with or without modification, are permitted provided that the following
conditions are met: (1) Redistributions of this specification must reproduce the above copyright notice, this list of
conditions and disclaimers in the documentation and/or other materials provided with the distribution; (2) The Copyright
Holders listed in the above copyright notice may not be used to endorse or promote products derived from this
specification without specific prior written permission; (3) All modified versions of this specification must include a
prominent notice stating how and when the specification was modified; and (4) No modifications to this OMG SysML™
specification may be published under or identified by that name, except for versions published by OMG and incorporating
official changes made through the applicable procedures of OMG. OMG SysML™ is a trademark of OMG, and no
unauthorized version or revision of the OMG SysML specification may use the trademark “OMG SysML” or claim any
connection with or endorsement by OMG.

In accordance with the above copyright provisions, the companies listed above have granted to the Object Management
Group, Inc. (OMG) a nonexclusive, royalty-free, paid up, worldwide license to copy and distribute OMG SysML and to
modify OMG SysML and distribute copies of the modified version. Each of the copyright holders listed above has agreed
that no person shall be deemed to have infringed the copyright in the included material of any such copyright holder by
reason of having used the specification set forth herein or having conformed any computer software to the specification.
Subject to all of the terms and conditions below, the owners of the copyright in this specification hereby grant you a fully-
paid up, non-exclusive, nontransferable, nonsublicenseable, perpetual, worldwide license, to use this specification to
create and distribute software and special purpose specifications that are based upon this specification, and to use, copy,
and distribute this specification as provided under the Copyright Act. This limited permission automatically terminates
without notice if you breach any of these terms or conditions. Upon termination, you will destroy immediately any copies
of this document in your possession or control.

This document was derived from the “Systems Modeling Language (SysML) Specification, version 1.0 DRAFT,” OMG
document (ad/2006-03-01) submitted to OMG in response to the “UML for Systems Engineering RFP” (ad/2003-03-41).
Review and editing in the OMG process produced the “OMG SysML Specification Final Adopted Specification” (ptc/
2006-05-04). Subsequent changes to the specification are controlled through the OMG process as documented at the
OMG Technology Document website - http://www.omg.org/technology/documents/.

PATENTS

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may
require use of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a
license may be required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of
those patents that are brought to its attention. OMG specifications are prospective and advisory only. Prospective users are
responsible for protecting themselves against liability for infringement of patents.

GENERAL USE RESTRICTIONS

Any unauthorized use of this specification may violate copyright laws, trademark laws, and communications regulations
and statutes. This document contains information which is protected by copyright. All Rights Reserved. No part of this
work covered by copyright herein may be reproduced or used in any form or by any means--graphic, electronic, or
mechanical, including photocopying, recording, taping, or information storage and retrieval systems--without permission
of the copyright owner.

DISCLAIMER OF WARRANTY

WHILE THIS PUBLICATION IS BELIEVED TO BE ACCURATE, IT IS PROVIDED “AS IS” AND MAY CONTAIN
ERRORS OR MISPRINTS. THE OBJECT MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE
MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS PUBLICATION,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF
MERCHANTABILITY OR WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE OR USE. IN NO EVENT
SHALL THE OBJECT MANAGEMENT GROUP OR ANY OF THE COMPANIES LISTED ABOVE BE LIABLE
FOR ERRORS CONTAINED HEREIN OR FOR DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL,
RELIANCE OR COVER DAMAGES, INCLUDING LOSS OF PROFITS, REVENUE, DATA OR USE, INCURRED
BY ANY USER OR ANY THIRD PARTY IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE
OF THIS MATERIAL, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. The entire risk as to the
quality and performance of software developed using this specification is borne by you. This disclaimer of warranty
constitutes an essential part of the license granted to you to use this specification.

RESTRICTED RIGHTS LEGEND

Use, duplication or disclosure by the U.S. Government is subject to the restrictions set forth in subparagraph (c) (1) (ii) of
The Rights in Technical Data and Computer Software Clause at DFARS 252.227-7013 or in subparagraph (c)(1) and (2)
of the Commercial Computer Software - Restricted Rights clauses at 48 C.F.R. 52.227-19 or as specified in 48 C.F.R. 227-
7202-2 of the DoD F.A.R. Supplement and its successors, or as specified in 48 C.F.R. 12.212 of the Federal Acquisition
Regulations and its successors, as applicable. The specification copyright owners are as indicated above and may be
contacted through the Object Management Group, 140 Kendrick Street, Needham, MA 02494, U.S.A.

TRADEMARKS

MDA®, Model Driven Architecture®, UML®, UML Cube logo®, OMG Logo®, CORBA® and XMI® are registered
trademarks of the Object Management Group, Inc., and Object Management Group™, OMG™ , Unified Modeling
Language™, Model Driven Architecture Logo™, Model Driven Architecture Diagram™, CORBA logos™, XMI
Logo™, CWM™, CWM Logo™, IIOP™ , IMM™ , MOF™ , OMG Interface Definition Language (OMG IDL)™ , and
OMG Systems Modeling Language (OMG SysML)™ are trademarks of the Object Management Group. All other

products or company names mentioned are used for identification purposes only, and may be trademarks of their
respective owners.

COMPLIANCE

The Object Management Group (acting itself or through its designees) is and shall at all times be the sole entity that may
authorize developers, suppliers and sellers of computer software to use certification marks, trademarks or other special
designations to indicate compliance with OMG SysML™. Software developed under the terms of this license may claim
compliance or conformance with this specification if and only if the software compliance is of a nature fully matching the
applicable compliance points as stated in the specification. Software developed only partially matching the applicable
compliance points may claim only that the software was based on this specification, but may not claim compliance or
conformance with this specification. In the event that testing suites are implemented or approved by Object Management
Group, Inc., software developed using this specification may claim compliance or conformance with the specification
only if the software satisfactorily completes the testing suites.

