
CORBAservices: Common Object Services Specification 3-1

Naming Service Specification 3

3.1 Service Description

Note – EDITING INSTRUCTIONS - This chapter is a replacement for the CORBA
Services Specification Chapter 3. Changebars are relative to ptc/99-09-02

3.1.1 Overview
A name-to-object association is called a name binding. A name binding is always
defined relative to a naming context. A naming context is an object that contains a set
of name bindings in which each name is unique. Different names can be bound to an
object in the same or different contexts at the same time. There is no requirement,
however, that all objects must be named.

To resolve a name is to determine the object associated with the name in a given
context. To bind a name is to create a name binding in a given context. A name is
always resolved relative to a context — there are no absolute names.

Because a context is like any other object, it can also be bound to a name in a naming
context. Binding contexts in other contexts creates a naming graph — a directed graph
with nodes and labeled edges where the nodes are contexts. A naming graph allows
more complex names to reference an object. Given a context in a naming graph, a
sequence of names can reference an object. This sequence of names (called a
compound name) defines a path in the naming graph to navigate the resolution process.
Figure 3-1 shows an example of a naming graph.

3-2 CORBAservices: Common Object Services Specification

3

Figure 3-1 A Naming Graph

3.1.2 Names
Many of the operations defined on a naming context take names as parameters. Names
have structure. A name is an ordered sequence of components.

A name with a single component is called a simple name; a name with multiple
components is called a compound name. Each component except the last is used to
name a context; the last component denotes the bound object. The notation:

component1/component2/component3

indicates a sequence of components.

Note – The slash (/) characters are simply a notation used here and are not intended to
imply that names are sequences of characters separated by slashes.

A name component consists of two attributes: the id attribute and the kind attribute.
Both the id attribute and the kind attribute are represented as IDL strings.

The kind attribute adds descriptive power to names in a syntax-independent way.
Examples of the value of the kind attribute include c_source, object_code,
executable, postscript, or “ ”. The naming system does not interpret, assign, or manage
these values in any way. Higher levels of software may make policies about the use
and management of these values. This feature addresses the needs of applications that

user
sys

bin lib
u1

u2

u3

bill alden

l1 l2

home

c1
c2

parent

abc
def

Naming Service: v1.1 Service Description Month Year 3-3

3

use syntactic naming conventions to distinguish related objects. For example Unix uses
suffixes such as .c and .o. Applications (such as the C compiler) depend on these
syntactic convention to make name transformations (for example, to transform foo.c
to foo.o).

A sequence of id and kind pairs forming a name can be expressed as a single string
using the syntax described in section 3.5. This allows names to be written down easily
or to be presented as a strings in user interfaces. In addition, section 3.6 describes a
way to express a name relative to a particular naming context in URL format. The
URL representation provides a human-readable form of an object reference that is
named in some naming context.

3.1.3 Example Scenarios
This section provides two short scenarios that illustrate how the naming service
specification can be used by two fairly different kinds of systems -- systems that differ
in the kind of implementations used to build the Naming Service and that differ in
models of how clients might use the Naming Service with other object services to
locate objects.

In one system, the Naming Service is implemented using an underlying enterprise-
wide naming server such as DCE CDS. The Naming Service is used to construct large,
enterprise-wide naming graphs where NamingContexts model "directories" or "folders"
and other names identify "document" or "file" kinds of objects. In other words, the
naming service is used as the backbone of an enterprise-wide filing system. In such a
system, non-object-based access to the naming service may well be as commonplace as
object-based access to the naming service.

The Naming Service provides the principal mechanism through which most clients of
an ORB-based system locate objects that they intend to use (make requests of). Given
an initial naming context, clients navigate naming contexts retrieving lists of the names
bound to that context. In conjunction with properties and security services, clients look
for objects with certain "externally visible" characteristics, for example, for objects
with recognized names or objects with a certain time-last-modified (all subject to
security considerations). All objects used in such a scheme register their externally
visible characteristics with other services (a name service, a properties service, and so
on).

Conventions are employed in such a scheme that meaningfully partition the name
space. For example, individuals are assigned naming contexts for personal use, groups
of individuals may be assigned shared naming contexts while other contexts are
organized in a public section of the naming graph. Similarly, conventions are used to
identify contexts that list the names of services that are available in the system (e.g.,
that locate a translation or printing service).

In an alternative system, the Naming Service can be used in a more limited role and
can have a less sophisticated implementation. In this model, naming contexts represent
the types and locations of services that are available in the system and a much
shallower naming graph is employed. For example, the Naming Service is used to
register the object references of a mail service, an information service, a filing service.

3-4 CORBAservices: Common Object Services Specification

3

Given a handful of references to "root objects" obtained from the Naming Service, a
client uses the Relationship and Query Services to locate objects contained in or
managed by the services registered with the Naming Service. In such a system, the
Naming Service is used sparingly and instead clients rely on other services such as
query services to navigate through large collections of objects. Also, objects in this
scheme rarely register "external characteristics" with another service - instead they
support the interfaces of Query or Relationship Services.

Of course, nothing precludes the Naming Service presented here from being used to
provide both models of use at the same time. These two scenarios demonstrate how
this specification is suitable for use in two fairly different kinds of systems with
potentially quite different kinds of implementations. The service provides a basic
building block on which higher-level services impose the conventions and semantics
which determine how frameworks of application and facilities objects locate other
objects.

3.1.4 Design Principles
Several principles have driven the design of the Naming Service:

1. The design imparts no semantics or interpretation of the names themselves; this is
up to higher-level software.

2. The design supports distributed, heterogeneous implementation and administration
of names and name contexts.

3. Naming service clients need not be aware of the physical site of name servers in a
distributed environment, or which server interprets what portion of a compound
name, or of the way that servers are implemented.

4. The Naming Service is a fundamental object service, with no dependencies on other
interfaces.

5. Name contexts of arbitrary and unknown implementation may be utilized together
as nested graphs of nodes that cooperate in resolving names for a client. No
“universal” root is needed for a name hierarchy.

6. Existing name and directory services employed in different network computing
environments can be transparently encapsulated using name contexts. All of the
above features contribute to making this possible.

7. The design does not address namespace administration. It is the responsibility of
higher-level software to administer the namespace.

3.2 The CosNaming Module
The CosNaming module is a collection of interfaces that together define the Naming
Service. This module contains three interfaces:

• The NamingContext interface
• The BindingIterator interface

Naming Service: v1.1 Service Description Month Year 3-5

3

• The NamingContextExt interface

This section describes these interfaces and their operations in detail.

The CosNaming module is shown below.

Note – Istring was a “placeholder for a future IDL internationalized string data
type” in the original specification. It is maintained solely for compatibility reasons.

3-6 CORBAservices: Common Object Services Specification

3

// File: CosNaming.idl
#ifndef _COSNAMING_IDL_
#define _COSNAMING_IDL_

#pragma prefix "omg.org"

module CosNaming {
typedef string Istring;

struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence<NameComponent> Name;

enum BindingType { nobject, ncontext };

struct Binding {
Name binding_name;
BindingType binding_type;

};

// Note: In struct Binding, binding_name is incorrectly defined
// as a Name instead of a NameComponent. This definition is
// unchanged for compatibility reasons.
typedef sequence <Binding> BindingList;

interface BindingIterator;

interface NamingContext {
enum NotFoundReason {

 missing_node, not_context, not_object
 };

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

exception InvalidName{};

exception AlreadyBound {};

exception NotEmpty{};

Naming Service: v1.1 Service Description Month Year 3-7

3

void bind(in Name n, in Object obj)
raises(

NotFound, CannotProceed,
 InvalidName, AlreadyBound

);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(

 NotFound, CannotProceed,
 InvalidName, AlreadyBound
);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

Object resolve (in Name n)
raises(NotFound, CannotProceed, InvalidName);

void unbind(in Name n)
raises(NotFound, CannotProceed, InvalidName);

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(
NotFound, AlreadyBound,
CannotProceed, InvalidName

);

void destroy() raises(NotEmpty);

void list(
in unsigned long how_many,
out BindingList bl,
out BindingIterator bi

);

};

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many, out BindingList bl);
void destroy();

};

interface NamingContextExt: NamingContext {
typedef string StringName;
typedef string Address;
typedef string URLString;

3-8 CORBAservices: Common Object Services Specification

3

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addr, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName

);
};

};
#endif // _COSNAMING_IDL_

Resolution of Compound Names

In this specification operations that are performed on compound names recursively
perform the equivalent of a resolve operation on all but the last component of a
name before performing the operation on the final name component. The general form
is defined as follows:

ctx->op(<c1; c2; ...; cn>) equiv

ctx->resolve(<c1>)->resolve(<c2; cn-1>)->op(<cn>)

where ctx is a naming context, <c1; ...; cn> a compound name, and op a naming
context operation.

Note – The intermediate components, <c1: ...; cn> of the compound name must have
been bound using bind_context or rebind_context to take part in the resolve.

3.3 NamingContext Interface
The following sections describe the naming context data types and interface in detail.

Naming Service: v1.1 Service Description Month Year 3-9

3

3.3.1 Structures

NameComponent
struct NameComponent {

Istring Id;
Istring kind;

};

A name component consists of two attributes: the identifier attribute, id, and the kind
attribute, kind.

Both of these attributes are arbitrary-length strings of ISO Latin-1 characters,
excluding the ASCII NUL character.

When comparing two NameComponents for equality both the id and the kind field
must match in order for two NameComponents to be considered identical. This
applies for zero-length (empty) fields as well. Name comparisons are case sensitive.

An implementation may place limitations on the characters that may be contained in a
name component, as well as the length of a name component. For example, an
implementation may disallow certain characters, may not accept the empty string as a
legal name component, or may limit name components to some maximum length.

Name

A name is a sequence of NameComponents. The empty sequence is not a legal name.
An implementation may limit the length of the sequence to some maximum. When
comparing Names for equality, each NameComponent in the first name must match
the corresponding NameComponent in the second Name for the names to be
considered identical.

Binding
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence<Binding> BindingList;

This types are used by the NamingContext::list ,
BindingIterator::next_n and BindingIterator::next_one operations.
A Binding contains a Name in the member binding_name , together with the
BindingType of that Name in the member binding_type.

3-10 CORBAservices: Common Object Services Specification

3

Note – The binding_name member is incorrectly typed as a Name instead of a
NameComponent. For compatibility with the original CosNaming specification this
incorrect definition has been retained. The binding_name is used as a
NameComponent and will always be a Name with length of 1.

The value of binding_type is ncontext if a Name denotes a binding created
with one of the following operations:

• bind_context

• rebind_context

• bind_new_context

For bindings created with any other operation, the value of BindingType is
nobject.

3.3.2 Exceptions
The Naming Service exceptions are defined below.

NotFound

exception NotFound {
NotFoundReason why;
Name rest_of_name;

};

This exception is raised by operations when a component of a name does not identify
a binding or the type of the binding is incorrect for the operation being performed. The
why member explains the reason for the exception and the rest_of_name member
contains the remainder of the non-working name:

• missing_node

The first name component in rest_of_name denotes a binding that is not bound
under that name within its parent context.

• not_context

The first name component in rest_of_name denotes a binding with a type of
nobject when the type ncontext was required.

• not_object

The first name component in rest_of_name denotes a binding with a type of
ncontext when the type nobject was required.

Naming Service: v1.1 Service Description Month Year 3-11

3

CannotProceed

exception CannotProceed {
NamingContext cxt;
Name rest_of_name;

};

This exception is raised when an implementation has given up for some reason. The
client, however, may be able to continue the operation at the returned naming context.

The cxt member contains the context that the operation may be able to retry from.

The rest_of_name member contains the remainder of the non-working name.

InvalidName

exception InvalidName {};

This exception is raised if a Name is invalid. A name of length zero is invalid
(containing no name components). Implementations may place further limitations on
what constitutes a legal name and raise this exception to indicate a violation.

AlreadyBound

exception AlreadyBound {};

Indicates an object is already bound to the specified name. Only one object can be
bound to a particular Name in a context.

NotEmpty

exception NotEmpty {};

This exception is raised by destroy if the NamingContext contains bindings. A
NamingContext must be empty to be destroyed.

3.3.3 Binding Objects
The binding operations name an object in a naming context. Once an object is bound,
it can be found with the resolve operation. The Naming Service supports four
operations to create bindings: bind, rebind, bind_context and
rebind_context . bind_new_context also creates a binding, see section 3.3.6.

3-12 CORBAservices: Common Object Services Specification

3

void bind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFound, CannotProceed, InvalidName);

void bind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName, AlreadyBound);

void rebind_context(in Name n, in NamingContext nc)
raises(NotFound, CannotProceed, InvalidName);

bind

Creates an nobject binding in the naming context.

rebind

Creates an nobject binding in the naming context even if the name is already bound
in the context.

If already bound, the previous binding must be of type nobject; otherwise, a
NotFound exception with a why reason of not_object is raised.

bind_context
Creates an ncontext binding in the parent naming context. Attempts to bind a nil
context raise a BAD_PARAM exception.

rebind_context

Creates an ncontext binding in the naming context even if the name is already
bound in the context.

If already bound, the previous binding must be of type ncontext; otherwise, a
NotFound exception with a why reason of not_context will be raised.

Usage

If a binding with the specified name already exists, bind and bind_context raise
an AlreadyBound exception.

If an implementation places limits on the number of bindings within a context, bind
and bind_context raise the IMP_LIMIT system exception if the new binding
cannot be created.

Naming contexts bound using bind_context and rebind_context participate in
name resolution when compound names are passed to be resolved; naming contexts
bound with bind and rebind do not.

Naming Service: v1.1 Service Description Month Year 3-13

3

Use of rebind_context may leave a potential orphaned context (one that is
unreachable within an instance of the Name Service). Policies and administration tools
regarding potential orphan contexts are implementation-specific.

If rebind or rebind_context raise a NotFound exception because an already
existing binding is of the wrong type, the rest_of_name member of the exception
has a sequence length of 1.

3.3.4 Resolving Names
The resolve operation is the process of retrieving an object bound to a name in a
given context. The given name must exactly match the bound name. The naming
service does not return the type of the object. Clients are responsible for “narrowing”
the object to the appropriate type. That is, clients typically cast the returned object
from Object to a more specialized interface. The IDL definition of the resolve
operation is:

Object resolve (in Name n)
 raises (NotFound, CannotProceed, InvalidName);

Names can have multiple components; therefore, name resolution can traverse multiple
contexts. These contexts can be federated between different Naming Service instances.

3.3.5 Unbinding Names
The unbind operation removes a name binding from a context. The definition of the
unbind operation is:

void unbind(in Name n)
raises (NotFound, CannotProceed, InvalidName);

3.3.6 Creating Naming Contexts
The Naming Service supports two operations to create new contexts: new_context
and bind_new_context .

NamingContext new_context();
NamingContext bind_new_context(in Name n)

raises(NotFound, AlreadyBound, CannotProceed, InvalidName);

new_context

This operation returns a new naming context. The new context is not bound to any
name.

3-14 CORBAservices: Common Object Services Specification

3

bind_new_context

This operation creates a new context and creates an ncontext binding for it using the
name supplied as an argument.

Usage

If an implementation places limits on the number of naming contexts, both
new_context and bind_new_context can raise the IMP_LIMIT system
exception if the context cannot be created. bind_new_context can also raise
IMP_LIMIT if the bind would cause an implementation limit on the number of
bindings in a context to be exceeded.

3.3.7 Deleting Contexts
The destroy operation deletes a naming context.

void destroy()
raises(NotEmpty);

This operation destroys its naming context. If there are bindings denoting the destroyed
context, these bindings are not removed. If the naming context contains bindings, the
operation raises NotEmpty.

3.3.8 Listing a Naming Context
The list operation allows a client to iterate through a set of bindings in a naming
context.

void list (in unsigned long how_many,
out BindingList bl, out BindingIterator bi);

};

list returns the bindings contained in a context in the parameter bl. The
bl parameter is a sequence where each element is a Binding containing a Name of
length 1 representing a single NameComponent.

The how_many parameter determines the maximum number of bindings to return in
the parameter bl, with any remaining bindings to be accessed through the returned
BindingIterator bi.

• A non-zero value of how_many guarantees that bl contains at most how_many
elements. The implementation is free to return fewer than the number of bindings
requested by how_many. However, for a non-zero value of how_many, it may not
return a bl sequence with zero elements unless the context contains no bindings.

• If how_many is set to zero, the client is requesting to use only the
BindingIterator bi to access the bindings and list returns a zero length
sequence in bl.

• The parameter bi returns a reference to an iterator object.

Naming Service: v1.1 Service Description Month Year 3-15

3

• If the bi parameter returns a non-nil reference, this indicates that the call to
list may not have returned all of the bindings in the context and that the
remaining bindings (if any) must be retrieved using the iterator. This applies for
all values of how_many .

• If the bi parameter returns a nil reference, this indicates that the bl parameter
contains all of the bindings in the context. This applies for all values of
how_many.

3.4 The BindingIterator Interface
The BindingIterator interface allows a client to iterate through the bindings
using the next_one or next_n operations:

If a context is modified in between calls to list, next_one, or next_n, the
behavior of further calls to next_one or next_n is implementation-dependent.

interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,

out BindingList bl);
void destroy();

};

next_one
The next_one operation returns the next binding. It returns true if it is returning a
binding, false if there are no more bindings to retrieve. If next_one returns false, the
returned Binding is indeterminate

Further calls to next_one after it has returned false have undefined behavior.

next_n
next_n returns, in the parameter bl, bindings not yet retrieved with list or
previous calls to next_n or next_one. It returns true if bl is a non-zero length
sequence; it returns false if there are no more bindings and bl is a zero-length
sequence.

The how_many parameter determines the maximum number of bindings to return in
the parameter bl:

• A non-zero value of how_many guarantees that bl contains at most how_many
elements. The implementation is free to return fewer than the number of bindings
requested by how_many. However, it may not return a bl sequence with zero
elements unless there are no bindings to retrieve.

• A zero value of how_many is illegal and raises a BAD_PARAM system exception.

3-16 CORBAservices: Common Object Services Specification

3

next_n returns false with a bl parameter of length zero once all bindings have been
retrieved. Further calls to next_n after it has returned a zero-length sequence have
undefined behavior.

destroy

The destroy operation destroys its iterator. If a client invokes any operation on an
iterator after calling destroy, the operation raises OBJECT_NOT_EXIST .

3.4.1 Garbage Collection of Iterators
Clients that create iterators but never call destroy can cause an implementation to
permanently run out of resources. To protect itself against this scenario, an
implementation is free to destroy an iterator object at any time without warning, using
whatever algorithm it considers appropriate to choose iterators for destruction. In order
to be robust in the presence of garbage collection, clients should be written to expect
OBJECT_NOT_EXIST from calls to an iterator and handle this exception gracefully.

3.5 Stringified Names
Names are sequences of name components. This representation makes it difficult for
applications to conveniently deal with names for I/O purposes, human or otherwise.
This specification defines a syntax for stringified names and provides operations to
convert a name in stringified form to its equivalent sequence form and vice-versa (see
section 3.6.4).

A stringified name represents one and only one CosNaming::Name . If two names
are equal, their stringified representations are equal (and vice-versa).

The stringified name representation reserves use of the characters ‘/’, ‘.’, and ‘\’. The
forward slash ‘/’ is a name component separator; the dot ‘.’ separates id and kind
fields. The backslash ‘\’ is an escape character (see section 3.5.2).

3.5.1 Basic Representation of Stringified Names
A stringified name consists of the name components of a name separated by a
‘/’character. For example, a name consisting of the components “a”, “b”, and “c” (in
that order) is represented as

a/b/c

Stringified names use the ‘.’character to separate id and kind fields in the stringified
representation. For example, the stringified name

a.b/c.d/.

Naming Service: v1.1 Service Description Month Year 3-17

3

represents the CosNaming::Name :

The single ‘.’ character is the only representation of a name component with empty id
and kind fields.

If a name component in a stringified name does not contain a ‘.’character, the entire
component is interpreted as the id field, and the kind field is empty. For example:

a/./c.d/.e

corresponds to the CosNaming::Name :

If a name component has a non-empty id field and an empty kind field, the
stringified representation consists only of the id field. A trailing ‘.’ character is not
permitted.

3.5.2 Escape Mechanism
The backslash ‘\’ character escapes the reserved meaning of ‘/’, ‘.’, and ‘\’ in a
stringified name. The meaning of any other character following a ‘\’ is reserved for
future use.

NameComponent Separators

If a name component contains a ‘/’ slash character, the stringified representation uses
the ‘\’character as an escape. For example, the stringified name

a/x\/y\/z/b

represents the name consisting of the name components “a”, “x/y/z”, and “b”.