OMG’s Issue Reporting Procedure

All OMG specifications are subject to continuous review and improvement. As part of this process
we encourage readers to report any ambiguities, inconsistencies, or inaccuracies they may find by
completing the Issue Reporting Form listed on the main web page http://www.omg.org, under
Documents, Report a Bug/Issue (http://www.omg.org/technology/agreement.htm).

Table of Contents

Preface ...v

1 Scope .. 1

2 Conformance .. 1

3 References ... 1

3.1 Normative References ..1

3.2 Informative References ...2

4 Terms and Definitions ... 2

5 Additional Information ... 3

5.1 Migration from MOF 1.4 ..3

5.2 Acknowledgements ...3

6 MOF Facility Object Lifecycle ... 5

6.1 Structure ...5

6.2 Facilities ..5
6.2.1 Facility .. 6

 6.2.1.1 Generalizations .. 6
 6.2.1.2 Properties ... 7
 6.2.1.3 Operations ... 7
 6.2.1.4 Constraints... 8
 6.2.1.5 Semantics .. 8
 6.2.1.6 Rationale .. 8
 6.2.1.7 Changes from MOF 1.4 .. 8

6.2.2 Extent ... 8
 6.2.2.1 Generalizations .. 8
 6.2.2.2 Properties ... 8
 6.2.2.3 Operations ... 8
 6.2.2.4 Constraints ... 9
 6.2.2.5 Semantics .. 9
 6.2.2.6 Changes from MOF 1.4 .. 9

6.2.3 Store ... 9
 6.2.3.1 Generalizations .. 9
 6.2.3.2 Properties ... 9
 6.2.3.3 Operations ... 9
 6.2.3.4 Constraints ... 9
MOF Facility Object Lifecycle, v2.0 i

 6.2.3.5 Semantics .. 9
 6.2.3.6 Changes from MOF 1.4 .. 10

6.2.4 Workspace ... 10
 6.2.4.1 Generalizations .. 10
 6.2.4.2 Properties ... 10
 6.2.4.3 Operations .. 10
 6.2.4.4 Constraints ... 10
 6.2.4.5 Semantics .. 10
 6.2.4.6 Changes from MOF 1.4 .. 10

6.2.5 FacilityFactory .. 10
 6.2.5.1 Generalizations .. 10
 6.2.5.2 Properties ... 11
 6.2.5.3 Operations .. 11
 6.2.5.4 Constraints ... 11
 6.2.5.5 Semantics .. 11
 6.2.5.6 Changes from MOF 1.4 .. 11

6.3 Object Lifecycle ...11
6.3.1 Lifecycle Operations ... 11
6.3.2 Deletion Semantics .. 11

6.4 Connection and Location ..12
6.4.1 Location .. 12

 6.4.1.1 Basic URI Encoding Scheme ... 12
6.4.2 Session ... 13

 6.4.2.1 SessionFactory .. 14
 6.4.2.2 Session .. 15

6.5 Federation ...15
6.5.1 Local Copies of Elements ... 15

6.6 Authentication ...16

6.7 Exception Handling ...16
6.7.1 Exception Definition .. 16
6.7.2 Exception Effect ... 17
6.7.3 Exception Returns .. 17

6.8 Constraint Handling ...17
6.8.1 Information ... 17

6.9 Transactions ..17
6.9.1 LocalTransaction .. 17

 6.9.1.1 Generalizations .. 17
 6.9.1.2 Properties ... 17
 6.9.1.3 Operations .. 18
 6.9.1.4 Constraints ... 18
 6.9.1.5 Semantics .. 18
ii MOF Facility Object Lifecycle, v2.0

6.10 Import/Export ..18
6.10.1 XMI Cross-Referencing .. 18
6.10.2 Import/export via HTTP .. 18
6.10.3 Import/Export Operations ... 18

 6.10.3.1 ImportOptions ... 19
 6.10.3.2 ExportOptions .. 20

7 Changes or Extensions Required to Adopted OMG
 Specifications .. 21

7.1 MOF 2.0 Core (formal/2006-01-01) ..21
7.1.1 MOF 2.0 XMI formal/2005-09-01 ... 21

 7.1.1.1 Clarify use of isId ... 22
 7.1.1.2 XMI Extensions .. 22

7.1.2 MOF 2 Versioning formal/2007-05-01 .. 22
 7.1.2.1 Align Workspace to Extent association .. 22

7.1.3 MOF 2.0 IDL ... 22
MOF Facility Object Lifecycle, v2.0 iii

iv MOF Facility Object Lifecycle, v2.0

Preface

About the Object Management Group

OMG

Founded in 1989, the Object Management Group, Inc. (OMG) is an open membership, not-for-profit computer industry
standards consortium that produces and maintains computer industry specifications for interoperable, portable and
reusable enterprise applications in distributed, heterogeneous environments. Membership includes Information
Technology vendors, end users, government agencies, and academia.

OMG member companies write, adopt, and maintain its specifications following a mature, open process. OMG's
specifications implement the Model Driven Architecture® (MDA®), maximizing ROI through a full-lifecycle approach to
enterprise integration that covers multiple operating systems, programming languages, middleware and networking
infrastructures, and software development environments. OMG’s specifications include: UML® (Unified Modeling
Language™); CORBA® (Common Object Request Broker Architecture); CWM™ (Common Warehouse Metamodel);
and industry-specific standards for dozens of vertical markets.

More information on the OMG is available at http://www.omg.org/.

OMG Specifications

As noted, OMG specifications address middleware, modeling, and vertical domain frameworks. A catalog of all OMG
Specifications is available from the OMG website at:

http://www.omg.org/technology/documents/spec_catalog.htm

Specifications within the Catalog are organized by the following categories:

OMG Modeling Specifications

• UML

• MOF

• XMI

• CWM

• Profile specifications

OMG Middleware Specifications

• CORBA/IIOP

• IDL/Language Mappings

• Specialized CORBA specifications

• CORBA Component Model (CCM)

Platform Specific Model and Interface Specifications

• CORBAservices
MOF Facility Object Lifecycle, v2.0 v

• CORBAfacilities

• OMG Domain specifications

• OMG Embedded Intelligence specifications

• OMG Security specifications

All of OMG’s formal specifications may be downloaded without charge from our website. (Products implementing OMG
specifications are available from individual suppliers.) Copies of specifications, available in PostScript and PDF format,
may be obtained from the Specifications Catalog cited above or by contacting the Object Management Group, Inc. at:

OMG Headquarters
140 Kendrick Street
Building A, Suite 300
Needham, MA 02494
USA
Tel: +1-781-444-0404
Fax: +1-781-444-0320
Email: pubs@omg.org

Certain OMG specifications are also available as ISO standards. Please consult http://www.iso.org

Issues

The reader is encouraged to report any technical or editing issues/problems with this specification to http://www.omg.org/
technology/agreement.htm.
vi MOF Facility Object Lifecycle, v2.0

1 Scope

This specification separates out those aspects of MOF related to communicating with and managing the “facilities”
responsible for providing the capabilities covered by the other MOF specifications. These facilities may be at many
different levels, from a modeling tool to a full multi-user, multi-model repository. The scope includes:

• Locating and connecting to facilities;

• Object lifecycle operations (e.g., creation and deletion); and

• Operational aspects (e.g., transactions).

2 Conformance

With respect to compliance, the classes defined in this specification are to be treated as interfaces: compliant
implementations must implement the properties and operations mapped to an appropriate language binding using one of
the MOF2 language binding specifications (e.g., IDL Binding). This specification is not intended to imply any specific
implementation of these interfaces.

Where full compliance is not to be provided, implementations must throw a NotSupported exception.

It is possible for a facility to indicate its level of compliance using the properties defined on Facility (inherited from
Workspace).

The following Compliance Points are defined. Exactly one of the Base levels must be supported, and any number of the
other levels.

• BaseFacility: this includes everything in this specification except those listed as specific compliance points below.

• BaseReadOnlyFacility: provided in order to allow MOF interfaces to be used as a wrapper to other systems. As for
BaseFacility except does not require support of any update operations (including those specified in other MOF2
specifications).

• Stores: Support for the Store class. If this is not supported, implementations will need to implement their own storage
scheme.

• Transactions: Support for LocalTransaction interface, and implicit transactional semantics on each request.

• Versioning: the interfaces obtained by a package merge of the MOF 2 Versioning specification model with that defined
here. This will add capability to the Session and Workspace classes.

3 References

3.1 Normative References

• MOF 2 Core: http://www.omg.org/spec/MOF/2.0/
MOF Facility Object Lifecycle, v2.0 1

• MOF 2 Versioning and Development Lifecycle: http://www.omg.org/spec/MOFVD/2.0/

• XMI 2.1: http://www.omg.org/spec/XMI/2.1/

3.2 Informative References

• JMI - Java Metadata Interface (JSR 40)

• MOF 1.4: http://www.omg.org/spec/MOF/1.4/

• JCA - J2EE Connector Architecture Specification (JSR 112) version 1.5

4 Terms and Definitions

Term Definition

Client A MOF client is one that makes use of MOF services. The term is not meant to imply any
sort of physical separation or use of middleware (though these are of course not excluded).

Facility A MOF Facility consists of MOF software capable of servicing client requests together with
specific MOF data that is accessed or manipulated. Typically the MOF data will comprise
one or more extents.

Connection As used in this specification ‘connection’ may refer to a ‘session connection’ that persists
over many client requests (effectively establishing a ‘session’) or to a ‘transient connection’
that is established for one client request only (e.g., as for a web services request). Session
connections represent typical use of MOF although transient connections will become more
important, especially for bulk interchange.

Outermost Instance An object that is not owned by another object.

Resource Adapter
(generalized from JCA)

To achieve a standard system-level plug-ability between application servers and Enterprise
Information Systems (EIS), the J2EE Connector architecture defines a standard set of
system-level contracts between an application server and EIS. The resource adapter
implements the EIS-side of these system-level contracts.

A resource adapter is a system-level software driver used by an application server or an
application client to connect to an EIS. By plugging into an application server, the resource
adapter collaborates with the server to provide the underlying mechanisms, the
transactions, security, and connection pooling mechanisms. A resource adapter is used
within the address space of the application server.
2 MOF Facility Object Lifecycle, v2.0

5 Additional Information

5.1 Migration from MOF 1.4

The following outlines the equivalent to MOF 1.4 concepts. Note that MOF 1.4 had no notion of Facility, so many of the
aspects in this specification are new to the MOF standard (though something equivalent was provided of necessity by
most implementations).

5.2 Acknowledgements

This specification was submitted and/or supported by the following companies/individuals:

• Adaptive

• Compuware Corporation

• Constantine Plotnikov

• INRIA

• Interactive Objects

• Sun Microsystems

Concept MOF2 Equivalent

Extent Repository

XPackage Interfaces Creation and finding moved to Factory and Package interfaces respectively.

XClass interfaces Creation and finding moved to Factory and Package interfaces respectively.

Package clustering
(clustered import)

Not explicitly supported, however an Extent is package independent and a Factory may be
associated with any package, which could be created by importing or merging other
packages to give the same effect as clustering.

Package inheritance None: in UML2/MOF2 Packages are not generalizable.

Package nesting No direct equivalent: though packages can be nested in metamodels this is not used only for
naming and not to determine nesting of Extents, which is not supported.