Id and kind Fields

The backslash escape mechanism is also used for ‘.’, so id and kind fields can
contain a literal ‘.’. To illustrate, the stringified name

a\.b.c\.d/e.f

Index id kind

0 a b

1 c d
2 <empty> <empty>

Index id kind

0 a <empty>

1 <empty> <empty>
2 c d

3 <empty> e

3-18 CORBAservices: Common Object Services Specification

3

represents the CosNaming::Name :

The Escape Character

The escape character ‘\’ must be escaped if it appears in a name component. For
example, the stringified name:

a/b\\/c

represents the name consisting of the components “a”, “b\”, and “c”.

3.6 URL schemes
This section describes the Uniform Resource Locator (URL) schemes available to
represent a CORBA object and a CORBA object bound in a NamingContext .

3.6.1 IOR
The string form of an IOR (IOR:<hex_octets>) is a valid URL. The scheme name is
IOR and the text after the ‘:’ is defined in the CORBA 2.3 specification, Section
13.6.6. The IOR URL is robust and insulates the client from the encapsulated transport
information and object key used to reference the object. This URL format is
independent of Naming Service.

3.6.2 corbaloc
It is difficult for humans to exchange IORs through non-electronic means because of
their length and the text encoding of binary information. The corbaloc URL scheme
provides URLs that are familiar to people and similar to ftp or http URLs.

The corbaloc URL is described in the CORBA 2.3 Specification, Section 13.6.6.
This URL format is independent of the Naming Service.

3.6.3 corbaname
A corbaname URL is similar to a corbaloc URL. However a corbaname URL
also contains a stringified name that identifies a binding in a naming context.

corbaname Examples
corbaname::555xyz.com/dev/NContext1#a/b/c

Index id kind

0 a.b c.d

1 e f

Naming Service: v1.1 Service Description Month Year 3-19

3

This example denotes a naming context that can be contacted in the same manner as a
corbaloc URL at 555xyz.com with a key of “dev/NContext1”. The “#” character
denotes the start of the stringified name ,“a/b/c “. This name is resolved against the
context to yield the final object.

corbaname::555xyz.com#a/b/c

When an object key is not specified, as in the above example, the default key of
“NameService” is used to contact the naming context.

corbaname:rir:#a/b/c

This URL will resolve the stringified name “a/b/c” against the naming context returned
by resolve_initial_references(“NameService”).

corbaname:rir:

corbaname:rir:/NameService

The above URLs are equivalent to corbaloc:rir: and reference the naming
context returned by resolve_initial_references(“NameService”).

corbaname:atm:00033...#a/b/c

corbaname::55xyz.com,atm:00033.../dev/NCtext#a/b/c

These last URLs illustrate support of multiple protocols as allowed by corbaloc
URLs. atm: is an example only and is not a defined URL protocol at this time.

Note – Unlike stringified names, corbanames cannot be compared directly for
equality as the address specification can differ for corbaname URLs with the same
meaning.

corbaname Syntax

 The full corbaname BNF is:
<corbaname> = “corbaname:”<corbaloc_obj>[“#”<string_name>]
<corbaloc_obj> = <obj_addr_list> [“/”<key_string>]
<obj_addr_list> = as defined in a corbaloc URL
<key_string> = as defined in a corbaloc URL
<string_name>= stringified Name | empty_string

Where:

corbaloc_obj: portion of a corbaname URL that identifies the naming context. The
syntax is identical to its use in a corbaloc URL.

obj_addr_list: as defined in a corbaloc URL

key_string: as defined in a corbaloc URL.

string_name: a stringified Name with URL escapes as defined below.

3-20 CORBAservices: Common Object Services Specification

3

corbaname Character Escapes

corbaname URLs use the escape mechanism described in the Internet Engineering
Task Force (IETF) RFC 2396. These escape rules insure that URLs can be transferred
via a variety of transports without undergoing changes. The character escape rules for
the stringified name portion of an corbaname are:

US-ASCII alphanumeric characters are not escaped. Characters outside this range are
escaped, except for the following:

“;” | “/” | “:” | “?” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

corbaname Escape Mechanism

The percent ‘%’ character is used as an escape. If a character that requires escaping is
present in a name component it is encoded as two hexadecimal digits following a “%”
character to represent the octet. (The first hexadecimal character represent the high-
order nibble of the octet, the second hexadecimal character represents the low-order
nibble.) If a ‘%’ is not followed by two hex digits, the stringified name is syntactically
invalid.

Examples

corbaname Resolution

corbaname resolution can be implemented as a simple extension to corbaloc
URL processing. Given a corbaname:

corbaname:<corbaloc_obj>[“#” <string_name>]

The corbaname is resolved by:

1. First constructing an corbaloc URL of the form:
corbaloc:<corabloc_obj> .

If the <corbaloc_obj> does not contain a key string, a default key of “NameService”
is used.

Table 3-1

Stringified Name After URL Escapes Comment

a.b/c.d a.b/c.d URL form identical

<a>.b/c.d %3ca%3e.b/c.d Escaped “<“ and “>”

a.b/ c.d a.b/%20%20c.d Escaped two “ “ spaces

a%b/c%d a%25b/c%25d Escaped two “%” percents

a\\b/c.d a%5c%5c/c.d Escaped “\” character,
which is already escaped
in the stringified name

Naming Service: v1.1 Service Description Month Year 3-21

3

2. This is converted to a naming context object reference with
CORBA::ORB::string_to_object .

3. The <string_name> is converted to a CosNaming::Name .

4. The resulting name is passed to a resolve operation on the naming context.

5. The object reference returned by the resolve is the result.

Implementations are not required to use the method described and may make
optimizations appropriate to their environment.

3.6.4 Converting between CosNames, Stringified Names, and URLs
The NamingContextExt interface, derived from NamingContext , provides the
operations required to use URLs and stringified names.

module CosNaming {
// ...
interface NamingContextExt: NamingContext {

typedef string StringName;
typedef string Address;
typedef string URLString;

StringName to_string(in Name n) raises(InvalidName);
Name to_name(in StringName sn)

raises(InvalidName);

exception InvalidAddress {};

URLString to_url(in Address addrkey, in StringName sn)
raises(InvalidAddress, InvalidName);

Object resolve_str(in StringName n)
raises(

NotFound, CannotProceed,
InvalidName

);
};

};

to_string

This operation accepts a Name and returns a stringified name. If the Name is invalid,
an InvalidName exception is raised.

3-22 CORBAservices: Common Object Services Specification

3

to_name

This operation accepts a stringified name and returns a Name. If the stringified name is
syntactically malformed or violates an implementation limit, an InvalidName
exception is raised.

resolve_str

This is a convenience operation that performs a resolve in the same manner as
NamingContext ::resolve. It accepts a stringified name as an argument instead of
a Name.

to_url

This operation takes a corbaloc URL <address> and <key_string> component such
as

• :myhost.555xyz.com

• :myhost.555xyz.com/a/b/c

• atm:00002112...,:myhost.xyz.com/a/b/c

for the first parameter, and a stringified name for the second. It then performs any
escapes necessary on the parameters and returns a fully formed URL string. An
exception is raised if either the corbaloc address and key parameter or name parameter
are malformed.

It is legal for the stringified_name to be empty. If the address is empty, an
InvalidAddress exception is raised.

URL to Object Reference

Conversions from URLs to objects are handled by
CORBA::ORB::string_to_object as described in the CORBA 2.3 Specification,
Section 13.6.6.

3.7 Initial Reference to a NamingContextExt
An initial reference to an instance of this interface can be obtained by calling
resolve_initial_references with an ObjectID of NameService .

3.8 Conformance Requirements

3.8.1 Optional Interfaces
There are no optional interfaces in this specification. A compliant implementation must
implement all of the functionality and interfaces described.

Naming Service: v1.1 Service Description Month Year 3-23

3

3.8.2 Documentation Requirements
A compliant implementation must document all of the following:

• any limitations to the character values or character sequences that may be used in a
name component

• any limitations to the length (including minimum or maximum) of a name
component

• any limitations to number of name components in a name

• any limitations to the maximum number of bindings in a context

• any limitations to the total number of bindings (implementation-wide)

• any limitations to the maximum number of contexts

• the means provided to deal with orphaned contexts and bindings

• Any policy for dealing with potentially orphaned naming contexts. Orphaned
contexts are contexts that are not bound in any other context within a naming
server.

• Any policy for destroying binding iterators that are considered to be no longer in
use.

• Under what circumstances, if any, a CannotProceed exception is raised.

3-24 CORBAservices: Common Object Services Specification

3

 CORBA V2.3 June 1999 4-25

 ORB Interface 4

Note – This chapter is the CORBA 2.3 Specification Chapter 4 with a new Section 4.8,
“Configuring Initial Service References”. The new section is in blue and marked with
changebars. Changebars outside of 4.8 are not for the Interoperable Naming Service
submission.

The ORB Interface chapter has been updated based on the CORE changes from
(ptc/98-09-04) and the Objects by Value documents (ptc/98-07-06) and (orbos/98-01-
18). Changes from RTF 2.4 (ptc/99-03-01) and policy management related material
from the Messaging specification (orbos/98-05-05) have also been incorporated.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 4-26

“The ORB Operations” 4-26

“Object Reference Operations” 4-32

“ValueBase Operations” 4-40

“ORB and OA Initialization and Initial References” 4-40

“ORB Initialization” 4-41

“Obtaining Initial Object References” 4-42

“Current Object” 4-46

4-26 CORBA V2.3 June 1999

4

4.1 Overview
This chapter introduces the operations that are implemented by the ORB core, and
describes some basic ones, while providing reference to the description of the
remaining operations that are described elsewhere. The ORB interface is the interface
to those ORB functions that do not depend on which object adapter is used. These
operations are the same for all ORBs and all object implementations, and can be
performed either by clients of the objects or implementations. The Object interface
contains operations that are implemented by the ORB, and are accessed as implicit
operations of the Object Reference. The ValueBase interface contains operations that
are implemented by the ORB, and are accessed as implicit operations of the ValueBase
Reference.

Because the operations in this section are implemented by the ORB itself, they are not
in fact operations on objects, although they are described that way for the Object or
ValueBase interface operations and the language binding will, for consistency, make
them appear that way.

4.2 The ORB Operations
The ORB interface contains the operations that are available to both clients and
servers. These operations do not depend on any specific object adapter or any specific
object reference.

module CORBA {

interface NVList; // forward declaration
interface OperationDef; // forward declaration
interface TypeCode; // forward declaration

typedef short PolicyErrorCode;
// for the definition of consts see “PolicyErrorCode” on page 4-49

interface Request; // forward declaration
typedef sequence <Request> RequestSeq;

native AbstractBase;

exception PolicyError {PolicyErrorCode reason;};

typedef string RepositoryId;

“Policy Object” 4-47

“Management of Policy Domains” 4-54

“Thread-Related Operations” 4-60

Section Title Page

CORBA V2.3 The ORB Operations June 1999 4-27

4

typedef string Identifier;

// StructMemberSeq defined in Chapter 10
// UnionMemberSeq defined in Chapter 10
// EnumMemberSeq defined in Chapter 10

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail {
ServiceDetailType service_detail_type;
sequence <octet> service_detail;

};

struct ServiceInformation {
sequence <ServiceOption> service_options;
sequence <ServiceDetail> service_details;

};

native ValueFactory;

interface ORB { // PIDL
#pragma version ORB 2.3

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;

exception InvalidName {};

string object_to_string (
in Object obj

);

Object string_to_object (
in string str

);

// Dynamic Invocation related operations

void create_list (
in long count,
out NVList new_list

);

void create_operation_list (
in OperationDef oper,
out NVList new_list

);

4-28 CORBA V2.3 June 1999

4

void get_default_context (
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req

);

void send_multiple_requests_deferred(
in RequestSeq req

);

boolean poll_next_response();

void get_next_response(
out Request req

);

// Service information operations

boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);

ObjectIdList list_initial_services ();

// Initial reference operation

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

// Type code creation operations

TypeCode create_struct_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_union_tc (
in RepositoryId id,
in Identifier name,
in TypeCode discriminator_type,
in UnionMemberSeq members

);

TypeCode create_enum_tc (
in RepositoryId id,
in Identifier name,

CORBA V2.3 The ORB Operations June 1999 4-29

4

in EnumMemberSeq members
);

TypeCode create_alias_tc (
in RepositoryId id,
in Identifier name,
in TypeCode original_type

);

TypeCode create_exception_tc (
in RepositoryId id,
in Identifier name,
in StructMemberSeq members

);

TypeCode create_interface_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_string_tc (
in unsigned long bound

);

TypeCode create_wstring_tc (
in unsigned long bound

);

TypeCode create_fixed_tc (
in unsigned short digits,
in short scale

);

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element type

);

TypeCode create_recursive_sequence_tc // deprecated
in unsigned long bound,
in unsigned long offset

);

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

TypeCode create_value_tc (
in RepositoryId id,
in Identifier name,

4-30 CORBA V2.3 June 1999

4

in ValueModifier type_modifier,
in TypeCode concrete_base,
in ValueMembersSeq members

);

TypeCode create_value_box_tc (
in RepositoryId id,
in Identifier name,
in TypeCode boxed_type

);

TypeCode create_native_tc (
in RepositoryId id,
in Identifier name

);

TypeCode create_recursive_tc(
in RepositoryId id

);

TypeCode create_abstract_interface_tc(
in RepositoryId id,
in Identifier name

);

// Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(
in boolean wait_for_completion

);

void destroy();

// Policy related operations

Policy create_policy(
in PolicyType type,
in any val

) raises (PolicyError);

// Dynamic Any related operations deprecated and removed
// from primary list of ORB operations

// Value factory operations

CORBA V2.3 The ORB Operations June 1999 4-31

4

ValueFactory register_value_factory(
in RepositoryId id,
in ValueFactory factory

);

void unregister_value_factory(in RepositoryId id);

ValueFactory lookup_value_factory(in RepositoryId id);
};

};

All types defined in this chapter are part of the CORBA module. When referenced in
OMG IDL, the type names must be prefixed by “CORBA::”.

The operations object_to_string and string_to_object are described in
“Converting Object References to Strings” on page 4-31.

For a description of the create_list and create_operation_list operations, see
Section 7.4, “List Operations,” on page 7-10. The get_default_context operation is
described in the section Section 7.6.1, “get_default_context,” on page 7-14. The
send_multiple_requests_oneway and send_multiple_requests_deferred
operations are described in the section Section 7.3.2, “send_multiple_requests,” on
page 7-9. The poll_next_response and get_next_response operations are
described in the section Section 7.3.5, “get_next_response,” on page 7-10.

The list_intial_services and resolve_initial_references operations are described
in “Obtaining Initial Object References” on page 4-42.

The Type code creation operations with names of the form create_<type>_tc are
described in Section 10.7.3, “Creating TypeCodes,” on page 10-53.

The work_pending, perform_work, shutdown, destroy and run operations are
described in “Thread-Related Operations” on page 4-60.

The create_policy operations is described in “Create_policy” on page 4-50.

The register_value_factory, unregister_value_factory and
lookup_value_factory operations are described in Section 5.4.3, “Language Specific
Value Factory Requirements,” on page 5-9.

4.2.1 Converting Object References to Strings

4.2.1.1 object_to_string

string object_to_string (
in Object obj

);

4-32 CORBA V2.3 June 1999

4

4.2.1.2 string_to_object

Object string_to_object (
in string str

);

Because an object reference is opaque and may differ from ORB to ORB, the object
reference itself is not a convenient value for storing references to objects in persistent
storage or communicating references by means other than invocation. Two problems
must be solved: allowing an object reference to be turned into a value that a client can
store in some other medium, and ensuring that the value can subsequently be turned
into the appropriate object reference.

An object reference may be translated into a string by the operation
object_to_string. The value may be stored or communicated in whatever ways
strings may be manipulated. Subsequently, the string_to_object operation will
accept a string produced by object_to_string and return the corresponding object
reference.

To guarantee that an ORB will understand the string form of an object reference, that
ORB’s object_to_string operation must be used to produce the string. For all
conforming ORBs, if obj is a valid reference to an object, then
string_to_object(object_to_string(obj)) will return a valid reference to the same
object, if the two operations are performed on the same ORB. For all conforming
ORB's supporting IOP, this remains true even if the two operations are performed on
different ORBs.

4.2.2 Getting Service Information

4.2.2.1 get_service_information

boolean get_service_information (
in ServiceType service_type;
out ServiceInformation service_information;

);

The get_service_information operation is used to obtain information about CORBA
facilities and services that are supported by this ORB. The service type for which
information is being requested is passed in as the in parameter service_type, the
values defined by constants in the CORBA module. If service information is available
for that type, that is returned in the out parameter service_information, and the
operation returns the value TRUE. If no information for the requested services type is
available, the operation returns FALSE (i.e., the service is not supported by this ORB).

4.3 Object Reference Operations
There are some operations that can be done on any object. These are not operations in
the normal sense, in that they are implemented directly by the ORB, not passed on to
the object implementation. We will describe these as being operations on the object

CORBA V2.3 Object Reference Operations June 1999 4-33

4

reference, although the interfaces actually depend on the language binding. As above,
where we used interface Object to represent the object reference, we define an
interface for Object:

module CORBA {

interface DomainManager; // forward declaration
typedef sequence <DomainManager> DomainManagersList;

interface Policy; // forward declaration
typedef sequence <Policy> PolicyList;
typedef unsigned long PolicyType;

interface Context; // forward declaration

typedef string Identifier;
interface Request; // forward declaration
interface NVList; // forward declaration
struct NamedValue{}; // an implicitly well known type
typedef unsigned long Flags;
interface InterfaceDef;

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

interface Object { // PIDL

InterfaceDef get_interface ();

boolean is_nil();

Object duplicate ();

void release ();

boolean is_a (
in string logical_type_id

);

boolean non_existent();

boolean is_equivalent (
in Object other_object

);

unsigned long hash(
in unsigned long maximum

);

void create_request (
in Context ctx

4-34 CORBA V2.3 June 1999

4

in Identifier operation,
in NVList arg_list,
inout NamedValue result,
out Request request,
in Flags req_flag

);

Policy get_policy (
in PolicyType policy_type

);

DomainManagersList get_domain_managers ();

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);
};

};

The create_request operation is part of the Object interface because it creates a
pseudo-object (a Request) for an object. It is described with the other Request
operations in the section Section 7.2, “Request Operations,” on page 7-4.

Unless otherwise stated below, the operations in the IDL above do not require access
to remote information.

4.3.1 Determining the Object Interface

4.3.1.1 get_interface

InterfaceDef get_interface();

An operation on the object reference, get_interface, returns an object in the Interface
Repository, which provides type information that may be useful to a program. See the
Interface Repository chapter for a definition of operations on the Interface Repository.
The implementation of this operation may involve contacting the ORB that implements
the target object.

4.3.2 Duplicating and Releasing Copies of Object References

4.3.2.1 duplicate

Object duplicate();

CORBA V2.3 Object Reference Operations June 1999 4-35

4

4.3.2.2 release

void release();

Because object references are opaque and ORB-dependent, it is not possible for clients
or implementations to allocate storage for them. Therefore, there are operations
defined to copy or release an object reference.

If more than one copy of an object reference is needed, the client may create a
duplicate. Note that the object implementation is not involved in creating the duplicate,
and that the implementation cannot distinguish whether the original or a duplicate was
used in a particular request.

When an object reference is no longer needed by a program, its storage may be
reclaimed by use of the release operation. Note that the object implementation is not
involved, and that neither the object itself nor any other references to it are affected by
the release operation.

4.3.3 Nil Object References

4.3.3.1 is_nil

boolean is_nil();

An object reference whose value is OBJECT_NIL denotes no object. An object
reference can be tested for this value by the is_nil operation. The object
implementation is not involved in the nil test.

4.3.4 Equivalence Checking Operation

4.3.4.1 is_a

boolean is_a(
in RepositoryId logical_type_id

);

An operation is defined to facilitate maintaining type-safety for object references over
the scope of an ORB.

The logical_type_id is a string denoting a shared type identifier (RepositoryId).
The operation returns true if the object is really an instance of that type, including if
that type is an ancestor of the “most derived” type of that object.

Determining whether an object's type is compatible with the logical_type_id may
require contacting a remote ORB or interface repository. Such an attempt may fail at
either the local or the remote end. If is_a cannot make a reliable determination of type
compatibility due to failure, it raises an exception in the calling application code. This
enables the application to distinguish among the TRUE, FALSE, and indeterminate
cases.

4-36 CORBA V2.3 June 1999

4

This operation exposes to application programmers functionality that must already
exist in ORBs which support “type safe narrow” and allows programmers working in
environments that do not have compile time type checking to explicitly maintain type
safety.