Package Import Package or Element Import
MOF Facility Object Lifecycle, v2.0 3

4 MOF Facility Object Lifecycle, v2.0

6 MOF Facility Object Lifecycle

6.1 Structure

The following diagram illustrates the dependencies of facility package on other MOF packages. Note, however, that not
all compliance levels require Versioning.

6.2 Facilities

This chapter describes elements that extend MOF to provide entry points to the instances of metamodels and a notion of
a store; as a special kind of extent capable of physically storing the metadata. The platform independent model of the
MOF Facility is as follows.
MOF Facility Object Lifecycle, v2.0 5

6.2.1 Facility

The Facility class provides the entry connection point to the metadata for clients. Through inheritance from Workspace it
contains Extents, some of which may be RepositoriesStores and it acts as a factory for these. A Facility is a singleton that
is addressable but is not created or deleted.

6.2.1.1 Generalizations

Workspace
6 MOF Facility Object Lifecycle, v2.0

6.2.1.2 Properties

Noneextent : Extent [0..*] Set of Extents the Facility consists of.

6.2.1.3 Operations

createExtent(name: String, The URI to be used to address the Extent. If specified, an instance of URIExtent
will be created.

 contextURI: String[0..1] The URI to be used to address the Extent. If specified, an instance of URIExtent
will be created.

) : Extent Creates a new Extent (or URIExtent) and adds it to the extent property for the
facility.

createStore(name: String, The name to be given to the new Store. It must not previously have been used by
any Extent in extent for this facility.

 contextURI: String[0..1] The URI to be used to address this Store. If specified, an instance of URIStore will
be created.

 storageLocator: String[0..1] Will be used to set the physicalStorageLocator property (q.v) of the new Store.

 metamodel:MOF::Package[0..1] Used to set the inherited Factory::package property on the created store.

 isVersioned:Boolean[0..1]=false Used to indicate whether the store to be created is to be enabled for versioning.

) : Store As for createExtent but creates an instance of Store. If isVersioned is true, then a
VersionHistory and initial Version is also created and associated with the Store
(see MOF Versioning for details of these classes).

resolveURI(href: String[1] The URI to be dereferenced.

 base: String[0..1] The base URI for the facility, to be stripped from the supplied href in order to get
a unique id within this facility.

) : Element[0..1] Dereferences the supplied URI down to an element (if possible) which is returned.

contextURI() : String[0..1] Returns the URI for the facility, used to connect.

 getWorkspace(id: String[0..1] An optional identifier to be matched.

) : Workspace[0..*] Returns Workspaces contained by the Facility. If id parameter is supplied, then
only the workspace (if any) with that id is returned; otherwise all Workspaces are
returned.
MOF Facility Object Lifecycle, v2.0 7

6.2.1.4 Constraints

No additional constraints.

6.2.1.5 Semantics

A Facility represents an entry point to the metadata, the means for clients to ‘connect’ to models and elements, which are
accessed via Extents. It consists of zero to many extents, that are the actual metadata “holders.”

6.2.1.6 Rationale

There needs to be a top-most object serving as a locator of individual extents/repositories as “metadata holders” for a
metadata of a specific kind.

6.2.1.7 Changes from MOF 1.4

There was no notion of anything above RefPackage - a package extent. In MOF 1.4 terms, Facility can be thought of as a
container of zero to many package Extents. MOF 1.4 did not include a platform independent model of facilities and
reflection. It was left up to the specific mappings to specify those if desired.

6.2.2 Extent

Adds incremental operations, through package merge, to the Extent class, originally defined in MOF 2 Core.

6.2.2.1 Generalizations

None

6.2.2.2 Properties

None

6.2.2.3 Operations

addElement(addedElement: Element)

Adds an existing Element to the extent. This is a null operation if the Element is already in the Extent.

removeObjectElement (removedObjectElement: ObjectElement)

Removes the Element from the extent. It is an error if the Element is not a member. This may or may not result in it being
deleted (see Section 6.3.2, “Deletion Semantics”).

moveElement (movedElement: Element, targetExtent: Extent)

An atomic combination of addElement and removeElement. targetExtent must be different from the extent on which the
operation is invoked.

createWorkspace(id: String[0..1] The identifier for the new Workspace. It must be unique for the Facility.

) : Workspace Creates a new Workspace that will be added to the set returned by getWorkspace
for this facility.
8 MOF Facility Object Lifecycle, v2.0

deleteExtent()

Deletes the Extent, but not necessarily the Elements it contains (see Section 6.3.2, “Deletion Semantics).

6.2.2.4 Constraints

No additional constraints

6.2.2.5 Semantics

See MOF 2.0 Core, and Section 6.2.3.

6.2.2.6 Changes from MOF 1.4

At MOF 1.4, extent membership was quite static: an Element was created within one extent and could not be moved. This
is more akin to the notion of Store at MOF 2: Extent is more of a loose grouping of Elements providing a scope/content
for various operations. An Element may be in more than one Extent and may be moved between them.

6.2.3 Store

Store can be understood as a special kind of extent with an ability to actually store the models. The lifecycle of an
Element can be managed by at most one Store.

In the case where the storage is not being managed by MOF, then Stores are not required to be used. It is still possible to
create Elements provided that appropriate implementations of Factory are available.

6.2.3.1 Generalizations

Factory, Element, URIExtent.

6.2.3.2 Properties

PhysicalStorageLocator : String

[1] Specifies a storage location to be used for the physical storage. The usage of the value is implementation
dependent and could, for example, represent the name of a file or a database.

6.2.3.3 Operations

No additional operations

6.2.3.4 Constraints

A Store is able to manage only Elements described by metaElements contained in the metamodel referenced by the
inherited package property of the store.

6.2.3.5 Semantics

A Store manages the lifecycle of the elements associated with it - it provides a physical home for them. Store inherits
from Factory, which means that it can create the elements. All the elements created by the store automatically become
associated with it as an Extent.
MOF Facility Object Lifecycle, v2.0 9

6.2.3.6 Changes from MOF 1.4

The Store concept was not present in MOF 1.4, although it is similar to an outermost package extent/proxy from MOF
1.4. The difference is that rather than consisting of individual class and association proxies, Store is able to handle
creation of instances of any class (or Association in CMOF) itself.

6.2.4 Workspace

This is a simplification of the concept in MOF Versioning, where it provides access to specific Versions of extents. When
used with Versioning the classes will be merged. In the context of this Facility specification, Workspace (which is
inherited by Facility itself) provides a scoping mechanism in terms of the Extents that are available.

6.2.4.1 Generalizations

Object

6.2.4.2 Properties

id : String The name or identifier for the Workspace.

annotation : String[0..1] Optional descriptive text.

properties: Tag [0..*] Provides a placeholder for implementation-specific details.

extent: Extent [0..*] The set of Extents that the workspace provides access to.

6.2.4.3 Operations

No additional operations

6.2.4.4 Constraints

None

6.2.4.5 Semantics

A Workspace is the container for Extents.

6.2.4.6 Changes from MOF 1.4

The Workspace concept was not present in MOF 1.4.

6.2.5 FacilityFactory

This is used to create Facilities.

6.2.5.1 Generalizations

None

6.2.5.2 Properties

None
10 MOF Facility Object Lifecycle, v2.0

6.2.5.3 Operations

createFacility(id:String The id to be given to the new Facility
): Facility This creates a new Facility.

6.2.5.4 Constraints

None

6.2.5.5 Semantics

This is a pure Factory interface that can have multiple implementations.

6.2.5.6 Changes from MOF 1.4

The Facility concept was not present in MOF 1.4.

6.3 Object Lifecycle

6.3.1 Lifecycle Operations

This section summarizes how the different lifecycle operations are provided by the MOF interfaces.

6.3.2 Deletion Semantics

If an Element is removed from an Extent that is a Store, then it is deleted. Removing an object from any other Extent has
no deletion implications (though custom subclasses of Extent may implement different policies).

The explicit delete operation will remove the element from its Store (if it is in one) and any other Extents.

6.4 Connection and Location

6.4.1 Location

The only location capability provided is via URI. URIs may be used to locate:

• Facilities

• Extents

Creation: An element is created by a Factory. Typically this will be a Store but not necessarily.

Deletion: Each object element has a delete interface; however see Section 6.3.2.

Copy: An element may be added to another Extent: this may mean it is accessible via more than one
URI. However there is only one underlying object so changes made via one extent will be
reflected in the other.

Move: An element may be added to another extent and then removed from the original as an atomic
operation.

Compare: MOF Core provides a general comparison by identity. No further comparison capability based on
element content is provided - since the scope (e.g., whether deep or shallow) will tend to be
application-specific.
MOF Facility Object Lifecycle, v2.0 11

• Elements from a metamodel

• Instances

The Facility interface provides a single point for resolving URIs, using the resolveURI operation. This may in turn be
delegated to URIExtents or Stores, but this is hidden from the caller.

6.4.1.1 Basic URI Encoding Scheme

In order to provide a base level of interoperability, this specification includes a basic scheme for mapping URIs to a
metamodel structure. There is nothing to stop implementations using any internal/proprietary scheme for this mapping.

The scheme covers:

• How to generate a URI for an element

• How to locate an element from a URI

It only applies to Elements that have non-empty values for their isID property and which have composite parents likewise.
It makes the following assumptions about models:

• The values of isID properties are unique within the same composite parent.

• The values of isID properties are syntactically valid components of a URI.

Note that it is possible for isID properties to be derived properties: the derivation may be arbitrary manner. However it is
the responsibility of the Facility to provide efficient location of elements via URI (which for derived properties would
tend to imply using some sort of cached lookup table or directory).

The basic Scheme encodes absolute URIs as follows (see also RFC 2396):

http://Facility-ContextURI/Facility-Name/Extent-Name[?Top-Element-Id{/Element-Id}*|;uuid=uuid]

Note that ? is used in the middle of the hierarchy to separate the extent from the contents.

The Facility-ContextURI is the value returned by the operation Facility::ContextURI() and should be mappable to an IP
address using normal TCP-IP mechanisms such as DNS, or local mechanisms such as XML Catalog. It may include a port
number. The IP address is used for connection (see Section 6.4.2).

Facility -Name is the property Facility::name defined against the Facility class.

Extent-Name is the property Extent::name defined against the Extent class.

Using this scheme the value returned by URIExtent::contextURI() is thus http://Facility-ContextURI/Facility-Name/
Extent-Name.

Top-Element-Id is the identifier (value of the property with Property:isID=true) for a TopElement. A TopElement is a
Reflective::Element in the Extent with no composite owner (all properties with opposites having isComposite=true are
empty for this Element). There can be many such TopElements for an Extent.

Each Element-Name is the value of the property with Property:isID=true for an element whose compositeOwner is the
element identified by the URI to the left.

Here are some examples:

a the metaclass UseCase in the UML2 metamodel
http://mof.omg.org/MetamodelFacility/UML2Store?uml2/UseCase
12 MOF Facility Object Lifecycle, v2.0

b the activity CalculateHoursWorked
http://mof.adaptive.com:8083/ModelsFacility/PayrollModels?ProcessModel/MonthlyProcess/
CalculateHoursWorked

c the element with uuid X12345 in extent PayrollModels
http://mof.adaptive.com:8083/ModelsFacility/PayrollModels;uuid= X12345

Relative URIs

In the Basic Scheme URIs are always relative to an Extent and not to composite parents. So, for example,
xmi:idref=""Customer.order" would be invalid for referencing Customer::order: a TopElement would be needed (i.e., the
Package): for example Customer.Customer.order.