4.3.5 Probing for Object Non-Existence

4.3.5.1 non_existent

boolean non_existent ();

The non_existent operation may be used to test whether an object (e.g., a proxy
object) has been destroyed. It does this without invoking any application level
operation on the object, and so will never affect the object itself. It returns true (rather
than raising CORBA::OBJECT_NOT_EXIST) if the ORB knows authoritatively that
the object does not exist; otherwise, it returns false.

Services that maintain state that includes object references, such as bridges, event
channels, and base relationship services, might use this operation in their “idle time” to
sift through object tables for objects that no longer exist, deleting them as they go, as
a form of garbage collection. In the case of proxies, this kind of activity can cascade,
such that cleaning up one table allows others then to be cleaned up.

Probing for object non-existence may require contacting the ORB that implements the
target object. Such an attempt may fail at either the local or the remote end. If non-
existent cannot make a reliable determination of object existence due to failure, it
raises an exception in the calling application code. This enables the application to
distinguish among the true, false, and indeterminate cases.

4.3.6 Object Reference Identity
In order to efficiently manage state that include large numbers of object references,
services need to support a notion of object reference identity. Such services include not
just bridges, but relationship services and other layered facilities.

Two identity-related operations are provided. One maps object references into disjoint
groups of potentially equivalent references, and the other supports more expensive
pairwise equivalence testing. Together, these operations support efficient maintenance
and search of tables keyed by object references.

4.3.6.1 Hashing Object Identifiers

hash

unsigned long hash(
in unsigned long maximum

);

CORBA V2.3 Object Reference Operations June 1999 4-37

4

Object references are associated with ORB-internal identifiers which may indirectly be
accessed by applications using the hash operation. The value of this identifier does
not change during the lifetime of the object reference, and so neither will any hash
function of that identifier.

The value of this operation is not guaranteed to be unique; that is, another object
reference may return the same hash value. However, if two object references hash
differently, applications can determine that the two object references are not identical.

The maximum parameter to the hash operation specifies an upper bound on the hash
value returned by the ORB. The lower bound of that value is zero. Since a typical use
of this feature is to construct and access a collision chained hash table of object
references, the more randomly distributed the values are within that range, and the
cheaper those values are to compute, the better.

For bridge construction, note that proxy objects are themselves objects, so there could
be many proxy objects representing a given “real” object. Those proxies would not
necessarily hash to the same value.

4.3.6.2 Equivalence Testing

is_equivalent

boolean is_equivalent(
in Object other_object

);

The is_equivalent operation is used to determine if two object references are
equivalent, so far as the ORB can easily determine. It returns TRUE if the target object
reference is known to be equivalent to the other object reference passed as its
parameter, and FALSE otherwise.

If two object references are identical, they are equivalent. Two different object
references which in fact refer to the same object are also equivalent.

ORBs are allowed, but not required, to attempt determination of whether two distinct
object references refer to the same object. In general, the existence of reference
translation and encapsulation, in the absence of an omniscient topology service, can
make such determination impractically expensive. This means that a FALSE return
from is_equivalent should be viewed as only indicating that the object references are
distinct, and not necessarily an indication that the references indicate distinct objects.

A typical application use of this operation is to match object references in a hash table.
Bridges could use it to shorten the lengths of chains of proxy object references.
Externalization services could use it to “flatten” graphs that represent cyclical
relationships between objects. Some might do this as they construct the table, others
during idle time.

4-38 CORBA V2.3 June 1999

4

4.3.7 Getting Policy Associated with the Object

4.3.7.1 get_policy

The get_policy operation returns the policy object of the specified type (see “Policy
Object” on page 4-47), which applies to this object. It returns the effective Policy for
the object reference. The effective Policy is the one that would be used if a request
were made. This Policy is determined first by obtaining the effective override for the
PolicyType as returned by get_client_policy. The effective override is then
compared with the Policy as specified in the IOR. The effective Policy is the
intersection of the values allowed by the effective override and the IOR-specified
Policy. If the intersection is empty, the system exception INV_POLICY is raised.
Otherwise, a Policy with a value legally within the intersection is returned as the
effective Policy. The absence of a Policy value in the IOR implies that any legal
value may be used. Invoking non_existent on an object reference prior to
get_policy ensures the accuracy of the returned effective Policy. If get_policy is
invoked prior to the object reference being bound, the returned effective Policy is
implementation dependent. In that situation, a compliant implementation may do any
of the following: raise the system exception BAD_INV_ORDER, return some value
for that PolicyType which may be subject to change once a binding is performed, or
attempt a binding and then return the effective Policy. Note that if the effective
Policy may change from invocation to invocation due to transparent rebinding.

Policy get_policy (
in PolicyType policy_type

);

Parameter(s)
policy_type - The type of policy to be obtained.

Return Value
A Policy object of the type specified by the policy_type parameter.

Exception(s)
CORBA::INV_POLICY - raised when the value of policy type is not valid either because
the specified type is not supported by this ORB or because a policy object of that type
is not associated with this Object.

The implementation of this operation may involve remote invocation of an operation
(e.g. DomainManager::get_domain_policy for some security policies) for some
policy types.

CORBA V2.3 Object Reference Operations June 1999 4-39

4

4.3.8 Overriding Associated Policies on an Object Reference

4.3.8.1 set_policy_overrides

The set_policy_overrides operation returns a new object reference with the new
policies associated with it. It takes two input parameters. The first parameter policies
is a sequence of references to Policy objects. The second parameter set_add of type
SetOverrideType indicates whether these policies should be added onto any other
overrides that already exist (ADD_OVERRIDE) in the object reference, or they should
be added to a clean override free object reference (SET_OVERRIDE). This operation
associates the policies passed in the first parameter with a newly created object
reference that it returns. Only certain policies that pertain to the invocation of an
operation at the client end can be overridden using this operation. Attempts to override
any other policy will result in the raising of the CORBA::NO_PERMISSION
exception.

enum SetOverrideType {SET_OVERRIDE, ADD_OVERRIDE};

Object set_policy_overrides(
in PolicyList policies,
in SetOverrideType set_add

);

Parameter(s)
policies - a sequence of Policy objects that are to be associated with the new copy of
the object reference returned by this operation

set_add - whether the association is in addition to (ADD_OVERRIDE) or as
replacement of (SET_OVERRIDE) any existing overrides already associated with the
object reference.

Return Value
A copy of the object reference with the overrides from policies associated with it in
accordance with the value of set_add.

Exception(s)
CORBA::NO_PERMISSION - raised when an attempt is made to override any policy
that cannot be overridden.

4.3.9 Getting the Domain Managers Associated with the Object

4.3.9.1 get_domain_managers

The get_domain_managers operation allows administration services (and
applications) to retrieve the domain managers (see “Management of Policy Domains”
on page 4-54), and hence the security and other policies applicable to individual
objects that are members of the domain.

4-40 CORBA V2.3 June 1999

4

typedef sequence <DomainManager> DomainManagersList;

DomainManagersList get_domain_managers ();

Return Value
The list of immediately enclosing domain managers of this object. At least one domain
manager is always returned in the list since by default each object is associated with at
least one domain manager at creation.

The implementation of this operation may involve contacting the ORB that implements
the target object.

4.4 ValueBase Operations
ValueBase serves a similar role for value types that Object serves for interfaces. Its
mapping is language-specific and must be explicitly specified for each language.

Typically it is mapped to a concrete language type which serves as a base for all value
types. Any operations that are required to be supported for all values are conceptually
defined on ValueBase, although in reality their actual mapping depends upon the
specifics of any particular language mapping.

Analogous to the definition of the Object interface for implicit operations of object
references, the implicit operations of ValueBase are defined on a pseudo-valuetype
as follows:

module CORBA {
valuetype ValueBase{ PIDL

ValueDef get_value_def();
};

};

The get_value_def() operation returns a description of the value’s definition as
described in the interface repository (Section 10.5.24, “ValueDef,” on page 10-34).

4.5 ORB and OA Initialization and Initial References
Before an application can enter the CORBA environment, it must first:

• Be initialized into the ORB and possibly the object adapter (POA) environments.

• Get references to ORB pseudo-object (for use in future ORB operations) and
perhaps other objects (including the root POA or some Object Adapter objects).

The following operations are provided to initialize applications and obtain the
appropriate object references:

• Operations providing access to the ORB. These operations reside in the CORBA
module, but not in the ORB interface and are described in Section 4.6, “ORB
Initialization,” on page 4-41.

CORBA V2.3 ORB Initialization June 1999 4-41

4

• Operations providing access to Object Adapters, Interface Repository, Naming
Service, and other Object Services. These operations reside in the ORB interface
and are described in Section 4.7, “Obtaining Initial Object References,” on
page 4-42.

4.6 ORB Initialization
When an application requires a CORBA environment it needs a mechanism to get the
ORB pseudo-object reference and possibly an OA object reference (such as the root
POA). This serves two purposes. First, it initializes an application into the ORB and
OA environments. Second, it returns the ORB pseudo-object reference and the OA
object reference to the application for use in future ORB and OA operations.

The ORB and OA initialization operations must be ordered with ORB occurring before
OA: an application cannot call OA initialization routines until ORB initialization
routines have been called for the given ORB. The operation to initialize an application
in the ORB and get its pseudo-object reference is not performed on an object. This is
because applications do not initially have an object on which to invoke operations. The
ORB initialization operation is an application’s bootstrap call into the CORBA world.
The ORB_init call is part of the CORBA module but not part of the ORB interface.

Applications can be initialized in one or more ORBs. When an ORB initialization is
complete, its pseudo reference is returned and can be used to obtain other references
for that ORB.

In order to obtain an ORB pseudo-object reference, applications call the ORB_init
operation. The parameters to the call comprise an identifier for the ORB for which the
pseudo-object reference is required, and an arg_list, which is used to allow
environment-specific data to be passed into the call. PIDL for the ORB initialization is
as follows:

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);

};

The identifier for the ORB will be a name of type CORBA::ORBid. All ORBid
strings other than the empty string are allocated by ORB administrators and are not
managed by the OMG. ORBid strings other than the empty string are intended to be
used to uniquely identify each ORB used within the same address space in a multi-
ORB application. These special ORBid strings are specific to each ORB
implementation and the ORB administrator is responsible for ensuring that the names
are unambiguous.

If an empty ORBid string is passed to ORB_init, then the arg_list arguments shall be
examined to determine if they indicate an ORB reference that should be returned. This
is achieved by searching the arg_list parameters for one preceded by “-ORBid” for
example, “-ORBid example_orb” (the white space after the “-ORBid” tag is
ignored) or “-ORBidMyFavoriteORB” (with no white space following the “-ORBid”

4-42 CORBA V2.3 June 1999

4

tag). Alternatively, two sequential parameters with the first being the string “-ORBid”
indicates that the second is to be treated as an ORBid parameter. If an empty string is
passed and no arg_list parameters indicate the ORB reference to be returned, the
default ORB for the environment will be returned.

Other parameters of significance to the ORB can also be identified in arg_list, for
example, “Hostname,” “SpawnedServer,” and so forth. To allow for other
parameters to be specified without causing applications to be re-written, it is necessary
to specify the parameter format that ORB parameters may take. In general, parameters
shall be formatted as either one single arg_list parameter:

–ORB<suffix><optional white space> <value>

or as two sequential arg_list parameters:

-ORB<suffix>

<value>

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init,
the arg_list arguments are examined to determine if any ORB parameters are given. If
a non-empty ORBid string is passed to ORB_init, all ORBid parameters in the
arg_list are ignored. All other -ORB<suffix> parameters in the arg_list may be of
significance during the ORB initialization process.

Before ORB_init returns, it will remove from the arg_list parameter all strings that
match the -ORB<suffix> pattern described above and that are recognized by that
ORB implementation, along with any associated sequential parameter strings. If any
strings in arg_list that match this pattern are not recognized by the ORB
implementation, ORB_init will raise the BAD_PARAM system exception instead.

The ORB_init operation may be called any number of times and shall return the same
ORB reference when the same ORBid string is passed, either explicitly as an argument
to ORB_init or through the arg_list. All other -ORB<suffix> parameters in the
arg_list may be considered on subsequent calls to ORB_init.

4.7 Obtaining Initial Object References
Applications require a portable means by which to obtain their initial object references.
References are required for the root POA, POA Current, Interface Repository and
various Object Services instances. (The POA is described in the Portable Object
Adaptor chapter; the Interface Repository is described in the Interface Repository
chapter; Object Services are described in CORBAservices: Common Object Services
Specification.) The functionality required by the application is similar to that provided
by the Naming Service. However, the OMG does not want to mandate that the Naming
Service be made available to all applications in order that they may be portably
initialized. Consequently, the operations shown in this section provide a simplified,
local version of the Naming Service that applications can use to obtain a small, defined
set of object references which are essential to its operation. Because only a small well-

CORBA V2.3 Obtaining Initial Object References June 1999 4-43

4

defined set of objects are expected with this mechanism, the naming context can be
flattened to be a single-level name space. This simplification results in only two
operations being defined to achieve the functionality required.

Initial references are not obtained via a new interface; instead two operations are
provided in the ORB pseudo-object interface, providing facilities to list and resolve
initial object references.

list_initial_services

typedef string ObjectId;
typedef sequence <ObjectId> ObjectIdList;
ObjectIdList list_initial_services ();

resolve_initial_references

exception InvalidName {};

Object resolve_initial_references (
in ObjectId identifier

) raises (InvalidName);

The resolve_initial_references operation is an operation on the ORB rather than
the Naming Service’s NamingContext. The interface differs from the Naming
Service’s resolve in that ObjectId (a string) replaces the more complex Naming
Service construct (a sequence of structures containing string pairs for the components
of the name). This simplification reduces the name space to one context.

ObjectIds are strings that identify the object whose reference is required. To maintain
the simplicity of the interface for obtaining initial references, only a limited set of
objects are expected to have their references found via this route. Unlike the ORB
identifiers, the ObjectId name space requires careful management. To achieve this,
the OMG may, in the future, define which services are required by applications
through this interface and specify names for those services.

Currently, reserved ObjectIds are RootPOA , POACurrent, InterfaceRepository,
NameService, TradingService, SecurityCurrent, TransactionCurrent, and
DynAnyFactory.

To allow an application to determine which objects have references available via the
initial references mechanism, the list_initial_services operation (also a call on the
ORB) is provided. It returns an ObjectIdList, which is a sequence of ObjectIds.
ObjectIds are typed as strings. Each object, which may need to be made available at
initialization time, is allocated a string value to represent it. In addition to defining the
id, the type of object being returned must be defined (i.e., “InterfaceRepository”
returns an object of type Repository, and “NameService” returns a
CosNamingContext object).

4-44 CORBA V2.3 June 1999

4

The application is responsible for narrowing the object reference returned from
resolve_initial_references to the type which was requested in the ObjectId. For
example, for InterfaceRepository the object returned would be narrowed to
Repository type.

In the future, specifications for Object Services (in CORBAservices: Common Object
Services Specification) will state whether it is expected that a service’s initial reference
be made available via the resolve_initial_references operation or not (i.e., whether
the service is necessary or desirable for bootstrap purposes).

4.8 Configuring Initial Service References

4.8.1 ORB-specific Configuration
It is required that an ORB can be administratively configured to return an arbitrary
object reference from CORBA::ORB::resolve_initial_references for non-
locality-constrained objects.

In addition to this required implementation-specific configuration, two
CORBA::ORB_init arguments are provided to override the ORB initial reference
configuration.

4.8.2 ORBInitRef
The ORB initial reference argument, -ORBInitRef , allows specification of an
arbitrary object reference for an initial service. The format is:

-ORBInitRef <ObjectID>=<ObjectURL>

Examples of use are:

-ORBInitRef NameService=IOR:00230021AB...

-ORBInitRef NotificationService=corbaloc::555objs.com/NotificationService

-ORBInitRef TradingService=corbaname::555objs.com/Dev/Trader

<ObjectID> represents the well-known ObjectID for a service defined in the
CORBA specification, such as NameService . This mechanism allows an ORB to be
configured with new initial service Object IDs that were not defined when the ORB
was installed.

<ObjectURL> can be any of the URL schemes supported by
CORBA::ORB::string_to_object (Sections 13.6.6 to 13.6.7 CORBA 2.3
Specification). If a URL is syntactically malformed or can be determined to be invalid
in an implementation defined manner, ORB_init raises a BAD_PARAM exception.

CORBA V2.3 Configuring Initial Service References June 1999 4-45

4

4.8.3 ORBDefaultInitRef
The ORB default initial reference argument, -ORBDefaultInitRef , assists in
resolution of initial references not explicitly specified with -ORBInitRef .
-ORBDefaultInitRef requires a URL that, after appending a slash ‘/’ character
and a stringified object key, forms a new URL to identify an initial object reference.
For example:

-ORBDefaultInitRef corbaloc::555objs.com

A call to resolve_initial_references(“NotificationService”) with
this argument results in a new URL:

corbaloc::555objs.com/NotificationService

That URL is passed to CORBA::ORB::string_to_object to obtain the initial
reference for the service.

Another example is:

-ORBDefaultInitRef corbaname::555ResolveRefs.com,:555Backup.com/Prod/Local

After calling resolve_initial_references(“NameService”) , one of the
corbaname URLs

corbaname::555ResolveRefs.com/Prod/Local/NameService

or

corbaname::555Backup411.com/Prod/Local/NameService

is used to obtain an object reference from string_to_object . (In this example,
Prod/Local/NameService represents a stringified CosNaming::Name).

Section 13.6.7 provides details of the corbaloc and corbaname URL schemes. The
-ORBDefaultInitRef argument naturally extends to URL schemes that may be
defined in the future, provided the final part of the URL is an object key.

4.8.4 Configuration Effect on resolve_initial_references

4.8.4.1 Default Resolution Order

The default order for processing a call to
CORBA::ORB::resolve_initial_references for a given <ObjectID> is:

1. Resolve with -ORBInitRef for this <ObjectID> if possible

2. Resolve with an -ORBDefaultInitRef entry if possible

3. Resolve with pre-configured ORB settings.

4-46 CORBA V2.3 June 1999

4

4.8.4.2 ORB Configured Resolution Order

There are cases where the default resolution order may not be appropriate for all
services and use of -ORBDefaultInitRef may have unintended resolution side
effects. For example, an ORB may use a proprietary service, such as
ImplementationRepository , for internal purposes and may want to prevent a
client from unknowingly diverting the ORB’s reference to an implementation
repository from another vendor. To prevent this, an ORB is allowed to ignore the
-ORBDefaultInitRef argument for any or all <ObjectID>s for those services
that are not OMG-specified services with a well-known service name as accepted by
resolve_initial_references . An ORB can only ignore the
-ORBDefaultInitRef argument but must always honor the -ORBInitRef
argument.

4.8.5 Configuration Effect on list_initial_services
The <ObjectID>s of all -ORBInitRef arguments to ORB_init appear in the list
of tokens returned by list_initial_services as well as all ORB-configured
<ObjectID>s. Any other tokens that may appear are implementation-dependent.

The list of <ObjectID>s returned by list_initial_services can be a subset
of the <ObjectID>s recognized as valid by resolve_initial_reference s.

4.9 Current Object
ORB and CORBA services may wish to provide access to information (context)
associated with the thread of execution in which they are running. This information is
accessed in a structured manner using interfaces derived from the Current interface
defined in the CORBA module.

Each ORB or CORBA service that needs its own context derives an interface from the
CORBA module's Current. Users of the service can obtain an instance of the
appropriate Current interface by invoking ORB::resolve_initial_references. For
example the Security service obtains the Current relevant to it by invoking

ORB::resolve_initial_references(“SecurityCurrent”)

A CORBA service does not have to use this method of keeping context but may
choose to do so.

module CORBA {
// interface for the Current object
interface Current {
};

};

CORBA V2.3 Policy Object June 1999 4-47

4

Operations on interfaces derived from Current access state associated with the thread
in which they are invoked, not state associated with the thread from which the
Current was obtained. This prevents one thread from manipulating another thread's
state, and avoids the need to obtain and narrow a new Current in each method's thread
context.

Current objects must not be exported to other processes, or externalized with
ORB::object_to_string. If any attempt is made to do so, the offending operation will
raise a MARSHAL system exception. Currents are per-process singleton objects, so
no destroy operation is needed.

4.10 Policy Object

4.10.1 Definition of Policy Object
An ORB or CORBA service may choose to allow access to certain choices that affect
its operation. This information is accessed in a structured manner using interfaces
derived from the Policy interface defined in the CORBA module. A CORBA service
does not have to use this method of accessing operating options, but may choose to do
so. The Security Service in particular uses this technique for associating Security
Policy with objects in the system.

module CORBA {
typedef unsigned long PolicyType;

// Basic IDL definition
interface Policy {

readonly attribute PolicyType policy_type;
Policy copy();
void destroy();

};

typedef sequence <Policy> PolicyList;
};

PolicyType defines the type of Policy object. In general the constant values that are
allocated are defined in conjunction with the definition of the corresponding Policy
object. The values of PolicyTypes for policies that are standardized by OMG are
allocated by OMG. Additionally, vendors may reserve blocks of 4096 PolicyType
values identified by a 20 bit Vendor PolicyType Valueset ID (VPVID) for their own
use.