For the purpose of cross-referencing within an XMI file, the XMI file itself is treated as an Extent. The MOF hierarchy,
not the XML hierarchy, should be used. Normally they are the same, but for example the XMI XML element is ignored
for addressing purposes and not counted as a TopElement. Tags (MOF) and Stereotype instances (UML), which are not
nested in the XML structure (due to the lack of a composite ownedAttribute), are nested in the MOF hierarchy.

Relative addressing using . and .. may be used within URI up to the ? (if present).

6.4.2 Session

Connections can be established implicitly per client request or as a session - represented via a Session object (which is
transient). In both cases a ConnectionSpec is used to hold the connection information: this is an extensible structure.

The metamodel for Sessions is as follows. This is based on the interfaces provided by the J2EE Connection Architecture
(JCA) in order to provide interoperability with clients and application servers using that standard (assuming a Java
binding).

Once the Session is established, it should be passed to subsequent requests: the mechanism for this is platform dependent.

The following capabilities are only available on explicit Session:

Transaction interface (otherwise transactions are implicit per request)

6.4.2.1 SessionFactory

This is used to create Sessions.
MOF Facility Object Lifecycle, v2.0 13

6.4.2.1.1 Generalizations

None

6.4.2.1.2 Properties

None

6.4.2.1.3 Operations

createSession(properties:ConnectionSpec The parameters for the session. By default this is just the connection
URI, but the ConnectionSpec is designed to be extensible.

): Session This creates a new Session connected to the specified Facility.

6.4.2.1.4 Constraints

None

6.4.2.1.5 Semantics

This is a pure Factory interface that can have multiple implementations.

6.4.2.1.6 Changes from MOF 1.4

The Session concept was not present in MOF 1.4.

6.4.2.2 Session

This represents a client session with a facility; it is not a persistent class. When used with Versioning this is designed to
merge with the Session class in that specification.

6.4.2.2.1 Generalizations

None

6.4.2.2.2 Properties

workspace: Workspace[0..1] This is the workspace that scopes the extents available in this session. It may
be updated within the session.

6.4.2.2.3 Operations

Close() This closes the connection and deletes the Session.

getLocalTransation(): LocalTransaction This creates a new transaction proxy, but does not begin it yet.
See Section 6.10.

6.4.2.2.4 Constraints

None

6.4.2.2.5 Semantics

This represents a single connection. Depending on the facility implementation, a client may maintain multiple concurrent
Sessions (if not supported, attempts to create a further Session will throw an exception).
14 MOF Facility Object Lifecycle, v2.0

6.4.2.2.6 Changes from MOF 1.4

The Session concept was not present in MOF 1.4.

6.4.2.3 ConnectionSpec

This is a data type designed to be extended for more sophistication in connection.

6.4.2.3.1 Properties

connectURI: String The URI to use for connecting to a facility. A Connection is to a Facility so the value
should match Facility::ContextURI()/Facility::name (i.e., the values of these two
properties separated by a '/').

6.5 Federation

At the level of client APIs such as Reflection it is possible to seamlessly traverse associations that span multiple physical
stores or even facilities. This is handled by Facilities behind the scenes.

6.5.1 Local Copies of Elements

The ability for elements to appear in many extents allows for local copies. This needs to be combined with a (URI)
resolution mechanism such as XML Catalogs for mapping URIs to a local XMI namespace and hence Extent.

6.6 Authentication

ConnectionSpec is designed to be extended to contain credentials that can be authenticated by ConnectionFactory
implementations. This specification does not mandate a specific scheme.
MOF Facility Object Lifecycle, v2.0 15

6.7 Exception Handling

6.7.1 Exception Definition

In UML Infrastructure (and hence MOF2 Core), exceptions are represented as Types associated with an Operation via the
multivalued raisedException association. The types have names and possibly structure (e.g., holding details of an error)
and may use inheritance. However the Types for the exceptions in MOF Core itself have not been modeled (they are
referred to only by name in the text for different Operations). Furthermore UML2 has no notation defined for actually
modeling Types associated with Operations as raisedExceptions. Therefore it is proposed to:

• Determine in conjunction with UML2 RTF the notational means to associate exceptions with Operations.

• Explicitly model all the Exceptions for all the MOF2 specs, including Facility, to form an integrated consistent set with
appropriate reuse, drawing on the exception parameters from MOF 1.4 and the MOF2 IDL binding, and propose to
MOF2 RTFs/FTFs.
16 MOF Facility Object Lifecycle, v2.0

6.7.2 Exception Effect

When using transactions (implicitly or explicitly), the effect of an exception occurring is to abort the current transaction
and roll back any changes. Without transaction support, the system should be considered in an undefined state.

In order to permit the re-running of such failed operations, where possible operations should be idempotent (that is they
can be repeated). So, for example, adding an element to a Set when it is already present should not cause an exception but
have a null effect. This is not always achievable (e.g., when adding an element to a bag or list) but provides a good
principle for exception design.

6.7.3 Exception Returns

Language-specific mechanisms (for example Java exceptions) are used to return exception information (an instance of the
Type associated with the Operation) to the client program.

6.8 Constraint Handling

MOF 1.4 distinguished between immediate (executed immediately after any change) and deferred constraints (executed
on demand only). There were also implicit constraints (e.g., those implied by the multiplicity of Properties).

MOF 2.0 should reflect the fact that constraint checkers (e.g., OCL engines) are now usually separate components.

Clearly one reason why a change might be refused is through constraint violation, and it should be possible to configure
constraint checking through software acting in the role of an agent (e.g., an OCL engine).

6.8.1 Information

Constraint failure raises a specific exception (see Section 6.8), which has properties to indicate the constraint failed and
the failing element(s). Optionally many constraint exceptions may be grouped in an overall Constraint Exception:
however it is permissible to return only the ‘first.’