PolicyType which is an unsigned long consists of the 20-bit VPVID in the high order
20 bits, and the vendor assigned policy value in the low order 12 bits. The VPVIDs 0
through \xf are reserved for OMG. All values for the standard PolicyTypes are
allocated within this range by OMG. Additionally, the VPVIDs \xfffff is reserved for
experimental use and OMGVMCID (Section 3.17.1, “Standard Exception Definitions,”
on page 3-52) is reserved for OMG use. These will not be allocated to anybody.
Vendors can request allocation of VPVID by sending mail to tag-request@omg.org.

4-48 CORBA V2.3 June 1999

4

When a VMCID (Section 3.17, “Standard Exceptions,” on page 3-51) is allocated to a
vendor automatically the same value of VPVID is reserved for the vendor and vice
versa. So once a vendor gets either a VMCID or a VPVID registered they can use that
value for both their minor codes and their policy types.

4.10.1.1 Copy

Policy copy();

Return Value
This operation copies the policy object. The copy does not retain any relationships that
the policy had with any domain, or object.

4.10.1.2 Destroy

void destroy();

This operation destroys the policy object. It is the responsibility of the policy object to
determine whether it can be destroyed.

Exception(s)
CORBA::NO_PERMISSION - raised when the policy object determines that it cannot be
destroyed.

4.10.1.3 Policy_type

readonly attribute policy_type

Return Value
This readonly attribute returns the constant value of type PolicyType that corresponds
to the type of the Policy object.

4.10.2 Creation of Policy Objects
A generic ORB operation for creating new instances of Policy objects is provided as
described in this section.

module CORBA {

typedef short PolicyErrorCode;
const PolicyErrorCode BAD_POLICY = 0;
const PolicyErrorCode UNSUPPORTED_POLICY = 1;
const PolicyErrorCode BAD_POLICY_TYPE = 2;
const PolicyErrorCode BAD_POLICY_VALUE = 3;
const PolicyErrorCode UNSUPPORTED_POLICY_VALUE = 4;

CORBA V2.3 Policy Object June 1999 4-49

4

exception PolicyError {PolicyErrorCode reason;};

interface ORB {

.....

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);
};

};

4.10.2.1 PolicyErrorCode

A request to create a Policy may be invalid for the following reasons:

BAD_POLICY - the requested Policy is not understood by the ORB.

UNSUPPORTED_POLICY - the requested Policy is understood to be valid by the
ORB, but is not currently supported.

BAD_POLICY_TYPE - The type of the value requested for the Policy is not valid for
that PolicyType.

BAD_POLICY_VALUE - The value requested for the Policy is of a valid type but is
not within the valid range for that type.

UNSUPPORTED_POLICY_VALUE - The value requested for the Policy is of a
valid type and within the valid range for that type, but this valid value is not currently
supported.

4.10.2.2 PolicyError

exception PolicyError {PolicyErrorCode reason;};

PolicyError exception is raised to indicate problems with parameter values passed to
the ORB::create_policy operation. Possible reasons are described above.

4.10.2.3 INV_POLICY

exception INV_POLICY

Due to an incompatibility between Policy overrides, the invocation cannot be made.
This is a standard system exception that can be raised from any invocation.

4-50 CORBA V2.3 June 1999

4

4.10.2.4 Create_policy

The ORB operation create_policy can be invoked to create new instances of policy
objects of a specific type with specified initial state. If create_policy fails to
instantiate a new Policy object due to its inability to interpret the requested type and
content of the policy, it raises the PolicyError exception with the appropriate reason as
described in “PolicyErrorCode” on page 4-49.

Policy create_policy(
in PolicyType type,
in any val

) raises(PolicyError);

Parameter(s)
type - the PolicyType of the policy object to be created.

val - the value that will be used to set the initial state of the Policy object that is created.

ReturnValue
Reference to a newly created Policy object of type specified by the type parameter
and initialized to a state specified by the val parameter.

Exception(s)
PolicyError - raised when the requested policy is not supported or a requested initial
state for the policy is not supported.

When new policy types are added to CORBA or CORBA Services specification, it is
expected that the IDL type and the valid values that can be passed to create_policy
also be specified.

4.10.3 Usages of Policy Objects
Policy Objects are used in general to encapsulate information about a specific policy,
with an interface derived from the policy interface. The type of the Policy object
determines how the policy information contained within it is used. Usually a Policy
object is associated with another object to associate the contained policy with that
object.

Objects with which policy objects are typically associated are Domain Managers,
POA, the execution environment, both the process/capsule/ORB instance and thread of
execution (Current object) and object references. Only certain types of policy object
can be meaningfully associated with each of these types of objects.

These relationships are documented in sections that pertain to these individual objects
and their usages in various core facilities and object services. The use of Policy
Objects with the POA are discussed in the Portable Object Adaptor chapter. The use of
Policy objects in the context of the Security services, involving their association with
Domain Managers as well as with the Execution Environment are discussed in
CORBAservices, Security Service chapter.

CORBA V2.3 Policy Object June 1999 4-51

4

In the following section the association of Policy objects with the Execution
Environment is discussed. In “Management of Policy Domains” on page 4-54 the use
of Policy objects in association with Domain Managers is discussed.

4.10.4 Policy Associated with the Execution Environment
Certain policies that pertain to services like security (e.g., QOP, Mechanism,
invocation credentials etc.) are associated by default with the process/capsule(RM-
ODP)/ORB instance (hereinafter referred to as “capsule”) when the application is
instantiated together with the capsule. By default these policies are applicable
whenever an invocation of an operation is attempted by any code executing in the said
capsule. The Security service provides operations for modulating these policies on a
per-execution thread basis using operations in the Current interface. Certain of these
policies (e.g., invocation credentials, qop, mechanism etc.) which pertain to the
invocation of an operation through a specific object reference can be further modulated
at the client end, using the set_policy_overrides operation of the Object reference.
For a description of this operation see “Overriding Associated Policies on an Object
Reference” on page 4-39. It associates a specified set of policies with a newly created
object reference that it returns.

The association of these overridden policies with the object reference is a purely local
phenomenon. These associations are never passed on in any IOR or any other
marshaled form of the object reference. the associations last until the object reference
in the capsule is destroyed or the capsule in which it exists is destroyed.

The policies thus overridden in this new object reference and all subsequent duplicates
of this new object reference apply to all invocations that are done through these object
references. The overridden policies apply even when the default policy associated with
Current is changed. It is always possible that the effective policy on an object
reference at any given time will fail to be successfully applied, in which case the
invocation attempt using that object reference will fail and return a
CORBA::NO_PERMISSION exception. Only certain policies that pertain to the
invocation of an operation at the client end can be overridden using this operation.
These are listed in the Security specification. Attempts to override any other policy
will result in the raising of the CORBA::NO_PERMISSION exception.

In general the policy of a specific type that will be used in an invocation through an
specific object reference using a specific thread of execution is determined first by
determining if that policy type has been overridden in that object reference. if so then
the overridden policy is used. if not then if the policy has been set in the thread of
execution then that policy is used. If not then the policy associated with the capsule is
used. For policies that matter, the ORB ensures that there is a default policy object of
each type that matters associated with each capsule (ORB instance). Hence, in a
correctly implemented ORB there is no case when a required type policy is not
available to use with an operation invocation.

4-52 CORBA V2.3 June 1999

4

4.10.5 Specification of New Policy Objects
When new PolicyTypes are added to CORBA specifications, the following details
must be defined. It must be clearly stated which particular uses of a new policy are
legal and which are not:

• Specify the assigned CORBA::PolicyType and the policy's interface definition.

• If the Policy can be created through CORBA::ORB::create_policy, specify the
allowable values for the any argument 'val' and how they correspond to the initial
state/behavior of that Policy (such as initial values of attributes). For example, if a
Policy has multiple attributes and operations, it is most likely that create_policy will
receive some complex data for the implementation to initialize the state of the
specific policy:

//IDL
struct MyPolicyRange {

 long low;
 long high;

};

const CORBA::PolicyType MY_POLICY_TYPE = 666;
interface MyPolicy : Policy {

 readonly attribute long low;
 readonly attribute long high;

};

If this sample MyPolicy can be constructed via create_policy, the specification of
MyPolicy will have a statement such as: “When instances of MyPolicy are
created, a value of type MyPolicyRange is passed to
CORBA::ORB::create_policy and the resulting MyPolicy's attribute 'low' has the
same value as the MyPolicyRange member 'low' and attribute 'high' has the same
value as the MyPolicyRange member 'high'.

• If the Policy can be passed as an argument to POA::create_POA , specify the
effects of the new policy on that POA . Specifically define incompatibilities (or
inter-dependencies) with other POA policies, effects on the behavior of invocations
on objects activated with the POA , and whether or not presence of the POA policy
implies some IOR profile/component contents for object references created with
that POA . If the POA policy implies some addition/modification to the object
reference it is marked as “client-exposed” and the exact details are specified
including which profiles are affected and how the effects are represented.

• If the component which is used to carry this information. can be set within a client
to tune the client's behavior, specify the policy's effects on the client specifically
with respect to (a) establishment of connections and reconnections for an object
reference; (b) effects on marshaling of requests; (c) effects on insertion of service
contexts into requests; (d) effects upon receipt of service contexts in replies. In
addition, incompatibilities (or inter-dependencies) with other client-side policies are
stated. For policies that cause service contexts to be added to requests, the exact
details of this addition are given.

CORBA V2.3 Policy Object June 1999 4-53

4

• If the Policy can be used with POA creation to tune IOR contents and can also be
specified (overridden) in the client, specify how to reconcile the policy's presence
from both the client and server. It is strongly recommended to avoid this case! As
an exercise in completeness, most POA policies can probably be extended to have
some meaning in the client and vice versa, but this does not help make usable
systems, it just makes them more complicated without adding really useful features.
There are very few cases where a policy is really appropriate to specify in both
places, and for these policies the interaction between the two must be described.

• Pure client-side policies are assumed to be immutable. This allows efficient
processing by the runtime that can avoid re-evaluating the policy upon every
invocation and instead can perform updates only when new overrides are set (or
policies change due to rebind). If the newly specified policy is mutable, it must be
clearly stated what happens if non-readonly attributes are set or operations are
invoked that have side-effects.

• For certain policy types, override operations may be disallowed. If this is the case,
the policy specification must clearly state what happens if such overrides are
attempted.

4.10.6 Standard Policies
Table 4-1 below lists the standard policy types that are defined by various parts of
CORBA and CORBA Services in this version of CORBA.

Table 4-1 Standard Policy Types

Policy Type Policy Interface Defined in
Sect./Page

Uses
create_
policy

SecClientInvocationAccess SecurityAdmin::AccessPolicy Security Service No

SecTargetInvocationAccess SecurityAdmin::AccessPolicy Security Service No

SecApplicationAccess SecurityAdmin::AccessPolicy Security Service No

SecClientInvocationAudit SecurityAdmin::AuditPolicy Security Service No

SecTargetInvocationAudit SecurityAdmin::AuditPolicy Security Service No

SecApplicationAudit SecurityAdmin::AuditPolicy Security Service No

SecDelegation SecurityAdmin::DelegationPolicy Security Service No

SecClientSecureInvocation SecurityAdmin::SecureInvocationPolicy Security Service No

SecTargetSecureInvocation SecurityAdmin::SecureInvocationPolicy Security Service No

SecNonRepudiation NRService::NRPolicy Security Service No

SecConstruction CORBA::SecConstruction CORBA Core - ORB
Interface chapter

No

SecMechanismPolicy SecurityLevel2::MechanismPolicy Security Service Yes

SecInvocationCredentialsPolicy SecurityLevel2::InvocationCredentialsPolicy Security Service Yes

SecFeaturesPolicy SecurityLevel2::FeaturesPolicy Security Service Yes

4-54 CORBA V2.3 June 1999

4

4.11 Management of Policy Domains

4.11.1 Basic Concepts
This section describes how policies, such as security policies, are associated with
objects that are managed by an ORB. The interfaces and operations that facilitate this
aspect of management is described in this section together with the section describing
Policy objects.

SecQOPPolicy SecurityLevel2::QOPPolicy Security Service Yes

THREAD_POLICY_ID PortableServer::ThreadPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

LIFESPAN_POLICY_ID PortableServer::LifespanPolicy CORBA Core -
Portable Object
Adapter chapter
Core Chapter 11

Yes

ID_UNIQUENESS_POLICY_ID PortableServer::IdUniquenessPolicy CORBA Core -
Portable Object
Adapter chapter
Core Chapter 11

Yes

ID_ASSIGNMENT_POLICY_ID PortableServer::IdAssignmentPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

IMPLICIT_ACTIVATION_POLICY_ID PortableServer::ImplicitActivationPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

SERVENT_RETENTION_POLICY_ID PortableServer::ServentRetentionPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

REQUEST_PROCESSING_POLICY_ID PortableServer::RequestProcessingPolicy CORBA Core -
Portable Object
Adapter chapter

Yes

BIDIRECTIONAL_POLICY_TYPE BiDirPolicy::BidirectionalPolicy CORBA Core -
General Inter-ORB
Protocol chapter

Yes

SecDelegationDirectivePolicy SecurityLevel2::DelegtionDirectivePolicy Security Service Yes

SecEstablishTrustPolicy SecurityLevel2::EstablishTrustPolicy Security Service Yes

Table 4-1 Standard Policy Types

Policy Type Policy Interface Defined in
Sect./Page

Uses
create_
policy

CORBA V2.3 Management of Policy Domains June 1999 4-55

4

4.11.1.1 Policy Domain

A policy domain is a set of objects to which the policies associated with that domain
apply. These objects are the domain members. The policies represent the rules and
criteria that constrain activities of the objects which belong to the domain. On object
reference creation, the ORB implicitly associates the object reference with one or more
policy domains. Policy domains provide leverage for dealing with the problem of scale
in policy management by allowing application of policy at a domain granularity rather
than at an individual object instance granularity.

4.11.1.2 Policy Domain Manager

A policy domain includes a unique object, one per policy domain, called the domain
manager, which has associated with it the policy objects for that domain. The domain
manager also records the membership of the domain and provides the means to add
and remove members. The domain manager is itself a member of a domain, possibly
the domain it manages.

4.11.1.3 Policy Objects

A policy object encapsulates a policy of a specific type. The policy encapsulated in a
policy object is associated with the domain by associating the policy object with the
domain manager of the policy domain.

There may be several policies associated with a domain, with a policy object for each.
There is at most one policy of each type associated with a policy domain. The policy
objects are thus shared between objects in the domain, rather than being associated
with individual objects. Consequently, if an object needs to have an individual policy,
then it must be a singleton member of a domain.

4.11.1.4 Object Membership of Policy Domains

Since the only way to access objects is through object references, associating object
references with policy domains, implicitly associates the domain policies with the
object associated with the object reference. Care should be taken by the application
that is creating object references using POA operations to ensure that object references
to the same object are not created by the server of that object with different domain
associations. Henceforth whenever the concept of “object membership” is used, it
actually means the membership of an object reference to the object in question.

An object can simultaneously be a member of more than one policy domain. In that
case the object is governed by all policies of its enclosing domains. The reference
model allows an object to be a member of multiple domains, which may overlap for
the same type of policy (for example, be subject to overlapping access policies). This
would require conflicts among policies defined by the multiple overlapping domains to
be resolved. The specification does not include explicit support for such overlapping
domains and, therefore, the use of policy composition rules required to resolve
conflicts at policy enforcement time.

4-56 CORBA V2.3 June 1999

4

Policy domain managers and policy objects have two types of interfaces:

• The operational interfaces used when enforcing the policies. These are the
interfaces used by the ORB during an object invocation. Some policy objects may
also be used by applications, which enforce their own policies.

The caller asks for the policy of a particular type (e.g., the delegation policy), and
then uses the policy object returned to enforce the policy. The caller finding a
policy and then enforcing it does not see the domain manager objects and the
domain structure.

• The administrative interfaces used to set policies (e.g., specifying which events to
audit or who can access objects of a specified type in this domain). The
administrator sees and navigates the domain structure, so he is aware of the scope
of what he is administering.

Note – This specification does not include any explicit interfaces for managing the
policy domains themselves: creating and deleting them; moving objects between them;
changing the domain structure and adding, changing, and removing policies applied to
the domains.

4.11.1.5 Domains Association at Object Reference Creation

When a new object reference is created, the ORB implicitly associates the object
reference (and hence the object that it is associated with) with the following elements
forming its environment:

• One or more Policy Domains, defining all the policies to which the object
associated with the object reference is subject.

• The Technology Domains, characterizing the particular variants of mechanisms
(including security) available in the ORB.

The ORB will establish these associations when one of the object reference creation
operations of the POA is called. Some or all of these associations may subsequently be
explicitly referenced and modified by administrative or application activity, which
might be specifically security-related but could also occur as a side-effect of some
other activity, such as moving an object to another host machine.

In some cases, when a new object reference is created, it needs to be associated with a
new domain. Within a given domain a construction policy can be associated with a
specific object type thus causing a new domain (i.e., a domain manager object) to be
created whenever an object reference of that type is created and the newly created
object reference associated with the new domain manager. This construction policy is
enforced at the same time as the domain membership (i.e., by the POA when it creates
an object reference).

CORBA V2.3 Management of Policy Domains June 1999 4-57

4

4.11.1.6 Implementor’s View of Object Creation

For policy domains, the construction policy of the application or factory creating the
object proceeds as follows. The application (which may be a generic factory) calls one
of the object reference creation operations of the POA to create the new object
reference. The ORB obtains the construction policy associated with the creating object,
or the default domain absent a creating object.

By default, the new object reference that is created is made a member of the domain to
which the parent belongs. Non-object applications on the client side are associated
with a default, per-ORB instance policy domain by the ORB.

Each domain manager has a construction policy associated with it, which controls
whether, in addition to creating the specified new object reference, a new domain
manager is created with it. This object provides a single operation
make_domain_manager which can be invoked with the constr_policy parameter
set to TRUE to indicate to the ORB that new object references of the specified type are
to be associated their own separate domains. Once such a construction policy is set, it
can be reversed by invoking make_domain_manager again with the
constr_policy parameter set to FALSE.

When creating an object reference of the type specified in the
make_domain_manager call with constr_policy set to TRUE, the ORB must also
create a new domain for the newly created object reference. If a new domain is needed,
the ORB creates both the requested object reference and a domain manager object. A
reference to this domain manager can be found by calling get_domain_managers
on the newly created object reference.

While the management interface to the construction policy object is standardized, the
interface from the ORB to the policy object is assumed to be a private one, which may
be optimized for different implementations.

If a new domain is created, the policies initially applicable to it are the policies of the
enclosing domain. The ORB will always arrange to provide a default enclosing domain
with default ORB policies associated with it, in those cases where there would be no
such domain as in the case of a non-object client invoking object creation operations.

The calling application, or an administrative application later, can change the domains
to which this object belongs, using the domain management interfaces, which will be
defined in the future.

Since the ORB has control only over domain associations with object references, it is
the responsibility of the creator of new object to ensure that the object references that
are created to the new object are associated meaningfully with domains.

4.11.2 Domain Management Operations
This section defines the interfaces and operations needed to find domain managers and
find the policies associated with these. However, it does not include operations to
manage domain membership, structure of domains, or to manage which policies are
associated with domains.

4-58 CORBA V2.3 June 1999

4

This section also includes the interface to the construction policy object, as that is
relevant to domains. The basic definitions of the interfaces and operations related to
these are part of the CORBA module, since other definitions in the CORBA module
depend on these.

module CORBA {
interface DomainManager {

Policy get_domain_policy (
in PolicyType policy_type

);
};

const PolicyType SecConstruction = 11;

interface ConstructionPolicy: Policy{
void make_domain_manager(

in CORBA::InterfaceDef object_type,
in boolean constr_policy

);
};

typedef sequence <DomainManager> DomainManagersList;
};

4.11.2.1 Domain Manager

The domain manager provides mechanisms for:

• Establishing and navigating relationships to superior and subordinate domains.

• Creating and accessing policies.

There should be no unnecessary constraints on the ordering of these activities, for
example, it must be possible to add new policies to a domain with a preexisting
membership. In this case, some means of determining the members that do not
conform to a policy that may be imposed is required. It should be noted that interfaces
for adding new policies to domains or for changing domain memberships have not
currently been standardized.

All domain managers provide the get_domain_policy operation. By virtue of being
an object, the Domain Managers also have the get_policy and
get_domain_managers operations, which is available on all objects (see “Getting
Policy Associated with the Object” on page 4-38 and “Getting the Domain Managers
Associated with the Object” on page 4-39).

CORBA::DomainManager::get_domain_policy

This returns the policy of the specified type for objects in this domain.

Policy get_domain_policy (
in PolicyType policy_type

);

CORBA V2.3 Management of Policy Domains June 1999 4-59

4

Parameter(s)
policy_type - The type of policy for objects in the domain which the application
wants to administer. For security, the possible policy types are described in
CORBAservices: Common Object Services Specification, Security chapter, Security
Policies Introduction section.

Return Value
A reference to the policy object for the specified type of policy in this domain.

Exception(s)
CORBA::INV_POLICY - raised when the value of policy type is not valid either
because the specified type is not supported by this ORB or because a policy object of
that type is not associated with this Object.

4.11.2.2 Construction Policy

The construction policy object allows callers to specify that when instances of a
particular object reference are created, they should be automatically assigned
membership in a newly created domain at creation time.

CORBA::ConstructionPolicy::make_domain_manager

This operation enables the invoker to set the construction policy that is to be in effect
in the domain with which this ConstructionPolicy object is associated. Construction
Policy can either be set so that when an object reference of the type specified by the
input parameter is created, a new domain manager will be created and the newly
created object reference will respond to get_domain_managers by returning a
reference to this domain manager. Alternatively the policy can be set to associate the
newly created object reference with the domain associated with the creator. This policy
is implemented by the ORB during execution of any one of the object reference
creation operations of the POA, and results in the construction of the application-
specified object reference and a Domain Manager object if so dictated by the policy in
effect at the time of the creation of the object reference.

void make_domain_manager (
in InterfaceDef object_type,
in boolean constr_policy

);

Parameter(s)
object_type - The type of the object references for which Domain Managers will be
created. If this is nil, the policy applies to all object references in the domain.

constr_policy - If TRUE the construction policy is set to create a new domain
manager associated with the newly created object reference of this type in this domain.
If FALSE construction policy is set to associate the newly created object references
with the domain of the creator or a default domain as described above.

4-60 CORBA V2.3 June 1999

4

4.12 Thread-Related Operations
To support single-threaded ORBs, as well as multi-threaded ORBs that run multi-
thread-unaware code, several operations are included in the ORB interface. These
operations can be used by single-threaded and multi-threaded applications. An
application that is a pure ORB client would not need to use these operations. Both the
ORB::run and ORB::shutdown are useful in fully multi-threaded programs.

Note – These operations are defined on the ORB rather than on an object adapter to
allow the main thread to be used for all kinds of asynchronous processing by the ORB.
Defining these operations on the ORB also allows the ORB to support multiple object
adapters, without requiring the application main to know about all the object adapters.
The interface between the ORB and an object adapter is not standardized.

4.12.1 work_pending

boolean work_pending();

This operation returns an indication of whether the ORB needs the main thread to
perform some work.

A result of TRUE indicates that the ORB needs the main thread to perform some work
and a result of FALSE indicates that the ORB does not need the main thread.

4.12.2 perform_work

void perform_work();

If called by the main thread, this operation performs an implementation-defined unit of
work; otherwise, it does nothing.

It is platform-specific how the application and ORB arrange to use compatible
threading primitives.

The work_pending() and perform_work() operations can be used to write a simple
polling loop that multiplexes the main thread among the ORB and other activities.
Such a loop would most likely be needed in a single-threaded server. A multi-threaded
server would need a polling loop only if there were both ORB and other code that
required use of the main thread.

Here is an example of such a polling loop:

// C++
for (;;) {

if (orb->work_pending()) {
orb->perform_work();

};
// do other things
// sleep?

CORBA V2.3 Thread-Related Operations June 1999 4-61

4

};

Once the ORB has shutdown, work_pending and perform_work will raise the
BAD_INV_ORDER exception with minor code 4. An application can detect this
exception to determine when to terminate a polling loop.

4.12.3 run

void run();

This operation provides execution resources to the ORB so that it can perform its
internal functions. Single threaded ORB implementations, and some multi-threaded
ORB implementations, need the use of the main thread in order to function properly.
For maximum portability, an application should call either run or perform_work on
its main thread. run may be called by multiple threads simultaneously.

This operation will block until the ORB has completed the shutdown process, initiated
when some thread calls shutdown.

4.12.4 shutdown

void shutdown(
in boolean wait_for_completion

);

This operation instructs the ORB to shut down, that is, to stop processing in
preparation for destruction.

Shutting down the ORB causes all object adapters to be destroyed, since they cannot
exist in the absence of an ORB. Shut down is complete when all ORB processing
(including request processing and object deactivation or other operations associated
with object adapters) has completed and the object adapters have been destroyed. In
the case of the POA , this means that all object etherealizations have finished and root
POA has been destroyed (implying that all descendent POAs have also been
destroyed).

If the wait_for_completion parameter is TRUE, this operation blocks until the shut
down is complete. If an application does this in a thread that is currently servicing an
invocation, the BAD_INV_ORDER system exception will be raised with the OMG
minor code 3, since blocking would result in a deadlock.

If the wait_for_completion parameter is FALSE, then shutdown may not have
completed upon return. An ORB implementation may require the application to call (or
have a pending call to) run or perform_work after shutdown has been called with
its parameter set to FALSE, in order to complete the shutdown process.

While the ORB is in the process of shutting down, the ORB operates as normal,
servicing incoming and outgoing requests until all requests have been completed. An
implementation may impose a time limit for requests to complete while a shutdown
is pending.

4-62 CORBA V2.3 June 1999

4

Once an ORB has shutdown, only object reference management operations(duplicate,
release and is_nil) may be invoked on the ORB or any object reference obtained
from it. An application may also invoke the destroy operation on the ORB itself.
Invoking any other operation will raise the BAD_INV_ORDER system exception with
the OMG minor code 4.

4.12.5 destroy

void destroy();

This operation destroys the ORB so that its resources can be reclaimed by the
application. Any operation invoked on a destroyed ORB reference will raise the
OBJECT_NOT_EXIST exception. Once an ORB has been destroyed, another call to
ORB_init with the same ORBid will return a reference to a newly constructed ORB.

If destroy is called on an ORB that has not been shut down, it will start the shut down
process and block until the ORB has shut down before it destroys the ORB. If an
application calls destroy in a thread that is currently servicing an invocation, the
BAD_INV_ORDER system exception will be raised with the OMG minor code 3,
since blocking would result in a deadlock.

For maximum portability and to avoid resource leaks, an application should always
call shutdown and destroy on all ORB instances before exiting.

 CORBA V2.3 June 1999 13-63

ORB Interoperability Architecture 13

Note – This is the CORBA 2.3 Specification Chapter 13 with a new Section 13.6.7,
“Object URLs”. The new section is in blue and marked with changebars. Changebars
outside of 13.6.7 are not for the Interoperable Naming submission.

The ORB Interoperability Architecture chapter has been updated based on CORE
changes from ptc/98-09-04 and the Objects by Value documents (orbos/98-01-18 and
ptc/98-07-06).

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 13-64

“ORBs and ORB Services” 13-65

“Domains” 13-67

“Interoperability Between ORBs” 13-69

“Object Addressing” 13-74

“An Information Model for Object References” 13-77

“Code Set Conversion” 13-93

“Example of Generic Environment Mapping” 13-106

“Relevant OSFM Registry Interfaces” 13-106

13.1 Overview
The original Request for Proposal on Interoperability (OMG Document 93-9-15)
defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are
independently developed. It further identifies general requirements including in
particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each
other’s implementation.

• Support of all ORB functionality.

• Preservation of content and semantics of ORB-specific information across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, and not to mandate
fundamental modifications to existing ORB products.

13.1.1 Domains
The CORBA Object Model identifies various distribution transparencies that must be
supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often correspond directly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common
characteristics are exhibited and common rules are observed over which a distribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not
correspond to the boundaries of an ORB installation. Administrative domains include
naming domains, trust groups, resource management domains and other “run-time”
characteristics of a system. Technology domains identify common protocols, syntaxes
and similar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the ORB
itself: common object references, network addresses, security mechanisms, and more.
However, it is possible for there to be multiple domains of the same type supported by
a given ORB: internal representation on different machine types, or security domains.
Conversely, a domain may span several ORBs: similar network addresses may be used
by different ORBs, type identifiers may be shared.

CORBA V2.3 ORBs and ORB Services June 1999 13-65

13

13.1.2 Bridging Domains
The abstract architecture describes ORB interoperability in terms of the translation
required when an object request traverses domain boundaries. Conceptually, a mapping
or bridging mechanism resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain.

The concrete architecture identifies two approaches to inter-ORB bridging:

• At application level, allowing flexibility and portability.

• At ORB level, built into the ORB itself.

13.2 ORBs and ORB Services
The ORB Core is that part of the ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) the distribution transparencies required by CORBA.

An object request may have implicit attributes which affect the way in which it is
communicated - though not the way in which a client makes the request. These
attributes include security, transactional capabilities, recovery, and replication. These
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an ORB’s
core. It is an aim of this specification to allow for new ORB Services to be defined in
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be
implemented and (implicitly) invoked in a private manner. For interoperability
between ORBs, the ORB services used in the ORBs, and the correspondence between
them, must be identified.

13.2.1 The Nature of ORB Services
ORB Services are invoked implicitly in the course of application-level interactions.
ORB Services range from fundamental mechanisms such as reference resolution and
message encoding to advanced features such as support for security, transactions, or
replication.

An ORB Service is often related to a particular transparency. For example, message
encoding – the marshaling and unmarshaling of the components of a request into and
out of message buffers – provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Services and Object Services
while others, such as replication, may involve interactions between ORB Services
themselves.

ORB Services differ from Object Services in that they are positioned below the
application and are invoked transparently to the application code. However, many
ORB Services include components which correspond to conventional Object Services
in that they are invoked explicitly by the application.

Security is an example of service with both ORB Service and normal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

13.2.2 ORB Services and Object Requests
Interoperability between ORBs extends the scope of distribution transparencies and
other request attributes to span multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.

In order to discuss how the relationships between ORB Services are established, it is
necessary to describe an abstract view of how an operation invocation is
communicated from client to server object.

1. The client generates an operation request, using a reference to the server object,
explicit parameters, and an implicit invocation context. This is processed by certain
ORB Services on the client path.

2. On the server side, corresponding ORB Services process the incoming request,
transforming it into a form directly suitable for invoking the operation on the server
object.

3. The server object performs the requested operation.

4. Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests an operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as security, client-side or server-side ORB Services may interact
with Object Services such as authentication servers.

13.2.3 Selection of ORB Services
The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a server is
replicated.

• Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

• Administrative policies (e.g., security).

CORBA V2.3 Domains June 1999 13-67

13

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORB Services are required and how they are provided. Service selection might
in general require negotiation to select protocols or protocol options. The same is true
between different ORBs: it is necessary to agree which ORB Services are used, and
how each transforms the request. Ultimately, these choices become manifest as one or
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the
others and, in appropriately constructed ORBs, services could be layered in any order
or in any grouping. This potentially allows applications to specify selective
transparencies according to their requirements, although at this time CORBA provides
no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Services must be used in order to
invoke operations on a server object. Correspondingly, where a client requires dynamic
attributes to be associated with specific invocations, or administrative policies dictate,
it must be possible to cause the appropriate ORB Services to be used on client and
server sides of the invocation path. Where this is not possible - because, for example,
one ORB does not support the full set of services required - either the interaction
cannot proceed or it can only do so with reduced facilities or transparencies.

13.3 Domains
From a computational viewpoint, the OMG Object Model identifies various
distribution transparencies which ensure that client and server objects are presented
with a uniform view of a heterogeneous distributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of
location and possibly many others such as processor architecture, networking
mechanisms and data representations. Even when a single ORB implementation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Figure 13-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the
scopes associated with each ORB. To describe both the requirements for
interoperability and some of the solutions, this architecture introduces the concept of
domains to describe the scopes and their implications.

Representation Representation

Reference Reference

Security

Networking

Informally, a domain is a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domains (e.g.,
management domains, naming domains, language domains, and technology domains).

13.3.1 Definition of a Domain
Domains allow partitioning of systems into collections of components which have
some characteristic in common. In this architecture a domain is a scope in which a
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is
undefined, is not a member of the domain. A domain can be modelled as an object and
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain. This information is disjoint between domains. However,
an object may be a member of several domains, of similar kinds as well as of different
kinds, and so the sets of members of domains may overlap.

The concept of a domain boundary is defined as the limit of the scope in which a
particular characteristic is valid or meaningful. When a characteristic in one domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protocol

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within
another domain, and federation, where two domains are joined in a manner agreed to
and set up by their administrators.

13.3.2 Mapping Between Domains: Bridging
Interoperability between domains is only possible if there is a well-defined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination
domain. Note that the use of the term “bridge” in this context is conceptual and refers

CORBA V2.3 Interoperability Between ORBs June 1999 13-69

13

only to the functionality which performs the required mappings between distinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepts used in one domain are
transformable into concepts in other domains with which interoperability is required,
or that if the bridge mechanism filters such a concept out, nothing is lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to
be compatible. This specification assumes that both domains are strictly compliant
with the CORBA Object Model and the CORBA specifications. This includes the use
of OMG IDL when defining interfaces, the use of the CORBA Core Interface
Repository, and other modifications that were made to CORBA. Variances from this
model could easily compromise some aspects of interoperability.

13.4 Interoperability Between ORBs
An ORB “provides the mechanisms by which objects transparently make and receive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneous distributed environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests...”

Note that a direct consequence of this transparency requirement is that bridging must
be bidirectional: that is, it must work as effectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e.g.,
if one ORB could only be a client to another) then transparency would not have been
provided, because object references passed as parameters would not work correctly:
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one
direction. This is purely to simplify discussions, and does not imply that unidirectional
connectivity satisfies basic interoperability requirements.

13.4.1 ORB Services and Domains
In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribe any particular decomposition of ORB functionality and
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one
ORB (or, alternatively, all ORBs of a given type) as comprising one domain.
Interoperability between any pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is all
CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictate (e.g., for new ORB Services).

13.4.2 ORBs and Domains
In many respects, issues of interoperability between ORBs are similar to those which
can arise with a single type of ORB (e.g., a product). For example:

• Two installations of the ORB may be installed in different security domains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the caller identity, and for
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types,
and so requests crossing type domain boundaries would need to establish locally
meaningful type identifiers (and perhaps more).

Conversely, not all of these problems need to appear when connecting two ORBs of a
different type (e.g., two different products). Examples include:

• They could be administered to share user visible naming domains, so that naming
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may
support different concepts or models, between which there are no direct or natural
mappings. CORBA only specifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issues. It
follows that within any particular ORB, the mechanisms for supporting transparencies
are not visible at the application-level and are entirely a matter of implementation
choice. So there is no guarantee that any two ORBs support similar internal models or
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed,
it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

CORBA V2.3 Interoperability Between ORBs June 1999 13-71

13

13.4.3 Interoperability Approaches
When an interaction takes place across a domain boundary, a mapping mechanism, or
bridge, is required to transform relevant elements of the interaction as they traverse the
boundary. There are essentially two approaches to achieving this: mediated bridging
and immediate bridging. These approaches are described in the following subsections.

Figure 13-2 Two bridging techniques, different uses of an intermediate form agreed on between
the two domains.

13.4.3.1 Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that domain
and an agreed, common form.

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreement
between two particular ORB/domain implementations to a universal standard.

• There can be more than one common form, each oriented or optimized for a
different purpose.

• If there is more than one possible common form, then which is used can be static
(e.g., administrative policy agreed between ORB vendors, or between system
administrators) or dynamic (e.g., established separately for each object, or on each
invocation).

• Engineering of this approach can range from in-line specifically compiled (compare
to stubs) or generic library code (such as encryption routines), to intermediate
bridges to the common form.

13.4.3.2 Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the internal form of one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop

Immediate Bridging

• This approach has the potential to be optimal (in that the interaction is not mediated
via a third party, and can be specifically engineered for each pair of domains) but
sacrifices flexibility and generality of interoperability to achieve this.

• This approach is often applicable when crossing domain boundaries which are
purely administrative (i.e., there is no change of technology). For example, when
crossing security administration domains between similar ORBs, it is not necessary
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable
when private mechanisms are used between ORB/domain implementations.

13.4.3.3 Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBs can span machine and system boundaries; conversely, a machine
may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoint, this means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBs or systems.
It also means that the distinction between an ORB and a bridge can be a matter of
perspective: there is a duality between viewing inter-system messaging as belonging to
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain
bridge could be implemented wholly within the ORB and thus be invisible as far as
ORB interoperability is concerned. A similar situation arises when a bridge between
two ORBs or domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are
confined, possibly to a single system or process. If it were practical to implement all
bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

13.4.3.4 Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an
ORB and as layers above it. These are called respectively “in-line” and “request-level”
bridges.

Request-level bridges use the CORBA APIs, including the Dynamic Skeleton
Interface, to receive and issue requests. However, there is an emerging class of
“implicit context” which may be associated with some invocations, holding ORB
Service information such as transaction and security context information, which is not
at this time exposed through general purpose public APIs. (Those APIs expose only
OMG IDL-defined operation parameters, not implicit ones.) Rather, the precedent set
with the Transaction Service is that special purpose APIs are defined to allow bridging
of each kind of context. This means that request-level bridges must be built to
specifically understand the implications of bridging such ORB Service domains, and to
make the appropriate API calls.

CORBA V2.3 Interoperability Between ORBs June 1999 13-73

13

13.4.4 Policy-Mediated Bridging
An assumption made through most of this specification is that the existence of domain
boundaries should be transparent to requests: that the goal of interoperability is to hide
such boundaries. However, if this were always the goal, then there would be no real
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing
differences in organizational policies or goals. Bridging the domains will in such cases
require policy mediation. That is, inter-domain traffic will need to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource management policies may even need to be applied, restricting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to
audit external access, or to provide domain-based access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the
traffic being bridged. It could in general be an application-specific policy, and many
policy-mediated bridges could be parts of applications. Those might be organization-
specific, off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of
policy mediation components, without loss of access to any other system infrastructure
that may be needed to identify or enforce the appropriate policies.

13.4.5 Configurations of Bridges in Networks
In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (This is a role that the IIOP is specifically expected to serve.) This
use of “backbone topology” is true both on a large scale and a small scale. While a

large scale public data network provider could define its own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Figure 13-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t
even add any new “hops” to network routes, because the bridges naturally fit in
locations where connectivity was already indirect, and augment or supplant the
existing network firewalls.

13.5 Object Addressing
The Object Model (see Chapter 1, Requests) defines an object reference as an object
name that reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted by
multiple, distinct references.

The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need to
distinguish between references to objects in a local ORB or in a remote one. Providing
this transparency can be quite involved, and naming models are fundamental to it.

This section of this specification discusses models for naming entities in multiple
domains, and transformations of such names as they cross the domain boundaries. That
is, it presents transformations of object reference information as it passes through

Backbone ORB

ORB A

ORB CORB D

ORB B

CORBA V2.3 Object Addressing June 1999 13-75

13

networks of inter-ORB bridges. It uses the word “ORB” as synonymous with
referencing domain; this is purely to simplify the discussion. In other contexts, “ORB”
can usefully denote other kinds of domain.

13.5.1 Domain-relative Object Referencing
Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references from multiple ORBs one must always
associate the object reference’s domain (ORB) with the object reference. We use the
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an
object reference. This is called “domain-relative” referencing (or addressing) and need
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since the
bridge knows from which ORB each request (or response) came, including any object
references embedded in it.

13.5.2 Handling of Referencing Between Domains
When a bridge hands an object reference to an ORB, it must do so in a form
understood by that ORB: the object reference must be in the recipient ORB’s native
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in
some circumstances; all can be used, and in arbitrary combination with each other,
since CORBA object references are opaque to applications. The ramifications of each
scheme merits attention, with respect to scaling and administration. The schemes
include:

1. Object Reference Translation Reference Embedding: The bridge can store the
original object reference itself, and pass an entirely different proxy reference into
the new domain. The bridge must then manage state on behalf of each bridged
object reference, map these references from one ORB’s format to the other’s, and
vice versa.

2. Reference Encapsulation: The bridge can avoid holding any state at all by
conceptually concatenating a domain identifier to the object name. Thus if a
reference D0.R, originating in domain D0, traversed domains D1... D4 it could be
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn
relative to Dn+1.

Figure 13-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
some state in the bridge. However, it supports sharing that state between multiple
object references by adding a domain-based route identifier to the proxy (which still
holds the original reference, as in the reference encapsulation scheme). It achieves
this by providing encoded domain route information each time a domain boundary
is traversed; thus if a reference D0.R, originating in domain D0, traversed domains
D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, and so
on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair (dn-1,
xn-1).