6.9 Transactions

LocalTransaction objects can be created via the Session interface - see Section 6.4.2. This is again based on JCA, which
has been designed to be able to interface with many different back-end systems.

6.9.1 LocalTransaction

This is a proxy for a local transactions ‘thread.’ The same LocalTransaction can be used to begin and end (commit or
rollback) many actual transactions. Nesting is not supported.

6.9.1.1 Generalizations

None

6.9.1.2 Properties

None
MOF Facility Object Lifecycle, v2.0 17

6.9.1.3 Operations

begin() This starts a new transaction. An exception is thrown if there is a transaction in progress.

commit() This commits the current transaction and ends it. Any changes since the transaction begin() are
persistently recorded. An exception is thrown if there is no transaction in progress.

rollback() This aborts the current transaction and ends it. Any changes since the transaction begin() are lost.
An exception is thrown if there is no transaction in progress.

6.9.1.4 Constraints

None

6.9.1.5 Semantics

ACID semantics must be implemented.

6.10 Import/Export

6.10.1 XMI Cross-Referencing

In order to allow seamless XMI processing, access via hrefs in XMI files must yield the same XMI stream regardless of
whether the content is stored in a local file or comes from a remote MOF facility. XML Catalog may be used to redirect
the request to local storage (for example, by mapping part of the URI to a local XMI file).

Note that this gives the choice of using URIs to indicate specific elements or using a URI to access an Extent and then
using XPath to navigate the XML stream for the whole extent.

6.10.2 Import/export via HTTP

Due to the use of URIs to access XMI streams, one export option is to use http (or https) get on a URI. This may be
limited and is not for use in secure environments, unless a Single Sign On mechanism is in place since it does not provide
for explicit Connection.

Likewise an http put can be used for imports.

This style of interface is commonly referred to as REST (Representational State transfer) and is widely used in web
applications.

6.10.3 Import/Export Operations

An import/export is inherently transactional (it completely succeeds or fails). However it may be part of a larger
transaction set up on the Session.

These operations are provided on Session since it has the capability to select a Workspace for the operation to act on. In
general the behavior is as described in the XMI specification.

importURI (uri: String[0..1], The target Extent for the import. It must be visible via the Session. If empty, the
Workspace of the Session will be used.

 Stream: String, The information to be imported as an XMI stream.
18 MOF Facility Object Lifecycle, v2.0

 baseURI: String[0..1], The base URI for the facility, to be stripped from contained hrefs in order to get a
unique id within this facility.

 options: ImportOptions The import options (see description of the data type).
): Element[0..*]

exportURI (uri: String, The target Extent for the import. It must be visible via the Session. If empty,
the Workspace of the Session will be used.

 baseURI: String[0..1], The base URI for the facility, to be added to the contained hrefs in order to get
a unique id within this facility.

 options: ExportOptions The export options (see description of the data type)
): String The value returned is the exported XMI stream.

exportElements(elementSet:Example[0..*], The set of Elements to export.

 baseURI: String[0..1], The base URI for the facility, to be added to the contained hrefs in
order to get a unique id within this facility.

 options: ExportOptions The export options (see description of the data type)
): String The value returned is the exported XMI stream.

6.10.3.1 ImportOptions

This is a DataType to control import behavior through a number of Boolean flags.

6.10.3.1.1 Properties

clearFirst: Boolean[0..1] = false Before starting, the import will clear the target extent (i.e., delete all
elements).

tidyOrphans: Boolean[0..1] = false After completing the import this will delete all ‘orphans’ i.e.,
elements with no composite owner except for those elements with
no composite owner in the imported file.

retainToolExtensions: Boolean[0..1] = false Persistently retains the information from all XMI Extension elements
after the import. See Section 7.1.1.4.

matchUuids: Boolean[0..1] = false Reconciles imported against existing elements using uuids. This is
typically used for a ‘round trip’ where elements are exported, edited
by an external tool, then re-imported. It is important that they are
reconciled with the originals. See Section 7.1.1.2.

6.10.3.2 ExportOptions

This is a DataType to control export behavior through a number of properties.
MOF Facility Object Lifecycle, v2.0 19

6.10.3.2.1 Properties

XmiVersion: String[0..1] = 2.1 The version of XMI to use. There is no obligation to support any
version except the default, 2.1.

clearAfter: Boolean[0..1] = false After successful completion, the export will clear the source extent
(i.e., delete all elements). This is the equivalent of a ‘move.’

includeUuids: Boolean[0..1] = false Includes uuids in the export. This is the ‘partner’ to includeUuids
option on import: see that for details.

retainToolExtensions: Boolean[0..1] = false The exported file includes all information from previously imported
and retained XMI Extension elements. See Section 7.1.1.4.

toolExtensionToRestore: String[0..1] Includes Extension information for the specified Tool identifier in the
exported file. Furthermore it uses that Tool’s identifiers as the
xmi:uuids in the exported file.

nsURI: String [0..1] The namespace to use in the exported file (to override what is in the
source metamodel). May be used for example to export an L1 stream
from an L3 model repository.
20 MOF Facility Object Lifecycle, v2.0

7 Changes or Extensions Required to Adopted OMG
Specifications

7.1 MOF 2.0 Core (formal/2006-01-01)

A further rule is necessary for the effective isID property: add the following to the Constraints section of 10.3 Property

• Only one member Attribute of a Class may have isID = true. Any others (e.g., those inherited) must be redefined:
either made unavailable or redefined to change isID=false

7.1.1 MOF 2.0 XMI formal/2005-09-01

7.1.1.1 Example of Basic URI Scheme

The Basic URI Scheme (see Section 2.4.1.1) should be referenced and used as an example in the XMI specification.