Figure 13-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation,
except that the proxy uses a “well-known” (e.g., global) domain identifier rather
than an encoded path. Thus a reference R, originating in domain D0 would be
identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as
follows:

• Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could optimize cycles within any given
encapsulated reference and eliminate the appearance of references to local objects
as alien references.

• A topology service could also optimize the chains of routes used in the domain
reference translation scheme. Since the links in such chains are re-used by any path
traversing the same sequence of domains, such optimization has particularly high
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3

CORBA V2.3 An Information Model for Object References June 1999 13-77

13

• With the general purpose APIs defined in CORBA, object reference translation can
be supported even by ORBs not specifically intended to support efficient bridging,
but this approach involves the most state in intermediate bridges. As with reference
encapsulation, a topology service could optimize individual object references. (APIs
are defined by the Dynamic Skeleton Interface and Dynamic Invocation Interface)

• The chain of addressing links established with both object and domain reference
translation schemes must be represented as state within the network of bridges.
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical name
spaces such as those now in use on the Internet and X.500 naming.

13.6 An Information Model for Object References
This section provides a simple, powerful information model for the information found
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the IIOP, described in the General
Inter-ORB Protocol chapter, Object References section.

13.6.1 What Information Do Bridges Need?
The following potential information about object references has been identified as
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted and never support operation invocation.

• What type is it? Many ORBs require knowledge of an object’s type in order to
efficiently preserve the integrity of their type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the most efficient
communications facilities available.

• What ORB Services are available? As noted in “Selection of ORB Services” on
page 13-66, several different ORB Services might be involved in an invocation.
Providing information about those services in a standardized way could in many
cases reduce or eliminate negotiation overhead in selecting them.

13.6.2 Interoperable Object References: IORs
To provide the information above, an “Interoperable Object Reference,” (IOR) data
structure has been provided. This data structure need not be used internally to any
given ORB, and is not intended to be visible to application-level ORB programmers. It
should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configurations,
while not penalizing multiprotocol ones.

module IOP { // IDL

// Standard Protocol Profile tag values

typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COMPONENTS = 1;

struct TaggedProfile {
ProfileId tag;
sequence <octet> profile_data;

};

// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.

struct IOR {
string type_id;
sequence <TaggedProfile> profiles;

};

// Standard way of representing multicomponent profiles.
// This would be encapsulated in a TaggedProfile.

typedef unsigned long ComponentId;
struct TaggedComponent {

ComponentId tag;
sequence <octet> component_data;

};
typedef sequence <TaggedComponent> MultipleComponentProfile;

};

Object references have at least one tagged profile. Each profile supports one or more
protocols and encapsulates all the basic information the protocols it supports need to
identify an object. Any single profile holds enough information to drive a complete
invocation using any of the protocols it supports; the content and structure of those
profile entries are wholly specified by these protocols. A bridge between two domains
may need to know the detailed content of the profile for those domains’ profiles,
depending on the technique it uses to bridge the domains1.

Each profile has a unique numeric tag, assigned by the OMG. The ones defined here
are for the IIOP (see Section 15.7.3, “IIOP IOR Profile Components,” on page 15-51)
and for use in “multiple component profiles.” Profile tags in the range 0x80000000
through 0xffffffff are reserved for future use, and are not currently available for
assignment.

1. Based on topology and policy information available to it, a bridge may find it prudent to add
or remove some profiles as it forwards an object reference. For example, a bridge acting as a
firewall might remove all profiles except ones that make such profiles, letting clients that
understand the profiles make routing choices.

CORBA V2.3 An Information Model for Object References June 1999 13-79

13

Null object references are indicated by an empty set of profiles, and by a “Null” type
ID (a string which contains only a single terminating character). A Null TypeID is the
only mechanism that can be used to represent the type CORBA::Object. Type IDs
may only be “Null” in any message, requiring the client to use existing knowledge or
to consult the object, to determine interface types supported. The type ID is a
Repository ID identifying the interface type, and is provided to allow ORBs to
preserve strong typing. This identifier is agreed on within the bridge and, for reasons
outside the scope of this interoperability specification, needs to have a much broader
scope to address various problems in system evolution and maintenance. Type IDs
support detection of type equivalence, and in conjunction with an Interface Repository,
allow processes to reason about the relationship of the type of the object referred to
and any other type.

The type ID, if provided by the server, indicates the most derived type that the server
wishes to publish, at the time the reference is generated. The object’s actual most
derived type may later change to a more derived type. Therefore, the type ID in the
IOR can only be interpreted by the client as a hint that the object supports at least the
indicated interface. The client can succeed in narrowing the reference to the indicated
interface, or to one of its base interfaces, based solely on the type ID in the IOR, but
must not fail to narrow the reference without consulting the object via the “_is_a” or
“_get_interface” pseudo-operations.

13.6.2.1 The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB
Protocol. The ProfileBody of this profile, described in detail in Section 15.7.2, “IIOP
IOR Profiles,” on page 15-49, contains a CDR encapsulation of a structure containing
addressing and object identification information used by IIOP. Version 1.1 of the
TAG_INTERNET_IOP profile also includes a sequence<TaggedComponent>
that can contain additional information supporting optional IIOP features, ORB
services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile
information (such as object identity or security information) with IIOP by encoding
their additional profile information as components in the TAG_INTERNET_IOP
profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create or
understand any other profile, nor are they required to create or understand any of the
components defined for other protocols that might share the TAG_INTERNET_IOP
profile with IIOP.

13.6.2.2 The TAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIPLE_COMPONENTS tag indicates that the value encapsulated is
of type MultipleComponentProfile. In this case, the profile consists of a list of
protocol components, indicating ORB services accessible using that protocol. ORB
services are assigned component identifiers in a namespace that is distinct from the
profile identifiers. Note that protocols may use the MultipleComponentProfile data

structure to hold profile components even without using
TAG_MULTIPLE_COMPONENTS to indicate that particular protocol profile, and
need not use a MultipleComponentProfile to hold sets of profile components.

13.6.2.3 IOR Components

TaggedComponents contained in TAG_INTERNET_IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that is used for profile tags. Component tags are
assigned by the OMG.

Specifications of components must include the following information:

• Component ID: The compound tag that is obtained from OMG.

• Structure and encoding: The syntax of the component data and the encoding rules.
If the component value is encoded as a CDR encapsulation, the IDL type that is
encapsulated and the GIOP version which is used for encoding the value, if different
than GIOP 1.0, must be specified as part of the component definition.

• Semantics: How the component data is intended to be used.

• Protocols: The protocol for which the component is defined, and whether it is
intended that the component be usable by other protocols.

• At most once: whether more than one instance of this component can be included in
a profile.

Specification of protocols must describe how the components affect the protocol. The
following should be specified in any protocol definition for each TaggedComponent
that the protocol uses:

• Mandatory presence: Whether inclusion of the component in profiles supporting the
protocol is required (MANDATORY PRESENCE) or not required (OPTIONAL
PRESENCE).

• Droppable: For optional presence component, whether component, if present, must
be retained or may be dropped.

13.6.3 Standard IOR Components
The following are standard IOR components that can be included in
TAG_INTERNET_IOP and TAG_MULTIPLE_COMPONENTS profiles, and may
apply to IIOP, other GIOPs, ESIOPs, or other protocols. An ORB must not drop these
components from an existing IOR.

module IOP {
const ComponentId TAG_ORB_TYPE = 0;
const ComponentId TAG_CODE_SETS = 1;
const ComponentId TAG_POLICIES = 2;
const ComponentId TAG_ALTERNATE_IIOP_ADDRESS = 3;

const ComponentId TAG_ASSOCIATION_OPTIONS = 13;

CORBA V2.3 An Information Model for Object References June 1999 13-81

13

const ComponentId TAG_SEC_NAME = 14;
const ComponentId TAG_SPKM_1_SEC_MECH = 15;
const ComponentId TAG_SPKM_2_SEC_MECH = 16;
const ComponentId TAG_KerberosV5_SEC_MECH = 17;
const ComponentId TAG_CSI_ECMA_Secret_SEC_MECH = 18;
const ComponentId TAG_CSI_ECMA_Hybrid_SEC_MECH = 19;
const ComponentId TAG_SSL_SEC_TRANS = 20;
const ComponentId TAG_CSI_ECMA_Public_SEC_MECH = 21;
const ComponentId TAG_ GENERIC_SEC_MECH = 22;
const ComponentId TAG_JAVA_CODEBASE = 25;

};

The following additional components that can be used by other protocols are specified
in the DCE ESIOP chapter of this document and CORBAServices, Security Service, in
the Security Service for DCE ESIOP section:

const ComponentId TAG_COMPLETE_OBJECT_KEY = 5;
const ComponentId TAG_ENDPOINT_ID_POSITION = 6;
const ComponentId TAG_LOCATION_POLICY = 12;
const ComponentId TAG_DCE_STRING_BINDING = 100;
const ComponentId TAG_DCE_BINDING_NAME = 101;
const ComponentId TAG_DCE_NO_PIPES = 102;
const ComponentId TAG_DCE_SEC_MECH = 103; // Security Service

13.6.3.1 TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an
object reference is coming from, to work around problems with that particular ORB, or
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of type unsigned long,
encoded as a CDR encapsulation, designating an ORB type ID allocated by the OMG
for the ORB type of the originating ORB. Anyone may register any ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and will
receive a new ORB type ID in return. A list of ORB type descriptions and values will
be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most once in any IOR profile. For
profiles supporting IIOP 1.1 or greater, it is optionally present and may not be
dropped.

13.6.3.2 TAG_ALTERNATE_IIOP_ADDRESS Component

In cases where the same object key is used for more than one internet location, the
following standard IOR Component is defined for support in IIOP version 1.2.

The TAG_ALTERNATE_IIOP_ADDRESS component has an associated value of
type

struct {

string HostID,
short Port

};

encoded as a CDR encapsulation.

Zero or more instances of the TAG_ALTERNATE_IIOP_ADDRESS component type
may be included in a version 1.2 TAG_INTERNET_IOP Profile. Each of these
alternative addresses may be used by the client orb, in addition to the host and port
address expressed in the body of the Profile. In cases where one or more
TAG_ALTERNATE_IIOP_ADDRESS components are present in a
TAG_INTERNET_IOP Profile, no order of use is prescribed by Version 1.2 of IIOP.

13.6.3.3 Other Components

The following standard components are specified in various OMG specifications:

• TAG_CODE_SETS (See Section 13.7.2.4, “CodeSet Component of IOR Multi-
Component Profile,” on page 13-99.)

• TAG_POLICIES (See CORBA Messaging specification - currently orbos/98-05-
05, will be incorporated into CORBA 3.0).

• TAG_SEC_NAME (See Section 15.10.2 Mechanism Tags, Security chapter -
CORBAServices).

• TAG_ASSOCIATION_OPTIONS (See Section 15.10.3 Tag Association Options,
Security chapter - CORBAServices).

• TAG_SSL_SEC_TRANS (See Section 15.10.2 Mechanism Tags, Security chapter
- CORBAServices).

• TAG_GENERIC_SEC_MECH and all other tags with names in the form
TAG_*_SEC_MECH (See Section 15.10.2 Mechanism Tags, Security chapter -
CORBAServices).

• TAG_JAVA_CODEBASE (See the Java to IDL Language Mapping,
Section 1.4.9.3, “Codebase Transmission,” on page 1-33).

• TAG_COMPLETE_OBJECT_KEY (See Section 16.5.4, “Complete Object Key
Component,” on page 16-19).

• TAG_ENDPOINT_ID_POSITION (See Section 16.5.5, “Endpoint ID Position
Component,” on page 16-20).

• TAG_LOCATION_POLICY (See Section 16.5.6, “Location Policy Component,”
on page 16-20).

• TAG_DCE_STRING_BINDING (See Section 16.5.1, “DCE-CIOP String Binding
Component,” on page 16-17).

• TAG_DCE_BINDING_NAME (See Section 16.5.2, “DCE-CIOP Binding Name
Component,” on page 16-18).

• TAG_DCE_NO_PIPES (See Section 16.5.3, “DCE-CIOP No Pipes Component,”
on page 16-19).

CORBA V2.3 An Information Model for Object References June 1999 13-83

13

13.6.4 Profile and Component Composition in IORs
The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single
profile, possibly with some information (e.g., components) shared between the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles
with the same profile tag may be included in an IOR.

5. Unless otherwise specified in the definition of a particular component, multiple
components with the same component tag may be part of a given profile within an
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE_COMPONENTS profile
must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definitions
are those whose tag and data format is specified in OMG documents. For private
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.
Neither allocation nor registration indicates any “standard” status, only that the tag will
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org.

13.6.5 IOR Creation and Scope
IORs are created from object references when required to cross some kind of
referencing domain boundary. ORBs will implement object references in whatever
form they find appropriate, including possibly using the IOR structure. Bridges will
normally use IORs to mediate transfers where that standard is appropriate.

13.6.6 Stringified Object References
Object references can be “stringified” (turned into an external string form) by the
ORB::object_to_string operation, and then “destringified” (turned back into a
programming environment’s object reference representation) using the
ORB::string_to_object operation.

There can be a variety of reasons why being able to parse this string form might not
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than the
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse
stringified IORs, so that in some cases an object reference stringified by one ORB
could be destringified by another.

To allow a stringified object reference to be internalized by what may be a different
ORB, a stringified IOR representation is specified. This representation instead
establishes that ORBs could parse stringified object references using that format. This
helps address the problem of bootstrapping, allowing programs to obtain and use
object references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

(1) <oref> ::= <prefix> <hex_Octets>
(2) <prefix> ::= “IOR:”
(3) <hex_Octets> ::= <hex_Octet> {<hex_Octet>}*
(4) <hex_Octet> ::= <hexDigit> <hexDigit>
(5) <hexDigit> ::= <digit> | <a> | | <c> | <d> | <e> | <f>
(6) <digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

| “6” | “7” | “8” | “9”
(7) <a> ::= “a” | “A”
(8) ::= “b” | “B”
(9) <c> ::= “c” | “C”
(10) <d> ::= “d” | “D”
(11) <e> ::= “e” | “E”
(12) <f> ::= “f” | “F”

The hexadecimal strings are generated by first turning an object reference into an IOR,
and then encapsulating the IOR using the encoding rules of CDR, as specified in GIOP
1.0. (See Section 15.3, “CDR Transfer Syntax,” on page 15-5 for more information.)
The content of the encapsulated IOR is then turned into hexadecimal digit pairs,
starting with the first octet in the encapsulation and going until the end. The high four
bits of each octet are encoded as a hexadecimal digit, then the low four bits.

13.6.7 Object URLs
To address the problem of bootstrapping and allow for more convenient exchange of
human-readable object references, ORB::string_to_object allows URLs in the
corbaloc and corbaname formats to be converted into object references. If
conversion fails, string_to_object raises a BAD_PARAM exception with the
following minor codes:

CORBA V2.3 An Information Model for Object References June 1999 13-85

13

• BadSchemeName

• BadAddress

• BadSchemeSpecificPart

• Other

13.6.7.1 corbaloc URL

The corbaloc URL scheme provides stringified object references that are more
easily manipulated by users than IOR URLs. Currently , corbaloc URLs denote
objects that can be contacted by IIOP or resolve_initial_references. Other
transport protocols can be explicitly specified when they become available. Examples
of IIOP and resolve_initial_references (rir:) based corbaloc
URLs are:

corbaloc::555xyz.com/Prod/TradingService

corbaloc:iiop:1.1@555xyz.com/Prod/TradingService

corbaloc::555xyz.com,:556xyz.com:80/Dev/NameService

corbaloc:rir:/TradingService

corbaloc:rir:/NameService

A corbaloc URL contains one or more:

• protocol identifiers

• protocol specific components such as address and version information.

When the rir protocol is used, no other protocols are allowed.

After the addressing information, a corbaloc URL ends with a single object key.

The full syntax is:
<corbaloc> = “corbaloc:”<obj_addr_list>[“/”<key_string>]
<obj_addr_list> = [<obj_addr> “,”]* <obj_addr>
<obj_addr> = <prot_addr> | <future_prot_addr>
<prot_addr> = <rir_prot_addr> | <iiop_prot_addr>

<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = “:” | <iiop_prot_token>”:”
<iiop_prot_token> = “iiop”
<iiop_addr> = defined in Section 13.6.7.3, “corbaloc:iiop
URL”

<future_prot_addr> = <future_prot_id><future_prot_addr>
<future_prot_id> = <future_prot_token>”:”

<future_prot_token> = possible examples: “atm” | “dce”
<future_prot_addr> = protocol specific address

<key_string> = <string> | empty_string

Where:

obj_addr_list: comma-separated list of protocol id, version, and address information.
This list is used in an implementation-defined manner to address the object An object
may be contacted by any of the addresses and protocols.

Note – If the rir protocol is used, no other protocols are allowed.

obj_addr: A protocol identifier, version tag, and a protocol specific address. The
comma ‘,’ and ‘/’ characters are specifically prohibited in this component of the URL.

rir_prot_addr: resolve_initial_references protocol identifier. This protocol does not
have a version tag or address. See Section 13.6.7.2

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-
style host name or IP address. See Section 13.6.7.3, “corbaloc:iiop URL” for the iiop
specific definitions.

future_prot_addr: a placeholder for future corbaloc protocols.

future_prot_id: token representing a protocol terminated with a “:”.

future_prot_token: token representing a protocol. Currently only “iiop” and “rir”
are defined.

future_prot_addr: a protocol specific address and possibly protocol version
information. An example of this for iiop is “1.1@555xyz.com”

key_string: a stringified object key

The key_string corresponds to the octet sequence in the object_key member of
a GIOP Request or LocateRequest header as defined in section 15.4 of
CORBA 2.3. The key_string uses the escape conventions described in RFC 2396
to map away from octet values that cannot directly be part of a URL. US-ASCII
alphanumeric characters are not escaped. Characters outside this range are escaped,
except for the following:

“;” | “/” | “?”| “:” | “@” | “&” | “=” | “+” | “$” |

“,” | “-” | “_” | ”.” | “!” | “~” | “*” | “’” | “(“ | “)”

The key_string is not NUL-terminated.

CORBA V2.3 An Information Model for Object References June 1999 13-87

13

13.6.7.2 corbaloc:rir URL
The corbaloc:rir URL is defined to allow access to the ORB’s configured initial
references through a URL.

The protocol address syntax is:
<rir_prot_addr> = <rir_prot_token>”:”
<rir_prot_token> = “rir”

Where:

rir_prot_addr: resolve_initial_references protocol identifier. There is no version or
address information when rir is used.

rir_prot_token: The token “rir” identifies this protocol..

For a corbaloc:rir URL, the <key_string> is used as the argument to
resolve_initial_references. An empty <key_string> is interpreted as the default
“NameService”.

The rir protocol can not be used with any other protocol in a URL.

13.6.7.3 corbaloc:iiop URL

The corbaloc:iiop URL is defined for use in TCP/IP- and DNS-centric environments
The full protocol address syntax is:

<iiop_prot_addr> = <iiop_id><iiop_addr>
<iiop_id> = <iiop_default> | <iiop_prot_token>”:”
<iiop_default> = “:”
<iiop_prot_token> = “iiop”
<iiop_addr> = <version> <host> [“:” <port>]
<host> = DNS-style Host Name | ip_address
<version> = <major> “.” <minor> “@” | empty_string
<port> = number
<major> = number
<minor> = number

Where:

iiop_prot_addr: iiop protocol identifier, version tag, and address containing a DNS-
style host name or IP address.

iiop_id: tokens recognized to indicate an iiop protocol corbaloc.

iiop_default: default token indicating iiop protocol, “:”.

iiop_prot_token: iiop protocol token, “iiop”

iiop_address: a single address

host: DNS-style host name or IP address.

version: a major and minor version number, separated by ‘.’ and followed by ‘@’. If
the version is absent, 1.0 is assumed.

ip_address: numeric IP address (dotted decimal notation)

port: port number the agent is listening on (see below). The default port is 2089.

13.6.7.4 corbaloc Server Implementation

The only requirements on an object advertised by a corbaloc URL are that there
must be a software agent listening on the host and port specified by the URL. This
agent must be capable of handling GIOP Request and LocateRequest messages
targeted at the object key specified in the URL.

A normal CORBA server meets these criteria. It is also possible to implement
lightweight object location forwarding agents that respond to GIOP Request
messages with Reply messages with a LOCATION_FORWARD status, and respond to
GIOP LocateRequest messages with LocateReply messages.