There should be a new example 5 in Section 4.10.2.2

5 Using the MOF 2 Facility Basic Encoding Scheme

The MOF2 Facility specification provides a means of encoding URIs to refer to elements in facilities: these may be
realized through XMI files, database-backed repositories or other mechanisms. Hence it is usually not appropriate to make
use of xmi:id values which are in general transient and limited in scope: rather names and unique ids are made use of. Full
details are contained in that specification.

As an example here is a link to an activity called CalculateHoursWorked which is within ProcessModel within
PayrollModels; PayrollModels is located via facility http://mof.adaptive.com:8083/ModelsFacility.

<activity
href="http://mof.adaptive.com:8083/ModelsFacility/PayrollModels?ProcessModel/MonthlyProcess/
CalculateHoursWorked"/>

7.1.1.2 Reconciliation on Import

Add the following as a new section 4.15 in the XMI specification:

4.15 Import Reconciliation

The following are cases where an element in an imported XMI file will resolve to an existing element in the importer:
only one of the following need apply:

• both elements have uuids that are identical

• the XMI element has extenderID and extender that are identical to those associated with the element in the importer
(see 2.11.7)

• both elements have identical values of a Property with isID=true

• both elements are in the same extent and would have identical values for the basic URI scheme
MOF Facility Object Lifecycle, v2.0 21

Should elements match as above, the element in the importer is updated as follows:

• If property P is explicitly included in the XMI file, then the value of that property is updated to the value(s) from the
XMI file. If multivalued, then any existing values not in the new set are removed.

• If P is included but empty in the XMI file, the property is unset; if mandatory, it is instead set to its default value.

• If P is not explicitly included in the XMI file, then any existing value in the importer is unchanged.

Should a matching element be referenced from the Differences element, the actions are carried out in order prior to the
main import.

7.1.1.3 Clarify use of isId

Change the last bullet in section 4.11.2 as follows (this also fixes the typo where 2 occurrences of 'isProperty' should be
'idProperty'):

• If the id Property tag is set, the idName tag is ignored. The tagged property must have type which is a Datatype and it
must also have isId = true in the metamodel. This means that only one idProperty tag may be specified for a class.

7.1.1.4 XMI Extensions

Add the following to the end of Section 4.13 Document Exchange With Multiple Tools (prior to sub-heading for 4.13.1)

In order to allow the use of such schemes as outlined here, XMI Extensions must be persistently maintained by the
importing tool.

7.1.2 MOF 2 Versioning formal/2007-05-01

7.1.2.1 Align Workspace to Extent association

In order to allow a package merge of between Versioning:Workspace and facility::Workspace it is necessary to rename
Workspace::versionedExtent to Workspace::extent in the Versioning spec.

This change should be made in the following places (in each case the word "versionedExtent" (when spelled with lower
case 'v' only) is replaced with "extent"):

• Figure 5.3

• Section 5.6.2.1, first reference

7.1.3 MOF 2.0 IDL

This should be aligned to include the functionality and operations in this specificstionspecification. However this will be
done by the normal revision process rather than by the adoption of this submission.
22 MOF Facility Object Lifecycle, v2.0

INDEX

A
ACID semantics 18
Architecture 5, 21

B
Base levels 1
BaseFacility 1
BaseReadOnlyFacility 1

C
Client 2
Compare 11
Compliance 1
Compliance Points 1
Connection 2, 11
ConnectionFactory 15
ConnectionSpec 15
Constraints 17
Copy 11
Creation 11

D
Definitions 2
Deletion 11

E
Exception Effect 17
Exception Returns 17
Exceptions 16
Extent 3
Extent class 8

F
Facility 2
Facility class 6
FacilityFactory 10
Federation 15

I
Import/export 18

L
Languages 5, 21

SysML 5, 21
Lifecycle Operations 11
LocalTransaction 17
Location 11

M
MOF 1.4 concepts 3
MOF Facility 5

MOF Structure 5
Move 11

N
NotSupported exception 1

O
Object Lifecycle 11
Outermost Instance 2

P
Package clustering 3
Package Import 3
Package inherita 3
Package nesting 3

R
References 1
Resource Adapter 2

S
Session 13
SessionFactory 14
Store 1, 9
SysML 5, 21

T
Terms 2
Transactions 1, 17

U
URI Encoding Scheme 12

V
Versioning 1

X
XClass interfaces 3
XPackage Interfaces 3
MOF Facility Object Lifecycle, v2.0 23

24 MOF Facility Object Lifecycle, v2.0

	1 Scope
	2 Conformance
	3 References
	3.1 Normative References
	3.2 Informative References

	4 Terms and Definitions
	5 Additional Information
	5.1 Migration from MOF 1.4
	5.2 Acknowledgements

	6 MOF Facility Object Lifecycle
	6.1 Structure
	6.2 Facilities
	6.2.1 Facility
	6.2.2 Extent
	6.2.3 Store
	6.2.4 Workspace
	6.2.5 FacilityFactory

	6.3 Object Lifecycle
	6.3.1 Lifecycle Operations
	6.3.2 Deletion Semantics

	6.4 Connection and Location
	6.4.1 Location
	6.4.2 Session

	6.5 Federation
	6.5.1 Local Copies of Elements

	6.6 Authentication
	6.7 Exception Handling
	6.7.1 Exception Definition
	6.7.2 Exception Effect
	6.7.3 Exception Returns

	6.8 Constraint Handling
	6.8.1 Information

	6.9 Transactions
	6.9.1 LocalTransaction

	6.10 Import/Export
	6.10.1 XMI Cross-Referencing
	6.10.2 Import/export via HTTP
	6.10.3 Import/Export Operations

	7 Changes or Extensions Required to Adopted OMG Specifications
	7.1 MOF 2.0 Core (formal/2006-01-01)
	7.1.1 MOF 2.0 XMI formal/2005-09-01
	7.1.2 MOF 2 Versioning formal/2007-05-01
	7.1.3 MOF 2.0 IDL