13.6.7.5 corbaname URL

The corbaname URL scheme is described in Chapter 3 of the CORBAservices
specification. It extends the capabilities of the corbaloc scheme to allow URLs to
denote entries in a Naming Service. Resolving corbaname URLs does not require a
Naming Service implementation in the ORB core. Some examples are:

corbaname::555objs.com#a/string/path/to/obj

This URL specifies that at host 555objs.com , a object of type NamingContext
(with an object key of NameService) can be found, or alternatively, that an agent is
running at that location which will return a reference to a NamingContext . The
(stringified) name a/string/path/to/obj is then used as the argument to a
resolve_str operation on that NamingContext . The URL denotes the object
reference that results from that lookup.

corbaname:rir:#a/local/obj

This URL specifies that the stringified name a/local/obj is to be resolved relative
to the naming context returned by resolve_initial_references(“NameService”).

13.6.7.6 Future corbaloc URL Protocols

This specification only defines use of iiop and rir with corbaloc. New protocols can be
added to corbaloc as required. Each new protocol must implement the
<future_prot_addr> component of the URL and define a described in Section 13.6.7.1,
“corbaloc URL.”

A possible example of a future corbaloc URL that incorporates an ATM address is:

corbaloc:iiop:xyz.com,atm:E.164:358.400.1234567/dev/test/objectX

CORBA V2.3 An Information Model for Object References June 1999 13-89

13

13.6.7.7 Future URL Schemes

Several currently defined non-CORBA URL scheme names are reserved.
Implementations may choose to provide these or other URL schemes to support
additional ways of denoting objects with URLs.

Table 13-1 lists the required and some optional formats.

13.6.8 Object Service Context
Emerging specifications for Object Services occasionally require service-specific
context information to be passed implicitly with requests and replies. (Specifications
for OMG’s Object Services are contained in CORBAservices: Common Object Service
Specifications.) The Interoperability specifications define a mechanism for identifying
and passing this service-specific context information as “hidden” parameters. The
specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume context
information at appropriate points in the process of sending and receiving requests
and replies.

• It is an ORB’s responsibility to determine when to send service-specific context
information, and what to do with such information in incoming messages. It may be
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless
still be able to successfully reply to the message.

As shown in the following OMG IDL specification, the IOP module provides the
mechanism for passing Object Service–specific information. It does not describe any
service-specific information. It only describes a mechanism for transmitting it in the
most general way possible. The mechanism is currently used by the DCE ESIOP and
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB
Protocol (GIOP).

Table 13-1 URL formats

Scheme Description Status
IOR: Standard stringified IOR format Required

corbaloc: Simple object reference. rir: must be
supported.

Required

corbaname: CosName URL Required

file:// Specifies a file containing a URL/IOR Optional

ftp:// Specifies a file containing a URL/IOR that is
accessible via ftp protocol.

Optional

http:// Specifies an HTTP URL that returns an object
URL/IOR.

Optional

Each Object Service requiring implicit service-specific context to be passed through
GIOP will be allocated a unique service context ID value by OMG. Service context ID
values are of type unsigned long. Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

The marshaling of Object Service data is described by the following OMG IDL:

module IOP { // IDL

typedef unsigned long ServiceId;

struct ServiceContext {
ServiceId context_id;
sequence <octet> context_data;

};
typedef sequence <ServiceContext>ServiceContextList;

const ServiceId TransactionService = 0;
const ServiceId CodeSets = 1;
const ServiceId ChainBypassCheck = 2;
const ServiceId ChainBypassInfo = 3;
const ServiceId LogicalThreadId = 4;
const ServiceId BI_DIR_IIOP = 5;
const ServiceId SendingContextRunTime = 6;
const ServiceId INVOCATION_POLICIES = 7;
const ServiceId FORWARDED_IDENTITY = 8;
const ServiceId UnknownExceptionInfo = 9;

};

The context data for a particular service will be encoded as specified for its service-
specific OMG IDL definition, and that encoded representation will be encapsulated in
the context_data member of IOP::ServiceContext. (See Section 15.3.3,
“Encapsulation,” on page 15-13). The context_id member contains the service ID
value identifying the service and data format. Context data is encapsulated in octet
sequences to permit ORBs to handle context data without unmarshaling, and to handle
unknown context data types.

During request and reply marshaling, ORBs will collect all service context data
associated with the Request or Reply in a ServiceContextList, and include it in the
generated messages. No ordering is specified for service context data within the list.
The list is placed at the beginning of those messages to support security policies that
may need to apply to the majority of the data in a request (including the message
headers).

Each Object Service requiring implicit service-specific context to be passed through
GIOP will be allocated a unique service context ID value by the OMG. Service context
ID values are of type unsigned long. Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID.

CORBA V2.3 An Information Model for Object References June 1999 13-91

13

The high-order 20 bits of service-context ID contain a 20-bit vendor service context
codeset ID (VSCID); the low-order 12 bits contain the rest of the service context ID. A
vendor (or group of vendors) who wish to define a specific set of system exception
minor codes should obtain a unique VSCID from the OMG, and then define a specific
set of service context IDs using the VSCID for the high-order bits.

The VSCID of zero is reserved for use for OMG-defined standard service context IDs
(i.e., service context IDs in the range 0-4095 are reserved as OMG standard service
contexts).

The ServiceIds currently defined are:

• TransactionService identifies a CDR encapsulation of the
CosTSInteroperation::PropogationContext defined in CORBAservices:
Common Object Services Specifications.

• CodeSets identifies a CDR encapsulation of the
CONV_FRAME::CodeSetContext defined in Section 13.7.2.5, “GIOP Code Set
Service Context,” on page 13-100.

• DCOM-CORBA Interworking uses three service contexts as defined in "DCOM-
CORBA Interworking" in the “Interoperability with non-CORBA Systems”chapter.
They are:
• ChainBypassCheck, which carries a CDR encapsulation of the struct

CosBridging::ChainBypassCheck. This is carried only in a Request
message as described in Section 20.9.1, “CORBA Chain Bypass,” on page 20-19.

• ChainBypassInfo, which carries a CDR encapsulation of the struct
CosBridging::ChainBypassInfo. This is carried only in a Reply message as
described in Section 20.9.1, “CORBA Chain Bypass,” on page 20-19.

• LogicalThreadId, which carries a CDR encapsulation of the struct
CosBridging::LogicalThreadId as described in Section 20.10, “Thread
Identification,” on page 20-21.

• BI_DIR_IIOP identifies a CDR encapsulation of the
IIOP::BiDirIIOPServiceContext defined in Section 15.8, “Bi-Directional GIOP,”
on page 15-52.

• SendingContextRunTime identifies a CDR encapsulation of the IOR of the
SendingContext::RunTime object (see Section 5.6, “Access to the Sending
Context Run Time,” on page 5-15).

• UnknownExceptionInfo identifies a CDR encapsulation of a marshaled instance
of a java.lang.throwable or one of its subclasses as described in Java to IDL
Language Mapping, Section 1.4.8.1, “Mapping of UnknownExceptionInfo Service
Context,” on page 1-32.

• The profile_data for the TAG_INTERNET_IOP profile is a CDR encapsulation
of the IIOP::ProfileBody_1_1 type, described in Section 15.7.2, “IIOP IOR
Profiles,” on page 15-49.

• The profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of the MultipleComponentProfile type, which is a sequence of
TaggedComponent structures, described in Section 13.6, “An Information Model
for Object References,” on page 13-77.

• The component_data member identifies a CDR encapsulation of a
BindingNameComponent structure, described in Section 16.5.2.1,
“BindingNameComponent,” on page 16-18.

Note – For more information on INVOCATION_POLICIES refer to the Asynchronous
Messaging specification - orbos/98-05-05. For information on
FORWARDED_IDENTITY refer to the Firewall specification - orbos/98-05-04.

Service context IDs are associated with a specific version of GIOP, but will always be
allocated in the OMG service context range. This allows any ORB to recognize when
it is receiving a standard service context, even if it has been defined in a version of
GIOP that it does not support.

The following are the rules for processing a received service context:

• The service context is in the OMG defined range:
• If it is valid for the supported GIOP version, then it must be processed correctly

according to the rules associated with it for that GIOP version level.
• If it is not valid for the GIOP version, then it may be ignored by the receiving

ORB, however it must be passed on through a bridge. No exception shall be
raised.

• The service context is not in the OMG-defined range:
• The receiving ORB may choose to ignore it, process it if it “understands” it, or

raise a system exception, however it must be passed on through a bridge. If a
system exception is raised, it shall be BAD_PARAM with an OMG standard
minor code of 1.

The association of service contexts with GIOP versions, (along with some other
supported features tied to GIOP minor version), is shown in Table 13-2.

Table 13-2 Feature Support Tied to Minor GIOP Version Number

Feature Version 1.0 Version 1.1 Version 1.2

Transaction Service Context yes yes yes

Codeset Negotiation Service Context yes yes

DCOM Bridging Service Contexts:
ChainBypassCheck
ChainBypassInfo
LogicalThreadId

yes

Object by Value Service Context:
SendingContextRunTime

yes

CORBA V2.3 Code Set Conversion June 1999 13-93

13

13.7 Code Set Conversion

13.7.1 Character Processing Terminology
This section introduces a few terms and explains a few concepts to help understand the
character processing portions of this document.

13.7.1.1 Character Set

A finite set of different characters used for the representation, organization, or control
of data. In this specification, the term “character set” is used without any relationship
to code representation or associated encoding. Examples of character sets are the
English alphabet, Kanji or sets of ideographic characters, corporate character sets
(commonly used in Japan), and the characters needed to write certain European
languages.

Bi-Directional IIOP Service Context:
BI_DIR_IIOP

yes

Java Language Throwable Service
Context:
UnknownExceptionInfo

yes

IOR components in IIOP profile yes yes

TAG_ORB_TYPE yes yes

TAG_CODE_SETS yes yes

TAG_ALTERNATE_IIOP_ADDRESS yes

TAG_ASSOCIATION_OPTION yes yes

TAG_SEC_NAME yes yes

TAG_SSL_SEC_TRANS yes yes

TAG_GENERIC_SEC_MECH yes yes

TAG_*_SEC_MECH yes yes

TAG_JAVA_CODEBASE yes

IOR component nn yes

Extended IDL data types yes yes

Bi-Directional GIOP Features yes

Table 13-2 Feature Support Tied to Minor GIOP Version Number (Continued)

Feature Version 1.0 Version 1.1 Version 1.2

13.7.1.2 Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one
relationship between each character of the set and its bit representation or numeric
value. In this specification, the term “code set” is used as an abbreviation for the term
“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which
includes Roman characters, Japanese hiragana, Greek characters, Japanese kanji, etc.)
and Unicode.

13.7.1.3 Code Set Classifications

Some language environments distinguish between byte-oriented and “wide characters.”
The byte-oriented characters are encoded in one or more 8-bit bytes. A typical single-
byte encoding is ASCII as used for western European languages like English. A typical
multi-byte encoding which uses from one to three 8-bit bytes for each character is
eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chinese,
Japanese, etc., where the number of combinations offered by 8 bits is insufficient and
a fixed-width encoding is needed. A typical example is Unicode (a “universal”
character set defined by the The Unicode Consortium, which uses an encoding scheme
identical to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An
extended encoding scheme for Unicode characters is UTF-16 (UCS Transformation
Format, 16-bit representations).

The C language has data types char for byte-oriented characters and wchar_t for
wide characters. The language definition for C states that the sizes for these characters
are implementation-dependent. Some environments do not distinguish between byte-
oriented and wide characters (e.g., Ada and Smalltalk). Here again, the size of a
character is implementation-dependent. The following table illustrates code set
classifications as used in this document.

13.7.1.4 Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters.
Typically the narrow characters are considered to be 8-bit long and are used for
western European languages like English, while the wide characters are 16-bit or 32-

Table 13-3 Code Set Classification

Orientation Code Element
Encoding

Code Set Examples C Data
Type

byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1),
EBCDIC, ...

char

multi-byte UTF-8, eucJP, Shift-JIS, JIS, Big5, ... char[]

non-byte-
oriented

fixed-length ISO 10646 UCS-2 (Unicode), ISO
10646 UCS-4, UTF-16, ...

wchar_t

CORBA V2.3 Code Set Conversion June 1999 13-95

13

bit long and are used for languages like Chinese, Japanese, etc., where the number of
combinations offered by 8 bits are insufficient. However, as noted above there are
common encoding schemes in which Asian characters are encoded using multi-byte
code sets and it is incorrect to assume that Asian characters are always encoded as
“wide” characters.

Within this specification, the general terms “narrow character” and “wide character”
are only used in discussing OMG IDL.

13.7.1.5 Char Data and Wchar Data

The phrase “char data” in this specification refers to data whose IDL types have been
specified as char or string. Likewise “wchar data” refers to data whose IDL types
have been specified as wchar or wstring.

13.7.1.6 Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code
element can occupy one or more bytes. A byte as used in this specification is
synonymous with octet, which occupies 8 bits.

13.7.1.7 Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character can
occupy one or more bytes is called a multi-byte character string. Typically, wide
characters are converted to this form from a (fixed-width) process code set before
transmitting the characters outside the process (see below about process code sets).
Care must be taken to correctly process the component bytes of a character’s multi-
byte representation.

13.7.1.8 Non-Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code
element can occupy fixed 16 or 32 bits.

13.7.1.9 Char Transmission Code Set (TCS-C) and Wchar Transmission
Code Set (TCS-W)

These two terms refer to code sets that are used for transmission between ORBs after
negotiation is completed. As the names imply, the first one is used for char data and
the second one for wchar data. Each TCS can be byte-oriented or non-byte oriented.

13.7.1.10 Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width format
which allows for efficient representation and manipulation. This internal format is
called a “process code set.” The process code set is irrelevant outside the process, and
hence to the interoperation between CORBA clients and servers through their
respective ORBs.

When a process needs to write international character information out to a file, or
communicate with another process (possibly over a network), it typically uses a
different encoding called a “file code set.” In this specification, unless otherwise
indicated, all references to a program’s code set refer to the file code set, not the
process code set. Even when a client and server are located physically on the same
machine, it is possible for them to use different file code sets.

13.7.1.11 Native Code Set

A native code set is the code set which a client or a server uses to communicate with
its ORB. There might be separate native code sets for char and wchar data.

13.7.1.12 Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character data
transfer between a client’s ORB and a server’s ORB. There are two transmission code
sets established per session between a client and its server, one for char data (TCS-C)
and the other for wchar data (TCS-W). Figure 13-6 illustrates these relationships:

Figure 13-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented.
However, this specification does allow both types of characters to be transmitted using
the same transmission code set. That is, the selection of a transmission code set is
orthogonal to the wideness or narrowness of the characters, although a given code set
may be better suited for either narrow or wide characters.

13.7.1.13 Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code sets
for which an ORB can convert all code points or character encodings between the
native code set and that target code set. For each code set in this CCS, the ORB
maintains appropriate translation or conversion procedures and advertises the ability to
use that code set for transmitted data in addition to the native code set.

ORB ORB
transmission

code set

native
client process server processcode setscode set

native

CORBA V2.3 Code Set Conversion June 1999 13-97

13

13.7.2 Code Set Conversion Framework

13.7.2.1 Requirements

The file code set that an application uses is often determined by the platform on which
it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shift-JIS
is used on PCs. Code set conversion is therefore required to enable interoperability
across these platforms. This proposal defines a framework for the automatic
conversion of code sets in such situations. The requirements of this framework are:

1. Backward compatibility. In previous CORBA specifications, IDL type char was
limited to ISO 8859-1. The conversion framework should be compatible with
existing clients and servers that use ISO 8859-1 as the code set for char.

2. Automatic code set conversion. To facilitate development of CORBA clients and
servers, the ORB should perform any necessary code set conversions automatically
and efficiently. The IDL type octet can be used if necessary to prevent
conversions.

3. Locale support. An internationalized application determines the code set in use by
examining the LOCALE string (usually found in the LANG environment variable),
which may be changed dynamically at run time by the user. Example LOCALE
strings are fr_FR.ISO8859-1 (French, used in France with the ISO 8859-1 code set)
and ja_JP.ujis (Japanese, used in Japan with the EUC code set and X11R5
conventions for LOCALE). The conversion framework should allow applications to
use the LOCALE mechanism to indicate supported code sets, and thus select the
correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough to
allow conversion to be performed either on the client or server side. For example, if
a client is running in a memory-constrained environment, then it is desirable for
code set converters to reside in the server and for a Server Makes It Right (SMIR)
conversion method to be used. On the other hand, if many servers are executed on
one server machine, then converters should be placed in each client to reduce the
load on the server machine. In this case, the conversion method used is Client
Makes It Right (CMIR).

13.7.2.2 Overview of the Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a locale.
The exact method for doing this is language-specific, such as the XPG4 C/C++
function setlocale. The client and server use their native code set to communicate
with their ORB. (Note that these native code sets are in general different from process
code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 13-7. The server-side ORB stores a
server’s code set information in a component of the IOR multiple-component profile
structure (see Section 13.6.2, “Interoperable Object References: IORs,” on
page 13-77)2. The code sets actually used for transmission are carried in the service
context field of an IOP (Inter-ORB Protocol) request header (see Section 13.6.8,

“Object Service Context,” on page 13-89 and Section 13.7.2.5, “GIOP Code Set
Service Context,” on page 13-100). Recall that there are two code sets (TCS-C and
TCS-W) negotiated for each session.

Figure 13-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversion is
performed. If the native code sets are different and the client-side ORB has an
appropriate converter, then the CMIR conversion method is used. In this case, the
server’s native code set is used as the transmission code set. If the native code sets are
different and the client-side ORB does not have an appropriate converter but the
server-side ORB does have one, then the SMIR conversion method is used. In this
case, the client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char code set
and a native wchar code set, which determine the local encodings of IDL types char
and wchar, respectively. The conversion process outlined above is executed
independently for the char code set and the wchar code set. In other words, the
algorithm that is used to select a transmission code set is run twice, once for char data
and once for wchar data.

The rationale for selecting two transmission code sets rather than one (which is
typically inferred from the locale of a process) is to allow efficient data transmission
without any conversions when the client and server have identical representations for
char and/or wchar data. For example, when a Windows NT client talks to a Windows
NT server and they both use Unicode for wide character data, it becomes possible to
transmit wide character data from one to the other without any conversions. Of course,
this becomes possible only for those wide character representations that are well-
defined, not for any proprietary ones. If a single transmission code set was mandated,
it might require unnecessary conversions. (For example, choosing Unicode as the
transmission code set would force conversion of all byte-oriented character data to
Unicode.)

2. Version 1.1 of the IIOP profile body can also be used to specify the server’s code set infor-
mation, as this version introduces an extra field that is a sequence of tagged components.

ServerClient

ORB ORB

Client’s native
code set

Server’s native
code set

IOP service context
indicates transmission
code sets information

IOR multi-component
profile structure indicates
server’s native code set information

CORBA V2.3 Code Set Conversion June 1999 13-99

13

13.7.2.3 ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native code set
for a locale and to convert between code sets as necessary. While the details of exactly
how these tasks are accomplished are implementation-dependent, the following
databases and code set converters might be used:

• Locale database. This database defines a native code set for a process. This code set
could be byte-oriented or non-byte-oriented and could be changed programmatically
while the process is running. However, for a given session between a client and a
server, it is fixed once the code set information is negotiated at the session’s setup
time.

• Environment variables or configuration files. Since the locale database can only
indicate one code set while the ORB needs to know two code sets, one for char
data and one for wchar data, an implementation can use environment variables or
configuration files to contain this information on native code sets.

• Converter database. This database defines, for each code set, the code sets to which
it can be converted. From this database, a set of “conversion code sets” (CCS) can
be determined for a client and server. For example, if a server’s native code set is
eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilateral
converters, then the server’s conversion code sets are JIS and SJIS.

• Code set converters. The ORB has converters which are registered in the converter
database.

13.7.2.4 CodeSet Component of IOR Multi-Component Profile

The code set component of the IOR multi-component profile structure contains:

• server’s native char code set and conversion code sets, and

• server’s native wchar code set and conversion code sets.

Both char and wchar conversion code sets are listed in order of preference. The code
set component is identified by the following tag:

const IOP::ComponentID TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See “Standard IOR Components” on
page 13-80.). The following IDL structure defines the representation of code set
information within the component:

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetComponent {

CodeSetId native_code_set;
sequence<CodeSetId> conversion_code_sets;

};
struct CodeSetComponentInfo {

CodeSetComponent ForCharData;
CodeSetComponent ForWcharData;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set
Registry (See “Character and Code Set Registry” on page 13-106 for further
information). Data within the code set component is represented as a structure of type
CodeSetComponentInfo, and is encoded as a CDR encapsulation. In other words,
the char code set information comes first, then the wchar information, represented as
structures of type CodeSetComponent.

A null value should be used in the native_code_set field if the server desires to
indicate no native code set (possibly with the identification of suitable conversion code
sets).

If the code set component is not present in a multi-component profile structure, then
the default char code set is ISO 8859-1 for backward compatibility. However, there is
no default wchar code set. If a server supports interfaces that use wide character data
but does not specify the wchar code sets that it supports, client-side ORBs will raise
exception INV_OBJREF.

13.7.2.5 GIOP Code Set Service Context

The code set GIOP service context contains:

• char transmission code set, and

• wchar transmission code set

in the form of a code set service. This service is identified by:

const IOP::ServiceID CodeSets = 1;

The following IDL structure defines the representation of code set service information:

module CONV_FRAME { // IDL
typedef unsigned long CodeSetId;
struct CodeSetContext {

CodeSetId char_data;
CodeSetId wchar_data;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set
Registry (See “Character and Code Set Registry” on page 13-106 for further
information).

CORBA V2.3 Code Set Conversion June 1999 13-101

13

Note – A server’s char and wchar Code set components are usually different, but
under some special circumstances they can be the same. That is, one could use the
same code set for both char data and wchar data. Likewise the CodesetIds in the
service context don’t have to be different.

13.7.2.6 Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from the
code set component in an IOR multi-component profile structure, and it determines a
client’s native and conversion code sets from the locale setting (and/or environment
variables/configuration files) and the converters that are available on the client. From
this information, the client-side ORB chooses char and wchar transmission code sets
(TCS-C and TCS-W). For both requests and replies, the char TCS-C determines the
encoding of char and string data, and the wchar TCS-W determines the encoding of
wchar and wstring data.

Code set negotiation is not performed on a per-request basis, but only when a client
initially connects to a server. All text data communicated on a connection are encoded
as defined by the TCSs selected when the connection is established.

Figure 13-8 illustrates, there are two channels for character data flowing between the
client and the server. The first, TCS-C, is used for char data and the second, TCS-W,
is used for wchar data. Also note that two native code sets, one for each type of data,
could be used by the client and server to talk to their respective ORBs (as noted earlier,
the selection of the particular native code set used at any particular point is done via
setlocale or some other implementation-dependent method).

Figure 13-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for a client and server
is as shown in the table below. (Note that this example concerns only char code sets
and is applicable only for data described as chars in the IDL.)

Client Server
Native code set: SJIS eucJP

Conversion code
sets:

eucJP, JIS SJIS, JIS

S
erverC

lie
nt

ORB ORB

Client’s native
code set for char for char (TCS-C)

Transmission code set

Client’s native
code set for wchar

Server’s native
code set for char

Server’s native
code set for wcharfor wchar (TCS-W)

Transmission code set

Client
Side Side

Server

The client-side ORB first compares the native code sets of the client and server. If they
are identical, then the transmission and native code sets are the same and no
conversion is required. In this example, they are different, so code set conversion is
necessary. Next, the client-side ORB checks to see if the server’s native code set,
eucJP, is one of the conversion code sets supported by the client. It is, so eucJP is
selected as the transmission code set, with the client (i.e., its ORB) performing
conversion to and from its native code set, SJIS, to eucJP. Note that the client may first
have to convert all its data described as chars (and possibly wchar_ts) from process
codes to SJIS first.

Now let us look at the general algorithm for determining a transmission code set and
where conversions are performed. First, we introduce the following abbreviations:

• CNCS - Client Native Code Set;

• CCCS - Client Conversion Code Sets;

• SNCS - Server Native Code Set;

• SCCS - Server Conversion Code Sets; and

• TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)
TCS = CNCS; // no conversion required

else {
if (elementOf(SNCS,CCCS))

TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))

TCS = CNCS; // server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {

TCS = oneOf(intersection(CCCS,SCCS));
// client chooses TCS, from intersection(CCCS,SCCS), that is
// most preferable to server;
// client converts from CNCS to TCS and server
// from TCS to SNCS

else if (compatible(CNCS,SNCS))
TCS = fallbackCS; // fallbacks are UTF-8 (for char data) and

// UTF-16 (for wchar data)
else

raise CODESET_INCOMPATIBLE exception;
}

The algorithm first checks to see if the client and server native code sets are the same.
If they are, then the native code set is used for transmission and no conversion is
required. If the native code sets are not the same, then the conversion code sets are
examined to see if

1. the client can convert from its native code set to the server’s native code set,

2. the server can convert from the client’s native code set to its native code set, or

CORBA V2.3 Code Set Conversion June 1999 13-103

13

3. transmission through an intermediate conversion code set is possible.

If the third option is selected and there is more than one possible intermediate
conversion code set (i.e., the intersection of CCCS and SCCS contains more than one
code set), then the one most preferable to the server is selected.3

If none of these conversions is possible, then the fallback code set (UTF-8 for char
data and UTF-16 for wchar data— see below) is used. However, before selecting the
fallback code set, a compatibility test is performed. This test looks at the character sets
encoded by the client and server native code sets. If they are different (e.g., Korean
and French), then meaningful communication between the client and server is not
possible and a CODESET_INCOMPATIBLE exception is raised. This test is similar
to the DCE compatibility test and is intended to catch those cases where conversion
from the client native code set to the fallback, and the fallback to the server native
code set would result in massive data loss. (See Section 13.9, “Relevant OSFM
Registry Interfaces,” on page 13-106 for the relevant OSF registry interfaces that could
be used for determining compatibility.)

A DATA_CONVERSION exception is raised when a client or server attempts to
transmit a character that does not map into the negotiated transmission code set. For
example, not all characters in Taiwan Chinese map into Unicode. When an attempt is
made to transmit one of these characters via Unicode, an ORB is required to raise a
DATA_CONVERSION exception.

In summary, the fallback code set is UTF-8 for char data (identified in the Registry as
0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-16
for wchar data (identified in the Registry as 0x00010109, "ISO/IEC 10646-1:1993;
UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallback
code set is meaningful only when the client and server character sets are compatible,
and the fallback code set is distinguished from a default code set used for backward
compatibility.

If a server’s native char code set is not specified in the IOR multi-component profile,
then it is considered to be ISO 8859-1 for backward compatibility. However, a server
that supports interfaces that use wide character data is required to specify its native
wchar code set; if one is not specified, then the client-side ORB raises exception
INV_OBJREF.

Similarly, if no char transmission code set is specified in the code set service context,
then the char transmission code set is considered to be ISO 8859-1 for backward
compatibility. If a client transmits wide character data and does not specify its wchar
transmission code set in the service context, then the server-side ORB raises exception
BAD_PARAM.

3.Recall that server conversion code sets are listed in order of preference.

To guarantee “out-of-the-box” interoperability, clients and servers must be able to
convert between their native char code set and UTF-8 and their native wchar code set
(if specified) and Unicode. Note that this does not require that all server native code
sets be mappable to Unicode, but only those that are exported as native in the IOR. The
server may have other native code sets that aren’t mappable to Unicode and those can
be exported as SCCSs (but not SNCSs). This is done to guarantee out-of-the-box
interoperability and to reduce the number of code set converters that a CORBA-
compliant ORB must provide.

ORB implementations are strongly encouraged to use widely-used code sets for each
regional market. For example, in the Japanese marketplace, all ORB implementations
should support Japanese EUC, JIS and Shift JIS to be compatible with existing
business practices.

13.7.3 Mapping to Generic Character Environments
Certain language environments do not distinguish between byte-oriented and wide
characters. In such environments both char and wchar are mapped to the same
“generic” character representation of the language. String and wstring are likewise
mapped to generic strings in such environments. Examples of language environments
that provide generic character support are Smalltalk and Ada.

Even while using languages that do distinguish between wide and byte-oriented
characters (e.g., C and C++), it is possible to mimic some generic behavior by the use
of suitable macros and support libraries. For example, developers of Windows NT and
Windows 95 applications can write portable code between NT (which uses Unicode
strings) and Windows 95 (which uses byte-oriented character strings) by using a set of
macros for declaring and manipulating characters and character strings. Appendix A in
this chapter shows how to map wide and byte-oriented characters to these generic
macros.

Another way to achieve generic manipulation of characters and strings is by treating
them as abstract data types (ADTs). For example, if strings were treated as abstract
data types and the programmers are required to create, destroy, and manipulate strings
only through the operations in the ADT interface, then it becomes possible to write
code that is representation-independent. This approach has an advantage over the
macro-based approach in that it provides portability between byte-oriented and wide
character environments even without recompilation (at runtime the string function calls
are bound to the appropriate byte-oriented/wide library). Another way of looking at it
is that the macro-based genericity gives compile-time flexibility, while ADT-based
genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the ANSI
C++ Strings library defined as a template that can be parameterized by char,
wchar_t, or other integer types.

Given that there can be several ways of treating characters and character strings in a
generic way, this standard cannot, and therefore does not, specify the mapping of
char, wchar, string, and wstring to all of them. It only specifies the following
normative requirements which are applicable to generic character environments:

CORBA V2.3 Code Set Conversion June 1999 13-105

13

• wchar must be mapped to the generic character type in a generic character
environment.

• wstring must be mapped to a string of such generic characters in a generic
character environment.

• The language binding files (i.e., stubs) generated for these generic environments
must ensure that the generic type representation is converted to the appropriate code
sets (i.e., CNCS on the client side and SNCS on the server side) before character
data is given to the ORB runtime for transmission.

13.7.3.1 Describing Generic Interfaces

To describe generic interfaces in IDL we recommend using wchar and wstring.
These can be mapped to generic character types in environments where they do exist
and to wide characters where they do not. Either way interoperation between generic
and non-generic character type environments is achieved because of the code set
conversion framework.

13.7.3.2 Interoperation

Let us consider an example to see how a generic environment can interoperate with a
non-generic environment. Let us say there is an IDL interface with both char and
wchar parameters on the operations, and let us say the client of the interface is in a
generic environment while the server is in a non-generic environment (for example the
client is written in Smalltalk and the server is written in C++).

Assume that the server’s (byte-oriented) native char code set (SNCS) is eucJP and the
client’s native char code set (CNCS) is SJIS. Further assume that the code set
negotiation led to the decision to use eucJP as the char TCS-C and Unicode as the
wchar TCS-W.

As per the above normative requirements for mapping to a generic environment, the
client’s Smalltalk stubs are responsible for converting all char data (however they are
represented inside Smalltalk) to SJIS and all wchar data to the client’s wchar code
set before passing the data to the client-side ORB. Note that this conversion could be
an identity mapping if the internal representation of narrow and wide characters is the
same as that of the native code set(s). The client-side ORB now converts all char data
from SJIS to eucJP and all wchar data from the client’s wchar code set to Unicode,
and then transmits to the server side.

The server side ORB and stubs convert the eucJP data and Unicode data into C++’s
internal representation for chars and wchars as dictated by the IDL operation
signatures. Notice that when the data arrives at the server side it does not look any
different from data arriving from a non-generic environment (e.g., that is just like the
server itself). In other words, the mappings to generic character environments do not
affect the code set conversion framework.

13.8 Example of Generic Environment Mapping
This Appendix shows how char, wchar, string, and wchar can be mapped to the
generic C/C++ macros of the Windows environment. This is merely to illustrate one
possibility. This section is not normative and is applicable only in generic
environments. See Section 13.7.3, “Mapping to Generic Character Environments,” on
page 13-104.

13.8.1 Generic Mappings
Char and string are mapped to C/C++ char and char* as per the standard C/C++
mappings. wchar is mapped to the TCHAR macro which expands to either char or
wchar_t depending on whether _UNICODE is defined. wstring is mapped to
pointers to TCHAR as well as to the string class CORBA::Wstring_var. Literal
strings in IDL are mapped to the _TEXT macro as in _TEXT(<literal>).

13.8.2 Interoperation and Generic Mappings
We now illustrate how the interoperation works with the above generic mapping.
Consider an IDL interface operation with a wstring parameter, a client for the
operation which is compiled and run on a Windows 95 machine, and a server for the
operation which is compiled and run on a Windows NT machine. Assume that the
locale (and/or the environment variables for CNCS for wchar representation) on the
Windows 95 client indicates the client’s native code set to be SJIS, and that the
corresponding server’s native code set is Unicode. The code set negotiation in this case
will probably choose Unicode as the TCS-W.

Both the client and server sides will be compiled with _UNICODE defined. The IDL
type wstring will be represented as a string of wchar_t on the client. However,
since the client’s locale or environment indicates that the CNCS for wide characters is
SJIS, the client side ORB will get the wstring parameter encoded as a SJIS multi-byte
string (since that is the client’s native code set), which it will then convert to Unicode
before transmitting to the server. On the server side the ORB has no conversions to do
since the TCS-W matches the server’s native code set for wide characters.

We therefore notice that the code set conversion framework handles the necessary
translations between byte-oriented and wide forms.

13.9 Relevant OSFM Registry Interfaces

13.9.1 Character and Code Set Registry
The OSF character and code set registry is defined in OSF Character and Code Set
Registry (see References in the Preface) and current registry contents may be obtained
directly from the Open Software Foundation (obtain via anonymous ftp to
ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: character
sets and code sets. For each listed code set, the set of character sets encoded by this
code set is shown.

CORBA V2.3 Relevant OSFM Registry Interfaces June 1999 13-107

13

Each 32-bit code set value consists of a high-order 16-bit organization number and a
16-bit identification of the code set within that organization. As the numbering of
organizations starts with 0x0001, a code set null value (0x00000000) may be used to
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy
equality,” meaning that a code set is shown as encoding a particular character set if the
code set can encode “most” of the characters.

“Compatibility” is determined with respect to two code sets by examining their entries
in the registry, paying special attention to the character sets encoded by each code set.
For each of the two code sets, an attempt is made to see if there is at least one (fuzzy-
defined) character set in common, and if such a character set is found, then the
assumption is made that these code sets are “compatible.” Obviously, applications
which exploit parts of a character set not properly encoded in this scheme will suffer
information loss when communicating with another application in this “fuzzy” scheme.

The ORB is responsible for accessing the OSF registry and determining
“compatibility” based on the information returned.

OSF members and other organizations can request additions to both the character set
and code set registries by email to cs-registry@opengroup.org; in particular, one range
of the code set registry (0xf5000000 through 0xffffffff) is reserved for
organizations to use in identifying sets which are not registered with the OSF (although
such use would not facilitate interoperability without registration).

13.9.2 Access Routines
The following routines are for accessing the OSF character and code set registry.
These routines map a code set string name to code set id and vice versa. They also help
in determining character set compatibility. These routine interfaces, their semantics
and their actual implementation are not normative (i.e., ORB vendors do not have to
bundle the OSF registry implementation with their products for compliance).

The following routines are adopted from RPC Runtime Support For I18N Characters -
Functional Specification (see References in the Preface).

13.9.2.1 dce_cs_loc_to_rgy

Maps a local system-specific string name for a code set to a numeric code set value
specified in the code set registry.

Synopsis
void dce_cs_loc_to_rgy(

idl_char *local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

Parameters
Input

local_code_set_name - A string that specifies the name that the local host's locale
environment uses to refer to the code set. The string is a maximum of 32 bytes: 31 data
bytes plus a terminating NULL character.

Output

rgy_code_set_value 0 - The registered integer value that uniquely identifies the
code set specified by local_code_set_name.

rgy_char_sets_number - The number of character sets that the specified code set
encodes. Specifying NULL prevents this routine from returning this parameter.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specifying
NULL prevents this routine from returning this parameter. The routine dynamically
allocates this value.

status - Returns the status code from this routine. This status code indicates whether
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set info.

• dce_cs_c_unknown – No code set value was not found in the registry which
corresponds to the code set name specified.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the name specified.

Description
The dce_cs_loc_to_rgy() routine maps operating system-specific names for
character/code set encodings to their unique identifiers in the code set registry.

The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specific
“local name” of a code set and returns the corresponding integer value that uniquely
identifies that code set, as registered in the host's code set registry. If the integer value
does not exist in the registry, the routine returns the status dce_cs_c_unknown.

The routine also returns the number of character sets that the code set encodes and the
registered integer values that uniquely identify those character sets. Specifying NULL
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that want
only to obtain a code set value from the code set registry can specify NULL for these
parameters in order to improve the routine's performance. If the value is returned from
the routine, application developers should free the array after it is used, since the array
is dynamically allocated.

CORBA V2.3 Relevant OSFM Registry Interfaces June 1999 13-109

13

13.9.2.2 dce_cs_rgy_to_loc

Maps a numeric code set value contained in the code set registry to the local system-
specific name for a code set.

Synopsis
void dce_cs_rgy_to_loc(

 unsigned32 *rgy_code_set_value,
 idl_char **local_code_set_name,
 unsigned16 *rgy_char_sets_number,
 unsigned16 **rgy_char_sets_value,
 error_status_t *status);

CORBA V2.3 Relevant OSFM Registry Interfaces June 1999 13-110

13

Parameters
Input

rgy_code_set_value - The registered hexadecimal value that uniquely identifies the
code set.

Output

local_code_set_name - A string that specifies the name that the local host's locale
environment uses to refer to the code set. The string is a maximum of 32 bytes: 31 data
bytes and a terminating NULL character.

rgy_char_sets_number - The number of character sets that the specified code set
encodes. Specifying NULL in this parameter prevents the routine from returning this
value.

rgy_char_sets_value - A pointer to an array of registered integer values that
uniquely identify the character set(s) that the specified code set encodes. Specifying
NULL in this parameter prevents the routine from returning this value. The routine
dynamically allocates this value.

status - Returns the status code from this routine. This status code indicates whether
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• dce_cs_c_ok – Code set registry access operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set info.

• dce_cs_c_unknown – The requested code set value was not found in the code set
registry.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the specific code set registry ID value. This implies that the code set
is not supported in the local system environment.

Description
The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the code set
registry to the operating system-specific string name for the code set, if it exists in the
code set registry.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a code set
and returns a string that holds the operating system-specific, or local name, of the code
set.

If the code set identifier does not exist in the registry, the routine returns the status
dce_cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes and the
registered integer values that uniquely identify those character sets. Specifying NULL
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that want
only to obtain a local code set name from the code set registry can specify NULL for

CORBA V2.3 Relevant OSFM Registry Interfaces June 1999 13-111

13

these parameters in order to improve the routine's performance. If the value is returned
from the routine, application developers should free the rgy_char_sets_value array
after it is used.

13.9.2.3 rpc_cs_char_set_compat_check

Evaluates character set compatibility between a client and a server.

Synopsis
void rpc_cs_char_set_compat_check(

 unsigned32 client_rgy_code_set_value,
 unsigned32 server_rgy_code_set_value,
 error_status_t *status);

Parameters
Input

client_rgy_code_set_value - The registered hexadecimal value that uniquely
identifies the code set that the client is using as its local code set.

server_rgy_code_set_value - The registered hexadecimal value that uniquely
identifies the code set that the server is using as its local code set.

Output

status - Returns the status code from this routine. This status code indicates whether
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• rpc_s_ok – Successful status.

• rpc_s_ss_no_compat_charsets – No compatible code set found. The client and
server do not have a common encoding that both could recognize and convert.

• The routine can also return status codes from the dce_cs_rgy_to_loc() routine.

Description
The rpc_cs_char_set_compat_check() routine provides a method for determining
character set compatibility between a client and a server; if the server's character set is
incompatible with that of the client, then connecting to that server is most likely not
acceptable, since massive data loss would result from such a connection.

The routine takes the registered integer values that represent the code sets that the
client and server are currently using and calls the code set registry to obtain the
registered values that represent the character set(s) that the specified code sets support.
If both client and server support just one character set, the routine compares client and
server registered character set values to determine whether or not the sets are
compatible. If they are not, the routine returns the status message
rpc_s_ss_no_compat_charsets.

CORBA V2.3 Relevant OSFM Registry Interfaces June 1999 13-112

13

If the client and server support multiple character sets, the routine determines whether
at least two of the sets are compatible. If two or more sets match, the routine considers
the character sets compatible, and returns a success status code to the caller.

13.9.2.4 rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one character from
the code set registry on a host

Synopsis
void rpc_rgy_get_max_bytes(

unsigned32 rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

Parameters
Input

rgy_code_set_value - The registered hexadecimal value that uniquely identifies the
code set.

Output

rgy_max_bytes - The registered decimal value that indicates the number of bytes
this code set uses to encode one character.

status - Returns the status code from this routine. This status code indicates whether
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:

• rpc_s_ok – Operation succeeded.

• dce_cs_c_cannot_allocate_memory – Cannot allocate memory for code set info.

• dce_cs_c_unknown – No code set value was not found in the registry which
corresponds to the code set value specified.

• dce_cs_c_notfound – No local code set name was found in the registry which
corresponds to the value specified.

Description
The rpc_rgy_get_max_bytes() routine reads the code set registry on the local host. It
takes the specified registered code set value, uses it as an index into the registry, and
returns the decimal value that indicates the number of bytes that the code set uses to
encode one character.

This information can be used for buffer sizing as part of the procedure to determine
whether additional storage needs to be allocated for conversion between local and
network code sets.

